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Introduction

In our everyday world, matter is usually classified into solids, liquids and gases.
What about dry sand? One grain of sand is of course a solid, but a whole lot of
grains together are a granular material, with quite different properties. It flows in
an hourglass. It takes the shape of its container as liquids do. If sand is poured
slowly onto a surface, the pile will grow until its slope reaches a critical angle, de-
termined by the size and stickiness of the grains. Beyond the critical angle, there
is some sort of avalanche.

Hourglasses are said to have been invented at Alexandria approximately in the
middle of the third century, where they were sometimes carried around as people
carry watches today. First recorded evidence of the existence of hourglass was
found in the 14th century for measuring the speed of ships.

Nowadays, granular materials play an important role in many of industries,
such as mining, agriculture, civil engineering and pharmaceutical manufacturing.
They clearly are also important for geological processes where landslides and ero-
sion and, on a larger scale, plate tectonics determine much of the morphology of
the Earth. Practically everything that we eat started out in a granular form.

The science of granular media has a long history. Much of the engineering lit-
erature has been devoted to understanding how to deal with these materials. In
the literature, there are many notable names such as Coulomb who proposed the
ideas of static friction, Faraday who discovered the convective instability in a vi-
brated container filled with powder, and Reynolds who introduced the notion of
dilatancy. Moreover, today increased interest is shown in granular matter, such as
particle segregation, clustering, fluidization, rotating flows, mixing and segrega-
tion, avalanches of sand piles, earthquakes, and many other interesting problems
related to granular matter. The strong interest is obvious as according to Wikipedia
granular materials are the second-most manipulated material in the industry (the
first one is water).

Another remarkable phenomenon is related to the emergence of solitons in
solids and fluids. Soliton is a solitary wave with finite energy and the necessary
conditions of its existence including nonlinearity and dispersion. The dynamics
of solitons is important due to their applications in hydrodynamics, electronics,
solid mechanics, biophysics, and other disciplines.

In order to simulate the wave propagation in granular materials appropriate
model equation shall be proposed. Historically the first continuum model for
granular materials was proposed by Goodman and Cowin [5], followed by different
authors.

In this thesis, the model equation proposed by Giovine and Oliveri [6] has been
explored in order to simulate propagation and interactions of solitons or solitary
waves in dilatant granular media. The pseudospectral method has been used for
numerical integration.

This thesis is organised as follows: Section 1 introduces the solitons and their
historical background in brief; describes the discovery of solitons by the Scottish
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engineer James Scott Russel and presents different definitions of solitons by differ-
ent authors: Russel, Zabusky and Kruskal, and Drazin. The relationship between
nonlinearity and dispersion is discussed. Section 2 opens the essence of granular
materials and one of the most important property of such materials — dilatancy.
Section 2 also defines the theoretical basis of wave propagation in dilatant gran-
ular materials with the derivation of model equation, followed by the dispersion
analysis. At the end of the Section, the statement of the problem is presented. Sec-
tion 3 defines the basis of the numerical integration method and accuracy and sta-
bility controls for its results. Sections 4 and 5 analyse the emergence and interac-
tion of solitons and solitary waves based on the numerical simulations generated
by the author.

The present thesis is based on five academic papers, which are referred to in
the text as "Publication I", "Publication II", "Publication III", "Publication IV",
"Publication V":

Publication I Lauri Ilison, Andrus Salupere and Pearu Peterson, On the

propagation of localized perturbations in media with mi-

crostructure, Proc. Estonian Acad. Sci. Phys. Math., 2007,
56, 2, 84–92.

Publication II Andrus Salupere, Lauri Ilison, and Kert Tamm. On numeri-

cal simulation of propagation of solitons in microstructured

media, In Michail D. Todorov, editor, Proceedings of the 34th
Conference on Applications of Mathematics in Engineering
and Economics (AMEE 2008), volume 1067 of AIP Confer-
ence Proceedings, 155–165. American Institute of Physics,
2008.

Publication III Lauri Ilison and Andrus Salupere, Propagation of sech2–

type solitary waves in hierarchical KdV-type systems, Mathe-
matics and Computers in Simulation, 22 pp., Elsevier, 2009.
(accepted).

Publication IV Andrus Salupere and Lauri Ilison, Numerical simulation of

interaction of solitons and solitary waves in granular mate-

rials, In J.F. Ganghoffer and Franco Pastrone, editors, Pro-
ceedings of EUROMECH - MECAMAT conference, Mechan-
ics in microstructured solids: cellular materials, fibre re-
inforced solids and soft tissues, Lecture Notes in Applied
and Computational Mechanics, 8 pp., Springer, 2009. (ac-
cepted).

Publication V Lauri Ilison and Andrus Salupere, Numerical simulation

of interaction of solitons and solitary waves in hierarchical

KdV-type systems, Communications in Nonlinear Science
and Numerical Simulations, 10 pp., Elsevier, 2009. (submit-
ted).
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Detailed descriptions of the numerical results are presented in two research
reports, which are referred to in the text as "Report I" and "Report II":

Report I Lauri Ilison, Andrus Salupere. Propagation of localised perturba-

tions in granular materials. Research Report Mech 287/07, Insti-
tute of Cybernetics at Tallinn University of Technology, 2007.

Report II Lauri Ilison, Andrus Salupere. Interactions of solitary waves in hi-

erarchical KdV-type system. Research Report Mech 291/08, Insti-
tute of Cybernetics at Tallinn University of Technology, 2008.
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1 Solitons and solitary waves

1.1 History of solitons and Korteweg–de Vries type equations

Historically, the first documented observation of a soliton was made by a Scottish
engineer John Scott Russel in August 1834 when he saw a rounded smooth well-
defined heap of water detach itself from the prow of a barge brought to rest and
proceed without change of shape or diminution of speed for over two miles along
the Union Canal linking Edinburgh with Glasgow. John Scott Russell described
his wave of translation in his own words: "I was observing the motion of a boat

which was rapidly drawn along a narrow channel by a pair of horses, when the

boat suddenly stopped — not so the mass of water in the channel which it had put

in motion; it accumulated round the prow of the vessel in a state of violent agita-

tion, then suddenly leaving it behind, rolled forward with great velocity, assuming

the form of a large solitary elevation, a rounded, smooth and well-defined heap of

water, which continued its course along the channel apparently without change of

form or diminution of speed. I followed it on horseback, and overtook it still rolling

on at a rate of some eight or nine miles an hour, preserving its original figure some

thirty feet long and a foot to a foot and a half in height. Its height gradually dimin-

ished, and after a chase of one or two miles I lost it in the winding’s of the channel.

Such, in the month of August 1834, was my first chance interview with that singular

and beautiful phenomenon which I have called the Wave of Translation" [7].
His observations were followed by extensive practical and theoretical experi-

ments of these waves. He built wave tanks at his home and noticed important
properties of those waves [8]:

• These localised waves are bell-shaped and travel with permanent form and
velocity.

• In water of undisturbed depth, h a wave of elevation a m , towards which

the crest points, propagates with a velocity v =
p

g (h +a m ), where g is the
gravity.

• An initial elevation of water might, depending on the relation between its
height and length, evolve into a pure solitary wave, a single solitary wave
plus a residual wave train, or two or more solitary waves with or without
residual wave train.

• The solitary waves can across each other without a change of any kind.

• Solitary waves of depression are not observed: an initial depression is trans-
formed into an oscillatory wave train of gradually increasing length and de-
creasing amplitude.

Independently, Joseph Boussinesq (1871) and Lord Rayleigh (1876) added impor-
tant findings: if one ignores dissipation, the increase in local wave velocity asso-
ciated with the finite amplitude is balanced by the decrease associated with dis-
persion, leading to a wave of a permanent form [8, 9]. In 1895, Korteweg and de
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Vries derived a model equation which describes the unidirectional propagation
of long waves in the water of relatively shallow depth. This equation has become
much celebrated and it is now known as the Korteweg–de Vries (KdV) equation.
Korteweg and de Vries showed that periodic solutions, which they named cnoidal
waves, could be found in close form and without further approximations. More-
over, they found a localised solution, which represents a single hump of positive
elevation and occurs in the limit of the finite wavelength or the spatial period of
the cnoidal wave. This hump is the solitary wave discovered experimentally by
Russell [7, 8, 10, 11, 1].

1.2 Definition of solitons

In the course of time different authors have given different definitions of solitons.
Remoissenet [8] brings to light three concepts. The first definition is related to the
first documented observation of a solitary water wave by John Scott Russell:

• A solitary wave, as discovered by Russell [7], is a localised wave that propa-
gates along one space direction only, with an undeformed shape.

The second definition is quite mathematical and is related to integrable systems,
i.e., to idealised conditions:

• A soliton, as discovered numerically by Zabusky and Kruskal [2], is a large
amplitude coherent pulse or a very stable solitary wave, the exact solution
of a nonlinear wave equation, whose shape and speed are not altered by a
collision with other solitary waves.

For physicists who study the real world, the keyword soliton has a weaker meaning.
They present the definition which highlights the importance of a particular type of
energy propagation as follows:

• Solitons are localised finite energy states which are fundamentally nonlinear
objects and so cannot be reached by the perturbation theory from any linear
state.

The present study uses the soliton concept given by Drazin [10, 11] and Zabusky
[12].

According to Drazin [10, 11]:

• The term soliton is associated with any solution of a nonlinear equation or
system which (i) represents a wave of permanent form; (ii) is localised so
that it decays or approaches a constant at infinity; (iii) can interact strongly
with other solitons and retain its identity.

According to Zabusky [12]:

• A soliton is defined as a localised or solitary entity that propagates at a uni-
form speed and preserves its structure (or shape) and speed in an interaction
with another such solitary entity.
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Therefore, a solitary wave can be called a soliton if it propagates at constant speed
and shape and restores its speed and shape after interactions. Interactions of such
a type are commonly called elastic interactions.

Historically [1], Zabusky and Kruskal have coined the word soliton, which they
introduced by putting it, for the first time, in the title of their paper [2]. In order to
stress the quasi-particle properties of the solitary waves they thought of the suffix
’on’, as in electron, proton, boson etc. Zabusky first proposed solit-r-on as an ab-
breviation of a solita-r-y wave before noticing that it was the name of a company
in the United States. They finally opted for soliton, which is now in common use
[1].

1.3 Solitons in the Nature

In the Nature the phenomena of solitons have been discovered in many fields: (i)
solitons in shallow water, (ii) solitons in fibre optics, (iii) solitons in composite
materials, (iv) solitons in plasma, (v) atmospheric solitons, (vi) solitons in neuro-
science, (vii) solitons in magnets and in many other fields [1, 13].

Solitons are surrounding us and we need to be patient to find them. As a proof
of that, during my short trip to the resort of Kauksi on Lake Peipsi in Estonia on
17th of July 2003 I was observing how solitons emerged and interacted in very
shallow water. Soomere and Engelbrecht have described this as an example of
Kadomtsev–Petviashvili solitons in shallow water [14, 15, 16].

The solitons are generated due to beach profile and appropriate weather con-
ditions. There had been an avalanche of sand from the beach to the water, causing
a bell–shape submerged cape bottom profile. The measures of this cape where

Figure 1: Interaction patterns of soliton-like surface waves in very shallow water near
the Kauksi resort on Lake Peipsi, Estonia (Photo taken by the author, July 2003)

approximately 8–metre long perpendicular to the beach and 5–metre wide. The
depth of the shallow water was approximately 3 to 10 cm. The wind was very low,
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as it can be seen from the picture, see Fig. 1. Wind waves propagated nearly per-
pendicular to the beach and the bell–shape cape bottom turned the wind wave
propagation direction around it from the left and the right hand side of the cape.
As a result (see Figs. 1 and 2) — (i) solitons in shallow water emerged, (ii) solitons
emerged from both sides of the bell–shape bottom profile at the right angle, (iii)
solitons interacted elastically. Those pictures will be published by Soomere in [17].

Figure 2: Interaction patterns of soliton-like surface waves in very shallow water near
the Kauksi resort on Lake Peipsi, Estonia (Photo taken by the author, July 2003)

1.4 Korteweg–de Vries equation

For future discussions, nature of the Korteweg–de Vries (KdV) equation must be
explained. One of the widely used forms of the KdV equation is

u t +u ux +d u 3x = 0, (1)

where u is the excitation, t and x are time and space coordinates, respectively, d

stands for the dispersion parameter. Different properties of the KdV equation are
discussed in detail in [18].

One could emphasise two important facts involved in the KdV equation:

• the KdV equation was used to introduce the soliton concept;

• for solitons to exist, the dispersive and nonlinear properties of the media
should be in a certain balance.

The KdV equation involves the corresponding terms (u ux for nonlinearity and
d u 3x for dispersion) in the simplest form.

As the celebrated KdV equation (1) is an integrable equation [18], its station-
ary solution in a frame moving with a velocity c can be found analytically. If we
substitute

u (x , t ) =u (ξ), (2)
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whereξ= x−c t into Eq. (1), then for u we obtain a third-order nonlinear ordinary
differential equation (ODE)

−c uξ+u uξ+d u 3ξ = 0. (3)

Here c is the phase velocity. The solution of ODE (3) can be found directly by
integrating the differential equation for three times.

In the case of asymptotic boundary conditions

u ,uξ, ...,u 3ξ −→ 0, if ξ−→±∞ (4)

the solution can be expressed in the following form:

u = 3c sech2 0.5

Ç

c

d
(ξ−ξ0) = A sech2

Ç

A

12d
(ξ−ξ0), (5)

where ξ0 is an arbitrary constant [2]. The behaviour of the solitary wave solution
(5) corresponds to the soliton definition: such solitary waves propagate with con-
stant speed and shape and the interaction of such solitary waves is elastic. Here the
quantity A = 3c can be considered as the amplitude of the soliton, i.e., the higher
the soliton, the higher its velocity. An example of a typical soliton emergence is
given in Fig. 3, where the initial excitation is decomposed into three solitons which
have elastic interactions.

Space →

T
im

e 
→

Figure 3: Emergence of a train of three KdV solitons and subsequent
elastic interactions. Calculated by Salupere
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1.5 Higher order KdV equations

During recent years KdV-type equations with higher-order dispersive and/or non-
linear terms have been studied by many authors. It is obvious that the original KdV
equation is obtained at a certain degree of approximation (higher-order dispersive
or nonlinear effects have been neglected), but in many cases the physical reality
needs better accuracy and the higher-order effects should be taken into account.

As an example, in the case of water waves where the surface tension suppresses
the dispersion parameter d , the fifth-order dispersion u 5x is added by Hunter and
Scheurle [19]

u t +u ux +d u 3x +u 5x = 0. (6)

Furthermore, the third-order dispersive term may be so weak, for example, as de-
fined by Kakutani and Ono [20] for the magneto-acoustic wave propagation in a
cold collision-free plasma, that it vanishes and is replaced by the fifth-order dis-
persive term resulting in a fifth-order KdV equation

u t +u ux +u 5x = 0. (7)

Karpman and Vanden-Broeck [21] have shown numerically that the fifth-order
derivative term of the equation

u t +αu p ux +βu 3x +γu 5x = 0, (8)

is of critical importance for the soliton stability at sufficiently high values of p .
Kawamoto [22] has considered the KdV equation with higher-order nonlinear-

ity
u t +(αu 3+βu 2+γu )xx +δu 3x = 0, (9)

as a model for the wave propagation in a one-dimensional nonlinear lattice of
nonlinear LC network, where α, β , γ and δ are arbitrary constants.

Porubov et al. [23, 24] have studied the influence of higher-order nonlinear
terms on the shape of solitary waves for mechanical systems governed by an ex-
tended KdV equation — a generalisation of the fifth-order KdV equation

u t + 2bu ux + 3c u 2ux + r u u 3x + s ux u 2x +d u 3x + f u 5x = 0, (10)

where b , c , r , s , d and f are appropriate coefficients for a certain case.
O. Ilison and Salupere [25, 26] and Salupere et al. [27] have studied the KdV–like

equation
u t +[P(u )]x +d u 3x +bu 5x = 0, (11)

where d and b are the third- and fifth-order dispersion parameters, respectively,
and the fourth-order elastic potential

P(u ) =

�

−
u 2

2
+

u 4

4

�

(12)
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depicts the quartic nonlinearity in the simplest symmetrical form. Equation (11)
with potential (12) describes the wave propagation in shape memory alloys where
the higher-order dispersion is caused by the crystal structure.

Marchant applied a modified KdV equation for modelling the behaviour of un-
dular bores and derived two analytical undular bore solutions for the initial-value
problem [28].

Soomere et al. [14] studied two-soliton solutions of the Kadomtsev-Petviashvili
(KP) equation with unequal amplitudes with the use of the concept of the inter-
action soliton (introduced by Peterson and van Groesen in [29]). The standard KP
equation in normalised variables (u ,x ,y , t ) reads

�

u t + 6u ux +u 3x

�

x + 3u y y = 0, (13)

where η = (x ,y , t ) describes a certain disturbance, e.g., the elevation of the water
surface.

Tan et al. studied the evolution of perturbed embedded solitons in the general
Hamiltonian fifth-order KdV equation [30]

u t +u 3x +u 5x +
�

N (u )
	

x = 0, (14)

where the nonlinear term N (u ) is of the form N (u ) =α0u 2+α1u u 2x+α2u 2
x+α3u 3.

Ludu [31] has used a polynomial differential equation of the KdV type to in-
vestigate the soliton-antisoliton transition. Ludu and Kevrekidis examined how
nonlinear dispersion relations can be used as a simple, universal algebraic tool
to provide information for the localised, nonlinear solutions of PDE that model
physical systems. Among presented examples, KdV, modified KdV and K (m ,n )

equations were considered [32].
Gou and Taha [33] worked out parallel algorithms for the split-step Fourier

transform and the pseudospectral methods in order to investigate self-focusing
singularity problem in the case of a higher-order KdV equation.

Pelinovsky and Sergeeva studied numerically the evolution of the initially ran-
dom wave field with a Gaussian spectrum shape within the KdV equation [34].

1.6 Nonlinearity and dispersion

The KdV equation (1) appears in many areas of physics, where waves emerge in
a weakly nonlinear and dispersive medium. The essence of nonlinearity and dis-
persion is explained (see [1]) to provide a better understanding of those important
properties.

Let us consider Eq. (1) without the dispersive term

u t +u ux = 0, (15)

which is called the Burgers–Hopf equation. The coefficient of ux determines the
propagation speed of the wave, so that, as a first approximation, one notices that
each component of the signal moves with a speed u . As a result, the parts of the
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signal which have the largest amplitude u tend to move faster than the parts which
have smaller amplitudes. Fig. 4 shows that this situation favours the formation
of shock waves, i.e., waves which exhibit discontinuities in a finite time, where
variations of the filed have a vertical slope. This analysis is confirmed by the exact
solution of the Burgers–Hopf equation (see Fig. 4). In order to explain the essence

Figure 4: Time evolution of a pulse which is a solu-
tion of the Burgers–Hopf equation (15) (Dauxois and
Peyrard [1])

of dispersion the linearised version of Eq. (1) is considered:

u t +d u 3x = 0. (16)

It has harmonic wave solutions of the form

u =Ae i (kξ−ωτ) (17)

provided the frequency ω and the wavenumber k are linked by the dispersion
relation ω = −k 3 and phase velocity cp = ω/k = −k 2, which depends on the
wavenumber k . This characterises a dispersive medium, where the Fourier com-
ponents of narrow pulse propagate at different speeds, which leads to a broaden-
ing of the pulse (see Fig. 5). The existence of a permanent profile soliton solu-

Figure 5: Time evolution of a pulse which is a solution
equation (16) (Dauxois and Peyrard [1])
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tion of the KdV equation results from a balance between the nonlinearity and dis-
persion: nonlinearity tends to localise and/or steepen the wave while dispersion
spreads it out. This equilibrium is stable. If the initial pulse is too narrow, disper-
sive effects dominate and tend to broaden the pulse until equilibrium is reached.
If the initial pulse is too broad, nonlinear effects dominate, which tend to localise
the pulse until equilibrium is reached [1].

The first description of such a process was given by Zabusky and Kruskal [2]
in 1965. Initially the first two terms of KdV equation (1) — terms of nonlinearity
— dominate, u steepens in the regions where it has a negative slope, see Fig. 6.
Secondly, after u has steepened sufficiently, the third term — dispersion — be-

Figure 6: Temporal development of the wave form
u (x ) (Zabusky and Kruskal [2]). Curve (A) corresponds
to the time moment t = 0, curve (B) corresponds to
the time moment t = 1/π and curve (C) corresponds
to the time moment t = 3.6/π

comes important and serves to prevent the formation of a discontinuity. Instead,
oscillations of small wavelength develop on the left of the front. The amplitudes
of the oscillations grow and finally each oscillation achieves almost a steady am-
plitude. Finally, each of such solitary-wave pulses or solitons begins to move uni-
formly at a rate that is linearly proportional to its amplitude. Thus, the solitons
spread apart. Because of the periodicity (in terms of space periodicity), two or
more solitons eventually overlap spatially and interact nonlinearly.
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2 Wave propagation in dilatant granular materials

2.1 Granular materials

A granular material can be defined as a material composed of many individual
solid particles irrespective of particle size, i.e., they are large conglomerations of
discrete macroscopic particles. If granular materials are non-cohesive, then forces
between them are essentially only repulsive so that the shape of the material is
determined by external boundaries and gravity. There is, however, a particular
problem with regard to density, since there are two densities of interest, the density
of particles themselves, which will be called as solid density and the density of
the mixture of a solid and an interstitial gas or a liquid that is known as the bulk
density. Fluid-like behaviour can be found in these materials that are very much
alike, similar phenomena are exhibited by conventional liquids.

Granular materials exhibit a number of distinctive features not shared by ordi-
nary solids or fluids. In fact, depending on the externally applied mechanism they
behave somewhat like solids or fluids. Furthermore, their behaviour can be in a
process change form, say being fluid-like to suddenly solid-like, often repeatedly,
so that an intermittent reaction results from a driving mechanism that may strictly
be continuous.

2.2 Dilatancy

A unique property of a granular material was observer by Reynolds [35]who named
it dilatancy. The concept of dilatancy is generally taken to be the expansion of the
voidage that occurs in a tightly packed granular arrangement when it is subject
to a deformation. Reynolds [35] used the idea of dilatancy in describing a famil-
iar phenomenon in sand: "At one time the sand will be so firm and hard that you

may walk with high heels without leaving a footprint; while at others, although the

sand is not dry, one sinks in so as to make walking painful. Had you noticed, you

would have found that the sand is firm as the tide falls and becomes soft again after

it has been left dry for some hours. The tide leaves the sand, though apparently dry

on the surface, with all its interstices perfectly full of water which is kept up to the

surface of the sand by capillary attraction; at the same time the water is percolating

through the sand from the sands above where the capillary action is not sufficient to

hold the water. When the foot falls on this water-saturated sand, it tends to change

its shape, but it cannot do this without enlarging the interstices — without draw-

ing in more water. This is a work of time, so that the foot is gone again before the

sand has yielded." Many of the existing theories for flowing granular materials use
this observation to relate the applied stress to the voidage and the velocity. One of
the first and most interesting observations of the relationship between the stress
in granular materials and voidage was also given by Reynolds [36]: "Taking a small

Indian rubber bottle with a glass neck full of shot and water, so that the water stands

well into the neck. If instead of the shot the bag were full of water or had anything of

the nature of a sponge in it, when the bag was squeezed, the water would be forced
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up the neck. With the shot the opposite result is obtained; as I squeeze the bag, the

water decidedly shrinks in the neck... (see Fig. 7) When we squeeze a sponge between

two planes, water is squeezed out; when we squeeze sand, shot, or granular mate-

rial, water is drawn in." The idea of dilatancy of granular materials can be simply

Figure 7: Rubber bellows filled with a granular mate-
rial of densest packing and sealed with a plug and pore
space filled with water, of which the filling is made vis-
ible by the liquid level in the pipette. Outside pressure
deforms the content, also by shear; the water level in
the pipette falls as a result of the pore space extension
(Wand and Hutter [3])

explained for an idealised case: in order for a shearing motion to occur in a bed
of closely packed spheres, the bed must expand by increasing its void volume, see
Fig. 8.

Figure 8: An illustration of dilatancy in an ensem-
ble of initially close-packed spheres (Massoudi and
Mehrabadi [4])
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2.3 Continuum theory for granular materials

The continuum description of granular materials has attracted scientists’ interest
over the last fifty years. During the recent ten years many authors have published
papers on the continuum description of granular materials. Godano and Oliv-
eri [37] have proposed a possible mathematical model of site effects that occur
when seismic waves propagate through a sediment fillet basin. Massoudi et al.
[4] have explored the consequences of the Mohr–Coloumb criterion of the con-
stitutive equations. The continuum model based on the work of Cowin [38] al-
lows for predicting the dilatancy effect which is related to the normal stress effects.
Fang et al. [39] have derived thermodynamically consistent continuum theory for
single–phase, single–constituent cohesionless granular materials. Giovine [40] has
extended the continuum theory for granular materials with freedom for particle
rotations resulting in a theory that considers three terms of microstructural mo-
tions: rotation of granules, dilatational expansion and contraction of individual
compressible grains and of the grains relative to other ones.

Historically, the first model for granular materials based on the formal argu-
ments of continuum mechanics was proposed by Goodman and Cowin [5]. The
basic premise underlying the model is that the concept of mass distribution must
be extended to admit granular materials. The distribution of mass must be related
to the volume distribution of granules. To achieve that, an independent kine-
matical variable — volume distribution function — was introduced. The follow-
ing physically motivated assumptions associated with the volume distribution of
granules in a granular material form the basis of the theory [5]:

• The volume of granules in a granular material is regarded as a measure on
the Euclidean space. The measure is valid for solids, porous materials (rock,
cork, sponge, etc.) as well as for granular materials (sand, grain, powder,
etc.).

• The measure of mass is assumed to be continuous with respect to the mea-
sure of volume distribution. This assumption is equivalent to neglecting the
void mass and is consistent with one’s intuitive notion of granular materials,
i.e., considering the dry sand. The science of the void mass is neglected, only
one type of a material point needs to be considered to describe the motion
of a body.

• To account the energy flux and energy supply associated with the time rate
of volume distribution change, a higher-order stress and body force are in-
troduced.

• From a conceptual viewpoint, the flow behaviour of granular materials is
considered to be similar to the fluid behaviour. Specifically, the response of
a granular material is unaltered by any change in the reference configuration
that does not change the density and volume distribution. The condition on
the volume distribution requires that the granular material have preferred
reference configuration with respect to volume distribution.
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The theory proposed by Goodman and Cowin [5] has been modified and ex-
tended by many authors, especially by Bedford and Drumheller [41].

2.4 Model equation

The flow behaviour of granular materials is considered to be similar to the fluid
behaviour except that its response depends on the distribution of the volume frac-
tion in the reference placement. Moreover, the introduction of the volume fraction
of the grains as an independent kinematical variable in order to describe the local
deformations of the grains themselves, requires an additional balance equation
for the microinertia. The model equation presented below is derived by Giovine
and Oliveri [6].

The equations of motion for the dilatant granular material are obtained from a
Hamiltonian variational principle of local type in the conservative case. The prop-
agation of nonlinear waves in a region with uniform state is studied by means of an
asymptotic approach that has already appeared useful in an investigation on wave
propagation in bubbly liquids and in fluid mixture. When the grains are assumed
to be incompressible, then the material behaves as a continuum with a latent mi-
crostructure.

An element of the continuum is thought as a spherical envelope of radius ς
containing some spherical inclusions (the grains) of radius ϑ such as the case of a
suspension of elastic particles in a compressible fluid whose density is considered
to be negligible compared to the proper solid density ρm of suspended particles;
so the bulk density ρ of the body equals ρm times the volume fraction ν of the
grains

ρ =ρmν , (18)

where the volume fraction 0 < ν < 1. Neither diffusion of the grains through the
envelope, nor effects of relative rotations of the element or the grains themselves
are recognised, so the only allowed motions within the element are merely expan-
sions and contractions of the inclusions and radial motions of the spherical crust
due to the displacements of the grain relative to the centre of mass of the element
itself. These assumptions are rather limiting for this type of media, but necessary
to obtain appropriate expression of the energy density. If v denotes the velocity of
the centre of the mass of the element whose local position vector is x at the time
τ, then the density per unit mass of the total kinetic energy k of the material turns
out to be

κ=
1

2
v 2+

1

2
γ(ρ)ρ̇2+

1

2
α(ρm )ρ̇

2
m (19)

where the dot˙denotes the material time derivative. An explicit evaluation for the
constitutive functions γ(ρ) and α(ρm ) can be made when the grains and the ele-
ments expand or contract homogeneously with independent motions. In the fol-
lowing model, the case described involves the suspension of the grains considered,
as in a fixed rigid vessel, being very large with respect to grains and to single ele-
ment of the medium. IfB is the region of space delimited by the vessel and ∂B
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its boundary, then the kinematic compatibility condition requires

v ·n = 0 on ∂B , (20)

where n is the unit exterior vector normal to ∂B . The conservation of mass re-
quires

ρ̇+ρdiv v = 0 inB . (21)

The dynamical equations of motion are derived from a Hamiltonian variational
principle of local type in the conservative case. It is assumed that the internal
actions onB must be derived from the potential energy density ϕ. Since the ma-
terial is essentially thought as a perfect fluid in its behaviour, ϕ is assumed to be
the function of the state ofB through ρ, gradρ and gradρm .

The condition (20) requires that the variation δx is tangent to the boundary
∂B

δx ·n = 0 on ∂B . (22)

Based on the condition (22) one can define the global virtual work of external
actions, resulting from the virtual displacement δx and from a change δρm of
the proper density of the matrix, which includes the microvariations of the mi-
crostructure of the elements, as the quantity

δL =
∫

B
ρ(f ·δx +βδ̂ρm )dB (23)

whereL is Lagrangian, f and β are the densities of the unit mass of external body
and microstructural forces.

The Hamiltonian principle in the local form asserts that, during the natural
motion of the body the equality

δ̂

∫ τ1

τ0

dτ

∫

B
ρ(κ−ϕ)dB +

∫ τ1

τ0

δL dτ= 0 (24)

holds for all virtual processes. The applied operator δ̂ means the variation of the
next integral functional defined on a variable region. δL is a global virtual work
of external actions resulting from the virtual displacement δx and from a change
δρm , which includes the microvariations of the microstructure of the elements
(see [6]).

After rigorous mathematical transformations (see [6]) and making use of the
asymptotic approach (one-dimensional motion is considered), the transport equa-
tion ruling the evolution of a perturbation propagating near the region of an equi-
librium of a dilatant granular material can be obtained

∂ u

∂ t
+u
∂ u

∂ x
+α1

∂ 3u

∂ x 3
+β

∂ 2

∂ x 2

�

∂ u

∂ t
+u
∂ u

∂ x
+α2

∂ 3u

∂ x 3

�

= 0, (25)
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where u is the density, x is the space coordinate (variable), t is the time coordinate
(variable), α1 denotes the macrostructure dispersion parameter, α2 denotes the
microstructure dispersion parameter and β can be called as the microstructure
parameter involving the ratio of the grain size and the wavelength. The parameter
β can be positive or negative depending on the ratio of kinetic and potential ener-
gies of the particles. For lower values of kinetic energy, the parameter β is positive
and for higher values negative. The exact definitions of the parameters α1, α2 and
β can be found in [6].

Mathematically, Eq. (25) consists of two KdV operators: the first describes the
influence of the macrostructure and the second (in the brackets) - the influence of
motion in the microstructure. Equation (25) is clearly hierarchical in the Witham’s
[42] sense — if the parameter β is small, then the influence of the microstructure
can be neglected and the wave "feels" only the macrostructure. If, however, the
parameter β is large, then only the influence of the microstructure "is felt" by the
wave. Due to that kind of hierarchy, Eq. (25) could be called as the hierarchical
Korteweg–de Vries (HKdV) equation. If the grains are assumed to be incompress-
ible, then the material behaves as a continuum with the latent microstructure and
the evolution equation describing the wave propagation takes the form of the clas-
sical KdV equation with an appropriate value for the dispersion parameter α.

∂ u

∂ t
+u
∂ u

∂ x
+α
∂ 3u

∂ x 3
= 0. (26)

The exact definitions of the parameter α can be found in [6].
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2.5 Dispersion analysis

In this Section the dispersion analysis is presented for Eq. (25). For the dispersion
analysis the model Eq. (25) is linearised and the dispersion relation, phase- and
group velocities are derived. The character of dispersion is analysed in the space
of parameters α1, α2 and β .

To obtain the linear dispersion relation for the evolution Eq. (25), sinusoidal
wavetrain

u = a e i (k x−ωt ) (27)

expression that models 1D waves in dilatant granular materials is substituted in
the linearised model equation

∂ u

∂ t
+α1

∂ 3u

∂ x 3
+β

∂ 2

∂ x 2

�

∂ u

∂ t
+α2

∂ 3u

∂ x 3

�

= 0. (28)

This substitution results in the following equation:

−i a w e i (k x−ωt )− iα1a k 3e i (k x−ωt )− (29)

i aβk 2ωe i (k x−ωt )− iα2aβk 5e i (k x−ωt ) = 0.

Expressing the angular frequency ω from Eq. (29), we obtain the dispersion rela-
tion

ω=
α1k 3−α2βk 5

βk 2− 1
. (30)

From the latter, the phase velocity

cp =
(α1−α2βk 2)k 2

βk 2− 1
(31)

and the group velocity

c g =
−(3−βk 2)α1k 2+(5− 3βk 2)α2βk 4

(βk 2− 1)2
(32)

are expressed.
In order to identify the dispersion type let us introduce the following quantity:

D = cp − c g =

h

α1− 2α2βk 2+α2β 2k 4
i

2k 2

(βk 2− 1)2
. (33)

In case D > 0, the dispersion is normal, in case D < 0, the dispersion is anomalous
and the case D = 0 corresponds to a nondispersive case. It is clear that the sign of
D depends on material parameters α1, α2 and β as well as on the wavenumber k .
If in a certain domain of parameters α1, α2 and β , function D is non zero for any
value of the wavenumber k , then one has pure normal or pure anomalous disper-
sion case, i.e., the character of dispersion does not depend on the wavenumber
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k . Otherwise, the character of dispersion depends on the wavenumber k and this
can be called a mixed dispersion case.

The sign of D depends on the sign of the quantity

R =α1− 2α2βk 2+α2β
2k 4. (34)

According to Eq. (34), the condition R = 0 results in a biquadratic equation which
can be solved with respect to βk 2:

βk 2= 1±
Ç

1−
α1

α2
. (35)

It is obvious that βk 2 has real values only if

α1

α2
≤ 1. (36)

In other words, for α1 ≤ α2 one has mixed the dispersion case and for α1 > α2 the
pure normal or pure anomalous dispersion case. In case β < 0, Eq. (35) has two
real roots for k if

α1

α2
< 0. (37)

In case β > 0, Eq. (35) has four real roots for k , if 0≤ α1

α2
≤ 1 and two real roots for

k if α1

α2
< 0. The dispersion analysis in more details can be found in [43, 44, 45].

It is worth mentioning that the linearised HKdV Eq. (28) differs from the lin-
earised fifth-order KdV-type equation

∂ u

∂ t
+α
∂ 3u

∂ x 3
+
∂ 5u

∂ x 5
= 0 (38)

by the third-order mixed derivative

β
∂ 2

∂ x 2

�

∂ u

∂ t

�

, (39)

that plays a significant role in the dispersion relation.

2.6 Solution symmetry

The solutions of the HKdV Eq. (25) have symmetry in the plane of parameters α1

and α2 as follows:
u (x , t ,α1 ,α2) =−u (−x , t ,−α1,−α2) (40)

parameter β is fixed. Based on this, the cases α1 > 0 and α2 > 0 considered here
reflect the behaviour of solutions for α1 < 0 and α2 < 0 as well.
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2.7 Statement of the problem

This thesis studies wave propagation in dilatant granular materials by the use of
the HKdV Eq. (25). The model equation (25) is integrated numerically under a lo-
calised initial condition.

The main goals of the present thesis are to:

• simulate numerically propagation and interaction of solitary waves and soli-
tons in granular media, modelled by HKdV Eq. (25), over a wide range of
material parameters (dispersion parameters α1 and α2 and microstructure
parameter β );

• characterise and analyse the space-time behaviour of solutions in the 3-
dimensional domain of material parameters;

• define and describe the types of solutions;

• analyse the character of interactions in terms of solitons, i.e., to understand
whether solitary waves that emerge from different initial pulses interact elas-
tically or not;

• estimate the influence of the amplitude of the initial solitary wave on the
character of the solution;

• find mutual relations between solution types and material parameters α1,
α2 and β ;

• analyse the formation of the wave packets.

Main attention is paid to the formation of solitonic solutions.
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3 Numerical method

Several numerical methods have been developed to solve nonlinear evolution equa-
tions: finite difference methods, Galerkin method, Hopscotch method, Fourier
expansion method, split-step Fourier method, spectral methods, pseudospectral
methods (PsM) etc. All the named methods have minor pros and cons that should
be considered when used. Different authors have examined the advantages of the
pseudospectral method and have compared it to other methods (see [33, 46, 47,
48, 49] and references therein). According to these studies, the pseudospectral
method is adequately accurate and stable for solving KdV type equations.

In this thesis the pseudospectral method is used for the numerical integration
of the HKdV Eq. (25). In the present Section the essence of the pseudospectral
method is described and accuracy measures are introduced.

3.1 Pseudospectral method

In a nutshell, the idea of the PsM is to approximate space derivatives by a certain
global method — reducing thereby a partial differential equation to an ordinary
differential equation (ODE) — and to apply a certain ODE solver for integration
with respect to the time variable. In this thesis space derivatives were found mak-
ing use of the discrete Fourier transform (DFT),

U (k , t ) = Fu =

n−1
∑

j=0

u (j∆x , t )exp
�

−2πi j k

n

�

, (41)

where n is the number of space-grid points, ∆x = 2π/n space step, i imaginary
unit, k = 0,±1,±2, . . . ,± (n/2− 1) ,−n/2, and F denotes the DFT. The usual PsM
algorithm (derived for u t =Φ(u ,ux ,u 2x , . . . ,u nx ) type equations) needs to be mod-
ified due to the existence of the mixed partial derivative in the HKdV Eq. (25).

First, the HKdV equation is rewritten in the form

�

u +βu 2x

�

t +
�

u + 3βu 2x

�

ux +
�

α1+βu
�

u 3x +βα2u 5x = 0 (42)

and a variable
v =u +βu 2x (43)

is introduced. Making use of the Fourier transform, the last expression can be
rewritten in the form

v = F−1
h

F (u )
i

+βF−1
h

−k 2F (u )
i

= F−1
h

�

1−βk 2
�

F (u )
i

(44)

where F−1 denotes the inverse Fourier transform. From Eq. (44), the variable u

can be expressed in the form

u = F−1

�

F (v )

1−βk 2

�

. (45)
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Now the space derivatives of u can be expressed in terms of v

∂ n u

∂ x n
= F−1

�

(i k )n F (v )

1−βk 2

�

. (46)

Substituting Eq. (43) into Eq. (42) and expressing the time derivative vt the follow-
ing equation results:

vt =−(u + 3βu 2x )ux −
�

α1+βu
�

u 3x −α2βu 5x . (47)

In Eq. (47) the variable u and all its space derivatives could be expressed in terms
of v according to expressions (45) and (46). Therefore, Eq. (47) can be considered
as an ODE with respect to the variable v and could be integrated numerically by
the use of the standard ODE solvers.

Calculations were carried out using SciPy package [50]: for DFT the FFTW [51]
library and for ODE solver the F2PY [52] generated Python interface to ODEPACK
Fortran code [53] was used. Numerical results were analysed and the figures were
generated with Matlab.

3.2 Accuracy and stability of the numerical scheme

The question about the stability and accuracy of solutions certainly arises with any
numerical computation. The studied HKdV Eq. (25) can be rewritten in the form
of the first conservation law

�

u +βu 2x

�

t +

�

u 2

2
+α1u 2x +β
�u 2

2
+α2u 2x

�

2x

�

x

= 0 (48)

with conserved density

C1 (t ) =

2π
∫

0

�

u +βu 2x

�

d x (49)

and in the form of the second conservation law
�

1

2
α1u 2+β
h

(ux )
2+u u 2x

i

�

t

+

�

1

3
α1u 3+u u 2x −

1

2
(ux )

2+β
h1

3
α1u 3+u u 2x −

1

2
(ux )

2
i

2x

�

x

= 0

(50)

with conserved density

C2(t ) =

2π
∫

0

�

1

2
α1u 2+β
h

(ux )
2+u u 2x

i

�

d x . (51)

35



The values of conserved densities C1 and C2 are used for validating the accuracy
of the numerical integration. In addition to that, the number of space grid points is
a critical measure for the accuracy of the solution. In order to ensure the accuracy
of the numerical results, simulations were carried out for a different number of
space grid points for fixed values of parameters α1, α2, β and A. The calculated
wave profiles, were compared in order to determine the lowest value of space grid
points where the wave profiles coincided with the results of the higher values of
space grid points and the conserved densities C1 and C2 were sufficiently accurate.
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4 Emergence of solitons and solitary waves

In this Section we simulate the emergence of solitons and solitary waves in dilatant
granular materials making use of HKdV Eq. (25). Numerical integration is based
on the pseudospectral method, see section 3.1. Simulations are based on the sin-
gle sech2–type initial excitation and periodic boundary conditions. Based on the
numerical results five different solution types are detected:

1. Single KdV soliton;

2. KdV soliton ensemble;

3. KdV soliton ensemble with a weak tail;

4. Soliton with strong a tail;

5. Solitary wave with a tail and a wave packet.

4.1 Initial and boundary conditions

In order to simulate numerically the propagation of solitary waves in dilatant gran-
ular materials the HKdV Eq. (25) is integrated numerically under sech2-type lo-
calised initial conditions

u (x ,0) = A sech2 x

δ
, δ=

Ç

12α1

A
, (52)

and periodic boundary conditions

u (x + 16kπ, t ) =u (x , t ), k =±1,±2,±3, . . . (53)

where A is the amplitude and δ the width of the initial pulse. It is clear that the
latter is the analytical solution of the KdV equation that corresponds to the first
KdV operator in Eq. (25) [2].

4.2 Accuracy and stability of numerical integration

In order to estimate the accuracy of computations, numerical experiments were
carried out with a number of space-grid points n = 512, 1024, 2048, 4096. The be-
haviour of the first and the second conserved density, (49) and (51), respectively,
was traced and final wave-profiles u

�

x , t f

�

, i.e., the wave-profiles at the end of the
integration interval t = t f , were compared. It was found that final wave-profiles
for n ≥ 1024 practically coincide and therefore in the numerical experiments be-
low the number of space-grid points n = 1024 is used.

In all the cases discussed below, the relative error of the conserved density C1 (t )

is less than 10−7. The relative error for C2 (t ) is less than 10−7 in most cases, how-
ever, for some sets of parameters, when relatively sharp wave-profiles emerge, rel-
ative error for C2 can have values of order 10−2.
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4.3 Solution types

The HKdV Eq. (25) is integrated numerically under initial and boundary condi-
tions (52) and (53), for 0<α1 < 1, 0<α2 < 1 and β = 111.11, 11.111, 1.111, 0.111,
0.0111. The number of space grid points n = 1024 and the length of the time inter-
val t f = 100. In Subsections 4.3.1–4.3.5 all solution types are introduced and de-
scribed. Results of the numerical studies described in this Section are published in
Publications I, II, and III. Additional examples of numerical results can be found
in Report I.

4.3.1 The first solution type: single KdV soliton

The first solution type is a single KdV soliton, i.e., a single KdV soliton emerges
over time. This solution appears in all cases where both dispersion parameters α1

and α2 have equal values. The different values of the initial amplitude A or the
microstructure parameter β do not change this behaviour. As Eq. (25) consists of
two KdV operators that are tight through the second derivative and as the initial
condition is the analytical solution of the KdV equation, the solution is quite well
predictable. In Figs. 9–11 an example of equal parameters α1 and α2 is presented.
The KdV soliton propagates with constant amplitude, see Fig. 11, and constant

Space →

T
im

e 
→

Figure 9: Single KdV soliton. Time–slice plot over two space periods for α1 = 0.07,
α2 = 0.07, β = 11.111, A = 4

speed, see corresponding time-slice plot in Fig. 9 and the pseudocolour plot in
Fig. 10. The solution could be defined to be a soliton as the initial condition is the
analytical solution of the KdV equation.

4.3.2 The second solution type: KdV soliton ensemble

In the case of the second solution type, a train of KdV solitons emerges. The num-
ber of generated solitons depends on the values of the macrostructure dispersion
parameter α1 and the microstructure dispersion parameter α2.
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Figure 10: Single KdV soliton. Pseudo-
colour plot over two space periods for α1 =
0.07, α2 = 0.07, β = 11.111, A = 4
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Figure 11: Single KdV soliton. Soliton am-
plitude against time in case α1 = 0.07,α2 =
0.07, β = 11.111, A = 4

In the given example, see Figs. 12–13, the dispersion parameters have values
α1 = 0.4 and α2 = 0.01, resulting in the nine interacting solitons in the ensemble.
In the present case the amplitudes of the higher (when one has two solitons in
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Figure 12: KdV soliton ensemble. Time–slice plot over two space periods for α1 = 0.4,
α2 = 0.01, β = 111.11, A = 4

the train) or the highest (when the number of solitons in the train is higher than
two) KdV soliton always increase compared to the initial amplitude A, see Fig. 14.
Such a behaviour is typical for the KdV equation — if a train of solitons (and a tail)
emerges from the initial localised pulse, then the amplitude of the highest soliton
in the train is always higher than the amplitude of the initial pulse [11].

Based on the analysis, the number of solitons in the soliton ensemble decreases
up to a limit value 1 if α1 is fixed and α2 increases or if α2 is fixed and α1 decreases
(see Subsection 4.4). In the opposite case the number of solitons in the KdV en-
semble increases.
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Figure 13: KdV soliton ensemble. Pseu-
docolour plot over two space periods for
α1 = 0.4, α2 = 0.01, β = 111.11, A = 4
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Figure 14: KdV soliton ensemble. Wave-
profile maxima against time in case α1 =
0.4, α2 = 0.01, β = 111.11, A = 4

The elastic interactions of KdV solitons are clearly visible, see amplitude curves
in Fig. 14 and the corresponding time-slice plot in Fig. 12 and the pseudocolour
plot in Fig 13. The solution type is a soliton ensemble as the interactions are elas-
tic, i.e., KdV solitons restore their shape and speed after interactions.

4.3.3 The third solution type: KdV soliton ensemble with a weak tail

In the case of the third solution type a train of KdV solitons and a weak tail emerge.
The number of KdV solitons in the ensemble depends on dispersion parameters
α1 and α2 by the same rule as in the case of the second solution type — if α2 is
fixed andα1 increases, then the number of solitons in the KdV ensemble increases
and vice versa. The weakness of the tail is expressed through the fact that the tail
does not influence the behaviour of the KdV ensemble essentially, i.e., here the be-
haviour of the KdV ensemble is similar to that of the second solution type. In Figs.
15–18 an example of this solution type is presented. In the present case the am-
plitude of the highest KdV soliton increases compared with the initial amplitude
which is typical of the KdV equation behaviour, similarly described in subsection
4.3.2. The interactions of KdV solitons are visible but additionally the maxima that
correspond to the tail are visible near the zero level of the amplitude, see Fig. 18
and the corresponding time-slice plot in Fig. 15. The tail causes small variations
in the amplitude curves, but does not change the main character of the KdV soli-
ton ensemble – the interactions between the KdV solitons remain (almost) elastic.
Formation of the solution and elastic interactions between solitons can be traced
in Figs. 15, 16 and 17, where the shape and the size of the tail are clearly visible.
The solution type is a soliton ensemble as the solitons in the train interact with
each other and restore their shape and speed after the interactions.
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Figure 15: KdV soliton ensemble with a weak tail. Time–slice plot over two space
periods for α1 = 0.07, α2 = 0.03, β = 11.111, A = 4
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Figure 16: KdV soliton ensemble with a weak tail. Single wave-profiles at t = 2, t = 22,
t = 42, t = 62, t = 82 over two space periods for α1 = 0.07, α2 = 0.03, β = 11.111, A = 4

4.3.4 The fourth solution type: soliton with a strong tail

In the case of the fourth solution type a single soliton and a strong tail emerge. The
number of generated oscillations in the tail depends on the values of the macro-
structure dispersion parameter α1 and the microstructure dispersion parameter
α2.

In Figs. 19–22 an example of this solution type is presented. In Figs. 19, 21 and
22 the formation of the solution and interaction between the soliton and the tail
can be identified. The size and the shape of the tail can be estimated in Fig. 20.
There is always only one solitary wave, which propagates with a decreased ampli-
tude compared to the initial amplitude and it oscillates about a certain constant
level, see Fig. 22 and the corresponding time-slice plot in Fig. 19. The behaviour
of the solution is strongly influenced by the tail: (i) amplitude of the propagating
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Figure 17: KdV soliton ensemble with a
weak tail. Pseudocolour plot over two
space periods for α1 = 0.07, α2 = 0.03, β =
11.111, A = 4
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Figure 18: KdV soliton ensemble with a
weak tail. Wave-profile maxima against
time in case α1 = 0.07, α2 = 0.03, β =
11.111, A = 4
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Figure 19: Soliton with a strong tail. Time–slice plot over two space periods for α1 =
0.03, α2 = 0.09, β = 11.111, A = 4

solitary wave is lower than the initial amplitude; (ii) amplitude of the propagating
solitary wave is not constant, but due to the influence of the tail it oscillates about
a constant level (see Fig. 22). Such a phenomenon — the shape of the initial wave
is modified in a way to be more appropriate to the actual solution of the equation
— is called selection. In other words, selection means that during propagation the
amplitude and the velocity of the initial solitary wave tend to the finite values pre-
scribed by the equation coefficients (see [24, 54, 55, 56] for details). Based on the
fact that there is only one propagating solitary wave with a tail, the interactions of
the solitary waves do not appear, i.e., we cannot identify the solitonic essence of
the fourth solution type and have to do additional analysis, as described in Section
5.
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Figure 20: Soliton with a strong tail. Single wave-profiles at t = 2, t = 22, t = 42, t = 62,
t = 82 over two space periods for α1 = 0.03, α2 = 0.09, β = 11.111, A = 4

Figure 21: Soliton with a strong tail. Pseu-
docolour plot over two space periods for
α1 = 0.03, α2 = 0.09, β = 11.111, A = 4
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Figure 22: Soliton with a strong tail. Wave-
profile maxima against time in case α1 =
0.03, α2 = 0.09, β = 11.111, A = 4

4.3.5 The fifth solution type: solitary wave with a tail and a wave packet

In the case of the fifth solution type, one solitary wave, a tail and wave packet(s)
emerge simultaneously (see Figs. 23–26). A similar situation is described by Chris-
tov and Velarde in [54]. The wave packet is formed by several amplified higher har-
monics (see subsection 4.6 for detailed description). The envelope of the packet
can propagate to the left or to the right and at much higher speed than that of the
solitary wave or high frequency waves that form the packet. The solution is stable,
i.e., all three components of the solution are conserved over long time intervals. As
a rule, three different interactions take place in the present case: (i) solitary wave
— tail; (ii) solitary wave — wave packet; (iii) tail — wave packet. Furthermore, in
some cases two or more wave packets that propagate at different speeds emerge
and therefore interactions between wave packets can take place. Like in the case
of the fourth solution type, the selection phenomenon [24, 54, 55, 56] takes place.
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Figure 23: Solitary wave with a tail and a wave packet. Time–slice plot over two space
periods for α1 = 0.05, α2 = 0.07, β = 0.0111, A = 4
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Figure 24: Solitary wave with a tail and a wave packet. Single wave-profiles at t = 2,
t = 22, t = 42, t = 62, t = 82 over two space periods for α1 = 0.05, α2 = 0.07, β =
0.0111, A = 4

In the present case, the amplitude of the solitary wave oscillates strongly around a
certain constant level, that is lower than the amplitude of the initial pulse, see Fig.
26 and the corresponding timeslice plot in Fig. 23. However, the single solitary
wave interacts with the tail and wave packets and (almost) conserves its speed and
shape throughout such interactions. In this sense one can say that the behaviour
of these solitary waves is ’soliton-like’, but in a strict sense one cannot say that their
behaviour is solitonic.
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Figure 25: Solitary wave with a tail and a
wave packet. Pseudocolour plot over two
space periods for α1 = 0.05, α2 = 0.07, β =
0.0111, A = 4
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Figure 26: Solitary wave with a tail and a
wave packet. Wave-profile maxima against
time in case α1 = 0.05, α2 = 0.07, β =
0.0111, A = 4
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4.3.6 Limit cases

During the analysis of the numerical results some limit cases where observed: (i)
Fig. 27 demonstrates the case where the number of KdV solitons is very high and
probably the second KdV ensemble forms; (ii) Fig. 28 demonstrates the case where
the solitary wave disappears in wave-profiles, i.e., the amplitude of the solitary
wave can be lower than the amplitude of the wave packets.
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Figure 27: KdV soliton ensemble. Single wave-profiles at t = 1, t = 5, t = 10, t = 15,
t = 20, t = 30, t = 40, t = 50, t = 60, t = 70 over two space periods for α1 = 2.2,
α2 = 0.01, β = 11.111, t f = 500, A = 4
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Figure 28: Solitary wave with a tail and a wave packet. Single wave-profiles at t = 1,
t = 5, t = 10, t = 15, t = 20, t = 30, t = 40, t = 50, t = 60, t = 70 over two space periods
for α1 = 0.01, α2 = 0.05, β = 0.0111, A = 4
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4.4 Number of solitons and solitary waves

In Figs. 29–33 a number of solitons are presented against the dispersion param-
eters α1 and α2 for different values of the microstructure parameter β . In case
α1 ≤ α2 there is always only one soliton or solitary wave (except the limit cases
when the solitary wave disappears). In case β ≥ 1.111 and α1 > α2 the number of
solitons in the KdV ensemble increases step by step if α1 increases and α2 is fixed
or if α2 decreases and α1 is fixed, see Figs. 29–31. For β ≤ 0.1111 the number of
solitons is one for α1 >α2, see Figs. 32 and 33.
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Figure 29: Number of solitons or solitary
waves in case β = 111.11, A = 4
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Figure 30: Number of solitons or solitary
waves in case β = 11.111, A = 4
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Figure 31: Number of solitons or solitary
waves in case β = 1.111, A = 4

0.01 0.03 0.05 0.07 0.09

0.01

0.03

0.05

0.07

0.09

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

α
1
 →

α
2
 →

Figure 32: Number of solitons or solitary
waves in case β = 0.1111, A = 4
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Figure 33: Number of solitons or solitary
waves in case β = 0.0111, A = 4
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4.5 Influence of the initial amplitude

In this section the influence of the initial amplitude on the solution behaviour is
described and analysed. In Figs. 34–51 different solutions with different values of
parameters α1, α2, β and A are presented.

In the case of the first solution type the increase of the initial amplitude causes
the increase in the propagation speed of the KdV soliton. The essence of the so-
lution remains the same, see the corresponding pseudocolour plots in Fig. 34 and
35 for the cases A = 5 and A = 10.

In the case of the second solution type the increase of the initial amplitude
causes the increase of the propagation speed of solitons in the KdV soliton en-
semble but the number of solitons in the considered cases did not change, see
the corresponding pseudocolour plots in Figs. 36 and 38 with the corresponding
amplitude curves in Figs. 37 and 39.

In the case of the third solution type the increase of the initial amplitude causes
the increase of propagation speed of KdV solitons. The essence of the solution
remains the same for the considered values of amplitude A = 1, A = 5, A = 10 and
A = 15, see examples in Figs. 40 and 42. The amplitude of the weak tail increases if
the initial amplitude increases but it does not alter the solution type, see examples
in Figs. 41 and 43.

In the case of the fourth solution type the increase of the initial amplitude
from A = 1 to A = 15 causes the increase of the propagation speed of the soliton.
The essence of the solitary wave and the tail does not change, see the example of
pseudocolour plots in Figs. 44 and 46, the corresponding wave–profile amplitude
curves are in Figs. 45 and 47.

In the case of the fifth solution type the increase of the initial amplitude causes
more complex changes than in previous cases — propagation speed of the solitary
wave and the shape of its trajectory is altered, see examples for A = 5 in Figs. 48
and 49 and for A = 10 in Figs. 50 and 51. However, the solution type does not
change.

More examples of the solutions on different amplitude levels but on the con-
stant set of parametersα1,α2 andβ can be found in Report I. Table 1 summarises
the increase of the propagation speed of the highest soliton or solitary wave in the
case of an increased value of the initial amplitude. In all cases the speed of the
(highest) solitary wave increases if the initial amplitude increases.
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Figure 34: Single KdV soliton. Pseudo-
colour plot over two space periods for
α1 = 0.05, α2 = 0.05, β = 1.111, A = 5

Figure 35: Single KdV soliton. Pseudo-
colour plot over two space periods for
α1 = 0.05, α2 = 0.05, β = 1.111, A = 10

Figure 36: KdV soliton ensemble. Pseu-
docolour plot over two space periods for
α1 = 1, α2 = 0.1, β = 111.11, A = 1
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Figure 37: KdV soliton ensemble. Wave-
profile maxima against time in caseα1 =
1, α2 = 0.1, β = 111.11, A = 1

Figure 38: KdV soliton ensemble. Pseu-
docolour plot over two space periods for
α1 = 1, α2 = 0.1, β = 111.11, A = 5
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Figure 39: KdV soliton ensemble. Wave-
profile maxima against time in caseα1 =
1, α2 = 0.1, β = 111.11, A = 5

49



Figure 40: KdV soliton ensemble with a
weak tail. Pseudocolour plot over two
space periods for α1 = 0.1, α2 = 0.05,
β = 111.11, A = 5
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Figure 41: KdV soliton ensemble with a
weak tail. Wave-profile maxima against
time in case α1 = 0.1, α2 = 0.05, β =
111.11, A = 5

Figure 42: KdV soliton ensemble with a
weak tail. Pseudocolour plot over two
space periods for α1 = 0.1, α2 = 0.05,
β = 111.11, A = 10
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Figure 43: KdV soliton ensemble with a
weak tail. Wave-profile maxima against
time in case α1 = 0.1, α2 = 0.05, β =
111.11, A = 10

Figure 44: Soliton with a strong tail.
Pseudocolour plot over two space peri-
ods for α1 = 0.03, α2 = 0.09, β = 11.111,
A = 10
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Figure 45: Soliton with a strong tail.
Wave-profile maxima against time in
case α1 = 0.03, α2 = 0.09, β = 11.111,
A = 10
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Figure 46: Soliton with a strong tail.
Pseudocolour plot over two space peri-
ods for α1 = 0.03, α2 = 0.09, β = 11.111,
A = 15
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Figure 47: KdV soliton with a strong
tail. Wave-profile maxima against time
in case α1 = 0.03, α2 = 0.09, β = 11.111,
A = 15

Figure 48: Solitary wave with a tail and
a wave packet. Pseudocolour plot over
two space periods for α1 = 0.05, α2 =
0.07, β = 0.0111, A = 5
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Figure 49: Solitary wave with a tail and
a wave packet. Wave-profile maxima
against time in case α1 = 0.05, α2 = 0.07,
β = 0.0111, A = 5

Figure 50: Solitary wave with a tail and
a wave packet. Pseudocolour plot over
two space periods for α1 = 0.05, α2 =
0.07, β = 0.0111, A = 10
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Figure 51: Solitary wave with a tail and
a wave packet. Wave-profile maxima
against time in case α1 = 0.05, α2 = 0.07,
β = 0.0111, A = 10
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Table 1: The speed of the highest soliton or solitary wave against the initial amplitude A
and solution type

Parameters Speed
Type α1 α2 β A = 1 A = 5 A = 10

1 0.05 0.05 1.111 0.33 1.65 3.26
2 1 0.1 111.11 0.58 2.65 5.13
3 0.1 0.05 111.11 0.41 2.01 3.99
4 0.03 0.09 11.111 0.23 1.03 2.04
5 0.1 0.05 0.1111 0.31 1.17 2.17
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4.6 Wave packet phenomenon and spectral quantities

In this Section the fifth solution type and the wave packet phenomenon are dis-
cussed in terms of spectral quantities. For this reason spectral densities and time
averaged normalised spectral densities are defined. The idea of applying time av-
eraged normalised spectral densities comes from Galgani et al. [57] where time
averaged energies of single modes are used in order to discuss the energy equipar-
tition in systems of the FPU type.

If U (k , t ) is the DFT of function u (x , t ) defined by expression (41), then spectral
densities

S(k , t ) =
4
h

U (k , t )
i2

n 2
, k = 1, ...,

n

2
− 1,

S(k , t ) =
2
h

U (k , t )
i2

n 2
, k =

n

2
.

(54)

For each value of t one can define the sum of spectral densities

Ssum(t ) =

n/2
∑

k=1

S(k , t ), (55)

normalised spectral densities

Snorm(k , t ) =
S(k , t )

Ssum(t )
·100% (56)

and time averaged normalised spectral densities (TANSD)

Sa(k , t ) =

∫ t

0
Snorm(k , t )d t

t
. (57)

We have discrete values of spectral densities S and Snorm at discrete time moments
t i , i.e., we have S(k , t i ) and Snorm(k , t i ). Therefore at t = t i

Sa(k , t i ) =

∑i

m=1 Snorm(k , tm )

i
. (58)

TANSD (58) reflect the contribution of the k -th spectral density over the time in-
terval [0, t i ]. In contrast to spectral densities, TANSD curves provide a clearer com-
prehension of the domination of certain harmonics.

In the case of the first four solution types, no dominating spectral densities ex-
ist. For example, in Fig. 52 time averaged spectral densities are plotted for the
third solution type (KdV soliton ensemble with a weak tail, see the corresponding
time–slice plot in Fig. 12). One can see that at t = 100 all time averaged spectral
densities have values below 2. In the case of the fifth solution type — a solitary
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Figure 52: KdV soliton ensemble with a weak tail. Time averaged normalised
spectral densities in case α1 = 0.4, α2 = 0.01, β = 111.11, A = 4

wave with a tail and a wave packet — the behaviour of TANSD is completely dif-
ferent. In Fig. 53 the corresponding time-slice plot is presented for α1 = 0.05,
α2 = 0.09, β = 0.0111. TANSD in Fig. 54 demonstrates that Sa (60,100) > 40,
Sa (61,100) ≈ 12.5, Sa (59,100) ≈ 11, Sa (62,100) ≈ 2.5 and other TANSD have values
less than 2 at t = 100, i.e., 59th–62nd spectral densities are amplified and dominate
over the others in time interval [0,100]. It is clear that wave packets are formed by
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Figure 53: Solitary wave with a tail and a wave packet. Time–slice plot over two
space periods for α1 = 0.05, α2 = 0.09, β = 0.0111, A = 4

amplified harmonics and Sa having the highest value determines the number of
maxima (oscillations) in a certain wave-profile. Similar situations are described in
many textbooks (see [58], for example) in order to explain group velocity and dis-
persion phenomena — sum of harmonic waves having nearly equal frequencies
presents a wave packet.

In the limit case, only one spectral density is dominating and envelope waves
(typical of wave packets) are formed only at the beginning of the integration in-
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Figure 54: Solitary wave with a tail and a wave packet. Time averaged nor-
malised spectral densities in case α1 = 0.05, α2 = 0.09, β = 0.0111, A = 4

terval. For t = t f ensemble of (nearly) equal amplitude of (small) solitary waves
(EA ensemble for short) [45, 59] is formed between KdV solitons. EA ensemble
was found to form in few cases only. For example, in case α1 = 0.07, α2 = 0.11,
β = 0.0111 the 63rd harmonic dominates, see Figs. 55 and 56. The number of the
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Figure 55: Solitary wave with a tail and a wave packet, limit case: KdV soliton
with a tail and EA ensemble. Time–slice plot over two space periods for α1 =
0.07, α2 = 0.11, β = 0.0111, A = 4

dominating harmonic reflects the number of solitary waves in the EA ensemble,
i.e., if the 63rd harmonic is dominating, then there are 63 solitary waves in the EA
ensemble.

4.7 Discussion

Phenomena described under the fifth solution type could be explained in terms
of embedded solitons. Embedded solitons have been identified in a wide array
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Figure 56: Solitary wave with a tail and a wave packet, limit case: KdV soliton
with tail and EA ensemble. Time averaged normalised spectral densities in
case α1 = 0.07, α2 = 0.11, β = 0.0111, A = 4

of physical systems, including these described by the generalised fifth-order KdV
equations (see [60, 61, 62]). However, in this work periodic boundary conditions
are used and therefore related theory for embedded solitons cannot be directly
transferred.

To distinguish between the second and the third solution types, i.e., between
KdV soliton ensemble and KdV soliton ensemble with a weak tail, is quite con-
ditional. The tail is sometimes so weak that it is practically indistinguishable by
means of wave-profile extrema as well as spectral quantities. The situation is likely
to be analogous to the KdV equation where the pure N -soliton solution is formed
only for a certain fixed values of parameters. In other cases an ensemble of N -
solitons and a tail (which can be very small) are formed.

For the KdV equation of form u t +u ux +u 3x = 0 initial pulse u (x ,0) = 6N (N +

1)sech2 x results in train on N solitons, where the k -th soliton (k = 1, . . . ,N ) prop-
agates at the speed ck = 4(N + 1− k )2 and its amplitude Ak = 3ck [63]. If the
amplitude of the initial pulse is denoted by A0 = 6N (N + 1), then ratios Ak /A0 =

[2(N + 1−k )2]/[N (N + 1)].
Table 2 presents the ratios of Ak /A0 for N = 1. . . 9 solitons solutions In Section

4.3.2 an example is discussed, where a train of nine solitons is formed from the ini-
tial pulse (52). If soliton amplitudes Anum

k are measured near t = 15 (i.e. when they
are well separated) we obtain Anum

k
/A0 ≈ [1.797,1.397,1.048,0.749, 0.503, 0.305,

0.155,0.053,0.011] (here A0 = 4). It is clear that these values are very close to val-
ues Ak /A0 for N = 9 and therefore the numerical solution considered can be called
a KdV soliton ensemble. In Section 4.3.3 we examined a case where two solitons
and a weak tail are formed from the initial pulse (52) with A ≡ A0 = 4. Now we
obtain Anum

k /A0 ≈ [1.2614,0.2424]. These values are essentially lower than values
Ak /A0 for N = 2. However, the situation is again similar to that of the KdV case:
if A0|N=1 < A0 < A0|N=2, then the train of two solitons and a tail is formed, and
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Table 2: Amplitudes of N solitons for the KdV equation

k-th solitons amplitude
N 1 2 3 4 5 6 7 8 9
1 1
2 4/3 1/3
3 3/2 2/3 1/6
4 1.6 0.9 0.4 0.1
5 1.667 1.067 0.6 0.267 0.067
6 1.714 1.190 0.762 0.429 0.190 0.048
7 1.750 1.286 0.893 0.571 0.321 0.143 0.036
8 1.778 1.361 1 0.694 0.444 0.25 0.111 0.028
9 1.8 1.422 1.089 0.8 0.556 0.356 0.2 0.089 0.022

amplitudes of single solitons Ak < Ak |N=2. Finally, remember that the initial con-
dition (52) is one soliton solution of the KdV equation that corresponds to the first
KdV operator in Eq. (25) and the formation of soliton trains takes place due to the
influence of the second KdV operator in Eq. (25).

In Subsections 4.3.1–4.3.5 solution types were introduced making use of the
fixed value A = 4 for the amplitude of the initial solitary wave. In Section 4.5 addi-
tional numerical experiments for 1≤ A ≤ 15 were carried out in order to estimate
the influence of the initial amplitude on the character of the solution. It was found
that in the case of solution types (i)–(iv) the rise of the initial amplitude increases
the speed of emerging solitons but neither the solution type nor the number of
solitons in the KdV ensemble changes. In the case of the fifth solution type the in-
crease of the initial amplitude from A = 1 to A = 15 causes more complex changes
than in previous cases. For A ≥ 5 propagation of the solitary wave is so strongly
influenced by the tail and wave packet that its straight-line trajectory is altered to
that of a curvilinear one. However, the solution type is not changed (all three so-
lution components of the solution exist over the time interval 0≤ t ≤ t f ). The full
set of corresponding figures is presented in Report I.

According to the analysis above one can conclude that the solitonic character
of the solution and the usage of the term ’KdV soliton ensemble’ is strictly veri-
fied for the second and the third solution types. For these solution types solitary
waves conserve their shape and speed throughout interactions with other solitary
waves. In other words, the behaviour of these ensembles of solitary waves is prac-
tically identical to that of the KdV solitons and therefore the train of solitary waves
is termed the ’KdV soliton ensemble’. In the case of the first solution type the ini-
tial solitary wave, which is the analytical solution of the KdV equation, propagates
at constant speed and amplitude; in the case of the fourth and the fifth solution
types, the single solitary wave interacts with the tail and wave packets (in the case
of the fifth solution type) and (almost) conserves its speed and shape through-
out such interactions. However, in order to discuss the solitonic character more
strictly one needs to simulate interactions between these solitary waves. This is
elaborated in Section 5.
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5 Interactions of solitons and solitary waves

In this Section we simulate the interactions of solitons and solitary waves accord-
ing to the solution types defined in Section 4:

(i) KdV solitons;

(ii) KdV soliton ensembles (with weak tails);

(iii) Solitons with strong tails;

(iv) Solitary waves with tails and wave packets.

In order to simulate interactions between solitons, soliton ensembles and solitary
waves an appropriate initial condition is used:

(i) initial condition consists of two sech2-type localised excitations;

(ii) sech2-type localised excitations are shifted with respect to x = 0 by 16π and
48π

(iii) sech2-type localised excitations have different amplitudes, i.e., they gener-
ate solitary waves that propagate at different speeds.

The appropriate initial condition allows us to simulate the interactions of: (i) two
single KdV solitons (the first solution type in Section 4); (ii) solitons from differ-
ent KdV soliton ensembles (the second and the third solution types in Section 4);
(iii) two solitons with strong tails (the fourth solution type in Section 4); (iv) two
solitary waves with tails and wave packets (the fifth solution type in Section 4) and
to analyse the character of interactions in terms of solitons, i.e., to understand
whether solitary waves that emerge from different initial pulses interact elastically
or not.

The results that are presented in this Section are published in papers Publica-

tions IV and V. Detailed description of the analysis and several additional exam-
ples can be found in Report II.

5.1 Initial and boundary conditions

In order to simulate interactions between solitons, soliton ensembles and solitary
waves an initial condition is used here that consists of two sech2-type localised
waves which are shifted with respect to x = 0 by 16π and 48π, respectively:

u (x ,0) =A1 sech2 x − 16π

δ1
+A2 sech2 x − 48π

δ2
(59)

δ1 =

r

12α1

A1
, δ2 =

r

12α1

A2
.
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Here A1 is the amplitude of the left hand side and A2 is the amplitude of the right
hand side sech2-type pulse, δ1 and δ2 are the widths of the initial pulses and 0 ≤
x < 64π. Appropriate periodic boundary conditions

u (x + 64kπ, t ) = u (x , t ), k =±1,±2,±3, . . . , (60)

are applied. The values of dispersion parameters α1, α2 and microstructure pa-
rameter β have been selected according to the solution types defined in Publica-

tions I, II and III. The number of space grid points n = 4096 and the length of the
time interval t f = 100.

5.2 Accuracy and stability of numerical integration

In order to estimate the accuracy of computations, numerical experiments were
carried out with a number of space-grid points n = 2048,4096,8192. The be-
haviour of the conserved densities C1 and C2 (see Section 3.2) was traced and final
wave-profiles u

�

x , t f

�

, i.e., the wave-profiles at the end of the integration interval
t = t f , were compared. It was found that final wave-profiles for n ≥ 4096 practi-
cally coincide and therefore in the numerical experiments presented in this Sec-
tion, the number of space-grid points n = 4096 is used. In all the cases discussed
below, the relative error of the conserved density C1 (t ) is less than 10−10 and for
C2 (t ) less than 10−2.

5.3 Interactions of single KdV solitons

The first solution type is called the single KdV soliton and it appears if dispersion
parameters α1 = α2. In this case the initial sech2-pulses propagate at constant
speed and constant amplitude.

Here we simulate interactions between two initial pulses that have different
amplitudes and therefore they propagate at different speeds. The left hand side
solitary wave with the amplitude A1 = 15 propagates faster than the right hand
side one with the amplitude A1 = 5 and interactions can take place (see the corre-
sponding time-slice, pseudocolour and wave-profile maxima plots in Figs. 57, 58
and 59).

Those figures demonstrate clearly that interactions between solitons are elastic
as the solitons restore their speeds and amplitudes after interactions. During the
interactions, solitons are phase shifted — the higher amplitude soliton is shifted
to the right and the lower amplitude soliton to the left, see pseudocolour plot in
Fig. 58.

In order to verify the solitonic character of the solution and the usage of the
name ’KdV soliton’, the behaviour of the solitons during interactions was com-
pared to the behaviour of solitons in the case of the KdV equation. In the case of
two-soliton solution of the KdV equation of the form u t + u ux + d u 3x = 0, the
phase-shifts of interacting solitons can be found analytically as follows:

ϑ1 =Θ∆1, ϑ2 =−Θ∆2, Θ= ln
1+
p

r

1−pr
, ∆i =

r

12d

A i
, r =

A2

A1
. (61)
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Here ϑ1, ϑ2 are phase-shifts of the higher and the lower soliton, respectively and
A1 > A2 are amplitudes of interacting solitons (see [64] for details). In the nu-
merical experiments, velocities and phase-shifts of interacting solitons were cal-
culated making use of trajectories of wave-profile local maxima (in [64] three dif-
ferent types of trajectories are distinguished). One can conclude that (i) between
interactions solitons restored their initial amplitudes A i and speeds c i =A i /3, and
(ii) numerical phase-shifts ϑnum

i and phase-shifts (61) coincide. In other words, in
case α1 =α2 initial pulses (59) behave exactly like KdV solitons.
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Figure 57: Interactions of KdV solitons. Timeslice plot over two space periods for α1 =
α2 = 0.03, β = 0.0111, A1 = 15, A2 = 5

Figure 58: Interactions of KdV solitons.
Pseudocolour plot over two space periods
for α1 = α2 = 0.03, β = 0.0111, A1 = 15,
A2 = 5
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Figure 59: Interactions of KdV solitons.
Wave-profile maxima against time in case
α1 =α2 = 0.03, β = 0.0111, A1 = 15, A2 = 5
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5.4 Interactions of KdV soliton ensembles

In Section 4, we found that it is quite conditional to distinguish between the sec-
ond and the third solution types, i.e., between a KdV soliton ensemble and a KdV
soliton ensemble with a weak tail. The tail is sometimes so weak that it is practi-
cally indistinguishable by means of wave-profile extrema as well as spectral quan-
tities. For this reason we consider here these two solution types together. In this
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Figure 60: Interactions of KdV soliton ensembles with weak tails. Timeslice plot over
two space periods for α1 = 1, α2 = 0.1, β = 111.11, A1 = 8, A2 = 4

Figure 61: Interactions of KdV soliton en-
sembles with weak tails. Pseudocolour plot
over two space periods for α1 = 1, α2 = 0.1,
β = 111.11, A1 = 8, A2 = 4
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Figure 62: Interactions of KdV soliton en-
sembles with weak tails. Wave-profile max-
ima against time in case α1 = 1, α2 = 0.1,
β = 111.11, A1 = 8, A2 = 4

Subsection we consider two sets of initial pulses: in the first case A1 = 8 and A2 = 4
(α1 = 1, α2 = 0.1, β = 111.11, see Figs. 60–62) and in the second case A1 = 15 and
A2 = 5 (α1 = 0.07, α2 = 0.03, β = 111.11, see Figs. 63–65). In both cases two dif-
ferent soliton ensembles and (very) weak tails emerge from dual sech2-type initial
conditions (59). The number of solitons in the KdV soliton ensemble depends on
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the values of dispersion parameters α1, α2 and microstructure parameter β and
on the value of the amplitude of the pulse A. In the first case an ensemble of three
solitons emerges from the left hand side initial pulse and an ensemble of four soli-
tons forms the right hand side pulse. In the second case the number of solitons
in both ensembles is two. Emerged soliton ensembles are typical KdV soliton en-
sembles, i.e., the amplitude of the highest soliton in the KdV ensemble is always
higher than the amplitude of the initial pulse. The tail is weak as it does not have a
strong influence on the behaviour of the KdV ensemble — it does not change the
speed of solitons (see pseudocolour plots in Figs. 61 and 64), but it causes small
oscillations in soliton amplitude curves (see Figs. 62 and 65). Solitons with differ-
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Figure 63: Interactions of KdV soliton ensembles with weak tails. Timeslice plot over
two space periods for α1 = 0.07, α2 = 0.03, β = 111.11, A1 = 15, A2 = 5

Figure 64: Interactions of KdV soliton en-
sembles with weak tails. Pseudocolour plot
over two space periods for α1 = 0.07, α2 =
0.03, β = 111.1, A1 = 15, A2 = 5
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Figure 65: Interactions of KdV soliton en-
sembles with weak tails. Wave-profile max-
ima against time in case α1 = 0.07, α2 =
0.03, β = 111.11, A1 = 15, A2 = 5

ent amplitudes propagate at different speeds and therefore interactions between
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emerging solitons take place. One can trace here two types of interactions: (i) be-
tween solitons from different ensembles, and (ii) between solitons from the same
ensemble. Both interaction types can be characterised as follows: (i) during inter-
actions solitons are phase-shifted (Figs. 61 and 64) and amplitudes of higher soli-
tons decrease (Figs. 62 and 65); (ii) after interactions solitons almost restore their
amplitudes (Figs. 62 and 65) and speeds (Figs. 61 and 64). Besides the soliton-
soliton interactions all solitons interact with tails. However, as the tails are weak,
they do not influence the behaviour of solitons essentially and their influence can
be traced only in the curves of wave-profile maxima, where tails can cause small
oscillations. In conclusion, one can declare that observed interactions are nearly
elastic and therefore the solution can be called solitonic.

5.5 Interactions of solitons with strong tails

In the present case two solitons and strong tails emerge from the initial wave (59)
(cf. the fourth solution type in Section 4). Due to different initial amplitudes the
solitons emerged propagate at different speeds and therefore interact (see Figs.
66–68). For this solution type the tail is considered to be strong, because it influ-
ences the behaviour of the emerged solitary waves essentially: (i) amplitudes of
the propagating solitary waves are lower than the amplitudes of the initial ones;
(ii) amplitudes of the propagating solitons are not constant, but due to the influ-
ence of strong tails they oscillate about a constant level (see Fig. 68). The decrease
of the left and the right hand side solitary wave amplitudes is proportional to the
initial amplitudes. In the example considered here propagating solitons are ap-
proximately 1.4 times lower than the initial waves. The phenomenon of selection
takes place, see Section 4 for details. The interaction produces phase shifts in
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Figure 66: Interactions of solitons with strong tails. Timeslice plot over two space
periods for α1 = 0.03, α2 = 0.07, β = 111.11, A1 = 15, A2 = 5

soliton trajectories — the higher solitary wave is shifted to the right and the lower
amplitude solitary wave is shifted to the left. After the interaction both solitons al-
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Figure 67: Interactions of solitons with
strong tails. Pseudocolour plot over two
space periods for α1 = 0.03, α2 = 0.07, β =
111.11, A1 = 15, A2 = 5
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Figure 68: Interactions of solitons with
strong tails. Wave-profile maxima against
time in case α1 = 0.03, α2 = 0.07, β =
111.11, A1 = 15, A2 = 5

most restore their amplitudes. Therefore one can say that the interaction is nearly
elastic and the usage of the term soliton in Section 4 is verified.

5.6 Interactions of solitary waves with tails and wave packets

The situation discussed in this Subsection corresponds to the fifth solution type
in Section 4. In this case solitary waves, tails and wave packets emerge simultane-
ously. Here we present four examples: in the first case A1 = 8, A2 = 4, α1 = 0.05,
α2 = 0.11, and β = 0.0111 (see Figs. 69–72); in the second case A1 = 15, A2 = 5,
α1 = 0.05, α2 = 0.03, and β = 0.111 (see Figs. 73–76); in the third case A1 = 8,
A2 = 4, α1 = 0.09, α2 = 0.11, and β = 0.0111 (see Figs. 77–80); in the fourth case
A1 = 12, A2 = 2, α1 = 0.09, α2 = 0.11, and β = 0.0111 (see Figs. 81–84). All three
components of the solution could be seen in timeslice plots in Figs. 69, 70, 73, 74,
77, 78, 81 and 82.

Due to the complicated structure of the solution, different interactions can take
place: (i) solitary wave – solitary wave; (ii) solitary wave – tail; (iii) solitary wave –
wave packet; (iv) tail – wave packet; (v) interactions between wave packets.

In Section 4 we found that for all solution types the speed of solitary waves
(solitons) depends on the amplitude of the initial wave — the higher the wave the
higher its speed. Therefore we expected interacting solitary waves to emerge from
different amplitude initial waves for the present solution type. However, due to the
emergence of different wave packets the situation here is more complicated than
in the case of a single initial pulse. In Section 4 besides the tail and wave pack-
ets only one solitary wave emerged. Now several solitary waves can emerge from
both initial pulses and interacting solitary waves were detected in few cases only.
The influence of different wave packets on the behaviour of solitary waves can be
so strong that their amplitudes decrease rapidly and it is practically impossible
to distinguish between solitary waves and wave packets in time dependencies of
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wave-profile maxima. Therefore only time dependencies of global maxima and
global minima are presented in Figs. 72, 76, 84 and 80. On the other hand, accord-
ing to timeslice and pseudocolour plots in Figs. 69–71, 73–75, 77–79 and 81–83 the
emerged solitary waves are not completely suppressed. One can say that a very
strong selection procedure takes place and shapes of all solitary waves are altered
to a certain critical amplitude level, which can be several times lower than the am-
plitude of the initial wave, see Figs. 72, 76, 80 and 84. In some cases, like the one
presented in Figs. 77–80, the selection procedure is not so strong and it is easy
to distinguish between solitary waves and wave packets. Due to the fact that all
emerged solitary waves are selected to nearly the same amplitude level they all are
propagating at nearly the same speed and do not interact, see Figs. 69, 71, 73, 75,
77 and 79. In few cases different solitary waves are selected to different amplitude
levels and therefore interactions between solitary waves take place. A correspond-
ing example is presented in Figs. 81–84. However, it is clear that these interactions
are not elastic — speeds and amplitudes of solitons and solitary waves are altered
during interactions, see Figs. 81–83. Amplitudes of solitary waves oscillate strongly
in all four cases due to interactions between solitary waves and wave packets, see
Figs. 72, 76, 80 and 84. Notwithstanding these different interactions and the se-
lection phenomenon, all three components of the solution are conserved over the
whole integration time interval. In this sense the solution is stable. However, in the
present case we cannot declare that emerged solitary waves are solitons because
either it is impossible to simulate interactions between solitary waves or interac-
tions are not elastic.
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Figure 69: Interactions of solitary waves with tails and wave packets.
Timeslice plot over two space periods for α1 = 0.05, α2 = 0.11, β = 0.0111,
A1 = 8, A2 = 4
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Figure 70: Interactions of solitary waves with tails and wave packets. Single
wave-profiles at t = 0, t = 20, t = 40, t = 60, t = 80, t = 100 over two space
periods for α1 = 0.05, α2 = 0.11, β = 0.0111, A1 = 8, A2 = 4

Figure 71: Interactions of solitary waves
with tails and wave packets. Pseudocolour
plot over two space periods for α1 = 0.05,
α2 = 0.11, β = 0.0111, A1 = 8, A2 = 4
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Figure 72: Interactions of solitary waves
with tails and wave packets. Wave-profile
maximum and minimum against time in
case α1 = 0.05, α2 = 0.11, β = 0.0111,
A1 = 8, A2 = 4

Space →

T
im

e 
→

Figure 73: Interactions of solitary waves with tails and wave packets.
Timeslice plot over two space periods for α1 = 0.05, α2 = 0.03, β = 0.111,
A1 = 15, A2 = 5
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Figure 74: Interactions of solitary waves with tails and wave packets. Single
wave-profiles at t = 0, t = 5, t = 10, t = 15, t = 20, t = 25, t = 40, over two
space periods for α1 = 0.05, α2 = 0.03, β = 0.111, A1 = 15, A2 = 5

Figure 75: Interactions of solitary waves
with tails and wave packets. Pseudocolour
plot over two space periods for α1 = 0.05,
α2 = 0.03, β = 0.111, A1 = 15, A2 = 5
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Figure 76: Interactions of solitary waves
with tails and wave packets. Wave-profile
maximum and minimum against time in
case α1 = 0.05, α2 = 0.03, β = 0.111, A1 =
15, A2 = 5
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Figure 77: Interactions of solitary waves with tails and wave packets.
Timeslice plot over two space periods for α1 = 0.09, α2 = 0.11, β = 0.0111,
A1 = 8, A2 = 4
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Figure 78: Interactions of solitary waves with tails and wave packets. Single
wave-profiles at t = 0, t = 10, t = 20, t = 30, t = 40, t = 50, t = 60, t = 70,
t = 80, t = 90, t = 100 over two space periods for α1 = 0.09, α2 = 0.11,
β = 0.0111, A1 = 8, A2 = 4

Figure 79: Interactions of solitary waves
with tails and wave packets. Pseudo-
colour plot over two space periods for
α1 = 0.09, α2 = 0.11, β = 0.0111, A1 = 8,
A2 = 4
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Figure 80: Interactions of solitary waves
with tails and wave packets. Wave-profile
maximum and minimum against time in
caseα1 = 0.09, α2 = 0.11, β = 0.0111, A1 =
8, A2 = 4
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Figure 81: Interactions of solitary waves with tails and wave packets.
Timeslice plot over two space periods for α1 = 0.09, α2 = 0.11, β = 0.0111,
A1 = 12, A2 = 2
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Figure 82: Interactions of solitary waves with tails and wave packets. Sin-
gle wave-profiles at t = 0, t = 10, t = 20, t = 30, t = 40, t = 50, t = 60,
t = 70, t = 80, t = 90, t = 100 over two space periods for α1 = 0.09,
α2 = 0.11, β = 0.0111, A1 = 12, A2 = 2

Figure 83: Interactions of solitary waves
with tails and wave packets. Pseudo-
colour plot over two space periods for
α1 = 0.09, α2 = 0.11, β = 0.0111, A1 = 12,
A2 = 2
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Figure 84: Interactions of solitary waves
with tails and wave packets. Wave-profile
maximum and minimum against time in
caseα1 = 0.09, α2 = 0.11, β = 0.0111, A1 =
12, A2 = 2
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5.7 Discussion

In Subsection 4.6 we described the phenomenon of wave packet formation in terms
of time averaged spectral densities (TANSD). TANSD (58) reflect the contribution
of the k -th spectral density over the time interval [0, tk ]. Figure 85 presents TANSD
for α1 = 0.05, α2 = 0.11, β = 0.0111, A1 = 8, A2 = 4 and Fig. 86 for α1 = 0.05,
α2 = 0.03, β = 0.111, A1 = 15, A2 = 5 (see the corresponding timeslice plots in
Figs. 69 and 73). It is clear that wave packets are formed by amplified higher order
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Figure 85: Interactions of solitary waves with tails and wave packets. Time
averaged spectral densities plot α1 = 0.05, α2 = 0.11, β = 0.0111, A1 = 8,
A = 4
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Figure 86: Interactions of solitary waves with tails and wave packets. Time
averaged spectral densities plot α1 = 0.05, α2 = 0.03, β = 0.111, A1 = 15,
A = 5

harmonics and the highest value of Sa(k , t ) determines the number of maxima (os-
cillations) in the given wave-profile. One can conclude that in Fig. 85 Sa (k , t ) for
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218≤ k ≤ 240 and in Fig. 86 for 97≤ k ≤ 102 are amplified and therefore generate
wave packets.

The wave packets that are formed in the present case are slightly different from
the case described in Section 4. In the present case there are two sets of different
wave packets, one formed from the left-hand side and the other formed from the
right-hand side initial pulse. Based on the analysis in Publication III and Report

I one can say that the shape of the wave packet depends on the amplitude of the
initial excitation. In the present case, the number of amplified harmonics is much
higher than the number amplified harmonics in the case of single sech2–type ini-
tial condition described in Section 4.

Based on the given examples, it can be concluded, that the wave packets influ-
ence the propagation of the solitary waves essentially:

1. In the first (Figs. 69–72) and in the second case (Figs. 73–76) initial solitary
waves are decomposed into several solitary waves, which have amplitudes
much lower than the amplitudes of the initial waves. In some cases the am-
plitudes of the emerged solitary waves are so low that it is complicated to
distinguish between solitary waves and wave packets in single profiles (Figs.
70 and 74). However, in timeslice plots (Figs. 69 and 73) and pseudocolour
plots (Figs. 71 and 75) trajectories of solitary waves can be traced.

2. In the third case, in Figs. 77–80, the amplitude of the higher solitary wave de-
creases and that of the lower solitary wave increases to a nearly equal level
at the beginning of the integration interval. Later the solitary waves change
their amplitudes (and speeds) for two times. In other words, between t ≈ 25
and t ≈ 55 the right solitary wave is higher than the left one and for t > 55 the
left solitary wave is again higher and faster. This means that the emerging
solitary waves exchange energy between themselves without any "direct" in-
teraction.

3. In the fourth case, in Figs. 81–84, the shape and the speed of the solitary
waves are altered during the interaction , i.e., the interaction is not elastic.

In Section 4 the solitonic character was not strictly established for the first, the
fourth and the fifth solution types. The analysis presented in the present Section
demonstrates that two single KdV solitons (the first solution type in Section 4) in-
teract exactly like solitons in the case of the (classical) KdV equation. Also, numer-
ical simulations demonstrate the solitonic character of the solution of the fourth
type (soliton with a strong tail). However, in the case of the fifth solution type (soli-
tary wave with a tail and wave packets), emerged solitary waves do not behave like
solitons.
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6 Conclusions

The term "soliton" has prevailed as a subject for thousands of publications for sev-
eral decades. Numerous authors have explored and analysed the essence of soli-
tons. Solitons are essential to describe the phenomena such as propagation of
some hydrodynamic waves, localised waves in astrophysical plasmas, the prop-
agation of signals in optical fibres, charge transport in conducting polymers, lo-
calised modes in magnetic crystals or the dynamics of biological molecules, such
as DNA and proteins, etc. Although knowledge collected about the solitons is sub-
stantial, there are still wide areas to explore and explain.

The situation with granular materials is similar — numerous scientists are ex-
ploring the physics and mathematics provided by granular materials. Models are
created and verified and as a result, more exact models are created. Modern tech-
nology and efficient numerical algorithms allow us to solve in a short time com-
plex nonintegrable systems that were a main obstacle a couple of years ago.

Models of granular materials exhibit a number of features. One of those fea-
tures is the coexistence of nonlinearity and dispersion causing the emergence of
soliton solution in such kind of media.

In this thesis, the author has studied the problem of one dimensional wave
propagation in dilatant granular materials making use of the hierarchical Korteweg–
de Vries Eq. (25) (fifth-order nonlinear partial differential equation that includes
the mixed derivative). The model equation (25) is integrated numerically under
sech2–type initial conditions in order to simulate emergence, propagation and in-
teractions of solitons and solitary waves.

For numerical integration the discrete Fourier transform based pseudospec-
tral method was used. The accuracy of the numerical simulations was verified by
the first and the second conservation law, ensuring a sufficiently high number of
space-grid points for numerical integration.

Main results can be summarised as follows:

1. Depending on the character of solutions, four solution types are defined:

• Single KdV soliton is a soliton solution, because the solitary wave is
the analytical soliton solution of the KdV equation that corresponds
to both KdV operators in the HKdV Eq. (25). Furthermore, the Single
KdV soliton (that propagates at constant speed and shape) interacts
elastically with another single KdV soliton. However, the phase-shifts
of this solution type coincide with phase shifts of classical KdV solitons.

• KdV soliton ensemble (with a weak tail) is a soliton solution because a
train of elastically interacting solitary waves is formed. The behaviour
of the soliton ensemble is very close to that of the KdV. In the consid-
ered case the ratios of the amplitudes of solitons practically coincide
with the ratios of the amplitude of the classical KdV N–soliton solu-
tion. As the initial condition is the soliton solution of the KdV equation
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which corresponds to the first KdV operator in Eq. (25), then the for-
mation of soliton trains and the tail take place due to the influence of
the second KdV operator in Eq. (25).

In Section 4 five solution types were introduced. However, it is quite
conditional to distinguish between solution types as ’KdV soliton en-
semble’ and ’KdV soliton ensemble with a weak tail’ on the basis of
several numerical experiments. The tail is sometimes so weak that it is
practically indistinguishable by means of wave profile extreme as well
as spectral quantities. For this reason we consider here these two solu-
tion types together.

• Soliton with a strong tail is a soliton solution because the solitary wave
(that propagates at constant speed and shape) interacts elastically with
another soliton with a strong tail. The formation of the tail is caused by
the second KdV operator in Eq. (25).

• Solitary wave with a tail and wave packets — the emerging solitary
waves are altered by the wave packets essentially. In some cases it is
possible to simulate the interactions but in some it is not. Even if the
interactions take place, interactions are not elastic and emerged waves
cannot be called solitons. The formation of the tail and wave packet is
caused by the second KdV operator in Eq. (25).

2. Dependencies between solution types and material parameters are estab-
lished. The first solution type appears in case α1 = α2 for all values of the
microstructure parameter β . The second and the third solution type appear
for α1 > α2 in case β = 111.11 and β = 11.111 (Fig. 87(a)). The fourth solu-
tion type appears for α1 < α2 in case β = 111.11 and β = 11.111 (Fig. 87(b))
and for α1 > α2 in case β = 0.0111 (Fig. 87(c)). The fifth solution type can
be realised for α1 > α2 and for α1 < α2 in case β = 1.111 and β = 0.111 (Fig.
87(b)) and for α1 <α2 in case β = 0.0111 (Fig. 87(c)). Dispersion parameters
have a strong influence on the character of the solution - small changes in
the values of parameters may cause changes of the solution type.

3. The influence of the amplitude of the initial solitary wave on the character
of the solution was analysed. It was shown that the higher the amplitude
of the initial solitary wave the higher the speed of solitons. In the case of
the fourth solution type the increase in the initial amplitude causes more
complex changes, however, the solution type does not change.

4. Selection phenomenon – the shape of the initial wave is modified in a way
to be more appropriate to the actual solution of the equation – appears for
the third and fourth solution type.

5. The formation of the wave packets has been explained in terms of TANSD
that reflect the influence of higher-order harmonics that dominate over the
lower-order harmonics.
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Figure 87: Solution types against dispersion parameters in case β = 111.11 and β = 11.111
- (a), β = 1.111 and β = 0.1111 - (b), and β = 0.0111 - (c).

The complicated HKdV (25) model has shown the richness of solutions. The
solitonic character of the HKdV (25) model is obvious but in some cases other ef-
fects are affecting the emergence of solitons. It is demonstrated that the system
tries to keep the fundamental solitonic character, but it is shown what the limits
are.

Further studies will be focusing on the simultaneous emergence of solitary wa-
ves, the tails and the wave packets in order to deepen the knowledge of this phe-
nomenon. Also, the studies will extend the knowledge on the long-time behaviour
of solution types as well as the solutions behaviour in case β < 0.
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Abstract

In this thesis hierarchical Korteweg–de Vries type evolution equation (fifth-order
nonlinear partial differential equation that includes the mixed derivative) derived
by P. Giovine and F. Oliveri [6] is used to model one dimensional wave propagation
in dilatant granular materials. The model equation is integrated numerically un-
der sech2-type initial conditions using the discrete Fourier transform based pseu-
dospectral method. It is shown that four different solution types can be detected:
(i) Single KdV soliton, (ii) KdV soliton ensemble (with a weak tail), (iii) Soliton with
a strong tail, (iv) Solitary wave with a tail and wave packets. In the case of first three
solution types, one component of the solution is a soliton or an ensemble of soli-
tons. In other words, in these cases emerged solitary waves propagate at constant
speed and amplitude and interact elastically. In the case of the fourth solution
type, simultaneous emergence of solitary waves, a tail and a wave packet was ob-
served and analysed. Interactions between these solitary waves are not elastic and
therefore they cannot be called solitons. The phenomenon of the wave packets is
explained in terms of spectral quantities. Main results of the thesis have been pre-
sented at eight international conferences and published in five papers of journals
and proceedings indexed by ISI Web of Knowledge.
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Kokkuvõte

Käesolevas töös uuritakse ühedimensionaalset lainelevi granuleeritud materjali-
des. Mudelvõrrandiks on hierarhiline Kortewegi–de Vriesi (KdV) tüüpi evolutsioo-
nivõrrand, mis on tuletatud Pasquale Giovine ja Francesco Oliveri poolt [6].

Mudelvõrrand (viiendat järku segaosatuletistega mittelineaarne diferentsiaal-
võrrand) on lahendatud numbriliselt kahe lokaliseeritud algtingimuste komplekti
ja perioodiliste rajatingimuste korral laias materjaliparameetrite vahemikus (kaks
dispersiooni- ja üks mikrostruktuuri parameeter). Esimeseks algtingimuseks on
üksik sech2–tüüpi üksiklaine, mis on klassikalise KdV võrrandi analüütiliseks la-
hendiks. Teiseks algtingimuseks on kaks kõrvuti asetsevat sech2–tüüpi üksiklainet,
mis on omavahel nihutatud. Numbriliseks integreerimiseks on kasutatud pseu-
dospektraalmeetodit.

Töös on leitud, et lokaliseeritud alghäiritusest (üksiklainest) võib formeeruda
nelja tüüpi lahendeid: (i) üksik KdV soliton, (ii) KdV solitonide ansambel (koos
nõrga sabaga), (iii) soliton koos tugeva sabaga, (iv) üksiklaine koos saba ja laine-
paketiga. Kolme esimese lahenditüübi korral käituvad formeerunud üksiklained
kui solitonid kuid neljanda korral mitte. Töös on esitatud lahendi tüüpide esile-
tuleku piirkonnad dispersiooniparameetrite tasandil. Lisaks on selgitatud laine-
paketi formeerumist ja selle tekkemehhanismi spektraalanalüüsi põhjal.

Käesoleva töö tulemused on esitletud kaheksal rahvusvahelisel konverentsil ja
avaldatud viies teadusartiklis rahvusvaheliselt tunnustatud erialaajakirjades ja kon-
verentsikogumikes, mis on indekseeritud ISI Web of Knowledge poolt.

76



References

[1] T. Dauxois, M. Peyrard, Physics of Solitons, Cambridge University Press, New
York, 2006.

[2] N. J. Zabusky, M. D. Kruskal, Interaction of "Solitons" in a collisionless plasma
and the recurrence of initial states, Phys. Rev. Lett. 15 (6) (1965) 240–243.

[3] Y. Wang, K. Hutter, Granular Material Theories Revisited, in: N. J. Balmforth,
A. Provenzale (Eds.), Geomorphological Fluid Mechanics, Vol. 582 of Lecture
Notes in Physics, Berlin Springer Verlag, Springer Berlin / Heidelberg, 2001,
pp. 79–107.

[4] M. Massoudi, M. M. Mehrabadi, A continuum model for granular materials:
Considerding dilatancy and the Mohr–couloumb criterion, Acta Mechanica
152 (2001) 121–138.

[5] M. A. Goodman, S. C. Cowin, A continuum theory for granular materials,
Arch. Rational Mech. Anal. 44 (4) (1972) 249–266.

[6] P. Giovine, F. Oliveri, Dynamics and wave propagation in dilatant granular
materials, Meccanica 30 (4) (1995) 341–357.

[7] J. S. Russell, Report on waves, in: Rep. 14th Meet. Bit. Assoc. Adv. Sci., John
Murray, London, 1844, pp. 311–392.

[8] M. Remoissenet, Waves Called Solitons: Concepts and Experiments,
Springer-Verlag, Berlin, 1994.

[9] G. Eilenberger, Solitons: Mathematical Methods for Physicists, Springer,
1981.

[10] P. G. Drazin, Solitons, Cambridge University Press, Cambridge, 1983.

[11] P. G. Drazin, R. S. Johnson, Solitons: an Introduction, Cambridge University
Press, Cambridge et al., 1989.

[12] N. Zabusky, Computational synergetics and mathematical innovation, J.
Comp. Phys. 43 (1981) 195–249.

[13] E. Infled, G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge Uni-
versity Press, 1990.

[14] T. Soomere, J. Engelbrecht, Extreme elevations and slopes of interacting
Kadomtsev–Petviashvili solitons in shallow water, in: Proc. of a Workshop or-
ganized by IFREMER, IFREMER actes de colloques, 2005, pp. 92–101.

[15] T. Soomere, Interaction of Kadomtsev–Petviashvili solitons with unequal am-
plitudes, Phys. Lett. A 332 (1-2) (2004) 74–81.

77



[16] T. Soomere, J. Engelbrecht, Weakly two-dimensional interaction of solitons in
shallow water, Eur. J. Mech. B. Fluids 25 (2006) 636–648.

[17] R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science,
Springer, 2009.

[18] M. Ablowitz, P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse
Scattering, Cambridge University Press, Cambridge, 1991.

[19] J. Hunter, J. Scheurle, Existence of perturbed solitary wave solutions to a
model equation for water waves, Phys. D 32 (2) (1988) 253 – 268.

[20] T. Kakutani, H. Ono, Weak non-linear hydromagnetic waves in a cold
collision-free plasma, J. Phys. Soc. Jpn. 26 (5) (1969) 1305–1318.

[21] V. I. Karpman, J. M. Vanden-Broeck, Stationary solitons and stabilization of
the collapse described by KdV-type equations with high nonlinearities and
dispersion, Phys. Lett. A 200 (6) (1995) 423 – 428.

[22] S. Kawamoto, Solitary wave solutions of the Korteweg–de Vries equation with
higher order nonlinearity, J. Phys. Soc. Jpn. 53 (11) (1984) 3729–3731.

[23] A. Porubov, G. Maugin, V. Gursky, V. Krzhizhanovskaya, On some localized
waves described by the extended KdV equation, C. R. Mecanique 333 (7)
(2005) 528–533.

[24] A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, World Scien-
tific, Singapore, 2003.

[25] O. Ilison, A. Salupere, Propagation of sech2-type solitary waves in higher-
order KdV-type systems, Chaos Solitons Fractals 26 (2) (2005) 453 – 465.

[26] O. Ilison, A. Salupere, On the propagation of solitary pulses in microstruc-
tured materials, Chaos Solitons Fractals 29 (1) (2006) 202 – 214.

[27] A. Salupere, G. Maugin, J. Engelbrecht, Solitons in systems with a quartic po-
tential and higher–order dispersion, Proc. Estonian Acad. Sci. Phys. Math. 46
(1997) 118–127.

[28] T. R. Marchant, Undular bores and the initial-boundary value problem for the
modified Korteweg–de Vries equation, Wave Motion 45 (4) (2008) 540–555.

[29] P. Peterson, E. van Groesen, A direct and inverse problem for wave crests
modelled by interactions of two solitons, Phys. D 141 (3-4) (2000) 316–332.

[30] Y. Tan, J. Yang, D. Pelinovsky, Semi-stability of embedded solitons in the gen-
eral fifth-order KdV equation, Wave Motion 36 (3) (2002) 241–255.

[31] A. Ludu, Solitons and antisolitons on bounded surfaces, Math. Comput. Sim-
ulation 69 (2005) 389–399.

78



[32] A. Ludu, P. Kevrekidis, Nonlinear dispersion relations, Math. Comput. Simu-
lation 74 (2007) 229–236.

[33] J. Guo, T. Taha, Parallel implementation of the split-step and the pseudospec-
tral methods for solving higher KdV equation, Math. Comput. Simulation
62 (1-2) (2003) 41–51.

[34] E. Pelinovsky, A. Sergeeva (Kokorina), Numerical modeling of the KdV ran-
dom wave field, Eur. J. Mech. B Fluids 25 (4) (2006) 425–434.

[35] O. Reynolds, On the dilatancy of media composed of rigid particles in con-
tact with experimental illustrations, in: Papers on Mechanical and Physical
Subjects, Vol. 2, Cambridge University Press, 1901, pp. 203–216.

[36] O. Reynolds, Experiments showing dilatancy, a property of granular material,
possibly connected with gravitation, in: Papers on Mechanical and Physical
Subjects, Vol. 2, Cambridge University Press, 1901, pp. 217–227.

[37] C. Godano, F. Oliveri, Nonlinear seismic waves: a model for site effects, Int. J.
Non Linear Mech. 34 (3) (1998) 457 – 468.

[38] S. C. Cowin, A theory for the flow of granular materials, Powder Tech. 9 (2-3)
(1974) 61 – 69.

[39] C. Fang, Y. Wang, K. Hutter, A thermo-mechanical continuum theory with
internal length for cohesionless granular materials - Part I. A class of consti-
tutive models, Contin. Mech. Thermodyn. 17 (8) (2006) 545–576.

[40] P. Giovine, An Extended Continuum Theory for Granular Media, Vol. 1937 of
Lecture Notes in Math., Springer, Berlin, 2008.

[41] A. Bedford, D. Drumheller, On volume fraction theories for discretized mate-
rials, Acta Mechanica 48 (1983) 173–184.

[42] G. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 1974.

[43] L. Ilison, Waves in granular materials and dispersion analysis, Bachelor’s the-
sis, Tallinn University of Technology (2001).

[44] L. Ilison, A. Salupere, Solitons in hierarchical Korteweg–de Vries type systems,
Research Report Mech 240/02, Institute of Cybernetics at Tallinn University
of Technology (2002).

[45] L. Ilison, Soliton-type waves in granular materials, Master’s thesis, Tallinn
University of Technology (2003).

[46] A. Salupere, On the application of the pseudospectral method for solving
the Korteweg–de Vries equation, Proc. Estonian Acad. Sci. Phys. Math. 44 (1)
(1995) 73–87.

79



[47] A. Salupere, On the application of pseudospectral methods for solving non-
linear evolution equations, and discrete spectral analysis, in: Proc. of 10th
Nordic Seminar on Computational Mechanics, Tallinn University of Technol-
ogy, Tallinn, 1997, pp. 76–83.

[48] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Uni-
versity Press, Cambridge, 1998.

[49] H.-O. Kreiss, J. Oliger, Comparison of accurate methods for the integration of
hyperbolic equations, Tellus 30 (1972) 341–357.

[50] E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for
Python, http://www.scipy.org (2007).

[51] M. Frigo, S. Johnson, The design and implementation of FFTW3, in: Pro-
ceedings of the IEEE, Vol. 93, Ieee-Inst Electrical Electronics Engineering Inc.,
2005, pp. 216–231.

[52] P. Peterson, F2PY: Fortran to Python interface generator,
http://cens.ioc.ee/projects/f2py2e/ (2005).

[53] A. C. Hindmarsh, ODEPACK, a systematized collection of ODE solvers, in:
R. S. Stepleman, et al. (Eds.), Scientific Computing, North-Holland, Amster-
dam, 1983, pp. 55–64.

[54] C. Christov, M. Velarde, Dissipative solitons, Phys. D 86 (1995) 323–347.

[55] I. Kliakhandler, A. Porubov, M. Velarde, Localized finite-amplitude distur-
bances and selection of solitary waves, Phys. Rev. E 62 (4) (2000) 4959–4962.

[56] A. V. Porubov, V. V. Gursky, G. A. Maugin, Selection of localized nonlinear seis-
mic waves, Proc. Estonian Acad. Sci. Phys. Math. 52 (1) (2003) 85–93.

[57] L. Galgani, A. Giorgilli, A. Martinoli, S. Vanzini, On the problem of energy
equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and
numerical estimates, Phys. D 59 (4) (1992-4) 334–348.

[58] J. Billingham, A. King, Wave Motion, Cambridge University Press, 2000.

[59] L. Ilison, A. Salupere, Solitons in hierarchical Korteweg–de Vries type systems,
Proc. Estonian Acad. Sci. Phys. Math. 52 (1) (2003) 135–144.

[60] J. Fujioka, A. Espinosa-Ceron, R. Rodriguez, A survey of embedded solitons,
in: Rev. Mex. Fis., Vol. 52, Sociedad mexicana de física, Mexico, 2006, pp. 6–14.

[61] J. Yang, B. A. Malomed, D. J. Kaup, Embedded solitons in second-harmonic-
generating systems, Phys. Rev. Lett. 83 (10) (1999) 1958–1961.

[62] J. Yang, B. A. Malomed, D. J. Kaup, A. R. Champneys, Embedded solitons: a
new type of solitary wave, Math. Comput. Simulation 56 (2001) 585–600.

80



[63] W. I. Newman, D. K. Campbell, J. M. Hyman, Identifying coherent structures
in nonlinear wave propagation, Chaos 1 (1991) 77–94.

[64] A. Salupere, P. Peterson, J. Engelbrecht, Long-time behaviour of soliton en-
sembles. Part I—Emergence of ensembles, Chaos Solitons Fractals 14 (2002)
1413 – 1424.

81



82



APPENDIX A

PUBLICATIONS

83



84



Publication I

Lauri Ilison, Andrus Salupere and Pearu Peterson, On the propagation of
localized perturbations in media with microstructure

The paper has been published in Proc. Estonian Acad. Sci. Phys. Math.,
2007, 56, 2, 84–92.

85



86



96



Publication II

Andrus Salupere, Lauri Ilison, and Kert Tamm. On numerical simulation
of propagation of solitons in microstructured media

The paper has been published in Proceedings of the 34th Conference on
Applications of Mathematics in Engineering and Economics (AMEE 2008),
volume 1067 of AIP Conference Proceedings, 155–165. American Institute
of Physics, 2008.

97



98



110



Publication III

Lauri Ilison and Andrus Salupere, Propagation of sech2–type solitary waves
in hierarchical KdV-type systems

The paper has been accepted for publishing in Mathematics and Comput-
ers in Simulation, 20 pp., Elsevier, 2009.

111



112



Publication IV

Andrus Salupere and Lauri Ilison, Numerical simulation of interaction of
solitons and solitary waves in granular materials

The paper has been accepted for publishing in Proceedings of EUROMECH
- MECAMAT conference, Mechanics in microstructured solids: cellular ma-
terials, fibre reinforced solids and soft tissues, Lecture Notes in Applied and
Computational Mechanics, 8 pp., Springer, 2009.

133



134



Publication V

Lauri Ilison and Andrus Salupere, Numerical simulation of interaction of
solitons and solitary waves in hierarchical KdV-type systems

The paper has been submitted for publishing in Communications in Non-
linear Science and Numerical Simulations, 10 pp., Elsevier, 2009.

143



144



APPENDIX B

CURRICULUM VITAE

155



156



Curriculum Vitae

1. Personal data

Name Lauri Ilison
Date and place of birth 26.12.1978, Tallinn
Citizenship Estonia
Marital status cohabitation
Children 2 sons (4 and 2 years old)

2. Contact Information

Address Akadeemia tee 21, 12618, Tallinn
Phone (+372) 5 111 003
E-mail lauri@cens.ioc.ee

3. Education

Education institution Graduation year Education (filed of
study, degree)

Tallinn University of
Technology

2001 Engineering physics /

BSc
Tallinn University of
Technology

2003 Engineering physics /

MSc

4. Language competence/skills (fluent, average or basic skills)

Language Level
Estonian fluent
English fluent
Russian average

5. Special cources

Period Educational or other organisation
September, 6–10th 2004 CISM’i course: "Surface waves in Geome-

chanics: Direct and Inverse modelling for
Soils and Rock", Udine, Italy

6. Professional employment

Period Organisation Position
2001 – to date Institute of Cybernetics,

Tallinn University of
Technology

Researcher

2000 – 2002 Sampo Pank AS Project manager
2002 – 2004 Sampo Pank AS Head of E-banking
2004 – 2007 Sampo Pank AS Head of Electronic bank-

ing department
2007 – to date Danske Bank A/S Esto-

nian Branch
Head of Channels

157



7. Awards

• Scholarship awarded by Union of Alumni of Tallinn University of Tech-
nology, 1999

• Estonian Academy of Sciences - Student’s Research Award, 2003

8. Results in sport

• Estonian Junior Champion - 16 times in Underwater Orienteering and
Finswimming during 1993–1995

• Estonian Champion - 22 times in Underwater Orienteering and Fin-
swimming during 1994–1999

• Absolute champion of Estonia in Underwater Orienteering 1996 and
1998

• The best sportsman in Underwater Orienteering in Estonia - 1995, 1996
and 1997

• World Championship - SILVER medal - Underwater Orienteering,
Otepää, Estonia, 1996

• European Championship - GOLD medal - Underwater Orienteering,
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