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Abstract 

The purpose of this thesis is to use the TASTE Toolset for modeling the communication 

protocol of TTÜ-Mektory Student Satellite and generate C code based on that model. 

Tools in the TASTE Toolset can be used for validating the C code and verifying the 

requirements of TTÜ-Mektory Student Satellite communication protocol. 

The purpose is achieved by modelling a part of the TTÜ-Mektory Student Satellite 

communication protocol. In the scope of this thesis, the communication between ground 

station and satellite on-board computer is modeled. The system is modeled in parts, which 

are designed so that they could be used both on the ground and on the satellite. To validate 

the generated code, the modeled systems are connected to each other and used to represent 

the communication process. 

Before modeling the system, the description of TTÜ-Mektory Student Satellite 

communication protocol is studied. Based on that description, class diagrams for 

communication structure and sequence diagrams for the communication process are 

created. After the communication protocol has been described as diagrams, the system is 

modeled in the TASTE Toolset. The data types are described in ASN.1 notation and the 

components of the system are modeled in SDL. When the system has been described, Ada 

code for the system components is generated. The system architecture is described and 

based on that description, C code is generated. 

The communication process is tested by using the tools in the TASTE Toolset. A GUI 

component is used to represent the mission control system, which can be used for 

interaction with the system. Based on the sequence diagrams of different communication 

scenarios, raw data is sent to the system and the data received from the system is 

compared to the requirements in the TTÜ-Mektory Student Satellite communication 

protocol. 

As a result of this thesis, a representation of the communication protocol is created and 

the requirements of the TTÜ-Mektory Student Satellite communication protocol are 
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verified. The created system can be used in the communication process of the TTÜ-

Mektory Student Satellite both on ground and on the satellite. The result of this thesis will 

be used as a case study in ESA project that integrates TASTE Toolset with QGen. 

This thesis is written in English and is 37 pages long, including 9 chapters, 14 figures and 

8 tables. 
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Annotatsioon 

TTÜ nanosatelliidi kommunikatsiooniprotokolli implementeerimine 

kasutades TASTE tööriistakomplekti 

Lõputöö eesmärgiks on kasutada TASTE tööriistakomplekti TTÜ ja Mektory koostöös 

valmiva tudengisatelliidi kommunikatsiooniprotokolli modelleerimiseks ja loodud 

mudeli põhjal C koodi genereerimiseks. Selleks, et veenduda genereeritud C koodi ja 

kommunikatsiooniprotokolli nõuete korrektsuses, kasutatakse TASTE tööriistakomplekti 

poolt pakutavaid tööriistu. 

Eesmärgini jõutakse modelleerides osa tudengisatelliidi kommunikatsiooniprotokollist. 

Antud töö lõikes vaadeldakse suhtlust maajaama ja satelliidi pardakompuutri vahel. 

Süsteem modelleeritakse osadena mis on disainitud nii, et neid saaks kasutada nii maa 

kui ka satelliidi peal. Selleks, et genereeritud koodi valideerida, ühendatakse 

modelleeritud süsteemid teineteisega ja luuakse kahe süsteemi vaheline suhtlus. 

Enne suhtluse modelleerimist uuritakse TTÜ ja Mektory koostöös valmiva 

tudengisatelliidi kommunikatsiooniprotokolli kirjeldust. Selle kirjelduse põhjal luuakse 

klassidiagrammid suhtluse struktuuri ja jadadiagrammid suhtlusprotsessi kohta. Pärast 

kommunikatsiooniprotokolli kirjeldamist diagrammide abil modelleeritakse süsteem 

kasutades TASTE tööriistakomplekti. Andmetüübid kirjeldatakse kasutades ASN.1 

notatsiooni ja süsteemikomponendid modelleeritakse keeles SDL. Kui süsteem on 

kirjeldatud, genereeritakse süsteemikomponentide kood keeles Ada. Seejärel 

kirjeldatakse süsteemi arhitektuur ja genereeritakse kood keeles C. 

Kommunikatsiooniprotokolli testitakse kasutades TASTE tööriistakomplekti tööriistu. 

Kasutajaliidese komponenti kasutatakse missioonijuhtimise kujutamiseks ja selle abil 

suheldakse süsteemiga. Erinevate suhtlusstsenaariumite ja neid kirjeldavate 

jadadiagrammide alusel saadetakse andmed süsteemile ning süsteemilt tagasi saadud 

andmeid võrreldakse tudengisatelliidi kommunikatsiooniprotokolli nõuetega. 
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Lõputöö tulemusena luuakse süsteem kommunikatsiooniprotokolli haldamiseks ning 

verifitseeritakse TTÜ ja Mektory koostöös valmiva tudengisatelliidi 

kommunikatsiooniprotokolli. Loodud süsteemi saab kasutada tudengisatelliidi projektis 

nii maa kui ka satellidi poolseks suhtluseks. Lõputöö tulemust kasutatakse 

katseülesandena ESA projektis, mis integreerib TASTE tööriistakomplekti QGeniga. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 37 leheküljel, 9 peatükki, 14 

joonist, 8 tabelit. 
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List of abbreviations and terms 

TASTE The ASSERT Set of Tools for Engineering 

ESA European Space Agency 
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AADL Architecture Analysis and Design Language 

ICD Interface Control Document 
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TM/TC Telemetry and Telecommand 

CRC Cyclic Redundancy Check 
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IFCS Info Frame Check Sequence 
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LFN Lowest Sequential Frame Number 

TCP/IP Transmission Control Protocol/Internet Protocol 
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1 Introduction 

TASTE (The ASSERT Set of Tools for Engineering) [1] is a set of software development 

tools, which can be used to describe software with formal models, verify created models 

and automatically generate program code from these models [2]. TASTE is suitable for 

describing real-time heterogeneous systems. 

The subject of the thesis is software modelling and validating with TASTE tools. The 

reason for choosing TASTE tools is that they have been developed in collaboration with 

ESA (European Space Agency) and they support the whole life-cycle of space system 

software development [3]. 

As a software system, part of the TTÜ-Mektory Student Satellite Space System is going 

to be used. The TTÜ-Mektory Student Satellite Space System is shown in Figure 1.  

 

Figure 1. TTÜ-Mektory Student Satellite Space System. 
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TTÜ-Mektory Student Satellite Space System consists of ground and space segment. 

Ground segment can be divided into following elements: 

 ground station, 

 mission control system, 

 foreign amateur UHF (Ultra High Frequency) receivers. 

Space segment consists of a satellite. 

In this thesis, the communication protocol of TTÜ-Mektory Student Satellite is modeled. 

The communication protocol is used in communication between the ground station and 

satellite as shown in Figure 2.  

 

Figure 2. TTÜ-Mektory Student Satellite communication protocol. 

When modeling the software system, the thesis is looking for answers to the questions 

regarding the description of communication protocol and usability of the TASTE Toolset. 

The thesis is checking whether the description of communication protocol requirements 

is sufficient. In case it is insufficient for modeling, the ways for improving the description 

of communication protocol are looked into. As the modeling results with generated code, 

the usability of the code in the TTÜ-Mektory satellite program is evaluated. Based on that 

evaluation a decision will be made regarding the sensibility of using the same method for 

creating other software components of the system. 

In order to verify the correctness of communication protocol, system architecture and 

communication channels must be defined. To describe components as processes and state 

machines, SDL (Specification and Description Language) formal language and modelling 

options of TASTE tools are going to be used. After describing the components, the code 

that has been generated based on the model can be validated with tests. 
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2 TASTE Toolset 

2.1 Background 

TASTE is a set of software development tools, which is similar to the UML (Unified 

Modeling Language), apart from the code generation functionality. UML is a fully 

functional graphical editor, but it lacks the ability to support the development process of 

a system [4]. 

The TASTE Toolset is based on two modeling languages: ASN.1 (Abstract Syntax 

Notation One) and AADL (Architecture Analysis and Design Language). It was 

developed with the purpose to build optimal systems, which use manually or 

automatically produced heterogeneous components and run based on a pre-defined 

specification [5]. It was created in 2008 with the support from ESA. 

The TASTE Toolset is often used for developing systems, which have some of the 

following characteristics: 

 limited resources, 

 time constraints, 

 varying nature (laws, resources, fault detection), 

 shared development, 

 hardware communication, 

 heterogeneous hardware, 

 physical distribution, 

 autonomous operation, 

 physical inaccessibility [2]. 
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With TASTE it is possible to connect all of the system components and deploy them on 

a specific target. The developed code is transparent and there is no need for message 

formatting and decoding, system configuring or resource management debugging, as 

those tasks are already automated [2]. QGen code generator can be used to generate C 

code from the TASTE model [6]. That code can be verified according to the specification 

in order to assure system validity. 

As TASTE Toolset is used for developing software components of heterogeneous nature, 

it enables software development in different languages. The supported languages include 

Python, Simulink, MSC, Ada, SMP2, C, VHDL, SCADE and SDL [2].  

2.1.1 OpenGEODE 

SDL (Specification and Description Language) is a modelling language for describing 

systems in the form of state machines [7]. It has been established by ITU-T under 

reference Z100 and is mostly used in the telecommunication industry. SDL has 

established semantics and is useful for describing embedded, real-time systems. 

TASTE Toolset includes a graphical SDL editor OpenGEODE that can be used for editing 

processes and procedures. It features description of hierarchical and parallel states and its 

model can be used for generating Ada code. As OpenGEODE supports pre-defined 

ASN.1 data types, then it can be efficiently used for model checking [8]. 

2.1.2 ASN.1 and AADL 

In a heterogeneous environment, the system communication is based on ASN.1 

technology. It is an ISO/IEC and ITU-T standard, that defines the notation for describing 

data structures [9]. The messages that are defined using ASN.1, can be either abstract or 

physical. As the tools translate the messages from one form to another, there is no risk 

that the data will be interpreted incorrectly. 

The ASN.1 technology is favourable when working with embedded systems, as the 

complexity is small and the learning curve is not steep. It is relying on an ISO based 

standard and thus has been used for years in areas such as banking transactions, 

aeronautical communication networks etc [2]. In order to support safety-critical systems, 

an open-source ASN.1 compiler ASN1SCC has been developed, which supports static 

memory, automatic statement coverage, SPARK/Ada annotations, integration with 
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legacy systems and automatic ICDs (Interface Control Document) [9, 10]. ASN1SCC is 

used for parsing ASN.1 grammar and converting it to C or Ada declarations and functions 

which can be used for encoding/decoding these types to/from binary streams [11]. 

In addition to ASN.1, another technology being used is AADL. When defining the 

architecture of a TASTE system, AADL can be used to represent it in a textual format. 

The definition consists of functional blocks that have some non-functional attributes. As 

with ASN.1 technology, the AADL is simple to understand. 

ASN.1 and AADL together define a model that describes the system completely. This 

description includes types manipulated, interfaces of processes and threads, connection 

topology and flow of information and interaction [4]. 

2.2 Process 

The ASSERT process for software development with the TASTE Toolset consists of the 

following steps: 

1. System modelling phase, where software is abstracted; 

2. Transformation phase, which results with a real-time software; 

3. Feasibility analysis phase, where properties are statically verified; 

4. Code generation phase, where binary files are generated [4]. 

System modelling is conducted in the interface view editor and the specification is defined 

in the deployment view editor. Both are graphical tools, which are used for describing the 

logical interactions and hardware architecture of the system. To support large scale 

architecture, both of these editors have the functionality of grouping functions into 

hierarchical containers. 

When the logical interactions and hardware architecture have been described, the result 

is submitted to a vertical transformation tool. During this automated procedure, software 

and hardware is generated. As the generation is based on a description, then the result 

contains all the real-time and distribution properties [4]. 



19 

The result of the vertical transformation is displayed in the concurrency view editor, 

where performance analysis can be conducted. The tools for performing that analysis are 

Cheddar and dynamic simulator, both of which have been integrated into the TASTE 

Toolset. 

As a last step, an executable application can be generated from the pre-defined functional 

blocks. This is done using the Ocarina tool, which has multiple choices for code 

generation based on the system architecture. 

2.3 Related work 

2.3.1 Current state 

The development of the TASTE Toolset was first focused on the development process, 

rather than choosing which technologies to use [4]. After the development process had 

been set, modeling languages were selected and integration issues were faced. As a result, 

a prototype was made which supported all of the system development phases. Soon the 

product was released as a complete toolset, which was tested among system and software 

designers [4]. 

As the solution had many options for system development, it confused the users regarding 

its functionality [4]. Tool developers had to offer support to the users and help them 

discover the wide range of functions that the tool had to offer. After facing those issues, 

the users started seeing the advantages in system development with this particular toolset 

[4]. 

2.3.2 Projects 

TASTE can be used in different areas from educational purposes to application on 

operational projects [3]. Although system development for classical Earth-orbiting 

spacecrafts remains unchanged, then the toolset could be used for developing more 

complex and challenging systems like formation-flying, deep-space probes, robotics and 

next generation launchers [3]. 

The ASN.1 modelling language was evaluated by Astrium in ATV (Automated Transfer 

Vehicle) program, by retro-engineering a part of it [9]. The AADL technology has been 

used to build critical real-time systems in the IST-ASSERT project, which is part of the 
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FP6 (Sixth Framework Programme) of the European Commission [12]. The aim of this 

project is to provide tools and methods to ease the development of safety-critical systems, 

such as in space. 

There are examples where TASTE Toolset and ASN.1 technology have been used for 

modelling satellite TM/TC (Telecommand and Telemetry). First example [13] shows the 

modelling of TM/TC and the second example [14] also includes the use of CRC (Cyclic 

Redundancy Check) and length fields. Both examples are based on ESA’s PUS (Packet 

Utilization Standard). 

TASTE Toolset has been used to develop software for PROBA-3 Coronagraph 

Instrument, which will be used in future ESA missions for in-orbit demonstration of 

precise formation flying techniques and technologies [3]. The ASN.1 technology was 

used to address different integration issues and ensure end-to-end data consistency. The 

toolset was also used in developing the UPMSat-2 satellite manager software subsystem, 

where TASTE was used to design the model, facilitate a user interface and implement the 

manager [15]. 

It has been also used in a case study to simulate the control of a robotic arm using an 

exoskeleton [16]. The exoskeleton sent data to the computer, which was running the 

TASTE generated binary files. Those binary files translated the sensor information and 

were used to command a 3D model of a robotic arm. In the future, this 3D model could 

be replaced by a real arm. 

2.3.3 Future 

Although the TASTE Toolset is ready to be used as is, plans should be made regarding 

the technical perspectives and the toolset itself [4]. There are many opportunities for 

supporting the standard languages and offering more openness to the users. Additions 

could be made to the functionality and the usability of this software in real industrial 

environments could be improved.
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3 Communication protocol 

The following paragraph is based on TTÜ-Mektory Nanosatellite TM/TC Protocol 

Description [17] and AX.25 (Amateur X.25) Amateur Packet-Radio Link-Layer Protocol 

[18].  

The AX.25 protocol is used as the TTÜ-Mektory Student Satellite is communicating over 

amateur frequencies. Using amateur frequencies has the requirement of message 

readability, which is why the publicly available AX.25 Amateur Packet-Radio Link-

Layer Protocol was the optimal solution. 

Communication between the TTÜ-Mektory Student Satellite and ground station is 

established using the UHF RF interface. An amateur radio station will be used in ground 

station. It will also have a tracking antenna system for automatic alignment of the ground 

and satellite antenna.  

Parts of the communication protocol, such as bus protocol commands and the affiliated 

structures that are not in the scope of this thesis, are not described. 

3.1 Telemetry and telecommand protocol 

In TTÜ-Mektory Student Satellite telemetry and telecommand communication a subset 

of AX.25 Amateur Packet-Radio Link-Layer Protocol [18] is used. 

3.1.1 Frame structure 

In terms of frame types, the TTÜ-Mektory Student Satellite supports only AX.25 UI 

(Unnumbered Information) frames. The repeated frames specified by the AX.25 protocol 

are not supported. Any other types of frames that are not specified in the communication 

protocol are ignored by the system.  

The communication between the ground station and satellite is in bursts. Each burst 

consists of a radio header used for synchronization that is followed by a number of AX.25 
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frames. The structure of a burst is shown in Table 1 and the structure of an AX.25 frame 

is shown in Table 2. 

Table 1. Communication burst structure with parameters. 

Radio Header AX.25 Frame 1 … AX.25 Frame N 

TBD (To Be Decided) bits 200-2208 bits … 200-2208 bits 

 

Table 2. AX.25 frame structure with parameters. 

Flag Addr Control PID Info FCS Flag 

8 bits 

(0x7E) 

112 

bits 
8 bits 

8 

bits 

N (up to 256) x 8 

bits 

16 

bits 

8 bits 

(0x7E) 

 

Communication is initialized by sending a burst of AX.25 frames to the satellite. Satellite 

responds to the burst with a similar burst that contains the response. The whole 

transmission is done during an available time window. 

When satellite is transferring telemetry, it sends a radio header with a single AX.25 frame. 

Telemetry transferring is used for monitoring satellite status. As the telemetry frames are 

publicly available, they can be received by the ground station or radio amateurs. 

3.1.1.1 Flag 

Flag is used for separating each AX.25 frame. The end flag of a previous frame is the 

start flag of the next frame. Flag is represented by the code 0x7E which means that is 

consists of six consecutive 1’s.  

As six consecutive 1’s are used as flags, then they can not be present in the frame content. 

To avoid that, bit stuffing is used before assembling the burst. During bit stuffing, five 

consecutive 1’s are followed by a 0. Before parsing the frames, the 0’s are removed for 

restoration of the data. 

When no data is available for transmission, only flags are transmitted.  

3.1.1.2 Address field 

Address field is used for describing the frame source and destination. As the 

communication is always between the same ground station and satellite, the frame source 
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and destination have the same values during each transmission. For sending and receiving 

data from ground to satellite or satellite to ground, pre-defined Address values are used. 

When replying to a message received from UHF amateur radio, the address of a sender is 

used. 

Address consists of 56-bit destination station address and 56-bit source station address. 

The Address field structure is shown in Table 3, where the octets containing destination 

and source address are labelled A1-A14. 

Table 3. Address field structure and its contents. 

112-bit Address Field 

Destination Address Source Address 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 

 

3.1.1.3 Control field 

Control field is used for indicating the type of AX.25 frame. As TTÜ-Mektory Student 

Satellite is using AX.25 UI frames, then the value of Control is fixed to 0x03. P/F 

(Poll/Final) bit is not used and is set to 0. 

3.1.1.4 PID field 

PID (Protocol Identifier) field is used for defining the protocol of Info. No defined AX.25 

protocols are used in communication between ground station and satellite, so the PID is 

fixed to 0xF0. 

3.1.1.5 Info field 

Info field is used for sending information from ground to satellite or satellite to ground. 

Info consists of two parts: 

 inner satellite bus (BA, Code, Operation Data and IFCS fields), 

 optional authentication (Auth field). 

The structure of the Info field is shown in  

Table 4. 
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Table 4. Info field structure with parameters. 

BA Cntrl Code Operation Data IFCS Auth 

8 bits 8 bits 8 bits N (up to 250) x 8 bits 16 bits 16 bits 

 

3.1.1.5.1 BA 

BA (Bus Address) field is used on the inner satellite bus. It is used for describing sender 

and receiver. Some BA values also define how frames are sent from satellite to ground. 

BA consists of 4 bit SRC (Source) and 4 bit DST (Destination) Address. The structure of 

the BA field is shown in Table 5, where the bits containing source and destination address 

are labelled 7-0. 

Table 5. BA field and its contents. 

8-bit BA Field 

SRC Address DST Address 

7 6 5 4 3 2 1 0 

 

3.1.1.5.2 Cntrl 

Cntrl field defines the frame type. As also with AX.25 frames, the Cntrl is fixed to 0x03 

which defines the AX.25 UI frame. 

3.1.1.5.3 Code 

Code is used for specifying an operation on satellite internal bus. Code also defines the 

Operation Data structure and the response type. Each Operation Data structure has a 

specific response. 

For example there are different codes for: 

 telemetry reading, 

 parameter writing, 

 various responses. 

Operations on satellite internal bus are used in situations where the OBC (On-Board 

Computer) is inaccessible. As it is a specific scenario, then bus protocol commands, their 

structures and response types are not described in this thesis. 
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Besides defining operations on satellite internal bus, some codes are used for 

communication between ground station and OBC. Codes are sent in a set of frames in one 

direction and received in another direction. 

The structure of these commands is described in 3.1.2. 

3.1.1.5.4 Operation data 

Operation Data is used for storing data of a specific command. It can be used for satellite 

bus protocol commands or L3/L4 frames. 

The details of satellite bus protocol are not described in this thesis. 

When using Operation Data field for data of L3/L4 frames, the BA, Cntrl, Code and IFCS 

fields of Info structure are replaced with BA, Cntrl, Code and FCS fields of L3/L4 frame. 

The rest of the data described in a L3/L4 frame is stored in Operation Data field. 

3.1.1.5.5 IFCS 

IFCS (Info Frame Check Sequence) field is used for storing the frame check sequence of 

satellite internal bus frame. It is calculated over BA, Cntrl, Code and Operation Data. 

Apart from the other fields specified in the communication protocol, the IFCS field is 

transmitted LSB (Least Significant Bit) first. The details of IFCS calculation are described 

in 3.1.1.6. 

3.1.1.5.6 Auth 

Auth field is optional and used in specific scenarios. When operating with commands that 

require additional security, the Auth is used to verify the source of the data. The Auth field 

is not present on the internal bus as it is removed by the radio module. The frames that 

have invalid Auth values are not sent to the internal bus.  

3.1.1.6 FCS 

FCS (Frame Check Sequence) field is used for frame validation. The value is calculated 

according to the ISO 3309 standard recommendations and compared to the value stored 

in the FCS field.  It is used to validate the correctness of the frame and avoid corruption. 

The polynomial used in the FCS calculation is shown in Equation (1). 

𝐹𝐶𝑆 = 𝑋16 + 𝑋12 + 𝑋5 + 1 (1) 
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The FCS is calculated over Address, Control, PID and Info fields. As with IFCS field, it 

is transmitted LSB first. 

3.1.2 L3/L4 frames 

L3/L4 frames are used for transporting higher layer data between mission control and 

OBC. L3/L4 frames are put together in mission control, transferred to ground station and 

transmitted to satellite. Each transmission consists of a burst, which contains a number of 

AX.25 frames. AX.25 frames carry the information of L3/L4 frames. 

When not transmitting data or telemetry, the satellite is always in the listening state. 

Satellite never initiates a transfer. During ground station to satellite communication, each 

sent frame is accompanied with the TtE (Time-to-End) which indicates the time left to 

the end of transmission. With each received frame, the timer on the satellite is increased. 

When a burst has been received, the AX.25 frames are removed before sending the data 

to the satellite internal bus. Each frame is acknowledged by the OBC and an 

acknowledgement frame is sent to the radio. Sent frames are monitored by the radio and 

the acknowledgement frames are not sent to the ground station. When response is 

assembled, the source and destination addresses are swapped. 

Reception of last frame triggers a response from OBC to ground station. Timer is updated, 

frames are acknowledged and sent to the ground segment. 

  



27 

The L3/L4 communication diagram is shown in Figure 3. 

 

Figure 3. L3/L4 communication diagram. 

3.1.2.1 L3 Init/Reset command 

The structure of an L3 Init/Reset command is shown in Table 6. 

Table 6. Init/Reset command structure with parameters. 

BA Cntrl Code TtE MRT FCS 

8 bits 8 bits (0x03) 8 bits (TBD) 16 bits 16 bits 16 bits 

 

Init/Reset command is sent by the ground station to the satellite in the beginning of each 

communication session.  It could also be sent in the middle of a communication session, 

when a clean session is needed. During Init/Reset command, the frame numbers are set 

to 0 and the higher layers of protocols are also reset. Init/Reset command is also used 

when communication goes into an abnormal state. For example when frames are not 

following a logical sequence, the communication is restarted and a clean session is 

initialised. 
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3.1.2.2 L3 data frame 

The structure of an L3 data frame is shown in Table 7. 

Table 7. L3 data frame with parameters. 

BA Cntrl Code TtE MRT Fnum Data FCS 

8 

bits 

8 bits 

(0x03) 

8 bits 

(TBD) 

16 

bits 

16 

bits 
8 bits 

N (up to 245) x 8 

bits 

16 

bits 

 

L3 data frame is used for carrying data into higher layers of the communication protocol. 

Each frame includes TtE, MRT (Maximum Response Time) and Fnum. TtE indicates the 

time left to the end of transmission, MRT limits the amount of data that satellite is allowed 

to respond with and Fnum is used for frame numbering. Frame numbers are used to 

reorder the data and request missing frames. 

3.1.2.3 L3 data acknowledge 

The structure of an L3 data acknowledge frame is shown in Table 8. 

Table 8. L3 data acknowledge frame with parameters. 

BA Cntrl Code TtE MRT LFN HFN RRQ1 … RRQN FCS 

8 

bits 

8 bits 

(0x03) 

8 bits 

(TBD) 

16 

bits 

16 

bits 

8 

bits 

8 

bits 
8 bits 

8 

bits 
8 bits 

16 

bits 

 

L3 data acknowledge frames are used for acknowledgement of L3 data frames. An 

acknowledge frame is sent once during a burst and it can be located anywhere within the 

burst. 

When L3 frame is received, the L3 stack is checked for missing frames. If the frame 

number of the received frame is one unit bigger than the previous received frame, the 

frame number is put into LFN (Lowest Sequential Frame Number) field and the frame is 

forwarded to higher layers. If the frame number is bigger, the buffer is scanned for a frame 

with missing numbers. If missing frames are found, the LFN value is updated and frames 

are forwarded, if not, the frame is stored. 
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3.1.2.4 L3 bus acknowledge 

L3 bus acknowledgement frames are used on satellite internal bus between radio and 

OBC. The frames are used to acknowledge the reception of L3 frames and contain the 

information about the transmission status. 

As the satellite internal bus is not a part of this thesis, then L3 bus acknowledgement 

frames are not used.
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4 Modelling 

The modeling of the communication protocol began with the study of TTÜ-Mektory 

Nanosatellite TM/TC Protocol Description [17]. As the main communication is between 

ground station and OBC, the L3 data with the frame structure was chosen as the project 

scope. Bus protocol commands were not included in the initial model, as they are only 

used in a situation where OBC is inaccessible.  

The structure of the components that were necessary for communication was described 

as a class diagram (4.1). After the initial components had been described, the sequence 

diagrams of different communication scenarios were created. These scenarios included 

successful communication (4.2.1), partially successful communication (4.2.2) and 

timeout (4.2.3). Both the class diagrams and sequence diagrams were created with 

Papyrus [19], which is a UML modeling environment built on Eclipse. 

After the class and sequence diagrams had been created, a pre-configured virtual machine 

image with TASTE [20] was used for system modeling. The virtual machine image was 

deployed in Oracle VM VirtualBox [21] virtualization environment. The data types were 

described in ASN.1 and the choice of data types was based on the examples in TASTE 

V2 Reference Card [22]. Having the data types described, the interface view with the 

initial components was created in TASTE. The logic for each component was modeled in 

OpenGEODE, which is an SDL editor for TASTE (4.3). Before generating C code, the 

architecture of TTÜ-Mektory Student Satellite space system was described in the 

deployment view. 
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4.1 Class diagrams 

The data types are described in Figure 4. 

 

Figure 4. Class diagram of data types. 
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The components with the data types and corresponding procedure calls are described in 

Figure 5. 

 

Figure 5. Class diagram of components with data types and procedure calls. 

In terms of design, the model has been divided into four components: Gui, Node, 

FrameManager and PacketManager. These components are used to represent the 

different stages of a frame assembly. Each component has a sending and receiving state, 
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which contain the logic for sending or receiving the data. The components are designed 

so that they could be used both on the ground and on the satellite, although usage on 

satellite requires separation of the components. 

Both of the class diagrams are used as a graphical representation of the communication 

protocol and do not represent the actual TASTE model. 

4.2 Sequence diagrams 

Communication protocol and its scenarios can be described as sequence diagrams, which 

are divided into ground and satellite segments. 

The communication starts with a Gui component that represents a buffer and can be used 

for testing the model. From Gui, the initialised data is forwarded to Node, which manages 

the communication. The data is split into L3 data frames and the count of these frames is 

forwarded to PacketManager, which is the lowest component in the model. After that, 

the frame is packed into Operation Data field and Info object, which is forwarded to 

FrameManager. The FrameManager packs the Info object into an AX.25 frame. As the 

PacketManager has already received the frame count, it gathers all the frames and packs 

them into a packet, which represents the burst. The burst is then sent to the satellite. The 

same components are used when receiving the frames. The process is inverted and the 

received data is represented in Gui. As Node is responsible for communication 

management, it assembles the L3 data acknowledgement frames that contain the 

information about the frames that have not been received, so that they could be resent. 

Specific communication scenarios are described in the following paragraphs. 

4.2.1 Success 

During a successful communication, the sender assembles the data into frames and 

forwards them as a burst. The burst is sent over TCP/IP (Transmission Control 

Protocol/Internet Protocol) protocol to the radio and converted into an analog signal. 

Receiver converts the signal back to a digital format and sends it over TCP/IP for 

disassembly. After the data has been received, an L3 data acknowledgement frame is 

assembled and sent back. 
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Sequence diagram representing the successful communication on ground is shown in 

Appendix 1 and on satellite is shown in Appendix 2. The connections between ground 

and satellite diagram are added as comments. 

4.2.2 Partial success 

If a failure occurs during the communication, as some frames have been lost or a timeout 

has occurred, the frames are sent or received partially. During a partially successful 

communication, the L3 acknowledgement frame is sent after reception which contains 

the missing frame numbers. Based on that, a burst can be assembled that contains the 

missing frames. 

Sequence diagram representing the partially successful communication on ground is 

shown in Appendix 3 and on satellite is shown in Appendix 4. The connections between 

ground and satellite diagram are added as comments. 

4.2.3 Timeout 

As the communication window is limited, a timeout can occur which results in some 

frames getting lost. In that case, the sender initialises communication in the next 

communication window and requests for the frame numbers that were not received. Based 

on the L3 acknowledgement frame received, it can resend the missing frames. 

Sequence diagram representing the timeout on ground is shown in Appendix 5 and on 

satellite is shown in Appendix 6. The connections between ground and satellite diagram 

are added as comments. 

4.3 TASTE model 

The TASTE model is using the data types that have been defined in the data view. The 

definition is based on the TTÜ-Mektory Nanosatellite TM/TC Protocol Description [17] 

and contains the data types of the frames and their fields. Data view also contains the data 

types that are used for describing additional parameters in the procedures. 

Data types with descriptions in ASN.1 notation are shown in Appendix 7. 
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The TASTE model is divided into two parts: interface view and deployment view. 

Interface view is used for modeling software components with their logic and deployment 

view is used for defining software architecture. 

In interface view, a four layer model was created in order to represent the components. 

Based on SDL restrictions, each component is sporadic and contains asynchronous 

connections that are used for sending and receiving the data. As the components are 

universal, the model can be used both on the ground station and the satellite. 

The components with connections in the interface view are shown in Figure 6. 

 

Figure 6. Components with connections in the interface view. 

In deployment view, the architecture of the system has been described. The description of 

the architecture is shown in Figure 7. 
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Figure 7. Architecture in deployment view. 

The system consists of two nodes, which contain an x86 Linux processor with a partition. 

The partition of first node contains the Gui component and the partition of second node 

contains the three system components. Both of the nodes have drivers that are used for 

communication with the bus. The driver configuration consists of device name, address 

and port. As the system is using Linux sockets, the address is set to 127.0.0.1 which 

represents the local host and port values start from 5115. When testing the 

communication, another node could be connected to the bus to represent both the ground 

station and satellite. 

Detailed description of each component is in the following paragraphs. 

4.3.1 Gui 

Gui is used for interacting with the Node. It is an interface that is used for testing the 

communication protocol. With Gui, raw data can be defined and sent to the Node. The 

data that is received from the Node can be used to validate the correctness of the 

communication protocol. Gui is a user-friendly interface for representing a buffer.  
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4.3.2 Node 

Node is used for communication management both on the ground and on the satellite. 

In the sending state it is used for parsing raw data. Raw data is received as an array of 

octets and it is split between L3 data objects, which contain TtE, MRT and Fnum fields. 

The count of L3 data objects is sent to PacketManager. L3 data objects are then packed 

into Operation Data, which is a part of Info object and accompanied with BA, Cntrl, Code 

and IFCS fields. IFCS is calculated based on the preceding fields according to the CRC 

[23, 24]. Info object, which is a part of AX.25 frame, is forwarded to the FrameManager. 

Besides frame assembly, Node is also responsible for stack management, so whenever a 

frame gets lost during the communication and an L3 acknowledgement frame with the 

lost frame numbers is received, it will resend these frames. 

In the receiving state, Node unpacks the Info objects and Operation Data. It checks 

whether all the frames that were sent have been received. If some frames were not 

received or the checksum of the received frames was faulty, it assembles an L3 

acknowledgement frame with the missing frame numbers. The frames that were received 

are sent to the Gui, which is a representation of a buffer. Whenever the received frame 

stack is overwritten for some reason, the received frames are not lost. 

4.3.3 FrameManager 

FrameManager receives the Info object from the Node or the frame from the 

PacketManager, depending on whether it is in the sending or receiving state. 

When receiving an Info object from the Node, FrameManager assembles an AX.25 

frame. In addition to the data specified in the Info object, the AX.25 frame also contains 

the Addr, PID and FCS fields. The FCS is calculated based on the preceding fields 

according to the CRC [23, 24]. If the AX.25 frame has been assembled, it is forwarded to 

the PacketManager. 

When receiving the frame from the PacketManager, FrameManager unpacks the AX.25 

frame and calculates the checksum. If the calculated checksum does not equal to the 

provided checksum, it does not forward the Info object to the Node. As the Info object is 

not forwarded, the Node will set the frame as missing.  
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4.3.4 PacketManager 

PacketManager is used for burst handling, whether it is in the sending or receiving state. 

In the sending state, the PacketManager receives the frame count from the Node. When 

all of the frames have been received, it packs the frames into a packet which represents 

the burst and sends it. 

In the receiving state, the PacketManager receives the frames in a packet, counts the 

frames and sends the frame count to the Node. After the frame count has been sent, it 

sequentially sends the frames to FrameManager.
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5 Code generation 

After modeling the communication protocol with TASTE tools, the deployable code had 

to be generated.  

The code skeletons for data types were already generated, as they were necessary for 

modeling the system. In order to generate deployable code that is based on system 

requirements, the SDL model had to be verified. The errors were eliminated and the 

warnings were fixed to avoid issues during runtime. Before generating usable C code, the 

Ada code for each component (Node, FrameManager and PacketManager) was 

generated. That resulted with an archive of each component, which contained the 

corresponding system logic. 

Based on the component definitions and automatically generated build script, attempts 

were made to generate C code. During the generation, terminal gave multiple errors as an 

output. The errors were a result of the tool having inadequate support for specific use-

cases, some of which were resolved in collaboration with engineers from ESA. The errors 

with references to commits in ESA OpenGEODE GitHub repository included: 

 Issues with Unicode formatting on Ada back-end, fixed in commit 

44a39ffedd3386ed68a7387d172e1e9da1492bc4 [25]; 

 Issues with Ada generator not being able to cast integers of similar data types, 

fixed in commit 4a1ca33e4fee2faa293427e26bc9c48bc621193e [26]; 

 Issues with Ada generator not being able to cast 64-bit integers from ASN.1 

compiler to 32-bit integers, fixed in commit 

1a60340a3a06518724f58b4ee1423573a01ce177 [27]; 

 Presence of shadow variables in for-loops and forbidden keywords in variable 

names, fixed in commits 90a7975742ec367eeebfbcb9445fd9592b513959 and 

89e3a3e92fa725a9e11fa868258e57ef48bb5fa2 [28, 29]. 
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 Issues parsing and generating code of the append function in OpenGEODE, not 

fixed as of 15.05.2017. 

As a result of these issues, OpenGEODE was gradually updated from version 1.5.29 to 

version 1.5.32. In addition to that, parts of the TTÜ-Mektory Student Satellite 

communication protocol model were included in the test suite of OpenGEODE. The test 

cases were added in commit c0f40a86e6f0ff45d6e0fc473550875ddaca8f52 [30]. 

To avoid runtime issues with stack sizes and messages provoking stack overflow, the 

default stack size had to be increased. In TASTE Toolset, the default stack size for 

embedded systems has been configured to 50kB. As the variables used in the TTÜ-

Mektory Student Satellite communication protocol were larger, the stack size of each 

thread was increased to 8192kB 

After updating the TASTE Toolset and fixing issues in the model, the C code was 

generated. The binary files of the application with the GUI component were automatically 

placed inside a separate directory. In order to test the application, all of the binary files 

were executed inside a terminal.
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6 Testing 

TASTE Toolset had issues with code generation and testing, so the initial model was split 

into three separate components. In order to test the system logic of components, each of 

the components was connected to a separate GUI component. GUI components were used 

to initialise and send the required data to the system component. Depending on the 

component, the received data was packed and unpacked. To avoid issues with the append 

function in OpenGEODE, the system logic was simplified and single frames were used. 

The purpose of these tests was to validate the system logic of each component, before 

testing the message flow of the complete system. 

The model for testing the Node component is shown in Figure 8. 

 

Figure 8. Node component for testing with connections in the interface view. 

As the append function was not working, the test of the Node component was 

unsuccessful. The raw data was sent to the component after which it was split into L3 

data, packed into Info object, sent, received and unpacked. After receiving the Info object, 

acknowledgement frame was assembled and sent. Although the Info object parameters 
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were received in GUI component, the raw data was not reinitialised from the received L3 

data. 

The model for testing the FrameManager component is shown in Figure 9. 

 

Figure 9. FrameManager component for testing with connections in the interface view. 

The test of the FrameManager component was successful. Info object was sent to the 

component after which it was packed into an AX.25 frame, sent, received and unpacked. 

As a result the sent and received Info objects in GUI component were identical. The 

results of the test are shown in Figure 10 and Figure 11. 
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Figure 10. FrameManager component test written and read data. 
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Figure 11. FrameManager component test graph. 

The model for testing the PacketManager component is shown in Figure 12. 
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Figure 12. PacketManager component for testing with connections in the interface view. 

The test of the PacketManager component was also successful. Frame count was sent to 

the component after which it changed its state and waited for AX.25 frames. After sending 

a number of AX.25 frames to the component a packet was packed, sent, received and 

unpacked. The frame count with the AX.25 frames was sent after receiving the packet. 

As a result the sent and received frame counts and AX.25 frames were identical. The 

results of the test are shown in Figure 13 and Figure 14. 
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Figure 13. PacketManager component test written and read data. 
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Figure 14. PacketManager component test graph. 

Although the tests for separate components show that the system logic of the components 

is correct, some of the functionality could not be tested. In order to validate the system 

correctness, similar tests should be carried out for the complete system.
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7 Results 

In this thesis the communication protocol of TTÜ-Mektory Student Satellite was studied. 

The requirements of the system were met and the communication structure was described 

as a class diagram. The process was modeled as a sequence diagram and based on this 

model, some of the questions were answered and the communication protocol description 

was improved. 

An SDL model containing the system logic was created in TASTE. The system 

architecture was described and attempts were made to generate usable C code. As the 

generation of C code had issues which required additional support from ESA engineers, 

the testing of the communication protocol was delayed. The issues were fixed and the 

TASTE Toolset was improved. As a result of this thesis, the TASTE Toolset has better 

validation in terms of model checking and now it supports some of the use-cases that had 

not been considered so far. In addition to that, exemplary functions can be created in the 

models that have been described in TASTE. Parts of the communication protocol were 

added to the test suite of OpenGEODE and the model will be used as a case study in ESA 

project that integrates TASTE Toolset with QGen. 

After the issues had been solved, C code was generated and the system components were 

tested separately. As a result of this thesis, the communication protocol has been modeled 

and an implementation of the TTÜ-Mektory Student Satellite communication process has 

been created. The binary files containing the C code of the system can be validated for 

correctness and deployed on the target system.
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8 Future work 

As the testing of the communication protocol implementation was delayed, the generated 

C code was tested partially. Before deploying the C code on the target system, the system 

logic should be verified completely. 

The verification can be done in the TASTE Toolset, which has different tools for 

validation. The binary files could be run and tested against the GUI component, which 

gives an overview of the system logic. After the initial verification, the ground and space 

segment could be initialised. As the system was modeled so that it could be used both on 

ground and on the satellite, another instance of the model could be created. The 

architecture of the ground station and satellite could be described and the whole 

communication process could be tested. For example the GUI component could give raw 

data as an input to the ground station and receive the contents of an acknowledgement 

frame from the satellite. After testing the communication process, different 

communication scenarios could also be verified. These scenarios include successful 

communication, partially successful communication and timeout. 

As the bus protocol commands were not considered as a part of this thesis, the frame 

structure of these commands could be described. The logic for sending and receiving 

these commands could be modeled and used by the system in case the OBC of the satellite 

is not accessible. 

After the system has been modeled as a whole and verified, the code could be deployed 

as a separate component in the ground station of the TTÜ-Mektory Student Satellite. Parts 

of the system could also be used on the satellite, although that requires modifications to 

the system logic and separation of the component architecture.
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9 Summary 

The purpose of this thesis was to use TASTE Toolset for modeling the communication 

protocol of TTÜ-Mektory Student Satellite and generate C code based on that model. 

In this thesis, a part of the TTÜ-Mektory Student Satellite communication was modeled. 

That part consisted of ground and space segment, which were used for communication 

between ground station and satellite on-board computer. The system components were 

designed so that they could be used both on the ground and on the satellite. 

The description of TTÜ-Mektory Student Satellite communication protocol was studied 

and based on that description, the system was described. Class diagrams describing the 

communication structure and sequence diagrams describing the communication process 

were created. The system was modeled in TASTE Toolset, where data types were 

described in ASN.1 and components of the system were modeled in SDL. Ada code for 

the system components was generated and the system architecture was described. Based 

on that description, C code was generated. 

The code generation resulted with errors, which were caused by the lack of support for 

some of the use-cases. The errors were resolved in collaboration with engineers from ESA 

and as a result the TASTE Toolset was improved. Parts of the TTÜ-Mektory Student 

Satellite communication protocol were added to the test suite of the toolset. 

Although the C code was generated, the errors in code generation delayed the testing of 

the communication protocol. Based on the current state, the description of communication 

protocol is sufficient for modeling the software system. As the communication protocol 

was not thoroughly tested, it is difficult to evaluate whether the requirements are 

sufficient for describing the communication process. The generated code is usable in the 

TTÜ-Mektory satellite program both on ground and on the satellite, although the tests for 

the complete system will indicate whether the model requires any improvements. As the 

TASTE Toolset is used for modeling software systems that are used in real-time 

environments, it is also sensible to use it for modeling the other software components for 

TTÜ-Mektory satellite program. Although the TASTE Toolset may require some 
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improvements, it keeps consistency throughout the whole system and ensures that it is 

actually based on the requirements. 

Finally, I would like to thank my supervisor Evelin Halling and the engineers from IB 

Krates and ESA.
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Appendix 1 – Sequence diagram of successful communication 

on ground



55 



56 

Appendix 2 – Sequence diagram of successful communication 

on satellite



57 



58 

Appendix 3 – Sequence diagram of partially successful 

communication on ground
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Appendix 4 – Sequence diagram of partially successful 

communication on satellite
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Appendix 5 – Sequence diagram of timeout on ground
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Appendix 6 – Sequence diagram of timeout on satellite
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Appendix 7 – Data types with descriptions in ASN.1 notation 

TASTE-Dataview DEFINITIONS ::= 

BEGIN 

 

-- Boolean 

MyBoolean ::= BOOLEAN 

 

-- 4 bit array 

My4BitArray ::= SEQUENCE (SIZE (4)) OF BOOLEAN 

 

-- 8 bit array 

My8BitArray ::= SEQUENCE (SIZE (8)) OF BOOLEAN 

 

-- Integer for 8 bit array numbering 

My8BitArrayInteger ::= INTEGER (0..7) 

 

-- Integer for 8 bit array value numbering 

My8BitArrayValueInteger ::= INTEGER (0..255) 

 

-- 16 bit array 

My16BitArray ::= SEQUENCE (SIZE (16)) OF BOOLEAN 

 

-- Integer for 16 bit array numbering 

My16BitArrayInteger ::= INTEGER (0..15) 

 

-- Integer for 16 bit array value numbering 

My16BitArrayValueInteger ::= INTEGER (0..65535) 

 

-- Packet structure 

MyPacket ::= SEQUENCE (SIZE (0..255)) OF MyFrame 

 

-- Stack for data in bits 

MyDataStack ::= SEQUENCE (SIZE (40..2000)) OF BOOLEAN 

 

-- Integer for data stack value numbering 

MyDataStackValueInteger ::= INTEGER (0..2000) 

 

-- Stack for data of FCS calculation  

MyFcsStack ::= SEQUENCE (SIZE (224..2192)) OF BOOLEAN -- Frame has empty info 
or is full 

 

-- Integer for data of FCS calculation  

MyFcsStackInteger ::= INTEGER (0..2175) 
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-- Polynomial for FCS calculation 

MyFcsPolynomial ::= SEQUENCE (SIZE (17)) OF BOOLEAN 

 

-- Integer for polynomial numbering 

MyFcsPolynomialInteger ::= INTEGER (0..16) 

 

-- Frame structure 

MyFrame ::= SEQUENCE { 

  startFlag MyFlag, 

  addr MyAddr, 

  control MyControl, 

  pid MyPid, 

  info MyInfo, 

  fcs MyFcs, 

  endFlag MyFlag 

} 

 

-- FRAME: Frame delimiter 

MyFlag ::= My8BitArray -- Fixed value 0x7E 

 

-- FRAME: Source of frame and destination 

MyAddr ::= SEQUENCE { 

  destinationAddress MyDestinationAddress, 

  sourceAddress MySourceAddress 

} 

 

-- ADDR: Destination address 

MyDestinationAddress ::= SEQUENCE (SIZE (7)) OF My8BitArray 

 

-- ADDR: Source address 

MySourceAddress ::= SEQUENCE (SIZE (7)) OF My8BitArray 

 

-- FRAME: Type of frame 

MyControl ::= My8BitArray 

 

-- FRAME: Protocol of info 

MyPid ::= My8BitArray -- Fixed value 0xF0 

 

-- FRAME: Info structure 

MyInfo ::= SEQUENCE { 

  ba MyBa, 

  cntrl MyCntrl, 

  code MyCode, 

  operationData MyOperationData, 

  ifcs MyIfcs, 

  auth MyAuth OPTIONAL 

} 

 

-- INFO: Bus address 

MyBa ::= SEQUENCE { 
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  srcAddr MySrcAddr, 

  dstAddr MyDstAddr 

} 

 

-- BA: Source address 

MySrcAddr ::= My4BitArray 

 

-- BA: Destination address 

MyDstAddr ::= My4BitArray 

 

-- INFO: Control - frame type 

MyCntrl ::= My8BitArray -- Fixed value 0x03 

 

-- INFO: Code - operation 

MyCode ::= My8BitArray 

 

-- INFO: Operation data 

MyOperationData ::= SEQUENCE (SIZE (0..250)) OF My8BitArray 

 

-- INFO: Info Frame check sequence 

MyIfcs ::= My16BitArray 

 

-- INFO: Authentication 

MyAuth ::= My16BitArray 

 

-- FRAME: Frame check sequence 

MyFcs ::= My16BitArray 

 

-- Stack of L3 frames 

MyL3Stack ::= SEQUENCE (SIZE (0..255)) OF MyL3Data 

 

-- Stack of L3 frame numbers 

MyL3StackNumbers ::= SEQUENCE (SIZE (0..255)) OF BOOLEAN 

 

-- Integer for L3 frame stack numbering 

MyL3StackInteger ::= INTEGER (0..254) 

 

-- Stack of L3 missing frame numbers in octets 

MyL3MissingStack ::= SEQUENCE (SIZE (0..255)) OF My8BitArray 

 

-- Stack for L3 data in bits 

MyL3DataStack ::= SEQUENCE (SIZE (0..1960)) OF BOOLEAN 

 

-- Integer for L3 data stack value numbering 

MyL3DataStackValueInteger ::= INTEGER (0..1960) 

 

-- Stack for data of L3 FCS calculation  

MyL3FcsStack ::= SEQUENCE (SIZE (80..2040)) OF BOOLEAN  -- L3 frame is empty 
or full 

 

-- Integer for data of L3 FCS calculation 
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MyL3FcsStackInteger ::= INTEGER (0..2023) 

 

-- Polynomial for L3 FCS calculation 

MyL3FcsPolynomial ::= SEQUENCE (SIZE (17)) OF BOOLEAN 

 

-- L3 frame structure 

MyL3Frame ::= SEQUENCE { 

  l3Ba MyL3Ba, 

  l3Cntrl MyL3Cntrl, 

  l3Code MyL3Code, 

  l3Tte MyL3Tte, 

  l3Mrt MyL3Mrt, 

  l3Fnum MyL3Fnum, 

  l3Data MyL3Data, 

  l3Fcs MyL3Fcs 

} 

 

-- L3 FRAME: Bus address 

MyL3Ba ::= SEQUENCE { 

  l3SrcAddr MyL3SrcAddr, 

  l3DstAddr MyL3DstAddr 

} 

 

-- L3BA: Source address 

MyL3SrcAddr ::= My4BitArray 

 

-- L3BA: Destination address 

MyL3DstAddr ::= My4BitArray 

 

-- L3 FRAME: Control - frame type 

MyL3Cntrl ::= My8BitArray -- Fixed value 0x03 

 

-- L3 FRAME: Code - data frame identificator 

MyL3Code ::= My8BitArray 

 

-- L3 FRAME: Time to end 

MyL3Tte ::= My16BitArray 

 

-- L3 FRAME: Maximum response time 

MyL3Mrt ::= My16BitArray 

 

-- L3 FRAME: Frame counter 

MyL3Fnum ::= My8BitArray 

 

-- L3 FRAME: Data 

MyL3Data ::= SEQUENCE (SIZE (0..245)) OF My8BitArray 

 

-- Integer for L3 data 

MyL3DataInteger ::= INTEGER (0..244) 

 

-- Stack for L3 acknowledgement data in bits 
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MyL3AckDataStack ::= SEQUENCE (SIZE (0..1952)) OF BOOLEAN 

 

-- Integer for L3 acknowledgement data stack value numbering 

MyL3AckDataStackValueInteger ::= INTEGER (0..1952) 

 

-- Stack for data of L3 acknowledgement FCS calculation  

MyL3AckFcsStack ::= SEQUENCE (SIZE (88..2040)) OF BOOLEAN  -- L3 
acknowledgement frame is empty or full 

 

-- Stack of L3 missing frame numbers 

MyL3AckMissingStack ::= SEQUENCE (SIZE (0..244)) OF INTEGER (0..255) 

 

-- Integer for stack of L3 missing frame stack numbering 

MyL3AckMissingStackInteger ::= INTEGER (0..243) 

 

-- L3 FRAME: Frame check sequence 

MyL3Fcs ::= My16BitArray 

 

-- L3 acknowledgement frame structure 

MyL3AckFrame ::= SEQUENCE { 

  l3Ba MyL3Ba, 

  l3Cntrl MyL3Cntrl, 

  l3Code MyL3Code, 

  l3Tte MyL3Tte, 

  l3Mrt MyL3Mrt, 

  l3Lfn MyL3Lfn, 

  l3Hfn MyL3Hfn, 

  l3Rrq MyL3Rrq, 

  l3Fcs MyL3Fcs 

} 

 

-- L3 ACKNOWLEDGEMENT FRAME: Lowest sequential frame number 

MyL3Lfn ::= My8BitArray 

 

-- L3 ACKNOWLEDGEMENT FRAME: Highest frame sequence number 

MyL3Hfn ::= My8BitArray 

 

-- L3 ACKNOWLEDGEMENT FRAME: Frame numbers missing 

MyL3Rrq ::= SEQUENCE (SIZE (0..244)) OF My8BitArray 

 

-- Integer for L3 frame numbers missing 

MyL3RrqInteger ::= INTEGER (0..243) 

 

-- Input data structure 

MyInputData ::= SEQUENCE { 

  ba MyBa, 

  code MyCode, 

  rawData MyRawData OPTIONAL, 

  l3Mrt MyL3Mrt OPTIONAL, 

  l3AckMissingStack MyL3AckMissingStack OPTIONAL 

} 
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-- INPUT DATA: Raw data 

MyRawData ::= SEQUENCE (SIZE (0..245)) OF My8BitArray -- Up to 1 frame(s) of 
data 

 

-- Integer for raw data numbering 

MyRawDataInteger ::= INTEGER (0..245) 

 

-- Acknowledgement data structure 

MyAckData ::= SEQUENCE { 

  ba MyBa, 

  code MyCode, 

  l3Mrt MyL3Mrt, 

  l3Lfn MyL3Lfn, 

  l3Hfn MyL3Hfn, 

  l3MissingData MyL3MissingStack 

} 

 

END 


