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1 Introduction
This PhD thesis addresses functional safety assessment methods targeting automotiveIntegrated Circuits (IC), emphasizing optimization techniques.

This introductory chapter presents the motivation behind this thesis, formulates thearea’s problems, lists a summary of the main contributions, and sketches the thesis struc-ture.
1.1 Motivation
In recent years, the use of Systems-on-Chip (SoCs) in automotive has been increasingrapidly. The reason for this is the Advanced Driver-Assistance Systems (ADAS) used incars or the addition of autonomous-driving features, which is the most popular topic inautomotive domain today. [11] reports that today’s cars consist of more than 100 elec-tronic control units (ECUs) to handle different applications. ADAS systems such asAdaptiveCruise Controller (ACC) or Emergency Braking Systems (EBS), which can be life-threateningin case of any malfunction, are present in every car today. For this reason, it is crucialthat SoCs used in areas where safety is of vital importance, such as automotive or space,operate without failing. Otherwise, it may cause injury or even loss of human lives. Con-sequently, International Organization for Standardization (ISO) has developed ISO 26262[12] functional safety standard in 2011 and revised in 2018 targeting design, verification,and validation of safety-critical automotive SoCs against systematic and random faults.

Several reasons can cause a failure in an SoC. First, it is the decreasing trend in thetransistor size, which is described by "Moore’s Law" [13]. When the advanced technologynodes take place in the design of an SoC, random hardware faults become more effec-tive as shrinking nodes increase the sensitivity of SoCs to aging effects [14] [15] or cosmicradiation [16]. Therefore, as safety-critical SoCs are designed using advanced node tech-nologies, the need formore safe SoCs is increasing accordingly. Second, it is the increasingtrend in the density of complex electronic devices inside automotive SoCs. Modern carshave several advanced features to becomemore autonomous that require the processingof real-life data during driving, monitoring the environment, and analyzing traffic signs.All these tasks increase the SoC density in the cars. Additionally, [17] states that ninetypercent of the car novelties are based on electronics, proving how complexity in car elec-tronics is growing. Because of high-density electronics thatmanage the above-mentionedadvanced car features, SoCs in automobiles are becoming more susceptible to randomhardware faults that can cause data loss and harm human health. As a result, there is aneed to design robust and safe SoCs to avoid life-critical failures.
The way of preventing failures in SoCs is to implement fault prevention mechanisms(safety mechanisms) that detect faults or control failures to maintain or achieve a safestate [12] [18]. Safety mechanisms are introduced during the design and verification ofthe hardware/software system. Examples of safety mechanisms include Built-in-Self-Test(BIST), Error Correction Codes (ECC), or hardware redundancy. However, safety mecha-nisms increase the design and verification complexity as well as the cost of safety-criticalSoCs. For example, one of the widely used hardware redundancy schemes is Dual-CoreLock Step (DCLS) increases the SoC’s area and power consumption, whereas some othersafety mechanisms have an adverse impact on the SoC performance [19] [20]. Moreover,ISO 26262, the functional safety standard, requires using safety analysis techniques tomeasure the effectiveness and evaluate the benefits of the implemented safety mech-anisms. This necessity also escalates the verification complexity of a safety-critical SoCdevelopment flowandmakes it difficult to complywith the time-to-market criteria. There-
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fore, methods to overcome the complexity are crucial.In this PhD thesis, we address functional safety analysis of Electrical/Electronic (E/E)systems, particularly SoCs used in automobiles. Its particular significance in industrialapplications, including automotive, is the fundamental motivation of this thesis. Addi-tionally, existing techniques adopted by the industry and academia still have consider-able drawbacks that leave functional safety assessment a challenging and expensive task.Therefore, this thesis proposes solutions to optimize these techniques such as fault in-jection, formal analysis, or Automatic Test Pattern Generation (ATPG). In addition to thefact that thesementionedmethods are handled separately in the following chapters, howtheir combination can contribute to functional safety assessment has motivated this the-sis.
1.2 Problem Formulation
Considering all the constraints introduced above, it is mandatory to improve the efficiencyof safety analysis techniques to meet the demanding requirements of the automotive in-dustry. ISO 26262 guides functional safety for the SoCs used in automobiles and recom-mends using some safety analysis techniques. The purpose is to provide evidence thatthe SoCs can handle faults through their safety mechanisms, and the functionality of theSoC cannot be changed. Even though helpful safety analysis techniques exist in the lit-erature, there is still room for more efficient and optimized methodologies to deal withdifferent functional safety challenges. To be more exact, these safety analysis techniquesneed optimization, automation, and being more accurate. Therefore, this PhD thesis pro-poses techniques to make functional safety analysis of automotive SoCs more effective.The following paragraphs formulate the problems in the area.Functional safety analysis is a complex procedure that requires challenging skills asfollows. First, it necessitates prior knowledge about the application scenarios and thetarget design. Second, it demands to identify possible safety threats, predict their impactson the results, add safetymechanisms to prevent failures, and evaluate the severity of thefaults. In general, these activities happen before the actual design and implementationare made available. Also, this analysis is performed manually based on expert judgment.However, this is error-prone, time-consuming, thus expensive considering the size andcomplexity of automotive SoCs. Therefore, the manual analysis is tedious, inefficient, andmight have an adverse impact on the SoC development cycle. More specifically, whenwe take fault injection or formal analysis campaigns into account, or when they are usedtogether, it is impossible to have a complete run considering the complexity of designs andapplications. These kinds of functional safety campaigns leave a considerable amount ofundetected faults, whose effects are unknown butmust be identified by expertsmanually.Consequently, the lack of automated safety approaches to reduce possible human errorsand meet the demanding safety requirements of today’s cars is a significant problem.Moreover, alongwith the design development, the initially defined requirementsmustbe repeatedly observed while a detailed analysis is performed to provide evidence thatthese safety requirements are achieved. Nevertheless, the size and complexity of SoCspose a severe problem in this step, and all functional safety analysis techniques such asfault injection or formal analysis suffer from this issue. In other words, modern automo-tive SoCs consist of large amounts of faults up to millions; hence, the execution of safetyanalysismethods on these SoCs requires a long time to obtain significant statistical results.As a result, the industry adopted the "divide and conquer" approach, which is mappingthe requirements to the corresponding design components to enable a safety analysis ononly safety-related design parts [21]. However, even with this solution, functional safety
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analysis campaigns are more costly and even unfeasible considering complex ECUs thatperform various application scenarios that automate the car [22]. This also shows thatnot only hardware complexity but also real-world applications that SoCs execute need tobe carefully considered for efficient functional safety analysis. On the other hand, char-acterization of these applications (workloads) is a challenge and needs to be carefullyperformed to develop optimizedmethods and techniques that speed up functional safetyanalysis and reduce the cost of the SoC design and verification cycle.Also, the development of test environments that runs functional safety analysis is an-other problem. The test environment is necessary to obtain a confident assessment ofresults generated by the tools in the context of ISO 26262. This implies that compellingmethodologies that reduce the efforts of test environment development are necessary.Furthermore, the attempts to unify functional safety analysis tools/technologies and theirstrengths create a competent campaign,making all kinds of analysis and their resultsmoreconfident. Hence, it is required to have this environment supporting ISO 26262 compliantautomotive SoC development.Additionally, there is a lack of open-source resources in the functional safety researchcommunity. The high need to evaluate the quality of results on automotive representa-tive SoCsmakes any research on the areamore challenging. Moreover, both hardware andsoftware resources must be available to demonstrate various use cases. Also, providing arepresentative automotive SoC that has several safety mechanisms capable of detectingrandom faults is essential. Nevertheless, it is a problem to access this kind of comprehen-sive automotive SoC with a modular structure, enabling more detailed research.
1.3 Research Objectives
Considering the above problems, the main goal of this PhD thesis is based on addressingthem in the following ways:

• Proposing a novel methodology that combines different fault analysis tools. Theidea is to increase tool confidence level as guided by ISO 26262.
• Providing an open-sourced benchmark to support functional safety research, en-abling comprehensive and automotive representative SoC with all required hard-ware and software resources.
• Optimizing fault injection campaigns by the analysis of workloads that run on thetarget designs. The main idea is to select critical faults to be injected and so prunethe large fault lists.
• Enhancing hardware fault classification, which is normally done manually based onexpert judgment. Analysis of the software application (workload) automatically andtranslation of this behavior to the formal properties accurately are aimed.

1.4 Contributions
The main objective of this PhD thesis is to propose methodologies to leverage the mostadvanced functional safety analysis techniques. Contributions of this PhD thesis in tacklingthe challenges explained in Chapter 1.2 consist;

• Mitigation of the drawbacks caused by the different classification characteristicsof fault analysis tools is addressed in this PhD thesis. Also, the applicability andfeasibility of these tools are investigated.
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Taking the advantage of the strength of one specific fault analysis tool as a startingpoint, fault injection campaigns are optimized, providing better coverage.
Unified application of three tools, processing and report generation, are the mainfeatures.
More details about this approach is clarified in Chapter 3.

• Filling the gap in the research community by proposing representative automotiveSoC is studied in the context of this thesis. The requirements of an automotive SoCare examined by inspecting several commercial alternatives.
The approach shall be oriented towards seamless hardware and software resources,modular SoC structure enabling adding peripherals, different safety configurationsin compliance with ISO 26262.
The ultimate goal of this work is to build a representative automotive SoC, support-ing functional safety researches, which needs an open-source platform to assessthe quality of the results.
Chapter 4 provides the details of the proposed approach.

• Accelerating fault injection campaigns targeting transient faults is investigated inthe context of this thesis. Starting with a state-of-the-art study of the main faultinjection acceleration techniques applied in the industry and academia, efficientmethodologies are developed to prune the fault lists of transient fault injectioncampaigns.
The main objective of this approach is to initiate a general and well-structured de-scription of fault injection campaigns, in particular simulation-based fault injection,which supports industrial-grade automotive SoCs and applications.
A key milestone in the proposed approach is the workload characterization andidentification of critical and non-critical time steps, mapping faults between ab-straction levels, and pruning the transient fault list accordingly.
More detailed explanations are given in Chapter 5.

• Enhancing hardware fault classification using formal analysis is investigated in thisthesis. Starting with an analysis of software application and development of formalproperties, safe fault identification is intensified.
The main aim of this research is to an analysis of a complete automotive SoC whenit runs an automotive representative application software. Furthermore, character-ization of the faults on peripherals is also targeted when the application softwareuses them.
Automated formal property generation, processing, and combination of formal anal-ysis and fault injection to achieve safetymetrics driven by ISO 26262 are considered.
The results and details for enhancing the hardware fault classification approach areelicited in Chapter 6.

1.5 Thesis Organization
This thesis consists of seven main chapters. The rest of it is organized as follows.

• Chapter 2 provides a background information about functional safety and ISO 26262standard to familiarize the reader with the basics.
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• Chapter 3 points out combination of fault analysis technologies to increase tool’sconfidence level, and have a better detection rate using the strength of the ATPG.
• Chapter 4 defines a open-source and comprehensive automotive SoC, the AutoSoC,to support research targeting functional safety.
• Chapter 5 starts with the discussion about the challenges of fault injection cam-paigns and then provides a solution to prune the fault lists.
• Chapter 6 explains enhancing hardware fault classification in an automotive SoCusing formal methods.
• Chapter 7 draws conclusions for the presented PhD thesis and discusses possiblefuture directions in the functional safety scope.
Also, at the end of the thesis, the research papers mentioned in the context of thisPhD are attached as appendixes.
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2 Background on Functional Safety and ISO 26262
This chapter initially overviews the functional safety and its usage areas. Then, automotivefunctional safety is detailed further to give the reader more information about the mainscope of the presented research.
2.1 Functional Safety: A General Overview
In general, functional safety refers to the concept that a system (typically an SoC, or anIP) will remain dependable and function as intended even in an unexpected occurrence,which is termed a failure. Failures can be due to random hardware faults (e.g., short cir-cuits) or systematic design errors (e.g., defects in software). Furthermore, the possiblerisk posed by these failures must be reduced by either minimizing the probability of afailure occurring or restricting the aftereffects of unavoidable failures. Concerning safety-critical areas such as automotive, planes, or medical devices, embedded electronics haveincreased significantly, and therefore, there is an increased emphasis on functional safetyin the designs used in these areas.The use of advanced node technologies that are adopted increasingly for performanceand reduced area/power escalates susceptibility of SoCs to radiation sources and agingeffects. However, these two impacts cause the device to malfunction temporarily or per-manently. Moreover, malfunctioning of an SoC used in safety-critical areas might pose asignificant risk even for a short period. Consequently, several standards have been devel-oped to make the system safe.The following sub-chapter explains application areas and relates standards developedfor safety-critical areas.
2.1.1 Application Areas and Related Standards
IEC 61508 [23] is the international standard that provides generic guidelines for the specifi-cation, design, and operation of Electric/Electronic and Programmable Electronic (E/E/PE)systems used in safety-critical areas. It is a generic safety standard and serves as the ba-sis for drafting the functional safety guidelines tailored to the respective industry sectors.Fig. 1 gives an overview of functional safety standards. This illustration explains that IEC61508 supported the development of safety standards applied to process industry, nu-clear, medical, machinery, aviation, automotive, and many others that are not included inFig. 1.Among these standards, ISO 26262 [12] "Road Vehicles - Functional Safety" has beenpublished in 2011, targeting the automotive industry. This standard addresses series pro-duction passenger cars up to 3500 kilograms. Moreover, ISO 26262 [12] targets the high-volumemass-market automotive industry, whereas IEC 61508 deals with the systems pro-duced in low volumes. In this thesis, the focus is on the ISO 26262 functional safety stan-dard. Hence, the following sub-chapters give a detailed study of the standard.
2.2 Automotive Functional Safety: ISO 26262
Being the adaptation of IEC 61508, ISO 26262 is a functional safety standard titled "RoadVehicles - Functional Safety". It was first published in 2011 as a functional safety standardfor the automotive industry. Then, its revised second edition was released in 2018. Thissecond edition has broader scope by removing the vehicle mass limitation mentioned inChapter 2.1.1 and also includes two additional chapters for guidelines on the applicationof ISO 26262 to semiconductors and the adaptation for motorcycles.According to the ISO 26262, functional safety is described as the "absence of unrea-
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Figure 1: Overview of Functional Safety Standards in Different Industry Sectors

sonable risk due to hazards caused by malfunctioning behavior of electrical/electronicsystems". This definition shows that functional safety in automobiles is actually a chainof implications [18] as presented in Fig. 2. It starts with the malfunction definition andtargets risk reduction as a final goal.

Figure 2: ISO 26262 Chain of Implications [18]

In general, ISO 26262 performs the following tasks:
• It guides to avoid risk in creating a safety-critical system.
• It regulates critical testing processes.
• It introduces Automotive Safety Integrity Levels (ASILs) to specify the item’s neces-sary safety requirements to achieve an acceptable residual risk.
ISO 26262 is based on a V-model, shown in Fig. 3, as a reference process for the differ-ent phases of product development. ISO 26262 contains twelve parts covering all requiredactivities to ensure the functional safety of E/E components used in automobiles. Theseare summarized as follows:
• In Part 1: Vocabulary, necessary terms are introduced such as ASIL, item, system,element, and many others.
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• In Part 2: Management of Functional Safety, the process for management of func-tional safety for automotive applications is outlined, and the automotive safety life-cycle is introduced.
• In Part 3: Concept Phase, activities to be performed are specified. These activitiesare Item Definition, Hazard and Risk Analysis (HARA), Safety Goals Definition, ASILDetermination, and definition of Functional Safety Requirements. This part is ap-plied during the early phase of product development.
• In Part 4: Product Development at the System Level, Technical Safety Requirementsare derived for each Functional Safety Requirement defined in the previous chapterwith respect to hardware and software components.
• In Part 5: Product Development at the Hardware Level, requirements for productdevelopment on the hardware level are defined. This part covers hardware designand evaluation of architectural hardwaremetrics. Also, an assessment of safety goalviolation because of random failures is performed.
• In Part 6: Product Development at the Software Level, specifications for softwaresafety are defined in this part. Additionally, qualitative analyses, like Failure TreeAnalysis (FTA) and Failure Mode and Effect Analysis (FMEA), are used in the contextof this part.
• In Part 7: Production and Operation, requirements for system production, opera-tion, installation, servicing, decommissioning are specified.
• In Part 8: Supporting Processes, requirements for processes that support the devel-opment effort, including documentation standards, tool qualification, verification,and validation, are mentioned.
• In Part 9: Automotive Safety Integrity Level-Oriented and Safety-Oriented Analyses,all aspects regarding the ASIL-oriented requirements are explained. Analysis of de-pendent failures is also covered.
• In Part 10: Guideline on ISO 26262, an overview of the standard is summarized toimprove the understanding of other parts.
• In Part 11: Guideline on Application of ISO 26262 to semiconductors, information tosupport semiconductor manufacturers and silicon intellectual property is providedto address how suppliers and integrators work together.
• In Part 12: Adaptation of ISO 26262 for Motorcycles, standard is specified for mo-torcycles.

2.3 Failure Types
ISO 26262 classifiesmalfunction of E/E component into Systematic Failures, RandomHard-
ware Failures, andDependent Failures. This section discusses these three types of failuresin detail.

• Systematic Failures: According to Part 1 of the standard [12], these are the fail-ures in an item or function that are caused in a deterministic way during develop-ment, manufacturing, or maintenance. Systematic failures can only be eliminatedby changing the design or the manufacturing process, operational procedures, orother relevant factors.
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Figure 3: General Overview of ISO 26262 [12]

• Random Hardware Failures: These failures occur unpredictably during the lifetimeof a hardware element, and that follows a probability distribution. To prevent Ran-dom Hardware Failures, it is necessary to deploy safety mechanisms to make thearchitecture able to detect and correct malfunctions.
• Dependent Failures: These failures are defined as the failure of more than one el-ement stemming from a single root. The main reason for these failures is envi-ronmental conditions, aging, or failures of mutual external sources such as powersupply. They can be curtailed by supervision of clock, power, temperature, and in-dependent failure signaling [11].
Concerning Random Hardware Failures, Fig. 4 shows that they can be caused by threetypes of faults based on their duration. These are Intermittent, Permanent, and Transientfaults that are explained below:
• Intermittent Faults: These are faults in a hardware element that appear, disappear,and then reappear after some time. In other words, an intermittent fault occursat intervals, usually irregular, in a target system that functions normally at othertimes. They are caused by poor solder joints, corrosion on connector contacts.Time-dependent alternations in hardware are an example of this type of fault. Thus,these are temporary faults.
• Transient Faults: A Transient fault is a malfunction of a device or system that re-mains active for a short period of time with respect to the device or systemmission
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time. A well-known example of a transient fault is a soft error that hits a device’smemory elements and flips the bit from 0 to 1 or 1 to 0. If this happens, the state ofa few bits is changed; however, there is no lasting damage to the device.
• Permanent Faults: Permanent faults occur and stay until corrective action is taken.Burn-out hardware or disk head crashes are an example of permanent faults.

Figure 4: Random Hardware Failure Causes

2.3.1 Fault ModelsIn order to analyze the effect of hardware faults listed above, fault models must be usedon the target design. Even if fault models are not perfect representations of what is hap-pening on a real design, they help design test cases or procedures to mimic and simulatefaulty conditions and develop safety mechanisms. In this way, safety-critical designs canbe tested whether safety requirements are met even if some hardware components failor not.There are two fault models adopted by the industry as listed and explained below:
• Stuck-at Fault Model: The stuck-at (SA) model is widely used to address the testof ICs. It is a particular fault model used by ATPG tools to mimic a manufacturingdefect within an IC.
The model assumes that a signal is forced to either 0 (SA0) or 1 (SA1). Thus, it canbe applied to any signal, such as nets or registers.

• Single-Event-Upset (SEU) and Single-Event-Transient (SET) FaultModels: A SEU is achange of state caused by ionizing particles such as electrons or photons that strikea sensitive node in a device. The model inverts the value of a sequential element’soutput and holds themodified value until it is assigned a newvalue. It is applied onlyon the outputs of sequential components such as flip-flops, latches, or memories.
The SET fault model inverts the value of a signal and holds the value for a specifiedperiod of time. It can be employed to any kind of signal, such as nets or registers,as opposed to SEU.

2.4 Safety Mechanisms
Safetymechanisms should be introduced to address randomhardware failures. Accordingto the ISO 26262: Part 1 [12], a safety mechanism is a technical solution implemented byE/E functions or elements, or by other technologies, to detect faults or control failures toachieve or maintain a safe state.In other words, safety mechanisms are protection mechanisms. They can be imple-mented using hardware or software techniques. Fig. 5 illustrates an example SoC that
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Figure 5: Example Safety Mechanisms in an SoC

has several safety mechanisms. In this example, some major hardware components areprotected as follows:
• CPU: A shadow CPU, which is the copy of the main, and a comparator are used asa hardware safety mechanism to protect the CPU. This is a typical implementationof DCLS.
• Memory: The memory in the example has ECC as a hardware safety mechanism.
• USB: Software Test Library (STL) is shown as a software safety mechanism that pro-tects USB. Also, End-to-End Protocol can be used for the transferred data.
• SoC Alarm: This safety mechanismworks when one of the safety mechanismsmen-tioned above sets the alarm. In this case, the system is switched to a safe state.
The safety mechanisms shown in Fig. 5 are selected as they are relevant to this PhDthesis. Besides the listed mechanisms above, there are other well-known safety mech-anism implementations such as watchdog (program sequence monitor), hardware logicBIST, or ECC mechanisms on instruction cache, data cache, buses, and others. In addition,ISO 26262: Part 5 proposes several categories of safety mechanisms targeting processingunits and volatile memory with typical achievable Diagnostic Coverage (DC).Moreover, safety mechanism selection must be carried out carefully, considering thetrade-offs between effectiveness and cost. This selection must evaluate power consump-tion, area, safetymetrics, and timing performance all together for a specific building block[24]. For example, DCLS and Triple Modular Redundancy (TMR) have high area overheadand low-performance impact. On the other hand, a simple parity safety mechanism haslower area overhead and performance impact than DCLS and TMR.

2.5 Functional Safety Analysis
Functional safety analysis is utilized to assess the target product’s safety level, which istypically an IP or an SoC. In general, these analysis techniques are grouped into quantita-tive evaluations and qualitative assessments. Quantitative evaluations are Failure Mode
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Effect and Diagnostic Analysis (FMEDA) or timing analysis. On the other hand, DependentFailure Analysis (DFA) is a well-known example of qualitative assessment.
The following sub-chapter exemplifies the quantitative assessment following the struc-ture of FMEDA.

2.5.1 Quantitative Assessment of Hardware Architectures
The incorporation of several protection mechanisms in a safety-critical design requiresthe evaluation of their safety level. ISO 26262 addresses this issue through quantitativeassessments to determine a hardware architecture’s Automotive Safety Integrity Level(ASIL). Four ASILs are defined in ISO 26262, where ASIL-A represents the least stringentlevel, and ASIL-D is the most stringent level [12]. In order to decide the ASIL of a targetdesign, hardware architectural metrics are designated in ISO 26262. Hardware architec-tural metrics measure the effectiveness of safetymechanisms to detect randomhardwarefailures. In other words, these metrics assess the overall likelihood of risk.

The hardware architecture assessment flow is demonstrated in Fig. 6. In order to ob-tain ASIL of the hardware design, it is necessary to calculate hardware architectural met-rics, which their definitions and equations are provided in the subsequent sub-chapters.In general, this calculation is performed by failure mode classification, estimation of hard-ware elements’ failure rates, and deployed safety mechanisms’ DC evaluation. Finally,using the obtained results, the ASIL of the target design can be determined using pre-defined values in ISO 26262.
In this sub-chapter, initially, failure modes classification is explained in detail. Then,hardware architectural metrics are introduced together with failure rate estimation ofhardware components and diagnostic coverage evaluation of safety mechanisms.

Figure 6: Hardware Architecture Assessment Flow in the context of ISO 26262 (adapted from [25])
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2.5.1.1 Failure Modes ClassificationISO 26262: Part 5 classifies the failure modes of a hardware element in order to calculatehardware architectural metrics, which will be explained later. Fig. 7 demonstrates theflow diagram of failure mode classification. A failure mode could be classified into thefollowing types, where λ stands for the failure rate [12], which is defined as the frequencyin which a component fails:
• Safe Fault (λ S): A safe fault does not violate a safety goal.
• Multiple Point Fault (λMPF): A MPF may lead to a violation of a safety goal in con-junction with another independent faults. There are three types of an MPF;

– A Perceived MPF (λMPF,P) cannot directly violate a safety goal, but their pres-ence can be perceived by the driver due to performance decline or any othersimilar negative implication. However, they are not identified by safety mech-anisms.
– A Detected MPF (λMPF,D) is identified by safety mechanism as opposed to aperceived MPF. They are detected within a specified time.
– A Latent MPF(λMPF,L) is neither identified by a safety mechanism nor a driver.

• Single Point Fault (λ SPF): It is a non tolerated fault that directly violates a safetygoal.
• Residual Fault (λRF): A RF is not detected by any safety mechanism and lead to aviolation of a safety goal.
Consequently, the failure rate of each safety-related hardware element is stated using(1). Also, we here note that Chapter 2.5.1.3 explains how λ is obtained in the context ofISO 26262.

λ = λ S+λ SPF+λ RF+λMPF (1)
2.5.1.2 Hardware Architectural MetricsThe effectiveness of safety mechanisms that detect the failure mode needs to be mea-sured by the three metrics listed and detailed below to control faults. In other words,these metrics assess functional safety for hardware components in the context of ISO26262. Additionally, they support design evaluation and determination of whether or notthe deployed safety mechanisms have the sufficient capability to control faults.These metrics are reported in ISO 26262:Part-5 [12] with their description and formu-las. They are defined as follows;

• Single-Point FaultMetric (SPFM): Thismetric reflects the effectiveness of the safety-related design to protect from a single point and residual faults. Effective safetymechanisms in the design result in few residual faults and higher SPFM. On thecontrary, unprotected design parts bring about many single point faults and lowerSPFM. Last, many safe faults cause higher SPFM.
SPFM is calculated using (2), where SR stands for safety-related, λ SPF is the failurerate associated with single point faults, λ RF,est is the estimated failure rates associ-ated with with respect to residual faults, and λ denotes the failure rate correspond-ing to all hardware faults as calculated in (1). Additionally, (3) shows the calculationof λ RF,est, where c is the DC with respect to residual faults.
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Figure 7: Failure Mode Classification Flow Diagram [25]

SPFM = 1− ∑SR,HW (λ SPF+λ RF,est)
∑SR,HW λ

(2)

λ RF,est = λ × (1− cDC,RF
100

) (3)
• Latent Fault Metric (LFM): This metric reflects the effectiveness of the safety ar-chitecture to protect from latent faults, which are a subset of multiple point faults.Many single point faults or residual faults imply higher LFM.Many detectedmultiplepoint faults result in higher LFM. Also, many safe faults cause higher LFM.
LFM is determined by (4), where λMPF,L,est denotes the estimated failure rate withrespect to latentmultiple point faults. Also, (5) provides the calculation of λMPF,L,est.

LFM = 1− ∑SR,HW λMPF,L,est
∑SR,HW (λ −λ SPF−λ RF) (4)

λMPF,L,est = λ × (1− cDC,MPF,L
100

) (5)
• Probabilistic Metric of Hardware Failures (PMHF): This metric explains that theresidual risk of a safety goal violation is sufficiently low [18] [25]. The calculationof PMHF is not provided in ISO 26262, even if it is proposed as one of the alterna-tives of the probabilistic metrics.
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2.5.1.3 Failure Rate EstimationAs shown in Fig. 6, after failures are classified according to the ISO 26262, and as explainedin Chapter 2.5.1.1, failure rate estimation can be performed to be used in the metrics in-troduced above. In another saying, hardware architectural metrics (SPFM and LFM) canbe designated by the estimation of failure rates.For this step, ISO 26262 describes several methods as follows:
• Using recognized industry reliability data books such as IEC 61709, IEC TR 62380,MIL-HDBK-217F.
• Making use of statistical data collected based on tests or field returns.
• Exploiting an expert judgment.
Using one of these methods, the failure rate of a hardware component (e.g., registerfile, arithmetic logic unit, or instruction memory) is estimated in units of Failure In Time(FIT), which is the number of failures per billion hours. For example, 1 FIT means that thedevice has a mean time to failure (MTTF) of 1 billion hours [12].

2.5.1.4 Diagnostic Coverage EvaluationAs a next step, DC is assessed. DC shows the effectiveness of the safety mechanism atdetecting faults [18], and it is evaluated in this step to calculate the estimated failure ratesused in (2) and (4).DC can be calculated analytically if the target design deploys some standard safetymechanisms such as an ECC. However, even if there is a standard safety mechanism, thiscomputationmust be performed considering the specific parts of the logic separately. Forexample, the DC may be accurate on the data cell of the memory but not for the decoderin front of thememory [18]. In this kind of situation, it might be too challenging to achievehigher safety levels such as ASIL-D. Therefore, it may require to perform more accuratesafety analysis techniques such as fault injection. On the other hand, if the target designdeploys custom safety mechanisms such as STLs, DC cannot be calculated analytically;hence, functional safety analysis techniques, such as fault injection, must be employedin this case for a more accurate calculation. However, these analysis techniques needoptimization to be more efficient and less costly, which is the main scope of this PhDthesis.
2.5.1.5 Comparison with ISO 26262 Target ValuesAfter DC is estimated and evaluated using functional safety analysis techniques, all theprerequisites for the calculation of hardware architectural metrics are ready. Using theformulas given in (2) and (4), metrics are calculated and compared with ISO 26262 targetvalues.For hardware components, the ASIL requirements regulate the values to achieve forthe metrics as shown in Table 1. The calculated SPFM and LFM values are compared touse the values given in this table and finally ASIL of the hardware is determined.
2.5.2 Qualitative Assessment of Hardware Architectures
As opposed to quantitative techniques, qualitative assessment comes into prominencewhen the target system has shared sources. Therefore, the analysis of dependent failures[26], which is described in Chapter 2.3, is required to investigate the possible commoncause and cascading failures between design elements. In other words, it determines that
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Table 1: Metrics for Each ASIL

ASIL Failure Rate SPFM LFM

A <1000 FIT not relevant not relevantB <100 FIT ≥ 90% ≥ 60%C <100 FIT ≥ 97% ≥ 80%D <10 FIT ≥ 99% ≥ 90%

safety requirements to reduce the dependencies between the elements are in alignmentwith safety requirements and have been met.An example can be given using ADAS in the car. For example, an ASIL-B compliantcommunication module measures the distance from the front car and sends this data toa cruise controller module that adopts the course of an action in terms of acceleratingor braking. However, any glitch or fault on the communication module can create a fatalsituation. Therefore, it would be necessary to assess ASIL of this communication moduleagain, which causes additional expenses. In this case, DFA can be used to avoid such asituation.Additionally, ISO 26262 provides some dependent failure examples such as clock el-ements, power supply elements, or reset logic, as shared resources exist. Also, typicalcountermeasures are listed by ISO 26262 as clock monitoring for shared clock resources,physical separation, or isolation for fault avoidance.
2.6 Fault Injection
In Chapter 2.5.1.4, it was stated that fault injection is required in order to have more ac-curate DC calculation, especially in case the target design deploys custom safety mecha-nisms. Even if its details are investigated in the subsequent sub-chapters in the context ofthe research which uses fault injection, in this part, we give the fault injection types andhow they differ from each other.In general, fault injection is the simulation of fault effects on the target design. Thepurpose is to determine the behavior of faults. Several fault injection techniques havebeen introduced in academia and the industry. The techniques are classified into the fol-lowing categories [27] [28] [29]:

• Hardware-based Fault Injection: This type of fault injection is performed at thephysical level through extra components such as contacts.
However, using extra hardware components affects the target hardware as it maydisturb the power supply by producing voltage and current changes, it may distractthe hardware with environmental parameters such as heavy-ion radiation, and itmay modify the value of circuit pins.

• Software-based Fault Injection: As opposed to Hardware-based Fault Injection,Software-based Fault Injection does not need additional hardware to perform theoperation. Instead, it targets the applications and operating systems to reproducethe fault effects caused by faults in hardware. In general, it modifies software exe-cution to inject faults.
Besides its advantages over Hardware-based Fault Injection, it has some drawbacks.First, it is not possible to inject faults at some places which are not accessible to the
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software. Second, injection may affect and disturb the workload running on thetarget system. Third, modeling of permanent faults is too difficult in the softwarelevel.
• Simulation-based Fault Injection: This type of fault injection is targeted at the earlyphases of the design implementation, such as RTL or gate-level. Two techniques arewidely adopted as codemodification, and simulator built-in commands. The formerinvolves modification of the design description, i.e., VHDL codes, using saboteursthat change the value of a target signal when a fault is being injected. The lattermodifies the simulation tools to inject faults and monitor the results on the simu-lated system. This method supports automation, so the major EDA vendors adoptit.
The main shortcoming of Simulation-based Fault Injection is the requirement of alarge development effort that induces time-consuming campaigns. Also, the accu-racy of the designmodels is another problem thatmight affect the quality of results.

• Emulation-based Fault Injection: Hardware prototypes such as Field-ProgrammableGate Array (FPGA) are used to take into account the effects due to the circuit en-vironment. It improves the effectiveness of Simulation-based Fault Injection con-cerning time and effort overhead.
However, it has some disadvantages, such as input/output problems or the neces-sity of high-speed communication links. It also cannot analyze the temporal effectsof faults.
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3 Functional SafetyVerification andValidationUsing Fault Anal-
ysis Technologies

In this chapter, we explain the Functional Safety Verification and Validation methodologythat was presented in I, II, III, and V.
3.1 Introduction
Functional safety refers to the absence of unreasonable risk caused by systematic and ran-dom hardware failures. Functional safety and especially the analysis of random hardwarefailures are becoming part of the requirements for designing complex systems. Therefore,tighter integration between functional safety analysis and the standard platform designand verification is required. To achieve the functional safety of SoCs used in automobiles,it is essential to analyze the use cases for all the flow tools according to their probabilityof introducing errors. This analysis shall evaluate if the malfunctioning tool or its erro-neous output can violate a safety requirement. Based on this analysis, ISO 26262:Part 8[12] covers all aspects of Tool Confidence Level (TCL) and defines critical concepts of con-fidence and qualification [12]. The TCL assesses the error injection risk of each tool in theflow to document the confidence level for the data processing of each tool. Hence, thereis high demand for effective Functional Safety Verification, and Validation methodologiesthat allow the reduction of costs while maintaining the same levels of safety [5].

In general, there are three complementary technologies used for Functional SafetyVerification. First, simulation-based fault injection [18] [30] [31] [25] that shows fault ef-fects if they propagate to considered outputs (safety-critical outputs) and if safety mecha-nism can detect them. ISO 26262 recommends simulation-based fault injection to achievesafety requirements. However, considering the complexity ofmodern ICs used in automo-biles, the verification environment of simulation-based fault injection campaigns is no-tably complicated, resulting in long fault injection campaigns. Second, formal analysis canbe deployed to assess the fault effects and leverage simulation-based fault injection byidentifying safe faults. The advantage of a formal analysis is that it can analyze designbehavior considering all test inputs for corner cases [32] [33]. On the other hand, formalanalysis and its tools have amajor drawback as they cannot analyze all faults in a tolerabletime span. This creates a problem in meeting the time-to-market criteria, which is highlydemanding considering the number of applications. Therefore, another technology stillneeds to analyze a large portion of the faults that exist in automotive SoCs. Third, ATPGtools can be employed to decrease the efforts to develop a functional safety verificationenvironment. ATPG tools can generate test benches that are a collection of test patternsto propagate faults. Therefore, simulation-based fault injection can be performed usingthese test patterns generated by an ATPG tool to achieve better detection rate with lessexecution time [34] [35]. Nevertheless, ATPG is for manufacturing tests and cannot coverfaults that are not in the scan chain structure. Consequently, this chapter proposes amethodology that combines the strength of these three technologies for compliance withISO 26262 requirements.
The presented methodology aims at verifying the correctness of hardware fault clas-sification of different tools used for functional safety analysis. Moreover, it provides datato support simulation-based fault injection campaigns, the adopted technique by bothindustry and academia. The presented technique in this chapter has two parallel flowsthat generate fault classification reports to be verified against each other. The ATPG toolgenerates test benches and vectors to provide a high propagation rate in the first flow.Then, this generated testbench is used by the simulation-based fault injection tool to ver-
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ify the design’s functional behavior under each fault. In the second flow, a formal analysistool is deployed to identify safe faults and determine the behavior of faults that ATPGdoes not cover. Finally, the generated outputs from two parallel flows are verified to iden-tify possible malfunctions. Also, an increase in the fault detection rate is examined whensimulation-based fault injection is performed using test benches and test vectors gener-ated by the ATPG. By doing so, tool output’s confidence level increased as required by ISO26262 [12]. In short, the main contributions of this chapter can be listed as follows:
• An automated flow to increase tool confidence level according to ISO 26262.
• Straightforwardmethodology to avoid extensive tool qualification requirements drivenby ISO 26262.
• Combined approach that decreases required functional safety verification effort byidentifying safe faults with the help of a formal analysis tool.
• Above 99% fault detection rates on the tested designs supports ISO 26262 Func-tional Safety Verification, using ATPG test benches in the simulation-based fault in-jection instead of deploying functional test benches.
In this chapter, we explain functional safety analysis technologies and how they arecombined to improve the tool confidence level in the context of ISO 26262. Also, useof ATPG test vectors and test benches to increase detection rates is explained with theexperimental results.

3.2 Related Works
Besides the works listed in the Introduction, some other works investigate the use of faultanalysis technologies. In this sub-chapter, we explain some of them to show the relevanceof the presented chapter.[36] depicts the challenges of tool qualification in the context of ISO 26262. The au-thors provide semi-automatic qualification of verification tools, using a monitor and faultinjection, to reduce and minimize qualification process costs. They highlight the impor-tance of tool modification, especially in the presence of modifications. The authors alsounderline the importance of automation to reduce the effort required for tool qualifica-tion. Moreover, [37] deploys formal analysis and fault injection to determine the effect offaults in a design. The authors’ approach is to develop a fault injection model that allowsthe use of formal analysis, which is symbolic simulation. They also emphasize the im-portance of automation and avoiding complex formal property definitions. Furthermore,[38] combines simulation and formal analysis to speed up fault injection campaigns. Theyidentify non-achievable states of faults using formal analysis and reduce the fault injec-tion time by eliminating such faults. Additionally, [39] and [40] employ combination offormal analysis and fault injection. These works use formal algorithms to derive someresults that reduce the fault injection workload. They also correlate the obtained resultswith the ISO 26262 functional safety metrics. Finally, [18] ties functional safety analysis tothe traditional EDA flow.Besides theworks listed above, this chapter presents amethodology that incorporatesthree technologies: simulation-based fault injection, formal analysis, and ATPG. The maindifference of this chapter is the use of these three tools together to verify the tool outputsand increase fault detection rates using ATPG test benches and test vectors in simulation-based fault injection.
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3.3 Functional Safety Analysis Technologies
This sub-chapter details how functional safety analysis is implemented by simulation-based fault injection, formal analysis, and ATPG. Each technology is explained in termsof its strengths and weaknesses.
3.3.1 Simulation-based Fault InjectionSimulation-based fault injection is a well-known technique used to quantitatively assessthe design’s ability to cope with random hardware failures. It is available in a variety oftools that are able to perform fault injection in different abstraction levels such as RTL orgate-level. The flow of simulation-based of fault injection is demonstrated in Fig. 8 anddetailed below:

• Input Definition and Elaboration: At this step, inputs are given to the tool. Theseare Testbench, Design, and Fault File Specification. The fault specification file is atext file that specifies a list of modules, instances, or signals as targets for fault in-strumentation. It can also specify sub-hierarchies or signals from this list to excludefrom the selected targets. Furthermore, one or more fault types (SA0, SA1, SET, orSEU) for each node can be determined. Finally, logical collapsing is applied (if thedesign is gate-level), an optimized fault list (that includes prime faults) is generated,and the tool instruments faults into a design before the Good Run.
• Good Run: This is the fault-free simulation run to generate reference (good) valuesfor the fault injection. Observation points are set in this phase for comparing thefaults between Good Run and Fault Run (the next phase).
• Fault Run: This step is the simulation run to inject faults into the design. The goalis to verify that a fault will be observed at some specific point in the circuit. Thenumber of simulations can be any number up to the number of nodes in the faultlist specified in the Elaboration phase. For each Fault Run, the observation pointsare compared against the reference values from the Good Run.
• Fault Campaign Results: In this step, all fault runs aremerged in a single, cumulativereport. Each fault is shown as Detected or Undetected. Faults that do not producechanges in the observation points are classified as Undetected. If a fault creates achange in the observation points, it is classified as Detected.
Some advantages of simulation-based fault injection are listed below [27]:
• It supports all abstraction levels such as electrical, RTL or gate-level.
• It demands low-cost automation as it does not require special-purpose hardware.
• It has full control of both fault models and injection mechanisms.
• It can easily be integrated into existing design flows because it can be performedusing the same software application that runs on the field.
• It is able to model both permanent and transient faults.
Drawbacks of simulation-based fault injection can be summarized as follows [27] [41]:
• It is time-consuming due to the length of the experiments. In other words, it re-quires the simulation of fault-free design (Good Run) as well as simulations of thedesign in the presence of the enormous number of faults.
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Figure 8: Simulation-based Fault Injection Flow

• It may have incomplete results. For example, when there are undetected faults as aresult of campaigns, this is considered a weak result of the simulation [5] due to thefact that a different test stimulus may cause fault propagation, i.e., different results.
Additionally, if there are no test stimuli that propagate the fault to the observationpoints, an analysis must prove this. For that reason, it is necessary to develop complextest benches and additional techniques for the analysis of undetected faults. In this case,formal analysis comes to the fore, as explained in the next sub-chapter.

3.3.2 Formal Analysis
Safe fault identification requires proof that any test stimulus cannot test a fault. Formalanalysis can be used for this purpose because it has a global context that is not limited toa specific time or state. In other words, the formal analysis considers all possible test stim-uli. Therefore, formal analysis can exhaustively prove that a fault can never produce anyfailure in the observation points. Thus, these types of faults can be considered safe anddo not require further fault injection. By doing this, the faults to be injected in simulation-based fault injection can be reduced so the fault injection campaigns can be optimized interms of the required time.Different EDA vendors have their own formal analysis approaches; however, all of themapply a similar methodology for analyzing faults. Basically, the tools perform two analysistechniques: Standard Formal Analysis and Advanced Formal Analysis. The Standard For-mal Analysis is also known as structural fault analysis, and the testability of the faults isdetermined by verifying the following three analyses:

• Out-of-COI: If the fault does not have a physical connection to theobservation points,it is determined as safe. Fig. 9a illustrates this. As shown, the faults in the COI ofout1 are dangerous, whereas the others are classified as safe.
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• Activation: If the fault is injected on a node that is a constant 0 or 1, then it is safe.Fig. 9b illustrates that faults on the constant signals are safe.
• Propagation: If the fault cannot be observed in one of the observation points dueto any barrier, it is safe. Fig. 9c explains that some faults cannot propagate to out1because of the barrier, so they are safe.

(a) Out-of-COI Analysis (b) y = 3sinx (c) y = 5/x

Figure 9: Standard Formal Analysis Techniques.

A fault that does not pass the above-listed verification steps is classified as safe bythe formal tool. Considering Advanced Formal Analysis, which is illustrated in Fig. 10,the formal tools assess functional activation and propagation of the faults. Activation ofthe faults is to check if the fault can be functionally activated from the inputs. Moreover,propagation of the faults is to check if the fault can propagate to the functional obser-vation points. As shown in Fig. 10, formal properties are automatically generated by theformal analysis tool to verify the fault propagation effects. Then, all possible input stimuliare used to validate fault propagation to the observation points. Finally, results are com-pared between Bad Machine where the faults are injected and Good Machine, similar tosimulation-based fault injection.As opposed to Standard Formal Analysis that classify faults as only safe or unknown,Advanced Formal Analysis uses the following three classifications for each fault:
• Safe: Faults that cannot be activated or propagated to the observation points.
• Dangerous: There is a combination of test inputs that propagates a fault to theobservation points. In this case, the fault is dangerous.
• Unknown: All the faults which are not safe or dangerous.
As mentioned above, formal tools automatically generate formal properties (manual formal property generation also is possible) to perform Advance Formal Analysis. Then, these properties are verified with respect to all possible input stimuli. However, this verification process is time-consuming and expensive. Also, considering today’s complex designs in some areas, such as automotive, it is not possible to evaluate all possible test in-puts, so the formal tools cannot classify all faults in the design. Therefore, formal analysis is often applied as a last resource on the faults that were not classified after simulation-based fault injection [5].EDA vendors integrated fault injection and formal analysis to reduce the effort and complement different strengths of simulation-based fault injection and formal methods. This integration allows the deployment of the Standard Formal Analysis before the simulation-based fault injection. Hence, the number of faults to be analyzed can be reduced by lever-aging results for safe faults. Furthermore, Advanced Formal Analysis can be run only on

32



Figure 10: Advanced Formal Analysis

the remaining undetected faults after performing simulation-based fault injection, mak-ing fault analysis more efficient.Even with this integration mentioned above, the development of the test environ-ments is still challenging and time-consuming. Moreover, Advanced Formal Analysis offormal tools can still not classify all the faults in the complex designs. In this context,ATPG appears as a possible alternative solution to generate test stimulus that can be usedfor the simulation-based fault injection.
3.3.3 Automatic Test Pattern Generator
Any kind of testing is always a matter of controlling the device that is being tested andobserving its behavior. In the case of an IC, controlling the chip through the input pins andobserving it through the output pins is the only way. This is because accessing internalnodes to control or observe their states is not possible.There are millions of faults to be analyzed for ICs used in complex areas such as auto-motive or space applications. Therefore, the amount of computation can be overwhelm-ing. The industry has adoptedmany simplifications to reduce the test time in manufactur-ing. One of them is to use functional simulation patterns. However, this is not sufficient asit is impossible to have a complete test using functional patterns. Additionally, as ICs getlarger and complex, the observability and controllability of logic states within the chip de-mand more effort to create the functional patterns. Thus, structural testing is developedin order to achieve a nearly complete test of a chip. It refers to testing the circuit gate-by-gate and net-by-net to ensure that each gate works and that all the interconnections areintact and correct. Also, it does not depend on the functional knowledge of the IC. Testscan be generated automatically, and all forms of APTG use structural test algorithms. Inshort, ATPG verifies that the IC was built as designed, so it does not verify that the designperforms the intended function.In general, ATPG tools receive a gate-level description of an IC and specification ofthe scan chains as inputs. Then, it verifies whether the implemented scan chains ensurethe required level of testability or not. If affirmative, it generates a fault model and testpatterns to assure propagation of fault effects to the design outputs [5]. If unsuccessful,the fault is marked as untestable, and another fault is selected.The test patterns and expected outputs are programmed in Automated Test Equip-ment (ATE) to be used in IC manufacturing tests. ATE applies the test patterns in theinputs of the circuit, as explained above, and monitors the observation points (design
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outputs) to verify if the obtained values are the expected ones. In this chapter, a similarapproach is applied using simulation-based fault injection. The test patterns generatedby the ATPG tool are utilized by a simulation-based fault injection tool, and observationpoints are monitored. During the Good Run, the simulator records the good or expectedvalues of the observation points. Then, during the Fault Run, each fault is simulated usingthe same inputs and monitoring the observation points. By doing this, it is possible to usethe propagation capabilities of ATPG to identify behavioral changes caused by injectedfaults [5].Besides its fault propagation potential as the main strength, ATPG has some weak-nesses. First, it focuses onmanufacturing tests, and the estimated resultsmust be demon-strated through simulations. Also, faults out of the scan chain cannot be considered byATPG.Table 2 summarizes strengths and weaknesses of each technology presented above.This summary proves that there is a high need for a methodology that combines thestrengths of these three technologies to overcome theirweaknesses. Thenext sub-chapterpresents a Functional Safety Verification and Validation methodology using these threetechnology.
Table 2: Comparison of Fault Analysis Technologies [5]

Technology Strengths Weaknesses

Simulation-based Fault Injection - Comprehensive behavior analysis- Recommended by ISO 26262
- Single test input at a time- Too many simulations to propagate all faults- High testbench development efforts

Formal Analysis - Global context: analysis of all possible test inputs- Analysis of untestable faults - Time-consuming as it has a global context- Cannot determine behaviour of all faults
ATPG - Automatic generation of test patterns- High fault propagation rate - Focus on manufacturing test- Cannot reach corner cases

3.4 The Proposed Methodology
This sub-chapter describes the developed application that combines three fault analy-sis technologies as an efficient methodology for ISO 26262 Functional Safety Verification.The presented methodology emphasizes the strengths of Simulation-based Fault Injec-tion, Formal Analysis, and ATPG to generate a comprehensive fault analysis report at theend of the flow.Fig. 11 demonstrates the developed application named Fault Checker [5]. This applica-tion aims at automating the execution of the three technologies. It implements a genericand configurable control flow. The application presented in this chapter deploys Cadencetools; however, it is also applicable to other tool vendors. At the end of the flow, reportsare generated and saved in a common format that identifies tool malfunctions and de-tailed analysis of faults behavior.The Fault Checker needs user inputs to start and control the execution of each tool.These are design files such as libraries and a netlist of the target design. Moreover, theuser must provide fault targets and observation points to be used in simulation-basedfault injection flow. Finally, for ATPG flow, it is necessary to specify scan chain pins de-scription, which defines design pins associated with the scan chain. After defining all userinputs, the Fault Checker can start executing the Formal and ATPG flow in parallel (usingdifferent CPUs) as these flows are independent of each other. On the other hand, Sim-ulator Flow must receive ATPG Test Bench and Test Vectors from ATPG flow to start theexecution. Therefore, after ATPG flow is completed, Simulator Flow starts fault injection
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Figure 11: Fault Checker Execution Flow [5]

using outputs of ATPG flow as workload. At the end of each flow shown in Fig. 11, thereports are generated by the tools and parsed to a common format. Finally, at the end ofFault Checker flow, the relevant data is fetched and compared based on rules that asso-ciate the classifications used by each tool [5] [3]. If a rule is not obeyed, a Warning tag iswritten in the reports to inform the designer about a fault that requires further analysis.The Fault Checker application applies two fault list comparisons as follows.
• The first is to compare optimized fault lists generated by ATPG and simulation-basedfault injection tools. This is performed to check if the simulation-based fault injec-tion tool’s fault optimization achieves the same capabilities as the ATPG tool, whichis accepted as a reference due to its usage for long years in the industry. In otherwords, the purpose is to prove that simulation-based fault injection tool containsall instrumentation and optimization potential. This step checks whether the samefaults are instrumented, whether they have the same number of prime faults (afterlogical collapsing), and whether they have the same number of safe faults.
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• The second is to compare annotated fault lists generated by all the tools deployed inthis chapter. Table 3 provides an example of reports generated by the Fault Checkerapplication. This report includes Signal Name, Fault Type, Classification results fromthree technologies as shown in Fig. 11, and Fault Checker Result. For example,the signal "dut.u0.sig2" in Table 3 is classified as Undetected by the simulation-based fault injection tool and Ignored by the ATPG tool. Nevertheless, the FaultChecker assigns a Warning tag to this row due to the fact that formal analysis iden-tified at least one test stimulus that can propagate SA0 fault on "dut.u0.sig2" toan observation point. This information can be used on a next fault injection cam-paign to accomplish detection of this fault. The next example in Table 3 is the sig-nal "dut.u0.sig1". SA1 fault on this signal is classified as Safe by the formal anal-ysis tool, whereas the other tools classified this fault as Undetected and Ignored,respectively. Safe classification of formal analysis tools proves that no test stimu-lus propagates SA1 fault on "dut.u0.sig1" to any observation point, i.e., the fault isUntestable. Therefore, this information can be used as a contribution to achievingISO 26262 metrics.
3.5 Experimental Setup and Results
In this sub-chapter, we describe the validation process of the proposed technique. In thebeginning, we detail the experimental setup, the tool configurations, and the designs usedto verify the proposed technique. Then, results are provided and described the benefitsand limitations of the proposed solution. Two approaches are adopted as validation as-pects. First is the detection of malfunction in the three tools using the detailed report asexplained in the previous sub-chapter (comparison of optimized and annotated fault lists).Second is the application of fault analysis results to support functional safety verificationof the target designs (when simulation-based fault injection tool deploys test benches andtest vectors generated by ATPG tool).
3.5.1 Experimental SetupAs shown in Fig. 11, there are three tools deployed for the proposed methodology. Thiswork adopts Cadence®JasperGold Formal Verification Platform Functional Safety Verifica-tion, Cadence Xcelium™ Fault Simulator (XFS), and Cadence®Modus DFT Software Solu-tion ATPG component. However, the proposed methodology remains applicable to othertool flows as well.Regarding the example target designs used in this chapter, different levels of complex-ity and the availability of functional test benches are considered. Complexity is about thenumber of faults in the design. When it comes to ISO 26262, all cell ports in the gate-levelrepresentation of a design should be analyzed for faults. The selected designs were syn-thesized using the standard cell reference libraries provided with Cadence 45nm Generic

Table 3: Fault Checker Report Example [5] [1]

Signal
Name

Fault
Type

Formal Analysis
Classification

Simulation-based Fault Injection
Classification

ATPG
Classification

Fault Checker
Result

dut.u0.rst SA0 Dangerous Detected Tested PASSdut.u0.sig1 SA1 Safe Undetected Ignored WARNINGdut.u0.sig2 SA0 Dangerous Undetected Ignored WARNINGdut.u0.sig3 SA1 Dangerous Detected Tested PASSdut.u0.inst0.0 SA1 Not listed Not listed Tested WARNING
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Process Design Kit (GPDK) to obtain a gate-level netlist. These designs are listed as followsand available in [42]:
• Up-Down Counter: This is 4 bits adder design that contains 81 cell ports
• Memories: This design has twomemorieswith Cyclic Redundancy Check (CRC), con-taining 1391 cell ports
• AC97: This is an Audio Codec Controller compatible with Wishbone bus, containing28610 cell ports
• Conmax: This design is an interconnectmatrix IP corewith a parameterized priority-based arbiter containing 76727 cell ports.

3.5.2 Experimental ResultsIn order to check fault instrumentation capability of simulation-based fault injection toolas shown in Fig. 11, optimized fault lists for Up-Down Counter and AC97 designs are com-pared in the beginning. As a result of this analysis, there is no difference identified inoptimized fault lists’ of Up-Down Counter. However, 12 faults were different in AC97. Thereason for this is the different collapsing approaches of ATPG and simulation-based faultinjection tools. In otherwords, collapsingmethods of these tools affect the results. For ex-ample, the ATPG tool does not collapse faults on primary inputs; however, these faults arecollapsed by the simulation-based fault injection tool. Nevertheless, this behavior doesnot change the functionality of the circuits [1].Then, Table 4 provides the Detection Rate when generated test benches and test vec-tors by ATPG is deployed in simulation-based fault injection. This table also shows thecomparison of annotated fault lists. This is shown as the number of PASS and WARN-ING indications identified by Fault Checker. Below we explain the Fault Checker results asdemonstrated in Table 4:
Table 4: Fault Checker Results [5]

Design # Faults
(SA0/SA1)

Detection
Rate # PASS # WARNING

Up-Down Counter 162 100% 162 0Memories 2782 99.78% 2776 6AC97 57226 99.77% 57108 118Conmax 153454 99.80% 153191 263

• Up-Down Counter: As this is the simplest design among selected ones in this chap-ter, the three fault analysis technologies determine that all faults inUp-DownCountercan propagate to observation points, which means that Detection Rate is 100%.Moreover, the Fault Checker validated that all faults have equivalent classifications,so there is no WARNING tag in the final reports.
• Memories: The Fault Checker identifies 6 faults with different classifications for thisdesign, so 6 WARNING tags are included in the final reports. These WARNINGs areabout faults that are classified as Safe by the Formal Analysis and undetected by theSimulation-based Fault Injection. In other words, the Formal Analysis tool provesthat these 6 faults are safe and can be excluded, improving results for ISO 26262metrics calculation.
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• AC97: 118 faults are identified with discrepant classification as shown in Table 4. Outof this 118,
– 49 faults were classified as safe by formal analysis and undetected by simulation-based fault injection; hence, they can be declared as safe.
– 23 faults were classified as dangerous by formal analysis and undetected by simulation-based fault injection. This shows that these faults can be detectedin simulation-based fault injection by applying the results from formal analysisas test inputs.
– 46 faults were classified as undetected by simulation-based fault injection and ATPG. Formal analysis cannot identify them, so they are classified as unknown by formal analysis tool. This indicates that tools could not define the possible behavior of these 4 faults; hence, a manual analysis of these faults is required.
– 6 faults were in cell ports connected to the power or ground. These faults are not relevant for ISO 26262 functional safety verification.

• Conmax: 263 different classifications between tools were detected by the Fault Checker.
– 7 faults were dangerous according to the formal analysis and undetected by simulation-based fault injection. This means that results from formal analy-sis can be applied to simulation-based fault injection to detect these faults; hence, detection rate can be increased.
– 256 faults were classified as unknown by formal analysis, undetected by simulation-based fault injection, and redundant by ATPG. The designer must manually analyze these faults as the classifications are not precise.

Moreover, in this chapter, the results of simulation-based fault injection when a func-tional testbench is deployed and when the Fault Checker runs fault injection campaignswith test vectors generated by ATPG, as demonstrated before in Fig. 11. Table 5 shows theresults of this comparison. As a result of simulation-based fault injection using FunctionalTestbench, 71,50% and 81,66% coverage is obtained for AC97 and Conmax, respectively.On the other hand, when the Fault Checker is deployed (so simulation-based fault in-jection is performed with ATPG test vectors), the numbers are increased to 99,77% and99,80% for AC97 and Conmax, respectively. This shows that APTG test vectors have higherfault propagation strength compared to Functional Testbenches. Increasing the detectioncoverage is quite important because undetected faults after simulation-based fault injec-tion must be analyzed. Experts usually do this analysis manually; however, this is time-consuming, error-prone, and expensive. Also, it would be necessary to develop new testsand repeat fault injection campaigns to reduce the number of undetected faults. However,this increases the development time of ICs and makes it difficult to meet time-to-marketcriteria. Thus, it is useful to benefit fromATPG test vectors, which have higher propagationstrength, as done in the Fault Checker.
3.6 Chapter Conclusions
In this chapter, the combination of three fault analysis technologies is introduced. Theproposed methodology provides for a high degree of tool confidence level to detect toolerrors in the context of ISO 26262. First, each fault in the target design is classified bythree tools and compared against each other. Then, the Fault Checker identifies if there is
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Table 5: Fault Detection Comparison [5]

Design Faults
(SA0/SA1)

Functional Testbench Fault Checker

Detected Undetected Detected Undetected

AC97 57220 71,50% 28,48% 99,77% 0,21%Conmax 153454 81,66% 18,34% 99,80% 0,20%

a discrepancy between these classifications. Moreover, the proposedmethodologymakescompliance to ISO 26262 easier with the identification of Safe faults. In other words,the identification of safe faults decreases the total number of faults to be analyzed inSimulation-based fault injection and increases ISO 26262 metrics such as Diagnostic Cov-erage [12]. Additionally, the use of ATPG test benches and test vectors in Simulation-basedfault injection increases the detection rates as ATPG has more strength to propagate thefaults to the observation points.In summary, the proposed methodology provides an efficient and automated way forTool Qualification and error detection in the tool outputs. Moreover, safe fault identifi-cation decreases functional safety analysis as they can be excluded from fault injectioncampaigns. This also increases metrics guided by ISO 26262. Furthermore, supplemen-tary data provided by the Fault Checker can be utilized to support other fault injectioncampaigns.
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4 The AutoSoC Benchmark Suite

In this chapter, we explain the Automotive SoC (AutoSoC) Benchmark Suite that was con-ceptualized in VII and used as a case-study in X.

4.1 Introduction

Especially with the development of autonomous vehicles, functional safety analysis is be-coming more challenging. Also, functional safety analysis in the context of ISO 26262 re-quires representative automotive SoCs to perform and validate developed methods andtechniques. However, there are not enough hardware and software resources accessi-ble to the researcher and industry to assess if their results have the quality. Therefore,there is a high need for open-source and representative SoCs that enable comprehensivefunctional safety verification.
Considering existing commercial solutions, in general, all of them share some similar-ities in terms of architecture. For example, the availability of multiple CPUs is a commoncharacteristic of SoCs used in automobiles. In other words, running safety-critical appli-cations and other applications in separate CPUs is a common practice. Regarding safetymechanisms, DCLS is the most commonly deployed type. Concerning memories, RAMs,and caches, the industry mainly utilized ECCs and Parity, also highly recommended by ISO26262. Furthermore, communication protocols such as CAN, SPI, Ethernet are presentedin automotive SoCs. In addition, some application-specific hardware components suchas Graphics Processing Unit (GPUs) or image processing units are also provided targetingADAS. Additionally, security components become more of an issue in automotive appli-cations, so peripherals implementing cryptography algorithms are included in SoCs. Fi-nally, general communication protocols like Universal Asynchronous Receiver-Transmitter(UART), Joint Test Action Group (JTAG) are available in all commercial solutions.
The AutoSoC is an open-source benchmark suite formulated based on the existingcommercial solutions and adopted industry development techniques. It incorporates allrequired elements in the format of a configurable SoC, such as hardware models, operat-ing systems, and software applications. It is developed to support research in the auto-motive domain by providing varied hardware configurations, safetymechanisms, and rep-resentative software applications, fulfilling the requirements driven by ISO 26262. More-over, the selected SoC architecture is available at RTL and gate-level to comply with indus-try demand. Also, it has safety mechanisms that enable extensive functional safety anal-ysis thanks to its availability in multiple configurations. Concerning software resourcesprovided with the AutoSoC, compilers, debuggers, operating systems, and software testlibraries are presented and developed to support varied analysis. Automotive Cruise Con-trol is also included as a software application to demonstrate representative use cases.This application runs on RTEMS operating system or as bare metal, so it is conceivable toinvestigate the fault effects on these different platforms. Last, the AutoSoC incorporatescommunication protocols such as CAN and UART as in commercial solutions.
In summary, the AutoSoC is a promising initiative for an open-source SoC benchmarksuite for researchers who wants to work on automotive applications. This chapter in-troduces the general architecture of the AutoSoC, its peripherals (UART and CAN), andavailable software applications. Also, preliminary functional safety analysis performed inRTL and gate-level is shown.
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4.2 Related Works
This sub-chapter lists some of the related works in functional safety targeting automotiveICs. [43] and [44] explore the hardware fault-tolerant architectures such as Dual Mod-ular Redundancy (DMR) and DCLS. On the other hand, [45] examines diverse compilingsoftware fault-tolerant architecture and analyzes the effects of faults in the context ofsafety-critical software systems. Similar fault tolerance architecture investigation is alsoavailable in operating systems. [46] analyses the efficiency of traditional fault tolerancemethods on parallel systems running the Linux operating system. Furthermore, functionalsafety compliance to ISO 26262 is researched in [25] that highlights simulation-based faultinjection as a key step in order to be in compliance with ISO 26262. In addition to this,there are several works such as [31] and [47] that focus on fault injection optimization tech-niques to speed-up campaigns and reduce the time cost of the functional safety analysisprocess. Moreover, cross-layer functional safety analysis approaches, which are the useof different abstraction levels, are also presented in [48] and [49]. These works performfault-effect analysis on virtual prototypes of automotive SoCs, showing the advantage ofusing higher abstraction levels instead of RTL or gate-level.Although all theworks listed above contributed to the state-of-the-art functional safetyanalysis, they do not perform their analysis on representative automotive SoCs. Addition-ally, not all cases are executed with diverse software applications that can also run onoperating systems. Finally, as these works are not open-source to the community, otherresearchers cannot compare the results’ quality. The AutoSoC benchmark suite solvesthese problems by presenting an open-source and comprehensive automotive SoC pack-age with its hardware and software resources.
4.3 General Architecture of the AutoSoC
Fig. 12 demonstrates the architecture of the AutoSoC. First of all, functional blocks aredefined based on the characterization of industrial solutions. These blocks provide theminimum set of requirements for an automotive representative SoC. Moreover, all thedefined functional blocks explained below are modular, meaning that different SoC ver-sions can be implemented using selected blocks. Concerning the functional blocks shownin Fig. 12;

• Safety Island performs all safety-critical processes, as a similar block is available inall commercial SoCs. It includes a CPU andmemories, and both of them are coveredby safety mechanisms to comply with ISO 26262.
• Application-Specific Block is to process all the other applications such as video orimage processing. Like Safety Island, it includes a CPU and SW stack (memories), butApplication-Specific Block does not need to be protected by safety mechanisms.
• Interconnect Block implements theWishbone Bus, which is the hardware computerbus structure of the AutoSoC. This block is responsible for internal SoC communi-cation.
• Infrastructure Block has general-purpose communication protocols such as JTAG,ADBG, and UART.
• Automotive Block deploys CAN, the most common in-vehicle communication pro-tocol adopted by the automotive industry.
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Figure 12: Architecture of the AutoSoC [7]

Fig. 12 shows all the available functional blocks of the AutoSoC. However, the mod-ular structure of the AutoSoC makes adding more blocks possible. For example, securityextension can be done to comply with the new security standard ISO 21434 [50]. Securityblock examples are Advanced Encryption Standard, Data Encryption Standard, or Hash.In the following sub-chapter, the hardware components of the AutoSoC are investi-gated.
4.3.1 Hardware Components
The AutoSoC implements mor1kx implementation of openRISC [51] as the main CPU. It isselected as it includes a variety of support tools and resources with the help of an activecommunity. Moreover, mor1kx allows designers to customize the core with its integrationcapability. It is designed as parametric, making it easy to modify the CPU according to theneeds or add new peripherals.The mor1kx package includes the CPU, memory, UART, JTAG, and a debug unit, all con-nected via Wishbone bus [7]. Moreover, a testbench, which loads software applicationsto the memory and provides a connection to the JTAG for debug purposes, is provided inthe mor1kx package. By using the existing infrastructure of the mor1kx package, the Au-toSoC’s basic features were tested quickly, and all the other developed applications werereused in these provided files.Furthermore, the AutoSoC is prepared at both RTL and gate-level abstraction levelsto support more comprehensive research. The synthesis is performed using CadenceGPDK045 (45nm CMOS Generic Process Design Kits).Concerning the peripherals shown in Fig. 12, the following sub-chapter investigatesCAN and UART in more detail as these two peripherals are used in Chapter 6.
4.3.1.1 Controller Area NetworkThe CAN is a communication bus standard introduced by Bosch in 1986. It is intended towork in the automotive field for serial communication applications amongmicrocontrollerunits. The CAN has several benefits; it is low-cost, and it has the ability to self-diagnose
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and repair data errors. These features promote CAN’s popularity in automotive and someother industries such as medical or aerospace [52]. As it represents the automotive in-dustry’s challenges, it is integrated into the AutoSoC.
TheAutoSoCBenchmark Suite has open hardware implementation of the SJA1000 [53]which is a stand-alone controller for the CAN, developed by Philips Semiconductors in theearly 2000s. Fig. 13 shows the block diagram of SJA1000 CAN. These are explained below:
• The CAN Transceiver is a module to connect other nodes to the CAN.
• The CAN Core Block controls the reception and transmission of CAN frames.
• The InterfaceManagement Logic implements the CAN interface as a link to the hostCPU through its set of registers. It depicts commands from the CPU, conducts ad-dressing of the registers, send interrupts, and provides status information to thehost CPU. Also, this block configures the operational mode of CANwhether it worksin BasiCAN or PeliCANmode.
• The Transmit Buffer stores messages in Extended or Standard Format for transmis-sion over the CAN network. Also, the CAN Core Block reads messages from theTransmit Buffer whenever the Interface Management Logic forces it.
• The Acceptance Filter comes into prominence when receiving a message. It checkswhether the message on the bus has to be stored by the CAN or not. This is doneby comparing the received identifier with the Acceptance Filter register contents.
• The Receive FIFO stores all received messages accepted by the Acceptance Filter.

Figure 13: Block Diagram of the Adopted SJA100 CAN [10]

As the AutoSoC Benchmark Suite uses a Wishbone Bus, the adopted CAN is directlyconnected without the need for bridges between different bus interfaces. When it is re-quired to add another node to be communicated with the Host CPU, the CAN Transceiverprovides a straightforward way for connection. Moreover, the AutoSoC Benchmark Suiteprovides an STL for the self-test of the CAN. As it is explained in [54], the developed STLsimplement an effective in-field test for the CAN-based on a functional approach and alsoprovide experimental evidence to demonstrate its effectiveness.
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4.3.1.2 Universal Asynchronous Receiver-TransmitterThe AutoSoC benchmark suite includes a UART, which incorporates the industry-standardNational Semiconductors’ 16550A device features [55]. Furthermore, as it is a well-knownand widely-used communication standard by the industry and academia, the AutoSoCbenchmark suite covers UART.UART is a block of circuitry that uses asynchronous serial communication with con-figurable speed. It operates data transfer by receiving data from a peripheral device ora CPU. Moreover, the UART includes an interrupt system and control capability tailoredto minimize software management of the communication link. The UART used in the Au-toSoC operates in 32-bit bus mode fully compatible with Wishbone Bus. As depicted inFig. 14, the UART core consists of Receive Logic, Control, and Status Registers, ModemControl Module, transmit Logic, Baud Generator logic, and Interrupt Logic, as explainedbelow:

Figure 14: Block Diagram of UART [10]

• Incoming serial messages are received by the RX Shift Register, whose Baud Rate isprogrammable through Baud Generator Logic.
• Received messages are placed in the Receive FIFO if the incoming messages haveno problems.
• TX Shift Register handles the transmission of data written to the Transmit FIFO.
• Control and Status Registers allow the specification and observation of the formatof the asynchronous data communication used.
• Modem Control has registers that allow transferring control signals to a modemconnected to the UART.
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• Baud Generator Logic controls transmit and receive data rates.
• Interrupt Logic allows enabling and disabling interrupt generation by the UART.
The AutoSoC Benchmark Suite includes the above-explained UART and some test pro-grams to experiment with the functionality of the UART to provide a baseline for re-searchers to develop and validate their approaches.

4.3.2 Safety Components
As shown in Fig. 12, the Safety Island is responsible for safety-critical applications in theAu-toSoC. Therefore, it is essential to provide safety mechanisms to persuade that potentialfaults can be detected and possible harm to the expected functionalities can be avoided[7]. Different safety mechanisms implemented in the AutoSoC are listed below:

• Dual-Core Lock Step with time diversity is deployed as the main safety mechanismin the AutoSoC. Fig. 12 demonstrates that DCLS configuration includes a redundantcopy of the main CPU. Themain CPU is responsible for controlling the SoC function-ality and writing access to the Wishbone bus. Nevertheless, the shadow CPU doesnot execute write access to the SoC components. It is used to compare the outputsagainst the main CPU using a Compare Unit, which is not shown in Fig. 12. If theCompare Unit identifies a mismatch between the outputs of main and shadow pro-cessors, an alarm is activated for fault detection. DCLS is a widely adopted safetymechanism for the automotive SoCs targeting ASIL D; on the other hand, it increaseshardware area due to the necessity of a redundant copy (shadow CPU). Thus, addi-tional safety mechanisms are implemented in the AutoSoC.
• Software Test Libraries (STL) is a software-based safety mechanism used to preventpermanent faults. The semiconductor companies adopt them due to their advan-tages. For example, STLs can execute the test in the system operating conditions,avoid any overtesting and any area or performance overhead. Hence, STLs are usedas a safety mechanism in the AutoSoC benchmark suite as it is a good alternative toDCLS with high hardware overhead.
• ECCs protect internal memories, and they are highly recommended by ISO 26262.Thus, the Safety Island of the AutoSoC includes ECC in its internal memories andRAMs. Also, the external memory, which loads the software applications, is alsocovered by ECC to avoid propagation of faults to the primary outputs of the SafetyIsland
• Bus Parity is deployed to shelter the data bus, which is responsible for the datatransmission between the memory and the CPU of the AutoSoC. Thanks to the BusParity safety mechanism, propagation of faults within the data bus to the CPU orthe memory is prevented.
• Checkpoint Control is utilized in case CPUs (when DCLS is active) are stuck in thesame software instruction. It checks the data bus to observe predetermined soft-ware signatures in specific memory locations.
• Safety Monitor is also included in the AutoSoC. The aim is to integrate all the detec-tion alarms. The Safety Monitor generates an external alarm and an indication ofwhere the fault was detected.
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Additionally, the AutoSoC benchmark suite is implemented as amodular SoC, support-ing several configurations that enable different combinations of safety components men-tioned above. Five different AutoSoC configurations are assembled for different scenariosor use cases. These configurations are summarized in Table 6.
Table 6: AutoSoC Configurations [7]

AutoSoC
Configuration

Dual-Core
LockStep

Internal
Mem ECC

Software Test
Libraries

BUS
Parity

Checkpoint
Control

Safety
MonitorAutoSoC QM - - - - - -AutoSoC ECC - + - - - -AutoSoC STL - + + - - -AutoSoC DCLS + - - - - +AutoSoC SAFE + - - + + +

4.3.3 Software Resources
The AutoSoC benchmark suite includes several software options. By setting configurationfiles in the suite, any software application can be run on theAutoSoC. In addition, softwareapplications that run Baremetal and on RTEMS or Linux operating system are provided.Concerning RTEMS, the Automotive Cruise Control software application is developed andused in Chapter 6 for the identification of application-specific safe faults. This applicationhas real-time tasks that read vehicle sensor data, compute actuation, and set engine pa-rameters. Furthermore, several small andmiddle-size software applications are available,supporting any tests designers want to execute. Moreover, the Automotive Cruise Controlsoftware application employs CAN or UART depending on the user to communicate withthe external world. This enables functional safety analysis on a complete SoC instead ofnarrowing the investigation scope to the only CPU.
4.4 Experimental Results
This chapter summarizes the preliminary functional safety analysis performed for the Au-toSoCDCLS andAutoSoC STL configurations. Simulation-based fault injection is performedusing some selected workloads, and DC is measured, as specified by ISO 26262.First, fault injection is performed on AutoSoC DCLS when the abstraction level is RTL.Permanent faults (SA0 and SA1) are injected. As shown in Table 7, fault target is de-fined as only the CPU core, mor1kx_cpu. As a result, 99% diagnostic coverage is mea-sured, meaning that the DCLS safety mechanism can detect 99% of faults in the main CPU(mor1kx_cpu). This number also conforms with ISO 26262 that defines the typical diag-nostic coverage for these mechanisms as high. Moreover, with 99% diagnostic coverage,the AutoSoC achieves the ASIL D requirement.

Table 7: AutoSoC DCLS Functional Safety Analysis Results [7]

Fault
Target

# of Injected
Faults

# of Detected Faults
by DCLS

# of Residual
Faults

Diagnostic
Coverage

mor1kx_cpu 675,504 668,749 6,755 99%
Second, AutoSoC STL configuration is used for the subsequent functional safety anal-ysis. Different than the analysis on AutoSoC DCLS, results are gathered from both RTL

46



and gate-level representation of the AutoSoC to mimic the real use case. The deployedSTL programs constitute 16 test programs targeting the CPU (mor1kx_cpu). These STLsmake use of three common strategies for software-based-self-test (SBST) paradigm [56]as ATPG-based, deterministic and evolutionary-based [57]. Table 8 shows the analysis re-sults on AutoSoC STL configuration. As it can be seen, fault targets are only ArithmeticLogic Unit (ALU) and Load-Store-Unit. These two instances of the AutoSoC include 42,160and 60,672 permanent faults in RTL and gate-level, respectively. Table 8 compiles thegathered results showing that the achieved DC on the ALU and LSU in RTL and gate-level.Testable Diagnostic Coverage (TDC) is also reported, considering the redundant and safefaults.
Table 8: AutoSoC STL Functional Safety Analysis Results [7]

Fault Target RTL Gate-Level
DC [%] TDC [%] DC [%] TDC [%]ALU + LSU 68.71 80.04 76.23 85.43

4.5 Chapter Conclusions
With the introduction of autonomous vehicles into our lives more and more every day,functional safety is gaining more importance. However, functional safety, regulated byan ISO standard, is a laborious and challenging process due to the complexity of the ICsand applications used in cars. For this reason, the methods used for functional safetyneed to be improved and made more efficient. Thus, the demands of the automotivesemiconductor industry, which is developing day by day, can be met. In order to do this,researchers need to be able to easily access representative automotive SoCs, where theycan test the quality of the results by applying themethods they have developed. However,nowadays, it is not possible to find and work on an open-source automotive SoC.As a solution to the problems mentioned above, the AutoSoC benchmark suite is pro-posed in this Chapter. The AutoSoC was developed after a detailed examination of ex-isting commercial products and after determining all the requirements of an automotiveSoC. The AutoSoC, which is openRISC based and open-source, includes safety island andapplication-specific block in accordance with ISO 26262. In addition to this, the Infrastruc-ture Block containing the most used communication protocols such as UART or JTAG andthe Automotive Block, including the CAN used for in-vehicle communication, has beenadded. Furthermore, many safety mechanisms such as DCLS, ECC, and STL have beenadded to the AutoSoC suite. As these are presented in a configurable form, various func-tional safety analyses can be performed on the AutoSoC. Also, besides the hardware com-ponents just mentioned, the AutoSoC also has an extensive software resource. For ex-ample, CCA, one of the most encountered automotive software applications, is providedrunning on both bare-metal and an operating system such as RTEMS. Finally, the AutoSoCis implemented at both the RTL and gate-level abstraction levels, supporting cross-layeranalysis.In this section, the AutoSoC benchmark suite is explained in detail, and the resultsof functional safety analysis are shared. According to these results, the AutoSoC standsout as an open-source and comprehensive automotive SoC for all researchers to try itsmethods.
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5 Accelerating Simulation-based Fault InjectionCampaignswith
Fault List Pruning

In this chapter, we explain techniques to prune the fault list for transient simulation-basedfault injection. Following sub-chapters introduce the topic, then present two differenttechniques as "Dynamic Slicing based Fault List Pruning" IV, VI and "Mapping based FaultList Pruning" IX.
5.1 Introduction
It is necessary to avoid fatal consequences for a reliable IC operation, especially for thesystems used in safety or security-critical areas. Therefore, there is a need to analyzepossible faults which may occur in these systems. One of the possible faults is transientswhich are created by an energetic nuclear particle or an electrical source [58]. Moreover,ICs are becoming more susceptible to transient faults because the noise margins havedecreased with the use of advanced node technologies, and the sensitivity to alterationin parameter changes such as voltage or temperature has increased [59]. Memories areconsidered the most vulnerable circuit components to transient faults because they havea high spatial density and store a high amount of data [58]. However, the logic core of anIC has also gained importance recently with the use of advanced nodes [60] [61].Due to the reasonsmentioned above, it is necessary to evaluate the possible effects oftransient faults, which pose a significant risk for the reliability of safety or security-criticalsystems. The way of doing this evaluation is to perform a transient simulation-based faultinjection. However, modern ICs contain millions of memory elements and logic compo-nents due to their complexity. Additionally, workloads run on ICs execute over trillionsof clock cycles, and a transient fault can occur at any execution cycle [62]. As a result,fault space for transient simulation-based fault injection is enormous, making this analysistime-consuming and expensive in terms of the engineering effort. Consequently, devel-oping some techniques to prune the fault list of transient simulation-based fault injectionand reduce the execution time is required.There are two ways to speed-up simulation-based fault injection targeting transientfaults as follows.

• First is to select critical time-steps at which faults are injected because if a signal isnot read at a time-step, an injected fault at this time cannot have any impact on theoutputs and becomes undetected. By doing this, the transient fault list is pruned interms of the time dimension. As shown in Fig. 15, simulation-based fault injectionis characterized by several items. The location designates where the fault is built-in.The fault type (model) is either permanent or transient. The injection time definesthe start of fault injection. When compared to permanent faults, transient faultsmust be injected at several time-steps per workload because, as mentioned above,a transient fault can occur at any time. Therefore, critical time-steps need to beidentified to speed-up transient simulation-based fault injection.
• Second is to change the abstraction level. Fig. 16 shows the design abstractionlevels. When simulation-based fault injection is performed in lower levels such asgate-level or circuit level, simulation time, size, and complexity increase. This re-flects simulation-based fault injection as an increased execution time. Therefore,it is required to develop a technique that maps faults from lower levels to higherlevels.
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Figure 15: Fault Space Dimensions

Figure 16: Design Abstraction Levels [63]

Consequently, we developed two techniques for both items presented above. Thefirst one is "Dynamic Slicing based Fault List Pruning" which selects critical faults or time-steps to speed up the simulation-based fault injection. This is detailed in Chapter 5.3. Thesecond one is "Mapping based Fault List Pruning" which transfers simulation-based faultinjection from the gate-level to RTL by mapping SET faults to the flip-flops and using theadvantage of multiple and simultaneous simulation-based fault injection. This techniqueis described in Chapter 5.4.
5.2 Related Works
There exist many advanced tools andmethods for optimizing simulation-based fault injec-tion. In [64], a tool called VERIFY (VHDL-based Evaluation of Reliability by Injection FaultsEfficiently) is presented that utilizes an extension of VHDL for describing faults correlatedto a component, enabling hardware manufacturers, which provide the design libraries,to express their knowledge of the fault behavior of their components. Although it pro-vides multi-threaded fault injection and checkpoints and comparison with a golden runto speed up the simulation of faulty runs, the drawback is that it requires modification ofthe VHDL language itself. [65] proposesMEFISTO-C: A VHDL-based fault injection tool thatconducts fault injection experiments using VHDL simulation models. The tool supports avariety of predefined fault models; however, it does not provide specific optimizations to
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speed up the simulation.
Several approaches to generate the critical fault list to be considered the basis of faultlist injection have been proposed. In [66], a method for generating a critical fault list ispresented. A data flow graph describes the systemunder test, the fault tree is constructedby applying the instruction set architecture fault model to the data flow description witha reverse implication technique, the fault injection is performed, and fault collapsing onthe fault tree is employed. However, the proposed method is very costly in terms of CPUtime, and it is therefore not applicable to systems with high complexity.
[67] presents a new technique and a platform to accelerate and speed-up simulation-based fault injection in VHDL descriptions. Use checkpointing to reload the fault-free stateif the design allows starting the fault injection from the clock-cycle of fault injection. Inaddition, a golden-run fault collapsing technique is utilized that discards all fault injectionsbetween read-write and write-write operations of the memory elements. However, theapproach does not take advantage of the dynamic slicing benefits. [68] proposes fault col-lapsing based on extracting high-level decision diagrams from the VHDL model. Althoughsignificant speedup can be achieved, the step of efficient decision diagram synthesis fromthe full synthesizable subset of VHDL remains an issue.
Several papers are dealing with transient fault injection. [69] shows the results col-lected in a series of fault injection experiments conducted on a commercial processor.Here, the authors inject a fault in a given sequential element at a given instant of time.However, as it is hard to inject a fault in each of the tens of thousands of sequential ele-ments in the processor, the execution is divided into the parts and, for each of these parts,a random fault injection instant is selected. [70] analyses fault injection campaign in theCPU registers by choosing a random instant when the fault is injected. [47] identify theoptimal set of flip-flops. However, injection time is randomized uniformly over the activeregion of the simulation. Similarly, [71] injects a fault randomly in time and location in RT-level. Lastly, [72] deals with single andmultiple errors in processors by randomly selectinginjecting time and choosing registers. As opposed to these works, our approach showsthe fault injection time explicitly instead of random instants.
Dynamic slicing technique is used in [73] [74]. The former uses dynamic slicing forstatistical bug localization in RTL. The latter proposes dynamic slicing and location-ranking-based method for accurately pinpointing the error locations combined with a dedicatedset of mutation operators.
However, different from theworks listed above, Chapter 5.3 proposes a dynamic slicing-based technique that implicitly covers the golden run fault collapsing, thereby significantlyspeeding up the fault injection process.
Moreover, relevant solutions [75] [76] are available in the context of the proposedsolutions described in Chapter 5.4. However, these state-of-the-art approaches rely on thestatic cones pre-analysis only and do not consider if a SET fault actually propagates to theFF inputs. [75] proposes an RTL fault injectionmodel, which is representative for laser faultattacks. To do that, the authors analyze the circuits structurally and find intersection conesthat guide the fault injection in advance. On the other hand, they neither create FF setsthat cover all SET faults nor optimize FF sets by considering true/false paths. Similarly, [76]models the locality of a laser attack in case of multiple-bit faults. The authors analyze thecircuits structurally as well and, afterward, create FF sets. However, the authors consideronly the supersets and reject all the subsets. In this way, each combination of SEUs inthe superset is a trial to hit a fault in any smaller cone intersection. Nevertheless, theprobability of hitting a SET in case of any superset by selected random multiple SEU islow.
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Other studies investigate the impact of SET faults. [77] estimates the impact of SETfaults without layout information by identifying a pair of gates in which SET can prop-agate to multiple outputs. [78] analyzes the impact of SETs through Algebraic DecisionDiagrams and Binary Decision Diagrams (BDD) and [79] improves this method by consid-ering multiple effects. Finally, [80] suggests performing a stochastic gate-level simulationfor small circuits. Last but not least, some works investigate the combination of differ-ent fault analysis technologies such as [81], and [82]. These works combine the strengthof formal methods and fault injection simulators; however, they analyze only permanentfaults and do not analyze the representation of gate-level SET faults at RTL.Different from the works listed above, Chapter 5.4 proposes a more efficient tech-nique to prune the fault space by considering the propagation of SET faults. The signifi-cant speedup is achieved by running the RTL fault injection procedure onmultiple flip-flopupset faults accurately selected.
5.3 Dynamic Slicing based Fault List Pruning
In this chapter, we explain the simulation-based fault injection methodology based onDynamic Slicing to minimize the number of fault injections. This work is published in IVand VI. The proposed methodology identifies critical faults that cause the system to failin the absence of a safety mechanism and injects only critical faults during the transientsimulation-based fault injection campaigns. Using critical faults to estimate diagnosticcoverage of safety mechanisms or fault coverage of workloads eliminates the possibilityof simulation-based fault injection experiments to produce no error [6]. The main contri-bution of this work is three-fold as follows:

• Dynamic slicing on HDL to generate critical fault list
• Implicit fault collapsingwithin the slicingmodel, meaning that the fault list obtainedby the proposed slicing method has an additional feature of avoiding injections attime-steps as data inside registers is not being consumed
• Language-agnostic RTL simulation-based fault injection supportedby industrial-gradeEDA tool flow
The proposed flow is shown in Fig. 17 and starts with the (1) extraction of static slicesfor the target observation point. In parallel, hardware code coverage data is generatedby (2) simulation-based code coverage analysis for the design with pre-defined stimuliin the testbench. Next, (3) the dynamic slicing procedure identifies the intersection ofthe identified static slice and covered code items and results in a set of clock-cycle-longdynamic slices for the given observation point. Finally, (4) the simulation-based fault in-jection selects critical faults from the dynamic slices, injects them at the specified time,

Figure 17: Dynamic Slicing based Fault List Pruning Flow [4] [6]
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and evaluates the fault propagation. We explain the details of the proposedmethodologyin the following sub-chapters using amotivational example depicted in Fig. 18, i.e., a VHDLimplementation of a signal chopper design [83].
5.3.1 Static Slicing

Static slice includes all statements that affect the value of a variable v for all possible inputsat the point of interest, e.g., at the statement x, in the program. In the RTL code, the staticslice shows the dependency between HDL statements [84].
The simple design chopper in Fig. 18 has four outputs representing different chops forthe input signal SOURCE based on the design configuration by inputs INV and DUP. Thisdesign makes it possible to perform a search backward to find dependencies in the HDL,which is a static slice of the selected output. Taking TAR_F as a considered output, theresulting static slice is computed as shown in Fig. 19 with the help of the formal analysistool’s structural analysis capability. Additionally, the column Static Slice in Fig. 18 marksHDL statements of the static slice of the TAR_F output. For instance, as the static slice of

TAR_F does not include Line-40, H0 is counted as outside of the static slice, and for the
TAR_F output, there is no need to inject fault on H0. Hence, H0 is not included in Fig. 19as well.

Furthermore, Fig. 18 implies that a static slice does not depend on clock cycles (repre-sented as C1, C2, C3, C4, and C5 in Fig. 18) while executed statements and dynamic slicemay change for each clock cycle (as explained in the following sub-chapters). In summary,a static slice of a considered output includes statically available information only as it doesnot make any assumptions on inputs.
After performing Static Slicing as the first step of fault list pruning, the next step is torun Coverage Analysis as explained below.

5.3.2 Coverage Analysis

In parallel to the Static Slicing step, the RTL design is simulated in the logic simulation toolto dump and analyze the hardware coverage data. In this step, we dump the coveragedata for each clock cycle using a script set to find what statements in the RTL are executedfor each clock cycle. In the proposed methodology, one clock cycle defines the size ofthe dynamic slice. We use a coverage tool and coverage metrics in order to find executedstatements. After loading a simulation run into the coverage tool, coverage metrics datascored in that run can be analyzed.
In this chapter, we use hardware code coverage which measures how thoroughly atestbench exercised the lines of HDL code. Hardware code coverage includes block cov-erage, branch coverage, statement coverage, expression coverage, and toggle coverage.All these coverage types, except toggle coverage, can be used for the analysis presentedin this chapter. Block coverage identifies the lines of the code that get executed duringa simulation run. It helps to determine if the testbench executes the statements in ablock. Additionally, branch coverage complements block coverage by providing more pre-cise coverage results for reporting coverage numbers for various branches individually.Statement coverage is just a subset of block coverage, and it shows the execution of allthe executable statements in the RTL. Finally, expression coverage provides informationon why a conditional piece of code is executed. At the end of this step, we generate ex-ecuted statements data to find dynamic slices in the next step. Fig. 18 shows executedstatements for five clock cycles (C1, C2, C3, C4, C5).
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Figure 18: Dynamic Slicing on a motivational example chopper [4] [6]

Figure 19: Backward static slice on the signal TAR_F in the chopper design [6]

5.3.3 Dynamic Slicing
Dynamic slice includes those statements that actually affect the value of a variable v for aparticular set of inputs of the RTL, so it is computed on a given input [85]. Thus, it providesmore narrow slices than static slices and consists of only the statements that affect thevalue of a variable for a given input.In a nutshell, a dynamic slice is the intersection of a static slice and executed state-
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ments. We illustrate the concept of the dynamic slice in Fig. 18. This figure also showshow dynamic slices narrow down the fault space compared to the state-of-the-art staticslice approach. For example, during the time window C5, the register FF (Line-27) is not inthe dynamic slice, meaning that there is no need to inject a fault in FF at the C5 time win-dow. Therefore, the dynamic slice provides for critical faults and eliminates those faultsthat are not critical. In this way, it is possible to prune the fault list by injecting only crit-ical faults. This provides a speed-up in the simulation-based fault injection time as eachinjected fault increased the total run time of a simulation-based fault injection campaign.
5.3.3.1 Implicit Fault Collapsing in Dynamic SlicesIn this proposed methodology, dynamic slices cover both sequential and combinationalparts. In this way, all faults outside of dynamic slices are 100% undetected and can becollapsed to exclude them from the fault list. When considering the average CPU timeper simulation of one fault, an undetected fault spends more CPU time than a detectedfault as the simulation-based fault injection for an undetected fault lasts until the endof the simulation. Hence, it is very effective to identify undetected faults without run-ning simulation-based fault injection campaigns. In Fig. 20, the dynamic slice is built byconsidering the register inst_dest_bin and inst_dest (combinational) so that we can have100% accurate results. This is called implicit fault collapsing since we avoid injections attime-steps when data inside registers are not being consumed.

Figure 20: Implicit fault collapsing [6]

5.3.4 Simulation-based Fault Injection
In this step of the proposed flow shown in Fig. 17, simulation-based fault injection is per-formed to verify the capability of a safety mechanism to recognize failures in a design’sfunctionality by injecting faults into the design. To inject faults into a design, a fault simula-tor needs to know the fault target at which to inject a fault. In this chapter, we enable faultinstrumentation on the dynamic slices, more specifically on registers that are in dynamicslices. In other words, the proposed methodology identifies critical faults from dynamicslices and injects them at specified times. As a fault model, a single-clock-cycle bit-flipfault within the RTL registers is used.In brief, simulation-based fault injection is utilized to show the effectiveness of theproposed method. We inject one fault in one simulation run. Also, in the case of havingmore than one observation point in the campaign, the proposed method prevents multi-ple injections of faults within the overlap of static slices.
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5.3.5 Experimental SetupIn order to verify the accuracy of the proposed fault list pruning technique, the experimen-tal setup is developed as shown in Fig. 21. This setup works as an application aiming toautomate the execution of simulation-based fault injection campaigns using the differenttools. We create generic scripts to activate the tools and automate the flow. The proposedmethodology is integrated into Cadence flow in this chapter, but it can be applied usingtools by any major EDA vendor.In the first step, a backward static slice is built for a selected observation point byusing Cadence® JasperGold Formal Verification Platform. Then, we generate coverage re-sults through Cadence® Xcelium™ for each clock cycle that defines the size of the dynamicslices. In the next step, static slice and executed statements data are sent to simulation-based fault injection to define the fault target for the campaign. Annotation results pro-vide information regarding the number of injected faults, the number of detected andundetected faults. Moreover, we also use the profiling feature of the tool that measureswhere CPU time is spent during simulation. The profiler generates a run-time profile filethat contains simulation run-time information that is useful for comparing the executiontime of different campaigns. Cadence® Xcelium Fault Simulator is used for simulation-based fault injections.

Figure 21: Overall flow of experimental setup [6]

5.3.6 Experimental ResultsIn this chapter, we evaluate the proposed methodology on a 16-bit microcontroller core
openMSP430 [86] with a single address space for instructions and data. To show the ef-fectiveness of the proposed technique, Sandbox, Dhrystone, and Coremark workloads arerun on the openMSP430. Additionally, we show the results in two categories as fault listreduction and time savings. We also evaluate the accuracy of this methodology by com-paring the results to a state-of-the-art static slicing optimization method.In the first step, the backward static slice is built from dmem_din observation point,which is the main output of the core, and then coverage data is calculated. Next, consid-ering the registers in the static slice, the instruction source (inst_src_bin) and the desti-nation register (inst_dest_bin) are selected as fault targets to apply the proposed methodbecause these registers are widely used in simulation-based fault injection applications
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as they hold all instructions. Moreover, we perform a simulation-based fault injectioncampaign for each workload and a fault target (and) for each approach listed below:
• Static Slicing: This represents the state-of-the-art analysis.
• Dynamic Slicing: The proposed technique to prune the fault list.
Table 9 presents the results. Furthermore, Table 9 gives the number of Detected, Un-detected, and Total faults as well as the CPU time of overall regression and fault coverageof given workload. For the execution of Dhrystone and Coremark workloads in Static Slic-ing, 100k faults are selected as fault samples after the warm-up phase of the CPU.

Table 9: Experimental Results in openMSP30 [6]

Sandbox Dhrystone Coremark

Static Slicing Dynamic Slicing Static Slicing Dynamic Slicing Static Slicing Dynamic Slicing

inst_dest_binDetected 8036 8036 56236 56236 48891 48891Undetected 3996 2852 43764 42404 51109 47809Total 12032 10888 100000 98640 100000 96700Total CPU time 1197.1s 994.7s 658919.7s 622459.0s 3437663.0s 3323109.9sFault Coverage 66.788% 73.806% 56.236% 62.735% 48.891% 50.559%
inst_src_binDetected 2423 2423 34766 34766 45161 45161Undetected 9609 8413 65234 63498 54839 48051Total 12032 10836 100000 98264 100000 93212Total CPU time 1488.2s 1284.2s 803009.1s 790300.0s 3575198.1s 3178378.2sFault Coverage 20.137% 22.361% 34.766% 35.380% 45.161% 48.450%

5.3.6.1 Fault List ReductionFig. 22 highlights reduction in the Total number of faults given in Table 9. All detectedfaults seen in Fig. 22 are critical faults. As seen in these charts, dynamic slicing is moreeffective in pruning the fault list than static slicing. Furthermore, Table 10 shows the per-cent reduction in the number of fault injections. The best reduction is achieved in Sandboxworkload as 9.94%. The magnitude of the fault list reduction depends on the workloadcharacteristics. In these experimental results, the fault list reduction varies between 1.36%and 9.94%. This analysis reveals that dynamic slicing prunes the fault list and successfullyidentifies the critical faults while analysis and optimization effort costs are minor. Ad-ditionally, identifying undetected faults and excluding them from the fault list providesincreased fault coverage, as can easily be seen in Table 9.
Table 10: Percentage of Reduction of the Total Number of Injections with Dynamic Slicing [6]

Sandbox Dhrystone Coremark
inst_dest_bin 9.51% 1.36% 3.3%
inst_src_bin 9.94% 1.74% 6.79%

5.3.6.2 Time SavingsTable 9 shows the total CPU time of overall regression for each simulation-based faultinjection campaign. Time savings are highlighted in Table 11. As it can be seen, dynamicslicing provides various time savings from 1.58% to 16.91%. As in fault list reduction, time
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Figure 22: Fault list reduction based on three workloads [6]

savings depend on the workload characteristic. When considering the need for multiplesimulation-based fault injection campaigns in real-life applications with thousands of faulttargets and clock cycles, this time savings can expeditiously increase.
Table 11: Time Savings Using Dynamic Slicing [6]

Sandbox Dhrystone Coremark
inst_dest_bin 16.91% 5.53% 3.33%
inst_src_bin 13.71% 1.58% 11.10%

5.3.6.3 AccuracyThis chapter shows the results of a fault injection campaign performed using dynamicslicing, along with a state-of-the-art static slicing approach. These results reveal that dy-namic slicing achieves the same number of detected faults as static slicing campaigns. Thismeans that dynamic slicing can be used for different purposes as it is an accurate fault in-jectionmethodology. For instance, SFI [87] prunes the fault list in terms of margin of errorwith a given confidence level. However, dynamic slicing excludes only non-critical faults
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and finds all critical faults with a 100% accuracy.
5.3.7 Conclusions
Simulation-based fault injection onRTL requires an excessively long simulation time, whichprevents detailed reliability evaluation of hardware components with significant injec-tions. This chapter presents a methodology to speed-up simulation-based fault injectioncampaigns by minimizing fault injection locations. The methodology applies dynamic slic-ing on HDL to accurately pinpoint fault injection locations and allows injection of criti-cal faults in these time windows. In this way, this chapter narrows down the fault spaceand provides reduced simulation time. Moreover, an average 5-10% extra gain in simu-lation time for simulation-based fault injection significantly improves the total chip vali-dation costs, as this phase is themost time-consuming. The proposedmethod is language-agnostic and suitable for industrial grand EDA tool flows. Experimental results on industrial-size CPU show that we achieve significant speed-up of the simulation-based fault injectioncompared to the state-of-the-art flows.
5.4 Mapping based Fault List Pruning
One of the challenges of simulation-based fault injection campaigns is the vast number ofpossible fault locations because engineers simulate a fault-free design and its copies withfaults injected one at a time. This may imply enormous execution times, especially forthe simulation-based fault injection at the gate-level. Hence, there is a high demand formethodologies that can support designers in the early-stage design exploration of reliabil-ity factors. Moreover, simulation-based fault injection into gate-level models is quite latein the IC development cycle, and design modifications become more expensive in termsof the required engineering effort. Therefore, early design evaluation is necessary in bothsafety and security-related applications to minimize design iterations and resources, thusenabling faster design closure times.In this chapter, we focus on SET faults at the gate-level and propose an efficient solu-tion to represent them bymultiple SEU faults at the RTL [9]. The relevance of this problemfor safety-critical applications grows with the downscaling of the technology nodes, forc-ing designers to evaluate the system’s safety against SET faults, which affect combinationalelements of the circuit. However, this comprehensive evaluation at the gate-level is notaffordable regarding the execution time of fault injection campaigns for industrial-sizeddesigns. Furthermore, from the security point of view, SET faults at the gate-level rep-resent laser fault attacks, which can be observed in flip-flops (FFs) as single or multipleerrors [88]. Here, it is crucial to evaluate laser attacks to determine which vulnerable SETfaults create single or multiple errors in the sequential elements of the design.We propose a methodology for representing gate-level transient faults, such as SETs,by Multiple Flip-Flop Upset (MFFU) at RTL to tackle the listed problems. In the case ofSoft Error Reliability (SER) assessment for safety applications such as automotive, MFFUbecomes functionally equivalent for EDA tools to multiple simultaneous SEUs. For vul-nerability analysis against fault-injection attacks on security-critical designs, MFFU refersto single and multi-bit fault injections. In this chapter, first, we identify the static fan-in cones of each flip-flop at the gate-level. Second, we perform propagation analysis toidentify SET faults with true (sensitizable) paths to FF inputs. In this way, we obtain opti-mized FF sets as representatives of all SET faults to guide RTL multiple SEU fault injectioncampaigns. As a result, this method can successfully reduce the fault space and enhancethe high complexity of simulation-based fault injection campaigns. Without loss of gen-erality, the proposed methodology is demonstrated on a Cadence EDA (Electronic Design
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Automation) tool flow, but it remains applicable to other tool flows as well. The maincontribution of this work is as follows:
• An approach to move the gate-level SET vulnerability analysis to RTL
• A technique to reduce the fault space at RTL by applying gate-level propagationanalysis
• A systematic and workload-independent methodology for representing the gate-level SETs by multiple SEUs at RTL supported by industrial-grade EDA tool flow

5.4.1 The Proposed MethodologyThis chapter aims to identify MFFU sets for RTL simulation-based fault injection, whichrepresent all gate-level SET faults. By doing so, we reduce the number of injections re-quired to evaluate the effect of SET faults.The SET fault model implies flipping the value of a signal in the combinational cloudand holding the value for a specified period of time. SEU fault model implies flippingthe value of the output of a sequential element and holding it until it is overwritten withnew data. Therefore, SEUs can be applied to the outputs of sequential elements, suchas memories, flip-flops, and latches. We apply SET faults for one clock cycle length. Theproposed flow is shown in Fig. 23 and starts with the (1) extraction of static fan-in conesof each flip-flop in the gate-level netlist. In the next step (2), flip-flop sets are createdto represent each SET fault on flip-flops’ fan-in cones. Then, we perform propagationanalysis (3) to check if SET faults propagate to the flip-flop inputs. If a SET fault does notpropagate, then we check if these changes created flip-flop sets. In this way, we obtainoptimized flip-flop sets, which are representative of all SET faults, which propagate to theflip-flop inputs. Finally (4), we calculate the fault space to see the reduction compared tostate-of-the-art and random multi-bit injection approaches. The following sub-chaptersexplain each step of the proposed method in detail.

Figure 23: Steps of Mapping based Fault List Pruning Methodology [9]

5.4.2 Static Fan-in Cone Extraction of Flip-Flops at gate-levelAs a first step, we extract fan-in cones of each flip-flop at the gate-level, as it is illustratedin Fig. 24. In the beginning, we generate a list of all faults in the design. Then, we extractfan-in information from all flip-flops in the ingress combinational part of the design. Eachfan-in cone search starts from a flip-flop and expands backward, i.e., in the direction ofinputs of the combinational cloud, until it encounters a FF output or a primary input (PI).Finally, all SETs in each cone are enumerated to map each SET to a flip-flop set. This stepis performed by using Cadence® JasperGold Functional Safety Verification App.
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Figure 24: Extracting fan-in cones of each FF and finding propagation paths [9]

5.4.3 Flip-Flop Sets Identification
The second step of the proposed methodology is identifying flip-flop sets, which will beused as an MFFU injection target in the following steps. To do that, we consider each fan-in cone independently and determine flip-flop sets, which cover all possible scenarios, asshown in the second column of Table 12. For instance, if cone-1 is affected by a SET fault,we can cover this SET fault by injecting multiple MFFUs on A and B because cone-1 has anintersection with cone-2, which is the fan-in cone of B. This process is repeated for eachcone, and FF sets are obtained with a size between 1 (in case the cone does not intersectwith any other cones) and N FFs (in case all cones have an intersection).

Extracted FF sets are flip-flops of the circuit potentially affected by a SET. Therefore,MFFU injection can be limited to this set of FF. Table 12 also shows the multiplicity infor-mation of each FF set. Themultiplicity of a FF set is the number of FF in a set. For instance,if a SET fault occurs in cone-2, it can propagate to the A, B, C FFs, causing different com-binations of upsets on this set. This means that the less is the number of FF in a set (lessmultiplicity), the higher is the probability of hitting a real MFFU. We will use this informa-tion in the following steps. Moreover, multiplicity is important for calculating fault space,which will be given in the next sections. It is obvious that there are 8 combinations in oneFF set with a multiplicity 3.
5.4.4 Propagation Analysis
In this chapter, unlike state-of-the-art research, we also take propagation of faults intoconsideration to reduce fault space more. For this step, we deploy the formal techniquesto investigate the behavior of a design under fault. The theory behind formal techniques iscreating a Boolean function representation of a design under test so that formal proof can
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Table 12: Results of Example Design Given in Fig. 24 [9]

Affected Cone FF Sets Multiplicity Optimized FF Sets Optimized Multiplicity

Cone 1 A, B 2 A, B 2Cone 2 A, B, C 3 A, B 2Cone 3 B, C, D 3 C 1Cone 4 C, D 2 D 1

be used. In order to achieve better performance in the modern formal tools, BDDs [89]and Multiway Decision Graphs (MDGs) [90] are widely used.The formal analysis deploys formal methods to determine the propagation of faults.Propagation analysis verifies if there is a combination of inputs that provoke fault prop-agation. For example, if a fault propagates to flip-flop inputs, we accept that the faulthas a true path to flip-flop inputs. Otherwise, it has a false path and should be excludedfrom the analysis. In this step, formal properties to perform the analysis are automaticallygenerated and verified with respect to all possible input stimuli.The simple and high-level example in Fig. 24 illustrates that there are some SET faultsin the intersection cones with a false path to the FF inputs. In this figure, green pathsand superscripts point to the true paths (fault propagates), while red ones show that therelated fault has a false path (fault does not propagate). As a result of this step, we obtainoptimized FF sets, as shown in the fourth column of Table 12. It is obvious that some largerFF sets are disappeared due to non-observable faults that cannot be propagated. In thisway, optimized multiplicities are obtained along with the reduced number of flip-flop setsin some circuits. This step is performed by using Cadence® JasperGold Functional SafetyVerification App. In the following sub-chapter, we show a more detailed motivationalexample for the propagation analysis.
5.4.4.1 Motivational Example: Removing the paths which cannot be propagatedTo explain the propagation analysis in detail, we use amotivational example given in Fig. 25which has fan-out nodes. The circuit includes an input x, and outputs of the gates AND1,
OR1 and OR2. The SETs may be simulated only for these fan-outs. The steps of the ap-proach can be listed as follows:

• Static fan-in cone analysis gives us the following flip-flop sets of MFFU faults: (1, 2,3, 4) for x, (1, 2, 3, 4) for AND1, (1, 2) for OR1, (2, 3) for OR2.
• After removing duplicated sets, we get the initial sets of MFFU faults: (1, 2, 3, 4), (1,2), (2, 3).
• By propagation analysis, we see that for SET on AND1 we never reach all flip-flops,rather only either (1, 4) or (2, 3) due to the fact that the propagation of a SET at
AND1 is controlled by signal x=0 (by blocking two of four AND gates). Therefore,the superset (1, 2, 3, 4) for AND1 should be replaced by subsets (1, 4) and (2, 3). Inother saying, SET(AND1) is mapped to (1, 4) and (2, 3) flip-flop sets.

• Moreover, the SET on the input x is always blocked either on AND5 (if output of
AND1=1), or on AND2, AND3, AND4 (if output of AND1=0). Hence, the superset (1,2, 3, 4) for SET(x) should be replaced by (1, 2, 3).
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• As a result, we get instead of initial (1, 2, 3, 4), (1, 2), (2, 3), optimized FF sets (1, 2),(2, 3), (1, 4) (2, 3), (1, 2, 3), where (2, 3) can be removed as it is duplicated.
• Thus, the final optimized FF sets: (1, 2), (2, 3), (1, 4), (1, 2, 3).
In this motivational example, we analyze the propagation of SETs only on x and theoutputs of AND1,OR1 andOR2. The propagation analysis is sufficient for the SETs at thesefour locations, representing the remaining SET faults in the fan-out free regions.

Figure 25: Motivational example to find propagated and not-propagated faults [9]

5.4.5 Fault Space CalculationIn the fault injection procedure, SEUs are injected in all possible locations and at each clockcycle [6]. Therefore, the number of injections required for a single transient fault is enor-mous, especially for industrial-sized designs. Therefore, optimization methods should beapplied when considering the gate-level’s size and the low speed of fault injection simu-lations. Hence, considering the vast number of SET injections at the gate-level, the pro-posedmethod in this chapter significantly reduces the number of injections by identifyingoptimized flip-flop sets compared to state-of-the-art, and random multi-bit injection ap-proaches applied in safety and security applications.The proposed methodology in this chapter can significantly reduce the fault space byleveraging the flip-flop sets with propagation analysis. In this chapter, we compare the re-sults with the state-of-the-art and randommulti-bit injection. State-of-the-art researchessuch as [75] and [76] rely on only a static approach and do not consider the propagationanalysis. Similarly, the random multi-bit injection method considers all possible flip-flopcombinations. In order to calculate fault space or the number of injections, we use thefollowing equation where N is the number of flip-flops, k1, k2, ..., kN are the numbers ofFF in each set and 1≤ki≤N. given in [76].
FaultSpaceTotal =

N

∑
i=1

(2ki −1) (6)
By using the above equation, the total fault space for the example given in Fig. 25 canbe calculated effortlessly. As it is explained in Chapter 5.4.4.1, we have the initial and not-optimized sets which represent the state-of-the-art approach as (1, 2, 3, 4), (1, 2), and (2,
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3). Therefore, by using the given formula, the total number of faults is 21. On the otherhand, we have optimized flip-flop sets as (1, 2), (2, 3), (1, 4), (1, 2, 3), which require 16injections. Therefore, the proposed method can reduce the total fault space from 21 to 16for the motivational example given in Fig. 25.
5.4.6 Experimental Results
In order to verify the effectiveness of the proposedmethodology, weevaluate themethod-ology on the ITC’99 [91] benchmark circuits.

In order to perform fan-in cone analysis and propagation analysis, we deploy Cadencetools along with the developed script sets, which execute on gate-level design. Mean-while, all applied methods remain applicable to other tool flows. In the beginning, wesynthesize Verilog or VHDL design through Cadence® Genus™ Synthesis Solution to ob-tain the gate-level representation of the design. Then, steps 1, 2, and 3 shown in Fig. 23are performed on my application which deploys Cadence® JasperGold Functional SafetyVerification App.
We use threemethods to show the fault space reduction and compare the results. Thefirst method is "without propagation analysis" which represents the state-of-the-art asin [76]. The main difference between our proposed methodology "with propagation anal-ysis" and the state-of-the-art is the identification of true (sensitizable) paths. We leveragethe analysis by identifying SET faults which do not propagate to flip-flop inputs so thatfault space is reduced more. In other words, we cut down the pessimism in the results.The third approach used for comparison is "Random Multi-Bit injection". This is basicallyinjecting faults on all possible combinations of flip-flops randomly that naturally causehuge fault space. The proposed application is capable of building the fault space for eachmethod and given design without any significant effort.
All experimental results are presented in Table 13. The selected designs include variousdesigns from the ITC’99 benchmark. During the creation of FF sets, we remove faults onthe clock and reset signals from the analysis due to the fact that the clock tree is notknown in this stage of the design. Other faults except clock and reset are kept as theyare. This step is done in our application automatically. We show the number of sets,supersets, maximummultiplicity, and calculated fault spaces for each analysis and design.The number of sets shows the number of all identified FF sets before duplicated ones areremoved. In contrast, the number of supersets points the same after duplicated ones areremoved. Total Faults are calculated by using Equation 6.
In Table 13, it can be seen that the proposed methodology reduces the Total Faultssignificantly when compared to both state-of-the-art and the random multi-bit injectionapproaches. For some circuits such asb01 andb08, we amable to reduce only the numberof supersets while the maximum multiplicity is still the same in both cases. Moreover,there is no optimization achieved in b06 due to the structure of the design. For the restof the circuits given in Table 13, we both optimize the number of supersets and maximummultiplicity. Thereby, the total set of faults are optimized significantly, as shown in Fig. 26(values are normalized). It is observable that total faults in the proposed methodology(light gray bars) are less than the other two methods. We also add that we reduce thefault space from 1.20 times to a few hundred times when compared without propagationanalysis, depending on the circuit.
Moreover, we also compare our results with the well-known Statistical Fault Injection(SFI) approach [87] in case initial population sizes calculated before are used. SFI can beused for transient fault injection campaigns to reduce the execution times while keep-ing a meaningful number of injections with an error margin. This is one of the possible
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Table 13: Experimental Results: Fault Space Achieved by Three Methods [9]

without propagation analysis with propagation analysis RandomMulti-Bit
Injection

Circuit #
FF

#
sets

#
superset

max
multiplicity

#
Total Faults

#
sets

#
superset

max
multiplicity

#
Total Faults

#
Total Faults

b01 5 5 2 4 1.80E+01 3 1 4 1.50E+01 3.20E+01 - 1
b02 4 4 1 3 7.00E+00 1 1 2 3.00E+00 1.60E+01 - 1
b03 30 8 3 12 4.14E+03 3 1 9 5.11E+02 1.07E+09 - 1
b04 66 27 10 19 4.00E+06 5 4 8 1.02E+03 7.38E+19 - 1
b05 34 62 2 33 9.00E+09 61 5 31 2.00E+09 1.72E+10 - 1
b06 8 7 5 4 4.30E+01 7 5 4 4.30E+01 2.56E+02 - 1
b07 46 51 2 35 4.00E+10 43 3 26 8.00E+07 7.04E+13 - 1
b08 21 19 2 18 2.70E+05 11 2 18 2.62E+05 2.10E+06 - 1
b09 28 14 1 28 3.00E+08 7 1 27 1.00E+08 2.68E+08 - 1
b10 17 45 9 11 5.91E+03 13 4 11 2.62E+03 1.31E+05 - 1
b11 31 43 9 18 4.65E+05 9 2 16 6.60E+04 2.15E+09 - 1
b13 50 40 13 13 9.15E+03 20 9 9 9.47E+02 1.13E+15 - 1

Figure 26: Fault space comparison [9]

ways to perform RTL fault injection campaigns after flip-flop sets are defined by using themethodology presented in this chapter. In an SFI campaign, the sample size or the marginof the error with a certain confidence level is determined by using the Equation 7 definedin [87]. In this way, it is possible to obtain precise results while injecting a small number offaults [87]. Moreover, the technique allows knowing the margin of error while restrictingthe campaign time to the minimum. To sum up, there are three confidence levels in SFIas 90%, 95%, and 99.8%. In this chapter, we only use the 95% confidence level as it is theone that is practically used in the industry. Also, three error margins are defined as 5%,1%, and 0.1%.
n =

N
1+ e2 × ( N−1

t2×p×(1−p) )
(7)

In Table 14 and Table 15, we show the SFI results. The former details the comparisonof "with propagation" and "without propagation" analyses, and the latter table gives thefault space when Random Fault Injection is performed. In this tables, N shows the ini-tial population. In the presented case, N is equal to the total faults shown in Table 13.Moreover, n(5%), n(1%) and n(0.1%) show the required sample size with the error margins5%, 1% and 0.1% respectively. This shows that the proposed methodology can prune the
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fault space from 1.12 times to a few hundred times if faults are injected using SFI. Note,the results for some sample sizes remain similar due to the fact that the initial popula-tion is always finite. Even so, we show that a significant reduction is achieved by usingthe proposed methodology, especially when we reduce the error margins. Therefore, it isefficient to use the proposed methodology and select a sample for fault injection amongthe pre-defined initial populations in the MFFU space identified using the method "withpropagation analysis".
Table 14: Fault Space Comparison of "with propagation" and "without propagation" analyses with
95% Confidence Level [9]

without propagation analysis with propagation analysis

Circuit N n (5%) n (1%) n (0.1%) N n (5%) n (1%) n (0.1%)

b01 1.80E+01 1.70E+01 1.80E+01 1.80E+01 1.50E+01 1.40E+01 1.50E+01 1.50E+01
b02 7.00E+00 7.00E+00 7.00E+00 7.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
b03 4.14E+03 3.52E+02 2.89E+03 4.12E+03 5.11E+02 2.20E+02 4.85E+02 5.11E+02
b04 4.00E+06 3.84E+02 9.58E+03 7.74E+05 1.02E+03 2.79E+02 9.22E+02 1.02E+03
b05 9.00E+09 3.84E+02 9.60E+03 9.60E+05 2.00E+09 3.84E+02 9.60E+03 9.60E+05
b06 4.30E+01 3.90E+01 4.30E+01 4.30E+01 4.30E+01 3.90E+01 4.30E+01 4.30E+01
b07 4.00E+10 3.84E+02 9.60E+03 9.60E+05 8.00E+07 3.84E+02 9.60E+03 9.49E+05
b08 2.70E+05 3.84E+02 9.28E+03 2.11E+05 2.62E+05 3.84E+02 9.27E+03 2.06E+05
b09 3.00E+08 3.84E+02 9.60E+03 9.57E+05 1.00E+08 3.84E+02 9.60E+03 9.51E+05
b10 5.91E+03 3.61E+02 3.66E+03 5.88E+03 2.62E+03 3.35E+02 2.06E+03 2.62E+03
b11 4.65E+05 3.84E+02 9.41E+03 3.14E+05 6.60E+04 3.82E+02 8.39E+03 6.18E+04
b13 9.15E+03 3.69E+02 4.69E+03 9.06E+03 9.47E+02 2.74E+02 8.62E+02 9.46E+02

Table 15: Fault Space in the case of Random Fault Injection with 95% Confidence Level [9]

RandomMulti-Bit Injection

Circuit N n (5%) n (1%) n (0.1%)

b01 3.20E+01 - 1 3.00E+01 3.20E+01 3.20E+01
b02 1.60E+01 - 1 1.50E+01 1.60E+01 1.60E+01
b03 1.07E+09 - 1 3.84E+02 9.60E+03 9.60E+05
b04 7.38E+19 - 1 3.84E+02 9.60E+03 9.60E+05
b05 3.44E+10 - 1 3.84E+02 9.60E+03 9.60E+05
b06 2.56E+02 - 1 1.54E+02 2.49E+02 2.56E+02
b07 7.04E+13 - 1 3.84E+02 9.60E+03 9.60E+05
b08 2.10E+06 - 1 3.84E+02 9.56E+03 6.59E+05
b09 2.68E+08 - 1 3.84E+02 9.60E+03 9.57E+05
b10 1.31E+05 - 1 3.83E+02 8.95E+03 1.15E+05
b11 2.15E+09 - 1 3.84E+02 9.60E+03 9.60E+05
b13 1.13E+15 - 1 3.84E+02 9.60E+03 9.60E+05

5.4.7 Conclusions
This chapter proposes a methodology to represent gate-level SET faults by multiple SEUfaults at RTL. It enables a solution for the high complexity problem of expensive gate-levelfault injection campaigns by changing the abstraction level. We improve the state-of-the-art by considering the propagation analysis of each SET fault. First, we find static fan-incones of each flip-flop at the gate-level. Second, flip-flop sets are created pessimistically,meaning that propagation analysis is not considered. Third, we execute propagation anal-
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ysis using a formal approach to find SET faults that propagate to flip-flop inputs. Then,optimized flip-flop sets are created again with less pessimism. Finally, we calculate thefault space to show the effectiveness of the proposed methodology. In this way, we sig-nificantly reduce the number of fault injections and obtain a higher probability of hittinga true multiple SEU fault. Experimental results show that wemake the fault space smallerby up to tens to hundreds of times.
5.5 Chapter Conclusions
Simulation-based fault injection is an adopted technique for analyzing complex designsused in safety or security critical applications. However, due to the complexity of hardwareand software structure of these applications, simulation-based fault injection campaignsrequire huge execution times. In addition, a transient fault injection campaign is muchmore challenging as engineers need to inject a fault at each fault location and clock cycle.Therefore, there is a high need to accelerate and develop techniques to optimize thesecampaigns. One way of doing this is to prune the fault list so that engineers can avoidunnecessary injections.In this chapter, we present two techniques that prune the transient fault list. First isDynamic Slicing-based Fault List Pruning. This technique generates a critical fault list byselecting critical time-steps at which transient faults are injected. It deploys static slicing,coverage analysis, dynamic slicing to prune the fault list. Experimental results on an in-dustrial CPU demonstrate that the proposed technique can provide 5-10% extra gain inexecution time for simulation-based fault injection by keeping the accuracy. The secondis Mapping based Fault List Pruning. This technique changes the abstraction level fromgate-level to RTL by mapping SET faults to multiple SEU faults. Hence, only an afford-able number of multiple SEU injections are performed instead of injecting millions of SETfaults. Experimental results demonstrate the feasibility of the proposed technique to suc-cessfully reduce the fault space and also its advantagewith respect to the state-of-the-art.Furthermore, it is shown that the approach is able to reduce the fault space, and thereforefault injection effort, by up to tens to hundreds of times.In conclusion, the presented techniques improve state-of-the-art by reducing faultspace of transient fault injection. This is necessary to avoid an enormous number of in-jections in modern complex designs used in critical safety and security areas.
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6  Enhancing Hardware Fault Classification using Formal 
Analysis

In this chapter, we explain a technique to enhance hardware fault classification for auto-motive ICs using formal analysis. The results of this chapter were published in VIII and
X.
6.1 Introduction
Concerning automotive applications, each electronic system must detect and correctlymanage a high percentage of potential faults during the operation in the field to avoidlife-critical situations. In order to decide which faults could disturb the safety-critical func-tionality of an IC, faults must be classified based on their effects in the operation modeusing expert judgment and a combination of tools. Two fault sub-classes are identified,named safe and dangerous faults. A safe fault does not contribute to the violation of thesafety goal, whereas a dangerous fault may lead to a failure relevant for the overall sys-tem, that is, create a hazard. Examples of safe faults include faults located in parts of anIC that are not used by the application and faults masked by somemechanism. Fault clas-sification is of prime importance for the test of ICs in the operational mode. This test canbe performed resorting to different solutions, including Design for Testability (e.g., BIST)and STLs based on the SBST paradigm [92]. In both cases, identification of safe faults isvital since it enables to remove safe faults from the initial (normally huge) fault list and tofocus the test efforts towards the remaining faults, i.e., the testable ones [93]. Identifyingsafe faults thus makes it easier to reach the target diagnostic coverage (DC), helping toachieve safety requirements, such as a higher automotive safety integrity level (ASIL) [12].For these reasons, there is a high demand for an automated, systematic, and comprehen-sive safe fault identification technique.The effects of a fault classification flow are summarized in Fig. 27 referring to a genericcase study. We assume that an SoC runs a single software (SW) application during its op-erational life and uses an STL as a safety mechanism. Therefore, the DC of this STL mustbe calculated to prove that it detects dangerous faults up to a certain extent in the targetdesign. In the first step of the flow, without any classification, all the faults are unknown,as shown in Fig. 27. Then, an Initial Classification is performed to identify the first groupof structurally-safe faults, i.e., those which are safe due to the IC structure (e.g., faultslocated on lines which are not connected to the IC Primary Inputs and/or Outputs). Thesekinds of safe faults can be identified using any Automatic-Test-Pattern-Generation (ATPG)

Figure 27: Hardware Fault Classification Flow [10]
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or formal analysis tool. However, other safe faults may exist, which cannot be identifiedby these tools; therefore, a considerable amount of faults are still unknown after the firststep. The unknown faults need to be further analyzed to check whether their effects mayimpact the safety-critical functionalities or not. Thus, simulation-based fault injectionwithan STL is deployed to classify faults better. In practice, this step (namedUnoptimized Clas-
sification in Fig. 27) produces inaccurate results since it is often impossible to exhaustivelyevaluate all possible input stimuli or activate all possible operatingmodes in an applicationor system [41]. Undetected faults may correspond either to safe or dangerous faults. As inFig. 27, simulation-based fault injection targets unknown faults and classifies them as ei-ther detected or undetected based on the propagation of faults. A non-negligible amountof undetected faults may be observed depending on the workload that runs on the targetdesign. Usually, all the undetected faults are pessimistically classified as dangerous. Forthis reason, the gathered figures from simulation-based fault injection may not be repre-sentative of the design operational behavior as not all faults can be accurately classified.DC is calculated in this step using (8) where Detected is the number of faults classified asdetected and dangerous by simulation-based fault injection, Total is the size of the targetsystem’s fault list, and Safe is the number of safe faults. The purpose is to check if thecollected results from simulation-based fault injection satisfy the desired safety metrics.If DC is not enough, the test must be improved, or an additional classification effort tar-geting undetected faults, i.e., a subset of undetected faults, are required to classify theireffects. Experts usually perform this step based on their design knowledge; however, thisis error-prone and time-consuming. Consequently, the Unoptimized Classification impliesthat there is still room for improvement in the fault classification pessimism. Finally, usingthe technique presented in this work, a formal analysis approach optimizes the fault clas-sification (named Optimized Classification) as shown in the fourth bar of Fig. 27, whichtargets the identification of more safe faults reducing the number of undetected faultsand, therefore, the overall pessimism of the classification. The Optimized Classificationdecreases the denominator of (8) by classifying more safe faults than in the Unoptimized
Classification, and the DC is increased.

DC = Detected/(Total −Sa f e). (8)
This chapter advances hardware fault classificationwith an automatedworkflow,whichassists safety experts in addressing fault classification reducing human error and the timeto signoff. The present work focuses on the automated analysis of undetected faults tocheck whether they affect the safety critical functionalities of ICs. In the case that a faultcannot violate a safety goal or disturb safety critical outputs, it is defined as a safe fault.We consider a realistic scenario corresponding to a special-purpose system, i.e., an SoCwhich performs a single SW application, which remains the same during the whole op-erational life. Using the proposed technique, we can identify application-dependent safe(App-Safe) faults. One example of App-Safe faults is associated with the faults in the CPUdebug unit, which is not used by the SW application during the operation life of the SoC.For this purpose, first, we perform several logic simulations to extract a target system’s op-erational behavior by investigating code coverage results. Then, the candidates for beinglabeled safe faults which are not safety related are automatically translated into formalproperties, which then configure the formal environment to identify App-Safe faults.As a case study, the AutoSoC benchmark [7], an automotive representative SoC, andthe cruise-control-application (CCA) as a target SW application are used. we focused ontheCPUcore and several peripherals, i.e., the universal asynchronous receiver–transmitterIP (UART) and the controller area network controller IP [53].
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This chapter addresses the problem of what is new in ISO 26262 functional safety ver-ification that differs from general reliability in terms of safe faults. The main goal of func-tional safety verification is to avoid safety goal violations, not general failures in the design.This is the concept of safe faults. Our hypothesis is on deploying the strengths of existingtechnologies in an innovative methodology to resolve the issues. As a result, this chapterproposes a novel methodology based on the innovative use of existing technologies thataddress the problem. The main contributions can be listed and summarized as follows:
• A new systematic approach combined with engineering concepts in order to de-liver an industrial solution that can be deployed for SoC targeting the automotiveindustry.
• An automated safe fault identification technique supported by an industrial-gradeelectronic design automation (EDA) tool flow: logic simulation of the target designwhen it runs the software application, extraction of coverage reports that reflectsthe behavior of the software application, development of formal properties thatare translated from coverage reports, and formal analysis execution.
• ISO 26262-driven safe fault identification technique that contributes to the testingand verification theory by focusing the test efforts on the other faults (dangerous).
• A scalable formal property generation approach to translate the design’s opera-tional behavior into the formal analysis tool.
• An experimental demonstration of the effectiveness of the proposed technique ona comprehensive automotive benchmark SoC, using its CPU and the UART and CANperipherals.
• Significant improvements in the classification of safe faults and of the resulting DC,thus allowing to achieve a higher safety level. When theAutoSoC runs the CCA, 20%,11%, and 13% of all faults in the CPU, UART, and CAN are classified as safe using thepresented technique, respectively. The value of DC is increased by around 6% and4% for the CPU and the CAN, respectively. This analysis also reduces the number ofundetected faults by 1.5 and 1.6 times in the CPU and CAN, respectively.

6.2 Related Works
Many works exist in the literature about hardware fault classification. This sub-chapterexamines some of them based on different approaches, such as simulation-based faultinjection, formal methods, ATPG, or hybrid approaches.Several works have explored simulation-based fault injection targeting fault classifica-tion. For example, [31] optimizes fault injection campaigns by integrating it into the designverification environment and using the clustering approach to accelerate the campaigns.However, using only simulation-based fault injection for fault classification is computa-tionally expensive and incomplete; hence it requires additional methods to classify unde-tected faults. Similarly, [94] relies only on simulation-based fault injection to classify thefaults, but there was no additional classification technique proposed. Similarly, [95], [96],and [97] deploy simulation-based fault injection to classify faults in automotive systemsconsidering the requirements of ISO 26262. In short, when simulation-based fault injec-tion is used alone to classify faults, additional techniques targeting the classification ofundetected faults are necessary.Hence, some other works have investigated formal analysis, focusing on safe faultidentification. [98], [99], and [100] use the ability of the formal techniques to analyze
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the design behavior. Safe fault identification is also applied to GPUs. For example, [101]employs formal analysis to increase fault coveragewhen the identification technique is ap-plied to an open-source GPU. These works specifically focused on identifying structurallysafe faults, i.e., faults for which there are no test or input stimuli due to the hardwarestructure, independently of the software and the application.Researchers have also combined simulation-based fault injection and formal analysisleveraging fault classification. [81] and [38] have an eclectic approach that makes use ofthe strength of different technologies. Even though these works are promising in termsof the results, they still require many manual efforts based on the engineer’s expertise.On the other side, ATPG is also a promising technique to identify safe faults. Examplesof this approach are [102], [103], and [104], which aim at identifying untestable faults insequential circuits. We note that untestable faults are, by definition, safe faults [105].In addition, [106], [105], and [93] resort to ATPG to identify application-dependent safefaults, which is the same target of the work described in this paper. Even though theseworks can identify safe faults using the ATPG, they still have a manual part in their flow,i.e., they are semi-automated.Considering application-dependent safe faults, some works have proposed solutionsfor the classification of these kinds of faults. For example, [107] explores the use of safefaults to optimize STL fault coverage in microprocessors, which is not safety critical. How-ever, the scope of the work is limited only to CPUmodules, and the deployed tests are notautomotive representative.To address the outlined gaps, the technique proposed in this chapter corresponds to afully automated fault classification technique, which focuses on safe faults when a CPU isrunning a specific SW application. The main strength of the proposed approach lies in thedeveloped formal properties, which are extracted via the analysis of the target system’soperational behavior.
6.3 Background
This sub-chapter, first, provides basics about hardware fault classification. Then, simulation-based fault injection and formal analysis are explained in the context of the hardware faultclassification.
6.3.1 Hardware Fault Classification
ISO 26262divides themalfunction of electrical/electronic components into two categories,corresponding to systematic and random faults [12]. A systematic fault is manifested in adeterministic way and can only be prevented by applying process or design measures.On the other hand, a random fault can occur unpredictably during the lifetime of a hard-ware element. When safety-critical designs are considered such as automotive, medical,or aerospace, safety and verification engineers must prove that both the correct and safefunctionality of these designs are guaranteed, taking into account both systematic andrandom faults. In this chapter, we focus on random faults, only.Several sources exist for random hardware faults, such as extreme operating condi-tions, aging, or in-field radiation. Also, each fault type should have a fault model thatdescribes how faults from these sources should be modeled at the appropriate hardwaredesign abstraction level (e.g., at the gate or RT level). Moreover, faults can be permanentand transient. Transient faults occur and subsequently disappear. On the other hand,permanent faults occur and stay until removed or repaired. This chapter focuses on per-manent faults modeled as stuck-at faults, i.e., signals getting permanently stuck at a givenlogic value, i.e., 0 (stuck-at-0, SA0) or 1 (stuck-at-1, SA1), following what safety standards in
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the automotive domain suggest. We also note that a stuck-at fault can apply to all netlistsignals, such as ports of logic gates or registers.In order to determine the probability of a fault causing a safety-critical failure, its ef-fects must be classified into two different categories as follows.
• Safe: A safe fault does not disturb any safety-critical functionality because it is not insafety-relevant logic or is in safety-relevant logic but is unable to impact the safety-critical functionality of a design (i.e., it cannot violate a safety goal).
• Dangerous: A dangerous fault impacts the safety of the device and creates a hazardthat may produce a safety goal violation.

6.3.2 Simulation-based fault injection
As an integral part of the safety-critical IC development, simulation-based fault injectionis a widely-used technique to identify fault effects [108]. simulation-based fault injectiontools analyze an RTL or gate-level abstraction of an IC by performing a simulation withsome given test stimuli. In general, the fault injection flow is based on the comparisonbetween the results of the Good Run and those of the Faulty Run. First, the Good Run isrun to generate reference values. In this step, observation points where the propagationof faults is monitored are specified. Then, the Faulty Run is executed with faults injected.In the end, the reference values obtained by the Good Run and the faulty values gener-ated by the Faulty Run are compared for the classification of each injected fault and wecan determine whether each injected fault is detected or undetected. Faults are classifiedas detected when at least one output value changes for a specified observation point be-tween the Good Run and the Faulty Run. Otherwise, the fault is classified as undetected.Although simulation-based fault injection is a widely used and adopted technique byboth industry and academia, it suffers from two problems [41]:

• Incomplete results: It is impossible to simulate all possible combinations of input se-quences when considering today’s complex applications and devices. Hence, somefaults cannot be accurately classified as Safe or Dangerous with the simulation-based fault injection technique.
• No-effect faults: Faults injected into components of the target system that will notbe activated during the execution of a workload (testbench) will result in no-effectfaults. These faults are classified as undetected by the simulation-based fault injec-tion. This causes ambiguous results because these faults might be Dangerous whendifferent or more comprehensive input stimuli are used.
Because of the two reasons listed above, it may be required to use additional clas-sification techniques, such as formal methods as explained in the following subsection,to classify faults after simulation-based fault injection, whether they are safe or not. Wemust also mention that both sets of detected and undetected faults may contain safe anddangerous faults, as illustrated in Fig. 28. Therefore, if a fault is not classified and notproven safe, it should be pessimistically considered as dangerous.

6.3.3 Formal Methods
Formal methods help to classify faults based on their effects. An analysis is performed todetermine whether or not a target design satisfies a set of properties or conditions. Thisapproach is usually a combination of different techniques that employ static analysis andalgorithmic calculations. Compared to simulation-based fault injection that applies one
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Figure 28: Fault Classification [10]

single stimulus, formal analysis is less limited since it abstracts from any specific stimulus.On the other hand, the computational complexity may limit the formal analysis applicabil-ity [8]. In this case, classification of all faults can be impossible; thus, a formal analysis toolshould be fed by formal properties, developed carefully considering the constraints fromthe SW application, and looking for a compromise between computational feasibility andresult accuracy, as it is done in this work.In general, formal tools apply two checks, Structural Analysis Check and Formal Anal-ysis Check to identify safe faults, as explained below.
6.3.3.1 Structural Analysis Check TypesIn the Structural Analysis Check, formal tools use the topological characteristics of a designto determine the testability of each fault. There are three methods of Structural FaultAnalysis:

• Out-of-Cone of Influence (COI) Analysis: This method checks whether a given nodeis outside the COI of a given observation point(s); in that case, the fault is safe. InFig. 29, all faults located on nodes in the COI of out1 (shown in green) are safe sincethe considered observation point is out0 in the example analysis. It is obvious thatstuck-at faults on the cell ports of G3 cannot propagate to out0 as they have nophysical connection with out0. Hence, faults on G3 are safe.
• Unactivatable Analysis: this is to check if a SA0 or SA1 fault is located on a nodethat is constant 0 or 1; if so, the fault cannot be activated. In this case, the fault isunactivatable and safe. In Fig. 30, assuming that in0 is tied to logic zero, f0 for SA0is unactivatable and safe.
• Unpropagatable Analysis: this is performed to check if a fault is activated and in theCOI of the considered observation point but cannot be propagated to the outputs.In this case, the fault is safe. In Fig 30, the AND gate G2 can block the propagationof f1 if one of the in1 or in2 is always set with the logic value zero. Hence, f1 wouldbe safe for SA1 or SA0 as it can never be propagated to out0.

6.3.3.2 Formal Analysis Check TypesAs opposed to Structural Analysis Checks for which physical connections of a design aretaken into account, Formal Analysis Checks are used to classify faults aswell. The approachuses Good Machine and Bad Machine similar to the simulation-based fault injection and
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Figure 29: Out-of-COI Example [10]

Figure 30: Unactivatable and Unpropagatable Analysis Example [10]

injects a fault in Bad Machine for formal analysis. In the end, the output signal valuesof Good and Bad Machines are compared to check whether an injected fault is propa-gated or not. A formal tool generally generates a Boolean representation of the func-tion implemented by the circuit (or part of it) and uses formal techniques as explainedabove to prove this Boolean equation. Formal analysis tools use various engines basedon Boolean expressions representation and manipulation techniques, such as Binary De-cision Diagrams (BDDs) [109] to prove the formal properties exhaustively. There are twotypes of this analysis:
• Activation Analysis: This analysis checks whether the fault can be functionally acti-vated from the inputs. If not, then it is determined to be safe.
• Propagation Analysis: This one checks whether the fault can propagate to the rele-vant output(s). If it cannot, then it is safe.
The technique described in the following sub-chapter deploys both structural and for-mal analysis checks resorting to formal methods.
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6.4 Proposed Application-Dependent Safe Fault Identification Method
In this sub-chapter, first we explain the definition and details of application-dependentsafe faults. Then, we describe each step of the proposed technique.
6.4.1 Application-dependent Safe FaultsIn Chapter 6.3, we explained that a safe fault does not disturb any safety-critical function-ality because it is not located in any safety-relevant logic or is in a safety-relevant compo-nent. Based on this explanation, we further classify safe faults as follows:

• Structurally-safe (Str-Safe): These are faults that cannot be activated or propagatedto the outputs of interest by any test sequence because of the design’s structuralconstraints. For example, a fault in the redundant logic or a floating net (i.e., anynet that does not have a load) is Str-Safe. Another example is supply0 and supply1nets. Specifically, a SA0 fault on supply0 net and a SA1 fault on a supply1 net areStr-Safe. Finally, a SA1 fault on a pull-up gate and a SA0 fault on a pull-down gateare Str-Safe.
• Functionally-safe: As opposed to Structurally-safe faults, a test or test sequence forFunctionally-safe faults exists, and their effects may propagate to design outputs.However, they do not affect any safety-critical functionality. For example, faults inthe debug unit of a CPU not used due to hardware configuration are Functionally-safe.
The present chapter focuses on a subset of Functionally-safe faults, correspondingto Application-dependent safe faults (App-Safe). App-Safe faults are related to the SWapplication that the target system executes, and they cannot disturb the safety-criticalfunctionality in the operational mode. Therefore, it can be said that a fault can be App-Safe for one software application but may be dangerous for another software application.More specifically, the target system considered in this work performs a single soft-ware application during the whole operational life. During the operation in the field, thisapplication and its input data set do not access all the design parts; thus, inaccessiblecomponents generate App-Safe faults. For example, if the SW application does not useany multiplication operation, all resources related to the multiplication opcode becomeApp-Safe faults. Therefore, opcodes of an SWapplication are a good indicator for App-Safefault identification. Referring to the multiplication example again, when the SW applica-tion, which runs on the target design, does not include multiplication opcode, the SWapplication does not trigger multiplication hardware in the arithmetic logic unit (ALU), sofaults on these components contribute to the App-Safe fault list. Another example of App-Safe faults can be found in the Design-for-Test modules of the design. The SW applicationdoes not use these hardware elements during the normal operation mode; hence, thecorresponding faults are App-Safe.In the following sub-chapter, we explain the proposed flow to identify App-Safe faultsin an industrial-size SoC when an SW application is being run on it.

6.4.2 The Proposed FlowIn Fig. 31, the proposed flow to identify App-Safe faults is shown step by step. At the begin-ning of the flow, we have a Design Under Test (DUT) circuit (typically, an SoC) and a SW ap-plication running on it. First, we run several logic simulations with different representativeinput data sets. The goal of running logic simulations is to analyze the design’s behaviourwhen it runs the SW application. Next, application-specific formal properties are devel-oped to translate the design’s operational behavior into the formal environment. Formal
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properties provide input to the formal analysis tool to identify App-Safe faults. Finally, theformal analysis tool is deployed, and safe faults are listed. In the following subsections,we discuss each step in detail.

Figure 31: Proposed Application-dependent Safe Fault Identification Method [10]

6.4.2.1 Logic SimulationIn this step, we perform several logic simulations on the DUT executing the SW applicationwith different representative realistic data input sequences, i.e. set1 to setn, as shown inFig. 31. The aim of performing logic simulations is two-fold:
• to understand which design parts are affected by the input data set, and
• to extract the design’s operational behavior when it runs an SW application.

To achieve the objectives, we generate hardware design code coverage data per each logicsimulation and dump them into the coverage reports.In general, logic simulations aim to detect which points are not toggled, as these areApp-Safe candidates that must be addressed. Concerning coveragemetrics, the proposedwork focuses on hardware code coverage that assesses how well the stimuli exercise thedesign code by pointing to design components that did not meet the desired coveragecriteria [110]. Our technique deploys toggle and block coverage sub-types of design codecoverage to identify App-Safe faults. Block Coverage is a primary code coverage metricthat identifies which lines in the code have been executed and which have not. On theother hand, Toggle Coveragemonitors, collects, and reports the signal toggle activity, al-lowing the identification of unused signals or signals that remain at constant value 0 or1. The block and toggle coverage metrics provide insight into the SW application behav-ior during the operational life of an IC. Thus, we can identify App-Safe candidates includedin the Functionally-safe fault list. More specifically, block coverage can indicate that somestates are never activated, indicating that the SWapplication does not use the correspond-ing design components. Likewise, constant signals identified by toggle coverage can high-light invalid configurations, not utilized functions, among others. Moreover, the combi-nation of block and toggle coverage data should be carefully analyzed because they canpoint out further information about the SW application’s behavior. For the sake of an ex-ample, an untoggled signal may never activate a state machine block, and this can causesome other blocks to remain unactivated during the simulation. The small Verilog codein Listing 1 and Table 16 illustrates block coverage, toggle coverage and explains why bothof them should be carefully analyzed. Listing 1 shows that r f_data_in block (at Line 6) is
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never activated since break_error is never toggled to logic 1 as shown in Table 16. Thiscoverage results also means that r f_data_in never gets the right-hand side value at line6 as the block is not activated. This example points out the importance of assessing blockand toggle coverage together.
Listing 1: Block coverage example: r f_data_in is not executed [10]

1 if(srx_pad_i | break_error)
2 // The following "begin" block is covered (100%)
3 begin
4 if(break_error)
5 // The following block is not covered (0%)
6 rf_data_in <= {8'b0 , 3'b100);
7 else
8 // The following block is covered (100%)
9 rf_data_in <= {rshift , 1'b0 , rparity_error ,
10 rframing_error };
11 // The following block is covered (100%)
12 rf_push <= 1'b1;
13 rstate <= sr_idle;
14 end

Table 16: Toggle coverage example: break_error is not toggled [10]

Signal Name 0-to-1 Toggling 1-to-0 Toggling

break_error 0 0

6.4.2.2 Application-Specific Formal Property DevelopmentThe development cycle of ICs begins with inferring the specification and requirements ofthe target system. Also, the Design Under Test (DUT) must be verified with a formulatedverification plan, which is defined by both Design and Verification engineers. Then, fea-tures or requirements of the DUT are created and mapped to the formal properties todeploy them in a formal analysis tool [111]. Formal properties are created from the designspecification and implementation decisions. Thus, after extracting the target system’s op-erational behavior through logic simulations, in this step, we translate this behavior tothe formal properties to be used in a formal analysis tool, which will identify additionalApp-safe faults.We use two types of formal properties to define the correct behaviour of the design.The first one is assume statement, which creates an assumption for the specified Booleanexpression that evaluates to either true or false. In the general sense, it specifies that thegiven property is an assumption and is used to generate input stimulus. Hence, assume
statements can be helpful when we define a design configuration or to inform the toolhow the design inputs can behave. Without this assumption, a formal tool checks all pos-sible input combinations of the DUT. There are two benefits of using assume statements inthe formal environment. First, it allows excluding illegal input combinations when known.Legal inputs are those that we expect to see during normal operation. It is not realistic toexpect the design to behave correctly when all possible input combinations are being ap-plied unless we explicitly define every possible set of input combinations that the design
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can theoretically see. The second benefit of using assume statements is that it inten-tionally reduces the state space, which is exhaustive when no assumption is defined. Forexample, as we want to prepare our formal environment considering the design’s opera-tional behavior, we should disable the scan_enable pin as the scan chain is not activatedduring the operation and is used only for test purposes. In this case, the assume statementgiven in (9) is created to inform the formal tool about the scan_enable signal behavior;thus, the input test stimuli of a formal analysis tool are limited accordingly. (9) simply in-forms the tool that scan_enable is always logic-0. Assume statements also increases thesafe fault identification capacity of a formal analysis tool by guiding it. Moreover, similarto the example given below, the input ports of design instances are suitable candidatesfor assume statements.
assume− env{scan_enable == 1′b0} (9)

The second formal property is fault propagation barrier, which creates a formal barrierthat blocks the propagation of a fault. In this case, faults cannot propagate after this bar-rier; therefore, they cannot disturb any safety-critical functionality. For instance, knowingthat the debug unit is not used in the design’s operational mode, we can block all faults topropagate from it and identify more App-Safe faults. As seen in (10), the formal analysistool is asked to block all faults propagated to du_dat_o, which is the debug unit’s dataoutput signal. As in this given example, output ports are proper candidates for a fault
propagation barrier as opposed to assume statements, for which input ports are suitablecandidates.

check_ f sv−barrier {du_dat_o} (10)
Consequently, the application-specific formal properties [112] can be developed using

assume statements and fault propagation barriers. By doing so, the internal architectureand logical details of the target system, the operational constraints (if any), or the initialconfiguration of the design can be defined as formal properties to be used in the formalanalysis step. Therefore, the design’s operational behavior can be transferred from thelogic simulations into the formal analysis tool. The following sub-chapter explains howformal analysis tool uses these application-specific formal properties.
6.4.2.3 Formal AnalysisHaving specified formal properties of a target design in a suitable notation, a formal analy-sis tool can be employed to generate App-Safe faults. The advantage of the formal analysisis that it provides a precise answer to whether a fault is propagated since it considers allpossible input stimuli combinations (yet configured and limited thanks to assume state-
ments as explained before) and hence eliminates the dependency on input stimuli. Inthis step of the flow, a formal analysis tool checks each fault in the target design to seewhether it can be propagated to the observation points or not. If any input stimuli cannotpropagate a fault, it is classified as safe; in our case, it is App-Safe. Otherwise, the faultfalls into the dangerous category.The formal analysis flow, which includes three phases, is shown in Fig. 32. Phase Ibegins with the creation of input files that are Formal Properties established in the previ-ous stage and the DUT. Then, it continues with the development of the TCL setup scriptfor the formal analysis tool. The setup script consists of Verilog files, libraries, and formalproperty files. The setup script first analyzes design and property files to check for syntaxerrors. Then, it defines clock and reset signals. The clock definition is to specify the char-acteristics of how the clock is driven during a formal analysis run. The reset specification
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aims at bringing the design to a known state and avoiding unreachable failure states. Inthe next step, warnings are generated by the formal analysis tool if there is a mismatchbetween formal properties and the DUT. For example, a signal tied to the ground in theDUT and the assume statement that defines this signal as if it is always logic-1 can create amismatch, and a warning is generated. However, as we automatically translate coveragereports to the formal properties, this is not the case for the work proposed in this work.Then, in Phase II, the formal engine proves the formal properties by running the Structuraland Formal checks as presented in Chapter 6.3.3. Finally, in Phase III, App-Safe faults areidentified and reported.

Figure 32: Formal Analysis Flow [10]

In brief, a formal analysis tool uses formal properties to generate safe faults. Whenwe include formal properties driven by SW application, as mentioned before, we enablethe tool to work in a well-specified configuration. Hence, formal analysis with the formalproperties increases the number of identified App-Safe faults.
6.5 Experimental Setup and Results
The proposed application-dependent safe fault identification method is evaluated on theAutoSoC Benchmark suite, which was conceptualized in VII. All the details of the AutoSoCis presented in Chapter 4. This chapter first describes the experimental setup we used toquantitatively assess the effectiveness of the proposed approach. Then we provide theresults in separate sub-chapters.In order to demonstrate the effectiveness of the proposed App-Safe fault identificationmethod, we used the experimental setup shown in Fig. 33. Our setup is composed of twoAutoSoC nodes; each includes a CAN and a UART to communicate with each other, andone of the two AutoSoCs (named AutoSoC-0) is assumed to be active, whereas the other(named AutoSoC-1) is the passive node. Moreover, CCA accesses CAN or UART in boththe AutoSoC-0 and the AutoSoC-1. Thus, each CCA comes in two modes, even thoughthe executed steps are symmetric; the two AutoSoC nodes alternatively receive and sendmessages in the same configuration. Furthermore, even if it is changeable, AutoSoC-0
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receives messages first while AutoSoC-1 transmits first in our experimental setup. Finally,the whole system is simulated at the gate-level.Concerning the EDA tools, we used Cadence Xcelium™ for logic simulations, Cadence®Integrated Metrics Center (IMC) for coverage analysis, Cadence® JasperGold® FunctionalSafety Verification (FSV) App for formal analysis, and Cadence® Xcelium™ Fault Simulator(XFS) for the simulation-based fault injection. However, the approach proposed in thischapter remains applicable to other tool flows as well.In brief, we first performed logic simulations using the hardware configuration de-scribed before, which runs the CCA SW application using different input data sets, asshown in Fig. 31. Then, coverage reports are generated and translated into application-specific formal properties that configure the formal analysis environment according to theSWapplication’s behavior. Finally, the formal analysis tool is deployed to identify App-Safefaults.We present results in two ways. First, safe fault identification is shown in CPU, UART,and CAN, respectively. Second, combined results (simulation-based fault injection + for-mal analysis) are reported for the CPU and CAN modules (this step does not include theanalysis of UART).

Figure 33: Experimental Setup [10]

6.5.1 Safe Faults in CPUFirstly, App-Safe fault identification is checked in the CPU core (which has 96,354 faults intotal) when it runs a SW application. We summarize the safe fault results of the CPU andsafe faults with respect to total faults in the design (shown as %) in Table 17.Table 17 categorizes the results based on the analysis we run. In the top row, it can beseen that we performed four analyses as follows:
• Application-independent: the Formal analysis tool is deployed on the gate-levelnetlist of the AutoSoC without any formal properties, meaning that the identifiedsafe faults are valid for any SW application.
• Baremetal-CCA: the CCA runs bare-metal, which refers to running the SW appli-cation directly on a CPU without the support of an operating system. In order toperform this analysis, the gate-level netlist of AutoSoC and the formal properties(as explained in Chapter 6.4.2.2) are used as inputs to the formal analysis tool.
• RTEMS-CCA: unlike Baremetal CCA, the SW application runs on an operating systemin this analysis, meaning that it can start and stop different processes concurrently.The RTEMS CCA causes higher signal activity when compared to Baremetal-CCA asit runs on operating systems that trigger more signals. Also, RTEMS-CCA uses twoadditional opcodes than Baremetal-CCA. This means that RTEMS-CCA triggersmoredesign components than Baremetal-CCA.
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• Baremetal-Sum: For this analysis, we use an entirely different SW application thanCCA. The application performs a sum operation, and it has fewer opcodes thanBaremetal-CCA. This SWapplication aims to showhowApp-Safe faults changewhenthe CPU is running a different application.
In brief, App-Safe faults are originated from what a SW application executes in an IC.For example, some design components are not accessed during the design’s operationallife, such as debug units or scan chains. In addition, unused opcodes causeApp-Safe faults,meaning that if (for example) the multiplication opcode is not used in the SW applicationthat runs on the IC, all signals related to multiplication hardware become App-Safe faultsas they are not exercised. Table 17 reports the results for the CPU core, also detailing theresults achieved on each component module inside it. In the application-independentanalysis that is shown in the second column, the formal analysis tool identifies 8.785%safe faults with respect to all faults in the CPU. We highlight that all the identified safefaults in the application-independent analysis are Str-Safe faults because the formal toolcould not identify any safe faults using Formal Fault Analysis Check Types mentioned inChapter 6.3.3.2 without formal properties. Concerning the three application-dependentanalyses:
• the Top module includes connectivity signals and configuration-related signals. Among these, debug unit’s address and data signals, interrupt request signals, multicore configuration signals, special-purpose-register signals are identified as safe in all analyses since they are not activated due to the SW applications configuration. De-pending on the opcodes used in the applications, there are slight differences in Baremetal-CCA, RTEMS-CCA, and Baremetal-Sum. For example, RTEMS-CCA trig-gers exception signals, which are connected to the top level.
• the Decode_execute Unit is the module where the instruction memory manage-ment unit (IMMU) and the data memory management unit (DMMU) signals take part. Many safe faults are identified in the IMMU and DMMU, which are not used by the SW applications. The number of safe faults is different between Baremetal-CCA and RTEMS-CCA because of the exception signals used by RTEMS-CCA, as mentioned above. In addition, the deviation between Baremetal-CCA and Baremetal-Sum is due to division and multiplication-related signals, which Baremetal-Sum does not use.
• the Load-Store Unit computes the addresses used by load and store instructions.

Table 17: Safe Faults in CPU [10]

Application-ind. Baremetal-CCA RTEMS-CCA Baremetal-Sum

CPU Modules Safe Faults % Safe Faults % Safe Faults % Safe Faults %

top 1,679 1.743% 1,725 1.790% 1,716 1.781% 1,717 1.782%register file 2 0.002% 5 0.005% 2 0.002% 5 0.005%decode_execute unit 651 0.676% 844 0.876% 719 0.746% 949 0.985%load store unit 910 0.944% 2,380 2.470% 2,317 2.405% 2,380 2.470%writeback mux unit 0 0.000% 0 0.000% 0 0.000% 76 0.079%fetch stage 976 1.013% 1,230 1.277% 1,195 1.240% 1,230 1.277%control stage 3,966 4.116% 11,618 12.058% 6,418 6.661% 11,618 12.058%arithmetic logic unit 55 0.057% 1,000 1.038% 1,000 1.038% 19,478 20.215%decode unit 5 0.005% 267 0.277% 16 0.017% 315 0.327%branch pred. unit 0 0.000% 0 0.000% 0 0.000% 0 0.000%
TOTAL 8,465 8.785% 19,484 20.221% 13,670 14,187% 38,193 39.638%
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Safe faults may exist, as not all addresses are used by the SW applications. In ad-dition, some connection signals create a slight difference between Baremetal-CCAand RTEMS-CCA.
• the Fetch stage fetches the next instruction from memory into the instruction reg-ister. Therefore, it is directly associated with the address range, which is not fullycovered by the SW application. Therefore, safe faults can be identified in this unit.In addition, the difference between Baremetal-CCA and RTEMS-CCA is due to ex-ception signals.
• the Control stage has themost considerable impact on the number of identified safefaults. This unit contains features such as tick-timer, interrupts, and configurationregisters. Since the CPU configuration is the same in all applications, configurationregisters create the same amount of safe faults. However, the tick-timer unit hasa higher activity in RTEMS-CCA; hence, it has fewer safe faults when the CPU runsRTEMS-CCA.
• Concerning the Arithmetic Logic Unit, the proposed technique identifies the sameamount of safe faults in Baremetal-CCA and RTEMS-CCA as they use the same arith-metic opcodes. However, Baremetal-Sumperforms only addition operations; there-fore, all the other arithmetic operations contribute to the safe faults.
• theDecodeUnit is directly affected by the used opcodes; hence, there is a differencebetween the numbers of safe faults, as all three analyses use different numbers ofopcodes.
The results in Table 17 show that the percentage of safe faults varies widely from onemodule to another, depending on the tasks performed by the modules. Also, the numberof App-Safe faults is relevant, accounting for about 20%, 14%, and 40% in Baremetal-CCA,RTEMS-CCA, and Baremetal-Sum applications, respectively.

6.5.2 Safe Faults in UART
Concerning the UART module, which has 19,120 faults in total, we followed the same pro-cedure using two scenarios (application-independent and CCA is compared), and the re-sults are detailed in Table 18. Wealso noted that there is nodifference betweenBaremetal-CCA or RTEMS-CCA, sowe only report the identified safe faults as CCA in Table 18. In short,the proposed technique identified 11.088% safe faults, which is two times more whencompared to the application-independent analysis.More specifically;

• The regs unit has configuration registers, whose value is written in the initializationphase. Since the UART configuration is fixed in CCA, some parts of the UART areunused; thus, several safe faults can be identified in this unit.
• Safe faults in the transmittermodule originate from the configuration of the trans-mission format, such as the selected BAUD rate. Therefore, more safe faults can befound in this unit when the SW application is fixed, as in this work. Correspondingly,
transmitter fifo is partially affected by these factors.

• Concerning the receiver module that is directly affected by the configuration reg-isters, a significant amount increase in the number of safe faults is observed. Thismainly stems from the fact that the receiver module is responsible for generating
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interrupts. However, the CCA works in polling mode, meaning that no interrupt isused. Moreover, the receiver module has a Modem configuration, which CCA doesnot need. By extension, receiver fifo is partly affected, similar to transmitter fifo.

Table 18: Safe Faults in the UART [10]

UART Modules application-ind. CCA

Safe Faults % Safe Faults %

top 9 0.047% 19 0.099%wb_interface 78 0.408% 78 0.408%regs 357 1.867% 1,003 5.246%transmitter 67 0.350% 67 0.350%uart_sync_flops 6 0.031% 6 0.031%fifo_tx 101 0.528% 101 0.528%receiver 171 0.894% 651 3.405%fifo_rx 195 1.020% 195 1.020%
TOTAL 984 5.146% 2,120 11.088%

6.5.3 Safe Faults in CAN
The same analysis is performed for the CAN module, which has 38,012 faults in total, andthe results are provided in Table 19. In the application-independent analysis, the formalanalysis tool can classify only 1.415% of all faults as safe. On the other hand, when theproposed approach is deployed, the amount of safe faults is increased to 12.909%, whichis not negligible.Similar to UART, the number of safe faults in CAN is directly affected by its configura-tion. In CCA, we configure the CAN to work in peliCAN mode, which has extended frameformat messages. When the basiCAN mode is used, more safe faults can be identified. Toput the results given in Table 19 more explicitly;

• Acceptance_code_mask defines whether the corresponding incoming bit is com-pared to the respective bit in the acceptance_code_regs. Similarly, bus_timing_regsdefines the values of the Baud Rate Prescaler, programs the period of the CAN sys-tem. Moreover, clock_divider_regs controls the clock frequency for the microcon-troller and allows to deactivate the clock pin. In addition, the CCA works in pollingmode, so safe faults can be found in the IRQ registers. Consequently, all these reg-isters should not be changed after the initial configuration; thus, this creates addi-tional safe faults.
• Bit Timing Logic is directly affected by bus_timing_regs explained above, so the CCAoriginates some safe faults in this unit.
• Bit Stream Processor corresponds to the control and processing unit of the periph-eral. It is a sequencer that controls the data stream between the transmit buffer,the receive fifo, and the CAN bus. Also, error-detection, arbitration, stuffing, anderror-handling are done in this unit. In addition, the Bit Stream Processor is affectedby the configuration, such as working mode of the CAN like listen only mode or selftest mode. The CCA does not use these modes, which provide safe faults shown inTable 19.

82



• Acceptance filter checks whether themessage currently on the bus has to be storedby the peripheral or not. If the message is accepted, it is stored in the fifo. In otherwords, bit acceptance filter and its fifo is related to acceptance_code_regs and ac-
ceptance_code_mask; therefore, the fixed content of these registers gives rise tosafe faults.

Table 19: Safe Faults in the CAN Controller [10]

CAN Modules application-ind. CCA

Safe Faults % Safe Faults %

top 10 0.026% 41 0.108%can_registers 22 0.058% 769 2.023%acceptance_code_regs 0 0.000% 52 0.137%acceptance_mask_regs 0 0.000% 52 0.137%bus_timing_regs 0 0.000% 26 0.068%clock_divider_regs 11 0.029% 41 0.108%command_reg 13 0.034% 57 0.150%error_warning_reg 10 0.026% 74 0.195%irq_en_reg 0 0.000% 15 0.039%mode_regs 14 0.037% 53 0.139%tx_data_regs 0 0.000% 115 0.303%bit timing logic 46 0.121% 299 0.787%bit stream processor 354 0.931% 2,988 7.861%can_crc_rx 0 0.000% 0 0.000%acceptance filter 3 0.008% 256 0.673%can_fifo 55 0.145% 69 0.182%
TOTAL 538 1.415% 4,907 12.909%

6.5.4 Combined Results: Simulation-based Fault Injection + Formal Analysis
In this step, we combine simulation-based fault injection and formal analysis, as it is pro-posed in this work, to check the increase in the DC. This analysis targets the CPU and theCAN modules in the AutoSoC.As mentioned in Section 6.1, the simulation-based fault injection is not enough to clas-sify all faults. It is needed to analyze the undetected faults to check if the desired DC isreached. If the DC does not match the requirements, then undetected faults must bere-analyzed using alternative methods, such as the proposed technique in this work. Inshort, the purpose of this step is to show that the proposed technique can increase DC toachieve the figures required by a given Automotive Safety Integrity Level.In order to do this analysis, we resorted to the Software-Based Self-Test (SBST) [92]approach in the form of STLs. In the considered scenario the AutoSoC runs Baremetal-CCA in the field, and the STL, when activated, forces the processor to execute a propersequence of instructions. Then, a signature is produced based on the generated results,and the application can compare it with the expected results if there are faults. The de-veloped STL for the AutoSoC CPU is a combination of 57 test programs, partly taken from[7] and partly newly developed for this chapter. Concerning the STL for CAN, we use thesame test programs described in [8]. The STL was developed as a collection of tasks thatcan either operate independently or collectively, depending on the self-test time slot [54].The following steps are applied;
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• First, Str-Safe faults are identified using Cadence® JasperGold® Functional SafetyVerification (FSV) App.
• Second, we use the Cadence® Xcelium™ Fault Simulator to inject SA0 and SA1 faultsat cell ports of the AutoSoC CPU and CANmodules, which run the STL as aworkload.As a result, faults are classified as Detected or Undetected.
• Second, DC is calculated using (8).
• Third, App-Safe faults identified before excluded from Undetected faults. This pro-cess is incremental, always focusing on faults that were previously Undetected.
• Finally, DC is calculated again with the newly achieved numbers using (8).
Fig. 34 and Fig. 35 detail the results of the STL efficiency and uptrend in DC whenApp-Safe faults are identified. Concerning the analysis in CPU, Fig. 34 shows that 8,465Str-Safe faults are identified in the beginning. Then, when simulation-based fault injectionis deployed, 71,255 Detected and 16,634Undetected faults are classified. After simulation-based fault injection, DC is 81.07%, calculated using (8). Then, by applying the proposedsafe fault identification technique using formal methods, 5,627 App-Safe faults are iden-tified, i.e., Undetected faults are reduced to 11,007. Using again (8), DC is increased to86.62%. A similar analysis is performed in CAN as shown in Fig. 35. As a result, DC in-creased from 88.04% to 91.97%.The proposed technique appears as a promising way for the classification of unde-tected faults via safe fault identification. Combined results show that DC is improved byaround 6% for the CPU and 4% for the CAN. Moreover, with a final DC of 91.97%, the CANachieves the requirements for an automotive ASIL B [12] hardware component as-is, i.e.,without design modifications.

Figure 34: Combined Results in CPU [10]
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Figure 35: Combined Results in CAN [10]

6.6 Chapter Conclusions
Functional safety verification is a crucial and non-negotiable requirement that must beconsidered throughout the safety-critical IC design cycle. Therefore, the ISO 26262 func-tional safety standard has been developed to guide how this requirement is implemented.According to ISO 26262, random hardware failures can occur unpredictably during thelifecycle of an IC. Thus, random hardware faults must be classified based on their effects,whether they disrupt any safety-critical functionality or not. Nevertheless, this classifi-cation process is expensive and error-prone since it requires a combination of tools andinput from experts based on their design knowledge. The method proposed in this chap-ter brings a solution to this challenge.The proposed methodology focuses on identifying safe faults on an automotive SoCwhen it runs a single SW application. We extend Functionally-safe faults by the identi-fication of Application-dependent safe faults. The flow relies on code coverage analysisthrough logic simulations and formal methods. The methodology starts with the analysisof code coverage to understand the target system’s operational behavior. In other words,faults that do not disturb any safety-critical functionality are first identified through codecoverage analysis. Then, code coverage results are translated to formal properties, thentransferred to a formal analysis tool to constrain the environment to identify safe faults.The proposedmethodology is demonstrated on the AutoSoC using its CPU, UART, and CANwhen the cruise-control application runs.We computed the number of identified safe faults (specifically focusing on stuck-atfaults). In addition, we combined simulation-based fault injection and the proposed for-mal technique to show the increase in Diagnostic Coverage. As a result, the number ofsafe faults accounts for 20%, 11%, and 13% in the CPU, CAN, and UART modules, respec-tively. Concerning the Diagnostic Coverage, we show that it is increased by 6% and 4% inCPU and CAN modules, respectively. This analysis also proves that the number of unde-

85



tected faults for the same STL is reduced by 1.5-1.6 times for the CPU and CAN, significantlyincreasing the Diagnostic Coverage for an industry-scaled SoC with a sample automotiveapplication.
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7 Conclusions
Safety becomes a fundamental requirement for automotive SoCs. It means that the SoCwill perform the intended function correctly or fail in a safe (anticipated) manner. In thecontext of this PhD thesis, the functional safety of E/E systems has been explored fromdifferent perspectives. In particular, the main focus is the optimization of analysis tech-niques, alongwith their relationship. The presented approaches provide concise andwell-structured usage of functional safety analysis techniques.

First, Chapter 3 presents a functional safety verification and validation methodology,combining three fault analysis techniques to increase the tool confidence level and achievea higher safety level. Formal analysis, simulation-based fault injection, and ATPG tools aredeployed, and more specifically, ATPG was utilized to support simulation-based fault in-jection. The purpose of this chapter is two-fold. The former is to compare tool outputsto increase the confidence level, as required by ISO 26262. The latter is to decrease theoverall efforts of ISO 26262 compliance by increasing fault detection rates. The presentedmethodology compares the results of tool outputs to identify possible malfunctions andpoints the discrepancies to the designer. Moreover, this methodology enables the useof test vectors and test benches generated by the ATPG tool for the simulation of faultsin the simulation-based fault injection tool and the use of a formal analysis tool for safefault identification, which also reduces safety analysis efforts. The experimental resultsshow high fault detection rates and comprehensive tool output reports, contributing toISO 26262 metric achievement.
Second, Chapter 4 provides an automotive representative SoC named AutoSoC. Thefunctional safety research requires a comprehensive platform to evaluate the quality oftheir proposed solutions to the community. It is developed as it is difficult to access rep-resentative automotive designs. The AutoSoC is developed considering its commercialcounterparts with all requirements. It is implemented as customizable so that severalconfigurations would be possible to support more detailed researches. It includes all es-sential safety components, including both hardware and software resources. In addition,an automotive representative software application is also provided. Chapter 4 explainsthe architecture of the AutoSoC and presents the functional safety analysis results in RTLand gate-level. In short, the AutoSoC benchmark suite allows the research community tocontribute more to functional safety research and state-of-the-art by quantitatively eval-uating their solutions’ effectiveness.
Third, Chapter 5 proposes two fault list pruning techniques targeting simulation-basedfault injection campaigns for transient faults. Even at RTL, Fault injection requires an ex-cessively long simulation time that prevents detailed evaluation of hardware componentswith a significant number of injections. Therefore, it is necessary to reduce the effortto support these campaigns. Chapter 5 proposes two solutions. The former is dynamicslicing-based fault list pruning that applies dynamic slicing on the RTL code to pinpointfault injection time-steps accurately and allows injection of only critical faults in thesetime windows. In this way, the dynamic slicing-based fault list pruning narrows downthe fault space and provides reduced simulation time. As a result of the experiments onan industrial-sized CPU, an average 5-10% extra gain in simulation time for fault injectionis achieved, which significantly improves the total chip validation costs, as this phase isthe most time-consuming. The latter is a mapping-based fault list pruning technique thatenables the representation of gate-level SET faults by multiple SEU faults at RTL. The pur-pose is to change the abstraction level from gate-level to RTL and reduce the complexityof expensive gate-level fault injection campaigns. Each SET fault is mapped to a flip-flop,considering their cone-of-influence. Also, formal analysis is deployed to perform a propa-
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gation analysis to identify SET faults that propagate to flip-flip inputs in all cases (indepen-dent from the workload). Then, flip-flop sets are created that represent each gate-levelSET fault, and fault space is calculated. Experimental results prove that the fault space ispruned up to tens to hundreds of times.Finally, Chapter 6 enhances hardware fault classification with the help of formal anal-ysis. According to ISO 26262, potential faults in the automotive system must be detectedand correctly governed when the SoC runs on the field to avoid life-critical situations.Therefore, it is necessary to classify each fault based on their effects, whether they are safeor dangerous. This is usually performed by expert judgment; however, this is expensiveand error-prone. Thus, Chapter 6 proposes an automated hardware fault classificationtechnique that increases the accuracy of the process. The presented technique adopts apractical scenario in which the AutoSoC, an automotive representative SoC, runs a singlesoftware application during its operation life. The technique starts with the extraction ofthe AutoSoC behavior when it runs a CCA. This is done by hardware code coverage analy-sis. Then, this behavior automatically translated into formal properties to be used in theformal tool for safe fault identification. This also constraints the formal environment ac-cording to the software application that is under the analysis. Additionally, the CCA usesUART and CAN to communicate with the external world, making the presented techniquemore comprehensive and realistic. As a result, the formal analysis identifies the safe faults,accounting for 20%, 11%, and 13% for the CPU, UART, and CAN, respectively. Furthermore,the simulation-based fault injection is fed by these results, and safe faults are excludedfrom the campaigns to check if the DC of the deployed STLs is increased. Consequently,6% and 4% increase in DC is observed for CPU and CANmodules. This analysis proves thatthe technique presented in Chapter 6 successfully increases the DC and makes it easy tomeet required safety levels.As future work, more automation can be provided to be used to support both perma-nent and transient fault analysis campaigns. Also, the characterization of workloads (ortest benches) can be targeted to identify non-critical time-steps more efficiently and re-duce manual effort. This also contributes to narrowing down the search space of formalanalysis and reducing the efforts of safe fault identification. In addition, cross-layer ap-proaches can be adopted and studied more, enabling fault analysis at several abstractionlevels.
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Abstract
Methods to Optimize Functional Safety Assessment for Auto-
motive Integrated Circuits
In recent years, the usage areas of electronics have been increasing rapidly. In parallel withthis, due to technological developments, the complexity of these electronics increases,and they become more susceptible to errors. In addition, electronic devices must be de-signed and verified according to the area in which they are used and consider the require-ments of this area. Especially if we consider areas such as aviation or automotive wheresafety is critical, we can easily deduce that even the slightest problem in electronics canthreaten human life. Therefore, electronics used in safety-critical areas (typically SoC)must be designed and verified by following specific standards. Accordingly, in 2011, theISO 26262 functional safety standard was developed for electronics to be used in auto-motive. ISO 26262 was revised in 2018.

According to this standard, SoCs used in automotive must contain safety mechanismsto prevent possible faults and their effects. Therefore, it should be determined how effec-tive these safety mechanisms are in fault prevention, and the ASIL of the SoC or hardwareshould be determined according to the result. Various analysis methods can be used todo this, including those recommended by ISO 26262. Because, considering the hardwarecomplexity of SoCs used in automotive today and the complexity of the software runningon them, these analyzes can take much time. This increases the design costs of SoCs andeven makes it difficult to meet the time-to-market criterion. For this reason, it should becarefully studied how these analysis methods can be made more efficient and optimal.
This PhD thesis focuses on making the above-mentioned functional analysis methodsmore efficient. Various methods have been proposed to do this, and their effectivenesshas been proven by experimental studies and published. First of all, three tools that can beused in fault analysis were combined, and their results were compared in accordancewithISO 26262. At the same time, test vectors and test benches produced by ATPG were usedinstead of functional testbench in simulation-based fault injection tool in order to use thepower of ATPG in detecting faults. Thus, the fault detection rate has been increased. Later,AutoSoC was proposed as a lack of open-source and representative SoC was identified inthe field of functional safety. AutoSoC, as an openRisc-based, open-source, modular SoCcontaining safety mechanisms also recommended by ISO 26262, is a comprehensive plat-formwhere researchers can try themethod they have developed. AutoSoCwas presentedas RTL and gate-level, some functional safety analyses were performed, and the resultswere shared. Next, simulation-based fault injection campaigns were optimized throughfault list pruning: (i) The target designs were simulated, coverage results were analyzed,and critical time-steps and; therefore, critical faults were detected, then the fault injec-tion campaign was carried out to inject only these faults. Thus, the execution times offault injection campaigns were reduced by not injecting non-critical faults. (ii) By chang-ing the abstraction level, fault injection was carried out only on these flip-flops by makingsimultaneous multiple fault injections. In this way, simulation-based fault injection cam-paigns were optimized by reducing the fault space. Additionally, safe fault identificationhas been performed in an automotive SoC (the AutoSoC) when it runs a CCA applicationduring its operational life. In this work, which simulates a realistic situation, the parts thatthe CCA does not use in the circuit were determined through hardware code coverageanalysis. In other words, the behavior of CCA was identified, and then this behavior wasautomatically translated into formal properties. Finally, the increasing trend in DC withthe help of obtained safe faults was shown on the AutoSoC’s CPU and CAN.
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As a result, this PhD thesis has optimized and made the analysis methods requiredfor automotive SoCs more efficient. This PhD thesis has a lot of promise for research infunctional safety and safety-critical design.
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Kokkuvõte
Meetodid autotööstuse kiipide funktsionaalse ohutuse hinda-
mise optimeerimiseks
Viimastel aastatel on elektroonika kasutusalad kiiresti kasvanud. Paralleelselt sellega suu-reneb tänu tehnoloogilisele arengule elektroonikaseadmete keerukus ja need muutuvadvastuvõtlikumaks vigadele. Lisaks peavad elektroonikaseadmed olema projekteeritud jakontrollitud vastavalt nende kasutusvaldkonnale ning arvestama selle valdkonna nõude-id. Eriti kui arvestada valdkondi, nagu lennundus või autotööstus, kus ohutus on kriitili-ne, võime järeldada, et isegi väikseim elektroonikaprobleem võib ohustada inimelu. See-tõttu tuleb ohutuskriitilistes piirkondades (tavaliselt kiipsüsteem) kasutatav elektroonikaprojekteerida ja kontrollida vastavaid standardeid järgides. Sellest lähtuvalt töötati 2011.aastal välja funktsionaalse ohutuse standard ISO 26262 autotööstuses kasutatava elekt-roonika jaoks.Nimetatud standardi kohaselt peavad autotööstuses kasutatavad kiipsüsteemid sisal-dama ohutus- mehhanisme, et vältida võimalikke rikkeid ja nende tagajärgi. Seetõttu onoluline kindlaks teha, kui tõhusad on need ohutusmehhanismid vigade ennetamisel, javastavalt tulemuselemäärata kiipsüsteemi või riistvaramooduli ASIL tase. Selleks saab ka-sutada erinevaid analüüsimeetodeid, mida soovitab ka ISO 26262. Arvestades tänapäevalautotööstuses kasutatavate kiipsüsteemide riistvara ja nendel töötava tarkvara keerukust,võivad need analüüsid võtta palju aega. See suurendab kiipsüsteemide projekteerimisku-lusid ja muudab turule jõudmise aja kriteeriumi täitmise keeruliseks. Sel põhjusel tulekshoolikalt uurida, kuidas neid analüüsimeetodeid tõhusamaks ja optimaalsemaks muuta.Käesolev doktoritöö keskendub ülalnimetatud funktsionaalse analüüsi meetodite tõhus-tamisele. Selleks on välja pakutud erinevaid meetodeid ning nende efektiivsus on ekspe-rimentaalsete uuringutega tõestatud ja avaldatud artiklites. Kõigepealt ühendati kolm ri-kete analüüsimisel kasutatavat tööriista, mille tulemusi võrreldi vastavalt standardile ISO26262. Samas kasutati simulatsioonipõhise funktsionaalse testi asemel testigeneraatoripoolt genereeritud testvektoreid ning rikete sisestamise tööriista, et kasutada ära testi-generaatori võimsust rikete tuvastamisel. Seega suurenes tuvastatud rikete hulk. Samutiarendati välja AutoSoC, mis kujutab endast openRISC-i protsessori arhitektuuril põhine-vat avatud lähtekoodiga modulaarset kiipsüsteemi. AutoSoC sisaldab turvamehhanisme,mida soovitab ka ISO 26262 ning on terviklik platvorm, mille peal teadlased saavad endaväljatöötatud meetodeid proovida. AutoSoC on esitatud nii registersiirde kui ka loogika-lülituste tasemel, sellega viidi läbi mõned funktsionaalohutuse analüüsid ja jagati tule-musi. Järgmisena optimeeriti simulatsioonipõhiseid rikete sisestamise kampaaniaid rike-te loendi kärpimise kaudu: (i) Simuleeriti skeeme, analüüsiti katvuse tulemusi ning krii-tilisi ajasamme ning seetõttu tuvastatud kriitilisi rikkeid, siis viidi läbi rikete sisestamisekampaania identifitseeritud kriitiliste rikete jaoks. Tänu sellele vähenes rikete sisestamisekampaaniate läbiviimise aeg. (ii) Abstraktsioonitaseme muutmisega viidi rikete sisestusläbi ainult kriitilistele mäluelementidele, sisestades samaaegselt mitu riket. Sel viisil op-timeeriti simulatsioonipõhiseid rikete sisestamise kampaaniaid, vähendades rikete hulka.Lisaks viidi AutoSoC skeemil läbi ohutute rikete tuvastamine, kui see töötab CCA rakendu-sega oma tööea jooksul. Selles doktoritöös, mis simuleerib realistlikku rakendust, määratiriistvarakoodi katvuse analüüsi abil need osad,mida CCA rakenduses ei kasutata. Teisisõnuanalüüsiti CCA käitumist ja seejärel teisendati see käitumine automaatselt formaalseteksomadusteks. Lõpuks, AutoSoCis viidi läbi turvaliste rikete tuvastamine, kui see töötab omatööea jooksul CCA-ga. Lühidalt kokku võttes, käesolev doktoritöö optimeerib ja muudabtõhusamaks autotööstuse kiipsüsteemide analüüsimeetodeid.
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Abstract— Higher Tool Confidence Level (TCL) is needed for tools used on the verification of safety-critical SoCs, 

aiming to achieve the required Automotive Safety Integrity Level in ISO 26262. This paper presents a methodology to 

improve the confidence level of functional safety verification flow. To do this, we compare the fault-list generated by 

the fault injection (FI) simulator with the Automatic Test Pattern Generation (ATPG) flow for stuck-at (SA) fault 

types. Moreover, we compare fault coverage results by using test vectors generated by the ATPG tool so the result of 

the FI simulation is compared to the results gained from the ATPG. This is a way to improve simulator’s confidence 

level by taking advantage of strength of the ATPG. 

Keywords—iso26262; functional safety; tool confidence; atpg; dft 

I. INTRODUCTION 

Functional safety (FS) refers to the absence of unreasonable risk caused by systematic failures and random 

hardware failures [1]. FS and especially the analysis of random failures are becoming part of the requirements for 

the design of complex systems. Therefore, a tighter integration between FS analysis and the standard platform 

design and verification is required. To achieve the FS of SoCs it is important analyze the use cases for all the flow 

tools according to their probability of introducing errors. This analysis shall evaluate if the malfunctioning tool or 

its erroneous output can lead to the violation of a safety requirement [2]. Based on this analysis, ISO 26262 Part 8 

covers all aspects of TCL and defines key concepts of confidence and qualification [1]. The TCL assesses the 

error injection risk of each tool in the flow to document the confidence level for the data processing of each tool. 

In this work, we increase the TCL of FI simulator tool. One way for accomplishing this is to compare results 

of FI simulator with the well-known and trusted results from ATPG. The purpose is to make FI simulator as 

optimal as the ATPG tool. We focus on two main aspects: The first is to assure that the instrumentation of the 

ATPG tool and the FI simulator is equivalent i.e. all optimizations are used. The second is to compare fault 

coverage results reported by the ATPG tool and the FI simulator. Developed methodologies are demonstrated as 

proof-of-concepts within the Cadence Design & Functional Safety flow [3] and the context of the ISO 26262. 

The rest of this paper is organized as follows: in Chapter II, we mention about related works. Chapter III 

includes overview information about functional safety, fault injection simulation and the ATPG. We explain our 

approach and show the results in Chapter IV and V. In the final chapter, we conclude this paper by summarizing 

the work. 

II. RELATED WORK 

According to the ISO 26262 [1], verification tools employed on safety-critical automotive embedded systems 

must undergo qualification. In [4] authors present a semi-automatic qualification method involving a monitor and 

fault injection that reduce cost in the qualification process. In [5], authors define equivalence and dominance 

relations between fault pairs to optimize fault lists. In [6], authors tie functional safety to the traditional EDA 

domain. 

Our approach, beside literature, uses results of the ATPG to prove the confidence of FI simulator and evaluate 

the tool potential impact on safety applications and the tool error detection capabilities. This means that same 

fault list is generated and most of the results are same with the ATPG tool. 
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III. OVERVIEW 

A. Functional Safety and ISO 26262 

Functional safety is the automotive industry standard, designed for safety-related systems for series 

production passenger vehicles with a maximum gross vehicle mass up to 3500 kg and that are equipped with 

one or more electrical/electronic subsystems [7]. Malfunction of the electrical/electronic component is classified 

into two types as systematic failures and random failures. Systematic failures represent the failures in an item or 

function that are induced a deterministic way during development, manufacturing or maintenance. Random 

failures represent failures during the lifetime of a hardware element. They can be classified as permanent faults 

(stuck-at faults) and transient faults (single-event-upsets or soft errors). Our focus in this work is permanent 

faults. 

The design of safety systems involves error correction using checkers and error correction using redundancy. 

The former defines checkers which monitor the systems and trigger error response and recovery features when 

necessary. The latter defines redundancy which involves duplication of the entire system or a portion of the 

system. All requirements must be implemented by tracing from the system to components and ensured their 

development flow aligns with a tool confidence level. Also, recording and reporting functional safety measures 

to have a verified system are important. 

B. Fault Injection Simulation 

Fault injection enables to verify the capability of a safety mechanism to recognize failures in a design’s 

functionality, by injecting faults into the design. One way of doing this is fault injection simulation. In fault 

injection simulation, target system and the possible hardware faults are modeled and simulated by the simulator. 

In this process, the system behaves as if there is a hardware fault. The advantage of the fault injection simulation 

is that there is no risk to damage the system in use. Moreover, it is cheap in terms of time and effort. 

Additionally, fault injection simulation has a high observability and controllability in presence of faults.  

To inject faults into a design, the FI simulator needs to know the fault target at which to inject fault. In this 

work, we enable fault instrumentation on the ports of cell instances. Therefore, all library cell ports are 

identified as faultable within the specified instance or module. This is equivalent to using the ATPG semantics.  

There are different types of fault model to inject on specified fault nodes. The FI simulator supports single 

event upsets, stuck-at-0/stuck-at-1 and single event transient. We use stuck-at fault models in this work. The 

stuck-at model forces a signal to either 0 or 1 from the start of fault injection through to the end of simulation. 

This model can apply to nets or registers. The fault injection simulation flow starts with invoking of elaborator 

and instrumenting of faults according to a fault target. Then, a good simulation is run to generate reference 

values for fault simulation. Additionally, strobe points are specified in this point to monitor signals. Finally, one 

or more fault simulations with faults injected are run and generated reports are analyzed by the help of 

functional outputs (F-O) and checker outputs (C-O). Single run is illustrated in Figure 1.  

 

Figure 1-Fault Injection Simulation 
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C. Automatic Test Pattern Generation 

Testability has become a critical concern for ASIC designers. Design-For-Test (DFT) techniques provide 

measures to test the manufactured device for coverage and quality. We use here Scan-based test which is one of 

the DFT techniques. This method basically replaces D flip flops with their scan-equivalent flops and serially 

connects the scan flops into scan chains. By replacing the flip-flops with their scan-equivalent flip-flops, the 

ATPG tool can achieve higher fault coverage and generate a more compact test pattern set for the design. 

Defining a testmode for ATPG is an important step. A testmode is a specific test configuration of the design. 

The configuration defines how the test structures are accessed and how clocking is controlled. Each configuration 

is defined by the clocking and other test function pins, and the current test methodology. In this work, we use 

FULLSCAN testmode. The purpose of this testmode is to get static test using no compression.  

Another step of the ATPG is generation of test vectors. ATPG tool can write test vectors to meet the 

manufacturing interface needs of IC manufacturers in different formats such as Standard Test Interface Language, 

Waveform Generation Language, and Verilog. In this work, we use Verilog test vectors.  

IV. APPROACH 

ISO 26262 tool confidence level can be improved by use of redundant methodologies to detect errors in the 

tool outputs. Cadence offers different technologies capable of generating fault list and ATPG from the Cadence®  

ModusTM DFT Software Solution can work together with the Cadence® XceliumTM Fault Simulator (XFS) to 

create robust and optimized fault injection campaign. In this work, XFS for FI simulation, Cadence® GenusTM 

Synthesis Solution for synthesis and Modus for ATPG are used. Our purpose is to compare two different 

approaches regarding the results and improve the FI simulator’s confidence. Comparison of the results to a 

different approach increases TCL and provide more optimized fault list. In other saying, we show that different 

tools capable of generating fault list bring about same fault list. Scan-based Design-for-Test structure is inserted 

during the synthesis. We have two methodologies explained below. 

A. Instrumentation comparison between the ATPG tool and FI simulator 

Fault-list can be generated both by the ATPG tool and FI simulator. ATPG tool is accepted as reference 

because of its usage for long years in industry. Hence, it is expected that FI simulator’s fault optimization 

achieves the same capabilities as the ATPG tool. The purpose is to prove that FI simulator contains all 

instrumentation and optimization potential. In other saying, the aim is to show that instrumentation of FI 

simulator and ATPG tool is equivalent. 

This approach is shown in Figure 2 as Compare Optimized Fault Lists. Here, the fault lists generated by both 

tools compared to verify: whether the same faults are instrumented, if they have the same number of prime 

faults (collapsing), and if they have the same number of untestable faults. Our methodology finds fault collapsed 

groups and differences between lists if there exists. For this comparison, the designs are synthesized with DFT 

insertion. Elaboration of gate level (GL) Design Under Test (DUT) is enough in the simulator side. For the 

ATPG side, test patterns are generated by the ATPG tool after scan-chain insertion. The ATPG tool creates 

logic/scan test and produce results. All comparisons are done for stuck-at faults. 

B. Compare fault coverage results reported by the ATPG tool and FI simulator 

ATPG is a process used in SoCs testing wherein the test vectors required to check a device for faults. Test 

vectors are automatically generated by the tool. However, testbench is required for FI simulator. Therefore, it is a 

good idea to use test vectors generated by the ATPG tool as a test instead of writing a testbench.  

The FI simulator can be used in conjunction with ATPG. In this way, each fault detected by the ATPG tool 

should be detected by FI simulator. The aim is to prove that FI simulator and the ATPG tool have the same 

coverage. 

In this step, DFT is inserted by the synthesize tool and the ATPG tool is used to collect all SA faults at GL 

netlist and generate test patterns as shown in Figure 2 as Compare Annotated Fault Lists Level. All SA faults 
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instrumented by the ATPG tool are injected by FI simulator. By the help of this, ATPG tool annotated fault list 

and FI simulator annotated fault list can be easily compared and fault coverage differences can be observed.  

ATPG results include different annotation types such as tested, untested, ignored and collapsed. Beside this 

fault injection simulation results have annotation results such as detected, untestable, and undetected. To make a 

comparison between results, we define a comparison method shown in Table-I. Second row of the table explains 

that if the fault is tested in Modus, it needs to be detected in Xcelium. In this case, check annotation result is 

PASS. Last column shows the annotation result whether it is pass or warning. WARNING means that there is a 

difference between results. This method helps for debugging in case of difference between results and tool 

verification for ISO 26262. 

Table I-Annotation Results Comparison Method 

Xcelium Annotation Types Modus Annotation Types Check Annotation 

Detected Tested by simulation PASS 

Untestable Ignored (unclassified) PASS 

Potentially Detected Tested by implication PASS 

Undetected Collapsed Tested by simulation WARNING 

Untestable Collapsed Tested by simulation WARNING 

 

Figure 2-Flow 
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V. RESULTS 

First, we show that ATPG and fault injection simulator generate the same fault lists. This provides us to 

compare results easily. All circuits are analyzed for SA0 and SA1 fault models. Collapsed and untestable faults 

are included for analyses. 

Table-II shows the results of instrumentation comparison between Modus and XFS. This comparison is 

shown in Figure 2 as compare optimized fault lists. IWLS 2005 benchmark circuits [7] are used to collect results. 

Optimized fault list includes faults that do not need to be simulated since behavior of the design in presence of 

these faults can be predicted. First row of Table-II gives the number of instrumented faults for each design. Last 

row of this table shows the number of optimization differences. The reason of this is different collapsing approach 

of tools. In other saying, collapsing methods of tools have effect on the results. For example, Modus does not 

collapse primary inputs; however, primary inputs are collapsed by XFS. This does not change functionality of 

circuits.  

Table II-Comparison of optimized fault lists 

  ac97 aes dma total 

Nr of instrumented faults 57226 91916 66708 212850 

Nr of optimization differences 12 4 76 92 

 

Table-III shows the results of the second part of this work which is comparison of fault coverage results and 

annotated fault list level reported by tools. Here, we use ITC’99 benchmark circuits [8] to generate results. For 

each fault listed in the ATPG annotated fault list, faulty behavior is simulated, and the observation points are 

compared against the reference values generated during the good run as shown in Figure 1. This flow is shown in 

Figure 2 as compare annotated fault lists level. For each tested design, number of total faults in Xcelium and 

Modus can be seen in Table-III. Xcelium columns shows the number of faults after fault simulation with ATPG 

test vectors. Last column shows the comparison results that is explained in Section IV.  Overall results point that 

although test vectors generated by Modus is for external tester devices, we obtain same fault coverage values 

when we applied test vectors into the fault injection simulation tool. The length of test vectors is important here. It 

must be set to maximum length in order to obtain correct results. 

 

Table III- Comparison of annotated fault list level 

Design Xcelium Modus Check Results 

b01 230 230 PASS 

b02 174 174 PASS 

b03 882 882 PASS 

b04 2268 2268 PASS 

b05 2512 2512 PASS 

b06 274 274 PASS 

b07 1882 1882 PASS 

b08 766 766 PASS 
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VI. CONCLUSIONS 

FS becomes a crucial requirement in the safety critical automotive systems. This is causing a shift in the 

traditional design flow and pushing ISO26262 compliance into the traditional EDA tools. Therefore, it is vital to 

improve TCL. For this purpose, we propose methodologies to improve TCL in FI simulator by using strength of 

the ATPG. By considering guidance of ATPG results, we show that FI simulator contains all 

instrumentation/optimization potential and they have same coverage results. In the first method, optimized fault 

lists are compared. Results show that there are differences between the ATPG and FI simulator due to collapsing 

approach of tools, but this does not affect functionality of the circuits. In the second part of this paper, we 

compare annotated fault list level of the tools by using test vectors generated by the ATPG tool as a test in FI 

simulation. This method shows that both tools have same annotated fault list level and coverage values. 
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Abstract—This work aims at an alternative method to verify the correctness of Fault Lists generated by fault 

simulators tools in context of safety verification. The lists generated by simulation tools are verified against lists from 

formal tools. The consistency evaluation between the lists supports the Tool Confidence Level (TCL) assessment, 

defined in the ISO26262. In addition, formal tools have the potential of performing optimization in Fault Lists by 

annotation of the expected behavior of the design under fault. Our work demonstrates the feasibility of using Formal 

Methods to verify and optimize the fault list from simulators. Results indicate an average reduction of 29.5% on the 

number of faults to be simulated and demonstrate that it is possible to achieve TCL by verification of the fault lists. 

Keywords—ISO26262; Fault Injection; Formal; Simulation; Tool Qualification. 

I. INTRODUCTION 

With the increasing complexity in automotive applications such as autonomous driving, the use of electronics 

systems in this domain is growing exponentially. This is causing a shift in the traditional design flow and is pushing 

ISO26262 compliance down to the semiconductor chain. As a result, Functional Safety compliance becomes part 

of the requirements for the development of complex systems. During the development of an Integrated Circuit (IC) 

compliant with ISO26262, one of the critical tasks is the evaluation of the effectiveness of the design to cope with 

random hardware failures. This is usually done by execution of Fault Injection (FI) Simulations, where each 

possible fault candidate of the design is evaluated for robustness to random faults, and the behavior of the design 

under these faults is simulated. In complex designs, where millions of design components are susceptible for 

random faults, this process becomes challenging [1]. 

To facilitate FI Simulation campaigns, EDA tools may be used for automation of behavioral analysis of a design. 

By examining the description of a design, simulation tools are able to identify what design components should be 

considered for fault injection and simulate the behavior of the design under the effect of these faults. The provided 

automation increases the possibility of faults being introduced or masked by malfunction in the tool. Aiming to 

avoid these malfunctions, ISO26262 includes instructions for qualification of tools. Any tool that supports activities 

required by the standard, must be evaluated to show the minimum level of confidence necessary for the intend 

activities. 

The level of confidence of a tool is determined by evaluating the possibility of a malfunctioning to introduce or 

fail to detect errors in the design under development. In the case of a tool used in FI Simulation, a malfunction 

could mask or introduce an error on the fault candidates and on the analysis of the behavior of the faulty design. To 

guarantee the confidence in the results generated by the tool, an evaluation methodology is required. The outputs 

of the tool should be verified to prevent or detect any malfunctions. 

Considering the automation provided by EDA tools on FI Simulations, this work focuses on improving the 

Level of Confidence on the Fault Lists generated by simulators with Formal Methods. In addition, the results from 

formal analysis allowed us to optimize the Fault Lists and reduce the time of FI Simulation campaigns. 

II. RELATED WORK 

The challenges of tool qualification per ISO26262 are exemplified in [2]. The authors present a semi-automatic 

qualification method for a verification tool that can reduce costs in the qualification process. The work highlights 
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the importance of applying automatic verification on the outputs of a tool, to decrease the efforts of manual 

verification. In [3], formal methods are used to determine the behavior of a design under fault. The authors propose 

a fault injection model that allows the verification of a design by symbolic simulation. A mixed approach using 

formal methods with simulation to decrease the time of fault injections campaigns, is explored in [4]. Formal is 

used to show that a failure state is not achievable with the injected fault, thus the simulation can be stopped. 

Different works are employing combined fault injection analysis flows with simulation and formal methods, [5] 

[6][7]. The strength of formal methods, in analyzing the behavior of a design to all test stimulus, is applied to 

leverage the most appropriate setups for the simulation campaigns. 

Our approach combines simulation and formal methods as a methodology for verification of the results 

generated by both tools. Formal analysis is used to verify Fault Lists generated by the simulator, thus increasing 

the confidence in the tool outputs, as required by ISO26262. To the best of our knowledge this approach was not 

previously used. In addition, as seen in other works, formal analysis can reduce the number of required simulations 

by pre-evaluating the fault propagation potentials. 

III. FAULT INJECTION CAMPAIGNS 

ISO26262 requires that any component that implements a safety related functionality, reach a minimum level 

of tolerance to random hardware failures. Coverage for this type of failure is usually increased by addition of Safety 

Mechanisms to the design. Safety Mechanisms should be able to guarantee that fault propagation cannot disturb a 

safety related functionality. 

The effectiveness of the design to cope with random hardware failures should be quantitatively demonstrated 

as defined by the standard. To accomplish this, it is necessary to assess the efficiency of the Safety Mechanisms to 

handle critical faults thus allowing to achieve targeted safety metrics. Fault Injection Simulation is a widely used 

technique to perform this analysis being the method recommended by ISO26262. 

A. Fault Injection Simulation 

Analysis of Fault Injection by Simulation is widely used and available in a variety of tools. These tools are able 

to analyze a Register Transfer Level (RTL) or Gate-Level (GTL) descriptions of a design and, based on given test 

inputs, simulate their behavior. The effect that a fault causes in the design is determined by comparing the behavior 

of the design with and without faults. The selection of the tool must consider the available features and aspects of 

performance, as FI Simulation campaigns can become long as design complexity increases. Our work deploys 

Cadence® Xcelium™ Fault Simulator (XFS) to perform the Fault Injection Simulation [8]. The flow implemented 

by XFS for Fault Injection Simulation is as follow: 

1. Elaboration of RTL/GTL design description. 

2. Fault List Generation: fault node candidates found in the design are listed for each available fault type. 

User should define rules (e.g. all signals) to identify fault node candidates and fault types (e.g. Stuck-

at-0 (SA0) and Stuck-at-1 (SA1)). Information is stored in a Plain Fault List. 

3. Fault List Optimization: Plain Fault List is analyzed to identify faults that do not need to be simulated 

as the behavior of the design in presence of these faults can be predicted. Information is stored in an 

Optimized Fault List. 

4. Good Simulation: fault-free behavior of design is simulated. The user should define observation points 

in the design to identify: (1) Fault propagation to a functional output: functional strobes; (2) Activation 

of the Safety Mechanism: checker strobes. Strobe values during good simulation are stored. 

5. Fault Injection Simulation: For each fault, listed in the Optimized Fault List, the design faulty behavior 

is simulated, and the observation points compared against the reference values generated during Good 

Simulation. Results of FI are stored in the Annotated Fault List. 
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Looking on the perspective of Tool Qualification, there are three main outputs of the Simulation tool that should 

be verified: The Plain Fault List, the Optimized Fault List and the Annotated Fault List. Figure 1 illustrates the FI 

Simulation flow with the required user inputs and described outputs. 

 

 

Figure 1. Xcelium Fault Injection Simulation Flow. 

Although, FI simulation is the recommended method for FI analysis, the process of simulating each single Fault 

is highly costly. As the behavior of the design is simulated with single stimulus at a time, there is a considerable 

chance that faults will not propagate to a strobe, in other words will be Undetected for this specific stimulus. 

Defining the required group of stimuli to assure that every single fault will propagate to a strobe is nearly impossible 

in complex designs. To address these challenges, different technologies are being analyzed to decrease the efforts 

of FI analysis. The use of Formal Methods is a promising solution, being already deployed by different vendors in 

their Formal Solutions. 

B. Fault Analysis by Formal Methods 

While FI simulation is limited to a single context, applying a single stimulus using a single fault model, formal 

fault analysis is not limited to a specific time or state. Instead, the context is global, and every evaluation context, 

stimulus and faults, are considered. Consequently, formal analysis can exhaustively prove that an Untestable fault 

can never propagate to a strobe. If there is no possibility of propagation, the fault can be considered Safe and do 

not need to be simulated. 

Different vendors are implementing FI Analysis capabilities in their Formal Solutions, this work uses the 

Functional Safety Verification (FSV) application from Cadence JasperGold® (JG) Formal Verification Platform. 

JG FSV requires no formal languages knowledge, as all required properties are automatically generated by the tool. 

Fault Analysis is available in a standalone mode, but also includes build-in support for integration with XFS, 

allowing the deployment of both tools in a unified FI Analysis flow. JG FSV includes two main fault analysis 

techniques, Standard Analysis and Advanced Analysis [9]. 

The Standard Analysis verify the testability of faults. It is an automated pre-qualification flow for simulation 

that improve the results of the Optimized Fault List. FSV applies structural fault analysis techniques to verify if the 

injected faults could affect the results on one of the strobes. In addition, the fault list is optimized by Fault Relations 

Analysis. The tool analyzes the design for relationship between fault pairs in which the result of one fault can be 

predicted by the behavior of the other. Fault pairs are then included in the same Collapsing Group. The behavior of 

all Collapsing Group is predicted by simulation of only one representative of the group, called the Prime Fault. 
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The Advanced Analysis deploys formal propagability and activation analysis. Activation Analysis checks 

whether the fault can be functionally activated from the inputs. Propagation Analysis checks whether the fault can 

propagate to a strobe. If it cannot, then it is determined to be Safe. If it can, this analysis will identify the necessary 

stimulus for propagation. The strobes can be functional or checker. Propagation of the fault to a functional strobe 

can lead to a functional safety violation, while propagation to a checker strobe indicates that the Safe Mechanism 

detected the fault. Figure 2 illustrates JG FSV Fault Injection Advanced Analysis flow. Properties to verify the 

propagation effects from faults and strobes detection are automatically generated, and then verified to all possible 

input stimulus. Results are compared against a copy (Bad Machine) of the design were the fault is injected. 

 

Figure 2. Jasper Gold FSV Fault Injection Analysis Flow. 

The different strengths of Simulation and Formal can complement each other for FI Analysis. The combined 

flow allows reduction of simulation efforts by increasing fault optimization, identifying propagation potentials and 

by identifying stimulus that will cause fault propagation during simulation. 

The build-in integrated flow allows deployment of JG FSV Standard Analysis on the Optimized Fault List from 

XFS. The formal analysis will reduce the number of faults to be simulated by leveraging formal results for Safe 

Faults and Collapsing Groups. After simulation, JG FSV Advanced Analysis can be executed on the remaining 

Undetected faults to verify if they can propagate to a strobe and what is the required stimulus. 

The FI Analysis from JG FSV can generate the same outputs that are generated by XFS. JG FSV flow starts by 

Analyzing and Elaborating a design description. Next, user should set the fault type and design candidates for fault 

injection, generating a Plain Fault List. After, the Standard Analysis will generate an Optimized Fault List, including 

Safe and Collapsing information. And last, the Advanced Analysis will generate an Annotated Fault List by 

including information about propagation and detection of faults. By using formal to generate the same outputs from 

the simulator, it is possible to automatically verify the consistence between the results. As stated by the ISO26262, 

prevention or detection of tool malfunctioning can be accomplished through redundancy in software tools [10]. 

IV. VERIFICATION AND OPTIMIZATION FLOW 

Even though the build-in integrated flow between Xcelium and JG facilitates the FI Analysis, from the 

perspective of tool qualification, it is preferable to run both tools in standalone mode. To use the outputs from 

formal to verify the outputs from the simulator, it is necessary to show that there is no interference between the 

tools. As during the integrated flow, the tools share the same fault database, we have decided to separate the flows.  

 To automate the evaluation of the outputs generated by both tools, a Build Manager application was developed. 

For each given design, the application automates the elaboration and analysis of the design, on both tools, and 

controls the execution flows, including the formal analysis in JG FSV and FI simulations on XFS. Finally, the 



 

5 

 

relevant data is retrieved from both tools and compared. The comparison between the lists is based on rules that 

associate the annotations used by the tools. For example, faults classified as Untestable by XFS are equivalent to 

faults classified as Safe by JG FSV.  

 A detailed report is generated to allow review of the results. An error in an output caused by a malfunction in 

one of the tools, can be detected by the annotation association rules and could be verified in the detailed report. For 

example, if XFS simulation annotates a fault as Detected and JG FSV annotates the same fault as Safe, this would 

indicate a malfunction in one of the tools. A sample of the detailed report, including an example of a tool 

malfunction, is illustrated in Table I. 

Table I. Detailed Report Example 

 XFS JG FSV 

Result Fault 
ID 

Signal 
Name 

Fault 
Type 

Annotation Collapsing 
Signal 
Name 

Fault 
Type 

Annotation Collapsing 

0 dut.u0.rst sa0 Dangerous  dut.u0.rst SA0 Propagated  PASS 

1 dut.u0.rst sa1 Untestable  dut.u0.rst SA1 Safe  PASS 

2 dut.u0.sig1 sa0 Detected  dut.u0.sig1 SA0 Detected  PASS 

3 dut.u0.sig1 sa1 Detected  dut.u0.sig1 SA1 Safe  WARNING 

4 dut.u0.sig2 sa0 Dangerous equiv=2 dut.u0.sig2 SA0 Propagated 2 PASS 

5 dut.u0.sig2 sa1 Detected  dut.u0.sig2 SA1 Detected  PASS 

V. RESULTS 

Results were collected by executing the Build Manager application on a set of selected designs from the IWLS 

2005 benchmarks [11]. The benchmark contains a collection of RTL and Gate Level description of 84 different 

designs, varying from small cores to complete System-on-Chip. 

Initially, the RTL description of 16 designs were analyzed for Stuck-at-0 and Stuck-at-1 faults. Fault Lists 

generated by both tools are analyzed to verify: (1) The tools generated the same faults, (2) Which faults are 

annotated as “Safe”, (3) Which faults are collapsed and (4) All annotations respected the association rules. 

Fault Injection analysis with simulation requires that different test stimuli is applied to assure propagation of 

each fault to a determined strobe. If a fault does not propagate, it is considered Undetected. For the scope of this 

work, as the idea is not to achieve full verification of the example designs, test vectors were not further developed 

and complete FI Simulation was not executed. Therefore, some faults are annotated as “Not Injected” by XFS and 

as “Unknown” by JG FSV. These faults are not considered as a tool malfunction, as they should be revaluated after 

full verification environment is set-up. 

The results of the benchmark evaluation are shown in Table II. For each tested design, the total number of faults 

and Safe annotations for each tool are illustrated. The column Fault List Reduction highlights the fault reduction 

percentage per design, when including the JG annotation to the XFS Fault List. JG FSV Standard formal analysis 

run time in seconds is demonstrated in the corresponding column. 

Table II. Summary of Results 

Design 

XFS Jasper Gold Fault List Reduction 

Nº of 

Faults 

Safe 

Faults 

Nº of 

Faults 

Safe 

Faults 

Collapsed 

Faults 

Run  

time (s) 

by Safe 

Faults 

by Collapsed 

Faults 

DMA 33428 106 33428 4921 8734 186 14,40 % 26,13 % 

ac97 11192 134 11192 1401 2326 674 9,88 % 20,78 % 

aes 4266 0 4266 49 1408 168 1,15 % 33,01 % 

i2c 528 0 528 14 86 9 2,65 % 16,29 % 

mem_ctrl 11044 8 11044 3933 2246 346 34,75 % 22,11 % 
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Design 

XFS Jasper Gold Fault List Reduction 

Nº of 

Faults 

Safe 

Faults 

Nº of 

Faults 

Safe 

Faults 

Collapsed 

Faults 

Run  

time (s) 

by Safe 

Faults 

by Collapsed 

Faults 

sasc 86 0 86 1 0 7 1,16 % 0,00 % 

simple_spi 534 28 534 35 54 9 1,31 % 10,11 % 

spi 1396 0 1396 12 324 13 0,86 % 23,21 % 

ss_pcm 242 2 242 3 1 7 0,41 % 0,41 % 

systemcaes 9302 0 9302 425 2664 40 3,37 % 47,38 % 

systemdes 4104 64 4104 98 1806 41 0,77 % 47,84 % 

tv80 1942 36 1942 51 206 49 0,73 % 15,48 % 

usb_funct 20386 56 20386 8128 6483 665 39,38 % 32,17 % 

usb_phy 364 0 364 3 58 8 0,80 % 18,62 % 

vga_lcd 762 0 762 4 0 9 0,52 % 0,00 % 

wb_conmax 106666 0 106666 2794 65216 186 2,61 % 61,31 % 

VI. CONCLUSIONS 

The combination between simulation and formal methods is becoming a stablished method for Fault Injection 

Analysis and appears as a promising practice for verification of Fault Lists. Looking at XFS and JG FSV as 

representatives of these technologies, we propose an alternative methodology for the evaluation of Fault Lists on 

the scope of ISO26262. Inclusion of redundancy as a method to detect malfunctions in a tool, is one of the standard 

suggested methods for achieving Tool Confidence Level. In addition, the formal methods applied by JG, provide 

improved information about the propagation effects of the faults, allowing the optimization of the Fault List, and 

therefore, reducing the number of required faults to be simulated. Preliminary results have shown that the Fault List 

of both tools are equivalent, allowing the use of JG to verify the outputs of XFS. Furthermore, the results from JG 

allowed an average reduction of 29.5% on the number of faults to be simulated. 
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Abstract— Tolerance to random hardware failures, required
by ISO26262, entails accurate design behavior analysis, com-
plex Verification Environments and expensive Fault Injection
campaigns. This paper proposes a methodology combining
the strengths of Automatic Test Pattern Generators (ATPG),
Formal Methods and Fault Injection Simulation to decrease
the efforts of Functional Safety Verification. Our methodology
results in a fast-deployed Fault Injection environment achieving
Fault detection rates higher than 99% on the tested designs.
In addition, ISO26262 Tool Confidence level is improved by a
fault analysis report that allows verification of malfunctions in
the outputs of the tools.

Keywords - ISO26262; Fault Injection Simulation; Formal
Methods; ATPG; Functional Safety.

I. INTRODUCTION

Functional Safety Verification is one of the most chal-
lenging steps for Integrated Circuit (IC) compliance with
ISO26262. In safety-critical applications the system must
include Safety Mechanisms being able to detect up to 99%
of the random faults susceptive of the design. In addition,
ISO26262 requires that all possible malfunctions of tools
(used during fault analysis) have to be considered as per Tool
Qualification requirements [1]. Therefore, there is a high
demand for effective Functional Safety Verification method-
ologies allowing the reduction of costs while maintaining the
same levels of safety.

The commonly used method for Functional Safety Verifi-
cation is Fault Injection (FI) Simulation [2][3]. The purpose
is to show that fault effects can propagate to outputs and
that Safety Mechanisms can detect them. In order to cause
propagation of all faults, complex verification environments
with numerous test inputs are required, resulting in long
FI Campaigns. To address this challenge, we can deploy
different verification technologies in a single methodology.
Methodologies applying Formal Methods to identify faults
that cannot propagate to outputs of the design (Safe faults)
[4][5][6], and ATPG techniques to generate test patterns that
potentialize fault propagation [7][8] have been proposed.
Even though Simulation, Formal Methods and ATPG have
complementary strengths, to the best of our knowledge, they
were not previously combined in a single fault analysis flow
that aims at fault propagation for compliance to ISO26262
requirements.

Our work takes advantage of three different technologies
aiming to achieve high fault detection rates while decreasing

This project has received funding from the European Unions Horizon
2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 722325.

the efforts of traditional FI Campaigns. ATPG is used for
fast deployment of a verification environment that provides
high fault propagation rate. The outputs from ATPG are used
by the FI Simulator, for verifying the functional behavior of
the design under each fault. In parallel, Formal Methods are
applied to the design to identify Safe faults. In addition, the
outputs of each tool are verified against each other to identify
malfunctions, increasing the confidence in the tool’s outputs,
as required by ISO26262 [1]. The main contributions of our
methodology are:

• Reduction of the efforts with Test Environment develop-
ments and in the number of required Simulations by de-
ploying automatic generated ATPG Test Environments
to FI Simulation campaigns.

• Increasing compliance to ISO26262 fault metrics by
identification of Safe faults with formal methods.

• Generation of report containing detailed information of
tool outputs to detect malfunctions.

II. PROPOSED METHODOLOGY

Our methodology aims to automate the execution of
Simulation, ATPG and Formal analysis for a specific design.
At the end of the execution, the outputs of the tools are
compared to find discrepancies. An application was develop
in order to control the execution flow and generate final
reports. The Fault Checker application can be configured
to use any ATPG, Simulation, and Formal tools. At the
beginning of the execution, the user should configure the
scripts to control the execution of each tool and provide the
rules for parsing the tool reports.

The application starts with the execution of the ATPG and
Formal flows. As these two flows are independent, they can
be executed in parallel using different CPUs. Simulation flow
requires the ATPG Testbench and test vectors to start. So,
after the ATPG flow is finished, the Fault Checker will extract
the generated Test Environment and will use it for the FI
Simulation. At the end of each flow, the reports generated
by the tools are parsed to a common format, allowing
verification of the results to identify discrepancies between
the tools. Finally, at the end of all flows, the relevant parsed
data is retrieved and compared. The comparison is based on
rules that associate the annotations used by each tool. For
example, faults classified as Untestable by the Simulator are
equivalent to faults classified as Safe by Formal and Ignored
by ATPG. In case a rule is not obeyed, the Fault Checker
will include a Warning tag to the report, informing that this
fault requires attention from the designer.
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Results can be analyzed in a CSV report that details the
annotation of each fault by each tool. An error caused by
a malfunction in one of the tools, will be indicated by
a Warning in the CSV report. For example, if simulation
annotates a fault as Detected and Formal annotates the same
fault as Safe, it indicate a malfunction in one of the tools.
The report provides supplementary information with further
possibilities for fault analysis. For example, if a specific fault
is considered Undetected by Simulator and Dangerous by
Formal, it means that formal analysis identified at least one
test stimulus that can propagate the fault. This information
can be used on a new FI Simulation to achieve detection
of this fault. Any other discrepancy between the faults is
indicated in the report with a Warning.

III. VALIDATION

This section describes the validation process of the pro-
posed methodology. First the Fault Checker was configured
with execution scripts to deploy Cadence R©XceliumTMFault
Simulator (XFS), Cadence R©JasperGold (JG) Formal Verifi-
cation Platform and Cadence R©Modus DFT Software Solu-
tion ATPG component as the representatives of each tech-
nology. Second, selected designs were verified by the Fault
Checker. Table I details, for each design, the total number of
faults, the fault detection rate, and the indication of Pass or
Warning resulting from the verification of the tools by the
Fault Checker.

TABLE I
FAULT CHECKER RESULTS.

Design Faults
(SA0/SA1)

Detection
Rate PASS WARNING

Up Down Counter 162 100% 162 0
Memories 2782 99.78% 2776 6
AC97 57226 99.77% 57108 118
Conmax 153454 99.80% 153191 263

During the Up Down Counter and Memories designs
verification, the Fault Checker confirmed that all faults have
equivalent annotations. As the examples are relatively simple,
the different tools can determine that all faults can propagate
to outputs. For the Memories design, the application detected
6 faults that were annotated as Safe by the Formal analysis,
and can be disregarded.

On the AC97 design, the Fault Checker was able to detect
118 faults with distinctive annotations. From these, 49 faults
were annotated as Safe by Formal and can be disregarded;
23 were annotated as Dangerous by Formal meaning that
Formal can extract test inputs to cause propagation of the
faults; and 46 faults were not classified, meaning that they
require manual analysis.

During the analysis of the Conmax design, the method-
ology detected 263 discrepancies between the tools. From
these, 7 faults were annotated as Dangerous by Formal.
Meaning that results from Formal can be applied for detect-
ing these faults during simulation. The other 256 faults have
non conclusive annotations and should be manually analyzed.

The results demonstrated above corroborate with the listed
contributions. First, the comparison of the fault classifica-
tions from each tool enables identification of tool malfunc-
tion. The report generated by the Fault Checker allows de-
tailed analysis of faults and can be used to support ISO26262
Tool Qualification. Second, Safe faults classification by
Formal Methods permits improvement of fault tolerance,
by decreasing the total number of faults and improving
ISO26262 metrics. Third, the proposed methodology shows
considerable fault detection rates for all tested designs.

IV. CONCLUSIONS

Due to the harsh requirements for random hardware fail-
ures tolerance, Functional Safety verification is a challenging
step for ISO26262 compliance. FI simulation, as part of
this process, becomes a long and expensive procedure, that
is usually repeated numerous times until the metrics for
fault detection are achieved. We propose a methodology
that deploys ATPG and Formal to support Simulation results
and to decrease the overall effort of FI Simulations. Our
methodology enables the use of test environments created
with ATPG for the simulation of faults, and the use of
Formal for identification of Safe faults. Formal results allow
the optimization of the Fault List, reducing the number
of faults to be simulated. In addition, the results of the
tools are compared to identify discrepancies and potential
defects. The inclusion of redundancy as a method to detect
malfunctions in tools is suggested for achieving ISO26262
Tool Confidence [1]. Our results have shown high fault
detection rates, achieving more than 99% of detected faults.
In addition, the proposed methodology can identify Safe
faults, contributing to reaching ISO26262 metrics.
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Abstract—This work proposes a fault injection methodology
where Hardware Description Language (HDL) code slicing is
exploited to prune fault injection locations, thus enabling more
efficient campaigns for safety mechanisms evaluation. In partic-
ular, the dynamic HDL slicing technique provides for a highly
collapsed critical fault list and allows avoiding injections at
redundant locations or time-steps. Experimental results show that
the proposed methodology integrated into commercial tool flow
doubles the simulation speed when comparing to the state-of-the-
art industrial-grade EDA tool flows.

Index Terms—Fault injection, fault simulation, functional
safety, transient faults, ISO26262, RTL

I. INTRODUCTION

During the design of ISO26262 [1] compliant chips, de-
signers need to evaluate effectiveness of the design to deal
with random hardware faults. This is usually done by the fault
injection simulations. The goal of a fault injection experiment
is to exercise the system’s fault protection capabilities. Faults
which cause the system to fail in the absence of fault detection
capabilities are defined to be critical. A critical fault, if
undetected in presence of fault processing mechanism, will
result in a failure of the system under test. Using critical faults
to estimate fault coverage eliminates the possibility of fault
injection experiments to produce no errors. Several approaches
to generate the critical fault list to speed up the fault injection
campaigns have been proposed. However, to the best of the
authors’ knowledge this is the first work where dynamic HDL
slicing has been implemented in order to minimize the number
of fault injections. The main contributions proposed by this
work as follows:

• Dynamic slicing on HDL for critical fault list generation.
• Language-agnostic RTL fault injection.
As a result, significant speed-up of the fault injection

simulation is achieved. Experimental results show that the
proposed methodology doubles the simulation speed when
comparing to the state-of-the-art optimizations based on static
cone approach. Only fault model implemented in this paper
is based on single-clock-cycle bit-flip faults within the RTL
registers. This fault model is targeting single Single-Event-
Upsets (SEUs) in all the flip-flops of the design. The proposed
methodology is demonstrated on Cadence tools but it remains
applicable to other tool flows as well.

This research was supported by project RESCUE funded from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowaska-Curie grant agreement No 722325.

In the majority of the published literature [2], [3] fault
location and fault insertion time are randomly selected as
opposed to the methodology explained in this paper. In addi-
tion, previous works [4] have demonstrated that with randomly
selected fault lists the ratio of faults which do not produce
errors may range as low as 2 to 8 per cent, depending
on the system under simulation. Therefore, minimization of
fault injection locations has a potential to reduce the time
of the fault injection campaign significantly while allowing
injection and simulation of a considerably larger number of
relevant faults. Additionally, dynamic slicing technique is used
in [5], [6] for statistical bug localization in RTL. Different
from the works listed above, this paper proposes a dynamic
HDL slicing based technique that implicitly covers the golden
run fault collapsing, thereby significantly speeding up the fault
injection process.

II. PROPOSED METHODOLOGY

The proposed methodology is outlined in Fig. 1. We explain
the details of the methodology in the following paragraphs by
using a motivational example depicted in Fig. 2.

Static slice(1) shows the dependency between HDL state-
ments [7]. Static slice column in Fig. 2 shows the HDL
statements which are in static slice of TAR F output. Fig. 2
also implies that, static slice does not depend on clock cycles
(shown as C1, C2, C3, C4 and C5). In this work, Cadence®
JasperGold Formal Verification Platform is used to calculate
backward static slice.

In parallel to static slicing step, the RTL design is simulated
in Cadence® Xcelium™ simulator to dump and analyse cov-
erage data(2). In this step, we dump coverage data for each
clock cycle so that we can find what statements in the RTL are
executed for each clock cycle. In the proposed methodology,
one clock cycle defines the size of our dynamic slice. We use
code coverage which measures how thoroughly a testbench
exercises the lines of HDL code. At the end of this step, we

Fig. 1. Proposed Dynamic HDL slicing based fault injection methodology.

52978-1-7281-2490-2/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: CADENCE DESIGN SYSTEMS. Downloaded on July 01,2021 at 11:15:08 UTC from IEEE Xplore.  Restrictions apply. 



generate executed statements to use it in the next step. Fig. 2
shows executed statements for five clock cycles (C1, C2, C3,
C4, C5).

Dynamic slicing(3), as it is implemented here, includes
those statements that actually affect the value of a variable
for a particular set of inputs of the RTL so it is computed on
a given input [8]. It provides more narrow slices than static
slice and consists of only the statements that effect the value
of a variable for a given input. In a nutshell, dynamic slice is
the intersection of static slice and executed statements as in
the Fig. 2. For instance, during the time window C5, register
FF (Line 27) is not in dynamic slice meaning that we do not
need to inject fault in FF at C5 time window. Dynamic slice
gives us critical faults and eliminates those faults that are not
critical. In this way, we manage to reduce fault list by injecting
only critical faults. This provides significant speed-up in the
fault injection simulation time as each injected fault increases
total run time of fault injection campaign.

For the fault injection simulation step(4), we use Cadence®
Xcelium™ Fault Simulator. Fault injection simulation selects
critical faults from the dynamic slices, injects them at the
specified time and evaluates the fault propagation.

III. EXPERIMENTAL RESULTS

In order to verify the accuracy of proposed fault injection
method, we firstly integrate our methodology into Cadence
flow, then we execute our application on different designs
that are available in [9] and [10]. Table I shows the details
for both static slice which is state-of-the-art approach and
dynamic slice optimization. For the smaller chopper example,
total CPU time of overall regression is reduced to 1.2s when
compared to static slice optimizations. For the more complex
simple spi design, two-dimensional memory is selected as a
fault target. As a result, we reduce the fault list to the critical
faults and achieve 11.2 times shorter CPU time in dynamic
slice optimization.

IV. CONCLUSIONS

This paper proposes a methodology to optimize fault in-
jection campaigns by pruning the fault list to the critical
faults identified using a dynamic HDL slicing technique that
provides for fault list collapsing. In this way, we narrow down
the fault space and reduce execution time of fault injection
simulation campaigns. Experimental results show that we
achieve significant speed-up of the fault injection simulation
when comparing to the state-of-the-art flows.

Fig. 2. HDL slicing on a motivational example chopper [9].
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TABLE I
FAULT INJECTION CAMPAIGN RESULTS FOR CHOPPER AND SIMPLE SPI DESIGNS

Design Name chopper simple spi
Optimization type Static Slice Dynamic Slice Static Slice Dynamic Slice
Observation list tar f dat o

Fault target F0, FF dynamic slices mem[][] dynamic slices
Total number of injected faults 410 255 210080 960

Number of detected faults 220 137 1696 609
Number of undetected faults 190 118 208384 351

Total CPU time of overall regression 1.33s 1.2s 171.5s 15.2s

25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019) 53

Authorized licensed use limited to: CADENCE DESIGN SYSTEMS. Downloaded on July 01,2021 at 11:15:08 UTC from IEEE Xplore.  Restrictions apply. 



Appendix 5

V

Felipe Augusto da Silva, Ahmet Cagri Bagbaba, Said Hamdioui, and Chris-tian Sauer. Combining fault analysis technologies for iso26262 functionalsafety verification. In 2019 IEEE 28th Asian Test Symposium (ATS), pages129–1295, 2019

131





Combining Fault Analysis Technologies for ISO26262 Functional Safety
Verification

Felipe Augusto da Silva1,2, Ahmet Cagri Bagbaba1, Said Hamdioui2 and Christian Sauer1
1Cadence Design Systems, Feldkirchen, Germany - {dasilva, abagbaba, sauerc}@cadence.com

2Delft University of Technology, Delft, The Netherlands - {f.augustodasilva, s.hamdioui}@tudelft.nl

Abstract— The development of Integrated Circuits for the
Automotive sector imposes on complex challenges. ISO26262
Functional Safety requirements entail extensive Fault Injection
campaigns and complex analysis for the evaluation of deployed
Software Tools. This paper proposes a methodology to improve
Fault Analysis Tools Confidence Level (TCL) by detecting
errors in the classification of faults. By combining the strengths
of Automatic Test Pattern Generators (ATPG), Formal Methods
and Fault Injection Simulators we are able to automatically
generate a Test Environment that enables the validation of the
tools and provides supplementary information about the design
behavior. Our results showed fault detection rates above 99%
including information to improve ISO26262 metrics calculation.

Keywords - ISO26262; Fault Injection; Formal Methods;
Simulation; Tool Confidence Level; Functional Safety; Verifi-
cation; ATPG.

I. INTRODUCTION

Functional Safety Verification is one of the most chal-
lenging steps for Integrated Circuit (IC) compliance with
ISO26262. Particularly for safety-critical applications such
as autonomous driving, where in case of a failure, a life-
threatening situation can happen. For such applications, the
system must include Safety Mechanisms being able to detect
up to 99% of the random faults susceptive of the design.
At the IC Gate-Level representation, the number of faults
can easily reach the millions figure, requiring huge efforts to
analyze all of them. In addition, ISO26262 requires that all
possible malfunctions of tools (used during fault analysis)
have to be considered, meaning that developers have to
assess the level of confidence on the outputs of a tool.
The tool may require compliance with Tool Qualification
requirements; this even increases the complexity of func-
tional safety verification. Therefore, there is a high demand
for effective Functional Safety Verification methodologies
allowing the reduction of costs while maintaining the same
levels of safety.

The commonly used method for Functional Safety Veri-
fication is Fault Injection (FI) Simulation [1][2][3][4]. The
purpose is to show that fault effects can propagate to outputs
and that Safety Mechanisms can detect them. Propagation
of faults during simulation is key for achieving ISO26262
requirements. An injected fault that is not observed on the
outputs, must be re-simulated or proven to be untestable. In
order to provoke propagation of all faults, complex verifi-
cation environments with numerous test inputs are required,

resulting in long FI Campaigns. To address this challenge,
we can deploy different verification technologies in a single
methodology. Formal Methods can be employed to leverage
the most appropriate setups for simulation campaigns. The
ability of formal in analyzing design behavior to all test
inputs can help to identify untestable faults and to determine
test inputs for corner cases [5][6][7]. Anyhow, Formal Meth-
ods are not capable of analyzing all faults in an acceptable
time frame. Therefore, another solution is still required to
analyze a large portion of the faults. The application of
automatically generated ATPG Testbenches can decrease
the efforts on the development of simulation environments.
ATPG tools are able to create test patterns that potential-
ize fault propagation. Simulation can be performed with
the generated test vectors aiming to achieve better failure
coverage with reduced simulation times [8][9]. Nonetheless,
ATPG focuses on manufacturing test and is not optimal for
determining untestable faults or covering faults on areas out
of the scan chains reach. Even though Simulation, Formal
Methods, and ATPG have complementary strengths, to the
best of our knowledge, they were not previously combined
in a single fault analysis flow that aims at fault propagation
for compliance to ISO26262 requirements.

Our work takes advantage of three different technologies
aiming to verify the correctness of fault classification while
providing data to support traditional FI Campaigns. Initially,
ATPG is used to generate a verification environment that
provides high fault propagation rate. The outputs from ATPG
are used by the FI Simulator, to verify the functional behavior
of the design under each fault. In parallel, Formal Methods
are applied to identify faults that are untestable and determine
the behavior of faults that are not covered by ATPG. Finally,
the outputs of each tool are verified against each other
to identify malfunctions, increasing the confidence in the
tool’s outputs, as required by ISO26262 [10]. The main
contributions of our methodology are:

• Increasing Tool Confidence Level according to
ISO26262. By providing an automated flow for error
detection in Fault Analysis tools, we can avoid the
extensive ISO26262 Tool Qualification requirements.

• Identification of untestable faults. Formal Methods can
prove that faults cannot be tested, and therefore can
be ignored during safety metrics calculation, increasing
compliance with ISO26262 fault metrics.

129

2019 IEEE 28th Asian Test Symposium (ATS)

2377-5386/19/$31.00 ©2019 IEEE
DOI 10.1109/ATS47505.2019.00024

Authorized licensed use limited to: CADENCE DESIGN SYSTEMS. Downloaded on July 01,2021 at 11:15:22 UTC from IEEE Xplore.  Restrictions apply. 



• Initial assessment of the fault propagation behavior by
the deployment of ATPG Test Environments and Formal
results. The achieved fault detection rates, above 99%
on tested designs, can be employed to support the
ISO26262 Functional Safety Verification.

This paper is organized as follows. Section II investigates
how fault analysis is implemented by different technologies.
Section III describes the proposed methodology. Section IV
presents the validation process and explain our results. And
last, Section V presents our final conclusions.

II. FAULT ANALYSIS

This section investigates how fault analysis is implemented
by different technologies. The examination aims to identify
the strengths and weaknesses of each solution and deter-
mine how they comply with Functional Safety requirements.
ISO26262 requires that any component that implements
a safety-related functionality, reach a minimum level of
tolerance to random hardware failures. Coverage for this
type of failure is usually increased by the addition of Safety
Mechanisms to the design. Safety Mechanisms, as defined by
ISO26262, should be able to detect faults or control failures
in order to achieve or maintain a safe state.

The effectiveness of the design to cope with random
hardware failures should be quantitatively demonstrated by
the calculation of metrics defined by the standard [11]. It
is necessary to evaluate the efficiency of the Safety Mech-
anisms to handle critical faults, contributing to achieving
targeted safety metrics. Fault Injection Simulation is a widely
used technique to perform this analysis being the method
recommended by ISO26262.

A. Fault Injection Simulation

Analysis of Fault Injection by Simulation is widely used
and available in a variety of tools. These tools are able
to analyze a Register Transfer Level (RTL) or Gate-Level
(GTL) descriptions of an IC and, based on given test inputs,
simulate their behavior. The effect that a fault produces in
the design is determined by comparing the behavior of the
design with and without faults. The flow implemented by
Fault Injection Simulation Tools is described below:

1) Elaboration of RTL/GTL design description.
2) Fault List Generation: candidates for fault injection are

defined for each available fault model. The user should
define rules (e.g. all signals) to identify fault node
candidates and fault models (e.g. Stuck-at-0 (SA0)
and Stuck-at-1 (SA1)). Information is stored in a fault
database.

3) Fault List Optimization: Faults list is analyzed to
identify candidates for optimization. Based on the
elaboration results, tools can estimate the behavior
of some faults decreasing the number of faults to be
simulated. Information is updated on the fault database.

4) Good Simulation: fault-free behavior of design is sim-
ulated. The user should define observation points in the
design to identify: (1) Fault propagation to a functional
output: functional strobes; (2) Activation of the Safety

Mechanism: checker strobes. The values of the Strobes
during good simulation are stored.

5) Fault Injection Simulation: For each fault in the fault
database, the design faulty behavior is simulated, and
the observation points compared against the reference
values from the Good Simulation. The behavior of the
design under each fault is analyzed and stored.

FI Simulation determines the behavior change provoked by
a fault when the effect is observable in one of the outputs
(strobes). Faults that don’t produce changes in the strobes
are classified as Undetected. This is considered a weak
result of the simulation, as a different test may cause fault
propagation. Fault propagation is required to assure correct
classification. If there are no test stimulus that provokes the
propagation of a fault, this should be proved by analysis.
For that reason, FI Simulation demands the development of
complex Testbenches and additional untestable fault analysis.

B. Formal Methods

Identification of untestable faults requires proof that the
fault cannot be tested by ANY functional test stimulus.
Formal analysis appears as a good alternative for this purpose
since it is not limited to a specific time or state. Instead,
the scope is global, and every evaluation context and test
stimulus is considered. Consequently, formal analysis can
exhaustively prove that a fault can never produce any failure.
This class of faults can be considered untestable and don’t
require further fault simulation.

Different EDA vendors explore fault analysis capabilities
in their formal solutions. Generally speaking, these solutions
automatically generate properties, not requiring knowledge
of formal languages. In addition, they allow integration with
FI Simulators providing fault lists optimization and reducing
simulation campaigns. Tools used for fault formal analysis
usually apply two main fault analysis techniques, Standard
Analysis, and Advanced Analysis.

The Standard Analysis aims to determine the testability of
faults. It is applied as a pre-qualification flow for simulation,
to reduce the fault list by identifying untestable faults. The
testability of the faults is determined by verifying:

• if there is a physical connection between the fault
location and the observation points (strobes).

• if the signals that drive the fault node allows activation
of the fault.

• if the fault could be observable in at least one strobe of
the design.

A fault that does not pass these verifications can be
classified as untestable. In addition, the fault list may be
optimized by Fault Relation Analysis. The tool analyzes the
design to determine the relationship between fault pairs. Fault
pairs are then included in the same Collapsing Group. The
behavior of all Collapsing Group is predicted by simulation
of only one representative of the group, called the Prime
Fault.

The Advanced Analysis deploys formal techniques to
analyze propagation and activation of the faults. Activation
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TABLE I
FAULT ANALYSIS TECHNOLOGIES COMPARISON

Technology Strengths Weaknesses

FI Simulation - Comprehensive behavior analysis
- Recommended by ISO26262

- Single test input at a time
- Multiple simulations to propagate all faults
- High Testbench development efforts

Formal Methods
- Analysis of all possible test inputs
- Analysis of untestable faults
- Generates test inputs for corner cases

- Time-consuming
- Not able to determine behavior of all faults

ATPG - Automatically generated Testbenches
- High fault propagation rate

- Focus on manufacturing tests
- No analysis of untestable
- Do not reach corner cases

Analysis indicates whether the fault can be functionally acti-
vated from any combination of inputs. Propagation Analysis
verifies if there is a combination of inputs that provoke
fault propagation. Advanced Analysis will classify the faults,
which were not previously classified by the Standard Anal-
ysis, in three groups:

• Untestable: Faults that cannot be activated or propa-
gated.

• Dangerous: The tool identified a combination of test
inputs that results in fault propagation.

• Unknown: All the others.
Formal properties to perform the Advanced Analysis are

automatically generated and verified with respect to all
possible input stimulus. The Advanced Analysis relies on
formal properties and analysis to prove the properties to be
true. The analysis of formal properties is time-consuming and
cannot find results for all faults in complex designs. For that
reason, this analysis is often applied as a last resource, on the
faults that were not classified after fault injection simulation.

The different strengths of Simulation and Formal can
complement each other. An integrated fault analysis flow
allows the deployment of the Standard Analysis before the
start of the simulation. The analysis will reduce the number
of faults to be simulated by leveraging results for untestable
faults and collapsing groups. After the simulation, Advanced
Analysis can be executed on the remaining undetected faults
to verify if there is a combination of test inputs that would
result in fault propagation.

Even with the combination of Formal and Simulation,
the development of the test environments is challenging.
Advanced Analysis from Formal tools, that can support the
identification of test stimulus for fault propagation, are time-
consuming and cannot find results for all fault list. In this
context, ATPG appears as a possible solution for generating
Testbenches and test inputs that can be used for the FI
Simulation.

C. Automatic Test Pattern Generator

Test patterns can be generated to identify if an IC contains
manufacturing induced defects. In other words, to distinguish
between the correct circuit behavior and the faulty circuit
behavior. When applying the test pattern to the inputs of
a circuit, the values observed at the outputs should be

monitored. A defect is detected if any of the outputs are
different from the expected pattern. Nowadays, ATPG is a
well-established technology being used on the development
of almost all IC. ATPG tools can generate a minimal group
of test vectors to achieve acceptable levels of manufacturing
defects detection. In addition, tools can generate reports
about the testability of each defect, allowing the generation
of metrics to indicate test quality and test application time.

Usually, an ATPG flow receives as inputs a Gate-Level
description of an IC and specification of the scan chains.
Then, it verifies if the implemented scan chains can ensure
the required levels of testability. If affirmative, it generates a
fault model and test patterns, to assure propagation of fault
effects to the design outputs. Typically, the test patterns and
expected outputs are programmed in a Test Equipment that
will be used in IC manufacturing tests. The Test Equipment
applies the test patterns in the inputs of the circuit and
monitors the outputs to verify if the values are the expected
ones. We propose a similar approach using FI Simulation.
Instead of using a Test Equipment, we apply the ATPG test
patterns on the design simulation and use the strobe function-
ality to monitor the outputs of the design. During the Good
Simulation, the Simulator stores the strobe values, defining
the expected output pattern. Afterward, the simulation of
each fault is executed using the same inputs and monitoring
the outputs. This way, we can use the propagation capabilities
of ATPG to identify behavioral changes caused by injected
faults.

The fault propagation potential of ATPG test environments
is a powerful benefit for compliance with Functional Safety.
However, ATPG focuses on manufacturing tests and the
estimated results should be demonstrated via simulation. In
addition, ATPG doesn’t consider untestable faults and faults
out of the scan chain reach. Formal Analysis can be deployed
for addressing these cases.

Table I summarizes the strengths and weakness of each
technology. Considering this examination, we propose a
methodology that highlights the strengths of Simulation,
Formal and ATPG for Functional Safety Verification.

III. PROPOSED METHODOLOGY

This section describes the application of three fault anal-
ysis technologies in an efficient methodology for ISO26262
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Fig. 1. Fault Checker Execution Flow.

Functional Safety Verification. The methodology highlights
the strengths of Simulation, Formal and ATPG to generate
a comprehensive fault analysis report. An application was
developed aiming to automate the execution of the different
tools. The Fault Checker application implements a generic
control flow that is configurable with tools from different
vendors. In the end, the reports of each tool are parsed and
saved in a common format. The fault classification of each
tool is combined in a final report that allows the identification
of tool malfunctions and detailed analysis of faults behavior.

The Fault Checker application must be configured with
scripts to control the execution of each tool and with the rules
for parsing the reports. Also, the user must provide design-
specific information, as fault targets and observation points
(strobes). With all the required information, the application
can start the execution of the ATPG and Formal flows. As
these two flows are independent, they can be executed in
parallel using different CPUs. Simulator flow requires the
ATPG Testbench and test vectors to start. So, after the ATPG
flow is finished, the Fault Checker will extract the generated
Test Environment and will use it for the FI Simulation. At the
end of each flow, the reports generated by the tools are parsed
to a common format and saved. Finally, at the end of all
flows, the relevant parsed data is retrieved and compared. The
comparison is based on rules that associate the classifications
used by each tool. In case a rule is not obeyed, the Fault
Checker will include a Warning tag, informing that this fault
requires attention from the designer. Fig. 1, illustrates the
execution flow of the Fault Checker application.

Results can be analyzed in a CSV report that details the
classification of each fault by each tool. An error caused
by a malfunction in one of the tools will be indicated by a
Warning in the report. For example, if the Simulator classifies
a fault as Detected and Formal classifies the same fault as
Safe, this would indicate a malfunction in one of the tools.
A sample of the detailed report is demonstrated in Table II.

In addition to malfunction indication, the report provides
supplementary information for fault analysis. For example,
signal ”dut.u0.sig2” in Table II, is classified as Undetected

by the Simulator and Ignored by ATPG. However, the fault is
listed as Dangerous by Formal, meaning that formal analysis
identified at least one test stimulus that can propagate the
fault to a strobe. This information can be used on a new FI
Simulation to achieve detection of this fault. Another exam-
ple to highlight is ”dut.u0.sig1”, where Formal classified the
fault as Safe, while the other tools classified as Undetected
and Ignored. Results from the formal analysis can be used
to demonstrate that the fault cannot propagate to a strobe,
and therefore can be considered untestable, contributing to
achieving ISO26262 metrics. Any other discrepancy between
the faults is indicated in the report, as illustrated by signal
”dut.u0.INsT0.0”.

IV. VALIDATION

This section describes the validation process of the pro-
posed methodology. First, we describe the adopted setup,
the configuration of the tools and the tested designs. Then,
we demonstrate our results and describe the benefits and
limitations of our solution. The following validation aspects
were considered: Detection of malfunction in the tools via
detailed report; Application of fault analysis results to sup-
port Functional Safety verification of the design.

A. Validation Setup

The methodology was validated by deploying the Fault
Checker application on example designs. First, the Fault
Checker must be configured with the tools to execute each
flow. Our work has adopted Cadence R© XceliumTM Fault

TABLE II
FAULT CHECKER REPORT EXAMPLE.

Signal
Name

Fault
Type

Formal
Classification

Simulator
Classification

ATPG
Classification

Checker
Results

dut.u0.rst SA0 Dangerous Detected Tested PASS
dut.u0.sig1 SA1 Safe Undetected Ignored WARNING
dut.u0.sig2 SA0 Dangerous Undetected Ignored WARNING
dut.u0.sig3 SA1 Dangerous Detected Tested PASS
dut.u0.iNsT0.0 SA1 not listed not listed Tested WARNING
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TABLE III
FAULT CHECKER RESULTS.

Design Faults
(SA0/SA1)

Detection
Rate PASS WARNING

Up Down Counter 162 100% 162 0
Memories 2782 99.78% 2776 6
AC97 57226 99.77% 57108 118
Conmax 153454 99.80% 153191 263

Simulator (XFS), Cadence R© JasperGold (JG) Formal Ver-
ification Platform Functional Safety Verification (FSV) and
Cadence R© Modus DFT Software Solution ATPG compo-
nent, as the representatives of each technology.

The selection of the designs contemplated different levels
of complexity and the availability of Functional Testbenches.
Complexity was determined by the number of fault targets in
each design. The ISO26262 defines that all cell ports in the
IC Gate-Level representation should be analyzed for faults.
The selected designs were synthesized using the standard
cell reference libraries provided with Cadence 45nm Generic
Process Design Kit (GPDK) [12]. The selected designs are
available on the IWLS 2005 benchmark [13]. The designs
are: (1) Up-Down Counter: 4 bits adder containing 81 cell
ports; (2) Memories: Two memories with CRC, containing
1391 cell ports; (3) AC97: An Audio Codec Controller
compatible with Wishbone bus, containing 28610 cell ports;
and (4) Conmax: An interconnect matrix IP core featuring
parameterized priority-based arbiter, with 76727 cell ports.

Designs (1) and (2) were initially deployed to verify that
the Fault Checker application was working properly. As the
designs are smaller, it was possible to manually check the
classification of each fault to ensure the correctness of the
final report. The other designs were deployed to verify the
behavior of the Fault Checker application when analyzing
larger designs. In addition, for designs (3) and (4), the
achieved results were compared with fault injection results
using Functional Testbenches only. The achieved results are
described in the following sections.

The experiments were executed on two Intel Xeon E5-
2680 CPUs with 16 Cores and 252 GB of memory each.
Being the Formal flow executed on CPU1 and ATPG fol-
lowed by Simulation Flow in CPU2. Parallel fault injection
simulations were performed to improve the overall time of
the Simulation Flow.

B. Results

Table III demonstrates the results of the methodology
for the selected designs. It details, for each design, the
total number of faults, the fault detection rate, and the
Pass/Warning indication resulting from the Fault Checker
verification.

During the Up Down Counter design verification, the Fault
Checker confirmed that all faults have equivalent classifi-
cations. As the example is relatively simple, the different
technologies can determine that all faults can propagate to
observation points (strobes).

TABLE IV
FAULT DETECTION COMPARISON.

Design Faults
(SA0/SA1)

Functional Testbench Fault Checker

Detected Undetected Detected Undetected

AC97 57220 71,50% 28,48% 99,77% 0,21%
Conmax 153454 81,66% 18,34% 99,80% 0,20%

For the Memories design, the application detected 6 faults
with discrepant classifications. In this example, the Warn-
ings were due to classifications of Safe Faults by Formal
and Undetected by the Simulator. For these 6 faults, the
Formal analysis proves that the faults are untestable, and
can be disregarded, improving results for ISO26262 metrics
calculation.

On the AC97 design, the Fault Checker was able to detect
118 faults with distinctive classifications. From these, 49
faults were classified as Safe by Formal and Undetected
by the Simulator, and can be declared as untestable; 23
were classified as Dangerous by Formal and Undetected by
the Simulator, meaning that these faults can be Detected
in Simulation by applying the results from Formal as test
inputs; 46 faults were considered Undetected by Simulation
and ATPG and Unknown by Formal, indicating that none of
the tools was able to define the possible behavior of these
faults, and they require manual analysis; 6 faults were in cell
ports related to power that are not relevant for Functional
Safety Verification.

During the analysis of the Conmax design, the method-
ology detected 263 discrepancies between the tools. From
these, 7 faults were classified as Dangerous by Formal and
Undetected by Simulation. Meaning that results from Formal
can be applied for detecting these faults during simulation.
The other 256 faults were classified as Redundant by ATPG,
Undetected by Simulation and Unknown by Formal. As
the classifications are not conclusive, these faults should be
manually analyzed.

To analyze the capability of the methodology for fault clas-
sification, we compared the Fault Checker results with results
from fault injection when using a Functional Testbenches.
The AC97 and Conmax designs include simulation envi-
ronments for verification of their functionalities. Table IV
demonstrate results of the FI simulation of the AC97 and the
Conmax designs when deploying the Functional Testbenches
and when using the Fault Checker. Due to the characteristics
of fault propagation provided by the ATPG Testbenches, after
one execution of the Fault Injection campaign, the Fault
Checker achieves a fault Detection Rate improvement of
28,2% for the AC97 and 18,2% for the Conmax.

The Undetected classification is inconclusive for fault
analysis. Undetected faults must be proven Untestable to
collaborate to ISO26262 metrics and are more likely to mask
a malfunction in a tool. For these reasons, we want to achieve
as many detected faults as possible. If we have applied
Functional Testbenches to achieve the same level of fault
detection from the Fault Checker, we would need to repeat
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the Fault Injection Campaign with new test inputs, until all
faults get propagated to outputs, demanding the development
of new Test Environments and longer FI Campaigns.

C. Discussion

The results demonstrated above corroborate with the se-
lected evaluation criteria. First, the deployment of multiple
fault analysis technologies enables the detection of erroneous
fault classifications. The proposed methodology allows a
high degree of confidence in tool error detection, resulting
in a Tool Confidence Level (TCL) of one. A methodol-
ogy with TCL1 doesn’t require Tool Qualification, avoiding
big efforts on documentation and analysis for compliance
with ISO26262 [10]. Second, identification of Safe faults
collaborates with ISO26262 compliance. By proving that a
fault is untestable, we are able to disregard it, decreasing
the total number of faults to be simulated and improving
ISO26262 metrics [11]. Third, the proposed methodology
achieved substantial fault detection rates. The use of ATPG
test vectors during simulation and identification of Danger-
ous faults by Formal, provide extra information about the
design behavior. In summary, our results can be applied to
support the following aspects of ISO26262 Functional Safety
Verification:

• Avoid efforts with Tool Qualification by automating tool
error detection.

• Identification of Untestable Faults allows improvement
of ISO26262 metrics and reduction of the number of
faults to be simulated.

• Fault supplementary data can be used to support further
fault injection campaigns.

Even though we have achieved high fault detection rates,
we need to consider that the examples used were of average
complexity. One of the next steps of our work is to apply our
methodology to more complex designs. We need to explore
how the fault detection provided by ATPG in complex
designs can leverage the Safe and Dangerous classifications
from Formal for the achievement of ISO26262 requirements.

Another aspect to acknowledge is the possibility of
changes in the fault propagation patterns when ATPG scan
chains are disabled. The application of our technique in more
complex designs, for instance, an Automotive CPU, should
consider this effect and employ formal results to assess
differences in the classification of the faults.

V. CONCLUSIONS

Due to the harsh requirements for random hardware
failures tolerance, Functional Safety verification is a chal-
lenging step for ISO26262 compliance. Fault analysis, as
part of this process, becomes a extensive procedure, that
is usually repeated numerous times until the metrics for
fault detection are achieved. Furthermore, ISO26262 requires
specific criteria to determine the level of confidence in the
adopted software tool, increasing the efforts even further.
We propose a methodology that deploys ATPG and Formal

to support Simulation results and to decrease the overall
efforts of ISO26262 compliance. Our methodology enables
the use of test environments created with ATPG tools for the
simulation of faults, and the use of Formal for identification
of untestable faults. Formal results allow the optimization
of the Fault List, reducing the number of faults to be
simulated, and the generation of test vectors for the detection
of corner cases. In addition, the results of the tools are
compared to identify potential malfunctions. The inclusion of
redundancy as a method to detect malfunctions in tools is a
suggested method for achieving ISO26262 Tool Confidence
[10]. Our results have shown high fault detection rates,
achieving more than 99% of detected faults. In addition,
detailed fault information provided contributes to achieving
ISO26262 metrics.
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Abstract—Along with the complexity of electronic systems
for safety-critical applications, the cost of safety mechanisms
evaluation by fault injection simulation is rapidly going up. To
reduce these efforts, we propose a fault injection methodology
where Hardware Description Language (HDL) code slicing is
exploited to accelerate transient fault injection campaigns by
pruning fault lists and reducing the number of the injections.
In particular, the dynamic HDL slicing technique provides for
a critical fault list and allows avoiding injections at non-critical
time-steps. Experimental results on an industrial core show that
the proposed methodology can successfully reduce the number
of injections by up to 10 percent and speed-up the fault injection
campaigns.

Index Terms—fault injection, fault simulation, functional
safety, transient faults, ISO26262, RTL, CPU

I. INTRODUCTION

With new and increased capabilities in applications such
as autonomous driving, the complexity of electronics systems
for safety critical applications is growing exponentially. This
is causing a shift in the traditional design flow and is push-
ing ISO26262 compliance down in the semiconductor chain
to the individual IP provider and even into the traditional
Electronic Design Automation tools. As a result, functional
safety compliance becomes a part of the requirements for the
development of complex electronics systems. During the de-
sign of ISO26262 compliant chips, designers need to evaluate
effectiveness of the design to deal with random hardware fail-
ures. This is usually done by Fault Injection Simulations. Also,
ISO26262 standard highly recommends using of fault injection
during the development process of integrated circuits [1].

Fault injection is a powerful technique that shows the be-
haviour of a circuit under the effect of a fault [2]. The objective
of fault injection is to mimic the effects of faults originating
inside a chip as well as those affecting external buses. Different
approaches to fault injection and dependability evaluation have
been proposed. These include emulation-based fault injection
using FPGA architectures as hardware accelerators to speed
up estimation of systems’ fault tolerance [3], [4] and formal
method based approaches [5], [6]. This paper focuses on the
simulation-based fault injection approach, which can be ap-
plied to larger designs compared to the formal and emulation-
based solutions.

Having enormous number of possible faults in modern
designs is a major drawback of simulation-based fault injection

technique as designers need to execute a fault-free simulation
as well as thousands of faulty simulations [7]. Therefore, it is
too hard to inject all possible faults in an acceptable time in all
possible locations and at each clock cycle [8]. One solution
is to use Statistical Fault Injection (SFI) [8] in which only
a randomly selected subset of possible faults is injected. SFI
can provide a better execution time by reducing the number
of the injections with an error margin. Moreover, [9] have
demonstrated that with randomly selected fault lists the ratio
of faults which do not produce errors may range as low as
2 to 8 percent, depending on the design under simulation.
In consequence, minimization of fault injection locations or
pruning fault lists are advantageous ways to reduce the fault
injection simulation time significantly while allowing injection
of a considerably larger number of relevant faults.

This work proposes a simulation-based fault injection
methodology based on Dynamic HDL Slicing to minimize
the number of fault injections. The proposed methodology
identifies critical faults which cause the system to fail in
the absence of a safety mechanism, and injects only critical
faults during the transient fault injection simulation campaigns.
Using critical faults to estimate fault coverage eliminates the
possibility of fault injection experiments to produce no error.
The main contribution of this work is three-fold as follows:

• Dynamic slicing on HDL to generate critical fault list
• Implicit fault collapsing within the slicing model: The

fault list obtained by the proposed slicing method has an
additional feature of avoiding injections at time-steps as
data inside registers is not being consumed.

• Language-agnostic RTL fault injection supported by in-
dustrial grade EDA tool flow

As a result, this method can successfully reduce the number
of fault injections on an industrial core. The fault model
implemented in this paper is based on single-clock-cycle
bit-flip faults within the RTL registers. This fault model is
targeting single Single-Event-Upsets (SEUs) in all the registers
of the design. The proposed methodology is demonstrated on
Cadence tools but it remains applicable to other tool flows as
well. This work is an extension of our previous work [10].
The major difference is that we extend dynamic slices’ scope
by including both sequential and combinational parts as it is
explained in Section III-C1. This brings 100% accuracy in
the results. In the previous work, less accuracy is adopted as
only sequential parts are considered in dynamic slices. The978-1-7281-2769-9/19/$31.00 ©2019 IEEE
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Fig. 1. Proposed HDL slicing based fault injection methodology [10].

second difference is that we evaluate our methodology in the
industrial size CPU with different workloads to demonstrate
the potential of the proposed methodology.

This paper is structured as following. Section II gives an
overview of related works. We describe our dynamic HDL
slicing methodology in Section III. Experimental results are
shown in Section IV. Section V concludes this paper.

II. RELATED WORKS

There exist many advanced tools and methods for
simulation-based fault injection. In [11], a tool called VERIFY
(VHDL-based Evaluation of Reliability by Injection Faults
Efficiently) is presented that utilizes an extension of VHDL for
describing faults correlated to a component, enabling hardware
manufacturers, which provide the design libraries, to express
their knowledge of the fault behaviour of their components.
Although it provides multi-threaded fault injection as well as
checkpoints and comparison with a golden run to speed up
the simulation of faulty runs, the drawback is that it requires
modification of the VHDL language itself. [12] proposes
MEFISTO-C: A VHDL-based fault injection tool that conducts
fault injection experiments using VHDL simulation models. A
variety of predefined fault models are supported by the tool;
however, it does not provide specific optimizations to speed
up the simulation.

Several approaches to generate the critical fault list to
be considered as the basis of fault list injection have been
proposed. In [13], a method for generating a critical fault
list is presented. The system under test is described by a
data flow graph, the fault tree is constructed by applying
the instruction set architecture fault model to the data flow
description with a reverse implication technique, the fault
injection is performed, and fault collapsing on the fault tree
is employed. The proposed method is very costly in terms of
CPU time and it therefore not applicable to systems with high
complexity.

[7] presents a new technique and a platform for accelerating
and speeding-up simulation-based fault injection in VHDL
descriptions. Use check-pointing to reload the fault-free state
if the design allowing to start the fault simulation from the
clock-cycle of fault injection. In addition, a golden-run fault
collapsing technique is utilized that discards all fault injections
between read-write and write-write operations of the memory
elements. However, the approach does not take advantage of

the dynamic slicing benefits. [9] proposes fault collapsing
based on extracting high-level decision diagrams from the
VHDL model. Although significant speed-up can be achieved,
the step of efficient decision diagram synthesis from the full
synthesizable subset of VHDL remains an issue.

There are several papers dealing with transient fault in-
jection. [14] shows the results collected in a series of fault
injection experiments conducted on a commercial processor.
Here, the authors inject a fault in a given sequential element at
a given instant of time. However, as it is hard to inject a fault
in each of the tens of thousands sequential elements in the
processor, the execution is divided into the parts and, for each
of these parts, a random fault injection instant is selected. [15]
analyses fault injection campaign in the CPU registers by
choosing a random instant when the fault is injected. [16]
identifies the optimal set of flip-flops but injection time is
randomized uniformly over the active region of the simulation.
Similarly, [17] injects a fault randomly in time and location in
RT-level. Lastly, [18] deals with single and multiple errors in
processors by randomly selecting injecting time and choosing
registers. As opposed to these works, our approach shows the
fault injection time explicitly instead of random instants.

Dynamic slicing technique is used in [19], [20]. The former
uses dynamic slicing for statistical bug localization in RTL.
The latter proposes dynamic slicing and location-ranking-
based method for accurately pinpointing the error locations
combined with a dedicated set of mutation operators.

Different from the works listed above, this paper proposes
a dynamic HDL slicing based technique that implicitly covers
the golden run fault collapsing, thereby significantly speeding
up the fault injection process.

III. FAULT INJECTION BASED ON DYNAMIC HDL SLICING
TECHNIQUE

In this work, fault injection simulation campaigns are opti-
mized by pruning the fault list to the critical faults identified
using HDL slicing on the RTL design model. The proposed
flow is shown in Fig. 1 and starts with the (1) extraction
of static slices for the target observation point. In parallel,
code coverage data is generated by (2) simulation-based code
coverage analysis for the design with pre-defined stimuli in the
testbench. Next, (3) the dynamic slicing procedure identifies
the intersection of the identified static slice and covered
code items and results in a set of clock-cycle-long dynamic
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Fig. 2. HDL slicing on a motivational example chopper [10].

slices for the given observation point. Finally, (4) the fault
injection simulation selects critical faults from the dynamic
slices, injects them at the specified time and evaluates the fault
propagation. We explain the details of the methodology in the
following subsections using a motivational example depicted
in Fig. 2, i.e. a VHDL implementation of a signal chopper
design [21]. Following subsections explain each step of the
proposed methodology in detail.

A. Static Slicing

Static slice, as it is implemented in the current paper,
includes all statements that affect the value of a variable
v for all possible inputs at the point of interest, e.g., at
the statement x, in the program. In the RTL code, static
slice shows the dependency between HDL statements [22]. A
simple design chopper in Fig. 2 has four outputs representing
different chops for the input signal SOURCE based on the
design configuration by inputs INV and DUP. It is possible to
perform a search backward to find dependencies in the HDL.
The resulting static slice is computed for the chopper design’s
output TAR F as shown in Fig. 3 by the help of formal analysis
tool’s structural analysis capability. The column Static Slice in
Fig. 2 marks HDL statements of a static slice on the TAR F
output. For instance, as the static slice of TAR F does not
include Line 40, H0 is counted as outside of the static slice

and for a TAR F output there is no need to inject fault on H0.
Fig. 2 also implies that, static slice does not depend on clock
cycles (shown as C1, C2, C3, C4 and C5) while executed
statements and dynamic slice may change for each clock
cycle. In summary, static slice includes statically available
information only as it does not make any assumptions on
inputs. Static slice is the first step of the proposed methodology
to prune fault list.

B. Coverage Analysis

In parallel to static slicing step, the RTL design is simulated
in the logic simulation tool to dump and analyse the coverage
data. In this step, we dump coverage data for each clock cycle
so that we can find what statements in the RTL are executed
for each clock cycle. In the proposed methodology, one clock
cycle defines the size of our dynamic slice. We use coverage
tool and coverage metrics in order to find executed statements.
After loading a simulation run into the coverage tool, we
can analyze coverage metrics data scored in that run. In this
work, we use code coverage which measures how thoroughly
a testbench exercises the lines of HDL code. Code coverage
includes block coverage, branch coverage, statement coverage,
expression coverage, and toggle coverage. All these coverage
types except toggle coverage can be used in this work. Block
coverage identifies the lines of code that get executed during a
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simulation run. It helps us determine if the testbench executes
the statements in a block. Branch coverage complements
block coverage by providing more precise coverage results for
reporting coverage numbers for various branches individually.
Statement coverage is just a subset of block coverage and
it shows execution of all the executable statements in the
RTL. Expression coverage provides information on why a
conditional piece of code was executed. At the end of this
step, we generate executed statements data to find dynamic
slices in the next step. Fig. 2 shows executed statements for
five clock cycles (C1, C2, C3, C4, C5).

C. Dynamic Slicing

Dynamic slice, as it is implemented in the current paper,
includes those statements that actually affect the value of a
variable v for a particular set of inputs of the RTL so it is
computed on a given input [23]. It provides more narrow slices
than static slice and consists of only the statements that affect
the value of a variable for a given input.

In a nutshell, dynamic slice is the intersection of static slice
and executed statements. We illustrate the concept of dynamic
slice in Fig. 2. This figure also shows how dynamic slices
narrow down the fault space when compared to state-of-the-art
static slice approach. For instance, during the time window C5,
register FF (Line 27) is not in dynamic slice meaning that we
do not need to inject fault in FF at C5 time window. Dynamic
slice gives us critical faults and eliminates those faults that
are not critical. In this way, we manage to reduce fault list by
injecting only critical faults. This provides a speed-up in the
fault injection simulation time as each injected fault increases
total run time of fault injection campaign.

1) Implicit Fault Collapsing in Dynamic Slices: In our
proposed methodology, dynamic slices cover both sequential
and combinational parts. In this way, all faults outside of
dynamic slices are 100% undetected and can be collapsed to
exclude them from the fault list. When considering the average
CPU time per a fault, an undetected fault spends more CPU
time than a detected fault as the fault injection simulation for
an undetected fault lasts until the end of the simulation. Hence,
it is very effective to identify undetected faults without running
fault injection campaigns.

Fig. 3. Backward static slice on the signal TAR F in the chopper design.

In the previous work [10], only sequential parts are con-
sidered in dynamic slices; however, both registers (sequential)
and combinational parts that are connected to the registers are
counted in dynamic slices in this work. In Fig. 4, dynamic
slice is built by considering the register inst dest bin and
inst dest (combinational) so that we can have 100% accurate
results. This is called as implicit fault collapsing since we
avoid injections at time-steps as data inside registers is not
being consumed.

D. Fault Injection Simulation

Fault injection enables to verify the capability of a safety
mechanism to recognize failures in a design’s functionality, by
injecting faults into the design. In a fault injection simulation,
target system and the possible hardware faults are modeled
and simulated by the simulator. In this process, the system
behaves as if there is a hardware fault.

To inject faults into a design, fault injection simulator needs
to know fault target at which to inject fault. In this work,
we enable fault instrumentation on the dynamic slices, more
specifically on registers that are in dynamic slices. In other
words, the proposed method identifies critical faults from
dynamic slices and inject them at the specified times. As a
fault model, we use Single Event Upset (SEU) fault type which
inverts the value of output of a sequential element and hold
the modified value until it is assigned a new value. Another
thing that fault injection simulations need is an observation
point, since the purpose of a fault campaign is to verify that
an error will be observed at some specific point in the design.
By defining explicit observation points when running a good
simulation, we can generate data that will help us to determine
if an injected fault is detected or undetected at one or more
specified nets.

In brief, fault injection simulation is used to show the
effectiveness of the proposed method. We inject one fault in
one simulation run. Also, in the case of having more than
one observation point in the analysis, the proposed method
prevents multiple injection of faults within the overlap of static
slices.

IV. EXPERIMENTAL RESULTS

In order to verify the accuracy of the proposed fault injection
method, we evaluate our application on industrial CPU with
different workloads [24]. In the following subsections, firstly,

Fig. 4. Implicit fault collapsing.
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we explain our experimental setup. Then, we show the results
in detail.

A. Experimental Setup

Aiming to automate the execution of fault injection cam-
paigns using the different tools, an application is developed as
in the Fig. 5. This is the more detailed illustration of Fig. 1.
We create generic scripts to activate the tools and automate
the flow. In this work, the proposed methodology is integrated
into Cadence flow but it can be applied using tools by any
major EDA vendor.

In the first step, backward static slice is built for a selected
observation point by using Cadence® JasperGold Formal Ver-
ification Platform. Then, we generate coverage results through
Cadence® Xcelium™ for each clock cycle that defines the size
of the dynamic slices. In the next step, static slice and executed
statements data are sent to fault injection simulation to define
fault target for the campaign. Annotation results provide
information regarding to number of injected faults, number
of detected and undetected faults. Moreover, we also use the
profiling feature of the tool that measures where CPU time
is spent during simulation. The profiler generates a run-time
profile file that contains simulation run-time information that
is useful for comparing execution time of different campaigns.
Cadence® Xcelium Fault Simulator is used for fault injection
simulations.

B. Evaluation and Results

We evaluate our methodology on a 16-bit microcontroller
core [24] with a single address space for instructions and
data. To show the effectiveness of the proposed method,
we use three different workloads on openMSP430. We show
our results in two categories as fault list reduction and time
savings. Then, we evaluate the accuracy of this methodology
by comparing our results to a state-of-the-art static slicing
optimization method.

In the first step, backward static slice is built from dmem din
observation point which is the main output of the core and then
coverage data is calculated. Next, considering the registers
in static slice, instruction source and destination registers are
selected as fault targets to apply the proposed method since

Fig. 5. Overall flow of experimental setup.

Fig. 6. Fault list reduction based on three different workloads.

these registers are widely used in fault injection applications
as they hold all instructions.

Table I shows the comparison of two techniques: a) state-of-
the-art static slicing and b) dynamic HDL slicing. We perform
a fault injection campaign for each workload and a fault target
(and) for each approach. For the execution of Dhrystone and
Coremark workloads with static slicing, we select 100k faults
after the warm-up phase of the CPU.

1) Fault List Reduction: Fig. 6 shows the reduction in the
number of faults injected. All detected faults seen in Fig. 6
are critical faults. As seen in this charts, dynamic HDL slicing
is effective in pruning the fault list as compared to the static
slicing. Table II shows the percent reduction in the number of
faults injection. The best reduction is achieved in Sandbox
workload as a reduction of 9.94%. The magnitude of the
fault list reduction depends on the workload characteristics.
In this experimental results, the fault list reduction varies
between 1.36% and 9.94%. These analysis reveal that dynamic
HDL slicing prune the fault list and identify the critical faults
successfully while analysis and optimization effort costs are
very minor. Additionally, to identify undetected faults and
exclude them from the fault list provides a increased fault
coverage as it can easily be seen in Table I.

2) Time Savings: Table I shows the total CPU time of
overall regression for each fault injection campaign. Dynamic
slicing provides various time savings from 1.58% to 16.91%
as shown in Table III. As in fault list reduction, time savings
depend on the workload characteristic. When considering
the need of multiple fault injection campaigns in real life
applications, this time savings can expeditiously increase.

Authorized licensed use limited to: CADENCE DESIGN SYSTEMS. Downloaded on July 01,2021 at 11:15:24 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
EXPERIMENTAL RESULTS ON OPENMSP430

Sandbox Dhrystone Coremark
Static Slicing Dynamic Slicing Static Slicing Dynamic Slicing Static Slicing Dynamic Slicing

inst dest bin

Detected 8036 8036 56236 56236 48891 48891
Undetected 3996 2852 43764 42404 51109 47809
Total 12032 10888 100000 98640 100000 96700
Total CPU time of overall regression 1197.1s 994.7s 658919.7s 622459.0s 3437663.0s 3323109.9s
Fault Coverage 66.788% 73.806% 56.236% 62.735% 48.891% 50.559%
inst src bin

Detected 2423 2423 34766 34766 45161 45161
Undetected 9609 8413 65234 63498 54839 48051
Total 12032 10836 100000 98264 100000 93212
Total CPU time of overall regression 1488.2s 1284.2s 803009.1s 790300.0s 3575198.1s 3178378.2s
Fault Coverage 20.137% 22.361% 34.766% 35.380% 45.161% 48.450%

TABLE II
PERCENTAGE OF REDUCTION OF THE TOTAL NUMBER OF INJECTIONS

WITH DYNAMIC HDL SLICING

Sandbox Dhrystone Coremark
Percentage of reduction Percentage of reduction Percentage of reduction

inst dest bin 9.51% 1.36% 3.3%
inst src bin 9.94% 1.74% 6.79%

TABLE III
TIME SAVINGS USING DYNAMIC HDL SLICING

Sandbox Dhrystone Coremark
Dynamic slicing time saving Dynamic slicing time saving Dynamic slicing time saving

inst dest bin 16.91% 5.53% 3.33%
inst src bin 13.71% 1.58% 11.10%

3) Accuracy: In this work, we show the results of a fault
injection campaign performed using dynamic slicing, along
with a state-of-the-art static slicing approach. These results
reveal that dynamic slicing achieves the same number of
detected faults as static slicing campaign. This means that
dynamic slicing can be used for different purposes as it is
an accurate fault injection methodology. For instance, SFI [8]
prunes the fault list in terms of margin of error with a given
confidence level. However, dynamic slicing exclude only non-
critical faults and find all critical faults with a 100% accuracy.

V. CONCLUSIONS

Fault injection on RTL requires excessively long simulation
time which prevents detailed reliability evaluation of hardware
components with significant number of injections. This paper
presents a method to speed-up fault injection campaigns by
minimizing of fault injection locations. The method applies
dynamic slicing on HDL to accurately pinpoint fault injection
locations and allows injection of critical faults in these time
windows. In this way, this paper narrows down the fault space
and provides reduced simulation time. Moreover, average 5-
10% extra gain in simulation time for fault injection is a
significant improvement of the total chip validation costs, as

this phase is the most time consuming. The proposed method is
language-agnostic and suitable for industrial grade EDA tool
flows. Experimental results on industrial-size example show
that we achieve significant speed-up of the fault injection
simulation when comparing to the state-of-the-art flows.
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Abstract—The current demands for autonomous driving gen-
erated momentum for an increase in research in the different
technologies required for these applications. Nonetheless, the lim-
ited access to representative designs and industrial methodologies
poses a challenge to the research community. Considering this
scenario, there is a high demand for an open-source solution
that could support development of research targeting automotive
applications. This paper presents the current status of AutoSoC,
an automotive SoC benchmark suite that includes hardware and
software elements and is entirely open-source. The objective is
to provide researchers with an industrial-grade automotive SoC
that includes all essential components, is fully customizable, and
enables analysis of functional safety solutions and automotive SoC
configurations. This paper describes the available configurations
of the benchmark including an initial assessment for ASIL B to
D configurations.

Keywords - Automotive benchmark; SoC; open-source; Func-
tional Safety; ISO 26262.

I. INTRODUCTION

In recent years, advances in technology enabled the em-
ployment of automated systems to control driving tasks. The
idea of electronic devices having full control over a vehicle
promises to change the concept of mobility in the near future.
However, allowing computers to control all the tasks in a
vehicle requires high complexity systems and major concerns
with respect to the safety. The development of Autonomous
Vehicles applications, where a system failure could cause life-
threatening situations, entails in state-of-the-art challenges on
different aspects of system development. Concerns with Reli-
ability, Security, Quality, and compliance to Safety Standards
are of high priority. This scenario requires adoption of new
techniques and methodologies that will facilitate development
and verification of these applications. Several organizations
are working to close the technological gap for Autonomous
Vehicles. However, in order to assess the quality of the pro-
posed solutions, it is necessary to compare the results against
what is applied in the industry. Nowadays, development life-
cycles and verification techniques applied by industry are not
disclosed, and each big player in the automotive sector has
its own methodologies and tools. In addition, there is limited
access to automotive hardware and software solutions. This

is a challenge for researchers, that may not be able to verify
their work in representative designs or assess the quality of
their results. For that reason, there is a high demand for a suite
of open-source benchmarks that would enable research on the
different aspects of Automotive applications development. It
should be outlined that the benchmarks should include not only
the hardware description (at different levels of abstraction),
but also compatible software modules (Operating System,
peripheral drivers, sample applications) and information about
the implemented safety and security mechanisms.

As part of the efforts for developing solutions to address
the demands of Autonomous Driving, industry and academia
are investing in research on several related areas. Several
works are exploring aspects of fault-tolerance in hardware
architectures [1], [2], software design [3], operational sys-
tems [4], among others. [5] provides a broader look on
specific reliability challenges for autonomous systems, for
both automotive and robotics. The challenges of Functional
Safety compliance, based on standards like ISO 26262, are
also explored in research as [6], [7]. The authors point out
Fault Injection (FI) Simulation as one of the critical steps
for compliance with the standard. For that reason, different
approaches are proposed to leverage FI Simulation, optimiza-
tion of the simulation techniques [8], [9], combination of
multiple fault analysis technologies [10], analysis of faults
on different hardware abstractions levels [11], [12], and many
others. Several works are also discussing the security issues
imposed by these applications [13]. Challenges with hardware
attacks [14] and secure in-vehicle communication [15] are
being investigated and their interference with functional safety
and reliability is getting to the front. Although several works
include significant contributions to advance the state-of-the-
art, they all have some common pitfalls. First, experiments are
usually not performed on representative designs. Results may
be compromised by a lack of comprehensive test cases, which
should be based on Systems on Chip (SoCs) with an operating
system and software applications that are representative of the
Automotive sector. Also, such systems should be fully open-
source, allowing different researchers to assess the quality of
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the results by comparison. Even though some components of
such systems are available in the community, to the best of our
knowledge no open-source package including SoC hardware
models, OS and SW applications, that is representative of the
Automotive sector is available.

To address these challenges, we propose an open-source
industrial-grade benchmark suite. The proposed Automotive
benchmark comprises all its elements in the format of an
SoC, and hence, it was named AutoSoC. The AutoSoC
was conceived by the analysis of commercial solutions, and
considering common development techniques deployed by
industry. The selected architecture considered the availability
of software (compilers, debuggers, operating systems, and
others) and the feasibility of development in multiple hardware
abstraction levels (Virtual Platform, RT and gate level). The
suite includes multiple configurations with different levels of
Safety Mechanisms (SMs), enabling investigation of Func-
tional Safety aspects. The AutoSoC appears as an interesting
candidate to support Automotive research. The main contribu-
tions of our work are:

• Launch the initiative for an open-source SoC benchmark
suite for Automotive applications

• Provide a solution for integrating inter-layer components
and their interoperability required for an automotive SoC
development

• Demonstrate representative use cases by a set of software
applications including an Automotive Cruise Control

• Validate the concept by including a preliminary Safety
Assessment targeting different ASIL configurations.

The AutoSoC benchmark suite is available for download in
http://www.autosoc.org.

The remainder of this paper is organized as follows. Section
II elaborates on the reasons behind the need for standardization
and benchmarking in the automotive as well as in the closely
related robotics domain. Next, Section III describes the defi-
nition of the functional requirements for the AutoSoC based
on the characterization of industrial solutions. Afterwards, in
Sections IV, V and VI, we describe its base HW and SW com-
ponents, the Safety components and the available benchmark
configurations. Section VII outlines a preliminary functional
safety analysis targeting different ASIL configurations. Last,
Section VIII presents our conclusions and future work.

II. SAFETY STANDARDIZATION AND
BENCHMARKING FOR AUTOMOTIVE AND

ROBOTICS
Nowadays, highly automated safety-critical systems (such

as autonomous vehicles and autonomous mobile robots) are
implemented with very complex integrated circuits. They are
composed of a large set of HW elements, executing an equally
large set of SW elements, often from third parties. This
complexity has created a strong demand for standardization
initiatives related to semiconductors, to guarantee uniformity,
interoperability and repeatability of the many activities re-
quired by a safety lifecycle. The main initiative is the 2nd
edition of ISO 26262, with a part 11 [16] fully dedicated to

the application of ISO 26262 to semiconductor technologies.
The part 11, with its 179 pages, provides a detailed set of
guidelines on principles, methods and architectures for digital,
mixed signal, programmable device and sensor type of inte-
grated technologies. The variety of solutions and combinations
provided by part 11 is huge, as also the opportunity to create
new ideas fulfilling the principles highlighted by the standard.

On the other hand, that vastity of options is a challenge from
several points of view. For example, despite the ISO 26262
provides a mathematical approach to quantify the probability
of failure due to HW random failures, it is very effort intensive
to apply it and quickly compare the effectiveness of each
proposed solution. In fact, the results are highly dependent on
the chip architecture and the related SW application executed
on it. The same challenge exists for the verification activities
(e.g. fault injection) required to confirm the effectiveness of
some of the functional safety properties, such as the diag-
nostic coverage. The time spent to setup each fault injection
campaign for each different architecture solution makes un-
practical to use it during the exploration phase – so limiting
the creativity and the space of possible solutions. Another
challenge is caused by the interaction between several different
properties and requirements. For example, a typical approach
to achieve high diagnostic coverage is the so-called loosely
coupled lock-step, i.e. the same SW is executed redundantly
in two different processing cores and compared by a third
element. The resulting diagnostic coverage highly depends on
how the SW redundancy is executed (e.g. if it is a task per
task or instruction per instruction redundancy, if the OS is in
common or shared, etc.), on how often the two SW executions
are compared, on how many variables of the compared SW
are exposed to the comparison, etc. It is also necessary to
evaluate the so-called Diagnostic Time Interval, i.e. how often
it is possible to perform that comparison and the time required
by the Safety Mechanisms to compare and detect the potential
failure. As also it is necessary to evaluate the degradation of
performance (e.g. in terms of worst case execution time or
WCET) that the comparisons of the loosely coupled lock-step
are causing to the data traffic of the nominal functionality.

The complexity described by the previous examples indi-
cates the strong need of an open-source benchmarking environ-
ment, to provide scientists with a ready-to-use and clearly de-
fined platform on which to implement and test safety solutions
in a comparable way. That platform, for example, should allow
researchers to compare two different implementations of the
loosely coupled lock-step scheme. Another use case for that
benchmarking environment is the measure of the application
overhead caused by the execution of SW test libraries (STLs),
a well-known method described in ISO 26262 part 11. The
availability of a common benchmark will allow a transparent
and well defined comparison of the impact to the application
caused by two different STL implementations.

III. AUTOMOTIVE SOC ARCHITECTURES

This section describes the analysis of commercial automo-
tive SoCs that led to the definition of the functional blocks of
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the AutoSoC. The gathering of requirements for the proposed
SoC considered the main features available in well-known
automotive solutions. The objective of this characterization
was to create an SoC that is representative of the industry
standards.

A. Industry Solutions Characterization

Nowadays, the industry is embedding several features in
SoCs targeting different in-vehicle applications. The so-called
Automotive Ecosystem includes solutions for infotainment,
powertrains, network communication, automatization of driv-
ing tasks, among others. All those features require robust
solutions that must consider aspects of functional safety and
security. Although different commercial solutions are avail-
able, in general, architectures have similarities that can be
explored to define a set of requirements for an Automotive
SoC. The requirements for the AutoSoC were gathered based
on an analysis of the datasheets of commercial Automotive
SoCs. We considered the main characteristics of available
solutions to identify common aspects that can be regarded as
mandatory by the industry. In general, the analysis can be split
into the following domains:

1) Hardware Architecture: common architecture character-
istics;

2) Safety: what components of the SoCs are considered for
functional safety compliance and which safety mecha-
nisms are usually implemented;

3) Security: which security features are available;
4) Other: commonly available peripherals (e.g. communi-

cation protocols, GPUs, Audio/Video DSPs).
One notable common characteristic, among the evaluated

solutions, is the availability of multiple CPUs. In general, ded-
icated hardware components are available for safety-critical
and application-specific operation. This concept allows the
deployment of powerful CPUs for applications with high pro-
cessing demands (e.g. video processing), while safety-critical
applications are executed in CPUs with dedicated safety mech-
anisms. For example, the Renesas R-Car M3 [17] includes
two CPUs for common applications and an additional Dual
Lockstep CPU for safety-critical applications. The Infineon
AURIX [18] and Texas Instruments TDA2SG [19], follow
a similar concept by including a CPU and separated cores
for dedicated functionalities. Dual-Core Lockstep (DCLS) is
the most common safety mechanism available for CPUs.
For the memories, including RAMs and caches, industrial
solutions usually deploy Error Correction Codes (ECCs) and
Parity. DCLS, ECCs, and Parity have an advantage regarding
Functional Safety analysis. These SMs are introduced by the
recommendations of ISO 26262 [20] and include a reference
of their fault coverage capabilities. Hence, by deploying any
of these SMs as described in ISO 26262, the referenced
Diagnostic Coverage can be directly used during Functional
Safety Analysis.

The other components available in the analyzed SoCs
could be categorized as communication protocols, application-
specific, security, and infrastructure peripherals. In general, the

TABLE I
SUMMARY OF COMMERCIAL SOC ANALYSIS

Renesas
R-Car M3

Infineon
AURIX

Texas
TDA

Safety CPU with DCLS + + -
Memories with ECC + + +
Second CPU (no SM) + + +
Dedicated Video IPs + + +
Automotive Peripherals + + +
Security Cripto IPs + - +

commercial solutions implement a good variety of commu-
nication peripherals, including automotive protocols as CAN
and FlexRay, and general protocols as Ethernet, SPI, and I2C.
Another common characteristic is the availability of Video and
Audio dedicated hardware. As the majority of the SoCs aim
to Advanced Driver-Assistance Systems (ADAS) applications,
they include peripherals like GPUs, video codecs, Image
Processing Units, and Audio DSPs. In the security domain,
apart from proprietary features that are not detailed, the most
common components are cryptography engines, like Advanced
Encryption Standard (AES), Data Encryption Standard (DES),
Hash, among others. Also, some solutions provide access
control features like firewalls and protected memory areas.
Additionally, every analyzed solution included infrastructure
peripherals like JTAG, UART, GPIO and debug components.

Considering the characteristics of the evaluated commercial
solutions, it is possible to define a common set of features that
can be seen as required by the automotive industry. The ad-
dition of safety-related components, application-specific units,
automotive protocols, and security cores, can be established
as the basic set of features for a representative Automotive
SoC. The summary of common characteristics found in the
evaluated commercial solutions is available in Table I.

B. AutoSoC Functional Blocks

Based on the characterization of industrial solutions, sum-
marized in Table I, an initial architecture of AutoSoC was
established. Functional blocks were defined aiming to cover
the minimum set of features required for a representative au-
tomotive benchmark suite. The concept of functional blocks is
also important to keep the design modular. Different versions
of AutoSoC can deploy diverse hardware components to cover
the requirements of each functional block. Figure 1 illustrates
the outcome of our analysis.

As it happens in most commercial solutions, the AutoSoC
has two main processing units. The Safety Island is responsible
for all safety-critical processing capabilities. It is composed
of CPUs and memories that must be covered by Safety
Mechanisms according to the requirements of ISO 26262.
The division between safety-related hardware and the rest of
the SoC components supports the compliance with Functional
Safety standards, as only the safety-related hardware is re-
quired to comply with ISO 26262. The other processing unit
is the Application Specific Block. This unit implements the
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Fig. 1. AutoSoC Functional Blocks.

hardware required for application-specific processing. It may
include CPUs and memories for high demand applications,
GPUs and Image processing units for video applications,
among others. The target functionality for each given AutoSoC
configuration will define the Hardware components required
for the Application Specific Block. Also, it is important to
notice that the Safety Island and the Application Specific
Blocks have dedicated Software stacks. Both can execute
distinct Operational Systems and applications that will better
suit their requirements.

The remaining blocks implement communication, security,
and general SoC infrastructure. The Automotive Block is
responsible for SoC communication with in-vehicle systems.
The most common protocol deployed for in-vehicle commu-
nication is CAN. However, other options can be implemented,
like FlexRay, LIN, Automotive Ethernet, among others. The
Security Block is responsible to perform all security-related
functionalities of the AutoSoC. The most common employ-
ment is cryptography cores, like AES and DES. However,
we expect other security features to be explored. With this,
the AutoSoC benchmark architecture allows future extensions
aiming at support the new security standard under develop-
ment ISO 21434. The latter aims at defining a Cybersecurity
Assurance Level (CAL), similar to the ASIL concept [21].
The Infrastructure Block is responsible for the on-line health
monitoring of the SoC. It includes debugging features such
as JTAG and UARTs to ease the development process. Fi-
nally, the Interconnect Block is responsible for internal SoC
communication. It may deploy common communication buses,
like AXI and Wishbone, or more advanced options such as a
Network-on-Chip (NoC).

IV. AUTOSOC BASE COMPONENTS

This section outlines the processing units, interconnect com-
ponents, debug elements, and software workloads currently
integrated into the AutoSoC. An initial configuration of the
benchmark, named AutoSoC QM, is set up by deploying only

the base components. The AutoSoC QM is a fully functional
version of the benchmark and works as the foundation for
further configurations. The modular design of the AutoSoC
allows additional configurations to be instantiated by simply
enabling additional Safety components. The next sections
describe the available Safety components and AutoSoC con-
figurations.

A. Hardware Components

The selection of the CPU, as the central unit of the
AutoSoC, considered different processor architectures, perfor-
mance features (e.g. pipeline stages and memory interfaces),
main buses, software stacks, and the possibility of develop-
ment on multiple abstraction levels (Virtual Platforms, RT
level, and gate level). A further requirement is that the CPU
has to be open-source. Different analyzed options could be
considered as good candidates for the CPU. For instance, the
Amber2 [22] is a 32-bit RISC CPU compatible with the ARM
v2a instructions set. Another considered option was the Gaisler
LEON3 [23]. It includes a 7 stages pipeline, a comprehensive
set of peripherals, and support scripts. This work has deployed
the OpenRISC [24] (mor1kx implementation) as the main
CPU. The OpenRISC includes a better variety of support tools,
an active community and the resources for the development of
a Virtual Platform. Also, the community supports a variety of
compatible peripherals that can be easily integrated, including
CAN, AES, and DES [25].

The OpenRISC community provides tools and examples for
the development of SoCs. As part of that, there is an example
SoC based on the mor1kx CPU. The package includes CPU,
memory, UART, JTAG, and a debug unit, all connected with
a Wishbone bus. Also, the example SoC contains a testbench
with features for loading software applications to the memory
and connection to the debug unit via JTAG. This example was
used as a base for the AutoSoC. By deploying the example,
we can cover the infrastructure and interconnect blocks. Also,
we can reuse part of the provided test environment to speed
up the development.

B. Software Resources

One of the objectives of the Automotive Functional Safety
analysis is to avoid disturbance of the safety-related function-
alities of a system by random hardware fault. In the case
of an SoC, the software application executed by the CPU
defines the functionality. For that reason, the software stack
is an important part of the Functional Safety analysis. The
current version of AutoSoC includes several software options.
The intention was to integrate the available resources and the
applications developed by ourselves in a unified repository in
the AutoSoC simulation environment. The simulation of all
available software applications is possible by suitably setting
up the configuration files. AutoSoC includes several software
resources organized by folders. The Baremetal folder includes
development resources as Makefiles, drivers, and around 50
compiled test applications. Also, a compiled Linux kernel
(bootable in simulation) is available in the Linux folder.

!

!

Authorized licensed use limited to: CADENCE DESIGN SYSTEMS. Downloaded on July 01,2021 at 11:15:19 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Time diversity Dual-Core Lockstep implementation.

Furthermore, the RTEMS folder includes a development en-
vironment with Makefiles, drivers, and applications. Finally,
an Automotive Cruise Control application was developed. The
application is based on the RTEMS Operational System. It
comprises four real-time tasks for reading vehicle sensor data,
computing actuation, setting some engine parameters, and
housekeeping.

V. AUTOSOC SAFETY COMPONENTS

Another important aspect of the benchmark is the avail-
ability of Safety Mechanisms in the Safety Island. As this
block is responsible for executing safety-critical applications,
we need to assure that potential faults can be detected avoiding
possible harm to the expected functionalities. The CPU, as the
primary unit of the Safety Island, is the primary target for the
safety evaluation. Different safety mechanisms schemes were
conceived, each targeting different Automotive Safety Integrity
Levels (ASIL).

A. Dual-Core LockStep

The first option deploys time diversity Dual-Core Lockstep
(DCLS) as the main Safety Mechanism. The DCLS config-
uration includes a redundant copy of the CPU, delay units
for time diversity and compare units for fault detection. The
implementation of the DCLS with time diversity is illustrated
in Figure 2.

The performance of the main processor is not affected by the
DCLS implementation. The main CPU is the only one with
write access to the bus, controlling the functionality of the
SoC. On the other hand, the shadow CPU does not perform
any write access to the SoC resources. Instead, the outputs
of the shadow CPU are used only by the Compare Unit for
fault detection. In case of a mismatch between the outputs of
both processors, an alarm is activated by the Compare Unit.
Despite the additional fault coverage by including DCLS, we
still need to consider the effect of common-mode failures
that can impact both processors and are not detectable by
comparison of the their outputs [26]. To minimize the potential
of common-mode failures the DCLS mechanism includes time
diversity. Time diversity works by applying a delay in the
execution of the shadow processor. The delay is obtained by
including a delay unit in the driven signals of the CPU. Delay

units are also added to the outputs of the main processor,
to align both core outputs for the Compare Unit. The Delay
Units can be configured with the desired time shift: the current
version applies a delay of 2 clock cycles to all signals. The
shadow CPU execution delay configuration must consider the
system requirements for maximum fault tolerance time. Since
this delay is also applied to the input of the Compare Unit,
a mismatch between the CPU outputs will be detected only
after the configured delay.

Dual-Core Lockstep is the most used SM scheme for
processors targeting ASIL D applications. However, not all
applications demand ASIL D and the extra cost of including
a redundant copy of the CPU. For that reason, AutoSoC
incorporates additional configurations targeting different ASIL
requirements.

B. Software Test Libraries

A Software Test Library, also referred to as STL, is a
collection of software tests that are run on power-on (key-
on), power-off (key-off) or periodically to prevent faults from
leading to single-point failures or prevent them from becoming
latent as a result of a multiple-point fault.

This software mechanism aims at detecting permanent faults
that can occur anytime during the execution of a safety appli-
cation and can cause a safety violation. An STL corresponds
to a set of software procedures, usually developed in assembly
code, C code or a combination of both. These may be executed
either at boot-time or run-time. In the former case they require
supervisor capabilities and therefore, to avoid conflict with
the Operating System (OS), are usually executed during the
power-on and power-off. On the other hand, when the STLs are
executed at run-time, they have to coexist with the OS. Then,
it is essential to make these tests run in a short period of time,
usually few milliseconds, to avoid affecting the behavior of
the other software applications running on the same hardware.
The software scheduler will schedule these tests at specified
time intervals when the hardware is idle or running less time
sensitive applications.

In the recent years, several semiconductor and IP companies
started to provide their customers with Software Test Libraries
(STLs) to be used for on-line fault detection when the target
devices are used in safety-critical applications. The advantage
stemming from their adoption lies first of all in the fact that
system companies can test their products in the field while
guaranteeing a given fault coverage, even without knowing the
implementation details (black-box testing). Moreover, STLs
perform the test exactly in the system operating conditions,
thus executing at speed and avoiding any overtesting. Finally,
they do not require any change in the hardware, thus avoiding
any area or performance overhead. On the other side, the
generation of STLs is mainly manual at the moment and
requires special skills in order to achieve sufficiently high
fault coverage figures. Computing these figures for a given
STL also requires a new generation of tools called Functional
Fault Simulators. Several recent works introduced guidelines
on how to correctly generate STLs for CPUs [27], [28] and
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peripherals [29], how to speed up the FI experiments [30],
how to maximize their fault coverage in the different scenarios
(possibly minimizing the test time [31]), and how to re-use
existing STLs.

C. Internal Memories ECC

Usually, in complex CPUs internal memories occupy the
highest area on the physical device. As the component size is
directly related to the probability of faults, the internal memo-
ries are a primary target for SMs. The ISO 26262 standard
includes recommendations for well-known memory Safety
Mechanisms. Based on the recommendations and the findings
of the industry solutions characterization, Error-Detection-
Correction Codes (ECC) was selected as an option to protect
the internal memories of the CPU. The current implementation
of the Safety Island CPU includes seven blocks of internal
RAMs. Together, the internal memories represent 91.3% of the
total fault targets in the RT level representation of the CPU.
The deployment of an SM with high Diagnostic Coverage,
like ECC, on all internal memories, will provide a satisfying
coverage for the overall CPU.

D. External Memory ECC

The other elements of the Safety Island must also be
verified for the possibility of single points of failure. Gen-
erally, software applications must be loaded to the external
memory to be executed by the CPU. Also, the applications
utilize the memory for storing data and control parameters.
As the software application function relays on the external
RAM, memory failures have a direct impact on the intended
functionality. The external RAM must also be covered by ECC
to avoid propagation of internal memory faults to the outputs
of the Safety Island.

E. Bus Parity

The data bus is responsible for data transmission between
the memory and the CPU. For that reason, a fault in the
data bus could propagate to the CPU or to the memory and
would not the detected by their SM. To avoid these cases,
a parity checker was included to cover data transmissions
between CPU and memory. The Parity checker monitors
data bus transmissions, and calculates a Parity bit for all
communications between CPU and memory. The Parity bit is
transmitted by a direct connection between the Parity Check
blocks. In case of a wrong parity, an alarm is set to inform
the system.

F. Checkpoint Control

Even if the DCLS SM is employed, both CPUs could get
stuck in the same software instruction, and none of the men-
tioned SMs would be able to detect this fault. For that reason,
a Checkpoint Control safety mechanism was implemented.
The Checkpoint control monitors the Data Bus expecting pre-
determined software signatures in specific memory locations.
The mechanism works as a Hardware Watchdog, but instead
of expecting a single refresh from the software application,

Fig. 3. AutoSoC Safe Configuration.

it expects a different signature for each software task. Conse-
quently, the SM is capable of verifying not only if the software
application is running, but also if the Control Flow is as
expected. The Checkpoint Control is fully customizable during
elaboration, allowing the definition of the software signatures,
expected sequence, and deadlines.

G. Safety Monitor

Finally, a Safety Monitor block was developed to integrate
all the detection alarms. In the case of fault detection of any
SM, the Safety Monitor generates an external alarm and an
error code to indicate where the fault was detected. Figure 3
illustrates the architecture of the AutoSoC Safe configuration,
including the DCLS, External Memory ECC, Bus Parity and
Checkpoint Control.

VI. AUTOSOC CONFIGURATIONS

This section outlines the available benchmark configura-
tions and how they can be set up by enabling the different
safety components. The available configurations comply with
the Functional Blocks: Safe, Automotive, Infrastructure and
Interconnect. The Application Specific and Security Blocks, as
illustrated in Figure 1, will be developed in the next stages of
our work. The modular design of the AutoSoC allows the reuse
of the Functional Safety Analysis, performed in the scope of
this paper, on later configurations.

As part of its modular concept, several configurations of the
AutoSoC are possible by enabling different combinations of
the mentioned components. For defining a new configuration,
based on the provided simulation folder, the user must select
the Hardware components in the elaboration config file, choose
the software application and enable any combination of Safety
Mechanisms by adding defines to the ’plus args’ config file
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TABLE II
AUTOSOC CONFIGURATIONS

Benchmark
Configurations

Dual Core
LockStep

Internal
Mem ECC

Software Test
Libraries

BUS
Parity

Checkpoint
Control

Safety
Monitor

AutoSoC QM - - - - - -
AutoSoC ECC - + - - - -
AutoSoC STL - + + - - -

AutoSoC DCLS + - - - - +
AutoSoC SAFE + - - + + +

(e.g. +define+DCLS). The new configuration can then be elab-
orated and simulated with the provided Makefile. Although
any possible combination of components can be created, we
have defined a group of initial configurations for the AutoSoC.
These configurations are based on common SM combinations
from industry solutions. Table II illustrates some potential
configurations for the AutoSoC. For the scope of this paper,
we have performed a preliminary safety assessment for three
configurations. The configurations AutoSoC ECC, AutoSoC
STL, and AutoSoC DCLS, were analyzed as candidates to
target different ASIL levels.

VII. PRELIMINARY FUNCTIONAL SAFETY ANALYSIS

This section describes the functional safety analysis of some
of the available configurations of AutoSoC. Functional Safety
Analysis, as specified by ISO 26262, aims to decrease the risk
of failures caused by malfunctions. Within electronic systems,
it focuses on avoiding that random hardware faults can disrupt
the expected functionality of a design. The Automotive Safety
Integrity Level (ASIL), defines the required risk reduction for
a particular functionality. Functionalities with a higher risk
of hazard situations demand a higher ASIL. In general, to
reduce the risk of malfunctions induced by random faults, we
include Safety Mechanisms (SMs). The required percentage
of detection, or Diagnostic Coverage (DC), is defined by the
ASIL.

Typically, Functional Safety analysis is completed at later
stages of the hardware design. Additional parameters like area,
Failure-in-Time (FIT) rate, and Failure Modes distribution, are
necessary to confirm design compliance to the required ASIL.
These parameters are used to calculate Safety Metrics that
show the design capacity to cope with different fault models.
For that reason, the current AutoSoC analysis is considered
preliminary. The next step of our work is to finalize the gate-
level description of AutoSoC, determine the possible failure
modes, define the diagnostic coverage based on the failure
mode distribution, and calculate the final safety metrics.

A. AutoSoC DCLS configuration

Hardware redundancy schemes, like Dual-core Lockstep,
are defined by ISO 26262 as recommended safety mechanisms
for processing units. The standard defines the typical diagnos-
tic coverage for these mechanisms is high, meaning 99% of
detection for random hardware faults. The implementation of
DCLS should aim to provide early detection of failures, by
step-by-step comparison of results produced by two processing

TABLE III
DCLS CPU FAULT COVERAGE

Fault Target SA(1/0)
Faults

Detected
by DCLS

Residual
Faults

mor1kx cpu 675,504 668,749 6,755

units operating in lockstep. The AutoSoC DCLS configuration
intends to comply with the description from ISO 26262. Also,
the implementation of time diversity increases the DCLS
features by addressing the effects of common-mode failures.

A preliminary investigation of the mor1kx cpu description
shows a potential of 337,752 possible fault targets. If we
consider the SA0 and SA1 fault models, as required for
ISO 26262 permanent faults analysis, there are a total of
675,504 faults to be analyzed. The DCLS safety mechanism
intends to identify faults in the mor1kx cpu. By respecting the
Diagnostic Coverage defined by ISO 26262 for the DCLS, we
can assume that 99% of the faults in the mor1kx cpu(Main)
will be detected by the Lockstep Controller. With 99% of
fault coverage, we can expect the AutoSoC DCLS to be a
good candidate to comply with ASIL D requirements. Table III
illustrates the potential fault coverage for the AutoSoC DCLS
configuration.

B. AutoSoC ECC configuration

As described for the Processing Units, ISO 26262 also
includes recommendations of Safety Mechanisms for Volatile
and Non-Volatile memories. One of the recommendations is
the deployment of Memory monitoring using Error-Detection-
Correction Codes (ECC). Traditionally, ECC algorithms can
detect every one and two-bit failures, and some three or
more bit failures in a word. The standard defines the typical
diagnostic coverage for ECC is also 99% of detection for
random hardware faults. Usually, on complex CPUs, internal
memories, or caches, occupy the largest area on the physical
devices. For that reason, they will have a high contribution
to the design Failure-In-Time (FIT) rate. This contribution
will appear in the Failure Modes (FM) distribution, with
cache-related FMs requiring Safety Mechanisms to decrease
the residual FIT. It is a common design practice to protect
the cache memories with ECC or Parity. In the AutoSoC
design, the internal memories represents a potential of 633,344
possible fault targets considering the SA0 and SA1 fault
models. This number represents 93.7% of the total number of
fault targets for the entire CPU. For that reason, the addition of
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TABLE IV
INTERNAL MEMORIES ECC FAULT COVERAGE

Fault Target SA(1/0)
Faults

Detected
by ECC

Residual
Faults

Fetch instructions cache ram 262,144 259,523 2,621
Fetch instructions cache tag ram 20,992 20,782 210
Fetch instructions MMU ram 8,192 8,110 82
Load/Store data cache ram 262,144 259,523 2,621
Load/Store data cache tag ram 19,968 19,768 200
Load/Store data MMU ram 8,192 8,110 82
Load/Store store buffer 51,712 51,195 517

TOTAL 633,344 627,011 6,333

SM to the internal memories represent a good overall coverage
for the CPU faults. The AutoSoC internal ECC configuration
considers the incorporation of ECCs to all internal memories.
Table IV demonstrates the fault coverage of the ECC for each
internal memory block. The total number of faults covered by
the ECCs, considering the 99% DC defined by ISO 26262, is
627,011 faults. This coverage represents a 92.8% Diagnostic
Coverage of the entire CPU. These figures acknowledge the
AutoSoC internal ECC configuration as a good candidate to
comply with ASIL B requirements.

C. AutoSoC STL configuration

To avoid the hurdle of the extra hardware required by DCLS
schemes, there is an increasing demand for software strategies
for the on-line testing of automotive processors. This section
describes the main characteristics of the software test libraries
being developed to improve the AutoSoC CPU fault coverage
and reports the preliminary results.

Preliminary results are gathered on two AutoSoC CPU mod-
ules: the Arithmetic Logic Unit (ALU) and the Load and Store
Unit (LSU). The STL programs have been developed resorting
to three of the most common strategies for Software-Based
Self-Test (SBST) generation [32]: ATPG-based, deterministic
and evolutionary-based [33]. The current STL comprises 16
test programs for a total of 64 KB. The AutoSoC STL
Configuration targets the CPU (mor1kx cpu), cleared of all the
possible sources of non-determinism such as Instruction Cache
and Data Cache. Indeed, when evaluating the test programs
fault coverage, the exact stream of instructions entering the
pipeline must be deterministic: these modules might lead to a
fluctuating fault coverage and therefore should be deactivated
for the fault grading process (which directly contributes to
the ASIL process certification) [34]. This does not prevent the
caches (or similar) from being used when the STL is integrated
in the application software and deployed in field.

Starting from these considerations, permanent faults injec-
tion analyses have been carried out on a total of 42,160 faults
target for the mor1kx cpu at RT level, and a total of 60,672
permanent faults for the mor1kx alu and the mor1kx lsu units
at gate level. If considering the mor1kx alu and mor1kx lsu
at RT level, there are 4,938 fault targets. The Fault Injections
experiments were performed at both the RT and gate level,
mimicking the typical process used in practice, where RT
level estimations are used as a proxy for gate level fault

TABLE V
SELECTED CPU MODULES STL FAULT COVERAGE

CPU Modules RT-Level Gate Level
FC [%] TFC [%] FC [%] TFC [%]

ALU + LSU 68.71 80.04 76.23 85.43

coverage estimation during the STL development process. A
further investigation was performed in order to identify all
the untestable and safe faults [35], revealing a non-negligible
increase in the fault coverage of the two targeted modules.
Once again, the identification of untestable and safe faults
represents a common issue in practice, given that their number
may often be non negligible. Table V sums up the gathered
results showing the achieved fault coverage on the ALU and
LSU modules, both at the RT and gate level. The achieved
Fault Coverage (FC) considering the redundant and safe faults
is reported as Testable Fault Coverage (TFC).

The deployment of software routines to identify permanent
faults is shown to be effective in multiple units of a CPU
[35]. Although it is not always possible to achieve ASIL
D fault coverage requirements by deploying STLs, they are
an appealing alternative when combined with other Safety
Mechanisms. A common practice in the automotive industry
is to combine STLs with ECC in the internal memories
of the CPU. For instance, in [35] the authors achieved a
permanent fault coverage of 84.4% by deploying an STL in an
OpenRISC CPU similar to AutoSoC CPU. The AutoSoC CPU
contains 42,160 targets for stuck-at-0 and stuck-at-1 faults,
not considering the internal memories. If we consider the
fault coverage from [35], the STL would be able to detect
35,583 faults. If we include the STL routines in the AutoSoC
ECC ConfigurationVII-B, the combined Safety Mechanisms
would detect 662,594 faults. As the total number of faults is
675,504, the combined detection rate represents a Diagnostic
Coverage of 98%. This figure would allow the combination
of the AutoSoC STL and ECC configurations to be a good
candidate to comply with ASIL C requirements.

VIII. CONCLUSIONS

The development of Autonomous Vehicles is driving the
industry to close the technological gap demanded by these
applications. The research community is proposing solutions to
address the concerns with safety, security, performance, among
others. However, it may be hard to assess the quality of their
results. In most cases, there is limited access to representative
designs and comparison with industrial methodologies is very
complicated. To address this matter, we present the AutoSoC
benchmark suite. Our work intends to provide researchers
with an SoC that is based on commercial solutions, includes
all essential components, is highly customizable, and allows
comparability between distinct methodologies and results. This
paper outlines the current architecture options incorporated
in the AutoSoC, including hardware components, software
applications, operating systems, and safety mechanisms. Also,
we describe a preliminary functional safety assessment target-
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ing different ASIL configurations. Further works on AutoSoC
may focus on new Safety Mechanisms or combinations of
them, new techniques to automate the safety analysis (e.g.,
to better identify untestable and safe faults) and make it faster
(e.g., speeding up functional fault simulation), and to evaluate
cross-layer solutions to evaluate and increase the system de-
pendability. We believe that the availability of this benchmark
suite will allow researchers to develop new solutions and to
quantitatively assess their effectiveness, thus contributing to
the advancement of the state of the art in the area.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 722325.

REFERENCES

[1] J. Han, Y. Kwon, Y. C. P. Cho, and H.-J. Yoo, “A 1ghz fault tolerant
processor with dynamic lockstep and self-recovering cache for ADAS
SoC complying with ISO26262 in automotive electronics,” in 2017 IEEE
Asian Solid-State Circuits Conference (A-SSCC). IEEE, nov 2017.

[2] A. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing
lockstep dual-core ARM cortex-a9 soft error mitigation in freeRTOS
applications,” in Proceedings of the 30th Symposium on Integrated
Circuits and Systems Design Chip on the Sands - SBCCI 17. ACM
Press, 2017.
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Abstract—The development of Integrated Circuits for the
Automotive sector imposes on major challenges. ISO26262 com-
pliance, as part of this process, entails complex analysis for
the evaluation of potential random hardware faults. This paper
proposes a systematic approach to identify faults that do not
disrupt safety-critical functionalities and consequently can be
considered Safe. By deploying code coverage and Formal ver-
ification techniques, our methodology enables the classification
of faults that are unclassified by other technologies, improving
ISO26262 compliance. Our results, in combination with Fault
Simulation, achieved a Diagnostic Coverage of 93% in a CAN
Controller. These figures allow an initial assessment for an ASIL
B configuration of the IP.

Keywords - ISO26262; Safe Faults; Fault Injection; Formal
Methods; Simulation; Functional Safety; Verification.

I. INTRODUCTION

The increasing complexity in automotive applications is
causing a shift in the traditional design flow. An Integrated
Circuit (IC) that implements safety-critical applications, such
as autonomous driving, must incorporate mechanisms to re-
duce the risk of failures resulting in life-threatening situ-
ations. For such applications, the system must be able to
detect an extremely high percentage of potential faults while
already deployed in the field. In the most advanced automotive
ICs, where millions of design components are susceptible to
random hardware faults, this process becomes challenging.
Also, the demands for fault detection during the operational
life of the design requires the deployment of suitable test
mechanisms, as Self Test Libraries (STL). In operational
mode, Design for Testability (DfT) often is not an option, as it
could disturb the intended functionalities. Today, the approach
based on STLs is widely adopted in the automotive industry
[1][2][3].

Usually, Fault Injection (FI) Simulations are deployed for
evaluation of the fault effects in the operational mode. How-
ever, FI Simulation alone is not enough to fully classify
all faults. For those which are not detected we must rely
on alternative analysis methods that can prove whether they
could disturb safety-critical functionalities or not (Safe Faults).
Previous works [4] showed that the number of Safe Faults
can be significant in real applications. In complicated designs,
manual analysis of fault effects is an arduous task that requires
extensive knowledge of the design functionalities. Therefore,
there is a high demand for a systematic approach for the
identification of Safe Faults, allowing the reduction of manual

efforts and improving compliance with Functional Safety
standards.

Fault Injection (FI) Simulation is a state-of-the-art method
for Functional Safety Verification, being recommended by
ISO26262. As such, several researchers explored the optimiza-
tion of FI campaigns [5][6][7][8]. The main purpose is to
show that fault effects are observable on safety-related outputs
of the design. In case an injected fault is not observable, it
must be re-analyzed. Nonetheless, observation or detection of
all design faults is usually not possible. Therefore, alternate
methods are necessary for the classification of residual faults.
Formal Methods can be employed to leverage the classification
of faults. The ability of formal techniques in analyzing the
design behavior for all possible combinations of inputs can
help to identify Safe Faults [9][10][11]. These faults cannot be
tested by ANY valid test stimuli. Faults that are untestable can
also be described as Structural-Safe Faults. The combination
of FI Simulation and Formal techniques was also examined
[12][13][14][15]. The mixed technologies approach is usually
deployed to improve the classification of faults. However, even
with the identification of Detected and Structural-Safe Faults,
there are still residual faults that require further classification.
To avoid manual analysis of fault effects and still fulfill
ISO26262 requirements, a different methodology is needed.

Our work tackles the classification of residual faults. We
propose a methodology that identifies design elements where
a fault cannot disturb the safety-critical outputs of the design.
In case the effect of a fault does not affect safety-related
functionalities, there is no chance of Safety Goal violations.
Therefore, these faults can be classified as Determined-Safe.
Different from Structural-Safe Faults which cannot be tested
by any functional test stimuli, Determined-Safe Faults may
affect the output of the design. However, they cannot af-
fect safety-critical functionalities. Initially, we deploy code
coverage techniques to identify design elements that are not
exercised during functional verification. The candidates are
examined by code inspection and simulation. If confirmed that
the candidates are not safety-related, they are translated into
formal rules. Finally, we configure all the rules in a Formal
analysis tool for the identification of Determined-Safe Faults.
The main contributions of this work are:

• A systematic approach for classification of Faults that
cannot affect safety-critical functionalities;
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• Demonstration of the proposed methodology using an
automotive CAN Controller IP;

• Improving the fault classification to 93% of Diagnostic
Coverage, achieving ASIL B requirements out of the box.

The rest of the paper is organized as follows: Formal
techniques for identification of Safe Faults are introduced in
Section II. Section III describes the proposed methodology.
Section IV explains the validation process and discusses our
results. Section V concludes.

II. FAULT CLASSIFICATION BY FORMAL TOOLS

Fault classification is a strenuous task. A fault can only
be labeled as Safe if one can prove that it cannot be tested
by ANY functional test stimuli. The formal analysis appears
as a good alternative for this purpose since it is not limited
to a specific time or state. Instead, the scope is global, and
every evaluation context and test stimuli is considered [9].
Consequently, formal analysis can exhaustively prove that a
fault can never produce any failure. This class of untestable
faults can be classified as Structural-Safe.

Different EDA vendors explore fault analysis capabilities
in their formal solutions. Generally speaking, these solutions
automatically generate properties, not requiring knowledge of
formal languages. In addition, they allow integration with
FI Simulators providing fault lists optimization and reducing
simulation campaigns. Tools used for formal analysis usually
apply two main fault analysis techniques, Structural Analysis
and Formal Analysis.

A. Structural Analysis

The Structural Analysis aims to determine the testability of
faults. The testability of the faults is determined by verifying
the physical characteristics of the design. Figure 1 illustrates
the examination applied by the Structural Analysis.

Figure 1 represents a circuit with combinational logic (g),
inputs (in), outputs (out) and fault targets (f). Considering this
circuit, it is possible to define the following fault behaviors by
applying Structural Analysis:

1) As the only Observation Point (strobe) configured for
the fault analysis is ’out0’, any fault that is outside of
its Cone of Influence is considered Untestable. For that
reason, any fault in ’f1’ is Structural-Safe as there is no

Fig. 1. Structural Analysis Example.

physical connection between the fault location and the
strobe.

2) Depending on the characteristics of ’g1’ drivers, it is
possible to define the activatability of ’f2’. For example,
if ’g1’ always output the logic value one, ’f2’ would
not be activatable for Stuck-at-1 faults. Consequently, a
Stuck-at-1 fault in ’f2’ would be Structural-Safe.

3) Characteristics of the combinational logic ’g2’ could
block propagation of a fault in ’f3’. If, for example,
’g2’ is an AND gate, with one of the inputs always set
with the logic value zero, the effect of a fault in ’f3’
would never propagate to ’out0’. Therefore, ’f3’ would
be Structural-Safe for Stuck-at-1 and Stuck-at-0 faults.

B. Formal Analysis

The Formal Analysis deploys formal techniques to investi-
gate the behavior of a design under fault. The fundamental
theory consists in creating a representation of the boolean
function implemented by the design under test, where formal
proves can be deployed. Modern Formal tools employ different
formal techniques to achieve better performance. Although
details of implementation are not disclosed, common forms of
design representation are Binary Decision Diagrams (BDDs)
[16] and Multiway Decision Graphs (MDGs) [17].

Two copies of the design model are built for formal analysis:
the Good Machine and the Bad Machine. The same inputs
and constraints are deployed on both models. Fault effects
are applied in the Bad Machine only and the Strobe point of
both copies are monitored. A difference in the Strobe Points
indicate the propagation of the fault.

The Formal Analysis deploys formal methods to determine
the Activation and Propagation of faults. Activation Analysis
indicates whether the fault can be functionally activated by any
combination of inputs. Propagation Analysis verifies if there is
a combination of inputs that provoke fault propagation. Formal
Analysis will classify the faults, which were not previously
classified by the Structural Analysis, in three groups:

• Safe: Faults that cannot be activated or propagated.
• Dangerous: The tool identified at least one combination

of test inputs that results in fault propagation.
• Unknown: All the others.
Formal properties to perform the analysis are automatically

generated and verified with respect to all possible input
stimuli. The Formal Analysis relies on formal properties and
verification to prove the properties to be true.

Formal verification techniques are resource hungry and
limited due to the state explosion problem. For that reason, the
analysis of formal properties cannot find results for all fault
targets. Therefore, the residual faults still require an alternative
classification methodology.

III. DETERMINED-SAFE FAULTS

The ISO26262 Hardware Architectural Metrics determines
the effectiveness of designs to cope with random hardware
failures [18]. The failures addressed by these metrics are
limited to elements that can contribute to the violation of safety
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goals. Safety goals define the required mitigation of hazardous
events to avoid unreasonable risks caused by malfunctions.
During the system development phase, safety goals will be
decomposed into a Functional Safety Concept that defines
the requirements for the hardware architecture. However,
the development of a hardware design demands additional
components that are not related to the safety concept. These
components will decrease the compliance to Hardware Archi-
tectural Metrics, even though in case of faults, they may not
violate safety goals. For that reason, these components can
be identified by their potential to disrupt safety goals and, if
applicable, determined safe.

Determined-Safe Faults cannot disturb safety goals. Dif-
ferent from Structural-Safe Faults that cannot be tested by
ANY functional test stimuli, Determined-Safe Faults may
affect the output of the design. However, they cannot affect
safety-critical functionalities. Common Determined-Safe fault
targets are design parts not used in operational mode. The
identification of these faults usually requires the judgment of
hardware design experts.

A. Determined-Safe Candidates

In this section, we define a methodology to support the
identification of Determined-Safe Faults. Our methodology
deploys code coverage techniques to identify design elements
that are not fully used during the design simulation. Code
coverage is a method of assessing to what extent test cases
exercise the design. Since this analysis relies on the simulation
results, it is critical to employ representative test cases. In
general, Functional Safety Verification is performed at later
stages of the design life-cycle, after functional verification
is completed. Therefore, we can assume that the design is
available in RT and Gate level, and also comprehensive test
cases are available for the identification of Determined-Safe
Faults.

The initial step is to simulate the design under test, with
all the available test cases, collect code coverage data, and
generate the coverage reports. Our methodology does not
depend on a specific tool. However, the selected tool-set
should include code coverage analysis. Next, we analyze the
reports to check the results for block and toggle coverage.
Block coverage determines whether test scenarios exercise
the statements in a block. A block is a series of sequential
statements without delays or control flow statements (if, case,
wait, while, among others). In other words, a block is a
specific state in a state machine. Toggle coverage measures
the activity of the signals in the design during the simulation.
It provides information on untoggled signals or signals that
remain constant during the simulation.

The metrics from the code coverage provide candidates for
Determined-Safe Faults. For instance, by recognizing states
that are never activated, as a result of block coverage, we
can identify design modes that are not related to safety func-
tionalities. Similarly, signals that are untoggled can highlight
important details of the design, like invalid configurations,
not utilized functions, status monitors, among others. The

Fig. 2. a) Block Coverage example - b) Toggle Coverage example.

combination of toggle and block coverage usually provides
further information about specific functionalities. For example,
the missing toggle in a control signal may be responsible
for never activating a block in a state machine. Also, by
bypassing a specific state, another signal may not be toggled.
Figure 2 illustrates an example of the correlation between the
toggle and the block coverage. The block coverage (Figure
2-a) shows a block that was never activated. Since the last
”else if” statement is always false, the ’error irq’ is not set to
zero. In Figure 2-b, the result of toggle coverage shows that
the control signal ’read irq reg’ never toggles, validating the
block coverage. Additionally, the coverage confirms that the
signal ’error irq’ has one rising toggle but never toggles back
to zero.

In this example, the coverage results trigger an investigation,
where we can determine that the interrupt requests (IRQ) error
register is never read by the application. Next, we need to
verify if this behavior is expected, and then we can decide
if a fault that affects the value of the IRQ error register can
be considered safe. Each candidate identified during the code
coverage requires an investigation over simulation and source
code. The coverage result by itself is not enough to identify
the potential Determined-Safe Faults. Nonetheless, it indicates
candidates that can facilitate the manual classification of such
faults. After the determination of the candidates, we need to
translate their behavior into a set of formal rules, allowing
identification of the actual Determined-Safe Faults by Formal
methods.

B. Formal Identification of Determined-Safe Faults

The identification of Determined-Safe Faults will deploy the
same techniques described in Section II for the identification
of Structural-Safe Faults. The difference is that the formal
environment will incorporate the formal rules retrieved from
the code coverage analysis. By constraining the environment,
we enable the tool to evaluate the design in a well-specified
configuration, increasing the potential for identification of Safe
Faults. Additional Safe Faults will be classified as Determined-
Safe, as they are Safe considering the functional constraints
included in the environment.
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The design elements identified during the code coverage
must be translated into assume statements or fault-propagation
barriers. Assume statements enable constraints configuration
for formal analysis. When an expression is assumed, the for-
mal verification tool constrains the design inputs accordingly.
The role of the assume construct is useful in the confirmation
of the design functional configuration. Also, by configuring
the expected behavior of the design, we increase the capacity
of Safe Faults identification by limiting the test stimuli space.
Fault-propagation barriers are design elements that can block
the propagation of a fault. Faults that propagate only to certain
elements may not affect safety-critical functionalities. Conse-
quently, these faults can be Determined-Safe. For example,
a counter that monitors the number of transmissions is not
read by the transmission controller. In that case, a failure in
the monitor does not alter the design functionality. For that
reason, this counter can be configured as a fault-propagation
barrier, and all faults that can only affect its value can be
Determined-Safe.

In most cases, the Determined-Safe Candidates translation
into formal environment constraints will consider the element
type. Input ports of the design instances are suitable candi-
dates to assume statements. Output ports, on the other hand,
are better candidates for fault-propagation barriers. Internal
signals like ’regs’ and ’wires’ need further analysis of the
Gate-Level representation of the hardware, as they may be
modified by synthesis. Nevertheless, for each environment
constraint, we must confirm the assumptions by analysis of
the RTL code, simulation of the design, and understanding
of the expected design functionalities. An over-constrained
formal environment would cause false-positives, invalidating
the results.

After confirmation of the environmental constraints, we
generate a file for the set-up of the Formal Analysis Tool.
The set-up file must include all assume statements and fault-
propagation barriers. With the set-up file in place, we repeat
the formal analysis to identify the Determined-Safe Faults.

IV. RESULTS
A. Test Case

To validate the proposed methodology, we targeted a design
that is representative of the challenges of the automotive indus-
try. For that reason, the adopted peripheral is an open hardware
implementation of the SJA1000 CAN Controller, developed by
Philips in the early 2000s. The selected controller implements
the BasiCAN and the PeliCAN Modes. The BasiCAN Mode
supports communication in Normal Mode with a second CAN
node. The PeliCAN Mode supports CAN 2.0B protocol, which
includes functionalities as Self-Test and Listen-Only Modes.

The test of the CAN Controller considered for this work
employs a Software-Based Self-Test (SBST) approach, leading
to the creation of a Software Test Library (STL). To enable
the execution of the STL and emulate a realistic configuration,
the CAN Controller is integrated into an OpenRISC OR1200
SoC. By deploying a full SoC, we can store the test program
in a memory and control the execution of the STL during

TABLE I
FAULT INJECTION RESULTS.

Fault Target SA(1/0)
Faults

Undetected
Faults

Detected
Faults

Diagnostic
Coverage

CAN Controller 38,012 5,005 33,007 86.83%

idle intervals. The complete test environment comprises two
OR1200 SoCs. Each SoC is configured with a different test
program and connected through a simplified version of the
CAN bus avoiding the implementation of the transceiver.
Instead, the resulting bus consists of the two Tx signals
connected into an AND gate whose output is then connected
to each Rx pin. The environment can be configured with RT
or Gate level representations of the CAN Controller.

The STL was developed as a collection of tasks that can
either operate independently or collectively, depending on the
self-test time slot [19]. The following tasks are available as
part of the STL:

• Bitrate Test: aims to test the timing related modules by
employing different bitrates;

• Normal Mode Test: tests the BasiCAN and PeliCAN
Normal Modes by transmitting and receiving messages
with a fixed bitrate;

• Self-Test Mode and Listen-Only Mode Tests: while one
node is in Self-Test mode the other one must be in Listen-
Only Mode and vice versa;

• FIFO Test: tests the FIFO module by filling it and
emptying it while receiving several messages;

• Errors Test: tests error conditions due to bitrate mis-
matches;

• Arbitration Loss Test: tests arbitration loss conditions,
achieved when one node stops transmitting a message
due to a higher priority message being transmitted on the
bus;

• Acceptance Filter Test: tests the acceptance filter logic
that decides whether a message has to be stored in the
internal memory or not.

To validate the ability of the design to cope with random
hardware faults, a Fault Injection campaign was executed.
We used the Cadence R© XceliumTM Fault Simulator (XFS)
to manage the fault campaign execution. The XFS was con-
figured to inject SA0 and SA1 faults at every cell port of
the Gate-Level representation of the CAN Controller. Table I
shows the Fault Injection results. Even though the deployed
STL achieves a good fault coverage (86.83%), there are still
over 5,000 undetected faults. These faults must be classified
to allow compliance with the requirements of ISO26262.

B. Classification of Determined-Safe Faults

During the analysis of the CAN Controller, the candi-
dates for Determined-Safe Faults revealed some similarities.
According to the intended functions, we could classify the
candidates. First, several signals were constant during the
simulation of the design. From those, nine are responsible
for the configuration of the CAN Controller to operational
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TABLE II
FORMAL ANALYSIS RESULTS.

Formal Analysis SA(1/0)
Faults

Structural
Safe

Determined
Safe

Total
Safe

CAN Controller 38,012 539 1,996 2,535

mode. These signals were translated into assume statements
in the constraints environment file. The combination of toggle
and block coverage also revealed not used functionalities.
The simulated workload does not enable modes like single-
shot transmission, overload requests, and early transmission.
Each of these cases must be individually analyzed. We need
to define, based on the development requirements and safety
goals, if these functionalities should be available in operational
mode. As previously stated, our initial assumption is that the
functional verification environment is available. Therefore, we
can conclude that these modes are not intended in the current
version of the CAN Controller. This assumption is reflected
in the constraints environment file by the assume statements
and fault-propagation barriers. Finally, the CAN Controller
contains registers that monitor several statuses. Some of those
are never read by the CPU. A misleading value in a monitor
or counter that is never read by the application may not
affect the expected functionality. Once again, safety goals
should be verified to confirm that the CPU is not supposed to
monitor these statuses. We have selected five status registers
to be translated as fault-propagation barriers in the constraints
environment file.

The constraints environment for the identification of
Determined-Safe Faults on the CAN controller consisted of
10 assume statements and 18 fault-propagation barriers. We
have examined the function of each included item by RTL
code investigation and monitoring of the signals during the
simulation. Also, some of the RTL internal signals needed
to be traced to wires in the Gate level representation of the
hardware to be included in the constraints environment.

Our work applies Cadence R© Integrated Metrics Center
(IMC) for code coverage and Cadence R© JasperGold (JG)
Formal Verification Platform Functional Safety Verification
(FSV) for Formal Analysis. The identification of Safe Faults
consisted of two steps. First, we deploy JG FSV formal
analysis for the identification of Structural-Safe Faults. Next,
we load the final constraints environment into the Formal
Analysis tool and repeat step one. The additional Safe Faults
identified in step two will be listed as Determined-Safe. The
summary of the formal analysis results is illustrated in Table
II. The computational time required for each Formal campaign
was of a couple of days. As many of the properties are
never proven, the total execution time depends on the timeout
configured for each formal property.

C. Combined Results

The results of the Fault Injection and Formal Analysis
can be combined to improve the Diagnostic Coverage. Faults
that cannot disturb safety-critical functionalities, Structural

and Determined-Safe, can be removed from the fault list.
Each possible fault target in a design must be analyzed
and classified. The annotation of the faults usually starts
with Formal Analysis to identify Structural-Safe Faults. The
remaining faults are simulated and, when applicable, annotated
as Detected. If the desired Diagnostic Coverage is achieved,
the process ends. Otherwise, the residual Undetected faults
must be re-analyzed. The Determined-Safe classification is an
alternative to annotate the remaining Undetected faults and
increase the overall Diagnostic Coverage of the design. The
Diagnostic Coverage is calculated by the formula:

DC = (Detected)/(Total − Safe) (1)

where DC is the Diagnostic Coverage, Detected are faults
annotated as detected by FI Simulation, Total is the number of
faults, and Safe represents the Structural and Determined-Safe
Faults annotated by the Formal tool.

Figure 3 details the results of the various analysis steps. The
graph illustrates the faults classification contribution achieved
during Fault Injection, Structural-Safe, and Determined-Safe
analysis. The process is incremental, always focusing on faults
that were not previously classified. Also, Figure 3 displays
the calculated Diagnostic Coverage at each step. Finally, the
last column illustrates the results when all fault analyses
are combined. As previously explained, we apply Formal
methods to decrease the number of not classified faults. As
additional Safe Faults decrease the denominator in (1), the
results from the Formal analysis cause an increase in the
Diagnostic Coverage.

Even with the increased fault classification, there are still
Undetected faults that require further analysis. The classifi-
cation of the residual faults could be achieved by improving
the STL coverage, or by creating additional formal rules to
increase the number of Determined-Safe Faults. The next
step of our work is to propose automation techniques that
can facilitate the analysis and improve even further the fault
classification.

The proposed methodology appears as a promising alter-
native for the classification of residual faults. We define a
systematic approach that allows the identification of Safe
Faults based on two well-established techniques. The iden-
tification of these faults usually relies on reliability experts
and requires deep knowledge over the system functionalities.
This manual analysis process is strenuous and prone to er-
rors. Our methodology is a step towards the automation of
the identification of Safe Faults. By deploying the proposed
methodology, we were able to classify 2,535 additional faults,
resulting in a DC improvement of around 6%. With a final DC
of 93.04%, the CAN Controller achieves the requirements for
an automotive ASIL B hardware component as-is, i.e., without
design modifications.

V. CONCLUSIONS

Functional Safety Verification is one of the most challenging
steps for Integrated Circuit (IC) compliance with ISO26262.
The severe demands for tolerance to random faults are a hurdle

!

!

Authorized licensed use limited to: CADENCE DESIGN SYSTEMS. Downloaded on July 01,2021 at 11:15:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Combined Results

for ICs targeting safety-critical applications. Fault analysis, as
part of this process, becomes an extensive procedure that is
usually repeated numerous times and requires manual inputs
from specialists to achieve safety metrics. We propose a
methodology that deploys code coverage and Formal analysis,
as a step towards automation in Safe Faults identification.
First, we identify design elements where a fault cannot dis-
turb safety-critical functionalities. Next, those elements are
translated into formal rules that are configured in a Formal
analysis tool for the identification of Determined-Safe Faults.
The additional classification of residual faults is necessary for
compliance with ISO26262. Our methodology, in combination
with Fault Simulation, was applied to a CAN Controller IP,
resulting in a Diagnostic Coverage of 93%. The proposed
methodology appears as a promising alternative for residual
faults classification without relying solely on manual analysis.
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Abstract—The advanced complex electronic systems increas-
ingly demand safer and more secure hardware parts. Corre-
spondingly, fault injection became a major verification milestone
for both safety- and security-critical applications. However,
fault injection campaigns for gate-level designs suffer from
huge execution times. Therefore, designers need to apply early
design evaluation techniques to reduce the execution time of
fault injection campaigns. In this work, we propose a method
to represent gate-level Single-Event Transient (SET) faults by
multiple Single-Event Upset (SEU) faults at the Register-Transfer
Level. Introduced approach is to identify true and false logic
paths for each SET in the flip-flops’ fan-in logic cones to obtain
more accurate sets of flip-flops for multiple SEUs injections at
RTL. Experimental results demonstrate the feasibility of the
proposed method to successfully reduce the fault space and also
its advantage with respect to state of the art. It was shown that
the approach is able to reduce the fault space, and therefore the
fault-injection effort, by up to tens to hundreds of times.

Index Terms—SET, SEU, multiple faults, functional safety,
hardware security, fault injection

I. INTRODUCTION

The fault injection technique is widely used for evaluating
functional safety [1] and security threats resilience [2] in
integrated circuits. For safety-critical applications, it is an
established, accurate method to assess the effectiveness of the
deployed safety mechanisms. For security-critical applications,
the technique is efficient to mimic an attack by physical fault
injection aimed to alter the program flow or the processed data
[3]. However, depending on the abstraction level of the circuit
and the size of the fault space, a fault injection campaign can
be very costly.

One of the challenges of fault injection campaigns is the
vast number of possible fault locations. For a simulation-
based fault injection campaign [4], engineers simulate a fault-
free design and its copies with faults injected one at a time.
This may imply enormous execution times, especially for the
gate level fault analysis. Hence, there is a high demand for
methodologies that can support designers in the early-stage
design exploration of reliability factors. Moreover, fault injec-
tion into gate-level models is quite late in the integrated circuit
development cycle, and any design modifications become
more expensive in terms of the required engineering effort.
Several researchers delved into the early-stage explorations
of the designs for both safety and security applications [5]–
[8]. In both safety and security-related applications, early
design evaluation is necessary to minimize design iterations
and resources, thus to enable faster design closure times.

In this work, we focus on SET faults at the gate level and
propose an efficient solution to represent them by multiple
SEU faults at the RT level. The relevance of this problem
for safety-critical applications grows with the downscaling of
the technology nodes, forcing designers to evaluate system’s
safety against SET faults, which affect combinational elements
of the circuit. However, this comprehensive evaluation at the
gate level is not affordable in terms of the execution time of
fault injection campaigns for the industrial-sized designs. From
the security point of view, SET faults at the gate level represent
laser fault attacks, which can be observed in flip-flops (FFs)
as single or multiple errors [9]. Here, it is crucial to evaluate
laser attacks in order to determine which vulnerable SET faults
create single or multiple errors in the sequential elements of
the design.

To tackle the listed problems, we propose a methodology
for representing gate-level transient faults, such as SETs, by
Multiple Flip-Flop Upset (MFFU) at RTL. In the case of Soft
Error Reliability (SER) assessment for safety applications such
as automotive, MFFU becomes functionally equivalent for
EDA tools to multiple simultaneous SEUs. For vulnerability
analysis against fault-injection attacks on security-critical de-
signs, MFFU refers to single and multi-bit fault injections. In
this work, first, we identify static fan-in cones of each FF at the
gate level. Second, we perform propagation analysis to identify
SET faults that have true (sensitizable) paths to FF inputs.
In this way, we obtain optimized FF sets as representatives
of all SET faults to guide RTL multiple SEU fault injection
campaigns. As a result, this method can successfully reduce
the fault space and enhance the high complexity of fault
injection campaigns. Without loss of generality, the proposed
methodology is demonstrated on a Cadence EDA (Electronic
Design Automation) tool flow, but it remains applicable to
other tool flows as well. The main contribution of this work
is as follows:

• An approach to move the gate-level SET vulnerability
analysis to RTL

• A technique to reduce the fault space at RTL by applying
gate-level propagation analysis

• A systematic and workload-independent methodology for
representing the gate-level SETs by multiple SEUs at
RTL supported by industrial-grade EDA tool flow

The rest of the paper is organized as follows. In Section
II, we give an overview of the related work. The proposed
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Fig. 1. Steps of proposed methodology.

methodology is explained in Section III. The experimental re-
sults are discussed in Section IV. Finally, Section V concludes
the paper.

II. RELATED WORKS

Relevant solutions for the above problem are proposed in
[7] and [8]. However, these state-of-the-art approaches rely on
the static cones pre-analysis only and do not consider if a SET
fault actually propagates to the FF inputs. [7] proposes an RTL
fault injection model which is representative for laser fault
attacks. To do that, the authors analyse the circuits structurally
and find intersection cones which guide the fault injection
in advance. On the other hand, they neither create FF sets
that cover all SET faults nor optimize FF sets by considering
true/false paths. Similarly, [8] models the locality of a laser
attack in case of multiple-bit faults. The authors analyse the
circuits structurally as well and, afterwards, create FF sets.
However, the authors consider only the supersets and reject
all the subsets. In this way, each combination of SEUs in the
superset is a trial to hit a fault in any smaller cone intersection.
Yet, the probability of hitting a SET in case of any superset
by selected random multiple SEU is low.

There are other studies which investigate the impact of
SET faults. [10] estimates the impact of SET faults without
layout information by identifying a pair of gates in which SET
can propagate to multiple outputs. [11] analyzes the impact
of SETs through Algebraic Decision Diagrams and Binary
Decision Diagrams (BDD) and [12] improves this method by
considering multiple effects. Finally, [13] suggests performing
a stochastic gate-level simulation for small circuits. Last but
not least, there are some works that investigate the combination
of different fault analysis technologies such as [14] and [15].
These works combine the strength of formal methods and fault
injection simulators; however, they analyse only permanent
faults and do not analyse the representation of gate-level SET
faults at RTL.

Different from the works listed above, this paper proposes
a more efficient technique to prune the fault space by consid-
ering the propagation of SET faults. The significant speedup
is achieved by running the RTL fault injection procedure on
the accurately selected multiple flip-flop upset faults.

III. REPRESENTING GATE-LEVEL SET FAULTS BY
MULTIPLE SEU FAULTS AT RTL

In this work, the aim is to identify Multiple Flip-flop Upset
sets for RTL fault injection, which represent all gate-level

SET faults. By doing so, we reduce the number of injections
required to evaluate the effect of SET faults.

The SET fault model implies flipping the value of a signal in
the combinational cloud and holding the value for a specified
period of time. SEU fault model implies flipping the value
of the output of a sequential element and holding it until it is
overwritten with new data. SEUs can be applied on the outputs
of sequential elements, such as memories, FFs and latches. We
apply SET faults for one clock cycle length. The proposed flow
is shown in Fig. 1 and starts with the (1) extraction of static
fan-in cones of each FF in gate-level netlist. In the next step
(2), FF sets are created to represent each SET faults on the
fan-in cones of FFs. Then, we perform propagation analysis
(3) to check if SET faults propagate to the FF inputs. If a SET
fault does not propagate, then we check if this changes created
FF sets. In this way, we obtain optimized FF sets, which are
representative of all SET faults, which propagate to the FF
inputs. Finally (4), we calculate the fault space to see the
reduction when compared to state-of-the-art and random multi-
bit injection approaches. The following subsections explain
each step of the proposed method in detail.

A. Static Fan-in Cone Extraction of Flip-Flops at gate level

As a first step, we extract fan-in cones of each FF at the
gate level, as it is illustrated in Fig. 2. In the beginning, we
generate a list of all faults in the design. Then, we extract
fan-in information from all FFs in the ingress combinational
part of the design. Each fan-in cone search starts from a
FF and expands backward, i.e. in the direction of inputs

Fig. 2. Extracting fan-in cones of each FF and finding propagation paths.
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TABLE I
RESULTS OF EXAMPLE DESIGN GIVEN IN FIG. 2

Affected Cone FF Sets Multiplicity Optimized FF Sets Optimized Multiplicity

Cone 1 A, B 2 A, B 2
Cone 2 A, B, C 3 A, B 2
Cone 3 B, C, D 3 C 1
Cone 4 C, D 2 D 1

of the combinational cloud until it encounters a FF output
or a primary input (PI). Finally, all SETs in each cone are
enumerated to map each SET to a FF set. This step is
performed by using Cadence® JasperGold Functional Safety
Verification App.

B. Flip-Flop Sets Identification

The second step of the proposed methodology is the iden-
tification of FF sets, which will be used as a MFFU injection
target in the following steps. To do that, we consider each fan-
in cone independently and determine FF sets, which cover all
possible scenarios, as shown in the second column of Table I.
For instance, if cone-1 is affected by a SET fault, we can
cover this SET fault by injecting multiple MFFUs on A and
B because cone-1 has an intersection with cone-2 which is the
fan-in cone of B. This process is repeated for each cone, and
FF sets are obtained with a size between 1 (in case the cone
does not intersect with any other cones) and N FFs (in case
all cones have an intersection).

Extracted FF sets are flip-flops of the circuit potentially af-
fected by a SET. Therefore, MFFU injection can be limited to
this set of FF. Table I also shows the multiplicity information
of each FF set. The multiplicity of a FF set is the number of
FF in a set. For instance, if a SET fault occurs in cone-2, it can
propagate to the A, B, C FFs, causing different combinations
of upsets on this set. This means that the less is the number
of FF in a set (less multiplicity), the higher is the probability
of hitting a real MFFU. We will use this information in the
following steps. Moreover, multiplicity is important for the
calculation of fault space, which will be given in the next
sections. It is obvious that there are 8 combinations in one FF
set with a multiplicity 3.

C. Propagation Analysis

In this work, unlike state-of-the-art researches, we also take
propagation of faults into consideration in order to reduce fault
space more. For this step, we deploy the formal techniques to
investigate the behaviour of a design under fault. The theory
behind formal techniques is creating of Boolean function
representation of a design under test so that formal proves
can be used. In order to achieve better performance in the
modern formal tools, BDDs [16] and Multiway Decision
Graphs (MDGs) [17] are widely used.

The formal analysis deploys formal methods to determine
the propagation of faults. Propagation analysis verifies if there
is a combination of inputs that provoke fault propagation. If a
fault propagates to FF inputs, we accept that the fault has a true

path to FF inputs. Otherwise, it has a false path and should be
excluded from the analysis. In this step, formal properties to
perform the analysis are automatically generated and verified
with respect to all possible input stimuli.

The simple and high-level example in Fig. 2 illustrates that
there are some SET faults in the intersection cones with a
false path to the FF inputs. In this figure, green paths and
superscripts point the true paths (fault propagates) while red
ones show that the related fault has a false path (fault does
not propagate). As a result of this step, we obtain optimized
FF sets, as shown in the fourth column of Table I. It is
obvious that some larger FF sets are disappeared due to
non-observable faults that cannot be propagated. In this way,
optimized multiplicities are obtained along with the reduced
number of FF sets in some circuits. This step is performed
by using Cadence® JasperGold Functional Safety Verification
App. In the following subsection, we show a more detailed
motivational example for the propagation analysis.

Motivational Example: Removing the paths which cannot
be propagated

To explain the propagation analysis in detail, we use a
motivational example given in Fig. 3 which has fan-out nodes.
The circuit includes an input x, and outputs of the gates AND1,
OR1 and OR2. The SETs may be simulated only for these
fan-outs. The steps of the approach can be listed as follows:

• Static fan-in cone analysis gives us the following FF sets
of MFFU faults: (1, 2, 3, 4) for x, (1, 2, 3, 4) for AND1,
(1, 2) for OR1, (2, 3) for OR2.

• After removing of duplicated sets, we get the initial sets
of MFFU faults: (1, 2, 3, 4), (1, 2), (2, 3).

Fig. 3. Motivational example to find propagated and not-propagated faults.
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• By propagation analysis, we see that for SET on AND1
we never reach all FFs, rather only either (1, 4) or (2, 3)
due to the fact that the propagation of a SET at AND1 is
controlled by signal x=0 (by blocking two of four AND
gates). Therefore, the superset (1, 2, 3, 4) for AND1
should be replaced by subsets (1, 4) and (2, 3). In other
saying, SET(AND1) is mapped to (1, 4) and (2, 3) FF
sets.

• Moreover, the SET on the input x is always blocked either
on AND5 (if output of AND1=1), or on AND2, AND3,
AND4 (if output of AND1=0). Hence, the superset (1, 2,
3, 4) for SET(x) should be replaced by (1, 2, 3).

• As a result, we get instead of initial (1, 2, 3, 4), (1, 2),
(2, 3), optimized FF sets (1, 2), (2, 3), (1, 4) (2, 3), (1,
2, 3), where (2, 3) can be removed as it is duplicated.

• Thus, the final optimized FF sets: (1, 2), (2, 3), (1, 4),
(1, 2, 3).

In this motivational example, we analyzed the propagation
of SETs only on x and the outputs of AND1, OR1 and OR2.
The propagation analysis is sufficient for the SETs at these
four locations that also represent the remaining SET faults in
the fan-out free regions.

D. Fault Space Calculation

In the fault injection procedure, SEUs are injected in all
possible locations and at each clock cycle [18]. Therefore,
the number of injections required for a single transient fault is
large, especially for the industrial-sized designs. When consid-
ering the size and low speed of fault injection simulations at
the gate level, optimization methods should be applied. Hence,
considering the huge number of SET injections at the gate
level, our proposed method significantly reduces the number
of injections by identifying optimized FF sets when compared
to state-of-the-art and random multi-bit injection approaches
applied in safety and security applications.

Our proposed methodology can significantly reduce the fault
space by leveraging the FF sets with propagation analysis.
In this work, we compare our results with the state-of-the-
art and random multi-bit injection. State-of-the-art researches
such as [7] and [8] rely on only a static approach and do not
consider the propagation analysis. Similarly, the random multi-
bit injection method considers all possible FF combinations.
In order to calculate fault space or the number of injections,
we use the following equation where N is the number of FFs,
k1, k2, ..., kN are the numbers of FF in each set and 1≤ki≤N.
given in [8].

FaultSpaceTotal =
N∑
i=1

(2ki − 1) (1)

By using the above equation, the total fault space for the
example given in Fig. 3 can be calculated effortlessly. As it
is explained in Section III-C, we have the initial and not-
optimized sets which represent the state-of-the-art approach
as (1, 2, 3, 4), (1, 2) and (2, 3). By using the given formula,
the total number of faults is 21. On the other hand, we have
optimized FF sets as (1, 2), (2, 3), (1, 4), (1, 2, 3), which

require 16 number of injections. Therefore, our proposed
method can reduce the total fault space from 21 to 16 for
the motivational example given in Fig. 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to verify the effectiveness of proposed method-
ology, we evaluate our methodology on the ITC’99 [19]
benchmark circuits.

In order to perform fan-in cone analysis and propagation
analysis, we deploy Cadence tools along with the developed
script sets, which execute on gate-level design. Meanwhile, all
applied methods remain applicable to other tool flows. In the
beginning, we synthesize Verilog or VHDL design through
Cadence® Genus™ Synthesis Solution to obtain gate-level
representation of the design. Then, steps 1, 2 and 3 shown
in Fig. 1 are performed on our application which deploys
Cadence® JasperGold Functional Safety Verification App.

We use three methods to show the fault space reduction and
compare the results. The first method is ”without propagation
analysis” which represents the state-of-the-art as in [8]. The
main difference between our proposed methodology ”with
propagation analysis” and the state-of-the-art is the identifica-
tion of true (sensitizable) paths. We leverage the analysis by
identifying SET faults which do not propagate to FF inputs
so that fault space is reduced more. In other words, we cut
down the pessimism in the results. The third approach used for
comparison is ”Random Multi-Bit injection”. This is basically
injecting faults on all possible combinations of FFs randomly
that naturally causes huge fault space. Our application is
capable of building the fault space for each method and given
design without any significant effort.

All experimental results are presented in Table II. The
selected designs include various designs from the ITC’99
benchmark. During creating of FF sets, we remove faults on
clock and reset signals from the analysis due to the fact that the
clock tree is not known in this stage of the design. Other faults
except clock and reset are kept as they are. This step is done
in our application automatically. We show the number of sets,
number of supersets, maximum multiplicity and calculated
fault spaces for each analysis and design. The number of sets
shows the number of all identified FF sets before duplicated
ones are removed. In contrast, the number of supersets points
the same after duplicated ones are removed. Total Faults are
calculated by using the Equation 1.

In Table II, it can be seen that our proposed methodology
reduces the Total Faults significantly when compared to both
state-of-the-art and the random multi-bit injection approaches.
For some circuits such as b01 and b08, we are able to
reduce only the number of supersets while the maximum
multiplicity is still the same in both cases. Moreover, there
is no optimization achieved in b06. For the rest of the
circuits given in Table II, we both optimize the number
of supersets and maximum multiplicity. Thereby, the total
set of faults are optimized significantly, as shown in Fig. 4
(values are normalized). It is observable that total faults in the
proposed methodology (orange bars) are less than the other
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TABLE II
EXPERIMENTAL RESULTS: FAULT SPACES ACHIEVED BY THREE METHODS

Circuit # FF without propagation analysis with propagation analysis Random Multi-Bit Injection

# sets # superset max multiplicity Total Faults # sets # superset max multiplicity Total Faults Total Faults

b01 5 5 2 4 1.80E+01 3 1 4 1.50E+01 3.20E+01 - 1
b02 4 4 1 3 7.00E+00 1 1 2 3.00E+00 1.60E+01 - 1
b03 30 8 3 12 4.14E+03 3 1 9 5.11E+02 1.07E+09 - 1
b04 66 27 10 19 4.00E+06 5 4 8 1.02E+03 7.38E+19 - 1
b05 34 62 2 33 9.00E+09 61 5 31 2.00E+09 1.72E+10 - 1
b06 8 7 5 4 4.30E+01 7 5 4 4.30E+01 2.56E+02 - 1
b07 46 51 2 35 4.00E+10 43 3 26 8.00E+07 7.04E+13 - 1
b08 21 19 2 18 2.70E+05 11 2 18 2.62E+05 2.10E+06 - 1
b09 28 14 1 28 3.00E+08 7 1 27 1.00E+08 2.68E+08 - 1
b10 17 45 9 11 5.91E+03 13 4 11 2.62E+03 1.31E+05 - 1
b11 31 43 9 18 4.65E+05 9 2 16 6.60E+04 2.15E+09 - 1
b13 50 40 13 13 9.15E+03 20 9 9 9.47E+02 1.13E+15 - 1

Fig. 4. Fault Space comparison.

two methods. We also add that we reduce the fault space from
1.20 times to a few hundred times when compared without
propagation analysis, depending on the circuit.

Moreover, we also compare our results with the well-known
Statistical Fault Injection (SFI) approach [20] in case initial
population sizes calculated before are used. SFI can be used
for transient fault injection campaigns to reduce the execution
times while keeping a meaningful number of injections with an
error margin. This is one of the possible ways to perform RTL
fault injection campaigns after FF sets are defined by using the
methodology presented in this paper. In an SFI campaign, the
sample size or the margin of the error with a certain confidence
level are determined by using the Equation 2 defined in [20]. In
this way, it is possible to obtain precise results while injecting
a small number of faults [20]. The technique allows to know
the margin of error while restricting the campaign time to the
minimum. To sum up, there are three confidence levels in SFI
as 90%, 95%, and 99.8%. In this work, we only use the 95%
confidence level as it is the one that is practically used in the
industry. Also, three error margins are defined as 5%, 1% and
0.1%.

n =
N

1 + e2 × ( N−1
t2×p×(1−p) )

(2)

In Table III, we show the SFI results. In this table, N shows
the initial population. In our case, N is equal to the total faults
shown in Table II. Moreover, n(5%), n(1%) and n(0.1%) show
the required sample size with the error margins 5%, 1% and
0.1% respectively. This shows that our proposed methodology
can prune the fault space from 1.12 times to a few hundred
times in case faults are injected by using SFI. Note, the
results for some sample sizes remain similar due to the fact
that the initial population is always finite. Even so, we show
that a significant reduction is achieved by using the proposed
methodology, especially when we reduce the error margins.
Therefore, it is efficient to use the proposed methodology and
to select a sample for fault injection among the pre-defined
initial populations in the MFFU space identified using the
method ”with propagation analysis”.

V. CONCLUSIONS

In this work, we propose a methodology to represent gate-
level SET faults by multiple SEU faults at RTL. It enables a
solution for the high complexity problem of expensive gate-
level fault injection campaigns by changing the abstraction
level. We improve the state-of-the-art by considering propa-
gation analysis of each SET fault. First, we find static fan-
in cones of each FF at the gate level. Second, FF sets are
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TABLE III
COMPARISON OF THREE METHODS IN A SFI CAMPAIGN WITH 95% CONFIDENCE LEVEL

Circuit without propagation analysis with propagation analysis Random Multi-Bit Injection

N n(5%) n(1%) n(0.1%) N n(5%) n(1%) n(0.1%) N n(5%) n(1%) n(0.1%)

b01 1.80E+01 1.70E+01 1.80E+01 1.80E+01 1.50E+01 1.40E+01 1.50E+01 1.50E+01 3.20E+01 - 1 3.00E+01 3.20E+01 3.20E+01
b02 7.00E+00 7.00E+00 7.00E+00 7.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.60E+01 - 1 1.50E+01 1.60E+01 1.60E+01
b03 4.14E+03 3.52E+02 2.89E+03 4.12E+03 5.11E+02 2.20E+02 4.85E+02 5.11E+02 1.07E+09 - 1 3.84E+02 9.60E+03 9.60E+05
b04 4.00E+06 3.84E+02 9.58E+03 7.74E+05 1.02E+03 2.79E+02 9.22E+02 1.02E+03 7.38E+19 - 1 3.84E+02 9.60E+03 9.60E+05
b05 9.00E+09 3.84E+02 9.60E+03 9.60E+05 2.00E+09 3.84E+02 9.60E+03 9.60E+05 3.44E+10 - 1 3.84E+02 9.60E+03 9.60E+05
b06 4.30E+01 3.90E+01 4.30E+01 4.30E+01 4.30E+01 3.90E+01 4.30E+01 4.30E+01 2.56E+02 - 1 1.54E+02 2.49E+02 2.56E+02
b07 4.00E+10 3.84E+02 9.60E+03 9.60E+05 8.00E+07 3.84E+02 9.60E+03 9.49E+05 7.04E+13 - 1 3.84E+02 9.60E+03 9.60E+05
b08 2.70E+05 3.84E+02 9.28E+03 2.11E+05 2.62E+05 3.84E+02 9.27E+03 2.06E+05 2.10E+06 - 1 3.84E+02 9.56E+03 6.59E+05
b09 3.00E+08 3.84E+02 9.60E+03 9.57E+05 1.00E+08 3.84E+02 9.60E+03 9.51E+05 2.68E+08 - 1 3.84E+02 9.60E+03 9.57E+05
b10 5.91E+03 3.61E+02 3.66E+03 5.88E+03 2.62E+03 3.35E+02 2.06E+03 2.62E+03 1.31E+05 - 1 3.83E+02 8.95E+03 1.15E+05
b11 4.65E+05 3.84E+02 9.41E+03 3.14E+05 6.60E+04 3.82E+02 8.39E+03 6.18E+04 2.15E+09 - 1 3.84E+02 9.60E+03 9.60E+05
b13 9.15E+03 3.69E+02 4.69E+03 9.06E+03 9.47E+02 2.74E+02 8.62E+02 9.46E+02 1.13E+15 - 1 3.84E+02 9.60E+03 9.60E+05

created pessimistically, meaning that propagation analysis is
not considered. Third, we execute propagation analysis by
using a formal approach to find SET faults that propagate
to FF inputs. Then, optimized FF sets are created again with
less pessimism. Finally, we calculate the fault space to show
the effectiveness of the proposed methodology. In this way,
we significantly reduce the number of fault injections and
obtain a higher probability of hitting a true multiple SEU fault.
Experimental results show that we make the fault space smaller
by up to tens to hundreds of times.

As future work, we aim to apply this methodology for
functional safety and security evaluation in industrial-sized
CPU designs.
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Abstract: ISO 26262 requires classifying random hardware faults based on their effects (safe, detected,
or undetected) within integrated circuits used in automobiles. In general, this classification is
addressed using expert judgment and a combination of tools. However, the growth of integrated
circuit complexity creates a huge fault space; hence, this form of fault classification is error prone and
time consuming. Therefore, an automated and systematic approach is needed to target hardware
fault classification in automotive systems on chips (SoCs), considering the application software. This
work focuses on identifying safe faults: the proposed approach utilizes coverage analysis to identify
candidate safe faults considering all the constraints coming from the application. Then, the behavior
of the application software is modeled so that we can resort to a formal analysis tool. The proposed
technique is evaluated on the AutoSoC benchmark running a cruise control application. Resorting
to our approach, we could classify 20%, 11%, and 13% of all faults in the central processing unit
(CPU), universal asynchronous receiver–transmitter (UART), and controller area network (CAN) as
safe faults, respectively. We also show that this classification can increase the diagnostic coverage of
software test libraries targeting the CPU and CAN modules by 4% to 6%, increasing the achieved
testable fault coverage.

Keywords: automotive systems; fault classification; fault injection; formal methods; functional safety;
diagnostic coverage; ISO 26262; safe faults

1. Introduction

Complex hardware and software systems are frequently used in safety critical envi-
ronments such as automobiles, planes, or medical devices. Safety standards have been
introduced to estimate and reduce the risk of critical failures in embedded systems utilized
in these areas. This risk might correspond to physical injury or damage to the overall health
of humans. Therefore, special solutions for hazards mitigation are required to develop
systems working in critical domains. Industries in the above domains need to comply with
standards focusing on the development of hardware/software components according to
system requirements [1]. Concerning the automotive industry, the number of systems on
chip (SoCs) and applications deployed in automobiles is significantly increasing with the
final objective of developing self-driving cars. Modern automobiles already incorporate
more than 100 electronic control units (ECUs) [2] to cope with the challenges originating
from complex applications, such as advanced driver assistance systems (ADAS). Com-
plexities of the hardware and software applications escalate on both the architectural and
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functional levels. The hardware complexity is defined as how many components and blocks
are integrated on a single SoC/chip. The software complexity is related to the number
and time complexity of the pieces that should be combined to deliver the functionality
and internal interactions. Moreover, migrating to more advanced integrated circuit (IC)
technologies poses a more significant challenge for the safety of automobiles since several
phenomena, such as nanoelectronics aging, process variation, or electrostatic discharge
used in advanced nodes, introduce numerous vulnerabilities [3]. Consequently, the auto-
motive industry has developed the ISO 26262 Road Vehicles Functional Safety Standard [4]
to minimize the risks connected to electric and/or electronic systems used in vehicles.
For automotive applications, each electronic system must detect and correctly manage a
high percentage of potential faults during the operation in the field to avoid life-critical
situations. In order to decide which faults could disturb the safety critical functionality of
an IC, faults must be classified based on their effects in the operation mode using expert
judgment and a combination of tools. From this perspective, faults can be classified as safe
or dangerous. A safe fault does not contribute to the violation of the safety goal, whereas a
dangerous fault may lead to a failure relevant for the overall system, that is, create a hazard.
We note that all the terms and definitions are given in the context of functional safety
verification guided by ISO 26262. Examples of safe faults include faults located in parts of
an IC that are not used by the application and faults masked by some safety mechanism.
Fault classification is of prime importance for the test of ICs in the operational mode.
This test can be performed resorting to different solutions, including design for testability
(e.g., BIST) and software test libraries (STLs) based on the software-based self-test (SBST)
paradigm [5]. In both cases, the identification of safe faults is vital since it enables us to
remove safe faults from the initial (normally huge) fault list and to focus the test efforts
toward the remaining faults, i.e., the testable ones [6]. Identifying safe faults thus makes it
easier to reach the target diagnostic coverage (DC), helping to achieve safety requirements,
such as a higher automotive safety integrity level (ASIL) [4]. For these reasons, there is a
high demand for an automated, systematic, and comprehensive safe fault identification
technique.

The effects of a fault classification flow are summarized in Figure 1, referring to
a generic case study. We assume that an SoC runs a single software (SW) application
during its operational life and uses an STL as a safety mechanism. Therefore, the DC
of this STL must be calculated to prove that it detects dangerous faults up to a certain
extent in the target design. In the first step of the flow, without any classification, all the
faults are unknown, as shown in Figure 1. Then, an initial classification is performed to
identify the first group of structurally safe faults, i.e., those which are safe due to the IC
structure (e.g., faults located on lines which are not connected to the IC primary inputs
and/or outputs). These kinds of safe faults can be identified using any automatic-test-
pattern-generation (ATPG) or formal analysis tool. However, other safe faults may exist,
which cannot be identified by these tools; therefore, a considerable amount of faults are
still unknown after the first step. The unknown faults need to be further analyzed to
check whether their effects may impact the safety critical functionalities or not. Thus,
fault simulation with an STL is deployed to classify faults better. In practice, this step
(named unoptimized classification in Figure 1) produces inaccurate results since it is
often impossible to exhaustively evaluate all possible input stimuli or activate all possible
operating modes in an application or system [7]. Undetected faults may correspond
either to safe or dangerous faults. As in Figure 1, fault simulation targets unknown
faults and classifies them as either detected or undetected based on the propagation
of faults. A non-negligible amount of undetected faults may be observed depending
on the workload that runs on the target design. Usually, all the undetected faults are
pessimistically classified as dangerous. For this reason, the gathered figures from fault
simulation may not be representative of the design operational behavior, as not all faults
can be accurately classified. DC is calculated in this step using (1), where Detected is the
number of faults classified as detected and dangerous by fault simulation; Total is the
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size of the target system’s fault list; and Safe is the number of safe faults. The purpose
is to check if the collected results from fault simulation satisfy the desired safety metrics.
If DC is not enough, the test must be improved, or an additional classification effort
targeting undetected faults, i.e., a subset of undetected faults, is required to classify their
effects. Experts usually perform this step based on their design knowledge; however, this
is error prone and time consuming. Consequently, the unoptimized classification implies
that there is still room for improvement in the fault classification pessimism. Finally,
using the technique presented in this work, a formal analysis approach optimizes the fault
classification (named optimized classification ) as shown in the fourth bar of Figure 1, which
targets the identification of more safe faults, reducing the number of undetected faults
and, therefore, the overall pessimism of the classification. The optimized classification
decreases the denominator of (1) by classifying more safe faults than in the unoptimized
classification, and the DC is increased.

DC = Detected/(Total − Sa f e) (1)

Figure 1. Hardware fault classification flow.

This work advances hardware fault classification with an automated workflow, which
assists safety experts in addressing fault classification reducing human error and the time
to signoff. The present work focuses on the automated analysis of undetected faults to
check whether they affect the safety critical functionalities of ICs. In the case that a fault
cannot violate a safety goal or disturb safety critical outputs, it is defined as a safe fault. We
consider a realistic scenario corresponding to a special-purpose system, i.e., an SoC which
performs a single SW application, which remains the same during the whole operational
life. Using the proposed technique, we can identify application-dependent safe (App-Safe)
faults. One example of App-Safe faults is associated with the faults in the CPU debug
unit, which is not used by the SW application during the operation life of the SoC. For this
purpose, first, we perform several logic simulations to extract a target system’s operational
behavior by investigating code coverage results. Then, the candidates for being labeled
safe faults which are not safety related are automatically translated into formal properties,
which then configure the formal environment to identify App-Safe faults.

As a case study, the AutoSoC benchmark [8], an automotive representative SoC, and
the cruise-control-application (CCA) as a target SW application are used. We focused on the
CPU core and several peripherals, i.e., the universal asynchronous receiver–transmitter IP
(UART) and the controller area network controller IP [9] (hereinafter referred to as CAN).

This paper addresses the problem of what is new in ISO 26262 functional safety
verification that differs from general reliability in terms of safe faults. The main goal
of functional safety verification is to avoid safety goal violations, not general failures
in the design. This is the concept of safe faults. Our hypothesis is on deploying the
strengths of existing technologies in an innovative methodology to resolve the issues. As a
result, this paper proposes a novel methodology based on the innovative use of existing
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technologies that address the problem. The main contributions of this work can be listed
and summarized as follows:

• A new systematic approach combined with engineering concepts in order to deliver
an industrial solution that can be deployed for SoC targeting the automotive industry.

• An automated safe fault identification technique supported by an industrial-grade
electronic design automation (EDA) tool flow: logic simulation of the target design
when it runs the software application, extraction of coverage reports that reflects
the behavior of the software application, development of formal properties that are
translated from coverage reports, and formal analysis execution.

• ISO 26262-driven safe fault identification technique that contributes to the testing and
verification theory by focusing the test efforts on the other faults (dangerous).

• A scalable formal property generation approach to translate the design’s operational
behavior into the formal analysis tool.

• An experimental demonstration of the effectiveness of the proposed technique on a
comprehensive automotive benchmark SoC, using its CPU and the UART and CAN
peripherals.

• Significant improvements in the classification of safe faults and of the resulting DC,
thus allowing to achieve a higher safety level. When the AutoSoC runs the CCA, 20%,
11%, and 13% of all faults in the CPU, UART, and CAN are classified as safe using the
presented technique, respectively. The value of DC is increased by around 6% and
4% for the CPU and the CAN, respectively. This analysis also reduces the number of
undetected faults by 1.5 and 1.6 times in the CPU and CAN, respectively.

The rest of this paper is structured as follows. Section 2 summarizes the previous and
related works in the area. Section 3 provides some background, covering hardware fault
classification and the techniques to achieve this classification, such as fault simulation and
formal analysis. Section 4 defines the App-Safe faults in detail and presents the proposed
method step by step. Section 5 briefly describes the AutoSoC benchmark suite, including
its CPU, peripherals, and the software application that we use in this work. Section 6
reports and discusses the experimental results of the proposed technique. Finally, Section 7
draws some conclusions.

2. Related Works

Many works exist in the literature about hardware fault classification. This section
examines some of them based on different approaches, such as fault simulation, formal
methods, ATPG, or hybrid approaches.

Several works have explored fault simulation targeting fault classification. For ex-
ample, Ref. [10] optimizes fault simulation by integrating it into the design verification
environment and using the clustering approach to accelerate the fault simulation cam-
paigns. However, using only fault simulation for fault classification is computationally
expensive and incomplete; hence it requires additional methods to classify undetected
faults. Similarly, Ref. [11] relies only on fault simulation to classify the faults, but there
was no additional classification technique proposed. Similarly, Refs. [12–15] deploy fault
simulation to classify faults in automotive systems considering the requirements of ISO
26262. In short, when fault simulation is used alone to classify faults, additional techniques
targeting the classification of undetected faults are necessary.

Hence, some other works have investigated formal analysis, focusing on safe fault
identification. Refs. [16–18] use the ability of the formal techniques to analyze the design
behavior. Safe fault identification is also applied to GPUs. For example, ref. [19] employs
formal analysis to increase fault coverage when the identification technique is applied to
an open-source GPU. These works specifically focused on identifying structurally safe
faults, i.e., faults for which there are no test or input stimuli due to the hardware structure,
independently of the software and the application.

Researchers have also combined fault simulation and formal analysis leveraging fault
classification. Refs. [20,21] have an eclectic approach that makes use of the strength of
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different technologies. Even though these works are promising in terms of the results, they
still require many manual efforts based on the engineer’s expertise.

On the other side, ATPG is also a promising technique to identify safe faults. Examples
of this approach are [22–24], which aim at identifying untestable faults in sequential circuits.
We note that untestable faults are, by definition, safe faults [25]. In addition, Refs. [6,25,26]
resort to ATPG to identify application-dependent safe faults, which is the same target of
the work described in this paper. Even though these works can identify safe faults using
the ATPG, they still have a manual part in their flow, i.e., they are semi-automated.

Considering application-dependent safe faults, some works have proposed solutions
for the classification of these kinds of faults. For example, Ref. [27] explores the use of
safe faults to optimize STL fault coverage in microprocessors, which is not safety critical.
However, the scope of the work is limited only to CPU modules, and the deployed tests are
not automotive representative. Additionally, Ref. [28] focuses on safe fault identification
in only CAN; thus, the analysis of a complete automotive representative SoC is missing.
In addition, Ref. [28] analyzes a combination of test programs developed for CAN, which
makes it weaker as this work examines safe faults when an SoC runs a practical industry-
scale software application. Last, the presented work in this paper has a more advanced
approach in the sense that the proposed technique is more automated and systematic;
hence, it is less error prone and time consuming.

To address the outlined gaps, the technique proposed in this paper corresponds to a
fully automated fault classification technique, which focuses on safe faults when a CPU is
running a specific SW application. The main strength of the proposed approach lies in the
developed formal properties, which are extracted via the analysis of the target system’s
operational behavior.

3. Background

This section, first, provides basics about hardware fault classification. Then, fault
simulation and formal methods for hardware fault classification are explained.

3.1. Hardware Fault Classification

ISO 26262 divides the malfunction of electrical/electronic components into two cate-
gories, corresponding to systematic and random faults [4]. A systematic fault is manifested
in a deterministic way and can only be prevented by applying process or design measures.
On the other hand, a random fault can occur unpredictably during the lifetime of a hard-
ware element. When we consider safety critical designs, such as automotive, medical, or
aerospace designs, safety and verification engineers must prove that both the correct and
safe functionalities of these designs are guaranteed, taking into account both systematic
and random faults.

Several sources exist for random hardware faults, such as extreme operating con-
ditions, aging, or in-field radiation. Additionally, each fault type should have a fault
model that describes how faults from these sources should be modeled at the appropriate
hardware design abstraction level (e.g., at the gate level or register-transfer level (RTL)).
Moreover, faults can be permanent and transient. Transient faults occur and subsequently
disappear. On the other hand, permanent faults occur and stay until removed or repaired.
This work focuses on permanent faults modeled as stuck-at faults, i.e., signals getting
permanently stuck at a given logic value, i.e., 0 (stuck-at-0, SA0) or 1 (stuck-at-1, SA1),
following what safety standards in the automotive domain suggest. We also note that a
stuck-at fault can apply to all netlist signals, such as the ports of logic gates or registers. In
this paper, we focus on random hardware faults (specifically permanent faults), only.

In order to determine the probability of a fault causing a safety critical failure, its
effects must be classified into two different categories as follows.

• Safe: A safe fault does not disturb any safety critical functionality because it is not in
safety relevant logic, or it is in safety relevant logic but is unable to impact the safety
critical functionality of a design (i.e., it cannot violate a safety goal).
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• Dangerous: A dangerous fault impacts the safety of the device and creates a hazard
that may produce a safety goal violation.

3.2. Fault Simulation

As an integral part of the safety critical IC development, fault simulation is a widely
used technique to identify fault effects [29]. Fault simulation tools analyze an RTL or
gate-level abstraction of an IC by performing a simulation with some given test stimuli.
In general, the fault injection flow is based on the comparison between the results of the
good run and those of the faulty run. First, the good run is run to generate reference
values. In this step, observation points where the propagation of faults is monitored are
specified. Then, the faulty run is executed with faults injected. In the end, the reference
values obtained by the good run and the faulty values generated by the faulty run are
compared for the classification of each injected fault, and we can determine whether each
injected fault is detected or undetected. Faults are classified as detected when at least one
output value changes for a specified observation point between the good run and the faulty
run. Otherwise, the fault is classified as undetected.

Although fault simulation is a widely used and adopted technique by both industry
and academia, it suffers from two problems [7]:

• Incomplete results: It is impossible to simulate all possible combinations of input
sequences when considering today’s complex applications and devices. Hence, some
faults cannot be accurately classified as safe or dangerous with the fault simulation
technique.

• No-effect faults: Faults injected into components of the target system that are not
activated during the execution of a workload (testbench) will result in no-effect
faults. These faults are classified as undetected by the fault simulation. This causes
ambiguous results because these faults might be dangerous when different or more
comprehensive input stimuli are used.

Because of the two reasons listed above, it may be required to use additional clas-
sification techniques, such as formal methods, as explained in the following subsection,
to classify faults after fault simulation, whether they are safe or not. We must also men-
tion that both sets of detected and undetected faults may contain safe and dangerous
faults. Therefore, if a fault is not classified and not proven safe, it should be pessimistically
considered dangerous.

The following subsection explains how formal methods classify faults, distinguishing
between safe and dangerous.

3.3. Formal Methods

Formal methods help to classify faults based on their effects. An analysis is performed
to determine whether or not a target design satisfies a set of properties or conditions. This
approach is usually a combination of different techniques that employ static analysis and
algorithmic calculations. Compared to fault simulation that applies one single stimulus,
formal analysis is less limited since it abstracts from any specific stimulus. On the other
hand, the computational complexity may limit the formal analysis applicability [28]. In this
case, the classification of all faults can be impossible; thus, a formal analysis tool should
be fed by formal properties, developed carefully, considering the constraints from the SW
application and looking for a compromise between computational feasibility and result
accuracy, as it is done in this work.

In general, formal tools apply two checks, structural analysis check and formal analysis
check to identify safe faults, as explained below.

3.3.1. Structural Analysis Check Types

In the structural analysis check, formal tools use the topological characteristics of a
design to determine the testability of each fault. There are three methods of structural fault
analysis:
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• Out-of-cone of influence (COI) analysis: This method checks whether a given node
is outside the COI of a given observation point(s); in that case, the fault is safe. In
Figure 2, all faults located on nodes in the COI of out1 (shown in green) are safe
since the considered observation point is out0 in the example analysis. It is obvious
that stuck-at faults on the cell ports of G3 cannot propagate to out0, as they have no
physical connection with out0. Hence, faults on G3 are safe.

• Unactivatable analysis: This is to check if a SA0 or SA1 fault is located on a node
that is constant 0 or 1; if so, the fault cannot be activated. In this case, the fault is
unactivatable and safe. In Figure 3, assuming that in0 is tied to logic zero, f0 for SA0 is
unactivatable and safe.

• Unpropagatable analysis: This is performed to check if a fault is activated and in the
COI of the considered observation point but cannot be propagated to the outputs. In
this case, the fault is safe. In Figure 3, the AND gate G2 can block the propagation of
f1 if one of the in1 or in2 is always set with the logic value zero. Hence, f1 would be
safe for SA1 or SA0, as it can never be propagated to out0.

Figure 2. Out-of-COI example when out0 is the only safety critical output.

Figure 3. Unactivatable and unpropagatable analysis example.

3.3.2. Formal Analysis Check Types

As opposed to structural analysis checks for which physical connections of a design
are taken into account, formal analysis checks are used to classify faults as well. The
approach uses a good machine and bad machine similar to the fault simulation and injects
a fault in the bad machine for formal analysis. In the end, the output signal values of good
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and bad machines are compared to check whether an injected fault is propagated or not.
A formal tool generally generates a Boolean representation of the function implemented
by the circuit (or part of it) and uses formal techniques as explained above to prove this
Boolean equation. Formal analysis tools use various engines based on Boolean expressions
representation and manipulation techniques, such as binary decision diagrams (BDDs) [30]
to prove the formal properties exhaustively. There are two types of this analysis:

• Activation analysis: This analysis checks whether the fault can be functionally acti-
vated from the inputs. If not, then it is determined to be safe.

• Propagation analysis: This one checks whether the fault can propagate to the relevant
output(s). If it cannot, then it is safe.

The technique described in Section 4 deploys both structural and formal analysis
checks resorting to formal methods.

4. Proposed Application-Dependent Safe Fault Identification Method

In this section, first, we explain the definition and details of application-dependent
safe faults. Then, we describe each step of the proposed technique.

In Section 3, we explain that a safe fault does not disturb any safety critical functionality
because it is not located in any safety relevant logic or is in a safety relevant component.
Based on this explanation, we further classify safe faults as follows:

• Structurally safe (Str-Safe): These are faults that cannot be activated or propagated
to the outputs of interest by any test sequence because of the design’s structural
constraints. For example, a fault in the redundant logic or a floating net (i.e., any net
that does not have a load) is Str-Safe. Another example is supply0 and supply1 nets.
Specifically, a SA0 fault on supply0 net and a SA1 fault on a supply1 net are Str-Safe.
Finally, a SA1 fault on a pull-up gate and a SA0 fault on a pull-down gate are Str-Safe.

• Functionally safe: As opposed to structurally safe faults, a test or test sequence for
functionally safe faults exists, and their effects may propagate to design outputs.
However, they do not affect any safety critical functionality. For example, faults in the
debug unit of a CPU not used due to hardware configuration are functionally safe.

The present work focuses on a subset of functionally safe faults, corresponding to
application-dependent safe faults (App-Safe). App-Safe faults are related to the SW applica-
tion that the target system executes, and they cannot disturb the safety critical functionality
in the operational mode. Therefore, it can be said that a fault can be App-Safe for one
software application but may be dangerous for another software application.

More specifically, the target system considered in this work performs a single software
application during the whole operational life. During the operation in the field, this
application and its input data set do not access all the design parts; thus, inaccessible
components generate App-Safe faults. For example, if the SW application does not use any
multiplication operation, all resources related to the multiplication opcode become App-
Safe faults. Therefore, opcodes of an SW application are a good indicator for App-Safe fault
identification. Referring to the multiplication example again, when the SW application,
which runs on the target design, does not include multiplication opcode, the SW application
does not trigger multiplication hardware in the arithmetic logic unit (ALU), so faults on
these components contribute to the App-Safe fault list. Another example of App-Safe faults
can be found in the design-for-test modules of the design. The SW application does not
use these hardware elements during the normal operation mode; hence, the corresponding
faults are App-Safe.

In the following subsection, we explain the proposed flow to identify App-Safe faults
in an industrial-size SoC when an SW application is being run on it.

4.1. The Proposed Flow

In Figure 4, the proposed flow to identify App-Safe faults is shown, step by step.
At the beginning of the flow, we have a design-under-test (DUT) circuit (typically, an
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SoC) and a SW application running on it. First, we run several logic simulations with
different representative input data sets. The goal of running logic simulations is to analyze
the design’s behavior when it runs the SW application. Next, application-specific formal
properties are developed to translate the design’s operational behavior into the formal
environment. Formal properties provide input to the formal analysis tool to identify App-
Safe faults. Finally, the formal analysis tool is deployed, and safe faults are listed. In the
following subsections, we discuss each step in detail.

Figure 4. Proposed application-dependent safe fault identification flow.

4.1.1. Logic Simulation

In this step, we perform several logic simulations on the design under test (DUT)
executing the SW application with different representative realistic data input sequences,
i.e., set1 to setn, as shown in Figure 4. More than one logic simulation is performed when
each of them runs with different input data since we aim to identify which design parts are
independent of the input data set. The purpose of performing logic simulations is two-fold:

• To understand which design parts are affected by the input data set;
• To extract the design’s operational behavior when it runs an SW application.

To achieve the objectives, we generate hardware design code coverage data per each
logic simulation and dump them into the coverage reports.

In general, logic simulations aim to detect which points are not toggled, as these are
App-Safe candidates that must be addressed. Concerning coverage metrics, the proposed
work focuses on hardware code coverage that assesses how well the stimuli exercise the
design code by pointing to design components that did not meet the desired coverage
criteria [31]. Our technique deploys toggle and block coverage sub-types of design code
coverage to identify App-Safe faults. Block coverage is a primary code coverage metric that
identifies which lines in the code have been executed and which have not. On the other
hand, toggle coverage monitors, collects, and reports the signal toggle activity, allowing
the identification of unused signals or signals that remain at a constant value of 0 or 1.

The block and toggle coverage metrics provide insight into the SW application be-
havior during the operational life of an IC. Thus, we can identify App-Safe candidates
included in the functionally safe fault list. More specifically, block coverage can indicate
that some states are never activated, indicating that the SW application does not use the
corresponding design components. Likewise, constant signals identified by toggle coverage
can highlight invalid configurations, not utilized functions, among others. Moreover, the
combination of block and toggle coverage data should be carefully analyzed because they
can point out further information about the SW application’s behavior. For the sake of an
example, an untoggled signal may never activate a state machine block, and this can cause
some other blocks to remain unactivated during the simulation. The small Verilog code in
Listing 1 and Table 1 illustrates block coverage, toggle coverage and explains why both of
them should be carefully analyzed. Listing 1 shows that r f _data_in block is never activated
since break_error is never toggled to logic 1 as shown in Table 1. This coverage results also
means that r f _data_in never gets the right-hand side value at line 402, as the block is not
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activated. This example points out the importance of assessing block and toggle coverage
together.

After running logic simulations and measuring the hardware code coverage metrics
presented above, the hardware coverage metrics data are available for report generation
and analysis. At the end of this step, coverage reports represent the design’s operational
behavior under the effect of different input data sets. When this behavior is translated
into formal properties, as explained in the following subsection, we call them application-
specific formal properties.

Listing 1. Block coverage example: r f _data_in is not executed.

if(srx_pad_i | break_error)
// The following "begin" block is covered (100%)
begin

if(break_error)
// The following block is not covered (0%)
rf_data_in <= {8'b0 , 3'b100);

else
// The following block is covered (100%)
rf_data_in <= {rshift , 1'b0 , rparity_error , rframing_error };
// The following block is covered (100%)
rf_push <= 1'b1;
rstate <= sr_idle;

end

Table 1. Toggle coverage example: break_error is not toggled.

Signal Name 0-to-1 Toggling 1-to-0 Toggling

break_error 0 0

4.1.2. Application-Specific Formal Property Development

The development cycle of ICs begins with inferring the specification and requirements
of the target system. Additionally, the DUT must be verified with a formulated verification
plan, which is defined by both design and verification engineers. Then, features or require-
ments of the DUT are created and mapped to the formal properties to deploy them in a
formal analysis tool [32]. Formal properties are created from the design specification and
implementation decisions. Thus, after extracting the target system’s operational behavior
through logic simulations, in this step, we translate this behavior to the formal properties
to be used in a formal analysis tool, which will identify additional App-safe faults.

We use two types of formal properties to define the correct behavior of the design.
The first one is assume statement, which creates an assumption for the specified Boolean
expression that evaluates to either true or false. In the general sense, it specifies that the
given property is an assumption and is used to generate the input stimulus. Hence, assume
statements can be helpful when we define a design configuration or to inform the tool
how the design inputs can behave. Without this assumption, a formal tool checks all
possible input combinations of the DUT. There are two benefits of using assume statements
in the formal environment. First, it allows excluding illegal input combinations when
known. Legal inputs are those that we expect to see during normal operation. It is not
realistic to expect the design to behave correctly when all possible input combinations
are being applied, unless we explicitly define every possible set of input combinations
that the design can theoretically see. The second benefit of using assume statements is
that it intentionally reduces the state space, which is exhaustive when no assumption is
defined. For example, as we want to prepare our formal environment considering the
design’s operational behavior, we should disable the scan_enable pin, as the scan chain
is not activated during the operation and is used only for test purposes. In this case, the
assume statement given in (2) is created to inform the formal tool about the scan_enable
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signal behavior; thus, the input test stimuli of a formal analysis tool are limited accordingly.
The command given in (2) simply informs the tool that scan_enable is always logic-0.
Assume statements also increase the safe fault identification capacity of a formal analysis
tool by guiding it. Moreover, similar to the example given below, the input ports of design
instances are suitable candidates for assume statements.

assume− env {scan_enable == 1′b0} (2)

The second formal property is the fault propagation barrier, which creates a formal
barrier that blocks the propagation of a fault. In this case, faults cannot propagate after
this barrier; therefore, they cannot disturb any safety critical functionality. For instance,
knowing that the debug unit is not used in the design’s operational mode, we can block all
faults to propagate from it and identify more App-Safe faults. As seen in (3), the formal
analysis tool is asked to block all faults propagated to du_dat_o, which is the debug unit’s
data output signal. As in this given example, output ports are proper candidates for a fault
propagation barrier as opposed to assume statements, for which input ports are suitable
candidates.

check_ f sv− barrier {du_dat_o} (3)

Consequently, the application-specific formal properties [33] can be developed using
assume statements and fault propagation barriers. By doing so, the internal architecture
and logical details of the target system, the operational constraints (if any), or the initial
configuration of the design can be defined as formal properties to be used in the formal
analysis step. Therefore, the design’s operational behavior can be transferred from the
logic simulations into the formal analysis tool. The following subsection explains how the
formal analysis tool uses these application-specific formal properties.

4.1.3. Formal Analysis

Having specified the formal properties of a target design in a suitable notation, a
formal analysis tool can be employed to generate App-Safe faults. The advantage of the
formal analysis is that it provides a precise answer to whether a fault is propagated since
it considers all possible input stimuli combinations (yet configured and limited thanks to
assume statements as explained before) and hence, it eliminates the dependency on input
stimuli. In this step of our flow, a formal analysis tool checks each fault in the target design
to see whether it can be propagated to the observation points or not. If any input stimuli
cannot propagate a fault, it is classified as safe; in our case, it is App-Safe. Otherwise, the
fault falls into the dangerous category.

The formal analysis flow, which includes three phases, is shown in Figure 5. Phase
I begins with the creation of input files that are the formal properties established in the
previous stage and the DUT. Then, it continues with the development of the tool command
language (TCL) setup script for the formal analysis tool. The setup script consists of Verilog
files, libraries, and formal property files. The setup script first analyzes design and property
files to check for syntax errors. Then, it defines clock and reset signals. The clock definition
is to specify the characteristics of how the clock is driven during a formal analysis run. The
reset specification aims at bringing the design to a known state and avoiding unreachable
failure states. In the next step, warnings are generated by the formal analysis tool if there
is a mismatch between formal properties and the DUT. For example, a signal tied to the
ground in the DUT and the assume statement that defines this signal as if it is always logic-1
can create a mismatch, and a warning is generated. However, as we automatically translate
coverage reports to the formal properties, this is not the case for the work proposed in this
work. Then, in Phase II, the formal engine proves the formal properties by running the
structural and formal checks as presented in Section 3.3. Finally, in Phase III, App-Safe
faults are identified and reported.

In brief, a formal analysis tool uses formal properties to generate safe faults. When
we include formal properties driven by SW application, as mentioned before, we enable
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the tool to work in a well-specified configuration. Hence, formal analysis with the formal
properties increases the number of identified App-Safe faults.

Figure 5. Formal analysis phases.

5. Case Study: The AutoSoC Benchmark Suite

The proposed application-dependent safe fault identification method is evaluated on
the AutoSoC benchmark suite, which we conceptualized in [8]. The AutoSoC is an open-
source benchmark suite, incorporating all required elements in the format of a configurable
SoC. It is developed to support research in the automotive domain by providing varied
hardware configurations, safety mechanisms, and representative software applications. In
this section, we explain the AutoSoC by detailing its CPU and other functional blocks.

5.1. General Architecture of the AutoSoC

Developed by characterization of commercial CPUs used in the automotive field, the
AutoSoC has two main processing units as the safety island and the application specific
block, as illustrated in Figure 6. While the safety island handles all safety-critical processes
driven by ISO 26262 [4], the application-specific block executes the hardware needed for
application-specific processing. It is also important to note that the safety island and the
application-specific block have dedicated software stacks to execute distinguished appli-
cations. The interconnect block deploys Wishbone Bus for internal SoC communication.
Additionally, the remaining blocks in Figure 6 are included to fulfill the requirements for
communication, security, and general infrastructure.

Since the AutoSoC is implemented as a modular, it has several configurations as
detailed in [8]. One of these configurations named AutoSoC QM is used in this work.
This configuration is a fully functional version of the benchmark suite. When considering
functional blocks of the AutoSoC shown in Figure 6, the AutoSoC QM configuration has
only the application-specific block, but here, the presented work remains suitable to all
available configurations of the AutoSoC.

The main CPU used in the development of the AutoSoC is the mor1kx implementation
of the OpenRISC [34]. This implementation provides all necessary tools and examples
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for developing SoCs, such as CPU, memory, debug unit, communication protocols, and
a bus. Concerning software resources, the AutoSoC includes several options, some of
which come from the mor1kx package and the others developed by ourselves in conformity
with automotive functional safety analysis. These software resources are available as
both BareMetal, and the real-time executive for multiprocessor systems (RTEMS) real-time
operating system [35]. Furthermore, the automotive cruise control application (CCA) is
developed and targeted for safe fault identification. This application is based on BareMetal
and the RTEMS operational system and covers several tasks: reading vehicle sensor data
from UART and CAN, computing actuation, and setting engine parameters. In addition,
the AutoSoC has STL programs that target the CPU (mor1kx_cpu). These STL programs
are developed for online testing of the AutoSoC. The current available STL presented in
the open-source AutoSoC package comprises 16 test programs [8].

Finally, the AutoSoC is available at both the register-transfer level (RT-Level) and gate
level. The synthesis is performed using Cadence GPDK045 (45nm CMOS Generic Process
Design Kits). The proposed approach in this paper is demonstrated using the gate-level
model of the AutoSoC.

Figure 6. AutoSoC functional blocks.

5.2. UART IP

The AutoSoC benchmark suite includes a UART IP, which incorporates the industry
standard National Semiconductors’ 16550A device features. Furthermore, as it is a well-
known and widely-used communication standard by the industry and academia, and the
proposed safe fault identification method is also extended to the UART. In this subsection,
we provide details about the adopted core.

UART is a block of circuitry that uses asynchronous serial communication with
configurable speed. It operates data transfer by receiving data from a peripheral device or
a CPU. Moreover, the UART includes an interrupt system and control capability tailored
to minimize software management of the communication link. The UART IP used in the
AutoSoC operates in a 32-bit bus mode fully compatible with Wishbone Bus. As depicted
in Figure 7, the UART core consists of receive logic, control, and status registers, modem
control module, transmit logic, Baud generator logic, and interrupt logic. Incoming serial
messages are received by the RX shift register, whose Baud rate is programmable through
Baud generator logic. Received messages are placed in the receive FIFO if the incoming
messages have no problems. On the contrary, the TX shift register handles the transmission
of data written to the transmit FIFO. Control and status registers allow the specification
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and observation of the format of the asynchronous data communication used. Modem
control has registers that allow transferring control signals to a modem connected to the
UART. The UART IP also has Baud generator logic to control transmit and receive data
rates. Finally, interrupt logic allows enabling and disabling interrupt generation by the
UART.

The AutoSoC benchmark suite includes the above-explained UART IP and some
test programs to experiment with the functionality of the UART to provide a baseline for
researchers to develop and validate their approaches.

Figure 7. Block diagram of the UART IP.

5.3. CAN Controller IP

The CAN is a communication bus standard introduced by Bosch in 1986. It is in-
tended to work in the automotive field for serial communication applications among
microcontroller units. The CAN has several benefits; it is low-cost, and it has the ability
to self-diagnose and repair data errors. These features promote CAN’s popularity in the
automotive and some other industries, such as medical or aerospace [36]. As it represents
the automotive industry’s challenges, we validate the proposed safe fault identification
method on CAN.

The AutoSoC benchmark suite has open hardware implementation of the SJA1000 [9],
which is a standalone controller for the CAN, developed by Philips Semiconductors in the
early 2000s. Figure 8 shows the block diagram of SJA1000 CAN. The CAN transceiver is
a module to connect other nodes to the CAN. The CAN core block controls the reception
and transmission of CAN frames. The interface management logic implements the CAN
interface as a link to the host CPU through its set of registers. Additionally, this block
configures the operational mode of CAN, whether it works in BasiCAN or PeliCAN mode.
The transmit buffer stores messages in extended or standard format. The CAN core block
reads messages from the transmit buffer whenever the interface management logic forces it.
The acceptance filter comes into prominence when receiving a message. It checks whether
the message on the bus has to be stored by the CAN or not. All received messages accepted
by the acceptance filter are stored in the receive FIFO.

As the AutoSoC benchmark suite uses a Wishbone Bus, the adopted CAN is directly
connected without the need for bridges between different bus interfaces. When it is required
to add another node to be communicated with the Host CPU, the CAN Transceiver provides
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a straightforward way for connection. Moreover, the AutoSoC benchmark suite provides
an STL for the self-test of the CAN. As it is explained in [37], the developed STLs implement
an effective in-field test for the CAN based on a functional approach and also provide
experimental evidence to demonstrate its effectiveness.

Figure 8. Block diagram of the adopted SJA1000 CAN controller IP.

6. Experimental Setup and Results

This section first describes the experimental setup we used to quantitatively assess
the effectiveness of the proposed approach. Then we provide the results in a separate
subsection by focusing on CPU, UART, CAN, and finally the combined results.

6.1. Experimental Setup

In order to demonstrate the effectiveness of the proposed App-Safe fault identification
method, we used the experimental setup shown in Figure 9. Our setup is composed of two
AutoSoC nodes; each includes a CAN and a UART IP to communicate with each other,
and one of the two AutoSoCs (named AutoSoC-0) is assumed to be active, whereas the
other (named AutoSoC-1) is the passive node. Moreover, CCA accesses CAN or UART
in both the AutoSoC-0 and the AutoSoC-1. Thus, each CCA comes in two modes, even
though the executed steps are symmetric; the two AutoSoC nodes alternatively receive and
send messages in the same configuration. Furthermore, even if it is changeable, AutoSoC-0
receives messages first, while AutoSoC-1 transmits first in our experimental setup. Finally,
the whole system is simulated at the gate level.

Concerning the EDA tools, we used Cadence Xcelium™ for logic simulations, Ca-
dence® Integrated Metrics Center (IMC) for coverage analysis, Cadence® JasperGold®
Functional Safety Verification (FSV) App for formal analysis, and Cadence® Xcelium™
Fault Simulator (XFS) for the fault simulation. However, the approach proposed in this
paper remains applicable to other tool flows as well.

In brief, we first performed logic simulations using the hardware configuration de-
scribed before, which runs the CCA SW application using different input data sets, as
shown in Figure 4. Then, coverage reports are generated and translated into application-
specific formal properties that configure the formal analysis environment according to
the SW application’s behavior. Finally, the formal analysis tool is deployed to identify
App-Safe faults.
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Figure 9. Experimental setup composed of two AutoSoC nodes.

6.2. Experimental Results

This subsection presents the identified safe faults in CPU, UART, and CAN, respec-
tively. Then, the combined results (fault simulation + formal analysis) are reported for the
CPU and CAN modules (this step does not include the analysis of UART).

6.2.1. Safe Faults in CPU

Firstly, App-Safe fault identification is checked in the CPU core (which has 96,354
faults in total) when it runs a SW application. We summarize the safe fault results of the
CPU in Table 2.

Table 2 categorizes the results based on the analysis we run. In the top row, it can be
seen that we performed four analyses as follows:

• Application-independent: The formal analysis tool is deployed on the gate-level
netlist of the AutoSoC without any formal properties, meaning that the identified safe
faults are valid for any SW application.

• BareMetal-CCA: The CCA runs BareMetal, which refers to running the SW application
directly on a CPU without the support of an operating system. In order to perform
this analysis, the gate-level netlist of AutoSoC and the formal properties (as explained
in Section 4.1.2) are used as inputs to the formal analysis tool.

• RTEMS-CCA: Unlike BareMetal-CCA, the SW application runs on an operating system
in this analysis, meaning that it can start and stop different processes concurrently.
The RTEMS-CCA causes higher signal activity when compared to BareMetal-CCA, as
it runs on operating systems that trigger more signals. In addition, RTEMS-CCA uses
two additional opcodes compared to BareMetal-CCA. This means that RTEMS-CCA
triggers more design components than BareMetal-CCA.

• BareMetal-Sum: For this analysis, we use an entirely different SW application than
CCA. The application performs a sum operation, and it has fewer opcodes than
BareMetal-CCA. This SW application aims to show how App-Safe faults change when
the CPU is running a different application.

In brief, App-Safe faults are originated from what a SW application executes in an IC.
For example, some design components are not accessed during the design’s operational
life, such as debug units or scan chains. In addition, unused opcodes cause App-Safe faults,
meaning that if (for example) the multiplication opcode is not used in the SW application
that runs on the IC, all signals related to multiplication hardware become App-Safe faults,
as they are not exercised. Table 2 reports the results for the CPU core, also detailing the
results achieved on each component module inside it. In the application-independent
analysis, the formal analysis tool identifies 8.785% safe faults with respect to all faults in
the CPU. We highlight that all the identified safe faults in the application-independent
analysis are Str-Safe faults because the formal tool could not identify any safe faults using
the formal fault analysis check types mentioned in Section 3.3.2 without formal properties.

Concerning the three application-dependent analyses (BareMetal-CCA, RTEMS-CCA,
and BareMetal-Sum):
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• The top module includes connectivity signals and configuration-related signals. Among
these, debug unit’s address and data signals, interrupt request signals, multicore con-
figuration signals, special-purpose-register signals are identified as safe in all analyses
since they are not activated due to the SW applications configuration. Depending on
the opcodes used in the applications, there are slight differences in BareMetal-CCA,
RTEMS-CCA, and BareMetal-Sum. For example, RTEMS-CCA triggers exception
signals, which are connected to the top level.

• The Decode_execute Unit is the module where the instruction memory management
unit (IMMU) and the data memory management unit (DMMU) signals take part.
Many safe faults are identified in the IMMU and DMMU, which are not used by the
SW applications. The number of safe faults is different between BareMetal-CCA and
RTEMS-CCA because of the exception signals used by RTEMS-CCA, as mentioned
above. In addition, the deviation between BareMetal-CCA and BareMetal-Sum is due
to division and multiplication-related signals, which BareMetal-Sum does not use.

• The load–store unit computes the addresses used by load and store instructions. Safe
faults may exist, as not all addresses are used by the SW applications. In addition, some
connection signals create a slight difference between BareMetal-CCA and RTEMS-CCA.

• The fetch stage fetches the next instruction from memory into the instruction register.
Therefore, it is directly associated with the address range, which is not fully covered
by the SW application. Therefore, safe faults can be identified in this unit. In addition,
the difference between BareMetal-CCA and RTEMS-CCA is due to exception signals.

• The control stage has the most considerable impact on the number of identified safe
faults. This unit contains features such as a tick timer, interrupts, and configuration
registers. Since the CPU configuration is the same in all applications, configuration
registers create the same amount of safe faults. However, the tick-timer unit has a
higher activity in RTEMS-CCA; hence, it has fewer safe faults when the CPU runs
RTEMS-CCA.

• Concerning the arithmetic logic unit, the proposed technique identifies the same amount
of safe faults in BareMetal-CCA and RTEMS-CCA, as they use the same arithmetic
opcodes. However, BareMetal-Sum performs only addition operations; therefore, all
the other arithmetic operations contribute to the safe faults.

• The decode unit is directly affected by the used opcodes; hence, there is a difference
between the numbers of safe faults, as all three analyses use different numbers of
opcodes.

The results in Table 2 show that the percentage of safe faults varies widely from
one module to another, depending on the tasks performed by the modules. In addition,
the number of App-Safe faults is relevant, accounting for about 20%, 14%, and 40% in
BareMetal-CCA, RTEMS-CCA, and BareMetal-Sum applications, respectively.
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Table 2. Safe faults in CPU.

CPU Modules
Application-Independent Baremetal-CCA RTEMS-CCA Baremetal-Sum

Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults

Top 1679 1.743% 1725 1.790% 1716 1.781% 1717 1.782%
Register File 2 0.002% 5 0.005% 2 0.002% 5 0.005%

Decode_Execute Unit 651 0.676% 844 0.876% 719 0.746% 949 0.985%
Load Store Unit 910 0.944% 2380 2.470% 2317 2.405% 2380 2.470%

WriteBack Mux Unit 0 0.000% 0 0.000% 0 0.000% 76 0.079%
Fetch Stage 976 1.013% 1230 1.277% 1195 1.240% 1230 1.277%

Control Stage 3966 4.116% 11,618 12.058% 6418 6.661% 11,618 12.058%
Arithmetic Logic Unit 55 0.057% 1000 1.038% 1000 1.038% 19,478 20.215%

Decode Unit 5 0.005% 267 0.277% 16 0.017% 315 0.327%
Branch Prediction Unit 0 0.000% 0 0.000% 0 0.000% 0 0.000%

TOTAL 8465 8.785% 19,484 20.221% 13,670 14.187% 38,193 39.638%
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6.2.2. Safe Faults in UART

Concerning the UART module, which has 19,120 faults in total, we followed the
same procedure using two scenarios (application-independent, and CCA is compared),
and the results are detailed in Table 3. We also noted that there is no difference between
BareMetal-CCA or RTEMS-CCA, so we only report the identified safe faults as CCA in
Table 3. In short, the proposed technique identified 11.088% safe faults, which is two times
more than when compared to the application-independent analysis.

More specifically, we have the following:

• The regs unit has configuration registers, whose value is written in the initialization
phase. Since the UART configuration is fixed in CCA, some parts of the UART are
unused; thus, several safe faults can be identified in this unit.

• Safe faults in the transmitter module originate from the configuration of the trans-
mission format, such as the selected BAUD rate. Therefore, more safe faults can be
found in this unit when the SW application is fixed, as in this work. Correspondingly,
transmitter fifo is partially affected by these factors.

• Concerning the receiver module that is directly affected by the configuration registers,
a significant amount of increase in the number of safe faults is observed. This mainly
stems from the fact that the receiver module is responsible for generating interrupts.
However, the CCA works in polling mode, meaning that no interrupt is used. More-
over, the receiver module has a modem configuration, which CCA does not need. By
extension, receiver fifo is partly affected, similar to transmitter fifo.

Table 3. Safe faults in the UART IP.

UART Modules
Application-Independent CCA

Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults

Top 9 0.047% 19 0.099%
wb_interface 78 0.408% 78 0.408%

regs 357 1.867% 1003 5.246%
transmitter 67 0.350% 67 0.350%

uart_sync_flops 6 0.031% 6 0.031%
fifo_tx 101 0.528% 101 0.528%

receiver 171 0.894% 651 3.405%
fifo_rx 195 1.020% 195 1.020%

TOTAL 984 5.146% 2120 11.088%

6.2.3. Safe Faults in CAN

The same analysis is performed for the CAN module, which has 38,012 faults in total,
and the results are provided in Table 4. In the application-independent analysis, the formal
analysis tool can classify only 1.415% of all faults as safe. On the other hand, when the
proposed approach is deployed, the amount of safe faults is increased to 12.909%, which is
not negligible.

Similar to UART, the number of safe faults in CAN is directly affected by its configura-
tion. In CCA, we configure the CAN to work in peliCAN mode, which has extended frame
format messages. When the basiCAN mode is used, more safe faults can be identified. To
put the results given in Table 4 more explicitly, we have the following:

• Acceptance_code_mask defines whether the corresponding incoming bit is compared
to the respective bit in the acceptance_code_regs. Similarly, bus_timing_regs defines
the values of the Baud rate prescaler and programs the period of the CAN system.
Moreover, clock_divider_regs controls the clock frequency for the microcontroller and
allows to deactivate the clock pin. In addition, the CCA works in polling mode, so
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safe faults can be found in the IRQ registers. Consequently, all these registers should
not be changed after the initial configuration; thus, this creates additional safe faults.

• Bit timing logic is directly affected by bus_timing_regs explained above, so the CCA
originates some safe faults in this unit.

• Bit stream processor corresponds to the control and processing unit of the peripheral. It
is a sequencer that controls the data stream between the transmit buffer, the receive
fifo, and the CAN bus. Additionally, error-detection, arbitration, stuffing, and error-
handling are done in this unit. In addition, the bit stream processor is affected by
the configuration, such as working mode of the CAN, such as the listen-only mode
or self-test mode. The CCA does not use these modes, which provide the safe faults
shown in Table 4.

• Acceptance filter checks whether the message currently on the bus has to be stored
by the peripheral or not. If the message is accepted, it is stored in the fifo. In other
words, the bit acceptance filter and its fifo are related to acceptance_code_regs and
acceptance_code_mask; therefore, the fixed content of these registers gives rise to safe
faults.

Table 4. Safe faults in the CAN controller IP.

CAN Modules
Application-Independent CCA

Safe Faults Safe Faults
w.r.t. Total Faults Safe Faults Safe Faults

w.r.t. Total Faults

Top 10 0.026% 41 0.108%
can_registers 22 0.058% 769 2.023%

acceptance_code_regs 0 0.000% 52 0.137%
acceptance_mask_regs 0 0.000% 52 0.137%

bus_timing_regs 0 0.000% 26 0.068%
clock_divider_regs 11 0.029% 41 0.108%

command_reg 13 0.034% 57 0.150%
error_warning_reg 10 0.026% 74 0.195%

irq_en_reg 0 0.000% 15 0.039%
mode_regs 14 0.037% 53 0.139%

tx_data_regs 0 0.000% 115 0.303%
Bit Timing Logic 46 0.121% 299 0.787%

Bit Stream Processor 354 0.931% 2988 7.861%
can_crc_rx 0 0.000% 0 0.000%

Acceptance Filter 3 0.008% 256 0.673%
can_fifo 55 0.145% 69 0.182%

TOTAL 538 1.415% 4907 12.909%

6.2.4. Combined Results: Fault Simulation and Formal Analysis

In this step, we combine the fault simulation and formal analysis, as it is proposed
in this work, to check the increase in the DC. This analysis targets the CPU and the CAN
modules in the AutoSoC.

As mentioned in Section 3.2, the fault simulation is not enough to classify all faults
because workloads used for fault simulation cannot activate and propagate all faults.
Therefore, some faults become undetected as a result of fault simulation. It is needed to
analyze these undetected faults to check if the desired DC is reached. If the DC does not
match the requirements, then the undetected faults must be re-analyzed using alternative
methods, such as the proposed technique in this work. In short, the purpose of this step is
to show that the proposed technique can increase DC to achieve the figures required by a
given automotive safety integrity level.

In order to perform this analysis, we resorted to the software-based self-test (SBST) [5]
approach in the form of STLs. In the considered scenario, the AutoSoC runs BareMetal-
CCA in the field, and the STL, when activated, forces the processor to execute a proper
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sequence of instructions. Then, a signature is produced based on the generated results, and
the application can compare it with the expected results if there are faults.

The developed STL for the AutoSoC CPU is a combination of 57 test programs, partly
taken from [8] and partly newly developed for this paper. Concerning the STL for CAN,
we use the same test programs described in [28]. The STL was developed as a collection of
tasks that can either operate independently or collectively, depending on the self-test time
slot [37].

The following steps are applied:

• First, Str-Safe faults are identified using the Cadence® JasperGold® Functional Safety
Verification (FSV) App.

• Second, we use the Cadence® Xcelium™ Fault Simulator to inject SA0 and SA1 faults
at cell ports of the AutoSoC CPU and CAN modules, which run the STL as a workload.
As a result, faults are classified as detected or undetected.

• Third, DC is calculated by using (1).
• Fourth, App-Safe faults are identified before being excluded from undetected faults.

This process is incremental, always focusing on faults that were previously undetected.
• Finally, DC is calculated again with the newly achieved numbers using (1).

Figures 10 and 11 detail the results of the STL efficiency and uptrend in DC when
App-Safe faults are identified. Concerning the analysis in CPU, Figure 10 shows that
8465 Str-Safe faults are identified in the beginning. Then, when fault simulation is deployed,
71,255 detected and 16,634 undetected faults are classified. After fault simulation, DC
is 81.07%, calculated using (1). Then, by applying the proposed safe fault identification
technique using formal methods, 5627 App-Safe faults are identified, i.e., undetected faults
are reduced to 11,007. Using again (1), DC is increased to 86.62%. A similar analysis is
performed in CAN as shown in Figure 11. As a result, DC is increased from 88.04% to
91.97%.

Figure 10. Combined results in CPU: uptrend in DC when fault simulation and formal analysis
combined.
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Figure 11. Combined results in CAN: uptrend in DC when fault simulation and formal analysis
combined.

The proposed technique appears to be a promising way for the classification of unde-
tected faults via safe fault identification. The combined results show that DC is improved
by around 6% for the CPU and 4% for the CAN. Moreover, with a final DC of 91.97%, the
CAN achieves the requirements for an automotive ASIL B [4] hardware component as is,
i.e., without design modifications.

6.3. Discussion

Safety standards (e.g., ISO 26262) mandate the estimation of the achieved safety level,
which in turn requires the identification of safe faults. This work provides a new tech-
nique for automatically identifying safe faults in the CPU and peripherals. The proposed
technique can significantly reduce the cost and effort for safe fault identification, showing
that the method can identify a significant number of safe faults. Safety standards (e.g.,
ISO 26262) mandate the estimation of the achieved safety level, which in turn requires the
identification of safe faults. This work provides a new technique for automatically iden-
tifying safe faults in the CPU and peripherals. The proposed technique can significantly
reduce the cost and effort for safe fault identification, showing that the method can identify
a notable number of safe faults.

The main advantage of the proposed method is its automated approach for safe fault
identification using the automotive representative hardware and software application.
The method reduces the constraints of manual expert-based analysis, so the time and
complexity of verification efforts are reduced simultaneously. This also helps reduce the
time-to-market criteria, which is one of the biggest challenges of the IC design industry.
Moreover, the proposed method is systematic and established based on logic simulation
and formal analysis, supported by industrial-grade tools that make it suitable for the
automotive industry and research on functional safety verification. It enables an accurate
safety metrics evaluation; therefore, it allows compliance with ISO 26262 functional safety
metrics. Concerning disadvantages, there is no analytical calculation regarding the number
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of logic simulations to be run. We ran several logic simulations using different but realistic
input data sequences in our work (as explained in Section 4.1.1) and stopped running new
ones when the coverage reports were the same. Additionally, concerning the computational
complexity of the proposed technique, it depends upon the number of faults that are being
evaluated by the formal analysis.

7. Conclusions

Functional safety verification is a crucial and non-negotiable requirement that must
be considered throughout the safety critical IC design cycle. Therefore, the ISO 26262
functional safety standard was developed to guide how this requirement is implemented.
According to ISO 26262, random hardware failures can occur unpredictably during the
lifecycle of an IC. Thus, random hardware faults must be classified based on their effects,
i.e., on whether they can disrupt any safety critical functionality or not. Nevertheless, this
classification process is expensive and error prone since it requires a combination of tools
and inputs from experts based on their design knowledge. The method proposed in this
work brings a solution to this challenge.

The proposed methodology focuses on identifying safe faults on a SoC when it
runs a single SW application. We extend functionally safe faults by the identification
of application-dependent safe faults. The flow relies on code coverage analysis through
logic simulations and formal methods. The methodology starts with the analysis of code
coverage to understand the target system’s operational behavior. In other words, faults that
do not disturb any safety critical functionality are first identified through code coverage
analysis. Then, code coverage results are translated to formal properties, then transferred
to a formal analysis tool to constrain the environment to identify safe faults. The proposed
methodology is demonstrated on the AutoSoC using its CPU, UART, and CAN when the
cruise-control application runs.

We computed the number of identified safe faults (specifically focusing on stuck-at
faults). In addition, we combined fault simulation and the proposed formal technique to
show the increase in diagnostic coverage. As a result, the number of safe faults accounts
for 20%, 11%, and 13% in the CPU, CAN, and UART modules, respectively. Concerning
the diagnostic coverage, we show that it is increased by 6% and 4% in CPU and CAN
modules, respectively. This analysis also proves that the number of undetected faults for
the same STL is reduced by 1.5–1.6 times for the CPU and CAN, significantly increasing
the diagnostic coverage for an industry-scaled SoC with a sample automotive application.

In future work, we plan to analyze different automotive representative software
applications with various scenarios to see the effect of the proposed method on the safety
metrics. Furthermore, an FMEDA will be created, and safety metrics guided by ISO 26262
will be calculated when the proposed technique identifies safe faults. Additionally, different
STLs that target the AutoSoC and peripherals will be deployed, and the increase in the
safety level will be analyzed.
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Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced Driver Assistance System
ALU Arithmetic Logic Unit
ASIL Automotive Safety Integrity Level
ATPG Automatic Test Pattern Generation
BDD Binary Decision Diagram
BIST Built-in Self-Test
CAN Controller Area Network
CCA Cruise Control Application
CPU Central Processing Unit
COI Cone-of-Influence
DC Diagnostic Coverage
DUT Design Under Test
ECU Electronic Control Unit
FSV Functional Safety Verification
IC Integrated Circuit
IMC Integrated Metrics Center
RTEMS Real-Time Executive for Multiprocessor Systems
RTL Register Transfer Level
SBST Software-Based Self-Test
SoC System-on-Chip
STL Software Test Library
SW Software
TCL Tool Command Language
UART Universal Asynchronous Receiver–Transmitter
XFS Xcelium Fault Simulator
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