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Where the mind is without fear and the head is held high;
Where knowledge is free;

Where the world has not been broken up into fragments
by narrow domestic walls;

Where words come out from the depth of truth;
Where tireless striving stretches its arms towards perfection;

Where the clear stream of reason has not lost its way
into the dreary desert sand of dead habit;
Where the mind is led forward by thee
into ever-widening thought and action—

Into that heaven of freedom, my Father, let my country awake.

— Rabindranath Tagore





1 Introduction
With the accelerated pace of global digitization, the frequency and complexity of cyberattacks have dramatically increased [71] [51]. These attacks not only compromise the datasecurity of individuals and businesses but can also cause substantial economic losses andharm to reputation. The global indicator for the "Estimated Cost of Cybercrime" in thecybersecurity market is projected to continuously rise by a total of 6.4 trillion U.S. dollarsbetween 2024 and 2029 [110], [132]. Given the growing sophistication of these threats,there is an urgent need for more advanced threat detection systems to effectively identifyand mitigate them.

Simultaneously, the rapid advancement of the Internet of Things (IoT) has led to thewidespread adoption of various applications in smart cities [75]. IoT devices operate indiverse environments to achieve various objectives. Recent innovations in IoT includeconnected computers, sensors, buildings, and communities, all contributing to the con-cept of "smartness." [117]. IoT devices are primarily at risk due to the lack of sufficientbuilt-in security measures to defend against threats. This vulnerability arises because theIoT environment is a complex network characterized by constant dynamism, resource lim-itations, and large data volumes [101]. One Noticeable threat is botnet-based attacks. Abotnet network is a sophisticated collection of bots used by cybercriminals to conductma-licious activities over the internet. Botnet-based attacks pose significant challenges for IoTnetworks. Detecting attacks in IoT networks is particularly challenging due to specific re-quirements, such as the need for low latency, mobility, and a distributed architecture [90].Moreover, The main challenge is that attackers continuously develop new tools and tech-niques to exploit vulnerabilities.
In the context of healthcare as well, Internet of Medical Things (IoMT) devices haveimproved patient monitoring but have also introduced significant security vulnerabilitiesthat attackers can exploit[10], which poses risks to patient privacy and safety [26]. DoSand DDoS attacks on IoMT devices could disrupt critical medical equipment, potentiallyendangering the lives of patients [26]. Furthermore, IoMT devices are prime targets forattackers because of the sensitive medical data they collect, and any breaches could leadto the exposure of personal patient information [135], [108]. To combat this, intrusiondetection systems (IDS) have become an essential part of network security.
IDS is a tool that monitors system activity or network traffic for patterns that may indi-cate an attack. There are primarily two types of IDSs: a) Host-based IDS and b) Network-based IDS [142]. A Host-based IDS monitors specific hosts or devices and alerts users ifit detects any suspicious activities, such as modifications or deletions of system files, un-usual sequences of system calls, or unauthorized changes to system configurations. Incontrast, a Network-based IDS is typically positioned at key points in the network, such asgateways and routers. Its primary function is to monitor network traffic for signs of intru-sion [95]. NIDS is a network monitoring tool for detecting botnet command and controltraffic, cyberattacks, and other unauthorised network behaviour. However, organisationalNIDS environments often produce hundreds of thousands of alerts per day, with a signif-icant portion of them having low importance [143]. Detection mechanisms in IDS can becategorized into three types: misuse detection, anomaly detection, and hybrid detection.In the misuse detection approach, an IDS maintains a knowledge base of rules for de-tecting known attack types. Misuse detection techniques can be broadly categorized intoknowledge-based andMachine learning-based techniques. In the knowledge-based tech-nique, network traffic or host audit data (such as system call traces) are compared againstpredefined rules or attack patterns [109].
Knowledge-based techniques can be categorized into three types: (i) Signaturematch-
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ing, (ii) State transition analysis, and (iii) Rule-based expert systems [109]. Signaturematch-ing misuse detection techniques check incoming packets against established patterns,flagging those thatmatch as anomalous [107]. State transition analysismodels track knownsuspicious patterns, with different paths leading to a compromised state [48]. Rule-basedexpert systems have databases of rules for various intrusion scenarios [105]. However, adisadvantage of knowledge-based IDS is that they require regular maintenance of theirknowledge database to remain effective. Additionally, they may fail to detect variants ofnew attacks. The main limitation of signature-based IDS is that it requires regular updatesto add signature rules for new attack definitions [76]. Additionally, it tends to generatemore false alarms for evolving attacks that do not have defined signatures [88].
In recent decades, researchers have made significant advancements in ID by introduc-ing traditional machine learning (ML) and data mining methods. Themain contribution ofthis dissertation focuses on the domain of ML-based IDS, which adopt a learning-basedapproach to detect various classes of cyberattacks based on learned normal and attackbehaviour. Supervised learning algorithms, such as decision trees (DT), Naive Bayes, anddeep learning(DL) techniques [78], are particularly suitable formisuse detection [127], [148].However, most ML models (except for interpretable ones, such as DT, in simple IDS set-tings) function as black boxes, offering no explanations for their decisions to the securityexperts who manage these systems [118] [12]. Specifically, previous ML-based researchwork has primarily focused on improving the performance of the model without provid-ing insights into the internal reasoning and behaviour of the IDS. This critical limitationmotivates the core research challenge addressed in this dissertation—the urgent needfor more transparent, explainable, and trustworthy ML solutions for IDS.

1.1 Explainable AI for IDS
Despite the impressive results achieved by many ML methods in the cybersecurity do-main, significant concerns arise due to the inherent lack of interpretability in ML models.This implies that security experts may encounter difficulties trusting the outputs of MLmodels because they do not fully understand how amodel reaches a particular decision orclassification. Unlike traditional ML models, which provide clear decision boundaries andfeature explanations, DL models often operate as "black box models," making it difficultfor experts—such as Security Operations Centre (SOC) analysts, system administrators,and developers—to understand the model and trust the underlying decision-making pro-cess. In response to this challenge, new approaches have been developed in recent yearsaimed at improving the transparency of the black-box nature of ML models, making theiroutputs more interpretable. This concept is commonly referred to in the literature as ex-plainable artificial intelligence (XAI). Understanding why a classifier categorizes a given in-put instance in a specific way is becoming increasingly important as AI continues to evolverapidly and influence many aspects of our daily lives. However, many AI systems in usetoday often lack transparency. XAI is crucial for users who rely onMLmodels, as it enablesdecision-makers to understand the rationale behind the model’s recommendations. Forexample, in cybersecurity, experts need to comprehend why the ML model has flagged aparticular flow of network traffic as malicious. Such understanding is essential for effec-tively identifying and addressing potential threats, ultimately fostering trust in cyberse-curity experts [126]. XAI further enhance threat investigation by assisting SOC analysts inunderstanding how the model predicted a specific network traffic flow data point, pro-viding a precise root cause analysis [155]. Additionally, black box models may often sufferfrom issues such as biases, misclassifications, or overfitting [46]. XAI assists in improvingthe detection performance and overall reliability of the models [32]. Several XAI methods
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have emerged as important local explainers, offering detailed instance-level explanationsby assigning importance scores to the features most responsible for model decisions. Asa result, experts can gain insights into the model’s output by evaluating whether thesefeatures are relevant in the context of the associated cyber incident. XAI explanationscan be categorised into two scopes: global and local. The local explanation in the modelfocuses on explaining individual predictions, whereas the global explanation unveils theoverall behaviour of the model. In XAI, models can achieve explanations through an in-trinsic (model-specific) approach, in which explainability is integrated into the model dur-ing training and is not transferable, or a post hoc (model-agnostic) approach. The post-hoc XAI method is independent of any architecture and can be applied to any trained MLmodel [46, 141]. Currently, XAI approaches for intrusion detection are still in their earlystages, and the available literature is limited [103], [65], [25].
Several recent works ( [45, 84, 104, 116]) have begun to integrate explainability withinIDS to enhance interpretability and user trust, proposed an abstract design for a human-in-the-loop approach in intelligent ID and emphasised the role of explainability in facilitatinganalyst decision-making. Most of the work on XAI methods in cybersecurity primarilyfocuses on visualisation and model verification.
The necessity and value of explanations in security systems were first emphasized byVigan et al. [146], who introduced the "Six Ws" paradigm to enhance understanding ofintelligent system functionality. They underscored the role of explainability in improvingsystem transparency and trust by addressing six fundamental questions:‘Who’, ‘What’,‘Where’, ‘When’, ‘Why’, and ‘How’.
Hatma et al. proposed a novel model for detecting botnet Domain Generation Algo-rithms (DGAs) [137]. The study used five ML models on datasets from 55 different botnetfamilies. RandomForestmodel attained the highest accuracy of 96.3%. To enhancemodeltransparency and trust, the authors incorporated Open-source Intelligence (OSINT) withXAI techniques, including SHAP [82] and LIME [115]. However, the proposed frameworkdoes have limitations, including the high computational complexity due to feature extrac-tion and reduced robustness against Mask botnet attacks [137].
Visualization tools were also employed to provide clearer insights into the rationalebehind labeling an account as either a botnet or legitimate. Michele et al. proposedReTweet-Tweet (RTT), a concise yet informative scatterplot visualization created to facil-itate the exploration of a user’s retweeting behavior [89]. Although their botnet detec-tion framework, Retweet-Buster (RTbust), relies on unsupervised feature extraction usingVariational Autoencoders (VAEs) and LSTM, the RTT visualisation can still be effectivelyutilised after classification. It aids in interpreting the characteristics of accounts identi-fied as bots, thereby contributing to a more transparent and explainable detection pro-cess. In the study by [35], authors proposed an explainable hybrid IDS that incorporates arule-based method with human expertise and ML, constructing a comprehensive hybridsystem. The decision tree, a white box model known for its intrinsic explainability, wasemployed to provide rule-based explanations for IDS, making it more understandable todomain experts. With the improvement of DL in cyber security, various pilot studies haveexplored to understand the behaviour of ML-IDSs in botnet network traffic. However,cyber-security stakeholders need help building their faith in the results of current DLmod-els due to bad decisions made by complex neural network models. To deal with such asproblem, in paper [69], Kundu et al.[69] conducted experiments by utilising a combinationof synthetic and real network traffic constructed by the IXAI breaking point system [50].1DCNN model is tested over three kinds of datasets. The synthetic dataset is generatedby the IXAI appliance, and the others are the Stratosphere IPS Project dataset [133] and
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Kitsune dataset [94] in botnet traffic. The authors have demonstrated that the presentedDCNN botnet detection models outperform previous ML models, with advancements ofup to 15% for all classification metrics. Additionally, SHAP was employed to elucidatemodel decisions, enhancing trust among cybersecurity stakeholders. Le et al. [72] utilizedSHAP alongside DT and RF models to develop a comprehensive IDS. They implemented aheatmap to visualize the impact of individual features on the overall model. Additionally,a Decision Plot was employed to explain specific instances within the dataset. The studywas conducted using the ToN-IoT [98] and BoT IoT [66] datasets.
Wang et al. [151] proposed a framework that utilises SHAP [82] to unify local andglobal explanations, thus enhancing the explainability of ID decisions [151]. Local explana-tions elucidate the justification behind predictions for individual instances, while globalexplanations highlight the prominent features learned by the model, showing the rela-tionships between feature importance and attack types. Also, the study conducts a com-parative analysis of explanations generated for two classifier configurations, namely, theone-versus-all classifier and the multiclass models, using the NSL-KDD data [140] as alsoexamined in [151].
Liu et al. present FAIXID [79], a framework that incorporates explainability into IDSat various levels. These levels include data cleaning, elucidating the internal workings ofa trained supervised model, providing local explanations for predictions, and displayingresults to security analysts through different visualizations tailored to the expertise or roleof each analyst [79].
Rao et al. [111] used an isolation forest model trained on the NSL-KDD dataset to dis-tinguish between normal and anomalous samples. To achieve explainability, Authors useSHAP [82] and LIME [115] for extracting and visualising feature-based explanations. More-over, they auto-generate labels for the attacks, assigning to each anomaly the name ofthe most important feature to make the prediction [111].
Szczepański et al. proposed the hybrid Oracle Explainer IDS, which combines Arti-ficial Neural Networks (ANNs) and DT while utilizing microaggregation methods to en-hance performance [138]. This system aims to achieve high accuracy while providinghuman-understandable explanations for its decisions. The authors developed an Oracle-based Explainer module that measures the distance between clusters formed from thedataset[124] and the test instances. The closest cluster is then used to generate an expla-nation for the decision.
Zolanvari et al. [159] developed a model-agnostic xai framework called TransparencyBased on Statistical Theory (TRUST) for numerical applications. TRUST uses factor analysisto convert input features into latent features, ranks them using mutual information, andemploys a multimodal Gaussian distribution to classify new samples [159] . It has beentested on three datasets: NSL-KDD [140], UNSW [99], and the "WUSTL-IIoT" dataset [158]on intrusion network traffic.Finally, compared to LIME [115], the TRUST XAI model hasachieved a success rate 98% in explaining random test samples.
In a paper [86], the authors addressed the challenge of explaining IDS in computernetworks using DL. They developed an XAI framework to enhance the transparency ofthe model. To design the DL-based IDS, the authors utilized the NSL-KDD dataset [140].They employed four XAImethods—SHAP [82], LIME [115], ProtoDash [42], and ContrastiveExplanations Method(CEM) [34]—to elucidate the internal workings of the DL-based-IDSmodel.
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1.1.1 Research Gap in Centralized XAI-IDS
While research on XAI in cybersecurity is increasing, However, current XAI techniquesmayproduce unreliable explanations in real-world scenarios due to their limited qualitativeevaluation[29]. Despite the growing recognition of the importance of explainability inML models, researchers face challenges in establishing universal and objective criteria fordeveloping and validating explanations [93]. These challenges need to be addressed topromote the advancement of XAI. Key issues include: (i) reaching a consensus on the ap-propriate definition of model explainability, (ii) identifying and formalizing explainabilitytasks from the perspectives of various stakeholders, and (iii) designing measures to evalu-ate the effectiveness of explainability techniques [39]. Another challenge is findingmodelsthat balance both high performance and transparency. Generally, more accurate modelstend to be complex and difficult to understand. This trade-off is particularly significant inIDS systems, where users typically expect both high performance and clear explanationsto foster a strong sense of trustworthiness [9]. Evaluating explainability is crucial to en-sure that the employed XAI methods can be effectively deployed in real-world scenariosand contribute to a better understanding of model outputs. Therefore, designing an XAIsystem that incorporates robust qualitative and quantitative evaluation procedures forreal-world application is critically important for the effective adoption of XAI-based IDSs.Despite considerable advancements in recent times, significant gaps remain in the ex-isting literature concerning XAI-based ID systems, necessitating a more in-depth investi-gation. A critical gap that stands out is the absence of standardized evaluation metricsto evaluate the effectiveness and utility of XAI methods within the context of ID domain.Current research in cyber security relies primarily on qualitative assessments of XAI ap-proaches. Developing a comprehensive suite of benchmarks to measure the domain-specific facets of explainability would enable more robust comparisons across diverseXAI methodologies and streamline identifying optimal practices. While related worksmentioned in Section 1.1 can be viewed as initial steps toward introducing explainabil-ity into IDS systems, to the best of our current understanding, there still needs to be amore quantitative evaluation of XAI methods in the literature pertaining to cybersecurity.This highlights a need for more rigorously evaluating the quality of generated explana-tions, an essential requirement to establishing confidence in the explanation outputs ofAI systems built upon XAI principles [4, 5, 7, 16, 20, 28, 35, 45, 49, 52, 64, 69, 72, 79, 84–86, 89, 96, 100, 104, 106, 111, 116, 119, 125, 128, 137, 138, 146, 149–151, 159].
1.2 Explainable AI for Decentralized IDS
ML is increasingly recognised as a potential approach for detecting and mitigating attackson IoT devices, which are becoming more sophisticated. Numerous studies have investi-gated how the effectiveness of traditional IDS can be improved by utilising ML to analysenetwork traffic and detect potential attacks. While ML increases attack detection accu-racy in IDS, most of theseML-enabled systems remain centralised. In centralized systems,a single entity (the server) collects network traffic data from multiple devices to train themodel. As a result, the server has access to all network traffic generated by the commu-nication among various devices participating in the training process and the local datafrom those devices, which could lead to privacy issues [24]. Therefore, decentralized datamanagement solutions are crucial for preserving data privacy during the model trainingprocess [47]. AsML is applied to an increasing number of applications, users are becomingmore concerned about the privacy of their data. To protect their personal privacy, usersmay hesitate to share their data. Numerous laws on data privacy and security have beenimplemented to enhance user privacy and security, such as the EU’s General Data Protec-
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tion Regulation (GDPR) [37] and China’s Cybersecurity Law [153]. These strict regulationsprevent the direct exchange or central collection of data from multiple parties to avoidprivacy leaks. Therefore, It is essential to find ways to use data from multiple parties fortrainingMLmodels while ensuring compliance with data privacy and security regulations.To address the privacy issues associated with traditional centralized ML approaches,Federated Learning (FL) [91] was proposed in 2016 as a collaborative learning method.In FL, end devices (often referred to as clients or parties) do not share their data. In-stead, they only transmit partial updates of a global model, which are then aggregatedby a central entity. This approach is designed to enhance user privacy, as the data fromusers’ devices remains confidential and is not shared with other entities. Generally, a FLdesign system involves a large number of client devices with varying amounts and distri-butions of data. In real-life situations, this data is often non-independent and identicallydistributed (Non-IID) [156]. For instance, in an IDS deployed on a particular network, sometarget devicesmay experience traffic associated with various types of attacks (such as DoSor port scanning), while other devices might only exhibit traffic related to their intendedoperations[3].Recently, the concept of Fed-XAI,which integrates FLwith XAI paradigms, has emerged.The synergy between these paradigms is crucial for achieving trustworthiness in MLmod-els, as it enables the simultaneous pursuit of transparency and privacy preservation re-quirements. In recent years, the scientific community has focused significantly on de-veloping XAI [21] [1] [80], but relatively little attention has been dedicated to addressinginterpretability issues in FL [18] [38]. In an IDS operating within a FL framework, securityexperts who analyze intrusions on IoT devices using server-side models need to under-stand how these models make their decisions. Achieving both privacy and explainabilityin this context presents a significant challenge. The integration of XAI methods into FL hasnot received much attention and introduces additional challenges due to the complex,distributed nature of FL, where the model is trained across multiple IoT devices. Post-hoc XAI methods, such as feature importance explainers (eg: LIME or SHAP) and modelinterpretability techniques, typically require access to the complete training dataset orinput reference data, which can pose a privacy risk. Therefore, achieving explainabilityfor a black-box model on the server in FL without providing data to the server remains achallenge that needs to be addressed.
1.3 Research questions
Research Objective:This PhD dissertation research aims to enhance the effectiveness,transparency, and privacy of machine learning-based intrusion detection systems (IDS). Itemphasizes the critical role of explainability and its quantitative evaluation in improvingthe detection of IoT botnets, identifying attacks in IoMT networks, and classifying alertsgenerated by network intrusion detection systems (NIDS). The research further exploresthe role of explainable AI in an active learning loop for IoT botnet detection. To advocatefor responsible AI practices while preserving data privacy in decentralized environments,this research aims to develop transparent and trustworthy IDS models within federatedlearning settings, without revealing sensitive client data.To achieve the above research objective, we have formulated fourmain research ques-tions that guide our investigation into improving IDS through explainable and privacy-preserving artificial intelligence. These questions are designed to explore the potentialof XAI in both centralized and decentralized settings, with the aim of building more trans-parent, trustworthy, and effective ML-IDS models that are better suited for real-worlddeployments. The following four research questions are addressed in this dissertation.
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• RQ1:Whatminimal feature subsets aremost influential for achieving high detectionperformance criteria in IoT botnet and healthcare IoMT cyber attack detection?
• RQ2: How can the quality of explainable ai methods be quantitatively evaluated forintrusion detection across IoT botnet detection, IoMT attack detection, and NIDSalert classification?
• RQ3: How do local explanations impact annotation quality and training outcomesin active learning for IoT botnet detection?
• RQ4: How can explainable AI be integrated into federated learning for effectiveintrusion detection while ensuring transparency and data privacy?
In this dissertation,RQ1 addresses the feature selection problem in intrusion detec-tion systems (IDS), with the goal of identifying optimal subsets of features using variousselection methods tailored to different classification scenarios, particularly for detectingIoT botnet and IoMT attacks. To achieve transparency in the black-box nature of ML mod-els for IDS, we applied explainable AI using various methods. To overcome the previouslymentioned challenges regarding the scarcity of evaluating explainability, RQ2 emphasizesthe importance of considering the quality of explainability through quantitative evalua-tion, alongside the detection performance of the models. We advocate for including thisevaluation of explainability as a significant criterion for building models that security ex-perts can trust in XAI-based IDS. RQ3 investigates how local explanations impact the anno-tation quality and model training within an active learning loop for IoT botnet detection.We advocate for the integration of responsible AI practices by prioritizing transparency,accountability, and ethical compliance in threat detection processes. While post-hoc ex-plainability methods typically require access to real client data to generate explanations,federated learning (FL) settings pose unique challenges due to privacy constraints thatprevent server-side access to client data. To address this issue, RQ4 propose multipleFed-XAI frameworks designed to enhance the explainability of global IDS models in fed-erated settings, ensuring transparency without compromising the privacy of participatingclients.

1.4 Research Gaps & Contributions
This PhD thesis’s contribution is based on a compilation of peer-reviewed scientific publi-cations that have been published in reputable journals and international conferences. Thecontributions advance the field of intrusion detection by promoting the development ofeffective, transparent, and trustworthy machine learning-based IDS models in both cen-tralized and decentralized settings. These models are validated through extensive experi-mental studies to ensure their applicability, scalability, and reliability in real-world deploy-ment scenarios. This PhD deseeration systematically addresses five key Research gaps:RG-A, RG-B, RG-C, RG-D, & RG-E, presenting corresponding contributions A1, A2, B1, B2, C1,D1, E1, F1 & F2.
RG-A. Overlooked Role of Feature Selection in IoT Botnet and IoMT Intrusion Detection:While ML have demonstrated high performance in classifying malicious traffic de-tection problems, feature selection, an important step in the ML workflow, has notbeen fully addressed [23]. One significant concern is the curse of dimensionality,which can negatively impact detection performance by causing overfitting whenclassifiers are trained with a large number of features [74]. Furthermore, a high-dimensional feature space may require more computing resources when models
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are deployed in a real-world environment. Most intrusion detection systems musthandle large volumes of network traffic, so optimizing resource usage is crucial,especially in IoT networks. Therefore, reducing the size of the feature set can en-hance the performance of ML models in several ways. However, existing studiesdo not examine the impact of feature selection methods on different binary andmulti-class classification approaches that can be applied for intrusion detection atvarious stages of the botnet life cycle. Moreover, feature selection aids in achiev-ing a deeper understanding of the underlying processes that generated the data,as fewer features are easier for experts to interpret. To address this gap, this dis-sertation emphasizes the critical role of robust feature selection by conducting anin-depth evaluation of feature selection methods for IoT botnet and IoMT attackdetection, thereby contributing to the advancement of more robust and efficientML-based Intrusion detection systems.
A1. In-depth feature selection for IoT botnet detection: In Publication I, to ad-dress the above research gap in IoT botnet detection, an in-depth feature se-lection analysiswas conductedby evaluating filter andwrappermethods acrossvarious binary andmulti-class classification formulations based on the IoT bot-net life cycle. This study identifies optimal minimal feature subsets that en-hance model detection performance and improve the efficiency of IDS.
A2. Comprehensive Feature Selection for IoMT Intrusion Detection: In Publica-tion II, a comprehensive feature selection study was conducted for healthcareIoMT IDS using two network traffic datasets for detecting cyber attacks in IoMTnetworks. By addressing the neglected role of feature selection, this study em-phasises its significance in enhancing detection capabilities and finding mini-mal feature subsets using filter-based methods (Fisher Score, Mutual Informa-tion, and Information Gain) for both binary and multi-class ID, contributing tothe development of efficient and robust IDS.

RG-B. Lack of Quantitative Evaluation of Explainability in ML-based IoT Botnet Detec-tion: Although numerous current works have achieved high detection performancein ML-based IDS, most research has primarily focused on improving classificationperformance, while neglecting the evaluation of explanation quality. As XAI toolsare increasingly being integrated into network security to assist analysts in makinginformeddecisions, a key challenge remains in validating these tools, assessing theirexplanation quality, and evaluating relevant security metrics. This lack of rigorousevaluation reduces trust in deploying XAI methods for real-world IDS applications.Moreover, many previous works have not conducted comprehensive assessmentsof XAI methods across different intrusion datasets and diverse ML models, limitingthe generalizability of their findings.
B1. Quantitative Evaluation of Explainability in IoT Botnet Detection: To enhancethe transparency, trust, and explainability of IDS systems, we developed frame-works that quantitatively evaluate XAI methods for IoT botnet detection, ad-dressing a critical gap in the rigorous evaluation of explanation quality in black-box IDS models. In Publication III, statistical ML models were evaluated, whilein Publication IV, deep learning models were assessed across both binary andmulti-class classification tasks. The quantitative evaluation was conducted us-ing key metrics such as faithfulness, complexity, and robustness of the gener-ated explanations.
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RG-C. Missing Ground-Truth-Based Evaluation of XAI Methods for NIDS Alert Classifica-tion: Evaluating explainability in cybersecurity, especially inNIDS alert classification,poses a significant challenge due to the absence of clearly defined ground-truth ex-planations. Unlike image classification, where humans can directly annotate impor-tant sub-images or pixels—creating human-annotated ground-truthmasks for eval-uating the explanations —NIDS operates on abstract network traffic features areoften difficult even for experts to interpret. This lack of clear, human-recognizableground truth makes it challenging to evaluate whether an explanation accuratelyreflects the reasoning behind the predictions of black-box models. However, previ-ous research has largely neglected the integration of expert-driven ground truth inevaluating explanation quality, which is essential for ensuring the trustworthinessof XAI-assisted alert prioritization systems in real-world SOC environments.
C1. Evaluation of Explainability for NIDS Alert Classification: In Publication V,Developed a transparent deep learning-based model for classifying real-worldNIDS alerts, utilizing a dataset collected from an operational SOC. Collaborateddirectly with SOC analysts to define high-priority alerts and used their domainexpertise as ground truth to evaluate the reliability of XAI outputs, alongsidekey explainability criteria, including faithfulness, complexity, and robustness.

RG-D. Lack of Explainability Evaluation for Transformer-based IDS in IoMT Attack Detec-tion: Although many previous studies have adopted Transformer architectures toimprove IDS performance, they have largely neglected the explainability of Trans-formermodels. While explainability has been explored for traditional MLmodels orin non-IoMT domains, there remains a significant gap in systematically evaluatingXAImethods specifically for Transformer-based IDS operating on healthcare-specificIoMT network traffic.
D1. Explainable Transformer-based IDS for IoMT Attack Detection: In Publica-tion VI Designed a Transformer architecture and adapted it for network trafficanalysis to enable effective intrusion detection for IoMT cyber attack detec-tion. To foster trust and transparency in Transformer-based decision-makingfor critical healthcare security environments, explainable AI techniques wereintegrated to facilitate the understanding of feature contributions in Trans-former model predictions, and the quality of explanations was rigorously eval-uated.

RG-E. Limited Integration of Explainability in Active Learning for IDS:While multiple pre-vious work have explored XAI methods and active learning independently for en-hancing ID, very fewworks have addressed their combined application in real-worldIDS settings. In particular, existing IDS research primarily focuses on improvingmodel detection performance but often neglects the role of XAI in helping SOC an-alysts during the labeling process in active learning cycles. Moreover, prior studiesrarely evaluate the quality of explanations produced by XAI methods within activelearning loops using quantitative evaluation metrics.
E1. Explainable Active Learning (XAL) Framework for IoT Botnet Detection:In Publi-cation VII,Weproposed an Explainable Active Learning (XAL) framework to en-hance bothmodel performance and transparency in IoT botnet detection. Theframework demonstrates how active learning–based query strategies, such asuncertainty sampling and query-by-committee, can be improved through the
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integration of explainable AI methods and the quantitative evaluation of ex-planation quality to support the selection of the most informative instancesfor annotation.
RG-F. Challenges in Integration of Explainable AI in Federated Learning:While several re-cent works have investigated incorporating XAI into FL frameworks for ID, notablechallenges have still not been addressed. Previous studies havemainly explored ap-plying post-hoc explainability methods either to individual client models or to theglobal server model FL. Nevertheless, most of these approaches disregard the pri-vacy risks associated with explaining server-side models, as many post-hoc explain-ers require access to training client data or reference data to generate explanations.

F1. FedXAI-based IDS: In Publication VIII & IX, We proposed a FedXAI frameworkthat integrates explainable AI into FL to enable privacy-preserving intrusion de-tection of IoT botnets across both binary and multi-class classification tasks indecentralized settings. To address the challenge that post-hoc explainabilitymethods (e.g., SHAP) typically require access to reference data (Training data),the framework employs a secure aggregationmechanismbased on secret shar-ing to compute server-side SHAP explanations without compromising clientdata privacy. This framework ensures that the server achieves transparencyand explainability of the global model while preserving individual client data.The reliability of the aggregated SHAP explanations was evaluated by com-paring them against server-side SHAP explanations generated using real clientdata, demonstrating that client-side SHAP aggregation can effectively approx-imate real data-based explanations, thereby achieving both transparency andprivacy in federated IDS environments.
F2. Synthetic data-driven explainability for Federated IDS model: We proposea novel framework called FEDXAI to address the challenges of achieving ex-plainability for the black-box nature of the global model on the server side inFL. This framework leverages synthetic data generated by variants of Genera-tive Adversarial Networks (GANs) to provide transparency and explainability ofglobal model in FL without accessing client data. We evaluated the quality ofglobal model explanations using synthetic data by comparing them to expla-nations derived from real client data. Experimental results demonstrated syn-thetic data–based explanations closely approximate with explanations basedon real data, validating the effectiveness and feasibility of privacy-preservingexplainability in decentralized IDS environments.

Table 1: Mapping of dissertation chapters to research questions, corresponding publications, and
key contributions

Chapter Research Question Research Gap Contributions Publications4 RQ1 RG-A A1, A2 1, 25 RQ2 RG-B B1 3, 46 RG-C C1 57 RG-D D1 68 RQ3 RG-E E1 79 RQ4 RG-F F1 8, 910 F2 10
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1.5 Thesis Structure
The main content of the dissertation is organised into chapters that address the key re-search questions outlined in the previous subsection, with each chapter contributing tospecific theoretical and practical advantages in transparency and privacy serving IDS inboth centralized and decentralized settings.Table 1 provides a clear mapping of each chapter of this dissertation to its correspond-ing research question, associated publications, and specific contributions. This mappingis presented for the sake of clarity and to highlight how each chapter addresses the coreobjective of the research. A brief description of the content of each chapter is providedas follows.

• Chapter 1: Introduction emphasizes the importance of intrusion detection in thecontext of evolving cybersecurity threats. It defines the research problem, high-lights existing research gaps, outlines the objectives of the study, formulates thekey research questions, and presents the major contributions of the dissertation.
• Chapter 2: This chapter provides background information on Explainable AI (XAI)and the various methods used in this dissertation to achieve model explainability.
• Chapter 3: Provides background on Federated Learning, including its architecture,privacy challenges, and relevance to intrusion detection systems.
• Chapter 4: addresses RQ1 for the evaluation of the feature selection methods toidentify theminimal number of features for improving the robustness and efficiencyof ML-based IDS models for IoT botnet and IoMT attack detection.
• Chapter 5: Addresses RQ2 by evaluating the quality of explanations generated bypost-hoc explainable AI (XAI) methods for IoT botnet detection in both binary andmulti-class classification tasks. The evaluation is based on key criteria including theexplanation of faithfulness, complexity, and robustness.
• Chapter 6: Focuses ondeep learning-basedNIDS alert classification using real-worlddata collected from a SoC. It includes direct feedback from SOC analysts to assessthe quality and reliability of explanations generated by post-hoc XAI methods, ad-dressing important aspects of RQ2.
• Chapter 7: discusses a ChatGPT-inspired transformer architecture tailored for IoMTattack detection, which focuses on enhancing the transparency of transformers us-ing XAImethods to explain transformermodel decision-making in IoMT cyber attackprediction, addressing RQ2.
• Chapter 8: AddressesRQ3 by proposing an Explainable Active Learning (XAL) frame-work that integrates explainable AI into the active learning loop to enhance anno-tation quality and improve model performance in IoT botnet detection.
• Chapter 9: addresses RQ4 by developing the FedXAI framework, which introducessecure aggregation of client-side SHAP explanations to provide transparency intothe global black-box model on the server in a federated learning-based intrusiondetection system without requiring direct access to client data, thereby achievingexplainability while preserving privacy.
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• Chapter 10: discusses RQ4 further by proposing synthetic data-driven explainabilityusing GAN-variant–based synthetic data to explain the globalmodel on the server ina federated learning setting, achieving transparency in intrusion detection systemsthat operate in federated learning without accessing client data.
• Chapter 11: Presents themain conclusions of the research, highlights its limitations,and outlines possible directions for future work based on the findings and contri-butions of the dissertation.
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2 Background Work
To situate this research within the broader scientific landscape, the following section pro-vides a detailed overview of the background on explainable AI and methods used in thisdissertation for various publication studies.
2.1 Explainable AI
Using advanced machine-learning models trained on large datasets can lead to decision-making systems that we don’t fully understand. This lack of understanding raises con-cerns about ethics, accountability, safety, and industrial liability. Explainability and inter-pretability methods help understand howmachine learning (ML) detection systems makedecisions, a concept known as Explainable Artificial Intelligence (XAI). In 2016, the De-fense Advanced Research Projects Agency (DARPA) initiated the "Explainable AI (XAI) Pro-gram" to develop models that are easier to understand while achieving high performancein learning and prediction. The program aims to enhance user trust and managementof future artificial intelligence partners. The goal of XAI is to build trust among expertsby clarifying the reasons behind ML model predictions, identifying potential biases, andensuring compliance with legal requirements in areas like the healthcare sector and cy-bersecurity domains.

Figure 1: Explainable ai methods Taxonomy

Figure 1 presents a taxonomy of explanation AI methods.It’s essential to differenti-ate between ante-hoc explainability, which involves directly training explainable mod-els, and post-hoc explainability, which focuses on explaining pre-trained models. Exam-ples of ante-hoc explainable models include linear regression, decision trees, k-nearestneighbors, and Bayesian learners. Many believe that ante-hoc explainable models under-
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perform, resulting in the use of opaque models. These complex models are often blackboxes, which are complex to understand. Post hoc explanation methods generate expla-nations for already trained models. They can be divided into model-agnostic methods,which work with any model, and model-specific methods, which are tailored for specificmodels. A scope of explanations can be achieved through both local and global methods.Local explanations provide insights into individual predictions of the model, while globalexplanations describe the overall behavior of themodel. For instance, global explanationsaddress the question of "how does the ML model make predictions?" Local explanationsanswer "why is this instance given this model prediction?". In this dissertation, variousPosthoc explanation methods were used for the publications addressing the problem ofintrusion detection systems. A description of these XAI methods is provided below.
2.2 Explainable AI methods
For data set D, input x ∈ Rd , where d is the dimensionality of the feature set, and theblack box model M maps the input to an output M(x) ∈ Y . Denote D = {(xi,yi)} as thecollection of all input-output pairs in the dataset. A post hoc explanation, denoted as g asan explanationmapping that for predictorM and point of interest x returns an importancescore g(M,x) = ϕx ∈ Rd for all features. The evaluation criterion µ is the mapping thattakes predictorM, explainer g and the point of interest x as arguments and returns a scalarvalue for g.
2.2.1 LIME(Local Interpretable Model-Agnostic Explanations)
LIME is an XAI method that provides interpretable local explanations for black-boxmodelsby approximating the model’s behaviour in the local region around a specific instance[115]. Given an instance x ∈Rd and an explanation of the model g ∈G where G is a set ofinterpretablemodels (e.g.: Linearmodels). provides explanationsϕ(x) obtained by belowequation:

ϕ(x) = argmin
g∈G

{L (M,g,ωx)+Ω(g)} (1)
In the case of a classification model M, ωx is a proximity measure or weight betweenthe actual instance and the new instances. A higher value ofωx signifies a stronger similar-ity between the new and original instances. L is a loss function used tomeasure the prox-imity between the predictionsmade by the explanationmodel and the original model and

Ω(g) quantifies the complexity of model g. Hence, LIME minimises L (M,g,ωx)+Ω(g)to create a locally interpretable model, which is then used to predict the instance via theexplanation model ω(x).
2.2.2 SHAP (SHapley Additive exPlanations)
This method is also another popular method to interpret the output of ML models [82]. Itis based on the concept of Shapley values fromcooperative game theory [123] and explainseach feature’s contribution to the model prediction [134].SHAP is typically applied to tabular data and exhibits the following properties: localaccuracy, handling of missing data, and consistency [81]. Local accuracy ensures that theexplanationmodelmatches the originalmodel. Missingness ensures thatmissing featuresin the original input do not have an impact. Consistency, where increasing the impact of afeature in the model should also result in a higher SHAP value for that feature, regardlessof other features.
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SHAP creates simplified inputs z by mapping x to z through x = hx(z). The originalmodel M(x) can be approximated using binary variables with a linear function:
M(x) = g(z) = ϕ0 +

d

∑
i=1

ϕiZi (2)
where z = {0,1}d , d represents the number of input features, ϕ0 = M(hx(0)), and ϕidenotes the feature attribution value

ϕi = ∑
S∈F\{i}

|S|!(d−|S|!−1)!
|d|! [Mx(S∪ i)−M(S)] (3)

Mx(S) = M(h−1
x (z)) = E[[M(x)]|xs] (4)

Where F is the non-zero input set in z, S is the subset of F excluding the ith featurefrom F , and ϕi is the SHAP value, a unified measure of additive feature attributions.Since computing E[[M(x)]|xs] is particularly difficult, many approximation methodshave been created, including Kernel SHAP, Deep SHAP, and Tree SHAP. In this dissertation,Tree SHAPwas used when explaining the predictions of tree-basedmodels (e.g., XGBoost,Random Forest), while Deep SHAP was utilized to explain predictions of deep learningmodels (e.g., LSTM, deep neural networks, Transformers).
2.2.3 DeepLift (Deep Learning Important FeaTures)
DeepLift is an additive feature attribution method that satisfies local precision and re-cursively explains the results of the deep learning black box model [129]. This methodemploys a linear composition technique to linearize the non-linear components of theblack-box model [130].DeepLIFT method quantifies the influence of an input neuron on the difference be-tween the activation of a neuron corresponding to class c and the input data matrix xwhen compared to a reference input x′. This is represented as follows:

∆y0 = yu0− y′u0 (5)
Thus, the deep learning model is effectively reverse-propagated. Here, yu0 representsthe neural activation u0 of a specific layer with respect to the input data x. Similarly,

y′u0 gives the neural activation for the respective reference input x′. The neurons in theprevious layer are denoted as ui, where i = [1,n] ∈ N. n indicating the total number ofneurons in the layer under consideration. The ratio C∆ui,∆y0 of a neuron ui at ∆y0 is usedin the following calculations.
∆yi = yui − y′ui

(6)
In this context,C∆ui,∆y0 represents the ratio of the difference between the input values

u1, . . . ,un of a neuron to the difference of the output value u0 of a neuron. This formulationapplies equally to both the original and reference datasets. For all n neurons, this can beexpressed as follows:
∆y0 =

n

∑
i=1

C∆ui,∆y0 (7)
Based on these interim results, the DeepLIFT method derives certain multipliers, de-fined as the ratio ofC∆u,∆y0 to the difference ∆u
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m∆u∆y0
=

C∆u∆y0

∆u
(8)

For a deep neural network, these individual multipliers are concatenated as follows:
m∆ei∆y0 = ∑

j
m∆ei∆y j ·m∆u j∆y0 (9)

This formulation describes the impact of an input neuron m∆ei∆y0 on the importancestatement of DeepLIFT. Here, j represents an index that iterates across the hidden layerneurons connected to a specific input neuron. In this context, ei denotes the input neu-rons, ui refers to the hidden layer neurons, and uc indicates the output neuron for a par-ticular class of the deep neural network model.However, for the commonly used Rectified Linear Units (ReLU) activation function,there is an exception to the chain rule for multipliers from equation 9. Therefore, in theDeepLift method, the rescale rule is applied. In this regard, ∆ f+ and ∆ f− are expressedas follows:
∆ f+ =

∆ f
∆y

∆y+ and ∆ f− =
∆ f
∆y

∆y− (10)
Taking Equation (8) into account, the multiplier can be written as:

m∆y+∆ f+ =
∆ f
∆y

(11)
Lundberg and Lee [82] have made modifications to the DeepLIFT method. They re-placed the original estimation of a neuron’s impact on the activation difference of an-other neuron with a procedure based on Shapley Values. As a result, they have namedtheir new approach DeepSHAP. A description of SHAP can be found in Section 2.2.2. In thisdissertation, TreeSHAP was used for tree-based models, while DeepSHAP was employedto explain deep learning models.

2.2.4 Integrated Gradients (IG)Another XAI method we used in this research is Integrated Gradients (IG) [136], whichdetermine the relevance Ri of the input variable xi by approximating the integral belowusing the Riemann sum.
Ri = (xi− x̄i) ·

∫ 1

0

∂ fc
(
x̄+α · (x− x̄)

)

∂xi
dα, (12)

The variable x̄i represents a baseline input that must be chosen when applying thismethod. The authors define this baseline input as indicating the absence of a featureinput x[136]. The original authors applied a zero-value baseline to the image. In the ex-periments, this zero-valued baseline was used for the tabular data set in the publicationsof this dissertation.
2.2.5 Gradient× InputGradient × Input computes the importance of each feature by multiplying the model’spartial derivativewith respect to that feature by the input feature value [129]. The formulafor Gradient * Input, denoted as g(M,x), is given by:

g(M,x) =
∂M(x)

∂x
× x (13)
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3 Federated Learning
This section presents background information on the fundamentals of federated learningFL trainsMLmodels on smart deviceswithout sharing local data. Devices share param-eters and gradients with a global model hosted on a server. The global model aggregateslocalmodel updates by averaging individualmodel parameters or gradients, allowing eachmodel to learn collaboratively from the global model. This ensures that sensitive raw dataremains securely stored on client devices.Let N be the number of clients, denoted as c1, . . . ,cN . Each client ci has a set of sam-ples denoted by Uci , the feature space by Xci , the label space by Yci , and the data set by
Dci = {u

( j)
ci ,x

( j)
ci ,y

( j)
ci }
|Dci |
j=1 . Here, the data point (u( j)

ci ,x
( j)
ci ,y

( j)
ci ) indicates that the client ci

owns the sample u( j)
ci with features x( j)

ci and a label y( j)
ci . For example, in IoT networks, Urefers to the set of all IoT devices, X denotes features such as Network Traffic and Com-munication Protocols, andY indicates whether an IoT device is infected withMalware (forexample Dos and DDos) or not. Based on data partition (X ,Y,U) among clients, FL can becategorised into three types by Yang et al. [154]:

• Horizontal Federated Learning (HFL): InHFL, clients share the same feature and labelspace (Xi = X j, Yi = Yj) but have different sample spaces (Ui ̸=U j).
• Vertical Federated Learning (VFL): In VFL, some common data samples are sharedamong clients (Ui∩U j ̸= /0), but the space between features and labels differs (Xi ̸=

X j, Yi ̸= Yj).
• Federated Transfer Learning (FTL): FTL does not impose restrictions on the sample,feature, and label space, allowing arbitrary differences.
In addition, Federated learning can be categorised as cross-device FL (business-to-consumer) and cross-silo FL (business-to-business). Cross-device FL involves many par-ticipants with low computational resources, while cross-silo FL consists of companies orinstitutions with stronger communication and computational capacities. The client-serverarchitecture is the most popular HFL architecture and the Federated Averaging (FedAvg)algorithm [91] is based on it. The optimisation objective of HFL is as follows:

min
θ

L(θ) =
N

∑
i=1

Lci(θ) =
N

∑
i=1

1
|Dci |

Dci

∑
j=1

l(x( j)
ci ,y

( j)
ci ;θ) (14)

Where θ represents the model parameters, L(θ) is the global optimisation objective.
Lci(θ) =

1
|Dci |

∑
Dci
j=1 l(x( j)

ci ,y
( j)
ci ;θ) is the client’s optimisation objective ci based on its local

dataDci , with l(x,y;θ) denoting the loss function, such as cross-entropy ormean squaredloss. SGD (stochastic gradient descent) is commonly used to optimise the equation 14. TheHFL training process is as follows:
1. Each client samples a batch of data B, and calculates gradients

gci = 1/|B|∇θ ∑x,y∈B l(x,y, ;θ) and sends gci to a server.
2. The server aggregates the gradients (e.g. averaging g = 1/N ∑

N
i=1 gci ) and then dis-tributes the aggregated gradient to all clients.

3. Each client updates the model by gradient descent based on the aggregated gradi-ent g.
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The process is executed iteratively until the loss function L(θ) converges. After train-ing finishes, all clients share the same model parameters θ .HFL has a high communication overhead, especially in CDFL. FedAvg reduces commu-nication costs by increasing local computation to converge themodel faster in HFL. Insteadof transmitting gradients for every batch, FedAvg transmits gradients for every E epoch.Assuming current model parameters θ (t), batch size b, and learning rate η , the FedAvgalgorithm follows these steps.
1. Each client divides the local data Dci into batches of size b.
2. For each batch B, the clients perform parameter updates

θ
(t)
ci ← θ

(t)
ci −η/b∑x,y∈B ∇θ l(x,y;θ

(t)
ci )until the local datasetDci is iteratedE epochs.

3. Each client sends the updated parameters θ t
ci
to aggregation server.

4. The aggregation server computes a weighted average of the model parameters
θ t+1 = ∑

N
ci=1 wciθ

(t)
ci , where wci is calculated from the size of each local dataset

5. the aggregation server distributes θ (t+1) to the clients.
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4 Effective IoT Botnet and IoMT Attack Detection
This chapter addresses RQ1, which focuses on identifying the minimal subset of fea-tures that impact achieving high detection performance in ML models for IoT botnet de-tection and IoMT cyber attack detection. To accomplish this, we conduct an in-depthevaluation of feature selection methods using filter and wrapper techniques. The find-ings presented in this chapter highlight the identification of optimal features across vari-ous stages of the IoT botnet lifecycle, as well as for IoMT attack detection, with the goal ofimproving the performance of IDS models across different classification tasks. This workis contextualized in relation to Publication I and Publication II.

4.1 In-depth Feature Selection for efficient IoT Botnet Detection
The widespread use and weak security of IoT devices make them attractive targets for cy-ber attackers, allowing compromised devices to be added to a botnet. Major IoT botnetsexecute significant cyber attacks, such as spam campaigns and DDoS attacks, resulting insubstantial financial losses for companies by disrupting their access to servers and ser-vices. Consequently, most research related to IoT botnets focuses on attack detection,which is a critical but often late stage in the botnet life cycle.An IoT botnet is a specific type of botnet in which the devices involved are IoT devices,rather than traditional computers typical of regular botnets. Regardless of the type, allbotnets go through a similar series of phases in their existence, which are collectivelyknown as the botnet life cycle. In this context, the botnet lifecycle comprises four stages:formation, command and control (C&C), attack, and post-attack.

1. Formation phase: A device is compromised and infected by a master, making it partof a botnet controlled by a botmaster (also called Bot Herder, Attacker). This phaseis known as spreading or injection.
2. The Command and Control (C&C): C&C channel is used by the bot-master to com-municate with the bots. This channel can be executed using various protocols andapplications, such as HTTP, P2P, or IRC. Commands are sent through this channel toinstruct the bots on the actions they need to take, such as launching attacks.
3. Attack Phase: This phase occurs after the botnet receives an instruction and in-volves the execution of the attack by its members. The primary goal of a botnet isto carry out large-scale distributed attacks. This phase is also known as the applica-tion phase.
4. Post-Attack Phase: Following the attack and exposure to the defender, some botsmay be removed from the infection (for example, if a vulnerability is patched). Asa result, it becomes necessary to recruit new members to maintain or expand thesize and capabilities of the botnet. To achieve this, scanning attacks are conducted.The newly recruited bots may be combined with both non-exposed bots and thosethat are still operational to form a new botnet. This new botnet will then receiveinstructions to carry out attacks through the command and control (C&C) channel,repeating the cycle.
The first three steps can be seen as the core components of the botnet lifecycle. Thefinal step, however, restarts the formation process with the goal of addressing the chal-lenges that emerged after the attack phase, thereby increasing the botnet population.
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Due to the significant anddetrimental consequences of IoT botnet-based attacks,muchof the related research concentrates on attack detection as a crucial first step in mitigat-ing these threats. In this context, Publication I examines the application of an in-depthfeature selection model to improve the capabilities of botnet detection.Feature selection is a crucial step in theMLworkflow. By decreasing the dimensionalityof the data and determining the most discriminative subset of features, we can improveclassification performance while also minimizing computational needs [74]. This processavoids problems associated with the curse of dimensionality and improves the model’sexplainability by simplifying its complexity. Additionally, feature selection leads to fastertraining times and benefits to mitigate overhitting issues.Feature selection methods are classified predominantly into filter, wrapper, and em-bedded [74]. Filter methods rank features using statistical methods, serving as an initialstep beforemodel building. Wrappermethods evaluate feature sets based on their effectson model performance. On the other hand, embedded methods combine feature selec-tion with model training, which makes them more efficient than pure filter or wrappermethods [43].Publication I analyzes the impact of filter and wrapper selection techniques on thedetection accuracy of machine learning models used to identify IoT botnet attacks. Twofeature selection types (Filter & Wrapper) were applied to two datasets: N-BaIoT andMed-BioT, to determine the impact of network category for IoT botnet prediction. Thesedatasets include network traffic activities representing different stages of the botnet lifecycle in IoT networks. The N-BaIoT dataset contains instances related to the Attack phase,while the Med-BioT dataset encompasses the post-attack and C&C phases. To identifythe optimal subset of features, we utilized filter and wrapper feature selection methodsfor various classification tasks, as detailed in Table 2, which can be applied to detect IoTbotnet attacks.N-BaIoT [92] and Med-BIoT [41] datasets contain 115 and 100 features, respectively,extracted from network traffic generated by bots in controlled testing environments. Eachdata point reflects aggregated statistics of raw network streams across five timewindows:100 ms, 500 ms, 1.5 s, 10 s, and 1 min, coded as L5, L3, L1, L0.1, and L0.01. There are fivemain network traffic categories feature categories are: Host-IP (Traffic from a specific IPaddress). Host-MAC and IP (Traffic from the same MAC and IP ), Channel(Traffic betweenspecific hosts), Socket( Traffic between particular hosts and ports) and Network Jitter(Time intervals between packets in communication).Four feature selection techniques were employed in the case of filter methods: Pear-son Correlation, Fisher score [2], Mutual Information (MI) [36], and the ANOVA F-test.
• Pearson Correlation utilizes the linear correlation between features
• Fisher Score is based on the relationship between inter-class and intra-class sepa-ration.
• Mutual Information uses entropy to measure the amount of information that onevariable contains about another.
• ANOVA F-test is based on the analysis of variance.
Unlike filter methods, wrapper methods are classifier-agnostic, selecting the best setof functions for a specific classifier. Classification algorithms are used to determine thesignificance of different features and evaluate their performance. The wrapped methodassesses feature subsets based on predictive accuracy from test data. The feature set isconstructed iteratively by adding features using forward selection or removing themusing
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Table 2: Classification problems addressed for IoT botnet detection using feature selection [57]

Dataset Classification Task Class Name Description of the Class name

N-BaIoT

Binary Benign Legitimate Network TrafficAttack Malicious Network Traffic (Mirai, Gafgyt)
3-class Mirai Mirai malware-infected network trafficBenign Legitimate Network TrafficGafgyt Gafgyt malware-infected network traffic

9-class

ACK Gafgyt malware Sending Spam dataBenign Legitimate Network Traffic
COMBO Gafgyt malware Sending spam dataand opening a connection to IP, portJUNK Mirai Malware ACK-Flooding
SCAN Scans the network devices forvulnerabilities,(Mirai &Gafgyt )SYN Mirai Malware SYN-FloodingTCP Gafgyt malware TCP FloodingUDP UDP flooding (Mirai & Gafgyt)
UPDPLAIN Mirai malwar UDP flooding with Less ofan option for higher packet per second

MedBIoT

Binary Benign Legitimate Network Traffic
Attack Malicious Network Traffic (Mirai,Bashlite, Torii)

3-class Benign Legitimate Network TrafficC&C network traffic for C&CSpread Spread Attack network traffic

4-class
Bashlite Bashlite malware-infected network trafficBenign Legitimate Network TrafficMirai Mirai malware-infected network trafficTorii Torii malware-infected network traffic

backward elimination. Methods differ in evaluating feature significance, model perfor-mance criteria, and the number of features added or removed. Three feature selectionsfrom wrapped methods were employed: Recursive feature selection (RFE) [44], Sequen-tial Backward selection (SBS) [67], and Sequential Forward selection (SFS) [67].
• RFE begins with a complete set of features and then removes the least relevantfeatures one by one to identify the most significant ones.
• SBS starts with the entire feature set and iteratively removes the least importantfeatures until the model performance criteria are achieved.
• SFS starts with an empty feature set and adds more important features one by oneuntil the model performance criteria are achieved.
The computational experiments followed a classical ML workflow. The initial datasetswere large enough to provide balanced samples with respect to all features across mal-ware types, attack types, and device types. After preprocessing, the dataset was split into
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training and testing subsets in an 80/20 ratio. k-nearest neighbours (kNN), decision trees(DT), random forests (RF), and extremely randomized trees (ET) were used to evaluatefeature sets.Table. 3 & 4 show feature sets from filter and wrapper methods, respectively. The fea-ture sets were selected based on top-performing features from both methods. All thesefeature sets provided the best performance of the F1-score for both N-BaIoT andMedBIoTdatasets.
Table 3: Publication. I - Filter Method Feature Sets for the N-BaIoT and MedBIoT Dataset

Dataset Classification Pearson Fisher Mutual ANOVA
Type Correlation Score Information

N-BaIoT
Binary 33 5 3 3
3-class 33 6 3 5
9-class 33 68 28 59

MedBIoT
Binary 34 51 36 85
3-class 34 42 38 49
4-class 34 46 41 52

Table 4: Publication. I - Wrapper Methods Feature Sets for N-BaIoT and MedBIoT

Dataset Classification Type Wrapper Method DT RF ET KNN

N-BaIoT

Binary RFE 3 4 4SFS 3 3 3 3SBS 3 3 3 3
3-class RFE 3 4 4SFS 3 3 3 3SBS 3 3 3 3
9-class RFE 28 23 25SFS 3 3 3 3SBS 3 3 3 3

MedBIoT

Binary RFE 29 27 24SFS 7 7 7 7SBS 7 7 7 7
3-class RFE 26 27 24SFS 7 7 7 7SBS 7 7 7 7
4-class RFE 29 24 22SFS 7 7 7 7SBS 7 7 7 7

In the experiments, a three-step evaluation process was utilised to evaluate the dis-tinct subsets of features from feature selection methods in both datasets. First, the F1score metric was used to evaluate each set of features. Second, computational time was
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Table 5: Publication. I - F1 scores for binary classification models using feature subsets (represented
in Table 3 and 4) of feature selection algorithms in the N-BaIoT dataset

Binary N-BaIoT
FS Method Approach DT ET RF KNN

Filter
Pearson Correlation 0.9987 0.9983 0.9983 0.9957Fisher Score 0.9997 0.9997 1.0000 0.9847Mutual Information 0.9990 0.9990 0.9990 0.9977Anova 0.9973 0.9970 0.9970 0.9970

Wrapper RFE 0.9983 0.9983 0.9987SFS 0.9996 1.0000 0.9999 0.9994SBS 0.9998 0.9999 0.9997 0.9966

(a) Computational Time required to classify a sample by binary classification models on N-BaIoT dataset using feature sets (see
in Table 3 & 4) of feature selection methods from Publicaton [57]

(b) Performance achieved by binary classification models over the N-BaIoT dataset using feature sets (see in Table 3 & 4) of
feature selection methods from Publication [57]

Figure 2: Publication. I - Computational Time and Performance of feature sets using Filter and
Wrapper feature selection for Binary classification models in N-BaIoT dataset

measured, which refers to the total time a computer with a specific processor takes tocomplete a task. Computational time was measured to calculate the cost of classifyinga sample (only test samples). Lastly, the performance of the feature set was calculatedby determining the ratio between the F1 score and the computational time. Figure 2 il-lustrates the computational time and performance of feature sets for binary classification
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models in the N-BaIoT dataset.The computational time for the models, particularly the performance during testing,was calculated after feature selection using various filter and wrapper methods. Conse-quently, the time required for feature selection was not included, as testing time wasconsidered more important than training time.Table 5 shows the F1-scores for the performance of models based on the selected fea-ture sets from both Filter and Wrapper methods. Figure 2a illustrates the computationaltime required to classify a simple using binary classificationmodels on theN-BaIoT datasetusing different feature sets. To choose the optimal feature set and best model, we eval-uated their performance by calculating the ratio between the F1 score and the computa-tional time. Figure 2b shows the performance achieved by binary classification modelson the N-BaIoT dataset using feature sets from the feature selection methods detailed inTables 3 and 4.DT with SBS (SBS-DT) achieved the highest performance metric using threefeatures for binary classification in the N-BaIoT dataset, as illustrated in Figure 2b.After identifying the optimal feature subsets for binary classification, we performed afrequency analysis to determine which feature categories and time windows were mostutilized in feature sets, as shown in Figure 3. Host-based features were crucial for distin-guishing malicious from benign traffic, while network jitter and socket features were lesssignificant in binary classification (see in Figure. 3a).The feature set with three features from the SBS-DT model performed similarly to bi-nary classification by demonstrating a lower computation time for classifying test samples.It achieved the best performance, measured by the ratio of the F1-score to computationaltime, for both 3-class and 9-class classification tasks in the N-BaIoT dataset.Figure 3 presents a frequency analysis of the feature category distributions from se-lected feature sets using both Filter and Wrapper methods. It illustrates that in both the3-class (see in Figure 3b) and 9-class (see in Figure 3c) classification tasks on the N-BaIoTdataset, host-based features play a crucial role in predicting botnet types for the 3-classmodels and identifying botnet attacks for the 9-class models.

(a) Network Category-wise feature con-
tribution for Binary classification in N-
BaIoT dataset.

(b) Network Category-wise feature con-
tribution for 3-class classification in N-
BaIoT dataset.

(c) Network Category-wise feature con-
tribution for 9-class classification in N-
BaIoT dataset.

Figure 3: Publication. I - Contribution of Network Category-wise features for Binary, 3-class, and
9-class classification in the N-BaIoT dataset

MedBIoT dataset contains malicious network traffic from theMirai, BashLite, and Toriibotnet malware, which were deployed on 83 real or emulated IoT devices. The exper-imental results of the binary, 3-class, and 4-class classification models generated usingthis dataset are detailed in Table 2, which outlines the classification formulations. Fea-ture sets for filter methods and wrapper methods are presented in Table 3 and Table 4,
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(a) F1-scores for binary classificationmodels in theMedBIoT dataset using feature subsets (see in Table 3 & 4) of feature selection
algorithms from Publication [57].

(b) Computational time required to classify a sample by binary classification models over theMedBIoT dataset using feature sets
(see in Table 3 & 4) of feature selection methods from Publication [57].

(c) Performance achieved by binary classification models over the MedBIoT dataset using feature sets (see in Table 3 & 4) of
feature selection methods from Publication [57].

Figure 4: Publication. I - F1-score of models, Computational time and performance of feature sets
using filter and wrapper feature selection for binary classification models in the MedBIoT dataset
from Publication

respectively, for all classification problems in the MedBIoT dataset.
Figure. 4a illustrates the F1-score performance of various models (DT, RF, KNN, ET) us-ing feature sets derived from both feature selection methods for a binary classificationtask on the MedBIoTdataset. Figure. 4b displays the computational time required to clas-sify samples from models using feature sets, while Figure. 4c presents the performance
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evaluation by showing the ratio between the F1 score and computational time. SBT-DT fea-ture set, consisting of seven features, achieved the best performance among all featuresets for binary classification on MedBIoT dataset. Likewise, in the 3-class and 4-class clas-sification tasks, the SBS-DT feature set with seven features also demonstrated the highestperformance.

(a) Network Category-wise feature con-
tribution for Binary classification in Med-
BIoT dataset.

(b) Network Category-wise feature con-
tribution for 3-class classification inMed-
BIoT dataset.

(c) Network Category-wise feature con-
tribution for 4-class classification inMed-
BIoT dataset.

Figure 5: Publication. I - Contribution of Network Category-wise features for Binary, 3-class, and
4-class classification in the MedBIoT dataset from Publication

Figure. 5 shows the frequency analysis of feature categories for classification tasks inthe MedBIoT dataset. For binary classification (see Figure. 5a), the channel category ismore dominant than the host-based category. MedBIoT focuses on detecting maliciousactivities during the C&C and formation phases of the botnet lifecycle, emphasizing thesignificance of host-to-host communication features. In contrast, N-BaIoT targets the at-tack phase and identifies malicious activities using host-based features. For the 3-class(in Figure. 5b) and 9-class (in Figure. 5c) classification tasks, channel-based features weremore useful than other network categories in achieving the highest performance. Com-pared to binary classification, the prevalence of channel features were more frequent.Using feature selection approaches for IoT botnet detection, tree-based models suchas DT, ET, and RF achieved the best results for all classification tasks across both datasets,particularly in multiclass classification scenarios. In contrast, the k-NN classifier was un-suitable for multiclass classification and required significantly more computational timeto classify samples compared to the tree-based models. A key finding from our analysisis that host-based features were more influential for the N-BaIoT dataset, while channel-based featureswere better at distinguishing activities in theMedBIoT dataset. This datasetfocuses on the spread and C&C activities of IoT malware, making it essential to track com-munications between network nodes to differentiate malicious actions from benign onesand identify the type of threat.
4.2 Comprehensive Feature Selection for IoMT Intrusion Detection
IoT is an emerging technology in industry that has introduced the Internet of MedicalThings (IoMT), significantly transforming healthcare. IoMT-enabled healthcare applica-tions are gaining significant attention. The integration of sensor technology enables re-mote health monitoring through various wearable sensors, such as blood pressure, tem-perature, and pulse rate. Security of IoMT is vital in healthcare, as interconnected deviceshandle sensitive patient data. These devices are often targeted by cyberattacks, threaten-
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ing patient safety and data privacy. IDS are critical formonitoring and identifyingmaliciousactivities to protect these networks. ML is essential for IDS in the IoMT, as it can recognizecomplex attack patterns and adapt to changing threats. In IoMT networks, Data is sentto local gateway devices for processing and feature selection, then transferred to remotedevices for disease diagnosis or prediction using ML/DL models.Publication II focuses on analyzing the impact of feature selectionmethods from filtermethods on the intrusion detection of ML models for IoMT attack detection. Similar toPublication I, Publication II also involved a ML workflow that consisted of data prepro-cessing, feature selection, andmodel training/testing. The datasets used for Publication IIwere the CICIoMT2024 [31] and IoT-traffic data [11], which focus on IoMT devices in thehealthcare sector. These datasets are designed to evaluate and improve the cybersecurityof IoMT devices through ID.CICIoMT2024 dataset [31] includes traffic generated from 40 devices (25 actual and 15simulated) across multiple protocols such as Wi-Fi, MQTT, and Bluetooth. 18 cyberattackswere simulated, which are categorized into fivemain categories: DDoS, DoS, Recon,MQTT,and Spoofing. In the CICIoMT2024 dataset, three types of classifications were developed:Binary, category-based (6-class), and attack-based (19-class) classifications.
• Binary classification was utilized to distinguish between benign and attack traffic.
• In the category-based classification, six categories of network trafficwere identified:benign, MQTT attacks, DDoS, DoS, reconnaissance, and ARP spoofing attacks.
• In the attack-based classification, there were 19 distinct classes, encompassing vari-ous types of attacks including Normal traffic such as ARP spoofing, ping sweep scan,reconnaissance, vulnerability scan, OS scan, port scan,malformeddata packets, anddifferent forms of denial-of-service (DoS) and distributed denial-of-service (DDoS)attacks, including connect flood (DoS), publish flood (DDoS and DoS), TCP (DoS andDDoS), ICMP (DoS and DDoS), UDP (DoS and DDoS), and SYN (DoS and DDoS).
IoMT-TrafficData dataset [11] is a collection of network traffic data featuring both be-nign and malicious traffic from eight types of cyberattacks. Two types of classificationswere developed from IoMT-TrafficData.
• Binary classification was developed to distinguish between benign traffic and attacktraffic.
• Multi-class classification was used to classify the attack traffic with Normal Traffic:DoS, DDoS, ARP spoofing, CAM table overflow, MQTT malware, network scanning,Bluetooth reconnaissance, and Bluetooth injection.
In the ML for IoMT attack detection, Pearson’s linear correlation coefficient was uti-lized as a data preprocessing step to eliminate redundant and irrelevant features. Anyfeature that was highly correlated with another feature (|r| > 0.80) was removed, retain-ing only one of the correlated features. As a result, out of the initial set of 44 featuresused to describe each sample in the dataset, 36 features remained in the final feature setof the ciciIoMT dataset, while 21 features were removed from the IoMT traffic dataset.In the feature selection step, three filter methods were used: Fisher score [2], Mu-tual Information (MI) [36], and Information Gain(IG) [63]. An iterative, stepwise approachwas employed to evaluate each method by training ML model. Starting with the highest-ranked feature, added one feature at a time to the training set. For instance, if the fea-tures were ranked as f = { f1, f2, . . . , fn}, the model was first trained with { f1}, then
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(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 6: Publication. II - Comparison of algorithms performance using Feature selection methods
over CICIoMT2024 data set for Binary Classification.

(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 7: Publication. II - Comparison of algorithms performance using Feature selection methods
over CICIoMT2024 data set for 6-class Classification.

(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 8: Publication. II - Comparison of algorithms performance using Feature selection methods
over CICIoMT2024 data set for 19-class Classification.

with { f1, f2}, and so on up to { f1, f2, . . . , fn}. This process was repeated for all n rankedfeatures in each method across both datasets to evaluate the impact of each feature onmodel performance. F1-score was used to evaluate feature sets with four classificationalgorithms: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and XG-Boost (XGB).
Figure 6 illustrates the performance of various feature selection methods on the CI-CIoMT2024 dataset for binary classification. Classifiers showed significant improvementwith initial features, with most achieving high F1 scores (over 0.99) using just 5 to 10 fea-tures. Notably, XGB and RF achieved near-optimal performance using fewer than five fea-tures. In both 6-class (Figure 7) and 19-class (Figure 8) classifications as well, the perfor-mance was nearly the same compared to binary classification. XGB and RF consistentlyperformed the best, especially when a limited number of features were utilized.
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(a) Fisher Score Features (b) Mutual Information (c) Information Gain

Figure 9: Publication. II - Comparison of algorithms performance using Feature selection methods
over IoMT-TrafficData dataset for Binary Classification.

(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 10: Publication. II - Comparison of algorithms performance using Feature selection methods
over IoMT-TrafficData dataset for Multi-class classification (9 classes).

Figure 9 compares the performance of the algorithm using Filter methods feature se-lectionmethods on the IoMT-TrafficData dataset for binary classification. Mutual Informa-tion demonstrates significant performance improvements with the initial features, whileInformationGain effectively ranks features. Additionally, it achieved the best performancewith a limited number of features when using the XGB model compared to other classi-fiers.Figure 10 illustrates the performance comparison of feature sets for a 9-class classi-fication (multiclass classification) in IoMT traffic data. The performance of the modelsgradually improved with a higher number of features when using the Fisher Score. In con-trast, the models achieved higher performance earlier (after four features) when utilizingMI & IG. For multiclass classification in IoMT traffic data, the performance was compa-rable across different feature selection methods, except for KNN, which showed lowerperformance when using the IG feature selection method.By examining the important features from feature selection in both datasets, the keynetwork characteristics for attack detection in IoMT traffic were identified. Publication IIdemonstrates that 3 to 4 features can achieve optimal F1-score and accuracy in binaryclassification for IoMT attack detection, whereas 7 to 8 features provided reasonable per-formance in most multi-class classification tasks across both datasets. Features from In-formation Gain using XGBoost with 15 features achieved excellent results in both binaryand multi-class classification settings. Protocol types, traffic metrics, temporal patterns,
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and statistical measures were identified as essential network characteristics for accurateIoMT attack classification.
4.3 Chapter Discussions
This chapter discusses the evaluation of feature selectionmethods to improvemodel per-formance in detecting IoT botnet and IoMT attacks. The response to research questionRQ1 was provided in this section. The research question aims to identify which minimalsubsets of features are most influential in achieving high detection performance in bothIoT botnet and healthcare IoMT cyber attack detection.Previous academic studies have utilized feature selection techniques to enhance thedetection scores of existing ML classifiers. However, these studies have not examinedthe impact of feature selection methods on various binary and multi-class classificationformulations for intrusion detection throughout different stages of the botnet life cycle.Specifically, the set of features that is effective for detecting malicious traffic at one stagemay not be suitable at another. In Publication I, a reduced set of features was proposed todetect and classify some of the most popular botnet malware with high F1-score metrics.Various classification studies (Binary andMulti-class) have been proposed that are relatedto the IoT botnet lifecycle. In Publication I on botnet detection, both filter and wrappermethods achieve high detection rates with a limited number of features. Wrapper meth-ods provide optimal feature sets, while filter methods perform less effectively. Especially,High performance is achieved with more than 28 features using filter methods for the9-class classification of the N-BaIoT dataset and for all classifications using the MedBIoTdataset. In contrast, the wrapper methods, specifically SFS and SBS, identify optimal setsof 3 features for the N-BaIoT dataset and 7 features for the MedBIoT dataset, applica-ble to their respective binary and multi-class classifications. Channel-based features arepreferred for post-attack detection and C&C stages, whereas host-based features are bet-ter for identifying bot attacks from originating bots. The approach outlined in this studyis more efficient in terms of time and achieves comparable or better performance thanother methods used for classifying these botnet malware.Regarding IoMT attack detection, Publication II addresses a significant research gap byconducting a comprehensive cross-dataset feature selection analysis for ID in healthcareIoMT networks, an area that has rarely been explored in the existing literature. Publica-tion II aims to identify key features across both binary and multiclass classification tasksusing twowell-established IoMTdatasets in IDS tasks. Publication II reveals that 3 to 4 fea-tures are sufficient to achieve optimal F1 scores and accuracy in binary classification, while7 to 8 features perform well for multi-class classification. Additionally, features selectedusing Information Gain with XGBoost (15 features) demonstrated excellent performancefor IoMT attack detection.
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5 Explainable AI for Transparent IoT Botnet Detection
This chapter describes the dissertation’s contribution towards achieving the transparencyof ML-based IDS models in centralized settings, addressing RQ2. It specifically exploresthe integration, and quantitative evaluation of post-hoc Explainable AI (XAI) methods forboth machine learning and deep learning models used in IDS for IoT botnet detectionproblems. Publication III explores the quantitative evaluation of explainable AI methodsapplied to statistical machine learning models for detecting IoT botnets. Publication IVexamines the evaluation of explainable methods used in deep learning-based detectionof IoT botnet attacks.
5.1 Quantitative Evaluation of explainability for IoT Bot Net Detection
A botnet is a network of Internet-connected devices controlled by a single entity, the bot-master. They can be used for malicious activities like DDoS attacks, spamming, and cryp-tocurrency mining. Due to the proliferation of IoT devices, these botnets can be muchlarger than traditional ones, increasing the threat to Internet security.Detecting IoT botnets is challenging due to their distributed nature and diverse in-fected devices. Traditionalmethods, like signature-based and anomaly-based approaches,are inadequate since attackers can quickly change their behaviour to elude detection. Ma-chine learning (ML) has become an effective tool for detecting IoT botnets over the pasttwo decades. It is capable of processing large datasets and identifying complex patterns.However, despite the impressive achievements of MLmodels in the field of cybersecurity,their black-box nature presents challenges. The lack of transparency can hinder securityexperts’ trust in ML models, as they may not fully understand how these models makespecific decisions or classifications.Post hoc explainability methods, which are model-agnostic, have gained popularity inresearch due to their broad applicability. Post hoc explainability methods are designed toprovide reasoning behind individual predictions for predicted class labels in classification,which can help increase confidence in the outcomes. However, the quality of these ex-plainability methods has raised concerns, as they rely on additional tools (such as linearmodels at the point of interest or game theory concepts to identify importance scores),which may introduce errors in the explanations [77]. As a result, many current XAI meth-ods can produce unreliable explanations in real-world scenarios due to insufficient quali-tative evaluation [29]. Addressing these issues is essential for IDS in IoT networks, particu-larly those that might expose sensitive device activity patterns. As XAI-based solutions forIDS grow in usage, it is crucial to evaluate their explainability components. This evaluationensures that the XAI methods can be effectively implemented in real-world scenarios andenhance understanding of model outputs.

Figure 11: Quantitative Evaluation of Explainability for IoT botnet detection Framework [55]

Publication III highlights the crucial role of evaluating the quality of explainability
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through quantitative evaluation, alongside the model’s detection performance, in thecontext of IoT botnet detection. Figure 11 presents the framework developed for Publi-cation III, which focuses on the quantitative evaluation of explainability for IoT botnetdetection. In this framework, Sequential Backward Selection (SBS) was employed for fea-ture selection across three IoT botnet datasets, and then learning models were created.The datasets utilized in this research for evaluating the framework include N-BaIoT[92],MedBIoT[41], and the BoT-IoT [66] network traffic datasets. A brief description of theN-BaIoT and MedBioT datasets is available in Chapter 4.
The Bot IoT dataset was generated using Ostinato, a tool that simulates realistic net-work traffic. The dataset comprises five IoT scenarios: a weather station, smart refrigera-tor, motion-activated lights, remotely activated garbage door, and smart thermostat. Thedataset includes network traffic data showcasing various attacks, such as UDP, TCP, OSfingerprinting, service scans, HTTP attacks, keylogging, and data exfiltration. Accordingto the source paper of the dataset, the top ten features were selected from the BoT-IoTdataset.
In Publication III, a quantitative evaluation of explainability was conducted for bothbinary and multiclass models. For botnet detection using binary classification, the studyutilized the N-BaIoT, MedBIoT, and BotIoT datasets to distinguish between normal andmalware traffic. Several classification algorithms were tested, including Extreme GradientBoosting (XGBoost), Light Gradient BoostingMachine (LGBM), Gradient Boosting Classifier(GBC), Random Forests (RF), and Extremely Randomized Trees (ET). To explain the black-box nature of thesemodels, twopopular post-hoc explainableAImethods, LIMEand SHAP,were utilized.

5.1.1 Feature Selection
Sequential Backward Selection was applied using classification algorithms during the fea-ture selection step. This step resulted in selecting the following feature counts: F1-scoresexceeding 99%were achieved for three datasets. Specifically, there were three optimal k-feature subsets for the N-BaIoT dataset, seven optimal k-feature subsets for the MedBIoTdataset, and four optimal k-feature subsets for the BoT IoT dataset in binary classification.
5.1.2 Post-hoc Explainability for IoT botnet detection Models
After training themodels, twomodel-agnostic feature importance XAImethodswere usedto explain the outcomes of black-box models: 1) LIME and 2) SHAP. A description of theLIME and SHAP XAI methods can be found in Chapter 2.

The LIME method explains the reasoning behind assigning probabilities to each classby comparing these probability values with the actual class of a given data point. To illus-trate the local explanations provided by these explainers, a single actual malware datapoint was selected (see in Table 6) from each of the three network categories: Host-based, network jitter, and socket-based. The optimal features obtained from the SBS-XGBmethod were statistical features of host-based network traffic. Features derived from theSBS-LGBM method were based on network jitter, while features obtained from the SBS-GBC method were related to socket-based traffic.
LIME explanations for the selected data points in the network categories are presentedin Figure 12. In the subfigures of Figure 12, the green bars represent the features that con-tribute to classifying a data point as malware, while the red bars indicate the featuresthat contribute to classifying a data point as benign. Figure 12 presents the LIME localexplanations for the N-BaIoT dataset. For instance, in Figure 12a, the LIME explanationsfor the features in the Host network category indicate that the XGBmodel accurately pre-
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Table 6: Actual Data Points of N-BaIoT Dataset Across Three Network Categories[55]

Network Category Model Features Data points
Host based XGB MI_dir_L5_weight 108.087471MI_dir_L1_weight 266.816511MI_dir_L0.01_weight 5843.19767
Net work jitter LGBM HH_jit_L5_mean 1.50591E+09HH_jit_L0.1_weight 1.00000E+00HH_jit_L0.1_mean 1.50591E+09
Socket Based GBC HH_L0.01_radius 4.00513E+01HH_L0.01_weight 3.73916E+04HH_L1_mean 5.53999E+02

dicted the malware class with 100% accuracy for the actual class label of the datapoint(mentioned in Table 6).The following explanations include:
• 102.43 < MI_dir_L0.01_weight <= 19356.77: If the packet count for the host-based(MI) feature within a 1-minute window (L0.01) is between 102.43 and 19356.77, theXGBmodel ismore likely to classify it asmalware, indicating a potential compromiseof the host.
• 3.86 < MI_dir_L1_weight <= 566.44: If the packet count (weight) of the host-based(MI) feature in a 1.5-second time window (L1) is between 3.86 and 566.44, the XGBmodel indicates a potential IoT botnet malware presence.
• 3.00 < MI_dir_L5_weight <= 117.82 : If the packet count for the host-based featureexceeds 117.28 within 100 microseconds, the XGB model classifies it as benign, sug-gesting no malware is present. This indicates normal, non-malicious network trafficin very short time intervals.
Like wise, LIME explanations for a data-point in Table 6 are shown in Figure 12b and 12cfor different network categories. The GBC model predicts malware for the socket-basedfeature set, while the LGBM model predicts malware for network jitter features in theN-BaIoT dataset.Another method used in Publication III for model explanations was SHAP (SHapleyAdditive exPlanations). SHAP is commonly employed to provide both local and global ex-planations. In local explanations, a specific data point is chosen, and the model’s predic-tion is clarified by highlighting the contribution of each feature. SHAP computes Shapleyvalues to reveal the contribution of features to model predictions. Figure 13 provides lo-cal explanations for a malware data point (see Table 6) from the N-BaIoT data set. SHAPforce plots were used to show local explanations for the XGB, GBC, and LGBM models,emphasizing the contribution of each feature to the predictions.The plot displays the base value, with features that have a positive influence on theprediction shown in red and thosewith a negative influence shown in blue. The base valuerepresents the average of all prediction values. Each strip in the plot illustrates how thefeatures affect the predicted value, either bringing it closer to or pushing it further awayfrom the base value. Red strips indicate features that increase the predicted value, while
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(a) LIME Explanations for XGB model over Host-Based category features

(b) LIME Explanations for GBC model over socket features

(c) LIME Explanations for LGBM over Network-jitter category features

Figure 12: LIME Local explanations ofMalware instance of N-BaIoT dataset for Binary Classifiers [55]

blue strips indicate features that decrease it. Features with wider strips contribute moresignificantly to the prediction.Figure 12c shows the SHAP local explanations for the LGBMmodel related to networkjitter features for a specific data point (see Table III) in the N-BaIoT dataset. The base valueis 0.566. The features HH_jit_L0.1_mean and HH_jit_L5_mean positively contribute to thepredicted value, while HH_jit_L0.1_weight negatively impacts it. HH_jit_L0.1_mean is the
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(a) SHAP Explanations for XGB model over data point of Host-Based category features

(b) SHAP Explanations for GBC model over data point of socket category features

(c) SHAP Explanations for LGBM model over data point of Network-jitter

Figure 13: SHAP Local explanations ofMalware instance of N-BaIoT dataset for Binary Classifiers [55]

most significant feature due to its greater contribution. The total positive contributionsexceed the negative ones, resulting in a final predicted value higher than the base value,leading to the prediction of malware.Similarly, In Figure. 13a, XGB model using host-based features shows a base value of0.4932, with a predicted value of 1 for the malware data point listed in Table III. Amongthe features analyzed, MI_dir_L0.01_weight exhibits the broadest range and is identifiedas the most important feature. In Figure 13b, the GBC model utilizing socket features re-veals a base value of 0.5979. In this case, HH_L0.01_weight is themost significant feature,contributing to a predicted value of 1 for the malware class within the N-BaIoT dataset.In response to the growing demand for objective evaluation of XAI methods, Researchfield has shifted toward developing quantitative metrics to assess the quality and reliabil-ity of explanations. Various metrics have been introduced to evaluate the effectiveness ofthese explainability methods. XAI evaluation is divided into three groups: user-focused,application-focused, and functionality-focused evaluations [29]. The first two categoriesare part of the human-centred evaluation and consist of both subjective and objectivemeasures.To evaluate the explanations provided by LIME and SHAP for botnet predictionmodelsin publication 3, this study employed four metrics: high faithfulness, monotonicity, lowcomplexity, and maximum sensitivity. These criteria were deemed suitable for assessingthe local explanations generated by LIME and SHAP. The following metrics were used toevaluate explainers and provide a detailed description of each metric.
5.1.3 Faithfulness
The xai algorithm g should imitate the model’s behaviour. g(M,x) ≈M(x). Faithfulnesscriteria measure the consistency between the predictionmodelM and explanation g. TheFaithfulness correlation [19] and Monotonocity [83] metrics were used to evaluate theFaithfulness of explanations.Faithfulnessmetric µF(M,g;x) calculates howwell the feature importance scores ren-dered by the explanation function g reflect the actual importance of the features in theblack-box model M for input x. This property is best calculated using Pearson’s correla-
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tion coefficient between the sum of feature attributions assigned to the optimal line valueand the corresponding difference in the output values. Let B be the set of indices wherefeatures are set to a baseline value. The faithfulness metric is then computed as follows:
µF(M,g;x) = ρ

B∈(|d||B|)

(
∑
i∈B

g(M,x)i,M(x)−M(xB)

)
(15)

where xB = xi|i ∈ B}, Zero base line values were used.
5.1.4 Monotonicity
Let x,x′ ∈ Rd be two input points such that xi ≤ x′i for all i ∈ 1,2, . . . ,d. M and g are saidto be monotonic if the following condition holds: For any subset S ⊆ 1,2, . . . ,d, the sumof the attributions of the features in S should be nonnegative when moving from x to x′,that is,

∑
i∈S

g(M,x)i≤∑
i∈S

g(M,x′)i

imply
M(x)−M(x[xs=x̄s])≤M(x′)−M(x′[x′s = x̄s])

5.1.5 Low Complexity
Explanations that use fewer features are preferred. It is assumed that explanations involv-ing many features are harder for users to understand. min∥g(M,x)∥0Low complexity [19] metric calculates the entropy of each feature’s fractional contri-bution to the total attribution magnitude individually. A complex explanation utilizes all
d features to identify which aspects of x are important to the model M. However, thisapproach can be less interpretable, particularly when d is large. To improve clarity, wedefine a fractional contribution distribution, where | · | represents the absolute value.

Pg(i) =
|g(M,x)i|

∑
j∈|d|
|g(M,x) j|

; Pg = {Pg(1), . . . ,Pg(d)} (16)

Note that Pg represents a valid probability distribution. Let Pg(i) denote the fractionalcontribution of the feature xi to the total magnitude of the attribution. If every featurehad the same attribution value, the explanation would be complex, even if it remainedfaithful. In contrast, the simplest explanation would focus on a single feature. Complexityis defined as the entropy of Pg.Given a prediction M(x), an explanation function g, and a point x, the complexity of gat x is:
µC(M,g;x) =−

d

∑
i=1

Pg(i) logPg(i) (17)
5.1.6 Maximum Sensitivity
Robustness indicates that similar inputs should produce similar explanations. g(M,x) ≈
g(M,x+ ε) for small ε . Maximum Sensitivity was used to derive the robustness of expla-nations.Maximum Sensitivity [19] is used to ensure that nearby inputs with similar model out-put have similar explanations, it is desirable for the explanation function g to have a low
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sensitivity in the region surrounding the point of interest x, assuming the differentiabilityof the predictor function M. Maximum sensitivity of an explanation function g at a pointof interest x in its neighbourhood is defined as follows: Consider a neighbourhood Nr ofpoints within a radius r of x, denoted by Nr = z ∈ Dx|p(x,z)≤ r,M(x) = M(x)(z), where
D is the distance metric, and p is the proximity function. Given a predictor M(x), a dis-tance metric D, a proximity function p, a radius r, and a point x, we define the maximumsensitivity of g at x as follows:

µM(M,g,r;x) = max
z∈Nr

D

(
g(M(x),x),g(M(x),z)

)
(18)

Table 7: Results of Evaluating the quality of LIME&SHAP using Faithfulness (µ f ), Monotonicity (µm),
Complexity (µc), Sensitivity(µs) for IoT malware detection binary classification models over three
datasets: N-BaIoT, MedBIoT, BoT-IoT.
Dataset Model ET LGBM GBC RF XGB

XAI Metric\XAI method LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP

N-BaIoT
µ f 0.28±0.75 0.34±0.73 0.65±0.65 0.84±0.21 0.46±0.67 0.48±0.67 0.36±0.65 0.91±0.23 0.77±0.57 0.99±0.13
µm 94.80% 95.38% 91.55% 99.25% 57.33% 73.08% 75.23% 79.33% 97.70% 98.15%
µc 0.97±0.13 0.80±0.21 0.90±0.24 0.99±0.16 1.14±0.14 0.85±0.23 0.97±0.11 0.91±0.14 0.72±0.24 0.50±0.25
µs 1.71±1.54 0.02±0.01 2.42±2.22 0.12±0.07 7.88±10.35 0.09±0.06 0.04±0.02 0.01±0.02 0.05±0.02 0.001±0.001

MedBIoT
µ f 0.11±0.84 0.14±0.93 0.80±0.39 0.87±0.40 0.08±0.85 0.68±0.48 0.71±0.57 0.87±0.31 0.81±0.40 0.95±0.12
µm 92.28% 94.34% 72.16% 84.76% 84.16% 87.70% 75.18% 78.28% 94.10% 94.34%
µc 0.92±0.09 0.87±0.13 0.93±0.09 0.73±0.13 0.82±0.17 0.79±0.08 1.09±0.01 0.76±0.05 0.75±0.09 0.60±0.19
µs 0.28±0.71 0.03±0.05 1.06±3.33 0.03±0.02 3.53±9.03 0.10±0.18 0.03±0.05 0.01±0.04 0.02±0.01 0.01±0.01

BoT-IoT
µ f 0.43±0.49 0.46±0.53 0.06±0.76 0.53±0.37 -0.13±0.48 0.20±0.48 0.35±0.37 0.59±0.26 0.64±0.38 0.73±0.24
µm 62.95% 63.98% 26.60% 37.41% 27.03% 30.30% 52.02% 60.40% 86.10% 89.01%
µc 1.54±0.21 1.34±0.26 1.60±0.12 1.46±0.17 1.52±0.09 1.50±0.18 1.65±0.09 1.55±0.12 1.18±0.12 0.91±0.28
µs 0.55±0.99 0.44±0.03 0.10±0.11 0.50±0.71 2.07±2.41 0.12±0.15 0.03±0.05 0.01±0.02 0.01±0.05 0.01±0.01

Faithfulness (µ f ) computes correlation between the importance that an XAI methodassigns to features and their actual impact on the model’s prediction probabilities. A highfaithfulness correlation value for an XAI method indicates that the importance assignedto each feature closely aligns with its effect on the model’s predictions. This alignmentensures that the explanations provided are accurate and trustworthy.Monotonicity (µm) evaluates how individual features influencemodel prediction prob-abilities by examining the changes in prediction probability as each feature is added se-quentially in order of their importance. When features are added, the model’s predictionprobability consistently increases, leading to amonotonic increase in probabilities. A highmonotonicity score indicates that the explanations provided by the xai method align wellwith the model’s predictions for the given input.Low complexity(µc) metric used to compute the entropy of feature attribution ob-tained from the XAI method. A lower entropy indicates that fewer features have highattribution scores.The sensitivity metric(µs) evaluates the robustness of explanations by ensuring thatnearby inputs in the feature space generate similar explanation outputs when the sen-sitivity value is low. To evaluate this metric, the nearest neighbor points were identifiedbased on the prediction label of the explanation score using Euclidean distance with a ra-dius of 0.1. which helps to locate data points in the feature space that are closest to theinstance and provide comparable explanations for the predicted label.LIME and SHAP explanations were evaluated using 2000 test points, as shown in Ta-ble 7. This analysis covers binary classifiers (ET, LGBM, GBC, RF, and XGB) on the N-BaIoT,Med-BaIoT, and BoT IoT datasets.In the N-BaIoT dataset, SHAP consistently demonstrated superior performance com-pared to LIMEwhen evaluating their explanations using faithfulness. It shows highermeanfaithfulness correlation values, especially for the LGBM and XGB models. Remarkably,
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the XGB model, when explained using SHAP, achieved an outstanding faithfulness score(µ f = 0.99±0.13), which indicates that SHAP provides highly accurate and reliable expla-nations for this model.
Furthermore, by evaluating the monotonicity of the explainer—which indicates howconsistently the explanations change in relation to the input features—both LIME andSHAP show high monotonicity values. Notably, SHAP explanations for LGBM and XGBmodels achieve monotonicity scores exceeding 99%.
Complexity measures how concise the explanations given by the explainer are. Lowercomplexity values signify simpler andmore interpretable explanations. Among all modelsand explainers, the SHAP explainer for XGBoost produced the most concise explanations,achieving the lowest complexity with a mean value (µc = 0.50±0.25).
Sensitivity assesses how stable the explanations are for data points that are close toeach other. Lower sensitivity values indicate more stable explanations. In this context,the XGBmodel explained using SHAPexhibited the lowest sensitivity (µs = 0.001±0.001).This suggests that it provides highly stable and reliable explanations for nearby data pointswithin the same feature space utilized by the XGB model.
Similarly, SHAP explanations consistently outperformed LIME for binary classifiers onboth the MedBIoT and BoT IoT datasets (see Table 7). Notably, when applied to the XGBmodel, SHAP provided explanations with higher fidelity, greater consistency, lower com-plexity, and greater robustness than those generated by LIME.

Table 8: Results of Evaluating the quality of LIME&SHAP Botnet malware type (multiclass) on two
datasets: N-BaIoT, MedBIoT
Dataset Model ET LGBM GBC RF XGB

XAI Metric LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP

N-BaIoT
Faithfulness -0.026±0.757 -0.060±0.852 0.395±0.641 0.239±0.573 -0.124±0.502 0.268±0.033 0.130±0.615 0.152±0.608 0.898±0.129 0.907±0.382Monotonocity 74.70% 73.30% 56.90% 66.10% 57.70% 48.70% 58.60% 64.70% 89.00% 100.00%Complexity 1.017±0.086 0.994±0.079 0.772±0.195 0.753±0.109 0.926±0.542 0.887±0.215 0.990±0.092 0.885±0.155 0.710±0.236 0.686±0.236Sensitivity 0.021±0.012 0.054±0.137 0.028±0.023 0.034±0.015 0.789±1.995 0.878±0.324 0.025±0.012 0.082±0.204 0.042±0.043 0.002±0.001

Med-BaIoT
Faithfulness 0.11±0.38 0.46±0.43 0.05±0.32 0.29±0.45 0.12±0.59 0.20±0.49 0.31±0.38 0.57±0.25 0.62±0.27 0.81±0.23Monotonocity 36.00% 45.00% 35.00% 41.00% 28.00% 49.00% 27.00% 58.00% 78.00% 84.00%Complexity 1.45±0.23 1.41±0.30 1.59±0.15 1.57±0.14 1.68±0.15 1.92±0.22 1.64±0.11 1.48±0.20 1.09±0.31 0.91±0.19Sensitivity 0.02±0.01 0.00±0.01 0.82±1.46 0.05±0.02 0.74±0.23 0.04±0.02 0.03±0.03 0.01±0.03 0.02±0.09 0.01±0.01

Similar to binary classification, in Publication III, the quality of explanations obtainedfrom LIME and SHAP were evaluated on multiclass models, explicitly focusing on the de-tection of botnet malware types.
In the study of multiclass classification for botnet type detection, the N-BaIoT andMedBIoT datasets were utilized. The detection of botnet malware types involves threeclasses for the N-BaIoT dataset—Mirai, Gafgyt, and Benign—and four classes for theMed-BaIoT dataset—Mirai, BashLite, Torii, and Benign.
During the feature selection stage of botnet type detection using a Sequential Back-ward Selection (SBS) approach, the k-best feature set for the N-BaIoT dataset includedthree selected features, while the Med-BaIoT dataset comprised seven selected features.
After performing feature selection, LIME and SHAP explainers were used to interpretthe trained models for botnet detection. Table 4 displays the quality of the explanationsproduced by both LIME and SHAP across various models. The evaluation of explanationquality has shown varying performance across different models when using explainers forboth data sets.
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5.2 Evaluation of XAI Methods for Deep Learning-Based Botnet AttackDetection
Early AI frameworks, such as Decision Trees and K-Nearest Neighbors (KNN), were trans-parent and easy to understand. In contrast, deep neural network (DNN) models, despitetheir complexity and high resource requirements, have achieved significant success dueto efficient algorithms and a wide range of parameters. However, DNNs often lack in-terpretability, making their decision-making processes difficult to comprehend. Publica-tion IV is the extension of Publication III, which focuses on the evaluation of explainers fora Deep Neural Network (DNN) model designed to detect IoT botnet attacks and summa-rizes key findings. Publication IV uses the N-BaIoT dataset to classify eight attack types,along with legitimate network traffic. The categories include ACK, Benign, COMBO, JUNK,SCAN, SYN, TCP, UDP, and PLAIN. Detailed descriptions of these attacks are found in Table 2in Chapter 4.The dataset was divided into training and testing sets with an 80:20 ratio. Min-maxnormalization was applied to scale the feature values between 0 and 1. A deep neuralnetwork (DNN) for predicting botnet attacks consists of 3 hidden layers, each containing9 hidden units. Random search hyperparameter tuning was utilized to obtain the besthyperparameters using Ray Tune. Hyperparameters are shown in the Table 9The input layer of DNN model receives a 115-dimensional feature vector, representingaggregated statistics from five different time windows. This input is passed through thefirst fully connected hidden layer with 9 units, applying the SELU activation function. Theoutput from the first hidden layer is passed to the second hidden layer, which contains9 units and uses the SELU activation function. The output layer, a fully connected layer,maps these activations to the output size corresponding to the botnet attack types: ack,benign, combo, junk, scan, syn, tcp, udp, and udpplain. The model was trained over 21epochs with a batch size of 256. Cross-Entropy Loss function was used for computing theloss which is ideal for multi-class classification tasks. DNN model prediction probabilitiesof class labels were obtained using the Softmax activation function.The performance of the DNN model for detecting botnet attack types was evaluatedusing accuracy. Figure 14a displays the training and testing accuracy over epochs, whileFigure 14b shows the training and testing loss of the model’s performance.

Table 9: DNN Model Hyperparameters (Random Search)

Hyperparameter ValueHidden Layers 3Hidden Units 9Learning Rate 0.01296Optimizer RAdamActivation SELUBatch Size 256Epochs 21
To achieve the goals of XAI, various methods have been developed to generate ex-planations for understanding model behavior [120, 121]. Post hoc XAI methods are com-monly classified into categories such as feature importance-based, saliency-based, andgradient-based approaches, among others. In this publication, seven posthoc explainers,including those based on feature importance and saliency, were used to explain a DNNmodel for predicting IoT botnet attacks. SHAP, LIME, and Feature Ablation are examples
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(a) Accuracy (b) Loss

Figure 14: Training and Testing Accuracies and Loss Values of DNN Model for IoT Botnet Attack De-
tection

Table 10: comparison results of the evaluation of XAI metrics

Explainer/metric High Faithfulness Sensitivity Complexity MonotonicityIntegrated Gradients 0.44 ± 0.32 0.61 ± 1.44 3.32 ± 0.38 52.00%Gradient * Input 0.42 ± 0.36 0.61 ± 1.44 3.75 ± 0.29 60.00%DeepLIFT 0.71± 0.12 0.48± 0.76 2.82± 0.12 69.19%SHAP 0.55 ± 0.18 8.17 ± 8.11 3.30 ± 0.40 44.00%Feature Ablation 0.48 ± 0.31 0.38 ± 0.76 4.29 ± 0.41 39.00%Saliency 0.27 ± 0.26 9.79 ± 21.36 4.33 ± 0.06 46.00%LIME 0.39 ± 0.21 10.62 ± 5.68 4.30 ± 0.31 28.00%

of feature importance-based explainers, while saliency-based explainers includemethodslike Saliency, Integrated Gradients, Gradient × Input, and DeepLIFT. These explainers pro-vide local interpretations by identifying key features that influence the model’s predictionof a specific attack class label. Through saliency-based xai methods, they attribute impor-tance scores to individual features, explaining how the model makes decisions for a givendata point.
The evaluation of these explainers was conducted using quantitative metrics such asfaithfulness, monotonicity, complexity, and sensitivity. Specifically, the effectiveness ofthese post-hoc local explanation methods was evaluated and compared when applied tovarious multiclass attack types for IoT botnet detection in a detailed benchmarking set-ting. These metrics were used to evaluate the post hoc local explanations generated bythe explainers across test data points. Table 10 presents the comparative results of theXAI evaluation metrics in terms of mean and standard deviation values. DeepLIFT wasthe top performed explainer among the explainers, achieving a mean faithfulness corre-lation of 0.71±0.12. This indicates that its explanations closely alignwith the DNNmodel’sbehaviour, enhancing their trustworthiness. Additionally, DeepLIFT showed a lower sen-sitivity value of 0.48 ±0.76, indicating consistent explanations for nearby data points inthe feature space. DeepLIFT achieved a notable monotonicity score of 69.19%, reflectingstrong consistency in feature influence on model predictions.
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5.3 Chapter Discussions
This chapter addresses research question RQ2, which aims to explore how the quality ofXAI methods can be quantitatively evaluated in the context of IoT botnet detection. AsXAI has become increasingly important in network security, helping security analysts inunderstanding the decision-making processes of ML-based IDS, thereby enhancing threatanalysis and enabling effective responses. This chapter contributes to addressing the sig-nificant challenge of evaluating the performance of XAI by proposing a framework for as-sessing the quality of local explanations generated by post hoc XAI methods for ML-basedIDS in the context of IoT botnet detection.In Publication III, we assessed the performance of various ML classifiers and their re-spective feature sets in predicting malware infections in IoT devices using three datasets:1) N-BaIoT, 2)MedBIoT, and 3) BoT-IoT.We employed LIME and SHAP explainers to provideinterpretable explanations of themodel predictions. Using Sequential Backward Selection(SBS), we identified key features that improved classifier performance. While the selectedfeatures varied by dataset, network traffic features such as host, channel, network jit-ter, and socket were consistently important for predicting IoT botnet malware and types.Host-based features were critical for the N-BaIoT dataset, whereas channel- and socket-based features were more prominent in the MedBIoT dataset. In the BoT-IoT dataset,the number of inbound connections per source and destination IP were more importantfeatures. Overall, the XGBoost model achieved the highest F1 score across all datasets,proving to be an effective choice for malware detection in IoT devices.The results from Publication III demonstrate that both LIME and SHAP local explana-tions are highly consistent and explainable for the XGBoost model using the SBS-XGBoostfeature set, as indicated by their high monotonicity scores. This suggests that the ex-planations provided by LIME and SHAP effectively capture the underlying relationshipsbetween the feature set and the prediction outcomes (malware and benign) in networktraffic classification. Additionally, both LIME and SHAP exhibit high mean values for faith-fulness correlation, which implies that security analysts can trust the explanations givenfor the XGBoost model. The complexity scores are lower, along with the high trustworthi-ness, which assists analysts in better understanding the model’s predictions and makinginformed decisions based on its outputs. Furthermore, the explanations for the XGBoostmodel aremore robust, as evidenced by lower sensitivity values, whichmeans that similarinputs producing comparablemodel outputs will yield similar explanations. In conclusion,Publication III shows that the XGBoost classifier is effective for detecting malware in IoTdevices using various datasets. The LIME and SHAP explainers provide valuable insightsthat help security analysts prioritize alerts for critical devices. Although LIME offers lowercomplexity and higher consistency across different models of IoT botnets, still, SHAP ex-plainer is better than LIME.In Publication IV, post-hoc explanations for deep learning-based IoT botnet detec-tion were evaluated using a DNN model for multi-class IoT botnet attacks from the N-BaIoT dataset. Seven post-hoc explanation methods were employed, including featureattribution and saliency-based methods (SHAP, LIME, Feature Ablation, Integrated Gra-dients, Gradient*Input, and DeepLIFT), to explain the predictions of IoT botnet attacks(ACK, Benign, COMBO, JUNK, SCAN, SYN, TCP, UDP, and PLAIN) using the DNNmodel. Theeffectiveness of post-hoc XAI methods was evaluated using quantitative metrics, such asfaithfulness, monotonicity, low complexity, and maximum sensitivity. The results of thisstudy highlight that DeepLIFT provided the highest faithfulness and offered more robustexplanations, along with lower complexity compared to the other posthoc XAI methodsfor improving the transparency of DNN–based IDS model in IoT botnet detection.
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6 XAI for Transparent Alert Classification in NIDS
Many organizations use open-source NIDS like Suricata and Snort [8], as well as commer-cial options like Cisco’s NGIPS, to detect malicious network traffic. However, NIDS tends toproduce a large number of alerts, most of which are of low significance. A recent study [6]on SoCs identified NIDS as one of the key technologies used in SOCs. One of the primarychallenges faced by SOC analysts is the high volume of low-priority NIDS alerts. Specif-ically, there is a significant number of genuine alerts (i.e., not false positives, but alertsthat indicate real attacks) that are considered low priority given the specific environment.Publication V focuses on a comprehensive study of evaluating the local explainabil-ity of the LSTM model used in NIDS alerts. Publication V utilizes a dataset from a Suri-cata NIDS system at the SoC of TalTech, collected over 60 days from January to March2022 [143]. During this period, Suricata generated alerts for network activity involving45,339 hosts, including 4,401 from TalTech. The dataset consists of 1,395,324 data pointswith human-assigned binary labels: "important" and "irrelevant" which indicate the pri-ority level of the NIDS alerts. LSTM model was developed to prioritize alerts as either"important" or "irrelevant" in a binary classification task.For the experimental setup of training the LSTM model, 10,000 data points were se-lected for each class label—’irrelevant’ and ’important’—resulting in a total of 20,000samples. The dataset was divided into training and testing sets with an 80-20 ratio. Min-max normalization was then applied to scale the input features to a range between 0 and1. The performance of the LSTMmodel was evaluated using a confusion matrix. Accuracy,precision, recall, and F1-score metrics were used.

(a) Loss (b) Accuracy

Figure 15: Loss and Accuracy from Best LSTM Performance Model for NIDS alert classification

Table 11: Key Features Identified by Taltech SOC Analyst for Determining NIDS Alert Significance

SignatureMatchesPerDaySimilaritySCASSignatureIDSignatureIDSimilarity
Figure 15a illustrates the training and validation loss over 70 epochs, achieved throughrandom search tuning. Both the training and validation losses of the LSTM model dra-
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matically decrease and ultimately approach zero. Figure 15b shows that the training andvalidation accuracy quickly stabilizes above 99.5%, indicating strong model performance.
In Publication V, collaborationwith SoC analysts fromTalTech, Estonia, was conducted toassess the reliability of the post-hoc explanations generated for the decisionsmade by theblack-boxmodel used for alert classification in this work. A detailed description of the Tal-Tech SOC can be found in a Paper [144] Utilizing their expertise in managing NIDS alerts,the SOC team at TalTech identified five key features for determining alert significance, asmentioned in Table 11.

(a) LIME explanations for important NIDS alerts using an LSTM model

(b) SHAP explanations for an important NIDS alert data point using an LSTM model

(c) DeepLIFT feature importance for an important NIDS alert data point using an LSTM model

(d) Integrated Gradients feature importance for an important NIDS alert data point using an LSTM model

Figure 16: Explanations for an important NIDS alert data point using an LSTM model
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Four different Explainable AI (XAI) methods—LIME, SHAP, IG, and DeepLift—were uti-lized to explain the predictions made by the LSTMmodel on the test data within the con-text of post-hoc local explanation scenarios.Figure. 16a shows an local explanation from LIME method for a NIDS alert labeled as"Important.". Left side presents prediction probabilities with a 100% probability for the"Important" class. On the right side it illustrates the impact of features. For instance,when the feature ‘SignatureIDSimilarity’ is less than or equal to 0.01, it positively affectsthe "Important" classification of NIDS alert. Additionally, ‘SignatureMatchesPerDay’ and‘SCAS’ being less than or equal to 1.00 also contribute positively. Conversely, ‘ExtPortSim-ilarity’ and ‘TlsSniSimilarity’ have impacts, suggesting that some NIDS alerts may not berelevant. SHAP employs Shapley values to showcase how features influence model pre-dictions in Figure. 16b of force plot, red bar signifies the positive impact while blue barindicates the negative impact on the model output. Each bar demonstrates whether thefeatures bring the predicted value closer to or farther from the base value of 0.02463.The plot’s base value is the average of all prediction values. Each strip in the plot displaysthe impact of the features on moving the predicted value closer to or farther from thebase value. Final prediction is deemed an "important class label", with a value of 1.00for this NIDS alert. Features, like ’IntPort’ (Internal Port) ’SignatureIDSimilarity’. ExtPort’(External Port) along with ’SignatureID’ play a role in indicating the importance of NIDSalert. However, the feature ’HttpStatusSimilarity’ might suggest that this alert could be aless critical feature to its impact.DeepLift is a technique used to attribute the output of LSTM model to its input fea-tures by comparing neuron activation to a reference activation and assigning contributionscores based on the variance. Figure. 16c illustrates the significance of features using theDeepLift explainer for the 10 features of a NIDS alert data point labeled as "important."The negative attribution of ’SCAS’ suggests its influence on classifying as "Important" inNIDS alerts. Additionally ’HttpMethodSimilarity’ and ’IntIP’ show negative attributionswhile HttpContentTypeSimilarity has a slight positive impact countering the "Important"classification. IG attribute a LSTMmodel’s prediction its input features by integrating gra-dients of the model’s output with respect to the input along from a baseline to the input.This explanation techniqueworks best formodels that use linear activation functions. Fig-ure. 16d showcases feature importance using IG explainer for a data point in the "Impor-tant" NIDS alert class label among the 10 features. Features such, as ’SignatureID’ ’SCAS,’and ’HttpStatusSimilarity’ display attributions. When compared, the features identifiedby the TalTech SOC analyst closely matched those derived from the explainers for nearlyall data points. An example of local post hoc explanations from employed explainers canbe found in Publication V.The quality of explanations provided by XAI methods was evaluated for alert classifi-cation in LSTM-based NIDS alerts using a dataset of 2000 data points. The evaluation wasbased on four criteria: faithfulness, robustness, complexity, and reliability.
• Faithfulness: The explanation algorithm g should replicate the model’s behavior.

g(M,x) ≈M(x). To evaluate the faithfulness of explanations, the Faithfulness cor-relation (Bhatt et al., 2020) and Monotonicity (Luss et al., 2019) metrics were used.
• Robustness: Robustness refers to similar inputs should result in similar explana-tions. g(M,x) ≈ g(M,x+ ε) for small ε . For robustness of explanation, the Maxi-mum Sensitivity metric was used.
• Complexity: Explanations using a smaller number of features are preferred. It isassumed that explanations using a large number of features are difficult for the
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user to understand.min∥g(M,x)∥0. For evaluating the complexity of explanationsa Low complexity metric was used.
• Reliability An explanation should be centred around the region of interest, theground truth GT . g(M,x) = GT . For evaluating the reliability of explanations, rel-evance rank accuracy and relevance mask accuracy were implemented from a Pa-per [15]. ’Major’ parts of an explanation should lie inside the ground truth mask

GT (x) for both Relevance Mass Accuracy and Relevance Rank Accuracy metricsused in Publication V, and the Ground truth mask was determined by the featuresSOC Analysts identified (see Table. 11). GT (x) is represented as a binary vector. Eachentry in the vector is set to 1 if the corresponding feature has been identified as rel-evant by SOC analysts, and 0 if it has not. This binary mask reflects the expertise ofdomain specialists and was used as a reference mask to evaluate the reliability ofpost hoc explanation methods.
XAI metrics regarding the criteria of Faithfulness, Robustness, and Complexity are de-tailed in Chapter 5.1. On the other hand, XAI metrics related to Reliability, such as Rel-evance rank accuracy (RRA) and Relevance Mass accuracy (RMA) metrics, are describedbelow.

6.1 Relevance Rank Accuracy
Relevance rank accuracy measures how much of the high-intensity relevance lies withinthe ground truth. TopK values of g(M,x) are sorted in decreasing orderXtopK = {x1, ...,xK |
g(M,x)x1 > ... > g(M,x)xK}.

RRA =
|Xtopk ∩GT (x)|
|GT (x)| (19)

Here topk are features Identified by SOC Analyst.
6.2 Relevance Mass Accuracy
The relevance mass accuracy was calculated as the sum of the explanation values withinthe ground truth mask divided by the sum of all values.

RMA=

∑
i∈GT (x)

g(M,x)i

d
∑

i=1
g(M,x)i

(20)

Here, g(M,x)i is the explanation score assigned to the ith feature for input x, GT (x)⊆
{1, . . . ,d} is the set of indices corresponding to ground truth relevant features, and d isthe total number of features.
Table 12: Evaluation Results of Explainable AIMethods: Mean (µ) and StandardDeviation (σ ) Values.

Explanation Criterion Faithfulness Robustness Complexity Reliability
Explainer/Metric HighFaithfulnes Monotonicity Max Sensitvity Low Complexity Relevance MassAccuracy Relevancy RankAccuracy

µ±σ µ µ±σ µ±σ µ±σ µ±σ

Lime 0.4209±0.1835 59.55% 0.3617±0.1152 3.0318±0.0703 0.6234±9.7008 0.5250±0.1041Shap 0.3959±0.2928 64.45% 0.0245±0.0862 2.4677±0.2074 0.6527±3.8334 0.4743±0.1418IG 0.1761±0.3815 73.70% 0.1774±0.2505 2.1745±0.4134 0.5939±0.6840 0.3410±0.1545Deep Lift 0.7559±0.2681 78.35% 0.0008±0.0004 2.2635±0.3299 0.7812±25.2805 0.6754±0.0897
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(a) High Faithfulness (b) Maximum Sensitivity (c) Low Complexity (d) Relevancy Rank Accuracy

Figure 17: Quality of Explainable AI evaluationmetrics distribution for LSTMmodel based NIDS alerts
classification.

Table 12 shows the results regarding the quality of explanations for various XAI meth-ods. The prediction probabilities for the LSTM model were calculated using the Softmaxactivation function. Mean (µ) and standard deviation (σ ) values were selected for the XAIcomputed metrics based on a test dataset of 2000 points. Among the evaluated meth-ods, DeepLIFT achieved the highest correlation values for faithfulness, with a mean andstandard deviation (0.7559±0.2681) for the test data points.
The explanation’s monotonicity was analyzed to understand how individual featuresaffectmodel probability by adding each attribute to enhance its importance and observingits influence on the model’s probability. DeepLIFT achieved high monotonicity with 78%(µ). To evaluate complexity, we calculated the entropy of feature attribution in the ex-planations. Among the XAI methods evaluated by a low complexity metric, IG) achieved alower complexity score (2.174±0.413), closely followed by DeepLift (2.264±0.330). DeepLIFT achieved Lower sensitivity with Maximum Sensitivity metric (0.0008±0.0004).
Twometrics were used to evaluate the reliability of explanations: RMA and RRA. Thesemetrics assessed the explanations by comparing them to a ground truth mask, which wasdeveloped based on features identified in collaboration with a SOC analyst. Both the RMA(0.781±25.281) and the RRA (0.6754±0.089) metrics provided reliable deep lift explana-tions.
Figure 17 illustrates the distribution of XAI metric results for 2000 data points. It high-lights that DeepLIFT’s explanations show high faithfulness, lower sensitivity, lower com-plexity, and more relevance rank accuracy. Additionally, a Wilcoxon signed-rank test [152]was conducted to rigorously evaluate whether the performance differences among thefour XAI methods (LIME, SHAP, IG, and DeepLIFT) were statistically significant across theevaluation metrics.
Following standard practices for evaluating XAI methods [53], the Wilcoxon signed-ranks test [152] was employed to assess the statistical significance of differences in XAImetric scores between pairs of explainers (e.g., explainerA, explainerB) for NIDS alertclassification. The null hypothesis (H0) posits that the XAImetric scores of the two explain-ers are equivalent, meaning there is no significant difference between them (XAI MetricScore(explainerA) = XAI Metric Score(explainerB)). Conversely, the alternative hypothe-sis (H1) asserts that they are not equivalent (XAI Metric Score(explainerA) ̸= XAI MetricScore(explainerB)), indicating a significant difference in their metric scores. In this study,the XAI metrics evaluated include High Faithfulness, Maximum Sensitivity, Low Complex-ity, Relevance Mass Accuracy, and Relevancy Rank Accuracy. Wilcoxon signed-rank testwas conducted separately for each metric to thoroughly assess the performance differ-ences among the explainers.
The analysis in Table 13 shows significant differences among explainers across all met-rics, with p-values consistently below 0.05. DeepLift outperforms the others in faithful-
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Table 13: Statistical Comparison of Explainers Across Multiple Metrics (p-values)

Metric Explainer Shap IG Deep Lift
Faithfulness LIME L (3.34e-41) L (1.03e-134) D (5.61e-185)SHAP - S (6.22e-91) D (1.03e-169)IG - D (1.30e-230)

Maximum Sensitivity LIME S (0.00e+00) I (1.64e-221) D (0.00e+00)SHAP - S (1.38e-185) D (3.54e-126)IG - D (3.29e-126)
Low Complexity LIME S (0.00e+00) I (0.00e+00) D (0.00e+00)SHAP - I (5.45e-146) D (1.26e-88)IG - I (1.07e-42)

RMA LIME S (5.12e-25) L (1.97e-80) D (6.22e-83)SHAP - S (4.67e-155) D (6.47e-91)IG - D (2.82e-54)
RRA LIME L (7.61e-39) L (3.07e-210) D (0.00e+00)SHAP - S (5.52e-155) D (3.97e-253)IG - D (0.00e+00)

D (Deep Lift), L (LIME), S (SHAP), and I (Integrated Gradients) indicate thebetter-performing explainer in each pairwise comparison.
• p > 0.05 —No significant evidence against H0; H0 is not rejected

• 0.01 < p≤ 0.05 — Significant evidence against H0; H1 is accepted at 95%confidence level
• 0.001 < p≤ 0.01 — Strong evidence against H0; H1 is accepted at 99%confidence level

• p≤ 0.001 —Very strong evidence against H0; H1 is accepted at 99.9% confidencelevel.

ness, maximum sensitivity, RMA, and RRA, with pairwise comparisons yielding p < 0.001.The performance of SHAP, LIME, and IG varies by metric, as shown in Table 13.
A global explanation of the LSTM model’s predictions is provided using SHAP valuesfor all the testing data. A higher SHAP value indicates a positive impact on the prediction,while a lower value indicates a negative contribution. Figure 18 displays the global expla-nation of the LSTM model. The graph illustrates the average influence of each feature onthemagnitude of themodel’s output for the class labels "irrelevant" and "important" clas-sifications. Themost impactful features for important network intrusion detection system(NIDS) alerts include SignatureIDSimilarity, SignatureMatchesPerDay, ProtoSimilarity, andSCAS. Notably, these top features align with those identified by human expert SoC ana-lysts. In contrast, lower-ranked features, such as HTTP-related similarities (e.g., HttpHost-nameSimilarity and HttpUrlSimilarity) and IP-related features (e.g., ExtIPSimilarity), havea comparatively lesser impact on the model’s decisions.

6.3 Chapter Discussions
This chapter provides an answer to RQ2. The main challenge of evaluating explainabilityfor the cybersecurity domain in NIDS alert classification is the absence of clearly providedground truth explanations, unlike image explanations where humans can evidently markimportant sub-images or pixels But NIDS operates with abstract network traffic featuressuch as packet size and protocol flags and flow duration and byte counts which experts
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Figure 18: SHAP global explanation for LSTM model in NIDS alert classification

find difficult to interpret, The absence of clear human-recognizable ground truth makesit challenging to determine if an explanation accurately reflects the reasons behind blackbox model predictions. So Expert domain knowledge from SOC analysts needs to be in-corporated to create reference points for evaluating explanation quality. The researchpresented in this chapter tackles the problem by incorporating SoC analyst-annotated rel-evance to explanation evaluation through twometrics: RelevanceMass Accuracy and Rel-evance Rank Accuracy, to evaluate the reliability of explanations. In Publication V, a real-world NIDS alert dataset was employed from the SoC at TalTech (Tallinn University of Tech-nology) in Estonia. A Long Short-TermMemory (LSTM) model was developed to prioritizealerts. To explain the alert prioritization decisions made by the LSTMmodel, four explain-able artificial intelligence (XAI) methods were implemented and compared: LIME, SHAP,IntegratedGradients, andDeepLIFT. Our comprehensive assessment of the XAI frameworkevaluated the effectiveness of these methods based on criteria such as faithfulness, com-plexity, robustness, and reliability. We examined how well these XAI techniques can ex-plain NIDS alerts. We investigated how well these XAI techniques explain NIDS alerts. Thefindings Publication V demonstrate that DeepLIFT consistently outperformed the otherXAI methods, providing explanations with high faithfulness, low complexity, robust per-formance, and strong reliability. In collaboration with SOC analysts, we identified key fea-tures essential for effective alert classification. The strong alignment between the featuresidentified by the analysts and those obtained through the XAI methods further validatestheir effectiveness and enhances the practical applicability of our approach.

48



7 Explainable Transformer-based Intrusion Detection in IoMTNetworks
This chapter summarises the contributions of this dissertation to IoMT cyberattack detec-tion research and contextualises the work presented in Publication VI.Internet of Medical Things (IoMT) is an advanced network that effectively integratesInternet-connected medical devices and their corresponding software applications to ex-change healthcare-related information, thereby facilitating treatment and patient moni-toring over the Internet [112]. At the same time, IoMTdevices are often resource-constrained.The rapid growth of themarket, alongwith the high value of data and existing security vul-nerabilities, makes these devices attractive targets for cybercriminals [26]. DDoS and DoSattacks on IoMT devices can disrupt vital medical equipment, potentially endangering pa-tient lives [68]. Most previous studies have focused on improving detection accuracy inIDS using transformermodels but they have not addressed the importance of understand-ing the decision-making process of thesemodels. Additionally, they have not worked withrecent and realistic IoMT datasets in actual IoMT networks. To address this gap, Publica-tion VI proposes an explainable transformer-based model for detecting and categorizingnetwork attacks within IoMT networks. This research investigates the recent and realisticCIC-IoMT2024 dataset [31], which encompasses various types of cyber attacks and nor-mal traffic in real-world IoMT network scenarios. This study employs a sliding window ap-proach to adapt transformer models for analysing network traffic as sequences, therebyenhancing detection accuracy. The aim of this study is to enhance the transparency ofTransformer-based IDS in IoMT by integrating XAI methods such as LIME and SHAP.Transformer model was first presented by Vaswani et al. [145] through self-attentionmechanisms which generate sequence representations without requiring recurrence. Anattention function is a weighted average of values. It maps a query q, along with a set ofkeys, K, and their corresponding values V , to produce an output [17]. The output of anattention function is based on a similarity score between the query and each key, whichdetermines the weights for the averaged sum of the values.

Attention(q,K,V ) = ∑
i
Score(q,ki)vi

The attention mechanism captures the relationship between a query and each key ina database, adjusting the values based on these relationships. The “Scaled Dot-ProductAttention” function, described in [7], uses the dot product as the similarity measure be-tween the query and keys. Both the query and keys are vectors of the same dimension
dk, while the values are vectors of dimension dv. If Q represents a matrix of queries, theScaled Dot-Product Attention is calculated as follows:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V

To enhance representational capabilities, the queries, keys, and values are linearlytransformed before applying the attention function, with an additional linear transforma-tion applied to the output. These transformations are implemented as layers in a neuralnetwork and learned through gradient backpropagation. Additionally, to capture diverserepresentations, the queries, keys, and values are processed h times in h parallel attentionheads, and the outputs are concatenated before the final transformation.The transformer [145] is a sequence transductionmodel consisting of twomain compo-nents: an encoder and a decoder. The encoder takes a sequence of inputs x = (x1, . . . ,xn)
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and converts it into a sequence of lower-dimensional representations z = (z1, . . . ,zn),while maintaining the same length. The decoder then uses these representations z asinputs to produce an output sequence of arbitrary length: y = (y1, . . . ,ym). Both the en-coder and the decoder are constructed as stacks of identical layers.The encoding layers are composed of the following steps:
• A self-attention step, using the input sequence as the query, along with the set ofkeys and the set of values.
• A feed-forward step, which applies a linear transformation to its inputs, followedby an activation function.
In contrast, each decoding layer performs the following steps sequentially:
• A masked self-attention step, using the target sequence as the query, the set ofkeys and the set of values. In order to avoid leakage of information from yet unseenpositions of the target sequence during training, this self-attention step is said to bemasked: each position of the sequence can only attend to the previous ones, andthe forbidden attention values are set to−∞.
• An attention step where the queries and keys are taken from the encoder output,while the input values come from the output of the masked self-attention step.
• A feed-forward step that applies a linear transformation to theoutput of the encoder-decoder attention layer, followed by an activation function.

Figure 19: Transformer Architecture for IoMT attack detection

The transformer architecture includes N encoding layers that form the encoder blockand N decoding layers that make up the decoder block. The encoder takes a sequence asinput, while the decoder receives a version of this sequence missing the last w positions.The decoder’s output is then transformed by a final linear layer to reconstruct the originalsequence. A simplified diagram of the transformer model based on one presented in apaper [145] can be found in Figure 19.
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In this research, as mentioned in Publication VI, the CICIoMT2024 dataset [31], whichthe Canadian Institute for Cybersecurity developed, was utilized to simulate realistic IoMTenvironments and collect network traffic for cybersecurity research. It encompasses IoTdevices connected through Wi-Fi, MQTT, and Bluetooth Low Energy (BLE). The experi-mental setup included 25 real devices and 15 simulated devices, generating a variety ofnetwork traffic, including data from healthcare devices and cameras connected via Wi-Fi. The attacks executed during the experiments included ARP spoofing, DoS, DDoS, portscans, vulnerability scans, MQTT Connect Floods, MQTT Publish Floods, MQTTmalformeddata attacks, and disruptions to BLE devices. 44 relevant features were extracted from thenetwork traffic PCAP files for each network flow.Transformer model was trained to perform intrusion detection on recordings of net-work flows that are sequentially ordered by their ending time. A sliding-window ap-proach was used for network monitoring, as outlined in the work of Marino et al. [87].In this method, features extracted from consecutive network flows were grouped intofixed-length windows, denoted as Lw. These windows serve as input sequences for theproposed transformer model. Additionally, each flow undergoes a normalization processthrough standardization. For a givenwindowW = {x1, . . . ,xLw} of grouped IoMTNetworkflows fed into the encoder, a shifted version,Wshifted, which omits the last Ls flows, is pro-vided to the decoder. The decoder’s task is to reconstruct the original window of length
Lw from its shifted version, which has a length of Lw−Ls.Transformer model was fine-tuned for IoMT network flow by adjusting several hyper-parameters, including the number of layers (N), window length (Lw), shift length (Ls),number of attention heads (H), epochs (E), and batch size (B). For the experiments, theshift length (Ls) was set to one unit for next-flow prediction, while the window length (Lw)was tested with values ranging from 50 to 100 flows. Stochastic Gradient Descent (SGD)and cross-entropy as the loss function was used for training Trasformer model. A singleattention head was used since the CICIOMT dataset consists of a feature space with 44 at-tributes per flow, which is smaller compared to typical natural language processing tasks.The ReLU activation function was applied in the model.Two classification studies were developed from the CICIoMT2024 dataset in IoMT at-tack detection using Transformer in publication 6. The studies focused on: 1) binary clas-sification and 2) multiclass classification.

• In the binary classification task, the Transformer model is responsible for distin-guishing between benign and attack traffic.
• Multi-class classification study involves categorizing specific types of attacks. Thecategories for IoMT attack detection include six types of network traffic: benign,MQTT attacks, DDoS, DoS, reconnaissance, and ARP spoofing attacks.
Figures 20 and 21 show the average training loss and accuracy of various transformermodel configurations trained on the CIC IoMT dataset 2024 for binary and multi-classclassifications. This evaluation involved testing various configurations of the transformermodel to optimize its performance. The model configuration and training utilized a win-dow length (Lw = 100) for both binary and multi-class classification tasks. The batch sizeswere set to B = [512,1024]. The number of encoder/decoder layers was varied with

N = [1,3,5]. Training was conducted for 25 epochs for binary classification and 50 epochsfor multi-class classification. Experiments demonstrated that with a window length of
Lw = 100, models could fit the training data with just one layer. However, adding morelayers improved performance, especially for multiclass classification task. Models with
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(a) Loss (b) Accuracy.

Figure 20: Training loss and accuracy for Binary classification

(a) Loss (b) Accuracy.

Figure 21: Training loss and accuracy of Transformer model for Multiclass classification

3 and 5 layers achieved lower loss values and higher accuracy for attack types and cate-gories. The testing data was evaluated using a model with N = 3 layers and a batch sizeof B = 512.
Figure 20 shows the mean training loss and accuracy for a binary classification task.All model configurations converge quickly, with significant loss reduction within 5 epochsand over 99% accuracy achieved by 10 epochs, showcasing the transformer architecture’seffectiveness. As illustrated in Figure 22a, the Transformer model achieves over 99% ac-curacy, showing perfect precision for benign traffic and nearly perfect recall for detectingattacks, effectively differentiating between normal and malicious network activities.
In multi-class classification, Figure 21 shows that models with 3 and 5 layers achievelower loss values and higher accuracy more quickly than a single-layer model with a batchsize of 1024, which may be under-fitting.
Figure 22b shows the strong performance of the Transformer model, achieving 97%accuracy on test data. Transformed excellently performed for multiclass classification atdetecting DDoS and DoS attacks with F1-scores of 0.999 and 1.000, respectively. However,it performs slightly lower on benign traffic and spoofing attacks, with F1 scores of 0.965and 0.959.
Table 14 compares the proposed transformer model with Decision Tree (DT) and k-
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(a) Binary Classification (b) Multiclass Classification

Figure 22: Transformer Performance of Classification Report for Binary andMulti-class Classification
IoMT attack detection

Table 14: Transformer Model Comparison with KNN and DT

Accuracy of Transformer Comparision
Classification type/model DT KNN Transformer
Binary Classification 0.9955 0.99621 0.99847Multi-class classification 0.96167 0.88967 0.97426

nearest Neighbors (KNN) algorithms using the accuracy metric. The transformer modeloutperforms both DT and KNN in accuracy for IoMT binary and multi-class classification.

(a) LIME local explanations for Attack class instance

(b) DDoS attack instance LIME local explanations

Figure 23: LIME Local explanations for malware instances in Binary and Multi-class classification
settings

To explain the predictions of the transformermodel, LIME and SHAP XAImethodswereemployed in Publication VI. A description of these XAImethods can be found in Chapter 2.
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(a) SHAP local explanations for DDoS attack instance

(b) SHAP local explanations for DDoS attack instance

Figure 24: SHAP Local explanations for multi-class classification instances

The output of the transformer model was obtained by applying the softmax activationfunction to the decoder output, resulting in class-wise prediction probabilities.To demonstrate the post-hoc local explanations provided by the LIME and SHAP XAImethods, a single data point of test data fromeach class was selected to illustrate the localexplanations offered by the XAI methods for both binary and multi-classification tasks.LIME method explains the reasoning behind the probabilities assigned to each class bycomparing these probability values to the actual class of the data point. For example,Figure 23a presents LIME explanations for the "Attack" class of an instance. The left sideof the figure displays the probability for each class, while the right side highlights theinfluential features that contributed to the prediction of this class. The transformermodelused for binary classification achieved a 100% accuracy in predicting the "Attack" classlabel. On the right side of the bar chart, the features that helped predict the instance asbelonging to the "Attack" class are shown with green bars. These features include ‘Eceflag number‘, ‘Telnet‘, ‘IGMP‘, ‘Syn flag number‘, and ‘fin count‘. Conversely, to predict aninstance as not being an attack (indicated in red), the negatively influential features are‘IAT‘, ‘Number‘, ‘Rst count‘, ‘IRC‘, and ‘SSH‘.Similarly, Local explanations using LIME were provided for the transformer model pre-diction of the "DDoS" class label in selected instances of multi-class classification, as il-lustrated in Fig. 23b. In this figure, the model predicted the DDoS class label with 100%accuracy. The features represented by the green bar indicate the most influential factorsfor predicting the ’DDoS’ class, while the features shown in the red bar represent themostsignificant factors for predicting classes other than DDoS.Figure 24a shows the SHAP force plot for the "Attack" class label in the binary clas-sification of the Transformer model. It highlights the positive contributions of featuressuch as ‘Rst count‘, ‘Number‘, ‘Magnitude‘, ‘Weight‘, ‘Duration‘, and ‘Covariance‘, whichare shown in red strip. In contrast, the features ‘Rate‘ and ‘Variance‘ are represented inblue strip to indicate their negative contributions. The base value is 0.4907, which is theaverage of all prediction values. Since the positive contributions outweigh the negativeones, the final predicted value supports the classification as "Attack."Figure 24b shows posthoc local SHAP explanations for the "DDoS" class label in themulti-class classification task of the Transformer model. Features such as ‘Number‘, ‘IAT‘,and ‘Magnitude‘ positively influence the model output, indicated in red, which raises theprediction from a base value of 0.35 to 100%. In contrast, the ‘Header length‘ feature,shown in blue, negatively impacts the prediction.The quality of posthoc local explanations provided by the LIME and SHAP XAI methodswere evaluated for the Transformer model using 2000 data points across both binary and
54



Table 15: Quality Evaluation of local explanations results

Metrics Explainer Binary Classification
µ±σ

Multi-class
µ±σ

High Faithfulness LIME 0.78±0.2 0.44±0.34SHAP 0.04±0.74 0.79±0.3
Maximum Sensitivity LIME 0.63±0.18 1.08±1.6SHAP 0.88±0.93 0.41±0.2
Low Complexity LIME 3.00±0.11 3.04±0.15SHAP 2.51±0.18 2.00±0.5

(a) High Faithfulness (b) Low Complexity (c) Maximum Sensitivity

Figure 25: Distribution of Quality Evaluation Metrics for LIME and SHAP in Multi-class classification

multi-class classification scenarios. The evaluation employed three metrics: high faithful-ness, maximum sensitivity, and low complexity. Detailed descriptions of thesemetrics canbe found in Chapter 5.1. Table 15 presents the results of quality explanations for LIME andSHAP’s local explanations. The mean (µ) and standard deviation (σ ) values were calcu-lated for the quantitative evaluation metrics of XAi methods computed on the test data.
In binary classification tasks, LIME outperforms SHAP in terms of the faithfulness met-ric. LIME scores 0.78 ±0.2, while SHAP only scores 0.04 ±0.74 which demonstrates thatLIME explanations align more closely with the model’s behavior in predicting outputs.Additionally, LIME demonstrates lower sensitivity at 0.63±0.18 compared to SHAP’s 0.88

±0.93, indicating that LIME explanations are generallymore reliable for various inputs. Al-though both methods provide explanations, SHAP’s explanations (2.51±0.18) are slightlyless complex than LIME explanations (3.00±0.11).
In the context of multiclass classification, SHAP has demonstrated high faithfulness,lower complexity, and lower sensitivity (see in Table II). Figure 25 illustrates the distribu-tion of evaluations of XAI metrics for test points in multi-class classification. SHAP expla-nations were considered more reliable because the average values of SHAP explanationsfor these metrics tend to correlate positively with high faithfulness and negatively withlow complexity and maximum sensitivity.
A global explanation using a SHAP summary plot is provided (see Figure. 26) to high-light the most influential features in the transformer mode. This plot illustrates how eachfeature contributes to the model’s output, averaged over the test data for the top 10 fea-tures. Figure 26a shows the global feature importance for binary classification, while Fig-ure 26b presents the importance of detecting attack categories in multi-class classifica-tion. Key features such as ‘IAT‘, ‘Number‘, ‘Rst count‘, ‘Magnitude‘, and ‘Tot size‘ were
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(a) Binary Classification (b) Multi-class classification

Figure 26: SHAP Global explanations for Transformer Model

found to be highly influential in both classification tasks.
7.1 Chapter Discussions
This chapter presents extension work aimed at addressing RQ2, which focuses on mak-ing state-of-the-art black-box models, such as transformers, transparent through the useof XAI for intrusion detection in IoMT cyber attack detection. The incorporation of XAIin IDS enhances the transparency of IoMT, helping to bridge the gap between complexML models and human understanding. This transparency enables experts to understandthe reasons behind specific decisions made by the Transformer model, thereby increasingtrust and allowing for more informed responses to detected threats.Two types of classificationwere studied based on the recently published CICIoMT2024dataset: 1) Binary classification and 2)Multi-class classification. The proposed transformermodel for Publication VI achieved an exceptional accuracy of 99.85% in Binary classifica-tion and 97.43% in Multi-class classification on the CICIoMT2024 dataset, outperformingtraditional ML models like Decision Trees (DT) and K-Nearest Neighbors (KNN).LIME and SHAP, as XAI methods, were utilized to provide transparency regarding thedecisions made by the transformer model for both classification types. A quantitativeevaluation of the employed XAImethods for the transformermodel in Binary classificationshowed that LIME exhibited greater faithfulness, robustness, and lower complexity com-pared to SHAP explainers. On the other hand, SHAP demonstrated superior performancecompared to LIME for multi-class classification when detecting types of IoMT attacks.
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8 Enhancing IoT Botnet Detection Through Explainable ActiveLearning (XAL) Paradigm
This chapter introduces an explainable active learning paradigm that integrates post hocexplainability into the active learning process. This approach aims to improve model per-formance while promoting transparency in intrusion detection tasks, particularly for de-tecting IoT botnet attacks. The work presented in this chapter is based on Publication VII.
8.1 Background on Active Learning
In the active learning approach, often viewed as a type of semi-supervised learning, asupervised learning algorithm selects specific samples—typically the most informativeones—from an unlabeled data set. These selected instances are then sent to experts forlabeling. The newly labeled instances are utilized to enhance the model’s knowledge,which is initially derived from a small set of labeled data samples.The core concept of active learning (AL) is that a learning algorithm intelligently chooseswhich instances to label next, allowing it to achieve good performance with significantlyless training data [122]. AL approach addresses a significant issue inmodernML: obtaininglabeled data can be both time-consuming and costly [157]. Active learning can be appliedin various scenarios [27], such as stream-based (from a stream of incoming data) [73]and pool-based (from a large set of unlabeled instances) [122]. To choose the next in-stance for labeling, various query sampling strategies have been proposed in the litera-ture [30, 33, 73]. The most common approach is the pool-based active learning method.In this approach, active learning assumes the existence of a small set of labeled data anda large pool of unlabeled data. Instances are selected from the unlabeled pool for annota-tion by an expert. The labeled samples are then incorporated into the training set, whichis used to update the model. For Publication VII, Two active learning query strategieswere tested: 1. Uncertainty Sampling [122] and 2. Query by Committee Sampling[122].Uncertainty sampling is a widely used approach for selecting data points to label,where data points are chosen one by one based on a measure of the model’s uncertainty.In this approach, the classifier makes label predictions for all unlabeled data points andthen selects the one about which it is most uncertain, i.e the point for which the classifierhas the lowest confidence score in its prediction. There are various strategies to measurethe level of uncertainty associated with a prediction for a data point x and its predictedlabel y.

• Classification Uncertainty: A classifier identifies the instance x for which it has theleast confidence in assigning a label, indicated by a high uncertainty score. Thisuncertainty is calculated using the least confidence score, defined as:
U(x) = 1−P(ŷ|x).

P(ŷ|x) is probability of the predicted label given the instance x.
• Classification Margin: Classification margin is a score that calculates the differencebetween the probabilities of the most likely and the second most likely predictions.The smallest margin represents the greatest uncertainty, so the sample with thissmallest difference is selected. The classification margin score is defined as

M(x) = P(ŷ1|x)−P(ŷ|x)
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• Classification entropy: Classification entropy (H) is a score that uses entropy toquantify the uncertainty of a classification. The data point selected is the one withthe highest entropy score, which is calculated using the following equation:
H(x) = ∑

k
pklog(pk)

, In the above, pk is the probability that a given unlabeled sample belongs to the kth

category, based on the current state of knowledge of the classifier.
Another commonly used approach for data point selection in active learning (AL) isknown as query-by-committee (QBC). In this method, a group of diverse models, referredto as a committee, is trained on the same labeled data but represents different hypothe-ses within the hypothesis space. Each model in this group votes on how to classify newexamples. The most informative sample is the one that generates the most disagreementamong the models regarding its class. Various methods can be employed to measure thelevel of disagreement, including Vote Entropy (VE), Consensus Entropy (CE), and Maxi-mum Disagreement (ME).
• Vote Entropy: Vote entropy selects the query instance with the highest entropy inthe vote distribution. It is calculated as below.

V E = argmaxx

(
−∑

i

V (yi)

C
log
(

V (yi)

C

))

In this equation, yi is each possible class label, V (yi) is the count of votes that aparticular label receives from the committee for a specific instance x, andC denotesthe total number of members in the committee.
• Consensus entropy is determined by first calculating the average predicted proba-bilities for each class from all classifiers. This average is referred to as the consensusprobability (Pcs). Next, the entropy of this consensus probability is computed. Thesample with the highest consensus entropy is then chosen for labeling.
The disagreement score is calculated as follows:

CE =−∑
y

Pcs log(Pcs)

where Pcs =
1
C ∑

C
c=1 P(yi) is the consensus probability.

• Maximum disagreement: It quantifies the level of disagreement among classifiersby first creating a consensus probability. This consensus is calculated as the aver-age of the class probabilities predicted by each classifier. Instead of using entropy,it employs Kullback-Leibler divergence to assess how much each classifier’s predic-tions deviate from the consensus. The sample that shows the greatest divergenceis then chosen as the query instance. The score of disagreement is computed as,
MD = argmaxx−

1
C ∑

y
D(P

θ (C) ||Pcs)

whereD(P
θ (C) ||Pcs)=∑y P(yi|X ;θ (c))log P(yi|x;θ(C)

PCS
is the corresponding Kullback–Leiblerdivergence. Here θ(C) denotes a specific classifier model within the committee, and

PCS represents consensus probability.
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8.2 XAL paradigm for IoT botnet detection
Active learning is especially useful in situations where collecting data is easy and inex-pensive, but labeling that data is costly. The intrusion detection problem exemplifies thisscenario, as it is relatively simple to gather raw network or host data and process rele-vant network traffic for machine learning algorithms. However, allocating the necessaryresources for labeling tasks is challenging due to the limited number of human expertswith sufficient skills to perform these tasks. Moreover, concerns about confidentiality of-ten hinder organizations from sharing any data, whether raw or labeled, which worsensthe issue.For Publication VII, an Explainable active learning (XAL) paradigm was proposed fordetecting IoT botnets, as shown in Figure 27. This paradigm integrates active learning (AL)with XAI to boost model performance while ensuring transparency. The process startswith a classifier trained on a limited set of labeled samples, known as the initial seed.Themodel selects informative instances from an unlabeled pool, which are then analyzedusing a post hoc XAI method to provide local explanations. These instances and theirexplanations are presented to security analysts, who review the information and assignfinal labels. The reliability of these explanations is evaluated in each active learning cyclethrough quantitative metrics, including monotonicity, faithfulness and sensitivity. Thisevaluation assesses the extent towhich the explanations accurately represent themodel’sactual decision-making process across query rounds. The labeled instances are used toretrain the ML model, enhancing its performance and promoting collaboration betweenhumans and machines by building trust. XGBoost (eXtreme Gradient Boosting) classifierwas selected for all benchmarking scenarios in the active learning process discussed inSection 8.1.

Figure 27: Explainable Active Learning (XAL) Framework for IoT Botnet Attack Detection

For Publication VII, the N-BaIoT dataset was utilized, fromwhich an attack-type multi-class classification was developed. Data points were classified into eight attack types andlegitimate network traffic: ACK, Benign, COMBO, JUNK, SCAN, SYN, TCP, UDP, and PLAIN.The N-BaIoT dataset consists of a total of 115 features. A description of these attack classlabels can be found in Table 2 in Chapter 4. To eliminate redundant and irrelevant data,Pearson’s linear correlation coefficient (r) was used. Feature that exhibited a high correla-tion (|r|> 0.80) with any other featurewere removed, retaining only one of the correlatedfeatures. Fisher score [2] was used to rank these 33 features. Various subsets of featureswere tested, including the top 3, 5, 10, 15, and 20. For the evaluation of each feature set, acomplete dataset sample of 100,000 instances was utilized. The dataset was divided into
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training and testing sets using an 80% to 20% ratio. Performance results for the XGBoost(XGB) model are illustrated in Figure 28. The top 3 and top 5 features achieved the highestdetection rates in terms of accuracy, F1 score, recall, and precision. Consequently, for thisanalysis of XAL paradigm, the top 5 features were selected and are presented in Table 16.For the experimental setup of active learning, the N-BaIoT dataset was divided into80% for training and 20% for testing to benchmark different active learning label strate-gies. Active learning requires a substantial number of unlabeled data points, known as apool. In Publication VII, this pool consistently contained 100,000 data points drawn froma larger training dataset. The testing dataset was used exclusively to evaluate the learn-ing outcomes using the F1-score metric for XGBoost and was not involved in the trainingprocess at any stage of the active learning cycles. Ten iterations were performed for eachmodel during the active learning cycle. In these iterations of the active learning cycle,in addition to evaluating the models’ performance, this study also applied explainable AItechniques such as LIME and SHAP to the test data.
Table 16: Top-5 Selected Features for Active Learning-Based IoT Botnet Detection Using XGBoost

Network Category Feature
Host H_L0.01_varianceH_L0.1_weightH_L0.01_weightSocket HpHp_L0.01_weightNetwork-jitter HH_jit_L0.01_mean

Figure 28: Feature Sets Comparisonswithmetrics for for Active Learning-Based IoT Botnet Detection.

Figure 29 illustrates the F1-score performanceof active learning cycles employing threeuncertainty sampling strategies: classification entropy, classification margin, and classifi-cation uncertainty. These strategies were applied to active learning in the context of IoTbotnet attack detection using the XGBoost model. The experiment commenced with aninitial set of 20 labeled data points, and various pool sizes (1000, 2000, 3000, 5000,7000, 10000, 20000, and 30000) of unlabeled data points were used in the study. Thetraining sets were balanced in all cases. During the active learning training experiment,up to 1000 data points were selected from the pool and presented to a human expert forlabeling. The selection of data points for querying was based on the classification uncer-tainty scores derived from the three uncertainty sampling strategies.Figure 29a illustrates the F1-score performance of the XGBoost model using Entropysampling across various pool sizes (ranging from 1000 to 30000) and different amounts of
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(a) Classification Entropy (b) Classification Margin (c) Classification Uncertainty

Figure 29: Uncertainty sampling: classification uncertainty results.

data points queried for labels (ranging from 100 to 1000). XGBoost model achieves an F1score of approximately 0.97 to 0.99 for most pool sizes when querying 1,000 data pointsfor labels, demonstrating high performance in detecting attack labels.In Margin Sampling ( in Figure 29b), F1-score increases with the number of data pointsqueried for labels, similar to Entropy Sampling. When querying 1000 data points for la-bels, the model achieves F1 scores between 0.95 and 0.98 for most pool sizes.F1-score of uncertainty shown in Figure 29c aligns well with the results from the previ-ous two sampling techniques. F1 score improves as more data points are queried for theirlabels, demonstrating the effectiveness of AL. XGBoost achieves F1 scores ranging from0.96 to 0.99 for most pool sizes when querying 1,000 labeled data points. All three clas-sification uncertainty strategies show that increasing the number of queried data pointsconsistently results in higher F1 scores across all pool sizes, which indicates thatmodel per-formance improves with more labeled data. Notably, larger pool sizes (e.g., 20000 and30000) tend to achieve slightly higher F1 scores compared to smaller pool sizes, especiallywhen the number of queried data points is low (between 100 and 400).

(a) Consensus entropy (b) Maximum disagreement (c) Vote entropy

Figure 30: Query by committee results

Another active learning query selection strategy used in Publication VII is query bycommittee. The query-by-committee approach involves a group of independent classi-fiers that select data points from the unlabeled pool to label queries. Figure 30 showsthe performance of the QBC approach during active learning cycles using the XGBoostmodel. The level of disagreement among the classifiers in the committee was measuredusing various disagreement scores: the consensus entropy score (QBC-CE) illustrated inFigure 30a, the vote entropy score (QBC-VE) presented in Figure 30c, and the maximumdisagreement score (QBC-MD) shown in Figure 30b.Experiments were conducted using various committee sizes (2, 3, 5, 7, and 10), witheach committee member being an independent XGBoost classifier. A fixed dataset of10,000 data points was utilized, and the seed size was set to 100. The results showedthat high F1 scores for all three disagreement scores improved as the number of labeleddata points increased. Among the different committee sizes, a committee size of 7 con-sistently outperformed the others across all disagreement metrics. As illustrated in Fig-
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ure. 30b, QBC-MD with a committee size of 7 (QBC-MD-7) achieved the highest F1 scoresamong the three disagreement metrics which demonstrates the effectiveness of the QBCapproach in actively selecting informative data points for labeling, leading to improvedmodel performance.

(a) LIME Explanations

(b) SHAP Local Explanations

Figure 31: LIME & SHAP Local Explanations for Correctly Classified Instance (ACK Attack)

In Publication VII, two post hoc explainability methods were used and compared tounderstand predictions of IoT botnet attacks within the active learning loop. The oracle,a security analyst, uses these explanations to better understand the decision-making pro-cess of the XGBoost model when predicting IoT botnet attacks. By integrating LIME andSHAP with active learning, a strong foundation of trust and transparency is built betweenthe oracle and the learning model. For a security analyst, it is essential to understandwhy a model made a particular prediction. This understanding is crucial for determiningwhether to trust the model’s output and for providing accurate labels or feedback to im-prove the model’s training. Specifically, post hoc methods like LIME and SHAP explain themodel’s decisions by assigning an importance value to each feature.LIME and SHAP explanations for themodel’s features, particularly regarding a correctlyclassified sample identified as an ACK attack type, are presented in Fig. 31. In the LIMEexplanations (see Fig. 31a), red bars represent features that contribute to correctly pre-dicting the data point as an ACK attack label, while green bars indicate features that con-tribute to predicting the data point as belonging to other classes according to the model.In these visualizations, prediction probabilities are assigned to each class displayed on theleft side of the figure. LIME explanations for the features show that the XGBoost Modelaccurately predicted the ACK class with 100% accuracy for the selected actual class label.SHAP force plot is a valuable tool for explainability, visually representing the contribu-tion of each feature to a specific prediction. It illustrates both the relative importance andthe direction of impact of these features. In the context of local explanations with SHAP, aspecific data point is chosen, and the model’s prediction is explained by highlighting eachfeature’s contribution, which is quantified using Shapley values. Figure 31b demonstrates
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(a) LIME Explanations for Misclassified Instance

(b) SHAP Explanation for Misclassified Instance

Figure 32: LIME & SHAP Local Explanations for Misclassified Instances

a local explanation for a data point through a SHAP force plot, clearly showcasing howeach feature contributes to the overall prediction. The plot illustrates the base value, withfeatures that positively influence the prediction displayed in red, while those that have anegative impact are shown in blue. The base value represented in the plot is the averageof all prediction values. Each strip in the plot indicates the influence of the features inpushing the predicted value closer to or farther from the base value. Red strips indicatefeatures that push the value higher, whereas blue strips indicate those that push it lower.Wider strips represent a greater contribution to the prediction.Based on Figure 31b, the base value for the ACK class attack is 0.5783. The feature"H_L0.01_variance" positively contributes to the prediction value and is the most crucialfeature due to its larger contribution range. Overall, the total positive contributions ex-ceed the negative contributions, resulting in a final predicted value higher than the basevalue. Therefore, the model correctly classifies the instance as an ACK attack.Figure 32 illustrates how LIME and SHAP can be utilized to explain misclassified in-stances, particularly in cases where a benign traffic instance is incorrectly classified as aCOMBO attack. In the LIME explanation for the misclassified instance (see Figure. 32a),the prediction probabilities indicate that the likelihood of a COMBO attack is 0.34, whilethe probability of it being benign is 0.22, and the probability of it being classified as a scanattack is 0.14. The feature contributions for this misclassified prediction are shown on theleft side of the figure, with red bars representing features that support the prediction ofa COMBO attack and green bars indicating features that contribute to the predictions ofother classes.A SHAP explanation (see Figure. 34b) is provided for the same misclassified instance,
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(a) Classification Uncertainty (b) Classification Entropy (c) Classification Margin

Figure 33: XAI metrics results for Uncertainty sampling strategies

(a) Vote entropy (b) Consensus entropy (c) Maximum disagreement

Figure 34: XAI metrics results for QBC strategies

where a benign class is incorrectly predicted as a COMBO attack. In this explanation, theSHAP contribution line shifts toward the blue line instead of the red red line which in-dicates that the features are influencing the prediction toward the COMBO class, eventhough the true label is benign.Using LIME and SHAP explanations, the oracle can determine whether a model de-pends on irrelevant features, thus guiding the selection of the most informative instancesfor the next iteration ofmodel training in active learning. SHAP explanations enable anno-tators to understand the relative importance and influence of each feature on an individ-ual prediction. These post-hoc local explanations can help identify features that are con-sistently important across different predictions, assisting in prioritizing which data pointsshould be labelled next. Additionally, the oracle utilizes these explanations to assess thevalidity of the model’s predictions and provide feedback for model improvement.The quality of post-hoc explanations was evaluated within the active learning loopby applying three quantitative metrics. These metrics were used to determine whetherthe data points selected from the pool and presented as labeling queries to the humanexpert were effectively explained by themodel. The evaluation of explanation quality wasconducted using the following three metrics: 1) high faithfulness, 2) monotonicity, and 3)maximum sensitivity. Descriptions of these metrics are available in Chapter 5.1.High Faithfulness metrics compute the correlation between the feature importancescores provided by the explainers and the actual model predictions. Monotonicity mea-sures the influence of individual features on model prediction probabilities by evaluatinghow the prediction probability changes when each attribute is incrementally added inorder of increasing importance. As each feature is added, the model’s probability consis-tently increases, resulting in monotonically increasing model prediction probabilities. Ahighmonotonicity score suggests that the explanations by XAImethod are consistent withthe model’s predictions for the given input. Maximum Sensitivity, used to assess the ro-bustness of the explainers, is based on the premise that similar instances in feature spaceshould give similar explanations.Results of the XAI metrics were presented exclusively for the models that showed
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the highest performance across various sampling strategies. Specifically, a pool size of10,000 yielded the best results for uncertainty sampling. Moreover, combining a poolsize of 10,000 with a committee size of seven produced superior outcomes in the QBCapproach. The performance results for the XAI metrics, illustrated in the graphs, repre-sented the mean values of these metrics for explainers over the test data throughout theactive learning cycles.Figure. 34 illustrates the XAI metrics results for QBC strategies in the AL loop. Meanvalues of evaluation explainabilitymetrics were computed for test data using explanationsgenerated by LIME and SHAP explainers throughout the AL cycle. In QBC strategies, SHAPexplanations consistently outperform LIME explanations in terms of faithfulness, mono-tonicity, and maximum sensitivity. The only exception is that neither SHAP nor LIME haveconsistently achieved better results for the faithfulness of consensus entropy. In the QBCstrategies that utilize a maximum agreement strategy with a committee size of 7 (QBC-MD-7) (see Figure. 34c), as the number of data points queried for labels increases, thefaithfulness of SHAP explanations remains high and stable, with correlation values consis-tently above 0.8. On the other hand, the faithfulness of LIME explanations is lower andmore variable, with correlation values ranging from0.4 to 0.6. However, themonotonicityof both explainers improves as more data points are queried, indicating that the explana-tions becomemore consistent with the model’s predictions as active learning progresses.Using the monotonicity metric, SHAP demonstrates a higher level of consistency, withmonotonicity percentages consistently exceeding 60%. In contrast, LIME’s monotonicityconsistency percentages range from 40% to below 60% in the QBC-MD-7 results. Both ex-plainers show a decrease in maximum sensitivity as more data points are queried, whichsuggests that the explanations become more robust over time. Lower sensitivity valuesindicate that similar instances in the feature space yield similar explanations. SHAP’s max-imum sensitivity values are consistently lower than those of LIME, highlighting that SHAPexplanations are more reliable. For the QBC-MD-7 model, which achieved the highest F1score, SHAP explanations exhibit high faithfulness correlation values (above 0.8), consis-tent monotonicity percentages (above 60%), and low maximum sensitivity values, all ofwhich indicate robust explanations.QBC-CE-7 (see Figure 34b) and QBC-VE-7 (see Figure 34a) show similar outcomes inxai metrics. In particular, SHAP explanations outperform LIME in terms of faithfulness,monotonicity, and maximum sensitivity. However, the QBC-MD-7 strategy consistentlyachieves the highest F1 scores and provides the most reliable explanations among thethree query strategies that utilize SHAP.In the context of uncertainty sampling strategies, as shown in Figure 33, SHAP expla-nations were more reliable than LIME. However, when comparing the QBC strategy, themetrics for faithfulness and consistency of monotonicity showed fluctuations. This vari-ability highlights that the explanations related to query strategies may not always be de-pendable.
8.3 Chapter Discussions
This chapter addresses RQ3 by proposing the XAL (Explainable Active Learning) paradigmadopted for IoT botnet detection. This paradigm integrates post-hoc explainability meth-ods directly within the active learning loop to enhance both model performance and ex-plainability. Though previous research in active learning for IDS has mainly focused onimproving performance of the model through active learning query strategies, it has paidlittle attention to the quality of explanations provided during the labeling process—a cru-cial aspect in human-in-the-loop systemswhere SOC analysts rely on interpretable insights
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to assign accurate labels and build trust in the model.Publication VII addresses this critical gap by incorporating LIME and SHAP explainersin each iteration of the active learning cycle and evaluating the quality of explanations us-ing three quantitative metrics: faithfulness, monotonicity, and maximum sensitivity. Thefindings of this work disclosed that the reliability of explanations varies across differentsampling strategies in AL cycle. Among the tested strategies, the Query-by-Committeewith Maximum Disagreement (QBC-MD-7) achieved not only the highest F1-score perfor-mance but also produced themost consistent and faithful explanations based on the eval-uation of XAI metrics. Notably, SHAP explanations performed better than LIME in termsof faithfulness and robustness.
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9 Privacy-Preserving Explainability in Federated Learning forIoT Threat Detection
The following chapter discusses the integration of explainable AI methods in federatedlearning settings for privacy-preserving explainability in botnet detection within IoT net-works. This chapter focuses on the main contributions and findings of Publications VIIIand Publication IX.
9.1 Explainable Federated model for IoT botnet detection
ML/DL-based Intrusion Detection Systems analyze network traffic, system logs, or hostdata to detect threats by identifying patterns and anomalies. IDS continuously monitordata, classifies it as normal or malicious, adapts to new threats, and issues alerts for de-tected intrusions. However, Many IDS approaches rely on centralized ML models thatrequire significant private data from IoT edge devices, which can threaten user privacy.In particular, in sensitive fields like healthcare and finance, transferring confidential datato a centralized entity for training a DL model to detect malicious activities might not beimpractical due to privacy concerns. Federated Learning (FL) enables the collaborativetraining of a global ML model across distributed nodes while keeping local data private.Each node updates its model with its own data and shares the updated model with a cen-tral server, which aggregates these models into a global one through an iterative process.This method protects privacy by preventing raw data sharing among clients.

Figure 35: FedXAI (Federated Learning of Explainable AI) paradigm for Client-Server Intrusion Detec-
tion Model Explanations in IoT Network Devices

Trustworthy AI is becoming increasingly important in cybersecurity, particularly for en-hancing the security and reliability of the black box nature of DL-based IDS. Recent ad-vancements have led to the development of Federated Explainable Artificial Intelligence(FEDXAI), which integrates FL with XAI. The combination of these frameworks is crucialfor building trust in AI-based IDS, as it allows for transparency while maintaining privacy.Two key paradigms that enhance trustworthy IDS with DL are FL and XAI. FL prioritizesdata privacy through collaborative learning on decentralized data. On the other hand, XAIenhances transparency, accountability, and trust in FL-based IDS by providing clear expla-nations of its predictions and decisions, helping security analysts verify detected threats.In an IDS operating in a FL setting, security experts responsible for managing the server-
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side models must comprehend how these models make decisions regarding intrusionsaffecting client nodes. In these situations, finding a balance between the need for pri-vacy and the need for explainability presents a significant challenge. Integrating PosthocXAI methods into FL has not received much attention and presents additional challengesdue to FL’s complex, distributed nature, where the model is trained across multiple clientnodes such as IoT devices and sensors. Additionally, Post-hoc XAI methods, such as LIMEor SHAP, for model interpretability require full access to the training dataset and modelparameters, which can pose privacy risks.Publication VIII explores the use of post-hoc XAI in FL for detecting botnets in IoTnetworks. The goal of this publication is to enhance the explainability and transparencyof decision-making processes in FL-based IDS, all whilemaintaining data privacy. Figure 35illustrates the FedXAI-based IDS framework for providing client-servermodel explanationsin IoT network devices. HFL (Hierarchical Federated Learning) architecture was proposedfor IDS in IoT networks connects various devices across different locations. These devicesmonitor their network traffic using tools and employ local host-based IDS. Selected IoTdevices share their DL model parameters with a central server, which aggregates theseto create an improved intrusion detection model. This collaborative learning approachenhances learning by enabling devices to detect intrusions based on behaviour patternslearnt from other participating devices.
Table 17: Number of Botnet malware & benign samples for each device over N-BaIoT dataset [92]

IoT Devcie Name Short Name Deployed BoTnet Samples
Mirai Gafgyt Benign

Danmini Doorbell Doorbell1 652100 316650 49548Philips B120N10 Baby_Monitor BabyMonitor 610714 312723 175240Provision PT 737E Security_Camera SecurityCam1 436010 330096 62154SimpleHome XCS7 1003 WHT Security Camera SecurityCam2 514860 316438 19528Ecobee Thermostat Thermostat 512133 310630 13113Provision PT 838 Security Camera SecurityCam3 429337 309040 98514SimpleHome XCS7 1002 WHT Security Camera SecurityCam4 513248 303223 46585Ennio Doorbell Doorbell2 - 316400 39100Samsung SNH 1011N Webcam Webcam - 323072 52150
Total 3668402( 57.9%) 2198800(34.7%) 464682(7.4/%)

TheN-BaIoT dataset is a suitable dataset that enables us to evaluate privacy-preservingcollaborative training for IoT botnet and B5G applications. This dataset contains networktraffic data from nine different IoT devices that have been infected with the Mirai andGafgyt malware, as well as legitimate traffic data. All devices generated traffic while non-corrupted (benign samples) andwhen infected byMirai andBASHLITE. However, the Enniodoorbell and thewebcam did not generate trafficwhile infected byMirai. Table 17 displaysthe number of benign and botnet malware samples for each device, along with the totalcount.In FL for IoT botnet detection, a deep neural network (DNN) was proposed and trainedusing data distributed across multiple IoT devices to identify IoT botnets in the N-BaIoTdataset by leveraging network traffic features. Each client’s data is split into training andvalidation sets using an 80:20 ratio. In each round of federated training, the validationdata from each client is tested on its respective client model. After processing all clients,the combined validation data from all clients is evaluated on the server model. To prepare
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the data for training the DNN model, Min-Max normalization was applied to scale thefeature values between 0 and 1 for both the training and validation data of each client.The DNN model includes an input layer with 115 neurons, which corresponds to thenumber of network traffic features in the dataset. The model was trained using the Rec-tified Adam (RAdam) optimizer with a learning rate of 0.000669451. After each hiddenlayer, the Scaled Exponential Linear Unit (SELU) activation function was applied to intro-duce non-linearity into the model. The output layer of the model was a fully connectedlayer that maps activations from the final hidden layer to the output size, which corre-sponds to the number of classes for botnet malware type classification: Benign, Mira,and Gafgyt. During the training phase, each client model underwent 90 epochs with abatch size of 512 for the data of each client in every communication round. The Cross En-tropy Loss function was used to compute the loss during training, making it well-suitedfor this multi-class classification task.The proposal for Publication VIII aims to use explainable AI to interpret a DNN modeltrainedwith the FedAvg algorithm in a HFL setup for IoT botnet detection. Publication VIIIfocuses on utilizing the N-BaIoT dataset, which includes nine IoT devices that have beenattacked by botnets such as Gafgyt and Mirai. Since The Mirai botnet did not impact the’Doorbell2’ and ’Webcam’ devices, therefore, these two were excluded from the experi-ments tomaintain consistency in the label space and input feature space during federatedtraining using the FedAvg algorithm, which follows a horizontal approach to FL.

Figure 36: Evaluation of DNN Model Performance on Server side

Figure 36 shows the performance of the federated DNN model in terms of accuracy,precision, recall, and F1-score for server model. The evaluation used test data from 7 IoTdevices over 200 communication rounds with the FedAvg algorithm in a HFL setup. Foreach round, at least 50% of clients were randomly selected, ensuring diverse updates androbust generalization. All seven clients were required for the evaluation round to ensurereliable model performance estimates. In Figure 36, the evaluation of the server modelshows that the accuracy, precision, recall, and F1 score metrics initially sat at around 0.4.After 200 communication rounds, these metrics significantly improved, reaching approx-imately 0.99.Figure 37 illustrates the classification performance metrics of client DNNmodels usingtheir own parameters on validation data. As communication rounds increased, accuracy,
69



(a) Accuracy (b) Precision (c) Recall (d) F1-score

Figure 37: Evaluation of DNN model performance on client’s Side

precision, recall, and F1-score improved for each client, indicating successful learning. Al-though there was some variation in performance among clients in the initial communica-tion rounds, nearly all achieved high classification performance by the end, demonstratingthe model’s strong effectiveness on the validation data.A post hoc explanation, denoted as g, maps a black box model predictor M and apoint of interest x to an importance score g(M,x) = ϕx ∈Rd for all features. SHAP (SHap-ley Additive exPlanations) is defined as g(M,x) = φ0 +∑
M
j=1 φ j, where φ j is the featureattribution for feature j. SHAP values can provide both local explanations for individualinstances and global explanations for the model as a whole.SHAP (SHapley Additive exPlanations) is defined as g(M,x) = φ0+∑

M
j=1 φ j, where φ j isthe feature attribution for feature j. SHAP values can provide both local explanations forindividual instances and global explanations for the model as a whole. In publication 8,global explanations for server model were derived without sacrificing client data which isimportant because post hoc explanations like SHAP and LIME require input reference dataor training data, or background data to achieve feature importance-based explanations.Consequently, In server-based FL settings, explaining the learned global model requiresthe server to have access to the complete training dataset (DTrain) from its clients. Al-ternatively, the server should be able to compute the centroids of a dataset created bycombining the training sets of all clients. However, sharing client data or aggregated in-formation raises privacy concerns, as sending client data to the server contradicts thefundamental principle of decentralized learning in FL. Thus, In publication VIII, an expla-nation of the servermodel was proposed by aggregating all client SHAP explanations, thusavoiding data sharing with the server model.After completing the training of FL, each client ci receives its trainedmodel Mci , whichis then sent to the server. The server creates its own model Ms by averaging the weightsof the received models using the FedAvg algorithm. Each client ci can then obtain a SHAPexplanation gci(Mci ,x) for its data points based on its model Mci , which strongly relies onthe training data.To derive explanations from the server’s perspective, the additive nature of SHAP val-ues was leveraged which allows for the generation of explanations for the server model

Ms as an aggregation of explanations from the individual client models Mc within the set
U . Where U is a set of participating clients in the federation. Therefore, for a point ofinterest x, an explanation of the prediction made by the server model Ms can be obtainedusing the following equation.

gs(Ms,x) = Elocal =
1
|N| ∑

ci∈N
gci(Mci ,x). (21)

To evaluate whether the local client explanations Elocal were sufficient for the servermodel, the servermodelMs was providedwith data fromall clientsN to generate explana-
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tions. These explanations were then aggregated by combining the training data and usingthe SHAP explainer, resulting in a global explanation Eglobal. Finally, to assess the accuracyof the explanations, the difference (dg−l) between Eglobal and Elocal was computed.
d(g−l) = Eglobal−Elocal . (22)

Figure 38: Heatmap for Difference Between aggregation of client’s models Explanations and server
model explanations

(a) SHAP values feature importance over Aggregation of
Client’s Side Explanation (b) SHAP Value feature importance for side Server model

Figure 39: SHAP value feature importance from both Client’s side models and Server model

The difference between Eglobal and Elocal represents the divergence between server-based explanations (obtainedbydirectly accessing the clients’ data) and the average client’sexplanations (acquired by aggregating individual client explanations without accessingtheir data). This calculation of divergence helps assess the quality and reliability of clientexplanation aggregation (Elocal) compared to the server-based explanations (Eglobal) whichenables explainability in FL-settings while preserving data privacy.SHAP values were computed using validation data. Each client’s (IoT device) SHAPvalue explanations formed anm×d matrix, wherem represents the number of data pointsfrom the test set and d stands for the number of features. To aggregate the client-basedexplanations, we calculated the element-wise average of the individual client SHAP value
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explanations, resulting in Elocal , which is also an m×d matrix. Similarly, when the servermodel was applied to the test data from clients, it produced server-based explanationsdenoted as Eglobal , which again forms an m× d matrix. The difference d(g−l) between
Elocal and Eglobal was calculated by taking the element-wise difference between the twomatrices, resulting in another matrix of size m×d.SHAP values were calculated for over 2000 test data points from each client. By ag-gregating these values, we generated client-based explanations (Elocal). A comparativeanalysis assessed the effectiveness of E_local in representing the server model’s behavior.To create server-based explanations Eglobal , the server accessed each client’s data, andSHAP values were recalculated and aggregated, matching the size of E_local. Finally, thedifference (dg−l) between Eglobal and Elocal was computed to highlight the divergencebetween the two sides of explanations.Figure 38 presents a heatmap that visualizes the differences in magnitude betweenserver-based explanations and client-based explanations for each sample and feature. Theheatmap highlights the discrepancies for 20 features, selected from a total of 115 for thesake of readability. From the heatmap, it can be observed that the overall divergence be-tween the server-based and client-based explanations is relatively small. However, therewere a few notable instances where the divergence was more significant. For example,some samples display darker shades for certain features, indicating a larger discrepancybetween server-based and client-based explanations for those specific instances.To conduct a more thorough analysis of the features, both client-based and server-based explanations were evaluated, emphasizing their differences. The average SHAP val-ues were computed for the client-based and the aggregated server-based explanations(refer to Figure 39). It can be observed that the SHAP values of most features are com-parable in both Figure 39a and Figure 39b, implying that the aggregation of client-basedexplanations closely approximates server-based explanations. Thus, Client-based SHAPexplanations for global interpretations in terms of feature importance closely approxi-mated server-based explanations, achieving similar levels of explainability for the servermodel (global model) without compromising data privacy.
9.2 Balancing Privacy and Explainability in Federated Learning for BotnetDetection in IoT Networks
In Chapter 2.1, Publication VIII proposed a framework for detecting botnets in IoT net-works utilizing a Deep Neural Network (DNN) model. To explain the global model on theserver side, the SHAP (Shapley Additive Explanations) explainer was used. It was demon-strated that aggregated SHAP value explanations from clients were sufficient to achieveexplanations of the global server model. These client-aggregated SHAP value explana-tions closely approximated the explanations of SHAP values when the server accessedclient data. The dynamic nature of IoT networks integrated with the evolution of moreadvanced botnet attacks requires more robust and explainable detection solutions.In Publication IX, a FEDXAI framework was proposed to enhance privacy guaranteesin FL settings by ensuring the privacy of post hoc local explanations generated for theserver model. The Long Short-Term Memory (LSTM) model, which was trained in thispublication, operates in a horizontal federated learning (HFL) setting using the FedAvgAggregation algorithm for both binary andmulticlass classification tasks. Additionally, thispublication presents to explain the predictionsmade by the global LSTM (the servermodelbased on FedAvg aggregation) by aggregating explanations fromparticipating clientswhilemaintaining the privacy of their data. This is achieved through secure aggregation of SHAP(SHapley Additive ExPlanations) value explanations from individual client models based
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on IoT devices, allowing for an approximation of the server model’s explanations withoutdirect access to client data.Publication IX presents three studies conducted in federated learning settings usingthe N-BaIoT dataset: 1) Binary Classification, 2) Botnet-type Classification, and 3) Attack-type Classification.
• In the binary classification study, the objectivewas to distinguish betweenmaliciousand benign traffic.
• In the Botnet-type detection study, the aim was to classify different types of mal-ware. The classes used for botnet-type detections included Mirai, Gafgyt, and Be-nign.
• In the Attack-type classification study, data points were classified into various attacktypes, including ACK, benign, junk, scan, SYN, combo, TCP, UDP, and plain UDP.
In the experimental settings for FL, an LSTMmodel was trained using data frommulti-ple IoT devices, ensuring that a fixed number of samples were obtained from each device.This approach minimized the impact of varying training instances and maintained a con-sistent dataset size across all clients while keeping the same class proportions. The num-ber of communication rounds required for training the model was determined throughiterative experimentation. This process began with a random selection of initial rounds,whichwere then adjusted based on the observed performance of themodel. For instance,the binary classification task converged within 10 rounds, while 50 rounds were sufficientfor detecting botnet types. In contrast, 2000 rounds were tested for classifying differ-ent types of attacks. In the evaluation of LSTM learning models in federated learning, avalidation dataset was utilized exclusively on IoT devices. Metrics such as Accuracy, Pre-cision, Recall, and F1-score were employed to evaluate both the client and server modelsin federated learning across all classification settings.The classification performancemetrics of clientmodels were obtained from the evalu-ation results using their specific parameters on each client’s validation data. To assess theFedAvg algorithm on the server side, test data was used exclusively from each IoT device-based client for evaluating its ownmodel. In every round of training and evaluation duringthe federated training process, at least 50% of the clients were randomly selected.All 9 IoT device-based clients participated in each evaluation round to provide a reli-able estimate of the model’s performance for binary classification. However, in the mul-ticlass classification setting, only seven clients were involved. The ’Doorbell2’ and ’Web-cam’ devices were not infected by the Mirai botnet, so these two devices were excludedfrom the experiments for Botnet-type and Attack-type detections. This exclusion was re-quired to maintain consistency in both the input feature space and label space duringfederated training using the FedAvg algorithm, considering the horizontal nature of the FLapproach.Figure 40 illustrates the performance metrics of the LSTM model on the server sideacross multiple communication rounds in HFL settings, using the FedAvg algorithm forthree classification types: binary classification, botnet-type detection, and attack-type de-tection. The performance metrics of the server-side LSTMmodel were evaluated startingfrom the initial (0th) communication round, which serves as a baseline for the model’sperformance prior to any client communication or parameter updates. This baseline per-formance was included to observe how the global model improves as it updates parame-ters from client models in the subsequent communication rounds.
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(a) Malware Detection (Binary) (b) Botnet-type Detection (c) Attack-type Detection

Figure 40: Performance evaluation of FedAvg LSTMmodel on the server side across different detec-
tion tasks: (a) Malware Detection (Binary), (b) Botnet-type Detection, and (c) Attack-type Detection.

In Figure 40a, it is evident that the LSTMmodel utilizing FedAvg achieved early conver-gence with fewer communication rounds for binary classification. All performance met-rics—accuracy, precision, recall, and F1-score—quickly reached optimal levels with min-imal communication overhead. The client-side LSTM models were evaluated using IoTdevice-specific data after each training communication round. For binary classification,as shown in Figure 41, all LSTMmodels based on device-specific data achieved nearly 99%performance, with metrics including accuracy (Figure 41a), precision (Figure 41b), recall(Figure 41c), and F-score (Figure 41d) reaching these levels in just a few rounds whichdemonstrates the models’ quick convergence.The shaded areas in Figure 41 represent the confidence intervals surrounding the clas-sification metrics (accuracy, precision, recall, and F1-score). Fixed probabilistic error rateswere utilized to estimate potential variability in the classification metrics. For binary clas-sification, the error rate was set to 0.05%. These error rates were also used to calculateconfidence intervals.
• Lower Bound = metric− (metric×error percentage)
• Upper Bound = metric+(metric×error percentage)
The convergence for botnet-type detection occurred after two communication rounds,similar to binary detection. Figure 40b illustrates the server-side evaluation of the LSTMmodel’s performance in identifying botnet types in IoT devices. The figure shows a rapidimprovement in all metrics, stabilizing above 0.95 after two communication rounds. Bythe end of 50 communication rounds, the LSTM model’s performance in the server-sideevaluation of the FedAvg algorithm for botnet-type detection closed to 1 in classificationmetrics.Figure 42 presents the performance evaluation results for the client-side LSTMmodels,where the error rate was set at 0.01%. The evaluation metrics include accuracy, precision,recall, and F1-score for individual IoT devices participating in FL for botnet-type detection.The results demonstrated consistently high performance across the devices. The thermo-stat device-based client model showed more variability in the initial rounds but stabilizedafter 15 rounds of communication. In contrast, the BabyMonitor device model began withlower performance metrics but gradually improved to exceed 0.99 after 50 communica-tion rounds.In contrast to binary classification and botnet-type detection, a significantly largernumber of communication rounds (2000)were necessary to achieve optimal performancein attack-type detection. The metric results for the attack type of the LSTM model are il-
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(a) Accuracy (b) Precision

(c) Recall (d) F1-score

Figure 41: Device-specific client-side evaluation of LSTMmodel performance for Binary classification

lustrated in Figures 40c and 43, which present the server-side and client-side LSTMmodelevaluations, respectively.
Figure 40c shows the evaluation metrics for the LSTM model using FedAvg on theserver side, including accuracy, precision, recall, and F1 score. Themodel improved quicklyinitially but stabilized after about 1,500 communication rounds, indicating that additionalrounds were necessary for consistent performance.
Figure 43 displays the performance metrics for client-side LSTM models across sevenIoT devices over 2000 communication rounds, with an error rate of 0.02%. Most models,including Doorbell1, BabyMonitor, SecurityCam1, SecurityCam2, and SecurityCam3, main-tained performance above 0.95 after 500 rounds. In contrast, the Thermostat modelshowed fluctuations, ranging from 0.85 to 0.95. The SecurityCam4 model initially per-formed lower but improved and stabilized around the 1,000th round. These variationsillustrate the complexities of detecting attack types and the need for more rounds forsome devices to achieve convergence.
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(a) Accuracy (b) Precision

(c) Recall (d) F1-score

Figure 42: Device-specific client-side evaluation of LSTM model performance for Botnet-type Detec-
tion

9.2.1 Explaining Server-Side Black Box model in Federated Learning Settings
In FL, explaining the participated client black boxmodel is straightforward since each clientkeeps its own data private. Each client uses its training data as a reference for post hocexplainable AI (XAI) methods, ensuring model explainability. Post-hoc explainers, suchas the SHAP explainer, require access to both the training data and the trained model inorder to compute SHAP values for the test data. On the other hand, Publication IX aimedto explore the significance of features in the server model without sharing any data withthe server.For Publication IX as well, SHAP values of client-based models were aggregated toexplain the server model in FL. For a point of interest x, the explanation of the predictionmade by the server model Ms is obtained using the following equation.

ϕs(x) =
1
|N| ∑

ci∈N
ϕci(x j) (23)
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(a) Accuracy (b) Precision

(c) Recall (d) F1-score

Figure 43: Device-specific client-side evaluation of LSTM model performance for Attack-type Detec-
tion

Sharing the SHAP values generated by clients with the server could compromise pri-vacy, as the server might gain excessive knowledge about the parameters of client modelswhich raises significant vulnerabilities in post hoc explanation techniques that can be ex-ploited by adversaries to create classifiers with controllable post hoc explanations [131].Specifically, an attacker can deceive target classifiers and the methods used for explana-tion while maintaining the classifier’s output consistency [70]. To protect the privacy ofSHAP explanations from client models, a secure multiparty computation (SMPC) proto-col [22] based on Secret Sharing was implemented which enables the secure aggregationof SHAP values from client models without revealing individual client SHAP values to theserver or other clients.
SMPC, or Secure Multi-Party Computation, is a cryptographic protocol that enablesN parties (clients and a server) to compute an aggregate function f (x1,x2, . . . ,xN) usingprivate inputs x1,x2, . . . ,xN without revealing them. This ensures client data privacy duringsecure aggregation. SMPCwas applied to securely aggregate SHAP values from client-side
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models. The protocol allows the server to compute the aggregated SHAP values ∑
ci∈N

ϕci

without knowing the individual SHAP values ϕci .Algorithm 1 illustrates the steps for secure aggregation of SHAP values which enablesthe server to obtain explanations for its model Ms while preserving the privacy of individ-ual clients’ SHAP values.
To determine if the secure aggregation of client-side SHAP values, denoted as Elocal,is adequate for the server model Ms, the server model was provided with data from allclients N to generate explanations. The server-based SHAP values were aggregated for allclients by using the combined training datawith the SHAP explainer, resulting in the globalexplanation Eglobal. Finally, to verify the accuracy of the explanations, the difference dg−lbetween Eglobal and Elocal was calculated, as shown in Equation 22.

Algorithm 1: Secure Aggregation of Client-side SHAP Values
Input: SHAP values ϕci ∈ Rd for each client ci,Number of clients N,Large prime number PResult: Secure Aggregated SHAP values ∑

N
i=1 ϕci1 Step 1: Secret Sharing:

2 for each client ci do
3 Split ϕci into N shares using a (t,N) threshold secret sharing scheme;
4 Distribute shares to all other clients and the server;
5 Step 2: Masking:
6 for each client pair (i, j) where i ̸= j do
7 Generate random masking vector Si, j;
8 for each client ci do
9 Compute masked SHAP value:;
10

zi = ϕci +∑
j>i

Si, j−∑
j<i

S j,i mod P

Send zi to the server;
11 Step 3: Aggregation at Server:
12 Compute aggregated value:;
13

N

∑
i=1

zi =
N

∑
i=1

(
ϕci +∑

j>i
Si, j−∑

j<i
S j,i

)
mod P

Simplify to:;
14

N

∑
i=1

zi =
N

∑
i=1

ϕci mod P

15 Output: Secure Aggregated SHAP values ∑
N
i=1 ϕci

SHAP values were calculated for each validation dataset of the IoT device-based clientmodel to estimate the contribution of each feature to the model’s output. This outputspecifically refers to the probability distribution over class labels generated using the Soft-max activation function in the LSTMmodel. After completing federated training, all partic-ipating client models and the server model from the last communication roundwere used
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to generate SHAP explanations. For binary classifications, models from the 10th roundwere used, while for botnet-type classifications, models from the 50th round were uti-lized, and for attack-type classifications, models from the 2000th round were selected togenerate the SHAP explanations.

(a) Features from 1 to 29 (b) Features 30–59

(c) Features 60–89 (d) Features 90–115

Figure 44: Heatmap for the difference between the secure aggregation of client models’ explana-
tions and server model explanations for binary classification

Figures 44, 45, and 46 present heatmap graphs for three detection types: Binary,Botnet-type, and Attack-type. To ensure the clarity of this paper, a heatmap has beenprovided for all 115 features across four sub-figures.In Figure 44, the differences between server-based explanations and client-based ex-planations were visualized for each sample and feature. Each cell in the heatmap repre-sents the difference for a specific combination of sample and feature. The colour scale onthe right side of the heatmap provides a reference for interpreting themagnitude of thesedifferences. Data points close to zero indicate a slight difference between server-basedand client-based explanations, indicating that the secure aggregation of client-based SHAPvalues closely approximates the server model explanations when the server has access tothe data. Conversely, instances further from zero reveal a more significant discrepancybetween client-based and server-based explanations.Figure 44 shows a heatmap for binary detection. The differences between server-based and client-based explanations were minor, as most data points were close to zero.In Figure 44a (which covers features 1-29), there are several notable data points wherethe differences are more apparent, indicated by values deviating from zero. Specifically,for features such as ‘MI_dir_L0.1_weight’, ‘MI_dir_L0.01_weight’, ‘H_L0.1_weight’, and‘H_L0.01_weight’, these variations suggest slight discrepancies in the secure aggregationof Shapley values compared to the server-side explanation.
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Figure 45: Heatmap for Difference Between Secure aggregation of client’s models Explanations and
server model explanations for Botnet-type detection

Figure 46: Heatmap for Difference Between Secure Aggregation of client-side models Explanations
and server-side explanations for Attack-type Detection

Similarly, Heatmap graphs for detecting Botnet types, as shown in Figure 45, demon-strate a high similarity between the explanations generated by server-based and client-based models, with most instances being close to zero. These instances indicate specific
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features and cases where the client-based explanations diverge from those of the server-based models. Similarly, the heatmap for attack-type detection in Figure 46 shows almostthe same level of similarity, withmost data points near zerowhich indicates a strong align-ment between the server-based SHAP value explanations and the client-based secure ag-gregation of SHAP explanations. However, there are some instances with more significantdiscrepancies that are further away from zero. Across all three detection types, the secureaggregation of client-based SHAP value explanations closely approximates the server-sidemodel explanations, even without granting the server direct access to the training andtesting data from IoT device-based clients.

(a) Client-side absolute mean feature importance (Features 1-115)

(b) Server-side absolute mean feature importance (Features 1-115)

Figure 47: Mean SHAP values of Secure Aggregation Matrix of Client-Side and Server-Side Models
for Binary-type classification

(a) Client-side absolute mean feature importance (Features 1-115)

(b) Server-side absolute mean feature importance (Features 1-115)

Figure 48: Mean SHAP values of Secure Aggregation Matrix of Client-Side and Server-Side Models
for Botnet-type detection

A detailed analysis was conducted across 115 features by examining both client-side
(Elocal) and server-side (Eglobal) explanations and comparing their differences. The av-erage SHAP values were computed for both types of explanations. Figure 47 illustratesthat the feature importance, as indicated by the mean SHAP values from the client-side(Figure 47a) and server-side (Figure 47b), is quite similar. Figure 47a presents the meanSHAP values derived from the secure aggregation of client-side models, while Figure 47b
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(a) Client-side absolute mean feature importance (Features 1-115)

(b) Server-side absolute mean feature importance (Features 1-115)

Figure 49: Mean SHAP values of Secure Aggregation Matrix of Client-Side and Server-Side Models
for Attack-type detection

displays the mean SHAP values from the server model, which has access to training datafrom IoT device-based clients.
By comparing these two sides of mean SHAP values, it is evident that the top featuresinfluencing themodel’s predictions remain consistent between the client-side and server-side analyses.
Figure 48 showcases the average SHAP values across 115 features for both client-side(Figure 48a) and server-side (Figure 48b) explanations related to botnet detection. Thesefigures demonstrate a strong consistency in feature importance between the two expla-nations. Similarly, Figure 49 compares the mean SHAP values for attack type detection,highlighting the client-side feature importance in Figure 49a and the server-side featureimportance in Figure 49b. This comparison analysis demonstrated that the key featurescontributing to model predictions closely align between the client side and the serverside. Therefore, securely aggregating SHAP values in client-based explanations is suffi-cient, eliminating the need to transmit data from to the server for explanations of theserver model.

9.2.2 Explaining Client-Side Black Box models in Federated Learning Settings
To explain the outcomes of the LSTMmodel predictions for client-sidemodels, three post-hoc feature importance techniques of XAI were used. A comprehensive quantitative eval-uation was conducted to assess the effectiveness of three prominent XAI methods: LIME,Integrated Gradients (IG), and SHAP, across all participating clients in FL settings. Thisevaluation focused on four key metrics: High Faithfulness, Monotonicity, Low Complexity,andMaximum Sensitivity. Local explanations generated by LIME, IG, and SHAP were eval-uated across 2000 test points. Table 18 displays the results of the XAI metrics, includingthe mean and standard deviations for both LIME and SHAP explanations. These evalua-tions were conducted on 2000 data points from all participating clients in FL across threeclassification categories: Binary, Botnet type, and Attack type.

In binary classification, the SHAP explainer demonstrates highermean values for faith-ful explanations compared to LIME and IG explainers across all test instances from partic-ipating clients. For instance, SHAP achieved a faithfulness score of 0.34 ±0.05 for theBabyMonitor model, whereas IG scored 0.31 ±0.04 and LIME scored 0.24 ±0.30 whichindicates that SHAP offers more reliable feature importance that is closely aligned with its
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effect on model prediction probabilities.
Table 18: Results of evaluating Quality of LIME, IG & SHAP explanations using High Faithfulness
(µ f ), Low Complexity (µc), Maximum Sensitivity (µs) & Monotonicity (µm) for participated client-
side models in FL for three classification types.

Binary Botnet Type Attack-TypeClient Metric \explainer Lime IG SHAP Lime IG SHAP LIME IG SHAP
µ f 0.24±0.30 0.01±0.25 0.34±0.23 0.47±0.34 -0.03±0.24 0.79±0.15 0.43±0.28 0.00±0.22 0.62±0.32
µc 3.95±0.07 3.29±0.34 3.55±0.08 4.06±0.11 3.25±0.39 1.26±0.31 4.01±0.31 3.39±0.39 1.39±0.75
µ f 0.14±0.10 0.26±0.11 0.04±0.05 0.41±0.18 0.08±0.23 0.09±0.23 0.26±0.11 0.11±0.70 0.09±0.15BabyMonitor
µm 31.07% 1.00% 46.00% 97.00% 0.03% 99.00% 99.00% 0.00% 96.00%
µ f 0.38±0.29 -0.01±0.23 0.55±0.21 0.14±0.09 0.03±0.28 0.25±0.31 0.32±0.33 0.00±0.23 0.56±0.32
µc 4.03±0.05 3.74±0.36 3.55±0.10 3.99±0.11 2.99±0.49 1.42±0.35 3.89±0.26 3.23±0.48 1.59±0.58
µ f 0.20±0.10 0.08±0.00 0.02±0.02 0.65±0.20 0.01±0.00 0.00±0.00 0.36±0.13 0.01±0.00 0.06±0.10Doorbell1
µm 41.40% 1% 66.54% 74% 1% 85% 91% 6% 92%
µ f 0.31±0.34 -0.00±0.25 0.51±0.32 0.36±0.21 -0.01±0.29 0.59±0.22 0.39±0.39 0.00±0.23 0.70±0.25
µc 3.89±0.07 3.88±0.29 3.35±0.23 4.13±0.17 3.16±0.49 1.31±0.32 3.94±0.43 3.23±0.48 1.42±0.44
µ f 0.10±0.05 0.35±0.12 0.02±0.04 0.39±0.17 0.10±0.08 0.09±0.21 0.23±0.09 0.30±0.14 0.05±0.09SecurityCam1
µm 40.41% 5% 39.67% 96% 1% 100% 97% 20% 96%
µ f 0.34±0.37 0.01±0.29 0.45±0.37 0.21±0.17 0.01±0.19 0.36±0.26 0.34±0.29 -0.00±0.17 0.66±0.31
µc 3.95±0.05 3.86±0.52 3.35±0.07 4.13±0.09 3.45±0.40 1.76±0.22 3.95±0.20 3.50±0.40 1.39±0.73
µ f 0.18±0.10 0.06±0.10 0.02±0.02 0.53±0.21 0.36±0.22 0.07±0.14 0.47±0.15 0.01±0.00 0.06±0.12SecurityCam2
µm 36.55% 4% 42.45% 70% 1% 95% 98% 2% 98%
µ f 0.38±0.34 -0.01±0.19 0.59±0.26 0.18±0.33 -0.04±0.26 0.51±0.24 0.36±0.31 -0.00±0.22 0.62±0.30
µc 3.89±0.08 3.50±0.38 3.41±0.24 4.02±0.23 3.20±0.48 1.40±0.20 4.01±0.26 3.22±0.47 1.32±0.72
µ f 0.08±0.03 0.42±0.15 0.01±0.02 0.35±0.22 0.42±0.28 0.04±0.14 0.23±0.05 0.26±0.21 0.07±0.13SecurityCam3
µm 42.85% 1% 40.77% 100% 1% 100% 94% 0% 90%
µ f 0.33±0.28 0.03±0.27 0.47±0.27 0.46±0.14 0.02±0.19 0.63±0.14 0.48±0.36 0.01±0.24 0.71±0.37
µc 4.00±0.07 3.65±0.44 3.49±0.17 4.07±0.19 3.39±0.42 1.43±0.23 4.04±0.25 3.41±0.43 1.36±0.71
µ f 0.11±0.07 0.01±0.22 0.01±0.02 0.37±0.10 0.12±0.05 0.02±0.08 0.26±0.10 0.40±0.00 0.05±0.09SecurityCam4
µm 44.20% 9% 37.65% 100% 8% 100% 92% 1% 99%
µ f 0.37±0.38 0.03±0.26 0.56±0.33 0.39±0.13 -0.01±0.19 0.61±0.09 0.34±0.26 -0.00±0.19 0.66±0.26
µc 3.87±0.05 3.45±0.36 3.37±0.11 4.10±0.20 3.48±0.40 1.52±0.27 4.05±0.14 3.48±0.41 1.29±0.65
µ f 0.10±0.06 0.06±0.12 0.01±0.02 0.38±0.19 0.01±0.00 0.06±0.16 0.31±0.11 0.01±0.00 0.05±0.09Thermostat
µm 34.49% 3% 37.46% 90% 1% 100% 98% 3% 100%
µ f 0.24±0.17 -0.01±0.20 0.43±0.15
µc 4.19±0.16 3.57±0.42 3.64±0.07
µ f 0.09±0.03 0.04±0.08 0.09±0.09Doorbell2
µm 58.41% 8% 53.98%
µ f 0.46±0.42 0.01±0.25 0.51±0.39
µc 3.88±0.10 3.35±0.40 3.14±0.10
µ f 0.12±0.02 0.04±0.09 0.01±0.02Webcam
µm 57.21% 9% 69.23%

Whenevaluating local explanations using low complexitymetrics, SHAPnearly achievedlower mean values than LIME and IG across all clients. However, for the Client modelsBabyMonitor and Doorbell2, the IG explainer outperformed the other explainers usingthese metrics.Sensitivity refers to the degree to which explanations remain stable for nearby datapoints. Lower sensitivity values indicate more stable explanations. On average, SHAPmodels, when explained using SHAP, demonstrate lower sensitivity values compared toLIME and IG explanations across all clients. However, for the Doorbell2 model, IG providesmore robust explanations than both LIME and SHAP. This suggests that SHAP offers morestable and reliable explanations for nearby data pointswithin the same feature space usedby its client model.Overall, SHAP explanations were more consistent in terms of monotonicity comparedto LIME and IG when evaluated using a monotonicity metric across all client models.However, for the SecurityCam1, SecurityCam3, SecurityCam4, and Doorbell2 models, theLIME explanations displayed greater monotonicity, with percentages of 40.41%, 42.85%,44.20%, and 58.41%, respectively, compared to SHAP explanations.Similar to binary classification, SHAP ismore reliable than LIME and IG (Integrated Gra-dients) for both botnet types and attack types, as shown in Table 18. SHAP demonstratesa strong correlation between the importance of features calculated by its explainer andthe prediction probabilities of the client’s model. Additionally, SHAP demonstrates lowercomplexity and sensitivity compared to LIME and IG. However, for the Doorbell1 and Se-
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(a) Server Model (b) Doorbell1 (c) BabyMonitor

(d) SecurityCam1 (e) SecurityCam2 (f) SecurityCam3

(g) SecurityCam4 (h) Thermostat (i) Doorbell2

(j) Webcam

Figure 50: Global explanations for server model feature importance and participated clients’ IoT
device models feature importance in Binary classification type

curityCam2 models, IG demonstrates to be more robust than both LIME and SHAP whenusing the maximum sensitivity metric. When considering the monotonicity metric, SHAPshows greater monotonicity compared to LIME and IG for both botnet-type and attack-type detection across all clients. However, In the attack-type detection for the BabyMon-itor, the SecurityCam1 and SecurityCam3 models, the LIME explainer performs slightlybetter than SHAP concerning monotonicity metrics values (see Table 18).
Global explanations for server and client models were provided for those participatingin FL, using the SHAP explainer. In these global explanations, clarify the model’s predic-tions by detailing the contribution of each feature. Figure 50 illustrates the global featureimportance explanations for both the server model and the IoT device models of par-
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(a) Server Features (b) Doorbell1 (c) BabyMonitor

(d) SecurityCam1 (e) SecurityCam2 (f) SecurityCam3

(g) SecurityCam4 (h) Thermostat

Figure 51: Global Explanations for Server Model Feature Importance and Participated Clients’ IoT
Devices Feature Importance for Botnet-type Detection

ticipating clients in a binary classification context. It highlights the top ten features thatsignificantly influence the model’s predictions. In the client-based model of global ex-planation in FL, each participating client used its own training data and trained model tocalculate the Shapley values based on the test data, which shows the overall impact ofeach feature’s contribution to the model’s predictions.
Figs. 50b–50jprovide global explanations from the SHAP explainer regarding the topten features for client-basedmodels participating in FL for binary classification. Figure 50adisplays the top 10 features of the servermodel for binary classification, obtained throughthe secure aggregation of SHAP value explanations from clients. It is evident that featuresrelated to host IP (H), network jitter (HH_Jit), and hostMAC& IP (MI) are themost impact-ful categories for predictions in binary classification. Notably, the features H_L0.1_weightand MI_dir_L0.01_weight are the most significant across clients. Additionally, the countof network traffic packets (weight) plays a crucial role in distinguishing between benignand malicious network traffic. Moreover, shorter time windows, specifically L0.1 (500 µs)and L1 (1.5 seconds), are particularly influential in analyzing network time windows.
Figure 51 presents global explanations for botnet type detection using the SHAP ex-plainer , highlights the ten most important features influencing the detection of variousbotnet types across multiple LSTM client-side IoT device models and the server model.
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(a) Server Features (b) Doorbell1 (c) BabyMonitor

(d) SecurityCam1 (e) SecurityCam2 (f) SecurityCam3

(g) SecurityCam4 (h) Thermostat

Figure 52: Global explanations for Server Model Feature importance and participated clients IoT
devices feature importance for Attack-type Detection

Figs. 51b–51h provide SHAP’s global explanations for participating client IoT device mod-els in FL. Figure 51a displays the top ten most important features for the server model,based on secure aggregated SHAP values derived from the explanations of the participat-ing clientmodels. In the context of detecting different types of botnets, themost effectivefeatures included Host IP (H), Host MAC & IP (MI), and Network Jitter (HH_ jitt), particu-larly when analyzed within short to moderate time window frames. Additionally, networkstatistical values, especially the packet count (weight) alongwith their mean and variance,are crucial for analyzing network traffic features in botnet-type detectionwithin federatedIoT networks.
Similarly, Figure 52 illustrates the global explanations for both the servermodel. (Fig. 52a)and participated client-side models (Figs. 52b–52h) used in attack type detection. For theattack-type detection, the Host-MAC and IP (MI) features, as well as the Host-IP (H) fea-tures, were found to be more influential than other network categories among the top10 selected features. In contrast, for botnet type detection, the HH_ jit features wereconsidered less impactful. Additionally, channel and socket-based features showed nosignificant influence. Regarding the time window, shorter durations, such as (100 µs) andL0.01 (500 µs), were more influential according to the SHAP explainer in the global as-sessments. Furthermore, packet count features had a greater impact in terms of networktraffic statistics.

86



9.3 Chapter Discussions
This chapter addresses RQ4, which aims to explore how to integrate explainability into FLsettings without compromising the privacy of client data while explaining the client andserver models. Post-hoc XAI methods, such as feature importance explainers like LIME orSHAP, generally need access to the entire training dataset (input reference data) and theparameters of the trained model. This requirement can create privacy risks when usingthese methods to interpret a model hosted on a server in FL settings. To address this,Publications VIII and IX proposed the aggregation of client-based SHAP model explana-tions to explain the server model. This approach aims to enhance the transparency of theserver-side model using XAI methods without relying on client data.In Publication VIII, a Deep Neural Network (DNN) model was trained in a horizon-tal federated learning (HFL) setting using FedAvg algorithm. The DNN model achievedhigh detection rates, demonstrating accuracy, precision, recall, and F1-score in the botnetdetection task, focusing on multiclass classification for both IoT device-based client-sidemodels and the server-side model. Additionally, we analyzed the importance of featurescontributing to IoT botnet detection by utilizing the generated SHAP explanations. Theresults indicate that the aggregation of client-based SHAP explanations closely approx-imates the server-based explanations, achieving similar levels of explainability withoutcompromising data privacy.In Publication IX, we developed a high-performance LSTM-based model in an FL set-ting for binary classification, botnet-type detection, and attack-type detection. Ourmodelachieved 99.90% accuracy in binary classification, 99.28% in botnet-type detection, and94.89% in attack-type detection, outperforming existing FL-based intrusion detection sys-tems. It also demonstrated high precision, recall, and F1 scores, effectively distinguishingbetween benign and malicious traffic, various botnet types, and multiple attack types. InPublication IX as well, proposed a framework for aggregating SHAP values from client-side models to explain the server model. To secure the aggregation of SHAP values andprotect against adversarial attacks, secure multiparty computation was used to ensurethe security of the explanations derived from these SHAP values. Our framework securelyaggregates SHAP values on the client side, demonstrating that these securely aggregatedexplanations effectively approximate the feature attributions of the server model whenthe server accesses data from the client. We evaluated LIME, SHAP, and Integrated Gradi-ents (IG) as post-hoc explanation methods for explaining client models that participatedin FL. Our findings demonstrated that SHAP provided high faithfulness, lower complexityand was more robust, showing lower maximum sensitivity for stable attributions acrosssimilar inputs, as well as higher monotonicity.

87



10 Synthetic Data-Driven Explainability for Federated LearningBased IDS
This chapter presents the contributions of Publication X, which extends the explainabil-ity of FL-based IDS by proposing a synthetic data-driven explainability framework. WhileChapter 9 (Publication VIII) demonstrated that aggregated client SHAP explanations canmake the servermodel transparent, it required direct computation on client data, therebyraising concerns about scalability. Publication X addresses this limitation by introduc-ing synthetic sample generation using federated generative models to approximate clientdata distributions. These synthetic samples are used as input references for post-hoc ex-plainers like SHAP at the server, allowing privacy-preserving yet faithful explanations ofthe global black-box model. Thus, this chapter builds on prior work by eliminating depen-dency on real data for explanation, promoting both transparency and privacy in FL-basedIDS.

Figure 53: Synthetic Data-Driven Explainability Framework for Explaining Blackbox Classifier in FL
settings

In Chapter 9, Publication VIII presented a framework for detecting botnets in IoT net-works using a Deep Neural Network (DNN) model. The SHAP (Shapley Additive Explana-tions) explainer was used to provide insights into the global server model by aggregat-ing SHAP value explanations from clients. These aggregated values closely matched the
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SHAP values obtained from direct access to client data. However, this method is compu-tationally expensive, as it requires calculating SHAP values for each client, which can beresource-intensive, especially with a growing number of IoT clients. The issue is more no-ticeable when using SHAP explainer types, such as DeepExplainer or KernelExplainer, fordeep learning models.To address the above problem, Publication X proposed synthetic data-driven expla-nations for the global model on the server side, specifically for FL-based IDS tasks, whichaimed to explain the black box models using post-hoc explainability methods. Particu-larly, post-hoc explainability methods require training data as input reference samples toprovide explanations for black-box models. The framework proposed in Publication X in-corporates several Generative Adversarial Network (GAN) variants within FL to generatesynthetic data. This synthetic data is then utilized as input reference baseline data for apost-hoc explainability method, which explains the decisions made by the FL-DNN classi-fier, ultimately enhancing the transparency of the black box model in FL settings. Thesesynthetic data-driven explanations ensure that the FL-DNNmodel for explanations do notrely on real client data, thereby reducing potential privacy risks while still providing effec-tive explanations in FL contexts.In Publication X, a dual FL framework was proposed, as illustrated in Figure 53. Thisframework integrates two key components: 1) an FL-based Intrusion Detection System(FL-IDS) using Deep Neural Networks (FL-DNN) and 2) FL-based synthetic data generation.To evaluate this framework, 4 datasets were used: 1) NSL-KDD, and 2) UNSW-NB15. 3).CIC-IoT2023 4). CIC-IoMT2024.FL-IDS (FL-DNN) is designed to classify network traffic into attack and benign classeswhile preserving privacy. Each client trains a local DNNmodel using its own network trafficdata, and the FedAvg algorithm is employed to aggregate these local models into a globalFL-DNN model at the server.FL-DNN is designed to classify network traffic into benign or attack categories whilepreserving client data privacy. Each client trains a local DNN on its traffic data, and modelupdates are aggregated at the server using the FedAvg algorithm to construct a globalFL-DNN.For explainability, federated generative models are employed to generate syntheticdata at the server. Each client participates in training a GAN-based model, and their up-dates are used to build a global generator. The synthetic data generated by this globalgenerator serves as reference input for post-hoc explainability methods such as SHAP,which are applied at the server to interpret the decisions made by the global DNN modelwithout accessing real client data.The description of the CIC-IoMT2024 dataset is provided in Chapter 4. Below, thedescriptions of the remaining three datasets are presented.
• NSL-KDD [140] dataset is an enhanced version of the KDD Cup 1999 dataset, com-monly used for IDS task. This dataset categorizes network traffic into five classes:Denial of Service (DoS), Probe, Remote to Local (R2L), User to Root (U2R), and Nor-mal. Network traffic is collected at fixed intervals as time series data, with each unitcontaining multiple packets and a total of 41 features.
• UNSW-NB15 dataset [99], produced at the Cyber Range Lab of the Australian Cen-tre for Cyber Security (ACCS) using the IXIA PerfectStorm tool, contains raw net-work packets that mix real-world activity with synthetic attacks. It features nineattack types, including Denial of Service (DoS) and reconnaissance, and includes 46attributes extracted using Argus and Bro-IDS tools.
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• CIC-IoT2023dataset [102], introduced in 2023, is the largest publicly available datasetfor IoT ID. Collected in a controlled smart environment, it includes network trafficfrom 105 real-world IoT devices, such as smart TVs, sensors, cameras, and homeautomation appliances. Featuring 33 distinct attack types, this dataset serves as acomprehensive resource for evaluating IDS models in IoT contexts.
10.1 Federated Deep Neural Network for Intrusion Detection Systems
FL-IDS (FL-DNN) was designed to classify network traffic into attack and benign categorieswhile ensuring data privacy, as outlined in Algorithm 2. Each client trains a local DNNmodel using its own network traffic data, and the Federated Averaging (FedAvg) algorithmwas employed to aggregate these local models into a global FL-DNN model at the server.FL-IDS is composed of a central global model on a server and multiple distributed IDSclients, which can include IoT edge devices, network nodes, or sensors. Unlike traditionalcentralized IDS systems that require data to be gathered and stored on a central server,FL-IDS allows clients to maintain their own data, thereby enhancing privacy. The centralserver manages a DN model that operates across these various IDS clients.In our work, a federated DNN model is proposed for classifying network traffic as ma-licious or benign in an HFL setup, as described in Algorithm 2. The server initializes theglobal DNN model Ms with parameters θ (0) and distributes them to N clients. Each client
ci receives the parameters θ (r−1) at round r, samples a mini-batch B ⊂ Dci , and trains alocal DNNmodelMci overE epochs using the Adamoptimizer. The locally updated param-
eters θ

(r)
ci are then sent back to the server. The server aggregates the updates using theFedAvg algorithm [91], computing a weighted average to obtain θ (r), which is then sentback to all N. This process is repeated for R communication rounds until convergence.

Algorithm 2: FedAvg for FL-DNN based IDS
Input: N, θ (0), η , Dci , EOutput: θ (R)

1 Initialize: θ (0)→{c1,c2, . . . ,cN};
2 for r = 1 to R do
3 for ci ∈ {c1, . . . ,cN} do
4 Receive θ (r−1);
5 for e = 1 to E do
6 Sample B⊂ Dci ;

/* Local optimization */

7 θ
(r)
ci ← θ

(r−1)
ci − η

|B| ∑(x,y)∈B ∇θ l(x,y;θ
(r−1)
ci );

8 Send θ
(r)
ci to server;

9 Server aggregation:
10 θ (r)← ∑

N
i=1 wciθ

(r)
ci where wci =

|Dci |
∑

N
j=1 |Dc j |

;
11 Distribute θ (r)→{c1,c2, . . . ,cN};
12 return θ (R)

To classify network traffic characteristics—using flow-based, packet-based, andprotocol-specific features—from the NSL-KDD and UNSW-NB15 datasets, an FL-based deep neuralnetwork (FL-DNN) was developed. Themodel includes an input layer, several densely con-
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nected hidden layers, and a single-output layer neuron. The input layer has d = 41 fea-tures for the NSL-KDD dataset, d = 46 for the UNSW-NB15 dataset, d = 39 for CIC-IoT2023and d = 46 for CIC-IoMT2024. The structure of the hidden layers is optimized through ran-dom experimentation for the best performance. The rectified linear unit (ReLU) activationfunction was used in all hidden layers to improve training efficiency. In the output layer, asingle neuron assigns class labels for benign and attack traffic, utilizing the softmax func-tion to provide output probabilities for accurate classification.The number of communication rounds for training the model in FL was determinedthrough a process of iterative experimentation. The process began with a random num-ber of initial rounds which were adjusted based on the observed performance of themodel. For instance, when training FL-DNN classifiers for binary classification, 50 com-munication rounds were utilized. Experimental results were presented and evaluated us-ing two network traffic-based IDS datasets: NSLKDD and UNSW-NB15, CIC-IoT2023, andCIC-IoMT2024. These datasets contain characteristics of network flows, including bothpacket-level and flow-based statistics for detecting attacks. To evaluate the effectivenessof the FL-DNN classificationmethod, experiments were conducted to perform binary clas-sification, distinguishing between benign and malicious network traffic. Each client’s datawas transformed and normalized using min-max scaling, standardizing it within the rangeof [0, 1] to improve the model’s accuracy and performance.

(a) NSL KDD (b) UNSW-NB15

(c) CIC-IoT2023 (d) CIC IoMT2024

Figure 54: Global DNNmodel performance using FedAvg aggregation across communication rounds
for NSL-KDD, UNSW-NB15, CIC-IoT2023, and CIC-IoMT2024 datasets

Experiments were conducted with N = {5, 10, 15} clients in a non-IID setting. However,the results are specifically presented for the casewith N = 5 clients, as similar performance
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was observed across the other configurations for both the FL-DNN and GAN variants of FL models.For all four datasets, the global DNN model displayed rapid convergence, with consid-erable improvements in classification performance metrics within the first ten communi-cation rounds, followed by stabilization. For example, in Fig. 54a on the NSL KDD dataset, accuracy and recall exceeded 99% after round 15 with minimal fluctuations in subsequent rounds. Besides, as shown in Fig. 54b, the UNSW NB15 dataset demonstrated stable per-formance, with the DNN model attaining precision and recall values above 98% within 20 rounds. Similar performance was observed in CIC IoT2022 (Fig. 54c and CIC IoMT2024 (Fig. 54d) datasets, where the global DNN model consistently achieved high performance with classification metrics.
10.2 Federated Synthetic data Using GAN variants
In federated learning (FL) settings, explaining a client’s model using post-hoc XIA meth-ods is straightforward since clients have access to their own data. However, explaining the model on the server side is challenging because client data is never shared. Post-hoc methods require training or reference data, along with the trained model, for explanation. To address this issue, a synthetic data-driven approach was proposed in Publication X to explain the FL-DNN model (Global model on the server Side). For this purpose, various generative adversarial network (GAN) variants were used in a federated manner to gen-erate synthetic data. This synthetic data served as input reference data for a post-hoc explainer, helping to explain the server model.

Figure 55: Architecture of Basic GAN and CGAN

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [40] in 2015,are deep generativemodels that function as a two-player game. They consist of twoneuralnetworks that adjust their weights to improve both data generation and discriminationcapabilities.Let z represent the random noise input, and z | y denote the generator’s input condi-tioned on the label y. Similarly, x and x | y refer to the actual training data and the actualtraining data conditioned on the label y, respectively. The symbol x̃ represents the datagenerated by a standard GAN, while x̃ | y indicates the data generated by a conditionalGAN conditioned on the label y. Fig. 55 shows an overview of both the standard GAN and
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the conditional GAN (CGAN).Weight updates are performed through backpropagation, with the discriminator fixedduring generator updates. The key difference between Wasserstein GANs (WGAN) andstandard GANs is in loss calculation andweight updates. For Publication. X, Four differenttypes of generative model variants in FL settings were developed.
a) GAN & CGAN The Generative Adversarial Network (GAN) training procedure in-volves a game played between two competing neural networks: the generator net-work G and the discriminator network D. The generator G transforms a source ofrandom noise into samples that resemble the input data space. Meanwhile, thediscriminator D aims to differentiate between samples that come from the actualdata distribution and those generated by G

These two networks engage in a two-playerminimax gamewith the following equa-tion

min
G

max
D

V (D,G) = Ex∼Pr [logD(x)]

+Ex∼Pg [log(1−D(x))] (24)
Here, Pr is the true data distribution, and Pg is the generative data distribution,which is implicitly defined by x = G(z) where z is sampled from a simple noise dis-tribution p(z) (such as uniform, normal, or Gaussian distribution). The discrimina-tor D is optimized to maximize the probability of correctly classifying both trainingsamples and samples generated by G. Conversely, the generator G is optimized tominimize Ex∼Pg [log(1−D(x))] or Ex∼Pg [− logD(x)].
The Conditional Generative Adversarial Network (CGAN) is a variation of the GANthat incorporates additional information, y, into both the generator and discrimi-nator. This information y can represent a class label or any other form of auxiliarydata. Furthermore, the training process for CGAN is the same as that used in GAN.
Formally, the objective function for the generator G and the discriminator D is de-fined by the following minimax equation:

min
G

max
D

V (D,G) = Ex∼Pr [logD(x|y)]

+Ex∼Pg [log(1−D(x|y))] (25)
In this equation, Pr and Pg retain the same meanings as in GAN, and y is combinedwith the prior noise as inputs to the hidden layer. The optimization process in CGANis almost similar to that of GAN.
Since CGANs are an extension of the original GAN variants, they share some of thesame challenges, such as mode collapse and unstable training due to vanishing gra-dients, among other issues. Additionally, researchers have noted that when bothGANs and CGANs utilize the Jensen–Shannon (JS) divergence as a metric for gen-erative samples, they are limited to generating only continuous data, rather thandiscrete data [13].

JS(Pr,Pg) = KL(Pr∥Pm)+KL(Pg∥Pm) (26)
93



where KL denotes the Kullback–Leibler divergence, and Pm is the mixture distribu-tion defined as Pm = 1
2 (Pr +Pg).

b) WGAN &WGAN-GP
Unlike GAN and CGAN, WGAN and WGAN-GP utilize the Earth-Mover (EM) dis-tance, also known as Wasserstein-1, instead of the JS divergence to measure thedistance between the true data distribution and the generative data distribution,which is because the EM distance offers better smoothness compared to the JSdivergence. Theoretically, WGAN addresses the vanishing gradient problem com-monly observed in GAN and CGAN. Moreover, studies have demonstrated [13, 14]that replacing the JS divergence with the EM distance also helps mitigate the issueof mode collapse.

W (Pr,Pg) = inf
γ∈Π(Pr ,Pg)

E(x,y)∼γ [∥x− y∥] (27)
WhereΠ(Pr,Pg) is the complete set of feasible joint distributions γ(x,y) for the truedata distribution Pr and the generative data distribution Pg. The term W (Pr,Pg)is defined as the minimum cost required to transport mass in order to transformthe distribution Pr into the distribution Pg. Additionally, under mild assumptions,
W (Pr,Pg) is continuous anddifferentiable almost everywhere. However, Equation 27is highly intractable; therefore, the EM distance can be reconstructed using theKantorovich-Rubinstein duality [147].

W (Pr,Pg) =
1
K

sup
∥ f∥L≤K

Ex∼Pr [ f (x)]−Ex∼Pg [ f (x)] (28)
Here, the supremum is over all K-Lipschitz functions f : x→ R, with K being theLipschitz constant (set to 1 for the originalWGAN). This forms theminimax objectivefor the generator and critic shwon in Equation 27

min
G

max
D

V (D,G) = Ex∼Pr [D(x)]−Ex∼Pg [D(x)] (29)
WGAN often struggles with producing high-quality samples and can fail to convergedue to weight clipping, which is an ineffective method for enforcing a Lipschitz con-straint on the discriminator. To solve this, Gulrajani et al. proposedWGAN-GP,whichuses a penalty on the gradient norm of the discriminator instead of weight clipping.Their results showed that WGAN-GP outperforms the standard WGAN and allowsstable training of various GAN architectures with minimal hyperparameter tuning,represented by the minimax formulation in Equation 30

min
G

max
D

V (D,G) = Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃)]

−λ Ex̂∼Px̂

[
(∥∇x̂D(x̂)∥2−1)2

] (30)
where λ is the gradient penalty coefficient, and x̂ is sampled along straight linesbetween the true data distribution Pr and the generative data distribution Pg: x̂ =
εx+(1− ε)x̃, where ε ∼ Uniform[0,1], x∼ Pr, and x̃∼ Pg.
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c) WCGAN-GP The development ofWGAN-GP can extend toWCGAN-GP by condition-ing both the discriminator and generator on auxiliary information y, which repre-sents class labels in this study.
In the discriminator, we concatenate the real data distribution Pr and the generateddata distributionPg with y to form a joint hidden representation. The generator alsoconcatenates y with p(z) in the same way. The objective function for the generatorand discriminator is defined as a minimax problem below

min
G

max
D

V (D,G) = Ex∼Pr [D(x|y)]−Ex̃∼Pg [D(x̃|y)]

−λ Ex̂∼Px̂

[
(∥∇x̂D(x̂|y)∥2−1)2

] (31)
Here, λ denotes the gradient penalty coefficient, and the sampling strategy for x̂ fol-lows that of WGAN-GP. The discriminator and generator loss functions are definedas:

L(D) = −Ex∼Pr [D(x|y)]+Ex̃∼Pg [D(x̃|y)]
+λ Ex̂∼Px̂

[
(∥∇x̂D(x̂|y)∥2−1)2

] (32)

L(G) =−Ex̃∼Pg [D(x̃|y)] (33)
To enable explainability without accessing real client data in FL settings, we use syn-thetic data generated through federated generative models. Each client maintains a localmodel that generates synthetic network traffic samples based on its dataset. These lo-cal model parameters are sent to a central server and aggregated using FedAvg to form aglobal generative model. This global model generates synthetic data on the server, whichis then used as reference input for a post-hoc XAI method to explain the global FL DNNmodel.In Algorithm 3, the server begins by initializing the global generator θ

(0)
Gs

with parame-ters θ0, and distributes them to all N participating clients. At each communication round
r, each client ci receives the latest global generator parameters θ

(r−1)
Gs

. Locally, each clientupdates its generator Gci and discriminator Dci using its local client dataset Dci . Specif-ically, a mini-batch of real samples x ⊂ Dci is drawn, along with a corresponding batchof latent noise vectors z ∼ p(z). The discriminator Dci is trained to maximize its abilityto distinguish between real and generated samples, while the generator Gci is trained tominimize the discriminator’s ability to do so, thereby improving the realism of the gener-ated data. This min-max training procedure is performed locally over E epochs using theAdam optimizer.
After local training, only the updated generator parameters θ

(r)
Gci

are sent back to the
server. The server performsweighted aggregation using the FedAvg algorithm to compute
the updated global generator parameters θ

(r)
Gs

, where the weights wci are proportional to
the size of each client’s dataset, i.e., wci =

|Dci |
∑

N
j=1 |Dc j |

. Importantly, after each aggregation
step, the global generator Gs with parameters θ

(r)
Gs

is used to generate synthetic samples
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Algorithm 3: Federated generative model
Input: N, Dci , Gci , θ

(0)
Gs

, Dci , ηG, ηD, R, E
Output: θ

(R)
Gs

1 Initialize: θ
(0)
Gs
→{c1,c2, . . . ,cN};

2 for r = 1 to R do
3 for ci ∈ {c1, . . . ,cN} do
4 θ

(r)
Gci
← θ

(r−1)
Gs

;
5 for e = 1 to E do
6 Sample {x} ⊂ Dci ;7 z∼ p(z);

/* Local discriminator update */
8 θDci

← θDci
−ηD∇θDLD(x,z);

/* Local generator update */

9 θ
(r)
Gci
← θ

(r)
Gci
−ηG∇θGLG(z);

10 Send θ
(r)
Gci

to server;
11 Server aggregation:
12 θ

(r)
Gs
← ∑

N
i=1 wciθ

(r)
Gci

, where wci =
|Dci |

∑
N
j=1 |Dc j |

;
/* Generate synthetic samples on server */

13 z∼ p(z);
14 x̃(r)s ∼ Gs(z;θ

(r)
Gs

);
15 return θ

(R)
Gs

x̃(r)s ∼ Gs(z;θ
(r)
Gs

), where the latent noise z ∼ p(z) is sampled from a predefined priordistribution. This process is repeated for R communication rounds.
In this study, we explore four types of generative model variants within the FL frame-work: standard GAN, CGAN, WGAN-GP, and WCGAN-GP. Algorithm 3 illustrates the fed-erated training procedure for the standard GAN case, referred to as FL-GAN. For othervariants (FL-CGAN, FL-WGAN-GP, and FL-WCGAN-GP), the training follows the same pro-cedure, with only the loss functions modified according to the specific generative modelvariant used.
We implemented four generativemodel variants: FL-GAN, FL-CGAN, FL-WGAN-GP, andFL-WCGAN-GP, all trained under Non-IID conditions using the Federated Averaging (Fe-dAvg) algorithm. During training, only the generator parameters were aggregated on theserver, while the discriminator parameters remained local to each client, ensuring dataprivacy.
To assess performance, we used Wasserstein Distance (WD) as a metric to measurethe discrepancy between the distributions of real and synthetic data at server side. A

WD value close to zero indicates that the distributions are similar, while a larger valueindicates greater disparity. We computed WD between the real test data and syntheticdata generated by the global model across R = 1000 communication rounds, using testdata at each round for an unbiased evaluation of synthetic data quality.
Figure. 56a illustrates the WD performance of four global generative model variants
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(a) NSL KDD (b) UNSW-NB15

(c) CIC-IoT2023 (d) CIC IoMT2024

Figure 56: Performance of federated generative models across communication rounds for the NSL-
KDD, UNSW-NB15, CIC-IoT2023, and CIC-IoMT2024 datasets.

on the server in FL using FedAvg on the NSL-KDD dataset. Basic FL-GAN demonstrates thehighest WD values, fluctuating between 0.6 and 0.8, indicating a significant discrepancybetween the real and synthetic data distributions over several communication rounds.FL-CGANmodel displays better stability over the rounds, but noticeable fluctuations werestill shown, especially in the early rounds. In contrast, the Wasserstein-based generativemodels in FL perform better in generating synthetic data that was much closer to the realdata distribution. Both FL-WGAN-GP and FL-WCGAN-GP achieved lowerWD values acrossthe communication rounds, demonstrating their effectiveness.
Similarly, Figure. 56b shows WD performance of four GAN variants in FL using Fe-dAvg on the UNSW-NB15 dataset over 1000 communication rounds. Basic FL-GAN hasthe highest WD values, whereas the FL-CGAN consistently performs better with lower

WD values, despite some minor fluctuations over rounds. Wasserstein GAN variants (FL-WGAN & FL-WCGAN-GP) outperform other GAN variants in producing high-quality syn-thetic data. Both FL-WGAN-GP and FL-WCGAN-GP consistently exhibit lower WD valuesthroughout the communication rounds. Notably, FL-WCGAN-GP achieved the lowest WDvalue, successfully generating high-quality synthetic samples from the global generatorfor the UNSW-NB15 dataset.
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Similar WD performance was observed across generative models for the CIC-IoT2023(Figure. 56c) and CIC-IoMT2024 datasets (Figure. 56d). Among the federated generativemodels, the FL-GAN model produced the least accurate synthetic data, as indicated by itshigher WD values. While the FL-CGAN model showed improved performance, it showednoticeable fluctuations in WD across communication rounds on both datasets. In con-trast, the Wasserstein-based models, FL-WGAN-GP and FL-WCGAN-GP, consistently out-performed the other variants. Notably, FL-WCGAN-GP achieved the lowest WD valuesand demonstrated high stability, approaching zero, which highlights its effectiveness inproducing high-fidelity synthetic data in federated settings.Among the evaluated generative models (FL-GAN, FL-CGAN, FL-WGAN-GP, and FL-WCGAN-GP), FL-WCGAN-GPdemonstrated superior performance inminimizing theWasser-stein Distance (WD) across communication rounds for all four datasets. The FL-WCGAN-GPmodel consistently achieved the lowestWD values, close to zero, demonstrating its effec-tiveness in generating high-quality synthetic data that closely approximates the distribu-tion of real data. Based on these results, we selected the FL-WCGAN-GP global generativemodel to produce synthetic data on the server side. This synthetic data was subsequentlyused as the reference input for the post-hoc XAI method employed to explain the globalFL-DNN classifier.

(a) NSL KDD (b) UNSB-nb15 (c) CIC-IoT2023 (d) CIC IoMT2024

Figure 57: 2-D visualization using PCA for real and synthetic data generated by FL-WCGAN-GP for all
four datasets

(a) NSL KDD (b) UNSW-NB15 (c) CIC-IoT2023 (d) CIC IoMT2024

Figure 58: 2-D visualization using t-SNE for real and synthetic data generated by FL-WCGAN-GP for
all four datasets

We further examined the differences between synthetic data generated by the FL-WCGAN-GP global model and real data using two-dimensional representations from Prin-cipal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE).PCA is a statistical method for linear dimensionality reduction that transforms high-dimensional data into a lower-dimensional form while preserving crucial information byidentifying principal components along which the data exhibits the greatest variance. In
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(a) NSL-KDD (b) UNSW-NB15

(c) CIC-IoT2023 (d) CIC-IoMT2024

Figure 59: Feature-pairwise Absolute differences in Pearson correlations between real and synthetic
data generated by the FL-WCGAN-GP model for the NSL-KDD, UNSW-NB15, CIC-IoT2023, and CIC-
IoMT2024 datasets

our study, we reduced the dimensionality from41 features (NSL-KDD), 46 features (UNSW-NB15), 39 features (CIC-IoT2023), and 45 features (CIC-IoMT2024) to two dimensions forvisualization using PCA and t-SNE.Figure 57 displays the 2D PCA projections for all four datasets. The synthetic data gen-erated by the global FL-WCGAN-GP model closely aligns with the distribution of the realtest data in the principal component space. FL-WCGAN-GP effectively captures the vari-ance structure of the original datasets, resulting in significant overlap with the syntheticdata, despite minor deviations in high-density areas. This consistency highlights the FL-WCGAN-GP’s ability to generate high-quality synthetic data.t-SNE is a nonlinear dimensionality reduction method designed for visualizing high-dimensional data in lower-dimensional spaces while preserving the data’s structure. Fig-ure 58 illustrates the 2-D representations of real data and synthetic data generated by theFL-WCGAN-GP model across four datasets. The synthetic samples closely overlap withthe real test data, indicating effective preservation of local data structures. While minordiscrepancies appear at the edges of dense clusters, the overall synthetic data aligns well
99



with the real data.To further evaluate the quality of the synthetic data generated by the FL-WCGAN-GPmodel in the federated learning setup, we analyzed the Pearson correlation values of thereal and synthetic data. We computed these correlations for both datasets and calcu-lated the absolute differences for each feature pair, as shown in Figure. 59 across all fourdatasets. The absolute difference values range from [0,1]; values closer to zero indicatebetter alignment of feature relationships between the synthetic and real data, while val-ues farther from zero represent greater discrepancies.Figure 59a displays a heatmap showing the absolute differences in Pearson correlationcoefficients between real and synthetic data for the NSL-KDD dataset, which contains 41features. Most feature pairs exhibit minimal differences, indicating that the FL-WCGAN-GP model effectively generates synthetic data resembling the real data. However, somefeature pairs show larger discrepancies.Figure 59b presents similar findings for the UNSW-NB15 dataset, which consists of 45features. Most feature pairs demonstrate low absolute differences, suggesting that themodel retains key correlations. Nonetheless, a few feature pairs reveal higher discrepan-cies from the real data.Figures 59c and 59d show the absolute differences in Pearson correlations for the CIC-IoT2023 and CIC-IoMT2024 datasets, containing 39 and 45 features, respectively. Heretoo, most feature pairs exhibit low absolute differences, indicating the model’s effective-ness in generating synthetic data that closely resembles the real test data, despite somemoderate deviations in a few feature pairs.
Table 19: Performance of global FL-DNN model on Real Data and Synthetic data generated by FL-
WCGAN-GP generative model

Data Set Data-type Accuracy Precision Recall F1-score FPR
NSL-KDD Real 99.31% 99.50% 98.88% 99.18% 1.12%Synthetic 96.32% 96.27% 93.11% 94.57% 6.89%

UNSW-nb15 Real 98.46% 98.45% 98.48% 98.46% 1.52%Synthetic 95.12% 90.81% 96.10% 93.09% 3.90%
CiC-IoT2023 Real 99.24% 99.25% 99.24% 99.24% 0.76%Synthetic 97.11% 97.20% 97.11% 95.90% 2.89%
CIC-IoMT2024 Real 99.94% 99.94% 99.94% 99.94% 0.06%Synthetic 98.86% 98.88% 98.85% 98.86% 1.15%

Table 19 shows the classification performance of the global FL-DNN model on realand synthetic test data from four datasets: NSL-KDD, UNSW-NB15, CIC-IoT2023, and CIC-IoMT2024. The evaluation includes metrics such as accuracy, precision, recall, F1-score,and FPR (the rate of benign samples incorrectly classified as malicious).FL-DNNmodel consistently achieves high performance on real test data, with accuracyand F1-scores above 98%and low FPR values. Its best performance is on the CIC-IoMT2024dataset, with nearly perfect accuracy, an F1-score of 99.94%, and an FPR of just 0.06%.Strong results are also noted for the CIC-IoT2023 and UNSW-NB15 datasets.FL-DNN classifier demonstrates strong performance on synthetic data generated bythe FL-WCGAN-GP model. While there is a slight drop in performance compared to realdata, accuracy, precision, and F1-scores remain notable, with F1-scores of 98.86% for CIC-IoMT2024 and 95.90% for CIC-IoT2023. The false positive rate is slightly higher for syn-
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thetic data, reflecting minor differences in distribution. Overall, the quality of the syn-thetic data is sufficient for model evaluation and explainability without needing access toreal client data.
10.3 Explaining DNN model in FL using Synthetic Data
In this Publication. X, we propose to utilize the post hoc SHAP XAI method to explain theblack box nature of the DL classification model trained using the FedAvg algorithm. Wenote that SHAP requires access to either the training data Dtrain or a “reference set” thatis similar to the training set used by the model. This is necessary to create records (q)that determine the impact of each feature value on the final prediction. To expedite theexplanation process, a medoid of the dataset is sometimes used, or a small set of cen-troids [139] is utilized to represent Dtrain, capturing the main characteristics with a fewrecords of feature importance [97]. Consequently, in server-based FL settings, explain-ing the learned global model requires the server to have access to the complete set oftraining data DTrain from its clients. Alternatively, the server should be able to computethe centroids of a dataset formed by combining the training sets of all clients. However,this approach depends on access to client training data, making it unsuitable in scenarioswhere privacy regulations prevent data sharing with the server.After completing the training process in the FL setting, each client ci holds its localmodel Mci , which is then transmitted to the server. The server aggregates the receivedmodels using the FedAvg algorithm to construct the global model Ms. Traditionally, expla-nations for a given instance x j are computed locally by each ci using a post-hoc explanationmethod g, yielding attribution scores ϕci(x j) = g(Mci ,x j), which reflect the contributionof each feature toward the prediction made by Mci .To enable post-hoc explainability in FLwithout compromising data privacy, we proposean approach that leverages synthetic data generated by the global federated generator
Gs to interpret the server-side black-box model Ms. For each communication round r, the
server updates the global generator Gs to generate synthetic samples x̃(r)s ∼ Gs(z;θ

(r)
Gs

).
After all communication rounds, the final global generator G(R)

s defines a syntheticdistribution Ps
g that closely approximates the true data distribution Pr. This synthetic datais used as the input reference to interpret the black-box classifier Ms without relying onclient data. We use a model-agnostic post-hoc explainer g to obtain the feature attribu-tions ϕs(x̃) ∈ Rd for any synthetic instance x̃ ∈ Rd , defined as:

ϕs(x̃) = g(Ms, x̃), x̃∼ Ps,(R)
g (34)

In our study, we use two post-hoc XAI methods, LIME and SHAP, to explain the globalDNN model using synthetic data without relying on real client data.Analytical Methodology: In our experiments, we aim to evaluate whether syntheticdata-driven SHAP explanations are sufficient to approximate real data-based explanationsfor the global model Ms in a federated setting. To this end, we propose an analyticalmethodology that compares explanations derived from two settings:
(i) Real data-based explanation: The server accesses the real training data Dtrain

ci
fromeach client and computes SHAP values.

(ii) Synthetic data-based explanation: The server computes SHAP values using syn-thetic data generated by the global generator Gs, without access to real client data.
To perform the comparison, the following steps are carried out using each client’s testdata Dtest

ci
:
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• For each client ci, Server side SHAP explainer takes test dataDtest
ci

and server model
Ms, SHAP values are computed, and computes explanation matrices E(ci)real ∈ Rm×d ,where m is the number of instances and d the number of features.

• A global explanationmatrixEreal ∈Rm×d is derived by averaging SHAP values acrossall clients:
ereali j =

1
N

N

∑
ci=1

e(ci)
i j .

• Similarly, The server samples m synthetic instances from the distribution Ps
g using

the final global generator G(R)
s , and computes SHAP values for the global model Ms,computing the synthetic-data based SHAP explanation matrix Esyn ∈ Rm×d .

• A difference matrix ∆ = Esyn−Ereal is computed between the synthetic data-basedand real data-based explanation matrices. If ∆i j ≈ 0 for all i, j, this indicates thatthe synthetic data-driven explanations are sufficiently close to real data-based ex-planations, for explaining the global classifier Ms.

(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Figure 60: Heatmaps showing the magnitude of SHAP value differences between synthetic data-
based and real data-based explanations for each sample on NSL-KDD dataset.

(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Figure 61: Heatmaps showing the magnitude of SHAP value differences between synthetic data-
based and real data-based explanations for each sample on the UNSW-NB15 dataset.

To explain the global DNN model on the server side, we utilized the SHAP explainerwith synthetic data generated by different federated generative models. SHAP calculatesthe Shapley value, which indicates the influence of features on model predictions. Specif-ically, SHAP was applied to the global DNN model obtained at the 100th communicationround, using synthetic data as the input reference to compute Shapley values. To assesswhether synthetic data is sufficient for constructing reliable explanations for a global DNNmodel, the server accessed real client data to compute SHAP values again on the same
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(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Figure 62: Heatmaps showing the magnitude of SHAP value differences between synthetic data-
based and real data-based explanations for each sample on the CIC-IoT2023 dataset

(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Figure 63: Heatmaps showing the magnitude of SHAP value differences between synthetic data-
based and real data-based explanations for each sample on the CIC-IoMT dataset

model. We then calculated the difference ∆ = Ereal−Esyn, where Ereal is the SHAP valuesderived from real data-based explanations, Esyn is synthetic data-based SHAP explana-tions.Figs. 60–63 present SHAP delta matrices as heatmaps for the NSL-KDD, UNSW-NB15,CIC-IoT2023, and CIC-IoMT datasets. Each heatmap visualizes the difference (∆) in featureattributions between synthetic data-based explanations and real data-based explanationsacross all features. When the difference closes to zero (∆≈ 0), this indicates a close align-ment between Ereal and Esyn, implying that synthetic data can effectively approximatereal data for explaining the global DNN model. Conversely, when ∆ values deviate signifi-cantly away from zero, it implies that the synthetic data is insufficient to produce reliableexplanations.SHAP values difference (∆) shown in Figs. 60–63 reveal significant variation in expla-nation fidelity across different generative models in four datasets. FL-GAN, FL-CGAN, andFL-WGAN-GP show varying levels of divergence between Ereal and Esyn. In particular, FL-GAN shows the highest discrepancy, with SHAP values in difference (∆) in the heatmapsdeviating substantially from zero, displaying noticeable variability in feature attributions,for all four datasets.FL-CGAN and FL-WGAN-GP show moderate improvements, with several features ex-hibiting smaller differences in∆ closer to zero, which suggests a better alignment betweensynthetic data-based SHAP values and real data-based SHAP explanations. Nevertheless,considerable variation remains, particularly in CIC-IoT2023 and CIC-IoMT2024, where fea-ture attribution differences are still evident.Among all the evaluated federated generative models, the FL-WCGAN-GP generativemodel on the server side consistently produced the smallest differences in ∆ , which areclose to zero in all four datasets. This implies that the synthetic data-based SHAP ex-planations are closely aligned with explanations derived from real data, highlighting FL-WCGAN-GP’s effectiveness in generating high-fidelity synthetic data suitable for server-
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side explainability of the global FL-DNN model.Conditional GAN models (CGANs and WCGANs) require both a noise vector and aclass label as inputs. This ensures that the generator produces synthetic samples alignedwith the specified target label, which is vital for explainability methods that rely on class-specific data. To ensure reliable explanations of the global DNN model, we selected high-fidelity synthetic samples closely resembling real data. We calculated pairwise Euclideandistances and applied a 0.1 threshold to exclude outliers from the synthetic data distribu-tion.

(a) Real data point

(b) Synthetic data point

Figure 64: SHAP local explanations for the global DNNmodel on an attack instance from theNSL-KDD
dataset, using (a) a real data point and (b) a synthetic data point generated by the FL-WCGAN-GP
model.

To demonstrate the use case of SHAP for local explainability of a global DNN modelon a server, we randomly selected a real data-based instance and a synthetic data-basedinstance from the NSL-KDD dataset, both of which were classified as “attack.” To obtainprediction probabilities for each class label, we applied the softmax activation function atthe output layer of the DNN model. This function is essential for interpreting the model’sconfidence, as it transforms output logits into a normalized probability distribution overthe class labels (attack and benign).Fig. 64 presents SHAP local explanation plots for a single instance classified as an attackin the NSL-KDD dataset, using both real and synthetic data to illustrate each feature’scontribution to the prediction of the global DNN model on the server. The plot illustratesthe base value, with features that positively influence the prediction represented in redand those that negatively impact the predictions shown in blue. The base value is theaverage of all prediction values. Each strip in the plot illustrates how different featuresimpact the predicted value, eithermoving it closer to or further away from the base value.Red strips indicate features that push the predicted value higher, while blue strips showfeatures that push it lower. The width of each strip reflects the strength of the feature’scontribution have wider strips indicate a greater impact on the predicted value.For example, Fig. 64a illustrates the SHAP local explanation for a real data point ofan attack class from the NSL-KDD dataset. The global DNN model predicts this instancewith a score of 1.0. The base value is 0.4988, and key features such as user login status(logged_in), connection status flag (flag), network service on the destination (service),percentage of connections to the same host that have “REJ” errors (dst_host_rerror_rate),and number of connections to the same service as the current connection in the past 100(dst_host_srv_count) positively contribute to the final prediction by pushing the output
104



away from the base value toward the attack class.Similarly, Fig. 64b presents the SHAP local explanation for a synthetic data point ofthe attack class, generated by the global FL-WCGAN-GP model. The predicted value ofthe global DNN model using this synthetic data point is 0.90. Notably, the same influ-ential features (including logged_in, flag, dst_host_rerror_rate, and dst_host_srv_count)appear again, contributing positively to the attack prediction. However, the feature num-ber of bytes sent from source to destination (src_bytes) negatively contributes to the pre-diction in the synthetic case.

(a) Real Data point (b) Synthetic Data point

Figure 65: LIME local explanations for the global DNNmodel on an attack instance from theNSL-KDD
dataset, using (a) a real data point and (b) a synthetic data point generated by the FL-WCGAN-GP
model.

We have also provided local explanations using the LIME explainer. LIME method ex-plains the rationale behind assigning probabilities to each class by comparing the proba-bility values with the actual class of the data point. As with SHAP, to illustrate local expla-nations for the global DNN model using LIME, we selected both a real data point and asynthetic data point generated by the FL-WCGAN-GP model for all four datasets.Fig. 65 illustrates the local explanations generated by LIME for the global DNN modelon an attack instance from the NSL-KDD dataset. In these visualizations, green bars rep-resent features that contribute positively toward predicting the data point as belongingto the attack class, while red bars indicate features that influence the prediction towardthe benign class label.In Fig. 65a, the LIME explanations for the global DNN model indicate that the realdata point is predicted to be an attack with 100% confidence. Features such as "flag,""logged_in," "hot," "service," "dst_host_rerror_rate," and "rerror_rate" are among thetop contributors, as represented by the green bars, highlighting their significant influenceon the prediction of the attack class.In Fig. 65b, the synthetic data point generated by the FL-WCGAN-GP model yields a90% prediction for the attack class and 10% for the benign class. features shown in greenbar color in like flag, dst_host_srv_dff_host_rate , dst_host_count and so on contributesto predicting the class attack, on other hand features shown in red bars like hot, src_bytes,dst_host_rerror_rate, dst_host_same_srv_rate contribute to predicting the Benign classlabel.
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Table 20: Evaluation of SHAP and LIME local explanations on synthetic data for the global DNN
model on server using Faithfulness (µ f ) and Max Sensitivity (µs) metrics across four datasets.

Dataset Metric LIME SHAP
µ f 0.2087 ± 0.1731 0.6628 ± 0.3006NSL-KDD
µs 0.1723 ± 0.0509 0.0170 ± 0.0341
µ f 0.2853 ± 0.3931 0.5949 ± 0.4048UNSW-nb15
µ f 0.0389 ± 0.0107 0.0206 ± 0.0697
µ f 0.3372 ± 0.3682 0.6113 ± 0.1802CIC-IoT2023
µs 0.1314 ± 0.0397 0.0512 ± 0.0455
µ f 0.2635 ± 0.2165 0.7884 ± 0.3415CIC-IoT2024
µs 0.2052 ± 0.0560 0.0406 ± 0.0395

Table 20 presents the quantitative evaluation of post-hoc local explanations generatedusing SHAP and LIME for the global DNN model on the server, based on synthetic datapoints generated by a global generative FL-WCGAN-GP model. For all four datasets, themean and standard deviation were computed over 1000 synthetic instances of post hoclocal explanations using two XAI metrics, high faithfulness (µ f ) and max sensitivity (µs).The better-performing XAI method for each metric and dataset is highlighted in gray inthe table.
For the NSL-KDD dataset, SHAP explanations demonstrate significantly higher faith-fulness compared to LIME. SHAP achieves the highest mean faithfulness score of µ f =

0.6628± 0.3006, indicating that the feature attributions produced by SHAP are closelyaligned with the actual influence of input features on global DNN model’s predictions.This high correlation indicates that SHAP explanations are highly faithful when applied tothe global DNN model using synthetic data, making them more accurate and trustworthythan LIME explanations. In terms of robustness for NSL-KDD , SHAP outperforms LIME. Ityields the lowest max sensitivity value of µs = 0.0170±0.0341, which means its explana-tions are more stable when small changes are made to the input data. This low sensitivitysuggests that SHAP generates consistent explanations for nearby synthetic samples.
Similarly, in Table 20, for the UNSW-NB15, CIC-IoT2023, and CIC-IoMT2024 datasets,SHAP explanations consistently outperform LIME, exhibiting greater fidelity and more ro-bustness in local explanations for the global DNN model using synthetic data generatedby the global FL-WCGAN-GP generative model.

10.4 Chapter Discussions
The response to RQ4 is provided in this section. The research question aimed to investi-gate how post-hoc explainability can be incorporated into FL environments while preserv-ing the privacy concerns. Previous research has limitations, primarily focusing on achiev-ing the server model, which largely depends on client data and contradicts the core prin-ciples of FL. To address this issue, we propose an a Synthetic Data-Driven ExplainabilityFramework that enhances transparency in FL-based IDS models while preserving clientdata privacy. Our approach utilizes a variant of GANs trained in a federated manner togenerate synthetic data. This synthetic data serves as a reference for post-hoc XAI meth-ods, enabling the explainability of the server-side global model without requiring accessto real client data, thereby ensuring privacy preservation in FL-based IDS. The experimentswere conducted on two widely-used datasets, NSL-KDD, UNSW-NB15, CIC-IoT2023 & CIC-IoMT2024.
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For federated synthetic data generation purposes, we explored multiple GAN variantswithin FL, including FL-GAN, FL-CGAN, FL-WGAN-GP, and FL-WCGAN-GP, all trained us-ing the FedAvg algorithm. Among these, FL-WCGAN consistently outperformed the othervariants, achieving the lowest Wasserstein distance (WD) values across communicationrounds. This indicates that FL-WCGAN-GP generated synthetic data that closely resem-bles real data, making it the most suitable GAN variant for explainability in FL-based IDS.To further assess the quality of the synthetic data, we evaluated the similarity betweensynthetic and real data distributions using Pearson correlation, PCA and t-SNE. The re-sults confirmed that the federated synthetic data generated by globalmodel of FL-WCGANclosely alignswith real data, demonstrating its effectiveness in preserving datawhilemain-taining privacy.FL-DNN model was trained for binary classification (attack vs. benign) and demon-strated strong performance, achieving 99% accuracy, precision, recall, and F1-score acrossboth the NSL-KDD , UNSW-NB15, CIC-IoT2023 & CIC-IoMT2024 datasets. We used syn-thetic data as an input reference for the SHAP explainer to explain the global FL-DNNmodel. Specifically, we used synthetic data generated by the FL-WCGANmodel in a feder-ated manner. The SHAP-based local and global explanations for the FL-DNN model usingsynthetic data closely aligned with those derived from real data. The most influentialfeatures for attack detection remained consistent between real and synthetic data-basedexplanations, demonstrating that the synthetic data effectively preserved key feature at-tributions in the FL-DNN model.
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11 Conclusions and Future Works
This doctoral dissertation addresses the challenges and research gaps related to the de-sign and effectiveness of machine learning-based intrusion detection systems. It specifi-cally emphasizes the impact of feature selection on the detection of IoT botnets and IoMTattacks. Furthermore, the dissertation discusses achieving the transparency of black boxmodels through post hoc explainability and evaluates the local explainability for intru-sion detection systems, particularly in the contexts of IoT botnet detection, network in-trusion detection alert classification, and IoMT attack detection. Additionally, this dis-sertation contributes to the Explainable Active Learning paradigm, which integrates posthoc explainability methods and evaluates these methods within the active learning loopfor IoT botnet detection that focuses on selectivity and labelling of the most informa-tive data points in active learning to improve performance of the model while ensuringtransparency throughout the process. Another proposed approach, FEDXAI for IDS task,integrates FEDXAI to ensure trustworthy black box models. This enables the simultane-ous pursuit of transparency and privacy preservation in intrusion detection tasks. Themain findings of the Publications correspond to the topics presented in each chapter (fromChapter 4 to Chapter 10) and focus on enhancing the effectiveness of ML-based IDSs.

Botnets have become the preferred modus operandi for hackers orchestrating large-scale cyber-attacks in IoT networks. Small and mid-sized businesses are particularly vul-nerable to these attacks due to their limited security resources. IoT botnet attacks canhave dire consequences for both individuals and companies, leading to financial losses,damage to servers, and negative impacts on reputation, which can result in a loss of trustfrom current and potential customers. Due to the many risks of network attacks (Eg: DoS,DDoS) in IoT environments, several threat detection solutions have been created to de-fend against these threats. Notably, Intrusion detection systems (IDSs) help networks re-sist external attacks. The goal of IDSs is to provide a defence against attacks on computersystems connected to the Internet. Recent research has significantly focused on machinelearning for IDS tasks, withmost studies focusing on attack detection. In this context of IoTbotnets, the Research Question (RQ1) explores the benefits of feature selection for iden-tifying botnet attack systems throughout the botnet lifecycle, using various classificationtypes studied. Publication I contextualizes RQ1 within the process of feature selectionfor botnet detection, emphasizing the importance of minimizing feature sets for machinelearning tasks in IDS. The study addressed six different binary and multi-class classifica-tion problems based on the stages of the botnet life cycle. Specifically, it utilized filterand wrapper methods in conjunction with selected machine learning algorithms to iden-tify optimal feature sets for each classification problem. The experimental of this studyshowed that it is possible to achieve very high detection rates using a limited numberof features. Some wrapper methods guarantee an optimal feature set regardless of howthe problem is formulated. However, filter methods do not always reach this level of opti-mal performance. The feature selectionmethods found that channel-based features wereparticularly effective for detection during the post-attack, C&C stages, while host-basedfeatures played a more significant role in identifying attacks originating from bots.
Additionally, DDoS and DoS attacks in IoMT networks could disrupt critical medicalequipment, endangering patient lives. Publication II further explored RQ1, emphasizingthe importance of feature selection for IoMT attack detection within the IDS task. ThisPublication II examined filter-based feature selection methods used for both binary andmulti-class classification studies on two IoMT network flow traffic datasets. Using the XG-Boost model evaluated on filter methods, 15 features selected through information gainfeature selection achieved optimal performance for both binary and multi-class classifi-
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cation settings across two well-developed healthcare IoMT network datasets.
Many ML models, despite their black-box nature, have demonstrated impressive re-sults in cybersecurity. However, their lack of transparency raises concerns among se-curity experts, who often find it difficult to trust the outputs of ML models since thedecision-making processes are not clear to understand. To address this issue, explain-able AI emerges as a solution aimed at improving the transparency of ML models andmaking ML model outputs more interpretable. Although post hoc explainability methodsin XAI, which are model-agnostic, have gained popularity in research due to their wideapplicability, there have been rising concerns regarding the quality of these methods asthese xaimethods often rely on additional tools like linearmodels and game theory, whichmay introduce errors. Consequently, many current XAI techniquesmay provide unreliableexplanations in real-world scenarios due to insufficient qualitative evaluations. To over-come these challenges, Publications III, IV, V, and VI address RQ2 by emphasizing theimportance of considering the quality of explainability by using quantitative evaluationsalongside the detection performance of models, particularly for IDS tasks, including IoTbotnet detection, IoMT attack detection, and NIDS alert classification.
Publication III highlights the importance of XAImethods in enhancing the interpretabil-ity and transparency of the black nature ofMLmodels for detecting IoT botnets. The studyemployed three datasets for both binary and multi-class classification of IoT botnets, us-ing Sequential Backward Selection (SBS) as the feature selection technique. Local expla-nations were generated using LIME and SHAP, which help in understanding the behaviourof the botnet detection classification models. The effectiveness of the XAI methods wasevaluated using metrics like faithfulness, monotonicity, complexity, and sensitivity. Re-sults of Publication III showed that XAI techniques significantly improve ML-based IoTbotnet detection models, with XGBoost achieving optimal performance of explanations.Notably, SHAP outperformed LIME across all metrics. In Publication IV also, Post-hoc XAIwere evaluated for enhancing transparency in a deep neural network (DNN) model usedto detect multi-class IoT botnet attacks. Seven post-hoc explanation techniques were an-alyzed to understand the decision-making process of the DNN model, and these explana-tions were evaluated using the same four specific explainability metrics utilized in Publica-tion III. Deep-lift outperformed other explainers, exhibiting high faithfulness, consistency,and lower complexity and sensitivity.
NIDS alert classification approach using LSTM (long short-term memory) proposedin Publication V is able to highlight NIDS alert data points of high importance. In thisPublication, a real-world NIDS alert dataset was used from SoC at TalTech (Tallinn Uni-versity of Technology) in Estonia to develop an LSTM model for NIDS alert prioritization.To explain predictions of LSTMmodel decision-making, four XAI methods were employed:LIME, SHAP, IntegratedGradients, andDeepLIFT and thesemethodswere evaluated basedon faithfulness, complexity, robustness, and reliability. The findings of this publicationdemonstrate that DeepLIFT outperforms the other xai methods in terms of high faith-fulness, low complexity, and strong reliability. Collaborating with SoC analysts, key fea-tures for effective NIDS alert classification were identified, revealing a strong alignmentbetween the analysts’ insights and those obtained from the XAI methods.
In Publication VII, an active learning framework was proposed to address RQ3, whichintegrates explainable artificial intelligence (XAI) methods for detecting IoT botnet attacksin SoCs during the labeling process of the active learning loop. Specifically, this frameworkincorporates post-hoc explainability methods, namely LIME and SHAP, to enhance trans-parency in the labeling procedures of active learning loop.
In an IDS running federated learning (FL) settings, security experts still need to un-

109



derstand how server-side models make decisions about intrusions on client nodes. Usingpost-hoc explainability methods in FL poses challenges in balancing privacy and modeltransparency, as explainers like LIME or SHAP require access to the complete trainingdataset and model parameters, which can compromise the privacy of clients in FL. Toaddress this issue, Publications VIII, IX, and X investigate Research Question RQ4, whichfocuses on achieving Trustworthy AI in a black-box model designed to enhance securityand reliability, particularly in Privacy-Preserving IDS systems.
Publication VIII proposed an approach for aggregating client-based SHAP explana-tions, providing a solution for generating explanations for server models in FL settingswhile maintaining the data privacy of participating clients in an IoT network. DNN modelpresented in Publication VIII achieved over 99% accuracy in horizontal federated learn-ing settings when detecting botnets in the IoT network. To enhance the transparency ofthe DNN model in FL- settings, the approach aggregates explanations from participatingclients to generate global DNNmodel explanationswithout requiring direct access to theirtraining data, and it analyzes the importance of features that contribute to IoT botnet de-tection using the generated SHAP explanations. The aggregation of client-based SHAP ex-planations was evaluated by sending the data to the server. SHAP explanations accessedby the server were found to be approximately equivalent to the aggregated client-basedSHAP explanations.
In Publication IX, a similar approach of aggregating SHAP explanations was used to ex-plain the server model using SHAP explainer. To improve the security of SHAP explanationaggregation, a securemultiparty computation protocol was proposed. Three classificationtasks were investigated in Publication IX: 1) Binary classification, 2) botnet-type detection,and 3) attack-type detection. LSTM model achieved 99% accuracy for both binary andbotnet detection, while it achieved more than 94% accuracy for attack-type detection. Togenerate explanations for each participating client in FL-settings for Publication 8, post-hoc local explanations were created using Integrated Gradients, LIME, and SHAP, whichwere then evaluated. It was found that SHAP provided better post-hoc local explanationscompared to LIME and Integrated Gradients.
The main disadvantage of the approaches in Publications VIII and IX, which proposedthe aggregation of client-based SHAP explanations for the servermodel, is that computingthe SHAP value for each participating client in a federated learning setting is computation-ally expensive. This issue becomes more noticeable as the number of participating clientsin federated learning increases. To address this problem, Publication X proposed a syn-thetic data-driven explanation approach to achieve transparency of the servermodel in FLsettings for IDS. In this framework, a deep neural network (DNN)-based IDS is developedwithin the FL setting, where each client retains its private data and independently trains alocal model. Client-side explanations are generated using post-hoc XAI methods applieddirectly on the local data and trainedmodels. However, for server-side explainability, with-out compromising client data privacy, we propose generating federated synthetic data.Specifically, various generative adversarial network (GAN) variants are trained under theFL setup to generate synthetic data that approximates the client data distribution. Thesesynthetic samples are then used to explain the global server model using post-hoc XAImethods. Our experimental results demonstrate that the SHAP explanations producedusing synthetic data generated from the federated Wasserstein Conditional GAN (WC-GAN) closely match those derived from real client data. Evaluation further confirms thatserver-side SHAP explanations based on synthetic data are approximately equivalent toexplanations that would have been obtained using actual client data, thereby validatingthe effectiveness of the synthetic data-driven explainability approach.
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11.1 Future Work
The research conducted in this doctoral dissertation investigated explainable and privacy-preserving intrusion detection systems for centralized and decentralized (federated) en-vironments while addressing intricate challenges in dynamic and evolving data scenarios.Most existing research has treated explainability and privacy as independent elementswithin federated intrusion detection systems. My future objective involves creating aunified explainability framework for decentralized intrusion detection which will delivertransparency throughout both client and server operations in federated learning.The recent developments in large language models (LLMs) provide promising ways toimprove explainability inML-based IDS. The traditional post-hoc explanationmethods areoften limited to feature importance scores, which may not always be intuitive for secu-rity analysts, especially when dealing with complex network traffic features. In contrast,LLMs have the potential to generate natural language explanations that translate complexmodel decisions into human-understandable narratives. Future work will explore the in-tegration of LLM-based explanation frameworks that can Automatically generate narra-tive explanations for IDS decisions by interpreting feature contributions, attack types, andcontextual network information.
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AbstractExplainableArtificial Intelligence-Based IntrusionDetection Sys-tems
Rapid advancements in network technologies and the increasing volume of data are in-creasing the complexity of cyber threats, particularly as sophisticated cyberattacks in-creasingly target the Internet of Things (IoT) and Internet of Medical Things (IoMT) net-works. Although machine learning (ML) models have shown promising solutions for de-tecting malicious activities in such networks, the lack of interpretability and transparencyof the models often limits their effectiveness and trustworthiness. This Ph.D. dissertationexplores the development of effective, interpretable, transparent, and privacy-preservingmachine learning-based intrusion detection systems (IDS) in both centralised and decen-tralised (federated learning) settings.

Most previous studies in the field of cybersecurity have focused primarily on attackdetection in IoT and IoMT networks. In this paper, the role of feature selection is investi-gated to enhance IDS performance in these environments. For IoT botnet detection, sixclassification tasks were designed based on the botnet life cycle, where filter and wrap-per methods identified minimal feature subsets achieving high detection rates. For IoMTattack detection, filter-based feature selection methods such as information gain, mu-tual information, and Fisher score were applied to evaluate ML models on two IoMT net-work traffic datasets. The study demonstrates that using Information Gain, a small subsetof characteristics (3–4 for binary classification and 7–8 for multiclass classification) canachieve high detection rates for efficient IDS in IoMT networks.
The growing number of intrusions in networked systems has accelerated researchinto artificial intelligence (AI) for IDS. A key focus is understanding and explaining ML-based IDS to security analysts who manage these systems to protect their networks. Thismotivates the integration of explainable AI (XAI) methods to enhance the transparencyand trustworthiness of IDS models. Although many studies have incorporated XAI to ex-plain ML-based IDS models, they often lack a systematic evaluation of the quality of thegenerated explanations. In this paper, the importance of quantitatively evaluating thequality of the explanation is emphasised alongside the detection performance for thedetection of IoT botnets. Several post hoc XAI methods were applied, including SHAP(SHapley Additive explanations), LIME(Local Interpretable Model-agnostic Explanations),DeepLIFT(Deep Learning Important FeaTures), Integrated Gradients, and other saliency-based explanation methods, to explain the IoT botnet detection models for both binaryand multi-class classification tasks in the IDS context. The quality of these explanationswas evaluated using quantitative metrics, including faithfulness, monotonicity, complex-ity, and sensitivity, which provided a more rigorous evaluation of the XAI methods in IDS.For statistical ML-based models, SHAP and LIME were applied to explain the behaviourof models trained on multiple datasets, with SHAP demonstrating superior performanceacross explanation metrics. For deep learning-based IDS, a dedicated DNNmodel was de-veloped for multi-class IoT botnet detection, achieving high classification performance.Seven post hoc XAI methods were applied, including SHAP, LIME, DeepLIFT, IG, Gradi-ent*Input, Feature Ablation, and Saliency, to generate local explanations. The quality ofthese explanations was rigorously evaluated using quantitative metrics such as faithful-ness, monotonicity, complexity, and sensitivity, revealing that DeepLIFT consistently pro-vided the most faithful and stable explanations among the methods evaluated.
In addition to botnet detection, this dissertation investigates the explainability of net-work intrusion detection system (NIDS) alert classification using real-world data from Tal-
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Tech’s SecurityOperations Centre (SOC). An LSTM (Long Short-TermMemory) basedmodelwas developed for alert prioritisation, and four XAI methods were applied: LIME, SHAP,Integrated Gradients, and DeepLIFT to explain the model predictions. Expert knowledgewas incorporated to assess the quality of the explanation using the precision of the rele-vance mass and the precision of the relevance rank. Quantitative evaluation showed thatDeepLIFT consistently produced the most faithful, robust, and reliable explanations.Furthermore, this dissertation presents a Transformer-based IDS for cyberattack de-tection in IoMT networks, which achieves high detection performance for both binaryand multiclass classification tasks. To improve transparency transformer IDS, post hoc XAImethods, including SHAP and LIME, were applied and evaluated using metrics such asfaithfulness, sensitivity, and complexity, demonstrating that high detection performanceand explainability can be achieved simultaneously.Although IDS based on ML and DL have achieved high classification accuracy, their re-liance on centralised data storage raises privacy and security concerns. Federated Learn-ing (FL) addresses these challenges by enabling decentralised, privacy-preserving modeltraining, where data remain local, and only model parameters are shared with the centralserver. However, explaining the ML model induced in this setting is challenging due tothe complex nature of FL, especially using Post hoc XAI methods. Traditional post hoc XAImethods require access to input data for explanations, which violates privacy in FL whenexplaining the server model. This dissertation addresses the challenge of explainabilityin federated learning (FL)-based IDS, where privacy constraints limit access to data forpost-hoc explanations. To overcome this, a Federated Explainable AI (FedXAI) frameworkis proposed, incorporating SHAP in a privacy-preserving manner by securely aggregatingclient-based SHAP values to approximate server model explanations for both binary andmulticlass IoT attack detection tasks. In addition, a synthetic data-based explainability ap-proach is introduced that employs various variants of the generative adversarial network(GAN) within FL. The generated synthetic data from FL-Wasserstein Conditional GAN (WC-GAN) enables accurate server-side explanations using post-hoc SHAP, closely matchingexplanations derived from real data.Finally, this dissertation proposes an Explainable Active Learning (XAL) paradigm forIoT botnet detection, integrating post hoc explainabilitymethods (SHAP and LIME) directlyinto the active learning cycle to assist SOC analysts during labelling. The explanation qual-ity is evaluated using faithfulness, monotonicity and sensitivity metrics, demonstratingthat Query-by-Committee with Maximum Disagreement (QBC-MD-7) delivers both highmodel performance and reliable explanations, with SHAP outperforming LIME across allevaluation metrics.
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KokkuvõteSelgitaval tehisintellektil baseeruvad ründetuvastussüsteemid
Võrgutehnoloogiate kiire areng ja andmemahtude kasv suurendavad küberohtude keeru-kust, eriti kuna keerukad küberrünnakud on üha enam suunatud asjade interneti (IoT) jameditsiiniliste asjade interneti (IoMT) võrkudele. Kuigi masinõppe (ML) mudelid on näi-danud paljulubavaid lahendusi pahatahtlike tegevuste avastamiseks sellistes võrkudes,piirab mudelite tõlgendatavuse ja läbipaistvuse puudumine sageli nende tõhusust ja usal-dusväärsust. Käesolevas doktoritöös uuritakse tõhusate, tõlgendatavate, läbipaistvate japrivaatsust säilitavatemasinõppepõhiste sissetungide avastamissüsteemide (IDS) arenda-mist nii tsentraliseeritud kui ka detsentraliseeritud (föderaalse õpe) keskkondades.Enamik varasemaid küberjulgeoleku alaseid uuringuid on keskendunud peamiselt rün-nakute avastamisele IoT- ja IoMT-võrkudes. Käesolevas artiklis uuritakse tunnuste valikurolli IDS-i jõudluse parandamisel nendes keskkondades. IoT-botneti tuvastamiseks kavan-dati botneti elutsükli alusel kuus klassifitseerimisülesannet, kus filtri- jawrapper-meetoditegamäärati kindlaks minimaalne tunnuste alamhulk, mis saavutas kõrge tuvastamismäära.IoMT-rünnakute tuvastamiseks kasutati filtripõhiseid tunnuste valiku meetodeid, nagu in-formatsiooni kasv, vastastikune informatsioon ja Fisheri skoor, et hinnata ML-mudeleidkahel IoMT-võrguliikluse andmekogul. Uuring näitab, et infokasvu kasutamisel on võimalikväikese tunnuste alamhulgaga (3–4 binaarse klassifitseerimise ja 7–8mitmeklassilise klas-sifitseerimise puhul) saavutada kõrge avastamismäär tõhusa IDS-i jaoks IoMT-võrkudes.Võrgustatud süsteemide sissetungide arvu kasv on kiirendanud tehisintellekti (AI) uuri-mist IDS-i jaoks. Peamine fookus on ML-põhise IDS-i mõistmine ja selgitamine turvalisuseanalüütikutele, kes haldavad neid süsteeme oma võrkude kaitsmiseks. See motiveerib se-letatava AI (XAI) meetodite integreerimist, et suurendada IDS-mudelite läbipaistvust jausaldusväärsust. Kuigi paljudes uuringutes on ML-põhiste IDS-mudelite seletamiseks ka-sutatud XAI-d, puudub neis sageli süstemaatiline hinnang genereeritud seletuste kvalitee-dile. Käesolevas artiklis rõhutatakse seletuste kvaliteedi kvantitatiivse hindamise tähtsustkoos IoT-botnetite avastamise tulemuslikkusega. Rakendati mitmeid post hoc XAI meeto-deid, sealhulgas SHAP (SHapley Additive explanations), LIME (Local Interpretable Model-agnostic Explanations), DeepLIFT (Deep Learning Important FeaTures), Integrated Gra-dients ja muud silmapaistvusel põhinevad selgitamismeetodid, et selgitada IoT-botnetitetuvastamise mudeleid nii binaarsete kui ka mitmeklassiliste klassifitseerimisülesannetepuhul IDS-kontekstis. Nende selgituste kvaliteeti hinnati kvantitatiivsete mõõdikute abil,sealhulgas usaldusväärsus, monotoonsus, keerukus ja tundlikkus, mis võimaldasid IDS-isXAI-meetodeid rangemalt hinnata. Statistiliste ML-põhiste mudelite puhul kasutati SHAP-i ja LIME-i, et selgitada mitmel andmekogumil treenitud mudelite käitumist, kusjuuresSHAP näitas selgituste mõõdikute osas paremat tulemust. Sügavõppe-põhise IDS-i jaoksarendati mitmeklassilise IoT-botneti tuvastamiseks spetsiaalne DNN-mudel, mis saavu-tas kõrge klassifitseerimise tulemuslikkuse. Kohalike selgituste genereerimiseks rakendatiseitset post hoc XAI-meetodit, sealhulgas SHAP, LIME, DeepLIFT, IG, Gradient*Input, Fea-ture Ablation ja Saliency. Nende selgituste kvaliteeti hinnati rangelt kvantitatiivsete näita-jate abil, nagu usaldusväärsus, monotoonsus, keerukus ja tundlikkus, mis näitas, et Deep-LIFT andis hinnatud meetodite seas järjepidevalt kõige usaldusväärsemad ja stabiilsemadselgitused.Lisaks botneti tuvastamisele uuritakse käesolevas väitekirjas võrgu sissetungide tuvas-tamise süsteemi (NIDS) hoiatuste klassifitseerimise selgitavust, kasutades TalTechi turva-operatsioonide keskuse (SOC) reaalseid andmeid. Häirete prioriseerimiseks arendati LSTM(Long Short-Term Memory) põhinev mudel ja mudeli ennustuste selgitamiseks rakenda-ti nelja XAI meetodit: LIME, SHAP, Integrated Gradients ja DeepLIFT. Selgituste kvaliteedi
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hindamiseks kasutati ekspertteadmisi, võttes aluseks asjakohasuse massi täpsuse ja asja-kohasuse järjestuse täpsuse. Kvantitatiivne hindamine näitas, et DeepLIFT andis järjepi-devalt kõige täpsemaid, robustseimaid ja usaldusväärsemaid selgitusi.Lisaks tutvustatakse käesolevas väitekirjas Transformer-põhine IDS küberrünnakuteavastamiseks IoMT-võrkudes, mis saavutab kõrge avastamismäära nii binaarsete kui kamitmeklassiliste klassifitseerimisülesannete puhul. Transformer-põhise IDS läbipaistvuseparandamiseks rakendati post hoc XAI meetodeid, sealhulgas SHAP ja LIME, ning neid hin-nati selliste näitajate abil nagu täpsus, tundlikkus ja keerukus, mis näitas, et on võimaliksaavutada samaaegselt kõrge avastamismäär ja selgitavus.Kuigi ML- ja DL-põhised IDS-id on saavutanud kõrge klassifitseerimistäpsuse, tekitabnende sõltuvus tsentraliseeritud andmesalvestusest privaatsuse ja turvalisuse problee-me. Federated Learning (FL) lahendab need probleemid, võimaldades detsentraliseeritud,privaatsust säilitavatmudelitreenimist, kus andmed jäävad lokaalsetesse andmebaasides-se ja ainult mudeli parameetrid jagatakse keskse serveriga. Siiski on selles keskkonnastekkinud ML-mudeli selgitamine keeruline FL-i keeruka olemuse tõttu, eriti post hoc XAI-meetodite kasutamisel. Traditsioonilised post hoc XAI meetodid nõuavad selgituste and-miseks juurdepääsu sisendandmetele,mis rikub FL-i privaatsust serverimudeli selgitamisel.Käesolevas väitekirjas käsitletakse selgitavuse väljakutset föderatiivsel õppel (FL) põhine-vas IDS-is, kus privaatsuspiirangud piiravad juurdepääsu andmetele post hoc selgitusteandmiseks. Selle ületamiseks pakutakse välja föderatiivse seletatava tehisintellekti (Fe-dXAI) raamistik, mis integreerib SHAP-i privaatsust säilitaval viisil, koondades turvaliseltkliendipõhised SHAP-väärtused, et ligikaudselt arvutada serverimudeli seletused nii bi-naarsete kui ka mitmeklassiliste IoT-rünnakute tuvastamise ülesannete jaoks. Lisaks tut-vustatakse sünteetilistel andmetel põhinevat seletatavuse lähenemist, mis kasutab FL-isgeneratiivse vastandvõrgustiku (GAN) erinevaid variante. FL-Wasserstein Conditional GAN(WCGAN) abil genereeritud sünteetilised andmed võimaldavad serveripoolseid selgitusikasutades post-hoc SHAP-i, mis vastavad täpselt tegelikest andmetest saadud selgituste-le. Lõpuks pakub käesolev väitekiri välja selgitava aktiivsõppe (XAL) paradigma IoT-botnetituvastamiseks, integreerides post hoc selgitavuse meetodid (SHAP ja LIME) otse aktiivs-õppe tsüklisse, et aidata SOC-analüütikuid märgistamisel. Selgituste kvaliteeti hinnatakseusaldusväärsuse, monotoonsuse ja tundlikkuse mõõdikute abil, mis näitab, et maksimaal-se erimeelsusega komitee poolt esitatud päringud (QBC-MD-7) pakuvad nii kõrget mudelijõudlust kui ka usaldusväärseid selgitusi, kusjuures SHAP ületab LIME kõigis hindamismõõ-dikutes.
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ABSTRACT Attackers compromise insecure IoT devices to expand their botnets in order to launch more
influential attacks against their victims. In various studies, machine learning has been used to detect IoT
botnet attacks. In this paper, we focus on the minimization of feature sets for machine learning tasks that are
formulated as six different binary and multiclass classification problems based on the stages of the botnet
life cycle. More specifically, we applied filter and wrapper methods with selected machine learning methods
and derived optimal feature sets for each classification problem. The experimental results show that it is
possible to achieve very high detection rates with a very limited number of features. Some wrapper methods
guarantee an optimal feature set regardless of the problem formulation, but filter methods do not achieve
that in all cases. The feature selection methods prefer channel-based features for detection at post-attack,
communication, and control stages, while host-based features are more influential in identifying attacks
originating from bots.

12 INDEX TERMS Feature selection, machine learning, Internet of Things, botnet, intrusion detection.

I. INTRODUCTION13

IoT (Internet of Things) is shaping the way we live our human14

lives [1], from tiny toys to home-made applications to smart15

cities. IoT is a system of interrelated devices connected to the16

Internet to transmit and receive data from one device to other17

parts of the system; it can be an edge device, a cloud server,18

or another field device. At the same time, the IoT security19

issue has become more important as an enormous amount of20

data is associated with IoT networks. Due to the exponential21

growth of IoT devices [2], hackers and cybercriminals have22

more opportunities to exploit network vulnerabilities [3],23

resulting in various IoT-based botnet attacks [4], [5], [6]. The24

botnet, a large set of compromised machines controlled by25

attackers, is one of the strongest threats on the Internet to26

The associate editor coordinating the review of this manuscript and

approving it for publication was Chin-Feng Lai .

perpetrate cybercrimes, such as launching DDoS attacks [4], 27

stealing sensitive data [7] or distributing malicious spam [8]. 28

As a result, botnets act as a source of spreading malicious 29

activity and usually threaten the availability of networks, 30

in addition to other significant security consequences. It is 31

important to develop security countermeasures against botnet 32

threats. 33

A typical botnet life cycle has four phases, formation, 34

command and control (C&C), attack and post-attack [9]. 35

Attackers spread malware that helps them recruit new bots 36

(that is, members of botnets) during the formation phase. 37

C&C phase enables them to establish continuous commu- 38

nication with bots to control them for future actions. In the 39

attack phase, attackers carry out malicious operations using 40

bots. The post-attack phase covers activities related to the 41

spread of IoT malware with the purpose of expanding the 42

botnet. IoT networks constitute a lucrative target for botnet 43

94518 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022



R. Kalakoti et al.: In-Depth Feature Selection for the Statistical ML-Based Botnet Detection in IoT Networks

owners, as it is possible for them to recruit large numbers of44

IoT devices, which are usually shipped with various security45

vulnerabilities.46

One of the effective security countermeasures against bot-47

nets is to establish security monitoring systems to detect mali-48

cious activities. An organization hosting various IoT devices49

is interested in the identification of devices that are compro-50

mised by IoT bot malware; therefore, its focus is much more51

on detection at formation, C&C or post-attack phases. On the52

other hand, organizations receiving attacks from IoT bots aim53

to prevent malicious traffic launched during the attack and54

post-attack phases. Therefore, it is important to develop a55

monitoring system that encompasses the entire botnet life56

cycle. This endeavor requires a more in-depth understanding57

of malicious actions and their characterization in each phase.58

The Internet of Things (IoT) has received great atten-59

tion in research on network anomalies and intrusion detec-60

tion [10]. Malicious network traffic has been detected with61

conventional signature-based solutions such as Snort [11] or62

Suricata [12]. The drawback of signature-based systems is63

the inability to detect unknown or previously unidentified64

attacks, in addition to the obstacles that arise from misman-65

agement of signatures.66

Instead of signature-based solutions, a behavior- or67

anomaly-based solution goes beyond identifying individual68

attack signatures to detect and analyze malicious behavior69

patterns. Machine learning is considered a viable solution70

that detects new variants of attacks with the elimination of71

the need for signatures. Although the application of statistical72

machine learning (ML) techniques has demonstrated highly73

accurate classification results in malicious traffic detection74

problems [13], feature selection as an important step in the75

ML workflow has not been fully addressed. The curse of76

dimensionality can be a concern that decreases detection per-77

formance due to overfitting when classifiers are trained with a78

large number of features [14]. In addition, a high-dimensional79

feature space may require more computing resources when80

the models are deployed in the operational environment.81

In most cases, intrusion detection systems should handle82

a large volume of network traffic, so maximizing resource83

usage is vital. IoT environments bring additional restrictions,84

so that detection sensors, system components that are respon-85

sible for the collection of network traffic and performing the86

detection function, may run on resource-constrained devices87

(e.g., edge devices). Therefore, reducing the size of the88

feature set can improve the performance of ML models in89

many ways. Additionally, feature selection helps to achieve90

a deeper understanding of the underlying approaches that91

rendered the data, since fewer features would be more per-92

ceivable by experts.93

Various academic works [15], [16], [17], [18], [19], [20],94

[21] use feature selection techniques to improve the detection95

scores of existing ML classifiers. However, these studies96

do not explore the impact of feature selection methods on97

different binary and multiclass classification formulations98

that can be performed for intrusion detection at various99

stages of the botnet life cycle. More specifically, the set 100

of features that is effective in detecting malicious traffic at 101

one stage may not be instrumental at another stage. Further- 102

more, the performance of models that use different feature 103

selection methods can vary according to the classification 104

formulation. 105

The crux of this paper is to find the optimal subset of 106

features with the help of filter and wrapper feature selection 107

methods for various classification formulations that can be 108

applied to IoT botnet attack detection. For this purpose, 109

we have induced ML classifiers using the methods, extra tree 110

classifier, random forest, decision tree, and k-nearest neigh- 111

bor. The optimal feature sets are derived by a 10-fold cross- 112

validation with classifiers from filter and wrapper methods. 113

In this research, we applied the feature selectionmethods to 114

two datasets, namelyN-BaIoT [22] andMedBIoT [23], which 115

include network activities belonging to different steps of the 116

botnet life cycle in IoT networks. Based on the phases of the 117

botnet life cycle given in [9], we can deduce that N-BaIoT has 118

instances related to the attack phase, while MedBIoT covers 119

post-attack and C&C phases. 120

In addition to a binary classification, such as discriminating 121

malicious traffic from benign traffic, it is possible to for- 122

mulate various multiclass classification problems from these 123

datasets. One of such formulations may focus on the detec- 124

tion of the malware type that induces the malicious traffic 125

(e.g., Mirai, Bashlite), which is applicable for both datasets, 126

whereas the second one may deal with the attack type that 127

is conducted by the corresponding malware. For the latter 128

case, N-BaIoT provides labels on the types of attacks that 129

originated from infected devices (e.g., UDP flooding, spam), 130

and MedBIoT has labels on whether the activity belongs to 131

the C&C or post-attack phase. Depending on the situation, 132

security administrators may be interested in different aspects 133

of detection to make more informed operational decisions. 134

For example, identifying the type of malware on the infected 135

device would be necessary to apply the correct malware 136

removal procedures. On the other hand, identifying the type 137

of attack rather than the type of malware would be more 138

essential for organizations that receive botnet attacks, as they 139

need to develop defensive countermeasures to block or redi- 140

rect network traffic accordingly. In our study, we investigate 141

which feature sets are optimal for each binary and multiclass 142

classification formulation and analyzed whether there exist 143

variations in the optimal feature set that may impact the 144

design considerations of intrusion detection in such different 145

contexts. This contribution is unique because, to our knowl- 146

edge, there is no study that provides a deeper analysis of 147

the variations in feature sets that are effective in intrusion 148

detection at different stages of the botnet life cycle. 149

The structure of this research work is described below. 150

In Section II we have mentioned background work and a 151

review of the literature related to botnet detection and feature 152

selection. In Section III, the feature selection methods and 153

experiments are described. Finally, our results are presented 154

in Section IV. Section V gives a discussion of the main 155
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findings of this research work. Conclusions are drawn in156

Section VI.157

II. BACKGROUND AND LITERATURE REVIEW158

A. BOTNET DETECTION159

Researchers have introduced traditionalmachine learning and160

data mining methods for botnet detection in recent decades161

and made significant advances. BotMiner [24], [25] and162

BotSniffer [26] used statistical algorithms to detect malicious163

traffic on an IoT network that is part of a botnet.164

The Bayesian optimization Gaussian process (BO-165

GP) [27] is combined with the decision tree classifier as an166

optimized ML-based framework to detect botnet attacks on167

IoT devices. The detection rate for binary classification is168

improved to 99%.99 when the accuracy, precision, recall, and169

f1 score metrics are compared to the Decision Tree, SVM,170

with this optimized DT-BOGP framework. In this work, the171

Bot-IoT-2018 dataset [28] is used.172

Convolutional neural networks (CNN) are used to detect173

IoT malware. This approach was created for the detec-174

tion of Linux IoT botnets based on the PSI graph together175

with the CNN classifier [29]. Experiments were carried out176

using 4002 labeled IoT botnet datasets provided by the IoT-177

POT [30] team. These data sets were collected over one year,178

from October 2016 to October 2017. The detection rates,179

92% precision and 94% F1 score, are achieved with the CNN180

classifier.181

Yin et al. proposed the Bot-GAN framework to improve182

botnet detection performance [31]. Generative adversarial183

networks are used, where the GAN generator creates fake184

samples. A 3-layer LSTM network was selected as the gener-185

ator and a 4-layer neural network architecture was chosen as186

the detector in the Bot-GAN setup. The ISCX dataset [32]187

is used for this framework. Of 491,381 training samples,188

192,112 (39.10%) are malicious and include seven botnets,189

while the test set consists of 348,452 testing samples. This190

test set has 169988 (48.78%) malicious samples that possess191

16 botnet types. The detector achieves 68.51% as an F1192

score without having fake samples. The detector attains a193

maximum 70.59% of F1 score when the training set has194

500 fake samples.195

A hybrid deep learning scheme [33] is used to detect196

the botnet in the IoT network. A long-short-term memory197

autoencoder (LAE) is implemented to reduce the dimension-198

ality of network traffic features. Then, the long-term inter-199

related network traffic behavior is analyzed with the help of200

bidirectional long-short-term memory (BLSTM) to achieve201

generalization ability. In this work, binary multiclassification202

problems are addressed in the BoT-IoT dataset [28] for the203

classification of network traffic. In general, 6 features were204

derived from 37 features of the dataset [28] with the help of205

the LAE andBLSTMclassifier that achieved 100%precision,206

93.17% MCC (Matthews correlation coefficient).207

Alauthman et al. [34] have proposed a traffic reduc-208

tion mechanism that integrates the reinforcement learning209

technique in three datasets. The first dataset is information 210

security and objects technology (ISOT) that contains Storm 211

Bot, Waledac Bot, and normal traffic. The second data set 212

comprises four legitimate P2P applications (Vuze, uTorrent, 213

Frostwire and eMule) and three P2P botnets (Zeus, Storm and 214

Waledac) [35], and the third is the ISCX data set [32], which 215

contains benign traffic. The authors have used real-world net- 216

work traffic to evaluate their proposed approach and achieved 217

a detection rate of 98.3% and a false positive rate of 0.012%. 218

Singh et al. [36] have developed a quasi-real-time intru- 219

sion detection system using open-source tools such as 220

Hadoop, Hive, and Mahout to provide scalability for the 221

identification of Peer-to-Peer botnet attacks. For this, the 222

authors have built the packet capture module to process high 223

data bandwidth in a quasi-real-time (within 5-30 s delay) and 224

developed a distributed dynamic feature extraction frame- 225

work to illustrate network traffic statistics of packet captures. 226

The parallel processing power of Mahout (that is, a machine 227

learning library built on top of Hadoop) was used to build the 228

Random Forest model that achieved a detection performance 229

of 99% precision and recall. 230

B. FEATURE SELECTION 231

Feature selection aims to find the best subsets of features from 232

input data to achieve better prediction results by eliminating 233

unnecessary features [37]. The feature selection methods 234

were classified mainly into three categories, such as filter, 235

wrapper, and embedded [14]. Filter methods utilize statistical 236

methods to rank features according to their discriminatory 237

power. They are usually applied in an initial step before induc- 238

ing the models. However, wrapper methods use a machine 239

learning model to evaluate the merits of a given set of features 240

in terms of model performance to identify the optimal set. 241

Embedded methods blend the advantageous factors of both 242

the filter and wrapper methods so that they perform feature 243

selection and training of the ML algorithm in parallel. This 244

feature selection method is an integral part of the classifica- 245

tion or regression model. 246

Many feature selection approaches have been applied to 247

evaluate the importance of features related to the context 248

of botnet detection. Entropy, impurity, RelieF and principal 249

component analysis (PCA) [38] were used with the neural 250

network classification algorithm. 99.20% detection rate was 251

achieved with the top 10 features based on the entropy of 252

a total of 29 features in two botnet datasets, ISOT [39] and 253

ISCX [32]. 254

Velasco-Mata et al. [40] has tested the feature sets 5, 6, 255

7 with two filter methods, Information Gain and Gini Impor- 256

tance, over Decision Tree, Random Forest, k-NN for bot- 257

net detection for multiclass classification. Finally, the set 258

of five features produced an 85% detection rate with a 259

decision tree classifier induced for the QB-CTU13 [41] and 260

EQB-CTU13 [41] datasets. 261

Guerra-Manzanares et al. [19] proposed a hybrid approach 262

by combining filter and wrapper methods with random for- 263

est and k-NN classifiers. Eighteen features are selected by 264
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FIGURE 1. We used the filter and wrapper method feature selection approaches over the N-BaIoT [22] and MedBIoT [23] datasets to find the optimal
feature subset.we evaluated all the feature subsets with four classifiers - DT, ET, RF and k-NN.

Pearson’s correlation, and the top 20 features are selected265

with Fisher score. This study used the botnet dataset,266

N-BaIoT [22], which has 115 statistical features extracted267

from network traffic in an IoT network. The feature sets268

obtained from the filter methods are processed by wrapper269

methods, Sequential Forward Selection and Sequential Back-270

ward Elimination. Finally, a five-element set of features is271

used for the detection of IoT botnets formulated as a binary272

classification problem.273

Correlation-based feature selection, consistency-based274

subset evaluation and principal component analysis [42] are275

used to select features that are then evaluated with decision276

trees, the Naive Bayes classifier, and the Bayesian Network277

classifier to detect botnet traffic based on peer-to-peer (P2P).278

With these selection methods, 5, 8, and 12 features were iden-279

tified, respectively. 99% accuracy achieved with the decision280

tree based on the ISOT dataset [39].281

Pektaş and Acarman [43] used linear models penalized282

with the L1 norm (also called Lasso), recursive feature elim-283

ination (RFE), tree-based feature selection methods (ran-284

dom forest feature importance) for the ISOT dataset [39].285

Random forest feature selection produced 99% highest detec-286

tion among all these feature selection methods.287

The studies proposing feature selection do not create and288

compare the optimal sets that can be obtained for different289

multiclass problem formulations. In this paper, we address290

this gap by inducing various learning models for two datasets291

as explained in detail in Section II-C.292

C. DATASET293

In this study, we used two datasets, N-BaIoT [22] and Med-294

BIoT [23]. Both datasets comprise legitimate IoT traffic as295

well as traffic with various types of attacks that originate from296

compromised IoT devices acting as bots.297

N-BaIoT and MedBIoT have 115 and 100 features298

(mainly descriptive statistics measures), respectively, which299

are extracted from network traffic. These traffics are gener- 300

ated by bots deployed in a controlled testing environment. 301

Both datasets have the same features, except that the Med- 302

BIoT dataset does not include network traffic coded as ‘‘H’’ 303

in Table 1. More specifically, the features that are defined 304

for each data point reflect the aggregated statistics of the raw 305

streams of the network in five timewindows (100ms, 500ms, 306

1.5 s, 10 s, and 1 min), which are coded L5, L3, L1, L0.1 and 307

L0.01, respectively. There are five main feature categories, 308

host-IP (traffic originated from a specific IP address, coded as 309

H), host-MAC and IP (traffic originated from the same MAC 310

and IP, coded MI), channel (traffic between specific hosts, 311

coded HH), socket (traffic between specific hosts, including 312

ports, coded HpHp), and network jitter (time interval between 313

packets in channel communication, coded as HH_jit). For 314

each major category, the packet count, mean and variance 315

packet sizes are calculated. There have been extra statistical 316

values like the correlation coefficient (PCC) of packet size, 317

radius, covariance, magnitude, which are derived for Chan- 318

nel and Socket categories along with packet count, mean, 319

variance. In this paper, we used a specific notation to name 320

the features. The feature name is the concatenation of three 321

keywords. The first one represents the category type (e.g.,MI, 322

HH), the second one shows the timewindow, and the third one 323

indicates the statistical measurement function. For instance, 324

‘‘HH_L0.01_mean’’ means this feature is about the channel 325

type that belongs to a 1-min interval with a mean function. 326

In this study, we have developed six different ML clas- 327

sification problems using these two datasets, as detailed in 328

Table 2. The N-BIoT dataset is used for three classifica- 329

tion problems, namely, binary, 3-class, and 9-class. Binary 330

classification basically discriminates malicious traffic from 331

benign traffic. 3-class provides greater scrutiny of malware 332

type by classifying data points into categories, mirai, gafgyt, 333

and benign. For the 9-class classification, the data points 334

have been classified into different attack types: ack, benign, 335
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TABLE 1. Summary of the features of the N-BaIoT and MedBIoT datasets features.

TABLE 2. Classification problems addressed in this study.

compact, junk, scan, syn, tcp, udp, and udpplain. These336

three-class and nine-class problem formulations address the337

attack phase of the botnet life cycle from two perspectives.338

The former identifies the types of malware that can be instru-339

mental in detecting infected hosts in an organizational setting.340

The latter aims to discriminate against attacks carried out by341

bots, which better informs organizations that are targeted by342

such attacks.343

MedBIoT is used for three classification formulations,344

binary, 3-class, and 4-class. As this dataset is collected at the345

C&C or formation phases, such formulations reveal which346

features are important in those phases. More specifically, 347

3-class addresses the identification of the phase (i.e., classes 348

are benign, C&C and Spread), whereas 4-class aims to detect 349

malware category (i.e., classes are benign, Bashlite, Mirai, 350

and Torii). 351

In this work, we have experimented with 20,000 sam- 352

ples of each class label for the addressed classification 353

type. For example, if the classification problem contains 354

two classes, we randomly selected 40,000 samples from the 355

source dataset. 356

III. FEATURE SELECTION METHODS 357

Within the framework of the present investigation, two types 358

of feature selectionmethods are considered. The first is called 359

the filter model, which evaluates a feature or a subset of 360

features using a class-sensitive discriminating criterion [44]. 361

These techniques do not depend on the particular classifica- 362

tion algorithm. The second type of technique is the wrapper 363

model. Techniques of this type use the characteristics of the 364

specific classification algorithm to choose the feature set. 365

A. FILTER MODELS 366

In the domain of numeric feature sets, there are four main 367

types of techniques. The first utilizes the linear correlations 368

between the features. The second is based on the relationship 369

between the inter-class and intra-class separation. The third 370

uses entropy, and the fourth is based on the analysis of 371

variance. 372

1) PEARSON’s CORRELATION BASED TECHNIQUE 373

Based on Pearson’s correlation coefficient (see (1)), the tech- 374

nique requires one to compute the collinearity matrix for the 375

entire set of features to find the redundancy of the features. 376

Pearson’s correlation technique computes the linear correla- 377

tion relationship between two variables. Pairwise correlations 378

between features are analyzed to find the redundancy of fea- 379

tures. P-value of correlation coefficients bounds the ranges 380

between −1 and 1. Two features contain a perfect positive 381

correlation if the value is P = 1. There is no correlation 382

between the two features if the value P = 0, and a perfect 383

negative correlation is accepted if the value P = −1. The 384

formula for the Pearson correlation 385

P =
∑n

i=1[(xi − µx)(yi − µy)]√∑n
i=1 (xi − µx)2

√∑n
i=1 (yi − µy)2

(1) 386
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In (1), µx and µy denote the means of features x and y387

respectively. Greater absolute values of Pearson’s correlation388

coefficient indicate stronger linear dependence between the389

features.390

2) FISHER SCORE391

Fisher score [44] is designed for the numeric features and392

measures the ratio of the average inter-class separation to the393

average intra-class separation. It is also referred to as Fisher’s394

ratio [45]. Formally defined in (2) and denoted as Fs (not395

to be confused with F1 score), the numerator calculates the396

average inter-class separation and, the denominator calculates397

the average intra-class separation.398

Fs =

∑K
j=1 pj(µ

i
j − µ

i)2∑K
j=1 pj(σ

i
j )
2

(2)399

where µij and σ
i
j are the mean and standard deviation of the400

j-th class and i-th feature, pj is the proportion of data points401

of class belonging to the class j. Greater Fisher’s score values402

indicate greater discriminating power of the feature.403

3) MUTUAL INFORMATION404

Among the different techniques implementing mutual infor-405

mation exclusion idea normalized mutual information feature406

selection [46] was chosen. For the case of continuous vari-407

ables mutual information (MI) is defined by [46] as follows:408

I (X ,Y ) =
∫ ∫

p(x, y) log
p(x, y)
p(x), p(y)

dxdy (3)409

Here, p(x, y) is the joint probability density function (PDF) of410

the variablesX ,Y and p(x) and p(y) are the marginal PDFs of411

the respected variables. For the case of discrete variables, [46]412

defines MI as follows:413

I (X;Y ) =
∑

y∈Y

∑
x∈X

p(x, y) log
p(x, y)
p(x)p(y)

. (4)414

In (5) p(x, y) denotes the joint probability mass, the function,415

the function, and p(x) and p(y) are the marginal probabilities.416

Mutual information values fall in the interval given below.417

0 ≤ I (X;Y ) ≤ min {H (X ),H (Y )} (5)418

To make this paper self-sufficient, the main steps of the419

MI -based feature selection algorithm proposed by [46] are420

presented below. Denote I (C; S) the MI between the class421

variable C and the subset of selected features S. Also define422

measure G as423

G = I (C; fi)−
1
|S|

∑
fs∈S

NI (fi; fs). (6)424

1) Initialize the initial feature set F that includes all425

available features and the empty set S of the selected426

features.427

2) Calculate I (fi,C) or each feature fi ∈ F .428

3) To select the first feature, find f̂i such that429

f̂i = maxi=1,...,N {I (fi,C)}.430

4) Update sets F and S as follows: F = F \ f̂i and S = f̂i 431

5) Repeat until |S| = k . 432

a) Compute I (fi; fs) for all pairs of features such that 433

fi ∈ F and fs ∈ S. 434

b) Select the feature fi ∈ F that maximizes the 435

measure (6). 436

c) Update sets F and S as follows: F = F \ f̂i and 437

S = f̂i 438

6) Return the set S 439

4) ANOVA F-TEST 440

ANOVA is one of themost well-known feature selection tech- 441

niques, therefore, does not require an in-depth explanation. 442

This method usually answers the question of whether the 443

values of the given features are independent of the target 444

classification label or not. It is performed in the form of 445

statistical hypothesis testing, where the null hypothesis states 446

that the values of the feature are independent of those of the 447

target label, and the alternative hypothesis states the opposite. 448

The application of this method requires the user to utilize only 449

the features whose values are not independent of the target 450

labels. 451

B. WRAPPER METHODS 452

Unlike the filter models, wrapper methods are classifier- 453

agnostic and choose the most suitable feature set for the 454

particular classifier. The wrapper method is used to calculate 455

the weights of the features using the classification algorithm 456

to measure the performance of the features.Wrapper methods 457

employ the inductive algorithm as an evaluation or criterion 458

function [47], [48]. This approach uses a classification algo- 459

rithm to evaluate subsets of features based on their predictive 460

accuracy (in test data) after cross-validation of the dataset. 461

In the context of our research, we have evaluated subsets 462

of features using the F1 score. Usually, the feature set is 463

being constructed iteratively by adding (forward selection) 464

or deleting (backward elimination) the features. Within each 465

branch, particular methods differ by evaluating the signifi- 466

cance of the features, the goodness criteria of the model, and 467

the number of features added or removed. In the preliminary 468

stage of the investigation, the authors have experimented with 469

six different wrapper techniques. Among them, Recursive 470

Feature Elimination (RFE) [49], Sequential Backward Selec- 471

tion (SBS), and Sequential Forward Selection (SFS) [50] have 472

shown the best results and are included in the comparison. 473

1) RECURSIVE FEATURE ELIMINATION 474

Recursive feature elimination (RFE) is a greedy algorithm 475

based on feature ranking techniques [49]. Based on a char- 476

acteristic of the feature-ranking criterion, the RFE starts with 477

a complete set of features and then removes the least relevant 478

feature one by one to choose the most significant features. 479

The RFE is used with the following classification algorithms, 480

DT, ET, and RF. This method uses the following steps to 481

evaluate the significance of the features. 482
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1) Initialize the initial set of features F that includes483

all available features, set each element of the feature484

ranking list R to 1/n.485

2) Repeat the following steps until the feature set F = ∅486

• Train with the classification algorithm and calcu-487

late the importance of the feature in set F. Order488

the features corresponding to their importance and489

update the list R accordingly.490

• Eliminate the feature of the smallest importance.491

3) Output: List of Feature Rankings R.492

2) SEQUENTIAL FORWARD SELECTION493

We have used two sequential algorithms [50] that work based494

on greedy search algorithms. SFS [50] is a stepwise search495

approach that can avoid excessive computational time con-496

sumption. It works in a bottom-to-top approach. The follow-497

ing steps are involved in the SFS Algorithm.498

1) Start with an empty set S = ∅, F = f1, f2, . . . .fn499

2) while |F|>0500

# |F| is size of the feature set F501

3) fi = argminj∈F [J (S + fi)]502

(Select the feature fi ∈ F with the maximum perfor-503

mance of the classification algorithm and join to the504

set S (the features selected subsequently combine with505

the initial selected feature)506

4) S = S + fi507

5) F = F − fi508

Consider F to be a set of features. Then select the best509

feature among the F features using some evaluation criterion510

function J that maximizes the performance of the classifi-511

cation algorithm. The F1 score is considered an objective512

evaluation criterion function. At each iteration, a new feature513

subset is created with the help of one of the remaining514

available features and the previous feature subset. The new515

subset of features should provide the maximum classification516

performance compared to the addition of any other feature.517

This iteration continues until the total number of features is518

completed in the set F . SFS method is the best and most rapid519

method when a small subset of optimal features is available.520

3) SEQUENTIAL BACKWARD SELECTION521

In contrast to SFS, SBS (Sequential Backward Selection)522

operates in a top-to-bottom approach. The selection of fea-523

tures starts from a set F with n being the total number524

of features. Therefore, the evaluation function produces the525

maximum performance of the classification algorithm for all526

n numbers of features. Each feature is removed one at a time.527

For every iteration, the new subset is created by the n −1528

features computed with the help of the evaluation function,529

and then the worst feature is discarded from the next subset530

of features. This procedure continues until the total number531

of features is left.532

1) S = feature set, F = f1, f2, . . . .fn533

2) while |F|>1 do534

#|F| is size of the feature set F,535

3) fi = argminj∈F [J (S − fi)]536

TABLE 3. Tuning of learning algorithm hyperparameters.

4) S = S − fi 537

5) F = F − fi 538

C. APPLICATION OF THE MACHINE LEARNING 539

WORKFLOW 540

For the computational experiments, the classical machine 541

learning workflow was used. The initial datasets are large 542

enough to provide samples that can be balanced with respect 543

to all characteristics of the dataset, malware type, attack 544

type, and device type. In the preprocessing step, balanced 545

samples were drawn from the dataset of interest. Then, the 546

division into training and testing subsets was carried out 547

proportionally 80/20. Initial experiments have demonstrated 548

that among the k-nearest neighbors classifier (kNN), decision 549

tree classifier (DT), random forest classifier (RF), extremely 550

randomized trees classifier (ET), logistic regression, support 551

vector machine, and Ada-boost classifier, the last three have 552

demonstrated much lower performance and were excluded 553

from further investigation. For each remaining classifier and 554

feature selection technique, a ten-fold cross-validation was 555

performed, while, to ensure better results and the best con- 556

figuration for each classification algorithm, a randomized 557

search was used to find the optimal hyperparameters for 558

each classifier. The range of hyperparameters is described in 559

Table 3. 560

We use the three steps to evaluate the distinct subsets 561

of features in both datasets. First, the F1 score metric is 562

used to evaluate the set of features. Second, computational 563

time is the total time it takes a computer with a particular 564

processor to complete a task. Third, Performance computed 565

the ratio between the F1 score and the computational time. 566

Intrusion detection systems must respond as quickly as pos- 567

sible without sacrificing accuracy. Response time is essential 568

when thwarting the threat in the early stages would limit the 569

degree of losses. For this motivation, time must be considered 570

when evaluating any detection of the model along with the 571

model metrics. The F1 score (see Eq. (7)) is defined as a 572

harmonic mean of precision (P) and recall(R) [51]. In this 573

research work, precision is the fraction of correctly identified 574

botnet samples to all botnet samples identified as a botnet. 575
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TABLE 4. Filter method feature sets for the N-BaIoT and MedBIoT dataset.

On the other hand, recall is the fraction of correctly identified576

botnet samples for all botnet samples in the dataset [52].577

The F1 score provides a more suitable measure of incorrectly578

classified cases than the accuracy measure. We have used the579

harmonic mean of the F1 score, as it penalizes the extreme580

values. F1 score as follows;581

F1 score =
2× precision× recall
precision+ recall

(7)582

In our experiments, we used the computational time to583

calculate the computational cost of classifying a sample.584

We did not consider the training time of the ML algorithms.585

We have experimented with all tasks on the same CPU.586

Finally, to measure the performance of a set of features587

derived from filter and wrapper methods, we calculated the588

ratio between the F1 score and the computational time to589

allow measurement of the gain in detection ability relative590

to the computational expense of this detection [40].591

The experiment carried out in this work was carried out on592

a Ubuntu 20.04.4 LTS machine with 60 GB of DDR4-2666593

R ECC RAM and 2 x Intel Xeon Gold 6148 20C 2.40 GHz.594

We developed our scripts using Python 3, Scikit-learn [53]595

and mlextend libraries [54].596

IV. RESULTS597

This section gives experimental results of the learningmodels598

induced for six classification problems listed in Table 2.599

We analyze the importance of the features obtained by filter600

and wrapper feature selection methods in each problem and601

perform a comparison between the results. Tables 4 and 5602

show the numbers of features selected by the filter and wrap-603

per methods for each classification problem, respectively.604

We provided detailed analysis of the result of each classifi-605

cation problem in the following subsections.606

A. N-BaIoT607

1) BINARY CLASSIFICATION608

In this part, we use filter and wrapper feature selection609

methods to find the optimal feature subsets for binary clas-610

sification of the N-BaIoT dataset. Based on the ratio of611

the highest detection rate of the minimal feature set to its612

computational time, as given in Fig. 2, we selected the best613

model for the implementation of four classifiers with different614

feature selection methods. In this binary problem formula-615

tion, we identified 33 features with fewer correlations accord-616

ing to Pearson’s correlation values. For each filter method,617

TABLE 5. Wrapper methods feature sets for N-BaIoT and MedBIoT.

we select the best features based on their scores. Furthermore, 618

we induce models with feature sets that have increasing num- 619

bers to understand how many features are enough to pass the 620

99% F1 score. Finally, we select the best 3, 5, 3 features for 621

the ANOVA, Fisher Score and mutual information methods, 622

respectively (see Table 4). On the other hand, the wrapper 623

methods usually select three features (for example, DT selects 624

three features in each method), as presented in Table 5. 625

Almost all classifier and feature pairs produce a high 626

detection rate above 99%, as shown in Table 6. Based on 627

the minimal set and computational performance, we selected 628

three pairs and reported more detailed performance results, 629

accuracy, precision, recall, and F1 score values in Table 7. 630

These pairs are: DT with mutual information (that is, three 631

features), Fisher (that is, five features), and SBS (that is, three 632

features). DT with SBS achieves the highest performance 633

metric, as shown in Fig. 3. Among the wrapper methods, 634

Anova provides better results than the others. 635

The mutual information method selected the features, 636

{MI_dir_L0.1_weight, MI_dir_L0.01_weight, H_L0.01_ 637

weight}, fisher score selected {MI_dir_L5_weight, 638

HH_jit_L5_mean, MI_dir_L5_mean, MI_dir_L0.01_weight, 639

MI_dir_L0.01_mean}, Anova identified the feature set, 640

{MI_dir_L1_weight,MI_dir_L0.1_weight, H_L0.1_weight}. 641

SBS selected {MI_dir_L5_weight, MI_dir_L3_weight, 642

MI_dir_L1_ weight}. Almost all features belong to the host 643

category; except one that is a network jitter-type feature. 644

It is important to note that we computed the computational 645

time of the models (i.e. the testing-time performance) after 646

selecting the features in all filter and wrapper methods. Thus, 647

the time required for feature selection is not reported in this 648

paper, as testing time is a more significant aspect compared to 649

training, which is not done so frequently, and, when needed, 650

high resources can be assigned for such task. In this sense, 651

the calculated time can be affected by the number of fea- 652

tures and characteristics of the corresponding learningmodel. 653

However, in our experiments, as expected, we observed that 654
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TABLE 6. F1 scores for binary classification models using feature subsets
(represented in Table 4 and 5) of feature selection algorithms in the
N-BaIoT dataset.

FIGURE 2. Computational time required to classify a sample by binary
classification models on N-BaIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

FIGURE 3. Performance achieved by binary classification models over the
N-BaIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

training the wrapper models is more computationally expen-655

sive compared to filter methods. Among the wrapper meth-656

ods, sequential feature selection algorithms (SBS, SFS) are657

more expensive than recursive feature elimination.658

After identifying the optimal feature subsets from the659

dataset for binary classification, we performed a frequency660

analysis to scrutinize which feature category and time win-661

dows are used primarily by the selection methods, as shown662

in Fig. 4. Host-based feature categories are observed to play663

an important role in discriminating malicious traffic from664

benign traffic. The features of network jitter and socket are665

less preferred. Although the features regarding the longest666

time window, 1 minute, have contributed greatly to the667

TABLE 7. Accuracy, precision, recall, F1, Binary classification scores of the
selected model with performance based on feature sets in the N-BaIoT
dataset.

FIGURE 4. Contribution of feature categories and time windows in
selected feature sets for binary classification in the N-BaIoT dataset.

TABLE 8. F1 scores for 3-class classification models using feature subsets
(shown in Table 4 and 5) of feature selection algorithms on the N-BaIoT
dataset.

detection, there is no clear increasing or decreasing pat- 668

tern regarding the time duration, as the shortest duration, 669

100 microseconds, also plays a significant role in the model 670

performance. 671

2) 3-CLASS CLASSIFICATION 672

In the N-BaIoT dataset, Mirai and Gafgyt malware are used 673

to infect IoT devices. In this part, we report the findings of the 674

three-class classification models that discriminate network 675

traffic as Mirai, Gafgyt, and legitimate. Similarly, we eval- 676

uated the feature selection method and the pairs of learning 677

models according to the same performancemetric we used for 678

binary classification and presented the F1 scores in Table 8. 679

All pairs, except some KNN models, provide more than 680

99% F1 scores. Pearson correlation still found 33 features. 681

We identified six, three, and five features by using filter 682

methods, fisher score, mutual information, and ANOVA, 683
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FIGURE 5. Computational time required to classify a sample using 3 class
classification models in the N-BaIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

FIGURE 6. Performance achieved by 3-class classification models in the
N-BaIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

respectively, as shown in Table 4. The wrapping methods684

mostly selected three features (see Table 5).685

Among all the feature selection methods, the DT and SBS686

pair again achieves the highest performance, as shown in687

Fig. 6. Anova is the best compared to other filter methods.688

Table 9 shows the detailed performance metrics for DT and689

three feature selection methods, Fisher Score, Mutual Infor-690

mation, and SBS. It is obvious that the detection performance691

is higher than 99% for all metrics.692

The optimal feature set selected by the mutual informa-693

tion feature set is {MI_dir_L0.1_mean,MI_dir_L0.01_mean,694

H_L0.01_mean}, the set of Fisher Score is { MI_dir_L5_695

weight, MI_dir_L5_mean, MI_dir_L0.01_mean, MI_dir_696

L0.01_weight, H_L0.01_mean}.697

Compared to binary classification, we were unable to698

identify clear differences between the results. Learning mod-699

els can easily identify the type of malware in this dataset.700

However, a small number of features, 3-5, achieve high701

detection rates regardless of the feature selection method.702

SBS and DT are the pair that performs best. The analysis703

of category distributions for the classification of 3 classes704

is given in Fig. 7. The results are very similar to those of705

binary classification. Host-based features have again played706

an essential role, and the time-window distribution does not707

show a distinct outcome.708

3) 9-CLASS CLASSIFICATION709

In the 9-class formulation, we consider eight different types710

of attack and benign as distinct categories, as presented in711

Table 2. The results of this classification are quite different712

from the results of the binary and 3-class classification with713

TABLE 9. Accuracy, Precision, Recall, F1 of 3-class classification of the
selected model with feature set-based performance over the N-BaIoT
dataset.

FIGURE 7. Contribution of feature category and time window in the
selected feature set for 3-class classification in the N-BaIoT dataset.

TABLE 10. F1 scores for 9-class classification models using feature
subsets (see in Table 4&5) of feature selection algorithms in the N-BaIoT
dataset.

respect to filter methods, as the learning models with these 714

selection methods require a very high number of features to 715

achieve an F1 score greater than 99%. More specifically, 68, 716

28 and 59 features should be fed into the models when Fisher 717

score, mutual information, and ANOVA methods are used, 718

respectively. However, 33 features are identified as not highly 719

correlated by the Pearson correlation method. Wrapper meth- 720

ods show very interesting results. Although RFE provides 721

higher detection results using 20-28 features depending on 722

the type of learning model, SFS and SBS achieved higher 723

detection with only three features. 724

Table 10 shows the F1 scores achieved by the nine sets 725

of classification features of the classes. Except for KNN, all 726
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FIGURE 8. Computational Time required to classify a sample using
9-class classification models on the N-BaIoT dataset using feature sets
(see Table 4 and 5) of feature selection methods.

FIGURE 9. Performance achieved by 9-class classification models in the
N-BaIoT dataset using feature sets (in Table 4 and 5) of feature selection
methods.

TABLE 11. Accuracy, Precision, Recall, F1 summary of classification of
results mutual information and SBS features, DT with 28-feature set and
3-feature set respectively for 9-class classification over N-BaIoT dataset.

other models achieve more than 99% in all selection methods.727

The result of the overall performance metric indicates that728

SBS and DT are the best pair in the 9-class classification729

(see Fig. 9). Among the wrapper methods, DT and mutual730

information emerge as the leading performer.731

3 features used by the SBS and DT pair are as follows:732

MI_dir_L0.01_mean, HH_L0.01_std, HH_jit_L0.01_mean.733

Table 11 shows the detailed classification performance of734

the 9-class classification with mutual information based on735

the 28-feature set and the SBS with the 3-feature set (that736

is, DT is the learning model in both cases). Although the737

detection rates of some classes (e.g., junk accuracy, accuracy,738

recall and F1 UDP scores) decrease to 98%, the remaining739

metrics show figures equal to or greater than 99%.740

FIGURE 10. Feature category and time window in each set of features for
9-class classification.

The frequency analysis of the feature categories shows that 741

the host-based features are still the most important category 742

for the 9-class classification (see Fig. 10). However, the 743

selected features of the channel category are higher compared 744

to the binary and 3-class formulations. The contribution of 745

the network jitter category is also more important in this 746

classification task. This means that learning models need 747

to resort to other features, which provide statistics about 748

network activities between hosts and time intervals between 749

network packets to differentiate attack types. When many 750

types of attack are considered, including various denial-of- 751

service attacks, such features are instrumental in making a 752

distinction between them. Time window analysis provides 753

a similar distribution, except that lower time intervals (i.e. 754

1.5 seconds, 500 microseconds, and 100 microseconds) have 755

closer distributions to each other. 756

4) THE STANDARD FEATURE SET FOR BINARY, 3-CLASS AND 757

9-CLASS CLASSIFICATIONS OVER N-BaIoT 758

In this part, our objective was to discover a feature set 759

that provides high performance for all classification models 760

induced with the N-BaIoT dataset. Here, we do not claim 761

to obtain the feature set that has been proven to be the 762

best for all formulations, but we show that a working set 763

is possible. Intuitively, for this purpose, we have tested the 764

best feature sets of each classification in the other classifi- 765

cation tasks. The best feature set obtained from the 9-class 766

classification provided high detection rates for the remaining 767

binary and 3-classification tasks. However, we were unable to 768

obtain such high results in the reverse situation where binary 769

or 3-class classification features are applied to a 9-class 770

formulation. More specifically, the feature set, {MI_dir 771

_L0.01_mean, HH_L0.01_std, HH_jit_L0.01_mean} that is 772

determined by the SBS and DT pair for the 9-class clas- 773

sification is utilized to induce models for all classification 774

types, and we obtained the results given in Table 12. Except 775

for the Junk and UDP classes in the 9-class formulation, 776

all results are equal to or greater than 99%, demonstrating 777

the effectiveness of this common set in all classification 778

types. 779
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TABLE 12. Classification results using the standard 3-Feature Set for all classification tasks in the N-BaIoT dataset.

TABLE 13. Classification performance of sequential back- ward selection,
DT With 7-feature set for binary classification over MedBIoT dataset.

B. MedBIoT780

MedBIoT dataset has malicious network traffic from Mirai,781

BashLite, and Torii botnet malware, which were deployed on782

83 real or emulated IoT devices. In this subsection, we report783

the experimental results of the binary, 3- and 4-class classifi-784

cation models induced with this data set (see Table 2 for the785

details of classification formulations).786

1) BINARY CLASSIFICATION787

We identified that 34 features are not highly correlated788

according to Pearson’s correlation scores in the MedBIoT789

data set. A high number of features are required for filter790

methods to achieve a reasonable detection threshold rate791

equal to or above 98%. More specifically, ANOVA, Fisher792

Score, andMutual Information can achieve that threshold rate793

with 85, 51, and 36, respectively, as shown in Table 4. On the794

other hand, RFE reaches the threshold value of 24-27 features795

depending on the type of learning model, while 7 features are796

enough for SBS and SFS (see Table 5). We present the F1797

scores for all model and feature selection pairs in Fig. 11.798

Although the pairs do not exceed 98%, at least one learn-799

ing model achieved this threshold for each feature selection800

method. In this data set and in the formulation of the problem,801

SBS still provides the best performance metric, as shown in802

Fig. 13. The results presented in Table 13 indicate that SBS803

achieves a score greater than 99% in all performance metrics.804

7 features selected by the SBS and DT pair are as fol-805

lows: {HH_L1_pcc, HH_L0.01_magnitude, HH_jit_L1_std,806

HH_jit_0.01_weight, HpHp_L1_pcc, HpHp_L0.01_weight,807

HpHp_L0.01_magnitude}. The distributions of the features808

according to the category of features and the duration of809

the time window are given in Fig. 14. When this feature set810

FIGURE 11. F1-scores for binary classification models in the MedBIoT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.

FIGURE 12. Computational time required to classify a sample by binary
classification models over MedBIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

is compared to the selected feature sets in N-BaIoT, it is 811

observed that the channel category is the dominant category 812

instead of the host-based one. As MedBIoT covers malicious 813

activities regarding the the C&C and formation phases of 814

the botnet life cycle, the features that characterize host-to- 815

host communications become more important. In contrast, 816

N-BaIoT, which covers the attack phase, can discriminate 817

malicious activities based on host-based features. 818

Similar to N-BaIoT, MedBIoT does not show any specific 819

pattern on time periods, indicating whether longer or shorter 820

periods are preferred. Although the longest period, 1 minute, 821

provides more discriminative features among the others, still, 822
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FIGURE 13. Performance achieved by binary classification models over
the MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

FIGURE 14. Feature category and time window contribution in each
feature set for binary classification over the MedBIoT datase.

the second-best category is 100 microseconds, which is the823

smallest one.824

2) 3-CLASS CLASSIFICATION825

The 3-class classification of the MedBIoT dataset aims to826

identify whether the instance that represents a portion of827

network traffic belongs to the spreading or C&C phases828

of a botnet life cycle. The third class in this formulation829

is benign traffic. Similarly to binary classification, filter830

methods require a greater number of features to achieve831

high detection rates. More specifically, features 42, 38 and832

49 should be included by Fisher score, Mutual information,833

and Anova, respectively, to achieve 98% detection rate (see834

Fig. 15.Wrapper methods, SFS and SBS, identified a set with835

7 features. On the other hand, RFE requires 24-27 features.836

SBS and DT are still the best pair of models837

and feature selection methods, as shown in Fig. 15.838

This highest performance is obtained from the follow-839

ing feature set: {HH_L3_magnitude, HH_L0.01_weight,840

HH_L0.01_radius, HH_jit_L1_weight, HH_jit_L0.1_std,841

HpHp_L5_pcc, HpHp_L0.1_magnitude}. The detection842

results given in Fig. 15 indicate that it is possible to find843

learning models for each feature selection method that gives844

a performance greater than 99%.845

Fig. 18 shows that channel-based features are more useful846

than other network categories to achieve the highest per-847

formance. Compared to binary classification, the ratios of848

TABLE 14. Summary of the classification results with the selected model
and feature sets based on the performance of the 3-class classification in
the Med BIoT dataset.

FIGURE 15. F1-scores for 3-class classification models in the MedBIoT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.

FIGURE 16. Computational Time required to classify a sample using
3-class classification models on MedBIoT dataset using feature sets (see
in Table 4 & 5) of feature selection methods.

FIGURE 17. Performance achieved by 3-class classification models in the
MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

channel features are more frequent. The time window results 849

are similar to the binary classification outcome. 850

3) 4-CLASS CLASSIFICATION 851

In the 4-class classification, we consider the identifica- 852

tion of the source malware that generates malicious traf- 853

fic. Thus, the labels in this formulation are Mirai, Bash- 854

Lite, Torii, and Benign. Fisher score, mutual information, 855

and Anova require 46, 41 and 52 features, respectively 856
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FIGURE 18. Feature category and time window contribution in each
feature set for 3-class classification in MedBIoT dataset.

FIGURE 19. F1-scores for 4-class classification models in the MedBIoT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.

FIGURE 20. Computational Time required to classify a sample by 4-class
classification models in the MedBIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

(see Table 4). SBS and SFS methods with any learning857

model achieve a higher detection with 7 features, whereas858

the feature numbers within the range of 22-29 are suf-859

ficient in RFE. F1 score of 99% can be achieved by a860

learning model in each feature selection method, as shown861

in Fig. 19. SBS and DT are the best pair of performers862

and use the following feature set:{MI_dir_L0.1_weight,863

HH_L1_pcc, HH_L0.01_magnitude, HH_jit_L0.01_weight,864

HH_jit_L0.01_std, HpHp_L0.01_weight, HpHp_L0.01_std}.865

Fig. 22 shows that the channel category is the most important866

category.867

4) STANDARD FEATURE SET FOR BINARY, 3-CLASS AND868

4-CLASS CLASSIFICATION TASKS OVER MedBIoT DATASET869

To find a standard feature set that works for binary, 3-class870

and 4-class classification problems in the MedBIoT data set,871

similar to the case of N-BaIoT, we tested the performance872

FIGURE 21. Performance achieved by 4-class classification models on the
MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

FIGURE 22. Feature category and time window contribution in each
feature set for 4-class classification in the MedBIoT dataset.

of the selected feature set of one classification on the other 873

classification problem. We identified that the feature set of 874

4-class classification also works better in all other classifica- 875

tions, as shown in Table 15. 876

V. DISCUSSION 877

In this study, it is shown that all the machine learning problem 878

formulations realized for the detection of IoT botnet attacks in 879

two datasets, N-BaIoT andMedBIoT, achieved high detection 880

performance in more than 99% with a limited number of 881

features (i.e. 3 and 7 features). 882

In our experiments, we used various filter and wrap- 883

per methods for feature selection, in addition to four main 884

machine learning methods to induce the models. In the case 885

where we use filter methods, the results of feature selection 886

are fed into the models. In wrapper methods, models are used 887

directly for the assessment of feature subset alternatives. Per- 888

formance evaluation was carried out based on the relationship 889

between the F1 score and the computational time required to 890

classify a sample. The wrapper method, SBS, with the DT 891

model has achieved the most satisfactory trade-off between 892

detection capacity and computational cost, exceeding the 893

other alternative feature selection and learning model pairs. 894

Using feature selection approaches, tree-based models 895

(DT, ET, and RF) achieved the best results in all classification 896

types for both datasets, especially in multiclass classifica- 897

tion types. k-NN classifier was not suitable for multiclass 898
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TABLE 15. Summary of classification results using the standard 7-Feature Set for binary, 3-class and 4-class classification tasks in the MedBIoT dataset.

classification and also took the longest computational time899

to classify the sample compared to tree-based models.900

However, there are some differences between the results901

of the MedBIoT and N-BaIoT data sets. The former requires902

seven features, whereas three features in the latter data set are903

enough for high detection rates. Compared to N-BIoT, which904

addresses the attack stage of the botnet lifecycle, MedBIoT905

differentiates post-attack and C&C phases. It can be argued906

that the detection at the attack stagewould be relatively easier,907

as this stage is usually accomplished by sending an enormous908

number of packets (i.e., spam, packet flooding). Therefore,909

more features are needed for other attack stages.910

On the other hand, we observed a remarkable difference911

between filter and wrapper methods in some classification912

formulations. High accuracy rates are achieved with more913

than 28 features with filter methods for 9-class classification914

with N-BaIoT and all classifications with MedBIoT. On the915

other hand, the wrapper methods, SFS and SBS, identify916

an optimal set with 3 and 7 features for the respective for-917

mulations. One interesting observation is that the wrapper918

method, RFE, demonstrates quite different results for these919

formulations when compared to the other wrapper methods,920

so that, similarly to filter methods, it demands a high number921

of features. RFE applies a greedy approach by evaluating each922

feature one by one. Despite the differences in the statistical923

approach, filter methods also evaluate features in a similar924

fashion, one by one; thus, more composite feature set evalua-925

tion of SFS and SBS provides remarkable results in our case.926

Another significant finding is obtained by comparing the927

feature categories that are prioritized by the feature selection928

methods. We identified that host-based features are more929

influential for the N-BaIoT dataset, whereas channel-based930

features show a more discriminatory property for the Med-931

BIoT dataset. As the latter data set focuses on the spreading932

and C&C activity of the IoT malware within the target net-933

work, statistical features that are derived by tracking which934

network node communicates with which other node help935

more discriminate the malicious activity from the benign one936

or determine the type of malicious activity.937

We conducted additional experiments to demonstrate the938

influence of feature categories. For this purpose, we induced939

models with only the features of the corresponding categories940

and reported the F1 scores for the ET, RF, DT and kNN941

FIGURE 23. Comparison according to the feature categories - N-BaIoT
dataset.

FIGURE 24. Comparison according to the feature categories - MedBIoT
data set.

models. As shown in Figure 23, the use of all host features 942

achieves a perfect model with a 1.00 F score, while network 943

jitter would be helpful for higher rates for the N-BaIoT data 944

set. However, the features of the channel category achieve 945

99% rates, and the host and network jitter categories would 946

also be helpful for MedBIoT, as demonstrated in Figure 24. 947

Our results send a significant message to experts who 948

design intrusion detection systems. The attacks originating 949

from the bots (i.e., as simulated in the N-BaIoT dataset) can 950

be easily detected by the sensors that track the incoming and 951

outgoing packet statistics without considering the destination 952

of the traffic. However, post-attack and C&C stages require 953

the sensors to follow the sources and targets of traffic flows. 954

Although some feature selection methods utilize the features 955

of the socket category, the overall picture shows that the 956

identification of receiving parties would be enough without 957

using the source and destination ports. 958

Our comparison regarding the feature categories from the 959

time interval perspective shows that the longest interval value, 960
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TABLE 16. Comparison of selected feature counts and classification
results with previous work.

1min, contributesmore to the set with a higher discrimination961

property.962

We also compared our proposal with the latest meth-963

ods from recent models, and the results are summarized in964

Table 16. For the N-BaIoT dataset, the 9-class classification965

achieved better results with lower subsets of features than966

others. Abbasi et al. provided the 19 most important features967

for various attacks using LR(logistic regression) as feature968

selection. With these features, the ANN model performed969

well with 96.4% accuracy, 93.9% precision, 93.9% recall,970

99.13% F1 score [21]. Parra et al. has created an LSTM971

model with the help of correlation-based feature selection972

to classify attacks and confirmed its model with 75 features973

achieved 97.84% precision, 97.81% precision, 95% Recall,974

96.25% F1 score [56]. Faysal et al. proposed an XGBoost975

model that used 40 related features and stated that the976

model classified attacks with 99.96% accuracy and 99.94%977

F1 score [55].978

Compared to existing models, the proposed framework979

achieved for botnet attack type classification in the N-baIoT980

dataset achieved good detection performance on the SBS-DT981

model (decision tree) with three features: precision of982

99.57%, precision of 99.56%, recall of 99.55% and F1 score983

of 99.55%. The proposed methodology effectively distin-984

guishes IoT botnet attacks from network traffic with high985

detection rates.986

However, feature selection is applied less on the MedBIoT987

dataset. Gandhi and Li has proposed the decision tree, ran-988

dom forest models for binary classification, and selection989

of chi-square characteristics utilized. Twenty features used990

to detect malware type for DT and RF models with 99.3%991

precision, 95% precision, 98% recall, 96% recall. We also992

compared our detection rates with an original MedBIoT993

dataset.994

Our proposed methodology achieved good detection per-995

formance for binary and 4-class classification in the Med-996

BIoT dataset compared to the SBS-DT models. For binary997

classification, 99.34% precision, 99.33% precision, 99.32%998

recall, 99.34% f1 score. For 4-class classification, 99.41%999

precision, 99.36% precision, 99.38% recall, 99.46% f1 score.1000

To maximize the classification performance of the learning1001

model, a random search is used to determine the best set of1002

TABLE 17. SBS-DT optimal parameters for each classification in the
dataset.

hyperparameters for each classification formulation and is 1003

summarized in Table 17. 1004

VI. CONCLUSION 1005

Botnet attacks change the shape and volume to deplete the 1006

target resources on the entire IoT network system. Therefore, 1007

to mitigate the critical impact, a machine learning-based 1008

intrusion detection system is developed to accurately classify 1009

botnet attacks. 1010

In this work, we propose a reduced set of features to 1011

detect and classify malicious activities of popular IoT botnet 1012

malware. We identified six different binary or multiclass 1013

classification problems using datasets, N-BaIoT and Med- 1014

BIoT. We applied various filter and wrapper methods with 1015

four machine learning methods to these datasets. Finally, 1016

we derive an optimal set of features for each classification 1017

problem. To our knowledge, no detailed comparison between 1018

the optimal feature sets required for different classification 1019

problems of IoT botnet detection, which can vary depending 1020

on the stage of the botnet life cycle, has been done before. 1021

We obtained very high detection rates for each classifi- 1022

cation problem with fewer features. The decision tree-based 1023

SBS takes less time to classify the samples with the highest 1024

detection rate. Wrapper methods, SFS and SBS, were effec- 1025

tive in finding the optimal feature sets in each classification. 1026
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Filter methods provide suboptimal results in terms of fea-1027

ture numbers for 9-class classification with N-BaIoT and1028

all classifications with MedBIoT. Host-based features are1029

more instrumental in the detection rates for N-BaIoT, whereas1030

channel features play a more important role for MedBIoT.1031
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Abstract: The rapid growth of the Internet of Medical Things (IoMT) has increased the vulnerability of healthcare net-
works to cyberattacks. While Machine learning (ML) techniques can effectively detect these threats, their suc-
cess depends on the quality and quantity of features used for training to improve detection efficiency in IoMT
environments, which are typically resource-constrained. In this paper, we aim to identify the best-performing
feature sets for IoMT networks, as measured by classification performance metrics such as F1-score and accu-
racy, while considering the trade-offs between resource requirements and detection effectiveness. We applied
an ML workflow that benchmarks various filter-based feature selection methods for ML-based intrusion de-
tection. To test and train our binary and multi-class models, we used two well-developed IoMT datasets
(CICIoMT2024 and IoMT-TrafficData). We applied filter-based feature reduction techniques (Fisher Score,
Mutual Information, and Information Gain) for different machine learning models, i.e., Extreme Gradient
Boosting (XGBoost), K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF). Our study
demonstrates that 3-4 features can achieve optimal F1-score and accuracy in binary classification, whereas
7-8 features give reasonable performance in most of the multi-class classification tasks across both datasets.
The combination of Information Gain and XGBoost with 15 features provides excellent results in binary and
multi-class classification settings. Key features—protocol types, traffic metrics, temporal patterns, and statis-
tical measures—are essential for accurate IoMT attack classification.

1 INTRODUCTION

The Internet of Medical Things (IoMT) is an intercon-
nected network of sensors, wearable and medical de-
vices, and clinical systems, enabling applications like
remote monitoring, fitness tracking, chronic disease
management, and elderly care while enhancing treat-
ment quality, lowering costs, and facilitating prompt
responses (Islam et al., 2015),(Dimitrov, 2016).

The security of IoMT is very crucial due to its role
in healthcare, where sensitive patient data and criti-
cal medical systems are increasingly interconnected.
IoMT devices are often targets of cyberattacks, pos-
ing risks to patient safety and data privacy (Kondeti
and Bahsi, 2024). Intrusion detection systems (IDS)
are essential to monitor and detect malicious activi-
ties, ensuring the reliability and security of these net-
works. Machine learning (ML) is vital for IDS in

a https://orcid.org/0009-0000-2656-0127
b https://orcid.org/0000-0001-7390-8034
c https://orcid.org/0000-0001-8882-4095

IoMT as it can identify complex attack patterns and
adapt to evolving threats. However, IoMT devices
have limited computational resources, making it es-
sential to reduce data dimensions and select the most
relevant features to ensure that ML-based IDS oper-
ates efficiently and effectively without overburdening
the network. We applied filter-based feature reduc-
tion techniques (Fisher Score, Mutual Information,
and Information Gain) for different machine learn-
ing models, i.e., XGBoost, KNN, Decision Tree, and
Random Forest. present an analysis by utilising two
benchmarking IoMT datasets CICIoMT2024 (Dad-
khah et al., 2024) and IoMT-TrafficData (Areia et al.,
2024) for training and testing our models. We ap-
plied filter-based feature reduction techniques (Fisher
Score, Mutual Information, and Information Gain)
for different machine learning models, i.e., XGBoost,
KNN, Decision Tree, and Random Forest.

We evaluate the proposed model in terms of F1
score by focusing on both binary classification and
multiclassification. Binary classification aims to dis-
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tinguish between benign and malicious traffic, pro-
viding a high-level detection mechanism, while multi-
class classification goes further by categorizing traffic
into specific attack types, enabling a granular under-
standing of threats. The CICIoMT2024 dataset in-
cludes traffic data for 18 types of cyberattacks (19
classes including benign traffic) grouped into five
main categories (6 classes): DDoS, DoS, Reconnais-
sance, MQTT, and Spoofing. Similarly, the IoMT-
TrafficData dataset comprises eight distinct cyberat-
tack types, including Denial of Service, ARP Spoof-
ing, and Network Scanning, alongside benign traffic,
resulting in a 9-class classification problem.

Additionally, we evaluated the classification per-
formance (accuracy, precision, recall, and F1) of the
best-performing model, XGBoost, on both datasets,
utilizing the top 15 features identified through the In-
formation Gain (IG) feature selection. Furthermore,
to address these security challenges, this study exam-
ines key network features within both datasets that are
essential for identifying and classifying cyber-attacks
in IoMT. Both datasets use network flow features ex-
tracted from benign and malicious traffic. Specifi-
cally, we focus on features, such as protocol type, traf-
fic volume metrics, temporal patterns, and statistical
attributes, in network flows to understand their role in
distinguishing normal and attack traffic patterns.

There exists a line of research on feature selec-
tion for ML-based intrusion detection in IoT devices
(Kalakoti et al., 2022; Bahşi et al., 2018). How-
ever, these studies present benchmarking results for
IoT networks that include consumer IoT devices. It
is necessary to understand the impact of feature se-
lection and the best-performing features in IoMT net-
works, as benign traffic profiles and system compo-
nents in these networks have distinct properties when
compared to other IoT devices.

By highlighting critical features across IoMT
datasets, this study contributes to more robust,
feature-driven methods for accurate anomaly and at-
tack detection in IoMT environments, ultimately aim-
ing to strengthen the security and reliability of these
healthcare networks. The uniqueness of our work
is that we have conducted a cross-analysis between
two well-developed datasets, which were released re-
cently, to obtain more generalized findings regarding
the best-performing features in IoMT networks. Our
work puts a particular emphasis on feature selection in
multi-class classification settings, which has not been
elaborated well in the literature.

This paper is structured as follows. Section 2 re-
views the related research. Section 3 presents the
methodology used in our feature selection process. In
Section 4, we show and discuss our results. Finally,

Section 5 concludes the paper and discusses future di-
rections.

2 RELATED WORK

In the literature, various papers employ different fea-
ture selection techniques for machine learning-based
attack classification. Some studies have adopted a fil-
ter approach to identify the best feature subsets, while
others have applied wrapper or embedded methods.
A few works combined both filter and wrapper tech-
niques to determine the optimal feature set. This sec-
tion provides a comprehensive review of the state-
of-the-art methods for feature selection in machine
learning-based intrusion detection systems, as re-
ported in the literature. In (Khammassi and Krichen,
2017), a Genetic Algorithm (GA) combined with a
Logistic Regression (LR) wrapper was applied to the
UNSW-NB15 and KDDCup99 datasets. Using 20
features from UNSW-NB15, the GA-LR method with
a Decision Tree (DT) classifier achieved 81.42% ac-
curacy and a false alarm rate (FAR) of 6.39%. For
KDDCup99, it achieved 99.90% accuracy with 18
features. In (Osanaiye et al., 2016), a filter-based
approach using Information Gain, Chi-Square, and
Relief was applied for Distributed Denial of Service
(DDoS) detection on the NSL-KDD dataset. Using 13
features, the DT classifier reached 99.67% accuracy
and a FAR of 0.42%. The work in (Ambusaidi et al.,
2016) introduced a filter-inspired reduction approach
with Flexible Mutual Information (FMI) and Least
Square SVM (LS-SVM), achieving 99.94% accuracy
on NSL-KDD with 18 features. In (Ingre and Yadav,
2015), a filter-based feature reduction method for IDS
using correlation and DT was applied to NSL-KDD,
reducing the feature set to 14 attributes and achiev-
ing 83.66% accuracy for multiclass classification. In
(Alazzam et al., 2020), the Pigeon Inspired Opti-
mizer (PIO) was used for feature reduction on mul-
tiple datasets. The Sigmoid and Cosine PIO methods
selected features with accuracy rates between 86.9%
and 96.0%.

Janarthanan and Zargari (Janarthanan and Zargari,
2017) implemented various feature selection algo-
rithms on UNSW-NB15, selecting optimal subsets
of 5 and 8 features. Using Random Forest (RF),
they achieved up to 81.62% accuracy. Vikash and
Ditipriya (Kumar et al., 2020) applied Information
Gain for feature reduction on UNSW-NB15, select-
ing 22 attributes, and their IDS achieved 57.01% At-
tack Accuracy (AAc) and 90% F-Measure. In (Al-
momani, 2020), PSO, Firefly, Grey Wolf Optimiza-
tion (GO), and GA were used on UNSW-NB15, with
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a 30-feature subset yielding 90.48% accuracy with the
J48 classifier. Maajid and Nalina (Khan et al., 2020)
used Random Forest (RF) to rank features on UNSW-
NB15, selecting 11 attributes, with RF achieving
75.56% accuracy. In (Tama et al., 2019), a two-stage
model combining PSO, GA, and Ant Colony Opti-
mization (ACO) on UNSW-NB15 selected 19 fea-
tures, achieving 91.27% accuracy. Some studies have
also used feature selection methods prior to applying
explainable techniques in IoT botnet detection prob-
lems(Kalakoti et al., 2024a; Kalakoti et al., 2024c;
Kalakoti et al., 2024b; Kalakoti et al., 2023).

Zong et al. (Zong et al., 2018) proposed a two-
stage model using Information Gain (IG) for feature
selection on UNSW-NB15, achieving 85.78% accu-
racy. In (Kasongo and Sun, 2020), the authors ap-
plied a filter-based feature selection technique by uti-
lizing the XGboost algorithm on the UNSW-NB15 in-
trusion detection dataset. The results illustrate that
feature selection method based on XGBoost enables
models like DT to improve test accuracy from 88.13%
to 90.85% in the binary classification.

The domain of intrusion detection systems (IDS)
within the Internet of Medical Things (IoMT) has at-
tracted considerable attention in recent years due to
the growing adoption of IoMT devices in healthcare
systems. To protect the security and privacy of sen-
sitive medical data, developing effective IDS is es-
sential. While many researcheres have focused on
IDS for traditional networks, there is a notable lack
of studies dedicated to IDS for the IoMT (Alalhareth
and Hong, 2023a).

Feature selection techniques are crucial for en-
hancing the performance of IDS in the Internet of
Medical Things (IoMT) (Rbah et al., 2022),(Khalil
et al., 2022). These techniques reduce the dimension-
ality of input features while retaining essential infor-
mation (Wagan et al., 2023). Filter-based methods,
like chi-square and Information Gain, evaluate fea-
tures individually based on their contribution to the
target variable (Awotunde et al., 2021). Wrapper-
based methods, such as recursive feature elimination
(RFE), use ML algorithms to iteratively select and re-
move features, assessing their impact on model per-
formance.

Information theory-based feature selection meth-
ods, such as MIFS and MRMR, are commonly used in
fields like intrusion detection for the Internet of Med-
ical Things (IoMT) (Gökdemir and Calhan, 2022).
However, these methods require large datasets to ac-
curately estimate Mutual Information between fea-
tures and the target variable, and limited data can lead
to suboptimal results (Chaganti et al., 2022). Solu-
tions to this issue include data augmentation tech-

niques, like oversampling or synthetic data genera-
tion (Parimala and Kayalvizhi, 2021), and transfer
learning, which applies knowledge from data-rich do-
mains to improve performance in data-limited con-
texts (Awotunde et al., 2021). However, these ap-
proaches come with challenges, such as introducing
bias or noise and increasing computational costs (Al-
Sarem et al., 2021).

In (Alalhareth and Hong, 2023b) authors proposed
an improved Mutual Information feature selection
technique for IDS for the IoMT. This paper proposes a
Logistic Redundancy Coefficient Gradual Upweight-
ing MIFS (LRGU-MIFS) to enhance feature selection
for IDS in the IoMT. LRGU-MIFS improves detec-
tion accuracy by addressing overfitting and non-linear
feature redundancy, outperforming existing methods
in identifying key features.

State-of-the-art IDS systems for IoMT, such
as deep learning models, offer high accuracy but
are computationally intensive and less adaptable to
resource-constrained environments. In contrast, our
integration of feature selection techniques with IDS
significantly reduces computational overhead, en-
hancing suitability for IoMT applications. The stud-
ies on feature selection do not create or compare the
optimal sets achievable for different multiclass prob-
lem formulations. They only focus on one dataset
and derive conclusions. This paper addresses this gap
by inducing various learning models, including var-
ious multi-class classification models, for two well-
developed and comprehensive IoMT datasets (Dad-
khah et al., 2024; Areia et al., 2024) released recently.
These datasets contain a huge number of attack types,
making them convenient for multi-class classification.
This study also conducts a cross-analysis between two
datasets to identify the commonalities.

3 METHODOLOGY

We applied an ML workflow that includes the stages,
data preprocessing, feature selection, and model train-
ing/testing, as demonstrated in Figure 1. In the data
pre-processing stage, we eliminated the correlated
features using Pearson Correlation. We applied filter-
based feature selection methods (i.e., Fisher Score,
Information Gain, Mutual Information) to prioritize
the features. In the last stage, we benchmarked var-
ious ML algorithms (i.e., k-NN, Decision Tree, XG-
Boost, Random Forest) with varying numbers of se-
lected best features determined by filter-based selec-
tion methods.
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Figure 1: We employed filter methods for feature selection on the CICIoMT2024 Dataset (Dadkhah et al., 2024) and IoMT-
TrafficData (Areia et al., 2024) to identify optimal features in IoMT networks. Four classifiers were used for evaluation:
Decision Trees (DT), Random Forest (RF), k-Nearest Neighbors (k-NN), and XGBoost.

3.1 Datasets

We apply feature selection to the CICIoMTDataset
2024 dataset (Dadkhah et al., 2024) and IoMT-
TrafficData (Areia et al., 2024), which focus on Inter-
net of Medical Things devices in the healthcare sector.
These datasets are designed to assess and improve the
cybersecurity of IoMT devices through intrusion de-
tection systems.

The CICIoMT2024 dataset (Dadkhah et al., 2024)
includes traffic generated from 40 devices (25 real,
15 simulated) across multiple protocols like Wi-Fi,
MQTT, and Bluetooth. The authors simulated 18 cy-
berattacks, categorized into five main categories i.e.
DDoS, DoS, Recon, MQTT, and Spoofing.The fea-
tures extracted from the attacks in the CICIoMT2024
dataset include Header Length, Duration, Rate, Srate,
fin flag number, syn flag number, rst flag number, psh
flag number, ack flag number, ece flag number, cwr
flag number, syn count, ack count, fin count, rst count,
IGMP, HTTPS, HTTP, Telnet, DNS, SMTP, SSH,
IRC, TCP, UDP, DHCP, ARP, ICMP, IPv, LLC, Tot
sum, Min, Max, AVG, Std, Tot size, IAT, Number, Ra-
dius, Magnitude, Variance, Covariance, Weight, and
Protocol Type.

The IoMT-TrafficData dataset (Areia et al., 2024)
is a comprehensive collection of network traffic data.
It includes both benign and malicious traffic gener-
ated from eight different types of cyberattacks i.e.
Denial of Service (DoS), Distributed Denial of Ser-
vice (DDoS), ARP Spoofing, CAM Table Overflow,
MQTT Malaria, Network Scanning, Bluetooth Re-
connaissance, and Bluetooth Injection. The identi-
fied key features in the IP-based flows in the IoMT-
TrafficData dataset cover various aspects of network
communication. Protocol features include proto and
service, which identify the transport and application
protocols in use. Payload and packet metrics such
as orig bytes, resp bytes, orig pkts, and resp pkts

detail the volume and direction of data exchanged.
Flow characteristics, including flow duration and
history, capture the overall session duration and
connection state transitions. Packet directional-
ity is covered by fwd pkts tot and bwd pkts tot
for packet counts, and by fwd pkts payload and
bwd pkts payload for payload bytes in each direction.
Rate metrics (fwd pkts per sec, bwd pkts per sec,
and flow pkts per sec) provide packet transmission
rates, while inter-arrival time features (fwd iat,
bwd iat, and flow iat) and active duration (active) re-
flect timing characteristics within the flow.

In this work, we used person correlation as the
preprocessing step. The Pearson correlation coeffi-
cient, given by the equation (1) ,is used to compute the
linear correlation between two variables. This tech-
nique involves calculating the collinearity matrix for
all features to identify redundancy. The Pearson cor-
relation coefficient P ranges from -1 to 1, where P= 1
indicates perfect positive correlation, P = 0 indicates
no correlation, and P =−1 indicates perfect negative
correlation. The formula for Pearson’s correlation is:

P =
∑

n
i=1 (xi −µx)(yi −µy)√

∑
n
i=1 (xi −µx)2 ·

√
∑

n
i=1 (yi −µy)2

(1)

Here, µx and µy represent the means of features x
and y, respectively. Greater absolute values of P in-
dicate a stronger linear relationship between the fea-
tures.

3.2 Feature Selection Methods

Irrelevant features for classification problems are re-
duced to decrease the running time and improve
the classification accuracy of machine learning algo-
rithms. Feature selection methods are divided into
three categories: wrapper, filter, and embedded tech-
niques (Jović et al., 2015). Wrapper methods itera-
tively evaluate subsets of features using a machine
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learning algorithm, but they can be computationally
intensive for high-dimensional data. In contrast, fil-
ter methods rank features independently of the learn-
ing algorithm, which may result in suboptimal selec-
tions due to the lack of guidance. To reduce compu-
tational complexity, we opted for filter-based meth-
ods, which are highly efficient and well-suited for
resource-constrained IoMT environments. The fol-
lowing three primary filter-based feature methods are
commonly employed for numeric-based feature inter-
class and intra-class separation analysis and entropy-
based methods as described below.

3.2.1 Fisher Score

The Fisher Score, also known as Fisher’s ratio, mea-
sures the ratio of inter-class separation to intra-class
separation for numeric features (Gu et al., 2012). The
Fisher Score Fs is formally defined in equation 2 as:

Fs =
∑

K
j=1 p j(µi j −µi)

2

∑
K
j=1 p jσ

2
i j

(2)

Where µi j and σi j represent the mean and standard
deviation of the j-th class and i-th feature, while p j
denotes the proportion of data points in class j. A
higher Fisher Score indicates greater discriminative
power of a feature.

3.2.2 Mutual Information

Mutual Information (MI) quantifies the dependency
between variables (Estévez et al., 2009). For continu-
ous variables, MI is defined as:

I(X ,Y ) =
∫ ∫

p(x,y) log
p(x,y)

p(x)p(y)
dxdy (3)

For discrete variables, MI is given by:

I(X ;Y ) = ∑
y∈Y

∑
x∈X

p(x,y) log
p(x,y)

p(x)p(y)
(4)

Here, p(x,y) is the joint probability, and p(x),
p(y) are the marginal probabilities. MI values range
as follows:

0 ≤ I(X ;Y )≤ min{H(X),H(Y )}
To enhance the Mutual Information feature selec-

tion, the following goal function is used:

G = I(C; fi)−
1
|S| ∑

fs∈S
NI( fi; fs) (5)

Where I(C; fi) is the Mutual Information between
class C and feature fi, and S is the set of selected fea-
tures. The algorithm selects features by maximizing
this measure. Function NI( fi; fs) is the Normalized
Mutual Information between features fi and fs.

3.2.3 Information Gain

Information Gain helps quantify how much informa-
tion a feature contributes to classification by utilizing
the concept of entropy. It measures the reduction in
dataset entropy after knowing the values of a partic-
ular feature (Velasco-Mata et al., 2021). The initial
entropy of the dataset, H(X), is given by the follow-
ing equation, which is based on the probability p(x)
of a sample belonging to class x. The conditional en-
tropy, H(X |Y ), after knowing the values of feature Y ,
is defined based on the probability p(y) of a sample
having feature value y ∈ Y , and the probability p(x|y)
of a class x sample having feature value y ∈ Y .

H(X) =−
X

∑
x=1

p(x) log(p(x)) (6)

H(X |Y ) =−∑
y

p(y)∑
x

p(x|y) log(p(x|y)) (7)

3.3 Machine Learning Work Flow

In our study, we employed four machine learning al-
gorithms for classifying cyberattacks in IoMT net-
work flow data: Decision Tree (DT), Random Forest
(RF), XGBoost (XGB) and K-Nearest Neighbors (K-
NN). Decision Tree (DT) is a non-parametric super-
vised method for classification and regression. DTs
classify data by evaluating attributes at each node
until reaching a decision. Random Forest (RF) is
an ensemble method of decision trees, chosen for
its robustness, ability to manage complex datasets,
and compatibility with diverse features. XGBoost, a
gradient-boosting algorithm, optimizes using second-
order gradients and applies L1/L2 regularization to
reduce overfitting and enhance performance. Its
efficiency, interpretability, and scalability make it
ideal for large datasets. Lastly, K-Nearest Neighbors
(KNN) is a distance-based algorithm for classification
and regression.

Our classification models were evaluated for
IoMT attack detection using confusion matrices for
both binary and multi-class classification. For binary
classification, True positives(TP) (correctly classified
attacks), True negatives (TN) (correctly classified be-
nign traffic), False negatives (FN) (misclassified at-
tacks), and False Positives (FP) (misclassified benign
traffic) were recorded. In this study, we have utilized
the F1 score metric to evaluate distinct subsets of fea-
tures. The F1 score is defined as the harmonic mean
of precision (P) and recall (R). It provides a more ap-
propriate measure of incorrectly classified cases com-
pared to accuracy. We have employed the harmonic
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mean of the F1 score, as it penalizes extreme values.

F1 score =
2×P×R

P+R
(8)

To train the models in binary classification, we
have taken 5,000 samples of each class label. This
results in a total of 10,000 samples from two labels.
On the other hand, for the multi-class classification
involving different distinct classes, we ensured an
equal number of samples from each label, even for
the classes with fewer instances, to maintain a bal-
anced representation across all attack types. In the
preprocessing step, after applying the Pearson corre-
lation, balanced samples were drawn from the dataset
of interest. Then, the datasets were divided into train-
ing and testing subsets in an 80/20 ratio. For evalu-
ating each feature set with models, Random Search
hyperparameter tuning was used for training the clas-
sification algorithms.

4 RESULTS AND DISCUSSIONS

This study analyzed the discriminatory power of net-
work traffic flow features using filter-based feature
selection techniques, including Fisher Score, Mutual
Information, and Information Gain, for a machine
learning-based intrusion detection function in IoMT
healthcare networks. The analysis was conducted for
binary and multiclass classification tasks on the CI-
CIoMT2024 and IoMT-TrafficData datasets.

First, we applied Pearson’s linear correlation co-
efficient (r) as a data preprocessing step to remove
redundant and irrelevant data features. Any feature
highly correlated with another feature (|r|> 0.80) was
removed, keeping only one. As a result, out of the ini-
tial set of 44 features used to describe each sample in
the dataset, 36 features remained in the final feature
set. After removing the Pearson co-related features,
in IoMT-Traffic dataset, we get 21 features, however,
we also removed is attack feature as it represent bi-
nary label. The final feature list contains 20 features.

After applying Pearson correlation and excluding
unnecessary features, we applied three filter-based
feature selection methods, i.e., Fisher Score, Mu-
tual Information, and Information Gain. These meth-
ods were used to rank the importance of the re-
maining reduced features. An iterative, stepwise ap-
proach was used to train the ML models for each
filter-based feature selection method (Fisher Score,
Mutual Information, and Information Gain). Start-
ing with the highest-ranked feature, we added one
feature at a time, trained the model, and evaluated
its performance progressively. For example, if the

features were ranked as f = { f1, f2.. fn}, the model
was first trained using only the top-ranked feature
subset { f1}, followed by training with { f1 and f2},
then with { f1, f2, . . . fn} This process was repeated
for all (n) ranked features in each method for both
datasets. At each step, we added the next highest-
ranked feature, as determined by the feature selec-
tion method, to the feature set incrementally to as-
sess its impact on the model performance. The per-
formance classifiers—Decision Tree (DT), Random
Forest (RF), K-Nearest Neighbor (KNN), and XG-
Boost (XGB)—were evaluated based on the F1 score
for both binary and multiclass classification tasks.

From the CICIoMT-2024 dataset, Binary clas-
sification was used to differentiate between benign
and attack traffic. Two types of studies were per-
formed for multi-class classification: category-based
and attack-based classification. In the category-based
classification, we identified six categories of network
traffic: benign, MQTT attacks, DDoS, DoS, Recon-
naissance, and ARP spoofing attacks, referred to as
the 6-class classification. In the attack-based classifi-
cation, there were 19 classes, which included various
attack types such as ARP Spoofing, Ping Sweep Scan,
Reconnaissance VulScan, OS Scan, Port Scan, Mal-
formed Data Packets, Connect Flood (DoS), Publish
Flood (DDoS), Publish Flood (DoS), Connect Flood
(DDoS), TCP (DoS), ICMP (DoS), SYN (DoS), UDP
(DoS), SYN (DDoS) , TCP (DDoS) , ICMP (DDoS) ,
and UDP (DDoS). Attack-based detection is referred
to as a 19-class classification.

Fig. 2 shows the algorithm’s performance com-
parison using different feature selection methods on
the CICIoMT2024 dataset for binary classification.
Across all three feature selection methods, the clas-
sifiers’ performance rapidly improves by adding the
first few features. However, the performance plateau
shows only marginal improvements as more features
are added. When all 36 features were included,
a small subset of highly informative features had
already achieved high performance across models.
Most classifiers achieved high F1 scores (above 0.99)
with only 5-10 features. Notably, XGB and RF
consistently reached near-optimal performance with
fewer than five features, while DT and KNN demon-
strated more gradual improvements as features were
added, achieving their best results after more features
were incorporated into the model.

Attacks categories (Figure 3) and 19-classes based
classification (Figure 4) show almost the same per-
formance in comparison with binary classification as
XGBoost and Random Forest again perform best, par-
ticularly when fewer features are used. However, Mu-
tual Information demonstrates overall higher model
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(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 2: Comparison of algorithms performance using Feature selection methods over CICIoMT2024 data set for Binary
Classification.

(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 3: Comparison of algorithms performance using Feature selection methods over CICIoMT2024 data set for 6-class
Classification.

(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 4: Comparison of algorithms performance using Feature selection methods over CICIoMT2024 data set for 19-class
Classification.

performance early on, i.e., for the first three features
in binary classification compared to multi-class clas-
sifications. Figure 4 shows that KNN performance
drops dramatically after the first 4 features in the case
of Information Gain. This shows that KNN does
not work well for multi-class classification in the CI-
CIoMT2024 dataset.

From the IoMT-TrafficData dataset, binary classi-
fication was used to differentiate between benign and
attack traffic and multi-class classification was used
to classify the attack traffic further. In the attack-
based classification, there were 9 classes, which in-
cluded 8 different types of cyberattacks i.e. DoS (Ap-
pachekiller, Slowread, Rudeadyet, Slowloris), Dis-
tributed Denial of Service (DDoS), ARP Spoofing,
Buffer Overflow (Camoverflow), MQTT Malaria, and

Network Scanning (Netscan).
Table 1 presents the classification performance re-

port of the XGBoost model on both CICIoMT2024
and IoMT-TrafficData, using selected top-15 features
from Information Gain (IG) feature selection. Both
datasets show excellent binary classification perfor-
mance, with accuracy, precision, recall, and F1-score
around 0.997 for both classes (attack and benign),
indicating strong classification ability. On the CI-
CIoMT2024 dataset, the model performs well across
6 and 19-class classifications, with high accuracy
( 0.977) and consistent metrics, though performance
slightly drops for complex classes like Recon and
ARP Spoofing.

On the IoMT-TrafficData dataset, accuracy re-
mains high at 0.987, with perfect precision and recall
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(a) Fisher Score Features (b) Mutual Information (c) Information Gain

Figure 5: Comparison of algorithms performance using Feature selection methods over IoMT-TrafficData dataset for Binary
Classification.

(a) Fisher Score (b) Mutual Information (c) Information Gain

Figure 6: Comparison of algorithms performance using Feature selection methods over IoMT-TrafficData dataset for Multi-
class classification (9 classes).

Table 1: Classification report of selected top-15 features from Information Gain (IG) feature selection for the CICIoMT2024
dataset & IoMT-TrafficData , using the XGBoost model for all three classification types.

Dataset Classification type Binary 6-Class classification report

CICIoMT2024 dataset

Metric\class Attack Benign Metric\class ARP Spoofing Benign DDoS DoS MQTT Recon

Accuracy 0.997 0.997 Accuracy 0.977 0.977 0.977 0.977 0.977 0.977
Precision 0.999 0.994 Precision 0.918 0.959 0.999 1.000 0.997 0.994

Recall 0.995 0.999 Recall 0.967 0.945 1.000 0.998 0.993 0.962
F1-Score 0.997 0.997 F1-Score 0.942 0.952 1.000 0.999 0.995 0.978

19-Class classification

Metric/Class
ARP

Spoofing
Benign

MQTT-DDoS
-Connect Flood

MQTT-DDoS
-Publish Flood

MQTT-DoS
-Connect Flood

MQTT-DoS
-Publish Flood

MQTT-Malformed
Data

Recon-OS
Scan

Recon-Ping
Sweep

Recon-Port
Scan

Recon-
VulScan

TCP IP-
DDoS-ICMP

TCP IP-
DDoS-SYN

TCP IP-
DDoS-TCP

TCP IP-
DDoS-UDP

TCP IP-
DoS-ICMP

TCP IP-
DoS-SYN

TCP IP-
DoS-TCP

TCP IP-
DoS-UDP

Accuracy 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967 0.967
Precision 0.902 0.931 1.000 1.000 1.000 1.000 0.899 0.870 0.947 0.902 0.915 1.000 0.997 1.000 0.997 1.000 1.000 1.000 1.000

Recall 0.877 0.922 1.000 0.987 0.997 0.997 0.958 0.831 0.967 0.902 0.927 1.000 1.000 1.000 1.000 0.997 0.997 1.000 0.997
F1-Score 0.889 0.926 1.000 0.994 0.998 0.998 0.927 0.850 0.957 0.902 0.921 1.000 0.998 1.000 0.998 0.998 0.998 1.000 0.998

Classification type Binary 9-Class classification report

IoMT-Traffic dataset

Metric\class Attack Benign Metric\class Apachekiller Arpspoofing Camoverflow Mqttmalaria Netscan Normal Rudeadyet Slowloris Slowread

Accuracy 0.997 0.997 Accuracy 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987
Precision 0.997 0.997 Precision 0.993 1.0 1.0 0.996 1.0 0.974 0.982 0.977 0.965

Recall 0.997 0.996 Recall 0.981 0.987 1.0 0.989 1.0 0.993 0.966 0.981 0.997
F1-Score 0.997 0.997 F1-Score 0.987 0.993 1.0 0.993 1.0 0.983 0.974 0.979 0.977

for many attack types (e.g., Camoverflow, Netscan),
but slightly lower performance for some attack classes
like Slowread and Rudeadyet.

Fig. 5 shows the algorithm’s performance com-
parison using different feature selection methods on
the IoMT-TrafficData dataset for binary classification.
Across Mutual Information, the classifiers’ perfor-
mance rapidly improves with the addition of the first
few features. Fisher Score follows the same pattern;

however, it gives a slightly lower Model performance.
Information Gain effectively ranks features by their
usefulness, as the performance improves significantly
with the first few features. XGBoost emerges as the
best-performing classifier, while KNN performance
tends to decrease after the first 5 features. The results
suggest that focusing on the top-ranked features can
optimize classifier performance while reducing com-
putational costs. Figure 6 compares algorithm per-
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Table 2: Binary classification top 15 best features.
Type of features CICIoMT2024 dataset IoMT-TrafficDat dataset

Protocol

TCP
UDP proto 2
ICMP service

IPv
DNS
HTTP

Protocol Type
HTTPS

Traffic Volume
Tot sum total bytes
Tot size payload ratio

total activity

Temporal metrics Duration iat is unidirectional True
IAT duration weighted pkts

Packets rate Rate
srate

Flags

ack flag number history responder
psh flag number hisoty originator
syn flag number

rst count
syn count
ack count
fin count

Other statistical features

Std byte difference
variance fwd bwd pkts diff

Max fwd bwd payload avg diff
Magnitude fwd bwd payload tot diff

Min flow bwd payload diff
Radius flow payload range
AVG pkt difference

Other features Header Length pkts unidirectional traffic 1
‘

formance for multi-class classification (9 classes) on
the IoMT-TrafficData dataset. Performance gradually
improves with the increase in features in the case of
the Fisher Score. However, models obtain higher per-
formance earlier (after four features) in the case of
Mutual Information and Information Gain. All mod-
els show comparable performance across the feature
selection methods, except KNN, which lags behind
when using the Information Gain method.

By examining the important features in both
datasets, it is possible to identify the important net-
work characteristics for attack detection in IoMT traf-
fic. Table 2 illustrates the union of the top 15 fea-
tures selected by different feature selection meth-
ods. The CICIoMT2024 dataset includes transport-
layer protocol features, TCP, and UDP, while the
IoMT-TrafficData dataset uses proto 2, which also
represents transport-layer protocols. Therefore, we
conclude that TCP and UDP are important fea-
tures. Both datasets also emphasize application-
layer protocols, such as HTTP, DNS, and SMTP
(in CICIoMT2024) and service (in IoMT-TrafficData
dataset), which identify application-layer protocols
as well. Tot sum (CICIoMT2024) provides a key
metric to understand traffic volume when consid-
ered alongside total pkts and total bytes in the IoMT-
TrafficData dataset. Flags in CICIoMT2024 directly
capture counts of specific TCP flags, while IoMT-
TrafficData’s history responder encapsulates the se-
quence of connection states, reflecting the flags’ tran-
sitions. Variability measures in packet lengths in a
flow, such as Std and Variance (Ratio of the variances

Table 3: 19-class classification top 15 best features in CI-
CIoMT2024 dataset.

Type of features Fisher Score Mutual information Information Gain

Protocol

ICMP IPv ICMP
TCP DNS TCP
UDP HTTP Protocol type
ARP HTTPS
LLC Protocol type
Ipv

Protocol Type

Traffic Volume tot sum tot sum
tot size

Temporal metrics IAT
Duration

Packets rate Rate Rate
srate srate

Flags

ack flag number ack flag number syn flag number
psh flag number
syn flag number
fin flag number

Header Attributes Header Length Header Length

Other statistical features
Variance Variance Variance

Mangnitude
Weight

Other
syn count syn count syn count
ack count ack count rst count
fin count fin count

Table 4: 9-class classification top 15 best features in IoMT-
TrafficData dataset.

Type of features Fisher Score Mutual information Information Gain
Protocol proto 2 service service

Traffic Volume
total bytes total bytes total bytes

payload ratio payload ratio payload ratio
total pkts total data pkts total data pkts

total header size total header size
total payload volume total payload volume

Temporal metrics
duration weighted pkts duration weighted pkts duration weighted pkts

iat is unidirectional True total activity
iat is unidirectional False iat is unidirectional False

Flags
history responder history responder
history originator history originator

Header Attributes header size diff header size ratio header size ratio

Other statistical features

byte difference byte difference pkt difference
pkts unidirectional traffic 1 pkt difference pkts unidirectional traffic 1
pkts unidirectional traffic 0 fwd bwd pkts diff fwd bwd pkts diff

fwd bwd payload avg diff fwd bwd payload avg diff
fwd bwd payload tot diff

of incoming to outgoing packet lengths in the flow) in
CICIoMT2024, along with pkt diff, byte difference
and fwd bwd payload tot diff, which capture the
fluctuations and differences in packet lengths in
IoMT-TrafficData, are essential metrics in identify-
ing anomalies in IoMT networks. Temporal features
such as Duration and IAT (Inter-arrival time) in the
CICIoMT2024 dataset can be compared with dura-
tion weighted pkts and iat is unidirectional False in
the IoMT TrafficData dataset, which provides ad-
ditional directional features, i.e., unidirectional/bi-
directional that enhance understanding of packet ar-
rival patterns.

Table 3 identifies several common features across
Fisher Score, Mutual Information, and Information
Gain methods (selected by at least two methods) for
19-class classification in CICIoMT2024 dataset. Fea-
tures that relate to protocols (ICMP, TCP, Protocol
type), traffic volume (tot sum), packet transmission
rate (Rate, Srate) , flags (ack flag number, syn flag
number, syn count), and statistical properties (vari-
ance), are pivotal for distinguishing patterns and de-
tecting multiple attacks in IoMT traffic, highlighting
their relevance in network security analysis.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

256



The common important features underlined in Ta-
ble 4 reveal crucial insights into detecting multi-
ple attacks in IoMT-TrafficData dataset for 9-class
classification. In traffic volume, features like to-
tal bytes, payload ratio, total header size, and to-
tal payload volume appear frequently, emphasizing
the significance of overall data transferred and packet
structure. Temporal metrics are also prominent, with
duration weighted pkts, which capture the rate or
proportion of packets over time within a flow, and
iat is unidirectional False, capturing consistency of
IAT with bidirectional traffic flowing traffic. Among
flags, history responder and history originator recur,
reflecting connection state transitions. It should also
be noted that Mutual Information could not grasp
any flag information. The header attribute fea-
ture, header size ratio, refers to the proportion of
the header size relative to the total size of a packet
also highlights the significance of packet header size.
Lastly, statistical features like byte difference (differ-
ence in payload bytes between the originator and re-
sponder), fwd bwd pkts diff (difference in the num-
ber of packets sent forward and backward in the con-
nection), fwd bwd payload avg diff (difference in
average payload size per packet between forward and
backward traffic), and pkts unidirectional traffic 1
(indication of unidirectional traffic) show significance
in multi-class attack classification in IoMT traffic.

The analysis of Figures 2, 3, 4, 5, and 6 reveals
that filter-based methods exhibit excellent perfor-
mance for binary classification across both datasets.
Notably, these models achieve higher performance
levels early on, often after selecting just 3 to 4 features
using information gain for feature selection. This in-
dicates that these methods are effective in differen-
tiating between benign and malicious traffic with a
minimal set of features. As the number of selected
features increases, the models’ performance steadily
improves. Significant accuracy is attained with 7 to 8
features, particularly for multi-class classifications (6-
class, 9-class, and 19-class) using information gain.
Among the evaluated models, the XGBoost model
achieved the highest performance with fewer features
selected through information gain feature selection.

5 CONCLUSION AND FUTURE
WORK

In this work, we performed filter-based feature se-
lection methods (Fisher Score, Mutual Informa-
tion, Information Gain) to identify the best features
in two IoMT datasets (CICIoMT2024 and IoMT-
TrafficData,). We compared the performance of four

machine learning algorithms (Decision Tree, Random
Forest, K-Nearest Neighbors, and XGBoost) in both
datasets. We checked the performance for binary and
multi-class classifications in both datasets.

Fisher Score works well for both datasets, espe-
cially for classifiers like Decision Tree and KNN,
which show gradual improvements as more features
are added. Mutual Information is highly effective
across both datasets, particularly for Random For-
est and XGBoost, which reach optimal performance
with fewer features. For the CICIoMT2024 dataset
in binary classification, XGBoost and Random For-
est perform best with Fisher Score or Mutual Infor-
mation, requiring fewer features for optimal results,
while Multi-class (6-class & 19-class) observed a
similar trend with XGBoost and Random Forest con-
sistently outperforming other models when using with
the mentioned methods.

Information Gain works better for CICIoMT2024
datasets but shows a different pattern for binary clas-
sification in the IoMT-TrafficData dataset, where per-
formance does not improve as rapidly compared to the
other methods. Furthermore, the binary classification
of IoMT-TrafficData with XGBoost and Random For-
est shows superior performance with Mutual Informa-
tion and Fisher Score, achieving near-optimal results
with only a few features. Fisher Score and Mutual In-
formation are again the most effective in Multi-class
classification, especially for Random Forest and XG-
Boost in IoMT-TrafficData.

Our paper highlights key features for IoMT attack
detection across both datasets, including essential
transport-layer protocols (TCP, UDP), application-
layer identifiers (e.g., HTTP, DNS), and traffic vol-
ume metrics (e.g., total bytes, payload ratio). Tem-
poral and directional metrics, like Duration, IAT,
and connection-state flags (history responder), en-
hance understanding of packet flows, while variability
and statistical measures (variance, byte difference)
are crucial for identifying attack patterns, underscor-
ing their importance in multi-class attack classifi-
cation in IoMT traffic. Furthermore, the XGBoost
model demonstrates excellent performance in both
binary and multi-class classification across the CI-
CIoMT2024 and IoMT-TrafficData datasets, with mi-
nor variations in handling certain attack types. Our
study shows that filter-based methods perform well in
binary classification with 3-4 features, while multi-
class classification achieves significant accuracy with
7-8 features across both datasets. Furthermore, this
study also illustrates that using the top-15 features of
the selection of information gains (IG) features for the
XGboost model, achieving excellent binary classifica-
tion results ( 0.997 accuracy, precision, recall, and F1
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score) and very good performance in multiclass clas-
sifications, with slight drops for few complex attacks,
thereby opening doors for further research.

In future work, exploring hybrid feature selec-
tion methods, such as combining Mutual Informa-
tion with optimization techniques like Genetic Al-
gorithms, could improve feature relevance. Imple-
menting non-stationary models to dynamically adapt
to new features and unseen attacks would also en-
hance the robustness of intrusion detection systems
in healthcare IoMT networks. Furthermore, extend-
ing the work to include other types of datasets, such
as telemetry, software, hardware threats, or monitored
data from implantable devices, could broaden the ap-
plicability of the results.
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view of feature selection methods with applications.
In 2015 38th International Convention on Information
and Communication Technology, Electronics and Mi-
croelectronics (MIPRO), pages 1200–1205.

Kalakoti, R., Bahsi, H., and Nõmm, S. (2024a). Improving
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Improving IoT Security With Explainable AI:
Quantitative Evaluation of Explainability

for IoT Botnet Detection
Rajesh Kalakoti , Graduate Student Member, IEEE, Hayretdin Bahsi , and Sven Nõmm

Abstract—Detecting botnets is an essential task to ensure the
security of Internet of Things (IoT) systems. Machine learning
(ML)-based approaches have been widely used for this purpose,
but the lack of interpretability and transparency of the models
often limits their effectiveness. In this research paper, our aim
is to improve the transparency and interpretability of high-
performance ML models for IoT botnet detection by selecting
higher quality explanations using explainable artificial intelli-
gence (XAI) techniques. We used three data sets to induce binary
and multiclass classification models for IoT botnet detection, with
sequential backward selection (SBS) employed as the feature
selection technique. We then use two post hoc XAI techniques
such as local interpretable model-agnostic explanations (LIME)
and Shapley additive explanation (SHAP), to explain the behavior
of the models. To evaluate the quality of explanations gener-
ated by XAI methods, we employed faithfulness, monotonicity,
complexity, and sensitivity metrics. ML models employed in this
work achieve very high detection rates with a limited number
of features. Our findings demonstrate the effectiveness of XAI
methods in improving the interpretability and transparency of
ML-based IoT botnet detection models. Specifically, explanations
generated by applying LIME and SHAP to the extreme gradient
boosting model yield high faithfulness, high consistency, low
complexity, and low sensitivity. Furthermore, SHAP outperforms
LIME by achieving better results in these metrics.

Index Terms—Botnet, complexity, consistency, explainable arti-
ficial intelligence (XAI), faithfulness, feature importance, Internet
of Things (IoT), local interpretable model-agnostic explanations
(LIME), posthoc XAI, robustness, Shapley additive explanation
(SHAP).

I. INTRODUCTION

THE RISE of Internet of Things (IoT) botnets [1] has
become a significant security challenge for devices con-

nected to the Internet, including homes, businesses, and critical
infrastructure. A botnet is a group of Internet-connected
devices controlled by a single entity, known as the botmaster,
who can use the botnet for various malicious purposes, such as
Distributed Denial-of-Service (DDoS) attacks, spamming, and
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cryptocurrency mining. Due to the large number of devices
connected to the Internet, the sizes of the botnets consisting of
IoT devices can be much larger than traditional botnets, posing
a more significant threat to Internet security [2]. Detecting IoT
botnets is a complex task due to their distributed nature and
the various devices that they infect [1]. Traditional detection
methods, such as signature-based and anomaly-based methods,
are insufficient for detecting IoT botnets, as attackers can
rapidly modify their behavior to evade detection. Machine
learning (ML) has emerged as a promising technique for
detecting IoT botnets, as it can analyze large amounts of
data and identify patterns that humans may find difficult to
recognize [3], [4], [5].

Despite the impressive results achieved by many ML
techniques in the cyber security domain, significant concern
arises due to the inherent lack of interpretability in ML
models, which implies that security experts may encounter
difficulties trusting the outputs of ML models because they
do not fully understand how a model reaches a particular
decision or classification. Trust is a considerable challenge
in intrusion detection systems (IDSs) and many other critical
systems. Due to this challenge, new approaches have been
developed in the last few years with the goal of enhancing
the explainability of ML models so that their output is
more interpretable. This notion is known in the literature as
explainable artificial intelligence (XAI) [6]. The integration
of XAI techniques has caused a new trend in cybersecurity
research that emphasizes the inclusion of additional layers
of explainability for humans in the loop [7], [8]. Several
works have used XAI techniques for IoT botnet detection
systems [9], [10]. Furthermore, some survey articles have
extensively highlighted open questions and future research
directions in this domain [11], [12], [13], [14].

Many ML models, such as convolutional neural networks
(CNNs), are often regarded as “black boxes,” lacking trans-
parency in decision-making. The goal of XAI is to improve
the understanding of how ML models operate. For example,
when identifying potential IoT botnets, an XAI method can
reveal which network features are most critical in detecting the
presence of malicious activity on IoT devices. This additional
information is known as an “explanation.” Explanations help
users understand the models and trust the decisions they make.
Model designers and ML experts can use explanations to
enhance the performance of the model. XAI explanations
can be categorized into global and local scopes. The local
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explanation in the model focuses on explaining individual
predictions, whereas the global explanation unveils the overall
behavior of the model. In XAI, models can achieve explana-
tions through an intrinsic (model-specific) approach, in which
explainability is integrated into the model during training and
is not transferable, or a post hoc (model-agnostic) approach.
The post-hoc XAI method is independent of any architecture
and can be applied to any trained ML model.

Despite using an enormous number of tools and systems,
experts are still highly involved in cyber security operations
(e.g., incident handling, security monitoring, and vulnerability
management). Identifying the incident, justifying the rele-
vant findings, determining the possible course of action, and
selecting and applying the most feasible countermeasure are
complex tasks in which complete automatization is challeng-
ing to achieve. Specifically, in intrusion detection (ID) tasks,
experts want to be sure of the findings, especially in high-
stake situations, as such findings are essential input for many
follow-up operations. Thus, explainability is as crucial as high
detection capability in IDS using learning models that are of
a “black-box” nature [15].

Post hoc explainability methods that are agnostic to any
learning model have gained attraction in research circles
due to their greater applicability [16]. Local interpretable
model-agnostic explanations (LIME) [17] and Shapley additive
explanation (SHAP) [18] have emerged as prominent local
explainers that provide detailed explanations of the given
instance and its model output. More specifically, they assign
importance scores to features that play a key role in model
decisions. Thus, experts can gain insight into the model output
by checking whether such features make sense within the
context of the corresponding cyber-incident. However, the
quality of these explainability methods has emerged as a
concern, as these methods use additional instruments (e.g.,
linear models at the point of interest, reflect game theory in
identifying the importance score), which may introduce errors
into the explanations [19]. Specifically, numerous current XAI
techniques may result in unreliable explanations in real-world
scenarios due to limited qualitative evaluation [20]. Addressing
such issues is vital for IDSs in IoT networks, especially those
capable of revealing sensitive information, such as temporal
patterns of device activity. XAI approaches for ID are still
in their early stages, with limited available literature [11],
[12], [13], [14]. As XAI-based solutions for IDSs continue
to increase, it becomes crucial to thoroughly evaluate their
explainability components. This evaluation is essential to
ensure that the explainability techniques employed are truly
able to be deployed in real-world scenarios and contribute
to understanding model outputs. Therefore, the design of an
XAI system that includes robust qualitative and quantitative
evaluation procedures for XAI methods used in the real world
is critically essential for effective adoption in IDSs.

To overcome the above-mentioned challenges, our research
emphasizes the significance of considering the quality of
explainability using quantitative evaluation alongside the
detection performance of models. We advocate for including
this evaluation as a significant criterion for building models
that security experts can trust in XAI-based IDS. In this

research paper, first, we employed sequential backward selec-
tion (SBS) to perform feature selection on three IoT botnet
data sets and then created learning models. Furthermore, we
used LIME and SHAP as posthoc local explanations to provide
insight into the models’ behavior. We evaluated the quality and
usefulness of the local explanations generated by these two
posthoc explainers. For the evaluation purpose, we used four
criteria: 1) faithfulness (how well the explanations match the
actual behavior of the models); 2) consistency (how similar
the explanations are for similar inputs); 3) complexity (how
understandable the explanations are); and 4) robustness (how
well the explanations hold up under perturbations of the input).
Our evaluation of the local explanations using these criteria
allowed us to determine their reliability and informativeness
in explaining the outcomes of the models for XAI-based IDS.
Our investigation highlights a notable gap in the existing
literature-based on our knowledge, no empirical study has
been performed that evaluates the quality of post hoc local
explainability methods for network ID tasks, in general, and
IoT botnet detection tasks, in particular. By providing insights
into the significance of XAI within the cybersecurity domain,
this article aims to contribute to the ongoing efforts to make
AI more transparent, reliable, and beneficial for society. The
contribution of this work can be summarized as follows.

1) A framework employing SBS feature selection to
enhance explainability by selecting a subset of discrim-
inating features, thus reducing the complexity of the
model and facilitating a more transparent understanding
of the output.

2) Evaluation of the quality of local explanations provided
by two widely used post hoc XAI methods, LIME
and SHAP, for explaining model decisions in the con-
text of IoT botnet detection. The evaluation includes
quantitative metrics, such as faithfulness, monotonicity,
complexity, and sensitivity.

3) Evaluation and comparison of local explanations applied
to various black box nature ML models for IoT botnet
detection in binary and multiclass classification prob-
lems within a detailed benchmarking setting.

The findings of the present research suggest that a carefully
designed benchmarking study can identify high-performance
detection models, which can also induce high-quality expla-
nations. Thus, it is possible that security experts do not need
to sacrifice detection performance over explainability for the
ML task addressed.

The structure of the research work is described as follows.
Section II provides the background and review of the study
literature. Section III focuses on IoT botnet detection and
XAI techniques. The results of the study are presented in
Section IV. Section V provides a discussion of the main
findings of this research work. Finally, conclusions are drawn
in Section VI.

II. BACKGROUND AND RELATED WORK

The idea of explaining ML models [21], [22] has become
increasingly important and has been explored by researchers
in various domains [23]. Researchers have investigated
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the explainability in healthcare care [24], [25], [26], social
science [27], and in the field of human–computer interaction
(HCI) [28], [29], [30].

An explanation aims primarily at improving the human
ability to interpret an event. It can be considered an answer
to the following questions: “What?”, “Why?”, “How?”,
“What if?”, “What else?”, “Why should?”, and “Why
not?” [27], [31], [32]. Each question reveals various aspects of
an event or the process that guided it. On the other hand, the
primary function of explantation is to demonstrate the reasons
for an event (“Why?”), which could also be related to the
particular context [27]. Clearly, for crucial context-dependent
domains such as ID, The questions “what else?” refer to
additional information or context surrounding an event or alert
that can help stakeholders better understand the situation and
make more informed decisions. For example, if the system
detects an attempted intrusion, this type of question might
include the following. What other activities were occurring on
the network at the time? Were there any changes to the system
made recently that could have created a vulnerability?

While the early AI frameworks were transparent and easy
to comprehend, on the other hand, opaque and nontransparent
techniques, such as deep neural network (DNN) models, have
gained experimentally outstanding achievements in the field
of AI due to the assortment of efficient learning algorithms
and their extensive parametric field. DNN models are high-
dimensional, nonconvex, resource- and data-hungry but lack
interpretability. Therefore, DNNs are considered sophisticated
black-box models because they contain thousands of layers
and millions of parameters (weights), so the behavior of these
models cannot be understood [33]. The need for XAI among
AI stakeholders is increasing as black-box models are used
to produce effective predictions in critical settings [34]. The
jeopardy lies in making and carrying out decisions that are
not rational, legitimate, or allow for far-reaching explanations
of their activities [35]. Explanations that delineate the output
of the model are crucial. For example, in the medical domain,
experts (doctors) must disclose the reasons for the prediction
identified in the model, which requires faithful explanations
of AI decisions on diagnosis [36].

ID is a critical component of the cybersecurity domain.
It allows us to detect malicious activities that can affect the
confidentiality, integrity, and availability (CIA) properties of
information assets [37]. The widespread utilization of IoT
devices has created various attack opportunities for malicious
actors. Such devices in high-stakes applications can be directly
targeted by attackers or constitute part of the attack infrastruc-
ture as bots. Therefore, attacks launched against IoT devices
should be detected by IDSs to initiate the relevant counter-
measure actions. IDSs use different detection models, such as
signature-based, anomaly-based, and hybrid [38]. Signature-
based systems rely on the detection rules created by experts,
whereas anomaly-based systems profile benign system utiliza-
tion and detect deviations from such profiles. Hybrid models
benefit from both approaches to achieve higher detection
performance. ML models can eliminate the need for signatures
by learning from attacks and benign system activities. More
importantly, they are expected to identify unknown attacks that

signatures cannot detect. ML models can also automatically
create profiles of benign activities. Besides, some studies have
employed feature selection methods to obtain optimal features
for enhanced performance [39], [40], [41].

However, due to the black-box nature of most ML meth-
ods, the decisions made by such systems are difficult to
comprehend by security experts. The lack of transparency
is a significant issue in security operations, including ID, in
which XAI can ensure that the predictions of the models are
easily understood [8]. In some cases where experts suspect
a misclassification of the IDS decision, explanations are
necessary to diagnose the case and improve the system to
prevent future attacks and take the appropriate steps [7].

It is important to note that, despite the problems regarding
the detection of unknown and newly evolved attacks in conven-
tional signature-based systems, experts can easily understand
the detection decisions of such systems, as signature formats
reveal the technical details. ML models equipped with XAI
methods constitute a complete detection solution that can
automatically adapt and improve over time without requiring
manual effort while providing high detection performance.

A. Related Work

In the literature, various studies adapt explainability meth-
ods to network ID problems. Szczepański et al. [42] introduced
the hybrid Oracle Explainer IDS, which combines artifi-
cial neural networks (ANNs) and Decision Trees, leveraging
microaggregation techniques for improved performance [42].
The system aims to achieve high accuracy while provid-
ing human-understandable explanations for its decisions. The
authors developed an Oracle-based Explainer module that
measures the distance between clusters formed from the
CICIDS2017 data set [43] and the test instances. The closest
cluster is then used to generate an explanation for the decision.

In the study by [44], the authors propose an explainable
hybrid IDS that integrates a rule-based approach with human
experience and ML, creating a complete hybrid system. The
decision tree, a white box model known for its intrinsic
explainability, is used to provide rule-based explanations for
the ID model, making it more comprehensible to experts.

Wang et al. [8] presented a framework that uses SHAP to
harmonize local and global explanations, thus improving the
interpretability of ID decisions [8]. Local explanations clarify
the rationale behind predictions for specific instances, while
global explanations showcase the prominent features derived
from the model, illustrating the relationships between feature
importance and attack types. Furthermore, the study compares
the explanations generated for two classifier configurations,
namely, the one-versus-all classifier and the multiclass models,
using the NSL-KDD data set [45], as done in [8].

Le et al. [46] used SHAP in conjunction with Decision Tree
and random forest (RF) models to facilitate a complete IDS.
The implementation of a heatmap allowed for the visualization
of the impact of individual features on the overall model, while
a Decision Plot was used to explain specific instances of the
data set. The ToN-IoT [47] and BoT IoT [48] data sets were
used for this study.
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Suryotrisongko et al. [9] have proposed a novel model
for the detection of domain generation algorithm (DGA)
of botnets on Alexa’s Top 1M domain names and 803 333
domain names of ten DGA botnet families employed in
Conficker, Cryptolocker, Goz, Matsnu, New_Goz, Pushdo,
Ramdo, Rovnix, Tinba, and Zeus [49]. The authors have used
five classification algorithms: 1) Logistic Regression; 2) RF;
3) Naive Bayes; 4) Extra Tree; and 5) Ensemble. Of these five
algorithms, RF has achieved 95.7% accuracy using a set of
five features. Open-source intelligence (OSINT) and post hoc
XAI methods, including SHAP and LIME, were incorporated
into their work to provide a solution to incredulity toward the
model’s output and enhance the trust of the DGA detection
model.

Araki et al. [50] proposed a two-step subspace clustering
method to cluster botnets and classified their functionalities
using the DBSCAN algorithm [51]. The proposed method
divides features into multiple subspaces to individually target
hosts and generate sublabels for each subspace to illustrate
partisan aspects, such as low-size flows or a high TCP-SYN
rate. The effectiveness of the proposed method was evaluated
using two network traffic data sets: the MAWI [52] and
ISP data sets. The method combines subspace clustering and
frequent pattern mining to represent and explain essential
features. The results demonstrate that the method identified
and classified 60 bot groups that comprise 61 167 IP addresses
in the MAWI data set and 295 bot groups that comprise
408 118 IP addresses in the ISP data set. Self-explained
clustering dendrograms were used to explain the types of bots
present in the network.

Mazza et al. [53] have proposed a bot detection technique
named RTbust (Retweet Buster) that emanates from the
previous investigation of retweeting behaviors. The proposed
model [53] takes advantage of unsupervised feature extraction
and clustering. They have used long short-term memory
(LSTM) and variational autoencoders (VAEs) approaches,
which transform the retweet time series into latent feature
vectors. These vectors are then clustered with a hierarchical
density-based algorithm. Twitter accounts belonging to large
clusters are represented by malicious retweeting patterns,
labeled bots. The RTT scatter plot visualization tool (ReTweet-
Tweet) is used to come out of the black nature of a model
after RTbust has been used to understand the characteristics
of those Twitter accounts classified as bots.

Zolanvari et al. [54] have proposed a model-agnostic XAI
framework named transparency based on statistical theory
(TRUST) for numerical applications. The framework employs
factor analysis to convert input features into latent features,
uses mutual information to rank features, and then uses
a multimodal Gaussian distribution to find a new sample
that belongs to each class label. TRUST XAI has been
evaluated through a case study on three data sets, namely,
NSL-KDD [45], UNSW [55], and a data set collected from
their testbed experiment, called “WUSTL-IIoT,” on intrusion
network traffic data. Finally, compared to LIME, the TRUST
XAI model has achieved a success rate 98% in explaining
random test samples. The paper [8] addressed the challenge of
explaining IDS in computer networks. They have used deep

learning (DL) to build an IDS. Then, they developed an XAI
framework to optimize the transparency of the model. The
authors operated on the NSL-KDD [56] data set to design the
DL-based IDS. They used four XAI methods, such as SHAP,
LIME, ProtoDash, and contrastive explanations to explain the
DL ID model. A study analyzed the impact of feature selection
on the reliability of the explanations induced by the post hoc
local interpretability method, LIME [57]. In this study, the
varying number of features selected by the filter method are
used to create a model and then utilized by the explainer.
An entropy-based metric is proposed to assess the quality of
explanations based on feature selection.

With the advancement of DL in cyber security, various pilot
studies have been performed to understand the behavior of
botnet network traffic. However, cyber-security stakeholders
need help building their faith in the results of current DL
models due to bad decisions made by complex neural network
models. To deal with such problem, Kundu et al. [58] per-
formed extensive experiments by employing a combination of
synthetic and real network traffic created by the IXAI breaking
point system [59]. 1DCNN model is tested over three kinds
of data sets. The synthetic data set is generated by the IXAI
appliance, and the others are the Stratosphere IPS Project
data set [60] and Kitsune data set [61] in botnet traffic. The
authors have shown that the proposed DCNN botnet detection
models perform better than the previous ML models, with
an improvement of up to 15% for all classification results
metrics. At the same time, SHAP was deployed to provide
an understandable explanation of model decision-making and
achieve the faithfulness of cyber security stakeholders.

Even with the significant improvements in recent times,
there are significant gaps in the existing literature concerning
XAI for IoT-based IDSs, which necessitate more in-depth
investigation. A critical gap that stands out is the absence
of standardized evaluation metrics to evaluate the effective-
ness and utility of XAI techniques within the context of
the ID domain. Current research in cyber security relies
primarily on qualitative assessments of XAI approaches.
Developing a comprehensive suite of benchmarks to measure
the domain-specific facets of explainability would enable more
robust comparisons across diverse XAI methodologies and
streamline identifying optimal practices. While the works
mentioned above can be viewed as initial steps toward
introducing explainability into IoT botnet detection systems,
as of our current understanding, there still needs to be a
more quantitative evaluation of XAI techniques in the liter-
ature pertaining to cybersecurity. This highlights a need for
more rigorously evaluating the quality of generated explana-
tions, a vital prerequisite to establishing confidence in the
explanation outputs of AI systems built upon XAI princi-
ples [8], [42], [44], [46], [53], [54], [62], [63], [64], [65].

III. IOT BOTNET DETECTION AND XAI TECHNIQUES

This section presents the workflow of a framework designed
for IoT Botnet detection using XAI, as shown in Fig. 1. In
the first step, we applied feature selection to the original data
set and selected the optimal features for the classification. The
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Fig. 1. Framework used in this study: we have applied SBS feature selection and models evaluated by F1-Score. Explained models using post hoc local
explainability (LIME&SHAP). Evaluated the quality of explanations by faithfulness, monotonicity, sensitivity, and complexity.

TABLE I
SUMMARY OF THE FEATURES OF THE N-BAIOT AND MEDBIOT DATA SETS FEATURES

second step, creation of the learning models for the classifi-
cation tasks, is followed by a post-hoc step that applies XAI.
The workflow ends with the evaluation of the explanations
generated in the previous step.

The primary focus of this study is on two types of
classification problem: Binary classification and multiclass
classification. In the binary classification task, we used
network traffic data from all three data sets to distinguish
between malware and benign traffic. In this multiclass classifi-
cation task, we focus on the detection of two distinct types: 1)
botnet malware type detection, involving the classification of
deployed botnets and benign traffic, using N-BaIoT (contain-
ing Mirai, Gafgyt, and Benign) and MedBIoT (Bashlite, Mirai,
Torii, and Benign). On the other hand, 2) botnet attack type
detection, including classes, such as ACK, benign, compact,
junk, scan, syn, TCP, UDP, and UDP plain. Steps of the
framework given in Fig. 1 are explained in detail in the
following sections.

A. Data Set Description

1) N-BaIoT and MedBIoT Data Sets: The N-BaIoT [3] and
MedBIoT [66] data sets comprise features extracted from bot-
produced network traffic in a controlled testing environment.
With 115 and 100 features extracted from network traffic,
respectively, the data sets contain aggregated statistics of the
raw network streams in five-time windows: 100 ms, 500 ms,
1.5 s, 10 s, and 1 min. These time windows are coded
L5, L3, L1, L0.1, and L0.01, respectively. The features are
classified into five main categories, which are host-IP(H), host-
MAC&IP (MI), channel (HH), socket (HpHp), and network
jitter (HH_Jit). Statistical values such as packet count, mean,
and variance packet sizes are calculated for each significant
category. Additional values such as the correlation coefficient
(PCC) of packet size, radius, covariance, and magnitude are

derived for the Channel and Socket categories (see Table I).
The N-BaIoT data set consists of network traffic derived from
Mirai and Gafgyt botnets and includes network traffic from
nine different infected devices. The MedBIoT data set contains
network traffic from Bashlite, Mirai, and Torri botnets, and it
is collected at the command and control (C&C) or formation
phases. The characteristics defined for each data point reflect
the importance of specific statistical measures during the C&C
or formation phases. In the N-BaIoT and MedBIoT data sets,
attacks are performed using C&C servers, which are typically
used by botmasters to control a network of infected IoT
devices (bots). The C&C server acts as the central command
point for the botmaster to issue commands and receive data
from infected devices.

In the case of the N-BaIoT data set, Mirai and Gafgyt
botnets use C&C servers to propagate malware and coordinate
DDoS attacks. These botnets target various IoT devices,
including routers, cameras, and other smart devices, by
exploiting various vulnerabilities. Similarly, in the case of the
MedBIoT data set, the Bashlite, Mirai, and Torii botnets also
use C&C C servers to control infected devices and coordinate
attacks. These botnets also target a wide range of IoT devices,
including Locks, Switch, Fan, and Light by exploiting various
vulnerabilities in the IoT botnet attack test bed environment.

2) BoT-IoT: The Bot IoT data [48] set was generated using
the Ostinato tool, a network traffic generator that can simulate
realistic network traffic in a controlled environment. In the
case of BoT-IoT data set generation, the tool was used to
generate network traffic data for a cloud server consisting of
virtual machines and Kali Linux machines, on which various
services, such as DNS, SSH, FTP, and HTTP, were deployed.
Kali machines were used to simulate various IoT devices, and
Node-RED [67] was used as a programming tool to create
realistic behavior of the IoT devices. The data set contains
five different IoT scenarios, each representing a different
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type of IoT device: a weather station, a smart refrigerator,
motion-activated lights, a remotely activated garbage door, and
a smart thermostat. The captured network traffic data included
various types of attacks, such as UDP, TCP, OS fingerprint,
service scan, HTTP, keylogging, and data exfiltration. Based
on the source paper of the data set, we have taken the top ten
features for work in our workflow.

1) Numerical representation of feature state
(state_number).

2) Argus sequence number (seq).
3) Average duration of aggregated records (Mean).
4) Standard deviation of aggregated records (StdDev).
5) Minimum duration of aggregated records (Min).
6) Maximum duration of aggregated records (Max).
7) Source-to-destination packets per second (Srate).
8) Destination-to-source packets per second (Drate).
9) Number of inbound connections per source IP

(N_IN_Conn_P_SrcIP).
10) Number of inbound connections per destination IP

(N_IN_Conn_P_DstIP).

B. Feature Selection

Based on our previous research [41] on the selection of
in-depth IoT features on these N-BaIoT and MedBIoT, we
selected SBS of features based on the greedy search algorithm.
SBS is a feature selection method that iteratively removes
the least important features of the data set. It starts with the
entire set F of n features and evaluates the performance of the
classification algorithm using all features. Then, it removes one
feature at a time and creates a new subset of features with n−1
features. The evaluation function is used again to calculate the
algorithm’s performance with the reduced set of features. The
process continues until the best optimal number of features is
derived or until the algorithm’s performance stops improving.
SBS works in a top-to-bottom method; the worst feature is
removed at each iteration. Here are the following steps.

1) S = feature set, F = f1, f2, . . . , fn.
2) while |F|>1 do

#|F| is size of the feature set F.
3) fi = argminj∈F[J(S − fi)].
4) S=S − fi.
5) F = F − fi.

C. Classification

The methodology used to perform ML experiments on
a large data set that contains network traffic samples. The
initial data set was large enough to provide samples that
could be balanced based on different characteristics of the
data set, such as malware type, attack type, and device type.
The data was preprocessed to ensure balanced samples were
drawn and then proportionally divided into training and testing
sets (80/20). Several classification algorithms were tested,
including extreme gradient boosting (XGBoost), light gradient
boost machine (LGBM), gradient boosting classifier (GBC),
RF, extremely randomized trees (ET), logistic regression,
support vector machine (SVM), and Ada-boost. The last three
algorithms had lower performance and were excluded from

further investigation. A tenfold cross-validation was performed
to find the optimal hyperparameters for each classifier and
feature selection technique. A randomized search was used to
ensure the best configuration for each classification algorithm.

This study uses the F1 score metric to assess the feature set
derived from the wrapper method. Defined as the harmonic
mean of precision (P) and recall (R) [68], the F1 score [see (1)]
offers a more appropriate evaluation of misclassified instances
compared to accuracy. Precision represents the proportion
of accurately identified botnet samples among all samples
classified as botnets, while recall corresponds to the fraction
of correctly identified botnet samples with the total botnet
samples in the data set. The choice of the harmonic mean of
the F1 score is driven by its ability to penalize extreme values,
ensuring a more balanced assessment

F1-score = 2 × precision × recall

precision + recall
. (1)

D. XAI Methods

In our research, we are studying two types of posthoc
xai methods for understanding IoT botnet predictions. These
approaches, known as SHAP and LIME, are widely acknowl-
edged and extensively employed in the field of XAI. Our main
goal is to use these methods to explain how predictions are
made, which is crucial for generating alerts. Additionally, we
aim to evaluate these XAI methods when applied to IoT botnet
detection. Below, we provide a succinct summary of LIME and
SHAP methods and the evaluation metrics for these methods.

For data set D, input x ∈ Rd, where d is the dimensionality
of the feature set, and the black box model M maps the
input to an output M(x) ∈ Y. Denote D = {(xi, yi)} as the
collection of all input-output pairs in the data set. A post hoc
explanation, denoted as g as an explanation mapping that for
predictor M and point of interest x returns an importance
score g(M, x) = ϕx ∈ Rd for all features. Denote D : Rd ×
Rd �→ R≥0 as a metric in the space of explanations and SRd ×
Rd �→ R≥0 a metric in the space of inputs. The evaluation
criterion μ is the mapping that takes predictor M, explainer
g and the point of interest x as arguments and returns a scalar
value for g.

1) LIME: This XAI method aims to provide local, inter-
pretable explanations for black-box models by approximating
the model’s behavior in the local region around a specific
instance [17]. Consider an original instance x ∈ Rd and let g ∈
G represent an explanation of the model M, where G denotes a
class of interpretable models suitable for visual representations
to users (e.g., linear models). The explanation ϕ(x) provided
by Lime can be obtained through the following equation:

ϕ(x) = argmin
g∈G

{L(M, g, ωx) + �(g)}. (2)

In the case of a classification model M, ωx represents a
proximity measure or weight between the original instance
and the new one. A higher value of ωx signifies a stronger
similarity between the new and the original instances. L is
a loss function used to measure the proximity between the
predictions made by the explanation model and the original
model, and �(g) quantifies the complexity of model g.
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Hence, LIME aims to train a locally interpretable model
by minimizing the function L(M,g,ωx)+�(g). Subsequently,
predictions for an instance are made using the locally com-
puted explanation model ω(x).

2) SHAPs: This method is also another popular method
to interpret the output of ML models [18]. It is based
on the concept of Shapley values from cooperative game
theory [69] and explains each feature’s contribution to the
model prediction [70]. SHAP is typically applied to tabular
data and exhibits the following properties: local accuracy,
handling of missing data, and consistency [71]. Local accuracy
ensures that the explanation model matches the original model.
Missingness ensures that missing features in the original input
do not have an impact. Consistency, where increasing the
impact of a feature in the model should also result in a higher
SHAP value for that feature, regardless of other features.

SHAP creates simplified inputs z by mapping x to z through
x = hx(z). The original model M(x) can be approximated
using binary variables with a linear function

M(x) = g(z) = ϕ0 +
d∑

i=1

ϕiZi (3)

where z = {0, 1}d, d represents the number of input features,
ϕ0 = M(hx(0)), and ϕi denotes the feature attribution value

ϕi =
∑

S∈F\{i}

|S|!(d − |S|! − 1)!

|d|!
[
Mx(S ∪ i) − M(S)

]
(4)

Mx(S) = M
(

h−1
x (z)

)
= E

[
[M(x)]|xs

]
(5)

where F represents the nonzero input set in z, S is the subset
of F excluding the ith feature from F, and ϕi is the SHAP
value, a unified measure of additive feature attributions.

Since computing E[[M(x)]|xs] is particularly difficult,
many approximation methods have been created, including
Kernel SHAP, Deep SHAP, and Tree SHAP. In our study,
we employed Tree SHAP due to its efficient computation of
E[[M(x)]|xs] values by leveraging decision tree structures,
particularly well suited for ensemble learning models. With the
number of trees T and the maximum number of leaves in any
tree L, the initial complexity of computing E[[M(x)]|xs] is
O(TL2d). However, utilizing Tree SHAP with a maximum tree
depth of h reduces the complexity to O(TL22), significantly
reducing the computational complexity from a high-order
exponential level to a quadratic level.

So, Tree SHAP takes as input a trained tree-based model
that was trained using input data D (an m × d matrix with m
instances and d features). This input leads to the generation of
an m × d matrix of SHAP values, where each value quantifies
the contribution of a feature to the prediction of the respective
instance.

E. Evaluation of XAI Methods

In the past, assessing attribution-based explainability’s qual-
ity relied on qualitative and subjective evaluation. For instance,
Eriksson and Grov [72] have used SHAP and LIME. To
understand how XAI can be applied and customized to explain
ML-generated alerts within IDSs by interviewing multiple

security operations center (SOC) analysts and cybersecurity
students [72]. This involved judging levels of satisfaction sub-
jectively based on the explanation’s utility. These evaluations
were carried out by stakeholders of AI system. Nonetheless,
due to the growing demand for more robust and objective
evaluation methods, the field has recently shifted its attention
toward crafting quantitative metrics. These metrics aim to
measure the extent of quality and reliability in XAI techniques.
Various quantitative metrics have been introduced in the
literature to assess the results of explainability methods [20].
XAI evaluation is categorized into three distinct groups [20]:
user-focused evaluation, application-focused evaluation, and
functionality-focused evaluation. The initial two categories are
viewed as components of human-centred evaluation and are
further classified into subjective and objective measures. Four
primary metrics, including high faithfulness, monotonicity, low
complexity, and max sensitivity, were employed as suitable
criteria for local explanations of LIME and SHAP in this work.

1) Faithfulness: The faithfulness metric μF(M, g; x) mea-
sures how well the feature importance scores generated by
the explanation function g reflect the actual importance of the
features in the black-box model M for input x. This property is
best computed using Pearson’s correlation coefficient between
the sum of the attributions of the features set to the best line
value and the corresponding difference in the output values.
Let B be the subset of indices whose features are set to a
baseline value. Then the faithfulness metric is computed as
follows:

μF(M, g; x) = ρ

B∈(|d|
|B|)

(∑

i∈B
g(M, x)i,M(x) − M(xB)

)
(6)

where xB = xi|i ∈ B}.
2) Monotonicity: Let x, x′ ∈ Rd be two input points such

that xi ≤ x′
i for all i ∈ 1, 2, . . . , d. M and g are said to be

monotonic if the following condition holds: for any subset
S ⊆ 1, 2, . . . , d, the sum of the attributions of the features in
S should be nonnegative when moving from x to x′, that is

∑

i∈S

g(M, x)i ≤
∑

i∈S

g
(
M, x′)

i

imply

M(x) − M
(
x[xs=x̄s]

) ≤ M
(
x′) − M

(
x′[x′

s = x̄s
])

.

3) Low Complexity: A complex explanation uses all d
features to explain which features of x are important to M.
However, this explanation may be less interpretable, especially
if d is large. To address this, a fractional contribution distri-
bution is defined, where |.| denotes the absolute value

Pg(i) = |g(M, x)i|∑
j ∈ |d||g(M, x)j|

; Pg = Pg(1), . . . , Pg(d). (7)

Note that Pg is a valid probability distribution. Let Pg(i)
denote the fractional contribution of the characteristic xi to
the total magnitude of the attribution. If every feature had the
same attribution, the explanation would be complex (even if
it is faithful). The simplest explanation would be concentrated
on one feature. complexity was defined as the entropy of Pg.
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TABLE II
SBS FEATURE SELECTION FEATURES FOR N-BAIOT, MEDBIOT, AND BOT-IOT DATA SETS FOR BINARY CLASSIFIERS

Given a prediction M(x), an explanation function g, and a
point x, the complexity of g at x is

μC(M, g; x) = −
d∑

i=1

Pg(i) log Pg(i). (8)

4) Max Sensitivity: To ensure that nearby inputs with
similar model output have similar explanations, it is desirable
for the explanation function g to have a low sensitivity in
the region surrounding the point of interest x, assuming the
differentiability of the predictor function M.

The maximum sensitivity of an explanation function g at a
point of interest x in its neighborhood is defined as follows.

Consider a neighborhood Nr of points within a radius r of x,
denoted by Nr = z ∈ Dx|p(x, z) ≤ r,M(x) = M(x)(z), where
D is the distance metric, and p is the proximity function. Given
a predictor M(x), a distance metric D, a proximity function p,
a radius r, and a point x, we define the maximum sensitivity
of g at x as follows:

μM(M(x), g, r; x) = max
z∈Nr

D(g(M(x), x), g(M(x), z)). (9)

In summary, Faithfulness measures the level of correlation
between the importance scores for the characteristics identified
by the explainers and the model output. The monotonicity
metric evaluates whether the incremental changes in the input
instance are reflected in the explanations in a consistent way.
The complexity metric quantifies the number of features to
explain the model decisions. The robustness of the explainers
is tested against the sensitivity metric, which expects the closer
instances in the feature space to have similar explanations.

The experiments were carried out on a computer running
Pop!_OS 22.04 LTS x86_64 operating system with the fol-
lowing hardware configuration: 32 GB of DDR4-2666R ECC
RAM, AMD Ryzen 5 5600G with Radeon Graphics (12) @
3.900-GHz processor. The scripts were developed using the

Python 3 programming language, and Scikit-learn and mlxtend
were used.

IV. RESULTS

This section presents the results of our study, which are
divided into two main parts. Section IV-A explores the binary
classification of the three data sets, with an emphasis on the
evaluation of XAI techniques. Sections IV-B and IV-C discuss
multiclassification results and delve into the application of
XAI techniques for N-BaioT, MedBIoT, and BoT IoT data
sets.

A. Explaining Binary Classifiers for Botnet Detection

We employed SBS to determine the top k-best features
appropriate for binary classification across three distinct data
sets. For the N-BaIoT data set, the k-best feature set consisted
of three features; for Med-BIoT data set, it was seven; for
the BoT-IoT data set, it was four. Table II shows SBS feature
selection results across various models for the N-BaIoT,
MedBIoT, and BoT-IoT data sets used in binary classification.

In N-BaIoT data set, all models achieved F1-scores exceed-
ing 99% with the top three optimal k-feature subsets.
SBS-XGBoost (XGB) emphasized Host-based (MI) features,
SBS-LightGBM (LGBM) derived Network Jitter (HH_jit)
features, and SBS-GBC obtained Socket features. SBS-Extra
Trees (ET) and SBS-RF effectively combined features from
diverse network categories.

The network traffic category features of the MedBIoT data
set are the same as those in the N-BaIoT data set. However,
Torii botnets were also deployed to infect IoT devices, in
addition to the Gafgyt and Mirai botnets for Med-BIoT data
set. In contrast to N-BaIoT, the optimal feature sets using
SBS for the Med-BIoT data set are predominantly derived
from Socket (HpHp), Network Jitter (HH_jit), and Channel-
based (HH) features. XGB exhibited the highest performance,
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Fig. 2. LIME local explanations of malware instance of N-BaIoT data set for binary classifiers. (a) LIME explanations for XGB model over host-based
category features. (b) LIME explanations for GBC model over socket features. (c) LIME explanations for LGBM over network-jitter category features.

TABLE III
ACTUAL DATA POINTS OF N-BAIOT DATA SET ACROSS

THREE NETWORK CATEGORIES

achieving F1 score of 0.9936. Following closely, RF and
LGBM also demonstrated strong performance with F1 scores
of 0.9880 and 0.9917, respectively. ET performed less, attain-
ing an F1 score of 0.9674. The remaining classifiers displayed
notable performance, with F1 scores ranging from 0.9674 to
0.9851. Overall, these results emphasize the effectiveness of
the selected 7-feature set using SBS for Binary Classifiers.

Within the BoT-IoT data set, it is evident that certain
features, such as the number of inbound connections per
source IP (N_IN_Conn_P_SrcIP) and the number of inbound
connections per destination IP (N_IN_Conn_P_DstIP), are
essential for attack detection across all models. Notably, XGB
and LGBM achieved the highest F1-scores by incorporating
additional features like destination-to-source packets per sec-
ond (drate), source-to-destination packets per second (state),
the average duration of aggregated records (mean), and the
maximum duration of aggregated records. Additionally, it is
worth noting that XGB and LGBM achieved the highest
F1 scores.

To explain the outcomes of our black-box models, we
employed two model-agnostic feature-importance XAI tech-
niques: 1) LIME and 2) SHAP. In this section, we present local
explanations generated by the SHAP and LIME techniques
and evaluate the quality of these explanations.

The LIME method explains the rationale behind assigning
probabilities to each class by comparing the probability values
with the actual class of the data point. As a use case for
illustrating local explanations provided by explainers, we
selected a single actual malware data point (index 13 from
the test data, see Table III) from each of the three network
categories: Host-based, network jitter, and socket-based. The

explanations generated by LIME can be observed in Fig. 2 for
binary classifiers of Botnet detection. In these visualizations,
green bars indicate features contributing to predicting a data
point as malware, while red bars signify features contributing
to predicting a data point as benign. Fig. 2 displays LIME
local explanations for the N-BaIoT data set. For example,
in Fig. 2(a), LIME explanations for the features in the Host
network category demonstrate that the XGB Model predicted
as malware class with 100% accuracy for the actual class label
datapoint (mentioned in Table III). These explanations include
the following rules.

1) 102.43 < MI_dir_L0.01_weight <= 19356.77: If the
packet count of the host-based(MI) feature captured in
a 1-min time window (L0.01) falls within the range of
102.43–19356.77, the XGB model is more inclined to
classify the data point as malware, indicating a potential
compromise of the host by malware.

2) 3.86 < MI_dir_L1_weight <= 566.44: If the packet count
(weight) of the host-based (MI) feature captured in a 1.5-s
time window (L1) falls within the range of 3.86–566.44,
the XGB model implies a potential presence of IoT
botnet malware. While this range indicates a lower level
of network activity compared to the significant activity
represented by the 1-min time window, it still signifies
notable communication occurring within a shorter time
frame. Data points within this range raise suspicion and
might imply the existence of IoT botnet malware on the
host system.

3) 3.00 < MI_dir_L5_weight <= 117.82: When the packet
count of the host-based feature within 100 ms exceeds
117.28, the XGB model classifies the data point as benign,
indicating that any malware does not compromise the
host. Pocket data points within this range are considered
normal and nonmalicious, indicating regular network
traffic within extremely short time intervals.

Similar LIME explanations (for a datapoint in Table III)
are shown in Fig. 2(b) and (c) for other network cate-
gories, with the GBC model predicting as malware class
for the socket-based feature set and the LGBM model also
predicting as malware for network jitter features over N-BaIoT
data set.

The features of the MedBIoT data set are similar to those
of the N-BaIoT data set. Thus, explanations generated by
LIME and SHAP for the MedBIoT data set are similar. For
illustrative purposes, we chose a single data point from the
Med-BIoT data set. The explanations generated by LIME for
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Fig. 3. LIME local explanations of malware instance of Med-BaIoT data set for binary classifiers. (a) LIME explanations for XGB model. (b) LIME
explanations for GBC. (c) LIME explanations for LGBM.

Fig. 4. LIME local explanations of malware instance of BoTIoT data set for binary classifiers. (a) LIME explanations for XGB model. (b) LIME explanations
for GBC model. (c) LIME explanations for LGBM.

Fig. 5. SHAP local explanations of malware instance of N-BaIoT data set for binary classifiers. (a) SHAP explanations for XGB model over data point of
host-based category features. (b) SHAP explanations for GBC model over data point of socket category features. (c) SHAP explanations for LGBM model
over data point of network-jitter.

models XGB, GBC, and LGBM can be seen in Fig. 3(a)–(c),
respectively. All these models predicted the actual data point
as malware with 100%. Green bars show that features help
to predict the malware, and the Red bar shows the features
which help to predict the instance as Benign.

In the case of the BoT IoT data set, the models correctly
predicted the actual data point as malware. The corresponding
LIME explanations can be observed in Fig. 4(a)–(c). corre-
sponding to models XGB, GBC, and LGBM.

Additionally, SHAP is widely employed for model expla-
nations and furnishes local and global explanations. In local
explanations, a specific data point is chosen, and the model
prediction is explained to showcase the contribution of each
feature. SHAP calculates Shapley values, demonstrating the
contribution of features on model predictions. SHAP values
were calculated over the Test data set. Fig. 5 illustrates a
local explanations for a malware data point (see Table III) of
N-BaIoT data set using a shap’s force plot for XGB, GBC, and
LGBM models, displaying the contribution of each feature to
the prediction. The plot shows the base value, and the features
containing a positive influence on the prediction are in red, and
the features showing a negative influence on the predictions
are in blue. The base value in the plots is the average of all
prediction values. Each strip in the plot illustrates how the
features influence the predicted value, either drawing it closer
or pushing it farther away from the base value. Red strip
features push the value to higher values, whereas blue strip
features push the value to lower values. The contribution of
features holding broader strips is more.

For example, Fig. 5(c) demonstrates the SHAP local expla-
nations of LGBM model over network jitter category features
for a data point (see Table III) over N-BaIoT data set.
The base value is 0.566. Features HH_jit_L0.1_mean and
HH_jit_L5_mean positively contribute to the prediction value,
while feature HH_jit_L0.1_weight has a negative impact.
HH_jit_L0.1_mean is the most crucial feature, as the contri-
bution has a broader range. The total positive contribution is
greater than the negative contribution, and the final predicted
value is greater than the base value. As a result, the class
is predicted as malware. Similarly, In Fig. 5(a), XGB model
with Host-Based features reveals a base value of 0.4932 and
a predicted value of 1 (for malware data point in Table III).
MI_dir_L0.01_weight has a broader range and is the most cru-
cial feature. In Fig. 5(b), the GBC model with socket features
determines a base value of 0.5979. Here, HH_L0.01_weight
was the most crucial feature, contributing to a predicted
value of 1 for the malware class over N-BaIoT data
set.

Similarly, when explaining a selected record of the Med-
BaIoT data set using SHAP, it was observed from Fig. 6
that the base values were 0.5181 for XGB, 0.5771 for
GBC, and 0.4885 for LGBM models. All three models
predicted the data point as malware. Notably, the feature
HpHp_L0.01_magnitude had a substantial impact and a wider
range in Fig. 6(a) and (b) for XGB and GBC models.
Additionally, in Fig. 6(c), the HH_L0.1_magnitude feature
exhibited a broader range and is the most important feature
for LGBM.
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Fig. 6. SHAP local explanations of malware instance of Med-BaIoT data set for binary classifiers. (a) SHAP explanations for XGB. (b) SHAP explanations
for GBC. (c) SHAP explanations for LGBM model.

Fig. 7. SHAP local explanations of malware instance of BoTIoT data set for binary classifiers. (a) SHAP explanations for XGB model. (b) SHAP explanations
for GBC model. (c) SHAP explanations for LGBM model.

For BoT-IoT data set, base values from SHAP force
plots [see Fig. 7(a)–(c)] were 0.5252, 0.3493, and 0.3493
for models XGB, GBC, and LGBM, respectively. Notably,
N_IN_Conn_P_SrcIP had a wide range and was identi-
fied as the most important feature, followed closely by
N_IN_Conn_P_DstIP. Both LIME and SHAP explainers for
BoT IoT models highlighted these two features as the most
significant contributors to model predictions.

In our research, we quantitatively evaluated the qual-
ity of XAI methods, specifically LIME and SHAP, using
four metrics: Faithfulness, Monotonicity, Complexity, and
Sensitivity. Faithfulness evaluates the correlation between the
importance assigned by the XAI method to features and
their impact on the prediction probabilities of the model.
A high faithfulness of the XAI method indicates that the
assigned feature importance closely aligns with their impact
on the model’s prediction probabilities, ensuring accurate and
trustworthy explanations. Monotonicity measures the influ-
ence of individual features on model prediction probabilities
by evaluating how the prediction probability changes when
each attribute is incrementally added in order of increasing
importance. As each feature is added, the model’s probability
consistently increases, resulting in monotonically increasing
model prediction probabilities. A high monotonicity score
suggests that the explanations by XAI method are consistent
with the model’s predictions for the given input. Besides,
we calculate the low complexity metric by computing the
entropy of feature attribution obtained by the XAI method.
Likewise, the sensitivity metric evaluates the robustness of
the explanations, ensuring that nearby inputs in the feature
space have similar explanations output when the sensitivity
value is low. In the sensitivity metric, for acquiring the nearest
neighbor points associated with the prediction label of the
explanations score, we utilized the Euclidean distance with
a radius value of 0.1, which helps find data points in the
feature space most proximate to the instance and have similar
explanations for the predicted label.

We evaluated LIME and SHAP explanations across 2000
test points. Table IV displays the XAI metric results, including
mean and standard deviations, for LIME and SHAP explana-
tions across 2000 test points for binary classifiers (ET, LGBM,
GBC, RF, and XGB) on N-BaIoT, Med-BaIoT, and BoT IoT
data sets.

For the N-BaIoT data set, the evaluation of faithfulness
for both LIME and SHAP shows varying performance across
models. However, SHAP consistently outperforms LIME in
capturing the models’ behavior with higher faithfulness cor-
relation mean values, especially for the LGBM and XGB
models. Notably, the XGB model, when explained using
SHAP, achieves an exceptional faithfulness score (μf =
0.99 ± 0.13), indicating the high fidelity of the explanations
provided by SHAP for this model. Additionally, by evaluating
the monotonicity of the explainer, a measure of how the
explanations change monotonically with respect to the input
features, both LIME and SHAP reveal high monotonicity
values, implying their ability to provide consistent explana-
tions across different models. Specifically, SHAP explanations
for LGBM and XGB models, achieving monotonicity scores
above 99%. Complexity measures the conciseness of expla-
nations provided by the explainer. Lower complexity values
indicate simpler and more interpretable explanations. SHAP
explainer for XGB produced the most concise explanations
among all models and explainers, with the lowest complexity
(μc = 0.50 ± 0.25). Sensitivity measures the stability of
explanations for nearby data points. Lower sensitivity values
indicate more stable explanations. So, XGB model explained
by SHAP showed the lowest sensitivity (μs = 0.001±0.001),
suggesting highly stable and reliable explanations for nearby
data points within the same feature space used by XGB
model.

Similarly, when evaluating the explainers for binary clas-
sifiers of both the Med-BIoT and BoT IoT data sets (see
Table IV), SHAP explanations consistently outperform LIME
for all the models. Notably, when applied to XGB, SHAP’s
explanations were higher fidelity, greater consistency, lower
complexity, and more robust than LIME.

B. Explaining Multiclass Classifiers for Botnet Malware type

Similar to Section IV-A, we evaluated the quality of expla-
nations obtained after applying LIME and SHAP to multiclass
models, explicitly focusing on the detection of botnet malware
type. In this study phase, we employed N-BaIoT and MedBIoT
data sets.

N-BaIoT data set includes network traffic data from nine
distinct IoT devices infected with Mirai and Gafgyt malware
alongside legitimate traffic. Conversely, the MedBIoT data set
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TABLE IV
RESULTS OF EVALUATING THE QUALITY OF LIME&SHAP USING FAITHFULNESS (μf ), MONOTONICITY (μm), COMPLEXITY (μc),

AND SENSITIVITY(μs) FOR IOT MALWARE DETECTION BINARY CLASSIFICATION MODELS OVER THREE

DATA SETS: N-BAIOT, MEDBIOT, AND BOT-IOT

TABLE V
SBS FEATURE SELECTION FEATURES FOR MULTICLASS (BOTNET DETECTION) FOR N-BAIOT AND MEDBIOT DATA SETS

Fig. 8. LIME explanations for XGB model in multiclass (botnet malware type) instance of the N-BaIoT data set. (a) LIME explanations for XGB over
benign instance. (b) LIME explanations for XGB over Gafgyt instance. (c) LIME explanations for XGB over Mirai instance.

Fig. 9. SHAP explanations for XGB model in multiclass (botnet malware type) instance of the N-BaIoT data set. (a) SHAP explanations for XGB over
benign instance. (b) SHAP explanations for XGB over Gafgyt instance. (c) SHAP explanations for XGB over Mirai instance.

contains malicious network traffic induced by Mirai, BashLite,
and Torii botnet malware deployed on 83 real or emulated
IoT devices. Therefore, the detection of botnet malware type
involves three classes (Mirai, Gafgyt, and Benign) for the
N-BaIoT data set and four classes (Mirai, BashLite, Torii,

and Benign) for the Med-BaIoT. Table V shows the results
of SBS feature selection for multiclass malware detection
using various models on N-BaIoT and MedBIoT data sets.
In the context of multiclass classification, the k-best feature
set for the N-BaIoT data set is 3, while for the Med-BIoT
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Fig. 10. LIME explanations for XGB model in multiclass (botnet malware type) instance of the Med-BaIoT data set. (a) LIME explanations for XGB over
Bashlite instance. (b) LIME explanations for XGB over Mirai instance. (c) LIME explanations for XGB over Torii instance.

Fig. 11. SHAP explanations for XGB model in multiclass (botnet malware type) instance of Med-BaIoT data set. (a) SHAP explanations for XGB over
Bashlite instance. (b) SHAP explanations for XGB over Mirai instance. (c) SHAP explanations for XGB over Torii instance.

TABLE VI
RESULTS OF EVALUATING THE QUALITY OF LIME&SHAP USING FAITHFULNESS (μf ), MONOTONICITY (μm), COMPLEXITY (μc),

AND SENSITIVITY(μs) FOR BOTNET MALWARE TYPE (MULTICLASS) ON TWO DATA SETS: N-BAIOT AND MEDBIOT

data set, it is 7. Notably, all feature sets produced a strong
performance in terms of F1 score, with models achieving
scores exceeding 0.99. The features “MI_dir_L0.1_weight”
and “MI_dir_L0.01_weight” appeared in multiple models,
including XGB, LGBM, and ET, indicating they are vital in
detecting botnet malware.

To guarantee the readability of our results, we have
reported only results pertaining to explaining XGB model
using LIME and SHAP. So the feature set from SBS-
XGB is [“MI_dir_L1_weight,” “MI_dir_L0.1_weight,” and
“MI_dir_L0.1_mean”]. As an illustrative use case demonstrat-
ing local explanations provided by explainers for multiclass
classifiers in the context of botnet malware type detection,
we have selected an instance from each class, shown in
Figs. 8 and 9 for the N-BaIoT data set. In the figures, green
bars indicate features contributing to predicting a data point
for the particular selected class label, while the red color
shows contributions for the remaining other class labels. In
Fig. 8(a)–(c), LIME explanations were presented for instances
corresponding to the labels Benign, Mirai, and Gafgyt, respec-
tively. XGB model correctly predicted all these instances
with high detection rates for each selected instance label.
Additionally, Fig. 9 also showcases SHAP explanations for
botnet malware type detection using the XGB model. It can
be observed that “MI_dir_L0.1_weight” had a broader strip in
all three figures [Fig. 9(a)–(c)] for class labels (Benign, Mirai,

and Gafgyt), indicating its significance as the most essential
feature for Botnet malware type detection in N-BaIoT data set
and the predicted value is 1 for all three class labels.

In the context of botnet malware type detection using
the XGB model, we similarly selected a data point in
Med-BIoT data set. Fig. 10 presents LIME explanations
for instances belonging to class labels Bashlite [Fig. 10(a)],
Mirai [Fig. 10(b)], and Torii [Fig. 10(c)]. The XGB model
accurately predicted class labels corresponding to their respec-
tive actual labels. On the other hand, Fig. 11 Shows
the SHAP explanations for the same class labels. In
Fig. 11(a), “HH_L0.01_radius” has a broader strip, indicating
its significance as the most essential feature. In Fig. 11(b),
“HpHp_L0.01_magnitude” is identified as the most influential
feature for the Mirai class label, while “MI_dir_L0.01_weight”
is highlighted [in Fig. 11(c)] as an essential feature for the
Torii class label. The predicted value for all three class labels
is 1 by the XGB model.

For botnet malware type detection, Table VI provides results
of the quality of explanations using both LIME and SHAP
for various models. For both data sets, Evaluating explanation
quality has varied performance among models using explainers.

In the N-BaIoT data set, Faithfulness calculates the cor-
relation between feature importance and model predictions,
indicating that the XGB model consistently outperforms
others, showing high correlation values for both LIME
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Fig. 12. LIME explanations for XGB model in multiclass (botnet attack type) instance of N-BaIoT data set. (a) LIME explanations for XGB over ACK
attack instance. (b) LIME explanations for XGB over TCP attack instance. (c) LIME explanations for XGB over UDP attack instance.

Fig. 13. SHAP explanations for XGB model in multiclass (botnet attack type) instance of N-BaIoT data set. (a) SHAP explanations for XGB over ACK
attack instance. (b) SHAP Explanations for XGB over TCP attack instance. (c) SHAP explanations for XGB over UDP attack instance.

TABLE VII
SBS FEATURE SELECTION FEATURES FOR XGB IN BOTNET

ATTACK TYPE OVER N-BAIOT DATA SET

(0.898±0.129) and SHAP (0.907±0.382). Monotonicity, high-
lighting the consistency of explanations, demonstrates that
the XGB model consistently maintains high monotonicity
scores, mainly with SHAP (100.00%). Regarding complexity,
which evaluates explanation conciseness, XGB with SHAP
(0.686±0.236) has the most concise explanations among
all models. Sensitivity computes explanation stability for
nearby data points and underscores the XGB model’s stabil-
ity, particularly with SHAP, showing the lowest sensitivity
(0.002±0.001). Overall, results suggest that SHAP consis-
tently provides more reliable and faithful explanations than
LIME across different models.

For Med-BaIoT data set, the XGB model explained by
SHAP achieved the highest Faithfulness (0.81±0.23). SHAP
consistently outperforms LIME across all models, with XGB
achieving an exceptional monotonicity score of 84.00%.
Regarding complexity, which evaluates explanation concise-
ness, SHAP consistently produces more concise explanations
than LIME for all models. The stability of explanations of
SHAP, notably for XGB model, is highlighted with the lowest
sensitivity (0.01±0.01). Overall, results in Table VI show that
SHAP consistently outperforms LIME.

C. Explaining Multiclass Classifiers for Botnet Attack type

This section provides the results of XGB model explanations
using LIME and SHAP for IoT botnet attack types. N-BaIoT
data set was chosen for this scenario. To explain the attack type
classifiers, data points are categorized into distinct types: ACK,
benign, compact, junk, scan, syn, TCP, UDP, and UDP plain.
The feature set for the attack type is [“MI_dir_L0.01_mean,”
“HH_L0.01_std,” and “HH_jit_L0.01_mean”] (see Table VII).
The XGB model achieved more than 99% of F1-score.

TABLE VIII
RESULTS OF EVALUATING THE QUALITY OF LIME&SHAP FOR XGB

MODEL FOR IOT BOTNET ATTACK TYPE DETECTION

Figs. 12 and 13 illustrate LIME and SHAP explanations
for the XGB model regarding attack type detection. Similar
to the multiclassifier for botnet malware types, in the case of
attack types, LIME explanations use green bars to indicate
features contributing to predicting a data point for the selected
class label. In contrast, red bars represent contributions to
other labels. For illustrative purposes, we selected instances
of the ACK, UDP, and TCP attacks. Fig. 12(a)–(c) displays
LIME explanations, showcasing XGB accurate prediction of
actual labels as ACK, UDP, and TCP. On the other hand,
Fig. 13 presents SHAP explanations for the XGB model.
HH_jit_L0.01_mean (Network Jitter) feature notably shows
more strips for labels. Predicted values for ACK and TCP
attacks [Fig. 13(a) and (b)] are both 1, indicating correct
predictions. However, for the UDP attack Fig. 13(c), the
predicted value is 0.98.

Results of the quality of explainers for the XGB model in
attack type detection in the N-BaioT data set, as shown in
Table VIII, demonstrate that SHAP consistently outperforms
LIME across multiple evaluation metrics. Specifically, SHAP
achieves substantially higher Faithfulness (0.66±0.21) than
LIME (0.12±0.27), indicating a stronger correlation between
feature importance and model predictions. Furthermore, SHAP
demonstrates a higher monotonicity score (59%) than LIME
(47%), highlighting more consistent explanations. Regarding
complexity, SHAP provides more concise explanations with a
lower complexity score (1.28±0.07) than LIME (1.48±0.13).
Regarding sensitivity, SHAP displays more excellent sta-
bility with the lowest sensitivity score (0.03±0.11), while
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LIME shows a higher sensitivity (0.12±0.7). Across all
metrics, SHAP emerges as the superior explainer for the
XGB model in the Med-BaIoT data set, offering more
faithful, consistent, concise, and stable explanations than
LIME.

V. DISCUSSION

In this study, we examined the performance of various
ML classifiers with their respective feature sets in predicting
malware infections in IoT devices based on three data sets:
1) N-BaIoT; 2) MedBIoT; and 3) BoT-IoT. We used LIME
and SHAP explainers to deduce interpretable explanations of
the model predictions. The following discussion is based on
the results obtained from the analysis of each data set.

In this study, SBS was used for each data set to identify
a subset of features that significantly enhanced the predictive
performance of the classifiers. Although the selected features
varied between data sets, network traffic category features
such as host, channel, network jitter, and socket consistently
emerged as crucial factors in predicting IoT botnet malware
(binary) and botnet type (multiclass) across various data sets.
Host-based features were pivotal in the N-BaIoT data set,
while channel- and socket-based features were more prominent
in the Med-BIoT data set. Furthermore, the number of inbound
connections per source IP and inbound connections per desti-
nation IP were identified as influential features of the BoT-IoT
data set. Across all three data sets, XGB model consistently
achieved the highest performance in terms of the F1 score,
which indicates that the XGB model is an effective and robust
choice for malware detection in IoT devices. RF and LGBM
also performed well in most cases, while ET generally had the
lowest performance.

Our results show that both the LIME and SHAP explana-
tions exhibit high consistency and interpretability for the XGB
model with the SBS-XGBoost feature set, as evidenced by the
high monotonicity scores. This indicates that the explanations
provided by both LIME and SHAP capture the underlying
relationships between the feature set and the values of the
prediction (malware and benign) of network traffic in malware
classification consistently and interpretably. Moreover, both
the LIME and SHAP explanations have high faithfulness
correlation mean values, suggesting that security analysts can
have a high degree of trust in the explanations provided for
XGB model. The complexity scores are lower, in addition to
high trustworthiness, which can help analysts better understand
the model predictions and make informed decisions based on
the model outputs. The explanations for XGB are also more
robust due to lower sensitivity values, indicating that nearby
inputs with similar model outputs have similar explanations.

Figs. 14–16 show the evaluation metrics for the LIME and
SHAP distributions, providing comparative analysis results of
the respective models for Multiclass from the N-baIoT and
med-BaIoT data sets, as well as binary class from the BoT
IoT data set. The evaluation of LIME and SHAP, using four
metrics, faithfulness correlation, monotonicity, complexity,
and sensitivity, on XGB model with its respective feature
set (SBS-XGB), reveals promising distribution results. For

Fig. 14. Distribution of LIME and SHAP XAI metrics over N-BaIoT data
set for models. (a) High faithfulness. (b) Low complexity. (c) Low sensitivity.

instance, the faithfulness correlation values are skewed toward
higher levels, demonstrating a high degree of consistency
through monotonicity when compared to alternative models.
Moreover, the entropy values of feature importance scores
for explainers tend to be distributed more toward the lower
end in comparison to those of other models. The feature
importance scores of explainers for the XGB model remain
closely clustered compared to other models, particularly when
assessed using sensitivity as an evaluation metric. For the
GBC model with its respective feature set (SBS-GBC), the
faithfulness correlation values for LIME and SHAP are very
low, while the complexity values are high. Conversely, the
sensitivity values are distributed more toward high values.

Other models, such as RF and LGBM, demonstrated varying
levels of faithfulness and consistency, depending on the data
set and the explainer used.

In conclusion, our study demonstrates the effectiveness of
the XGB classifier for malware detection in IoT devices across
different data sets. LIME and SHAP explainers provide valu-
able insights for security analysts, allowing them to prioritize
alerts and focus their efforts on the most critical devices.
Although LIME generally offers lower complexity and higher
consistency across different models, still, SHAP explainer is
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Fig. 15. Distribution of LIME and SHAP XAI metrics over MedBIoT data
set for models. (a) High faithfulness. (b) Low complexity. (c) Low sensitivity.

better than LIME. Overall, this research provides a strong
foundation for developing interpretable and effective malware
detection systems in the IoT network domain.

VI. CONCLUSION AND FUTURE WORK

This research paper highlights the importance of using XAI
methods to enhance the interpretability and transparency of
ML models for detecting IoT botnets. The study uses three
data sets for binary and multiclass classification of IoT botnets,
with SBS employed as the feature selection technique. Local
explanations using LIME and SHAP provide insights into the
models’ behavior. The quality of XAI methods is evaluated
based on high faithfulness, monotonicity, complexity, and
sensitivity metrics.

The results demonstrate that XAI techniques effectively
improve the interpretability and transparency of ML-based
IoT botnet detection models. Specifically, XGB with both
explainers yields the most optimal explanations for all metrics.
In general, model–explainer pairs provided varying results,
indicating no consistent superiority of one explainer. However,
the benchmarking results suggest that it is possible to find
a set of features and a model that provides higher quality

Fig. 16. Distribution of LIME and SHAP XAI metrics over BoT-IoT data
set for models. (a) High faithfulness. (b) Low complexity. (c) Low sensitivity.

explanations and superior detection results for IoT botnet
detection.

The findings of this research paper have important implica-
tions for security practitioners. By improving the transparency
and interpretability of ML models for detecting IoT botnets,
XAI techniques can enhance the ability of these practitioners
to understand the models’ behavior and the data’s char-
acteristics, leading to improved decision making and more
effective strategies for detecting and preventing IoT botnets.
A proper ML workflow containing feature selection, model
development, and post hoc explanation stages can meet the
expectations of security practitioners.

This study focused on LIME and SHAP as explanations
for model predictions. However, other explainability methods
could be explored, such as Integrated Gradients, Anchors, and
DeepLIFT. Evaluating the performance and utility of these
additional methods in the context of IoT malware detection
may lead to the identification of more effective and insight-
ful explanations. Future research could involve conducting
qualitative user studies to assess the effectiveness of various
XAI techniques in supporting security analysts in identifying
and responding to IoT malware threats. Such research would
contribute to developing more user-friendly explainability
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tools that can be used in practical settings. Furthermore, the
increasing sophistication of adversarial attacks in the IoT
botnet network environment underscores the importance of
evaluating the robustness of XAI methods against such attacks.
By investigating the resilience of explainers to adversarial
manipulation, it could lead to the development of more robust
and secure explainability methods, which are essential for
ensuring the trustworthiness and transparency of AI systems
in the context of IoT botnet networks.
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Abstract—Ensuring the utmost security of IoT systems is
imperative, and robust botnet detection plays a pivotal role
in achieving this goal. Deep learning-based approaches have
been widely employed for botnet detection. However, the lack of
interpretability and transparency in these models can limit these
models’ effectiveness. In this research, we present a Deep Neural
Network (DNN) model specifically designed for the detection
of IoT botnet attack types. Our model performs exceptionally,
demonstrating outstanding performance of classification metrics
with 99% accuracy, F1 score, recall, and precision. To gain
deeper insights into our DNN model’s behaviour, we employ seven
different post hoc explanation techniques to provide local expla-
nations. We evaluate the quality of Explainable AI (XAI) methods
using metrics such as high faithfulness, monotonicity, complexity,
and sensitivity. Our findings highlight the effectiveness of XAI
techniques in enhancing the interpretability and transparency of
the DNN model for IoT botnet detection. Specifically, our results
indicate that DeepLIFT yields high faithfulness, high consistency,
low complexity, and low sensitivity among all the explainers.

Index Terms—XAI, Deep learning, IoT Botnet, Post-hoc expla-
nation, explainable artificial intelligence

I. INTRODUCTION

Cybersecurity incorporates extensive practices and measures
to protect networks, devices, and data against unauthorized
access or illicit usage. It entails the critical task of striking
a delicate balance to uphold the security properties of confi-
dentiality, integrity, and availability (CIA) for information pro-
tection [1]. Meanwhile, cyber defensive mechanisms emerge
at multiple levels, including application, network, host, and
data, to fortify the overall security infrastructure [2]. Artificial
Intelligence techniques, particularly machine learning (ML)
and deep learning (DL) algorithms have demonstrated re-
markable capabilities in various cybersecurity domains. These
techniques have exhibited impressive performance levels when
applied to benchmark datasets for tasks such as intrusion de-
tection, spam email filtering, botnet detection, fraud detection,
and identification of malicious applications [3]. It is essential
to acknowledge that these techniques are not error-free. They
can occasionally produce errors that may be more costly
than traditional cyber defensive approaches. On the contrary,
cyber security developers have sometimes prioritized achiev-

ing higher accuracy even at the expense of interpretability,
creating complex and challenging-to-understand models [4].
The European Union’s General Data Protection Regulation
(GDPR) has addressed the issue of explainability, emphasizing
the importance of understanding the underlying logic behind
Artificial Intelligence algorithmic decisions that may adversely
affect individuals [5]. Consequently, to instil trust in cyber
security systems, Artificial Intelligence must be transparent
and interpretable. Various strategies have been proposed to
enhance the intelligibility of Artificial Intelligence decisions
for human understanding to meet these requirements. These
techniques, commonly called "XAI" (Explainable Artificial
Intelligence), have already been implemented in numerous
domains, including healthcare, Natural Language Processing,
and financial services [6].

As the complexity and volume of cyber attacks, such as
malware, intrusion, and spam, continue to rise, effectively
managing them is becoming increasingly challenging [7]. In
the cybersecurity domain, conventional approaches such as
rule-based, statistics-based, and signature-based have tradi-
tionally been employed for intrusion detection [8]. However,
the surge in data transmission over the Internet and the
emergence of new networking paradigms like the Internet
of Things (IoT), cloud computing, and fog/edge computing
[9, 10] have rendered these traditional approaches inadequate
in processing large volumes of data and have resulted in high
computing costs [9]. Furthermore, Artificial Intelligence (AI)
has emerged as a fundamental technology in Industry 4.0 [11].
Consequently, AI techniques, such as machine learning (ML)
algorithms and deep learning (DL) algorithms, have become
increasingly essential in providing intelligent cybersecurity
services and management. For example, Ucci et al. [7] high-
lighted the successful utilization of ML methods for various
aspects of malware analysis, including malware detection,
similarity analysis, and category analysis. Additionally, Kwon
et al. [12] employed DL-based and feature selection [13]
approaches for network anomaly detection and network traffic
analysis, demonstrating these techniques’ efficacy in cyber
security.
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However, despite the potential benefits, AI-based ap-
proaches in cyber security also face significant challenges.
Limitations such as the availability of cybersecurity-related
data [14], the vulnerability of AI models to adversarial at-
tacks [15], and concerns regarding ethics and privacy [16]
are inherent issues encountered by AI-based cybersecurity
systems. Among these challenges, the black-box nature of AI
models is a particularly noteworthy limitation that requires
careful consideration when integrating AI models into the
cybersecurity domain [17]. The opaque nature of AI models
leads to cybersecurity decisions being generated without clear
rationale or justifiability, making it difficult for humans to
comprehend how these decisions are reached. Consequently,
this lack of explainability renders the cyber defensive mecha-
nisms as black-box systems, rendering them highly susceptible
to information breaches and AI-based cyber threats [18].
Explainable AI (XAI) has emerged as a response to the
growing black box problem addressing the limitations of using
AI. XAI enables users and experts to better understand the
underlying logic and key data evidence behind the results
generated by AI-based statistical models [19]. In conclusion,
there are several motivations for applying Explainable AI
(XAI) in cyber security, and they are like Building trust:
Integrating XAI in cyber security aims to enhance trust by
promoting transparency and understanding of decision models
related to cybersecurity. Justice, social responsibility, and risk
mitigation: Applying XAI in cyber security is driven by
addressing severe social problems, potential risks to human
lives, and the ethical considerations involved. It goes beyond
simple cost-benefit calculations and ensures fairness and social
responsibility.

This research comprehensively evaluates seven post hoc
local explainability methods, including Integrated Gradients,
Gradient * Input, DeepLIFT, Saliency, SHAP, feature ablation
and LIME. The evaluation is based on quantitative metrics
such as faithfulness, monotonicity, complexity, and sensitivity.
Specifically, we assess and compare the effectiveness of these
local explanation methods when applied to multiclass attack
types for IoT botnet detection in a detailed benchmarking
setting. The experiments are performed on a deep learning-
based model over the N-BaIoT dataset, carefully selected from
the problem domain to ensure the robustness and relevance
of our findings. To the best of our knowledge, very few
empirical studies have evaluated the quality of post hoc local
explainability methods for network intrusion detection tasks,
particularly in IoT botnet detection. Our research aims to
bridge this gap by systematically assessing and comparing
multiple explainability methods, providing valuable insights
into the effectiveness of these methods for enhancing the
interpretability and trustworthiness of deep learning-based
models in IoT security applications.

The content of our paper is presented as follows: Section
II provides related information about the addressed topic and
summarizes the literature. Section III describes data utilized
in this study. Section IV explains the methodology of our re-
search. Section V presents the results and discussions obtained.

Our work is concluded in Section VI.

II. RELATED WORK

Several studies in the literature have applied explainabil-
ity methods to network intrusion detection problems. For
instance, Szczepanski et al. introduced a hybrid Oracle Ex-
plainer Intrusion Detection System that combines Artificial
Neural Networks (ANNs) and Decision Trees, utilizing micro
aggregation techniques to enhance performance [20]. In this
paper [21], the authors employed the Explainable Boosting
Machine (EBM) as a glass-box classifier for detecting network
intrusions. The performance of EBM was compared with
other AI classifiers, including decision tree, logistic regression,
Support Vector Machine (SVM), and Deep Neural Network
(DNN). The ASNM-NPBO dataset [22] (Advanced Security
Network Metrics & Non-Payload-Based Obfuscations) con-
sisted of ASNM features extracted from tcpdump capture
of obscured malicious and legitimate TCP transmissions on
specified vulnerable network services.

Zolanvari et al. proposed a model-agnostic XAI framework
named TRUST (Transparency Based on Statistical Theory)
designed for numerical applications. This framework utilizes
factor analysis to transform input features into latent features,
ranks features using mutual information and employs a multi-
modal Gaussian distribution to generate new samples for each
class label. The TRUST XAI model underwent evaluation
through a case study using three datasets: NSL-KDD [24],
UNSW [25], and a custom dataset named "WUSTL-IIoT,"
derived from their testbed experiment involving intrusion
network traffic data. The evaluation showed that the TRUST
XAI model achieved a 98% success rate in explaining random
test samples, outperforming LIME. Hariharan et al. employ
a comprehensive set of interpretability algorithms, including
Permutation Importance, SHapley Additive exPlanation, Local
Interpretable Model-Agnostic Explanation, Contextual Impor-
tance, and Utility algorithms [26] over NSL-KDD [24] dataset.
These algorithms are applied to Intrusion Detection Systems
(IDSs) implemented on three machine learning models: Ran-
dom Forest, eXtreme Gradient Boosting, and Light Gradient
Boosting. The study thoroughly compares explanations based
on accuracy, consistency, and stability to enhance the under-
standing of cyber-attack predictions in network traffic for cyber
security personnel. Additionally, the paper presents a case
study focusing on DoS attack variants, which offers valuable
insights into the impact of features on prediction performance.
A Bidirectional Long Short-Term Memory based Explainable
Artificial Intelligence framework (BiLSTM-XAI) was devel-
oped, utilizing the Krill herd optimization (KHO) algorithm
to select significant database features [27]. SHAP and LIME
explainable AI algorithms were employed for analysis, and
the proposed BiLSTM-XAI model achieved an accuracy of
98.2% when evaluated using the NSL-KDD dataset [24]. By
implementing XAI models, the complexities of the BiLSTM
framework are reduced, leading to improved detection accu-
racy with explanations provided for each learning prediction.
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III. DATA SET DESCRIPTION

In this work, N-BaIoT [28] is used. In this dataset, 115
network traffic features were extracted based mainly on de-
scriptive statistics measures from the network traffic generated
by bots deployed in a collected testing environment settings of
9 different IoT devices infected by Mirai and Gafgyt malware
types. More significantly, the features that are specified for
each instance reflect the aggregated descriptive statistics of
the raw traffic of the network in five-time windows (100 ms,
500 ms, 306 1.5 s, 10 s, and 1 min), which are coded L5, L3,
L1, L0.1 and L0.01, respectively as shown in Table I. There
are five main feature categories: host-IP (traffic emanating
from a specific IP address, coded as H), host-MAC and IP
(traffic emanating from the same MAC and IP, coded MI),
channel (traffic between specific hosts, coded HH), socket
(traffic between specific hosts, including ports, coded HpHp),
and network jitter (time interval between packets in channel
communication, coded as HH_jit). The packet count, mean
and variance packet sizes are calculated for each significant
category. There have been extra statistical values like the
correlation coefficient (PCC) of packet size, radius, covariance,
and magnitude derived for network Channel and Socket along
with packet count, mean, and variance. In this study, From
the N-BaIoT dataset, attack type classification is developed.
For this classification, the data points have been classified into
eight attack types and legitimate network traffic: ACK, Benign,
COMBO, JUNK, SCAN, SYN, TCP, UDP, and PLAIN. A
description of these attacks can be found in Table II.

TABLE I: Details of Features of N-BaIoT dataset.
Feature Category Category Code No.Of features Statistical Value Feature Time Frame Windows
Hos Mac & IP MI 15

Packet Count, Mean

Variance

100 Micrso Sconds

500 micro seconds

1.5 Seconds

10 Seconds

1 Minute

Host IP H 15

Network Jitter HH_jit 15

Channel HH 35 Packet Count, Mean

Variance, Magnitude,Radius, CoVariance, CorrelationSocket HpHp 35

TABLE II: Botnet Attack types used in this Study for DNN
model botnet attack detection

Class Name Description
ACK Gafgyt malware Sending Spam data

Beign Legitimate Network Traffic

COMBO Gafgyt malware Sending spam data and opening a connection

JUNK Mirai Malware ACK-Flooding

SCAN Scans The network devices for vulnerabilities,(Mirai & Gafgyt

SYN Mirai Malware SYN-Flooding

TCP Gafgyt malware TCP Flooding

UDP UDP flooding (Mirai & Gafgyt)

UDPPLAIN Mirai malware UDP flooding with Less of an option for higher packet per second

IV. METHODOLOGY

A. DNN for Botnet attack prediction

This research paper proposes a fully connected Deep Neural
Network (DNN) model for detecting IoT botnet attacks in the
N-BaIoT dataset through network traffic analysis. The dataset
was split into training and testing sets using an 80:20 ratio.
As a preprocessing step, we applied min-max normalization,
scaling the feature values between 0 and 1. Model consists of 3

hidden layers, each comprising 9 hidden units, as specified in
hyperparameters (see Tab. III). The Rectified Adam (RAdam)
optimizer with a learning rate of 0.0129692 was employed
to train the model. The SELU (Scaled Exponential Linear
Unit) activation function is applied after each hidden layer to
introduce non-linearity, allowing the DNN to learn complex
patterns and relationships within the data effectively.

TABLE III: DNN Model Hyperparameters (Random Search)

Hyperparameter Value
Hidden Layers 3
Hidden Units 9
Learning Rate 0.01296

Optimizer RAdam
Activation SELU
Batch Size 256

Epochs 21

The input layer receives a 115-dimensional feature vector,
representing aggregated statistics from five different time
windows. This input is passed through the first fully connected
hidden layer with 9 units, applying the SELU activation
function. The output from the first hidden layer is then fed to
the second hidden layer, which consists of 9 units and employs
the SELU activation function. Finally, the output layer is
implemented with another fully connected layer, mapping the
activations from the last hidden layer to the output size. This
output size corresponds to the number of classes (ack, benign,
combo, junk, scan, syn, tcp, udp, udpplain) used for botnet
attack type classification. During the training phase, the model
undergoes 21 epochs with a batch size 256. To compute the
loss during training, we utilize the CrossEntropyLoss function,
which is well-suited for multi-class classification tasks

To generate prediction labels, we rely on the softmax activa-
tion function. This function is crucial in providing prediction
probabilities for each class, enabling a deeper understanding
of the model’s confidence in its predictions and the proba-
bility distribution across different classes( attacks and begin).
Utilizing the softmax activation function enhances the inter-
pretability and significance of our classifier’s outputs, which
is essential for evaluating explainers regarding Faithfulness,
Monotonicity, and Sensitivity metrics mentioned in the section
IV-C

B. Explaination Methods

Our research focused on enhancing the interpretability
of deep learning-based intrusion detection systems in IoT
networks by applying various Explainable AI (XAI) feature
attribution methods. In this study, we employed seven dis-
tinct explanation methodologies, which were carefully selected
based on their widespread usage in the literature. Below, we
present a concise summary of each method. However, please
note that this is not an exhaustive description of each method.

For data, the input x ∈ Rd, where d is the dimensionality
of the feature set, and the black box model M maps the
input to an output M(x) ∈ Y . Denote D = (xi, yi) as the
dataset consisting of all input-output pairs. g as an explanation
mapping that for predictorM and point of interest x returns an
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importance score g(M, x) = ϕx ∈ Rd for all features. Denote
D : Rd ×Rd 7→ R≥0 as a metric in the space of explanations
and SRd × Rd 7→ R≥0 a metric in the space of inputs. The
evaluation criterion µ is the mapping that takes predictor M,
explainer g and the point of interest x as arguments and
computes a scalar.

1) Integrated Gradients: Integrated attributes [29] feature
importance to inputs by integrating the model’s gradients along
a path from a baseline to the actual input, The authors define
x̄ as a baseline input representing the absence of a feature
in the input x. Integrated Gradients is defined as g(M, x) =

IG(x) = (x − x̄) ×
∫ 1

α=0
∂M(x̄+α·(x−x̄))

∂x dα where x̄ is the
baseline input.

2) Gradient * Input: Gradient * Input computes [30] the
importance of each feature by multiplying the model’s partial
derivative with respect to that feature by the input feature
value. The formula for Gradient * Input, denoted as g(M, x),
is given by: g(M, x) = ∂M(x)

∂x × x
3) DeepLIFT: DeepLIFT (Deep Learning Important Fea-

Tures) [31] attributes each input x is assigned value C∆xi∆y

that signifies a deviation from its original value towards
a reference value. DeepLIFT utilizes a summation-to-delta
property:

∑n
i=1 C∆xi∆o = ∆o where o = M(x) and ∆o

is the difference between the model output of the input and
the reference value.

4) Saliency: The saliency-based [32] approach focuses on
the gradient of the output of a neural network with respect to
the input x. In our case, the output corresponds to the attack
score a(x). The basic idea behind the saliency is that small
perturbations to important features will cause large changes in
the model output; the saliency score measures the sensitivity of
the model output against the input perturbation. Concretely, the
saliency score sℓ of the ℓ-th dimension of input x is defined as
sℓ(x) =

∣∣∣∂a(x)∂xℓ

∣∣∣where xℓ is the ℓ-th dimension of x. For each
malicious packet x, we calculate the saliency scores sℓ(x) for
ℓ = 1, 2, . . . , L, and report the dimensions with high saliency
scores as suspected parts.

5) Shap: SHAP [33] is a game-theoretic explanation
method based on Shapley values. SHAP is defined as
g(M, x) = ϕ0 +

∑M
j=1 ϕj , where ϕj is the feature attribution

of feature j.
6) Feature Ablation: Feature ablation assesses the impor-

tance of individual features in a model’s predictions by system-
atically removing or ablating each feature and observing the
change in the model’s output. The process involves evaluating
the model’s performance on the modified input with the ab-
lated feature(s) and comparing it to the original performance.
The formula for feature ablation can be represented as follows:

Ablation(x, i) =M(x)−M(xablatedi)

By comparing the model’s output before and after ablation,
feature ablation allows for understanding the influence of each
individual feature on the model’s decision-making process.

7) LIME: LIME [34] is an explanation method that ap-
proximates the model’s behavior locally around a specific data

instance x within the neighborhood N(x) using a simpler
interpretable model the prediction of the interpretable model
around x is denoted as The approximation is obtained by min-
imizing the object function defined as argmin

g∈G
L(M, g, πx) +

Ω(g)

C. XAI evaluation

Various metrics assess XAI explanation quality [35],
grouped into three categories: user-focused, application-
focused, and functionality-focused evaluations. The primary
metrics employed to assess local explanations in this work
include high faithfulness, monotonicity, low complexity, and
max sensitivity for the explainers utilized.

1) High Faithfulness: Faithfulness measures how well the
explanation function g aligns feature importance scores with
the black-box model M

µF (M, g;x) = corr
B∈(|d|

|B|)

(∑

i∈B
g(M, x)i,M(x)−M(xB)

)

(1)
where xB = xi|i ∈ B}

The faithfulness metric iteratively replaces a random subset
of given attributions with a baseline value. Then it measures
the correlation between the sum of this attribution and the
difference in the model’s output.

2) Monotonocity: monotonicity checks if the predictor’s
output changes consistently with changes in the sum of feature
attributions when moving from one input point to another.
Monotonicity ensures that the explanation provided by the
explainer is consistent with the behavior of the predictor.

3) Low Complexity: The complexity metric computes the
entropy of the fractional contribution of each feature to the
total magnitude of the attribution individually.

µC(M, g;x) = −
d∑

i=1

Pg(i) logPg(i) (2)

where

Pg(i) =
|g(M, x)i|∑

j ∈ |d||g(M, x)j |
;Pg = Pg(1), ....Pg(d) (3)

4) Maximum Sensitivity: The maximum sensitivity metric
measures the maximum sensitivity of an explanation using a
Monte Carlo sampling-based approximation. It assesses how
sensitive the explanation function is to small changes in the
input data in the neighbourhood of the point of interest. By
sampling nearby points and comparing their explanations, the
metric aims to ensure that similar inputs with similar model
outputs receive consistent explanations

µM (M(x), g, r;x) = max
z∈Nr

Distance(g(M(x), x), g(M(x), z))

(4)
where Nr = z ∈ Distancex|p(x, z) ≤ r,M(x) =M(x)(z)

In the above equation, Nr represents the set of points within
a certain radius r around the point of interest x.
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The experiments were carried out on a computer running
Pop!_OS 22.04 LTS x86_64 operating system with the fol-
lowing hardware configuration: 32 GB of DDR4-2666R ECC
RAM, AMD Ryzen 5 5600G with Radeon Graphics (12) @
3.900GHz processor. The scripts were developed using the
Python 3 programming language and Pytorch library.

V. RESULTS & DISCUSSION

In this section, we will present the results of our research,
which encompass an analysis of the model’s performance,
explanations provided by the explainers, and an evaluation of
these explainers using four different metrics.

To evaluate the performance of our DNN model for botnet
attack type detection, we utilized metrics such as classification
accuracy, precision, recall, F1 score, and the confusion matrix
(see results in Fig. 2). We present Fig. 1, which illustrates
the graph of testing and training loss over epochs and the
training and testing accuracies throughout the training process.
In the classification report, the model achieved more than 99%
accuracy for all attacks. However, the recall for TCP attacks is
97% , and the precision for UDP attacks is 98%, both of which
are slightly lower than those for other attacks, respectively.

(a) Accuracy (b) Loss

Fig. 1: Training and Testing Accuracies and Loss Values of
DNN Model for IoT Botnet Attack Detection

Fig. 2: Confusion matrix and classification report of DNN
model for IoT botnet attack type detection

In our research, we employed seven explanation methodolo-
gies, namely Integrated Gradients, InputXGradient, DeepLIFT,

(a) TCP attack (b) UDP attack

Fig. 3: Example of Top 10 influential features from each
explainer for ACK and UDP attack

(a) ACK attack (b) SYN Attack

Fig. 4: Example of Top 10 influential features from each
explainer for ACK and SYN attacks

Feature Ablation, SHAP, Saliency, and LIME, to explain the
predictions of our DNN model on the test data. Each explana-
tion method provided feature importance scores based on its
specific approach (e.g., gradient-based or SHAP values). We
aggregated the feature importance scores across all instances
in the test data using absolute sum for each class of prediction
label. Subsequently, we ranked the aggregated features based
on their importance scores.

Fig. 3 shows the example of top 10 feature influences from
every explainer in TCP and UDP attack predictions by the
DNN model. Based on the explanation results provided by
the different explainers, it is evident that the most influential
features in the IoT botnet attack prediction by our DNN model
are derived from the Host-based (MI & H) category. On
the other hand, features belonging to the Channel (HH) and
Socket-based (HpHp) network categories exhibit relatively less
influence. Furthermore, the Network Jitter (HH_jit) features
show minimal impact on the predictions of the model. Notably,
we have observed similar trends in the influence of network
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categories for other types of attack class predictions, for
Example, for ACK& SYN attacks in Fig 4.

TABLE IV: comparison results of the evaluation of XAI
metrics

Explainer/metric High Faithfulness Sensitivity Complexity Monotonocity

Integrated Gradients 0.44 ± 0.32 0.61 ± 1.44 3.32 ± 0.38 52.00%

Gradient * Input 0.42 ± 0.36 0.61 ± 1.44 3.75 ± 0.29 60.00%

DeepLIFT 0.71 ± 0.12 0.48 ± 0.76 2.82 ± 0.12 69.19%
SHAP 0.55 ± 0.18 8.17 ± 8.11 3.30 ± 0.40 44.00%

Feature Ablation 0.48 ± 0.31 0.38 ± 0.76 4.29 ± 0.41 39.00%

Saliency 0.27 ± 0.26 9.79 ± 21.36 4.33 ± 0.06 46.00%

LIME 0.39 ± 0.21 10.62 ± 5.68 4.30 ± 0.31 28.00%

In our research, we evaluated the faithfulness of explanation
methods by analyzing the correlation between the importance
assigned to attributes by these methods and their impact on
the predictive model’s probabilities. Additionally, we measure
monotonicity to assess the effect of individual features on
model probability by incrementally adding each attribute in
order of increasing importance and evaluating its impact on the
model’s probability. The DNN model prediction probabilities
are obtained using the Softmax activation function. A high
faithfulness correlation value indicates that the explanations
accurately capture the original model’s behaviour and can be
considered trustworthy. Similarly, a high monotonicity score
indicates that the explanations are consistent with the model’s
predictions for the given input. Furthermore, we compute the
low complexity metric by calculating the entropy of feature
attribution derived from the explanations. Furthermore, the
sensitivity metric assesses the robustness of the explainer
output, ensuring that nearby inputs in the feature space have
similar explanations when the sensitivity value is low. In this
metric, for obtaining the nearest neighbour points related to the
prediction label of the explanation, we utilized the Euclidean
distance with a radius value of 0.1, which helps identify data
points in the feature space closest to the instance and have
similar explanations for the predicted label.

Table IV shows comparison results of the evaluation of
XAI metrics. Among the explainers, DeepLIFT emerged as
the most promising, achieving the highest mean faithfulness
correlation of 0.71 ± 0.12. This indicates that the expla-
nations provided by DeepLIFT are highly consistent with
the DNN model’s behaviour, making them more trustworthy
and accurate. Additionally, DeepLIFT demonstrated a lower
sensitivity value of 0.48± 0.76, implying robust and consistent
explanations for nearby data points in the feature space. More-
over, DeepLIFT achieved an impressive Monotonicity score of
69.19%, indicating a strong consistency in how each feature
influences the model’s predictions. This consistent relationship
between feature importance and model performance enhances
the credibility of DeepLIFT’s explanations. Furthermore, Gra-
dient * Input exhibited the highest Monotonicity score of
60%, showing a strong trend of monotonically increasing
model performance with adding features. SHAP achieved a
respectable faithfulness correlation of 0.55 ± 0.18 but had

a relatively higher sensitivity value, suggesting less stable
explanations for neighbouring data points.

VI. CONCLUSION

This research paper highlights the importance of using XAI
methods to enhance the interpretability and transparency of
deep learning-based model for detecting IoT botnet attacks of
multiclass classication. We used DNN model for classifying
various IoT botnet attack types, achieving remarkable perfor-
mance with 99% accuracy, F1 score, recall, and precision.
However, the black-box nature of deep learning models posed
challenges in understanding their decision-making process. We
explored seven post hoc explanation techniques to address
this issue to provide local explanations for our DNN model’s
behaviour. Through rigorous quantitative evaluation using high
faithfulness, monotonicity, complexity, and sensitivity metrics,
we thoroughly assessed the quality of these explanations.
Notably, among all the explainers, DeepLIFT emerged as
a standout performer, demonstrating high faithfulness, high
consistency, low complexity, and low sensitivity. Its ability to
furnish accurate and stable explanations signifies the reliability
of our DNN model’s decision-making process.
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Abstract: A Network Intrusion Detection System (NIDS) monitors networks for cyber attacks and other unwanted activ-
ities. However, NIDS solutions often generate an overwhelming number of alerts daily, making it challenging
for analysts to prioritize high-priority threats. While deep learning models promise to automate the prioriti-
zation of NIDS alerts, the lack of transparency in these models can undermine trust in their decision-making.
This study highlights the critical need for explainable artificial intelligence (XAI) in NIDS alert classification
to improve trust and interpretability. We employed a real-world NIDS alert dataset from Security Opera-
tions Center (SOC) of TalTech (Tallinn University Of Technology) in Estonia, developing a Long Short-Term
Memory (LSTM) model to prioritize alerts. To explain the LSTM model’s alert prioritization decisions, we
implemented and compared four XAI methods: Local Interpretable Model-Agnostic Explanations (LIME),
SHapley Additive exPlanations (SHAP), Integrated Gradients, and DeepLIFT. The quality of these XAI meth-
ods was assessed using a comprehensive framework that evaluated faithfulness, complexity, robustness, and
reliability. Our results demonstrate that DeepLIFT consistently outperformed the other XAI methods, pro-
viding explanations with high faithfulness, low complexity, robust performance, and strong reliability. In
collaboration with SOC analysts, we identified key features essential for effective alert classification. The
strong alignment between these analyst-identified features and those obtained by the XAI methods validates
their effectiveness and enhances the practical applicability of our approach.

1 INTRODUCTION

Many organizations use open-source (e.g., Suricata
and Snort) or commercial (e.g., Cisco NGIPS) NIDS
platforms to identify malicious network traffic (Day
and Burns, 2011). Most widely used NIDS platforms
use human-created signatures to identify malicious
network traffic. However, this often results in many
alerts, with only a tiny fraction deserving closer at-
tention from security analysts (Jyothsna et al., 2011).

In a typical SOC operation, security analysts an-
alyze the alerts based on their impact on the secu-
rity of the organizational assets and categorize them
as high or low priority. At this stage, analysts also
identify the false positives that are benign system ac-
tivities but are flagged as alerts by NIDS. Security

a https://orcid.org/0000-0001-7390-8034
b https://orcid.org/0000-0001-7781-5863
c https://orcid.org/0000-0001-8882-4095
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analysts find it challenging to identify high-priority
alerts (Jyothsna et al., 2011). Machine learning (ML)
Deep Learning (DL) methods constitute a signifi-
cant solution to automatize these prioritization tasks
and, thus, reduce SOC workloads, especially in the
lower-tier levels of security monitoring and incident
handling processes in the related literature, with ap-
proaches divided into supervised, unsupervised, and
semi-automated methods (Vaarandi, 2021; Vaarandi
and Mäses, 2022; Kalakoti et al., 2022). However, the
explainability or interpretability of ML models arises
as a significant concern in alert prioritization despite
their significant contribution.

Explainable Artificial Intelligence (XAI or Ex-
plainable AI) is necessary for experts to verify alert
classifications and for industries to comply with reg-
ulations (Goodman and Flaxman, 2017). In cyberse-
curity, it’s vital to explain flagged network activities
as potential threats. XAI helps meet compliance stan-
dards and improve systems by clarifying NIDS alert
classifications and identifying crucial features for data
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collection. In the event of a security breach, XAI of-
fers valuable insights for forensic analysis, helping to
understand why specific alerts were or were not trig-
gered, which is crucial in reconstructing the timeline
and nature of an attack (Alam and Altiparmak, 2024).
NIDS usually struggles with high false positive rates.
XAI can enable security analysts to understand why
particular benign activities are mistakenly flagged as
threats, enabling more transparent system tuning and
reducing false alarms (Moustafa et al., 2023).

Explainable AI (XAI) methods address the model
opacity problem through various global and local ex-
planation methods (Rawal et al., 2021). Several stud-
ies have studied explainable AI methods in intrusion
detection (Alam and Altiparmak, 2024; Szczepański
et al., 2020; Senevirathna et al., 2024; Moustafa et al.,
2023). However, it is crucial to note that these stud-
ies did not comprehensively evaluate Explainable AI
methods under various intrusion datasets and miscel-
laneous sets of Black box nature of AI models. This
lack of comprehensive evaluation significantly affects
the generality of such methods, highlighting the ur-
gent need for further research in this area. Although
XAI-based IDS tools are expected to be an integral
part of network security to help security analysts in
SOCs to enhance the efficiency and precise in net-
work defence and threat mitigation, a key challenge of
deploying XAI-Based model into network intrusion
detection is assessing such tools, testing their quality,
and evaluating the relevant security metrics. These
challenges undermine the trust in using the XAI-IDS
model for real-world deployment in network IDS sys-
tems.

In this paper, we propose a Long Short-Term
Memory (LSTM) model for NIDS alert prioritiza-
tion to improve transparency and Reliability. This
study evaluates various XAI methods to bridge the
gap between the high accuracy of complex ML mod-
els and the need for transparent, explainable decision-
making in the cybersecurity problem domain. Ob-
jectives of the study include creating an explainable
LSTM model for NIDS alert classification, compar-
ing four advanced XAI methods, evaluating their per-
formance using comprehensive metrics, and validat-
ing XAI-generated explanations based on four crite-
ria: Faithfulness, Complexity, Robustness, and Relia-
bility.

Faithfulness estimates how accurately the expla-
nation reflects the model’s behaviour, assuring that
the local explanation represents the model’s decision-
making process. Robustness evaluates the stability of
explanations under small input perturbations, which
is vital for building faith in local explanations. Com-
plexity assesses the simplicity of the explanations, as

more detailed explanations are generally more inter-
pretable and valuable for human understanding. Reli-
ability guarantees that the explanations are consistent
with established knowledge, such as the features iden-
tified by SOC analysts in this case.

We propose that explainable AI methods can pro-
vide explanations for the decision-making processes
of the LSTM model, prioritizing NIDS alerts and ul-
timately boosting the trust and usefulness of these
systems. This research particularly examined a real-
world dataset of NIDS alerts using LSTM, interpret-
ing the output decisions made by these models and
evaluating them through both quantitative and quali-
tative (expert) evaluations. This study emphasizes ar-
tificial intelligence (XAI) in high-risk threat detection
settings. Our research offers a perspective to the exist-
ing literature as the aspect of interpretability has not
been explored in relation to the significance of NIDS
alerts. This research suggests that a well-designed
benchmarking study can identify high-performance
detection models that provide high-quality explana-
tions. Therefore, security experts may not need to
sacrifice detection performance over a model for ex-
plainability in the addressed ML studies.

Our paper is structured as follows: Section 2 re-
views related work on NIDS and XAI in NIDS, Sec-
tion 3 outlines our methodology, Section 4 presents
our results and discussions, and Section 5 provides
our conclusions.

2 RELATED WORK

ML and DL have advanced the analysis of NIDS
alerts. This section reviews key contributions in NIDS
alert processing, focusing on classification, cluster-
ing, and explainable AI methods. It delves into stud-
ies addressing challenges such as alert prioritization,
false positive reduction, and interpretable models in
cybersecurity.

(Kidmose et al., 2020) proposed a three-phase
method for NIDS alert classification (Kidmose et al.,
2020). They used an LSTM and latent semantic anal-
ysis to convert textual alerts into vectors, clustered
the vectors using the DBSCAN algorithm, and clas-
sified incoming alerts based on their similarity to the
core points of the clusters. (Van Ede et al., 2022)
developed a semi-automated method for classifying
NIDS alerts and other security events,which involved
detecting and analyzing event sequences using deep
learning models, clustering with the DBSCAN algo-
rithm, and human analysts labeling the resulting clus-
ters (Van Ede et al., 2022). Labeled database was then
used for semi-automated classification of additional
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event sequences, with human analysts manually re-
viewing unclustered events.

In a paper(Mane and Rao, 2021), the authors uti-
lized SHAP, LIME, Contrastive Explanations Method
(CEM), ProtoDash, and Boolean Decision Rules via
Column Generation (BRCG) over the NSL-KDD
dataset (Tavallaee et al., 2009) for intrusion detection
system (IDS). They demonstrated the factors that in-
fluence the prediction of cyber-attacks.

(Ban et al., 2023) proposed a method using
an IWSVM-based classifier to detect critical NIDS
alerts. The classifier assigned higher weights to re-
peated data points and the minority class of critical
alerts. A clustering algorithm grouped alerts repre-
senting the same incident based on attributes such
as IP addresses, service ports, and alert occurrence
time. (Shin et al., 2019) developed an organizational
platform using machine learning to analyze NIDS
alert data with support for binary SVM and one-class
SVM methods (Shin et al., 2019). In a paper (Feng
et al., 2017), authors described another organizational
implementation for processing NIDS alerts and other
security events to identify at-risk users. (Wang et al.,
2019) used a graph-based method to eliminate false
alerts and applied GBDT algorithms for alert classi-
fication. (Ban et al., 2021) used a large NIDS dataset
to evaluate seven supervised machine learning meth-
ods (Ban et al., 2021). They found that Weighted
SVM, SVM, and AB (Adaboost) produced the best
results, while two isolation forest-based unsupervised
algorithms provided lower precision than the evalu-
ated supervised algorithms.

It is important to note that a large body of research
is devoted to replacing NIDS with ML-based sys-
tems (Tsai et al., 2009). However, organizations use
signature-based NIDSs due to the wide availability of
this technology and complex SOC processes evolving
around these systems. Thus, prioritizing NIDS alerts
is a significant real-world challenge in SOCs. Vari-
ous research studies have addressed the explainability
of ML-based NIDS systems. However, to our knowl-
edge, the explainability of the ML models developed
for NIDS alert prioritization has not been studied in
the literature.

(Szczepański et al., 2020) introduced the hybrid
Oracle Explainer IDS, which combines artificial neu-
ral networks and decision trees to achieve high ac-
curacy and provide human-understandable explana-
tions for its decisions (Szczepański et al., 2020). In
a paper (Senevirathna et al., 2024), authors have de-
veloped an Oracle-based Explainer module that uses
the closest cluster to generate an explanation for the
decision. A study explores how explanations in the
context of 5G security can be targeted and weakened

using scaffolding techniques. The authors suggest
a framework for carrying out the scaffolding attack
within a security setting, which involves selecting fea-
tures and training models by combining explainable
AI methods. (Zolanvari et al., 2021)(Zolanvari et al.,
2021) introduced a model-agnostic XAI framework
called TRUST for numerical applications. It uses fac-
tor analysis to transform input features, mutual infor-
mation to rank features, and a multimodal Gaussian
distribution to generate new samples for each class
label.

Some other studies have explored explainable AI
methods in intrusion detection (Alam and Altiparmak,
2024; Szczepański et al., 2020; Kumar and Thing,
2024; Kalakoti et al., 2024a; Kalakoti et al., 2024c;
Kalakoti et al., 2024b; Kalakoti et al., 2023). In con-
trast to studies on machine learning-based Network
Intrusion Detection Systems (NIDSs), our research
emphasizes the significance of making NIDS alerts
understandable through model transparency. Our ap-
proach incorporates eXplainable AI (XAI) techniques
to evaluate their effectiveness in clarifying NIDS alert
classifications. We worked with a real world NIDS
dataset from an environment making our findings
more relevant than those based on old data sets. Our
evaluation criteria cover aspects such as the reliabil-
ity, faithfulness, robustness and complexity of expla-
nations assessing explainability within this domain.
By engaging Security Operations Center (SOC) an-
alysts in verifying our XAI findings we bridge the
gap, between machine learning models and human
knowledge. This progress enhances XAI in the field
of cybersecurity, offering perspectives for developing
transparent and reliable NIDS alert critical prioritiza-
tion systems.

3 METHODOLOGY

3.1 Dataset

Our study makes use of a NIDS alert dataset taken
from a Suricata NIDS system deployed at the Secu-
rity Operations Center (SOC) of Tallinn University
of Technology (Taltech). The dataset was gathered
using the Customized Stream Clustering Algorithm
for Suricata (CSCAS) to analyze alerts from Suricata
NIDS at TalTechs SOC. Data was collected over a
span of 60 days, from January to March 2022 dur-
ing which Suricata generated alerts, for network ac-
tivity involving 45,339 hosts and 4401 TalTech hosts.
The categorized dataset can be accessed at the link;
https://github.com/ristov/nids-alert-data.

Throughout the data collection phase CSCAS op-
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erated with settings; SessionLength = 300 seconds
(5 minutes) SessionTimeout = 60 seconds (1 minute)
ClusterTimeout = 604,800 seconds (1 week) Cand-
Timeout = 36,000 seconds (10 hours) MaxCandAge =
864,000 seconds (10 days) and α = 0.01. These con-
figurations have been employed for CSCAS in an en-
vironment since 2021 and were determined to be opti-
mal as outlined in (Vaarandi, 2021). NIDS Alerts are
classified as either ”important” or ”irrelevant.” Data
points of network traffic were generated by a cus-
tomized version of SCAS, a stream clustering algo-
rithm, and have labels indicating whether they are re-
garded as inliers or outliers by SCAS. Data points are
labeled by humans to indicate if they represent im-
portant or irrelevant alert groups. Important alerts are
prioritized in the SOC security monitoring processes.
Irrelevant alerts include low-priority threats (e.g., fre-
quent scanning for old vulnerabilities) or false pos-
itives (e.g., alerts related to attempts to resolve bot-
net C&C server DNS names not originating from in-
fected computers but from specific security applica-
tions). The description of the dataset (Vaarandi and
Guerra-Manzanares, 2024) is given below:

• Timestamp – alert group reporting time
• SignatureText – human readable alert text
• SignatureID – numerical signature ID
• SignatureMatchesPerDay – Average matches per

day by the triggering signature (set to 0 if first
match was less than 24 hours ago).

• AlertCount – the number of alerts in the current
alert group

• Proto – numerical protocol ID (e.g., 6 denotes
TCP and 17 UDP)

• ExtIP – anonymized IP address of the external
host (extipN, where N is a number that identifies
the given IP address)

• ExtPort – port at the external host, set to -1 if
alerts involve multiple external ports

• IntIP – Anonymized IP address of the internal
host (intipN), set to -1 if alerts involved multiple
internal IP addresses.

• IntPort – port at the internal host, set to -1 if
alerts involve multiple internal ports.

• Similarity – The overall similarity of this alert
group to others in the same cluster or, if it’s an
outlier, to other outlier alert groups. The value
ranges from 0 to 1, with higher values indicating
a high degree of similarity.

• SCAS – The label assigned by the customized
version of SCAS. Here, 0 denotes an inlier and 1
denotes an outlier.

• AttrSimilarity – similarity for the network IDS
alert attribute Attr (there are 34 attributes in to-
tal). Set to -1 if the attribute Attr is not set for the

given signature, otherwise ranges from 0 to 1.
The field indicates how often the attribute value
has been observed in other alert groups from the
same cluster (or in other outlier alert groups if
the current alert group is an outlier).

We collaborated with Security Operations Center
(SOC) analysts from TalTech, Estonia to estimate the
reliability of the post-hoc explanations generated for
the decisions of the black-box model, which is the
DL model induced for alert classification in this work.
A detailed description of TalTech SOC can be found
in (Vaarandi and Mäses, 2022). Leveraging their ex-
pertise in managing Network Intrusion Detection Sys-
tem (NIDS) alerts, the SOC team at TalTech identified
the five features for determining alert significance as
outlined in Table 1. These features act as benchmark-
ing reference features in our research to evaluate how
well our XAI algorithms perform.

Table 1: Key Features Identified by Taltech SOC Analyst
for Determining NIDS Alert Significance.

SignatureMatchesPerDay
Similarity
SCAS
SignatureID
SignatureIDSimilarity

For our work, the dataset excluded ’Signature-
Text’ and ’Timestamp’ features as external IP ad-
dresses (”ExtIP” feature) and internal IP addresses
(”IntIP” feature) prior, to model training.

3.2 Long Short-Term Memory for NIDS
Alerts

In this study, we proposed long-term memory
(LSTM) to classify whether a given NIDS alert group
needs immediate attention (Important class label) or
can be assessed as less critical (Irrelevant class label).
LSTM is a neural network designed to address the
long-term dependence problem in traditional recur-
rent neural networks. It introduces forget, input, and
output gates to control the flow of information and
maintain long-term memory. Figure 1 shows struc-
ture of the hidden layer of the LSTM network. The
forget gate adapts to the context, discarding unneces-
sary information. It uses a sigmoid function to pro-
duce a value between 0 and 1, then multiplied by the
previous cell state. A value of 0 means complete for-
getting, while 1 means fully retained.

ft = σ(Wf · [ht−1,xt ]+b f ) (1)

The input gate enhances the necessary informa-
tion for the new cell state, and its output is a sigmoid

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

50



Figure 1: Hidden Layer Architecture of LSTM Network.

function with a range of 0 to 1, which is multiplied by
the current cell state.

it = σ(Wi · [ht−1,xt ]+bi) (2)

C̃t = tanh(Wc · [ht−1,xt ]+bc) (3)

Then the old and new state information can be
combined to construct the final new cell state.

Ct = ft ×Ct−1 + it ×C̃t (4)

The output is determined by the output gate,
which uses a sigmoid function to select information to
be output along with the final cell state and the Tanh
function.

Ot = σ(Wo · [ht−1,xt ]+bo) (5)

ht = Ot × tanh(Ct) (6)

For training LSTM model, We selected 10,000
data points for each class label (’irrelevant’ and ’im-
portant’), resulting in a total of 20,000 samples. The
The dataset was divided into training and testing sets
at an 80 20-split ratio. We applied the data normaliza-
tion technique to the dataset to convert the values to a
standard scale. We used Min-Max normalization, one
of several available techniques, to transform and nor-
malize the input features to scale them within a range
of 0 to 1, as shown in Equation 7.

x′ =
x− xmin

xmax − xmin
(7)

where xmin is the smallest value of the feature, xmax
is the largest value of the feature, and x is the ac-
tual value of the feature. The normalized feature, x′,
ranges between 0 and 1.

We used RandomSearch hyperparameter tuning
with Ray Tune library1 to train LSTM model. We
evaluated the performance of LSTM model for NIDS
alerts classification using a confusion matrix. In
NIDS alerts classification, True Positives (TP) are the

1https://docs.ray.io/en/latest/tune/index.html

number of important alerts correctly classified as im-
portant, True Negatives (TN) are the number of irrele-
vant alerts correctly classified as irrelevant, False Pos-
itives (FP) are the number of irrelevant alerts incor-
rectly classified as important. False Negatives (FN)
are the number of important alerts incorrectly classi-
fied as irrelevant. we used the following evaluation
metrics

Accuracy =
T P+T N

T P+T N +FP+FN
(8)

Precision =
T P

T P+FP
(9)

Recall =
T P

T P+FN
(10)

F1-Score = 2× Precision×Recall
Precision+Recall

(11)

We used softmax activation function at the output
layer to predict class labels, which provides predic-
tion probabilities for each class and enables us to un-
derstand the model’s confidence and the probability
distribution. It’s also crucial to evaluate XAI tech-
niques based on metrics like faithfulness, monotonic-
ity and max sensitivity as discussed in section 3.4.

3.3 Explainable AI Methods

When explaining the model using Explainable AI,
there are two approaches: model agnostic and model
specific. Explainable AI methods are also categorized
into two types explanations. Local explanations in-
terpret individual predictions and global explanations
that offer an overview of the model’s behaviour. Our
goal is to enhance the explainability of NIDS alerts
detected by LSTM model. We have utilized four pop-
ular XAI feature attribution methods. Will provide a
brief overview of each one. The following outlines
the four methods (LIME, SHAP, Integrated Gradients
(IG) and DeepLIFT) all designed to clarify instances
and shed light on how the model makes decisions, for
specific predictions. Let x ∈ Rd be the input, where
d is the feature set dimensionality. The black box
model M maps input to output M (x) ∈ Y . Dataset
D =(xi,yi) contains all input-output pairs. The expla-
nation mapping g for predictor M and point x returns
importance scores g(M ,x) = φx ∈Rd for all features.
Let D : Rd ×Rd 7→ R≥ 0 be a metric in the expla-
nation space and S : Rd ×Rd 7→ R≥ 0 a metric in the
input space. The evaluation criterion µ maps predictor
M , explainer g, and point x to a scalar.
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3.3.1 SHAP

SHAP (Lundberg and Lee, 2017) uses Shapley val-
ues from game theory to attribute the importance of
each feature to a model’s prediction, providing a uni-
fied measure of feature importance. SHAP based
on Shapley values, is defined as: g(M ,x) = φ0 +
∑

M
j=1 φ j where φ j is the feature attribution of feature

j. SHAP’s DeepExplainer was used in this study.

3.3.2 LIME

LIME (Ribeiro et al., 2016) (Local Interpretable
Model-agnostic Explanations) constructs a locally in-
terpretable model around a specific prediction. It
works by perturbing the input and fitting a simple
model, like a linear model, to explain the behaviour of
the black box model in the vicinity of the prediction of
interest. LIME approximates model behavior locally
around (x) by minimizing: argmin

g∈G
L(M ,g,πx)+Ω(g)

where g is an interpretable model in the neighborhood
of (x).

3.3.3 Integrated Gradients

Integrated Gradients (IG) (Sundararajan et al., 2017)
attributes the prediction of a deep network to its inputs
by integrating the gradients along a straight-line path
from a baseline input to the actual input. This method
satisfies desirable axioms like completeness and sen-
sitivity, providing a theoretically sound approach
to feature attribution. IG attributes feature impor-
tance by integrating model gradients from a baseline
g(M ,x) = IG(x) = (x − x̄)×

∫ 1
α=0

∂M (x̄+α·(x−x̄))
∂x dα

where x̄ is the baseline input.

3.3.4 DeepLIFT

DeepLIFT (Shrikumar et al., 2017) assigns each in-
put (x) a value C∆xi∆y representing its deviation from
a reference value, satisfying: ∑

n
i=1 C∆xi∆o = ∆o where

o = M (x) and ∆o is the difference between model
output and reference value.

3.4 Evaluation of Explainable AI
Methods

The evaluation of Explainable AI methods is cru-
cial to ensure that the explanations they provided
are transparent, also accurate and reliable. We em-
ploy four key metrics to assess the quality of our
explanations for LSTM Model based NIDS alerts:
Reliability, Faithfulness, Robustness and Complex-
ity. These metrics provide a comprehensive evalu-
ation framework that addresses different aspects of

explanation quality. XAI evaluation is categorized
into three groups (Coroama and Groza, 2022): user-
focused evaluation, application-focused evaluation,
and functionality-focused evaluation. The first two
categories are part of human-centered evaluation and
are broken down into subjective and objective mea-
sures.

3.4.1 Reliability

An explanation should be centered around the region
of interest, the ground truth GT. g(M ,x) = GT.
’Major’ parts of an explanation should lie inside the
ground truth mask GT(x) for both Relevance Mass
Accuracy and Relevance Rank Accuracy metrics used
in this work, and the Ground truth mask ([0,1]) was
determined by the features SOC Analysts identified
(see Table. 1).Truth-based measures relevance rank
accuracy and relevance mask accuracy are derived
from (Arras et al., 2022).

(a) Relevance Rank Accuracy (RRA) (Arras et al.,
2022): Relevance rank accuracy measures how
much of the high-intensity relevance lies within
the ground truth. We sort the top K values of
g(M ,x) in decreasing order XtopK = {x1, ...,xK |
g(M ,x)x1 > ... > g(M ,x)xK}.

RRA =
|Xtopk ∩GT(x)|

|GT(x)|

Here topk are features Identified by SOC Ana-
lyst.

(b) Relevance Mass Accuracy (RMA) (Arras et al.,
2022): The relevance mass accuracy is calcu-
lated as the sum of the explanation values within
the ground truth mask divided by the sum of all
values.

RMA =
∑i g(M ,x)i ·GT(xi)

∑i g(M ,x)i

3.4.2 Faithfulness

The explanation algorithm g should replicate the
model’s behavior. g(M ,x) ≈ M (x). Faithfulness
quantifies the consistency between the prediction
model M and explanation g. For evaluating the
Faithfulness of explanations, the Faithfulness correla-
tion (Bhatt et al., 2020) and Monotonocity (Luss et al.,
2019) metrics were used.
(a) High Faithfulness Correlation: Faithfulness

measures how well the explanation function g
aligns feature importance scores with the black-
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box model M

µF (M ,g;x)= corr
B∈( |d||B|)

(
∑
i∈B

g(M ,x)i,M (x)−M (xB )

)
(12)

where xB = xi|i ∈ B} High Faithfulness correla-
tion metric iteratively substitutes a random sub-
set of given attributions with a baseline value
B . Then, it measures the correlation between the
sum of these attributions and the difference in the
model’s output.

(b) Monotonicity: Let x,x′ ∈ R d be two input points
such that xi ≤ x′i for all i ∈ 1,2, . . . ,d. M and g
are said to be monotonic if the following condi-
tion holds: For any subset S⊆ 1,2, . . . ,d, the sum
of the attributions of the features in S should be
nonnegative when moving from x to x′, that is,
∑i∈S g(M ,x)i ≤ ∑i∈S g(M ,x′)i implies

M (x)−M (x[xs=x̄s])≤ M (x′)−M (x′[x′s = x̄s])

3.4.3 Robustness

Robustness refers to similar inputs should result
in similar explanations. g(M ,x) ≈ g(M ,x +
ε) for small ε.

(a) Max Sensitivity: Max sensitivity (Bhatt et al.,
2020): is used to ensure that nearby inputs with
similar model output have similar explanations,
it is desirable for the explanation function g to
have a low sensitivity in the region surround-
ing the point of interest x, assuming the differ-
entiability of the predictor function M . Maxi-
mum sensitivity of an explanation function g at
a point of interest x in its neighbourhood is de-
fined as follows: Consider a neighbourhood Nr
of points within a radius r of x, denoted by Nr =
z ∈ Dx|p(x,z)≤ r,M (x) = M (x)(z), where D is
the distance metric, and p is the proximity func-
tion. Given a predictor M (x), a distance metric
D, a proximity function p, a radius r, and a point
x, we define the maximum sensitivity of g at x as
follows:

µM(M (x),g,r;x) = max
z∈Nr

D(g(M (x),x),g(M (x),z))

(13)

3.4.4 Complexity

Explanations using a smaller number of features are
preferred. It is assumed that explanations using a
large number of features are difficult for the user to
understand.min

∥∥g(M ,x)
∥∥

0.

(a) Low Complexity: Low complexity (Bhatt et al.,
2020) metric computes the entropy of each fea-

ture’s fractional contribution to the total attribu-
tion magnitude individually.

µC(M ,g;x) =−
d

∑
i=1

Pg(i) logPg(i) (14)

where

Pg(i) =
|g(M ,x)i|

∑ j ∈ |d||g(M ,x) j|
;Pg = Pg(1), ....Pg(d)

(15)

The experiments were carried out on a computer
running Pop! OS 22.04 LTS x86 64 operating system
with the following hardware configuration: 32 GB of
DDR4-2666R ECC RAM, AMD Ryzen 5 5600G with
Radeon Graphics (12) @ 3.900GHz processor. The
scripts were developed using the Python 3.9 program-
ming language and Pytorch library. For the imple-
mentation of the Integrated Gradients and DeepLIFT
explainers, Captum library was used.

4 RESULTS & DISCUSSIONS

In this section, we present the results of our research,
including an analysis of the LSTM model’s perfor-
mance and explanations of LSTM model using Ex-
plainable AI methods and the quality of evaluation for
these explanations based on four criteria: faithfulness,
complexity, reliability, and robustness.

Figure. 3a shows the confusion matrix, indicating
the model’s strong classification performance for test
data of 4000. It correctly classified 2005 important
alerts and 1980 irrelevant alerts, with only 14 misclas-
sifications of irrelevant alerts as necessary, demon-
strating high accuracy and a low false positive rate.
Figure. 2a shows the training and validation loss over
70 epochs obtained through random search parame-
ter tuning. Initially, both decrease rapidly before sta-
bilizing, indicating convergence without overfitting.
The close alignment of the training and validation loss
curves represents good generalization to unseen data.
Figure. 2b shows the training and validation accu-
racy, which quickly stabilizes above 99.5%, indicat-
ing strong model performance. In Figure. 3b, from the
classification report, the model achieves near-perfect
precision, recall, and F1-score scores for both classes.

In this paper, we utilized 4 different explainable
AI methods (LIME, SHAP, IG, and DeepLift) to ex-
plain the predictions of our LSTM model on the test
data. LIME analyzes how the model assigns prob-
abilities to categories by comparing these probabili-
ties with the actual category of the data point. SHAP
method provides single-data-point explanations for
models, giving insights. In explanations, a particular
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(a) Loss (b) Accuracy.

Figure 2: Loss and Accuracy from Best LSTM Performance
Model.

(a) Confusion Matrix (b) Classification Report

Figure 3: Confusion Matrix and Classification Report.

data point is selected to demonstrate how each feature
influences the model’s prediction.

Fig. 4a shows an local explanation from LIME
method for a NIDS alert labeled as ”Important.”. Left
side presents prediction probabilities with a 100%
probability for the ”Important” class. On the right
side it illustrates the impact of features. For instance,
when the feature ‘SignatureIDSimilarity’ is less than
or equal to 0.01, it positively affects the ”Important”
classification of NIDS alert. Additionally, ‘Signa-
tureMatchesPerDay’ and ‘SCAS’ being less than or
equal to 1.00 also contribute positively. Conversely,
‘ExtPortSimilarity’ and ‘TlsSniSimilarity’ have im-
pacts, suggesting that some NIDS alerts may not be
relevant. SHAP employs Shapley values to showcase
how features influence model predictions in Fig. 4b of
force plot, red bar signifies the positive impact while
blue bar indicates the negative impact on the model
output. Each bar demonstrates whether the features
bring the predicted value closer to or farther from
the base value of 0.02463. The plot’s base value is
the average of all prediction values. Each strip in
the plot displays the impact of the features on mov-
ing the predicted value closer to or farther from the
base value. Final prediction is deemed an ”important
class label”, with a value of 1.00 for this NIDS alert.
Features, like ’IntPort’ (Internal Port) ’SignatureID-
Similarity’. ExtPort’ (External Port) along with ’Sig-
natureID’ play a role in indicating the importance of
NIDS alert. However, the feature ’HttpStatusSimilar-
ity’ might suggest that this alert could be a less critical
feature to its impact.

DeepLift is a technique used to attribute the out-

(a) LIME explanations for important NIDS alerts
using an LSTM model

(b) SHAP explanations for an important NIDS
alert data point using an LSTM model

(c) DeepLIFT feature importance for an important
NIDS alert data point using an LSTM model

(d) Integrated Gradients feature importance for an
important NIDS alert data point using an LSTM
model

Figure 4: Explanations for an important NIDS alert data
point using an LSTM model.

put of LSTM model to its input features by compar-
ing neuron activation to a reference activation and
assigning contribution scores based on the variance.
Fig. 4c illustrates the significance of features using the
DeepLift explainer for the 10 features of a NIDS alert
data point labeled as ”important.” The negative attri-
bution of ’SCAS’ suggests its influence on classifying
as ”Important” in NIDS alerts. Additionally ’Http-
MethodSimilarity’ and ’IntIP’ show negative attribu-
tions while HttpContentTypeSimilarity has a slight
positive impact countering the ”Important” classifica-
tion. IG attribute a LSTM model’s prediction its input
features by integrating gradients of the model’s out-
put with respect to the input along from a baseline to
the input. This explanation technique works best for
models that use linear activation functions. Fig. 4d
showcases feature importance using IG explainer for
a data point in the ”Important” NIDS alert class la-
bel among the 10 features. Features such, as ’Sig-
natureID’ ’SCAS,’ and ’HttpStatusSimilarity’ display
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Table 2: Evaluation Results of Explainable AI Methods: Mean (µ) and Standard Deviation (σ) Values.

Explanation Criterion Faithfulness Robustness Complexity Reliability

Explainer/Metric High
Faithfulnes Monotonicity Max Sensitvity Low Complexity Relevance Mass

Accuracy
Relevancy Rank

Accuracy
µ±σ µ µ±σ µ±σ µ±σ µ±σ

Lime 0.4209 ± 0.1835 59.55% 0.3617 ± 0.1152 3.0318 ± 0.0703 0.6234 ± 9.7008 0.5250 ± 0.1041
Shap 0.3959 ± 0.2928 64.45% 0.0245 ± 0.0862 2.4677 ± 0.2074 0.6527 ± 3.8334 0.4743 ± 0.1418
IG 0.1761 ± 0.3815 73.70% 0.1774 ± 0.2505 2.1745 ± 0.4134 0.5939 ± 0.6840 0.3410 ± 0.1545

Deep Lift 0.7559 ± 0.2681 78.35% 0.0008 ± 0.0004 2.2635 ± 0.3299 0.7812 ± 25.2805 0.6754 ± 0.0897

(a) High Faithfulness (b) Max Sensitivity (c) Low Complexity (d) Relevancy Rank Accuracy
Figure 5: Quality of Explainable AI evaluation metrics distribution.

attributions.
Our analysis comparing the features identified by

the TalTech SOC analyst closely aligned with those
derived by explainers used in our LSTM model to
classify ”important” NIDS alerts. The 5 features rec-
ognized by SOC experts in Table 1 proved signifi-
cant across explainers, although their order of feature
importance varied. For instance, ’SignatureIDSimi-
larity’ and ’SignatureID’, highlighted by SOC ana-
lysts, impacted the SHAP explainer for NIDS alerts.
The presence of ”SCAS” was notable in LIME, IG,
and DeepLift, confirming its significance. The im-
portance of ’SignatureMatchesPerDay’ varied among
explainers within LIME. Notably upon reviewing the
10 features highlighted by each explainer, we noticed
an overlap with the features identified by SOC an-
alysts particularly emphasizing ’SignatureID’, ’Sig-
natureIDSimilarity’, ’SCAS’ and ’SignatureMatches-
PerDay’. We assessed the quality explanation of XAI
methods, for LSTM model based alerts using metrics
based on four criteria: faithfulness, robustness, com-
plexity and reliability.

We evaluated the quality of explanations ob-
tained by XAI methods for Long Short-Term Mem-
ory (LSTM) network-based NIDS alert classification
across 2000 data points using metrics based on four
criteria: Faithfulness, robustness, complexity, and re-
liability. Table 5 shows the results of the quality of ex-
planation for XAI methods. LSTM model prediction
probabilities were computed using the Softmax acti-
vation function. To evaluate the Faithfulness of expla-
nations, we employed high faithfulness correlations
and monotonicity. High Faithfulness of XAI methods
was evaluated by studying the correlation between at-

tribute importance assigned by the XAI method and
their impact on the model’s probabilities. A high
faithfulness correlation value suggests that the expla-
nations effectively capture the model’s behaviour and
can be regarded as faithful. Table. 2 shows the evalua-
tion results of xai methods. Mean (µ) and standard de-
viation (σ) values were calculated for the test data of
XAI computed metrics for 2000 test data points. Deep
Lift achieved the highest Faithfulness mean and stan-
dard deviation correlation values of 0.7559 ± 0.2681
for test data points. We also analyzed the monotonic-
ity of the explanation to understand how individual
features affect model probability by adding each at-
tribute to enhance its importance and observing its in-
fluence on the model’s probability. By assessing the
monotonicity of the explainer, we can measure how
the explanations change monotonically with respect
to the input features. Deep LIFT achieved high mono-
tonicity with 78% (µ).

To measure complexity, we calculate the entropy
of feature attribution in the explanations. Com-
plexity measures the conciseness of explanations de-
rived by the explainer. Among xai methods assessed
by low complexity metric, Integrated Gradients (IG)
achieved lower complexity ( 2.174 ± 0.413) closely
followed by DeepLift ( 2.264 ± 0.330.)

The sensitivity metric assesses the consistency of
the explainers’ output, ensuring that similar inputs in
the feature space of model outputs have similar ex-
planations when sensitivity is low. For this metric, we
used the Euclidean distance with a radius value of 0.1
to find the nearest neighbour points related to the pre-
diction label of an explanation which helps to identify
data points in the feature space with similar expla-
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Table 3: Statistical Comparison of Explainers Across Multiple Metrics (p-values).

Metric Explainer Shap IG Deep Lift

Faithfulness
LIME L (3.34e-41) L (1.03e-134) D (5.61e-185)
SHAP - S (6.22e-91) D (1.03e-169)

IG - D (1.30e-230)

Max Sensitivity
LIME S (0.00e+00) I (1.64e-221) D (0.00e+00)
SHAP - S (1.38e-185) D (3.54e-126)

IG - D (3.29e-126)

Low Complexity
LIME S (0.00e+00) I (0.00e+00) D (0.00e+00)
SHAP - I (5.45e-146) D (1.26e-88)

IG - I (1.07e-42)

RMA
LIME S (5.12e-25) L (1.97e-80) D (6.22e-83)
SHAP - S (4.67e-155) D (6.47e-91)

IG - D (2.82e-54)

RRA
LIME L (7.61e-39) L (3.07e-210) D (0.00e+00)
SHAP - S (5.52e-155) D (3.97e-253)

IG - D (0.00e+00)

D (Deep Lift), L (LIME), S (SHAP), and I (Integrated Gradients)
indicate the better performing explainer in each pairwise comparison.

p > 0.05 — No significant evidence against H0; H0 is not rejected
0.01 < p ≤ 0.05 — Significant evidence against H0; H1 is accepted at 95% confidence level

0.001 < p ≤ 0.01 — Strong evidence against H0; H1 is accepted at 99% confidence level
p ≤ 0.001 — Very strong evidence against H0; H1 is accepted at 99.9% confidence level.

nations for the predicted label. Deep LIFT achieved
Lower sensitivity with max sensitivity metric (0.0008
± 0.0004).

Two metrics, Relevance Mass Accuracy and Rel-
evance Rank Accuracy, were used to evaluate the reli-
ability of explanations. These metrics validated the
explanations by comparing them to a ground truth
mask based on features identified through collabora-
tion with an SoC analyst. For both Relevance Mass
Accuracy (0.781 ± 25.281) and Relevancy Rank Ac-
curacy (0.6754 ± 0.089) metrics, Deep lift explana-
tions were reliable. Figure. 5 illustrates the distribu-
tion of XAI metric results for 2000 data points, high-
lighting that DeepLIFT’s explanations demonstrate
high faithfulness, lower sensitivity, lower complex-
ity, and more relevance rank accuracy. Faithfulness
correlation values for DeepLIFT indicate a strong
skew towards higher levels, showing a high degree
of consistency through monotonicity. Moreover, the
entropy values of feature importance scores for IG
and DeepLIFT are more evenly spread towards the
lower end than other explainers. The sensitivity val-
ues for the DeepLIFT explainer are also more evenly
spread to lower values in maximum sensitivity met-
rics. Additionally, using Relevance Rank Accuracy,
DeepLIFT consistently achieves a high relevance rank
accuracy with less variation, centred around 0.8.

Following established practices in the statistical
analysis of XAI methods evaluation (Jesus et al.,

2021), we employed the Wilcoxon signed-ranks
test (Woolson, 2005) to evaluate the statistical signif-
icance of differences (Demšar, 2006) in XAI metric
scores between pairs of explainers (i.e., explainerA,
explainerB) for NIDS alert classification. The null hy-
pothesis (H0) is that the explainable AI metric scores
of the explainers are equivalent, i.e., there is no signif-
icant difference between the explainers (XAI Metric
Score(explainerA) = XAI Metric Score(explainerB)).
The alternative hypothesis (H1) is that they are not
equivalent (XAI Metric Score(explainerA) ̸= XAI
Metric Score(explainerB)), indicating a significant
difference in their explainer metric scores. XAI met-
rics used in this study are High Faithfulness, Max
Sensitivity, Low Complexity, Relevance Mass Accu-
racy, and Relevancy Rank Accuracy. This test was
conducted separately for each metric to assess the per-
formance differences among the explainers compre-
hensively.

The statistical analysis in Table 3 shows signifi-
cant differences among the explainers for all metrics,
with p-values consistently below 0.05, demonstrating
strong evidence against the null hypothesis. DeepLift
explainer is better regarding faithfulness, max sen-
sitivity, RMA, and RRA when compared pairwise
(p < 0.001 for all comparisons) with other explain-
ers. The relative performance of SHAP, LIME, and
IG varies across metrics can be seen Table 3.

We have also provided a global explanation us-
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Figure 6: SHAP global explanation for LSTM model.

ing SHAP values for all the testing data of the LSTM
model. A higher value positively impacts the pre-
diction, while a lower value contributes negatively.
Figure. 6 shows the global explanation of the LSTM
model. The graph illustrates the average impact of
each feature on the model’s output magnitude for
the class labels, ”irrelevant” and ”important” classi-
fications. SignatureIDSimilarity, SignatureMatches-
PerDay, ProtoSimilarity and SCAS are most impact
ful features for important nids alerts. Notably, these
top features align with those identified by human ex-
pert SOC analysts. Lower-ranked features such as
HTTP-related similarities (e.g., HttpHostnameSimi-
larity, HttpUrlSimilarity) and IP-related features (e.g.,
ExtIPSimilarity) have comparatively less impact on
the model’s decisions.

5 CONCLUSIONS AND FUTURE
WORK

This research presents explainable artificial intelli-
gence (XAI) based Network Intrusion Detection Sys-
tems (NIDS) alert classification utilizing a Long
Short-Term Memory (LSTM) model. We have show-
cased how enhancing the explainability and trust-
worthiness of AI-powered cybersecurity systems can
be achieved by clarifying the output predictions of
these LSTM models through four XAI techniques:
LIME, SHAP, Integrated Gradients, and DeepLIFT.
Our thorough assessment of the XAI framework, con-
sidering the aspects of faithfulness, complexity, ro-
bustness, and reliability, has evaluated how well these
XAI methods explain NIDS alerts. The superior per-
formance of DeepLIFT across these evaluation met-
rics underscores its potential as a preferred method
for interpreting NIDS alert classifications. Notably,
the substantial alignment between explanations gen-

erated by XAI techniques and features identified by
SOC analysts validates their effectiveness in captur-
ing domain expertise. This research makes a contri-
bution by bridging the gap between the high accuracy
of opaque machine learning models and the necessity
for transparent decision-making in cybersecurity op-
erations. By proposing a framework to explain black
box model decisions and assess XAI in NIDS appli-
cations, we provided comprehensive benchmarking
results, including evaluation metrics for developing
transparent and interpretable AI systems in crucial se-
curity domains.
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Szczepański, M., Choraś, M., Pawlicki, M., and Kozik, R.
(2020). Achieving explainability of intrusion detec-
tion system by hybrid oracle-explainer approach. In
2020 International Joint Conference on neural net-
works (IJCNN), pages 1–8. IEEE.

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A.
(2009). A detailed analysis of the kdd cup 99 data
set. In 2009 IEEE symposium on computational intel-
ligence for security and defense applications, pages
1–6. Ieee.

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009).
Intrusion detection by machine learning: A review. ex-
pert systems with applications, 36(10):11994–12000.

Vaarandi, R. (2021). A stream clustering algorithm for clas-
sifying network ids alerts. In 2021 IEEE International
Conference on Cyber Security and Resilience (CSR),
pages 14–19. IEEE.

Vaarandi, R. and Guerra-Manzanares, A. (2024). Stream
clustering guided supervised learning for classifying
nids alerts. Future Generation Computer Systems,
155:231–244.
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Abstract—Internet of Medical Things (IoMT) systems have
brought transformative benefits to patient monitoring and remote
diagnosis in healthcare. However, these systems are prone to
various cyber attacks that have a high impact on security and
privacy. Detecting such attacks is crucial for implementing timely
and effective countermeasures. Machine learning methods have
been applied for intrusion detection tasks in various networks,
but explaining the reasons for detection decisions remains an
obstacle for security analysts. In this paper, we demonstrate that
Transformer architecture, the core of the recent revolutionary
large language models, constitutes a promising solution for intru-
sion detection in IoMT networks. We utilized a comprehensive
dataset, CICIoMT2024, recently released specifically for these
networks. We created a binary classification model for discrim-
inating attacks from benign traffic and a multi-class model for
the identification of specific attack types. We applied Explainable
AI (XAi) methods such as LIME and SHAP to generate post-
hoc explanations for the model decisions. We evaluated and
compared the quality of explanations based on three metrics:
faithfulness, sensitivity, and complexity. Our findings demonstrate
that the applied XAI methods enhance transparency in the
predictions of Transformer-based intrusion detection models
for IoMT networks, proving that both transparency and high
performance can be achieved simultaneously.

Index Terms—Transformer, Evaluation of Explainable AI In-
trusion detection, IoT, Health Care IoMT Intrusion detection

I. INTRODUCTION

Internet of Medical Things (IoMT) has advanced patient
monitoring but also introduced security vulnerabilities that
attackers can exploit, posing risks to patient privacy and
safety [1]. DDoS and DoS attacks on IoMT devices could dis-
rupt critical medical equipment, endangering patient lives [2].
IoMT devices are prime targets for attackers due to the sensi-
tive medical data they collect. Breaches could expose personal
patient information [2], violating privacy and enabling further
malicious activities. Attackers could exploit zero-day vulner-
abilities in medical devices to gain unauthorized access and
control, even manipulating device functionality to physically
harm patients. Researchers have proposed security assess-
ment frameworks for IoMT to evaluate healthcare system
security [1]. Machine learning and deep learning intrusion
detection systems are being explored to monitor network traffic
and device behavior for anomalies [3]. Explainable Artificial
Intelligence (XAI) is crucial for detecting attacks on health-
care IoMT networks, offering transparency for stakeholders
to understand the rationale behind machine learning model
predictions [4–7].

This paper proposes an explainable transformer-based
model for detecting and categorizing network attacks in Inter-
net of Medical Things (IoMT) networks. We use transformer
models inspired by GPT architecture to enhance IDS within
IoMT environments. Our study includes implementing a slid-
ing window approach to adapt transformer models for analyz-
ing network traffic as sequences, improving detection accuracy.
We also aim to enhance model explainability by integrating
XAI methods such as LIME and SHAP. We assessed the
effectiveness of XAI methods in explaining predictions made
by transformer-based IoMT attack detection models. Using the
CICIoMT2024 dataset, we compared transformer models with
traditional ML models and demonstrated their effectiveness in
binary and multi-class classification tasks within the IoMT
security domain. Our study is the first to provide explanations
and conduct a detailed evaluation of Explainable ai for Intru-
sion detection of Transformer in healthcare.

II. LITERATURE REVIEW

Several works have implemented the power of transformer
architectures in various IDS contexts. Wu et al. proposed
that RTIDS balances dimensionality reduction and feature
retention in imbalanced datasets using positional embedding
and a stacked encoder-decoder neural network [8]. It uses a
self-attention mechanism for classifying network traffic types
and achieved F1 scores of 99.17% and 98.48% on the CI-
CIDS2017 and CIC-DDoS2019 datasets, respectively. Nguyen
et al. developed a multi-class Intrusion Detection System (IDS)
for in-vehicle CAN bus using a transformer-based attention
network (TAN) with self-attention to classify and detect replay
attacks [9]. It identifies intrusion messages without the need
for message labeling and uses transfer learning to improve
performance with small data from other car models. The
paper [10] introduces the FlowTransformer framework, which
offers a method for implementing NIDS using transformer
models to capture long-term network patterns and allows
for easy substitution of transformer components. The models
were tested using different transformer architectures (GPT 2.0,
BERT) on three NIDS datasets. It was found that the clas-
sification head type significantly affects model performance,
and specific input encoding and classification head choices
can reduce the model size by over 50%. In their paper [11],
the authors introduce GTID, an ID model based on n-gram
frequency and a time-aware transformer. GTID learns traffic
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features hierarchically from packet-level and session-level data
for XAI-Based IDS. Previous research has made strides in
using transformer models for ID. In our study, we introduce
a transformer model for IoMT networks to address security
concerns in healthcare. We use the 2024 CIC IoMT dataset to
keep up with emerging threats and integrate XAI methods to
provide explanations for predictions and evaluate their quality.

III. METHODLOGY

A. CICIoMT2024 Dataset Description

CICIoMT2024 dataset [12] was created at the Canadian
Institute for Cybersecurity to simulate realistic IoMT environ-
ments and collect network traffic for cybersecurity research. It
includes IoT devices connected via Wi-Fi, MQTT, and Blue-
tooth Low Energy (BLE). The setup included 25 real devices
and 15 simulated devices, generating various network traffic,
including data from healthcare devices and cameras connected
via Wi-Fi. Attacks executed included ARP spoofing, DoS,
DDoS, Port Scans, vulnerability scans, MQTT Connect Flood,
MQTT Publish Floods, MQTT Malformed Data attack, and
disruptions to BLE devices. In this work, we have excluded
the network traffic from BLE-based 7 Bluetooth devices for
our experiment since the creators of the dataset have not
created feature extraction for the BLE protocol yet. 44 relevant
features were extracted from network traffic PCAP files for
each network flow. Description of features can be found in
Table. I.

In this study, we employ a transformer model for two
classification tasks in IoMT networks: 1. IoMT Attack De-
tection (Binary Classification): Distinguishing between benign
and attack traffic. 2. IoMT Attack Category Detection (Multi-
class Classification): Categorizing specific attack types. IoMT
Attack category detection involves identifying six categories
of network traffic: benign, MQTT attacks, DDoS, DoS, Re-
connaissance, and ARP Spoofing attacks. For our work, we
used 10,000 samples from each label. The dataset was split
into an 80:20 ratio for training and testing purposes.

B. Transformer Model for IoMT attack Detection

Transformer is a sequence transduction model with an
encoder that maps input sequence x = (x1, . . . , xn) to
representations z = (z1, . . . , zn), and a decoder that
maps z to output sequence y = (y1, . . . , ym). The
attention function computes a weighted sum of values
based on similarity scores between a query q and keys
K: Attention(q,K, V ) =

∑
i Score(q, ki)vi [13]. Vaswani

et al.[13] proposed "Scaled Dot-Product Attention" where
queries and keys are dk-dimensional and values are dv-
dimensional: Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V . Mul-

tiple attention heads are used, and self-attention captures
dependencies between sequence elements without relying on
recurrent architectures. According to Vaswani et al. [13],
both the encoder and decoder consist of stacked layers. Each
encoder layer uses self-attention with the input sequence as
queries, keys, and values, followed by a feed-forward network.
The decoder incorporates masked self-attention to ensure each

Table I: Features Description of CICIoMT2024 dataset

# Feature Description

1 Header Length - Length of the packet header
2 Duration - Lifetime of the packet in transit
3 Rate - Speed of packet transmission within a flow
4 Srate - Transmission speed of outgoing packets in a flow
5 Fin flag number - Value of the Fin flag in TCP/IP
6 Syn flag number - Value of the Syn flag in TCP/IP
7 Rst flag number - Value of the Rst flag in TCP/IP
8 Psh flag number - Value of the Psh flag in TCP/IP
9 Ack flag number - Value of the Ack flag in TCP/IP
10 Ece flag number - Value of the Ece flag in TCP/IP
11 Cwr flag number - Value of the Cwr flag in TCP/IP
12 Syn count - Tally of Syn flag occurrences in a flow
13 Ack count - Tally of Ack flag occurrences in a flow
14 Fin count - Tally of Fin flag occurrences in a flow
15 Rst count - Tally of Rst flag occurrences in a flow
16 IGMP - Denotes the use of IGMP in application layer protocols
17 HTTPS - Denotes the use of HTTPS in application layer protocols
18 HTTP - Denotes the use of HTTP in application layer protocols
19 Telnet - Denotes the use of Telnet in application layer protocols
20 DNS - Denotes the use of DNS in application layer protocols
21 SMTP - Denotes the use of SMTP in application layer protocols
22 SSH - Denotes the use of SSH in application layer protocols
23 IRC - Denotes the use of IRC in application layer protocols
24 TCP - Usage of TCP in the transport layer protocol
25 UDP - Usage of UDP in the transport layer protocol
26 DHCP - Presence of DHCP in the application layer protocol
27 ARP - Usage of ARP in the link layer protocol
28 ICMP - Usage of ICMP in the network layer protocol
29 IPv - Usage of IP in the network layer protocol
30 LLC - Usage of LLC in the link layer protocol
31 Tot sum - Total packet length within a flow
32 Min - Shortest packet length in a flow
33 Max - Longest packet length in a flow
34 AVG - Mean packet length in a flow
35 Std - Variability in packet length within a flow
36 Tot size - Length of the packet
37 IAT - Interval between the current and previous packet
38 Number - Total number of packets in the flow

39 Radius - Root mean square of the variances of incoming and
outgoing packet lengths in the flow

40 Magnitude - Root mean square of the averages of incoming and
outgoing packet lengths in the flow

41 Variance - Ratio of the variances of incoming
to outgoing packet lengths in the flow

42 Covariance - Covariance between the lengths of
incoming and outgoing packets

43 Weight - Product of the number of incoming and
outgoing packets

44 Protocol Type - Type of protocol used (IP, UDP, TCP, etc.)
expressed in integer values

position attends only to previous ones, along with encoder-
decoder attention using outputs from the encoder and a feed-
forward network.

We employed a sliding-window approach to network mon-
itoring, followed by the work of Marino et al. [14]. In this
approach, the extracted features from consecutive network
flows are grouped into windows of a fixed length Lw. These
windows are then used as input sequences to our transformer
model. Each feature within the flows undergoes normaliza-
tion before being processed by the model. Given a window
W = {x1, . . . , xLw

} of grouped IoMT network flows as input
to the encoder, a shifted version Wshifted, removing the last
Ls flows, is fed to the decoder. The decoder reconstructs the
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Figure 1: Transformer Architecture for IoMT attack detection

original window of length Lw from its shifted version of length
Lw − Ls. We use Stochastic Gradient Descent (SGD) and
cross-entropy as the loss function, defined as: Loss(W ) =
−∑C

i=1 yi log(ŷi), where C is the number of classes, yi
is the true label (one-hot encoded), and ŷi is the predicted
probability. For binary classification (C = 2), the classes are
Benign and Attack; for multi-class classification (C = 6), the
categories are Benign, MQTT, DDoS, DoS, Recon, and ARP
Spoofing. A score is assigned to each flow xk based on the loss
function computed over the window Wx = (xk−Lw

, . . . , xk),
with Score(x) = Loss(Wx). Transformer model was fine-
tuned for IoMT networks by adjusting hyperparameters such
as the number of layers (N ), window length (Lw), shift length
(Ls), attention heads (H), epochs (E), and batch size (B). This
flexibility optimizes the model for different configurations. In
our experiments, we set Ls to one unit for next-flow prediction
and tested Lw between 50 and 100 flows. A single attention
head was used, as our feature space (44 attributes per flow) is
smaller than typical NLP tasks. RELU activation was applied.

Transformer model was evaluated for IoMT attack detection
using confusion matrices for both binary and multi-class clas-
sification. For binary classification, true positives (correctly
classified attacks), true negatives (correctly classified benign
traffic), false negatives (misclassified attacks), and false pos-
itives (misclassified benign traffic) were recorded. Evaluation
metrics included Accuracy (TP + TN)/(TP + TN + FP +
FN), Precision TP/(TP + FP ), Recall TP/(TP + FN),
and F1-Score 2× (P ×R)/(P +R). A weighted average was
used for multi-class classification.

C. Explaining Transformer for IoMT attack detection

We can explain AI models using two approaches: model-
agnostic and model-specific. There are also two types of
explanations: local, which interpret individual predictions, and
global, which offer an overview of the model’s behavior.
Our goal is to improve the explainability of Transformer-
based IoMT attack detection. We used LIME and SHAP for

local explanations of individual instances of the Transformer
model, and SHAP for global explanations. Let x ∈ Rd be
the input, where d is the feature set dimensionality. The
black box model M maps input to output M(x) ∈ Y .
Dataset D = (xi, yi) contains all input-output pairs. The
explanation mapping g for predictor M and point x returns
importance scores g(M, x) = ϕx ∈ Rd for all features. Let
D : Rd × Rd 7→ R≥ 0 be a metric in the explanation space
and S : Rd × Rd 7→ R≥ 0 a metric in the input space. The
evaluation criterion µ maps predictor M, explainer g, and
point x to a scalar.

1) SHAP: SHAP [15] (SHapley Additive exPlanations)
method utilizes Shapley values from game theory to determine
the importance of each feature in a model’s prediction, provid-
ing a comprehensive measure of feature significance. SHAP,
based on Shapley values, is defined as follows: g(M, x) =
ϕ0 +

∑M
j=1 ϕj , where ϕj represents the feature attribution of

feature j. In this study, SHAP’s DeepExplainer was utilized.
2) LIME: LIME [16] (Local Interpretable Model-agnostic

Explanations) creates locally interpretable models near specific
predictions by perturbing the input and fitting a simple model
(e.g., linear) to approximate the behaviour of the black-box
model. LIME minimizes: argmin

g∈G
L(M, g, πx) + Ω(g), where

g is an interpretable model in the neighborhood of x.

D. Evaluating Explainable AI

Evaluating Explainable AI methods is necessary to ensure
that their explanations are transparent. We employ three key
metrics to evaluate the quality of our explanations for Trans-
former model: Faithfulness Correlation, Low complexity, Max
sensitivity

1) High Faithfulness: : The explanation algorithm g should
replicate the model’s behavior, i.e., g(M,x) ≈ M(x).
Faithfulness quantifies to what extent the explanation g fol-
lows the predictive behavior of the model M. For evalu-
ating the faithfulness of explanations, the faithfulness cor-
relation [17] is used. Faithfulness measures how well the
explanation function g aligns feature importance scores with
the black-box model M. The correlation metric is defined as
µF (M, g;x) = corr

B∈(|d|
|B|)

(∑
i∈B g(M, x)i,M(x)−M(xB)

)
,

where xB = xi | i ∈ B. The high faithfulness correlation met-
ric iteratively substitutes a random subset of given attributions
with a baseline value B, then measures the correlation between
the sum of these attributions and the difference in the model’s
output.

2) Max Sensitivity: Robustness of explanations repre-
sents similar inputs should result in similar explanations.
g(M,x) ≈ g(M,x + ϵ) for small ϵ. Max sensitivity was
employed [17]. To ensure that nearby inputs, with model
outputs, have the same explanations, it is important for the
explanation function g to show low sensitivity in the vicinity of
the point of interest x, assuming that the predictor functionM
is differentiable. The maximum sensitivity of an explanation
function g at a point of interest x in its neighborhood can
be defined as follows. Lets consider a neighborhood Nr
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consisting of points within a radius r, from x denoted as
Nr = z ∈ Dx|p(x, z) ≤ r,M(x) =M(z), where D repre-
sents the distance metric and p is the proximity function.
With a predictor M(x), a distance D a proximity function
p, a radius r and a point x we can define the sensitivity
of function g at point x as follows: µM (M(x), g, r;x) =
max
z∈Nr

D(g(M(x), x), g(M(x), z))

3) Low Complexity: Complexity explanations using a
smaller number of features are preferred. A low complexity
metric was employed in this work. Low complexity [17] metric
computes the entropy of each feature’s fractional contribution
to the total attribution magnitude individually, µC(M, g;x) =

−∑d
i=1 Pg(i) logPg(i), where Pg(i) = |g(M,x)i|∑

j∈d |g(M,x)j | and
Pg = {Pg(1), . . . , Pg(d)}.

IV. RESULTS& DISCUSSIONS

We propose an explainable transformer model for detecting
and categorizing attacks in IoMT healthcare networks. Fig. 2
& Fig. 3 display the average training loss and accuracies
of different transformer model configurations trained on CIC
IoMT dataset 2024 for IoMT attack (binary) and IoMT attack-
category (multi-class classification) detection. This evaluation
involved testing various configurations of the transformer
model to optimize its performance. Model configuration and
training utilize a Window length (Lw = 100) for binary and
multi-class classification types. Batch sizes (B = [512, 1024]).
Number of encoder/decode (E/D) layers (N = [1, 3, 5]).
Training epochs E = 25 for IoMT attack detection (binary
classification) and epochs E = 50 for IoMT attack categoriza-
tion (multi-class classification). Our experiments revealed that
with a window length of Lw = 100, models required only one
layer to fit the training data adequately. However, increasing
the number of layers provided the model with improved fitting
power, particularly for the more complex multi-class classi-
fication task. Models with 3 and 5 layers generally achieve
lower loss values and higher accuracy for both attack-type
and attack category-type. Model evaluation of testing data used
N = 3 layers with B = 512 batch size. Fig. 2 shows the mean
training loss and accuracy for IoMT attack detection (binary
classification). All model configurations converge quickly in
IoMT attack detection (binary), with significant loss reduction
within 5 epochs. All models achieve >99% accuracy within 10
epochs, demonstrating the effectiveness of the transformer ar-
chitecture for binary classification task. Classification report in
Fig. 4a shows the model’s exceptional performance, achieving
over 99% accuracy. The model demonstrates perfect precision
for benign traffic and almost perfect recall for attack detection,
indicating a high ability to identify normal and malicious
network activities.

In multi-class classification, Fig. 3 show that models with
3 and 5 layers consistently achieve lower loss values (see
in Fig. 3a) and reach higher accuracy (see in Fig. 3b) more
quickly. However, the single-layer model with a batch size of
1024 shows slower improvement, suggesting potential under-
fitting for this complex task. Fig. 4b shows classification report

(a) Loss (b) Accuracy.

Figure 2: Training loss and accuracy for Binary classification

(a) Loss (b) Accuracy.

Figure 3: Training loss and accuracy for Multiclass

indicate strong performance across all attack categories, with
an overall 97% accuracy for the test data. Model performed
excellently in detecting DDoS and DoS attacks (F1-scores of
0.999 and 1.000, respectively), but it shows slightly lower per-
formance for benign traffic and spoofing attacks (F1-scores of
0.965 and 0.959). While the model is highly effective overall,
there’s still a need to improve in distinguishing benign traffic
and certain types of attacks, particularly spoofing. Table II
compares our proposed transformer model with Decision Tree
(DT) and k-nearest Neighbors (KNN) algorithms. Transformer
model demonstrates superior performance with an accuracy
better than DT and KNN for both IoMT attack and attack-
category detection.

Table II: Transformer Model Comparison with KNN and DT

Accuracy of Transformer Comparision

Classification type/model DT KNN Transformer

IoMT attack detection (binary) 0.9955 0.99621 0.99847
IoMT Attack-category (Multi) 0.96167 0.88967 0.97426

In this work, we employed LIME and SHAP to explain
predictions made by the Transformer model. We have selected
a single instance of test data from each class to showcase the
local explanations provided by these XAI methods for both
binary and multi-classification types. The LIME method was
used to explain selected instances in the testing data to get the
probability for each class and explain why the probabilities
were assigned to each class. Fig. 5a shows LIME explanations
(first ten features) for “Attack” class of instance, left side of
the figure shows the probability of each class, and the right
side shows influential features for this class prediction. Model
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(a) Binary Classification (b) Multiclass Classification

Figure 4: Classification Report for Binary class and Multiclass

(a) LIME local explanations for Attack class instance

(b) SHAP local explanations for Attack class instance

Figure 5: Local explanations for binary classification

predicted an “Attack” class label with 100% accuracy. Right
side of the bar chart shows the features which help to predict
the instance as “Attack” class label, feature ‘Ece flag number’,
‘Telnet’, ‘IGMP’, ‘Syn flg number’, ‘fin count’ (shown with
green bar). On the other hand, to predict an instance as not
attack class (in red colour), the features ‘IAT’, ‘Number’,
‘Rst count’, ‘IRC’, and ‘SSH’ influence negatively. Similarly,
we have provided local explanations for LIME (Fig. 6a) and
SHAP (Fig. 6b) for the selected instances in IoMT attack-
category detection (multi-class classification). The presented
results are only for “DDoS” class label for LIME. In Fig. 6a,
the model predicted the DDoS class label with 100% accuracy;
features in the green bar show the most influential features in
predicting the ’DDoS’ class. On the other hand, features in
the green bar were the most influential in predicting not DDoS
class.

SHAP is used to explain models and understand how the
features are related to the predictions. SHAP provides the
local and global explanation. In local explanation, we select
a particular instance from test data points and explain the
model prediction, showing each feature’s contribution to the
prediction of the selected instance. SHAP calculates Shapley
values, which shows the impact of features on the model
predictions. Fig. 5b shows the local explanation’s force plot
of the “Attack” class label instance, showing each feature’s
positive contribution to predicting the “Attack” class label in
red bar strip (‘Rst count’, ‘Number’, ‘Magnitude’, ‘Weight’,
‘Duration’, ‘Covariance’). ‘Rate’ and ‘Variance’ features in the
blue strip contribute negatively to predicting the “Attack” class
label. Plot’s base value, 0.4907, is the average of all prediction

(a) DDoS attack instance LIME local explanations

(b) SHAP local explanations for DDoS attack instance

Figure 6: local explanations for Multi-class classification

values. Each strip in the plot shows the impact of features
in pushing the predicted value closer or farther from the
base value. The total positive contribution is more significant
than the negative contribution, and the final predicted value
is greater than the base value, so the predicted class label
is “Attack”. Similarly, Fig. 6b shows SHAP explanations for
class label “DDoS” for Multi-class classification in Fig 6b
shows the SHAP force plot that ‘Number’, ‘IAT’, ‘Magnitude’,
and other features (red strip) positively push the model output
from the based value of 0.35 to the final prediction (100%).
‘Header length’ feature (blue strip) negatively impacts the
model prediction.

Table III: Quality Evaluation of local explanations results

Metrics Explainer Binary Classification
µ± σ

Multi-class
µ± σ

High Faithfulness LIME 0.78 ± 0.2 0.44 ± 0.34
SHAP 0.04 ± 0.74 0.79 ± 0.3

Max Sensitivity LIME 0.63 ± 0.18 1.08 ± 1.6
SHAP 0.88 ± 0.93 0.41 ± 0.2

Low Complexity LIME 3.00 ± 0.11 3.04 ± 0.15
SHAP 2.51 ± 0.18 2.00 ± 0.5

(a) High Faithfulness (b) Low Complexity (c) Max Sensitivity

Figure 7: Distribution of Quality Evaluation Metrics for LIME
and SHAP in Multi classification

We evaluated the quality of explanations provided by LIME
and SHAP XAI methods for the Transformer model across
2000 data points for both binary and multi-class classification
using three metrics: High faithfulness, Max sensitivity, and
Low complexity. The faithfulness of XAI methods was evalu-
ated by analyzing the correlation between attribute importance
assigned by the XAI method and its impact on Transformer
model probabilities. Model probabilities were obtained by the
Softmax activation function. A high faithfulness correlation
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value suggests that the explanations effectively capture the
model’s behaviour and can be regarded as faithful. To evaluate
the complexity of local explanations, we calculate the entropy
of feature attribution in the explanations. The sensitivity metric
evaluates the consistency of the explainer’s output, ensuring
that similar inputs in the feature space have explanations
when sensitivity is low. For this metric, we used distance
with a radius value of 0.1 to find the nearest neighbor points
related to the prediction label of an explanation, which helps to
identify data points to a given point in the feature space with
similar explanations for the predicted label. Table III shows
the results of quality explanation for local explanations of
LIME and SHAP. Mean (µ) and standard deviation (σ) values
were calculated for the test data of XAI computed metrics.
For IomT attack detection, considering the high faithfulness
metric, LIME performs better than SHAP, scoring 0.78 ± 0.2
compared to SHAP’s result of 0.04 ± 0.74. This indicates that
LIME explanations align closely with the model’s behavior in
predicting output. LIME demonstrates lower sensitivity (0.63
± 0.18) than SHAP (0.88 ± 0.93), suggesting that LIME
explanations are more reliable for inputs. Both methods have
explanations, with SHAP (2.51 ± 0.18) being slightly less
complex than LIME (3.00 ± 0.11). For IoMT Attack-category
Detection (Multi-class), SHAP has achieved High faithfulness,
Lower complexity, and Lower sensitivity. Fig. 7 shows the
distribution of XAI metric evaluations for test points in IoMT
attack category detection. SHAP explanations are generally
reliable because the mean values of SHAP explanations of
evaluation metric values tend to fall more on the positive side
of correlation for high faithfulness and on the lower side for
low complexity and max sensitivity metric.

(a) Binary Classification (b) Multiclass classification

Figure 8: SHAP Global explanations for Transformer Model

We provided a global explanation using a SHAP summary
plot (Fig. 8) to highlight feature importance in the transformer
model. This plot shows how each feature contributes to the
model’s output, averaged over the test data for the top 10
features. Fig. 8a illustrates the global feature importance for
IoMT attack detection, while Fig. 8b presents the importance
for attack category detection. Key features such as ‘IAT’,
‘Number’, ‘Rst count’, ‘Magnitude’, and ‘Tot size’ were
highly influential in both cases.

V. CONCLUSION

This study proves the effectiveness of transformer-based
models in detecting and categorizing attacks in Internet of

Medical Things (IoMT) networks. Our transformer model
achieved 99.85% accuracy in binary classification and 97.43%
in multi-class classification on the CICIoMT2024 dataset,
outperforming traditional ML approaches. This work uses
LIME and SHAP as explainable AI methods to provide trans-
parency for the transformer model’s decisions. Our quantitative
evaluation of local explanations of XAI methods revealed
that LIME is suitable for explaining individual predictions
in binary classification. At the same time, SHAP effectively
explains IoMT attack types in multi-class classification. Global
feature importance analysis highlighted key network traffic
characteristics crucial in identifying various types of IoMT
attacks in the healthcare domain.
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Abstract—The widespread use of Internet of Things (IoT)
devices has raised the threat of botnet attacks, presenting
significant challenges for security operations centres (SOCs).
While machine learning techniques have shown promising results
in detecting these attacks, their effectiveness is often limited by
the lack of labeled data and the need for greater transparency
in the decision-making process of labeling. We propose an
explainable active learning framework incorporating post-hoc
explainability methods, such as LIME and SHAP, into the active
learning process for detecting IoT botnet attacks in a multi-class
classification setting. Our framework enables SOC analysts to
provide informed annotations, while the explainability methods
offer insights into the model’s decision-making process. We
employ uncertainty sampling and query-by-committee strategies
to select the most informative instances for labeling, and we
evaluate the quality of the explanations using various quantitative
metrics. Experimental results demonstrate that our explainable
active learning framework achieves high detection performance
while enhancing the trust and transparency between the SOC
analysts and the learning model.

Index Terms—Active learning, SOC, IoT Botnet, Explainable
AI, Post-Hoc explainability, LIME, SHAP

I. INTRODUCTION

Increasing cyberattacks on IoT devices raise data protec-
tion concerns. DDoS attacks can disrupt IoT systems [1],
and vulnerable devices can form botnets, posing security
threats [2, 3]. Recent advances in machine learning (ML)
and deeplearning (DL) have led to more accurate intrusion
detection systems for IoT networks, outperforming traditional
methods [4]. Training ML and DL models require high-
quality labeled data, which is crucial for distinguishing normal
behavior from threats in security operations. Active learning
strategies, which select informative unlabeled data points for
labeling, can significantly reduce manual annotation while
improving model performance. These strategies perfectly fit
cyber security tasks as annotation is a complex task due to
the high costs of experts in this field. Integrating explainable
AI (XAI) into active learning scenarios strengthens intrusion
detection systems. XAI enhances the transparency of model
predictions and helps experts understand the reasoning be-
hind the predictions, which is crucial for trust in high-stakes
environments. XAI in active learning bridges the model’s
decision process and the expert’s knowledge, aiding in more

informed decisions. Evaluating XAI methods ensures reliable
and consistent explanations.

In this paper, we propose an active learning framework that
integrates post-hoc explainability into its training cycles for
IoT botnet attack detection in a multi-class classification set-
ting. We employ local feature importance-based explanations,
specifically LIME and SHAP, to enable analysts in the context
of a security operation centre (SOC) to provide informed
annotations and teach the learning model. Additionally, we
incorporate a quantitative evaluation step for the explanations
within this active learning loop using three metrics: (1) Faith-
fulness (how well the explanations match the actual behavior
of the models), (2) Monotonicity (how similar the explanations
are for similar inputs), and (3) Sensitivity (how well the
explanations hold up under perturbations of the input). Our
work aims to connect network forensic processes with the
use of machine learning models in SOC environments. By
giving SOC analysts access to XAI, our research enhances
the explainability and trustworthiness of the ML models used
in cybersecurity applications. This approach is well-suited
for SOC environments, as network forensic specialists can
assume the role of labelers in such settings. To the best of
our knowledge, this is the first study that incorporates XAI
into an active learning setting with a detailed evaluation of
explanations in a network intrusion detection task.

Our paper is structured as follows: Section II covers active
learning background, while Section II-A gives related work of
XAI in intrusion detection systems. Section III outlines our
methodology, followed by Section IV presenting results and
discussions. Finally, conclusions are Section V.

II. BACKGROUND WORK ON ACTIVE LEARNING

In the active learning method, a supervised classifier learns
from a small set of labelled data called the seed dataset. The
classifier selects points from an unlabeled data pool and asks
a human expert to label them. After labelling, the expert adds
these points to the training dataset to update it. The classifier
is then retrained with the newly updated training data, and
this cycle of selecting and annotating data points continues
until the model reaches a threshold level of performance or
stops improving. Additionally, to ensure the human expert’s
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tasks remain manageable, the active learning process may be
limited to expanding the training dataset to a specific size.

A widely used approach for choosing data points to label
is known as uncertainty sampling, which selects data points
one by one using a measure of how uncertain the model
is [5]. Using this approach involves the classifier making
label predictions for all the unlabeled data points and then
selecting the one that it is most uncertain about, which
means the point that the classifier has the lowest confidence
in its prediction. There are various strategies to measure
how uncertain a prediction is for a data point x with its
predicted label y. The classification uncertainty score is one
such strategy. This score is calculated as: U(x) = 1 − P (ŷ|x)
Subsequently, the data point with the highest score is selected
based on this criterion. Classification margin is a score that
calculates the difference between the probabilities of the most
likely and the second most likely predictions. The smallest
margin indicates the greatest uncertainty, so the sample with
this smallest difference is selected. The classification margin
score is defined as M(x) = P (ŷ1|x) − P (ŷ|x) Classification
entropy (H) is a score that uses entropy to measure how
uncertain a classification is. The data point selected has the
highest entropy score, determined by the following equation:
H(x) =

∑
k pklog(pk), In this equation, pk denotes the

probability that a given unlabeled sample belongs to the kth

category, as determined by the current state of knowledge of
the classifier.

Another employed approach for data point selection in AL
is query-by-committee (QBC) [5]. In this approach, a set of
different models, referred to as a committee, are all trained
on the same labelled data but represent varying hypotheses
within the hypothesis space. In this strategy, each model in
the group votes on how to classify new examples. The most
informative sample is the one with the most disagreement
among the models about its class. Various methods can be used
to measure the level of disagreement, including Vote Entropy
(VE), Consensus Entropy (CE), and Maximum disagreement
(ME). Vote entropy selects the query instance as the sample
with the highest entropy in the vote distribution. It is calculated
as: V E = argmaxx −∑i

V (yi)
C log

(
V (yi)

C

)
Where yi repre-

sents each possible class label and V (yi) is the count of votes
that a label gets from the committee for a particular instance
x, C represents the number of members in the committee.
Consensus entropy works by first finding the average predicted
probabilities of each class from all classifiers, known as con-
sensus probability (Pcs). Next, it calculates the entropy of this
consensus probability. The sample with the highest consensus
entropy is then selected for labelling. The disagreement score
is calculated as follows: CE = −∑y Pcs log(Pcs). Where
Pcs = 1

C

∑c
c=1 P (yi). represents consensus probability. Fi-

nally, Maximum disagreement measures the level of disagree-
ment by first creating a consensus probability, which is the
average of the class probabilities predicted by each classifier.
It then uses Kullback-Leibler divergence, rather than entropy,
to measure how much each classifier’s predictions differ from

the consensus. The sample with the greatest divergence is
selected as the query instance. The score of disagreement is
computed as, MD = argmaxx − 1

C

∑
y D(Pθ(C) ||Pcs) where

D(Pθ(C) ||Pcs) =
∑

y P (yi|X; θ(c))log P (yi|x;θ(C)
PCS

represents
the corresponding Kullback–Leibler divergence. Here θ(C de-
notes a specific classifier model within the committe and PCS

represents consensus probability.

A. Related Work on Explainable AI for Intrusion Detection

Several studies have investigated the application of explain-
able AI in the field of intrusion detection [6, 7]. For instance,
Liu et al. proposed an explainable AI-based intrusion detection
system that utilized a combination of rule-based reasoning
and machine learning algorithms [8]. Muna et al. address the
significant challenge of securing IoT infrastructures in smart
cities against various cyber threats [9]. The study presents a
novel approach that integrates machine learning, specifically
Extreme Gradient Boosting (XGBoost), with XAI methods, in-
cluding ELI5, LIME, and SHAP, to detect massive IoT attacks
effectively and provide insights into the model’s decision-
making process. Performance evaluation using metrics con-
fusion matrix, recall, precision, F1-score, and support on the
IOTD20 [10] dataset exhibits that the model can efficiently
classify several types of IoT attacks and contribute to reducing
the cybersecurity threats in smart cities. ELI5 is employed for
model debugging purposes, the SHAP summary plot is used
for a global explanation purpose, and both the SHAP force plot
and LIME are utilized to explain individual instances of IoT
attack labels predicted by the model. The study [11] introduces
an Improved Elman Neural Network (IENN) model, which
is a refined version of ENN, to detect intrusions with high
precision with the help of Glowworm Swarm Optimization
(HEGSO) algorithm for feature selection purposes. IENN
was used with the Enhanced Fruitfly Optimization (EFFO)
algorithm for parameter optimization. LIME is used to explain
the accurate classification of intrusions. The evaluation is
based on the datasets CIC-IDS 2017 [12] and NSL KDD
2015 [13]. In the paper [14], a data engineering practice is
employed wherein the Random Forest model is explained
globally using SHAP feature importance. This methodology
is applied to identify key features within the UNSW-NB15
dataset [15] for both binary and multiclass classification,
aiming to effectively identify cyber threats with significant
accuracy, precision, recall, and F1 score. SHAP summary
plots revealed crucial features from the dataset, including
Ct_state_ttl, Sttl, Dmean, and Dbytes. The review studies
do not consider the explainability issues in active learning
settings.

III. METHODOLOGY

In this work, we propose an explainable active learning
(XAL) framework for IoT botnet detection see in Fig. 1. The
framework combines AL with XAI methods to improve model
performance while providing transparency and explainability.
It begins with an ML model trained on a limited set of labeled
samples (initial seed), which then selects informative instances
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Fig. 1: Explainable Active Learning (XAL) Framework for
IoT Botnet Attack Detection

from the unlabeled pool. The selected instances are passed
to a post hoc XAI method to retrieve local explanations.
After applying quantitative quality measurement metrics, the
instances, their explanations and quality findings are presented
to the human annotators who are security analysts in our
context. Analysts review all the input and provide a final
decision about the labels. These labeled instances are used
to retrain and update the ML model. This iterative process
enhances model performance in each cycle while improving
human-machine collaboration by establishing trust.

A. Data Set

In this study, N-BaIoT dataset [16] was used, which con-
tains 115 network traffic features extracted primarily through
descriptive statistical values. A dataset is derived from network
traffic generated by bots deployed in a testing environment
with nine different IoT devices infected by Mirai and Gafgyt
malware types. Notably, the features for each instance reflect
aggregated descriptive statistics of raw network traffic across
five-time windows (100µs, 500µs, 1.5s, 10s, and 1min),
denoted as L5, L3, L1, L0.1, and L0.01, respectively (see
Table-I). Dataset encompasses five main feature categories:
host-IP (coded as H), host-MAC and IP (coded as MI), channel
(coded as HH), socket (coded as HpHp), and network jitter
(coded as HH_jit). For each category, metrics such as packet
count, mean packet size, and variance in packet sizes are
calculated. Additionally, statistical values, including Pearson
correlation coefficient (PCC) of packet size, radius, covariance,
and magnitude, are derived for network Channel and Socket,
along with packet count, mean, and variance. This work
mainly focuses on attack-type multiclass classification using
the N-BaIoT dataset. Data points are classified into eight attack
types and legitimate network traffic: ACK, Benign, COMBO,
JUNK, SCAN, SYN, TCP, UDP, and PLAIN. A detailed
description of these attack types can be found in Table II.

TABLE I: Details of Features of N-BaIoT dataset.
Feature Category Category Code No.Of features Statistical Value Feature Time Frame Windows
Hos Mac & IP MI 15

Packet Count, Mean

Variance

100 Micrso Sconds

500 micro seconds

1.5 Seconds

10 Seconds

1 Minute

Host IP H 15

Network Jitter HH_jit 15

Channel HH 35 Packet Count, Mean

Variance, Magnitude,Radius, CoVariance, CorrelationSocket HpHp 35

TABLE II: Botnet Attack types used in this Study for botnet
attack detection

Class Name Description
ACK Gafgyt malware Sending Spam data

Beign Legitimate Network Traffic

COMBO Gafgyt malware Sending spam data and opening a connection

JUNK Mirai Malware ACK-Flooding

SCAN Scans The network devices for vulnerabilities,(Mirai & Gafgyt

SYN Mirai Malware SYN-Flooding

TCP Gafgyt malware TCP Flooding

UDP UDP flooding (Mirai & Gafgyt)

UDPPLAIN Mirai malware UDP flooding with Less of an option for higher packet per second

B. Feature Selection

In the feature selection phase, Pearson’s correlation was
employed as a technique (refer to Equation (1)). This method
involves calculating a matrix for all the features to find which
features are redundant. Pearson’s correlation computes the
linear correlation between pairs of variables. Pairwise corre-
lations among features are analysed to identify feature redun-
dancy. The P-value of correlation coefficients is constrained
within the range of -1 to 1. A perfect positive correlation
is indicated when P = 1 for two features. No correlation
is observed if P = 0, and a perfect negative correlation is
acknowledged when P = −1. The Pearson correlation formula
is expressed as:

P =

∑n
i=1[(xi − µx)(yi − µy)]√∑n

i=1 (xi − µx)2
√∑n

i=1 (yi − µy)2
(1)

Here, µx and µy represent the means of features x and y
respectively. Larger absolute values of Pearson’s correlation
coefficient indicate a more linear relationship between the
features. To rank the features, We have used Fisher score [17].

XGBoost (eXtreme Gradient Boosting) classifier was se-
lected for all the benchmarking scenarios in AL process
mentioned in Section II. Random search parameter tuning was
used to find the best hyperparameters for the initial training,
and these hyperparameters were maintained throughout the
entire benchmarking process of AL.

C. XAI methods

Our research employed two post hoc XAI methods for
understanding IoT botnet attack predictions. These methods,
known as SHAP and LIME, are widely acknowledged and
extensively employed in the field of XAI. These methods
play a crucial role in the active learning paradigm. Specif-
ically, they provide human experts, serving as oracles, with
explanations to understand the underlying rationale behind
model predictions. This explainability becomes particularly
valuable when employing sophisticated sampling strategies
like uncertainty sampling and querying by the committee in
active learning scenarios. It enables the oracle to furnish more
accurate and informed annotations, and the feedback obtained
helps improve the learning model and trust in the predictions.

For a dataset D, where each input x ∈ Rd, with d
representing the dimensionality of the feature set, and a black
box model M maps the input to an output M(x) ∈ Y , where
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Y denotes the output space. Let D = {(xi, yi)} represent
the collection of all input-output pairs in the dataset. A post
hoc explanation, denoted as g, is an explanation mapping
that, for predictor M and point of interest x, returns an
importance score g(M, x) = φx ∈ Rd for all features. Denote
D : Rd × Rd 7→ R≥0 as a metric in the space of explanations
and S : Rd × Rd 7→ R≥0 as a metric in the space of inputs.
The evaluation criterion µ is a mapping that takes predictor
M, explainer g, and the point of interest x as arguments and
returns a scalar value for g.

1) Shap: SHAP [18] is a game-theoretic explanation
method based on Shapley values. SHAP is defined as
g(M, x) = ϕ0 +

∑M
j=1 ϕj , where ϕj is the feature attribution

of feature j.
2) LIME: LIME [19] is an explanation method that ap-

proximates the model’s behavior locally around a specific data
instance x within the neighborhood N(x) using a simpler
interpretable model the prediction of the interpretable model
around x is denoted as The approximation is obtained by min-
imizing the object function defined as argmin

g∈G
L(M, g, πx) +

Ω(g)

D. XAI Metrics

1) Faithfulness: The faithfulness metric µF (M, g; x) mea-
sures how well the feature importance scores generated by the
explanation function g reflect the actual importance of the fea-
tures in the black-box model M for input x. This property is
best computed using Pearson’s correlation coefficient between
the sum of the attributions of the features set to the best line
value and the corresponding difference in the output values.
Let B be the subset of indices whose features are set to a base-
line value. Then the faithfulness metric is computed as follows.

µF (M, g; x) = ρ
B∈(|d|

|B|)

(
∑

i∈B g(M, x)i, M(x) − M(xB)

)

where xB = xi|i ∈ B}
2) Monotonicity: Let x, x′ ∈ Rd be two input points such

that xi ≤ x′
i for all i ∈ 1, 2, . . . , d. M and g are said to be

monotonic if the following condition holds: For any subset
S ⊆ 1, 2, . . . , d, the sum of the attributions of the features in
S should be nonnegative when moving from x to x′, that is,∑

i∈S g(M, x)i ≤∑i∈S g(M, x′)i implies

M(x) − M(x[xs=x̄s]) ≤ M(x′) − M(x′[x′
s = x̄s])

3) Max Sensitivity: To ensure that nearby inputs with
similar model output have similar explanations, it is desirable
for the explanation function g to have a low sensitivity in
the region surrounding the point of interest x, assuming the
differentiability of the predictor function M. The maximum
sensitivity of an explanation function g at a point of interest
x in its neighbourhood is defined as follows: Consider a
neighbourhood Nr of points within a radius r of x, denoted
by Nr = z ∈ Dx|p(x, z) ≤ r, M(x) = M(x)(z), where D
is the distance metric, and p is the proximity function.
Given a predictor M(x), a distance metric D, a proximity

function p, a radius r, and a point x, we define the maxi-
mum sensitivity of g at x as follows: µM (M(x), g, r; x) =
max
z∈Nr

D(g(M(x), x), g(M(x), z))

E. Experimental Setup

The N-BaioT dataset was divided into 80% for training
and 20% for testing to benchmark different active learning
methods. Active learning requires many unlabeled data points,
known as a pool. In our research, this pool always contained
100,000 data points taken from our larger training dataset. The
testing dataset was exclusively used to evaluate the learning
with the F1-score of the model and was not involved in the
training process at any stage of the active learning cycles.
Strategies were adopted for selecting queries, as outlined in
Section 2. This study utilizes the F1 score metric to evaluate
the model. The F1 score, defined as the harmonic mean
of precision (P) and recall (R) [20], offers a more suitable
evaluation of misclassified instances compared to accuracy

F1-score =
2 × precision × recall

precision + recall

The research performed ten iterations for each model. In
these iterations, beyond evaluating the models’ performance,
the study also applied explainable AI techniques like LIME
and SHAP to the test data. These explanations for each test
data point were then evaluated using XAI metrics, and the
mean values of these metrics were calculated. Consequently,
the reported outcomes for the models’ performance and the
XAI metrics are based on the average results obtained across
the ten iterations.

Fig. 2: Feature Sets Comparisons with metrics.

TABLE III: Top-5 Selected Features

Network Category Feature

Host
H_L0.01_variance
H_L0.1_weight
H_L0.01_weight

Socket HpHp_L0.01_weight
Networkjitter HH_jit_L0.01_mean

IV. RESULTS & DISCUSSION

The N-BaIoT dataset contains a total of 115 features. We
applied Pearson’s linear correlation coefficient (r) to eliminate
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(a) Classification Entropy (b) Classification Margin (c) Classification Uncertainty

Fig. 3: Uncertainty sampling: classification uncertainty results.

(a) Consensus entropy (b) Maximum disagreement (c) Vote entropy

Fig. 4: Query by committee results

redundant and irrelevant data features. Features with a high
correlation (|r| > 0.80) with any other feature were removed,
leaving only one. Consequently, from the initial set of 115
features, only 33 essential features for describing each sample
in the dataset remained. Fisher score was utilized to rank them.
Various subsets were tested, including the top n features (i.e.,
3, 5, 10, 15, 20). To test each feature set, we utilized an entire
dataset sample of 100,000. For training and testing purposes,
the dataset was split with an 80% to 20% ratio. Performance
results for XGBoost (XGB model) are provided in Fig. 2. Top-
3 and Top-5 features achieved the highest detection rates, in-
cluding accuracy, F1-score, recall, and precision. Specifically,
for this work, the top 5 features were selected and presented
in Table III.

Fig. 3 shows the F1-score performance of active learning cy-
cles using three uncertainty sampling strategies—classification
entropy, classification margin, and classification uncer-
tainty—for active learning in IoT botnet attack detection using
XGB model. The experiment began with an initial set of 20
labelled data points, and various pool sizes (1000, 2000, 3000,
5000, 7000, 10000, 20000, and 30000) of unlabeled data points
were utilized. The training sets were balanced in all cases.
During the active learning-based training experiment, up to
1000 data points were chosen from the pool and presented
to a human expert for labeling queries. Data point selection
for querying was based on the classification uncertainty score
from the three classification uncertainty strategies. Fig. 3a
shows the F1-score performance of XGB model using Entropy
sampling for various pool sizes (ranging from 1000 to 30000)
across different numbers of data points queried for labels
(ranging from 100 to 1000). The model achieves an F1-score
of around 0.97 to 0.99 for most pool sizes when querying

1000 data points for labels, demonstrating high performance
in detecting attack labels. For Margin Sampling (from Fig. 3b),
similar to Entropy sampling, F1-score improves as more data
points are queried for labels. The model achieves F1 scores
ranging from 0.95 to 0.98 for most pool sizes when querying
1000 data points for labels. F1-score of Uncertainty in Fig. 3c
is consistent with the previous two sampling techniques. F1
score improves as more data points are queried for labels,
showcasing the effectiveness of active learning. The model
achieves F1 scores ranging from 0.96 to 0.99 for most pool
sizes when querying 1000 label data points. For all three
strategies of classification uncertainty, as the number of data
points queried for labels increases, F1 Score improves for all
pool sizes, which indicates that Model performance increases
with more labeled data. Larger pool sizes (e.g., 20000 and
30000) tend to achieve slightly higher F1 Scores compared
to smaller pool sizes, especially when the number of queried
data points is low (100 to 400).

The query-by-committee approach involves a committee of
independent classifiers selecting data points from the unlabeled
pool to label queries. Fig. 4 illustrates the performance of
the QBC approach for active learning cycles using XGB
model. The level of disagreement among the classifiers on the
committee is quantified using different disagreement scores,
i.e. consensus entropy score (QBC-CE) in Fig. 4a, vote entropy
score (QBC-VE) in Fig. 4c, and maximum disagreement
score (QBC-MD) in Fig. 4b. Experiments were performed
with varying committee sizes (2, 3, 5, 7, and 10), and each
committee member was an independent XGBoost classifier. A
fixed pool of 10,000 data points was used, and the seed size
was set to 100. High F1 scores of all three disagreement scores
improve as the number of labeled data points increases. Across
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different committee sizes, a committee size of 7 consistently
outperforms others for all disagreement scores. As shown
in Fig. 4b, QBC-MD with committee size 7 (QBC-MD-7)
achieves the highest F1-scores among the three disagreement
scores, showing the effectiveness of the QBC approach in
actively selecting informative data points for labeling and
showing improved model performance.

(a) LIME Explanations

(b) SHAP Local Explanations

Fig. 5: LIME & SHAP Local Explanations for Correctly
Classified Instance (ACK Attack)

In our work, we have employed and compared two post
hoc explainability methods for understanding IoT botnet attack
predictions in the active learning loop. The oracle, a security
analyst, leverages these explanations to understand the model’s
decision-making process of predicting IoT botnet attacks by
the XGB model. Integrating LIME and SHAP with active
learning builds a foundation of trust and transparency between
Oracle and the learning model. For a security analyst, under-
standing why a model made a specific prediction is essential,
especially when deciding whether to trust the model’s output
and when providing precise labels or feedback for further
model training. More specifically, posthoc methods, LIME
and SHAP, explain the reasons for the model decisions by
assigning an importance value to each feature.

LIME and SHAP explanations for the model’s features,
particularly for a correctly classified sample as ACK attack
type, are shown in Fig. 5. For Lime explanations (see Fig. 5a),
red bars indicate features contributing to predicting a data
point as ACK attack label correctly, while green bars signify
features contributing to predicting a data point as other classes
predicted by the model.

Prediction probabilities are assigned to each class on the left
side of the figure in these visualizations. LIME explanations
for the features demonstrate that the XGB Model predicted as
ACK class with 100% accuracy for the selected actual class
label. Specifically regarding certain rules generated by LIME:

• 4733.65 < H_L0.1_weight <= 6433.48: If, within a 10-
second time window (L0.01), the packet count (weight) of
the host (H) feature falls between 4733.65 and 6433.48,
the XGB model is more inclined to classify the data point

as an ACK attack, indicating a potential compromise of
the host by ACK attack.

(a) LIME Explanations for Misclassified Instance

(b) SHAP Explanation for Misclassified Instance

Fig. 6: LIME & SHAP Local Explanations for Misclassified
Instances

SHAP force plot is another explainable tool that visually
represents the contribution of each feature to a specific pre-
diction by demonstrating its relative importance and direction
of impact. In local explanations of SHAP, a specific data point
is selected, and the model prediction is explained to highlight
the contribution of each feature, quantified by Shapley values.
Fig. 5b illustrates a local explanation for a data point using
a SHAP force plot. The plot illustrates the base value, with
features that positively influence the prediction displayed in
red, while those exhibiting a negative impact on the predictions
are shown in blue. The base value represented in the plot is
the average of all prediction values. Each strip in the plot
indicates the influence of the features in pushing the predicted
value closer or farther from the base value. Red strip features
push the value to higher values, whereas blue strips push the
value to lower values. Wider strips mean more contribution.
Based on Fig. 5b, the base value for the ACK class attack
is 0.5783, respectively. Feature "H_L0.01_variance" positively
contributes to the prediction value, making it the most crucial
feature due to its broader contribution range. The total positive
contribution exceeds the negative contribution, resulting in a
final predicted value higher than the base value. Consequently,
the class is correctly classified as an ACK attack.

Fig. 6 demonstrates how LIME and SHAP can help explain
misclassified instances, specifically when a benign traffic in-
stance is incorrectly classified as a COMBO attack. In the
LIME explanation of misclassified instance (Fig. 6a), predic-
tion probabilities show that the COMBO attack is predicted
with a probability of 0.34, while the benign probability is
0.22, and scan class prediction probability is 0.14. Feature
contributions for this misclassified prediction are described on
the left side of the figure, with red bars indicating features
that contribute to COMBO attack prediction and green bars
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(a) Classification Uncertainty (b) Classification Entropy (c) Classification Margin

Fig. 7: XAI metrics results for Uncertainty sampling strategies

(a) Vote entropy (b) Consensus entropy (c) Maximum disagreement

Fig. 8: XAI metrics results for QBC strategies

describing features that contribute to other class predictions.
Likewise, a SHAP explanation (Fig. 6b) for the same mis-
classified instance (Benign class is predicted as a COMBO
attack) is presented. SHAP contribution line shifts towards the
blue line instead of the red line, indicating that the features
are pushing the prediction towards the COMBO class, for the
True label class is benign.

Through LIME explanations, the oracle can identify if a
model relies on irrelevant features by rule-based explanations,
thereby instructing the selection of the most informative in-
stances for the next iteration of model training. SHAP explana-
tions allow annotators to see the relative importance and direc-
tion of each feature’s impact on an individual prediction. These
explanations can help identify consistently important features
across predictions, prioritizing which data points should be
labelled next. The oracle uses these explanations to evaluate
the model’s predictions’ validity and provide targeted feedback
for model refinement. Quickly identify and prioritize which
features or data points to focus on for providing feedback
or further investigation. As such, they can guide the active
learning process by selecting instances for querying that might
correct these misclassified instances, improving the robustness
and accuracy of the model over time. By providing locally
understandable explanations for individual predictions, ex-
plainers empower the annotator to identify potential flaws and
biases in the model’s predictions. This feedback mechanism
allows the expert to guide the model by actively selecting
the most informative and representative samples for further
labeling.

We evaluated the quality of explanations within the active

learning loop by applying three quantitative metrics to deter-
mine whether the data points selected from the pool and pre-
sented as labeling queries to the human expert were effectively
explained by the model. Evaluation of explanation quality
was conducted using three metrics. Faithfulness computes the
correlation between the feature importance scores provided by
the explainers and the actual model predictions. The mono-
tonicity metric evaluates whether the incremental changes
in the input instance are reflected in the explanations in a
consistent way. Max Sensitivity, used to assess the robustness
of the explainers, is based on the premise that similar instances
in feature space should give similar explanations. To ensure
the clarity and readability of the paper, we have presented xai
metrics results exclusively for the models that demonstrate the
highest performance across sampling strategies. Specifically,
the pool size of 10,000 provided the best results for uncertainty
sampling. Furthermore, combining a pool size of 10,000 and a
committee size of seven led to superior outcomes in the QBC
approach. XAI metrics performance results presented in the
graphs were the mean values of XAI metrics for explainers
over the test data in active learning cycles.

Fig. 8 illustrates XAI metrics results for QBC strategies
in the AL loop. Mean values of explainability metrics were
computed for test data using explanations generated by LIME
and SHAP explainers throughout the AL cycle. In QBC
strategies, SHAP explanations consistently outperform LIME
explanations regarding faithfulness, monotonicity, and maxi-
mum sensitivity. The only exception is that neither SHAP nor
LIME have consistently better results for faithfulness results
of consensus entropy. For QBC that uses maximum agreement
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strategy with committee size 7 (QBC-MD-7) (see Fig. 8c), as
the number of data points queried for labels increases, faith-
fulness of SHAP explanations remains high and stable, with
correlation values above 0.8. In contrast, LIME’s faithfulness
is lower and more variable, with correlation values ranging
from 0.4 to 0.6. The monotonicity of both explainers improves
with more queried data points, indicating that the explanations
become more consistent with the model’s predictions as AL
progresses. SHAP maintains a higher level of consistency,
with monotonicity percentages far above 60%, while LIME’s
monotonicity consistency percentages range from 40% to
below 60% in QBC-MD-7 results. Maximum sensitivity of
both explainers decreases as more data points are queried,
suggesting that the explanations become more robust. Lower
sensitivity values indicate that similar instances in the feature
space yield similar explanations. SHAP’s maximum sensitivity
values are consistently lower than LIME’s, demonstrating
that SHAP explanations are more robust. SHAP explanations
for the QBC-MD-7, the highest performing model in F1
score, exhibit high faithfulness correlation values (above 0.8),
consistent monotonicity percentages (far above 60%), and low
maximum sensitivity values, indicating robust explanations.

QBC-CE-7 (Fig. 8b) and QBC-VE-7 (Fig. 8a) also demon-
strate similar trends in XAI metrics, with SHAP explanations
outperforming LIME regarding faithfulness, monotonicity, and
maximum sensitivity. However, the QBC-MD-7 strategy con-
sistently achieves the highest F1 scores and the most reliable
explanations among the three query strategies with SHAP.

Within the uncertainty sampling strategies also, as depicted
in Fig. 7, SHAP explanations were more reliable than LIME.
However, when compared to the QBC strategy, the metrics
of faithfulness and consistency of monotonocity exhibited
fluctuations. Consequently, this suggests that the explanations
about query strategies may not be consistently dependable.
Therefore, Oracle’s reliance should be directed toward the
QBC sampling strategy, which has demonstrated robust per-
formance with a pool size of 10,000 and a committee size of
seven.

V. CONCLUSION

In our study, we proposed an active learning framework
which is enhanced by XAI methods for detecting IoT bot-
net attacks in SOCs. The framework incorporates post-hoc
explainability methods, LIME, and SHAP into the labeling
procedures, thus improving the trust between security analysts
and learning models. We also evaluated the quality of the ex-
planations by using various quantitative metrics. Our research
highlights the potential of explainable active learning to im-
prove AI-based network intrusion detection tasks, exemplified
by an IoT botnet case. As a future study, we plan to perform
a comprehensive qualitative evaluation of the explanations to
explore the practical implications of the proposed framework
in SOC settings.
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Abstract—The widespread use of Internet of Things (IoT) de-
vices has increased the vulnerability to botnet attacks, presenting
significant challenges to network security. Federated learning
(FL) is a promising approach for detecting IoT botnets while
preserving data privacy. However, the black-box nature of FL
models impedes their interpretability and transparency, which
are crucial for trust and accountability in security applications.
In this paper, we propose an approach to generate explanations
for the server model induced for intrusion detection tasks in
the FL setting without direct access to data of IoT device-based
clients. This involves aggregating SHAP (SHapley Additive ex-
Planations) value explanations from individual IoT device-based
client models to approximate the server model’s explanations.
We evaluated this approach by comparing the aggregated client-
based explanations with the server-based explanations obtained
when the server has access to the data of participating IoT
device clients. We employed a deep neural network (DNN) model
trained in a horizontal federated learning (HFL) setting with the
federated averaging (FedAvg) algorithm. DNN model achieved
high detection rates of Accuracy, Precision, Recall & F1-Score
in Botnet Detection of multiclass classification on both IoT device-
based client-side models and the server-side model. Additionally,
we analyzed the importance of features contributing to IoT
botnet detection using the generated SHAP explanations. The
results demonstrate that the aggregation of client-based SHAP
explanations closely approximates the server-based explanations,
achieving comparable explainability without compromising data
privacy.

Index Terms—Federated Learning, Internet of Things, Botnet,
Intrusion Detection, Explainable AI, Post-Hoc explainability,
SHAP, Horizontal Federated Learning

I. INTRODUCTION

Intrusion detection is crucial in IoT networks [1] to pre-
vent unauthorized access to devices. There are two types
of Intrusion Detection Systems (IDS): Signature-based and
Anomaly-based. Signature-based IDS relies on pre-defined
attack patterns, while Anomaly-based IDS detects malicious
activity through deviations from normal behavior [2]. Though
Signature-based detection performs better, it fails to detect
new attacks. Adapting machine learning (ML) algorithms
for Anomaly-based detection can enhance self-learning and
develop more intelligent systems for detecting attacks in IoT
environments [3]. Although ML techniques can enhance IDS

approaches, most ML-enabled IDS deployments are central-
ized, leading to privacy issues. Federated Learning (FL) was
proposed to address this issue [4]. FL is a collaborative learn-
ing approach where end devices share partial global model
updates aggregated by a central entity, improving privacy.
As ML is increasingly applied, users are more concerned
about data privacy. To protect personal privacy, users may
hesitate to share data. Although FL is commonly used to
train deep learning models, its complexity makes it difficult
to explainable, which is a challenge for high-stakes decision-
making [5]. Meaningful and interpretable explanations of pre-
dictive models are critical to building trust between AI systems
and human experts. These explanations help domain experts,
such as security analyst and system administrators, make
informed and accurate decisions, leading to better decision-
making and accountability. More data privacy and security
laws, such as General Data Protection Regulation (GDPR) [6]
in the EU and China’s Cybersecurity Law [7], were introduced
to protect user privacy. Data cannot be shared or collected
centrally from multiple parties due to strict regulations against
leakage of private data. Using data from multiple parties to
train ML models while complying with privacy regulations is
an urgent issue.

This research explores the use of explainable AI (XAI)
techniques in federated learning (FL) for botnet detection
in IoT networks. This study aims to enhance the explain-
ability and transparency of the decision-making process in
FL-based intrusion detection systems while preserving data
privacy. More specifically, this paper proposes an approach
for explaining a prediction made by the global Deep neural
Network model (server model) by aggregating explanations
of clients who participated in the federation. This approach
is based on the requirement that explaining the global model
(server model) for the XAI method does not necessitate access
to the training data of the participating clients. Using an FL-
based IDS with XAI in IoT, we use this approach in the
context of IoT botnet detection in a multiclass benchmarking
setting. To assess the effectiveness of this approach, we use an
analytical methodology to compare its approximation with a
simulated scenario where a server with access to the training
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data is involved. This study demonstrates the effectiveness
of SHAP in generating explanations and identifying essential
features for IoT botnet detection in FL Settings. To the best
of our knowledge, this is the first work to investigate the
integration of XAI techniques with federated deep learning for
IoT intrusion detection. The insights gained from this research
can benefit in developing more transparent and trustworthy FL-
based security solutions. Furthermore, the findings contribute
to the broader field of XAI by showcasing the applicability of
xai methods in distributed learning environments.

Our paper is structured as follows: Section II covers back-
ground on Federated Learning, while Section II-A gives re-
lated work of federated learning in intrusion detection systems
of IoT. Section III outlines our methodology, followed by Sec-
tion IV presenting results and discussions. Finally, conclusions
are Section V.

II. BACKGROUND WORK ON FEDERATED LEARNING

Federated learning (FL), as defined by Yang et al., trains an
ML model using data from multiple sources while ensuring
data privacy [8]. Let N be the number of clients, denoted as
c1, . . . , cN . Each client ci owns a set of samples denoted by
Uci , feature space by Xci , label space by Yci , and dataset by
Dci = {u(j)

ci , x
(j)
ci , y

(j)
ci }

|Dci
|

j=1 . Here, data point (u(j)
ci , x

(j)
ci , y

(j)
ci )

signifies that client ci owns sample u
(j)
ci with features x(j)

ci and
label y(j)ci . For instance, in IoT networks, U refers to the set of
all IoT devices, X denotes features such as Network Traffic
and Communication Protocols and Y indicates whether an IoT
device is infected with Malware (Eg. Dos and DDos) or not.
Based on data partition (X,Y, U) among clients, FL can be
categorized into three types by Yang et al. [9]: (1). Horizontal
Federated Learning (HFL): In HFL, clients share the same
feature and label space (Xi = Xj , Yi = Yj) but have different
sample spaces (Ui ̸= Uj). (2). Vertical Federated Learning
(VFL): In VFL, some common data samples are shared among
clients (Ui ∩ Uj ̸= ∅), but feature and label spaces differ
(Xi ̸= Xj , Yi ̸= Yj). (3). Federated Transfer Learning
(FTL): FTL imposes no restrictions on sample, feature, and
label space, allowing arbitrary differences. Furtherly, FL can
be categorized as Cross-device FL (B2C) and Cross-silo FL
(B2B). Cross-device (CDFL) involves many clients with lower
resources, while Cross-silo (CSFL) involves companies or in-
stitutions with more robust computational and communication
capabilities. Client-server architecture is the most popular HFL
architecture, and Federated Averaging (FedAvg) algorithm [4]
is based on it. Optimization objective of HFL as:

min
θ

L(θ) =
N∑

i=1

Lci(θ) =
N∑

i=1

1

|Dci |

Dci∑

j=1

l(x(j)
ci , y(j)ci ; θ) (1)

Where θ represents model parameters, L(θ) is the global
optimization objective. Lci(θ) is the optimization objective of
client ci based on its local data Dci , with l(x, y; θ) denoting
the loss function, such as cross-entropy or mean squared
loss. SGD (Stochastic gradient descent) is commonly used to
optimize Equation. 1. The training process of HFL as follows:

1) Each client samples a batch of data B, and calculates
gradients gci =

1
|B|∇θ

∑
x,y∈B l(x, y, ; θ) and sends gci

to the server.
2) The server Aggregates the gradients (eg. averaging

g = 1
N

∑N
i=1 gci ) and then distributes the aggregated

gradient to all clients.
3) Each client updates the model by gradient descent based

on the aggregated gradient g.
The process is executed iteratively until the loss function

L(θ) converges. After training finishes, all clients share the
same model parameters θ.

HFL has high communication overhead, especially in
CDFL. FedAvg reduces communication costs by increasing
local computation to converge the model faster in HFL. Instead
of transmitting gradients for every batch, FedAvg transmits
gradients every E epochs. Assuming current model parameters
θ(t), batch size b and and learning rate η, FedAvg algorithm
follows these steps

1) Each client divides the local data Dci into batches of
size b.

2) For each batch B, the clients perform parameter updates
θ
(t)
ci ← θ

(t)
ci − η

b

∑
x,y∈B ∇θl(x, y; θ

(t)
ci ) until the local

dataset Dci is iterated E epochs.
3) Each client sends the updated parameters θtci to aggre-

gation server.
4) The aggregation server computes a weighted average of

the model parameters θt+1 =
∑N

ci=1 wciθ
(t)
ci , where wci

is calculated from the size of each local dataset
5) the aggregation server distributes θ(t+1) to the clients.

A. Related Work

ML-based IDS relies on ample data to build a model.
However, centralizing all data may not be feasible in complex
environments with multiple parties or clients, leading to pri-
vacy issues and high communication latency [10]. FL ensures
data privacy without compromising model accuracy at low
latency and communication costs. Bonawitz et al. designed
a decentralized FL system, which differs from traditional ML
architecture. FL techniques have been proposed for cyberse-
curity and intrusion detection in IoT networks [11]. Nguyen
et al. proposed a self-learning anomaly detection system using
FL for compromised IoT devices detection [12]. The system
employs LSTM (Long short-term memory) and GRUs (Gated
recurrent unit) for building the model. It constantly monitors
the devices’ network traffic and detects anomalous deviations
from given communication profiles. The system has achieved
an accuracy of 98.2% and can detect 95.6% of attacks in just
257ms with less false alarm rate. In a paper [13], authors
presented an approach for intelligent intrusion detection using
FL with LSTM recurrent neural network that achieved an
accuracy and F1 score of 99.21% by comparing the effi-
ciency of the proposed algorithm with conventional neural
networks. Liu et al. propose a deep anomaly detection frame-
work for Industrial IoT that uses FL approach on distributed
edge devices [14]. It includes a CNN (Convolutional neural
network)-LSTM model to extract fine-grained features of
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historical observations and uses LSTM model for time-series
predictions, preventing memory loss and gradient-dispersion
problems. IoT devices are vulnerable to cyber attacks due to
their architecture, making manual detection difficult. Attota
et al. propose a FL based approach called MV-FLID, which
trains on multiple views in a decentralized format. MV-FLID
uses multi-view ensemble learning to detect, classify, and
defend against attacks [15]. Evaluation results were shown
that MV-FLID was more accurate than traditional non-FL
centralized approaches. Other works [16, 17] have focused
on Explainable AI (XAI) and it’s quality of evaluation for
centralized models of ID in IoT. Another study analyzed the
impact of feature selection on the explanations obtained in
the post-hoc interpretability step in IoT botnet detection [18].
However, these approaches did not address privacy concerns.
This work is the first to focus on explaining the server model
in an XAI-based IDS within a FL benchmarking setting.

Figure 1: Explainable AI in Horizontal Federated Leaning for
IoT botnet Detection

III. METHODOLOGY

Fig. 1 illustrates the architecture of the proposed HFL
approach for IDS in IoT network, in which several devices are
connected to the network and distributed across various sites.
These devices are connected to gateways, and their network
traffic data is monitored by profiling tools (e.g. Wireshark) for
further investigation in the locally running host-based IDS on
IoT devices. Each device has an ML model induced by its
network data. Selected IoT devices share their parameters of
ML models with a server-based aggregation platform, which
aggregates these models to generate an enhanced intrusion

detection model with optimized parameters. This sharing ap-
proach improves learning by enabling devices to detect intru-
sions based on comparable behaviour learned from different
participating devices. After training the black box model in
FL, XAI provides transparency into how the IDS makes its
decisions. XAI identifies key features and patterns, making
the detection process more interpretable and trustworthy. This
ensures that security experts can understand and validate the
actions of the IDS, thereby fostering user trust in the AI-based
IDS. However, to explain the server model of FL, server needs
to access the data. To address this, an approach for explaining
the server model without sharing data was proposed in this
paper, allowing for generating explanations while preserving
privacy.

A. Dataset

N-BaIoT dataset [19] is appropriate for evaluating privacy-
preserving collaborative training for IoT Botnet and B5G
applications. It separates traffic data into files, allowing easy
distribution into non-identically distributed parts. However,
it only contains data from 9 IoT devices, which limits the
number of clients for experiments. This dataset contains 115
network traffic features primarily extracted through descriptive
statistical values. Dataset was derived from network traffic
created by bots deployed in a controlled environment with
9 different IoT devices infected by Mirai and Gafgyt malware
types.

Table I: Details of Features of N-BaIoT dataset.

Feature Category Category Code No.Of features Statistical Value Feature Time Frame Windows

Hos Mac & IP MI 15
Packet Count, Mean

Variance

100 Micrso Sconds

500 micro seconds

1.5 Seconds

10 Seconds

1 Minute

Host IP H 15

Network Jitter HH_jit 15

Channel HH 35 Packet Count, Mean

Variance, Magnitude,Radius, CoVariance, CorrelationSocket HpHp 35

Table II displays the number of benign and Botnet deployed
samples for each device. However, Doorbell2 and Webcam did
not generate traffic while infected by Mirai Botnet. Notably,
the features for each instance reflect aggregated descriptive
statistics of the raw network traffic across five-time windows
(100µs, 500µs, 1.5s, 10s, and 1min), denoted as L5, L3,
L1, L0.1, and L0.01, respectively (see Table I). Dataset en-
compasses five main feature categories: host-IP (coded as H),
host-MAC and IP (coded as MI), channel (coded as HH),
socket (coded as HpHp), and network jitter (coded as HH_jit).
For each category, metrics such as packet count, mean packet
size, and variance in packet sizes are calculated. Additionally,
statistical values, including the Pearson correlation coefficient
(PCC) of packet size, radius, covariance, and magnitude, are
derived for network channels and sockets, along with packet
count, mean, and variance.

B. Deep Neural Network for IoT Botnet Detection in FL

In this study, a Deep Neural Network (DNN) model was
proposed to detect IoT botnets over N-BaIoT dataset using
network traffic features. DNN model consists of an input layer,
hidden layers, and an output layer containing neurons. Input
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Table II: Number of Botnet malware & benign samples for each device over N-BaIoT dataset [19]

IoT Devcie Name Short Name Deployed BoTnet Samples

Mirai Gafgyt Benign

Danmini Doorbell Doorbell1 652100 316650 49548
Philips B120N10 Baby_Monitor BabyMonitor 610714 312723 175240
Provision PT 737E Security_Camera SecurityCam1 436010 330096 62154
SimpleHome XCS7 1003 WHT Security Camera SecurityCam2 514860 316438 19528
Ecobee Thermostat Thermostat 512133 310630 13113
Provision PT 838 Security Camera SecurityCam3 429337 309040 98514
SimpleHome XCS7 1002 WHT Security Camera SecurityCam4 513248 303223 46585
Ennio Doorbell Doorbell2 - 316400 39100
Samsung SNH 1011N Webcam Webcam - 323072 52150

Total 3668402
( 57.9%)

2198800
(34.7%)

464682
(7.4/%)

layer had 115 neurons, which is the same as the number of net-
work traffic features in dataset. The architecture of the model
includes 7 hidden layers, each containing 81 hidden units
was determined by experimentation using Random Search
Hyperparameter Tuning with help of Ray Tune library1 over
data before distributing it into client-wise partitions. These
optimized hyperparameters (see in Table III) were then passed
into entire federated training setting to train DNN model.

Model was trained using the Rectified Adam (RAdam)
optimizer with a learning rate of 0.000669451. The Scaled
Exponential Linear Unit (SELU) activation function was ap-
plied after each hidden layer, introducing non-linearity into
the model. The model’s output layer is a fully connected
layer that maps activations from the final hidden layer to
the output size, indicating the number of classes for botnet
malware type classification (Benign, Mira, Gafgyt). During the
training phase, Each client model underwent 90 epochs with a
batch size of 512 for each client’s data in every communication
round. Cross Entropy Loss function was utilized to compute
the loss during training, making it well-suited for this multi-
class classification task.

Table III: Parameters for DNN used in Federated Learning

Hyperparameter Value
Hidden layers 7
Hidden units 81
Learning rate 0.000669451
Optimizer RAdam
Activation SELU
Batch size 512
epochs 90

C. Explainable AI in Federated Learning

This work used SHapley Additive exPlanations (SHAP)
method [20]. SHAP is widely used and local post-hoc model-
agnostic explanation method computes feature importance us-
ing Shapley values based on cooperative game theory [21]. A
post hoc explanation, denoted as g, is an explanation mapping
that, for a black box model predictor M and point of interest
x, returns an importance score g(M, x) = φx ∈ Rd for all
features. SHAP is defined as g(M, x) = ϕ0+

∑M
j=1 ϕj , where

1. https://docs.ray.io/en/latest/tune/index.html

ϕj is the feature attribution of feature j. SHAP values can be
used for local explanation , which explain individual instances,
and global explanation ( overall model explanation), which
can be computed using different explanation models. We used
SHAP’s DeepExplainer2, which is model-agnostic.

SHAP Explainer was used to explain DNN model learned
by FedAvg in HFL architecture mentioned in Section II. SHAP
requires access to the training data or a reference set to create
records for studying the impact of each feature value on the
final prediction of the model. For server-based FL, the server
needs access to its clients’ complete set of training data or to
compute the centroids of the dataset resulting from the union
of the training sets of all the clients to explain the learned
server model. In this work, we followed the approach outlined
by Corbucci et al. [22],where an explanation for the server
model was obtained by aggregating all client’s explanations,
thus avoiding data sharing to Server model.

After completing the training of FL, each client ci receives
its trained modelMci , which is then sent to the server. Server
then creates its own modelMs by averaging the weights of the
received models using FedAvg algorithm. Each client ci can
then obtain SHAP explanation gci(Mci , x) of it’s data points
over their model Mci , which strongly relies on the training
data. To derive explanations from the server’s perspective,
additive nature of SHAP values were leveraged, which enables
the generation of explanations for modelMs as an aggregation
of explanations from the individual models Mc within U .
Therefore, for a point of interest x, an explanation of the
prediction performed by server model Ms is obtained by the
following equation.

gs(Ms, x) = Elocal =
1

|N |
∑

ci∈N

gci(Mci , x). (2)

Hence, data sharing is not required for server to obtain
explanations from server model Ms. where, N is the number
of client models who participated in FL.

To check if Elocal explanations are sufficient for the server
model, Server model Ms was provided data from all clients
N and obtains explanations. These explanations are then

2. https://shap-lrjball.readthedocs.io/en/latest/generated/shap.DeepExplainer.html
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aggregated for all clients by providing the combined training
data to the SHAP explainer, resulting in explanation Eglobal.
Finally, to check the correctness of the explanations, difference
(dg−l) between Eglobal and Elocal was computed, i.e.,

d(g−l) = Eglobal − Elocal. (3)

Difference between Eglobal and Elocal represents the di-
vergence between the server-based explanations (obtained by
directly accessing the clients’ data) and the average client’s
explanations (obtained by aggregating the individual client
explanations without providing the data to server). This di-
vergence calculation helps assess the quality and reliability
of aggegagtion of client’s explanations (Elocal) compared
to the server-based (Eglobal) ones. This approach enables
explainability in FL while preserving data privacy.

In our case, SHAP values were computed on validation data.
Each client’s (IoT device) SHAP values explanations was an
m × d matrix, where m is the number of data points from
test data and d is the number of features. Aggregation of
client-based explanations was computed by taking the element-
wise average of individual client SHAP values explanations,
resulting in Elocal, which will also be an m × d matrix.
Similarly, when server model was accessed test data of clients,
server-based explanations (Eglobal) will also be an m × d
matrix. Difference d(g−l) between Elocal and Eglobal was
computed by taking the element-wise difference between the
two matrices, resulting in a matrix of size m× d.

D. Experimental Setup

During federated learning, a deep neural network (DNN)
was trained on data that is distributed from multiple IoT
devices or clients. Each client’s data is divided into training
and validation sets using an 80:20 ratio. During each round
of federated training, validation data from each client was
tested on its respective client model. Once all clients have
been processed, the combined validation data from all clients
was tested on the server model. To prepare the data for training
of DNN model, Min-max normalization was applied to scale
feature values between 0 and 1 for each client’s training and
validation data.

In the evaluation of learning models in federated learning, a
testing dataset was exclusively used on IoT devices. This study
utilized Accuracy, Precision, Recall, and F1-score metrics
to evaluate both the clients’ and server models in federated
learning over 200 communication rounds.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-Score =
2× TP

(2× TP ) + FP + FN
(7)

From the N-BaIoT dataset, true positive (TP) is the number
of network traffic statistical feature data points in the positive
class that are correctly classified as positive; false positive (FP)
is the number of network traffic statistical feature data points
in the negative class that are misclassified as positive; true
negative (TN) is the number of data points in the negative
class that are correctly classified as negative; and false negative
(FN) is the number of network traffic statistical feature data
points in the positive class that are misclassified as negative.

Experiments were conducted on a server powered by an
AMD Threadripper 3960X 24-Core/48-thread Processor, 128
GB RAM, and an NVidia 3090 GPU with 24 GB graph-
ics memory, running Ubuntu 20.04 LTS. Experiments were
implemented in Python.3.9, using Flower3 [23] for FL with
PyTorch4.

IV. RESULTS & DISCUSSIONS

In this work, our proposal aims to use explainable AI to ex-
plain DNN model learned by FedAvg algorithm in the case of
HFL architecture in a multiclass classification scenario for IoT
botnet detection. This research used N-BaIoT dataset, which
has 9 IoT devices attacked by botnets such as Gafgyt and
Mirai. Mirai botnet did not infect ‘Doorbell2’ and ‘Webcam’
devices. Consequently, these two devices were excluded from
the experiments to ensure consistency in the label space and
input feature space during federated training using FedAvg
algorithm because of the horizontal nature of FL approach.

Figure 2: Evaluation of DNN Model Performance on Server
side

Fig. 2 illustrates how well federated DNN model performed
regarding Accuracy, Precision, recall and F1-score metrics.
Server model was evaluated using combined test data from
all participating clients (7 IoT devices). In federated learning,
Evaluation was conducted over 200 communication rounds
between the server and the clients, using the fedavg algorithm
in a HFL setting. 50% of clients were randomly selected for

3. https://flower.ai/
4. https://pytorch.org/
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(a) Accuracy (b) Precision (c) Recall (d) F1-score

Figure 3: Evaluation of DNN model performance on client’s Side

each round of training and evaluation. This ensures diversity
in client updates and provides a more robust measure of the
model’s generalization ability. All 7 clients were needed for
the evaluation round to proceed, ensuring a reliable estimate
of the model’s performance. As the number of communi-
cation rounds increased, classification performance metrics
notably improved. Initially, when server model parameters
were initialized, metrics accuracy, precision, recall and F1-
score began at approximately 0.4. However, after completing
200 communication rounds, classification performance metrics
reached an impressive peak of around 0.99.

Fig. 3 presents classification performance metrics of client
models when evaluated with its own parameters on each
client’s validation data. As communication rounds increased,
each client’s accuracy, precision, recall and F1-score improved,
indicating successful learning. However, it was noted that there
was variation in performance metrics among clients. By the
end of the communication rounds, almost all clients achieved
high classification performance, which indicates that model
performed exceptionally well on the validation data.

As mentioned in Section III-C, SHAP was used to explain
the DNN model learned by the FedAvg algorithm in the case
of HFL architecture. In this work, we aim to investigate the
differences in the explanations from the point of view of the
feature’s importance for the Server Model without providing
data. For this purpose, this work considers the aggregation
of explanations from client models as explanations for the
server model. So, the Server does not need to access the
data from clients to explain the server model. SHAP values
were computed on each validation data of client to find how
each feature contributes to a model’s output. In this context,
the model’s output refers to the probability distribution over
the class labels (Mirai, Gafgyt,and Benign) obtained using
the softmax activation function. Therefore, the computation
of SHAP values necessitates the calculation of the softmax
function on the model’s predictions. Following the completion
of FL training, Client models and server models were taken
at the 200th communication round for explanation generation.

SHAP values were computed for over 2000 test data points
for each client. By aggregating the SHAP values of all clients,
we obtained client-based explanations (Elocal). We performed
a comparative analysis to check the sufficiency of client-based
explanations that are good for the server and validate their

Figure 4: Heatmap for Difference Between aggregation of
client’s models Explanations and server model explanations

effectiveness in representing the server model’s behaviour. So,
To obtain the server-based explanations (Eglobal), the server
model accessed each client’s data, and SHAP values were
computed and aggregated again, resulting in explanations of
the same size as Elocal. Finally, Difference (dg−l) between
the server-based explanations Eglobal and the client-based
explanations (Elocal) was then computed, representing the
divergence between the two sides. Fig. 4 shows a heatmap
that visualizes magnitude of the difference between server-
based explanations and client-based explanations for each
sample and feature. Heatmap shows discrepancy between
client-based explanations and server-based explanations for
20 features. Only 20 features out of 115 were included for
readability purposes. From heatmap, it can be obeserved that
the overall divergence between the server-based and client-
based explanations is relatively small. However, there are a
few notable instances where the divergence is more signif-
icant. For example, some samples exhibit darker shades for
certain features, indicating a larger discrepancy between the
server-based and client-based explanations for those specific
instances.

To provide a more detailed analysis of the features, We
analyzed client-based and server-based explanations, and the
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(a) SHAP values feature importance over Aggregation of
Client’s Side Explanation

(b) SHAP Value feature importance over Server model

Figure 5: SHAP value feature importance from both Client’s
side models and Server model

difference between them. We computed the average SHAP
values for client-based, averaged server-based explanations
(see in Fig. 5). First 30 features were selected for this
analysis. It can be observed that the SHAP values of most
features were comparable in both Fig. 5a & 5b, imply-
ing that aggregation of client-based explanations closely ap-
proximates server-based explanations. For Example, Feature
‘H_L0.01_mean’ is the top feature in both the client-side and
server-side explanations, indicating its significant importance
in the model’s predictions for server model. This suggests that
the feature ‘H_L0.01_mean’ (Host Based features with 1min

time window) plays a crucial role regardless of whether the
explanations are obtained from the client-side without sending
data or from the server model accessing the data directly.
On the other hand, features such as ‘MI_dir_L5_variance’
(Host Mac & IP with 100µs ), ‘MI_dir_L3_variance’ (Host
Mac & IP with 500µs ), ‘H_L5_variance’ (Host with 100µs),
and ‘H_L3_variance’ (Host with 500µs) have relatively lower
SHAP values in both the client-side and server-side explana-
tions. This indicates that these features have a lesser impact
on the model’s predictions compared to other features. Fig 6
shows Difference between SHAP values obtained by the

server-based explanations and those obtained by the client-
based explanations. Fig. 6 illustrates that there is no dis-
crepancy between the server-side and client-side explanations
for certain features, as suggested by the SHAP values. This
highlights the effectiveness of the FL approach in capturing
feature importance while preserving data privacy. The sim-
ilarity between the client-side and server-side explanations
suggests that the aggregation of local explanations provides a
good approximation of the global explanations, even without
direct access to the clients’ data.

Figure 6: Average Feature importance of Difference client’s-
based Explanations and server model explanations

V. CONCLUSION & FUTURE WORK

In conclusion, our research highlights the potential of inte-
grating XAI techniques with federated learning for enhanced
interpretability and transparency in IoT botnet detection. The
proposed approach of aggregating client-based SHAP explana-
tions provides a promising solution for generating meaningful
explanations while preserving data privacy. Our DNN Model
has achieved more than 99% of detecting botnet in IoT net-
works. We conducted research on integrating explainable AI
(XAI) techniques, specifically SHAP, with federated learning
(FL) for IoT botnet detection. Our goal was to improve
the interpretability and transparency of FL-based IDS while
preserving data privacy. We proposed an approach that ag-
gregates explanations from participating clients to generate
global DNN model explanations without direct access to their
training data. Our results showed that client-based SHAP
explanations closely approximated server-based explanations,
achieving comparable explainability without compromising
data privacy. This approach provides valuable insights into
the decision-making process of FL-based IoT botnet detection
while maintaining client data confidentiality. Additionally, our
study demonstrated the effectiveness of SHAP in identifying
essential features for IoT botnet detection in FL settings.
In future, we aim to enhance the security of explanations
using secure multi-party computation and privacy preserving
techniques to prevent attacks on ML models from black-box
adversaries.
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A B S T R A C T

The rapid growth of Internet of Things(IoT) devices has increased their vulnerability to botnet attacks, posing
serious network security challenges. While deep learning models within federated learning (FL) can detect
such threats while preserving privacy, their black-box nature limits interpretability, crucial for trust in security
systems. Integrating explainable AI (XAI) into FL is significantly challenging, as many XAI methods require
access to client data to interpret the behaviour of the global model on the server side. In this study, we
propose a Federated Learning of Explainable AI (FedXAI) framework for binary and multiclass classification
(botnet type and attack type) to perform intrusion detection in IoT devices. We incorporate one of the widely
known XAI methods, SHAP (SHapley Additive exPlanations), into the detection framework. Specifically, we
propose a privacy-preserving method in which the server securely aggregates SHAP value-based explanations
from local models on the client side to approximate explanations for the global model on the server, without
accessing any client data. Our evaluation demonstrates that the securely aggregated client-side explanations
closely approximate the global model explanations generated when the server has access to client data. Our
FL framework utilises a long-short-term memory (LSTM) network in a horizontal FL setup with the FedAvg
(federated averaging) aggregation algorithm, achieving high detection performance for botnet detection in all
binary and multiclass classification tasks. Additionally, we evaluated post-hoc explanations for local models
client-side using LIME (Local Interpretable Model-Agnostic Explanations), Integrated Gradients(IG), and SHAP,
with SHAP performing better based on metrics like Faithfulness, Complexity, Monotonicity, and Robustness.
This study demonstrates that it is possible to achieve a high-performing FL model that addresses both
explainability and privacy in the same framework for intrusion detection in IoT networks.

1. Introduction

Intrusion detection systems (IDS) protect ICT systems by identifying
security attacks and threats through network traffic monitoring and
analysis. IDS approaches are commonly categorised as signature-based
and anomaly-based systems [1]. Signature-based systems rely on pre-
established network patterns and challenges to detect new attacks.
In contrast, anomaly-based systems analyse specific network traffic
features to recognise deviations from normal behaviour, demonstrating
a potential attack. In recent years, significant advances have been made
in machine learning (ML) techniques, such as neural networks and
clustering for IDS [2,3].

In the IoT context, recent efforts have been made to leverage Deep
Learning (DL) techniques and various neural networks to detect attacks.
Even though ML can enhance IDSs, most ML-based IDS systems are
centralised. In such setups, network data from multiple IoT devices is

∗ Corresponding author.
E-mail addresses: rajesh.kalakoti@taltech.ee (R. Kalakoti), sven.nomm@taltech.ee (S. Nõmm), hayretdin.bahsi@taltech.ee (H. Bahsi).

sent to a central server to train the ML model. This server can access
all network traffic and local device data during training, increasing
privacy issues [4]. For example, transferring sensitive and private data
via wearable devices or eHealth systems raises concerns about data
breaches [4]. Due to the increased risk of data being exchanged, it is
crucial to implement effective data management and protect privacy
vulnerabilities [5]. Federated learning (FL) is an advanced approach
to collaborative learning that Google [6] proposed in 2016 to address
the privacy issues of traditional centralised ML approaches. In FL,
end devices, clients, or parties do not share their data. Instead, they
share only partial updates of a global model aggregated by a central
server, regarded as an aggregator or a coordinator. FL ensures user
privacy by not sharing participated client device data with third parties.
FL scenarios involve numerous IoT-based client devices with varying
amounts of distributed data. In real-life situations, the data is often
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non-independent and identically distributed (non-iid) [7]. For example,
in an IDS deployed on a network, some devices may have attack-
related traffic (e.g., Dos or DDoS), while others have normal operation
traffic. Numerous studies have explored FL-based IDS in IoT. Some
surveys have offered a comprehensive overview of the open challenges
in FL with IDS, including issues related to data privacy, communication
overhead, model accuracy, and handling heterogeneous IoT devices [8–
10].

Despite the promising results of ML and DL for intrusion detec-
tion, challenges such as data labelling availability, cost, and achieving
transparency through explainability persist. These issues need to be ad-
dressed to adopt ML models practically in the cybersecurity domain. ML
community is increasingly focused on explainable Artificial Intelligence
(XAI) to interpret models and make predictions, addressing the black-
box nature of ML and DL models. There is significant concern due to
the inherent lack of interpretability of ML models. In the cyber security
domain, security experts (e.g., SOC analysts) often struggle to trust
the ML model output because they do not fully understand how the
model makes decisions. Some studies have also adopted XAI methods
to increase trust in IDS among security analysts [11,12]. Post hoc
explainability methods like LIME and SHAP are famous for providing
detailed explanations of individual instances and model outputs. They
assign importance scores to features critical in model decisions, allow-
ing experts to verify the logic of these features within the corresponding
cyber-incident context. However, the quality of these explainability
methods has raised concerns. These methods use additional tools (such
as linear models and game theory) to determine importance scores,
which may lead to explanation errors. Due to limited evaluation,
many current XAI methods may produce unreliable explanations. As
XAI-based solutions for IDSs increase, thorough evaluation of their ex-
plainability components becomes crucial. This evaluation ensures that
XAI-based IDS can be deployed in real-world scenarios, contributing to
understanding the model output. Designing an XAI system with robust
qualitative and quantitative evaluation procedures for use in the real
world is essential for effective adoption in IDSs. Furthermore, some
review articles extensively discuss open questions and future research
directions in IDS [13–16].

In an IDS operating within a federated learning (FL) setting, security
experts analysing intrusions on IoT devices using server-side models
still need to understand how the models arrive at their decisions. Thus,
in such settings, achieving both privacy and explainability requirements
remains a significant challenge. The integration of XAI methods into FL
is an area that has yet to receive much attention and presents additional
challenges due to the complex distributed nature of FL, where the
model is trained across multiple IoT devices. Post-hoc XAI methods,
such as feature importance explainers (e.g., LIME or SHAP) and model
interpretability, typically need to access the complete training dataset
or trained model parameters, which can pose a privacy risk. In addition,
integrating XAI into FL-based IDS for IoT is further complicated by the
distributed complexity of IoT networks and the heterogeneity of IoT
devices. IoT networks are characterised by limited resources, variable
network connectivity, and diverse data generation patterns, making
post hoc XAI challenging due to their underlying assumptions about
the data and model architecture. More data privacy and security laws,
such as the General Data Protection Regulation (GDPR) [17] in the EU
and China’s Cybersecurity Law [18], were introduced to protect user
privacy. Data cannot be shared or collected centrally from multiple
parties due to strict regulations against leakage of private data. Using
data from multiple parties to train ML models while complying with
privacy regulations is an urgent issue.

To address the challenges mentioned above, our research empha-
sises the importance of incorporating explainability into FL-based IDS.
This work aims to fill this gap by proposing a method to detect IoT
botnet network traffic and explain the black-box nature of a Deep
learning model-based IDS model within an FL setting for IoT devices. In
particular, we propose a FEDXAI-based IDS framework that integrates

XAI into FL. This framework aims to make both the server model and
the participating client models transparent and explainable within an
IDS deployed on IoT network devices in FL settings. We operated a
Long-Short-Term Memory (LSTM) model trained in a horizontal fed-
erated learning (HFL) setting with the federated averaging algorithm
(FedAvg) for binary and multiclass classification settings. This paper
proposes an approach to explain predictions made by the global LSTM
(Fedavg aggregation-based server model) by aggregating explanations
from participating clients while preserving data privacy by prevent-
ing the server model from directly accessing client IoT data. To this
end, our proposal involves the secure aggregation of SHAP (SHapley
Additive ExPlanations) value explanations from individual IoT device-
based client models to approximate the server model’s explanations. We
evaluated this approach by comparing securely aggregated client-based
Shapley value explanations with server-based Shapley explanations
generated under the assumption that the server has access to the data
from participating IoT device clients.

We also advocate for integrating XAI evaluation as a critical cri-
terion to build trust in client models within FEDXAI-based IDS in
FL. Additionally, we used LIME, integrated gradients (IG), and SHAP
as post hoc local explanation methods to provide insights into the
behaviour of these participant-client models in FL. We assessed the
quality of the local post hoc explanations produced by these explain-
ers. To evaluate the explanations, we used four criteria: Faithfulness
(how accurately the explanations reflect the actual behaviour of the
models), Consistency (the similarity of explanations for similar inputs),
Complexity (the clarity and understandability of the explanations) and
Robustness (the stability of the explanations when the nearby output
has some explanations). Our evaluation of local explanations for client
models in FL has assessed their reliability and informativeness in
explaining outcomes for FEDXAI-based IDS.

The contribution of this work can be summarised as follows.

1. We proposed a FedXAI-based framework for intrusion detection
in IoT devices, utilising an LSTM model within an HFL set-
ting. The framework employs the Federated Averaging (FedAvg)
algorithm to perform both binary and multiclass IoT botnet
classification. The LSTM model was evaluated using accuracy,
precision, recall, and F1 score on both the client-side and the
server-side models.

2. Our methodology securely aggregates SHAP (SHapley Additive
ExPlanations) values from individual client models of IoT de-
vices to approximate the explanations of the server model.

3. We rigorously evaluated the reliability of the securely aggre-
gated client-based explanations by comparing them with server-
based explanations generated under conditions where the server
had direct access to the data from participating IoT device
clients.

4. We have provided post hoc local explanations using LIME, IG
and SHAP to explain the decisions made by client-side models
in FL, specifically for IoT botnet detection. The evaluation in-
cludes quantitative metrics such as faithfulness, monotonicity,
complexity, and sensitivity.

5. Our work identified the most influential network category-type
features for both the server model and participating client mod-
els in FL settings, addressing binary and multiclass classification
tasks for IoT devices.

The existing FL settings guarantee privacy in model training. How-
ever, post hoc explainability methods require the collection and transfer
of client data to the server, which leads to leakage of client data.
Existing studies do not consider the preservation of privacy while
extending the capabilities of FL solutions with explainability functions.
The unique contribution of this paper is the secure aggregation of
explanations obtained from clients to explain a server model in an FL
setting to eliminate client data sharing. The proposed solution effec-
tively integrates transparency and privacy in FL settings, achieving both
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objectives within a unified framework. Although our contribution can 
be applied to other domains, in this study, we addressed the detection 
of IoT botnets as a problem domain.

This paper is structured as follows. Section 2 provides an overview 
of FL and reviews the literature related to FL in Intrusion Detection 
Systems (IDS), as well as Explainable AI (XAI) in the context of IDS 
and FL of explainable AI in IDS. Section 3.1 describes the data set used 
in this study. Section 3 Methodology focuses on the FL approach for 
implementing explainable AI for IDS in IoT network devices. The results 
of the study are presented in Section 4, and finally, conclusions are 
drawn in Section 7.

2. Background

2.1. Background on federated learning

FL trains ML models on smart devices without sharing local data. 
Devices share parameters and gradients with a global model hosted on 
a server. The global model aggregates local model updates by averaging 
individual model parameters or gradients, allowing each model to learn 
collaboratively from the global model. This ensures that sensitive raw 
data remains securely stored on client devices.

Let 𝑁 be the number of clients, denoted as 𝑐1,… , 𝑐𝑁 . Each client 𝑐𝑖
has a set of samples denoted by 𝑈𝑐𝑖 , the feature space by 𝑋𝑐𝑖 , the label 
space by 𝑌𝑐𝑖 , and the data set by 𝐷𝑐𝑖 = {𝑢(𝑗)𝑐𝑖 , 𝑥

(𝑗)
𝑐𝑖 , 𝑦

(𝑗)
𝑐𝑖 }

|𝐷𝑐𝑖 |
𝑗=1 . Here, the data 

point (𝑢(𝑗)𝑐𝑖 , 𝑥
(𝑗)
𝑐𝑖 , 𝑦

(𝑗)
𝑐𝑖 ) indicates that the client 𝑐𝑖 owns the sample 𝑢

(𝑗)
𝑐𝑖  with 

features 𝑥(𝑗)𝑐𝑖  and a label 𝑦
(𝑗)
𝑐𝑖 . For example, in IoT networks, 𝑈 refers to 

the set of all IoT devices, 𝑋 denotes features such as Network Traffic 
and Communication Protocols, and 𝑌  indicates whether an IoT device 
is infected with Malware (for example Dos and DDos) or not. Based on 
data partition (𝑋, 𝑌 , 𝑈 ) among clients, FL can be categorised into three 
types by Yang et al. [19]:

• Horizontal Federated Learning (HFL): In HFL, clients share the 
same feature and label space (𝑋𝑖 = 𝑋𝑗 , 𝑌𝑖 = 𝑌𝑗) but have different 
sample spaces (𝑈𝑖 ≠ 𝑈𝑗).

• Vertical Federated Learning (VFL): In VFL, some common data 
samples are shared among clients (𝑈𝑖 ∩ 𝑈𝑗 ≠ ∅), but the space 
between features and labels differs (𝑋𝑖 ≠ 𝑋𝑗 , 𝑌𝑖 ≠ 𝑌𝑗).

• Federated Transfer Learning (FTL): FTL does not impose restric-
tions on the sample, feature, and label space, allowing arbitrary 
differences.

In addition, Federated learning can be categorised as cross-device FL 
(business-to-consumer) and cross-silo FL (business-to-business). Cross-
device FL involves many participants with low computational re-
sources, while cross-silo FL consists of companies or institutions with 
stronger communication and computational capacities. The client–
server architecture is the most popular HFL architecture and the 
Federated Averaging (FedAvg) algorithm [20] is based on it. The 
optimisation objective of HFL is as follows: 

min
𝜃

𝐿(𝜃) =
𝑁∑
𝑖=1

𝐿𝑐𝑖 (𝜃) =
𝑁∑
𝑖=1

1
|𝐷𝑐𝑖 |

𝐷𝑐𝑖∑
𝑗=1

𝑙(𝑥(𝑗)𝑐𝑖
, 𝑦(𝑗)𝑐𝑖

; 𝜃) (1)

where 𝜃 represents the model parameters, 𝐿(𝜃) is the global optimi-
sation objective. 𝐿𝑐𝑖 (𝜃) =

1
|𝐷𝑐𝑖 |

∑𝐷𝑐𝑖
𝑗=1 𝑙(𝑥

(𝑗)
𝑐𝑖 , 𝑦

(𝑗)
𝑐𝑖 ; 𝜃) is the client’s optimi-

sation objective 𝑐𝑖 based on its local data 𝐷𝑐𝑖 , with 𝑙(𝑥, 𝑦; 𝜃) denoting 
the loss function, such as cross-entropy or mean squared loss. SGD 
(stochastic gradient descent) is commonly used to optimise Eq.  (1). The 
HFL training process is as follows:

1. Each client samples a batch of data 𝐵, and calculates gradients
𝑔𝑐𝑖 = 1∕|𝐵|∇𝜃

∑
𝑥,𝑦∈𝐵 𝑙(𝑥, 𝑦, ; 𝜃) and sends 𝑔𝑐𝑖  to a server.

2. The server aggregates the gradients (e.g. averaging 𝑔 = 1∕𝑁∑𝑁
𝑖=1 𝑔𝑐𝑖 ) and then distributes the aggregated gradient to all 

clients.
3. Each client updates the model by gradient descent based on the 
aggregated gradient 𝑔.

The process is executed iteratively until the loss function 𝐿(𝜃)
converges. After training finishes, all clients share the same model 
parameters 𝜃.

HFL has a high communication overhead, especially in CDFL. Fe-
dAvg reduces communication costs by increasing local computation to 
converge the model faster in HFL. Instead of transmitting gradients for 
every batch, FedAvg transmits gradients for every  epoch. Assuming 
current model parameters 𝜃(𝑡), batch size 𝑏, and learning rate 𝜂, the 
FedAvg algorithm follows these steps.

1. Each client divides the local data 𝐷𝑐𝑖  into batches of size 𝑏.
2. For each batch 𝐵, the clients perform parameter updates

𝜃(𝑡)𝑐𝑖 ← 𝜃(𝑡)𝑐𝑖 − 𝜂∕𝑏
∑

𝑥,𝑦∈𝐵 ∇𝜃𝑙(𝑥, 𝑦; 𝜃
(𝑡)
𝑐𝑖 ) until the local dataset 𝐷𝑐𝑖  is 

iterated  epochs.
3. Each client sends the updated parameters 𝜃𝑡𝑐𝑖  to aggregation 
server.

4. The aggregation server computes a weighted average of the 
model parameters 𝜃𝑡+1 =

∑𝑁
𝑐𝑖=1

𝑤𝑐𝑖𝜃
(𝑡)
𝑐𝑖 , where 𝑤𝑐𝑖  is calculated 

from the size of each local dataset
5. the aggregation server distributes 𝜃(𝑡+1) to the clients.

2.2. Related work

FL has recently gained significant attention due to its strengths 
in IoT applications. Recent studies have applied FL to improve IDS. 
A paper [21] performed a comprehensive evaluation of various ML 
models, such as Random Forest (RF), Decision Trees (DT), Support 
Vector Machine (SVM), and Multilayer Perceptron (MLP), in federated 
settings using blockchain for the aggregation process, incorporating 
local training with IoT device data and the KDDCup99 dataset [22]. 
Another Paper [23] utilised the NSL-KDD dataset [22] and MLP as 
an ML model for an FL-based IDS system. The approach is based on 
mimic learning, where a student model is trained with a public data 
set labelled by a master model trained with sensitive data [10] uses 
neural networks to propose an FL-based IDS considering three scenarios 
based on different data distributions regarding the types of attack on 
the NSL-KDD data set. The use of neural networks is also proposed 
by [24], which integrates a differential privacy approach into a sce-
nario with non-iid data using the CSE-CIC-IDS2018 dataset [25]. We 
have observed that some studies use their own generated or simulated 
datasets. For example, in paper [26], the authors combined an FL 
approach with fog computing to enable fog nodes to work together 
to detect DDoS attacks [26]. The authors used Gated Recursive Units 
(GRUs) with FedAvg as the aggregation algorithm. Based on GRU, a 
paper [27] proposes the creation of communication profiles for IoT 
devices to detect potential attacks. The data set is generated from real 
devices and involves Mirai botnet traffic. Li et al. did not provide 
performance details, such as the number of participants and the training 
rounds. Khoa et al. [28] proposes using deep belief networks (DBN) 
in IoT gateways to detect potential attacks on a specific IoT subnet 
and then combines the models through FL. The proposed method uses 
various datasets, including the N-BaIoT [29] dataset, which contains 
traffic data from IoT devices. However, the authors do not provide 
details on the implementation being used or evaluation details, such 
as data distribution, number of clients, or training rounds.  [30] uses 
the n-BaIoT dataset for binary classification with supervised and un-
supervised learning. It incorporates aggregation techniques from [31] 
and evaluates them against adversarial attacks. The authors balanced 
the data set to ensure equal sample numbers and class proportions for 
all devices. Our work is similar to this approach in the model creation 
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stage for FL-based iDS prior to post hoc model interpretation. However, 
we develop our study to include multiclass classification scenarios using 
the N-BaioT data set to detect multiple attack types rather than focus 
on binary classification. We also emphasise explaining the black-box 
model through post hoc XAI methods in the FL-based IDS approach.

Most XAI techniques in cybersecurity focus on visualisation and 
model verification. Significant advances in DL have led to pilot studies 
that analyse network traffic in cybersecurity. The black-box nature 
of most DL models makes it difficult for security experts (stakehold-
ers) to understand their decisions, posing a significant challenge in 
security operations like ID. XAI can help clarify the prediction of the 
model, which is crucial when experts suspect misclassifications in IDS. 
Although traditional signature-based systems struggle with unknown 
attacks, they provide clear technical details [32]. In contrast, XAI-
enhanced ML models offer a powerful and adaptive detection solution 
that improves over time without manual intervention, maintaining high 
performance.

Wang et al. proposed a framework that uses SHAP to offer local 
and global explanations of IDS, helping security analysts interpret 
predictions. They analysed two supervised models trained on the NSL-
KDD dataset, demonstrating that different attack types produce unique 
SHAP value patterns. However, They use it only for visualisation and 
do not analyse the values for further information.

Antwarg et al. employ SHAP to explain anomalies detected by an 
unsupervised auto-encoder model, offering insights for domain experts. 
They identify features with high reconstruction errors and use SHAP for 
clarification. Their method is tested on the KDD Cup 1999 dataset and 
other datasets, with visualisations furnished to help in understanding 
and triaging anomalies.

Liu et al. present FAIXID, a framework that enhances the explain-
ability of IDS by improving data cleaning, clarifying the internals of 
the supervised model, providing local prediction explanations, and 
providing customised visualisations for security analysts.

Rao and Mane use an isolation forest on the NSL-KDD dataset 
to classify samples as normal or anomalous, employing SHAP and 
LIME for explanations and automatically labelling attacks based on 
significant features.

Barnard et al. introduce a two-stage network intrusion detection 
system (IDS). The first stage trains a supervised XGBoost model for 
binary classification of network flow data, using SHAP for interpreta-
tion. The second stage uses these SHAP explanations as input for an 
autoencoder to differentiate between known and unknown behaviours. 
Their hypothesis tests whether the first stage can identify normal versus 
anomalous flows, while the second can handle behaviour classification. 
The evaluation is based on the NSL-KDD dataset. However, the second 
stage’s reliance on labelled data and the lack of analysis on different 
attack behaviour clusters are noted limitations.

It is important to note that the above studies [33–37] present their 
contributions on an old network data set that does not reflect the 
properties of the IoT networks.

Kundu et al. performed experiments using synthetic and real net-
work traffic from the IXAI breaking point system. They tested the 
1DCNN model on three datasets: a synthetic dataset from IXAI, the 
Stratosphere IPS Project dataset, and the Kitsune dataset [39] focussing 
on botnet traffic. Their DCNN botnet detection models outperformed 
previous machine learning models, with up to a 15% improvement 
in classification metrics. Furthermore, SHAP was used to explain the 
decision-making of the model, enhancing trust among cybersecurity 
stakeholders. In a paper [40], authors used SHAP for global and local 
explanations for RF, Adaboost, SVM, and SNN models for malware 
detection over a malware dataset.

Few studies focus on explainability in cybersecurity within FL set-
tings. In a paper [41] using random forests (RF) as surrogates for the 
supervised FL model. Each client trains an RF on its local data. When 
the FL model misclassifies a sample, they use the RF trees to calculate 

feature importance values to detect attacks against the FL training pro-
cess. These explanations are client-specific and require labelled data, 
making global interpretation challenging. Their main focus is on detect-
ing potential attacks rather than explaining predictions. [42] propose a 
FL based anomaly detection architecture for industrial control systems. 
They use SHAP for model interpretation and verification, providing 
visualisations for domain experts. However, the SHAP explainer itself 
is not trained in a federated way and requires background data samples 
for the establishment of the baseline. The authors do not clarify how 
this baseline is obtained, which is crucial given the distributed nature 
of the data in FL settings. Many studies propose requiring labelled 
data at certain stages, which may not be feasible in practice [41]. 
Baseline refers to reference input data (e.g., training data) or values 
used by SHAP and similar explainability methods to compute feature 
attributions. This baseline is a reference point for evaluating the con-
tributions of features to the predictions of the model. Some studies 
apply XAI methods in FL primarily to detect adversarial attacks  [41] 
or to validate trained models [42]. However, explainer models are 
not developed in a federated manner, which may require violating FL 
assumptions or using different explainers for each client, complicating 
interpretation across the network. None of this works with SHAP in 
FL. Current research using SHAP in FL lacks discussion on how to 
extract a baseline, which is essential for generating explanations. This 
baseline selection is critical, as the explanations depend on it [43,44]. 
A paper [45] uses SHAP and LIME in federated settings but does not 
address the privacy risks of explaining the global model on the server 
side.

Despite recent improvements, there are still gaps in the literature on 
IoT for XAI-based IDS. A key issue is the absence of standardised eval-
uation metrics to evaluate the effectiveness of XAI techniques in this 
field. Current research is primarily based on qualitative assessments. 
Developing benchmarks to measure specific aspects of explainability 
would enable more rigorous comparisons of XAI methodologies and 
help identify best practices. Although some initial steps have been taken 
to incorporate explainability into IoT IDS systems, a quantitative eval-
uation of XAI techniques in the cybersecurity literature is still lacking. 
This emphasises the importance of thoroughly evaluating the quality of 
the generated explanations, which is crucial to building confidence in 
the results produced by AI systems that follow XAI principles [11,12,
33–36,38,40]. In this work, we emphasise the importance of evaluating 
the quality of explainability through quantitative measures, alongside 
assessing the detection performance of models in FL settings for client-
side model explanations. We advocate for including this evaluation 
as a critical criterion when developing models that security experts 
can trust in FedXAI-based IDS. To the best of our knowledge, this 
work is the first to use explanations generated through XAI meth-
ods within an FL architecture for FEDXAI-based IDS. This approach 
provides context for securely explaining server-side and client-side FL 
models without compromising privacy regarding feature importance. 
Previous research has not adequately addressed the privacy risks asso-
ciated with providing explainability for the global (server) model. Since 
post hoc xai methods rely on data points for explanations, the lack 
of privacy measures raises significant concerns about potential data 
exposure. Our study ensures explainability by using client-based expla-
nations, eliminating the need to rely on client data. Unlike prior works 
that assume centralised access to feature attributions, we introduce 
a privacy-preserving approach for interpreting the global model in a 
federated setting. Our method demonstrates that post hoc explanations 
can be provided effectively without compromising privacy, ensuring a 
secure and explainable FL-based IDS.

3. Proposed methodology

Fig.  1 illustrates the FedXAI (Federated learning of ai) based IDS 
framework for providing Client–Server Model Explanations in IoT net-
work devices. It presents the architecture of the proposed HFL approach 
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Fig. 1. FedXAI (Federated Learning of Explainable AI) framework for client–server intrusion detection model explanations in IoT network devices.

for IDS in IoT networks, where several devices are connected and
distributed at various locations. Devices connect to gateways, and their
network traffic is monitored with profiling tools (e.g., Wireshark) for
analysis in the local host-based IDS on the IoT device. Each device
has a ML model based on its network data. Selected IoT devices share
their model parameters with a server, which aggregates them to create
an enhanced intrusion detection model with optimised parameters.
This collaborative approach improves learning by enabling devices
to detect intrusions based on behaviour patterns learnt from other
participating devices. After training the black-box model in FL, XAI
provides transparency into how the IDS makes its decisions. XAI identi-
fies key features, making the detection process more interpretable and
trustworthy in FL. This allows security experts to validate the actions
of the IDS and build user trust. To explain the FL server model, the
server typically needs access to the data. This paper proposes a FedXAI-
based IDS that explains the server model without sharing data, ensuring
privacy while rendering explanations.

3.1. Dataset

N-BaIoT dataset [29] is suitable for evaluating privacy-preserving
collaborative training in IoT botnet and B5G applications. Organise
network traffic data into separate files, making distribution into non-
identically distributed parts easier. However, it only includes data
from nine IoT devices, which limits the number of available clients
for experiments. This data set contains 115 network traffic features,
extracted primarily through descriptive statistical analysis. Data were
generated from network traffic produced by bots deployed in a con-
trolled environment, using nine different IoT devices infected with
Mirai and Gafgyt malware types. Mirai botnet was deployed on the
Doorbell2 and Webcam IoT devices. Therefore, the data set contains
no network traffic related to Doorbell2 and Mirai botnet Webcam. The
features of each instance reflect the aggregated descriptive statistics of
raw network traffic in five time windows (100 μs, 500 μs, 1.5 s, 10 s, and 
1𝑚𝑖𝑛), denoted as 𝐿5, 𝐿3, 𝐿1, 𝐿0.1, and 𝐿0.01, respectively (see Table  1). 
The data set encompasses five main feature categories: host-IP (coded
as H), host-MAC and IP (coded as MI), channel (coded as HH), socket
(coded as HpHp) and network jitter (coded as HH_jit). For each cate-
gory, metrics such as packet count, mean packet size, and variance in
packet sizes are calculated. In addition, statistical values, including the
Pearson correlation coefficient (PCC) of packet size, radius, covariance,
and magnitude, are derived for network channels and sockets, along
with packet count, mean, and variance.

In this work, we have studied three types of classification: 1. Binary
classification 2. Botnet-type detection 3. attack-type detection. Table
2 presents the class label distribution of the n-BaIoT data set for

each IoT device and classification type. We developed three types of
classification studies based on FL setup. For the binary classification
type, the goal is to differentiate between malicious traffic and benign
traffic. In botnet-type detection, we scrutinised the type of malware by
classifying data points into three categories: Mirai, Gafgyt, and benign.
Lastly, for attack-type detection, the data points were classified into
different attack types, including ACK, benign, junk, scan, SYN, combo,
TCP, UDP and plain UDP. Note that each client device has its own data
𝐷𝑐𝑖  divided into training data Train

𝑐𝑖
 and testing data Test

𝑐𝑖
.

For data set 𝑐𝑖  belonging to the client 𝑐𝑖, input 𝑥𝑐𝑖 ∈ R𝑑 , where 𝑑
is the dimensionality of the feature set, and the black box model 𝑐𝑖
maps the input to an output 𝑐𝑖 (𝑥𝑐𝑖 ) ∈ 𝑐𝑖 . Denote 𝑐𝑖 = {(𝑥(𝑗)𝑐𝑖 , 𝑦

(𝑗)
𝑐𝑖 )}

as the collection of all input–output pairs for the client 𝑐𝑖. A post hoc 
explanation for the client 𝑐𝑖 is 𝐠𝐜𝐢 , an explanation mapping that, for 
predictor 𝑐𝑖 and point of interest 𝑥𝑐𝑖 , returns an importance score 
𝐠𝑐𝑖 (𝑐𝑖 , 𝑥𝑐𝑖 ) = 𝜑𝑥𝑐𝑖

∈ R𝑑 for all features. Denote  ∶ R𝑑 × R𝑑 ↦ R≥0
as a metric in the space of explanations and 𝑆 ∶ R𝑑 × R𝑑 ↦ R≥0 as a 
metric in the space of inputs. The evaluation criterion 𝜇 is a mapping 
that takes the predictor 𝑐𝑖 , explainer 𝐠𝐜𝐢 , and the point of interest 𝐠𝐜𝐢
as arguments and returns a scalar value for 𝐠𝐜𝐢 .

3.2. Data prepossessing

Each client’s data 𝑐𝑖  was transformed and normalised using Min–
Max feature scaling, standardised within the range [0, 1] to enhance 
the accuracy and performance of the model. For each feature 𝑓 where 
𝑓 = 1, 2,… , 𝑑, the Min–Max normalisation is defined as:

𝑥′(𝑓 )𝑐𝑖
=

𝑥(𝑓 )𝑐𝑖 − min
(
𝑥(𝑓 )𝑐𝑖

)

max
(
𝑥(𝑓 )𝑐𝑖

)
− min

(
𝑥(𝑓 )𝑐𝑖

) ∈ R𝑑

where 𝑥(𝑓 )𝑐𝑖  is the actual value of the feature 𝑓 for the client 𝑐𝑖, 
max

(
𝑥(𝑓 )𝑐𝑖

)
 and min

(
𝑥(𝑓 )𝑐𝑖

)
 are the maximum and minimum values of 

the feature 𝑓 in the client data 𝑐𝑖 , respectively. The value 𝑥′
(𝑓 )
𝑐𝑖

 is the 
new normalised value for the feature 𝑓 in the client data 𝑐𝑖 , which is 
in the range of 0 to 1.

3.3. Long short-term memory

To accurately classify network traffic in IoT edge devices, we
propose a LSTM [46] model via Federated Averaging (FedAvg) in the
HFL architecture for binary and multiclass classifications. LSTM is a
neural network designed to overcome long-term dependency issues in
traditional recurrent neural networks (RNN). It uses three types of gates
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Table 1
Details of features of N-BaIoT dataset.
Feature category Category code No. Of features Statistical value feature Time frame

windows

Hos Mac & IP MI 15 Packet count, Mean
Variance

100 μs
500 μs
1.5 s
10 s
1 min

Host IP H 15
Network Jitter HH_jit 15

Channel HH 35 Packet count, Mean
Variance, Magnitude, Radius, CoVariance, CorrelationSocket HpHp 35

Table 2
Label distribution across different IoT devices for the classification type used in this study.
Device name Classification type Binary Botnet-type detection Attack type detection

Shortname Malware Benign Mirai Gafgyt Benign Udp Scan Syn Ack Tcp Udpplain Combo Benign Junk

Danmini Doorbell Doorbell1 95.13% 4.87% 64.04% 31.10% 4.87% 33.74% 13.51% 12.04% 10.04% 9.05% 8.05% 5.86% 4.87% 2.85%
Philips B120N10
Baby_Monitor

BabyMonitor 84.05% 15.95% 55.59% 28.46% 15.95% 29.38% 11.97% 10.75% 8.29% 8.43% 7.36% 5.29% 15.95% 2.58%

Provision PT 737E
Security Camera

SecurityCam1 92.50% 7.50% 52.64% 39.85% 7.50% 31.42% 15.22% 7.94% 7.31% 12.62% 6.84% 7.41% 7.50% 3.73%

SimpleHome XCS7
1003 WHT
SecurityCamera

SecurityCam2 97.70% 2.30% 60.51% 37.19% 2.30% 30.57% 8.49% 14.40% 12.60% 11.53% 9.92% 6.98% 2.30% 3.22%

Ecobee Thermostat Thermostat 98.43% 1.57% 61.27% 37.16% 1.57% 30.66% 8.46% 13.97% 13.55% 11.37% 10.45% 6.34% 1.57% 3.63%
Provision PT
838_Security_Camera

SecurityCam3 88.23% 11.77% 51.30% 36.93% 11.77% 31.46% 15.00% 7.39% 6.93% 10.68% 6.43% 6.87% 11.77% 3.47%

SimpleHome XCS7
1002 WHT Security
Camera

SecurityCam4 94.60% 5.40% 59.47% 35.13% 5.40% 29.62% 8.55% 14.57% 12.92% 10.29% 9.07% 6.29% 5.40% 3.31%

Ennio Doorbell Doorbell2 89.00% 11.00% 89.00% 11.00% 29.24% 7.91% 28.56% 14.91% 11.00% 8.38%
Samsung SNH 1011 N
Webcam

Webcam 86.10% 13.90% 86.10% 13.90% 29.48% 7.38% 26.06% 15.64% 13.90% 7.54%

Fig. 2. Hidden layer architecture of LSTM network.

– forget, input, and output – to manage information flow and maintain
long-term memory. The hidden layer structure of an LSTM network
is shown in Fig.  2. The forget gate adapts to the context, discarding
unnecessary information. It uses a sigmoid function to produce a value
between 0 and 1, then multiplied by the last cell state. A value of 0
indicates complete forgetting, while a value of 1 signifies full retention.
𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (2)

The input gate improves the necessary information for the new cell
state, and its output is a sigmoid function with a range of 0 to 1, which
is multiplied by the recent cell state.
𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3)

𝐶̃𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) (4)

Then the old and new state information can be merged to construct
the final new cell state.
𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡 (5)

The output is determined by the output gate, which uses a sigmoid
function to select the information to be output, in conjunction with the

final cell state and the Tanh function.
𝑂𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6)

ℎ𝑡 = 𝑂𝑡 × tanh(𝐶𝑡) (7)

3.4. Explainable AI methods

DL models are considered complex and operate as black-box models,
making their predictions difficult to interpret. Explainable AI provides
insight into these predictions, promoting transparency and trust. XAI
methods can be categorised as global explanations, which explain over-
all model behaviour, and local explanations, which explain individual
data point predictions. They can also be model-agnostic, applicable to
various models, or model-specific, tailored to specific architectures.

In our research, we focus on post hoc local explanation methods
like SHAP, Integrated Gradients (IG), and LIME to analyse IoT botnet
predictions from an LSTM model in a FL environment. We use SHAP for
server-side explanations and SHAP, LIME, and IG for client-side expla-
nations. These techniques are vital for understanding the contributions
of the features and generating interpretable alerts in FL-based IDSs for
IoT networks.

3.4.1. LIME (Local Interpretable Model-Agnostic Explanations)
LIME is a XAI method that provides interpretable local explanations

for black-box models by approximating the model’s behaviour in the
local region around a specific instance [47]. Given an instance 𝑥 ∈ R𝑑

and an explanation of the model 𝑔 ∈  where  is a set of interpretable 
models (e.g.: Linear models). provides explanations 𝜑(𝑥) obtained by: 
argmin

𝑔∈ {(, 𝑔, 𝜔𝑥) +𝛺(𝑔)} (8)

In the case of a classification model , 𝜔𝑥 is a proximity measure 
or weight between the actual instance and the new instances. A higher
value of 𝜔𝑥 signifies a stronger similarity between the new and original 
instances.  is a loss function used to measure the proximity between
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the predictions made by the explanation model and the original model
and 𝛺(𝑔) quantifies the complexity of model 𝑔. Hence, LIME minimises 
(, 𝑔, 𝜔𝑥)+𝛺(𝑔) to create a locally interpretable model, which is then 
used to predict the instance via the explanation model 𝜔(𝑥).

3.4.2. SHAP (SHapley Additive exPlanations)
This method is commonly used to interpret the output of the ML

model [43]. It uses Shapley values from cooperative game theory [48]
to explain each feature’s contribution to predictions [49]. SHAP is often
used with tabular data and has key properties such as local accuracy,
missing data handling, and consistency [50]. Local accuracy ensures
that the explanation model matches the original model. Missingness
ensures that missing features in the original input have no impact.
Consistency means that increasing the impact of a feature in the model
should lead to a higher SHAP value for that feature, regardless of the
others.

SHAP creates simplified inputs 𝑧 by mapping 𝑥 to 𝑧 through 𝑥 =
ℎ𝑥(𝑧). The original model (𝑥) can be approximated using binary 
variables with a linear function:

𝑔(𝑧) = 𝜑0 +
𝑑∑
𝑖=1

𝜑𝑖𝑍𝑖 (9)

where 𝑧 = {0, 1}𝑑 , 𝑑 represents the number of input features, 𝜑0 =
(ℎ𝑥(0)), and 𝜑𝑖 denotes the feature attribution value 

𝜑𝑖 =
∑

𝑆∈𝐹⧵{𝑖}

|𝑆|!(𝑑 − |𝑆|! − 1)!
|𝑑|! [𝑥(𝑆 ∪ 𝑖) −(𝑆)] (10)

𝑥(𝑆) = (ℎ−1𝑥 (𝑧)) = 𝐸[[(𝑥)]|𝑥𝑠] (11)

where 𝐹  is the nonzero input set in 𝑧, 𝑆 is the subset of 𝐹  that excludes 
the characteristic 𝑖th, and 𝜑𝑖 the SHAP value, a unified measure of the 
characteristics.

In our study, we employed SHAP’s DeepExlainer. DeepExplainers
of SHAP takes a trained deep learning model as input, along with
reference input data (training data). Note that in our federated setup,
for each client 𝑐𝑖, SHAP’s DeepExplainer takes the training dataset Train

𝑐𝑖
 and the trained model 𝑐𝑖  to compute SHAP values for the test 

data Test
𝑐𝑖

∈ R𝑚×𝑑 , where 𝑚 represents the number of instances and 𝑑
the number of features. SHAP explainer thus returns the R𝑚×𝑑 matrix of 
SHAP values for client 𝑐𝑖, where each value represents the contribution 
of a feature to the prediction for each instance.

3.4.3. Integrated gradients (IG)
Another XAI method we used in this work is Integrated Gradients

(IG) [51], which determine the relevance 𝑅𝑖 of the input variable 𝑥𝑖 by 
approximating the integral below using the Riemann sum.

𝑅𝑖 = (𝑥𝑖 − 𝑥̄𝑖) ⋅ ∫
1

0

𝜕𝑓𝑐
(
𝐱̄ + 𝛼 ⋅ (𝐱 − 𝐱̄)

)
𝜕𝑥𝑖

𝑑𝛼, (12)

The variable 𝑥̄𝑖 represents a baseline input that must be chosen 
when applying this method. The authors define this baseline input as
indicating the absence of a feature input 𝑥 [51]. The original authors 
used a zero-value baseline for the image. In our experiments, we also
used a zero-valued baseline for the tabular data set.

3.5. Explaining server-side black box model in FL

In our study, we used SHAP Explainer to explain the long-short-term
memory (LSTM) model trained through Federated Averaging (FedAvg)
in the HFL architecture described in Section 2.1. SHAP explainer re-
quires either access to the training data or a reference set in order
to create records for analysing the impact of each feature value on
the model’s final prediction. For server-based learning (FL), the server
requires access to the complete set of training data from the clients or
needs to compute the centroids [52] of the data set resulting from the
union of the training sets of all the clients to explain the learnt server

model. In our research, we adopted the approach outlined in [53],
where an explanation for a server model was obtained by aggregating
all client explanations, thus avoiding the need for data sharing with the
server model.

After completion of FL training, each client 𝑐𝑖 receives its trained 
model𝑐𝑖 , which is then sent to the server. The server then creates its 
own model 𝑠 by averaging the weights of the received models using 
the FedAvg algorithm.

Each client of SHAP explainer returns 𝜑𝑐𝑖 (𝑥𝑗 ) SHAP values related to 
client 𝑐𝑖 to the feature 𝑥𝑗 . Each client 𝑐𝑖 can then obtain SHAP of its data 
points in their model 𝑐𝑖 , which is strongly dependent on the training 
data. To derive explanations from the server’s perspective, the additive
nature of SHAP values was leveraged, which enables the creation of
explanations for model 𝑠 as an aggregation of explanations from the 
individual models 𝑐 within 𝑈 . Therefore, for a point of interest 𝑥, 
an explanation of the prediction performed by the server model 𝑠 is 
obtained by the following equation.

𝜑𝑠(𝑥) =
1

|𝑁|
∑
𝑐𝑖∈𝑁

𝜑𝑐𝑖 (𝑥𝑗 ) (13)

However, directly sharing the SHAP values generated by the clients
with the server may violate privacy, as the server can learn excessive
knowledge about the workings of the client models. This issue arises
from significant vulnerabilities in post hoc explanation techniques that
can be exploited by an adversary to generate classifiers whose post hoc
explanations can be arbitrarily controlled [54], specifically, an attacker
can deceive target classifiers and explainable methods while keeping
the classifier’s output consistent [55]. Thus, to ensure the privacy of
SHAP explanations of client models, we employ a secure multiparty
computation (SMPC) protocol based on Secret Sharing, as proposed
by Google [56]. This protocol allows for the secure aggregation of
SHAP values from client models without revealing individual client
SHAP values to server or other clients. The protocol assumes 𝑁 clients 
and one server. SMPC is a cryptographic protocol that enables 𝑁
parties (e.g., clients and a server) to compute an aggregate function
𝑓 (𝑥1, 𝑥2,… , 𝑥𝑁 ) using their private inputs 𝑥1, 𝑥2,… , 𝑥𝑁  without reveal-
ing them. This ensures the privacy of client data while allowing secure
aggregation. In our work, we have used SMPC to securely aggregate
SHAP values from client-side models. The protocol ensures that the
server can compute the aggregated SHAP values ∑

𝑐𝑖∈𝑁 𝜑𝑐𝑖  without 
knowing the individual client SHAP values 𝜑𝑐𝑖  from each client. The 
algorithm 1 demonstrates the steps involved in the secure aggregation
of SHAP values based on clients using a multiparty secure computation.
Using this secure aggregation method, we ensure that the server can
obtain explanations for its model 𝑠 while preserving the privacy of 
individual clients’ SHAP values.

To check if the secure aggregation of client-side SHAP values 𝐸local
is sufficient for the server model, the server model 𝑠 was provided 
with data from all clients 𝑁 to obtain explanations. These server-based 
SHAP values were then aggregated for all clients by supplying the
combined training data to the SHAP explainer, resulting in the global
explanation 𝐸global. Finally, to verify the correctness of the explana-
tions, the difference 𝑑𝑔−𝑙 between 𝐸global and 𝐸local was calculated. 
i.e.,

𝑑(𝑔−𝑙) = 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 − 𝐸𝑙𝑜𝑐𝑎𝑙 . (14)

The difference between 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 and 𝐸𝑙𝑜𝑐𝑎𝑙 indicates the divergence 
between server-based SHAP values (obtained by directly accessing
clients’ data) and secure aggregation from individual clients (obtained
by aggregating SHAP values without sharing their data with the server).
This divergence calculation helps evaluate the quality and reliability of
the aggregation of clients’ explanations (𝐸𝑙𝑜𝑐𝑎𝑙) in comparison to the 
server-based explanations (𝐸𝑔𝑙𝑜𝑏𝑎𝑙).

Note that We have computed the SHAP values with the same
dimensions for test samples from each client. For secure aggregation of
client-based SHAP values (𝐸𝑙𝑜𝑐𝑎𝑙), each client 𝑐𝑖 with test data Test

𝑐𝑖
∈

Computer Networks 270 (2025) 111479 

7 



R. Kalakoti et al.

Algorithm 1 Secure Aggregation of Client-side SHAP Values
1: Input: SHAP values 𝜑𝑐𝑖 ∈ R𝑑 for each client 𝑐𝑖, number of clients 

𝑁 , large prime number 𝑃
2: Output: Secure Aggregated SHAP values ∑𝑁

𝑖=1 𝜑𝑐𝑖
3: Step 1: Secret Sharing
4: for each client 𝑐𝑖 do
5: Split 𝜑𝑐𝑖  into 𝑁 shares using a (𝑡,𝑁) threshold secret sharing 
scheme

6:  Distribute shares to all other clients and the server
7: end for
8: Step 2: Masking
9: for each client pair (𝑖, 𝑗), 𝑖 ≠ 𝑗 do
10: Generate random masking vector 𝑆𝑖,𝑗
11: end for
12: for each client 𝑐𝑖 do
13: Compute masked SHAP value:

𝑧𝑖 = 𝜑𝑐𝑖 +
∑

𝑗>𝑖 𝑆𝑖,𝑗 −
∑

𝑗<𝑖 𝑆𝑗,𝑖 mod 𝑃
14:  Send 𝑧𝑖 to the server
15: end for
16: Step 3: Aggregation at Server
17: Compute aggregated value:∑𝑁

𝑖=1 𝑧𝑖 =
∑𝑁

𝑖=1

(
𝜑𝑐𝑖 +

∑
𝑗>𝑖 𝑆𝑖,𝑗 −

∑
𝑗<𝑖 𝑆𝑗,𝑖

)
mod 𝑃

18: Simplify to: ∑𝑁
𝑖=1 𝑧𝑖 =

∑𝑁
𝑖=1 𝜑𝑐𝑖 mod 𝑃

19: Output: Secure Aggregated SHAP values ∑𝑁
𝑖=1 𝜑𝑐𝑖

R𝑚×𝑑 has SHAP values generated by the explainer that have the same 
dimensions, specifically R𝑚×𝑑 . Consequently, after performing the se-
cure aggregation of SHAP values on the client side (𝐸𝑙𝑜𝑐𝑎𝑙), the resulting 
aggregated SHAP values also maintain the same dimensions of R𝑚×𝑑 . 
Similarly, when the server model accesses client test data, the server-
based explanations (𝐸𝑔𝑙𝑜𝑏𝑎𝑙) are also in R𝑚×𝑑 . The difference 𝑑(𝑔−𝑙)
between 𝐸𝑙𝑜𝑐𝑎𝑙 and 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 is calculated as the element-wise difference, 
resulting in a matrix of the same size, R𝑚×𝑑 .

3.6. Explaining client-side black box models in FL

In FL setup, each client owns their data. We have provided local
explanations for each client using LIME and SHAP. These explainers
utilise each client’s data and trained model to provide post-hoc local
explanations for every client model. Post-hoc local explanations pro-
vide contributions of individual features to a model’s prediction for
a specific instance. Due to the growing need for objective evaluation
methods, XAI research field has shifted towards developing quantitative
metrics to assess the quality and reliability of XAI method. XAI evalua-
tion is categorised into three groups: user-focused, application-focused,
and functionality-focused evaluations. The initial two categories are
components of human-centred evaluation, divided into subjective and
objective measures. In this work, We employed four key metrics for the
local explanations of LIME and SHAP: high faithfulness, monotonicity,
low complexity, and maximum sensitivity for evaluating quality of each
client model’s post hoc local explanations. Additionally, SHAP was used
to provide global explanations for each client model, explaining how
each feature contributes to the model’s prediction.

3.6.1. High faithfulness
The explanation method 𝐠 should replicate the model’s behaviour.

𝐠(, 𝐱) ≈ (𝐱). Faithfulness quantifies the consistency between the 
prediction model  and explanation 𝑔. For evaluating the Faithfulness 
of explanations, High Faithfulness correlation [57] and Monotonoc-
ity [58] metrics were used. Faithfulness Correlation is defined as

𝜇𝐹 (, 𝑔; 𝑥) = corr∈(|𝑑|||
)

(∑
𝑖∈

𝑔(, 𝑥)𝑖,(𝑥) −(𝑥)
)

(15)

where 𝑥 = 𝑥𝑖|𝑖 ∈ }. High Faithfulness correlation metric itera-
tively substitutes a random subset of given attributions with a baseline
value . Then, it measures the correlation between the sum of these
attributions and the difference in the model’s output.

3.6.2. Monotonocity
Let 𝑥, 𝑥′ ∈ R𝑑 be two input points where 𝑥𝑖 ≤ 𝑥′𝑖 for all 𝑖. A 

function and a mapping 𝑔 are monotonic [58] if, for any subset 𝑆 ⊆
{1, 2,… , 𝑑}, the sum of the attributions for features in 𝑆 is nonnegative 
when moving from 𝑥 to 𝑥′.
∑
𝑖∈𝑆

𝑔(, 𝑥)𝑖 ≤ ∑
𝑖∈𝑆

𝑔(, 𝑥′)𝑖

imply

(𝑥) −(𝑥[𝑥𝑠=𝑥̄𝑠]) ≤ (𝑥′) −(𝑥′[𝑥′𝑠 = 𝑥̄𝑠])

3.6.3. Complexity
For evaluating the complexity of explanations, Low complexity was

used [57]. Explanations using a smaller number of features are pre-
ferred. so min ‖𝐠(, 𝐱)‖0. Low complexity metric computes the entropy 
of each feature’s fractional contribution to the total attribution magni-
tude individually. Given a prediction (𝑥), an explanation function 𝑔, 
and a point 𝑥, the complexity of 𝑔 at 𝑥 is: 

𝜇𝐶 (, 𝑔; 𝑥) = −
𝑑∑
𝑖=1

𝑃𝑔(𝑖) log𝑃𝑔(𝑖) (16)

where,

𝑃𝑔(𝑖) =
|𝑔(, 𝑥)𝑖|∑

𝑗 ∈ |𝑑||𝑔(, 𝑥)𝑗 |
;𝑃𝑔 = 𝑃𝑔(1),… .𝑃𝑔(𝑑) (17)

𝑃𝑔 is a valid probability distribution, with 𝑃𝑔(𝑖) representing the frac-
tional contribution of characteristic 𝑥𝑖 to total attribution. If all features 
had equal contributions, the explanation would be complex, despite
being faithful. The simplest explanation, however, would focus on one
feature, with complexity defined as the entropy of 𝑃𝑔 .

3.6.4. Max sensitivity
Robustness refers to similar inputs that should result in similar

explanations. 𝐠(, 𝐱) ≈ 𝐠(, 𝐱 + 𝜖) for small 𝜖. Max sensitivity [57] 
ensures that nearby inputs with similar model outputs receive compara-
ble explanations. For the explanation function 𝑔 to have low sensitivity 
around the point of interest 𝑥, assuming the predictor function  is 
differentiable, we define a neighbourhood 𝑁𝑟 around 𝑥 as 𝑁𝑟 = {𝑧 ∈
𝐷𝑥 ∣ 𝑝(𝑥, 𝑧) ≤ 𝑟,(𝑥) = (𝑧)}, where 𝐷 is the distance metric and 𝑝 is 
the proximity function. Thus, the maximum sensitivity of 𝑔 at point 𝑥
can be defined
𝜇𝑀 ((𝑥), 𝑔, 𝑟; 𝑥) = max

𝑧∈𝑁𝑟
𝐷 (𝑔((𝑥), 𝑥), 𝑔((𝑥), 𝑧)) (18)

3.7. Experimental settings

In federated learning, an LSTM model was trained using data from
multiple IoT devices, with a fixed number of samples from each device.
This approach minimised the impact of varying training instances and
ensured a consistent dataset size across all clients while maintaining the
same class proportions. The number of communication rounds for train-
ing the model was determined through iterative experimentation, start-
ing with random initial rounds and adjusting based on observed model
performance. For example, binary classification converged within 10
rounds, while 50 rounds were sufficient for botnet-type detection, and
2000 rounds were tested for attack-type classification. Each client’s
data is split into training and validation sets using an 80:20 ratio. Dur-
ing each federated training round, validation data from each client was
tested exclusively on its respective client model. After processing all
clients, the combined validation data from all clients was tested on the
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server model. We applied min–max normalisation as a preprocessing
step to scale the data to a specific range. This technique improves LSTM
models’ ability to capture patterns and relationships while enabling
faster training convergence in resource-intensive FL settings of IoT
environments.

In the evaluation of LSTM learning models in FL, we utilised a
validation dataset exclusively on IoT devices. This study employed
metrics Accuracy, Precision, Recall, and F1-score for evaluating both
the client and server models in FL across all classification settings.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(19)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(20)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(21)

F1-Score = 2 × 𝑇𝑃
(2 × 𝑇𝑃 ) + 𝐹𝑃 + 𝐹𝑁

(22)

From the N-BaIoT dataset, where true positive (TP) is the number of
network traffic statistical feature data points in the positive class that
are correctly classified as positive, false positive (FP) is the number of
network traffic statistical feature data points in the negative class that
are misclassified as positive; true negative (TN) is the number of data
points in the negative class that are correctly classified as negative, and
false negative (FN) is the number of network traffic statistical feature
data points in the positive class that are misclassified as negative.

Experiments were conducted on a server equipped with an AMD
Threadripper 3960X processor, which features 24 cores and 48 threads.
The server includes 128 GB of RAM and an NVidia 3090 GPU with
24 GB of graphics memory, and it runs on Ubuntu 20.04 LTS in
HPC (High-Performance Computing Centre) cluster node using Slurm
workload manager. The experiments were implemented in Python 3.9,
using Flower [59] for FL with PyTorch.

4. Results

This section presents the results of our study, which are organised
into three main parts. Section 4.1 discusses the performance evaluation
of the LSTM model across three types of detection in FL. Section 4.2
provides the results for the explanations of the server-side LSTM model,
while Section 4.3 presents the results for the explanations of the
client-side LSTM model.

4.1. Performance evaluation of LSTM model

In this work, our proposal uses explainable AI to explain LSTM
(Long Short-Term Memory) model learned by the FedAvg algorithm
within a HFL architecture for binary and multiclass classification sce-
narios, specifically focusing on IoT Malware, Botnet-type, and Attack-
type detection. In this study, we used the N-BaIoT dataset, which con-
tains data from 9 IoT devices (Doorbell1, BabyMonitor, SecurityCam1,
SecurityCam2, Thermostat, SecurityCam3, SecurityCam4, Doorbell2,
and Webcam) infected by botnets such as Gafgyt and Mirai. Binary
classification focuses on malware detection (Malware and Benign),
while botnet-type (Mirai, Gafgyt, and Benign) and attack-type detection
(ACK, COMBO, JUNK, SCAN, SYN, TCP, UDP, PLAIN, and Benign) were
considered multiclass classification. Botnet-type detection identifies the
type of malware that infects the IoT device. This detection endeavor
is usually required in the incident-handling processes of organisations
hosting the bots so that they can apply relevant removal procedures
based on the malware type. Attack-type detection identifies the kinds
of attacks launched by the bots. The organisations that are targeted by
these intrusions can give more informed decisions when their security
analysts know more details about the attack.

Classification performance metrics of client models the results from
their evaluation with their own parameters on each client’s validation

data. To evaluate the FedAvg algorithm on Server side, we used test
data from each IoT device-based client exclusively for its own model
evaluation. In each round of training and evaluation in the federated
training, 50% of clients were randomly selected to ensure diverse
client updates and a more robust measure of the model’s generalisation
ability. All 9 IoT device-based clients participated in the evaluation
round to provide a reliable estimate of the model’s performance for
binary classification. However, in the multiclassification setting, only 7
clients participated, as the Mirai botnet did not infect the ‘Doorbell2’
and ‘Webcam’ devices. Therefore, we excluded these two devices from
the experiments for Botnet-type and Attack-type detections to maintain
consistency in input feature space and label space during federated
training using the FedAvg algorithm due to the horizontal nature of the
FL approach. Metrics considered, including accuracy, precision, recall,
and F1-score, comprehensively evaluate LSTM model in HFL setting
for the FedAvg algorithm. Client models’ classification performance
metrics were evaluated with their own parameters on each client’s
validation data.

Fig.  3 illustrates LSTM model performance metrics on the server
side over multiple communication rounds within an HFL setting using
the FedAvg algorithm for all three classification types: binary classifica-
tion, botnet-type detection and attack-type detection. Server-side LSTM
model performance metrics were evaluated starting from the initial
round (0th) communication round. This initial round represents the
server-side LSTM model performance before client communication or
parameter updates. By including the baseline performance, it can be
observed how the global model improves as it includes updates from
client models during the subsequent communication rounds. It can be
seen in Fig.  3(a) that the LSTM model using FedAvg achieved early
convergence with fewer communications for binary classification. All
performance metrics (accuracy, precision, recall, and F1-score) quickly
reached optimal performance with minimal communication overhead.
Client-side LSTM models were evaluated using IoT device-specific data
after each training communication round. For binary classification in
Fig.  4, all LSTM models on device-specific data achieved almost 99%
performance with metrics such as accuracy (in Fig.  4(a)), precision (in
Fig.  4(b)), Recall (in Fig.  4(c)), and F-score (in Fig.  4(d)) within a few
rounds, demonstrating quick convergence. The shaded areas in Fig.
4 illustrate the confidence intervals around the classification metrics
(Accuracy, precision, recall, F1-score). We used fixed probabilistic error
rates to estimate potential variability in the classification metrics. Error
rates were used to estimate confidence intervals: Lower Bound = metric
- (metric × error percentage). Upper Bound = metric + (metric × error
percentage). For binary classification, the error rate was set to 0.05%.

Similar to binary detection, the convergence for botnet-type detec-
tion occurred after 2 communication rounds. Fig.  3(b) demonstrates the
server-side evaluation of the LSTM model’s performance in detecting
botnet types in IoT devices. The figure shows rapid improvement in all
metrics, stabilising above 0.95 after 2 communication rounds. By the
end of 50 communication rounds, the LSTM model converges close to
1 for the server-side evaluation performance of the Fedavg algorithm
for Botnet-type detection. Fig.  5 presents the performance evaluation
results of the client model, where the error rate was set to 0.01%.
Evaluation metrics include accuracy, precision, recall, and F1-score for
individual IoT devices participating in FL for Botnet-type detection.
The results indicate consistently high performance across the devices.
The thermostat device model exhibited more variability in the initial
rounds but stabilised after 15 rounds of communication. In contrast,
the BabyMonitor device model started with lower performance metrics
but gradually improved to exceed 0.99 after 50 communication rounds.

Unlike Binary classification and Botnet-type detection, substantially
more communication rounds (2000) were required to achieve optimal
performance in attack-type detection. Metric Results for the attack type
of the LSTM model were presented in Figs.  3(c) and 6 for server-side
and client-side evaluation, respectively. Fig.  3(c) demonstrates the eval-
uation metrics of the LSTM model using FedAvg, including accuracy,
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Fig. 3. Performance evaluation of FedAvg LSTM model on the server side across different detection tasks: (a) Malware detection (Binary), (b) Botnet-type detection, and (c) 
Attack-type detection.

Fig. 4. Device-specific client-side evaluation of LSTM model performance for binary classification.

Fig. 5. Device-specific client-side evaluation of LSTM model performance for botnet-type detection.

precision, recall, and F1 score. Model’s performance initially improved 
quickly but stabilised after about 1500 communication rounds, demon-
strating that additional rounds were needed for the model’s consistent 
performance. Fig.  6 presents metrics results for client-side LSTM models 
across all seven participating IoT devices over 2000 communication 
rounds with an Error rate of 0.02%. The performance of individual 
IoT device-based LSTM models demonstrated significant variations. 
LSTM models on the client side, including Doorbell1, BabyMonitor, 
SecurityCam1, SecurityCam2, and SecurityCam3, illustrated constant 
performance above 0.95 in performance metrics after 500 commu-
nication rounds. However, for some device LSTM models, like the 
Thermostat, showed significant fluctuations in performance throughout 
the communication rounds, ranging between 0.85 and 0.95. Addition-
ally, the SecurityCam4 model initially demonstrated lower performance 
during the early communication rounds but gradually improved, sta-
bilising at higher performance levels around the 1000th round. These 
variations demonstrate the complexities of detecting attack types and 
emphasise the necessity for additional communication rounds for some 
devices to reach convergence.

We also evaluate the class-label-wise classification performance of 
the LSTM model on all client IoT-edge devices for all the classification 
types for each communication round. Table  3 shows the classification 
performance report from the final communication round for binary 
classification (10th), Botnet Type detection (50th), and attack type 
detection (200th).

In Table  3, results show that LSTM model consistently achieved high 
performance across all IoT client devices for both binary and multiclass 
classification tasks. LSTM model achieved close to 100% accuracy, 
precision, recall, and F1-score for the binary classification across all 
client devices for the ‘‘benign’’ and ‘‘malware’’ labels. For Botnet-type 
detection, the LSTM model also strongly achieved performance metrics 
99% for labels (Benign, Gafgt, and Mirai).

However, there is a variation in performance across different attack-
type detection labels in IoT client devices. LSTM model has achieved 
high accuracy, f1-score, recall, and precision for attack labels such as 
Scan, SYN, UDPplain, and Benign. However, for labels like ‘‘ACK’’, 
‘‘TCP’’, and ‘‘JUNK’’, the LSTM model showed some variations in perfor-
mance across IoT devices. Devices like BabyMonitor and SecurityCam 
achieved over 90% performance, while Doorbell1 devices achieved 
lower performance, particularly for ‘‘ACK’’ and ‘‘TCP’’ labels, with less 
than 86% accuracy. For specific labels like UDP and Combo, the LSTM 
model achieved slightly lower performance, with Doorbell1 device 
achieving as low as 72% accuracy. Overall, the model performed well 
for the classification task of attack-type detection.

4.2. Explaining server-side LSTM model in FL

As mentioned in Section 3.5, SHAP was used to explain the LSTM 
model learned by the FedAvg algorithm in the case of HFL architecture 
to make the server model more transparent and explainable on the 
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Fig. 6. Device-specific client-side evaluation of LSTM model performance for attack-type detection.

Fig. 7. Heatmap for the difference between the secure aggregation of client models’ explanations and server model explanations for binary classification.  (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Heatmap for difference between secure aggregation of client’s models explanations and server model explanations for botnet-type detection.  (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Heatmap for difference between secure aggregation of client-side models explanations and server-side explanations for attack-type detection.  (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

server side. Typically, SHAP explainer requires access to the training
data and the trained model to compute SHAP values for the test data.
However, in this work, our goal is to investigate the importance of
features in the server model without providing any data to the server.

For this study, we are focusing on securely aggregating SHAP ex-
planations from client models to be used as explanations for the server
model. To ensure the privacy of SHAP value explanations from client
models, a secure multi-party computation (SMPC) protocol based on
Secret Sharing was employed, as mentioned in the methodology. So,
the Server does not need to access the data from IoT device clients
to explain the server model, and it also prevents individual client
SHAP values explanations from being revealed to the Server or other
clients. First, SHAP values were computed on each validation data of
IoT device-based client model to find how each feature contributes
to a model’s output. In this context, the model’s output refers to the
probability distribution over the class labels obtained using the Softmax
activation function at the output layer of the LSTM model. Therefore,
the computation of SHAP values necessitates calculating the softmax
function on the model’s predictions. After completing the federated
training, we used all the client models that participated and the server
model from the last communication round to generate SHAP value

explanations. For instance, we used the models from 10th communi-
cation round for binary and 50th for botnet-type classifications. On the
other hand, we used the models from 2000th communication round for
computing SHAP explanations for attack-type classification.

SHAP values were first computed for test data points for each IoT-
device-based trained client model using its training data. By securely
aggregating the SHAP values of each client model of all clients, we
obtained secure aggregation explanations of clients-based explanations
(𝐸𝑙𝑜𝑐𝑎𝑙). We performed a comparative analysis to check the sufficiency 
of clients-based explanations that are good for the Server and validate
their effectiveness in representing the server model’s behaviour. For
this analysis, we obtained the server-based explanations (𝐸𝑔𝑙𝑜𝑏𝑎𝑙) as a 
baseline, assuming that the server-side model can access each client’s
training data and compute SHAP values of test data. SHAP values were
computed and aggregated again without secure multi-party computa-
tion, resulting in the same size as (𝐸𝑙𝑜𝑐𝑎𝑙). 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 acts as a comparative 
baseline for our proposed approach, as this option does not address
any privacy restriction about accessing the client-side data. Finally,
the difference (𝑑𝑔−𝑙) between the server-based explanations 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 and 
the client-based explanations (𝐸𝑙𝑜𝑐𝑎𝑙) was computed, representing the 
divergence between the two sides. A lower difference value indicates
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Fig. 10. Mean SHAP values of secure aggregation matrix of client-side and server-side models for binary-type classification.

Fig. 11. Mean SHAP values of secure aggregation matrix of client-side and server-side models for botnet-type detection.

Fig. 12. Mean SHAP values of Secure aggregation matrix of client-side and server-side models for attack-type detection.

that our proposal guarantees the privacy of the clients’ data without
causing intolerable distortion in the obtained explanations.

Figs.  7, 8, and 9 present heatmap graphs for the three detection
types: Binary, Botnet-type, and Attack-type. To ensure the clarity and
readability of the paper, we have presented a heatmap for all 115
features across four subfigures. For example, In Fig.  7, visualise the
magnitude of the differences between server-based explanations and
client-based explanations for each sample and feature. Each cell in the
Heatmap shows the difference for a specific combination of sample and
feature. The colour scale on the right side of each Heatmap shows a
reference for interpreting the magnitude of the differences. Datapoints
close to zero demonstrated a slight difference between the server-based
and client-based explanations, demonstrating that secure SHAP values

aggregation of client-based explanations closely approximate the serve
model explanations when the server accesses the data. Instances further
away from zero demonstrate a more significant discrepancy between
the client-based and server-based explanations. Fig.  7 illustrates a
Heatmap for binary detection. The overall differences between the
server-based and client-based explanations were relatively small, as
indicated by the predominantly close to zero across most data points.
In Fig.  7(a) (features from 1–29), however, there were a few notable
data points where the differences are more noticeable, as shown by
instances away from zero. These instances, particularly for features
like ‘MI_dir_L0.1_weight’, ‘MI_dir_L0.01_weight’, ‘H_L0.1_weight’, and
‘H_L0.01_weight’, as they suggest slight deviations in the secure ag-
gregation of shapely values from the server-side explanation. Similarly,

Computer Networks 270 (2025) 111479 

13 



R. Kalakoti et al.

Fig. 13. LIME local explanations for Client-side (SecuriytCam1 & BabyMonitor1) LSTM model over Malware instance for binary classification.  (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Heatmap graphs for Botnet-type detection in Fig.  8 display high similar-
ity between the server-based and client-based explanations, with most
instances being close to zero. These instances highlight the specific
instances and features where client-based explanations diverge from
server-based ones. Heatmap for attack-type detection in Fig.  9 follows
almost the same similarity, with most data points being close to zero,
indicating a close alignment of the server-based explanations of SHAP
values with client-based secure aggregation of SHAP explanations.
However, some instances with more significant discrepancies were
away from zero. For all three detection types, the secure aggregation of
client-based SHAP value explanations closely approximates the server-
side model explanations, even without providing the server with direct
access to the IoT device-based clients’ training and testing data.

We conducted a detailed analysis across 115 features by exam-
ining client-side (𝐸𝑙𝑜𝑐𝑎𝑙) and server-based (𝐸𝑔𝑙𝑜𝑏𝑎𝑙) explanations and 
comparing their differences. We computed the average SHAP values
for client-based and server-based explanations. Fig.  10 shows that the
feature importance indicated by the client-side mean SHAP values
(Fig.  10(a)) and server-side mean SHAP values (Fig.  10(b)) were quite
similar. Fig.  10(a) presents the Mean SHAP values from the secure
aggregation of client-side models, while Fig.  10(b) displays the mean
SHAP values from the server model, which has access to training data
from IoT device-based clients. It is evident that by comparing these
two sides of mean shap values, the top features influencing the model’s
predictions remained the same between client-side and server-side anal-
ysis. Fig.  11 displays the average SHAP values across 115 features for
both client-side (Fig.  11(a)) and server-side explanations (Fig.  11(b))
related to botnet detection. The figures demonstrate a strong consis-
tency in feature importance between the client-side and server-side
explanations. Similarly, Fig.  12 compares the mean SHAP values for
attack type detection, highlighting client-side feature importance in Fig.
12(a) and server-side feature importance in Fig.  12(b). This analysis
shows that the key features contributing to model predictions closely
align between the client side and the server side. Therefore, securely
aggregating SHAP values in client-based explanations was sufficient,
rather than needing to pass the data to the server for explanations of
the server model.

4.3. Explaining LSTM models on client-side IoT devices in FL

To explain the outcomes of the LSTM model on the client-side mod-
els, we employed three post-hoc feature-importance XAI techniques:
LIME, IG and SHAP. Each client model can have its own training and
test data, allowing us to present post hoc local explanations for the
LSTM model. In this section, we present these post-hoc local expla-
nations generated by the XAI methods and evaluate the quality of
these explanations. To ensure the clarity and readability of the paper,
we have selected only two IoT device-based models (‘SecurityCam1’
and ‘BabyMonitor1’) as use cases for illustrating the local explanations
provided by these explainers.

LIME explainer explains the rationale behind assigning probabilities
to each class by comparing the probability values with the actual class
of the data point. LIME method provides explanations for why the

probability was assigned to each class. Fig.  13 illustrates local explana-
tions provided by LIME for the LSTM model on Client IoT devices such
as SecurityCam1 and Baby monitor1 for Malware instances in Binary
Classification. For Example, Fig.  13(a) shows LIME local explanations
for a malware instance predicted by LSTM model on SecurityCam1
in Binay Classification. Predicted probabilities for two class labels,
‘Benign’ and ‘Malware’, in Binary classification, were shown on the left
side of the figure. LSTM model predicted a 100% probability for the
selected instance as Malware and 0% for the Benign class. On the right
side of the figure, local explanations were provided, showing why the
LSTM model classified the selected instance as Malware. Green bars
indicate that features contributed positively to predicting Malware for
a selected instance, while the red bars show features contributing to
predicting an instance as a Benign label. For example, To predict an
instance as Malware, features such as MI_dir_L0.1_weight (packet count
((weight) network traffic within in 10 s time frame window from Hos
Mac & IP), HH_jit_L0.01_mean (Mean value of network traffic within
1 min from Network jitter), H_L1_weight (Packet count of network
traffic within 100 ms from the host) positively contributed to malware
prediction (shown in the Green bar). In Contrast, for the Benign class
label, HpHp_L0.01_std (Standard deviation Network traffic within a
1 min time window from the socket), HpHp_L3_mean (mean value
of network traffic from socket within 100 ms). It can be observed
that Host-based and network-jitter features were more influential in
predicting Malware. For the Babymonitor IoT device of instance (see in
Fig.  13(b)) for the selected instance, LSTM Model predicted with 100%
probability as Malware.

Similarly to Binary classification, LIME was again used to explain
the outcomes of the LSTM model on IoT devices in Botnet-type and
attack-type detection of multi-classification. The n-BaIoT dataset con-
tains network traffic data from nine distinct IoT devices infected with
Mirai and Gafgyt Malware and legitimate traffic. Fig.  14 show LIME ex-
planations of the LSTM model for Botnet-type detection on IoT devices
for selected instances. Fig.  14(a) shows LIME local explanations for the
LSTM model’s prediction of a Gafgyt instance on the SecurityCam1 IoT
device. On the left, the LSTM model predicted Gafgyt with 100% accu-
racy. On the right, the green bars represent features (HH_L0.1_weight,
MI_dir_L0.01_mean, MI_dir_L0.1_weight, HH_jit_L0.1_variance) that pos-
itively impacted the prediction of the selected Gafgyt instance, while
the red bar represents the feature (HH_jit_L5_weight) that negatively
impacted the prediction by contributing to other class labels (Mirai or
Benign). Similarly, Fig.  14(b) shows the LSTM model’s 100% accurate
prediction for a Mirai Malware instance on the Babymonitory device
shows the 100% accuracy.

An LSTM model was used for attack type detection to identify nine
different types of attacks in a FL setup. The attack types included
ACK, benign, compact, junk, scan, SYN, TCP, UDP, and UDP plain. To
demonstrate the use case of local explanations for LIME, an instance of
an ACK attack was selected from the SecurityCAM1 device model, while
a TCP attack instance was chosen from the Babymonitor device model.
Fig.  15(b) illustrates LIME local explanations for the client models of
BabyMonitor, focusing specifically on a TCP attack instance for the
top five features in attack-type detection. On the left, the LSTM model
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Fig. 14. LIME local explanations for client-side (SecuriytCam1 & BabyMonitor) LSTM model over Gafgyt and Mirai instance for botnet type detection.  (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. LIME local explanations for SecurityCam1 and BabyMonitor client-side LSTM model over ACK and TCP attack instances for attack-type detection.

Fig. 16. IG local explanations for client-side (SecuriytCam1 & BabyMonitor1) LSTM model over Malware instance for binary classification.

predicted the TCP attack instance with 76% accuracy, the UDP attack
with 23% accuracy, and the benign class with 1% accuracy for the
selected instance. On the right, the green bars represent feature im-
portance for MI_dir_L0.1_weight and MI_dir_L3_weight, which positively
impacted the prediction of the selected TCP attack instance. In contrast,
the red bars indicate features that negatively impacted the prediction
by contributing to other class labels, particularly the benign and UDP
classes. Similarly, Fig.  15(a) shows the LSTM model’s 100% accurate
prediction for an ACK instance on the SecurityCam1 device.

We have also employed IG to provide feature attribution for client-
side IoT device models. This model-specific post-hoc XAI method calcu-
lates attributions by integrating the gradients of the model’s predictions
with respect to input features along a path from a zero baseline to the
actual input. Fig.  16 illustrate IG explanations for malware predictions
in a binary classification context. Figs.  16(a) and 16(b) show the top 10
features for selected instances of malware class labels for SecurityCam1
and Babymonitor, respectively.

For IG local explanations of botnet-type detection in multiclass
classification, Fig.  17(a) presents the top 10 feature attributions for the
SecureCam1 model on the Mirai instance, while Fig.  17(b) showcases
a BabyMonitor’s Mirai class instance.

For IG local explanations of attack-type detection in multiclass
classification, Fig.  18(a) presents the top 10 feature attributions for

the SecureCam1 model on the ACK class instance, while Fig.  18(b)
showcases a BabyMonitor TCP attack instance.

SHAP was widely used to explain models and understand how
the features relate to the predictions. SHAP gives local and global
explanations. In local explanations, a specific individual instance was
selected, and the model prediction was explained by showing each
feature’s contribution to the prediction of the selected instance. SHAP
calculates the Shapley values that illustrate the impact of each feature
on the model’s predictions. Fig.  19 shows SHAP local explanations using
SHAP’s Force plot for Malware instances predicted by the LSTM model
on SecurityCam1, BabyMonitor in Binay Classification. For instance, in
Fig.  19(a), SHAP local explanations for malware instances of the LSTM
model for the SecurityCam1 device show the feature’s contribution
to the prediction. The plot shows the base value and features that
positively impact the prediction, which is in red, and the features
showing a negative impact on the prediction are in blue. The base
value in the plot is the average of all prediction values. Each strip
in the plot shows the impact of the features in pushing the predicted
value closer or farther from the base value. Red strip features push
the value to higher values, whereas blue strip features push the value
to lower values. The contribution of features having wider strips was
more. For Selected malware instance, the base value is 0.5037, Features
such as HH_jit_L0.01_mean (network Traffic mean value within a 1 min
time window from network jitter) and MI_dir_L0.1_weight (Network
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Fig. 17. IG local explanations for client-side (SecuriytCam1 & BabyMonitor) LSTM model over Gafgyt and Mirai instance for botnet type detection.

Fig. 18. IG local explanations for SecurityCam1 and BabyMonitor client-side LSTM model over ACK and TCP attack instances for attack-type detection.

Fig. 19. SHAP local explanations for client-side of SecurityCam1 & BabyMonitor LSTM models over a Malware instance for binary classification.  (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. SHAP local explanations for client-side (SecuriytCam1, BabyMonitor1 & Thermostat) LSTM model over Gafgyt and Mirai instance for botnet type detection.  (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. SHAP local explanations for SecurityCam1 and BabyMonitor client-side LSTM model over ACK and TCP attack instance for attack-type detection.  (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Computer Networks 270 (2025) 111479 

16 



R. Kalakoti et al.

Table 4
Results of evaluating Quality of LIME, IG & SHAP explanations using High Faithfulness (𝜇𝑓 ), Low Complexity (𝜇𝑐 ), Max Sensitivity (𝜇𝑠) & Monotonicity (𝜇𝑚) for participated
client-side models in FL for three classification types.

Binary Botnet type Attack-Type
Client Metric \explainer Lime IG SHAP Lime IG SHAP LIME IG SHAP

𝜇𝑓 0.24 ± 0.30 0.01 ± 0.25 0.34 ± 0.23 0.47 ± 0.34 −0.03 ± 0.24 0.79 ± 0.15 0.43 ± 0.28 0.00 ± 0.22 0.62 ± 0.32
𝜇𝑐 3.95 ± 0.07 3.29 ± 0.34 3.55 ± 0.08 4.06 ± 0.11 3.25 ± 0.39 1.26 ± 0.31 4.01 ± 0.31 3.39 ± 0.39 1.39 ± 0.75
𝜇𝑓 0.14 ± 0.10 0.26 ± 0.11 0.04 ± 0.05 0.41 ± 0.18 0.08 ± 0.23 0.09 ± 0.23 0.26 ± 0.11 0.11 ± 0.70 0.09 ± 0.15BabyMonitor
𝜇𝑚 31.07% 1.00% 46.00% 97.00% 0.03% 99.00% 99.00% 0.00% 96.00%
𝜇𝑓 0.38 ± 0.29 −0.01 ± 0.23 0.55 ± 0.21 0.14 ± 0.09 0.03 ± 0.28 0.25 ± 0.31 0.32 ± 0.33 0.00 ± 0.23 0.56 ± 0.32
𝜇𝑐 4.03 ± 0.05 3.74 ± 0.36 3.55 ± 0.10 3.99 ± 0.11 2.99 ± 0.49 1.42 ± 0.35 3.89 ± 0.26 3.23 ± 0.48 1.59 ± 0.58
𝜇𝑓 0.20 ± 0.10 0.08 ± 0.00 0.02 ± 0.02 0.65 ± 0.20 0.01 ± 0.00 0.00 ± 0.00 0.36 ± 0.13 0.01 ± 0.00 0.06 ± 0.10Doorbell1
𝜇𝑚 41.40% 1% 66.54% 74% 1% 85% 91% 6% 92%
𝜇𝑓 0.31 ± 0.34 −0.00 ± 0.25 0.51 ± 0.32 0.36 ± 0.21 −0.01 ± 0.29 0.59 ± 0.22 0.39 ± 0.39 0.00 ± 0.23 0.70 ± 0.25
𝜇𝑐 3.89 ± 0.07 3.88 ± 0.29 3.35 ± 0.23 4.13 ± 0.17 3.16 ± 0.49 1.31 ± 0.32 3.94 ± 0.43 3.23 ± 0.48 1.42 ± 0.44
𝜇𝑓 0.10 ± 0.05 0.35 ± 0.12 0.02 ± 0.04 0.39 ± 0.17 0.10 ± 0.08 0.09 ± 0.21 0.23 ± 0.09 0.30 ± 0.14 0.05 ± 0.09SecurityCam1
𝜇𝑚 40.41% 5% 39.67% 96% 1% 100% 97% 20% 96%
𝜇𝑓 0.34 ± 0.37 0.01 ± 0.29 0.45 ± 0.37 0.21 ± 0.17 0.01 ± 0.19 0.36 ± 0.26 0.34 ± 0.29 −0.00 ± 0.17 0.66 ± 0.31
𝜇𝑐 3.95 ± 0.05 3.86 ± 0.52 3.35 ± 0.07 4.13 ± 0.09 3.45 ± 0.40 1.76 ± 0.22 3.95 ± 0.20 3.50 ± 0.40 1.39 ± 0.73
𝜇𝑓 0.18 ± 0.10 0.06 ± 0.10 0.02 ± 0.02 0.53 ± 0.21 0.36 ± 0.22 0.07 ± 0.14 0.47 ± 0.15 0.01 ± 0.00 0.06 ± 0.12SecurityCam2
𝜇𝑚 36.55% 4% 42.45% 70% 1% 95% 98% 2% 98%
𝜇𝑓 0.38 ± 0.34 −0.01 ± 0.19 0.59 ± 0.26 0.18 ± 0.33 −0.04 ± 0.26 0.51 ± 0.24 0.36 ± 0.31 −0.00 ± 0.22 0.62 ± 0.30
𝜇𝑐 3.89 ± 0.08 3.50 ± 0.38 3.41 ± 0.24 4.02 ± 0.23 3.20 ± 0.48 1.40 ± 0.20 4.01 ± 0.26 3.22 ± 0.47 1.32 ± 0.72
𝜇𝑓 0.08 ± 0.03 0.42 ± 0.15 0.01 ± 0.02 0.35 ± 0.22 0.42 ± 0.28 0.04 ± 0.14 0.23 ± 0.05 0.26 ± 0.21 0.07 ± 0.13SecurityCam3
𝜇𝑚 42.85% 1% 40.77% 100% 1% 100% 94% 0% 90%
𝜇𝑓 0.33 ± 0.28 0.03 ± 0.27 0.47 ± 0.27 0.46 ± 0.14 0.02 ± 0.19 0.63 ± 0.14 0.48 ± 0.36 0.01 ± 0.24 0.71 ± 0.37
𝜇𝑐 4.00 ± 0.07 3.65 ± 0.44 3.49 ± 0.17 4.07 ± 0.19 3.39 ± 0.42 1.43 ± 0.23 4.04 ± 0.25 3.41 ± 0.43 1.36 ± 0.71
𝜇𝑓 0.11 ± 0.07 0.01 ± 0.22 0.01 ± 0.02 0.37 ± 0.10 0.12 ± 0.05 0.02 ± 0.08 0.26 ± 0.10 0.40 ± 0.00 0.05 ± 0.09SecurityCam4
𝜇𝑚 44.20% 9% 37.65% 100% 8% 100% 92% 1% 99%
𝜇𝑓 0.37 ± 0.38 0.03 ± 0.26 0.56 ± 0.33 0.39 ± 0.13 −0.01 ± 0.19 0.61 ± 0.09 0.34 ± 0.26 −0.00 ± 0.19 0.66 ± 0.26
𝜇𝑐 3.87 ± 0.05 3.45 ± 0.36 3.37 ± 0.11 4.10 ± 0.20 3.48 ± 0.40 1.52 ± 0.27 4.05 ± 0.14 3.48 ± 0.41 1.29 ± 0.65
𝜇𝑓 0.10 ± 0.06 0.06 ± 0.12 0.01 ± 0.02 0.38 ± 0.19 0.01 ± 0.00 0.06 ± 0.16 0.31 ± 0.11 0.01 ± 0.00 0.05 ± 0.09Thermostat
𝜇𝑚 34.49% 3% 37.46% 90% 1% 100% 98% 3% 100%
𝜇𝑓 0.24 ± 0.17 −0.01 ± 0.20 0.43 ± 0.15
𝜇𝑐 4.19 ± 0.16 3.57 ± 0.42 3.64 ± 0.07
𝜇𝑓 0.09 ± 0.03 0.04 ± 0.08 0.09 ± 0.09Doorbell2
𝜇𝑚 58.41% 8% 53.98%
𝜇𝑓 0.46 ± 0.42 0.01 ± 0.25 0.51 ± 0.39
𝜇𝑐 3.88 ± 0.10 3.35 ± 0.40 3.14 ± 0.10
𝜇𝑓 0.12 ± 0.02 0.04 ± 0.09 0.01 ± 0.02Webcam
𝜇𝑚 57.21% 9% 69.23%

traffic packet count within 10s-time window from Host Mac & IP),
have positive contribution on prediction value, and MI_dir_L1_variance
have negative contribution on prediction value. Similarly, in binary
classification, Fig.  19(b) show SHAP explanations for the LSTM model
of BabyMonitor device

For SHAP local explanations of Botnet-type detection in Multiclass
classification, Fig.  20(a) shows the LSTM model for Gafgyt instance
on Securitycam1 IoT device. LSTM model output is 100% with a base
value of 0.6504. Features MI_dir_L0.01_variance, HH_jit_L5_mean and
MI_dir_L0.01_mean, HH_jit_L0.01_mean contributed positively to the
prediction of the Gafgyt class (red strip), while features HH_jit_L0.1_
variance had a negative contribution (Blue strip). Likewise, Fig.  20(b)
shows the LSTM model’s 0.98 output with a base value of 0.6286 for a
Mirai Malware instance on the Babymonitor device.

In Fig.  21, the SHAP force plot illustrates local explanations of
feature contributions for the selected class label in attack-type detec-
tion. For the BabyMonitor IoT device, Fig.  21(b) shows the features
that positively influence the LSTM model’s prediction towards the TCP
attack class, represented by the red strip. In contrast, the features that
decrease the probability of prediction (negative influence) are shown
in blue. The output of the LSTM model for TCP attack instances on the
Baby Monitor device is 0.79. Similarly, for the selected instance of ACK
attack class labels from the SecurityCam1 device in Fig.  21(a).

We conducted a comprehensive quantitative evaluation of the ef-
fectiveness of three prominent XAI methods, LIME,IG, SHAP, for all
participating clients in the FL process. Our evaluation was based on
four key metrics: High Faithfulness, Monotonicity, Low Complexity,
and Max Sensitivity. These metrics were chosen for their ability to
provide a robust assessment of the quality of XAI methods.

In our study, we evaluated the faithfulness of explanation methods
by computing the correlation between the importance assigned to
attributes by XAI methods and their impact on the predictive model’s
probabilities. A high faithfulness correlation of the XAI method indi-
cates that the assigned feature importance aligns closely with its impact
on the model’s prediction probabilities, ensuring accurate and faithful
explanations. We evaluated the monotonicity of the explanation to

understand how individual features influence the model’s output. By in-
crementally adding each attribute, we evaluated the effect of individual
features on the model’s output and determined their importance based
on their impact. The prediction probabilities of the LSTM model were
obtained using the Softmax activation function. A high monotonicity
score means that the explanations are consistent with the model’s
predictions for the given input. We calculate the low-complexity metric
by computing the entropy of feature attribution derived from the ex-
planations. The complexity of an attribution is based on the entropy of
each feature’s contribution to the total attribution. Max sensitivity XAI
metric evaluates the robustness of the explainer’s output, ensuring that
nearby inputs in the feature space have similar explanations when the
sensitivity value is low. To identify nearest-neighbour points related to
the predicted label of the explanation, we used the Euclidean distance
with a neighbourhood radius (𝑟 = 0.1), which helps to identify data 
points in the feature space that are closest to the instance and contain
similar explanations for the predicted label.

We evaluated local explanations provided by LIME, IG and SHAP
across 2000 test points. Table  4 presents the results of the XAI metrics,
including the mean and standard deviations for both the LIME and
SHAP explanations. These evaluations were conducted on 2000 data
points from all participating clients in FL for three types: Binary,
Botnet-type, and Attack-type.

In binary classification, the SHAP explainer shows higher mean
values for faithful explanations than LIME, IG explainers across all
test instances from participating clients. For example, SHAP achieved a
faithfulness score of 0.34 ± 0.05 for the BabyMonitor model, compared
to 0.31 ± 0.04 for IG and 0.24 ± 0.30 for LIME. This suggests that
SHAP provides a more reliable feature importance, closely aligned
with its effect on model prediction probabilities. When evaluating
local explanations using low complexity metrics, SHAP almost achieved
lower mean values than LIME and IG across all clients. However,
for the Client models BabyMonitor and Doorbell2, the IG explainer
outperformed the remaining explainers using lower complexity metrics.
Sensitivity refers to the degree to which the explanations are stable
for nearby data points. Lower sensitivity values indicate more stable

Computer Networks 270 (2025) 111479 

17 



R. Kalakoti et al.

Fig. 22. Global explanations for server model feature importance and participated clients’ IoT device models feature importance in binary classification type.

Fig. 23. Global explanations for server model feature importance and participated clients IoT devices feature importance for botnet-type detection.

explanations. On average, SHAP models, when explained using SHAP,
exhibit lower sensitivity values compared to LIME and IG explanations
for all clients. However, for the Doorbell2 model, IG provides more
robust explanations than both LIME and SHAP. This indicates that
SHAP provides more robust and stable explanations for nearby data
points within the same feature space used by its client model. SHAP
explanations were generally more consistent in terms of monotonicity
compared to LIME, IG when evaluated using monotonicity metric across
all client models. However, for the SecurityCam1, SecurityCam3, Secu-
rityCam4 and Doorbell2 models, the LIME explanations demonstrate
more monotonicity, with percentages of 40. 41%, 42. 85%, 44. 20%
and 58. 41%, respectively, compared to the SHAP explanations.

Similarly to binary classification, SHAP is generally more reliable
than LIME and IG for both botnet types and attack types. It shows a
strong correlation between the importance of the features calculated
by the SHAP explainer and the prediction probabilities of the client’s
model. Furthermore, SHAP exhibits lower complexity and sensitivity
compared to LIME and IG. However, for the Doorbell1 and Securi-
tyCam2 models, IG proves to be more robust than both LIME and
SHAP explainers using the maximum sensitivity metric. Using the
monotonicity metric, SHAP demonstrates more monotonicity compared
to LIME, IG, for both botnet-type and attack-type detection across all
clients. However, in the attack-type detection for the BabyMonitor,
SecurityCam1 and SecurityCam3 models, the LIME explainer slightly
outperforms SHAP with respect to monotonicity metrics values (see
Table  4).

We have provided the results of global explanations for server and
client models that participated in FL, using the SHAP explainer. In
these global explanations, we explain the model’s predictions using

each feature’s contribution. Fig.  22 shows the global explanations of
feature importance for the server model and participating clients’ IoT
device models in binary classification, focusing on the top 10 features
that impact model predictions. In the client-based model of global
explanation in FL, each participating client of the SHAP explainer used
its training data and trained model to calculate the Shapley values on
the test data, which shows the impact of each feature on the model’s
predictions. Figs.  22(b)–22(j) provide global explanations from the
SHAP explainer of the top ten features for client-based models partic-
ipating in FL for binary classification. Fig.  22(a) presents the top 10
features of the server model for binary classification, obtained through
the secure aggregation of SHAP value explanations from clients. It can
be observed that features related to host IP (H), network jitter (HH_Jit),
and host MAC & IP (MI) are the most impactful network categories
for binary classification predictions. In particular, H_L0.1_weight and
MI_dir_L0.01_weight are the most significant features across clients.
Additionally, network traffic packet count (weight) features are crucial
for identifying benign and malicious network traffic. Shorter time
windows, specifically L0.1 (500 μs) and L1 (1.5 s), are also particularly
influential regarding network time windows.

Fig.  23 illustrates global explanations for botnet type detection
from SHAP explainer. It highlights the top 10 features that influence
detecting different types of botnets across various LSTM client-side IoT
device models and the server model. Figs.  23(b)–23(h) provide SHAP’s
global explanations for participating client IoT device models in FL. Fig.
23(a) shows the top ten feature importances for the server model, based
on secure aggregated SHAP values from the participating client model’s
explanations. For detecting botnet types, features such as Host IP (H),
Host MAC & IP (MI), and Network Jitter (HH_jitt) were obtained within
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Fig. 24. Global explanations for server model feature importance and participated clients IoT devices feature importance for attack-type detection.

short to moderate time window frames were most effective in SHAP
global explanations of feature importance in multiclass botnet detec-
tion within federated IoT networks. Additionally, Related to network
statistical values, particularly packet count (weight), as well as their
mean and variance, are vital for analysing network traffic features in
botnet-type detection.

Similarly, Fig.  24 shows the global explanations for both the server
model (Fig.  24(a)) and participated client-side models (Figs.  24(b)–24(h))
used in attack type detection. For detecting attack types, the Host-
MAC & IP (MI) and Host-IP (H) network category features were more
influential compared to other network categories among the selected
top 10 features. In contrast to botnet type detection, HH_jit features
were found to be less influential. Channel and socket-based features
showed no influence. When considering the time window, shorter
time windows, such as L0.1 (100 μs) and L0.01 (500 μs), were more
influential according to the SHAP explainer in global explanations.
Additionally, packet count features were more influential when it came
to network traffic statistics.

5. Discussions

In this work, we propose a FedXAI-based framework designed to
address the intrusion detection problem in IoT network devices within
a HFL setting. Our framework incorporates XAI methods to enhance the
interpretability of LSTM model predictions, enabling both client-side
and server-side models to provide transparent and privacy-preserving
explanations for intrusion detection decisions. Our research utilises
the N-BaioT dataset, which contains statistical network traffic features
for botnet detection on 9 IoT devices (Doorbell1, BabyMonitor, Se-
curityCam1, SecurityCam2, Thermostat, SecurityCam3, SecurityCam4,
Doorbell2, and Webcam) infected by botnets such as Gafgyt and Mirai
botnets. We have developed three classification techniques within a FL
framework: Binary Classification, Botnet-Type Detection, and Attack-
Type Detection. The hyperparameters for training the LSTM model in
classification tasks are summarised in Table  5.

The effectiveness of our proposed LSTM model is evaluated and
compared against recent existing models on N-BaIoT dataset within FL
settings across three classification tasks. The results are summarised
in Table  6. The binary classification task focuses on distinguishing
between malicious and benign traffic. Our LSTM model achieved the
highest performance, with an accuracy of 99.90%, precision of 99.80%,
recall of 100.00%, and an F1-score of 99.90%. This model outper-
formed other benchmarks, including the MLP model developed by Rey
et al., which achieved an accuracy of 99.60% using mini-batch and
multi-epoch aggregation [30]. Additionally, Wardhan et al. proposed
a DNN model using FedAvg that reached an accuracy of 98.97%, with
a precision of 98.75%, recall of 99.41%, and an F1-score of 99.11% for
binary classification. Zhang et al. developed a FedDetect aggregation

Table 5
Hyperparameters used for LSTM model training across three classification tasks in FL.
Hyperparame-
ter/Classification

Binary Botnet-type Attack-type

Hidden layers 3 5 5
Hidden units 128 128 128
Learning rate 0.001 0.001 0.001
Optimiser Adam Adam Adam
Activation
function

ReLU ReLU ReLU

Batch size 256 256 512
Epochs 50 100 200

on deep autoencoders, which achieved an accuracy of 93.70% and a
precision of 88.20% [60].

In our study, Botnet-Type Detection offers a more detailed analysis
by categorising data points into three categories. Mirai, Gafgyt, and
benign network traffic. Our model achieves an accuracy of 99.28%,
precision of 99.63%, recall of 99.79%, and an F1 score of 99.54% in
FL. In addition to preserving data privacy, the proposed FL-based LSTM
model outperforms most existing centralised botnet detection models.
For example, the Artificial Neural Network (ANN) model proposed
by Palla and Tayeb for Mirai botnet detection achieved an accuracy
of 92. 8% and an F1 score of 99%.

LSTM model achieved above 99% accuracy, precision, recall, and F1
score on the models based on the IoT device of the client, as well as the
server model for binary classification and botnet-type detection. On the
other hand, for attack-type detection, data points are categorised into
various attack types: ACK, benign, compact, junk, scan, SYN, TCP, UDP,
and UDPplain. In the attack-type detection setting, the LSTM model
combined with the FedAvg aggregation algorithm has yielded impres-
sive results. Specifically, for attack-type detection, the LSTM model
achieved an accuracy of more than 94.89%, a precision of 95.71%,
a recall of 94.73%, and an F1 score of 94.50% for the server model
using the FedAvg algorithm. From Table  6, when comparing with other
studies for the detection of attack types, our model demonstrates better
performance. PH Do et al. developed a DNN model using Mini-Batch
aggregation, which achieved an accuracy of 90.00%, a precision of
88.00%, and a recall of 85.00%, and an F1 score of 88. 00%. Further-
more, GDLT Parra created an LSTM model in a distributed learning
setup that achieved an accuracy of 94.80%. B. Olanrewaju-George,
using the FedAvgM (Federated Averaging Algorithm with Momentum),
achieved an accuracy of 90.39%.

In contrast to earlier studies that did not integrate explainable AI
(XAI) methods into their FL for IDS, we introduced a unique approach
to securely aggregating client explanations, in order to enhance the
explainability and transparency of server models in the context of
FL for IoT device intrusion detection. This approach eliminates the

Computer Networks 270 (2025) 111479 

19 



R. Kalakoti et al.

Table 6
Performance metrics comparison of the proposed model with existing models over N-BaIoT dataset in FL settings.
Model Aggregation Classification Accuracy Precision Recall F1-score Explainability

MLP [30] Mini-Batch, Multi-Epoch Binary 99.60% NA NA NA No
Deep autoencoder [60] FedDetect Binary 93.70% 88.20% NA NA No
DNN [62] FedAvg Binary 98.97% 98.75% 99.41% 99.11% No
ANN [61] Centralised Botnet-type 92.80% 99.00% NA NA No
CNN [63] Mini-Batch Attack-Type 90.00% 88.00% 85.00% 88.00% No
LSTM [64] Distributed Learning Attack-Type 94.80% NA NA NA No
FL-DNN [65] FedAvgM Attack-Type 90.39% NA NA NA No

Ourwork FedAvg
Binary 99.90% 99.80% 100.00% 99.99%

YesBotnet-type 99.28% 99.63% 99.79% 99.54%
Attack-Type 94.89% 95.71% 94.73% 94.50%

NA — Not Applicable.

need for client data sharing while effectively balancing transparency
and privacy. To explain the server model based on HFL using the
FedAvg algorithm, we proposed a privacy-preserving approach that
uses securely aggregated SHAP values from the participating client
models. To assess the effectiveness of these aggregated SHAP values,
we compared them with the SHAP values obtained from the server
model when it accessed data from each participating client model. Our
findings indicate that the securely aggregated SHAP values from the
client models closely approximate the SHAP values of the server model
during data access. As a result, we demonstrated that the client-based
aggregated SHAP explanations are sufficient for our study, enabling us
to explain the server model in terms of feature importance for IoT-based
IDS solutions in FL settings.

Our results send an important message to those who design IDSs.
The attacks originating from the bots (i.e., as simulated in the N-BaIoT
dataset) can be effectively detected by sensors that monitor the incom-
ing and outgoing packet statistics, regardless of the traffic destination.
Through the secure aggregation of client-based SHAP values for the
server model and the global explanations model for clients using their
own data, we have inferred the importance of various features for both
server-side and client-side models. Our research suggests that the host-
MAC and IP (MI), along with the host-IP (H) from pocket count network
statistical features, are particularly influential in detecting IoT botnets
on network devices. In contrast, network jitter (HH_jit) has been found
to have significantly less impact. These findings assist SOC analysts in
refining IDS configurations, prioritising essential traffic indicators, and
improving botnet detection strategies in real-world deployments.

SHAP values were computed for each IoT device-based client in our
approach to explaining the server model using SHAP’s Deep Explainer.
This step was computationally expensive due to the complexity of
the game’s theoretical principles, and pre-trained client models were
utilised. After calculating the SHAP values, SMPC was employed for
the aggregation of these values, which is more lightweight compared
to the cost of generating the SHAP values. During our experiments,
the integration of SMPC-based SHAP value aggregation into FL did
not introduce significant bottlenecks. Although we did not explicitly
measure the computational overhead of this process, our performance
observations suggest that the aggregation step was computationally
feasible.

We used LIME, IG and SHAP as post-hoc local explanation methods
to gain insights into the behaviour of participant client models in FL. To
evaluate the quality of local post-hoc explanations produced by these
three methods, we employed metrics such as High Faithfulness, Low
Complexity, Monotonicity, and Max Sensitivity (which indicates greater
robustness). Our findings revealed that the post-hoc local explanations
generated by the SHAP explainer surpassed those generated by LIME,
IG across all client models in FL, achieving higher faithfulness, lower
complexity, greater robustness (as indicated by max sensitivity), and
higher percentages of monotonicity for the test data points.

In our evaluation of XAI methods, we found that SHAP took signif-
icantly more computational time than LIME and IG due to its complex

game-theoretic principles, which involve calculating Shapley values for
various feature combinations. Additionally, Evaluating the xai method
using the Max Sensitivity metric was computationally intensive, as it
required assessing neighbouring points (radius 𝑟 = 1) around each 
instance using a Euclidean distance. These observations highlight the
balance between explanation quality and computational efficiency in
XAI methods like SHAP, which provide high-quality explanations but
require significant computational time.

Several studies have examined the explainability of FL-IDS. For ex-
ample, Oki et al. utilised SHAP for model explainability. However, the
feature contributions were assessed centrally on the global model [66].
This approach requires input data from edge servers to be aggregated
at a central server, which could raise privacy concerns. Fatema et al.
developed a framework that focuses solely on local model explanations
for the IDS task in multiclassification using CICIoT2023 dataset, with-
out providing a clear method for explaining the server-side model [67].
Other studies [42,45,68] also utilise SHAP for explainability in FL, yet
they often neglect to clarify how input data was used for server model
explanations, resulting in ambiguity regarding privacy. In contrast, our
work presents a clear and privacy-preserving methodology for gener-
ating explanations on both the server side and the client side. Unlike
prior approaches, which may inadvertently expose sensitive data, our
framework ensures that post-hoc XAI methods operate strictly on client-
side data, preventing raw data from being passed to the server. This
approach mitigates the risks of data exposure while preserving the
interpretability of both client and server models in a federated setting.

6. Limitations and threats to validity

Our study shows that using post-hoc xai methods in an FL-based
-IDS in IoT environments is effective. However, we acknowledge limi-
tations such as the complexity of IoT systems, the computational costs
of explainability techniques, and the security risks associated with FL.
We also highlight challenges that may affect the generalisability and
scalability of our approach.

• IoT environment is a complex network characterised by constant
dynamism, resource limitations, and large data volumes. This
study uses the N-baioT data set, one of the largest and most
realistic IoT botnet data sets, to simulate benign and malicious
network behaviour in a medium-sized IoT architecture. Our find-
ings provide an initial evaluation of the potential of FL integrated
with XAI techniques to enhance ID in IoT environments. However,
more empirical studies are needed to validate and expand these
results across different IoT architectures. Future work will focus
on testing our approach in diverse IoT settings with varying data
distributions and network configurations.

• Our study evaluates the performance of an FL-based IDS using
independent and identically distributed (IID) data across edge
devices. We acknowledge that this scenario is unlikely to be
applicable to real applications, and we plan to conduct further
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experiments on non-IID data. Nonetheless, the configuration we
tested allows us to analyse the impact of FL on SHAP explanations
while minimising excessive variability.

• Our approach relies on SHAP values derived from IoT device-
based clients to explain the server model in FL, addressing the
disadvantage of post-hoc explainers that require input data for
model explanations, which could compromise privacy. However,
this method becomes increasingly computationally expensive as
the number of clients grows, making it less feasible for large-scale
IoT environments. The high computational demands of SHAP’s
Deep Explainer and Kernel Explainer further exacerbate this is-
sue. This limitation underscores the need for more efficient and
scalable explainability techniques. In our future work, we plan to
explore synthetic data generation to enhance the explainability of
the server model, reducing reliance on client-based explanations
and ensuring better scalability. Another direction in addressing
scalability issues and resource constrains in IoT devices would
be delegating intrusion detection function to local edge devices.
This architectural decision may relax the privacy requirements as
IoT devices should trust these edge devices. However, in large-
scale IoT networks in which responsibilities of the edge devices
are assigned to distinct entities, still, privacy can be preserved to
a degree.

• This study uses SMPC to securely aggregate SHAP values; how-
ever, it remains vulnerable to inference attacks, allowing ad-
versaries to extract sensitive information about client models.
Additionally, since SHAP values are calculated post-hoc, they
can be manipulated using adversarial examples, leading to mis-
leading feature attributions while keeping the model output un-
changed. Prior works, such as Fooling LIME and SHAP [54],
have demonstrated that attackers can train models to provide de-
ceptive explanations while maintaining correct predictions. Sim-
ilarly, explanation-based membership inference attacks (EMIA)
exploit explanation vectors like SHAP to infer whether a data
sample was part of the training set [69]. In future work, we aim
to improve SHAP-based secure aggregation and explore privacy-
preserving techniques such as homomorphic encryption and dif-
ferential privacy to enhance security in federated learning and
improve system reliability in real-world applications. This inte-
gration of privacy-preserving approaches can help mitigate the
risks of both inference attacks and adversarial manipulation of
explanations. In FL, malicious clients can also send corrupted
model updates that may compromise the integrity of the global
model through model poisoning attacks. To address this issue,
we plan to integrate robust aggregation techniques such as Krum,
Trimmed Mean, and Median-based filtering [70] with FedAvg in
future work.

• In FL settings, IoT devices typically have significantly fewer re-
sources compared to server machines in data centres. These lim-
itations include lower computational power, restricted communi-
cation bandwidth, limited memory, and smaller storage capacity.
Training deep neural networks with millions of parameters on
these resource-constrained edge devices can be extremely time-
consuming and energy-intensive. Thus, achieving efficient FL,
where a model is trained in a reasonable timeframe and with
minimal energy consumption, can be quite challenging. In the
future, we plan to explore techniques such as model pruning [71],
which involves removing redundant parameters from pre-trained
large models such as eliminating certain convolutional kernels
or disconnecting some neurons, thereby achieving a lightweight
model. In future work, we aim to implement adaptive client
selection strategies [72] to effectively address the heterogeneity
of client data distribution in our FedXAI framework.

7. Conclusion

In this study, we proposed an FEDXAI framework that extends the
privacy guarantee of FL settings with the privacy of the post hoc local
explanations that are induced for the server model. Thus, our frame-
work achieves both transparency and privacy in FL-based solutions.
We selected IoT botnet detection as a case study. One major challenge
in post-hoc explainability methods, such as SHAP, is that they typi-
cally require access to raw client data to generate explanations, which
poses privacy risks. To address this, our framework securely aggregates
SHAP values on the client side, demonstrating that these aggregated
explanations effectively approximate the feature attributions of the
server model. Our findings highlight that securely aggregated client-
side explanations can successfully explain the server model without
depending on client data in FL settings.

We developed a high-performance LSTM-based model in an FL
setting for binary classification, botnet-type detection, and attack-type
detection. Our model achieved 99.90% accuracy in binary classifi-
cation, 99.28% in botnet-type detection, and 94.89% in attack-type
detection, outperforming existing FL-based IDS. It also exhibited high
precision, recall, and F1 scores, effectively distinguishing between be-
nign and malicious traffic, various botnet types, and multiple attack
types. We evaluated LIME, SHAP, and Integrated Gradients (IG) as
post hoc explanation methods for the client models. Our findings show
that SHAP provided superior faithfulness, aligning closely with the
predictions of the model. It also demonstrated lower complexity, and
was more robust with lower Max Sensitivity for stable attributions
across similar inputs, along with higher monotonicity.

In the future, we plan to explain the server-side model (aggregated
model) more clearly by using an explanation with synthetic input data.
We will assess whether the explanation derived from the synthetic
data is adequate. Additionally, we aim to integrate differential privacy
noise into the SHAP explainer without relying on any individual client’s
contributions.
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Synthetic Data-Driven Explainability for Federated
Learning-based Intrusion Detection System

Rajesh Kalakoti , IEEE Graduate Student Member, Hayretdin Bahsi , Sven Nõmm

Abstract—An Intrusion Detection System (IDS) is vital for
monitoring network traffic and alerting users to threats. Unlike
traditional IDS, which relies on centralized data processing and
raises privacy concerns, Federated Learning (FL)-based IDSs
enable collaborative model training among multiple clients while
keeping user data private. However, explaining model behavior
in FL using Explainable AI (XAI) is challenging due to its
distributed nature and lack of access to client data. Traditional
XAI methods like LIME and SHAP require input data, which
conflicts with FL’s privacy constraints. In this work, we develop
a deep neural network (DNN)-based IDS in FL setup in NoN-
IID settings. Our FL-DNN model achieves high performance in
binary classification for detecting malicious network traffic. In
this work, we propose a novel privacy-preserving, explainable
federated learning framework that uses high-quality synthetic
data to enable explainability of the Global DNN model without
exposing client data to the server. To generate synthetic data, we
train multiple federated generative models in Non-IID settings.
Among them, the Federated Wasserstein Conditional GAN with
Gradient Penalty (FL-WCGAN-GP) produces synthetic samples
with high data quality at the server. These synthetic samples
on the server side are then used as reference inputs for post-
hoc XAI methods for explaining the global DNN model. We
assess the sufficiency of synthetic data-based explanations for
the Global DNN model using SHAP, showing that Synthetic data-
based explanations closely approximate the explanations derived
from real client data. Further, we quantitatively evaluate post-
local explanations of LIME and SHAP based on faithfulness
and robustness. Results show that SHAP provides more faithful
and robust explanations than LIME for client-side models using
real data and server-side models using synthetic data, supporting
privacy-preserving explainability in FL-based IDS.

Index Terms—Federated Learning, Explainable AI, Intrusion
detection System, Synthetic Data, Generative Adversarial Net-
works,

I. INTRODUCTION
Intrusion detection systems (IDS) are vital for cybersecurity

and are commonly used in IoT edge devices like routers
and switches [1]. IDS helps detect malicious activities that
threaten the confidentiality, integrity, and availability (CIA) of
information assets [2]. The rise of IoT devices has increased
opportunities for attackers, who may target these devices
directly or use them as part of their attack infrastructure.
Consequently, an IDS must detect attacks on IoT devices to
trigger appropriate countermeasure actions.
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IDSs typically employ either signature-based or anomaly-
based detection models [3]. Signature-based systems rely on
predefined rules created by experts, whereas anomaly-based
systems model normal behavior and detect deviations. Recent
advances in machine learning (ML) and deep learning (DL)
have enabled more effective approaches to traffic classification
and ID [4, 5]. ML/DL-based IDSs analyze network traffic,
system logs, or host data to identify threats, continuously
adapt to evolving attacks through retraining, and issue alerts
for detected anomalies [2, 4]. However, these systems often
depend on centralized ML models that require access to large
volumes of private data from IoT edge devices, raising sig-
nificant privacy concerns [5, 6]. In privacy-sensitive domains
such as healthcare and finance, transferring local data to a
centralized server for model training is often infeasible due to
regulatory and confidentiality constraints.

FL , introduced by Google in 2016 [7], enables collaborative
training of machine learning models across distributed nodes
while preserving data privacy. In FL, each client updates the
model locally using its private data and shares only model
parameters with a central server, which aggregates them to
build a global model through an iterative, round-based process.
This decentralized approach eliminates the need to share
raw data, thereby enhancing privacy. Recent studies have
applied FL to IDS, demonstrating strong anomaly detection
performance while preserving client data confidentiality [8, 9].

Many ML approaches have demonstrated strong perfor-
mance in cybersecurity tasks. However, their lack of trans-
parency, particularly in DL models, raises concerns about
trust and transparency. Security professionals often struggle
to rely on the outcomes of ML-based IDSs because ML-
based IDS processes are not clearly understandable. To address
this, recent research has focused on Explainable Artificial
Intelligence (XAI), which aims to make the reasoning of
the black box nature of ML systems more explainable or
transparent [10]. XAI techniques are generally classified into
global explanations, which describe overall model behavior,
and local explanations [11], which provide insights into spe-
cific predictions. These methods can be either model-agnostic,
applicable to explain the whole behavior of a Model, or
model-specific, designed for particular types of models such
as decision trees [11].

Trustworthy Artificial Intelligence (AI) has become increas-
ingly crucial in cybersecurity to enhance security and reliabil-
ity, particularly in IDS. Recently, the concept of Fed-XAI has
emerged, which integrates FL with XAI paradigms [12, 13].
The combination of these frameworks is essential for building
trust in AI systems, as it enables the simultaneous pursuit of
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TABLE I: Notation Descriptions

Notation Description

N Number of clients
ci ith client in FL

Dci Local dataset of client ci
G Generator network
D Discriminator (or critic) network
Pr True (real) data distribution
Pg Model (generated) data distribution

x ∼ Pr Real data sampled from Pr

x̃ ∼ Pg Data generated by the generator G
z ∼ p(z) Latent noise input to generator

θ Model parameters in FL
y Auxiliary conditioning variable (e.g., class label)

x̃ | y Conditional generated sample given label y
η Learning rate
E Number of training epochs
B Mini-batch size
M Trained black-box model (Ms for server, Mci

for client)
L(D) Discriminator loss function
L(G) Generator loss function

g(M, x) Explanation score vector returned by the ex-
plainer for input x and M

transparency while preserving privacy. In a recent paper [14],
the authors summarize the few contributions where XAI mod-
els have been trained in a federated manner, along with some
real-world applications of Fed-XAI [13]. Two key paradigms
that support the demands of trustworthy IDS using DL model
are FL and XAI. FL focuses on maintaining data privacy by
enabling the collaborative learning of an IDS system using
decentralized data. In contrast, XAI ensures transparency,
accountability, and trust in FL-based IDS by providing clear
explanations for its predictions and decisions, which help
security analysts understand and verify detected threats.

The decentralized nature of FL poses significant challenges
for IDS in terms of oversight and transparency, which are
both critical for trustworthy threat detection. Enabling expert
understanding of model behavior, mitigating bias in detec-
tion decisions, and maintaining transparency becomes more
complex in FL settings, where visibility into local training
data and model behavior across distributed clients is inher-
ently limited. Post hoc explainability methods that are model-
agnostic have gained attention in research for their wider
applicability. Notable methods like LIME and SHAP offer
detailed explanations of given individual instances and their
model outputs. Specifically, they assign importance scores
to features that significantly influence model decisions. This
allows experts to gain insights into the model’s output by
verifying whether these features are relevant within the context
of the related cyber incident. In an IDS running in an FL
setting, security experts operating the server-side models to
analyze the intrusions to client nodes are still required to
understand the model decision-making. In these scenarios,
balancing the need for both privacy and explainability poses
a considerable challenge. Incorporating XAI methods into
FL is an area that has not yet received much attention and
presents additional challenges due to FL’s complex, distributed
nature, where the model is trained across multiple client nodes
(IoT devices, sensors). Also, post-hoc XAI methods, such as

feature importance XAI methods (e.g., LIME or SHAP), and
model interpretability typically require access to the complete
training dataset (input reference data) and the trained model
parameters, which can pose privacy risks. Creating a unified
explainability framework for server-side and client models in
FL is challenging due to data decentralization and limited
server access to client data. Moreover, new data privacy laws,
such as the General Data Protection Regulation (GDPR) [15]
in the EU and China’s Cybersecurity Law [16], aim to protect
user privacy by restricting the sharing and central collection
of data. Using data from multiple parties to train ML models
while complying with privacy regulations is an urgent issue.

To address the above challenges, this work prioritizes
trustworthiness, transparency, and accountability in IDS by
integrating responsible AI practices and explainability into
the FL paradigm. Although post-hoc explainability methods
have been widely used in centralized ML settings, their
application in FL has not yet been studied. This study aims
to bridge this gap by proposing a novel framework that
enables the explanation of IDS models in FL environments
without compromising client data privacy. To the best of our
knowledge, this is the first work to utilize synthetic data
generated through a federated generative model that enables
server-side explainability of FL-based IDS systems, marking
the first application of synthetic data-driven explainability in
the field of cybersecurity.

Generative modeling has recently gained attention as a
practical approach to address class imbalance in cybersecurity
applications [17] [18] [19]. These models typically involve
a Generator (G) that produces synthetic minority class sam-
ples and a discriminator (D) that distinguishes between real
and generated data. Once trained, the generator can produce
synthetic instances that help balance class distributions and
potentially represent unseen attack patterns. However, it is
essential to note that existing literature primarily uses this
synthetic data to tackle class imbalance, rather than to enhance
transparency or explainability in black-box models through
XAI.

Post-hoc explainability methods rely on real client data as
input reference samples to furnish explanations for black-
box models. However, in FL, direct access to real client
data at the server level is restricted due to privacy concerns.
To enhance the explainability of the global model in FL-
settings for IDS, we propose the use of federated synthetic
data. Instead of relying on real input reference data from
participating clients, we generate federated synthetic data
using a generative modelling within the FL framework. These
FL-based synthetic samples serve as input reference data for
post-hoc explainability methods, enabling the explanation of
the global model on the server side without exposing real client
data.

Specifically, in this work, we develop a FL-based deep
neural network (FL-DNN) classifier to distinguish between
malicious and benign network traffic in intrusion detection
tasks under non-IID conditions, simulating real-world data
heterogeneity across clients.

To enhance the explainability of the global DNN model on
the server side while maintaining client privacy, we propose
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using federated synthetic data instead of real client data.
This synthetic data is generated in a decentralized way using
generative modeling within FL-setup. For this purpose, we
train multiple generative model variants, including FL-GAN,
FL-Conditional GAN (FL-CGAN), FL-Wasserstein GAN with
Gradient Penalty (FL-WGAN-GP), and FL-Wasserstein Con-
ditional GAN with Gradient Penalty (FL-WCGAN-GP), to
generate high-quality synthetic data in a federated setting. The
global generator, aggregated at the server, produces federated
synthetic samples that serve as the input reference data for
post-hoc explainability methods. This allows for server-side
interpretation of the global FL-DNN model without direct
access to sensitive client data.

In addition to proposing a privacy-preserving explainability
framework, this work evaluates the quality of the explanations
generated for the global FL-DNN model using federated syn-
thetic data. To this end, we employ two widely adopted post-
hoc explainability methods, LIME and SHAP, which provide
local explanations by identifying the most influential input
features for a given prediction. These explainers are applied
to the global model at the server side, using synthetic data
as input reference samples in place of real client data. Our
evaluation emphasizes the importance of explanation quality
alongside detection performance in federated IDS systems. we
evaluate the reliability of the generated explanations based
on two quantitative criteria: i)Faithfulness ( how accurately
the explanations reflect the true behavior of the model), ii)
Robustness (how consistent the explanations remain under
small perturbations of the input data). By incorporating these
criteria, we demonstrate that synthetic data can serve as a
viable substitute for real data in evaluating the explainability
of server-side models in FL.

The contribution of this work can be summarized as follows.
1) Developed an FL-DNN classifier to distinguish network

traffic between Malicious and Benign and evaluated
an FL-DNN classifier using accuracy, precision, recall,
and F1-score over the NSL-KDD , UNSW-NB15, CIC-
IoT2023 & CIC-IoMT2024 datasets.

2) Developed several federated geneative model variatns,
including Standard GAN (Generative Adversarial Net-
work), FL-CGAN (Conditional GAN), FL-WGAN-GP
(Wasserstein GAN), and FL-WCGAN-GP (Wasserstein
Conditional GAN) for the purpose of generating syn-
thetic data. Evaluated server-side synthetic data gen-
erated by global generators based on these FL-GAN
variants and selected the best variant for producing high-
quality synthetic data.

3) Global DNN classifier of FL was explained using syn-
thetic data as input reference for the post hoc ex-
plainability technique LIME and SHAP. We evaluated
synthetic data-driven explainability by providing client-
based real data to the server and analyzing the differ-
ences between real data-based explanations and those
derived from synthetic data. Our findings indicate that
synthetic data-driven explanations closely approximate
real data-based explanations, demonstrating the viability
of using high-fidelity synthetic data for model explain-
ability while preserving data privacy in FL settings.

4) Evaluation of the quality of local explanations generated
by two widely used post-hoc XAI methods, LIME and
SHAP, for explaining server-side model decisions using
synthetic data and client-side model decisions using real
data. The evaluation is based on quantitative metrics,
including faithfulness and sensitivity.

By incorporating Post hoc methods in FL, we significantly
enhance transparency in decision-making, which empowers
stakeholders to understand and interpret black box model
outputs in FL-based IDS effectively.

The structure of the research work is outlined as follows.
Section II offers a literature review on XAI for centralized
IDS and XAI for FL-based IDS. Section IV details the
proposed methodology. The results of the study are presented
in Section V, while Section VI provides the discussions of the
main findings of the research. Finally, Section VII concludes
the work.

II. RELATED WORK

A. Explainable AI for Centralized Intrusion Detection Systems

Many applications require both high accuracy and clear
explainability of results. To achieve this, various methods
have been proposed to interpret the predictions of complex
models in centralized settings for IDS task. Most works on
XAI techniques for IDS primarily focus on visualization and
model or prediction verification. Barnard et al. propose a
two-stage network IDS, starting with a supervised XGBoost
model for binary classification of network flow data and using
SHAP for prediction explanations. The second stage trains an
autoencoder that inputs SHAP explanations from the previous
stage [20]. The central hypothesis being tested was whether the
system can use the first stage to distinguish between normal
and anomalous flows and the second stage to differentiate
known behaviour from unknown behaviour. The proposal was
evaluated on NSL-KDD dataset [21]. However, the second
stage relies on the first, which requires labeled data, and does
not consider the characterization of various attack behaviour
clusters in the explanations.

Liu et al. proposed FAIXID, a framework designed to
integrate explainability in IDS across various layers[22]. These
layers encompass data cleaning, interpreting a trained, su-
pervised model, providing local explanations for predictions,
and displaying results to security analysts utilizing various
visualizations relying on the role of each analyst.

Oseni et al. created an IDS for IoT-enabled transportation
systems using DL and XAI[23]. They implemented a convolu-
tional neural network (CNN) for threat detection and utilized
the SHAP framework to explain the features influencing the
IDS’s decisions.

In a paper [24], the authors used a filter-based feature
selection to select key features and they tested two models,
a Deep Neural Network (DNN) and a Convolutional Neural
Network (CNN), for IDS, with a focus on classifying attacks
in the NSL-KDD [21] and UNSW-NB15 datasets [25]. To
explain the predictions made by the DNN model, the authors
utilized LIME and SHAP for local explanations and used
SHAP for global explanations to identify DNN model features.
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Neupane et al. focused XAI in IDS and studied AI-driven
SOC (Security Operation Center) to promote transparency
and accountability [26]. While the research improved the
understanding of AI explainability for SOC analysts through
various XAI techniques

Eriksson and Grov conducted a human-centered study on
the use of XAI in SOCs [27], focusing on SHAP and LIME.
They found that XAI can enhance analysts’ trust in their
machine-learning models, although its complexity may pose
a barrier.

Kalakoti et al. proposed an active learning model aimed
at identifying IoT botnet attacks by utilizing explainability
methods such as LIME and SHAP [28]. Although this model
improves detection capabilities, its dependence on labeled data
and the complexity of integrating explainability methods may
hinder its effectiveness in real-time applications.

Wang et al. propose a framework using SHAP for local
and global explanations of IDS, helping security analysts
interpret predictions [29]. Explanations for two supervised
models trained on the NSL-KDD dataset [21] were compared.
The authors demonstrate how different attack types create
varied SHAP value patterns but focus mainly on visualization
without analyzing these values for further information.

Sudheera et al. developed ADEPT, a framework for detect-
ing network flow anomalies and identifying attack stages in a
distributed IoT network with multiple clients and a centralized
server [30]. It operates in three phases: each client detects
anomalous flows and sends them to the central server, which
uses Frequent Itemset Mining (FIM) to analyze the data.
Although explainability is not a focus, the patterns extracted
through FIM were explainable. Finally, the server classifies
malicious flows into attack stages using supervised learning,
requiring labeled data. While this distributed approach im-
proves privacy and reduces bandwidth compared to centralized
systems, it still transmits potentially sensitive anomalous data
to the central server. In contrast, FL architectures can enhance
privacy and data reduction while enabling client collaboration.

The above-mentioned all studies focus on using post-hoc
explainability techniques for centralized IDS models, where
the server has direct access to actual client data for training and
explanation purposes. However, these centralized approaches
do not consider privacy constraints in collaborative learning
environments. Despite recent advancements, significant gaps
remain in the literature on XAI for IDSs, particularly regarding
standardized evaluation. A major limitation is the lack of
quantitative metrics to assess the effectiveness and utility of
XAI methods in the intrusion detection domain. While prior
studies have initiated efforts to incorporate explainability into
IoT botnet detection, there is still a notable absence of rigor-
ous, quantitative evaluation of XAI methods in cybersecurity.
This underscores the need for systematically assessing the
quality of generated explanations to build trust in XAI-based
systems [20, 22, 24, 26, 27, 29, 30].

B. Explainable AI for FL-based Intrusion Detection Systems
FedXAI (Federated Learning of Explainable AI) concept

aims to enhance user trust in AI systems by addressing pri-
vacy preservation through FL and explainability through XAI

models and techniques. Research in this area is expanding,
focusing on both post-hoc methods [31, 32] and explainable-
by-design models [33]. The adoption of post-hoc explanations
in FL context is far from trivial. Recent advances have been
made in both FL and XAI for IDS tasks. However, very few
studies have explored the integration of XAI into FL settings.
Furthermore, some studies do not address privacy concerns
when explaining the global model (server-side model) using
post-hoc explainable AI methods.

Huang et al. propose an FL architecture for anomaly de-
tection in industrial control systems, using SHAP for model
explanation and visualization for domain experts[8]. However,
the SHAP model explainer is not trained federated way, and
while Post-hoc explainer like SHAP requires background data
as a baseline, the authors do not explain how this baseline is
obtained, which is crucial given the data’s distributed nature
in FL. Oki et al. utilized SHAP for model explainability.
However, the feature contributions were assessed centrally on
the global model [34].

Kalakoti et al. proposed a method to explain the server
model in HFL using FedAvg without direct access to client
data [9]. Their approach aggregates SHAP values from in-
dividual client models to approximate explanations for the
server model and was evaluated on the N-BaIoT dataset by
comparing aggregated client-based explanations with server-
based ones derived from actual client data. While effective, this
method is computationally expensive, as it requires computing
SHAP values at each client, which becomes increasingly costly
as the number of participating IoT devices increases.

Haffar et al. use random forests (RF) as substitutes for the
supervised FL model[35]. Each client trains an RF with its
local data. When the FL model misclassifies a sample, they
analyze the RF trees to compute feature importance values,
which help detect and explain attacks on the FL training
process. The explanations are performed at the client level
and require labeled training data. Each client has its own
explainer model, which might differ from the rest as they
are trained independently and not in a federated way, making
the interpretation of the explanations for the global model
difficult. They focus on detecting potential attacks against the
FL training process rather than explaining and characterizing
predictions.

Some studies apply explainable AI methods in FL to detect
adversarial attacks [35] or validate models [36]. However,
explainer models are usually not developed federated, which
may violate FL assumptions or require different explainers for
each client, complicating network-wide interpretation. None
of this works using SHAP in FL. Current research on using
SHAP in FL lacks a thorough discussion on how to extract a
baseline, which is essential for generating explanations. This
selection of a baseline is critical because the explanations
depend on it [37, 38]. One paper employs [39] SHAP and
LIME in federated settings but fails to address the privacy
risks associated with explaining the server-side global model.
Previous research has not sufficiently addressed the privacy
risks related to providing explainability for the global (server)
model. Since post-hoc XAI methods depend on data points
for generating explanations, the absence of privacy protections
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raises significant concerns about potential data exposure.
Most existing studies do not clearly define how baseline

reference data is used for post-hoc XAI methods in FL and
often rely on client-side SHAP explainers, which are com-
putationally expensive and challenging to scale. Additionally,
many of these studies do not quantitatively evaluate the quality
of the generated explanations or address the privacy risks
associated with accessing real client data for explanation pur-
poses. Our study advances explainability by utilizing federated
synthetic data, which eliminates the need to rely on client data.
Unlike previous research that assumes centralized access to
feature attributions, we present a synthetic data approach for
explaining the global model in a federated setting. Our method
shows that post-hoc explanations can be effectively generated
without compromising privacy, thereby ensuring a secure and
explainable FL-based IDS.

III. OVERVIEW OF GENERATIVE ADVERSARIAL
NETWORKS

Generative Adversarial Networks (GANs), introduced
by Goodfellow et al. in 2015, are deep generative models that
operate as a two-player game [40]. They consist of two neural
networks that update their weights to enhance data generation
and discrimination capabilities.

Let z represent the random noise input, and z | y denote the
generator’s input conditioned on the label y. Similarly, x and
x | y refer to the actual training data and the actual training
data conditioned on the label y, respectively. The symbol x̃
represents the data generated by a standard GAN, while x̃ | y
indicates the data generated by a conditional GAN conditioned
on the label y. Fig. 1 shows an overview of both the standard
GAN and the conditional GAN (CGAN).

Weight updates are performed through backpropagation,
with the discriminator fixed during generator updates. The key
difference between Wasserstein GANs (WGAN) and standard
GANs is in loss calculation and weight updates. In our work,
we have developed four different types of generative model
variants in FL settings.

Fig. 1: Architecture of Basic GAN and CGAN

A. GAN & CGAN

The Generative Adversarial Network (GAN) training pro-
cedure involves a game played between two competing neural
networks: the generator network G and the discriminator net-
work D. The generator G transforms a source of random noise

into samples that resemble the input data space. Meanwhile,
the discriminator D aims to differentiate between samples that
come from the actual data distribution and those generated by
G

These two networks engage in a two-player minimax game
with the following equation

min
G

max
D

V (D,G) = Ex∼Pr [logD(x)]

+ Ex∼Pg
[log(1−D(x))] (1)

Here, Pr is the true data distribution, and Pg is the
generative data distribution, which is implicitly defined by
x = G(z) where z is sampled from a simple noise distribution
p(z) (such as uniform, normal, or Gaussian distribution). The
discriminator D is optimized to maximize the probability
of correctly classifying both training samples and samples
generated by G. Conversely, the generator G is optimized to
minimize Ex∼Pg

[log(1−D(x))] or Ex∼Pg
[− logD(x)].

The Conditional Generative Adversarial Network (CGAN)
is a variation of the GAN that incorporates additional in-
formation, y, into both the generator and discriminator. This
information y can represent a class label or any other form of
auxiliary data. Furthermore, the training process for CGAN is
the same as that used in GAN.

Formally, the objective function for the generator G and the
discriminator D is defined by the following minimax equation:

min
G

max
D

V (D,G) = Ex∼Pr
[logD(x|y)]

+ Ex∼Pg
[log(1−D(x|y))] (2)

In this equation, Pr and Pg retain the same meanings as
in GAN, and y is combined with the prior noise as inputs to
the hidden layer. The optimization process in CGAN is almost
similar to that of GAN.

Since CGANs are an extension of the original GAN vari-
ants, they share some of the same challenges, such as mode
collapse and unstable training due to vanishing gradients,
among other issues. Additionally, researchers have noted that
when both GANs and CGANs utilize the Jensen–Shannon
(JS) divergence as a metric for generative samples, they are
limited to generating only continuous data, rather than discrete
data [41].

JS(Pr, Pg) = KL(Pr∥Pm) + KL(Pg∥Pm) (3)

where KL denotes the Kullback–Leibler divergence, and Pm

is the mixture distribution defined as Pm = 1
2 (Pr + Pg).

B. WGAN & WGAN-GP

Unlike GAN and CGAN, WGAN and WGAN-GP utilize
the Earth-Mover (EM) distance, also known as Wasserstein-
1, instead of the JS divergence to measure the distance
between the true data distribution and the generative data
distribution, which is because the EM distance offers better
smoothness compared to the JS divergence. Theoretically,
WGAN addresses the vanishing gradient problem commonly
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Fig. 2: Synthetic Data-Driven Explainability Framework for Explaining Blackbox Classifier in FL settings

observed in GAN and CGAN. Moreover, studies have demon-
strated [41, 42] that replacing the JS divergence with the EM
distance also helps mitigate the issue of mode collapse.

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥] (4)

Where Π(Pr, Pg) is the complete set of feasible joint distri-
butions γ(x, y) for the true data distribution Pr and the genera-
tive data distribution Pg . The term W (Pr, Pg) is defined as the
minimum cost required to transport mass in order to transform
the distribution Pr into the distribution Pg . Additionally, under
mild assumptions, W (Pr, Pg) is continuous and differentiable
almost everywhere. However, Equation 4 is highly intractable;
therefore, the EM distance can be reconstructed using the
Kantorovich-Rubinstein duality [43].

W (Pr, Pg) =
1

K
sup

∥f∥L≤K

Ex∼Pr
[f(x)]− Ex∼Pg

[f(x)] (5)

Here, the supremum is over all K-Lipschitz functions f :
x→ R, with K being the Lipschitz constant (set to 1 for the
original WGAN). This forms the minimax objective for the
generator and critic shwon in Equation 4

min
G

max
D

V (D,G) = Ex∼Pr
[D(x)]− Ex∼Pg

[D(x)] (6)

WGAN often struggles with producing high-quality samples
and can fail to converge due to weight clipping, which is
an ineffective method for enforcing a Lipschitz constraint
on the discriminator. To solve this, Gulrajani et al. proposed
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WGAN-GP, which uses a penalty on the gradient norm of
the discriminator instead of weight clipping. Their results
showed that WGAN-GP outperforms the standard WGAN
and allows stable training of various GAN architectures with
minimal hyperparameter tuning, represented by the minimax
formulation in Equation 7

min
G

max
D

V (D,G) = Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)]

− λEx̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)

2
]

(7)

where λ is the gradient penalty coefficient, and x̂ is sampled
along straight lines between the true data distribution Pr and
the generative data distribution Pg: x̂ = ϵx+ (1− ϵ)x̃, where
ϵ ∼ Uniform[0, 1], x ∼ Pr, and x̃ ∼ Pg .

C. WCGAN-GP

The development of WGAN-GP can extend to WCGAN-
GP by conditioning both the discriminator and generator on
auxiliary information y, which represents class labels in this
study.

In the discriminator, we concatenate the real data distribu-
tion Pr and the generated data distribution Pg with y to form
a joint hidden representation. The generator also concatenates
y with p(z) in the same way. The objective function for the
generator and discriminator is defined as a minimax problem
below

min
G

max
D

V (D,G) = Ex∼Pr
[D(x|y)]− Ex̃∼Pg

[D(x̃|y)]

− λEx̂∼Px̂

[
(∥∇x̂D(x̂|y)∥2 − 1)

2
]

(8)

Here, λ denotes the gradient penalty coefficient, and the
sampling strategy for x̂ follows that of WGAN-GP. The
discriminator and generator loss functions are defined as:

L(D) = − Ex∼Pr [D(x|y)] + Ex̃∼Pg [D(x̃|y)]
+ λEx̂∼Px̂

[
(∥∇x̂D(x̂|y)∥2 − 1)

2
]

(9)

L(G) = −Ex̃∼Pg [D(x̃|y)] (10)

IV. PROPOSED METHODOLOGY

Fig. 2 shows the proposed framework of this study. In this
work, we propose a dual FL framework that integrates two key
components: 1) a federated DNN for IDS(FL-DNN), and 2)
federated synthetic data generation for explaining global DNN
model in FL.

FL-DNN is designed to classify network traffic into benign
or attack categories while preserving client data privacy. Each
client trains a local DNN on its traffic data, and model updates
are aggregated at the server using the FedAvg algorithm to
construct a global FL-DNN.

For explainability, federated generative models are em-
ployed to generate synthetic data at the server. Each client

participates in training a GAN-based model, and their updates
are used to build a global generator. The synthetic data
generated by this global generator serves as reference input
for post-hoc explainability methods such as SHAP, which are
applied at the server to interpret the decisions made by the
global DNN model without accessing real client data.

A. Deep Neural Network

To achieve accurate classification of network traffic in IoT
edge devices in FL, we propose a deep neural network (DNN)
architecture that learns hierarchical representations through
multiple layers of abstraction. The model consists of an input
layer, multiple densely connected hidden layers, and an output
layer. The number of input neurons, d, equals the number
of features representing a single network traffic packet. The
number of hidden layers and their corresponding neurons is
determined empirically through experimentation to obtain an
optimal DNN architecture.

The transformation at the first hidden layer for an input x
is defined as:

h1 = σh(W1x+ b1) (11)

where σh is the activation function (ReLU), W1 is the weight
matrix, and b1 is the bias vector of the first hidden layer.

For each subsequent hidden layer, the output hi+1 is com-
puted as:

hi+1 = σh(Wihi + bi) (12)

where Wi and bi are the weight matrix and bias vector of
the ith hidden layer, respectively. All hidden layers use the
rectified linear unit (ReLU) activation function due to its
training efficiency and effectiveness. The weight matrices are
initialized using the He uniform initialization method, which
is specifically designed for ReLU activations.

The final output ỹ is computed from the last hidden layer
output hj as:

ỹ = σy(hj) (13)

For binary classification, the output layer contains two neurons
(C = 2), corresponding to the two class labels. A softmax
activation function is applied to convert the raw outputs into
a probability distribution over the classes:

σy(h)α =
ehα

∑C
β=1 e

hβ

(14)

where hα is the activation corresponding to class α, and C is
the number of class labels.

The model is trained using the Adam optimizer [44] with
categorical cross-entropy as the loss function, enabling effi-
cient first-order gradient-based stochastic optimization.

B. Federated Deep Neural Network

FL trains ML models across distributed devices without
sharing raw data. Clients send model parameters or gradients
to a central server, which combines the local updates by
averaging them. The updated global model is then sent back to
the clients, allowing each device to learn collaboratively while
keeping sensitive data securely stored on the client side.
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We denote N as the number of clients, where each client
is represented by c1, c2, . . . , cN . The set of samples owned by
client ci is denoted as Uci , the feature space as Xci , the label
space as Yci , and the dataset as Dci = {(u(j)

ci , x
(j)
ci , y

(j)
ci )}|Dci

|
j=1 .

Each data point (u(j)
ci , x

(j)
ci , y

(j)
ci ) indicates that client ci owns

the sample u
(j)
ci , with features x(j)

ci and label y(j)ci . In a network
traffic ID scenario, U represents individual network flows,
X includes features like packet size and protocol type, and
Y indicates if traffic is benign or malicious. Based on how
the data (X,Y, U) is partitioned across clients, FL can be
categorized into three types by Yang et al. [45].

• Horizontal FL (HFL): In HFL, clients share the same
feature and label space (Xci = Xcj , Yci = Ycj ) but have
different sample spaces (Ui ̸= Uj).

• Vertical FL (VFL): In VFL, some common data samples
are shared among clients (Uci ∩ Ucj ̸= ∅), but the space
between features and labels differs (Xci ̸= Xcj , Yci ̸=
Ycj ).

• Federated Transfer Learning (FTL): FTL does not im-
pose restrictions on the sample, feature, and label space,
allowing arbitrary differences.

Algorithm 1: FedAvg for FL-DNN based IDS

Input: N , θ(0), η, Dci , E
Output: θ(R)

1 Initialize: θ(0) → {c1, c2, . . . , cN}
2 for r = 1 to R do
3 for ci ∈ {c1, . . . , cN} do
4 Receive θ(r−1)

5 for e = 1 to E do
6 Sample B ⊂ Dci

/*Local optimization */

7 θ
(r)
ci ←
θ
(r−1)
ci − η

|B|
∑

(x,y)∈B ∇θl(x, y; θ
(r−1)
ci )

8 Send θ
(r)
ci to server

9 Server aggregation:
10 θ(r) ←∑N

i=1 wciθ
(r)
ci where wci =

|Dci
|∑N

j=1 |Dcj
|

11 Distribute θ(r) → {c1, c2, . . . , cN}
12 return θ(R)

In our work, a federated DNN model is proposed for
classifying network traffic as malicious or benign in an HFL
setup, as described in Algorithm 1. The server initializes the
global DNN model Ms with parameters θ(0) and distributes
them to N clients. Each client ci receives the parameters
θ(r−1) at round r, samples a mini-batch B ⊂ Dci , and trains
a local DNN model Mci over E epochs using the Adam
optimizer. The locally updated parameters θ

(r)
ci are then sent

back to the server. The server aggregates the updates using
the FedAvg algorithm [7], computing a weighted average to
obtain θ(r), which is then sent back to all N . This process is
repeated for R communication rounds until convergence.

C. Federated Generative model

To enable explainability without accessing real client data
in FL settings, we rely on synthetic data generated through
a federated generative model. Specifically, we train multiple
variants of federated generative models, where each client
maintains a local model that learns to generate synthetic
network traffic samples based on its local dataset. The local
generator parameters are then sent to the server, where they
are aggregated using FedAvg to construct a global generative
model. This global model is subsequently used to generate
synthetic data at the server, serving as reference input for a
post-hoc XAI method to explain the global FL-DNN model.

Algorithm 2: Federated generative model

Input: N , Dci , Gci , θ
(0)
Gs

, Dci , ηG, ηD, R, E
Output: θ(R)

Gs

1 Initialize: θ(0)Gs
→ {c1, c2, . . . , cN}

2 for r = 1 to R do
3 for ci ∈ {c1, . . . , cN} do
4 θ

(r)
Gci
← θ

(r−1)
Gs

5 for e = 1 to E do
6 Sample {x} ⊂ Dci

7 z ∼ p(z)
/*Local discriminator update*/

8 θDci
← θDci

− ηD∇θDLD(x, z)

/*Local generator update */

9 θ
(r)
Gci
← θ

(r)
Gci
− ηG∇θGLG(z)

10 Send θ
(r)
Gci

to server

11 Server aggregation:
12 θ

(r)
Gs
←∑N

i=1 wciθ
(r)
Gci

, where wci =
|Dci

|∑N
j=1 |Dcj

|
/*Generate synthetic samples on

server */
13 z ∼ p(z)

14 x̃
(r)
s ∼ Gs(z; θ

(r)
Gs

)

15 return θ
(R)
Gs

In Algorithm 2, the server begins by initializing the global
generator θ

(0)
Gs

with parameters θ0, and distributes them to
all N participating clients. At each communication round r,
each client ci receives the latest global generator parameters
θ
(r−1)
Gs

. Locally, each client updates its generator Gci and
discriminator Dci using its local client dataset Dci . Specifi-
cally, a mini-batch of real samples x ⊂ Dci is drawn, along
with a corresponding batch of latent noise vectors z ∼ p(z).
The discriminator Dci is trained to maximize its ability to
distinguish between real and generated samples, while the
generator Gci is trained to minimize the discriminator’s ability
to do so, thereby improving the realism of the generated data.
This min-max training procedure is performed locally over
E epochs using the Adam optimizer. It is important to note
that the discriminator parameters, θDci

, remain local to each
client and are never shared with the server. Only the generator
parameters, θGci

, are updated for aggregation.
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After local training, only the updated generator parameters
θ
(r)
Gci

are sent back to the server. The server performs weighted
aggregation using the FedAvg algorithm to compute the up-
dated global generator parameters θ

(r)
Gs

, where the weights
wci are proportional to the size of each client’s dataset, i.e.,
wci =

|Dci
|∑N

j=1 |Dcj
| . Importantly, after each aggregation step, the

global generator Gs with parameters θ
(r)
Gs

is used to generate
synthetic samples x̃

(r)
s ∼ Gs(z; θ

(r)
Gs

), where the latent noise
z ∼ p(z) is sampled from a predefined prior distribution. This
process is repeated for R communication rounds.

In this study, we explore four types of generative model
variants within the FL framework: standard GAN, CGAN,
WGAN-GP, and WCGAN-GP. A detailed description of these
variants is provided in Section III. Algorithm 2 illustrates
the federated training procedure for the standard GAN case,
referred to as FL-GAN. For other variants (FL-CGAN, FL-
WGAN-GP, and FL-WCGAN-GP), the training follows the
same procedure, with only the loss functions modified accord-
ing to the specific generative model variant used.

D. Explainable AI Methods

Deep learning models are inherently complex and often
considered black boxes due to the difficulty in interpreting
their predictions. Explainable Artificial Intelligence (XAI)
seeks to improve model transparency and trust by offering in-
terpretability of predictions [46]. XAI techniques are typically
classified as either global explanations, which describe overall
model behavior, or local explanations, which focus on indi-
vidual predictions [11]. These methods can be either model-
agnostic, applicable across various architectures, or model-
specific. In this work, we adopt a model-agnostic approach
by employing the LIME (Local Interpretable Model-Agnostic
Explanations) and SHAP (SHapley Additive Explanations)
methods to interpret the FL-DNN model.

Consider a dataset D consisting of input-output pairs
D = {(xi, yi)}, where each input x ∈ Rd represents a d-
dimensional feature vector, and the corresponding output is
generated by a black-box model M such that M(x) ∈ Y . A
post-hoc explanation method is defined as a mapping g, which,
for a given model M and an input instance x, produces a
feature attribution vector φx ∈ Rd, denoted as g(M, x) = φx.
Let D : Rd × Rd → R≥0 denote a distance metric in the
space of explanations, and S : Rd × Rd → R≥0 a metric
in the input space. The evaluation criterion µ is defined as
a function that takes the model M, the explainer g, and the
input x, and returns a scalar score that quantifies the quality
of the explanation provided by g for that instance.

1) LIME: LIME is a post-hoc XAI method that generates
local explanations for black-box models by fitting an inter-
pretable model g ∈ G (e.g., linear models) around a specific
instance x ∈ Rd [47]. The explanation φ(x) is obtained by

argmin
g∈G

{L(M, g, ωx) + Ω(g)} (15)

Here, L measures the fidelity of the explanation model g
to the original model M using a locality-aware weighting

function ωx, and Ω(g) penalizes model complexity. By mini-
mizing this objective, LIME constructs a locally faithful and
interpretable surrogate for the black-box model.

2) SHAP: SHAP is a widely used XAI method for inter-
preting ML model outputs [37]. It is grounded in Shapley
values from cooperative game theory [48], which quantify
each feature’s contribution to a model’s prediction [49]. SHAP
is particularly well-suited for tabular data and satisfies key
properties such as local accuracy, missingness, and consis-
tency [50]. Local accuracy ensures that the explanation aligns
with the model’s prediction, missingness implies that missing
features have no impact, and consistency guarantees that a
feature with higher influence receives a higher SHAP value.

SHAP approximates the original model M(x) using a
simplified binary input representation a ∈ {0, 1}d, where
x = hx(a). The explanation model g(a) is expressed as an
additive linear function:

M(x) ≈ g(a) = φ0 +
d∑

i=1

φiai (16)

Here, φ0 =M(hx(0)) is the model output with all features
absent, and φi is the attribution value for feature i, calculated
as:

φi =
∑

S⊆F\{i}

|S|!(d− |S| − 1)!

d!
[Mx(S ∪ {i})−Mx(S)]

(17)

Mx(S) =M(h−1
x (a)) = E[M(x)|xS ] (18)

In this formulation, F is the full feature set, S is a subset
excluding feature i, andMx(S) denotes the model’s expected
output conditioned on the known subset S. The result is a
unified measure of additive feature attribution.

In our study, we employed SHAP’s DeepExplainer,
which takes as input a trained deep learning model and its
corresponding dataset D ∈ Rm×d, where m is the number of
instances and d is the number of features. It returns an m× d
matrix of SHAP values, quantifying the contribution of each
feature to the model’s prediction for each instance.

E. Evaluation of Explainable AI methods
Recently, the field of XAI has shifted toward using quanti-

tative metrics to assess explanation quality. These metrics are
generally categorized into user-focused, application-focused,
and functionality-focused evaluations. In this work, we employ
two key metrics to evaluate LIME and SHAP: High Faithful-
ness and Max Sensitivity.

1) High Faithfulness: The explanation method g should
replicate the model’s behaviour. g(M,x) ≈ M(x). Faithful-
ness quantifies the consistency between the prediction model
M and explanation g. For evaluating the Faithfulness of
explanations, High Faithfulness correlation [51] was used.

µF (M, g;x) = corr
B∈(|d|

|B|)

(∑

i∈B
g(M, x)i,M(x)−M(xB)

)

(19)
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where xB = xi|i ∈ B}. High Faithfulness correlation metric
iteratively substitutes a random subset of given attributions
with a baseline value B. Then, it measures the correlation
between the sum of these attributions and the difference in
the model’s output.

2) Max Sensitivity: Robustness refers to similar inputs that
should result in similar explanations. g(M,x) ≈ g(M,x +
ϵ) for small ϵ. Max sensitivity [51] ensures that nearby inputs
with similar model outputs receive comparable explanations.
For the explanation function g to have low sensitivity around
the point of interest x, assuming the predictor function M
is differentiable, we define a neighborhood V around x as
Vr = {v ∈ Dx | p(x, v) ≤ r,M(x) = M(v)}, where D is
the distance metric and p is the proximity function. Thus, the
maximum sensitivity of g at point x can be defined

µM (M(x), g, r;x) = max
v∈Vr

D (g(M(x), x), g(M(x), v))

(20)

F. Synthetic Data-Driven Explanation for Global Model in FL

In this study, we propose to utilize the post hoc SHAP XAI
method to explain the black box nature of the DL classification
model trained using the FedAvg algorithm. We note that
SHAP requires access to either the training data Dtrain or a
“reference set” that is similar to the training set used by the
model. This is necessary to create records (q) that determine
the impact of each feature value on the final prediction. To
expedite the explanation process, a medoid of the dataset is
sometimes used, or a small set of centroids [52] is utilized to
represent Dtrain, capturing the main characteristics with a few
records of feature importance [53]. Consequently, in server-
based FL settings, explaining the learned global model requires
the server to have access to the complete set of training data
Dtrain from its clients. Alternatively, the server should be able
to compute the centroids of a dataset formed by combining the
training sets of all clients. However, this approach depends on
access to client training data, making it unsuitable in scenarios
where privacy regulations prevent data sharing with the server.

After completing the training process in the FL setting,
each client ci holds its local model Mci , which is then
transmitted to the server. The server aggregates the received
models using the FedAvg algorithm to construct the global
modelMs. Traditionally, explanations for a given instance xj

are computed locally by each ci using a post-hoc explanation
method g, yielding attribution scores φci(xj) = g(Mci , xj),
which reflect the contribution of each feature toward the
prediction made by Mci .

To enable post-hoc explainability in FL without compro-
mising data privacy, we propose an approach that leverages
synthetic data generated by the global federated generator
Gs to interpret the server-side black-box model Ms. For
each communication round r, the server updates the global
generator Gs to generate synthetic samples x̃(r)

s ∼ Gs(z; θ
(r)
Gs

).
After all communication rounds, the final global generator

G
(R)
s defines a synthetic distribution P s

g that closely approxi-
mates the true data distribution Pr. This synthetic data is used
as the input reference to interpret the black-box classifierMs

without relying on client data. We use a model-agnostic post-
hoc explainer g to obtain the feature attributions φs(x̃) ∈ Rd

for any synthetic instance x̃ ∈ Rd, defined as:

φs(x̃) = g(Ms, x̃), x̃ ∼ P s,(R)
g (21)

In our study, we use two post-hoc XAI methods, LIME and
SHAP, to explain the global DNN model using synthetic data
without relying on real client data.

Analytical Methodology: In our experiments, we aim to
evaluate whether synthetic data-driven SHAP explanations are
sufficient to approximate real data-based explanations for the
global model Ms in a federated setting. To this end, we
propose an analytical methodology that compares explanations
derived from two settings:
(i) Real data-based explanation: The server accesses the real

training data Dtrain
ci from each client and computes SHAP

values.
(ii) Synthetic data-based explanation: The server computes

SHAP values using synthetic data generated by the global
generator Gs, without access to real client data.

To perform the comparison, the following steps are carried
out using each client’s test data Dtest

ci :
• For each client ci, Server side SHAP explainer takes test

data Dtest
ci and server model Ms, SHAP values are com-

puted, and computes explanation matrices E(ci)
real ∈ Rm×d,

where m is the number of instances and d the number of
features.

• A global explanation matrix Ereal ∈ Rm×d is derived by
averaging SHAP values across all clients:

ereal
ij =

1

N

N∑

ci=1

e
(ci)
ij .

• Similarly, The server samples m synthetic instances from
the distribution P s

g using the final global generator G(R)
s ,

and computes SHAP values for the global model Ms,
computing the synthetic-data based SHAP explanation
matrix Esyn ∈ Rm×d.

• A difference matrix ∆ = Esyn − Ereal is computed
between the synthetic data-based and real data-based
explanation matrices. If ∆ij ≈ 0 for all i, j, this indicates
that the synthetic data-driven explanations are sufficiently
close to real data-based explanations, for explaining the
global classifier Ms.

G. Dataset

The proposed methodology is evaluated on 4 datasets. A
description of the datasets is provided below.

1) NSL-KDD: NSL-KDD dataset is an improved version
of the KDD Cup 1999 dataset, which is commonly used
in experiments related to IDS tasks. This enhanced dataset
addresses the issues of redundant records found in the original
KDD Cup 1999 dataset [54]. Additionally, it ensures that the
number of records in both the training and testing datasets is
more reasonable. NSL-KDD dataset consists of network traffic
of five different classes DoS, Prob, R2L (Remote to Local),
U2R (User to Root), and Normal. Network traffic is collected
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at fixed intervals and is classified as time series data. Each
network unit comprises multiple data packets, which contain
41 features.

2) UNSW-NB15: This dataset was generated at the Cy-
ber Range Lab of the Australian Centre for Cyber Security
(ACCS) using the IXIA PerfectStorm tool [25]. It contains raw
network packets that combine real-world normal activity with
synthetic attack behaviors. The dataset includes nine different
types of attacks, such as Denial of Service (DoS), exploits,
generic attacks, reconnaissance, shellcode, and worms. In total,
the dataset features 46 attributes, which were extracted using
the Argus and Bro-IDS tools.

3) CIC-IoT2023: The CIC-IoT2023 dataset [55], intro-
duced in 2023, is the largest publicly available IoT-specific
ID dataset to date. It was collected in a controlled smart
environment and comprises network traffic from 105 real-
world IoT devices, spanning various categories such as smart
TVs, sensors, cameras, and home automation appliances. A
key distinguishing feature of this dataset is the inclusion of 33
distinct attack types, making it one of the most comprehensive
resources for evaluating IDS models in IoT contexts. Notably,
the attacks in CIC-IoT2023 are launched from compromised
IoT devices targeting other IoT devices, which closely mirrors
modern IoT threat landscapes.

4) CIC-IoMT2024: CIC-IoMT 2024 dataset [56] was also
created by the Canadian Institute for Cybersecurity, similarly
to CIC IoT 2023. This dataset provides a realistic benchmark
dataset to enable the development and evaluation of IoMT
security solutions. Eighteen attacks were executed on a testbed
of 40 IoMT devices (25 real and 15 simulated), using protocols
common in healthcare like Wi-Fi, MQTT, and Bluetooth.
These attacks fall into five categories: DDoS, DoS, Recon,
MQTT, and spoofing. This dataset establishes a baseline
complementary to existing contributions, aiding researchers in
creating new security solutions for healthcare systems through
ML mechanisms. The dataset features 18 cyber attacks on 40
IoMT devices with diverse healthcare protocols such as Wi-
Fi, MQTT, and Bluetooth. This dataset significantly aids the
healthcare industry.

H. Experimental Setup
In the FL setup, both the DNN for classification and

the generative models for synthetic data generation were
trained under non-iid settings. Four network traffic-related
datasets (NSL-KDD, UNSW-NB15, CIC-IoT2023, and CIC-
IoMT2024 ) were utilized in the experiments for a federated-
based IDS task. Each dataset was distributed across multiple
clients in a cross-silo FL setting, where the number of clients
was varied as N ∈ {5, 10, 15}. For each client, the local
dataset was partitioned into training and validation sets in an
80:20 ratio.. Notably, each client used the same local data to
train both the DNN classifier and the generative model.

To simulate non-IID data distribution across clients in
our FL experiments, we utilized the Dirichlet distribution
(DD) for dataset partitioning. The Dirichlet distribution is a
probability distribution that generates a set of non-negative
values summing to one, which can be interpreted as pro-
portions for allocating data samples among clients. In the

federated setting, the DD is employed to assign class-wise
sampling weights, thereby enabling controlled heterogeneity
across client datasets. The level of statistical skewness is
governed by the concentration parameter α: smaller values of
α lead to more heterogeneous (non-IID) distributions, where
each client may predominantly receive samples from a limited
number of classes. In this work, we set α = 0.1, which induces
a high degree of non-IID-ness, closely mimicking real-world
federated scenarios where client data distributions are highly
imbalanced.

1) Data Preprocessing: In the preprocessing step, the
client-side data in the FL-set setup was individually cleaned
by removing null and infinite values. Each client’s data Dci

was transformed and normalized using min-max feature scal-
ing, standardizing it within the range [0, 1] to enhance the
model’s accuracy and performance. For each feature f where
f = 1, 2, . . . , d, the min-max normalization is defined as:

x′(f)
ci =

x
(f)
ci −min

(
x
(f)
ci

)

max
(
x
(f)
ci

)
−min

(
x
(f)
ci

) ∈ Rd

where x
(f)
ci is the actual value of feature f for client ci,

max
(
x
(f)
ci

)
and min

(
x
(f)
ci

)
are the maximum and minimum

values of feature f in client data Dci , respectively. The value
x′(f)

ci is the new normalized value for feature f in client data
Dci , which lies in the range of 0 to 1.

We conducted experiments to determine the appropriate
number of communication rounds for training the model. This
was achieved through iterative experimentation, starting with
random initial rounds and adjusting based on the observed per-
formance of the model. For instance, when training federated
DNN classifiers for binary classification, we employed 100
communication rounds. In contrast, 1000 rounds were used
for training generative model variants in FL for both datasets.
During each round of federated training, the validation data
from each client is tested only on its corresponding client
model. After all clients have been processed, the combined
validation data from all clients is tested on the server model.

2) Evaluation of FL-DNN: To accurately classify network
traffic characteristics, including flow-based, packet-based, and
protocol-specific features from the NSL-KDD , UNSW-NB15,
CIC-IoT2023, and CICIoMT2024 datasets, we proposed an
FL-based deep neural network (FL-DNN). FL-DNN model
consists of an input layer, multiple densely connected hidden
layers, and an output layer containing neurons. The number
of neurons in the input layer d, corresponds to the number
of features representing a single network traffic packet in
the training data. For the NSL-KDD dataset, d = 41, for
the UNSW-NB15 dataset, d = 46, for CIC-IoT2023 dataset
d = 39, for CIC-IoMT2024 dataset d = 45 .

The number of hidden layers and the number of neurons in
each hidden layer were determined empirically through ran-
domized configuration searches to identify the architecture that
provides optimal classification performance. All hidden layers
employ the rectified linear unit (ReLU) activation function,
which improves convergence during training and enhances
classification accuracy. The output layer is designed for binary
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classification, distinguishing between benign and malicious
traffic. It consists of two neurons and uses the softmax
activation function, which ensures a normalized probabilistic
output for the two-class (benign vs. attack) problem

In evaluating the FL-DNN model in FL, we utilized a
validation dataset exclusively. In this study, we employed
classification metrics like accuracy, precision, recall, and F1-
score to evaluate both the client and server models in FL for
binary classification.

Accuracy =
TP + TN

TP + FP + TN + FN
(22)

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

F1-Score =
2× TP

(2× TP ) + FP + FN
(25)

In the context of binary classification for 4 network traffic
datasets, a true positive (TP) denotes the number of malicious
traffic instances correctly classified as malicious. A false pos-
itive (FP) refers to benign traffic instances that are incorrectly
classified as malicious. A true negative (TN) is the number
of benign instances correctly identified as benign, while a
false negative (FN) represents malicious instances that are
incorrectly classified as benign.

3) Evaluation of Federated Generative Models: In this
study, we evaluated four different generative model variants
in a HFL setting such as GAN, CGAN, WGAN-GP, and
WCGAN-GP. Each client independently trained a local gener-
ator and discriminator as part of the federated process. Both
the generator and discriminator were implemented as fully
connected neural networks, with the ReLU activation function
used in all hidden layers.

For all generative models, the generator takes as input a
latent noise vector and produces a synthetic network traffic
instance with the same dimensionality as the original data.
Specifically, the input dimension d corresponds to the number
of features in each dataset: for NSL-KDD, d = 41, for UNSW-
NB15, d = 46, for CIC-IoT2023, d = 39, and for CIC-
IoMT2024, d = 45. For the conditional generative variants
(CGAN and WCGAN-GP), the generator additionally receives
a condition vector corresponding to the class label. Since the
task involves binary classification, the conditional input vector
is of size 2.

On the server side, the global generator produces synthetic
data at each communication round. The quality of this syn-
thetic data is evaluated by comparing it with the real data using
the Wasserstein distance. The real data used for comparison
consists of the combined validation datasets from all clients.

To evaluate the quality of synthetic data generated by the
global generator Gs corresponding to each generative model
variant in the FL setting, we employ the Wasserstein Distance
(WD), denoted as WD(Pr, Pg), as shown in Eq. 26. This
distance quantifies the divergence between the true data dis-
tribution Pr, derived from the real dataset, and the generative

distribution Pg , produced by the global generator based on
latent noise z ∼ p(z). A lower value of WD ∈ [0,∞) indicates
greater similarity between real and synthetic data distributions,
whereas a higher value reflects a larger discrepancy. This
metric is used to evaluate the convergence and generation
capability of FL-GAN, FL-CGAN, FL-WGAN-GP, and FL-
WCGAN-GP over multiple communication rounds.

WD(Pr, Pg) = inf
γ∈Γ(Pr,Pg)

∫

Rn×Rn

∥x− x̃∥ dγ(x, x̃) (26)

Here, Pr denotes the true data distribution aggregated
from all participating clients, and Pg represents the synthetic
data distribution generated by the global generator Gs. The
set Γ(Pr, Pg) includes all joint distributions γ(x, x̃) with
marginals Pr and Pg . The term ∥x−x̃∥ indicates the Euclidean
distance between a real sample x ∼ Pr and a generated
sample x̃ ∼ Pg , while γ(x, x̃) defines the optimal coupling
that describes how much probability mass is transported from
x to x̃.

Experiments were conducted on a server equipped with an
AMD Threadripper 3960X processor, which boasts 24 cores
and 48 threads. The server features 128 GB of RAM and
an NVIDIA 3090 GPU with 24 GB of graphics memory. It
operates on Ubuntu 20.04 LTS as part of a high-performance
computing (HPC) cluster node, utilizing the Slurm workload
manager. The experiments were implemented in Python 3.9,
using Flower [57] for FL in conjunction with PyTorch.

V. RESULTS

This section presents the results of the experimental evalua-
tion. Section V-A discusses the performance of the FL-DNN-
based IDS using classification metrics. Section V-B focuses
on the evaluation of federated generative models for synthetic
data generation, highlighting data quality and distributional
similarity to real data. Section V-D & V-C presents post-hoc
explainability results for both client-side and server-side DNN
models in FL settings.

A. Performance Evaluation of FL-DNN Based IDS

We evaluated the experimental results using four network
traffic-based ID datasets: NSL-KDD, UNSW-NB15, CIC-
IoMT2024, and CIC-IoT2023. These datasets contain both
packet-level and flow-based network traffic features relevant
for detecting malicious activity. The classification task was
formulated as a binary classification to distinguish between
benign and malicious traffic. The FL training was performed in
an HFL environment, with a central server aggregating model
updates from multiple clients(N). Experiments were carried
out under non-IID conditions across client configurations with
N ∈ {5, 10, 15}. To simulate realistic deployment scenarios,
we used the Dirichlet distribution-based sampling to introduce
statistical heterogeneity among clients. To provide clarity of
results, we report the results specifically for the configuration
with N=5 clients, as model performance remained consistent
across other client configurations for both FL-DNN classifier
and Federated generative models.
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(a) NSL KDD (b) UNSW-NB15 (c) CIC-IoT2023 (d) CIC IoMT2024

Fig. 3: Global DNN model performance using FedAvg aggregation across communication rounds for NSL-KDD, UNSW-NB15,
CIC-IoT2023, and CIC-IoMT2024 datasets

(a) NSL KDD (b) UNSW-NB15 (c) CIC-IoT2023 (d) CIC IoMT2024

Fig. 4: False positive rate of the global DNN model across communication rounds on NSL KDD, UNSW NB15, CIC IoT2023,
and CIC IoMT2024 datasets

FL-DNN classifier was designed to detect malicious traffic
while maintaining data privacy in a non-IID federated setting.
The global model on the server-side was trained using the
FedAvg aggregation algorithm across multiple communication
rounds. In each communication round, all N clients were
actively involved in both the training and evaluation phases to
ensure diverse model updates and allow a thorough evaluation
of the global model generalisation in non-IID settings. The
global model was evaluated using a test set comprising the
combined testing data from all the participating clients. On the
other hand, each local model on the client side was evaluated
separately using its respective client data. Fig. 3 and Fig. 4
illustrate the performance of the global DNN model trained
using the FedAvg algorithm over R = 100 communication
rounds with N = 5 clients. The results are presented for
all four datasets, including NSL KDD, UNSW NB15, CIC
IoT2023, and CIC IoMT2024, using classification evaluation
metrics accuracy, precision, recall, F1 score, and FPR. For
FPR, macro averaging was used based on the binary class
labels ‘Benign’ and ‘Attack’ to ensure consistency across
imbalanced distributions.

For all four datasets, the global DNN model displayed rapid
convergence, with considerable improvements in classifica-
tion performance metrics within the first ten communication
rounds, followed by stabilization. For example, in Fig. 3a
on the NSL KDD dataset, accuracy and recall exceeded
99% after round 15 with minimal fluctuations in subsequent
rounds. Besides, as shown in Fig. 3b, the UNSW NB15
dataset demonstrated stable performance, with the DNN model
attaining precision and recall values above 98% within 20
rounds. Similar performance was observed in CIC IoT2022
(Fig. 3c and CIC IoMT2024 (Fig. 3d) datasets, where the

global DNN model consistently achieved high performance
with classification metrics.

Fig. 4 illustrates the performance of the global DNN model,
evaluated by FPR across communication rounds for the NSL
KDD, UNSW NB15, CIC IoT2023, and CIC IoMT2024
datasets. FPR exhibited a significant decline during the initial
training rounds and stabilized below 2%, showing that the
model became increasingly effective at correctly identifying
benign network traffic without mistakenly classifying it as
malicious, thus reducing false alarms.

To evaluate the classification performance of Local DNN
models, we report the F1 score over communication rounds for
all four datasets in Fig. 5. Across most clients in datasets, local
models show steady improvements in F1 score, particularly
within the first 20 rounds. In NSL KDD (Fig. 5a) and CIC
IoMT2024 (Fig. 5d) datasets, all clients quickly converged to
high F1 scores, demonstrating a steady and consistent classifi-
cation performance. However, the UNSW NB15(Fig. 5b) and
CIC IoT2023(Fig.5c) datasets demonstrated slightly higher
variability among clients, with some clients requiring more
rounds to achieve stable performance.

Fig. 6 shows FPR for individual client DNN models across
communication rounds for four different datasets. Most clients
maintained low FPR values, particularly in the NSL KDD and
CIC IoMT2024 datasets, where clients consistently achieved
FPRs below 5%. In the UNSW NB15 and CIC IoT2023
datasets, some clients initially showed higher FPR. However,
as training progressed, the FPR rates diminished substantially,
demonstrating that local models became more effective at
reducing misclassifications and accurately distinguishing be-
tween benign and malicious traffic.
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(a) NSL KDD (b) UNSW-NB15 (c) CIC-IoT2023 (d) CIC IoMT2024

Fig. 5: Local DNN models performance across communication rounds for the NSL KDD, UNSW NB15, CIC IoT2023, and
CIC IoMT2024 datasets

(a) NSL KDD (b) UNSW-NB15 (c) CIC-IoT2023 (d) CIC IoMT2024

Fig. 6: FPR of Local DNN models across communication rounds for the NSL KDD, UNSW NB15, CIC IoT2023, and CIC
IoMT2024 datasets

B. Evaluation of Federated Synthetic Data
In this section, we evaluate the performance of federated

generative models in producing high-quality synthetic data
within the FL settings. The synthetic data is later used in
post-hoc explainability methods tasks to explain the trained
global DNN model on the server without depending on client
data. We implemented four variants of generative models for
generating synthetic data on the server side in an FL setup:
FL-GAN, FL-CGAN, FL-WGAN-GP, and FL-WCGAN-GP.
These models were trained under non-IID data conditions
using the FedAvg algorithm. During training, only the gen-
erator parameters were aggregated at the server, while the
discriminator parameters remained local to each client, thus
preserving data privacy. To evaluate the performance of fed-
erated generative models, we employed Wasserstein Distance
(WD) as a performance metric to quantify the discrepancy
between the distributions of real and synthetic data. WD metric
ranges from [0,∞), where A value close to zero indicates that
the synthetic data and real data distributions are highly similar.
In contrast, a larger value signifies a greater discrepancy
between the synthetic data distributions and the real data. In
our experiments, WD was computed between real test data
and synthetic data generated by the global generative model
across R = 1000 communication rounds. The evaluation was
performed exclusively using test data at each round to ensure
an unbiased evaluation of the synthetic data quality produced
by the global generative model on the server side.

Fig. 7a illustrates the WD performance of four global
generative model variants on the server in FL using FedAvg
on the NSL-KDD dataset. Basic FL-GAN demonstrates the
highest WD values, fluctuating between 0.6 and 0.8, indicating
a significant discrepancy between the real and synthetic data

distributions over several communication rounds. FL-CGAN
model displays better stability over the rounds, but noticeable
fluctuations were still shown, especially in the early rounds.
In contrast, the Wasserstein-based generative models in FL
perform better in generating synthetic data that was much
closer to the real data distribution. Both FL-WGAN-GP and
FL-WCGAN-GP achieved lower WD values across the com-
munication rounds, demonstrating their effectiveness.

Similarly, Fig. 7b shows WD performance of four GAN
variants in FL using FedAvg on the UNSW-NB15 dataset
over 1000 communication rounds. Basic FL-GAN has the
highest WD values, whereas the FL-CGAN consistently per-
forms better with lower WD values, despite some minor
fluctuations over rounds. Wasserstein GAN variants (FL-
WGAN & FL-WCGAN-GP) outperform other GAN variants
in producing high-quality synthetic data. Both FL-WGAN-GP
and FL-WCGAN-GP consistently exhibit lower WD values
throughout the communication rounds. Notably, FL-WCGAN-
GP achieved the lowest WD value, successfully generating
high-quality synthetic samples from the global generator for
the UNSW-NB15 dataset.

Similar WD performance was observed across generative
models for the CIC-IoT2023 (Fig. 7c) and CIC-IoMT2024
datasets (Fig. 7d). Among the federated generative models, the
FL-GAN model produced the least accurate synthetic data, as
indicated by its higher WD values. While the FL-CGAN model
showed improved performance, it showed noticeable fluctua-
tions in WD across communication rounds on both datasets.
In contrast, the Wasserstein-based models, FL-WGAN-GP and
FL-WCGAN-GP, consistently outperformed the other variants.
Notably, FL-WCGAN-GP achieved the lowest WD values and
demonstrated high stability, approaching zero, which high-
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(a) NSL KDD (b) UNSW-NB15 (c) CIC-IoT2023 (d) CIC IoMT2024

Fig. 7: Performance of federated generative models across communication rounds for the NSL-KDD, UNSW-NB15, CIC-
IoT2023, and CIC-IoMT2024 datasets.

(a) NSL KDD (b) UNSB-nb15 (c) CIC-IoT2023 (d) CIC IoMT2024

Fig. 8: 2-D visualization using PCA for real and synthetic data generated by FL-WCGAN-GP for all four datasets

(a) NSL KDD (b) UNSW-NB15 (c) CIC-IoT2023 (d) CIC IoMT2024

Fig. 9: 2-D visualization using t-SNE for real and synthetic data generated by FL-WCGAN-GP for all four datasets

lights its effectiveness in producing high-fidelity synthetic data
in federated settings.

Among the evaluated generative models (FL-GAN, FL-
CGAN, FL-WGAN-GP, and FL-WCGAN-GP), FL-WCGAN-
GP demonstrated superior performance in minimizing the
Wasserstein Distance (WD) across communication rounds for
all four datasets. The FL-WCGAN-GP model consistently
achieved the lowest WD values, close to zero, demonstrating
its effectiveness in generating high-quality synthetic data that
closely approximates the distribution of real data. Based on
these results, we selected the FL-WCGAN-GP global genera-
tive model to produce synthetic data on the server side. This
synthetic data was subsequently used as the reference input
for the post-hoc XAI method employed to explain the global
FL-DNN classifier.

We further investigated the differences between synthetic
data distribution generated by FL-WCGAN-GP global gener-
ative model and real data using two-dimensional representa-
tions from Principal Component Analysis (PCA) [58] and t-
distributed Stochastic Neighbor Embedding (t-SNE) [59]. PCA
is a statistical method used for linear dimensionality reduction.
It transforms high-dimensional data into a lower-dimensional
form while retaining the most important information. PCA
accomplishes this by identifying new axes, known as prin-
cipal components, along which the data exhibits the greatest
variance. These components are orthogonal and uncorrelated,
making PCA an effective tool for reducing dimensionality.
The original dimensionality was reduced from 41 features
(NSL-KDD), 45 features (UNSW-NB15), 39 features (CIC-
IoT2023), and 45 features (CIC-IoMT2024) to 2-D (dimen-
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(a) NSL-KDD (b) UNSW-NB15

(c) CIC-IoT2023 (d) CIC-IoMT2024

Fig. 10: Feature-pairwise Absolute differences in Pearson correlations between real and synthetic data generated by the FL-
WCGAN-GP model for the NSL-KDD, UNSW-NB15, CIC-IoT2023, and CIC-IoMT2024 datasets

sional) for visualization of PCA and t-SNE.
Fig. 8 illustrates the PCA projections for all four datasets

in 2-D. For each dataset, the synthetic data generated by
the global FL-WCGAN-GP generative model on the server
closely aligns with the distribution of the real test data in the
principal component space. FL-WCGAN-GP generative model
on the server side effectively captures the underlying variance
structure of the original datasets that overlap with synthetic
data, despite slight deviations in high-density areas. Overall,
the consistency in distributions demonstrates the FL-WCGAN-
GP’s ability to generate high-fidelity synthetic data.

On the other hand, t-SNE is a nonlinear dimensionality
reduction method designed for high-dimensional data visu-

alization. t-SNE is an effective method for visualizing high-
dimensional datasets in lower-dimensional spaces. It preserves
the structure of the data, ensuring that points which are
close together in the high-dimensional space remain close
in the low-dimensional representation. Fig. 9 displays the
t-SNE visualizations for four datasets, illustrating the 2-D
representations of both real data and synthetic data generated
by the FL-WCGAN-GP generative model variant. Across all
datasets, the synthetic samples show a high degree of overlap
with real test data, indicating that the FL-WCGAN-GP model
also preserves local structures in the data. While some minor
discrepancies can be observed, particularly at the boundaries
of dense clusters, the overall the generated synthetic is closely
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aligned with real test data.
To further evaluate the quality of the synthetic data gen-

erated by the selected global FL-WCGAN-GP model on
the server side in the FL setup, we analyzed the pairwise
feature relationships by comparing Pearson correlation values
between the real and synthetic data. Specifically, we computed
Pearson correlations on the real test data and the synthetic data
generated by FL-WCGAN-GP, then calculated the absolute
differences in bivariate correlations for each feature pair, as
shown in Fig. 10 across all four datasets. These absolute
difference values are bounded within the range [0, 1], where
values closer to zero indicate that the feature relationships in
the synthetic data are well-aligned with features in the real
data. Conversely, values farther from zero represent the larger
discrepancies between the two datasets.

Fig. 10a presents a heatmap that illustrates the absolute
differences in Pearson correlation coefficients between real and
synthetic data for the NSL-KDD dataset, which comprises 41
features. In this heatmap, most feature pairs show minimal
absolute differences, indicating that the server-side generator
from the FL-WCGAN-GP model effectively produces syn-
thetic data that closely resembles real data for each feature.
However, a few feature pairs exhibit moderately larger differ-
ences, implying that the synthetic data diverges slightly from
the real dataset. Similarly, Fig. 10b exhibits the absolute differ-
ences in correlation, as measured by the Pearson correlation
coefficient, between real and synthetic data for the UNSW-
NB15 dataset, which consists of 45 features. This correlation-
based evaluation indicates that most pairs of features exhibit
low absolute differences close to zero which suggests that
the FL-WCGAN-GP model successfully captures and retains
the key correlations present in the UNSW-NB15 dataset.
However, there were a few feature pairs that showed relatively
higher discrepancies, with correlation differences significantly
deviating from zero, which implies that the synthetic data for
these features was not aligned closely with the real data.

Fig. 10c & Fig. 10d illustrate the absolute differences
in Pearson correlations between real and synthetic data for
the CIC-IoT2023 and CIC-IoMT2024 datasets, containing 39
and 45 features, respectively. In both datasets, the heatmaps
show that the majority of feature pairs display low absolute
differences close to zero, demonstrating that the FL-WCGAN-
GP model effectively generates synthetic data that resembles
real test data. While a few feature pairs demonstrate moderate
deviations, indicating minimum discrepancies, the feature cor-
relation values in the synthetic data remain highly consistent
with the feature correlation values of the real test data.

Table II presents the classification performance of the global
FL-DNN model evaluated on both real and synthetic test data
generated by the FL-WCGAN-GP model across four datasets,
including NSL-KDD, UNSW-NB15, CIC-IoT2023, and CIC-
IoMT2024. The evaluation includes classification metrics such
as accuracy, precision, recall, F1-score, and FPR, where FPR
represents the proportion of benign samples incorrectly clas-
sified as malicious.

Across all datasets, the FL-DNN model achieves high
performance on real test data, with accuracy and F1-scores
consistently above 98%, and FPR values remaining low. No-

tably, the model achieves the highest performance on the CIC-
IoMT2024 dataset, with almost perfect accuracy and an F1-
score of 99.94%, as well as an extremely low FPR of 0.06%.
A similar strong performance was achieved for CIC-IoT2023
and UNSW-NB15 datasets as well.

When evaluated on synthetic data generated by the FL-
WCGAN-GP model, the FL-DNN classifier also demonstrates
strong performance in metrics. Although there is a slight
performance decrease compared to real data across all metrics,
the accuracy, precision, and F1-scores remain relatively high,
particularly for CIC-IoMT2024 and CIC-IoT2023, where the
F1-scores reach 98.86% and 95.90%, respectively. The false
positive rate on synthetic data is slightly higher than on real
data, demonstrating minor distributional differences between
real and synthetic-driven samples. However, the overall per-
formance of the synthetic data is sufficiently high quality
to support model evaluation and explainability without direct
access to real data from clients.

TABLE II: Performance of global FL-DNN model on Real
Data and Synthetic data generated by FL-WCGAN-GP gener-
ative model

Data Set Data-type Accuracy Precision Recall F1-score FPR

NSL-KDD Real 99.31% 99.50% 98.88% 99.18% 1.12%
Synthetic 96.32% 96.27% 93.11% 94.57% 6.89%

UNSW-nb15 Real 98.46% 98.45% 98.48% 98.46% 1.52%
Synthetic 95.12% 90.81% 96.10% 93.09% 3.90%

CiC-IoT2023 Real 99.24% 99.25% 99.24% 99.24% 0.76%
Synthetic 97.11% 97.20% 97.11% 95.90% 2.89%

CIC-IoMT2024 Real 99.94% 99.94% 99.94% 99.94% 0.06%
Synthetic 98.86% 98.88% 98.85% 98.86% 1.15%

C. Explaining global DNN model in FL using synthetic data

In FL-setup, explaining local models on the client side is
straightforward, as each client keeps its data locally, allowing
the use of post-hoc explainability methods like SHAP or
LIME. However, explaining the global model on the server is
challenging due to the unavailability of training data or refer-
ence input data, which post-hoc methods require. Direct access
to client data would violate the privacy principles of FL. To
overcome this, we propose using synthetic data generated by a
federated generative model as a privacy-preserving alternative
to real data. This synthetic data serves as an input reference
data for post-hoc XAI methods, such as LIME and SHAP, on
the server, allowing explainability for the global DNN model
without exposing client data.

To explain the global DNN model on the server side, we
utilized the SHAP explainer with synthetic data generated
by different federated generative models. SHAP calculates
the Shapley value, which indicates the influence of features
on model predictions. Specifically, SHAP was applied to the
global DNN model obtained at the 100th communication
round, using synthetic data as the input reference to compute
Shapley values. To assess whether synthetic data is sufficient
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(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Fig. 11: Heatmaps showing the magnitude of SHAP value differences between synthetic data-based and real data-based
explanations for each sample on NSL-KDD dataset.

(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Fig. 12: Heatmaps showing the magnitude of SHAP value differences between synthetic data-based and real data-based
explanations for each sample on the UNSW-NB15 dataset.

(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Fig. 13: Heatmaps showing the magnitude of SHAP value differences between synthetic data-based and real data-based
explanations for each sample on the CIC-IoT2023 dataset

(a) FL-GAN (b) FL-CGAN (c) FL-WGAN (d) FL-WCGAN

Fig. 14: Heatmaps showing the magnitude of SHAP value differences between synthetic data-based and real data-based
explanations for each sample on the CIC-IoMT dataset
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for constructing reliable explanations for a global DNN model,
the server accessed real client data to compute SHAP values
again on the same model. We then calculated the difference
∆ = Ereal − Esyn, where Ereal is the SHAP values derived
from real data-based explanations, Esyn is synthetic data-based
SHAP explanations.

Figs. 11–14 present SHAP delta matrices as heatmaps for
the NSL-KDD, UNSW-NB15, CIC-IoT2023, and CIC-IoMT
datasets. Each heatmap visualizes the difference (∆) in feature
attributions between synthetic data-based explanations and
real data-based explanations across all features. When the
difference closes to zero (∆ ≈ 0), this indicates a close
alignment between Ereal and Esyn, implying that synthetic data
can effectively approximate real data for explaining the global
DNN model. Conversely, when ∆ values deviate significantly
away from zero, it implies that the synthetic data is insufficient
to produce reliable explanations.

SHAP values difference (∆) shown in Figs. 11–14 reveal
significant variation in explanation fidelity across different
generative models in four datasets. FL-GAN, FL-CGAN, and
FL-WGAN-GP show varying levels of divergence between
Ereal and Esyn. In particular, FL-GAN shows the highest dis-
crepancy, with SHAP values in difference (∆) in the heatmaps
deviating substantially from zero, displaying noticeable vari-
ability in feature attributions, for all four datasets.

FL-CGAN and FL-WGAN-GP show moderate improve-
ments, with several features exhibiting smaller differences in
∆ closer to zero, which suggests a better alignment between
synthetic data-based SHAP values and real data-based SHAP
explanations. Nevertheless, considerable variation remains,
particularly in CIC-IoT2023 and CIC-IoMT2024, where fea-
ture attribution differences are still evident.

Among all the evaluated federated generative models, the
FL-WCGAN-GP generative model on the server side consis-
tently produced the smallest differences in ∆ , which are close
to zero in all four datasets. This implies that the synthetic
data-based SHAP explanations are closely aligned with expla-
nations derived from real data, highlighting FL-WCGAN-GP’s
effectiveness in generating high-fidelity synthetic data suitable
for server-side explainability of the global FL-DNN model.

Unlike GANs and WGANs, Conditional GAN models
(CGANs and WCGAN variants) take both a noise vector
and a class label as inputs. These Conditional GAN variant
generative models ensure that the generator produces synthetic
samples corresponding to the specified target label, which
is crucial for post-hoc explainability methods that rely on
class-specific synthetic data. To ensure reliable explanations
of the global DNN model, only high-fidelity synthetic samples
that closely resembled real data were used. Specifically, we
selected synthetic instances with minimal deviation from real
samples by computing pairwise Euclidean distance and apply-
ing a threshold of 0.1 to exclude outliers from the synthetic
data distribution.

To demonstrate the use case of SHAP for local explainabil-
ity of a global DNN model on a server, we randomly selected
a real data-based instance and a synthetic data-based instance
from the NSL-KDD dataset, both of which were classified as
“attack.” To obtain prediction probabilities for each class label,

(a) Real data point

(b) Synthetic data point

Fig. 15: SHAP local explanations for the global DNN model
on an attack instance from the NSL-KDD dataset, using (a) a
real data point and (b) a synthetic data point generated by the
FL-WCGAN-GP model.

(a) Real data point

(b) Synthetic data point

Fig. 16: SHAP local explanations for the global DNN model
on an attack instance from UNSW-nb15 dataset, using (a) a
real data point and (b) a synthetic data point generated by the
FL-WCGAN-GP model.

we applied the softmax activation function at the output layer
of the DNN model. This function is essential for interpreting
the model’s confidence, as it transforms output logits into a
normalized probability distribution over the class labels (attack
and benign).

Fig. 15 presents SHAP local explanation plots for a single
instance classified as an attack in the NSL-KDD dataset,
using both real and synthetic data to illustrate each feature’s
contribution to the prediction of the global DNN model on
the server. The plot illustrates the base value, with features
that positively influence the prediction represented in red and
those that negatively impact the predictions shown in blue.
The base value is the average of all prediction values. Each
strip in the plot illustrates how different features impact the
predicted value, either moving it closer to or further away
from the base value. Red strips indicate features that push the
predicted value higher, while blue strips show features that
push it lower. The width of each strip reflects the strength of
the feature’s contribution have wider strips indicate a greater
impact on the predicted value.

For example, Fig. 15a illustrates the SHAP local explanation
for a real data point of an attack class from the NSL-
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(a) Real data point

(b) Synthetic data point

Fig. 17: SHAP local explanations for the global DNN model
on an attack instance from CIC-IoT2023 dataset, using (a) a
real data point and (b) a synthetic data point generated by the
FL-WCGAN-GP model.

(a) Real Data point

(b) Synthetic Data point

Fig. 18: SHAP local explanations for the global DNN model
on an attack instance from the CIC-IoMT2024 dataset, using
(a) a real data point and (b) a synthetic data point generated
by the FL-WCGAN-GP model.

KDD dataset. The global DNN model predicts this instance
with a score of 1.0. The base value is 0.4988, and key
features such as user login status (logged_in), connection
status flag (flag), network service on the destination (service),
percentage of connections to the same host that have “REJ”
errors (dst_host_rerror_rate), and number of connections to
the same service as the current connection in the past 100
(dst_host_srv_count) positively contribute to the final predic-
tion by pushing the output away from the base value toward
the attack class.

Similarly, Fig. 15b presents the SHAP local explanation
for a synthetic data point of the attack class, generated
by the global FL-WCGAN-GP model. The predicted value
of the global DNN model using this synthetic data point
is 0.90. Notably, the same influential features (including
logged_in, flag, dst_host_rerror_rate, and dst_host_srv_count)
appear again, contributing positively to the attack prediction.
However, the feature number of bytes sent from source to
destination (src_bytes) negatively contributes to the prediction
in the synthetic case.

Fig. 16a presents the SHAP local explanation of the global
DNN model on the server for a real data point labeled as
an attack in the UNSW-NB15 dataset. Both the real and

synthetic data points have the same base value of 0.6386. In
this real instance, the most influential features that positively
contributes the model’s output toward the attack class (with
a prediction value of 1.0) include the source to destination
time-to-live value (sttl), number of connection records per
state based on TTL range (ct_state_ttl), source bits per second
(sload), and connection packet rate (rate). Conversely, the
feature number of connections sharing the same destination
IP and source port in a recent time window (ct_dst_sport_ltm)
contributes negatively to the prediction, slightly lowering the
prediction value.

Fig. 16b shows the SHAP explanation for a synthetic
data point generated by the FL-WCGAN-GP model, with a
prediction value of 0.84 from the global DNN model. As with
the real data point, the most influential features for predicting
the "attack" class label by the global DNN model include
the sttl, ct_state_ttl, rate, and sload. However, in this case,
the number of bytes sent from source to destination (sbytes)
negatively impacted the prediction.

Fig. 17 shows SHAP local explanations for the CIC IoT2023
dataset, using real data points and synthetic data points for
the global DNN Model, each having the same base value of
0.5002. In Fig. 17a, the global DNN model predicts real data
points as an attack class label with a prediction value of 1.
The most influential features contributing positively to this
prediction include the total number of packets in the flow
(Number), sum of packet lengths in the flow (Tot sum), use of
HTTPS protocol at the application layer (HTTPS), ACK flag
value (ack_flag_number), and the packet length (Tot size), all
of which push the model’s output toward the attack class.

In Fig. 17b, the SHAP explanation shows that the DNN
model has a slightly lower prediction value of 0.92 on the
synthetic data point generated by global FL-WCGAN-GP
generative model. The most influential features contributing
positively to the attack class prediction include the minimum
packet length in the flow (Min) and Number, followed by the
ACK flag value ,HTTPS, and the average packet length in the
flow (AVG). In contrast, the inter-arrival time between packets
(IAT) contributes negatively, slightly reducing the predictive
value of classifying the attack.

Fig. 18 illustrates SHAP local explanations for the global
DNN model based on an attack instance from the CIC-
IoMT2024 dataset, using a real data point shown in Fig. 18a
and a synthetic data point in Fig. 18b, both with a base value
of 0.5003. In both cases, the model correctly classifies the
instance as an attack, with prediction scores of 1.0 for the
real point and 0.95 for the synthetic data point. The most
influential features contributing positively to the attack class
prediction in both explanations include the count of RST flag
occurrences in packets (rst count), the average of incoming and
outgoing packet lengths in the window (Magnitude), the mean
of packet lengths within the aggregated packets (AVG), the
average packet size per window (Tot size), and the maximum
packet length in the window (Max).

We have also provided local explanations using the LIME
explainer. LIME method explains the rationale behind assign-
ing probabilities to each class by comparing the probability
values with the actual class of the data point. As with SHAP,
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to illustrate local explanations for the global DNN model using
LIME, we selected both a real data point and a synthetic data
point generated by the FL-WCGAN-GP model for all four
datasets.

Fig. 19 illustrates the local explanations generated by LIME
for the global DNN model on an attack instance from the NSL-
KDD dataset. In these visualizations, green bars represent
features that contribute positively toward predicting the data
point as belonging to the attack class, while red bars indicate
features that influence the prediction toward the benign class
label.

In Fig. 19a, LIME explanations of the global DNN
model predict the real data point as an attack with 100%
confidence. Features such as flag,logged_in, hot, service,
dst_host_rerror_rate, and rerror_rate are among the top con-
tributors, as shown by the green bars, indicating strong influ-
ence on the attack class prediction.

In Fig. 19b, the synthetic data point generated by the
FL-WCGAN-GP model yields a 90% prediction for the at-
tack class and 10% for the benign class. features shown
in green bar color in like flag, dst_host_srv_dff_host_rate ,
dst_host_count and so on contributes to predicting the class
attack, on other hand features shown in red bars like hot,
src_bytes, dst_host_rerror_rate, dst_host_same_srv_rate con-
tribute to predicting the Benign class label.

Similar to the LIME explanation for the global DNN model
on the NSL-KDD dataset, Fig.20, Fig. 21 and Fig. 22 present
LIME-based local explanations of global DNN model for
the UNSW-NB15, CIC-IoT2023, and CIC-IoMT2024 datasets,
respectively, using both real and synthetic data points labeled
as attacks. In these figures, features shown in green bars
contribute positively toward attack class prediction, while
features shown in red bars support the benign class prediction.
Overall, across both SHAP and LIME local explanations, the
top contributing features for synthetic data points generated by
the FL-WCGAN-GP model are mostly similar to the features
identified in explanations based on real data points.

(a) Real Data point (b) Synthetic Data point

Fig. 19: LIME local explanations for the global DNN model
on an attack instance from the NSL-KDD dataset, using (a) a
real data point and (b) a synthetic data point generated by the
FL-WCGAN-GP model.

We have also evaluated post hoc local explanations quantita-
tively using synthetic data for the global model, on the server,
using two criteria, faithfulness and robustness. To evaluate the

(a) Real data point (b) Synthetic data point

Fig. 20: LIME local explanations for the global DNN model
on an attack instance from UNSW-nb15 dataset, using (a) a
real data point and (b) a synthetic data point generated by the
FL-WCGAN-GP model.

(a) Real data point (b) Synthetic data point

Fig. 21: LIME local explanations for the global DNN model
on an attack instance from CIC-IoT2023 dataset, using (a) a
real data point and (b) a synthetic data point generated by the
FL-WCGAN-GP model.

faithfulness of post hoc local explanations, a High faithful-
ness correlation metric was used. High faithfulness metrics
measure how well the feature importance scores provided by
an explanation method (e.g., SHAP or LIME) align with the
XAI method’s actual influence on the model’s prediction. For
each feature, its value is replaced with a baseline value, and the
resulting change in the predicted class probability is measured.
Zero baseline values were used. The Pearson correlation coef-
ficient is then calculated between explainer feature importance
scores and the change in model output across all features. A
high correlation value indicates that the explanation accurately
reflects the model’s decision-making behavior, suggesting that
the explanation for a given local instance is highly faithful.
The DNN model prediction probabilities were obtained using
the Softmax activation function.

To evaluate robustness, we employed the max-sensitivity
metric. This metric measures the stability of the explanation
by analyzing whether nearby instances in the input space have
similar explanations. In this metric, nearest neighbors were
identified using Euclidean distance within a radius of r = 0.1.
A low sensitivity value implies that minor perturbations in
the input do not cause significant changes in the explanation,
thereby indicating that the explainer is robust.

Table III presents the quantitative evaluation of post-hoc
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(a) Real data point (b) Synthetic data point

Fig. 22: LIME local explanations for the global DNN model
on an attack instance from CIC-IoMT2024 dataset, using (a)
a real data point and (b) a synthetic data point generated by
the FL-WCGAN-GP model

TABLE III: Evaluation of SHAP and LIME local explanations
on synthetic data for the global DNN model on server using
Faithfulness (µf ) and Max Sensitivity (µs) metrics across four
datasets.

Dataset Metric LIME SHAP
µf 0.2087 ± 0.1731 0.6628 ± 0.3006NSL-KDD
µs 0.1723 ± 0.0509 0.0170 ± 0.0341
µf 0.2853 ± 0.3931 0.5949 ± 0.4048UNSW-nb15
µf 0.0389 ± 0.0107 0.0206 ± 0.0697
µf 0.3372 ± 0.3682 0.6113 ± 0.1802CIC-IoT2023
µs 0.1314 ± 0.0397 0.0512 ± 0.0455
µf 0.2635 ± 0.2165 0.7884 ± 0.3415CIC-IoT2024
µs 0.2052 ± 0.0560 0.0406 ± 0.0395

local explanations generated using SHAP and LIME for the
global DNN model on the server, based on synthetic data
points generated by a global generative FL-WCGAN-GP
model. For all four datasets, the mean and standard deviation
were computed over 1000 synthetic instances of post hoc local
explanations using two XAI metrics, high faithfulness (µf ) and
max sensitivity (µs). The better-performing XAI method for
each metric and dataset is highlighted in gray in the table.

For the NSL-KDD dataset, SHAP explanations demon-
strate significantly higher faithfulness compared to LIME.
SHAP achieves the highest mean faithfulness score of µf =
0.6628 ± 0.3006, indicating that the feature attributions pro-
duced by SHAP are closely aligned with the actual influence
of input features on global DNN model’s predictions. This
high correlation indicates that SHAP explanations are highly
faithful when applied to the global DNN model using synthetic
data, making them more accurate and trustworthy than LIME
explanations. In terms of robustness for NSL-KDD , SHAP
outperforms LIME. It yields the lowest max sensitivity value
of µs = 0.0170 ± 0.0341, which means its explanations are
more stable when small changes are made to the input data.
This low sensitivity suggests that SHAP generates consistent
explanations for nearby synthetic samples.

Similarly, in Table III, for the UNSW-NB15, CIC-IoT2023,
and CIC-IoMT2024 datasets, SHAP explanations consistently

outperform LIME, exhibiting greater fidelity and more ro-
bustness in local explanations for the global DNN model
using synthetic data generated by the global FL-WCGAN-GP
generative model.

We also present SHAP global feature importance for the
global DNN model on the server by comparing results using
real data and synthetic data generated by the FL-WCGAN-GP
model. This comparison helps to see how closely the feature
importance from synthetic data reflects that of the real data.
Fig. 23 shows SHAP-based global explanations for the NSL-
KDD dataset, using both real and synthetic data generated by
the global FL-WCGAN-GP generative model. Global feature
importance indicates how much each feature contributes to
the model’s predictions across multiple instances, capturing
its overall impact on the model’s output.

In Fig. 23a, the global feature importance for global DNN
model using real data accessed by server is shown, while
Fig. 23b shows the SHAP global feature importance based on
synthetic samples generated by the FL-WCGAN-GP model .
The most influential features in both the real-data-based and
synthetic-data-based global feature importance rankings are
quite similar. Top influential Features such as src_bytes, flag,
logged_in, and dst_host_rerror_rate exhibit the highest mean
SHAP values in both cases, suggesting that the synthetic data
effectively preserves the feature attribution behavior of global
DNN model observed with real data.

(a) Real data (b) Synthetic data

Fig. 23: SHAP global feature importance for the global DNN
model on the server using the NSL-KDD dataset, based on (a)
real data and (b) synthetic data generated by the FL-WCGAN-
GP model.

(a) Real Data (b) Synthetic data

Fig. 24: SHAP global feature importance for the global DNN
model on the server using the UNSW-nb15 dataset, based
on (a) real data and (b) synthetic data generated by the FL-
WCGAN-GP model.
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Similarly, Fig. 24 presents post hoc SHAP-based global
explanations for the global DNN model on the UNSW-NB15
dataset, using both real data and synthetic data generated
by the FL-WCGAN-GP generative model on the server. The
figure compares the global feature importance of influential
features obtained from real data (Fig. 24a) and synthetic
data (Fig. 24b) to assess whether synthetic data-based feature
importance can reliably approximate the global feature attri-
butions of real data. Most influential features are consistent
between the real data and synthetic data points, with ’sttl’ and
’ct_state_ttl’ appearing as the top influential features in the
global DNN model’s predictions.

Fig. 25 presents the SHAP-based global feature importance
for the global DNN model on the CIC-IoT2023 dataset.
It compares the top influential features obtained from real
data (see Fig. 25a) and synthetic data generated by the
FL-WCGAN-GP model (see Fig. 25b). The most influential
features, such as "Number," ack_flag_number", Number of
packets with syn flag set in the same flow (syn_count) &
HTTPS show strong alignment in both the SHAP mean values
from real data and mean SHAP values from synthetic data.

Similarly, Fig. 26 presents the SHAP global feature impor-
tance for the global DNN model trained on the CIC-IoMT2024
dataset, using both real data(Fig. 26a) and synthetic data
generated by the FL-WCGAN-GP model (Fig. 26b). Features
such as Magnitude, Variance of the packet lengths in the
window (Variance) , Max, AVG, Interval mean between the
current and previous packet in the window (IAT), TotSize,
and rst_count appear as the most influential in both the real-
data-based and synthetic-data-based explanations.

Overall, the top influential features identified in both real
data-based explanations (when the server has access to real
client data) and synthetic data-based explanations (generated
by the FL-WCGAN-GP model) are significantly consistent in
both post hoc local explanations and global explanations for
the global DNN model on the server. As a result, post-hoc
explanations derived from synthetic data closely approximate
the explanations obtained when the server accesses real data,
offering a privacy-preserving alternative to real data for provid-
ing explanations to a global DNN model on the server without
compromising privacy in FL.

(a) Real Data (b) Synthetic data

Fig. 25: SHAP global feature importance for the global DNN
model on the server using CIC-IoT2023 dataset, based on (a)
real data and (b) synthetic data generated by the FL-WCGAN-
GP model.

(a) Real Data (b) Synthetic data

Fig. 26: SHAP global feature importance for the global DNN
model on the server using CIC-IoMT2024 dataset, based on (a)
real data and (b) synthetic data generated by the FL-WCGAN-
GP model.

D. Explaining local DNN models in FL

In FL settings, post-hoc XAI methods can be directly
applied to local DNN models on the client side without
violating privacy constraints, as each client retains access to
its data. XAI methods can utilize the client’s training data as
reference or background data to generate explanations for local
DNN models on the client side. However, providing post-hoc
explanations for all client models becomes impractical as the
number of clients increases. Therefore, we report experimental
results for N=5 clients, as shown in Table IV. We observed
that the top features identified by the global DNN model were
mostly the same as features found in local client models. We
evaluated the post-hoc local explanations generated by LIME
and SHAP across all clients and all four datasets, using two
quantitative metrics, high faithfulness and max sensitivity. The
evaluation metrics were computed over the test data of each
client. As shown in Table IV, SHAP consistently performed
better than LIME in terms of both high faithfulness (µf )
and low max sensitivity (µs) across all datasets and clients
when explaining the local DNN models using its client data.
SHAP produces higher mean values µf , indicating that its
feature attributions are more strongly correlated with the actual
influence of features on the model’s predictions. Similarly, for
all datasets, SHAP produces lower max sensitivity mean values
for all client DNN models, demonstrating that it provides more
robust and consistent explanations for nearby data points in the
feature space.

VI. DISCUSSIONS

In this study, we proposed a privacy-preserving and trust-
worthy FL framework that integrates XAI to enable a transpar-
ent FL-based IDS through synthetic data-driven explainability.
The proposed framework is composed of two key components.
Firstly, a federated DNN model is designed for classifying
network traffic as either benign or malicious. Secondly, a
federated synthetic data generation module, which enables
the explanation of the global DNN model on the server side
without requiring access to real client data, thereby preserving
privacy while allowing for transparent DNN model decisions
in FL-based IDS deployments. To evaluate the effectiveness
of our approach, we conducted experiments using four net-
work traffic datasets, 1) NSL-KDD,2) UNSW-NB15, 3)CIC-
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TABLE IV: Evaluation of SHAP and LIME local explanations on real data for local DNN models on client-side using
Faithfulness (µf ) and Max Sensitivity (µs) metrics across four datasets

Clients C1 C2 C3 C4 C5
Data Set

Metric/Explainer LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP

µf 0.19 ± 0.15 0.61 ± 0.30 0.23 ± 0.18 0.69 ± 0.33 0.23 ± 0.22 0.66 ± 0.34 0.20 ± 0.16 0.66 ± 0.28 0.19 ± 0.15 0.61 ± 0.29
NSL-KDD

µs 0.18 ± 0.05 0.02 ± 0.05 0.17 ± 0.05 0.02 ± 0.04 0.17 ± 0.05 0.02 ± 0.03 0.17 ± 0.05 0.02 ± 0.03 0.18 ± 0.05 0.02 ± 0.03

µf 0.26 ± 0.35 0.64 ± 0.39 0.24 ± 0.38 0.65 ± 0.41 0.24 ± 0.35 0.62 ± 0.42 0.24 ± 0.32 0.63 ± 0.40 0.23 ± 0.39 0.63 ± 0.41
UNSW-nb15

µs 0.04 ± 0.01 0.03 ± 0.07 0.04 ± 0.01 0.03 ± 0.07 0.04 ± 0.01 0.03 ± 0.06 0.04 ± 0.01 0.04 ± 0.07 0.04 ± 0.01 0.03 ± 0.06

µf 0.25 ± 0.32 0.57 ± 0.20 0.24 ± 0.34 0.71 ± 0.21 0.21 ± 0.30 0.71 ± 0.19 0.33 ± 0.39 0.76 ± 0.22 0.22 ± 0.31 0.73 ± 0.18
CIC-IoT2023

µs 0.13 ± 0.05 0.04 ± 0.04 0.13 ± 0.04 0.04 ± 0.04 0.15 ± 0.05 0.05 ± 0.04 0.14 ± 0.04 0.04 ± 0.05 0.14 ± 0.05 0.05 ± 0.05

µf 0.23 ± 0.22 0.80 ± 0.37 0.14 ± 0.18 0.88 ± 0.32 0.16 ± 0.22 0.84 ± 0.36 0.22 ± 0.24 0.89 ± 0.39 0.23 ± 0.23 0.80 ± 0.38
CIC-IoMT2024

µs 0.19 ± 0.06 0.03 ± 0.04 0.19 ± 0.05 0.03 ± 0.03 0.19 ± 0.05 0.03 ± 0.03 0.20 ± 0.06 0.03 ± 0.03 0.19 ± 0.05 0.02 ± 0.02

IoT2023, and 4) CIC-IoMT2024. Each dataset contains various
statistical features and types of cyberattacks relevant to real-
world IoT environments. The following discussion is based on
the experimental findings across these four datasets.

TABLE V: Hyper Parameters used for training Federated DNN
model

Hyper Parameter Value
Hidden Layers 5
Input size d
Output size C=2
Activation SeLU
Learning Rate 0.001
Optimizer Adam
Batch Size 256
Epochs per client 100

In this study, we developed an HFL-based DNN model
using the FedAvg algorithm to perform binary classification of
network traffic as either benign or malicious. To simulate real-
world data heterogeneity, we employed a Dirichlet distribution
to create non-IID data partitions across clients. The hyperpa-
rameters used for training the FL-DNN model across all four
datasets are shown in Table V. The input layer size d, which
corresponds to the number of features in each dataset, varied
depending on the dataset. Specifically, d = 41 for NSL-KDD,
d = 46 for UNSW-NB15, d = 45 for CIC-IoMT2024, and
d = 39 for CIC-IoT2023. The model architecture consisted
of five hidden layers, and the output layer (C = 2) was
configured for binary classification. We used the SeLU (Scaled
Exponential Linear Unit) activation function in the hidden
layers, along with the Adam optimizer, a batch size (B) of
256, and 100 training epochs (e) per client. Across all four
datasets, both the global and local DNN models achieved
performance above 98% in terms of accuracy, precision, recall,
and F1-score, demonstrating the effectiveness of the proposed
model for detecting malicious network traffic in federated edge
environments.

A key challenge in applying post-hoc explainability methods
such as SHAP and LIME in FL is their dependence on
background data taken from the training distribution. Since
FL prevents server-side access to client data, using these XAI
methods directly raises privacy concerns and violates the core
principles of the FL framework. To address this issue, we
propose a synthetic data-driven explainability approach for
interpreting the global model on the server. Instead of access-

ing real client data, we train federated generative models to
produce synthetic samples, which serve as input references for
SHAP and LIME, allowing privacy-preserving interpretation
of the global DNN model. To generate synthetic data for
this purpose, we implemented several federated generative
model variants, including FL-GAN, FL-CGAN, FL-WGAN-
GP, and FL-WCGAN-GP using the FedAvg algorithm in HFL
settings under non-IID conditions. The training setup and
hyperparameters are summarized in Table VI. All models
consisted of five fully connected hidden layers and employed
either ReLU or Sigmoid activation functions, depending on the
variant. The input and output dimensions were set to match
the number of features ddd in each dataset, excluding the
class label. For the conditional variants (FL-CGAN and FL-
WCGAN-GP), class labels were embedded and appended to
the input of both the generator and discriminator to enable
class-conditional data generation. We used the Adam optimizer
with β1 = 0.5 and β2 = 0.9, and each client trained its local
model for e = 500 with a B = 256. In the conditional
generative variant models, the discriminator received both
feature vectors and their corresponding labels, allowing it to
better distinguish class-specific patterns in the generated data.

TABLE VI: Hyperparameters used for training federated gen-
erative model variants (GAN, CGAN, WGAN, WCGAN)

Hyper parameter value
Hidden Layers 5

Activation function ReLU/Sigmoid
Input/Output size d features

Conditional Input
Label embedding used in

CGAN and WCGAN-GP (C = 2)
Optimizer Adam (β1 = 0.5, β2 = 0.9)
Batch Size 256

Epochs per client 500

Fig. 27 illustrates the training latency of the generative
models, measured as the average communication time per
round. Training latency refers to the time required for clients
and the server to complete one round of training. Among
the models, FL-WCGAN-GP demonstrates the highest latency,
followed by FL-WGAN-GP, FL-CGAN, and FL-GAN across
all four datasets. Notably, FL-GAN shows the lowest latency.
In contrast, FL-WCGAN-GP has a high latency, which is
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(a) NSL-KDD (b) UNSW-NB15 (c) CIC-IoMT (d) CIC-IoT2023

Fig. 27: Training latency (communication time per round) of FL with GAN, CGAN, WGAN-GP, and WCGAN-GP models
across four datasets: NSL-KDD, UNSW-NB15, CIC-IoMT, and CIC-IoT2023.

primarily due to the computational complexity introduced by
the Wasserstein loss and gradient penalty.

To evaluate the quality of the generated synthetic data, we
used the Wasserstein distance (WD). Among the federated
generative models, FL-WCGAN-GP consistently achieved the
lowest WD across all datasets, indicating high fidelity to the
original data distribution. As a result, FL-WCGAN-GP was
selected to generate synthetic samples on the server for post-
hoc explainability. To further assess synthetic data quality, we
used Pearson correlation to identify feature-wise deviations
from real data, while PCA and t-SNE were applied to visualize
distributional differences between synthetic and real samples.
When tested on the trained global DNN model, the synthetic
data yielded classification accuracies of 96.32% on NSL-
KDD, 95.12% on UNSW-NB15, 97.11% on CIC-IoT2023, and
98.86% on CIC-IoMT2024.

To explain the global DNN model on the server, SHAP and
LIME were applied using synthetic data generated by the FL-
WCGAN-GP model. To assess the adequacy of these expla-
nations, we compared those derived from synthetic data with
SHAP explanations generated using real data (available to the
server for evaluation only). The results showed that synthetic
data-driven SHAP explanations closely approximated with
SHAP explanations based on real data, indicating that the pro-
posed approach enables effective model explainability without
compromising client privacy. Moreover, the top influential
features identified using synthetic data were consistent with
those from real data, validating the reliability of the synthetic
data-driven explanations. In future work, we plan to extend this
analysis to systematically evaluate global explanations across
the federated client population.

We further evaluated the post-hoc local explanations gen-
erated using synthetic data for the global DNN model by
applying SHAP and LIME. The evaluation considered two key
criteria. The first was faithfulness, measured through correla-
tion with the model output, and the second was robustness,
assessed using the max sensitivity metric. The results show
that SHAP provided more faithful and robust explanations
compared to LIME for global DNN model based on synthetic
data. Similarly, when local explanations were generated using
real data for individual client-side DNN models, SHAP again
outperformed LIME in terms of both faithfulness and robust-
ness, highlighting its reliability in interpreting FL-based IDS

models and suggesting that security analysts can have a degree
of trust in its explanations. Overall, the results show that
synthetic data is an effective, privacy-preserving alternative to
real client data for explaining FL-based IDS models, especially
black-box models like DNNs.

IoT applications operate in multi-vendor ecosystems, where
IoT devices or services (e.g., remote patient monitoring)
deployed to the clients are managed by different vendors
than the underlying IT resources, such as computers or home
modem routers. It poses a significant risk for vendors to deploy
an intrusion detection sensor (e.g., a network sensor at the
modem router in our application), collect all data, and relay
it to a central location, as this data can contain sensitive
medical information that is managed by other vendors. In such
situations, rigorous data filtering should be applied to remove
information from third-party devices to protect privacy, which
is practically difficult to do effectively. Our work primarily
targets edge devices with greater computational capabilities,
rather than on ultra-constrained IoT nodes.

However, in FL settings, models deployed locally do not
need to share the data with the vendor, instead, they share
the model parameters that only lead to the intrusion detection
decision without leaking additional information. On the other
side, the security experts working at the vendor side still
need insights into whether the model works as intended and
understand the intrusion details. The explanations identified
by our proposed method under the FL setting are instrumental
in addressing these requirements while protecting privacy,
especially in multi-vendor environments.

A. Limitations and Threats to validity

1) In this study, we use federated synthetic data to explain
the global FL-DNN model without accessing real client
data. While our results show that synthetic data can
approximate real data for generating explanations, this
may not always be the case in real-world scenarios. If
synthetic data doesn’t accurately capture the statistical
properties and feature distributions of real data, the
resulting explanations could differ significantly from
Explanations based on actual client data, potentially
limiting the reliability of post-hoc explainability meth-
ods. Conversely, if the Generator replicates client dis-
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tributions too closely, synthetic data may leak feature
distributions that enable inference attacks.

2) Training high-quality synthetic data in a federated
setting is computationally intensive. Wasserstein-based
GAN variants like FL-WGAN-GP and FL-WCGAN-
GP require longer training times due to additional con-
straints such as weight clipping and gradient penalty
regularization.

3) Our study is vulnerable to inference attacks that can
expose sensitive client model information due to the
absence of differential privacy [60], secure multi-party
computation, and homomorphic encryption [61]. SHAP
values, computed post-hoc, are also susceptible to ad-
versarial manipulation [62], which can mislead security
analysts. In future work, we aim to incorporate encryp-
tion techniques and adversarial training to enhance data
privacy in FL and improve the reliability of SHAP-based
explanations.

4) In this study, we assumed that the data features used
by IDS models are understandable to security experts.
Therefore, we did not evaluate how specific feature
attributions, particularly in global explanations, influ-
ence decision-making in practice. Our main goal was to
develop and evaluate a federated explainable framework
for IDS, rather than examine analyst interactions or
incident-handling workflows in SOC. While we recog-
nize the importance of these aspects, they were outside
the scope of this study. In the future, we plan to involve
SOC analysts in user studies to determine if synthetic
data-driven explanations offer actionable insights for
cybersecurity operations.

VII. CONCLUSION

In this study, we propose a federated synthetic data-driven
explainability framework for FL-based IDS. Our approach ad-
dresses the challenge of explaining complex DL models while
preserving client data privacy. By using FL-based generative
models to generate high-quality synthetic data as reference in-
put for a post-hoc XAI method, enabling the server-side model
to be explained without exposing sensitive client information.
We developed a privacy-preserving FL-based IDS using an
FL-DNN classifier trained with the FedAvg algorithm within
a HFL framework. The model achieved high accuracy, preci-
sion, recall, and F1-score in detecting malicious and benign
network traffic across the NSL-KDD, UNSW-NB15, CIC-
IoT2023, and CIC-IoMT2024 datasets, demonstrating both
rapid convergence and stable performance while preserving
data privacy.

In our study, we employed several generative model variants
for federated synthetic data generation, including FL GAN, FL
CGAN, FL WGAN GP, and FL WCGAN GP, each trained
using the FedAvg algorithm. Among these, FL WCGAN GP
consistently outperformed the others by achieving the lowest
Wasserstein Distance, indicating a high similarity between the
generated synthetic data and the real client data. We used
the synthetic data generated by the global FL WCGAN GP
model to explain the global FL DNN model using a post-hoc
explainer, specifically LIME and SHAP.

We quantitatively evaluated LIME and SHAP post-hoc
local explanations based on two key metrics: faithfulness and
robustness. The results show that SHAP provides more faithful
and robust explanations than LIME for both client-side models
using real data and server-side models using synthetic data,
supporting privacy-preserving explainability in FL-based IDS.
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Abstract—The proliferation of Internet of Things (IoT) devices
has increased the attack surface of networks, necessitating robust
and adaptive security mechanisms such as machine learning
(ML)-based intrusion detection systems (IDS). However, the effec-
tiveness of these systems can degrade over time due to concept
drift, where patterns in data evolve as attackers develop new
techniques. This study investigates the role of feature selection
in enhancing the long-term performance of non-stationary IDS
models in IoT networks. Specifically, we apply a filter-based
feature reduction technique, Mutual Information, in conjunction
with XGBoost models, to evaluate two learning paradigms i.e.
static (trained once) and dynamic (periodically retrained). Using
the CICIoMT2024 dataset, which includes 18 attack variants
across five major categories, we conduct multiclass classification
to provide a granular analysis of security threats. Our results
demonstrate how selected features perform under different drift
conditions and highlight critical network features for evolving
attack detection. The study offers new insights into the interplay
between feature selection and model adaptability in dynamic IoT
environments, aiming to inform the development of more resilient
IDS solutions.

Index Terms—Concept Drift, Non-stationary Models, Feature
Selection, Machine Learning, Intrusion Detection System

I. INTRODUCTION

The rapid growth of the IoT has led to an increase in
connected devices, making it a vital part of daily life while
simultaneously heightening security risks. IoT security is
critical, given the potential for financial damage or threats to
human safety [1]. IDS play a key role in monitoring malicious
activities and, thus, ensuring the reliability and security of
these networks. ML has been applied to IDS [2], including
in IoT networks, as it can identify complex attack patterns
and adapt to evolving threats without relying on the creation
of specific rules.

ML is widely incorporated into cybersecurity for tasks such
as identifying malware, detecting intrusions, detecting online
abuse, and recognizing malicious events. However, ML models
in real-world applications can encounter ”concept drift”, which
means the patterns they learned from data change over time
[3]. This can occur because the underlying data evolves or the
initial data used for training were unstable or poorly defined.
Furthermore, as cyber threats continuously evolve and new

attack vectors emerge in cyberspace due to the continuous
attack-defense game between attackers and defenders, it be-
comes essential to employ non-stationary IDS models that can
be regularly retrained or updated to maintain robust detection
performance over time. However, IoT devices have limited
computational resources, making it essential to reduce data
dimensions and select the most relevant features to ensure that
ML-based IDS operates efficiently without overburdening the
network.

There is a line of research on feature selection for stationary
ML-based intrusion detection in IoT devices [4]–[6]. Although
handling concept drift through non-stationary models has been
studied in network intrusion detection [7], the impact of feature
selection on the long-term performance of these models has
not been elaborated. It is essential to understand how feature
selection operates in the context of continuous threat evolution
and identify the most effective features over time.

In this paper, we apply a filter-based feature selection
method to non-stationary intrusion detection model alterna-
tives to understand their long-term performance with varying
numbers of feature sets and explore how network features
evolve under different drift conditions. We induced two typical
non-stationary models, namely static and dynamic, for the
intrusion detection task in IoT networks. The static model
represents the case where a model is trained in the first time
interval and is not updated throughout the whole timeline,
whereas the dynamic model is updated in each time interval
with the newly introduced attack types.

We utilized a recent and well-developed dataset in IoT
networks, CICIoMT2024 [8], for training and testing our
models. In our previous work [6], filter-based methods were
benchmarked in a stationary setting using the same dataset.
Since XGBoost and mutual information demonstrated strong
performance in that study, we adopt them in this work as the
classifier and feature selection method, respectively.

We create an evolution timeline and various drift sce-
narios using benign samples and attack variants from CI-
CIoMT2024. We evaluate the static and dynamic models in
terms of accuracy score by focusing on multiclassification,
categorizing traffic into specific attack categories. We consider



that multiclass classification enables a granular understanding
about the security threats and guides the security incident
handling experts better about deciding on the relevant de-
fensive actions. The CICIoMT2024 dataset includes attacks
in five main categories: DDoS, DoS, Reconnaissance, MQTT
and Spoofing (i.e., additionally dataset has benign samples).
In each category, there are attack variants (e.g., DoS-TCP,
DoS-UDP, and DoS-ICMP in the DoS category), totaling 18
attack variants. The CICIoMT2024 dataset uses network flow
features extracted from benign and malicious traffic. This
study examines key network features within the datasets that
are essential for classifying attacks in a non-stationary model
setting. Our multiclass model differentiates between the main
categories, while new attack variants can emerge over time.

By highlighting critical features across IoT datasets, this
study contributes to more robust, feature-driven methods for
evolving attack variants in IoT environments, ultimately aim-
ing to strengthen the security and reliability of these networks.
Our work compares static and dynamic non-stationary models
under drift scenarios and analyzes feature selection dynamics
in the dynamic setting. We put a particular emphasis on feature
selection in multi-class classification settings, which has not
been elaborated on well in the literature.

The rest of the paper is organized as follows. Section II
reviews the related work and gives background information
about impact of feature selection in non-stationary models.
Section III presents the methodology used in our paper. In
Section IV , we show our results and discuss them in Section
V. Finally, Section VI concludes the paper and discusses future
directions.

II. RELATED WORK

Most learning models are static and assume that the input
data remains stable over time, a concept known as stationary
data [9]. However, a challenging aspect of real-world systems
is their time-varying behaviour, as many problem domains
involve non-stationary data distributions. Addressing Concept
Drift and Feature Drift in IDS is essential for creating resilient
and adaptive security systems that can effectively respond to
the evolving landscape of cyber threats.

A paper [10] presents a feature selection approach in a
stationary model using Mutual Information (MI) and XGBoost
to optimize performance and reduce computational costs in
IoMT networks. A mathematical intersection was applied to
efficiently extract common features, enabling effective ID
during data transfer and enhancing healthcare data analysis
at the network’s edge. Evaluated on the CICIDS2017 dataset
[11], the model achieved 98.79% accuracy with a low false
alarm rate of 0.007 FAR, focusing on binary classification
for intrusion detection. In a paper [4], the authors proposed
a feature selection technique that primarily uses filter and
wrapper methods for the statistical ML detection of IoT botnet
attacks. They reported higher detection rates with a smaller set
of selected features. Both multi-class and binary classification
models were evaluated on the N-BaIoT and MedBIoT datasets.

The wrapper models achieved better performance with a lim-
ited number of features. A paper [12] presented a lightweight
method for the early detection of IoT botnets, utilizing feature
selection prior to training a one-class KNN classifier. This
approach achieved an F1-score ranging from 98% to 99%
across various IoT botnet datasets. Some studies have also
applied static model-based feature selection methods prior to
using explainable techniques in IoT botnet detection prob-
lems [13]. There are numerous methodologies in the literature
regarding concept drift-aware IDS methods and models aimed
at identifying attacks in streamed data. A paper [14] introduced
a method for detecting concept drift and DDoS attacks in net-
works, aimed at enhancing data representation and improving
the prediction of cybersecurity threats. It employs a secure
adaptive windowing and website data authentication protocol
(SAW WDA) to analyze the network’s intrusion detection
capabilities. A study [7] discussed a drift detection mechanism
that employs Principal Component Analysis (PCA) to monitor
changes in feature variance within intrusion data streams.
Concept drift occurs when the relationship between input and
output data in a ML model changes over time.

A study [15] proposed a drift detection technique us-
ing principal component analysis (PCA) to monitor variance
changes in intrusion detection data streams and an online
outlier detection method for identifying deviations from both
historical and nearby data points. To tackle these drifts, an
online deep neural network (DNN) was developed, which
dynamically adjusts its hidden layer sizes using a Hedge
weighting mechanism. This allows the model to adapt to
new intrusion data continuously. Experiments on an IoT-
based intrusion detection dataset showed that this approach
stabilizes performance for both training and testing, compared
to conventional static DNN models. A paper [16] introduces
a framework designed to adapt deep learning models for use
in online IDS that can handle dynamic attack patterns and
benign traffic variations. This framework integrates continuous
deep anomaly detection with federated learning to address
traffic concept drift, which includes emerging attack patterns
and evolving benign behavior. Additionally, it incorporates
sequential packet labeling for analyzing network flows, provid-
ing updated probabilities of attack through continuous packet
analysis. A paper [17] presented a detailed network analytics
model for adapting to concept drift in industrial IoT systems.
This model encompasses dynamic feature selection, dynamic
model training, and a probability-based ensemble approach.
The study [18] introduces CLEAR (Concept Learning for In-
trusion Event Aggregation ), a system that aggregates intrusion
events in real-time using concept learning. Without requiring
pre-existing data, CLEAR dynamically generates and refines
’concepts’ or clusters of statistically similar alerts as they arise.
These evolving concepts then help quickly and accurately
cluster new alerts.

While prior work has addressed feature selection or concept
drift separately, our study examines their combined impact in a
non-stationary, multiclass IoT intrusion detection setting. We
compare static and dynamic adaptation strategies and track



feature relevance over time, offering new insights into long-
term IDS performance.

III. METHODOLOGY

Figure 1: Methodology

This methodology provides a comprehensive framework
for understanding model robustness and adaptability in non-
stationary environments under evolving attack landscapes
(Concept Drift), while also considering the role of feature
selection. We applied a ML workflow that includes dataset
preprocessing, concept drift scenario design, feature selec-
tion, and static and dynamic model training and testing, as
illustrated in Fig 1. In the static model setup, the model
is trained only once on the initial training set at t0 and
subsequently tested across each time window (t0, . . . , tn).
In contrast, for dynamic models, before testing at each time
window ti (t2, . . . , tn), the model is retrained at every step
using the updated training set from the previous window, i.e.,
ti−1. In the data pre-processing stage, we eliminated the the
null values, converted the string values to numerical values,
labeled the files, and constructed train and test sets. After
pre-processing the dataset, we designed various attack drift
scenarios. We applied filter-based feature selection methods,
specifically Mutual Information, to prioritize features at each
time window. In the final stage, we trained and tested the ML
algorithm (XGBoost) both statically and dynamically, using
varying numbers of top-ranked features selected based on
Mutual Information.

A. CICIoMT2024 Dataset

We apply the Concept Drift analysis to the CICIoMTDataset
2024 dataset [8], which focus on Internet of Medical Things
devices (IoMT) in the healthcare sector. This is a rich dataset
(Multiple attacks variants), designed to assess and improve
the cybersecurity of IoMT devices through IDS. The dataset
encompasses traffic generated by 40 devices (25 real and 15
simulated) across various protocols, including Wi-Fi, MQTT,
and Bluetooth. The authors simulated 18 different cyberat-
tacks, grouped into five main categories: DDoS, DoS, Recon-
naissance, MQTT-specific attacks, and Spoofing as shown in

Fig 2. Table I further illustrate the attacks sub categories in
each major attack. The DDoS and DoS categories include
traditional flooding attacks such as SYN, TCP, UDP, and
ICMP floods aimed at overwhelming device resources. Recon-
naissance attacks like Port Scans, OS Scans, Ping Sweeps, and
Vulnerability Scans were performed to simulate information-
gathering phases. MQTT-specific attacks involved Connect
and Publish Floods, as well as sending malformed MQTT
packets to disrupt broker communication. Spoofing attacks,
such as ARP spoofing, targeted network layer vulnerabilities to
manipulate or intercept device communications. The original
dataset comprises 45 total features which including header and
flow metadata, TCP/IP flag-related indicators, protocol types,
statistical metrics,and other network-related characteristics.

Figure 2: Pie chart for attacks distribution in CICIoMT2024
dataset

Table I: Attack categories and attack variants in each category

Attack Categories Attack Variants

MQTT

MQTT-Malformed Data
MQTT-DoS-Connect Flood
MQTT-DoS-Publish Flood
MQTT-DDoS-Publish Flood
MQTT-DDoS-Connect Flood

DoS
TCP IP-DoS-TCP
TCP IP-DoS-ICMP
TCP IP-DoS-UDP

DDoS

TCP IP-DDoS-UDP
TCP IP-DDoS-ICMP
TCP IP-DDoS-SYN
TCP IP-DDoS-TCP

Recon

Recon-Port Scan
Recon-OS Scan
Recon-VulScan
Recon-Ping Sweep

B. Constructing Drift Scenarios

The evaluation of our framework is conducted across mul-
tiple scenarios, each simulating a different drift pattern over
a sequence of time windows. In order to construct different
scenarios, we illustrate the impact of introducing different
attacks in the CICIoMT2024 dataset. For this purpose, we
train an XGBoost ,the best model in ML based intrusion
detection in the IoMT Networks [6], on six sub-attack cat-
egories, ensuring representation for each main attack category



(i.e., MQTT, DoS, DDoS, Recon, and Spoofing) . Then, we
introduce the remaining subcategories (Table I) of a particular
attack at time window tn and test the model. Time windows
are defined based on the staged introduction of new attack
subcategories, rather than fixed time or size intervals. In order
to understand to what extend the main attack categories create
performance drops, we created a non-stationary model that is
initially trained with some sample attack variants and then, at
each time interval, all remaining attack variants of a specific
category are introduced. The initial model is not updated in the
subsequent intervals. The performance of this model is shown
in Fig 3. DDoS and Recon exhibit a significant performance
drop; therefore, we consider them highly impactful when
constructing drift scenarios. We designed three experimental
scenarios (Table II) based on a six-class classification task.

• In Scenario 1 (Gradual Drifts), new sub-attack types are
progressively introduced across time windows to simulate
a gradual concept drift.

• In Scenario 2 (Abrupt Drifts), large and sudden drifts are
simulated by introducing multiple sub-attack categories
simultaneously, creating an abrupt change in the data
distribution.

• In Scenario 3 (Mixed Drifts), a combination of gradual
and hard drifts is introduced, involving varying intensities
and frequencies of new attack types over time. Each
scenario is crafted to assess how well static and dynamic
models adapt to evolving threats by continuously moni-
toring performance across successive time windows.

Figure 3: Analysing drift happened in accuracy and f1 score
of XGBoost Model due to introduction of different attack sub
categories. See Table (Table I)

C. Feature Selection

Irrelevant features for classification problems are reduced
to decrease the running time and improve the classification
accuracy of the dynamic models ML algorithms in handling
concept drift. Feature selection methods are divided into three
categories: wrapper, filter, and embedded techniques [19].
Wrapper methods iteratively evaluate subsets of features using
a ML algorithm, but they can be computationally intensive
for high-dimensional data. In contrast, filter methods rank

features independently of the learning algorithm, which may
result in suboptimal selections due to the lack of guidance.
To reduce computational complexity, we opted for filter-
based methods, which are highly efficient and well-suited for
resource-constrained IoMT environments. As shown in our
previous study [6], Mutual Information was the most effective
filter method and is therefore used in our non-stationary exper-
iments. Throughout the scenarios, feature subsets of varying
sizes (3, 5, 10, and 45) are used to assess the impact of feature
selection under drift condition, and allow us to assess how
much feature reduction is tolerable in dynamic settings.

1) Mutual Information: Mutual Information (MI) measures
the degree of dependency between two variables [20]. For
continuous variables, MI is defined as:

I(X,Y ) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy (1)

MI is given by the following equation for discrete variables:

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(2)

Here, p(x, y) is the joint probability, and p(x), p(y) are the
marginal probabilities.

D. Training and Testing

To evaluate the effectiveness of the dynamic non-stationary
model in handling various types of concept drift, we train and
test two types of models (Static and Dynamic) on a six-class
classification task using XGBoost with key hyperparameters
including random search over 10 iterations with 5-fold cross-
validation, and model performance was evaluated based on
accuracy, as it closely aligns with F1-score, precision, and
recall in our balanced test setting.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Here, TP and TN denote the number of true positives and
true negatives, respectively, while FP and FN denote the
number of false positives and false negatives.

In each scenario (Table II), both the static and dynamic
models are initially trained on representative sub-attacks at t0
from each major attack category (Table I), establishing a stable
baseline. As the timeline progresses, new sub-attack types are
introduced into the testing datasets at ti to simulate different
drift intensities, including gradual, abrupt, and mixed drifts .
The dynamic model is retrained at each time window using
the previously tested dataset ti−1 as the new training set, and
evaluated on the current dataset ti, while the static model
is evaluated on the drifted datasets (t0, . . . , tn) without any
retraining. The training and testing sets consist of 900 ran-
domly sampled instances per class using stratified sampling.
This setup ensures a consistent comparison between the two
models’ ability to adapt to evolving attacks. Throughout the
scenarios, accuracy is monitored across time windows, and
feature subsets of varying sizes (3, 5, 10, and 45) are used to
assess the impact of feature selection under drift conditions.



Table II: Training and Testing sub-attack sets in various scenarios. ”↓” shows the first appearance of a sub-attack category at
time window ti.

Attack Sub-categories Scenario 1 Scenario 2 Scenario 3

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t0 t1 t2 t3 t4 t5

MQTT-Malformed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DoS-TCP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DDoS-SYN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Recon-Ping sweep ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spoofing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Benign ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MQTT-DoS Connect ✓↓ ✓ ✓ ✓ ✓ ✓↓ ✓ ✓ ✓ ✓↓ ✓ ✓ ✓

MQTT-DoS Publish ✓↓ ✓ ✓ ✓ ✓ ✓↓ ✓ ✓ ✓ ✓↓ ✓ ✓ ✓

MQTT-DDoS Publish ✓↓ ✓ ✓ ✓ ✓ ✓↓ ✓ ✓ ✓ ✓↓ ✓

MQTT-DDoS Connect ✓↓ ✓ ✓ ✓ ✓↓ ✓

DoS-ICMP ✓↓ ✓ ✓ ✓ ✓↓ ✓ ✓↓ ✓ ✓ ✓

DoS-SYN ✓↓ ✓ ✓ ✓ ✓↓ ✓ ✓↓ ✓ ✓ ✓

DoS-UDP ✓↓ ✓ ✓ ✓ ✓↓ ✓ ✓↓ ✓ ✓ ✓

DDoS-ICMP ✓↓ ✓ ✓ ✓↓ ✓ ✓ ✓↓ ✓ ✓ ✓

DDoS-UDP ✓↓ ✓ ✓ ✓↓ ✓ ✓ ✓↓ ✓ ✓ ✓

DDoS-TCP ✓↓ ✓ ✓ ✓↓ ✓ ✓ ✓↓ ✓ ✓ ✓

Recon-VulScan ✓↓ ✓ ✓↓ ✓ ✓ ✓↓ ✓

Recon-OS Scan ✓↓ ✓ ✓↓ ✓ ✓ ✓↓ ✓

Recon-Port Scan ✓↓ ✓ ✓↓ ✓ ✓ ✓↓ ✓ ✓ ✓ ✓

IV. RESULTS

In this study, we aim to evaluate the feature impact of
a non-stationary model on the detection of attacks in the
IoMT networks. We established an evolution timeline and
created various drift scenarios using benign samples and
attack variants from the CICIoMT2024 dataset. We assessed
both static and dynamic models based on their performance,
with a particular focus on accuracy. Our emphasis was on
multiclass classification to categorize traffic into specific attack
categories.

Figures (4, 5 and 6) show the performance of dynamic
model (solid lines) versus traditional static models (dotted
lines) for 6-class classification, evaluated across multiple time
windows (t0–t5). At t0, both training and testing sets con-
tain representative attacks from every major attack category,
and both models perform similarly well with high accuracy,
indicating a stable environment.
A. Dynamic Vs Static Model Performance

a) Scenario 1: Gradual Drift.: In the Scenario 1 shown
in Table II (Fig 4), we illustrate the concept of gradual
drift through a 6-class classification task using XGBoost. At
each time window ti, new sub-attack types are introduced to
simulate drift, except t5, which represents a phase with no
drift. Initially, at t0, the training and testing sets are identical,
each containing one representative sub-category from every
major attack type. As time progresses, three new attack subcat-
egories from the following categories are gradually introduced:
MQTT at t1, DoS at t2, DDoS at t3, and reconnaissance at

Figure 4: Gradual Drifts: Accuracy score dynamic model
(solid lines) vs static models (dotted lines) for multi-class
classification (6-classes) considering six-time windows having
a steady drift of attacks in each interval.

t4. This setup enables a comprehensive evaluation of model
performance under evolving threat conditions.

The dynamic model (Fig 4), which is retrained at every
step using the most recent dataset, consistently outperforms the
static model, trained only at t0. The static model performance
with 45 features does not degrade significantly in t1 and t2,
where the drifts are relatively minor. However, in t3, the
performance drops considerably—falling even below that of
other feature sets. This suggests that the 45-feature config-
uration is more resilient under mild drift conditions, but its



Table III: Static vs Dynamic accuracy scores report for different top k features from Mutual Information feature selection for
the CICIoMT2024 dataset, using the XGBoost model for 6-class classification.

Scenario Top-k features Static Dynamic

t0 t1 t2 t3 t4 t5 Average t0 t1 t2 t3 t4 t5 Average

Scenario 1 (Steady)

3 0.931 0.751 0.737 0.597 0.597 0.735 0.71 0.947 0.957 0.913 0.832 0.832 0.966 0.878
5 0.942 0.82 0.785 0.659 0.659 0.648 0.77 0.955 0.93 0.804 0.867 0.867 0.975 0.855

10 0.957 0.799 0.77 0.621 0.621 0.697 0.749 0.963 0.959 0.836 0.84 0.84 0.981 0.862
45 0.965 0.891 0.753 0.593 0.593 0.536 0.79 0.968 0.924 0.829 0.849 0.849 0.985 0.868

Scenario 2 (Hard)

3 0.935 0.785 0.686 0.677 0.676 —- 0.752 0.921 0.813 0.847 0.96 0.954 —- 0.90
5 0.935 0.785 0.616 0.611 0.61 —- 0.711 0.946 0.812 0.852 0.865 0.959 —- 0.887

10 0.949 0.807 0.669 0.667 0.661 —- 0.751 0.947 0.791 0.824 0.962 0.963 —- 0.898
45 0.955 0.946 0.689 0.648 0.649 —- 0.778 0.959 0.96 0.668 0.961 0.966 —- 0.90

Scenario 3 (Mixed)

3 0.93 0.838 0.735 0.711 0.706 0.601 0.753 0.927 0.803 0.736 0.952 0.957 0.965 0.89
5 0.936 0.809 0.676 0.67 0.674 0.71 0.746 0.94 0.775 0.817 0.957 0.957 0.966 0.902

10 0.947 0.829 0.694 0.67 0.646 0.734 0.753 0.956 0.788 0.83 0.964 0.964 0.985 0.915
45 0.959 0.802 0.566 0.58 0.601 0.619 0.688 0.966 0.796 0.759 0.939 0.966 0.986 0.902

performance deteriorates rapidly when exposed to substantial
drift, as seen in t3 and t4. On the other hand, as expected,
the dynamic model maintains relatively high accuracy across
time, demonstrating its ability to adapt to evolving threats.
Furthermore, as shown in Table III, the average accuracy
achieved using only 3 features is higher than that of larger
feature sets, suggesting that a significantly reduced feature
subset can yield comparable or even superior performance.

Figure 5: Scenario 2: Abrupt drift: Accuracy score of the
dynamic model (solid lines) vs static models (dotted lines)
for 6-class classification considering five-time windows

b) Scenario 2: Abrupt Drift: Fig 5 illustrates how the
dynamic model effectively handles big or hard concept drifts
that static models struggle with. At t1, we introduced MQTT
attack subcategories, resulting in a moderate performance drop
in both models; however, the dynamic model consistently out-
performs the static one across all feature subsets, showing its
adaptability. A hard drift occurs at t2 due to the simultaneous
introduction of DDoS and Recon attack subcategories, leading
to a significant drop in accuracy for all models. As shown
in III, the dynamic model performance at t1, for the 3,5,
and 10 feature decreased more than that of the 45-feature
configuration. However, at t3, while the 45-feature setup
experienced a significant performance drop, the performance
with 3, 5, and 10 features actually showed an improvement

during this dip. These results indicate that the performance
of low-dimensional alternatives, when compared to the 45-
feature alternative, is impacted more by mild drifts but is
more resistant to hard drifts. Overall the average accuracy
using 3 features and 45 features is similar, which suggests
that a significantly reduced feature set can achieve similar
performance.

c) Scenario 3: Mixed Drift: Fig 6 illustrates how the
dynamic model effectively handles mixed concept drifts that
static models often struggle with. At t1, we introduced the
Recon-Port Scan attack into the test set without modifying
the training set. As a result, both dynamic and static models
experience a comparable drop in accuracy, since neither had
prior exposure to this specific drift. A more substantial drift is
introduced at t2, where two subcategories from each of MQTT,
DoS, and DDoS are added (i.e., MQTT-DoS Connect, MQTT-
DoS Publish, DoS-ICMP, DoS-SYN, DDoS-ICMP, and DDoS-
UDP). This leads to a sharp drop in accuracy, especially for
the static model, while the dynamic model, though impacted,
shows more stability and manages a quicker recovery. At t3,
the addition of DoS-UDP and DDoS-TCP allows the dynamic
model to recover significantly and regain high accuracy. Af-
ter t2, the performance of the dynamic models consistently
improves. Up to t2, the system is exposed to new classes
such as MQTT, reconnaissance, DoS, and DDoS. Although
additional sub-categories are introduced after t2, the model
appears to leverage the knowledge gained from previously seen
sub-classes to effectively classify the new ones. Furthermore,
unlike Scenario 1 and 2 , static model gives best performance
with 3 features set.

These results highlight that dynamic model is significantly
more robust and reliable, consistently outperforming static
models by effectively adapting to evolving attack patterns, as
well as steady and hard concept drifts commonly encountered
in real-world environments.

B. Feature importance analysis

Table III illustrates the accuracy scores achieved across the
entire timeline (t0–t5) for both static and dynamic models



Figure 6: Mixed drifts: Accuracy scores of dynamic model
(solid lines) versus static models (dotted lines) for 6-class
classification, evaluated across six-time windows.

using top 3, 5, 10, and 45 feature sets. The table highlights
(in bold) the highest average accuracy achieved across the
windows. We observe that, in most scenarios, high perfor-
mance is achieved with very few features (i.e., 3 or 5) in the
case of dynamic models, in contrast to static models, where
the highest performance is typically achieved with 10 or more
features, often with 45 features. For this reason, we analyze the
importance of the top 3 and top 5 features in dynamic models
for handling concept drift in each scenario in the following
paragraphs.

a) Top 3 Feature Importance Analysis Across Sce-
narios.: Fig 7 depicts the impact of the top 3 features in
dynamic models in handling concept drifts. Since retraining is
performed at ti using the updated training set from ti−1, the
relevance of a feature corresponds to its ability to distinguish
attacks introduced at ti−1. For instance, MQTT variants in
Scenario 1 are introduced in t1, creating a huge drop in
that time interval as shown in Fig 7. The feature changes
introduced by these variants are demonstrated at t2 in the
figure so that Tot size is replaced by Min in this case. It is
important to consider this while correlating the performance
result with the changes in feature in Figures 7, 8. At t1, we
have introduced attack variants in the test set (and not in
training). Therefore, the top features remain similar to those
at t0, showing no major shift.

Across all scenarios, the feature IAT exists in each time
window in every scenario. Tot_size is also more prevalent
across the scenarios, suggesting their crucial role in handling
concept drifts. Header_Length, appeared in first three
windows in every scenario. Other features (Magnitude,
Min, Max, or Tot sum ) vary depending on the drift type:
dynamically emerge based on newly introduced attacks. In
Scenario 1 (Gradual Drift), feature relevance shifts smoothly,
reflecting the model’s stable adaptation. Scenario 2 (Hard
Drift) shows a rapid pivot towards Tot sum following the
sudden introduction of DDoS and Recon attacks, demonstrat-
ing quick retraining capabilities. In Scenario 3 (Mixed Drift),
the model flexibly alternates among multiple features, evi-

Figure 7: Top 3 Features impact in each scenario in XGboost
dynamic model while considering mutual information feature
selection method.

dencing robustness against both gradual and abrupt changes.
Overall, the combination of stability in core features and
flexibility in auxiliary features enables effective drift handling.

b) Top 5 Feature Importance Analysis Across Sce-
narios.: Fig 8 presents the top-5 most relevant features (by
information gain) at each timeline tn for the dynamic model
in all three scenarios. IAT and Tot size is common across
all time lines and scenarios. The feature Header_Length
disappeared at t3 and onward in Scenario 1, at t4 and onward
in Scenario 2, and again at t3 and onward in Scenario 3. This
suggests that the feature is likely irrelevant to the DDoS and
reconnaissance sub-categories introduced in the later stages of
the timelines.

In Scenario 1 (Gradual Drift), where new attacks are in-
troduced progressively, the feature set evolves accordingly.
Early time windows (t0, t1) highlight features like IAT,
Magnitude, and AVG, which are effective in distinguishing
foundational attack types (baselines). At t2, with the intro-
duction of MQTT attacks in the previous window, we observe
increased importance of features like Min while disappearance
of Magnitude . At t3, we notice the re-appearance of
Magnitude, which may be relevant to identifying DoS-type
attacks. Header_Length disappeared at t3 and onward. At
t4, we see the addition of AVG, which suggests its relevance
to the DDoS attack introduced at t3. By t5, Srate and Tot



Figure 8: Top 5 Features impact in each scenario in XGboost
dynamic model while considering mutual information feature
selection method.

sum become relevant, possibly due to their effectiveness in
identifying reconnaissance traffic introduced at t4. The rela-
tively stable and rotational presence of features demonstrates
the manageable nature of gradual drift.

In Scenario 2 (Hard Drift), where a severe drift occurs
at t2 due to the simultaneous introduction of DDoS and
Recon attacks, the feature landscape shifts sharply. At t2
and t3, features like Tot sum can be linked to DDoS and
Recon attacks. rst_count at t4 might be relevant to DoS
subcategories added in t3. This scenario shows rapid feature
fluctuation, reflecting the complex nature of hard drifts and
the model’s adaptability through retraining. The reappear-
ance of features like IAT and Header_Length shows that
temporal and structural features remain crucial. Furthermore,
Header_Length disappeared at t4.

In Scenario 3 (Mixed Drift), which blends aspects of both
gradual and abrupt drift, feature importance varies more dy-
namically. At t2, where Recon-Port Scan was introduced at
t1, features like Tot sum become dominant—indicating the
model’s focus on packet volume. By t3, Min and Magnitude
become highly relevant, reflecting the prior introduction of
DoS, DDoS, and MQTT variants. At t4, we see the reappear-
ance of Max, which seems relevant to DoS-UDP or Recon-
VulScan. By t5, we notice the appearance of AVG, which may
be linked to the addition of MQTT and Recon variants. The

feature Header_Length disappeared at t3 and onward again
in this scenario.

C. Comparison of detection overhead

In Table IV, we compare the detection overhead between
static and dynamic models in Scenario 3. The table reports
average latency (in µs per sample), false alarm rate (FAR,
the percentage of benign samples misclassified as attacks),
total training time, inference time, and training memory usage.
While static models achieve lower latency and FAR with
minimal training time and memory usage, dynamic models
incur significantly higher training costs to maintain better
robustness, particularly as the number of selected features
increases. This underscores the trade-off between detection
performance and resource overhead in evolving data environ-
ments.

Table IV: Comparison of average latency, FAR , training time,
inference time, and memory usage in both static and dynamic
models in mixed drifts (Scenario 3)

Top-k
Features

Avg.
Latency

(µs)

Avg.
FAR
(%)

Total
Training
Time (s)

Total
Inference
Time (s)

Total
Training

Memory (MB)

Static

3 1.19 10 120 0.037 98
5 0.89 10 134 0.027 25
10 1.75 9 115 0.054 65
45 1.99 9 116 0.062 83

Dynamic

3 1.17 7 593.37 0.035 458
5 1.35 7 606.5 0.041 453
10 1.44 8 610.2 0.043 317
45 2.16 8 633.2 0.067 433

V. DISCUSSIONS

In this study, we observed that selecting just three features
for dynamic models provides the best long-term performance
in Scenario 1 and achieves similar performance to the 45-
feature alternative in Scenario 2. 10-feature alternative is the
best in Scenario 3 (see Table III). As illustrated in Fig 7, the
dynamic model consistently preserves two out of the three
top features across consecutive time intervals during nearly
all drift scenarios, contributing to its overall high accuracy
in two scenarios. This finding mostly aligns with a study,
where the same mutual information-based feature selection
method achieved performance close to 0.99 using only three
features on the same dataset [6]. These results demonstrate
the effectiveness of informative features in stationary and non-
stationary models.

Another significant finding is that models trained with 45
features demonstrate smaller performance drops during lighter
drifts compared to models with a limited number of features
in both static and dynamic settings. However, under hard
drifts, these models suffer severe performance degradation,
impacting their long-term performance in two scenarios. In
contrast, models that use fewer but more stable features
yield larger drops during lighter drifts, but can preserve their



performance during hard drifts. The ability to preserve a small
set of consistently important features over consecutive time
intervals becomes a long-term advantage to maintain detection
performance.

It is important to note that, despite the suitability of CI-
CIoMTDataset 2024 for our purpose, this dataset still has
varied subcategories for DoS, DDoS, and Recon, which share
common characteristics of high traffic volume, repetitive con-
nection patterns, and protocol-level anomalies. These simi-
larities may simplify the maintenance of long-term detection
performance compared to scenarios involving more heteroge-
neous attack categories.

In this study, we focus on multiclass classification, as it
provides more detailed and actionable information for cyber
incident investigators compared to binary classification tasks.
Identifying the specific attack category can significantly reduce
the decision-making time when determining an appropriate
course of action, which is the ultimate aim of deploying
IDS. Although a variety of attack datasets are available [21],
[22], we selected the CICIoMT 2024 dataset as it offers
comprehensive coverage across multiple attack categories and
sub-categories, making it particularly suitable for our analysis.
Nevertheless, this study can be further extended to include
binary classification tasks to examine the impact of feature
selection on model performance under the corresponding non-
stationary conditions.

While formulating the non-stationary model, we assume
that the initial training phase includes at least one attack
sub-category from each major attack category (e.g., using
DoS-TCP to represent the DoS category). We consider this
assumption feasible, as major network attack categories are
well-established, and obtaining representative samples for ini-
tial model development is relatively straightforward. However,
during the model’s operational lifecycle, it may encounter
previously unseen variations of known attack categories (e.g.,
DoS-SYN, DoS-ICMP). The model should demonstrate adapt-
ability to these variations through its non-stationary capabil-
ity. Additionally, future work could explore alternative non-
stationary scenarios, such as the introduction of entirely new
attack categories at later stages, to further evaluate the model’s
ability to adapt to an evolving network threat landscape.

Another key aspect of our non-stationary model formulation
is the introduction of new concepts (i.e., in the form of new
subcategories) at each upcoming time interval, while preserv-
ing the previously existing subcategories. In the concept drift
literature, various types of drift have been identified, such
as sudden, gradual, and incremental drift [3]. These drift
types typically assume that older concepts either disappear
immediately or fade over time. In malware detection, a domain
where concept drift has been extensively studied [23], [24],
it is common that certain malware families evolve into new
variants while older families may eventually vanish. However,
we argue that in network intrusion detection, threat evolution
tends to be less dynamic, making it impractical to assume
that certain attack categories would completely disappear over
time. In this setting, most types of network attacks given

in datasets are still encountered in real-world scenarios, and
thus, maintaining all existing subcategories remains a realistic
assumption.

Feature selection in ML-based intrusion detection has been
extensively studied in the literature, particularly in the context
of IoT [4]–[6]. In this study, we aim to investigate the impact
of feature selection and the feature evolvement within a non-
stationary setting, an area that has received limited attention
in the literature. It is important to note that our objective is
not to propose a novel concept drift handling method. Instead,
we examine two commonly used modelling approaches (i.e.,
static and dynamic) to represent non-stationary models and
analyze feature space dynamics under three different drift
scenarios. Our findings can guide further research in develop-
ing lightweight intrusion detection models that maintain long
term detection performance by incorporating advanced drift
detection mechanisms.

Our dynamic model benefits from the whole data prior to
the corresponding time interval, assuming that all training
data with proper labels and necessary computational resources
are readily available. However, in cybersecurity, labeling
large volumes of data instances is often expensive and time-
consuming. Consequently, learning from a minimally labeled
dataset becomes a critical requirement, particularly in real-
time deployment settings. It is shown that active learning can
be applied in IoT botnet detection to minimize the size of
labeled data while providing higher detection performances
[25]. Integrating this learning paradigm with feature selection
techniques offers a promising direction for non-stationary
models. While active learning optimizes training costs by
minimizing labeling efforts, feature selection reduces both
training and inference costs by focusing on the most infor-
mative features.

VI. CONCLUSION AND FUTURE WORK

In this work, we performed filter-based feature selection
methods (Mutual Information) to identify the best features
in nonstationary models in the CICIoMT2024 dataset. We
compared the performance of static models with the dynamic
models by utilizing a machine learning algorithm (XGBoost)
for the said dataset. We evaluate the performance for multi-
class classifications (6-classes).

We presented a comprehensive framework to evaluate the
robustness of machine learning-based intrusion detection sys-
tems (IDS) under concept drift in IoT networks. Using the
CICIoMT2024 dataset, which contains diverse attack types
across 40 devices, the framework includes, construction of
drift scenarios (gradual, hard, and mixed), filter-based feature
selection (Mutual Information), and training/testing of static
and dynamic XGBoost models. Static models are trained once
and tested over time, while dynamic models are updated at
each step. The framework assesses model adaptability using
varying feature set sizes across evolving attack conditions.

A key finding is that dynamic models maintain strong detec-
tion performance even with highly reduced feature sets (e.g.,
top 3 or 5 features), offering significant efficiency gains for



resource-constrained IoT environments. Our paper highlights
key features for multiple attack detection over time . It revealed
valuable insights into feature behavior under evolving threats.
Certain features, such as IAT and Tot size, consistently
appeared across all time windows and drift scenarios, indicat-
ing their foundational role in effective detection. Meanwhile,
other features like Header_Length, Magnitude, and Tot
sum exhibited scenario-specific relevance, adapting to the
nature of the introduced attacks.

Another key finding is that low-dimensional models still
give reasonable performance in hard drift scenarios when
compared to the high dimensional (45 features) alternative.
However, the latter one maintains higher performance in mild
drift scenarios.

Future work will explore combining Mutual Information
with wrapper-based methods like Recursive Feature Elim-
ination (RFE) to improve feature relevance under concept
drift. Developing a benchmarking framework for evaluating
nonstationary models that can dynamically adapt to new fea-
tures, previously unseen attacks, and limited labeling scenarios
would further improve the robustness of intrusion detection
systems in IoT networks. Future work should consider com-
parisons of the current XGBoost model with online and semi-
supervised learning models that are better suited for real-
time non-stationary environments. Furthermore, extending this
work to incorporate more diverse and complex drift-based
attack datasets could broaden the applicability of the findings.
Future research may also focus on integrating active learning
with dynamic feature selection to reduce labeling effort while
maintaining adaptability to emerging threats.
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