
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

Dan Rodionov 153074IAPM

IMPLEMENTING TTÜ NANOSATELLITE

COMMUNICATION PROTOCOL USING

TASTE TOOLSET

Master’s thesis

Supervisor: Evelin Halling

 MSc

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Dan Rodionov 153074IAPM

TTÜ NANOSATELLIIDI

KOMMUNIKATSIOONIPROTOKOLLI

IMPLEMENTEERIMINE KASUTADES

TASTE TÖÖRIISTAKOMPLEKTI

magistritöö

Juhendaja: Evelin Halling

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Dan Rodionov

15.05.2017

4

Abstract

The purpose of this thesis is to use the TASTE Toolset for modeling the communication

protocol of TTÜ-Mektory Student Satellite and generate C code based on that model.

Tools in the TASTE Toolset can be used for validating the C code and verifying the

requirements of TTÜ-Mektory Student Satellite communication protocol.

The purpose is achieved by modelling a part of the TTÜ-Mektory Student Satellite

communication protocol. In the scope of this thesis, the communication between ground

station and satellite on-board computer is modeled. The system is modeled in parts, which

are designed so that they could be used both on the ground and on the satellite. To validate

the generated code, the modeled systems are connected to each other and used to represent

the communication process.

Before modeling the system, the description of TTÜ-Mektory Student Satellite

communication protocol is studied. Based on that description, class diagrams for

communication structure and sequence diagrams for the communication process are

created. After the communication protocol has been described as diagrams, the system is

modeled in the TASTE Toolset. The data types are described in ASN.1 notation and the

components of the system are modeled in SDL. When the system has been described, Ada

code for the system components is generated. The system architecture is described and

based on that description, C code is generated.

The communication process is tested by using the tools in the TASTE Toolset. A GUI

component is used to represent the mission control system, which can be used for

interaction with the system. Based on the sequence diagrams of different communication

scenarios, raw data is sent to the system and the data received from the system is

compared to the requirements in the TTÜ-Mektory Student Satellite communication

protocol.

As a result of this thesis, a representation of the communication protocol is created and

the requirements of the TTÜ-Mektory Student Satellite communication protocol are

5

verified. The created system can be used in the communication process of the TTÜ-

Mektory Student Satellite both on ground and on the satellite. The result of this thesis will

be used as a case study in ESA project that integrates TASTE Toolset with QGen.

This thesis is written in English and is 37 pages long, including 9 chapters, 14 figures and

8 tables.

6

Annotatsioon

TTÜ nanosatelliidi kommunikatsiooniprotokolli implementeerimine

kasutades TASTE tööriistakomplekti

Lõputöö eesmärgiks on kasutada TASTE tööriistakomplekti TTÜ ja Mektory koostöös

valmiva tudengisatelliidi kommunikatsiooniprotokolli modelleerimiseks ja loodud

mudeli põhjal C koodi genereerimiseks. Selleks, et veenduda genereeritud C koodi ja

kommunikatsiooniprotokolli nõuete korrektsuses, kasutatakse TASTE tööriistakomplekti

poolt pakutavaid tööriistu.

Eesmärgini jõutakse modelleerides osa tudengisatelliidi kommunikatsiooniprotokollist.

Antud töö lõikes vaadeldakse suhtlust maajaama ja satelliidi pardakompuutri vahel.

Süsteem modelleeritakse osadena mis on disainitud nii, et neid saaks kasutada nii maa

kui ka satelliidi peal. Selleks, et genereeritud koodi valideerida, ühendatakse

modelleeritud süsteemid teineteisega ja luuakse kahe süsteemi vaheline suhtlus.

Enne suhtluse modelleerimist uuritakse TTÜ ja Mektory koostöös valmiva

tudengisatelliidi kommunikatsiooniprotokolli kirjeldust. Selle kirjelduse põhjal luuakse

klassidiagrammid suhtluse struktuuri ja jadadiagrammid suhtlusprotsessi kohta. Pärast

kommunikatsiooniprotokolli kirjeldamist diagrammide abil modelleeritakse süsteem

kasutades TASTE tööriistakomplekti. Andmetüübid kirjeldatakse kasutades ASN.1

notatsiooni ja süsteemikomponendid modelleeritakse keeles SDL. Kui süsteem on

kirjeldatud, genereeritakse süsteemikomponentide kood keeles Ada. Seejärel

kirjeldatakse süsteemi arhitektuur ja genereeritakse kood keeles C.

Kommunikatsiooniprotokolli testitakse kasutades TASTE tööriistakomplekti tööriistu.

Kasutajaliidese komponenti kasutatakse missioonijuhtimise kujutamiseks ja selle abil

suheldakse süsteemiga. Erinevate suhtlusstsenaariumite ja neid kirjeldavate

jadadiagrammide alusel saadetakse andmed süsteemile ning süsteemilt tagasi saadud

andmeid võrreldakse tudengisatelliidi kommunikatsiooniprotokolli nõuetega.

7

Lõputöö tulemusena luuakse süsteem kommunikatsiooniprotokolli haldamiseks ning

verifitseeritakse TTÜ ja Mektory koostöös valmiva tudengisatelliidi

kommunikatsiooniprotokolli. Loodud süsteemi saab kasutada tudengisatelliidi projektis

nii maa kui ka satellidi poolseks suhtluseks. Lõputöö tulemust kasutatakse

katseülesandena ESA projektis, mis integreerib TASTE tööriistakomplekti QGeniga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 37 leheküljel, 9 peatükki, 14

joonist, 8 tabelit.

8

List of abbreviations and terms

TASTE The ASSERT Set of Tools for Engineering

ESA European Space Agency

UHF Ultra High Frequency

TTÜ Tallinn University of Technology

SDL Specification and Description Language

UML Unified Modeling Language

ASN.1 Abstract Syntax Notation One

AADL Architecture Analysis and Design Language

ICD Interface Control Document

ATV Automated Transfer Vehicle

FP6 Sixth Framework Programme

TM/TC Telemetry and Telecommand

CRC Cyclic Redundancy Check

PUS Packet Utilization Standard

AX.25 Amateur X.25

UI Unnumbered Information

TBD To Be Decided

P/F Poll/Final

PID Protocol Identifier

BA Bus Address

SRC Source

DST Destination

OBC On-Board Computer

IFCS Info Frame Check Sequence

LSB Least Significant Bit

FCS Frame Check Sequence

TtE Time-to-End

MRT Maximum Response Time

9

LFN Lowest Sequential Frame Number

TCP/IP Transmission Control Protocol/Internet Protocol

10

Table of contents

1 Introduction ... 14

2 TASTE Toolset .. 16

2.1 Background ... 16

2.1.1 OpenGEODE ... 17

2.1.2 ASN.1 and AADL ... 17

2.2 Process .. 18

2.3 Related work ... 19

2.3.1 Current state ... 19

2.3.2 Projects .. 19

2.3.3 Future ... 20

3 Communication protocol ... 21

3.1 Telemetry and telecommand protocol .. 21

3.1.1 Frame structure .. 21

3.1.2 L3/L4 frames ... 26

4 Modelling .. 30

4.1 Class diagrams .. 31

4.2 Sequence diagrams ... 33

4.2.1 Success .. 33

4.2.2 Partial success .. 34

4.2.3 Timeout .. 34

4.3 TASTE model ... 34

4.3.1 Gui ... 36

4.3.2 Node .. 37

4.3.3 FrameManager ... 37

4.3.4 PacketManager .. 38

5 Code generation ... 39

6 Testing ... 41

7 Results ... 48

8 Future work ... 49

11

9 Summary .. 50

References .. 52

Appendix 1 – Sequence diagram of successful communication on ground 54

Appendix 2 – Sequence diagram of successful communication on satellite 56

Appendix 3 – Sequence diagram of partially successful communication on ground 58

Appendix 4 – Sequence diagram of partially successful communication on satellite.... 60

Appendix 5 – Sequence diagram of timeout on ground ... 62

Appendix 6 – Sequence diagram of timeout on satellite .. 64

Appendix 7 – Data types with descriptions in ASN.1 notation 66

12

List of figures

Figure 1. TTÜ-Mektory Student Satellite Space System. .. 14

Figure 2. TTÜ-Mektory Student Satellite communication protocol. 15

Figure 3. L3/L4 communication diagram. .. 27

Figure 4. Class diagram of data types... 31

Figure 5. Class diagram of components with data types and procedure calls. 32

Figure 6. Components with connections in the interface view....................................... 35

Figure 7. Architecture in deployment view. ... 36

Figure 8. Node component for testing with connections in the interface view. 41

Figure 9. FrameManager component for testing with connections in the interface view.

 .. 42

Figure 10. FrameManager component test written and read data. 43

Figure 11. FrameManager component test graph. .. 44

Figure 12. PacketManager component for testing with connections in the interface view.

 .. 45

Figure 13. PacketManager component test written and read data. 46

Figure 14. PacketManager component test graph. ... 47

13

List of tables

Table 1. Communication burst structure with parameters. ... 22

Table 2. AX.25 frame structure with parameters. .. 22

Table 3. Address field structure and its contents. ... 23

Table 4. Info field structure with parameters. .. 24

Table 5. BA field and its contents. ... 24

Table 6. Init/Reset command structure with parameters. ... 27

Table 7. L3 data frame with parameters. .. 28

Table 8. L3 data acknowledge frame with parameters. .. 28

14

1 Introduction

TASTE (The ASSERT Set of Tools for Engineering) [1] is a set of software development

tools, which can be used to describe software with formal models, verify created models

and automatically generate program code from these models [2]. TASTE is suitable for

describing real-time heterogeneous systems.

The subject of the thesis is software modelling and validating with TASTE tools. The

reason for choosing TASTE tools is that they have been developed in collaboration with

ESA (European Space Agency) and they support the whole life-cycle of space system

software development [3].

As a software system, part of the TTÜ-Mektory Student Satellite Space System is going

to be used. The TTÜ-Mektory Student Satellite Space System is shown in Figure 1.

Figure 1. TTÜ-Mektory Student Satellite Space System.

15

TTÜ-Mektory Student Satellite Space System consists of ground and space segment.

Ground segment can be divided into following elements:

 ground station,

 mission control system,

 foreign amateur UHF (Ultra High Frequency) receivers.

Space segment consists of a satellite.

In this thesis, the communication protocol of TTÜ-Mektory Student Satellite is modeled.

The communication protocol is used in communication between the ground station and

satellite as shown in Figure 2.

Figure 2. TTÜ-Mektory Student Satellite communication protocol.

When modeling the software system, the thesis is looking for answers to the questions

regarding the description of communication protocol and usability of the TASTE Toolset.

The thesis is checking whether the description of communication protocol requirements

is sufficient. In case it is insufficient for modeling, the ways for improving the description

of communication protocol are looked into. As the modeling results with generated code,

the usability of the code in the TTÜ-Mektory satellite program is evaluated. Based on that

evaluation a decision will be made regarding the sensibility of using the same method for

creating other software components of the system.

In order to verify the correctness of communication protocol, system architecture and

communication channels must be defined. To describe components as processes and state

machines, SDL (Specification and Description Language) formal language and modelling

options of TASTE tools are going to be used. After describing the components, the code

that has been generated based on the model can be validated with tests.

16

2 TASTE Toolset

2.1 Background

TASTE is a set of software development tools, which is similar to the UML (Unified

Modeling Language), apart from the code generation functionality. UML is a fully

functional graphical editor, but it lacks the ability to support the development process of

a system [4].

The TASTE Toolset is based on two modeling languages: ASN.1 (Abstract Syntax

Notation One) and AADL (Architecture Analysis and Design Language). It was

developed with the purpose to build optimal systems, which use manually or

automatically produced heterogeneous components and run based on a pre-defined

specification [5]. It was created in 2008 with the support from ESA.

The TASTE Toolset is often used for developing systems, which have some of the

following characteristics:

 limited resources,

 time constraints,

 varying nature (laws, resources, fault detection),

 shared development,

 hardware communication,

 heterogeneous hardware,

 physical distribution,

 autonomous operation,

 physical inaccessibility [2].

17

With TASTE it is possible to connect all of the system components and deploy them on

a specific target. The developed code is transparent and there is no need for message

formatting and decoding, system configuring or resource management debugging, as

those tasks are already automated [2]. QGen code generator can be used to generate C

code from the TASTE model [6]. That code can be verified according to the specification

in order to assure system validity.

As TASTE Toolset is used for developing software components of heterogeneous nature,

it enables software development in different languages. The supported languages include

Python, Simulink, MSC, Ada, SMP2, C, VHDL, SCADE and SDL [2].

2.1.1 OpenGEODE

SDL (Specification and Description Language) is a modelling language for describing

systems in the form of state machines [7]. It has been established by ITU-T under

reference Z100 and is mostly used in the telecommunication industry. SDL has

established semantics and is useful for describing embedded, real-time systems.

TASTE Toolset includes a graphical SDL editor OpenGEODE that can be used for editing

processes and procedures. It features description of hierarchical and parallel states and its

model can be used for generating Ada code. As OpenGEODE supports pre-defined

ASN.1 data types, then it can be efficiently used for model checking [8].

2.1.2 ASN.1 and AADL

In a heterogeneous environment, the system communication is based on ASN.1

technology. It is an ISO/IEC and ITU-T standard, that defines the notation for describing

data structures [9]. The messages that are defined using ASN.1, can be either abstract or

physical. As the tools translate the messages from one form to another, there is no risk

that the data will be interpreted incorrectly.

The ASN.1 technology is favourable when working with embedded systems, as the

complexity is small and the learning curve is not steep. It is relying on an ISO based

standard and thus has been used for years in areas such as banking transactions,

aeronautical communication networks etc [2]. In order to support safety-critical systems,

an open-source ASN.1 compiler ASN1SCC has been developed, which supports static

memory, automatic statement coverage, SPARK/Ada annotations, integration with

18

legacy systems and automatic ICDs (Interface Control Document) [9, 10]. ASN1SCC is

used for parsing ASN.1 grammar and converting it to C or Ada declarations and functions

which can be used for encoding/decoding these types to/from binary streams [11].

In addition to ASN.1, another technology being used is AADL. When defining the

architecture of a TASTE system, AADL can be used to represent it in a textual format.

The definition consists of functional blocks that have some non-functional attributes. As

with ASN.1 technology, the AADL is simple to understand.

ASN.1 and AADL together define a model that describes the system completely. This

description includes types manipulated, interfaces of processes and threads, connection

topology and flow of information and interaction [4].

2.2 Process

The ASSERT process for software development with the TASTE Toolset consists of the

following steps:

1. System modelling phase, where software is abstracted;

2. Transformation phase, which results with a real-time software;

3. Feasibility analysis phase, where properties are statically verified;

4. Code generation phase, where binary files are generated [4].

System modelling is conducted in the interface view editor and the specification is defined

in the deployment view editor. Both are graphical tools, which are used for describing the

logical interactions and hardware architecture of the system. To support large scale

architecture, both of these editors have the functionality of grouping functions into

hierarchical containers.

When the logical interactions and hardware architecture have been described, the result

is submitted to a vertical transformation tool. During this automated procedure, software

and hardware is generated. As the generation is based on a description, then the result

contains all the real-time and distribution properties [4].

19

The result of the vertical transformation is displayed in the concurrency view editor,

where performance analysis can be conducted. The tools for performing that analysis are

Cheddar and dynamic simulator, both of which have been integrated into the TASTE

Toolset.

As a last step, an executable application can be generated from the pre-defined functional

blocks. This is done using the Ocarina tool, which has multiple choices for code

generation based on the system architecture.

2.3 Related work

2.3.1 Current state

The development of the TASTE Toolset was first focused on the development process,

rather than choosing which technologies to use [4]. After the development process had

been set, modeling languages were selected and integration issues were faced. As a result,

a prototype was made which supported all of the system development phases. Soon the

product was released as a complete toolset, which was tested among system and software

designers [4].

As the solution had many options for system development, it confused the users regarding

its functionality [4]. Tool developers had to offer support to the users and help them

discover the wide range of functions that the tool had to offer. After facing those issues,

the users started seeing the advantages in system development with this particular toolset

[4].

2.3.2 Projects

TASTE can be used in different areas from educational purposes to application on

operational projects [3]. Although system development for classical Earth-orbiting

spacecrafts remains unchanged, then the toolset could be used for developing more

complex and challenging systems like formation-flying, deep-space probes, robotics and

next generation launchers [3].

The ASN.1 modelling language was evaluated by Astrium in ATV (Automated Transfer

Vehicle) program, by retro-engineering a part of it [9]. The AADL technology has been

used to build critical real-time systems in the IST-ASSERT project, which is part of the

20

FP6 (Sixth Framework Programme) of the European Commission [12]. The aim of this

project is to provide tools and methods to ease the development of safety-critical systems,

such as in space.

There are examples where TASTE Toolset and ASN.1 technology have been used for

modelling satellite TM/TC (Telecommand and Telemetry). First example [13] shows the

modelling of TM/TC and the second example [14] also includes the use of CRC (Cyclic

Redundancy Check) and length fields. Both examples are based on ESA’s PUS (Packet

Utilization Standard).

TASTE Toolset has been used to develop software for PROBA-3 Coronagraph

Instrument, which will be used in future ESA missions for in-orbit demonstration of

precise formation flying techniques and technologies [3]. The ASN.1 technology was

used to address different integration issues and ensure end-to-end data consistency. The

toolset was also used in developing the UPMSat-2 satellite manager software subsystem,

where TASTE was used to design the model, facilitate a user interface and implement the

manager [15].

It has been also used in a case study to simulate the control of a robotic arm using an

exoskeleton [16]. The exoskeleton sent data to the computer, which was running the

TASTE generated binary files. Those binary files translated the sensor information and

were used to command a 3D model of a robotic arm. In the future, this 3D model could

be replaced by a real arm.

2.3.3 Future

Although the TASTE Toolset is ready to be used as is, plans should be made regarding

the technical perspectives and the toolset itself [4]. There are many opportunities for

supporting the standard languages and offering more openness to the users. Additions

could be made to the functionality and the usability of this software in real industrial

environments could be improved.

21

3 Communication protocol

The following paragraph is based on TTÜ-Mektory Nanosatellite TM/TC Protocol

Description [17] and AX.25 (Amateur X.25) Amateur Packet-Radio Link-Layer Protocol

[18].

The AX.25 protocol is used as the TTÜ-Mektory Student Satellite is communicating over

amateur frequencies. Using amateur frequencies has the requirement of message

readability, which is why the publicly available AX.25 Amateur Packet-Radio Link-

Layer Protocol was the optimal solution.

Communication between the TTÜ-Mektory Student Satellite and ground station is

established using the UHF RF interface. An amateur radio station will be used in ground

station. It will also have a tracking antenna system for automatic alignment of the ground

and satellite antenna.

Parts of the communication protocol, such as bus protocol commands and the affiliated

structures that are not in the scope of this thesis, are not described.

3.1 Telemetry and telecommand protocol

In TTÜ-Mektory Student Satellite telemetry and telecommand communication a subset

of AX.25 Amateur Packet-Radio Link-Layer Protocol [18] is used.

3.1.1 Frame structure

In terms of frame types, the TTÜ-Mektory Student Satellite supports only AX.25 UI

(Unnumbered Information) frames. The repeated frames specified by the AX.25 protocol

are not supported. Any other types of frames that are not specified in the communication

protocol are ignored by the system.

The communication between the ground station and satellite is in bursts. Each burst

consists of a radio header used for synchronization that is followed by a number of AX.25

22

frames. The structure of a burst is shown in Table 1 and the structure of an AX.25 frame

is shown in Table 2.

Table 1. Communication burst structure with parameters.

Radio Header AX.25 Frame 1 … AX.25 Frame N

TBD (To Be Decided) bits 200-2208 bits … 200-2208 bits

Table 2. AX.25 frame structure with parameters.

Flag Addr Control PID Info FCS Flag

8 bits

(0x7E)

112

bits
8 bits

8

bits

N (up to 256) x 8

bits

16

bits

8 bits

(0x7E)

Communication is initialized by sending a burst of AX.25 frames to the satellite. Satellite

responds to the burst with a similar burst that contains the response. The whole

transmission is done during an available time window.

When satellite is transferring telemetry, it sends a radio header with a single AX.25 frame.

Telemetry transferring is used for monitoring satellite status. As the telemetry frames are

publicly available, they can be received by the ground station or radio amateurs.

3.1.1.1 Flag

Flag is used for separating each AX.25 frame. The end flag of a previous frame is the

start flag of the next frame. Flag is represented by the code 0x7E which means that is

consists of six consecutive 1’s.

As six consecutive 1’s are used as flags, then they can not be present in the frame content.

To avoid that, bit stuffing is used before assembling the burst. During bit stuffing, five

consecutive 1’s are followed by a 0. Before parsing the frames, the 0’s are removed for

restoration of the data.

When no data is available for transmission, only flags are transmitted.

3.1.1.2 Address field

Address field is used for describing the frame source and destination. As the

communication is always between the same ground station and satellite, the frame source

23

and destination have the same values during each transmission. For sending and receiving

data from ground to satellite or satellite to ground, pre-defined Address values are used.

When replying to a message received from UHF amateur radio, the address of a sender is

used.

Address consists of 56-bit destination station address and 56-bit source station address.

The Address field structure is shown in Table 3, where the octets containing destination

and source address are labelled A1-A14.

Table 3. Address field structure and its contents.

112-bit Address Field

Destination Address Source Address

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

3.1.1.3 Control field

Control field is used for indicating the type of AX.25 frame. As TTÜ-Mektory Student

Satellite is using AX.25 UI frames, then the value of Control is fixed to 0x03. P/F

(Poll/Final) bit is not used and is set to 0.

3.1.1.4 PID field

PID (Protocol Identifier) field is used for defining the protocol of Info. No defined AX.25

protocols are used in communication between ground station and satellite, so the PID is

fixed to 0xF0.

3.1.1.5 Info field

Info field is used for sending information from ground to satellite or satellite to ground.

Info consists of two parts:

 inner satellite bus (BA, Code, Operation Data and IFCS fields),

 optional authentication (Auth field).

The structure of the Info field is shown in

Table 4.

24

Table 4. Info field structure with parameters.

BA Cntrl Code Operation Data IFCS Auth

8 bits 8 bits 8 bits N (up to 250) x 8 bits 16 bits 16 bits

3.1.1.5.1 BA

BA (Bus Address) field is used on the inner satellite bus. It is used for describing sender

and receiver. Some BA values also define how frames are sent from satellite to ground.

BA consists of 4 bit SRC (Source) and 4 bit DST (Destination) Address. The structure of

the BA field is shown in Table 5, where the bits containing source and destination address

are labelled 7-0.

Table 5. BA field and its contents.

8-bit BA Field

SRC Address DST Address

7 6 5 4 3 2 1 0

3.1.1.5.2 Cntrl

Cntrl field defines the frame type. As also with AX.25 frames, the Cntrl is fixed to 0x03

which defines the AX.25 UI frame.

3.1.1.5.3 Code

Code is used for specifying an operation on satellite internal bus. Code also defines the

Operation Data structure and the response type. Each Operation Data structure has a

specific response.

For example there are different codes for:

 telemetry reading,

 parameter writing,

 various responses.

Operations on satellite internal bus are used in situations where the OBC (On-Board

Computer) is inaccessible. As it is a specific scenario, then bus protocol commands, their

structures and response types are not described in this thesis.

25

Besides defining operations on satellite internal bus, some codes are used for

communication between ground station and OBC. Codes are sent in a set of frames in one

direction and received in another direction.

The structure of these commands is described in 3.1.2.

3.1.1.5.4 Operation data

Operation Data is used for storing data of a specific command. It can be used for satellite

bus protocol commands or L3/L4 frames.

The details of satellite bus protocol are not described in this thesis.

When using Operation Data field for data of L3/L4 frames, the BA, Cntrl, Code and IFCS

fields of Info structure are replaced with BA, Cntrl, Code and FCS fields of L3/L4 frame.

The rest of the data described in a L3/L4 frame is stored in Operation Data field.

3.1.1.5.5 IFCS

IFCS (Info Frame Check Sequence) field is used for storing the frame check sequence of

satellite internal bus frame. It is calculated over BA, Cntrl, Code and Operation Data.

Apart from the other fields specified in the communication protocol, the IFCS field is

transmitted LSB (Least Significant Bit) first. The details of IFCS calculation are described

in 3.1.1.6.

3.1.1.5.6 Auth

Auth field is optional and used in specific scenarios. When operating with commands that

require additional security, the Auth is used to verify the source of the data. The Auth field

is not present on the internal bus as it is removed by the radio module. The frames that

have invalid Auth values are not sent to the internal bus.

3.1.1.6 FCS

FCS (Frame Check Sequence) field is used for frame validation. The value is calculated

according to the ISO 3309 standard recommendations and compared to the value stored

in the FCS field. It is used to validate the correctness of the frame and avoid corruption.

The polynomial used in the FCS calculation is shown in Equation (1).

𝐹𝐶𝑆 = 𝑋16 + 𝑋12 + 𝑋5 + 1 (1)

26

The FCS is calculated over Address, Control, PID and Info fields. As with IFCS field, it

is transmitted LSB first.

3.1.2 L3/L4 frames

L3/L4 frames are used for transporting higher layer data between mission control and

OBC. L3/L4 frames are put together in mission control, transferred to ground station and

transmitted to satellite. Each transmission consists of a burst, which contains a number of

AX.25 frames. AX.25 frames carry the information of L3/L4 frames.

When not transmitting data or telemetry, the satellite is always in the listening state.

Satellite never initiates a transfer. During ground station to satellite communication, each

sent frame is accompanied with the TtE (Time-to-End) which indicates the time left to

the end of transmission. With each received frame, the timer on the satellite is increased.

When a burst has been received, the AX.25 frames are removed before sending the data

to the satellite internal bus. Each frame is acknowledged by the OBC and an

acknowledgement frame is sent to the radio. Sent frames are monitored by the radio and

the acknowledgement frames are not sent to the ground station. When response is

assembled, the source and destination addresses are swapped.

Reception of last frame triggers a response from OBC to ground station. Timer is updated,

frames are acknowledged and sent to the ground segment.

27

The L3/L4 communication diagram is shown in Figure 3.

Figure 3. L3/L4 communication diagram.

3.1.2.1 L3 Init/Reset command

The structure of an L3 Init/Reset command is shown in Table 6.

Table 6. Init/Reset command structure with parameters.

BA Cntrl Code TtE MRT FCS

8 bits 8 bits (0x03) 8 bits (TBD) 16 bits 16 bits 16 bits

Init/Reset command is sent by the ground station to the satellite in the beginning of each

communication session. It could also be sent in the middle of a communication session,

when a clean session is needed. During Init/Reset command, the frame numbers are set

to 0 and the higher layers of protocols are also reset. Init/Reset command is also used

when communication goes into an abnormal state. For example when frames are not

following a logical sequence, the communication is restarted and a clean session is

initialised.

28

3.1.2.2 L3 data frame

The structure of an L3 data frame is shown in Table 7.

Table 7. L3 data frame with parameters.

BA Cntrl Code TtE MRT Fnum Data FCS

8

bits

8 bits

(0x03)

8 bits

(TBD)

16

bits

16

bits
8 bits

N (up to 245) x 8

bits

16

bits

L3 data frame is used for carrying data into higher layers of the communication protocol.

Each frame includes TtE, MRT (Maximum Response Time) and Fnum. TtE indicates the

time left to the end of transmission, MRT limits the amount of data that satellite is allowed

to respond with and Fnum is used for frame numbering. Frame numbers are used to

reorder the data and request missing frames.

3.1.2.3 L3 data acknowledge

The structure of an L3 data acknowledge frame is shown in Table 8.

Table 8. L3 data acknowledge frame with parameters.

BA Cntrl Code TtE MRT LFN HFN RRQ1 … RRQN FCS

8

bits

8 bits

(0x03)

8 bits

(TBD)

16

bits

16

bits

8

bits

8

bits
8 bits

8

bits
8 bits

16

bits

L3 data acknowledge frames are used for acknowledgement of L3 data frames. An

acknowledge frame is sent once during a burst and it can be located anywhere within the

burst.

When L3 frame is received, the L3 stack is checked for missing frames. If the frame

number of the received frame is one unit bigger than the previous received frame, the

frame number is put into LFN (Lowest Sequential Frame Number) field and the frame is

forwarded to higher layers. If the frame number is bigger, the buffer is scanned for a frame

with missing numbers. If missing frames are found, the LFN value is updated and frames

are forwarded, if not, the frame is stored.

29

3.1.2.4 L3 bus acknowledge

L3 bus acknowledgement frames are used on satellite internal bus between radio and

OBC. The frames are used to acknowledge the reception of L3 frames and contain the

information about the transmission status.

As the satellite internal bus is not a part of this thesis, then L3 bus acknowledgement

frames are not used.

30

4 Modelling

The modeling of the communication protocol began with the study of TTÜ-Mektory

Nanosatellite TM/TC Protocol Description [17]. As the main communication is between

ground station and OBC, the L3 data with the frame structure was chosen as the project

scope. Bus protocol commands were not included in the initial model, as they are only

used in a situation where OBC is inaccessible.

The structure of the components that were necessary for communication was described

as a class diagram (4.1). After the initial components had been described, the sequence

diagrams of different communication scenarios were created. These scenarios included

successful communication (4.2.1), partially successful communication (4.2.2) and

timeout (4.2.3). Both the class diagrams and sequence diagrams were created with

Papyrus [19], which is a UML modeling environment built on Eclipse.

After the class and sequence diagrams had been created, a pre-configured virtual machine

image with TASTE [20] was used for system modeling. The virtual machine image was

deployed in Oracle VM VirtualBox [21] virtualization environment. The data types were

described in ASN.1 and the choice of data types was based on the examples in TASTE

V2 Reference Card [22]. Having the data types described, the interface view with the

initial components was created in TASTE. The logic for each component was modeled in

OpenGEODE, which is an SDL editor for TASTE (4.3). Before generating C code, the

architecture of TTÜ-Mektory Student Satellite space system was described in the

deployment view.

31

4.1 Class diagrams

The data types are described in Figure 4.

Figure 4. Class diagram of data types.

32

The components with the data types and corresponding procedure calls are described in

Figure 5.

Figure 5. Class diagram of components with data types and procedure calls.

In terms of design, the model has been divided into four components: Gui, Node,

FrameManager and PacketManager. These components are used to represent the

different stages of a frame assembly. Each component has a sending and receiving state,

33

which contain the logic for sending or receiving the data. The components are designed

so that they could be used both on the ground and on the satellite, although usage on

satellite requires separation of the components.

Both of the class diagrams are used as a graphical representation of the communication

protocol and do not represent the actual TASTE model.

4.2 Sequence diagrams

Communication protocol and its scenarios can be described as sequence diagrams, which

are divided into ground and satellite segments.

The communication starts with a Gui component that represents a buffer and can be used

for testing the model. From Gui, the initialised data is forwarded to Node, which manages

the communication. The data is split into L3 data frames and the count of these frames is

forwarded to PacketManager, which is the lowest component in the model. After that,

the frame is packed into Operation Data field and Info object, which is forwarded to

FrameManager. The FrameManager packs the Info object into an AX.25 frame. As the

PacketManager has already received the frame count, it gathers all the frames and packs

them into a packet, which represents the burst. The burst is then sent to the satellite. The

same components are used when receiving the frames. The process is inverted and the

received data is represented in Gui. As Node is responsible for communication

management, it assembles the L3 data acknowledgement frames that contain the

information about the frames that have not been received, so that they could be resent.

Specific communication scenarios are described in the following paragraphs.

4.2.1 Success

During a successful communication, the sender assembles the data into frames and

forwards them as a burst. The burst is sent over TCP/IP (Transmission Control

Protocol/Internet Protocol) protocol to the radio and converted into an analog signal.

Receiver converts the signal back to a digital format and sends it over TCP/IP for

disassembly. After the data has been received, an L3 data acknowledgement frame is

assembled and sent back.

34

Sequence diagram representing the successful communication on ground is shown in

Appendix 1 and on satellite is shown in Appendix 2. The connections between ground

and satellite diagram are added as comments.

4.2.2 Partial success

If a failure occurs during the communication, as some frames have been lost or a timeout

has occurred, the frames are sent or received partially. During a partially successful

communication, the L3 acknowledgement frame is sent after reception which contains

the missing frame numbers. Based on that, a burst can be assembled that contains the

missing frames.

Sequence diagram representing the partially successful communication on ground is

shown in Appendix 3 and on satellite is shown in Appendix 4. The connections between

ground and satellite diagram are added as comments.

4.2.3 Timeout

As the communication window is limited, a timeout can occur which results in some

frames getting lost. In that case, the sender initialises communication in the next

communication window and requests for the frame numbers that were not received. Based

on the L3 acknowledgement frame received, it can resend the missing frames.

Sequence diagram representing the timeout on ground is shown in Appendix 5 and on

satellite is shown in Appendix 6. The connections between ground and satellite diagram

are added as comments.

4.3 TASTE model

The TASTE model is using the data types that have been defined in the data view. The

definition is based on the TTÜ-Mektory Nanosatellite TM/TC Protocol Description [17]

and contains the data types of the frames and their fields. Data view also contains the data

types that are used for describing additional parameters in the procedures.

Data types with descriptions in ASN.1 notation are shown in Appendix 7.

35

The TASTE model is divided into two parts: interface view and deployment view.

Interface view is used for modeling software components with their logic and deployment

view is used for defining software architecture.

In interface view, a four layer model was created in order to represent the components.

Based on SDL restrictions, each component is sporadic and contains asynchronous

connections that are used for sending and receiving the data. As the components are

universal, the model can be used both on the ground station and the satellite.

The components with connections in the interface view are shown in Figure 6.

Figure 6. Components with connections in the interface view.

In deployment view, the architecture of the system has been described. The description of

the architecture is shown in Figure 7.

36

Figure 7. Architecture in deployment view.

The system consists of two nodes, which contain an x86 Linux processor with a partition.

The partition of first node contains the Gui component and the partition of second node

contains the three system components. Both of the nodes have drivers that are used for

communication with the bus. The driver configuration consists of device name, address

and port. As the system is using Linux sockets, the address is set to 127.0.0.1 which

represents the local host and port values start from 5115. When testing the

communication, another node could be connected to the bus to represent both the ground

station and satellite.

Detailed description of each component is in the following paragraphs.

4.3.1 Gui

Gui is used for interacting with the Node. It is an interface that is used for testing the

communication protocol. With Gui, raw data can be defined and sent to the Node. The

data that is received from the Node can be used to validate the correctness of the

communication protocol. Gui is a user-friendly interface for representing a buffer.

37

4.3.2 Node

Node is used for communication management both on the ground and on the satellite.

In the sending state it is used for parsing raw data. Raw data is received as an array of

octets and it is split between L3 data objects, which contain TtE, MRT and Fnum fields.

The count of L3 data objects is sent to PacketManager. L3 data objects are then packed

into Operation Data, which is a part of Info object and accompanied with BA, Cntrl, Code

and IFCS fields. IFCS is calculated based on the preceding fields according to the CRC

[23, 24]. Info object, which is a part of AX.25 frame, is forwarded to the FrameManager.

Besides frame assembly, Node is also responsible for stack management, so whenever a

frame gets lost during the communication and an L3 acknowledgement frame with the

lost frame numbers is received, it will resend these frames.

In the receiving state, Node unpacks the Info objects and Operation Data. It checks

whether all the frames that were sent have been received. If some frames were not

received or the checksum of the received frames was faulty, it assembles an L3

acknowledgement frame with the missing frame numbers. The frames that were received

are sent to the Gui, which is a representation of a buffer. Whenever the received frame

stack is overwritten for some reason, the received frames are not lost.

4.3.3 FrameManager

FrameManager receives the Info object from the Node or the frame from the

PacketManager, depending on whether it is in the sending or receiving state.

When receiving an Info object from the Node, FrameManager assembles an AX.25

frame. In addition to the data specified in the Info object, the AX.25 frame also contains

the Addr, PID and FCS fields. The FCS is calculated based on the preceding fields

according to the CRC [23, 24]. If the AX.25 frame has been assembled, it is forwarded to

the PacketManager.

When receiving the frame from the PacketManager, FrameManager unpacks the AX.25

frame and calculates the checksum. If the calculated checksum does not equal to the

provided checksum, it does not forward the Info object to the Node. As the Info object is

not forwarded, the Node will set the frame as missing.

38

4.3.4 PacketManager

PacketManager is used for burst handling, whether it is in the sending or receiving state.

In the sending state, the PacketManager receives the frame count from the Node. When

all of the frames have been received, it packs the frames into a packet which represents

the burst and sends it.

In the receiving state, the PacketManager receives the frames in a packet, counts the

frames and sends the frame count to the Node. After the frame count has been sent, it

sequentially sends the frames to FrameManager.

39

5 Code generation

After modeling the communication protocol with TASTE tools, the deployable code had

to be generated.

The code skeletons for data types were already generated, as they were necessary for

modeling the system. In order to generate deployable code that is based on system

requirements, the SDL model had to be verified. The errors were eliminated and the

warnings were fixed to avoid issues during runtime. Before generating usable C code, the

Ada code for each component (Node, FrameManager and PacketManager) was

generated. That resulted with an archive of each component, which contained the

corresponding system logic.

Based on the component definitions and automatically generated build script, attempts

were made to generate C code. During the generation, terminal gave multiple errors as an

output. The errors were a result of the tool having inadequate support for specific use-

cases, some of which were resolved in collaboration with engineers from ESA. The errors

with references to commits in ESA OpenGEODE GitHub repository included:

 Issues with Unicode formatting on Ada back-end, fixed in commit

44a39ffedd3386ed68a7387d172e1e9da1492bc4 [25];

 Issues with Ada generator not being able to cast integers of similar data types,

fixed in commit 4a1ca33e4fee2faa293427e26bc9c48bc621193e [26];

 Issues with Ada generator not being able to cast 64-bit integers from ASN.1

compiler to 32-bit integers, fixed in commit

1a60340a3a06518724f58b4ee1423573a01ce177 [27];

 Presence of shadow variables in for-loops and forbidden keywords in variable

names, fixed in commits 90a7975742ec367eeebfbcb9445fd9592b513959 and

89e3a3e92fa725a9e11fa868258e57ef48bb5fa2 [28, 29].

40

 Issues parsing and generating code of the append function in OpenGEODE, not

fixed as of 15.05.2017.

As a result of these issues, OpenGEODE was gradually updated from version 1.5.29 to

version 1.5.32. In addition to that, parts of the TTÜ-Mektory Student Satellite

communication protocol model were included in the test suite of OpenGEODE. The test

cases were added in commit c0f40a86e6f0ff45d6e0fc473550875ddaca8f52 [30].

To avoid runtime issues with stack sizes and messages provoking stack overflow, the

default stack size had to be increased. In TASTE Toolset, the default stack size for

embedded systems has been configured to 50kB. As the variables used in the TTÜ-

Mektory Student Satellite communication protocol were larger, the stack size of each

thread was increased to 8192kB

After updating the TASTE Toolset and fixing issues in the model, the C code was

generated. The binary files of the application with the GUI component were automatically

placed inside a separate directory. In order to test the application, all of the binary files

were executed inside a terminal.

41

6 Testing

TASTE Toolset had issues with code generation and testing, so the initial model was split

into three separate components. In order to test the system logic of components, each of

the components was connected to a separate GUI component. GUI components were used

to initialise and send the required data to the system component. Depending on the

component, the received data was packed and unpacked. To avoid issues with the append

function in OpenGEODE, the system logic was simplified and single frames were used.

The purpose of these tests was to validate the system logic of each component, before

testing the message flow of the complete system.

The model for testing the Node component is shown in Figure 8.

Figure 8. Node component for testing with connections in the interface view.

As the append function was not working, the test of the Node component was

unsuccessful. The raw data was sent to the component after which it was split into L3

data, packed into Info object, sent, received and unpacked. After receiving the Info object,

acknowledgement frame was assembled and sent. Although the Info object parameters

42

were received in GUI component, the raw data was not reinitialised from the received L3

data.

The model for testing the FrameManager component is shown in Figure 9.

Figure 9. FrameManager component for testing with connections in the interface view.

The test of the FrameManager component was successful. Info object was sent to the

component after which it was packed into an AX.25 frame, sent, received and unpacked.

As a result the sent and received Info objects in GUI component were identical. The

results of the test are shown in Figure 10 and Figure 11.

43

Figure 10. FrameManager component test written and read data.

44

Figure 11. FrameManager component test graph.

The model for testing the PacketManager component is shown in Figure 12.

45

Figure 12. PacketManager component for testing with connections in the interface view.

The test of the PacketManager component was also successful. Frame count was sent to

the component after which it changed its state and waited for AX.25 frames. After sending

a number of AX.25 frames to the component a packet was packed, sent, received and

unpacked. The frame count with the AX.25 frames was sent after receiving the packet.

As a result the sent and received frame counts and AX.25 frames were identical. The

results of the test are shown in Figure 13 and Figure 14.

46

Figure 13. PacketManager component test written and read data.

47

Figure 14. PacketManager component test graph.

Although the tests for separate components show that the system logic of the components

is correct, some of the functionality could not be tested. In order to validate the system

correctness, similar tests should be carried out for the complete system.

48

7 Results

In this thesis the communication protocol of TTÜ-Mektory Student Satellite was studied.

The requirements of the system were met and the communication structure was described

as a class diagram. The process was modeled as a sequence diagram and based on this

model, some of the questions were answered and the communication protocol description

was improved.

An SDL model containing the system logic was created in TASTE. The system

architecture was described and attempts were made to generate usable C code. As the

generation of C code had issues which required additional support from ESA engineers,

the testing of the communication protocol was delayed. The issues were fixed and the

TASTE Toolset was improved. As a result of this thesis, the TASTE Toolset has better

validation in terms of model checking and now it supports some of the use-cases that had

not been considered so far. In addition to that, exemplary functions can be created in the

models that have been described in TASTE. Parts of the communication protocol were

added to the test suite of OpenGEODE and the model will be used as a case study in ESA

project that integrates TASTE Toolset with QGen.

After the issues had been solved, C code was generated and the system components were

tested separately. As a result of this thesis, the communication protocol has been modeled

and an implementation of the TTÜ-Mektory Student Satellite communication process has

been created. The binary files containing the C code of the system can be validated for

correctness and deployed on the target system.

49

8 Future work

As the testing of the communication protocol implementation was delayed, the generated

C code was tested partially. Before deploying the C code on the target system, the system

logic should be verified completely.

The verification can be done in the TASTE Toolset, which has different tools for

validation. The binary files could be run and tested against the GUI component, which

gives an overview of the system logic. After the initial verification, the ground and space

segment could be initialised. As the system was modeled so that it could be used both on

ground and on the satellite, another instance of the model could be created. The

architecture of the ground station and satellite could be described and the whole

communication process could be tested. For example the GUI component could give raw

data as an input to the ground station and receive the contents of an acknowledgement

frame from the satellite. After testing the communication process, different

communication scenarios could also be verified. These scenarios include successful

communication, partially successful communication and timeout.

As the bus protocol commands were not considered as a part of this thesis, the frame

structure of these commands could be described. The logic for sending and receiving

these commands could be modeled and used by the system in case the OBC of the satellite

is not accessible.

After the system has been modeled as a whole and verified, the code could be deployed

as a separate component in the ground station of the TTÜ-Mektory Student Satellite. Parts

of the system could also be used on the satellite, although that requires modifications to

the system logic and separation of the component architecture.

50

9 Summary

The purpose of this thesis was to use TASTE Toolset for modeling the communication

protocol of TTÜ-Mektory Student Satellite and generate C code based on that model.

In this thesis, a part of the TTÜ-Mektory Student Satellite communication was modeled.

That part consisted of ground and space segment, which were used for communication

between ground station and satellite on-board computer. The system components were

designed so that they could be used both on the ground and on the satellite.

The description of TTÜ-Mektory Student Satellite communication protocol was studied

and based on that description, the system was described. Class diagrams describing the

communication structure and sequence diagrams describing the communication process

were created. The system was modeled in TASTE Toolset, where data types were

described in ASN.1 and components of the system were modeled in SDL. Ada code for

the system components was generated and the system architecture was described. Based

on that description, C code was generated.

The code generation resulted with errors, which were caused by the lack of support for

some of the use-cases. The errors were resolved in collaboration with engineers from ESA

and as a result the TASTE Toolset was improved. Parts of the TTÜ-Mektory Student

Satellite communication protocol were added to the test suite of the toolset.

Although the C code was generated, the errors in code generation delayed the testing of

the communication protocol. Based on the current state, the description of communication

protocol is sufficient for modeling the software system. As the communication protocol

was not thoroughly tested, it is difficult to evaluate whether the requirements are

sufficient for describing the communication process. The generated code is usable in the

TTÜ-Mektory satellite program both on ground and on the satellite, although the tests for

the complete system will indicate whether the model requires any improvements. As the

TASTE Toolset is used for modeling software systems that are used in real-time

environments, it is also sensible to use it for modeling the other software components for

TTÜ-Mektory satellite program. Although the TASTE Toolset may require some

51

improvements, it keeps consistency throughout the whole system and ensures that it is

actually based on the requirements.

Finally, I would like to thank my supervisor Evelin Halling and the engineers from IB

Krates and ESA.

52

References

[1] TASTE, “TASTE,” [Online]. Available: http://taste.tuxfamily.org/. [Accessed 30

04 2017].

[2] M. Perrotin, E. Conquet, J. Delange and T. Tsiodras, “TASTE: An open-source

tool-chain for embedded system and software development,” 2012.

[3] M. Perrotin, K. Grochowski, M. Verhoef, D. Galano, M. Mosdorf, M. Kurowski,

F. Denis and E. Graas, “TASTE in action,” 2016.

[4] M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras and J. Hugues, “The TASTE

Toolset: turning human designed heterogeneous systems into computer built

homogeneous software,” 2010.

[5] TASTE, “Overview,” [Online]. Available:

http://taste.tuxfamily.org/wiki/index.php?title=Overview. [Accessed 22 03 2017].

[6] TASTE, “QGen,” [Online]. Available:

http://taste.tuxfamily.org/wiki/index.php?title=QGen. [Accessed 22 03 2017].

[7] ITU-T, Specification and Description Language – Overview of SDL-2010, 2016.

[8] TASTE, “Technical topic: OpenGEODE, an SDL editor for TASTE,” [Online].

Available:

http://taste.tuxfamily.org/wiki/index.php?title=Technical_topic:_OpenGEODE,_

an_SDL_editor_for_TASTE. [Accessed 22 03 2017].

[9] G. Mamais, T. Tsiodras, D. Lesens and M. Perrotin, “An ASN.1 compiler for

embedded/space systems,” 2012.

[10] TASTE, “Technical topic: ASN1SCC - ESA's ASN.1 Compiler for safety-critical

embedded platforms,” [Online]. Available:

http://taste.tuxfamily.org/wiki/index.php?title=Technical_topic:_ASN1SCC_-

_ESA%27s_ASN.1_Compiler_for_safety-critical_embedded_platforms.

[Accessed 22 03 2017].

[11] TASTE, “ASN.1 generators,” [Online]. Available:

http://taste.tuxfamily.org/wiki/index.php?title=ASN.1_generators. [Accessed 22

03 2017].

[12] J. Hugues, L. Pautet, P. Dissaux and M. Perrotin, “Using AADL to build critical

real-time systems: Experiments in the IST-ASSERT project,” 2008.

[13] TASTE, “pus-asn,” [Online]. Available:

http://download.tuxfamily.org/taste/ASN1SCC/pus-asn.zip. [Accessed 22 03

2017].

[14] TASTE, “pus-taste,” [Online]. Available:

http://download.tuxfamily.org/taste/ASN1SCC/pus-taste.tar.gz. [Accessed 22 03

2017].

[15] P.-T. G. Estévez, UPMSat-2 satellite’s Manager software subsystem: Design,

validation, implementation and verification - UPM, 2014.

53

[16] M. Perrotin, E. Conquet, J. Delange, A. Schiele and T. Tsiodras, “TASTE: A

real-time software engineering tool-chain. Overview, status, and future,” 2011.

[17] R. Adelbert, TTÜ-Mektory Nanosatellite: Satellite TCTM Protocol Description,

2016.

[18] W. A. Beech, D. E. Nielsen and J. Taylor, AX.25 Link Access Protocol for

Amateur Packet Radio, 1998.

[19] Eclipse, “Papyrus Modeling Environment,” [Online]. Available:

https://eclipse.org/papyrus/. [Accessed 30 04 2017].

[20] TASTE, “Virtual Machine,” [Online]. Available:

http://taste.tuxfamily.org/wiki/index.php?title=Virtual_Machine. [Accessed 01 05

2017].

[21] Oracle, “VirtualBox,” [Online]. Available: https://www.virtualbox.org/.

[Accessed 01 05 2017].

[22] TASTE, “TASTE V2 Reference Card,” [Online]. Available:

http://taste.tuxfamily.org/wiki/images/d/d1/Taste_refcard.pdf. [Accessed 01 05

2017].

[23] Wikipedia, “Cyclic redundancy check,” [Online]. Available:

https://en.wikipedia.org/wiki/Cyclic_redundancy_check. [Accessed 11 04 2017].

[24] PracticingElectronics, “The Cyclic Redundancy Check (CRC) for AX.25,”

[Online]. Available: http://practicingelectronics.com/articles/article-

100003/article.php. [Accessed 11 04 2017].

[25] GitHub, “Ada backend: fix unicode issues,” [Online]. Available:

https://github.com/esa/opengeode/commit/44a39ffedd3386ed68a7387d172e1e9d

a1492bc4. [Accessed 29 04 2017].

[26] GitHub, “Symetric cast in Equality tests,” [Online]. Available:

https://github.com/esa/opengeode/commit/4a1ca33e4fee2faa293427e26bc9c48bc

621193e. [Accessed 29 04 2017].

[27] GitHub, “Fix various 32bits/64bits conversion issues,” [Online]. Available:

https://github.com/esa/opengeode/commit/1a60340a3a06518724f58b4ee1423573

a01ce177. [Accessed 29 04 2017].

[28] GitHub, “Report shadow variables in for loops,” [Online]. Available:

https://github.com/esa/opengeode/commit/90a7975742ec367eeebfbcb9445fd959

2b513959. [Accessed 29 04 2017].

[29] GitHub, “Detect some forbidden keywords in variable names,” [Online].

Available:

https://github.com/esa/opengeode/commit/89e3a3e92fa725a9e11fa868258e57ef4

8bb5fa2. [Accessed 29 04 2017].

[30] GitHub, “Add test cases from ib krates,” [Online]. Available:

https://github.com/esa/opengeode/commit/c0f40a86e6f0ff45d6e0fc473550875dd

aca8f52. [Accessed 29 04 2017].

54

Appendix 1 – Sequence diagram of successful communication

on ground

55

56

Appendix 2 – Sequence diagram of successful communication

on satellite

57

58

Appendix 3 – Sequence diagram of partially successful

communication on ground

59

60

Appendix 4 – Sequence diagram of partially successful

communication on satellite

61

62

Appendix 5 – Sequence diagram of timeout on ground

63

64

Appendix 6 – Sequence diagram of timeout on satellite

65

66

Appendix 7 – Data types with descriptions in ASN.1 notation

TASTE-Dataview DEFINITIONS ::=

BEGIN

-- Boolean

MyBoolean ::= BOOLEAN

-- 4 bit array

My4BitArray ::= SEQUENCE (SIZE (4)) OF BOOLEAN

-- 8 bit array

My8BitArray ::= SEQUENCE (SIZE (8)) OF BOOLEAN

-- Integer for 8 bit array numbering

My8BitArrayInteger ::= INTEGER (0..7)

-- Integer for 8 bit array value numbering

My8BitArrayValueInteger ::= INTEGER (0..255)

-- 16 bit array

My16BitArray ::= SEQUENCE (SIZE (16)) OF BOOLEAN

-- Integer for 16 bit array numbering

My16BitArrayInteger ::= INTEGER (0..15)

-- Integer for 16 bit array value numbering

My16BitArrayValueInteger ::= INTEGER (0..65535)

-- Packet structure

MyPacket ::= SEQUENCE (SIZE (0..255)) OF MyFrame

-- Stack for data in bits

MyDataStack ::= SEQUENCE (SIZE (40..2000)) OF BOOLEAN

-- Integer for data stack value numbering

MyDataStackValueInteger ::= INTEGER (0..2000)

-- Stack for data of FCS calculation

MyFcsStack ::= SEQUENCE (SIZE (224..2192)) OF BOOLEAN -- Frame has empty info
or is full

-- Integer for data of FCS calculation

MyFcsStackInteger ::= INTEGER (0..2175)

67

-- Polynomial for FCS calculation

MyFcsPolynomial ::= SEQUENCE (SIZE (17)) OF BOOLEAN

-- Integer for polynomial numbering

MyFcsPolynomialInteger ::= INTEGER (0..16)

-- Frame structure

MyFrame ::= SEQUENCE {

 startFlag MyFlag,

 addr MyAddr,

 control MyControl,

 pid MyPid,

 info MyInfo,

 fcs MyFcs,

 endFlag MyFlag

}

-- FRAME: Frame delimiter

MyFlag ::= My8BitArray -- Fixed value 0x7E

-- FRAME: Source of frame and destination

MyAddr ::= SEQUENCE {

 destinationAddress MyDestinationAddress,

 sourceAddress MySourceAddress

}

-- ADDR: Destination address

MyDestinationAddress ::= SEQUENCE (SIZE (7)) OF My8BitArray

-- ADDR: Source address

MySourceAddress ::= SEQUENCE (SIZE (7)) OF My8BitArray

-- FRAME: Type of frame

MyControl ::= My8BitArray

-- FRAME: Protocol of info

MyPid ::= My8BitArray -- Fixed value 0xF0

-- FRAME: Info structure

MyInfo ::= SEQUENCE {

 ba MyBa,

 cntrl MyCntrl,

 code MyCode,

 operationData MyOperationData,

 ifcs MyIfcs,

 auth MyAuth OPTIONAL

}

-- INFO: Bus address

MyBa ::= SEQUENCE {

68

 srcAddr MySrcAddr,

 dstAddr MyDstAddr

}

-- BA: Source address

MySrcAddr ::= My4BitArray

-- BA: Destination address

MyDstAddr ::= My4BitArray

-- INFO: Control - frame type

MyCntrl ::= My8BitArray -- Fixed value 0x03

-- INFO: Code - operation

MyCode ::= My8BitArray

-- INFO: Operation data

MyOperationData ::= SEQUENCE (SIZE (0..250)) OF My8BitArray

-- INFO: Info Frame check sequence

MyIfcs ::= My16BitArray

-- INFO: Authentication

MyAuth ::= My16BitArray

-- FRAME: Frame check sequence

MyFcs ::= My16BitArray

-- Stack of L3 frames

MyL3Stack ::= SEQUENCE (SIZE (0..255)) OF MyL3Data

-- Stack of L3 frame numbers

MyL3StackNumbers ::= SEQUENCE (SIZE (0..255)) OF BOOLEAN

-- Integer for L3 frame stack numbering

MyL3StackInteger ::= INTEGER (0..254)

-- Stack of L3 missing frame numbers in octets

MyL3MissingStack ::= SEQUENCE (SIZE (0..255)) OF My8BitArray

-- Stack for L3 data in bits

MyL3DataStack ::= SEQUENCE (SIZE (0..1960)) OF BOOLEAN

-- Integer for L3 data stack value numbering

MyL3DataStackValueInteger ::= INTEGER (0..1960)

-- Stack for data of L3 FCS calculation

MyL3FcsStack ::= SEQUENCE (SIZE (80..2040)) OF BOOLEAN -- L3 frame is empty
or full

-- Integer for data of L3 FCS calculation

69

MyL3FcsStackInteger ::= INTEGER (0..2023)

-- Polynomial for L3 FCS calculation

MyL3FcsPolynomial ::= SEQUENCE (SIZE (17)) OF BOOLEAN

-- L3 frame structure

MyL3Frame ::= SEQUENCE {

 l3Ba MyL3Ba,

 l3Cntrl MyL3Cntrl,

 l3Code MyL3Code,

 l3Tte MyL3Tte,

 l3Mrt MyL3Mrt,

 l3Fnum MyL3Fnum,

 l3Data MyL3Data,

 l3Fcs MyL3Fcs

}

-- L3 FRAME: Bus address

MyL3Ba ::= SEQUENCE {

 l3SrcAddr MyL3SrcAddr,

 l3DstAddr MyL3DstAddr

}

-- L3BA: Source address

MyL3SrcAddr ::= My4BitArray

-- L3BA: Destination address

MyL3DstAddr ::= My4BitArray

-- L3 FRAME: Control - frame type

MyL3Cntrl ::= My8BitArray -- Fixed value 0x03

-- L3 FRAME: Code - data frame identificator

MyL3Code ::= My8BitArray

-- L3 FRAME: Time to end

MyL3Tte ::= My16BitArray

-- L3 FRAME: Maximum response time

MyL3Mrt ::= My16BitArray

-- L3 FRAME: Frame counter

MyL3Fnum ::= My8BitArray

-- L3 FRAME: Data

MyL3Data ::= SEQUENCE (SIZE (0..245)) OF My8BitArray

-- Integer for L3 data

MyL3DataInteger ::= INTEGER (0..244)

-- Stack for L3 acknowledgement data in bits

70

MyL3AckDataStack ::= SEQUENCE (SIZE (0..1952)) OF BOOLEAN

-- Integer for L3 acknowledgement data stack value numbering

MyL3AckDataStackValueInteger ::= INTEGER (0..1952)

-- Stack for data of L3 acknowledgement FCS calculation

MyL3AckFcsStack ::= SEQUENCE (SIZE (88..2040)) OF BOOLEAN -- L3
acknowledgement frame is empty or full

-- Stack of L3 missing frame numbers

MyL3AckMissingStack ::= SEQUENCE (SIZE (0..244)) OF INTEGER (0..255)

-- Integer for stack of L3 missing frame stack numbering

MyL3AckMissingStackInteger ::= INTEGER (0..243)

-- L3 FRAME: Frame check sequence

MyL3Fcs ::= My16BitArray

-- L3 acknowledgement frame structure

MyL3AckFrame ::= SEQUENCE {

 l3Ba MyL3Ba,

 l3Cntrl MyL3Cntrl,

 l3Code MyL3Code,

 l3Tte MyL3Tte,

 l3Mrt MyL3Mrt,

 l3Lfn MyL3Lfn,

 l3Hfn MyL3Hfn,

 l3Rrq MyL3Rrq,

 l3Fcs MyL3Fcs

}

-- L3 ACKNOWLEDGEMENT FRAME: Lowest sequential frame number

MyL3Lfn ::= My8BitArray

-- L3 ACKNOWLEDGEMENT FRAME: Highest frame sequence number

MyL3Hfn ::= My8BitArray

-- L3 ACKNOWLEDGEMENT FRAME: Frame numbers missing

MyL3Rrq ::= SEQUENCE (SIZE (0..244)) OF My8BitArray

-- Integer for L3 frame numbers missing

MyL3RrqInteger ::= INTEGER (0..243)

-- Input data structure

MyInputData ::= SEQUENCE {

 ba MyBa,

 code MyCode,

 rawData MyRawData OPTIONAL,

 l3Mrt MyL3Mrt OPTIONAL,

 l3AckMissingStack MyL3AckMissingStack OPTIONAL

}

71

-- INPUT DATA: Raw data

MyRawData ::= SEQUENCE (SIZE (0..245)) OF My8BitArray -- Up to 1 frame(s) of
data

-- Integer for raw data numbering

MyRawDataInteger ::= INTEGER (0..245)

-- Acknowledgement data structure

MyAckData ::= SEQUENCE {

 ba MyBa,

 code MyCode,

 l3Mrt MyL3Mrt,

 l3Lfn MyL3Lfn,

 l3Hfn MyL3Hfn,

 l3MissingData MyL3MissingStack

}

END

