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Abstract 

Mobile malware have increased attacks’ frequency and sophistication in last years. 

Android OS is the main target of these attacks, as the most widely used smartphones 

OS. Traditional antivirus techniques are ineffective on detecting unknown or new 

malware. This situation puts Android users in a high-risky situation. Machine learning 

has been used in numerous researches as an alternative method to detect malicious 

applications overcoming antivirus problems. In this regard, machine learning 

classification methods use features from known data, known as predictors, to predict the 

malicious behaviour of unknown data. This thesis uses system calls and permissions as 

features to detect malicious behaviour in Android environment. Feature selection is used 

to select and build a Decision Tree algorithm classifier model aiming to minimize the 

number of predictors of two different malware datasets. Old and new malware datasets 

variability of predictors is analysed. Results showed that system calls provide greater 

discriminatory power than permissions and that hybrid approach (combination of both 

features) possess slightly greater discriminatory power than system calls alone. Feature 

selection provided similar detection accuracy (97%) using 212 system calls than with 22 

of them, allowing to reduce and minimize the number of predictors used to build the 

model. Furthermore, it was also possible to build a classifier with a single feature and 

obtain over 86% accuracy in cross-dataset testing. Analysis of features showed that 

predictive variables have changed in malware over years, with new malware becoming 

more like legitimate applications and thus reducing variables discriminatory power with 

a few exceptions. Nevertheless, it is still possible to build a classifier to detect old and 

new malware without the need of using mixed datasets as a training set. A single dataset 

(old or new malware) could be used, depending on the number of features used, to build 

the model. This research shows that depending on detection objectives and 

requirements, different features and dataset should be used in order to accomplish them 

with optimum malware detection performance. 

This thesis is written in English and is 77 pages long, including 6 chapters, 31 figures 

and 13 tables. 
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Annotatsioon 

Täieliku masinõppe töövoo rakendamine pahavara tuvastamiseks 

süsteemikutsete ja pääsuõiguste alusel 

Antud töö on pühendatud Android opsüsteemi pahavara analüüsimiseks ja 

tuvastamiseks. Viimaste aastate jooksul on muutunud nii pahavara keerukus ja selle abil 

korraldatavate rünnakute sagedus. Seetõttu hüppeliselt suurenes risk Android 

opsüsteemi kasutatavate nuttiseadmetele. Pahavara keerukuse tõttu paljud pööravad 

pilku masinõpe meetodite poole. Pahavara käitumist kirjeldavate parameetrite alusel 

arvutatakse tunnused, mille alusel treenitakse masinõpe klassifikaatoreid. Töö eripära 

koosneb kahest komponendist. Esimene on tunnuste arvutamine, mille tulemuseks on 

väiksem tunnuste hulk, kui avaldatud paljudes publikatsioonides. Nimelt 212 tunnusest 

on saadud hulk mis koosneb vaid 22st. Selle saavutuse alusel võib treenida lihtsamaid 

klassifikaatoreid. Teiseks eripära komponendiks on vana ja uue pahavara võrdlus, mis 

kirjeldab kuidas muutuvad pahavara omadused võrreldes standartsete rakendustega. Töö 

käigus oli demonstreeritud, et uus pahavara muutub sarnaseks tava rakendustega. Töö 

tulemus: oli välja treenitud mitu klassifikaatorit mille täpsus on 97% ümbruses.  Samuti 

oli demonstreeritud, et vaid ühe tunnusega on võimalik treenida klassifikaator, mille 

täpsus on 86% ringis. Töö näitab et tunnuste valik ja treenimis andmed tuleb valida 

vastavalt tuvastatavale objektile ja lubatud keerukusele. 

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 77 leheküljel, 6 peatükki, 31 

joonist, 13 tabelit. 
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1 Introduction 

Smartphones allow in their reduced size to perform thousands of activities that before 

had to be implemented with computers or physically, saving time, money and effort to 

the user. Mobile applications have promoted the use of mobile use and navigation. In 

2017, 52,7% of global internet traffic was originated from mobile devices and it is 

expected that by 2018 will reach 80% [1]. In 2017, 91.3% of social media users used 

their mobile devices for their social media related activities and 90% of mobile device’s 

time of use is spent in apps [2]. This growing trend is exploited by malware authors to 

propagate their creations worldwide. According to McAfee [3], “2018 could be the year 

of mobile malware”, an emerging threat statement based on their 16 million malware 

infections detected in the third quarter of 2017 alone, twice the figure in 2016. This 

spike was also confirmed by Kaspersky [3][4], which detected an 80% increase in 

malware attacks and sophistication. McAfee report also states that Google Play store 

has been target of malware campaigns almost since its inception and it is still under 

siege [3]. Android Grabos was the latest malware campaign detected in Google Play, 

which affected 144 apps stored in Google Play, infecting 17.5 million smartphones in 

2017 before they were removed [3]. Notwithstanding that Android’s owner, Google, is 

increasing new versions’ security features, they are still ineffective to protect or detect 

even the most common malware [3][5]. Furthermore, antivirus software for mobile 

devices has been proved to be inefficient detecting malware applications [6]. These 

limitations come not only from malware obfuscation techniques but also from Android 

OS itself which uses a filesystem-based sandbox to ensure that each installed 

application have only access to its own data and not to other apps or user data, unless it 

is explicitly permitted by the user. This directly affects Android antivirus software as 

they are not capable of list other directories’ contents [6].  

 

Android OS is the most widespread mobile operating system worldwide, it is run by 

most of smartphone producers, as it is a highly customizable and open source, based on 

Linux kernel. Over 87% of global smartphone devices use some kind of Android flavor 

[7] but only 1% of them use the latest version, Android 8.0, that includes enhanced 
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security capabilities [8]. Android OS users download applications via App markets. The 

official market is Google Play store, but there are many other third-party markets like 

AndAppStore, GetJar, Handango, etc. that attract users by providing pay applications 

for free. The main issue of application markets is security, especially in third-party 

stores, which are less controlled. Apps’ stores are used by attackers to spread and infect 

users’ devices with malware, especially trojan versions of widely-used and popular 

applications. The estimated 4.5 billion of Android mobile users worldwide in 2017 are 

posing as an enticing target for malware creators, that have evolved frequency and 

sophistication of attacks. According to McAfee [3], in 2010, best malware campaign 

could earn up to $300,000. Nowadays, it could potentially bring a revenue up to $2 

million, being able to reach the billion-dollar figure by 2020 [3]. 

 

Android users are becoming more vulnerable and exposed to risks, posing unwillingly 

as enticing targets to cybercriminals, involved in an extremely threatening situation. 

Consequently, there is an important need of improvement in Android malware detection 

in order to mitigate this fast-growing critical risk scenario for Android users.  

 

Traditional malware detection approaches based on signatures fail to address new 

malware detection and can be easily bypassed by old malware with obfuscation or other 

stealth techniques [6]. New methods should be implemented to overcome these 

limitations. Machine learning is a growing and emergent field in computer science that 

involves the ability of a computer to learn from experience without the need of being 

explicitly programmed to perform each action. Machine learning has been firstly tested 

in the computer security field, and lately in mobile security with promising results, it 

can help to improve malware detection mechanisms in mobile devices [9][10][11]. 

 

Machine learning models use data features of known data objects to make computers 

learn and, based on that, make predictions about unknown data objects. Relevant 

features about data objects should be selected from whole data features and prioritized 

to achieve maximum prediction accuracy and avoid information redundancy.  

 

Present research problem statement is resumed in the following points: 

 

- Perform feature selection for malware detection in Android system.  
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- Minimize number of predictors. 

 - Analyze the variability of selected predictors in old and new malware datasets. 

 

This thesis aims to apply standard machine learning acquisition workflow to address 

malware discrimination problem in Android, by selecting potentially discriminatory 

features using a hybrid features approach, acquiring static and dynamic data such as 

Android permissions and system calls from applications. Hybrid features are the most 

comprehensive as they analyze the phenomena from various perspectives [12]. Android 

permissions are the most static features used to analyze malware [12], they are explicitly 

declared in AndroidManifest.xml file. As Android uses Linux Kernel, permissions are 

the first obstacle to attackers. System calls are the most dynamic features used to 

analyze malware [12]. System calls are used by applications to perform and request 

specific tasks since they are not authorized to interact directly with Android operating 

system [12].  After reviewed the state of the art of the application of machine learning to 

the malware detection in mobile field, an Android sandboxed testing environment was 

deployed using the conjunction of Linux O.S. and an Android emulator to gather both 

static and dynamic features from applications. Feature selection was applied to find the 

variables candidates of possessing higher discriminative power, which is a low-applied 

technique in mobile malware detection and also testing the cumulative power of hybrid 

features. Machine learning models were trained with different dataset combinations, 

from the whole dataset composed by 1000 legitimate, 1000 old malware and 1000 new 

malware and cross-validated, which supposes a novelty in model validation, using both 

old and new malware samples. Accuracy is shown as performance’s metric and 

evaluation. Our main contribution to this field is two-fold: application of feature 

selection in detail for the considered features (system calls and permissions) and 

perform detailed analysis for old and new datasets. 

 

This document is structured as follows: section 2 deals with thesis’ background 

information and related work; section 3 focus on present research methodology; chapter 

4 talks about this thesis’ practical implementation of machine learning workflow; 

chapter 5 shows validation metrics and main results while chapter 6 addresses the 

conclusions that can be drawn from this research.  
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2 Background Information 

2.1 APK and Android Malware 

Android applications are installed in mobile devices by using an installation file called 

Android Application Package or APK. APK files are a type of archive files, like zip 

packages or java jar files, that consists in the following main components:  

 

- AndroidManifest.xml → Application’s meta-data XML file. It includes 

information related with application’s descriptions, package information and 

security permissions. Security permissions is the access control that Android 

uses in order to provide the app access to system data and features that it needs. 

Permissions should be declared before they can use system data and features and 

depending on how sensitive the data is, they will require explicit user approve 

the request or be automatically granted [13].  

- Classes.dex → File that contains the source code of an Android application 

written in Java programming language compiled into .dex format (Dalvik 

Executable). Dalvik is Android platform’s virtual machine that interprets and 

executes .dex files, which are optimized for efficient storage and memory-

mappable execution. [14].  

- Resources.arsc → binary XML file that contains precompiled application 

resources. 

- Resources folder (res/) → Folder that includes not pre-compiled resources that 

application needs on runtime such as pictures, layout, use of a database and data 

stored in the database, etc. [12]. 

- Assets (assets/) → optional folder that contains application assets that can be 

retrieved by AssetManager.  

- Libraries (lib/) → optional folder that contains compiled code that is specific for 

different processors such as arm, mips, x86, etc. 

- META-INF → folder that contains MANIFEST.MF file, APK signature, etc.  
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APK files zip all these files and folders into *.apk file which is used by Android to 

install the application. This *.apk file can, with appropriate tools, be used to collect 

interesting information for analyzing the application with static malware analysis 

procedures, that is, without running or installing the application in any device. Dynamic 

malware analysis requires installing and running the application in a device.   

 

Android malware can pose multiple faces and threats. From the annoying but harmless 

adware to sophisticated malware being able to hijack the mobile device and access 

personal data [12]. In last years, there has been an important increase of profit-

motivated malware, mainly based in the form of premium messages sent by applications 

without the will and awareness of the device user [12][15]. In relation with the social 

engineering method used for its installation, Android malware can be mainly 

categorized as repackaging, update attack and drive-by-download. But they are not 

mutually exclusive, as malware can use different techniques to entice the user for 

download [15]. Repackaging consists in the addition of malicious payload in a 

legitimate (non-malware) and popular application. Malware authors download most-

downloaded popular applications from legitimate sources, disassemble them and attach 

malicious payload to it, reassemble everything together and then submit them to official 

or alternative Android markets. When the user downloads and installs this legitimate-

looking application it also installs malware in the device without notice. Over 80% of 

Android malware is a repackaged application [15]. Update attack is a step-forward in 

malware sophistication. Instead of attaching the whole payload into the application 

code, it only encloses an update component that will download the entire malicious 

payload at app’s runtime. This makes malware detection more difficult as static 

scanning will not detect malicious payloads [15]. Malicious payload is included in the 

“updated” app and not in the original one, which makes malware detection not efficient 

in first instance. Finally, drive-by-download is a traditional social-engineering technique 

applied to a new field, mobile devices. It consists in entice the user to download 

interesting apps [15], which will perform other actions than the expected. As stated 

before, Android malware shows evolving sophistication and quick development that 

make them harder to detect [15]. Mobile anti-virus software can barely detect over 70% 

of malware, and in some cases 20% of them. Development of new anti-mobile-malware 

solutions is an imminent need [15]. 
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2.2 Machine Learning 

Machine learning claims to make computers learn from experience. “A computer 

program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E” [16]. As an example, Arthur Lee Samuel, a pioneer in Artificial 

Intelligence field and the one who coined the term “machine learning” in 1959, created 

one of the first successful AI self-learning programs. Such a computer program that 

learns to play checkers (T) “might improve its performance as measured by its ability to 

win checkers games to win at the class of tasks involving playing checkers games, 

through experience obtained by playing games against itself [16]. Since that, machine 

learning applications have shown a huge expansión. Now, machine learning is 

everywhere. Spam filters, credit card fraud detection, picture’s face recognition, search 

engines, recommendation systems, data mining and handwriting recognition are just an 

small example where machine learning is being applied nowadays. Most of machine 

learning problems and algorithms fall in one of the following broad types: 
 

- Supervised learning: where an outcome variable (dependent variable, y) is 

predicted based on a set of predictors (independent variable, x). More 

concretely, it involves the machine learning task of inferrinf a function from 

labeled training data [17]. Labeled (also known as target or outcome) data is 

used to train a computer (learn from known labeled samples) that will be used 

predict the label of new unknown samples of data. Here, training examples or 

instances are used to train the model, in relation to specific attributes, also 

known as variables or features. Label of new data will be inferred from new data 

attributes according with learnt ones. According to the type of predicted 

variable, supervised machine learning algorithms can be classified as: 

▪ Classification: when a categorical data is predicted (e.g.: spam 

email).  

▪ Regression: when a numerical measurement is predicted (e.g.: 

price of housing). 

 

- Unsupervised learning: where the expected outcome is to find the hidden 

structure of unlabeled data trying to characterize it. Here, contrary to supervised 

learning, there are no labels or target and the goal is to find and describe patterns 
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and associations among attributes [17]. Most used unsupervised learning 

algorithms are known as: 

▪ Clustering: where instances are grouped based on sharing certain 

common characteristics that make them similar.  

▪ Outlier detection: where the goal is to find data points that 

deviate markedly from other members of the same sample. 

 

- Semi-supervised learning: is the combination of supervised and unsupervised 

learning. It is a technique to learn patterns in the form of a function based on 

labeled and unlabeled training examples [17]. It is mainly used when it takes 

important efforts to collect labeled data, needing to use unlabeled training 

examples to learn a target function.  

 

- Reinforcement learning: tries to find optimal actions in a concrete situation so as 

to maximize a numerical reward which does not come inmeditaly with the 

actions but delayed in time. [17]. Actions that yield highest reward are not 

provided, they must be discovered by trying them (test-error).  

2.3 Related Work 

Machine learning models are pretended to overcome the limitations of the signature-

based methods to discriminate unknown malware from benign applications, a critical 

detection that threatens Android users. Applications static and dynamic features have 

been used in recent times to train, test and validate machine learning models with 

promising results [18]. Static features are easy to extract and do not require to install or 

run the application but are prone to be lured by obfuscation methods. On the other hand, 

dynamic features provide more comprehensive information but they require to install 

and run the application in a rooted device and are more difficult to extract. Hybrid 

approaches provide the best set of information as they combine the advantages of both 

approaches but they also sum up the complexity of extracting both types of features and 

their combination.  

2.3.1 Static malware analysis and detection 

Static malware analysis involve the use of application’s static features which can be 

collected without actually running the application, directly from *.apk file or with a 
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little manipulation. Android permissions are the most used static feature in static 

malware analysis research papers. Android, running Linux kernel, implements an 

important part of Linux security architecture.  

 

A list of requested permissions is presented to the user before installation (Figure 1), 

that will be performed once permissions are granted by the user [12]. There are 147 

official Android permissions in Android 8.1 [19], also called as Android Oreo (API 27), 

that are categorized into three protection level groups: normal, signature and dangerous 

[20]. Researchers used permissions in different ways, usually combined with other static 

features, as malware detection is easier to bypass by malware if only one feature set is 

used [21]. 

 

 

 

Arp et al. [9] used a combination of static features such as requested permissions, 

hardware components, app components and filtered intents from application’s manifest, 

and restricted API calls, used permissions, suspicious API calls and network addresses 

from disassembled code. They were embedded into a joint vector space and applied 

linear Support Vector Machines (SVM) algorithm to discriminate malware/bening 

applications. 93.9% malware detection accuracy was achieved with false positive rate of 

1% with full Drebin dataset (123,453 benign applications and 5,560 malware samples) 

and 95.9% with specific MalGenome Project dataset [15] which is embedded in full 

Drebin dataset.  

 

Peiravian and Zhu [22] combined requested permissions and API calls as features to 

characterize malware, trained and tested three machine learning algorithms (Support 

Vector Machines, Decision Tree and Bagging) with the collected features in 3 different 

sets (only permissions, only API calls and combination of both). Their dataset was 

composed by 610 malware samples and 1250 benign apk files. Best results were 

Figure 1. Permission declaration inside AndroidManifest.xml 
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achieved using Bagging classifier combining both features in each of the tests (AUC 

0.991).  

 

Nezhadkamali et al. [21] used a combination of permissions, API functions and intents. 

They used feature selection to find a subset of relevant features from their dataset. Their 

dataset was composed by 1260 malware applications from well-known MalGenome 

[15] dataset and 498 benign applications. They used various machine learning 

techniques including SVM, Random Forest and Decision Tree algorithm. Best results 

were achieved using information gain and Random Forest algorithm (98.6% accuracy). 

 

Liu and Liu [23] used pairs of used and requested permissions by applications in order 

to classify malware/benign applications. They used the frequency of occurrence of two 

permissions as a pair, stating that it can reflect the app’s potential malicious activities. 

Their dataset was compound by 28,548 benign apps downloaded from AppChina and 

1,536 malicious apps, including MalGenome [15] and other samples collected by the 

authors in a security company in China. Trained and tested Decision Tree algorithm 3 

times: one with requested permissions, another one with requested permissions pairs 

and last one with used permission pairs. First two classifiers are first layer and last one 

is second layer. An application categorized as malware in any of the layers was 

categorized as malware and not analyzed in following layer. They achieved an accuracy 

of 0.985 in first layer and 0.986 in the whole process (first and second layer).  

 

APK Auditor [24] is a permission-based Android malware assessment system. It 

consists in three main components: an Android client, a signature database and a central 

server that communicates with both and handles the analysis process. Dataset was 

conformed by 6909 malware samples (from Contagio [25], Drebin and MalGenome 

datasets) and 1853 benign applications downloaded from Google Play Store. They 

trained and evaluated logistic regression algorithm. Overall accuracy of the system was 

88.28%.  

 

DroidMat [26] extracts requested permissions, intent messages passing and deployment 

of components from AndroidManifest.xml. Additionally, they extract API calls for each 

component. Dataset consists on 238 malware applications from Contagio dataset and 

1500 benign applications downloaded from Google Play. Applied K-means, EM 
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clustering algorithms and k-Nearest Neighbors (kNN, with k=1) and Naïve Bayes as 

classifiers. Best results were achieved with combination of k-means and kNN (0.9787 

accuracy).  

 

Aung and Zaw [27] used permissions as a unique feature to detect malware. They 

performed feature selection using information gain, used k-Means as a clustering 

algorithm and Random Forests, J48 Decision Tree and CART as classifiers. Their 

dataset was composed by 500 samples. Best results were achieved using Random 

Forests algorithm (91,75% accuracy).  

 

PUMA [28] used permissions as a unique feature to detect malware. They extracted 

them from the application’s manifest, processed it and trained different machine 

learning algorithms (SimpleLogistic, NaiveBayes, BayesNet, SMO PolyKernel and 

NormalizedPolyKernel, IBK, J48, RandomTree and RandomForest). Validated their 

findings with k-fold cross validation (k=10). Their dataset was composed by 249 

malware applications from VirusTotal and 1811 legitimate applications from Play Store. 

Best results were achieved with Random Forests with 50 trees (86.41% accuracy).  

 

Droid Detective [29] uses permission combinations to detect malware. It groups 

permission combination profiles that are requested frequently by malwares but rarely by 

benign applications and generates rule sets for identifying malware. Their dataset is 

composed by 1260 malware samples from MalGenome Project and 741 benign 

applications collected fom Google Play. Best results are achieved when using 

combination of 6 permissions (87,53% accuracy).  

 

Varma P. et al [30] used permission as a unique feature to detect malware. Their dataset 

is composed by 1999 legitimate applications downloaded from Google Play between 

2015-2016 and 1259 MalGenome Project malware samples. They trained and tested 

Naïve Bayes, Decision Tree J48, Random Forest, Multi-class classifier and Multilayer 

perceptron algorithms. Best results were achieved with multi-class classifier (99,9% 

accuracy).  
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2.3.2 Dynamic malware analysis and detection 

Dynamic malware analysis involves the collection of information about the application 

at runtime, so it requires to install and monitor the application to collect desired data. 

Dynamic features can be defined as application’s behavior in interaction with the 

operating system or network connection [12]. System calls are the most used behavioral 

feature in dynamic malware analysis research papers. Android, which runs Linux 

kernel, has more than 200 system calls available [31] that are used by applications to 

request services that they are not allow to perform directly from the operating system’s 

kernel. System calls, also called kernel calls, provide functionalities such as network, 

file or process related operations [32]. As shown in Figure 2, when an application 

running on user space requests a service from the operating system (i.e. open a file) 

using wrapper functions (such as open() and not invoking the system call directly), the 

request is interpreted by glibc library and CPU switches from user mode to kernel mode 

in order to execute the appropiate kernel function by looking into system call table. 

Kernel, which has enough privileges to perform the task, understands the petition and 

makes the request to the hardware. When the concrete task is performed, the result is 

sent back to user space following the inverse order. As all requests go through upper 

layers to Kernel before they are executed in hardware via system call interface, 

monitoring and capturing system calls passing through system call interface provides a 

good source of information about the behaviour of the application [32]. This task is 

usally performed using strace, a debugging and diagnostic utility for Linux. This tool is 

used to monitor interactions between Linux kernel and running processes, providing 

information about system calls, signals and changes of process state [33]. Strace tool 

uses at the same time a kernel system call ptrace, that allow process tracing [34].  

 

In Android OS this process is slightly different and system calls are created by 

information flowing through a multi-layered architecture, as can be seen in Figure 3. 

When application on top architecture layer makes a request, that is transformed to the 

corresponding service in the application framework. Next, Android runtime receives the 

request from the service and executes it in the Dalvik VM. Upon execution, request is 

transformed into a collection of library calls, which result in multiple system calls to the 

Linux kernel. This generated sequence of system calls is low-level equivalent of the 
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high-level request. Flow of information goes to the opposite direction in a similar 

fashion [35]. 

 

 

 

 

 

Crowdroid [32] uses system calls to detect anoumalosly behaving applications in the 

form of trojan horses. It uses crowdsourcing to obtain the traces of application’s 

behavior. A client, server and database architecture is used in order to process and 

gather information. Crowdroid client, installed on user device, acquires data, by running 

strace and sending the log file via internet to the server/database. The server/database 

receives the log file, extracts system calls names and creates a system call feature 

frequency vector (each element represents a count for the specific system call 

requested). This system call feature vector is used as input of k-means clustering 

algorithm, in order to create the normality model and detect anomalous behavior. 

Dataset is composed by self-written malware and two malware applications from 

VirusTotal (Steamy WIndow and Monkey Jump 2) and legitimate versions of them. 

Figure 2. Linux User and Kernel space [32]. 

Figure 3. Abstraction layers of the Android architecture [35] 
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Detection rates are 100% in self-written malware and Steamy Window, 85% in the case 

of Monkey Jump 2.  

 

CSCdroid [36] uses strace to collect system calls produced by 1000 Monkey tool 

pseudo user events in order to detect malware. This system calls are categorized using 

different methods and Markov chain is used after to construct feature vectors that are 

the input of SVM classifier algorithm. Dataset is composed by 1189 benign applications 

and 1227 malicious applications from MalGenome dataset. Precision and True Positive 

Ratio are over 0.95 in all categorization methods used. 

 

MALINE [35] uses system call acquisition and process to discriminate malware 

applications. It uses strace to collect system calls in a sandboxed environment using 

strace tool. Strace log is then processed creating two feature vectors: one representing 

system call frequency and another one representing system call dependency (pairs, 

using dependency graphs). The number of system call was controlled by the number 

Monkey events inserted (ranging from 1 to 5000). These vectors are used as input for 

training, tested and cross-validated with different machine learning classifier algorithms 

such as SVM, Random Forest, LASSO and Ridge regression. Dataset is composed by 

legitimate applications downlodaded from Google Play and Drebin dataset as malware. 

Best results were achieved with random forest algorithms in all cases (with accuracy 

results over 90%).  

 

Maestre Vidal et al. [37] used sequence alignment and system calls to discriminate 

malware/benign applications during the boot process of the application. They used 

strace tool to monitor program’s activity and assigned each system call a symbol. They 

extract sequences of system calls and applied sequence alignment methods to them. The 

analysis of the monitored data is driven by sequence alignment processes, which 

compare the received sequences with a collection of samples of legitimate application 

executions. The more completeness this dataset presents, the greater precision the 

system offers. Malware dataset were 5130 samples from MalGenome and Drebin and 

570 benign applications. Best results were achieved considering samples of the first 

2000 system calls gathered when initializing the applications within the sandbox. True 

Positive Ratio was 98.61% with False Positive Ratio of 6.88%.  
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Xiao et al. [38] collected applications’ system calls during the execution of 1000 

Monkey testing tool injected events. Information gathered is processed to create two 

vectors: frequency vector (each element represents the frequency of the corresponding 

system call) and co-ocurrence matrix vector (co-ocurrence matrix is created from the 

system call sequence, normalized and transformed into a vector). Both vectors are used 

as input for Adaptative Regularization of Weight Vectors (AROW), kNN, Logistic 

Regression, Naïve Bayes, Decision Tree, Random Forest and SVM classification 

algorithms. Dataset is conformed by 1227 MalGenome malware dataset samples and 

1189 legitimate applications from Google Play. When using co-ocurrence matrix vector, 

TPR values for all machine learning algorithms achieved values over 0.95. On the other 

side, Random Forest was the only algorithm that achieved TPR over 0.95 regarding 

frequency vector input.   

 

SCSdroid [39] focus on the use of system calls to discriminate malicious repackaged 

applications (MRA’s) without the need of the original application. SCSdroid (System 

Call Sequence Droid) uses thread-grained system call sequences during runtime rather 

than process-grained sequences. SCSdroid authors advocate that if an MRA can be 

camouflaged as a benign application, its malicious behavior would still appear in the 

thread-grained system call sequences. A thread-grained system call sequence is the 

system calls recorded for a thread, while a process-grained system call sequence is the 

system calls recorded for a process. That is, the thread-grained system call sequences 

mean that the system calls produced by the process and the child-threads forked from it 

are independently recorded, while process-grained sequence means that the systemcalls 

produced by the process and all its child-threads are recorded together. Authors state 

that since malicious behavior always happens in a single thread, not across multiple 

threads, it is difficult to identify the malicious behavior if the system calls from the 

process and different threads are mixed together. SCSdroid first captures the system call 

sequence of each thread at executing MRAs, using strace tool attached to main Android 

process called Zygote, and then extracts the common subsequences (using Longest 

Common Substring algorithm), which are the common parts of these captured system 

call sequences. These extracted common subsequences can be only regarded as possibly 

malicious behavior of MRAs because they may also exist in benign applications. After 

that, Bayes Theorem is adopted to filter these non-discriminating common 

subsequences and then find the common subsequences which indicates the truly 
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malicious behavior presenting in the MRAs. The key concept of SCSdroid is that MRAs 

belonging to the same family, i.e., a group of MRAs which embed the same malicious 

codes into benign applications, will have common malicious behavior. Dataset is 

compound of 8 families of MRA’s from different malware sources and 400 benign 

applications downloaded from Google and third-party markets, tested with VirusTotal 

[40].  Overall detection accuracy was 95.97%. 

 

Afonso et al. [41] combined system calls and Android API function calls in order to 

discriminate malware from legitimate applications. They used MonkeyRunner tool to 

create some pseudo random events and recorded Android API function calls with 

APIMonitor [42] software and system calls with strace tool. They focused their analysis 

on frequency of 74 Android API function calls and 90 system calls and created input 

vectors to feed several machine learning algorithms (RandomForest, J.48, 

SimpleLogistic, NaiveBayes, BayesNet Search algorithm, SMO Kernel and IBk). 

Results were 10-fold cross-validated. Dataset is composed by 4552 malware samples 

from MalGenome and other sources and 3831 benign applications from AndroidPIT 

market. Best results were achieved with Random Forest with 100 trees (95.96% 

accuracy).  

 

Wahanggara and Prayudi [43] focused on the use of system calls and Support Vector 

Machines algorithms to address the problem of malware detection. Dataset was formed 

by 150 applications. Malware came from Contagio and legitimate applications were 

downloaded from Google Play Store, with restrictions of 4 out of 5 starts rating and 

mínimum of 100,000 users. Strace tool was used to gather applications’ sytem calls 

three times for each application. Data was used to train and test SVM algorithm with 

different kernels: radials basis function (RBF) kernel and polynomial kernel. 5-fold 

cross validation was performed. Best results were achieved with polinomial kernel, 

reaching 90% of accuracy.  

 

Andromaly [44] is a behavioral Android malware detection framework that uses 

applications’ behavioral traits (system calls included) at different levels in order to 

discriminate between malware and legitimate applications. The basis of the malware 

detection process consists of real-time, monitoring, collection, preprocessing and 

analysis of various system metrics, such as CPU consumption, number of sent packets 
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through the Wi-Fi, number of running processes and battery level. All data gathered is 

selected and reduced by applying feature selection in order to apply different machine 

learning algorithms more efficiently: k-Means, Logistic regression, Histograms, 

Decision Tree, Bayesian Networks and Naïve Bayes. Dataset was composed of 44 

applications (20 benign games, 20 benign tools and 4 specific malicious applications). 

Best results were achieved with Naïve Bayes and Decision Tree algorithms, over 87% 

of accuracy.  

 

Da et al. [45] focused their study on 23 selected system calls related with user rights in 

categorized samples of applications (categorization according Google Play Store). They 

collected frequency of each system call and normalized it. Then applied them as input 

vector of Random Forests algorithm. Dataset was composed by 67 benign samples 

downloaded from Google Play Store and 51 malware samples from Contagio dataset. 

They performed 10-fold cross validation. Best results were achieved with Random 

Forest 200 trees (98.03% of accuracy).  

 

Multi-Level Anomaly Detector for Android Malware or MADAM [46] monitors device 

actions, its interaction with the user and the running apps, by retrieving five groups of 

features at four different levels of abstraction, namely the kernel-level (system calls), 

application level, user-level and package-level. Depending on the features, it applies 

signature-based approach detection or anomaly-based. Regarding to system calls, it 

collects type and amount of the system calls issued, focusing on file operations and 

network system calls (11 system calls) and detecting anomalous behaviour. Detection 

used two parallel kNN classifiers and a behavioral signature-based detector. Malware 

dataset was formed by 2784 applications from MalGenome, Contagio and VirusShare. 

Benign dataset was formed by 9,804 applications downloaded from Play Store, tested 

with VirusTotal. They achieved an accuracy of 96.9%.  

 

Deep4MalDroid [47] focuses on the use of system call graphs to detect malware in 

Android. This different approach uses a novel method called Component Traversal that 

allows the automated execution of code routines of each Android app as completely as 

possible (used to overcome the limitations of ADT Monkey pseudo injected events). 

Then they extract Linux kernel system calls (using strace) and created weighted directed 

graphs (system call pairs sequences that also take into account the frequency of each 
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system call). These are used as inputs on a deep learning algorithm (Stacked 

AutoEncoders architecture), used as a classifier. They also tested this approach with 

other machine learning algorithms such as SVM, Artificial Neural Network, Naïve 

Bayes and Decision Tree. 10-fold cross validation was performed. Dataset is composed 

by 3000 applications from Comodo Cloud Security Center: 1500 are malware and 1500 

legitimate applications. Best results were achieved with Deep learning, composed by 3 

layers with 200 neurons each (93,68%).  

 

Singh and Hofmann [48] monitored system call behaviour of 278 legitimate 

applications downloaded from Google Play and 216 malicious applications from 

Contagio dataset. System calls’ frequencies vector was used to feed seven machine 

learning classifiers (Decision Trees, K-nearest Neighbors, Random Forest, Gradient 

Boosted Trees, Support Vector Machine, Neural Network and Deep Learning.). They 

performed two experiments: one with 337 system calls vector and other with selected 

system calls based on three feature selection methods (Chi-square, information gain and 

correlation). 10-fold cross-validation was performed. Best results were achieved with 

SVM algorithm using correlation (97.16%).  

 

Ferrante et al. [49] combined memory usage, CPU and system calls to find malicous 

sub-traces leading to discriminate malware from legitimate applications. In the learning 

phase, they used clustering (KMeans++ algorithm) and then applied Random Forest 

algorithm as a classifier.  Dataset was formed by 1709 benign applications downloaded 

from Google Play and 1523 malicious samples from Drebin dataset. Only selected 

system calls were analyzed, from a prior study [49]. Best results were achieved with 

Random Forest 50-500 trees (67% of accuracy).  

 

Canfora et al. [50] focused on the collection system calls sequences generated by 

applications when pseudo random events were injected (using Monkey) during 60 

seconds. They also tested frequencies of system calls issued during that specific amount 

of time (not sequences). SVM was trained and tested. Dataset is conformed by 1000 

legitimate applications from Google Play and 1000 malware applications from Drebin. 

Alternatively, they also tested permissions alone as a malware detection method. Best 

results were obtained by using long sequences of system calls, achieving 97% of 

accuracy. 
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2.3.3 Hybrid malware analysis and detection 

Hybrid malware analysis combine the use of both static and dynamic features as a 

group, used together to detect malware. Although it requires more complex processing 

of the malware samples, they are the most comprehensive features as they analyze both 

application installation file and application behavior at runtime [12]. This approach is 

less profuse in scientific research than prior approaches.  

 

Xiao et al. [51] used permissions (static), system calls (dynamic) and control flow 

graphs (static) to detect malware. They tested different combinations of the features: 

each one independently, combination of all features and also combination of the two 

static features. They used collected data vectors as input to AROW and SVM 

algorithms. Dataset 1188 benign applications downloaded from Google Play and 1179 

malicious applications from MalGenome Project. Best results were achived using 

combination of three features with AROW algorithm (TPR of 0.9905 with FPR of 

0.0156).  

 

MARVIN [52] is a system that learns to distinguish malicious from benign apps based 

on a set of known malware and goodware. It assigns malice scores to unknown apps in a 

range from 0 (benign) to 10 (malicious). It collects dynamic and static analysis, 

network-level behavior and meta-information, like author fingerprints and application 

lifetime. Core of the system uses one of two machine learning options: linear classifier 

or SVM. They perform feature selection in order to reduce the number of features. As a 

result of the learning phase, MARVIN computes malice scores of given application 

samples. Dataset is composed by 124189 applications (10% of them labeled as malware 

coming from MalGenome, Contagio and VirusTotal). MARVIN achieved 98.24% of 

malicious apps with less than 0.04% false positives (using SVM algorithm).  

 

Scientific research in Android malware detection is, as can be stated from this literature 

review, profuse and varied in methods. Nevertheless, there are two main points missing: 

 

- There is no feature selection or analysis in most of the studies. Only a tiny 

amount of studies perform it and they do not provide detailed analysis on how 

they select, analyze or choose appropiate features. 
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- There is no comparison between old and new malware. Most malware datasets 

used to test and train are relatively old, with samples from 2010 to 2012 in most 

cases. They do not test cross-malware testing, with new samples of malware.   

 

This present research will focus on this two main lacking points detected on literature 

review.  
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3 Methodology 

This master’ thesis was developed in three phases: data acquisition, data pre-processing, 

data processing and model validation. Briefly, data collection involves the collection 

and gathering of all possible features from dataset while in pre-processing part features 

are filtered using feature selection methods to select best features, eliminate redundancy 

and avoid over-fitting. Finally, machine learning algorithms were trained and tested 

with input vectors created from dataset, 70% of dataset was used as training data and 

30% as test data, to validate the model.  

3.1 Phase 1. Data Acquisition 

3.1.1 Dataset 

Dataset used in this thesis was downloaded from different sources, according to its 

characteristics and usage. Dataset is composed by 3000 Android apps split as follows: 

 

- 1000 benign apps were downloaded randomly from APKMirror [53].  

- 1000 malware apps were selected randomly from Drebin malware dataset [9]. 

- 1000 malware apps were selected randomly from VirusTotal Academic malware 

samples dataset [54]. 

 

Altough APKMirror provides signatures and file hashes in order to verify and ensure 

that all their applications are trusted and legitimate applications, all benign applications 

were tested with VirusTotal malware scanner in order to verifiy that they were not 

detected as malware by VirusTotal scanner. All downloaded samples supported x86 

architecture and were top-popular Android applications released between 2017 and 

2018.  

 

Drebin malware dataset [9] is composed by 5560 applications from 179 different 

malware families. These samples were collected between August 2010 and October 
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2012. From 5560 applications, random applications were chosen that supported x86 

CPU architecture. This malware dataset will labelled as old malware dataset.  

 

VirusTotal Academic malware samples is composed by 10,908 applications. These 

samples were detected and collected by VirusTotal between 2017 (3212 samples) and 

2018 (7696 samples). From whole dataset, random applications were chosen that 

supported x86 CPU architecture. This malware dataset will labelled as new malware 

dataset.  

 

3.1.2 Android Emulation 

Each sample of the dataset was installed, executed, monitored, logged and uninstalled 

using an Android emulator software running over a Linux environment. For this 

experiment, an Ubuntu 16.04 LTS (Xenial Xerus) 64-bits OS was installed on an Intel 

Core i5-2450M CPU @ 2.50Ghz x 4 with 6 GB of RAM. Android emulation tool used 

was GenyMotion 2.11 (which uses Virtualbox as virtualization tool). Android Studio 

3.0.1 was installed in the environment, in order to use Android SDK Tools with 

GenyMotion software. Android SDK Tools are a complete set of development and 

debugging tools for Android. The only restriction that GenyMotion imposed to 

applications is CPU architecture: x86 support is needed in order to run the application in 

GenyMotion software (ARM and other architectures are not supported). Altough 

Android Studio 3.0.1 includes an emulation tool, Android Virtual Device Manager, it is 

not rooted by default, slower and with more lag than GenyMotion (which is rooted by 

default and lag-free). GenyMotion x86 architecture is great for performance but do not 

allow to test ARM applications, as there is no option to change architecture [55]. 

Nevertheless, most of Android applications have x86 architecture version additonally to 

default ARM architecture. All applications from whole dataset were installed and tested 

in an emulated Samsung Galaxy S8 device running Android 7.0 (codename Nougat, 

API 24), as can be seen in the screenshot below. 

 

3.1.3 Application’s feature: system calls 

System calls or kernel calls are used by applications to request services from the 

operating system that it directly cannot achieve. Available system calls are listed 
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numerically in a table (syscall_table) inside the kernel, linking a specific number with 

each specific system call. Although not all system calls provided by Linux kernel are 

supported on all architectures or platforms or some of them are deprecated, there are 

always more than 200 calls available [56]. These more than 200 system calls can be 

used to perform different tasks and get desired output by applications and operating 

system itself [57]. Linux architecture provides a layer over the kernel that provides 

essential core libraries to perform such actions via API calls. They include system calls 

for process management, time operations, system handling, filesystem etc. The best-

known and most used library is GNU C library, also known as libc or glibc library [58]. 

Nevertheless, although Android operating system is built on the Linux kernel, it is not 

Linux as it does not support glibc and does not include the full set of standard Linux 

utilities among other major differences [59]. Android OS uses standard Linux Kernel 

with a patch of added “kernel enhancements” in order to provide some Android specific 

features such as power management and inter-process communication (IPC) binder 

[59]. As Android does not provide libc support, it uses a customised and optimized libc 

implementation for embedded use, known as bionic [59], as native library. Faster and 

smaller than glibc. It uses other native libraries such as SSL, SQLite, WebKit, etc. to 

perform needed tasks.  

 

For this thesis purpose, Android 7.0 device was emulated and system calls were 

collected using strace tool. Strace tool can be used to trace system calls by attaching the 

tool to a running process. The output of strace is a log file that provides the system calls 

performed by the process during its execution (while strace was attached to it). Strace 

uses at the same time a system call to perform this action, ptrace [60]. Android 7.0 

Nougat is built on Linux Kernel 4.1. For this thesis purpose, first 2000 boot up 

application system calls where collected and analyzed. Only Bionic x86 Nougat 

implementation system calls were collected, summing up 212 available system calls 

[61]. After collection, frequency vector (count of each system call) was created and 

used as input to feed a machine learning classifier model.  

 

3.1.4 Application’s feature: Permissions 

Permissions are used in Android OS as a privacy resource to protect Android users from 

unwanted actions. Applications must request permission to access sensitive user data 
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(e.g.: contacts and SMS) and also for certain system features (e.g.: camera and internet). 

Depending on the feature requested, Android grants permission automatically or 

prompts the user to approve the request [20]. Since Android 6.0, permissions are given 

by users to applications at runtime, not before installation. Permissions are divided in 

two categories: normal and dangerous. While a normal permission does not threatens 

user privacy directly, permission is automatically accepted by the system without the 

user awareness; dangerous permissions are those that could lead to the access of 

sensitive data from the user, requiring the explicit acceptance of them by the user. 

Permissions are located and explicitly defined in manifest file (AndroidManifest.xml), 

requiring dangerous permissions the user explicit acceptance when running the 

application. The user can accept or deny the permission request without stopping the 

application, which will run with limited capabilities.  

 

For this thesis purpose, requested permissions were collected from 

AndroidManifest.xml file (included in every apk file) using Android Asset Packaging 

Tool (aapt). A log file was created containing the requested permissions and analyzed 

for each application. Android OS has 147 standard permissions [19]. Custom 

permissions can be defined by app developers in order to share resources and 

capabilities with other apps [62]. Only standard permissions were collected and 

analyzed from dataset applications. After collection, a permission profile vector (binary 

codification of each application set/unset) was created and used as input to feed a 

machine learning classifier model.  

3.1.5 Feature extraction 

More concretelly, feature extraction was performed using two tools included in Android 

SDK Tools: Android Debug Bridge (ADB) and Android Asset Packaging Tool (aapt). 

Android Debug Bridge (ADB) is an Android SDK Tool used to communicate with 

Android devices (virtualized or via USB port) that allows the user to perform multiple 

features directly on the device via a command terminal from the computer: install 

application packages, uninstall them, execute commands, etc. For this project, it has 

been used to install and uninstall apk files and also to run strace tool command. 

Everything was done with an automated script using bash programming language. Aapt 

tool has been used to extract information from AndroidManifest.xml file, included inside 

all apk formatted files.  
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3.1.6 System calls and permissions’ collection 

An automated bash script was used to perform the following process over dataset apk’s 

containing folder: 

 

 

 

This process was performed for all 3000 random dataset samples that were compatible 

with x86 architecture. Not architecture-compatible apps were discarded at step 2, being 

unable to install them. This process was performed until 1000 legitimate, 1000 old 

malware and 1000 new malware applications with 2000 boot syscalls were collected.  

 

1. Selected random apk from folder (using randomising function). 

2. Install application using Android Debug Bridge (adb) from Android Sdk 

platform-tools folder (install command). 

3. Get package name from AndroidManifest.xml using Android Asset Packaging 

Tool (aapt) from Sdk build-tools folder and regular expression. 

4. Extract static features (requested permissions) from AndroidManifest.xml using 

aapt and regular expression. Saved in <package name>.perm file as plaintext.  

5. Run application using monkey tool (executing 

Android.intent.category.LAUNCHER). 

6. Collect dynamic features (first 2000 system calls) using strace tool attached to 

the main process run by monkey executed package name.  

7. Stop application using SIGKILL to application’s main process. 

8. Extract strace log from device to computer using adb tool pull option.  
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9. Remove strace log from device.  

10. Uninstall application using adb (uninstall command). 

11. Save dynamic and static features into classified folders according to package 

name and randomized number.  

12. Restart device. 

 

After whole dataset information was collected, another script was created to read and 

collect features data. Regarding system calls, information about all applications was 

stored as CSV file, including package name, malware/legitimate classification and 

frequency of each system call. Regarding permissions, another CSV file was created to 

store information about this feature. It included package name, malware/legitimate 

classification and binary codification of each present/absent permission.  

 

3.1.7 Statistical hypothesis testing 

Malware detection relies on the assumption that legitimate and malicious applications 

have differential characteristics that allow us to discriminate between them. In order to 

know whether this assumption is correct or not, providing rationalization of later steps, 

statistical hypothesis testing is required.  Statistical hypothesis testing involves three 

main steps [63]: 
 

1. Making an initial assumption. 

2. Collection of evidence (data). 

3. Based on the collected and available evidence (data), decide if initial assumption 

was true or not.  

 

3.1.7.1 System call hypothesis 

 

Our initial assumption suggests that malware could be detected using system calls and 

permissions. In order to know if that discrimination is possible, our first step is to check 

wheter both kind of applications differ significantly in each of these parameters. That is, 

if system calls and permissions are significantly different. Regarding system calls, as a 

frequency count vector is used, means are compared, that could be translated that the 

mean of each system call should be sensitively different from malware dataset to 
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legitimate dataset, allowing such a discrimination of samples. For this thesis purpose, 

two competing hypothesis are stated for each system call in each of composed datasets: 

 

H0: µL = µOM                                                                             H0: µL = µNM 

HA: µL ≠ µOM                                                   HA: µL ≠ µNM 

 

where µL stands for mean of particular system call in legitimate applications; µOM for 

mean of particular system call in old malware applications and µNM stands for mean of 

particular system call in new malware applications.  

 

H0 also called null hypothesis is tested for each call separetely. Null hypothesis stands 

that the mean of each system call is the same for each application, indistinctable from 

malware to legitimate applications. Contrary, HA states that they are different, making 

them distinct from legitimate applications to malware applications. In statistics, it is 

always assumed that null hypothesis is true so that alternative hypothesis will be only 

chosen if it demonstrated that null hypothesis is false, being rejected. Sample data is 

collected and statistical test applied in order to reject or not null hypothesis. For this 

thesis, 3000 samples dataset of applications were used to collect the mean of each 

system call both in legitimate (n=1000) and malware sub-datasets (n=1000 on both 

malware datasets) and then applied Welch’s t-test. Results were analyzed to reject or not 

our specific null hypothesis.  

 

For each particular subset (legitimate, old malware and new malware), mean and 

standard deviation of each particular system call was evaluated, as shown in Appendix 

1. In order to test hypothesis, Welch’s t-test, also called z-test, was applied between 

legitimate vs. old malware datasets and legitimate vs. new malware dataset for each of 

the system calls. Z-test hypothesis testing of two population means was performed and 

Z-test score was analyzed in order to reject or not null hypothesis. In this case, z-test 

score for the comparison of two samples means is calculated with the following 

equation: 

 

𝑧 =  
�̅�𝐿 −  �̅�𝑀

√
𝜎𝐿 
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In this stadistic test notation, �̅� corresponds to sample mean, 𝜎 to standard deviation 

and 𝑛 to size of data sample. Once every z score test was calculated, z-score value was 

analyzed using two-tailed z test (when H1 refers to µ1 ≠ µ2). Two-tailed z test 

establishes two regions within a standard normal distribution curve: rejection region of 

H0 and acceptance region of H0. If z score lies in rejection region, Null hypothesis is 

rejected, thus accepting alternative hypothesis (H1) as true. Consequently, if z score lies 

in acceptance or non rejection region, Null hypothesis is accepted and considered true. 

Those regions are limited by already tabulated values, according to specific level of 

significance (α), which refers to the probability of rejecting the null hypothesis when it 

is true, that is, estimation error. For example, a significance level of 0.05 indicates a 5% 

risk of concluding that a difference in means exist when there is no difference. 

According to two-tailed z test, choosing a level of significance of 0.05 establishes an 

acceptance region delimited by ±1.96 z score values, that corresponds to (-1.96, 1.96), 

as shown in Figure 4. Then, decision rule establishes that if z score value is within this 

gap, H0 is accepted as true, otherwise it is rejected, as can be seen in below figure 

example. 

 

 

Figure 4. Rejection area example using Z test score [64]. 

 

Depending on alpha or level of significance, rejection area is narrower or wider, 

requiring higher or lower values of z score. Previous figure, right side table shows z 

score value for each significance level, showing that for lower significance level (less 

error), higher values of z score are needed. Z-test score were calculated on both cases 

(Legitimate vs. Old Malware and Legitimate vs. New Malware) and degree of rejection 

of null hypothesis was assessed, as shown in Appendix 2.  
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Results show that, regarding legitimate vs. old malware testing sample data: 

 

- H0 is accepted in 59 system calls. 

- H0 is rejected in 36 system calls. Thus accepting HA, meaning that means are 

significatively different between legitimate and malware applications regarding 

that specific system call.  

- When there is not enough data, H0 is considered to be true (117 system calls).    

 

Regarding those 36 system calls that reject H0, consequently being able to discriminate 

between the two samples according to that system calls, level of significance is: 

 

- Less than 0.05 (5% error) in 4 system calls. 

- Less than 0.01 (1% error) in 3 system calls. 

- Less than 0.001 (0.1% error) in 3 system calls. 

- Less than 0.0001 (0.01% error) in 26 system calls. 

 

In the other case, analyzing legitimate vs. new malware testing sample data scores:  

 

- H0 is accepted in 57 system calls. 

- H0 is rejected in 42 system calls. Thus accepting HA, meaning that means are 

significatively different between legitimate and malware applications regarding 

that specific system call.  

- When there is not enough data, H0 is considered to be true (113 system calls).  

 

Regarding those 42 system calls that reject H0, consequently being able to discriminate 

between the two samples according to that system calls, level of significance is: 

 

- Less than 0.05 (5% error) in 9 system calls. 

- Less than 0.01 (1% error) in 4 system calls. 

- Less than 0.001 (0.1% error) in 5 system calls. 

- Less than 0.0001 (0.01% error) in 24 system calls. 
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As can be stated from previous calculations, there is a solid statistical fundation to 

confirm that malware (on both datasets) and legitimate applications differ significantly 

in system calls behaviour, posing it as potentially discriminatory feature that can be 

used to detect malware from legitimate applications.  

 

3.1.7.2 Android permissions hypothesis 

 

Regarding permissions, as it is categorical or nominal data, in order to discriminate 

between malware dataset and legitimate dataset the notion of connection should be 

assessed as a discriminatory treat. For this thesis purpose, two competing hypothesis are 

stated for each system call on each dataset (Legitimate vs. Old malware and Legitimate 

vs. New Malware): 

 

- H0 or null hypothesis: There is no connection between legitimate/malware 

applications by observing whether a permission is set or unset.  

- HA or alternative hypothesis: There is connection between legitimate/malware 

applications by observing whether a permission is set or unset. 

 

In order to establish this connection, the concept of proportion is introduced. H0 states 

that the proportion of each permission is the same for each application, indistinctable 

from malware to legitimate applications. Contrary, HA states that they are different, 

making them distinct. In this case, a categorical statistical hypothesis test is applied in 

order to accept or reject null hypothesis. For this thesis, 3000 samples dataset of 

applications were used to collect the proportion of each permission in legitimate 

(n=1000) and malware sub-datasets (n=1000 on both malware datasets) and then 

applied 𝑋2 test (chi square test). Results were analyzed to reject or not our specific null 

hypothesis.  

 

For each particular subset (legitimate, old malware and new malware), frequency 

(count) of each permission attribute (absent or present) was evaluated, as shown in 

Appendix 3. 𝑋2 (Chi square) test is commonly used to test the relationship between 

categorical variables. In this case it was applied between legitimate/old malware 

datasets and legitimate/new malware dataset for each of the permissions. 𝑋2 test 

hypothesis testing was used to test the connection or independence of two categorical 
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variables using crosstabulations (bivariate table) and its score was analysed in order to 

reject or not null hypothesis. Given for each permission a cross tabulated observed 

frequency count, like the following: 

 

E.g.: READ_PHONE_STATE permission in L/O malware dataset: 

 

Permission Legitimate dataset Old Malware Dataset 

 Absent Present Absent Present 

READ_PHONE_STATE 669 331 88 912 

 

 Legitimate  Malware  

Absent 669 88 757 

Present 331 912 1243 

 1000 1000 2000 

 

𝑋2 statistic is calculated from the previous table with the following equation: 

 

𝑋2 =  ∑
(𝑓𝑜 −  𝑓𝑒)2

𝑓𝑒
 

 

Where 𝑓𝑜 is the observed frequency (the observed counts in the cells) and 𝑓𝑒 is the 

expected frequency if no relationship existed between the variables. This second table is 

constructed as follows:  

 

 Legitimate  Malware  

Absent 1000*757/2000 1000*757/2000 757 

Present 1000*1243/2000 1000*1243/2000 1243 

 1000 1000 2000 

 

With all these previous data in tables, 𝑋2 is calculated and used to evaluate the 

connection between the two variables. Using that information, confidence level (alpha) 

and degrees of freedom, calculated as: 

df = (n - 1)*(m - 1) 

where n stands for number of rows and m stands for number of columns. 

 

Probability value (p-value) can be found in Chi-square table, in order to state the 

rejection or not of the null hypothesis [65]. If p-value is less than confidence level 

(usually 0.05), it can be concluded that the variables are not independent and that there 
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is a statistical relationship between the categorical variables. 𝑋2 test score was 

calculated on both cases (Legitimate vs. Old Malware and Legitimate vs. New 

Malware) and degree of rejection of null hypothesis was assessed, as shown in 

Appendix 4.  

 

Results show that, regarding legitimate vs. old malware testing sample data: 

 

- H0 is accepted in 47 permissions. 

- H0 is rejected in 82 permissions. Thus accepting HA, meaning that permission 

proportions are significatively different between legitimate and malware 

applications regarding that specific permission.  

- When there is not enough data, H0 is considered to be true (18 permissions).  

 

Regarding those 82 system calls that reject H0, consequently being able to discriminate 

between the two samples according to that system calls, level of significance is: 

 

- Less than 0.05 (5% error) in 14 permissions. 

- Less than 0.01 (1% error) in 7 permissions. 

- Less than 0.001 (0.1% error) in 4 permissions. 

- Less than 0.0001 (0.01% error) in 57 permissions. 

 

In the other case, analyzing legitimate vs. new malware testing sample data values:  

 

- H0 is accepted in 48 permissions.  

- H0 is rejected in 79 permissions. Thus accepting HA, meaning that permission 

proportions are significatively different between legitimate and malware 

applications regarding that specific permission.  

- When there is not enough data, H0 is considered to be true (20 permissions).  

 

Regarding those 79 system calls that reject H0, consequently being able to discriminate 

between the two samples according to that system calls, level of significance is: 

 

- Less than 0.05 (5% error) in 15 permissions. 

- Less than 0.01 (1% error) in 7 permissions. 
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- Less than 0.001 (0.1% error) in 6 permissions. 

- Less than 0.0001 (0.01% error) in 51 permissions. 

 

As a result, there is a solid statistical foundation (more than half of overall permissions 

are significantly different) to confirm that malware and legitimate applications differ 

significantly in permission settings, posing permissions as potentially discriminatory 

feature that can be used to detect malware from legitimate applications.  

3.2 Phase 2. Data pre-processing 

 

Machine learning models rely on data quality to achieve its purpose: make computers 

actually “learn” and predict accurately about the unknown. In order to create an accurate 

prediction model, thus enhancing data quality, data pre-processing for data mining and 

machine learning purposes is an important step that aims to transform the raw collected 

data into a new better representation before processing. Feature selection is the first step 

in classification process. Real data may contain features with different relevance and 

importance for predicting class labels. Less relevant features could harm the accuracy of 

the classification model and additionally be a source computational inefficiency [66]. 

Feature selection algorithms are designed to select the most informative features 

regarding to the class label [66], what translates as choosing the best predictive features 

that could provide as good or better accuracy whilst requiring less data acquisition and 

processing than using all collected features [67]. Regarding this, feature selection, called 

variable selection or attribute selection, methods help to identify and remove irrelevant 

and redundant features from data that do not actually contribute in a positive way to the 

accuracy of the predictive model and may, in fact, decrease or not affect the accuracy of 

the proposed model. The objective of feature selection is three-fold: improve prediction 

performance, supply faster and more cost-effective label predictors and provide a better 

knowledge of the underlying process that generated the data [68]. 

 

3.2.1 Feature selection 

There are three primary feature selection methods in machine learning classification 

models, that are [66]: 
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- Filter models: involve the use of a mathematical criterion to evaluate the quality 

of the feature and use it to filter out irrelevant features. 

- Wrapper models: consists in the progressive and iterative addition of features 

according to model accuracy output. An initial set of features F is used and 

accuracy is evaluated. Next, another feature is added and accuracy is evaluated 

in order to accept or reject the new added feature. This process is repeated 

iteratively with all features [66]. 

- Embedded models: main idea is that the solutions to many classification 

formulations provide important hints about the most relevant features to be used. 

Recursive feature elimination is used. After each elimination of features, the 

classifier is retrained on the new set of pruned features to re-estimate the 

weights. Next iteration will eliminate features with least absolute weight. This 

procedure is repeated until all remaining features are confirmed as sufficiently 

relevant [66].  

 

In this present research, filter model was selected as feature selection method because 

wrapper model usually takes more time to execute and embedded models require some 

hints about data, and we decided to start from scratch, without any hints about data. 

Using this method, in practice, the features are evaluated independently of one another 

and the most discriminative ones are selected. The method used depends on the nature 

of the data attribute, whether it is categorical or numerical. System call feature selection 

requires a mathematical criterion suitable for quantitative attributes while permissions 

require one that works with categorical attributes. 

 

3.2.1.1 System call feature selection 

 

As demonstrated before, system calls are sensitive enought to discriminate between 

malware and legitimate applications. Fisher score is oriented concretely on a classifier 

construction, in order to test if the differences stated by statistical hypothesis testing are 

sensitive enough to construct a machine learning classifier. 

 

Fisher Score is a criterion designed for numeric features to describe the discriminative 

power for classifier construction. Fisher Score (F) of a feature is calculated using the 

following equation: 



40 

𝐹 =  
∑ 𝑝𝑗(𝜇𝑗 −  𝜇)2𝑘

𝑗=1

∑ 𝑝𝑗𝜎𝑗
2𝑘

𝑗=1

 

 

Where 𝜇𝑗 and 𝜎𝑗 refer, respectively, to the mean and standard deviation of data points 

belonging to class j for a particular feature and 𝑝𝑗 to the fraction of data points 

belonging to class j. Whereas 𝜇 refers to the global mean of the data on the feature 

under evaluation. The numerator   quantifies the average interclass separation, whereas 

the denominator quantifies the average intraclass separation. Thus, a larger Fisher score 

value implies a greater discriminatory power of the attribute. Attributes with largest 

Fisher score value should be selected to build the classifier model [66]. 

 

Fisher Score (F) criterion has been applied in this thesis to select best potentially 

discriminatory features from system calls whole group of features. Fisher score has no 

direct threshold that establish what features must be selected. Features are selected in 

comparison with other Fisher score values, the higher, the better. In this particular case, 

as can be seen in Appendix 5, as all F values were relatively low, selected features were 

the ones with F over 0.15, resulting in: 

 

- 21 system calls from legitimate vs. old malware dataset.  

- 12 system calls from legitimate vs. new malware dataset. 

 

These variables are, from feature selection point of view, candidates to provide the best 

discriminatory power from the whole system call domain (212 system calls) regarding 

malware detection. A deeper look inside those selected attributes state that 11 of them 

are common in both datasets (showing different discriminatory power in each dataset). 

Table 1 shows the selected system calls and its Fisher score value. Highlighted in red 

are those common system calls while in green the specific ones. 

 

System call Legitimate vs. Old Malware System call Legitimate vs. New Malware 

  Mprotect 0.19452250717 

Readlinkat 0.688956982862 Readlinkat 0.586917830628 

Sigaltstack 0.228203557978 Sigaltstack 0.205008675264 

Munmap 0.749835053001 Munmap 0.569561624686 

Sigaction 0.290309155851 Sigaction 0.302835602324 
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clock_gettime 0.839285565601 clock_gettime 1.10628298947 

Madvise 0.541897726902 Madvise 0.475477241315 

Connect 0.673586005831 Connect 0.518975491867 

Prctl 0.614407016018 Prctl 0.532512665818 

Openat 0.216978053454 Openat 0.164595592304 

mmap2 0.630509802457 mmap2 0.473747280576 

Ppoll 0.30531528393 Ppoll 0.249381065644 

Futex 0.300893946098   

eventfd2 0.219313445317   

Clone 0.206699686896   

getdents64 0.15469663511   

Recvfrom 0.181364659841   

Sendto 0.194429708766   

epoll_create1 0.228419526142   

Close 0.173596597527   

Getppid 0.21559412016   

rt_sigprocmask 0.244162179462   
 

Table 1. System calls and Fisher score value 

 

 

As can be seen in Table 1, legitimate/old dataset has more system calls selected and in 

general with higher values of Fisher Score than legitimate/new malware dataset (except 

for sigaction and clock_gettime system calls which is actually lower). This implies that 

separability is less obvious in legitimate/new malware dataset than in legitimate/old 

dataset. Thus, malware system call behaviour is becoming more similar to legitimate 

application, reducing its discriminatory power.  

 

Although this general decrease of the discriminatory effect of some of the variables 

(except two, that actually increase), 11 of them are showing especially good 

discriminatory effect. A closer look on their purpose can highlight were in system call 

behaviour this discriminatory effect relies on. From better to lower Fisher score they are 

[69]: 

 

- clock_gettime → retrieves the time of the clock.  

- munmap → unmap files or devices into memory.  
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- readlinkat → read value of a symbolic link relative to a directory file descriptor.  

- connect → initiate a connection on a socket.  

- prctl → perform operations on a process.  

- mmap2 → map files or devices into memory.  

- madvise → give advice about use of memory.  

- ppoll → wait for some event on a file descriptor.  

- futex → provides a method for a program to wait for a value at a given address 

to change, and a method to wake up anyone waiting on a particular address.  

- sigaction → used to change the action taken by a process on receipt of a specific 

signal.  

- rt_sigprocmask → examine and change blocked signals.  

- epoll_create1 → open an epoll (I/O event notification facility) file descriptor.  

- sigaltstack → allows a process to define a new alternate signal stack and/or 

retrieve the state of an existing alternate signal stack.  

- eventfd2 → create a file descriptor for event notification.  

- openat → open a file relative to a directory file descriptor.  

- clone → create a child process.  

- getppid → get process identification.  

- recvfrom → receive a message from a socket.  

- mprotect → set protection on a region of memory.  

- sendto → send a message on a socket.  

- close → close a file descriptor.  

- getdents64 → get directory entries.  

 

As can be stated, system calls’ candidates to possess best discriminatory power are 

related with socket connection, process management or file operations. Nevertheless, 

the best candidate is related with clock time, an interesting issue that will be further 

analyzed in next section. 

 

3.2.1.2 System calls: top discriminative feature 

 

Clock_gettime, arises as the most potentially discriminatory feature from the ones 

selected in this research using Fisher score value. Fisher score value for this specific 
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system call is very high (over 1 in L/N dataset), highlighting it as a potentially optimal 

predictor. Figure 5 shows the scatter plot of clock_gettime combined with readlinkat 

system call (second most potentially discriminatory feature). 

 

Figure 5. Scatter plot clock_gettime vs. readlinkat 

 

 

As can be stated from Figure 5, malware (old and new) differ significantly in the use of 

clock_gettime and readlinkat from legitimate applications, creating a well defined area 

where malware points are concentrated. This could be used by a classifier to create a 

well defined decision boundary. This fact is also confirmed in Figure 6, where munmap, 

the third best common system call, is plotted against clock_gettime. The same issue 

appears, a well defined decision boundary is created by old malware, putting almost all 

new malware behind it. Legitimate applications use of clock_gettime is much greater 

than old malware and even more than new malware, which creates a significant 

difference that could be used for classification issues.  
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Once again, plotting clock_gettime with any other rellevant feature, like mmap2 as can 

be stated in Figure 7. 

 

Figure 6. Scatter plot munmap vs. clock_gettime 

Figure 7. Scatter plot mmap2 vs. clock:_gettime 
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Figure 8. Scatter plot clock_gettime vs. readlinkat vs. munmap 

Figure 9. Scatter plot clock_gettime vs. mmap2 vs. connect 
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Figure 5, Figure 6 and Figure 7 point out that top selected system calls provide a good 

separability for potential discrimination of legitimate applications from malware and 

even old malware from new malware. Figure 8 and Figure 9 provide a 3D overview of 

previous facts.  

 

Separability regarding the combination of this system calls is stated from Figure 8 and 

Figure 9, a well defined decision boundary appears to establish a good border for a 

classifier model. However, this separability decreases if analysing other features, as 

shown in Figure 10 and 11.  

 

As can be seen on Figure 10 and Figure 11, separability decreases when using lower 

discriminatory features from common selected features (Figure 10) and even more if not 

common features are selected (Figure 11). Cloud of points become more mixed, 

providing, consequently, less separability.  

 

 

Figure 10. Scatter plot prctl vs. mmap2 



47 

 

 

Classifier construction and model validation will provide output for this hypothesis, 

using mainly clock_gettime as most important feature could lead to a well classifier 

model.   

 

3.2.1.3 Permissions feature selection 

 

Gin Index is a criterion used for categorical feature selection, but it can be also used 

with numerical attributes via discretization process [66]. It is calculated using the 

following equations:  

 

(1)     𝐺(𝑣𝑖) = 1 −  ∑ 𝑝𝑗
2

𝑘

𝑗=1

 

 

(2)      𝐺 =  ∑
𝑛𝑖

𝑛

𝑘

𝑗=1

𝐺(𝑣𝑖)     

Figure 11. Scatter plot futex vs. mprotect 
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𝐺(𝑣𝑖) refers to the Gini index of the value 𝑣𝑖 of a categorical attribute. In this equation 

(1), 𝑣1 … 𝑣𝑟 refer to the r possible values of a particular categorical attribute and 𝑝𝑗 to 

the fraction of data points containing attribute value 𝑣𝑖 that belong to the class j ∈ {1 . . . 

k} for the attribute value 𝑣𝑖. If classes are distributed evenly for a particular attribute 

value, Gini index value is 1 − 1/k. Contrarily, if all data points for an attribute value, 

belong to the same class, Gini index value will be 0 [66]. Consequently, lower values of 

the Gini index imply greater discriminative power. This value-specific Gini index is not 

enough to measure the discriminative power of an attribute, needing it to be converted 

to an attributewise Gini index (2). In this equation (2), the weighted average over the 

different attribute values defines the overall Gini index for the specific attribute [66], 

being 𝑛𝑖 the number of data points that take on the value 𝑣𝑖 for the attribute and 𝑛 is 

defined as the whole dataset data number of points ( ∑ 𝑛𝑖
𝑟
𝑖=1  ). Again, lower values of 

the Gini index imply greater discriminative power of the attribute. The attributes with 

the lowest Gini index values may be selected for use with the classification algorithm.  

 

Gini Index (G) criterion has been applied in this thesis to select best features from 

permissions group of features. Gini index has no direct threshold that establish what 

features must be selected. Features are selected in comparison with other Gini index 

values, the lower, the better. In this particular case, as can be seen in Appendix 6, as all 

G values were relatively high, selected features were the ones with G under 0.47, 

resulting in: 

 

- 13 permissions from legitimate vs. old malware dataset.  

- 9 permissions from legitimate vs. new malware dataset. 

 

This variables are, from feature selection point of view, the ones with best potentially 

discriminatory power from the whole standard Android permissions domain (147 

permissions) regarding malware detection. A deeper look inside those selected attributes 

state that 4 are common in both datasets (showing different discriminatory power in 

each dataset). Next table shows the selected permissions and its Gini Index value. 

Highlighted in red are those common system calls while in green the specific ones. 
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Android Permission 
Legitimate vs. Old 

Malware  
Android Permission 

Legitimate vs. New 

Malware  

  VIBRATE 0.4412 

  SYSTEM_ALERT_WINDOW 0.463627839885 

  GET_TASKS 0.453245610181 

  MOUNT_UNMOUNT_FILES

YSTEMS 

0.444434031227 

  GET_ACCOUNTS 0.465315938431 

WAKE LOCK 0.450313191498 WAKE LOCK 0.385793353195 

READ_PHONE_STATE 0.320627747885 READ_PHONE_STATE 0.446529030013 

ACCESS_NETWORK_STATE 0.46061566122 ACCESS_NETWORK_STATE 0.408704620648 

INSTALL_PACKAGES 0.421355286521 INSTALL_PACKAGES 0.407988872281 

CAMERA 0.465936440235   

USE_FINGERPRINT 0.466950959488   

BIND_REMOTEVIEWS 0.468932554434   

SEND_SMS 0.434005731136   

READ_EXTERNAL_STORAGE 0.334183622631   

ACCESS_FINE_LOCATION 0.469946356562   

READ_LOGS 0.441188030605   

BLUETOOTH 0.461664295186   

READ_CONTACTS 0.428342100938   

 

 

Unlike system calls, from Table 2 data it is not possible to infer that separability is less 

obvious within legitimate/old dataset than legitimate/new dataset. There are 4 common 

system calls, which vary its score from one dataset to the other. More specifically, one 

reduces its discrimination power (READ_PHONE_STATE), but other 3 increase its 

discrimination power (WAKE_LOCK, ACCESS_NETWORK_STATE, INSTALL 

PACKAGES). This change is not significantly enough to support such separability 

issue, unlike system calls.  

 

Table 2. System calls and Fisher score value 
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A closer look on their purpose can highlight were in permissions this potentially 

discriminatory effect relies on. From better to lower Gini Index they are [19]:  

 

- READ_PHONE_STATE → Allows read only access to phone state, including 

the phone number of the device, current cellular network information, the status 

of any ongoing calls, and a list of any PhoneAccounts registered on the device. 

Protection level: dangerous.  

- READ_EXTERNAL_STORAGE → Allows an application to read from external 

storage. Protection level: dangerous.  

- WAKE_LOCK → Allows using PowerManager WakeLocks to keep processor 

from sleeping or screen from dimming. Protection level: normal. 

INSTALL_PACKAGES → Allows an application to install packages. Not for 

use by third-party applications.  

- ACCESS_NETWORK_STATE → Allows applications to access information 

about networks. Protection level: normal.  

- READ_CONTACTS → Allows an application to read the user's contacts data. 

Protection level: dangerous.  

- SEND_SMS → Allows an application to send SMS messages. Protection level: 

dangerous. 

- VIBRATE → Allows access to the vibrator. Protection level: normal. 

- READ_LOGS → Allows an application to read the low-level system log files. 

Not for use by third-party applications, because Log entries can contain the 

user's private information.  

- MOUNT_UNMOUNT_FILESYSTEMS → Allows mounting and unmounting 

file systems for removable storage. Not for use by third-party applications. 

- GET_TASKS → Deprecated in API level 21. No longer enforced. 

- GET_ACCOUNTS → Allows access to the list of accounts in the Accounts 

Service. Protection level: dangerous.  

- SYSTEM_ALERT_WINDOW → Allows an app to create windows using the 

type TYPE_APPLICATION_OVERLAY, shown on top of all other apps. 

Protection level: signature. 

- CAMERA → Required to be able to access the camera device. Protection level: 

dangerous. 

https://developer.android.com/reference/android/telecom/PhoneAccount.html
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY
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- USE_FINGERPRINT → Allows an app to use fingerprint hardware. Protection 

level: normal.  

- BIND_REMOTEVIEWS → Must be required by a RemoteViewsService, to 

ensure that only the system can bind to it. 

- BLUETOOTH → Allows applications to connect to paired bluetooth devices. 

Protection level: normal. 

- ACCESS_FINE_LOCATION → Allows an app to access precise location. 

Protection level: dangerous.  

 

As can be stated, candidates to best discriminatory requested Android permissions are 

mainly permissions with associated dangerous protection level which characterizes 

higher-risk permissions that could provide unauthorized access to user’s private data or 

device information [70], thus needing to be specially approved by him/her.  

3.3 Phase 3. Classification, Training and Validation 

After data collection, pre-processing and statistical hypotheis testing, data, using 

appropiated feature selection criteria, is conformed into input vectors and ready to be 

processed and build a machine learning classification model.  

3.3.1 Malware detection: binary classification problem 

In this thesis’ case, that deals with malware detection, supervised learning is performed 

in the form of a binary classification problem. Labeled samples or instances are 

provided along with measurements of attributes that characterize each instance. These 

attributes that characterise each sample are: system calls and permissions. System calls 

are measured numerically (frequency or count of each system call) while permissions 

are categorical (whether the specific permission is present or absent). The categorical 

label of each instance defines whether if the application is malicious or not (two 

possible options, binary classification). As a result, this classification problem aims to 

discriminate between two classes or labels of instances, malware or legitimate 

application, using feature input vectors in the form of frequency of system calls and 

set/unset permissions. Classification problems require that from dataset of instances, 

some of them should be used to train the model and the remaining as a validation or 

testing. Training data is provided labeled while test data is used to test the system make 

https://developer.android.com/reference/android/widget/RemoteViewsService.html
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a prediction of the label. Then, both predicted and real label are compared and 

classification performance and results are analyzed in the form of percentage of well 

classified and bad classified instances.  

 

In supervised machine learning, datasets are splitted into training/testing sets where 

usually, 70% is used as training set for the machine learning classifier algorithm and 

30% of them as validation or testing set. Nevertheless, k-fold cross-validation uses a 

similar but more complete approach. K-fold cross-validation split data into k 

consecutive folds (without shuffling by default) and performs k validation/training 

cycles into the model. “Each fold is then used once as a validation while the k-1 

remaining folds form the training set” [71]. The output is then k test results which 

provide a better overall picture of the performance than the 70/30 split. Both approaches 

are used in this thesis as model performance results.   

 

3.3.2 Malware detection: performance 

Regarding binary classification results and performance, they are usually assessed using 

confusion matrix and performance metrics. Confusion matrix also known as error 

matrix is a tabulated data that condenses the performance of a classification algorithm. 

In this table, each row of the matrix represents the instances in a predicted class while 

each column represents the instances in an actual class (or viceversa). An example of 

confusion matrix is as follows: 

 
 

Actual class 

 Malware Legitimate 

Predicted 

class 

Malware C11 C10 

Legitimate C01 C00 

  

Cells labelled values as C00 and C11 indicate correct predictions of the machine learning 

model. C00 indicates an actual legitimate application predicted as legitimate application 

and C11 an actual malware application predicted as malware application. Cells labelled 

values as C01 and C10 indicate incorrect predictions or errors of the machine learning 

model.  C10 denotes actual malware applications that were predicted as legitimate 

applications while C01 indicates actual legitimate applications that were classified as 

malware by the model. More concretely, C11 correct predicted value is often called True 
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Positive (a positive value well predicted) while C00 is often called True Negative (a 

negative value well predicted). Regarding errors, C01 is often called False Positive, 

False alarm or Type I error while C10 is called False Negative, Miss or Type II error. In 

our case, a false negative implies a security threat as malware application could not be 

detected, posing the user in an imminent threat while false positive implies a wrong 

classification, but not any kind of security threat to the user. Based on these concepts, 

new measurements are created in order to verify algorithms performance. Precision 

represents how correct the model is when it predicts a 1 or positive class [17], by using 

the following equation: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Where TP stands for True Positive and FP for False Positive. Recall or True Positive 

Ratio (TPR) or Sensitivity measures how many of the positive cases or 1 were identified 

by the model [17], using the following equation:  

 

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑇𝑃𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Where FN stands for False Negative. Using this last metric, False Positive Ratio (FPR) 

stands for the amount of positive samples wrongly classified as negative, using: 

   

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

Ideally a good model should perform well on both precision and recall values [17], 

obtaining high scores as a result and low scores in FPR. Accuracy measures the whole 

amount of samples that were correctly classified over the total amount of samples, using 

the following equation: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

Finally, F-score is a “comprehensive indicator which combines precision and recall 

together by a harmonic mean way. Higher F-score value proves a better performance in 

the system” [36]. It is calculated as follows: 
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑐 ∗ 𝑟𝑐𝑙

𝑝𝑟𝑐 + 𝑟𝑐𝑙
 

 

where prc stands for precisión and rcl for recall values.  

In this thesis’ case, malware detection machine learning classification model will be 

assessed in the light of the previous metrics.  
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4 Malware detection – practical implementation 

In order to implement this malware detection machine learning classification model, 

Python was used as the base programming language and scikit-learn [72] library as 

machine learning algorithm resource implementation. Scikit-learn is an open-source 

Python library that provides “simple and efficient tools for data mining and data 

analysis” [72]. The library is built on other well-known and widely used Python 

mathematical libraries such as NumPy, SciPy and matplotlib. Scikit-learn can be used in 

machine learning in Python, providing important resources in classification, regression, 

clustering, dimensionality reduction, model selection and preprocessing of data [72].  

For this thesis, scikit-learn was used to train and test machine learning used algorithms:  

Decision Tree, Support Vector Machines, K-nearest neighbors and Logistic Regression, 

and also to provide metrics output. Schematic of the whole model is described in Figure 

12. 

 

 

 

4.1 Classification algorithms 

Machine learning classification problems use machine learning classification algorithms 

in order to discriminate and classify testing samples from the different classes that the 

problem deals with, according with training set used. As there are many options to build 

Figure 12. Malware detection practical implementation workflow 



56 

a classification model, once built, it should be compared with other classifiers in order 

to choose the best one. Key elements in this comparison are [73]:   

 

- Predictive accuracy, that refers to the model’s ability to classify correctly every 

new, unkwnown sample; 

- Speed, referring to how quickly the model can process data;  

- Robustness, which alludes to the model’s ability to make accurate predictions 

even in the presence of ‘noise’ in data; 

- Scalability, that mainly refers to the model’s ability to process increasingly 

larger volumen of data or to the ability of processing data from different fields;  

- Interpretability, that deals with the fact that how easy the model can be 

understood or interpreted; 

- Simplicity, which deals with the model’s ability to be not too complicated, 

despite its efectiveness.  

 

Classification algorithms use different mathematical approaches to deal with its 

common class discrimination purpose. Briefly explained, the most used ones in 

classification applications are [73][74]: 

 

- Decision trees → it creates some conditions or questions based on the values of 

the input features it receives to make predictions about discrete or continous 

outputs.  

- Bayesian classifiers/Naïve Bayes classifiers → based on Bayes’ Thorem, it 

makes the assumption of independence (no relation) of all predictors to perform 

classification.  

- Support Vector Machines (SVM) → focus on points that are far away from an 

hyperplane created by the training set. Works better with small datasets.  

- Logistic Regression → uses the logistic or sigmoid function (from statistics) to 

perform classification.  

- Neural networks → inspired by biological neural networks of animal brains. 

Uses “connection” between neurons and layers to perform classification.  

- Random Forest → creates multiple decision trees and estimates the output based 

on weighted outputs of them.  
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- K-nearest neighbor classifier → classification is performed by a assigning to 

each point the most common class among itds k nearest neighbors. 

  

For this thesis purpose, decision trees, logistic regression, k-nearest neighbor and 

Support Vector Machines (SVM) algorithms were selected as competing classifier 

models. Those are the most common ones used in malware detection as they provide 

good feedback regarding the key elements of comparison previously stated. They all 

have provided good predictive accuracy in prior studies with quick processing of data, 

easy interpretability and simplicity of the built models. In order to select the best one, 

four test data case scenarios were trained/tested using all models and results were 

analyzed. Case scenarios and results are summarized in Table 3 (best results are 

highlighted in green, second best results in lighter green). 

 

Scenario Decision Tree Logistic Regression k-Nearest Neighbor SVM (linear kernel) 

Test 1 

Dataset used: L/O 

Features: 21 syscalls 

Validation: 70/30 split 

Precision: 0.97 

Recall: 0.97 

F-score: 0.97 

Precision: 0.97 

Recall: 0.97 

F-score: 0.97 

Precision: 0.97 

Recall: 0.97 

F-score: 0.97 

Precision: 0.97 

Recall: 0.97 

F-score: 0.97 

Test 2 

Dataset used: L/N 

Features: 12 syscalls 

Validation: 5-fold 

Accuracy: 0.9015 Accuracy: 0.9005 Accuracy: 0.8995 Accuracy: 0.8960 

Test 3 

Dataset used: L/O 

Features: 13 perms 

Validation: 70/30 split 

Accuracy: 0.9375 Accuracy: 0.9430 Accuracy: 0.9215 Accuracy: 0.9430 

Test 4 

Dataset used: L/N 

Features: 9 perms 

Validation: 5-fold 

Precision: 0.91 

Recall: 0.91 

F-score: 0.91 

Precision: 0.90 

Recall: 0.90 

F-score: 0.90 

Precision: 0.90 

Recall: 0.90 

F-score: 0.90 

Precision: 0.90 

Recall: 0.90 

F-score: 0.90 

 

Table 3. Case scenarios, algorithms and results. 

 

As can be seen from Table 3, comparing the different performance metrics of each row, 

Decision Tree algorithm was the best overall classifier in the all 4 scenarios. As a result, 

this thesis next steps will be built using Decision Tree algorithm as a classifier.  
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4.1.1 Decision Tree Algorithm 

Decision trees are a non-parametric supervised machine learning algorithm used to 

address classification and regression problems [75]. When the target variable is a 

continous or numerical value, they are named Regression Trees. If the target is 

categorical, then Classification Trees name is used. Usually both types are referred 

together and called CART (Classification and Regression Tree). Non-parametric 

involves that the model structure is not specified a priori neither based on underlying 

assumptions but is instead only determined from acquired data (training dataset 

features). It is one of the most understandable machine learning algorithms, as they use 

simple decision rules, inferred from the data features of the training set, to predict the 

target value of the test set. The classification process, is then, built using a set of 

hierarchical decisions on the feature variables, in a tree-like structure or, more 

technically, in a directed acyclic graph [66]. Decision trees are composed by nodes, 

branches and leaves. A node is a decision point (also called split criterion) which is a 

condition on one or more feature variables in the training data. A node divides the 

training data into two or more parts [66], as can be seen in Figure 13. Branches are 

symbolized by lines that connect decision nodes with other decision nodes (called 

edges) or leaves. Leaves are end points of the tree where a final value is assigned (class 

or numerical) for cases that fulfilled all conditions from the top node to that specific 

leave [17].   

 

Decision tree’s main goal is to find a split criterion so that the level of mixing of the 

class variables in each brand of the three is minimal. Each node in the tree-like structure 

represents a subset of the data characterized by the combination of the split criteria in 

the nodes above it [17]. As a hierarchical decision, the most important or discriminatory 

attribute is placed at the top (root node) and create branches for each possible value of 

the attribute. Below it, each subsequent nodes decrease in importance, adding branches 

and ending, always, in a leaf, which will determine the corresponding class label. In 

general, a deeper tree involves more complex decision rules and a fitter model [75]. A 

special case of decision tree is binary decision tree where all decisions in the tree are 

two-valued, as can be seen in yellow highlight in left part of Figure 13.  
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Hunt’s algorithm is used to achieve the goal of every decision tree, to make the optimal 

choice at the end of each node. Hunt’s algorithm is greedy and recursive. Greedy stands 

for making at each step the most optimal decision and recursive means that larger 

questions are split in smaller questions and these are resolved the same way. The 

decision to split at each node is made using a metric called purity. In this regard, a node 

is 100% impure when it splits data evenly 50/50 and 100% pure when all node’s data 

belongs to a single class [76]. The goal is then, achieve maximum purity and avoid 

impurity. To obtain it, Gini impurity and other metrics such as entropy or chi-square are 

applied. Information gain is another metric used, in this case to decide what feature to 

split at each step of the tree. The performance of a tree can be increased significantly 

using pruning. Pruning is a technique that removes the branches that use low-

importance features, thus reducing tree’s complexity and increasing tree’s predictive 

power by reducing overfitting [77]. 

 

 

 

Figure 13. Example of Decision Tree in invented malware detection scenario. 

 

CART main advantages are: 

 

- Simple to understand, interpret, visualize and draw.  
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- There is no significant need of data preprocessing as CART performs implicitly 

some kind of feature selection. 

- Works well with all types of data: categorical and numerical. 

- Can handle multi-output problems. 

- Its performance is not affected by nonlinear relationships between parameters. 

- Can be validated using statistical tests, thus providing reliability to the model. 

- The cost of using the tree is logarithmic in the number of data points in the 

training set. 

 

CART main disadvantages are: 

 

- Overfitting: which involves the creation of over-complex trees that correspond 

to an excessive fit of the model to the training data and may fail to fit additional 

data correctly or predict future observations reliably. Pruning is required to solve 

this problem. 

- Unstability: small variations in the data might result in a completely different 

tree being generated. Ensemble techniques are needed to solve this problem. 

- Not optimal: greedy algorithms cannot guarantee to return the globally optimal 

decision tree. Multiple trees should be created to reduce this problem 

- Biased: can create biased trees if some classes dominate. Balanced data is 

needed to solve this problem.  

 

All functionalities designed to built and traing a decision tree model to deal with 

classification and regression problems is included in scikit-learn Python library package 

[75]. Scikit-learn will be used as a basis of the following tests to create, train and test 

decision tree algorithm in malware detection using system calls and Android 

permissions.  

 

 

 

 

 

 

 

 

 

 

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
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5 Malware Detection Model Validation 

Next section will show different test and results with the collected dataset, that it is 

composed by 1000 legitimate applications, 1000 old malware and 1000 new malware 

samples. From both, dynamic features were collected in the form of system calls and 

static features in the form of requested features contained in AndroidManifest.xml. The 

discriminatory power is evaluated and assessed in the following sections.  

5.1 Selected system calls 

Previous steps have shown that from 212 system calls gathered, 21 shown good 

potential discriminatory power in legitimate vs. old malware dataset and 11 in 

legitimate vs. new malware dataset. Each whole dataset is composed by 2000 samples. 

For this test, different number of features, from the ones with better potential 

discriminatory power, were selected and used to train and test a decision tree model 

using same dataset. Table 4 shows accuracy metric performance for each different 

model (range 0-1), using 5-fold cross validation. Appendix 7 shows a more complete 

picture of this analysis, including classification confusion matrix using 70-30% split. 

 

# features Legitimate vs. Old Malware Dataset 

(accuracy value) 

Legitimate vs. New Malware Dataset 

(accuracy value) 

Best feature* 
 

0.8695 

 

0.8910 

 3 best common features** 
 

0.9005 

 

 

0.8770 

 6 best common 

features*** 

 

0.9120 

 

 

0.8850 

 11 common features 
 

0.9305 

 

0.8905 

 22 features**** 
 

0.9660 

 

0.9075 

 All features (212)***** 
 

0.9700 

 

 

0.9270 

 

Table 4. System calls model accuracy performance 
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*Best feature: clock_gettime 

**3 best common features: clock_gettime, readlinkat and munmap. 

***6 best common features: clock_gettime, readlinkat, munmap, connect, prctl and mmap2. 

****21 features of L/O and mprotect. 

*****All system calls gathered, without performing feature selection. 

 

Table 4 shows that: 

 

- A single feature (the one with higher Fisher score value) is capable of 

discriminate between malware and legitimate applications (in both datasets) with 

an accuracy over 87%. Providing also relatively low values of False Negatives.  

- In L/O dataset, discriminative power increases gradually when more features are 

added but 22 best Fisher score features provide as good prediction as whole 

system call domain, 212 features (~ 97%). The importance of feature selection 

provides here optimum output with less information. 

- In L/N dataset, best single feature has more discriminative power alone than 

using from 2 to 11 top Fisher score features. This single feature has more 

discriminative power in L/N dataset than in L/O dataset, confirming the increase 

in discriminatory power suggested by its Fisher score value from L/O dataset to 

L/N dataset (from ~0.8 to  ~1.1). 

- Unlike L/O dataset, 22 best Fisher score does not provide in L/N dataset similar 

accuracy obtained with whole system call domain. This fact, combined with a 

general lower accuracy values in L/N dataset than in L/O dataset suggests that 

separability between legitimate and malware applications is higher in L/O 

dataset than in L/N dataset.   

 

5.2 Selected permissions 

Previous steps have shown that from 147 standard Android permissions, a total amount 

of 13 shown potential good discriminatory power in legitimate vs. old malware dataset 

and 9 in legitimate vs. new malware dataset. For this test, different number of features, 

from the ones with potential better discriminatory power, will be selected and used to 

train and test a decision tree model using same dataset. Table 5 shows accuracy metric 

performance for each different model (range 0-1), using 5-fold cross validation. 
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Appendix 8 shows a more complete picture of this analysis, including classification 

confusion matrix using 70-30% split. 

 

# features Legitimate vs. Old Malware Dataset 

(accuracy value) 

Legitimate vs. New Malware Dataset 

(accuracy value) 

Best feature of L/O 

dataset* 

 

0.7905 

 

 

0.6635 

 Best feature of L/N 

dataset** 

 

0.6420 

 

 

0.7310 

 2 best features of L/O 

dataset*** 

 

0.8880 

 

 

0.6635 

 2 best features of L/N 

dataset**** 

 

0.6995 

 

 

0.7310 

 4 common features 
 

0.8580 

 

0.8460 

 9 features of L/N dataset 
 

0.8955 

 

 

0.8940 

 13 features of L/O dataset 
 

0.9350 

 

 

0.9065 

 18 features***** 
 

0.9410 

 

 

0.9170 

 All features (147)****** 
 

0.9505 

 

0.9210 

  

Table 5. Permissions model accuracy performance 

 

*READ_PHONE_STATE permission 

**WAKE_LOCK permission 

***READ_PHONE_STATE and READ_EXTERNAL_STORAGE permissions 

****WAKE_LOCK and INSTALL_PACKAGES permissions 

*****13 features of L/0 and VIBRATE, SYSTEM_ALERT_WINDOW, GET_TASKS, 

MOUNT_UNMOUN_FILESYSTEMS, GET_ACCOUNTS. 

******All permissions, without performing feature selection. 

 

Table 5 shows that: 

 

- Unlike system calls, there is no single or two best common features capable to 

discriminate with good accuracy on both datasets, as those best features vary 

within datasets. As can be seen, using one or two features, greater discriminatory 

power is achieved when they are used in its own dataset and not in the other 

dataset (e.g.: best feature in L/O shows 79% accuracy in L/O dataset and 66% 
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accuracy when they are used in L/N dataset), stating that best permissions, in 

this case, cannot be used cross-dataset detection with acceptable results.  

- When using 4 common features, good discriminatory power is achieved in both 

datasets (~ 85%). From that minimum number of features, increased 

discriminatory values are obtained in both datasets when more features are 

added. 

- In this case, in both datasets, when using 18 best Gini index features show 

similar accuracy as using all features (~ 95% in L/O dataset and ~ 92% in L/N 

dataset). The importance of feature selection provides here optimum output with 

less information.  

- Compared to system calls, in L/O dataset, permissions provide lower top 

discrimination value (~ 95%) than in system calls (~ 97%). Regarding L/N 

dataset, maximum discrimination power is almost the same (~ 92%). This 

suggests that separability between legitimate and malware applications is higher 

in L/O dataset than in L/N dataset, but lower than in system calls case.   

5.3 Combination of features: permissions and system calls 

Previous tests used just a set of features, or system calls (numerical) or permissions 

(categorical). Following tests use mixing of features in order to find whether the results 

improve by the addition of another type of feature. For this test, different number of 

features, from the ones with better discriminatory power of each variable, will be 

selected and used to train and test a decision tree model using same dataset. Table 6 

shows accuracy metric performance for each different model (range 0-1), using 5-fold 

cross validation. Appendix 9 shows a more complete picture of this analysis, including 

classification confusion matrix using 70-30% split. 

 

# features Legitimate vs. Old Malware Dataset 

(accuracy value) 

Legitimate vs. New Malware Dataset 

(accuracy value) 

Best system call + best 

permission L/O* 

 

0.8965 

 

 

0.9070 

 Best system call + best 

permission L/N** 

 

0.8800 

 

 

0.8900 

 2 best system calls L/O + 

2 best permissions L/O 

dataset*** 

 

0.9450 

 

 

0.8990 

 2 best system calls L/N + 

2 best permissions L/N 

dataset**** 

 

0.9035 

 

 

0.8950 
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All common system calls 

and permissions 

 

0.9505 

 

 

0.9210 

 22 system calls + 18 

permissions 

 

0.9740 

 

 

0.9390 

 All features (212+147) 
 

0.9765 

 

 

0.9400 

  

Table 6. Hybrid model accuracy performance 

 

*clock_gettime system call and READ_PHONE_STATE permission 

**clock_gettime system call and WAKE_LOCK permission 

***clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE 

permissions. 

****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions. 

 

Table 6 shows that: 

 

- When using combination of each best feature of both domains, accuracies are 

slightly better than using system calls alone. System calls alone provide more or 

less the same discrimination power than when it is used combined with 

permissions in L/O dataset. In L/N dataset, permissions have a slightly greater 

influence, improving detection ratio by 1-2% than system calls alone. Thus, in 

general, system calls provide better classification performance than permissions. 

- Maximum accuracy in L/N dataset is improved using hybrid approach (~ 94%) 

than static or dynamic approaches alone (~ 92%). In this case, hybrid approach 

shows an improvement not applied to L/O dataset.  

- Using all features selected (40) provide the same discriminatory power than 

using 357 features (all permissions and system calls) in both datasets (~ 97% in 

L/O and 94% in L/N dataset). Feature selection arises as an important fact that 

provides optimum results with less information.  

 

5.4 Old vs. New Malware discrimination 

As was stated in previous sections, old and new malware show similarities, as they have 

common features that allow discriminate them from legitimate applications. This 

experimental model eliminate legitimate applications from the stage and use a dataset 
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composed only by malware: 1000 old and 1000 new malware applications. New 

malware was labelled as 0 and old malware as 1. As for the other tests, different number 

of features, from the ones with better discriminatory power, will be selected and used to 

train and test a decision tree model using same dataset. Table 7 shows accuracy metric 

performance for each different model (range 0-1), using 5-fold cross validation. 

Appendix 10 shows a more complete picture of this analysis, including classification 

confusion matrix using 70-30% split. 

 

Feature Number of features 
New vs. Old Malware 

Dataset (accuracy value) 

System calls 

Best system call* 
 

0.6460 

 Common system calls (11) 
 

0.8175 

 22 selected system calls 
 

0.8955 

 All system calls (212) 
 

0.8990 

 

Permissions 

Best permission of L/O dataset** 
 

0.6270 

 Best permission of L/N dataset*** 
 

0.5890 

 Common permissions (4) 
 

0.6655 

 18 selected permissions 
 

0.9310 

 All permissions (147) 
 

0.9430 

 

Hybrid (system calls + 

permissions) 

2 best system calls L/O + 2 best permissions L/O 

dataset**** 

 

0.7825 

 2 best system calls L/N + 2 best permissions L/N 

dataset***** 

 

0.7720 

 All common system calls and permissions (11+4) 
 

0.8190 

 22 system calls + 18 permissions (40) 
 

0.9300 

 All features (212+147) 
 

0.9345 

  

Table 7.  Old. vs. New Malware discrimination accuracy performance 

 

*clock_gettime 

**READ_PHONE_STATE 

***WAKE_LOCK 
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****clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE 

permissions. 

*****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions 

 

Table 7 shows that: 

 

- Malware itself can be discriminated from old samples to new samples using a 

small amount of features, also used to discriminate between legitimate and 

malware applications.  

- Unlike legitimate vs. malware detection, permissions can be used with best 

accuracy when discriminating between different malware (~ 94%) than system 

calls (~ 90%) and similar with hybrid approach (~ 94%). Permissions appear to 

be the most important discriminative variable in this case, having higher 

detection ratio than system calls. Thus, separability between malware 

permissions is greater than malware from legitimate applications.  

- Using hybrid approach, system calls provide good accuracies to the model when 

a small amount of permissions are used. When more than common permissions 

are used, system calls does not provide any significant improvement than 

permissions alone.  

- When using 18 selected permissions, it can be stated that they provide the same 

discrimination power than all features combined (system calls and permissions) 

and all selected features combined (~ 94%), stating the importance of 

permissions in this particular case.  

 

5.5 Cross-dataset malware detection validation 

This experimental setup analyzes the accuracy of different scenarios using system calls 

and permissions. For each feature, different number of features are selected and the 

model is trained. Training is performed with one dataset (e.g.: legitimate/old malware 

dataset) and testing is performed with the other dataset (e.g.: legitimate/new malware 

dataset). Accuracy metric performance results are shown in Table 8, Table 9 and Table 

10 for each model (range 0-1). In this case 70-30 split was performed as training/testing 

split and all datasets shuffled prior of the random selection of training/testing samples. 

Results regarding training and testing with same dataset are included as a reference (5-
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fold cross validated). Appendix 11 shows a more complete picture of this analysis, 

including classification confusion matrix using 70-30% split. 
 

5.5.1 Dynamic approach: System calls 

System Calls 

(using best feature)* 

 

*clock_gettime 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.8695 

 

0.9166 

 New Dataset 
 

0.795 

 

 

0.8910 

 

System Calls 

(using 3 best features)* 

 

*clock_gettime, 

munmap and readlinkat 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9025 

 

0.8833 

 New Dataset 
 

0.815 

 

 

0.8820 

 

System Calls 

(using 11 common 

features) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9305 

 

0.8100 

 New Dataset 
 

0.865 

 

 

0.8905 

 

System Calls 

(using 22 selected 

features) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9650 

 

0.7330 

 New Dataset 
 

0.8766 

 

 

0.9075 

 

System Calls 

(using all features) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9700 

 

0.7150 

 New Dataset 
 

0.8450 

 

 

0.9270 

 

Table 8.  Dynamic approach: system call results 

 

Table 8 shows that: 

 

- If a small amount of features is used (1-3 best features), classification accuracies 

are better using old dataset as a training set for detecting both old and new 

malware (~ 90%). 
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- If more than 3 best features are used (from 11 to all system call domain), 

classification results are better using new dataset as a training or learning set for 

detecting both old and new malware. 

- Best cross-dataset results are provided when using 3-11 selected common 

system calls (over ~ 80% in all cases), stating the importance of feature 

selection.  

- This tables show that it is possible to obtain acceptable accuracy results in cross-

dataset detection using a single training dataset, altough best results are achieved 

when testing with same dataset.  
 

5.5.2 Static approach: Permissions 

Permissions 

(using best feature L/O 

dataset)* 

 

*READ_PHONE_STATE 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.7905 

 

0.6633 

 New Dataset 
 

0.7850 

 

 

0.6635 

 

Permissions 

(using best feature L/N 

dataset)* 

 

*WAKE_LOCK 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.6420 

 

0.7450 

  New Dataset 
 

0.6783 

 

 

0.7310 

 

Permissions 

(using 4 common 

features) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.8580 

 

0.8400 

 New Dataset 
 

0.8800 

 

 

0.8460 

 

Permissions 

(using 18 features) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9410 

 

0.7100 

 New Dataset 
 

0.8716 

 

 

0.9170 

 

Permissions 

(using all features) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9505 

 

0.6500 

 New Dataset 
 

0.7916 

 

 

0.9245 

Table 9. Static approach: permission results 
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Table 9 shows that: 

 

- Unlike system calls, when a small amount of features are used (1-4), detection 

performance is low (not higher than 80% in any case) with no significant 

difference in malware discrimination by using one set or another as a training 

set. 

- When using 4 common features, best overall across dataset performance is 

achieved, over 84% of discrimination in all cases.  

- When using all features, its discriminative power decreases across datasets, 

having only significant discriminative power when testing with the same dataset. 
 

5.5.3 Hybrid approach: system calls and permissions 

Hybrid 

( best syscall and best 

L/O dataset permission)* 

*clock_gettime and 

READ_PHONE_STATE 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.8985 

 

0.9200 

 New Dataset 
 

0.8700 

 

 

0.9070 

 

Hybrid 

(using best syscall and 

best L/N dataset 

permission)* 

 

*clock_gettime and 

WAKE_LOCK 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.8800 

 

0.9033 

 New Dataset 
 

0.8066 

 

 

0.8835 

 

Hybrid 

(using 11 common 

syscalls + 4 common 

permissions) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9500 

 

0.8660 

 New Dataset 
 

0.9016 

 

 

0.9210 

 

Hybrid 

(using 22 selected 

syscalls + 18 selected 

permissions) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9740 

 

0.7066 

 New Dataset 
 

0.9116 

 

 

0.9390 

 

Hybrid 

(using all dynamic and 

static features) 

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy) 

Old Dataset 
 

0.9765 

 

0.6966 

 New Dataset 
 

0.8983 

 

 

0.9400  

Table 10.  Hybrid approach: system call+permission results 
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Table 10 shows that: 

 

- The combination of best system call and best permission from L/O dataset 

provides the best accuracy results in cross-dataset performance, using the less 

amount of features (2). System call discriminatory power is empowered with 

best L/O dataset permission to provide improved cross-dataset accuracies than 

using system call alone in some specific cases.  

- When using a small amount of features combined (from 2 to 15 features), old 

dataset provides better discriminative power as a training set than new dataset in 

cross-dataset performance. 

- When using more than 15 features, new dataset provides better discriminative 

power as a training set than new dataset in cross-dataset performance. 

- Combination of all selected features (40) provide greater performance (over 

91%) than all 357 features combined (over 89%). Feature selection allows to 

achieve optimum results with lower amount of data. 

 

 

5.6 Mixed malware detection validation 

This experimental setup analyzes the accuracy of different scenarios using system calls, 

permissions and hybrid approach. One mixed malware dataset is created from old 

malware dataset and new malware dataset (500 applications of each one selected 

randomly) and used as training/testing tested in different scenarios. This pretends to 

simulate real conditions where it is not possible to classify if a malware sample belongs 

to old or new dataset. For each feature, different number of features are selected and the 

model is trained with them. Accuracy results are shown in next the following tables. In 

this case 70-30 split was performed as training/testing split and all datasets shuffled 

prior of the random selection of training/testing samples. Appendix 12 shows a more 

complete picture of this analysis, including classification confusion matrix using 70-

30% split.  
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5.6.1 System call features 

 

Training 

set 

clock_gettime 

(accuracy) 

11 common 

(accuracy) 
22 selected (accuracy) All features (accuracy) 

Old 

Dataset 

 

0.8966 

 

0.9000 

 

 

0.8450 

 

 

0.866 

 Mixed 

malware 

Dataset 

 

0.8675 

 

 

0.8805 

 

 

0.9080 

 

 

0.9195 

New 

Dataset 

 

0.8516 

 

 

0.9133 

 

 

0.9400 

 

 

0.9266 

 *5-fold cross validation againsta same dataset. 

Table 11.  Mixed malware: system call results 

 

5.6.2 Permission features 

 

Training 

set 

READ_PHONE 

_STATE (accuracy) 

WAKE_LOCK 

(accuracy) 

4 common 

(accuracy) 

18 selected  

(accuracy) 

All features 

(accuracy) 

Old 

Dataset 

 

0.7300 

 

 

0.6533 

 

 

0.8550 

 

 

0.8466 

 

 

0.8316 

Mixed 

malware 

Dataset 

 

0.7265 

 

 

0.6780 

 

0.8525 

 

 

0.9160 

 

 

0.9225 

 New 

Dataset 

 

0.7150 

 

 

0.6550 

 

 

0.846 

 

 

0.9016 

 

 

0.8700 

 *5-fold cross validation againsta same dataset. 

Table 12.  Mixed malware: permission results 

 

5.6.3 Hybrid approach 

 

Training 

set 

Clock_gettime & 

READ_PHONE_STATE 

(accuracy) 

Clock_gettime & 

WAKE_LOCK 

(accuracy) 

11 common 

syscalls & 4 

common perms 

(accuracy) 

22 selected 

syscalls & 18 

selected 

permissions 

All syscalls & 

all permissions 

(accuracy) 

Old 

Dataset 

 

0.9116 

 

 

0.9150 

 

 

0.9366 

 

 

0.8650 

 

 

0.8533 

 Mixed 

malware 

Dataset 

 

0.8965 

 

 

0.8730 

 

 

0.9300 

 

 

0.9415 

 

 

0.9375 

 New 

Dataset 

 

0.9133 

 

 

0.8800 

 

 

0.9450 

 

 

0.9433 

 

 

0.9266 

 *5-fold cross validation againsta same dataset. 

Table 13.  Mixed malware: hybrid results 
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Table 11 show that, regarding system calls:  

 

- As stated before, if only the most important feature is used, training with old 

dataset provides better overall cross-dataset detection (~ 90%) than training with 

just new or mixed malware dataset (below 87% on both cases). 

- When more features are used, training with new malware datasets provide better 

overall cross-dataset detection (over 91%) than training with old or mixed. 

- Best results are achieved training with new dataset and using 22 selected 

features (94% accuracy). Feature selection arises as an important model builder. 

 

Table 12 shows that, regarding permissions: 

 

- Using a small amount (1-4) of permissions does not provide good accuracies 

(below 86% in all cases), no matter the training set used.   

- Best cross-datasets detection results are achieved using mixed malware dataset. 

When using 18 features, 91% accuracy is achieved, slightly below than the 92% 

accuracy achieved with all permissions. This states the importance of feature 

selection to create good predictive models with less data. 

- In general, permissions alone show less discriminative power (92% accuracy) 

than system calls alone (94% accuracy).  

 

Table 13 shows that, regarding hybrid approach: 

 

- In general, hybrid approach provides better overall results than using static or 

dynamic features alone. Regarding that, system calls are shown to be the most 

discriminative feature and when combined with permissions they provide 

slightly better results in accuracies when system calls alone does not provide 

good detection ratios.  

- Best results in this case are achieved training with new malware dataset and 

using from 15 to 40 features combinated (over 94%). 

- Using all features domain (357) does not provide better accuracy (~ 92%) than 

using selected features. Feature selection arises, again, as an important step in 

model building and improvement in accuracies.  
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5.7 Decision Tree graphs 

As was previously stated, Decision Tree is a hierarchical set of decisions that place in 

root node the most important or discriminatory feature of the dataset. In order to check 

how decision trees were implemented in this malware detection project, nine random 

test trees were plotted and analysed, using all available features. Pruning was not 

performed, so trees structure shown are more complex or deep than if pruning (remove 

unimportant branches) were performed. Next diagrams show the trees’ structure.  

 

5.7.1 System calls  

5.7.1.1 Legitimate / Old Malware Dataset Trained Decision Tree 

 

 

 

Figure 14. Decision Tree L/O Dataset 

 

This decision tree uses as root node a clock_gettime decision rule, the most important 

feature selected also by Fisher score:  
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Figure 15. Decision Tree L/O Dataset root node 

 

 

5.7.1.2 Legitimate / New Malware Dataset Trained Decision Tree 

 

 

 

Figure 16. Decision Tree L/N Dataset 

 

Again, if we look at first layers on left side of the tree, we can state that root node is 

placed by clock_gettime, the most discriminative feature in this present research for 

malware detection: 
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Figure 17. Decision Tree L/N Dataset root node 

 

 

5.7.1.3 Old Malware / New Malware Dataset Trained Decision Tree 

 

 

 

Figure 18. Decision Tree O/N Malware Dataset 
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By looking again top node or root, we can see now that it is not clock_gettime this time, 

as this comparison was not analyzed by Fisher score. Nevertheless, top node is placed 

by another import selected feature, getppid which is the most discriminant feature in this 

particular all-malware dataset (discrimination across malware).  

 

 

 

Figure 19. Decision Tree O/N Malware Dataset root node 

5.7.2 Permissions 

5.7.2.1 Legitimate / Old Malware Dataset Trained Decision Tree 

 

 

Figure 20. Decision Tree L/O Malware Dataset  
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This particular tree places as top node READ_PHONE_STATE, the one that was 

already highlighted as the best Gini index predictor in L/O dataset. Next two decision 

points or branches are placed by the second and third better Gini index values, as can be 

seen in the following picture: 

 

 

 

Figure 21. Decision Tree L/O Malware Dataset root node 

 

 

5.7.2.2 Legitimate / New Malware Dataset Trained Decision Tree 

 

 

 

Figure 22. Decision Tree L/N Malware Dataset 

 

 

Top node is placed by WAKE_LOCK permission, the most discriminative one stated by 

Gini index in feature selection performed by this research.  
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Figure 23. Decision Tree L/N Malware Dataset root node 

 

 

5.7.2.3 Old Malware / New Malware Dataset Trained Decision Tree 

 

 

 

Figure 24. Decision Tree O/N Malware Dataset  

 

In cross-malware tree, top node is placed by READ_CONTACTS, which is the best 

discriminative permission across malware.  

 

 

Figure 25. Decision Tree O/N Malware Dataset root node 
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5.7.3 Hybrid trees 

5.7.3.1 Legitimate / Old Malware Dataset Trained Decision Tree 

 

 

 

Figure 26. Decision Tree L/O Malware Dataset 

 

 

Using permissions and system calls together, root node is placed by a system call, the 

most discriminative feature stated by this resarch, clock_gettime system call. 

 

 

 

 

Figure 27. Decision Tree L/O Malware Dataset root node 
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5.7.3.2 Legitimate / New Malware Dataset Trained Decision Tree 

 

 

Figure 28. Decision Tree L/N Malware Dataset 

 

 

Once again, top node is placed by a system call, clock_gettime: 

 

 

 

Figure 29. Decision Tree L/N Malware Dataset root node 
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5.7.3.3 Old Malware / New Malware Dataset Trained Decision Tree 

 

 

 

Figure 30. Decision Tree O/N Malware Dataset 

 

 

This last picture shows again that system calls have more discriminant power than 

permissions when using together: 

 

 

 

Figure 31. Decision Tree O/N Malware Dataset root node 
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6 Conclusions 

In this thesis, applicability of dynamic features (system calls) and static features 

(permissions) were investigated with respect to build a classifier for detect malware in 

Android environment. Feature selection methods provided a reduced number of features 

in system calls and permission whole domains that were used to train and test 

classification models. System calls analysis stated that they are distributed with greater 

differentiation between legitimate and malware applications than permissions, providing 

greater discriminative power. Analysis of feature selection states that best predictive 

variables have changed in the two malware datasets used in this research, with a time 

difference of 8 years between them (2010 to 2018). In this regard, in some variables 

malware has become more similar to legitimate applications, reducing the 

discriminative power of such variables while others have increased its discriminative 

impact. In this last case, when using only one specific feature, old malware used as 

training set could create a well-defined decision boundary against legitimate 

applications that could be used to accurately predict unknown new malware samples. 

This fact provides the possibility to train classifiers only with old malware that will 

accurately discriminate new malware, overcoming the efforts of new malware to 

become undetectable by becoming similar to legitimate applications. From the point of 

view of malware detection, accuracy results show that it is possible to detect malware 

minimizing the features used, obtaining good accuracy results using a small number of 

features as predictors (from 1 to 40 features) with as good or better than using all 

features. More specifically, results show that if using a single feature as predictor, 

training with old dataset could provide better results in detecting both new and old 

malware, as old dataset creates a well-defined decision boundary where new malware 

lies behind it. When more features are used as predictors, new dataset as training set 

provides better results in cross-dataset performance accuracy. This finding points out 

that depending on features selected, it would be preferable to use a different dataset to 

train the model to get optimal predictions. Regarding dataset used, mixed malware 

dataset does not provide significant difference in performance than using old or new 
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datasets separately. Old vs. new malware comparison provided that permissions are a 

better feature to discriminate between malware samples than system calls. This fact 

suggests that new malware evolved to become more similar to legitimate applications 

regarding permissions than system calls, increasing separability from old malware in 

this feature, but not as much in its dynamic behaviour.   

 

Feature selection has been highlighted as a key point in malware detection, allowing to 

minimize features used with optimal detection accuracies in cross-malware datasets. 

This fact may lead to build faster and less complex classifiers that focus on main 

predictors, that may vary depending on dataset used and detection needs. This research 

shows that depending on detection objectives and requirements, different features and 

dataset should be used in order to accomplish them with optimal malware detection 

performance.  
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Appendix 1 – System call’s statistics 

 

Next table shows the mean value and standard deviation for each dataset composed by 

1000 applications and 212 system calls: 

 

System Call Legitimate Dataset Old Malware Dataset New Malware Dataset 

 Mean Std Dev Mean Std Dev Mean Std Dev 

sched_get_priority_min 0.004 0.0894 0.002 0.0632 0.002 0.0632 

Lseek 0.852 4.8925 0.6235 3.4842 0.916 4.0779 

Pipe 0.004 0.0894 0.002 0.0632 0.002 0.0632 

epoll_ctl 1.072 1.5965 1.317 1.6645 1.402 1.8194 

rt_sigtimedwait 0.0 0.0 0.0 0.0 0.0 0.0 

Setfsuid 0.0 0.0 0.0 0.0 0.0 0.0 

Tee 0.0 0.0 0.0 0.0 0.0 0.0 

Uname 0.026 0.4973 0.014 0.3547 0.013 0.3519 

Kill 0.0 0.0 0.0005 0.0224 0.0 0.0 

Swapoff 0.0 0.0 0.0 0.0 0.0 0.0 

Readahead 0.0 0.0 0.0 0.0 0.0 0.0 

clock_getres 0.005 0.0705 0.0025 0.0499 0.0025 0.0499 

Preadv 0.0 0.0 0.0 0.0 0.0 0.0 

setresgid32 0.0 0.0 0.0 0.0 0.0 0.0 

Gettid 0.225 6.4683 0.1125 4.5751 0.1125 4.5751 

Sethostname 0.0 0.0 0.0 0.0 0.0 0.0 

timer_delete 0.0 0.0 0.0 0.0 0.0 0.0 

Umask 0.02 0.3682 0.01 0.2606 0.01 0.2606 

sched_getaffinity 0.0 0.0 0.0 0.0 0.0 0.0 

Writev 12.449 39.6861 12.952 29.2155 27.3565 86.0063 

sched_setparam 0.0 0.0 0.0 0.0 0.0 0.0 

Fchmod 0.026 0.2265 0.013 0.1607 0.096 0.5242 

_llseek 30.889 130.2178 18.2055 93.0928 19.8055 96.0433 

Getpid 0.371 4.3746 0.278 3.7406 0.7905 8.1252 

setreuid32 0.0 0.0 0.0 0.0 0.0 0.0 

signalfd4 0.0 0.0 0.0 0.0 0.0 0.0 

epoll_wait 0.001 0.0316 0.0005 0.0224 0.0005 0.0224 

Capset 0.0 0.0 0.0 0.0 0.0 0.0 

Personality 0.0 0.0 0.0 0.0 0.0 0.0 

delete_module 0.0 0.0 0.0 0.0 0.0 0.0 
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dup3 0.0 0.0 0.0 0.0 0.0 0.0 

sched_setaffinity 0.0 0.0 0.0 0.0 0.0 0.0 

Read 48.165 155.4994 29.188 111.8058 53.328 175.6358 

Getppid 0.313 0.4637 0.159 0.3657 0.3645 0.4813 

getgid32 0.0 0.0 0.0 0.0 0.0 0.0 

Capget 0.0 0.0 0.0 0.0 0.0 0.0 

getgroups32 0.0 0.0 0.0 0.0 0.0 0.0 

Readlinkat 13.326 15.7562 25.346 18.8199 25.246 19.6004 

sched_rr_get_interval 0.0 0.0 0.0 0.0 0.0 0.0 

Setfsgid 0.0 0.0 0.0 0.0 0.0 0.0 

Renameat 0.845 5.4607 0.8825 4.3868 0.6685 4.0679 

Fsync 1.296 5.7327 1.242 4.6054 1.0835 4.388 

geteuid32 3.167 6.6419 3.0705 6.2316 2.236 6.2344 

Unshare 0.0 0.0 0.0 0.0 0.0 0.0 

epoll_pwait 8.954 28.6496 13.287 33.3084 27.833 65.453 

Recvfrom 13.748 78.436 109.2905 243.8441 43.038 121.0542 

sched_get_priority_max 0.004 0.0894 0.002 0.0632 0.002 0.0632 

Symlinkat 0.0 0.0 0.0 0.0 0.0 0.0 

Settimeofday 0.0 0.0 0.0 0.0 0.0 0.0 

timer_create 0.0 0.0 0.0 0.0 0.0 0.0 

Sendto 1.093 4.9121 9.5155 20.8756 3.6615 9.7667 

Mkdirat 2.597 3.5359 2.01 2.6885 2.123 2.9339 

Lgetxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Linkat 0.0 0.0 0.0 0.0 0.0 0.0 

Shutdown 0.0 0.0 0.0 0.0 0.001 0.0316 

epoll_create1 0.338 0.4876 0.1715 0.3861 0.3705 0.4901 

getresuid32 0.0 0.0 0.0 0.0 0.0 0.0 

Adjtimex 0.0 0.0 0.0 0.0 0.0 0.0 

Sync 0.0 0.0 0.0 0.0 0.0 0.0 

Syslog 0.0 0.0 0.0 0.0 0.0 0.0 

Fchownat 0.0 0.0 0.0 0.0 0.0 0.0 

setgid32 0.0 0.0 0.0 0.0 0.0 0.0 

setregid32 0.0 0.0 0.0 0.0 0.0 0.0 

fadvise64_64 0.0 0.0 0.0 0.0 0.0 0.0 

Getsockname 0.008 0.1412 0.0075 0.1202 0.0075 0.1159 

Close 45.603 25.6286 55.4745 25.6668 54.606 26.2713 

Flock 0.442 5.0194 0.221 3.5561 0.428 3.7184 

Lsetxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Pwritev 0.0 0.0 0.0 0.0 0.0 0.0 

Llistxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Tgkill 0.0 0.0 0.0 0.0 0.001 0.0316 

getegid32 0.0 0.0 0.0 0.0 0.0 0.0 

pselect6 0.0 0.0 0.0 0.0 0.0 0.0 
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rt_sigprocmask 12.602 27.3517 40.095 62.0614 18.9485 37.9334 

accept4 0.0 0.0 0.0 0.0 0.0 0.0 

Reboot 0.0 0.0 0.0 0.0 0.0 0.0 

Fremovexattr 0.0 0.0 0.0 0.0 0.0 0.0 

setgroups32 0.0 0.0 0.0 0.0 0.0 0.0 

Setsid 0.0 0.0 0.0 0.0 0.0 0.0 

Exit 0.0 0.0 0.0 0.0 0.0 0.0 

timerfd_create 0.0 0.0 0.0 0.0 0.0 0.0 

Sigaltstack 0.129 0.6873 0.5385 0.95 0.515 0.9358 

inotify_rm_watch 0.0 0.0 0.0 0.0 0.0 0.0 

Munmap 55.594 51.9374 92.9135 57.0101 90.9865 58.753 

Socketpair 0.006 0.1094 0.004 0.0894 0.016 0.1782 

Setrlimit 0.001 0.0316 0.0005 0.0224 0.001 0.0316 

Getitimer 0.0 0.0 0.0 0.0 0.0 0.0 

Fchmodat 2.603 5.9088 2.4865 4.8525 2.2015 4.6682 

Setpgid 0.0 0.0 0.0 0.0 0.0 0.0 

Getrandom 0.042 0.4672 0.021 0.331 0.021 0.331 

Getcwd 0.032 0.3674 0.016 0.2603 0.016 0.2603 

fstatfs64 0.003 0.0706 0.0015 0.05 0.0015 0.05 

fstatat64 56.303 92.9289 56.6735 73.6869 60.771 89.0602 

rt_sigsuspend 0.0 0.0 0.0 0.0 0.0 0.0 

inotify_add_watch 0.042 0.2055 0.0215 0.1485 0.0285 0.1694 

getresgid32 0.0 0.0 0.0 0.0 0.0 0.0 

timer_settime 0.0 0.0 0.0 0.0 0.0 0.0 

Fchdir 0.0 0.0 0.0 0.0 0.0 0.0 

timer_gettime 0.0 0.0 0.0 0.0 0.0 0.0 

Getpeername 0.0 0.0 0.0 0.0 0.0 0.0 

Sigaction 0.614 2.2466 2.6615 4.3166 2.5725 4.0622 

Getsid 0.0 0.0 0.0 0.0 0.0 0.0 

Mknodat 0.086 1.0033 0.043 0.7107 0.043 0.7107 

Setsockopt 0.057 0.939 0.055 0.7007 0.041 0.6851 

Munlockall 0.0 0.0 0.0 0.0 0.0 0.0 

Msync 0.113 1.7367 0.0565 1.2294 0.0565 1.2294 

process_vm_readv 0.0 0.0 0.0 0.0 0.0 0.0 

pipe2 0.096 0.7327 0.058 0.5564 0.1045 1.024 

set_thread_area 0.0 0.0 0.0 0.0 0.0005 0.0224 

Times 0.0 0.0 0.0 0.0 0.0 0.0 

prlimit64 0.0 0.0 0.0 0.0 0.0 0.0 

pwrite64 14.041 30.3444 12.956 27.4921 9.469 27.4994 

Vfork 0.016 0.1725 0.0105 0.1319 0.023 0.2499 

Nanosleep 0.057 1.2457 0.0285 0.8813 0.0285 0.8813 

Sendmsg 0.0 0.0 0.005 0.0773 0.004 0.0631 

Clone 11.936 9.0007 8.7695 7.6508 9.131 7.8919 
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Flistxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Getcpu 0.0 0.0 0.0 0.0 0.0 0.0 

Splice 0.0 0.0 0.0 0.0 0.0 0.0 

rt_sigaction 0.07 2.2125 0.035 1.5649 0.035 1.5649 

clock_gettime 749.879 466.3368 426.187 479.1833 389.67 497.0268 

Ugetrlimit 0.014 0.1944 0.022 0.1831 0.0485 0.2432 

umount2 0.0 0.0 0.0 0.0 0.0 0.0 

rt_sigreturn 0.0 0.0 0.0 0.0 0.004 0.1581 

rt_sigpending 0.0 0.0 0.0 0.0 0.0 0.0 

Setxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Getpgid 0.0 0.0 0.0 0.0 0.0 0.0 

Brk 0.0 0.0 0.0 0.0 0.0 0.0 

Fsetxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Acct 0.0 0.0 0.0 0.0 0.0 0.0 

clock_settime 0.0 0.0 0.0 0.0 0.0 0.0 

Getsockopt 3.665 12.9546 3.212 9.616 3.683 11.0707 

exit_group 0.0 0.0 0.0 0.0 0.0 0.0 

Getpriority 0.094 0.3304 0.048 0.2402 0.048 0.2402 

Listxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Sysinfo 0.0 0.0 0.0 0.0 0.0 0.0 

Removexattr 0.0 0.0 0.0 0.0 0.0 0.0 

Faccessat 22.461 22.7219 18.258 18.8957 17.8985 21.8602 

Dup 3.502 3.1366 3.871 3.6028 3.682 3.1831 

Fdatasync 5.344 11.2058 5.3635 10.8609 3.89 10.1719 

Setns 0.0 0.0 0.0 0.0 0.0 0.0 

Mprotect 169.244 255.1326 268.415 300.745 295.302 312.3796 

Listen 0.008 0.1093 0.0045 0.0805 0.0045 0.0805 

fchown32 0.0 0.0 0.0 0.0 0.0 0.0 

getuid32 19.574 27.4583 21.417 25.6297 32.1925 48.4912 

init_module 0.0 0.0 0.0 0.0 0.0 0.0 

sched_yield 1.865 8.0529 1.302 6.6048 1.5675 11.058 

statfs64 0.268 0.7498 0.261 0.6464 0.1805 0.6066 

ftruncate64 0.213 1.4077 0.1065 1.0011 0.114 1.0213 

Fgetxattr 0.0 0.0 0.0 0.0 0.0 0.0 

Ptrace 0.0 0.0 0.0 0.0 0.0 0.0 

Vmsplice 0.0 0.0 0.0 0.0 0.0 0.0 

fcntl64 20.851 38.314 20.108 35.4502 15.495 35.3675 

Swapon 0.0 0.0 0.0 0.0 0.0 0.0 

Fallocate 0.0 0.0 0.0 0.0 0.0 0.0 

Execve 0.0 0.0 0.0 0.0 0.0 0.0 

Socket 0.456 1.8166 0.7525 1.3602 0.766 1.4924 

wait4 0.001 0.0316 0.0005 0.0224 0.122 0.6067 

Chdir 0.219 6.9219 0.1095 4.8958 0.1095 4.8958 
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Madvise 52.268 40.0585 78.3115 43.9307 79.094 47.256 

fstat64 60.813 43.9699 69.8725 42.8535 65.273 41.3114 

Mount 0.0 0.0 0.0 0.0 0.0 0.0 

timerfd_gettime 0.0 0.0 0.0 0.0 0.0 0.0 

rt_sigqueueinfo 0.0 0.0 0.0 0.0 0.0 0.0 

Getrusage 0.0 0.0 0.0 0.0 0.0 0.0 

timerfd_settime 0.0 0.0 0.0 0.0 0.0 0.0 

sched_setscheduler 0.016 0.1891 0.008 0.1339 0.008 0.1339 

Utimensat 0.0 0.0 0.0 0.0 0.0075 0.2036 

Bind 0.016 0.2318 0.0085 0.1656 0.0085 0.1656 

eventfd2 0.324 0.4765 0.1645 0.3761 0.3635 0.4851 

Connect 0.285 0.458 0.665 0.599 0.649 0.6227 

getdents64 3.693 4.2697 2.436 3.4342 7.343 84.2587 

Readv 0.0 0.0 0.0 0.0 0.0 0.0 

Mremap 0.073 0.9485 0.0365 0.6717 0.0365 0.6717 

pread64 47.026 77.9913 51.9545 68.7889 48.6345 81.9527 

setuid32 0.0 0.0 0.0 0.0 0.0 0.0 

Prctl 43.82 34.3746 68.4385 39.9062 68.3895 41.6805 

stat64 0.009 0.2023 0.0045 0.1431 0.0045 0.1431 

Recvmmsg 0.0 0.0 0.0 0.0 0.0 0.0 

Chroot 0.366 11.5681 0.183 8.182 0.183 8.182 

sched_getparam 0.004 0.0894 0.002 0.0632 0.002 0.0632 

truncate64 0.0 0.0 0.0 0.0 0.0 0.0 

setresuid32 0.0 0.0 0.0 0.0 0.0 0.0 

Write 33.224 145.0314 22.8055 119.0203 48.8405 158.9098 

Munlock 0.009 0.1641 0.0045 0.1161 0.0045 0.1161 

Setpriority 0.024 0.2131 0.0265 0.1918 0.0495 0.2409 

Recvmsg 0.0 0.0 0.0 0.0 0.0 0.0 

inotify_init1 0.042 0.2006 0.0215 0.145 0.0285 0.1664 

Mincore 0.0 0.0 0.0 0.0 0.0 0.0 

Sendfile 0.0 0.0 0.0 0.0 0.0 0.0 

Sendmmsg 0.0 0.0 0.0 0.0 0.0 0.0 

timer_getoverrun 0.0 0.0 0.0 0.0 0.0 0.0 

restart_syscall 0.0 0.0 0.001 0.0316 0.005 0.0705 

Truncate 0.0 0.0 0.0 0.0 0.0 0.0 

Lremovexattr 0.0 0.0 0.0 0.0 0.0 0.0 

Openat 47.721 25.2029 59.808 28.6254 57.8275 26.8831 

Waitid 0.0 0.0 0.0 0.0 0.0 0.0 

Getxattr 0.0 0.0 0.0 0.0 0.0 0.0 

sched_getscheduler 0.006 0.1094 0.003 0.0774 0.003 0.0774 

Ioctl 144.14 89.137 145.575 101.0203 152.9925 103.7091 

clock_nanosleep 0.0 0.0 0.0 0.0 0.0 0.0 

Unlinkat 2.044 9.9126 1.9375 7.4045 1.875 7.4984 
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clock_adjtime 0.0 0.0 0.0 0.0 0.0 0.0 

set_tid_address 0.0 0.0 0.0 0.0 0.0 0.0 

Setitimer 0.0 0.0 0.0 0.0 0.0 0.0 

Gettimeofday 33.914 77.6484 19.896 58.4256 17.184 57.4809 

Futex 92.637 61.6389 67.264 52.7577 87.2165 61.9276 

mmap2 99.496 60.6225 140.0055 65.1437 138.424 68.6594 

sendfile64 0.0 0.0 0.0 0.0 0.0 0.0 

Mlockall 0.0 0.0 0.0 0.0 0.0 0.0 

Ppoll 0.042 0.2006 0.2565 0.4435 0.2315 0.4242 

Mlock 0.044 0.9023 0.022 0.6384 0.022 0.6384 
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Appendix 2 – System calls’ Welch’s test 

Next table shows the relation between Welch’s test or z test score on both analyzed 

cases (Legitimate vs. Old Malware and Legitimate vs. New Malware) and degree of 

rejection of null hypothesis (green coloured), if applied, or not (red coloured). If statistic 

could not be calculated (not enough data to statistic test), null value is indicated (orange 

coloured).   

 

System Call 
Legitimate vs. 

Old Malware 

Reject Null 

Hypothesis 

Legitimate vs. 

New Malware 

Reject Null 

Hypothesis 

sched_get_priority_min 0.577672893  0.57767289  

Lseek 1.203028112  -0.31776043  

Pipe 0.577672893  0.57767289  

epoll_ctl -3.35920016 
Yes with α=0.001 and 

p = 0.000782 
-4.31122938 

Yes with α=0.0001 

and p < 0.00001 

rt_sigtimedwait null  null  

setfsuid null  null  

tee null  null  

uname 0.621237041  0.67479824  

kill -0.70586555  null  

swapoff null  null  

readahead null  null  

clock_getres 0.915299082  0.91529908  

preadv null  null  

setresgid32 null  null  

gettid 0.449029547  0.44902955  

sethostname null  null  

timer_delete null  null  

umask 0.701027886  0.70102789  

sched_getaffinity null  null  

writev 
-0.32277216 

 
-4.9768951 

Yes with α=0.0001 

and p < 0.00001 

sched_setparam null  null  

fchmod 1.480269752  -3.87641892 Yes with α=0.0001 

_llseek 
2.505674149 

Yes with α=0.05 and 

p = 0.012224 
2.16612685 

Yes with α=0.05 and 

p = 0.030304 

getpid 0.510948802  -1.43755456  
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setreuid32 null  null  

signalfd4 null  null  

epoll_wait 0.408204751  0.40820475  

capset null  null  

personality null  null  

delete_module null  null  

dup3 null  null  

sched_setaffinity null  null  

read 3.133353112 
Yes with α=0.01 and 

p = 0.001729 
-0.69600165 

 

getppid 8.246335691 
Yes with α=0.0001 

and p < 0.00001 
-2.4367732 

Yes with α=0.05 and 

p = 0.014851 

getgid32 null  null  

capget null  null  

getgroups32 null  null  

readlinkat -15.4862132 
Yes with α=0.0001 

and p < 0.00001 
-14.9888673 

Yes with α=0.0001 

and p < 0.00001 

sched_rr_get_interval null  null  

setfsgid null  null  

renameat -0.16929849  0.81967172  

fsync 0.23222089  0.93081511  

geteuid32 0.335062023 
 

3.23188737 
Yes with α=0.01 and 

p = 0.00123 

unshare null  null  

epoll_pwait 
-3.1187604 

Yes with α=0.01 and 

p = 0.001821 
-8.3557529 

Yes with α=0.0001 

and p < 0.00001 

recvfrom 
-11.795177 

Yes with α=0.0001 

and p < 0.00001 
-6.42128104 

Yes with α=0.0001 

and p < 0.00001 

sched_get_priority_max 0.577672893  0.57767289  

symlinkat null  null  

settimeofday null  null  

timer_create null  null  

sendto -12.4193868 
Yes with α=0.0001 

and p < 0.00001 
-7.42958313 

Yes with α=0.0001 

and p < 0.00001 

mkdirat 4.178955277 
Yes with α=0.0001 

and p = 0.000029 
3.26234992 

Yes with α=0.01 and 

p = 0.001105 

lgetxattr null  null  

linkat null  null  

shutdown null  -1.00072078  

epoll_create1 8.465563367 
Yes with α=0.0001 

and p < 0.00001 
-1.4865904 

 

getresuid32 null  null  

adjtimex null  null  
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sync null  null  

syslog null  null  

fchownat null  null  

setgid32 null  null  

setregid32 null  null  

fadvise64_64 null  null  

getsockname 0.08526729  0.08655462  

close -8.60636194 
Yes with α=0.0001 

and p < 0.00001 
-7.7571543 

Yes with α=0.0001 

and p < 0.00001 

flock 1.136097036  0.07087279  

lsetxattr null  null  

pwritev null  null  

llistxattr null  null  

tgkill null  -1.00072078  

getegid32 null  null  

pselect6 null  null  

rt_sigprocmask -12.8190496 
Yes with α=0.0001 

and p < 0.00001 
-4.29145044 

Yes with α=0.0001 

and p = 0.000018 

accept4 null  null  

reboot null  null  

fremovexattr null  null  

setgroups32 null  null  

setsid null  null  

exit null  null  

timerfd_create null  null  

sigaltstack -11.0438705 
Yes with α=0.0001 

and p < 0.00001 
-10.5129786 

Yes with α=0.0001 

and p < 0.00001 

inotify_rm_watch null  null  

munmap -15.302532 
Yes with α=0.0001 

and p < 0.00001 
-14.2723198 

Yes with α=0.0001 

and p < 0.00001 

socketpair 0.447653407  -1.51231425  

setrlimit 0.408204751  0  

getitimer null  null  

fchmodat 0.4818302  1.68605217  

setpgid null  null  

getrandom 1.159819529  1.15981953  

getcwd 1.123702878  1.12370288  

fstatfs64 0.548294544  0.54829454  

fstatat64 -0.09878932  -1.09770256  

rt_sigsuspend null  null  

inotify_add_watch 2.556863137 
Yes with α=0.05 and 

p = 0.010564 
1.60298392 

 

getresgid32 null  null  
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timer_settime null  null  

fchdir null  null  

timer_gettime null  null  

getpeername null  null  

sigaction -13.3054876 
Yes with α=0.0001 

and p < 0.00001 
-13.3417634 

Yes with α=0.0001 

and p < 0.00001 

getsid null  null  

mknodat 1.105948429  1.10594843  

setsockopt 0.053981126  0.43529028  

munlockall null  null  

msync 0.839685706  0.83968571  

process_vm_readv null  null  

pipe2 1.306134824  -0.21347451  

set_thread_area null  -0.70586555  

times null  null  

prlimit64 null  null  

pwrite64 0.837944479 
 

3.53052865 
Yes with α=0.001 and 

p = 0.000415 

vfork 0.800947527  -0.72898373  

nanosleep 0.590623386  0.59062339  

sendmsg -2.04545774 
Yes with α=0.05 and 

p = 0.040855 
-2.00461341 

Yes with α=0.05 and 

p = 0.04507 

clone 8.476541826 
Yes with α=0.0001 

and p < 0.00001 
7.40999343 

Yes with α=0.0001 

and p < 0.00001 

flistxattr null  null  

getcpu null  null  

splice null  null  

rt_sigaction 0.408413126  0.40841313  

clock_gettime 15.30862261 
Yes with α=0.0001 

and p < 0.00001 
16.7131788 

Yes with α=0.0001 

and p < 0.00001 

ugetrlimit -0.94731311 
 

-3.50407153 
Yes with α=0.001 and 

p = 0.000458 

umount2 null  null  

rt_sigreturn null  -0.80007025  

rt_sigpending null  null  

setxattr null  null  

getpgid null  null  

brk null  null  

fsetxattr null  null  

acct null  null  

clock_settime null  null  

getsockopt 0.887912555  -0.03340316  

exit_group null  null  
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getpriority 3.561077717 
Yes with α=0.001 and 

p = 0.000369 
3.56107772 

Yes with α=0.001 and 

p = 0.000369 

listxattr null  null  

sysinfo null  null  

removexattr null  null  

faccessat 4.497484228 
Yes with α=0.0001 

and p < 0.00001 
4.57589706 

Yes with α=0.0001 

and p < 0.00001 

dup -2.44277525 
Yes with α=0.05 and 

p = 0.014606 
-1.27373559 

 

fdatasync -0.03951474  3.03816325  

setns null  null  

mprotect -7.95176191 
Yes with α=0.0001 

and p < 0.00001 
-9.88352343 

Yes with α=0.0001 

and p < 0.00001 

listen 0.815349465  0.81534946  

fchown32 null  null  

getuid32 -1.551624 
 

-7.16064468 
Yes with α=0.0001 

and p < 0.00001 

init_module null  null  

sched_yield 1.709418529  0.68772835  

statfs64 0.223603033 
 

2.8689857 
Yes with α=0.01 and 

p = 0.004119 

ftruncate64 1.949679661  1.8000973  

fgetxattr null  null  

ptrace null  null  

vmsplice null  null  

fcntl64 

0.450122912 

 

3.2482551 

Yes with α=0.01 and 

p = 0.001161 

swapon null  null  

fallocate null  null  

execve null  null  

socket -4.13155473 
Yes with α=0.0001 

and p = 0.000036 
-4.16970603 

Yes with α=0.0001 

and p = 0.000031 

wait4 0.408204751 
 

-6.29829625 
Yes with α=0.0001 

and p < 0.00001 

chdir 0.408418476  0.40841848  

madvise -13.8525535 
Yes with α=0.0001 

and p < 0.00001 
-13.6934859 

Yes with α=0.0001 

and p < 0.00001 

fstat64 -4.66601939 
Yes with α=0.0001 

and p < 0.00001  
-2.33768036 

Yes with α=0.05 and 

p = 0.019439 

mount null  null  

timerfd_gettime null  null  

rt_sigqueueinfo null  null  

getrusage null  null  

timerfd_settime null  null  
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sched_setscheduler 1.091820623  1.09182062  

utimensat null  -1.16488617  

bind 0.832539202  0.8325392  

eventfd2 8.308830557 
Yes with α=0.0001 

and p < 0.00001 
-1.83696242 

 

connect -15.9365216 
Yes with α=0.0001 

and p < 0.00001 
-14.8910533 

Yes with α=0.0001 

and p < 0.00001 

getdents64 7.254383525 
Yes with α=0.0001 

and p < 0.00001 
-1.36811067 

 

readv null  null  

mremap 0.99309778  0.99309778  

pread64 -1.49868521  -0.44960895  

setuid32 null  null  

prctl 

-14.7808404 

Yes with α=0.0001 

and p < 0.00001 -14.3809775 

Yes with α=0.0001 

and p < 0.00001 

stat64 0.574272569  0.57427257  

recvmmsg null  null  

chroot 0.408419002  0.408419  

sched_getparam 0.577672893  0.57767289  

truncate64 null  null  

setresuid32 null  null  

write 1.756039343 
 

-2.29539196 
Yes with α=0.05 and 

p = 0.021733 

munlock 0.707911111  0.70791111  

setpriority -0.27574468 
 

-2.50718653 
Yes with α=0.05 and 

p = 0.012176 

recvmsg null  null  

inotify_init1 2.619065538 
Yes with α=0.01 and 

p = 0.008819 
1.63796695 

 

mincore null  null  

sendfile null  null  

sendmmsg null  null  

timer_getoverrun null  null  

restart_syscall -1.00072078 
 

-2.24275011 
Yes with α=0.05 and 

p = 0.024961 

truncate null  null  

lremovexattr null  null  

openat 

-10.0218241 

Yes with α=0.0001 

and p < 0.00001 -8.67299164 

Yes with α=0.0001 

and p < 0.00001 

waitid null  null  

getxattr null  null  

sched_getscheduler 0.707911111  0.70791111  

ioctl -0.33682749  -2.04707487 Yes with α=0.05 and 
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p = 0.040658 

clock_nanosleep null  null  

unlinkat 0.272195852  0.42997444  

clock_adjtime null  null  

set_tid_address null  null  

setitimer null  null  

gettimeofday 

4.561787918 

Yes with α=0.0001 

and p < 0.00001 5.47617955 

Yes with α=0.0001 

and p < 0.00001 

futex 

9.889374752 

Yes with α=0.0001 

and p < 0.00001 1.96178954 

Yes with α=0.05 and 

p = 0.049797 

mmap2 

-14.3955245 

Yes with α=0.0001 

and p < 0.00001 -13.4400783 

Yes with α=0.0001 

and p < 0.00001 

sendfile64 null  null  

mlockall null  null  

ppoll -13.9352536 
Yes with α=0.0001 

and p < 0.00001 
-12.77069 

Yes with α=0.0001 

and p < 0.00001 

mlock 0.629419829  0.62941983  
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Appendix 3 – Permissions’ statistics 

Next table shows the count (frequency) of each permission attribute for each dataset 

composed by 1000 application samples:  

 

 Legitimate Dataset Old Malware Dataset New Malware Dataset 

Permission Absent Present Absent Present Absent Present 

ADD_VOICEMAIL 1000 0 1000 0 1000 0 

USE_SIP 996 4 1000 0 971 29 

ACCESS_NOTIFICATION_POLIC

Y 
1000 0 1000 0 1000 0 

CAMERA 676 324 891 109 848 152 

REQUEST_DELETE_PACKAGES 1000 0 1000 0 1000 0 

BIND_CONDITION_PROVIDER_S

ERVICE 
1000 0 1000 0 1000 0 

BIND_QUICK_SETTINGS_TILE 965 35 1000 0 1000 0 

MASTER_CLEAR 998 2 999 1 1000 0 

BIND_DEVICE_ADMIN 978 22 1000 0 861 139 

GET_ACCOUNTS_PRIVILEGED 995 5 1000 0 1000 0 

READ_SYNC_SETTINGS 882 118 995 5 967 33 

FACTORY_TEST 1000 0 997 3 1000 0 

SET_ALWAYS_FINISH 1000 0 999 1 999 1 

READ_CALENDAR 928 72 998 2 959 41 

BIND_CARRIER_SERVICES 997 3 1000 0 1000 0 

CHANGE_CONFIGURATION 981 19 983 17 867 133 

SET_TIME 999 1 1000 0 997 3 

PERSISTENT_ACTIVITY 998 2 996 4 971 29 

USE_FINGERPRINT 876 124 1000 0 971 29 

GET_PACKAGE_SIZE 955 45 995 5 945 55 

ACCESS_LOCATION_EXTRA_CO

MMANDS 
976 24 836 164 930 70 

CONTROL_LOCATION_UPDATE

S 
1000 0 997 3 999 1 

SEND_RESPOND_VIA_MESSAGE 979 21 1000 0 986 14 

CLEAR_APP_CACHE 986 14 996 4 949 51 

BIND_INPUT_METHOD 983 17 999 1 998 2 

WRITE_GSERVICES 1000 0 999 1 999 1 

SIGNAL_PERSISTENT_PROCESS 1000 0 999 1 995 5 



108 

ES 

BIND_VOICE_INTERACTION 1000 0 1000 0 1000 0 

BIND_REMOTEVIEWS 883 117 1000 0 998 2 

BATTERY_STATS 979 21 985 15 947 53 

READ_VOICEMAIL 1000 0 1000 0 1000 0 

SET_WALLPAPER_HINTS 987 13 993 7 957 43 

BIND_NFC_SERVICE 994 6 1000 0 1000 0 

REQUEST_IGNORE_BATTERY_O

PTIMIZATIONS 
974 26 1000 0 996 4 

RESTART_PACKAGES 988 12 929 71 911 89 

CALL_PRIVILEGED 997 3 999 1 989 11 

CAPTURE_SECURE_VIDEO_OUT

PUT 
999 1 1000 0 998 2 

DISABLE_KEYGUARD 954 46 956 44 927 73 

DELETE_PACKAGES 994 6 976 24 953 47 

CHANGE_COMPONENT_ENABL

ED_STATE 
999 1 990 10 993 7 

BIND_APPWIDGET 996 4 998 2 973 27 

RECORD_AUDIO 827 173 967 33 872 128 

READ_PHONE_NUMBERS 1000 0 1000 0 1000 0 

VIBRATE 432 568 319 681 768 232 

WRITE_SECURE_SETTINGS 974 26 978 22 982 18 

UNINSTALL_SHORTCUT 1000 0 1000 0 1000 0 

WRITE_CALL_LOG 970 30 1000 0 958 42 

ACCESS_CHECKIN_PROPERTIES 1000 0 998 2 998 2 

PACKAGE_USAGE_STATS 951 49 1000 0 948 52 

GLOBAL_SEARCH 993 7 999 1 1000 0 

CHANGE_WIFI_STATE 795 205 920 80 759 241 

BROADCAST_STICKY 943 57 992 8 933 67 

KILL_BACKGROUND_PROCESSE

S 
958 42 985 15 898 102 

BIND_INCALL_SERVICE 997 3 1000 0 1000 0 

SET_TIME_ZONE 1000 0 999 1 969 31 

BLUETOOTH_ADMIN 872 128 977 23 942 58 

BLUETOOTH_PRIVILEGED 996 4 1000 0 999 1 

BIND_TEXT_SERVICE 1000 0 1000 0 1000 0 

MANAGE_DOCUMENTS 967 33 1000 0 997 3 

BIND_VR_LISTENER_SERVICE 1000 0 1000 0 1000 0 

SET_WALLPAPER 951 49 811 189 936 64 

WAKE_LOCK 141 859 425 575 603 397 

WRITE_CALENDAR 949 51 987 13 964 36 

BIND_SCREENING_SERVICE 999 1 1000 0 1000 0 

BIND_AUTOFILL_SERVICE 996 4 1000 0 1000 0 
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REQUEST_INSTALL_PACKAGES 963 37 1000 0 1000 0 

SET_PREFERRED_APPLICATION

S 
999 1 981 19 999 1 

NFC 927 73 1000 0 969 31 

CALL_PHONE 895 105 923 77 865 135 

BIND_PRINT_SERVICE 1000 0 1000 0 1000 0 

INTERNET 16 984 19 981 39 961 

BIND_VPN_SERVICE 982 18 1000 0 997 3 

READ_SMS 917 83 778 222 800 200 

ANSWER_PHONE_CALLS 997 3 1000 0 1000 0 

MEDIA_CONTENT_CONTROL 978 22 1000 0 999 1 

BROADCAST_PACKAGE_REMO

VED 
999 1 998 2 998 2 

BIND_VISUAL_VOICEMAIL_SER

VICE 
998 2 1000 0 1000 0 

BIND_NOTIFICATION_LISTENER

_SERVICE 
953 47 1000 0 989 11 

REORDER_TASKS 980 20 999 1 963 37 

MODIFY_AUDIO_SETTINGS 893 107 981 19 941 59 

READ_PHONE_STATE 669 331 88 912 342 658 

WRITE_SETTINGS 860 140 889 111 828 172 

BIND_CARRIER_MESSAGING_SE

RVICE 
998 2 1000 0 1000 0 

BIND_WALLPAPER 991 9 1000 0 997 3 

DUMP 990 10 998 2 998 2 

UPDATE_DEVICE_STATS 1000 0 987 13 993 7 

SEND_SMS 935 65 637 363 772 228 

ACCESS_COARSE_LOCATION 643 357 520 480 709 291 

READ_EXTERNAL_STORAGE 464 536 980 20 581 419 

SYSTEM_ALERT_WINDOW 828 172 941 59 582 418 

CHANGE_WIFI_MULTICAST_ST

ATE 
938 62 998 2 959 41 

BIND_MIDI_DEVICE_SERVICE 999 1 1000 0 1000 0 

EXPAND_STATUS_BAR 975 25 996 4 960 40 

WRITE_APN_SETTINGS 995 5 953 47 955 45 

BIND_TV_INPUT 1000 0 1000 0 1000 0 

SET_ALARM 998 2 1000 0 1000 0 

WRITE_CONTACTS 931 69 970 30 928 72 

PROCESS_OUTGOING_CALLS 966 34 963 37 904 96 

RECEIVE_BOOT_COMPLETED 502 498 454 546 658 342 

MODIFY_PHONE_STATE 989 11 984 16 964 36 

BIND_TELECOM_CONNECTION_

SERVICE 
998 2 1000 0 1000 0 
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RECEIVE_MMS 968 32 981 19 955 45 

GET_TASKS 882 118 853 147 617 383 

READ_INPUT_STATE 1000 0 999 1 1000 0 

READ_CALL_LOG 945 55 1000 0 938 62 

READ_SYNC_STATS 948 52 999 1 969 31 

CAPTURE_AUDIO_OUTPUT 998 2 1000 0 997 3 

REQUEST_COMPANION_RUN_IN

_BACKGROUND 
1000 0 1000 0 1000 0 

RECEIVE_WAP_PUSH 996 4 982 18 956 44 

MOUNT_UNMOUNT_FILESYSTE

MS 
976 24 960 40 745 255 

REQUEST_COMPANION_USE_D

ATA_IN_BACKGROUND 
1000 0 1000 0 1000 0 

ACCESS_WIFI_STATE 414 586 470 530 505 495 

INSTANT_APP_FOREGROUND_S

ERVICE 
1000 0 1000 0 1000 0 

ACCESS_FINE_LOCATION 604 396 359 641 717 283 

BIND_DREAM_SERVICE 992 8 1000 0 1000 0 

ACCESS_NETWORK_STATE 37 963 227 773 386 614 

BROADCAST_WAP_PUSH 977 23 999 1 975 25 

BODY_SENSORS 996 4 1000 0 972 28 

DIAGNOSTIC 999 1 999 1 984 16 

STATUS_BAR 992 8 999 1 998 2 

READ_LOGS 946 54 678 322 893 107 

BLUETOOTH 794 206 972 28 915 85 

READ_FRAME_BUFFER 998 2 999 1 997 3 

INSTALL_SHORTCUT 993 7 1000 0 999 1 

SET_PROCESS_LIMIT 998 2 999 1 1000 0 

WRITE_VOICEMAIL 1000 0 1000 0 1000 0 

CAPTURE_VIDEO_OUTPUT 995 5 1000 0 998 2 

TRANSMIT_IR 998 2 1000 0 972 28 

CHANGE_NETWORK_STATE 897 103 933 67 794 206 

WRITE_SYNC_SETTINGS 877 123 986 14 965 35 

ACCOUNT_MANAGER 998 2 999 1 972 28 

LOCATION_HARDWARE 997 3 1000 0 1000 0 

BIND_ACCESSIBILITY_SERVICE 957 43 1000 0 972 28 

GET_ACCOUNTS 561 439 753 247 806 194 

RECEIVE_SMS 907 93 837 163 758 242 

MOUNT_FORMAT_FILESYSTEM

S 
999 1 998 2 1000 0 

DELETE_CACHE_FILES 999 1 941 59 998 2 

WRITE_EXTERNAL_STORAGE 219 781 275 725 268 732 

BIND_CHOOSER_TARGET_SERV 973 27 1000 0 1000 0 
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ICE 

MANAGE_OWN_CALLS 1000 0 1000 0 1000 0 

REBOOT 996 4 996 4 997 3 

INSTALL_PACKAGES 563 437 912 88 935 65 

SET_DEBUG_APP 999 1 999 1 995 5 

INSTALL_LOCATION_PROVIDER 1000 0 999 1 1000 0 

SET_ANIMATION_SCALE 1000 0 999 1 998 2 

READ_CONTACTS 734 266 357 643 836 164 

BROADCAST_SMS 966 34 999 1 960 40 
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Appendix 4 – Permissions’ Chi Square Test 

 

Next table shows the relation between,  𝑋2 test score on both analyzed cases 

(Legitimate vs. Old Malware and Legitimate vs. New Malware) and degree of rejection 

of null hypothesis (green coloured), if applied, or not (red coloured). If statistic could 

not be calculated (not enough data to statistic test), null value is indicated (orange 

coloured).   

 

Permission 
Legitimate vs. 

Old Malware 

Reject Null 

Hypothesis 

Legitimate vs. 

New Malware 

Reject Null 

Hypothesis 

ADD_VOICEMAIL null null null null 

USE_SIP 4.008016032 0.045284408 19.2571367 1.1424E-05 

ACCESS_NOTIFICATION_POLICY  null null null null 

CAMERA 136.2542391 1.7555E-31 81.563334 1.6973E-19 

REQUEST_DELETE_PACKAGES null null null null 

BIND_CONDITION_PROVIDER_ 

SERVICE 
null null null null 

BIND_QUICK_SETTINGS_TILE 35.62340967 2.39393E-09 35.6234097 2.3939E-09 

MASTER_CLEAR 0.333834084 0.563410114 2.002002 0.1570916 

BIND_DEVICE_ADMIN 22.24469161 2.40021E-06 92.4685641 6.8403E-22 

GET_ACCOUNTS_PRIVILEGED 5.012531328 0.025164486 5.01253133 0.02516449 

READ_SYNC_SETTINGS 110.6158851 7.18217E-26 51.7551997 6.287E-13 

FACTORY_TEST 3.00450676 0.083033246 null null 

SET_ALWAYS_FINISH 1.00050025 0.317189492 1.00050025 0.31718949 

READ_CALENDAR 68.76034913 1.11186E-16 9.01369876 0.00267964 

BIND_CARRIER_SERVICES 3.00450676 0.083033246 3.00450676 0.08303325 

CHANGE_CONFIGURATION 0.113147771 0.736588514 92.5324675 6.6229E-22 

SET_TIME 1.00050025 0.317189492 1.00200401 0.31682608 

PERSISTENT_ACTIVITY 0.668672685 0.413514753 23.8863677 1.0219E-06 

USE_FINGERPRINT 132.196162 1.35542E-30 63.8732302 1.3269E-15 

GET_PACKAGE_SIZE 32.82051282 1.01073E-08 1.05263158 0.30490179 

ACCESS_LOCATION_EXTRA_ 

COMMANDS 115.0720962 7.58877E-27 23.6208167 1.1731E-06 

CONTROL_LOCATION_UPDATES 3.00450676 0.083033246 1.00050025 0.31718949 
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SEND_RESPOND_VIA_MESSAGE 21.22283982 4.08863E-06 1.42493639 0.2325926 

CLEAR_APP_CACHE 5.606009642 0.017898978 21.769032 3.0752E-06 

BIND_INPUT_METHOD 14.35138468 0.000151668 11.9556843 0.00054481 

WRITE_GSERVICES 1.00050025 0.317189492 1.00050025 0.31718949 

SIGNAL_PERSISTENT_PROCESSES 1.00050025 0.317189492 5.01253133 0.02516449 

BIND_VOICE_INTERACTION null null null null 

BIND_REMOTEVIEWS 124.2697823 7.35343E-29 118.165288 1.5952E-27 

BATTERY_STATS 1.018329939 0.31291548 14.3695097 0.00015022 

READ_VOICEMAIL null null null null 

SET_WALLPAPER_HINTS 1.818181818 0.177529852 16.5343915 4.7776E-05 

BIND_NFC_SERVICE 6.018054162 0.014160251 6.01805416 0.01416025 

REQUEST_IGNORE_BATTERY_ 

OPTIMIZATION 26.34245187 2.85934E-07 16.3790186 5.1856E-05 

RESTART_PACKAGES 43.75561715 3.72047E-11 61.8251399 3.7535E-15 

CALL_PRIVILEGED 1.002004008 0.316826082 4.60365415 0.03190389 

CAPTURE_SECURE_VIDEO_OUTPUT 1.00050025 0.317189492 0.33383408 0.56341011 

DISABLE_KEYGUARD 0.046538685 0.829199566 6.51361023 0.0107052 

DELETE_PACKAGES 10.96446701 0.000928757 32.5803607 1.1436E-08 

CHANGE_COMPONENT_ENABLED_ 

STATE 7.404360346 0.006506597 4.51807229 0.0335386 

BIND_APPWIDGET 0.668672685 0.413514753 17.3331804 3.1366E-05 

RECORD_AUDIO 106.0709376 7.11424E-25 7.91945233 0.00489061 

READ_PHONE_NUMBERS null null null null 

VIBRATE 27.22604182 1.81004E-07 235.2 4.3789E-53 

WRITE_SECURE_SETTINGS 0.341530055 0.558947374 1.48726529 0.22264125 

UNINSTALL_SHORTCUT null null null null 

WRITE_CALL_LOG 30.45685279 3.41375E-08 2.0746888 0.14976048 

ACCESS_CHECKIN_PROPERTIES 2.002002002 0.157091601 2.002002 0.1570916 

PACKAGE_USAGE_STATS 50.23065095 1.36696E-12 0.09384825 0.75934075 

GLOBAL_SEARCH 4.518072289 0.0335386 7.02458605 0.00803981 

CHANGE_WIFI_STATE 63.93534858 1.2857E-15 3.73980643 0.0531306 

BROADCAST_STICKY 38.17928841 6.45338E-10 0.85975652 0.35380684 

KILL_BACKGROUND_PROCESSES 13.16466668 0.000285278 26.9396552 2.0991E-07 

BIND_INCALL_SERVICE 3.00450676 0.083033246 3.00450676 0.08303325 

SET_TIME_ZONE 1.00050025 0.317189492 31.488065 2.0067E-08 

BLUETOOTH_ADMIN 78.97592756 6.28714E-19 29.0452988 7.0705E-08 

BLUETOOTH_PRIVILEGED 4.008016032 0.045284408 1.80451128 0.17916806 

BIND_TEXT_SERVICE null null null null 

MANAGE_DOCUMENTS 33.55363498 6.93257E-09 25.4582485 4.5206E-07 

BIND_VR_LISTENER_SERVICE null null null null 

SET_WALLPAPER 93.47666422 4.11018E-22 2.11038733 0.14630228 

WAKE_LOCK 198.747234 3.91938E-45 456.826587 2.358E-101 

WRITE_CALENDAR 23.30836777 1.37998E-06 2.70382321 0.10010793 
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BIND_SCREENING_SERVICE 1.00050025 0.317189492 1.00050025 0.31718949 

BIND_AUTOFILL_SERVICE 4.008016032 0.045284408 4.00801603 0.04528441 

REQUEST_INSTALL_PACKAGES 37.69740194 8.26145E-10 37.6974019 8.2615E-10 

SET_PREFERRED_APPLICATIONS 16.36363636 5.22787E-05 0 1 

NFC 75.76543851 3.19444E-18 17.8919182 2.3381E-05 

CALL_PHONE 4.738935432 0.029487313 4.26136364 0.03898861 

BIND_PRINT_SERVICE null null null null 

INTERNET 0.26172301 0.608938888 9.89016125 0.00166165 

BIND_VPN_SERVICE 18.16347124 2.0273E-05 10.8279795 0.00099978 

READ_SMS 74.74636104 5.35243E-18 56.3436514 6.0849E-14 

ANSWER_PHONE_CALLS 3.00450676 0.083033246 3.00450676 0.08303325 

MEDIA_CONTENT_CONTROL 22.24469161 2.40021E-06 19.3969783 1.0617E-05 

BROADCAST_PACKAGE_ 

REMOVED 0.333834084 0.563410114 0.33383408 0.56341011 

BIND_VISUAL_VOICEMAIL_ 

SERVICE 2.002002002 0.157091601 2.002002 0.1570916 

BIND_NOTIFICATION_LISTENER_ 

SERVICE 48.13108039 3.98657E-12 23.0121808 1.6098E-06 

REORDER_TASKS 17.37289155 3.07176E-05 5.2189145 0.02234249 

MODIFY_AUDIO_SETTINGS 65.59265471 5.5445E-16 15.1357885 0.00010005 

READ_PHONE_STATE 717.4890085 4.7062E-158 213.88388 1.9523E-48 

WRITE_SETTINGS 3.831443807 0.050299587 3.88868635 0.04861243 

BIND_CARRIER_MESSAGING_ 

SERVICE 2.002002002 0.157091601 2.002002 0.1570916 

BIND_WALLPAPER 9.040683074 0.00264037 3.01810865 0.08233944 

DUMP 5.365526492 0.020538587 5.36552649 0.02053859 

UPDATE_DEVICE_STATS 13.08505284 0.000297661 7.02458605 0.00803981 

SEND_SMS 263.9770755 2.33149E-59 106.243914 6.5196E-25 

ACCESS_COARSE_LOCATION 31.08386727 2.47117E-08 9.94411571 0.00161364 

READ_EXTERNAL_STORAGE 663.2655095 2.9118E-146 27.4335529 1.6259E-07 

SYSTEM_ALERT_WINDOW 62.49525865 2.67087E-15 145.48864 1.6793E-33 

CHANGE_WIFI_MULTICAST_STATE 58.10950413 2.47926E-14 4.51402572 0.03361803 

BIND_MIDI_DEVICE_SERVICE 1.00050025 0.317189492 1.00050025 0.31718949 

EXPAND_STATUS_BAR 15.43064084 8.55892E-05 3.57781753 0.05855603 

WRITE_APN_SETTINGS 34.82862107 3.60041E-09 32.8205128 1.0107E-08 

BIND_TV_INPUT null null null null 

SET_ALARM 2.002002002 0.157091601 2.002002 0.1570916 

WRITE_CONTACTS 16.16374157 5.80956E-05 0.0686711 0.79328157 

PROCESS_OUTGOING_CALLS 0.131426193 0.716957872 31.6248457 1.8702E-08 

RECEIVE_BOOT_COMPLETED 4.616938393 0.031657696 49.9507389 1.5765E-12 

MODIFY_PHONE_STATE 0.938596985 0.332638923 13.6178928 0.00022404 

BIND_TELECOM_CONNECTION_ 

SERVICE 2.002002002 0.157091601 2.002002 0.1570916 
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RECEIVE_MMS 3.400436624 0.065179164 2.28268871 0.1308249 

GET_TASKS 3.65831113 0.055790158 187.017559 1.4235E-42 

READ_INPUT_STATE 1.00050025 0.317189492 null null 

READ_CALL_LOG 56.55526992 5.46408E-14 0.44482572 0.50480243 

READ_SYNC_STATS 50.41137308 1.2467E-12 5.54329996 0.01855157 

CAPTURE_AUDIO_OUTPUT 2.002002002 0.157091601 0.20050125 0.65431655 

REQUEST_COMPANION_RUN_IN 

_BACKGROUND 
null null null null 

RECEIVE_WAP_PUSH 9.008180899 0.002687738 34.1530055 5.0944E-09 

MOUNT_UNMOUNT_ 

FILESYSTEMS 4.132231405 0.042073838 222.263875 2.9013E-50 

REQUEST_COMPANION_USE_ 

DATA_IN_BACKGROUND 
null null null null 

ACCESS_WIFI_STATE 6.357547155 0.011688302 16.6713809 4.4446E-05 

INSTANT_APP_FOREGROUND_ 

SERVICE 
null null null null 

ACCESS_FINE_LOCATION 120.2145738 5.67751E-28 28.4717585 9.5075E-08 

BIND_DREAM_SERVICE 8.032128514 0.00459548 8.03212851 0.00459548 

ACCESS_NETWORK_STATE 157.5373551 3.906E-36 365.181517 2.0958E-81 

BROADCAST_WAP_PUSH 20.41160594 6.24499E-06 0.08538251 0.77013152 

BODY_SENSORS 4.008016032 0.045284408 18.2926829 1.8943E-05 

DIAGNOSTIC 0 1 13.3487586 0.00025859 

STATUS_BAR 5.469055193 0.019356087 3.61809045 0.05715444 

READ_LOGS 235.2478776 4.27487E-53 18.9746655 1.3247E-05 

BLUETOOTH 153.3428193 3.22367E-35 58.879713 1.6761E-14 

READ_FRAME_BUFFER 0.333834084 0.563410114 0.20050125 0.65431655 

INSTALL_SHORTCUT 7.024586051 0.008039805 4.51807229 0.0335386 

SET_PROCESS_LIMIT 0.333834084 0.563410114 2.002002 0.1570916 

WRITE_VOICEMAIL null null null null 

CAPTURE_VIDEO_OUTPUT 5.012531328 0.025164486 1.29023009 0.25600555 

TRANSMIT_IR 2.002002002 0.157091601 22.8764805 1.7275E-06 

CHANGE_NETWORK_STATE 8.331726133 0.003895862 40.6071358 1.8613E-10 

WRITE_SYNC_SETTINGS 93.0999761 4.97183E-22 53.2167842 2.987E-13 

ACCOUNT_MANAGER 0.333834084 0.563410114 22.8764805 1.7275E-06 

LOCATION_HARDWARE 3.00450676 0.083033246 3.00450676 0.08303325 

BIND_ACCESSIBILITY_SERVICE 43.94481349 3.37766E-11 3.28565483 0.06988774 

GET_ACCOUNTS 81.79240385 1.51158E-19 138.736246 5.0301E-32 

RECEIVE_SMS 21.95025803 2.79809E-06 79.6055757 4.5713E-19 

MOUNT_FORMAT_FILESYSTEMS 0.333834084 0.563410114 1.00050025 0.31718949 

DELETE_CACHE_FILES 57.80068729 2.90068E-14 0.33383408 0.56341011 

WRITE_EXTERNAL_STORAGE 8.430515455 0.003689757 6.51709822 0.01068422 

BIND_CHOOSER_TARGET_ 

SERVICE 27.36948809 1.68062E-07 27.3694881 1.6806E-07 
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MANAGE_OWN_CALLS null null null null 

REBOOT 0 1 0.1433589 0.70496438 

INSTALL_PACKAGES 314.5788539 2.19672E-70 368.044511 4.9885E-82 

SET_DEBUG_APP 0 1 2.67469074 0.10195513 

INSTALL_LOCATION_ 

PROVIDER 
1.00050025 0.317189492 null null 

SET_ANIMATION_SCALE 1.00050025 0.317189492 2.002002 0.1570916 

READ_CONTACTS 286.6315962 2.69473E-64 30.8221004 2.828E-08 

BROADCAST_SMS 31.66848419 1.82866E-08 0.50517808 0.47723371 
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Appendix 5 – System calls’ Fisher Score values 

Next table shows Fisher Score (F) values for each of the system calls gathered (212 

different system calls). As all F values were relatively lower, F values over 0.15 were 

selected for the model as most discriminative features (highlighted in green).  

 

Feature 
Legitimate vs. 

Old Malware Dataset 

Legitimate vs.  

New Malware Dataset 

System Call Fisher Score Fisher Score 

sched_get_priority_min 0.001002 0.001002 

Lseek 0.00432 0.000246 

Pipe 0.001002 0.001002 

epoll_ctl 0.022145 0.034015 

rt_sigtimedwait 0.0 0.0 

Setfsuid 0.0 0.0 

Tee 0.0 0.0 

Uname 0.001146 0.001367 

Kill 0.000501 0.0 

Swapoff 0.0 0.0 

Readahead 0.0 0.0 

clock_getres 0.002513 0.002513 

Preadv 0.0 0.0 

setresgid32 0.0 0.0 

Gettid 0.000605 0.000605 

Sethostname 0.0 0.0 

timer_delete 0.0 0.0 

Umask 0.001475 0.001475 

sched_getaffinity 0.0 0.0 

Writev 0.000297 0.030974 

sched_setparam 0.0 0.0 

Fchmod 0.006586 0.018156 

_llseek 0.018914 0.013497 

Getpid 0.000619 0.002673 

setreuid32 0.0 0.0 

signalfd4 0.0 0.0 

epoll_wait 0.000501 0.000501 

capset 0.0 0.0 
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personality 0.0 0.0 

delete_module 0.0 0.0 

dup3 0.0 0.0 

sched_setaffinity 0.0 0.0 

Read 0.029663 0.000865 

Getppid 0.215594 0.011583 

getgid32 0.0 0.0 

Capget 0.0 0.0 

getgroups32 0.0 0.0 

Readlinkat 0.688957 0.586918 

sched_rr_get_interval 0.0 0.0 

Setfsgid 0.0 0.0 

Renameat 7.3e-05 0.001886 

Fsync 0.000138 0.002351 

geteuid32 0.00024 0.022809 

Unshare 0.0 0.0 

epoll_pwait 0.017214 0.090745 

Recvfrom 0.181365 0.062184 

sched_get_priority_max 0.001002 0.001002 

Symlinkat 0.0 0.0 

Settimeofday 0.0 0.0 

timer_create 0.0 0.0 

Sendto 0.19443 0.0743 

Mkdirat 0.050058 0.026801 

Lgetxattr 0.0 0.0 

Linkat 0.0 0.0 

Shutdown 0.0 0.001002 

epoll_create1 0.22842 0.004416 

getresuid32 0.0 0.0 

Adjtimex 0.0 0.0 

Sync 0.0 0.0 

Syslog 0.0 0.0 

Fchownat 0.0 0.0 

setgid32 0.0 0.0 

setregid32 0.0 0.0 

fadvise64_64 0.0 0.0 

Getsockname 1.7e-05 1.9e-05 

Close 0.173597 0.133066 

Flock 0.003877 1.4e-05 

Lsetxattr 0.0 0.0 

Pwritev 0.0 0.0 

llistxattr 0.0 0.0 

tgkill 0.0 0.001002 
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getegid32 0.0 0.0 

pselect6 0.0 0.0 

rt_sigprocmask 0.244162 0.028797 

accept4 0.0 0.0 

reboot 0.0 0.0 

fremovexattr 0.0 0.0 

setgroups32 0.0 0.0 

setsid 0.0 0.0 

exit 0.0 0.0 

timerfd_create 0.0 0.0 

sigaltstack 0.228204 0.205009 

inotify_rm_watch 0.0 0.0 

munmap 0.749835 0.569562 

socketpair 0.000501 0.00316 

setrlimit 0.000501 0.0 

getitimer 0.0 0.0 

fchmodat 0.000577 0.007452 

setpgid 0.0 0.0 

getrandom 0.004041 0.004041 

getcwd 0.003793 0.003793 

fstatfs64 0.000902 0.000902 

fstatat64 2.5e-05 0.002523 

rt_sigsuspend 0.0 0.0 

inotify_add_watch 0.01944 0.006394 

getresgid32 0.0 0.0 

timer_settime 0.0 0.0 

fchdir 0.0 0.0 

timer_gettime 0.0 0.0 

getpeername 0.0 0.0 

sigaction 0.290309 0.302836 

getsid 0.0 0.0 

mknodat 0.003674 0.003674 

setsockopt 8e-06 0.000546 

munlockall 0.0 0.0 

msync 0.002117 0.002117 

process_vm_readv 0.0 0.0 

pipe2 0.004685 6.9e-05 

set_thread_area 0.0 0.000501 

times 0.0 0.0 

prlimit64 0.0 0.0 

pwrite64 0.00156 0.028428 

vfork 0.001743 0.000785 

nanosleep 0.001047 0.001047 
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sendmsg 0.004202 0.004032 

clone 0.2067 0.144596 

flistxattr 0.0 0.0 

getcpu 0.0 0.0 

splice 0.0 0.0 

rt_sigaction 0.000501 0.000501 

clock_gettime 0.839286 1.106283 

ugetrlimit 0.001913 0.020537 

umount2 0.0 0.0 

rt_sigreturn 0.0 0.000641 

rt_sigpending 0.0 0.0 

setxattr 0.0 0.0 

getpgid 0.0 0.0 

brk 0.0 0.0 

fsetxattr 0.0 0.0 

acct 0.0 0.0 

clock_settime 0.0 0.0 

getsockopt 0.002224 3e-06 

exit_group 0.0 0.0 

getpriority 0.038071 0.038071 

listxattr 0.0 0.0 

sysinfo 0.0 0.0 

removexattr 0.0 0.0 

faccessat 0.052051 0.045545 

dup 0.010601 0.003208 

fdatasync 3e-06 0.020859 

setns 0.0 0.0 

mprotect 0.122002 0.194523 

listen 0.001894 0.001894 

fchown32 0.0 0.0 

getuid32 0.005198 0.072634 

init_module 0.0 0.0 

sched_yield 0.007319 0.000724 

statfs64 0.000117 0.021252 

ftruncate64 0.011447 0.009486 

fgetxattr 0.0 0.0 

ptrace 0.0 0.0 

vmsplice 0.0 0.0 

fcntl64 0.000439 0.023472 

swapon 0.0 0.0 

fallocate 0.0 0.0 

execve 0.0 0.0 

socket 0.049884 0.045093 
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wait4 0.000501 0.04142 

chdir 0.000501 0.000501 

madvise 0.541898 0.475477 

fstat64 0.046783 0.011793 

mount 0.0 0.0 

timerfd_gettime 0.0 0.0 

rt_sigqueueinfo 0.0 0.0 

getrusage 0.0 0.0 

timerfd_settime 0.0 0.0 

sched_setscheduler 0.003581 0.003581 

utimensat 0.0 0.001359 

bind 0.002055 0.002055 

eventfd2 0.219313 0.006673 

connect 0.673586 0.518975 

getdents64 0.154697 0.00188 

readv 0.0 0.0 

mremap 0.002962 0.002962 

pread64 0.00516 0.000385 

setuid32 0.0 0.0 

prctl 0.614407 0.532513 

stat64 0.00099 0.00099 

recvmmsg 0.0 0.0 

chroot 0.000501 0.000501 

sched_getparam 0.001002 0.001002 

truncate64 0.0 0.0 

setresuid32 0.0 0.0 

write 0.007722 0.009752 

munlock 0.001505 0.001505 

setpriority 0.00017 0.011328 

recvmsg 0.0 0.0 

inotify_init1 0.020383 0.006626 

mincore 0.0 0.0 

sendfile 0.0 0.0 

sendmmsg 0.0 0.0 

timer_getoverrun 0.0 0.0 

restart_syscall 0.001002 0.005051 

truncate 0.0 0.0 

lremovexattr 0.0 0.0 

openat 0.216978 0.164596 

waitid 0.0 0.0 

getxattr 0.0 0.0 

sched_getscheduler 0.001505 0.001505 

ioctl 0.000202 0.00734 
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clock_nanosleep 0.0 0.0 

unlinkat 0.000207 0.000508 

clock_adjtime 0.0 0.0 

set_tid_address 0.0 0.0 

setitimer 0.0 0.0 

gettimeofday 0.061082 0.092552 

futex 0.300894 0.007721 

mmap2 0.63051 0.473747 

sendfile64 0.0 0.0 

mlockall 0.0 0.0 

ppoll 0.305315 0.249381 

mlock 0.001189 0.001189 
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Appendix 6 – Permissions’ Gini Index values 

Next table shows Gini Index (G) values for each of the permissions gathered (147 

different permissions). As all G were relatively high, G values under 0.47 were selected 

for the model as most discriminative features (highlighted in green).  

 

Feature 
Legitimate vs. 

Old Malware Dataset 

Legitimate vs.  

New Malware Dataset 

Permission Gini Index Gini Index 

ADD_VOICEMAIL 0.5 0.5 

USE_SIP 0.498998 0.495186 

ACCESS_NOTIFICATION_POLICY  0.5 0.5 

CAMERA 0.465936 0.479609 

REQUEST_DELETE_PACKAGES 0.5 0.5 

BIND_CONDITION_PROVIDER_SERVICE 0.5 0.5 

BIND_QUICK_SETTINGS_TILE 0.491094 0.491094 

MASTER_CLEAR 0.499917 0.499499 

BIND_DEVICE_ADMIN 0.494439 0.476883 

GET_ACCOUNTS_PRIVILEGED 0.498747 0.498747 

READ_SYNC_SETTINGS 0.472346 0.487061 

FACTORY_TEST 0.499249 0.5 

SET_ALWAYS_FINISH 0.49975 0.49975 

READ_CALENDAR 0.48281 0.497747 

BIND_CARRIER_SERVICES 0.499249 0.499249 

CHANGE_CONFIGURATION 0.499972 0.476867 

SET_TIME 0.49975 0.499749 

PERSISTENT_ACTIVITY 0.499833 0.494028 

USE_FINGERPRINT 0.466951 0.484032 

GET_PACKAGE_SIZE 0.491795 0.499737 

ACCESS_LOCATION_EXTRA_COMMANDS 0.471232 0.494095 

CONTROL_LOCATION_UPDATES 0.499249 0.49975 

SEND_RESPOND_VIA_MESSAGE 0.494694 0.499644 

CLEAR_APP_CACHE 0.498598 0.494558 

BIND_INPUT_METHOD 0.496412 0.497011 

WRITE_GSERVICES 0.49975 0.49975 

SIGNAL_PERSISTENT_PROCESSES 0.49975 0.498747 

BIND_VOICE_INTERACTION 0.5 0.5 



124 

BIND_REMOTEVIEWS 0.468933 0.470459 

BATTERY_STATS 0.499745 0.496408 

READ_VOICEMAIL 0.5 0.5 

SET_WALLPAPER_HINTS 0.499545 0.495866 

BIND_NFC_SERVICE 0.498495 0.498495 

REQUEST_IGNORE_BATTERY_OPTIMIZATIONS 0.493414 0.495905 

RESTART_PACKAGES 0.489061 0.484544 

CALL_PRIVILEGED 0.499749 0.498849 

CAPTURE_SECURE_VIDEO_OUTPUT 0.49975 0.499917 

DISABLE_KEYGUARD 0.499988 0.498372 

DELETE_PACKAGES 0.497259 0.491855 

CHANGE_COMPONENT_ENABLED_STATE 0.498149 0.49887 

BIND_APPWIDGET 0.499833 0.495667 

RECORD_AUDIO 0.473482 0.49802 

READ_PHONE_NUMBERS 0.5 0.5 

VIBRATE 0.493193 0.4412 

WRITE_SECURE_SETTINGS 0.499915 0.499628 

UNINSTALL_SHORTCUT 0.5 0.5 

WRITE_CALL_LOG 0.492386 0.499481 

ACCESS_CHECKIN_PROPERTIES 0.499499 0.499499 

PACKAGE_USAGE_STATS 0.487442 0.499977 

GLOBAL_SEARCH 0.49887 0.498244 

CHANGE_WIFI_STATE 0.484016 0.499065 

BROADCAST_STICKY 0.490455 0.499785 

KILL_BACKGROUND_PROCESSES 0.496709 0.493265 

BIND_INCALL_SERVICE 0.499249 0.499249 

SET_TIME_ZONE 0.49975 0.492128 

BLUETOOTH_ADMIN 0.480256 0.492739 

BLUETOOTH_PRIVILEGED 0.498998 0.499549 

BIND_TEXT_SERVICE 0.5 0.5 

MANAGE_DOCUMENTS 0.491612 0.493635 

BIND_VR_LISTENER_SERVICE 0.5 0.5 

SET_WALLPAPER 0.476631 0.499472 

WAKE_LOCK 0.450313 0.385793 

WRITE_CALENDAR 0.494173 0.499324 

BIND_SCREENING_SERVICE 0.49975 0.49975 

BIND_AUTOFILL_SERVICE 0.498998 0.498998 

REQUEST_INSTALL_PACKAGES 0.490576 0.490576 

SET_PREFERRED_APPLICATIONS 0.495909 0.5 

NFC 0.481059 0.495527 

CALL_PHONE 0.498815 0.498935 

BIND_PRINT_SERVICE 0.5 0.5 

INTERNET 0.499935 0.497527 
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BIND_VPN_SERVICE 0.495459 0.497293 

READ_SMS 0.481313 0.485914 

ANSWER_PHONE_CALLS 0.499249 0.499249 

MEDIA_CONTENT_CONTROL 0.494439 0.495151 

BROADCAST_PACKAGE_REMOVED 0.499917 0.499917 

BIND_VISUAL_VOICEMAIL_SERVICE 0.499499 0.499499 

BIND_NOTIFICATION_LISTENER_SERVICE 0.487967 0.494247 

REORDER_TASKS 0.495657 0.498695 

MODIFY_AUDIO_SETTINGS 0.483602 0.496216 

READ_PHONE_STATE 0.320628 0.446529 

WRITE_SETTINGS 0.499042 0.499028 

BIND_CARRIER_MESSAGING_SERVICE 0.499499 0.499499 

BIND_WALLPAPER 0.49774 0.499245 

DUMP 0.498659 0.498659 

UPDATE_DEVICE_STATS 0.496729 0.498244 

SEND_SMS 0.434006 0.473439 

ACCESS_COARSE_LOCATION 0.492229 0.497514 

READ_EXTERNAL_STORAGE 0.334184 0.493142 

SYSTEM_ALERT_WINDOW 0.484376 0.463628 

CHANGE_WIFI_MULTICAST_STATE 0.485473 0.498871 

BIND_MIDI_DEVICE_SERVICE 0.49975 0.49975 

EXPAND_STATUS_BAR 0.496142 0.499106 

WRITE_APN_SETTINGS 0.491293 0.491795 

BIND_TV_INPUT 0.5 0.5 

SET_ALARM 0.499499 0.499499 

WRITE_CONTACTS 0.495959 0.499983 

PROCESS_OUTGOING_CALLS 0.499967 0.492094 

RECEIVE_BOOT_COMPLETED 0.498846 0.487512 

MODIFY_PHONE_STATE 0.499765 0.496596 

BIND_TELECOM_CONNECTION_SERVICE 0.499499 0.499499 

RECEIVE_MMS 0.49915 0.499429 

GET_TASKS 0.499085 0.453246 

READ_INPUT_STATE 0.49975 0.5 

READ_CALL_LOG 0.485861 0.499889 

READ_SYNC_STATS 0.487397 0.498614 

CAPTURE_AUDIO_OUTPUT 0.499499 0.49995 

REQUEST_COMPANION_RUN_IN_BACKGROUND 0.5 0.5 

RECEIVE_WAP_PUSH 0.497748 0.491462 

MOUNT_UNMOUNT_FILESYSTEMS 0.498967 0.444434 

REQUEST_COMPANION_USE_DATA_IN_BACKGROU

ND 

0.5 0.5 

ACCESS_WIFI_STATE 0.498411 0.495832 

INSTANT_APP_FOREGROUND_SERVICE 0.5 0.5 
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ACCESS_FINE_LOCATION 0.469946 0.492882 

BIND_DREAM_SERVICE 0.497992 0.497992 

ACCESS_NETWORK_STATE 0.460616 0.408705 

BROADCAST_WAP_PUSH 0.494897 0.499979 

BODY_SENSORS 0.498998 0.495427 

DIAGNOSTIC 0.5 0.496663 

STATUS_BAR 0.498633 0.499095 

READ_LOGS 0.441188 0.495256 

BLUETOOTH 0.461664 0.48528 

READ_FRAME_BUFFER 0.499917 0.49995 

INSTALL_SHORTCUT 0.498244 0.49887 

SET_PROCESS_LIMIT 0.499917 0.499499 

WRITE_VOICEMAIL 0.5 0.5 

CAPTURE_VIDEO_OUTPUT 0.498747 0.499677 

TRANSMIT_IR 0.499499 0.494281 

CHANGE_NETWORK_STATE 0.497917 0.489848 

WRITE_SYNC_SETTINGS 0.476725 0.486696 

ACCOUNT_MANAGER 0.499917 0.494281 

LOCATION_HARDWARE 0.499249 0.499249 

BIND_ACCESSIBILITY_SERVICE 0.489014 0.499179 

GET_ACCOUNTS 0.479552 0.465316 

RECEIVE_SMS 0.494512 0.480099 

MOUNT_FORMAT_FILESYSTEMS 0.499917 0.49975 

DELETE_CACHE_FILES 0.48555 0.499917 

WRITE_EXTERNAL_STORAGE 0.497892 0.498371 

BIND_CHOOSER_TARGET_SERVICE 0.493158 0.493158 

MANAGE_OWN_CALLS 0.5 0.5 

REBOOT 0.5 0.499964 

INSTALL_PACKAGES 0.421355 0.407989 

SET_DEBUG_APP 0.5 0.499331 

INSTALL_LOCATION_PROVIDER 0.49975 0.5 

SET_ANIMATION_SCALE 0.49975 0.499499 

READ_CONTACTS 0.428342 0.492294 

BROADCAST_SMS 0.492083 0.499874 
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Appendix 7 – System call’s model validation 

# features Legitimate vs. Old Malware Dataset Legitimate vs. New Malware Dataset 

Best feature* 

 

5-fold accuracy: 0.8695±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 265 41 306 

0 29 265 294 

 294 306 600 
 

 

5-fold accuracy: 0.8910±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 300 39 339 

0 27 234 261 

 327 273 600 
 

2 best features of L/O 

dataset** 

 

5-fold accuracy: 0.8985±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 255 31 286 

0 36 278 314 

 291 309 600 
 

 

5-fold accuracy: 0.8785±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 254 34 292 

0 38 274 308 

 288 312 600 
 

2 best features of L/N 

dataset** 

 

5-fold accuracy: 0.8985±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 283 35 318 

0 27 255 282 

 310 290 600 
 

 

5-fold accuracy: 0.8920±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 283 39 322 

0 23 255 278 

 306 294 600 
 

3 best common 

features*** 

 

5-fold accuracy: 0.9005±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 261 29 290 

0 31 279 310 

 292 308 600 
 

 

5-fold accuracy: 0.8770±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 263 32 295 

0 39 266 305 

 302 298 600 
 

6 best common 

features**** 

 

5-fold accuracy: 0.9120±0.02 

 

70-30 confusion matrix 

 

5-fold accuracy: 0.8850±0.03 

 

70-30 confusion matrix 
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Pred\True 1 0  

1 293 23 316 

0 25 259 284 

 318 282 600 
 

Pred\True 1 0  

1 259 35 294 

0 37 269 306 

 296 304 600 
 

11 common features 

 

5-fold accuracy: 0.9305±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 299 15 314 

0 24 262 286 

 323 277 600 
 

 

5-fold accuracy: 0.8905±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 282 32 314 

0 32 254 286 

 314 286 600 
 

12 features of L/N dataset 

 

5-fold accuracy: 0.9315±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 287 22 309 

0 19 272 291 

 306 294 600 
 

 

5-fold accuracy: 0.8950±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 283 29 312 

0 33 255 288 

 316 284 600 
 

21 features of L/O dataset 

 

5-fold accuracy: 0.9670±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 298 11 309 

0 10 281 291 

 308 292 600 
 

 

5-fold accuracy: 0.9065±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 261 31 292 

0 24 284 308 

 285 315 600 
 

22 features***** 

 

5-fold accuracy: 0.9660±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 303 11 314 

0 10 276 286 

 313 287 600 
 

 

5-fold accuracy: 0.9075±0.04 

 

70-30 confusion matrix 

Pred\True 1 0  

1 272 24 296 

0 36 268 304 

 308 292 600 
 

All features****** 

 

5-fold accuracy: 0.9700±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 295 7 302 

0 8 290 298 

 

5-fold accuracy: 0.9270±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 279 21 300 

0 19 281 300 



129 

 303 297 600 
 

 298 302 600 
 

*Best feature: clock_gettime 

** 2 best features: 

 - Legitimate vs. Old Malware: clock_gettime and munmap. 

 - Legitimate vs. New Malware: clock_gettime and readlinkat. 

***3 best common features: clock_gettime, readlinkat and munmap. 

****6 best common features: clock_gettime, readlinkat, munmap, connect, prctl and mmap2. 

*****21 features of L/O and mprotect. 

******All system calls gathered, without performing feature selection. 
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Appendix 8 – Permissions’ model validation 

# features Legitimate vs. Old Malware Dataset Legitimate vs. New Malware Dataset 

Best feature of L/O 

dataset* 

 

5-fold accuracy: 0.7905±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 271 98 269 

0 30 201 231 

 301 299 600 
 

 

5-fold accuracy: 0.6635±0.04 

 

70-30 confusion matrix 

Pred\True 1 0  

1 196 100 296 

0 98 206 304 

 294 306 600 
 

Best feature of L/N 

dataset** 

 

5-fold accuracy: 0.6420±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 125 46 171 

0 169 260 429 

 294 306 600 
 

 

5-fold accuracy: 0.7310±0.05 

 

70-30 confusion matrix 

Pred\True 1 0  

1 186 44 230 

0 117 253 370 

 303 297 600 
 

2 best features of L/O 

dataset*** 

 

5-fold accuracy: 0.8880±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 272 35 307 

0 36 257 293 

 308 292 600 
 

 

5-fold accuracy: 0.6635±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 192 103 295 

0 99 206 305 

 291 309 600 
 

2 best features of L/N 

dataset**** 

 

5-fold accuracy: 0.6995±0.04 

 

70-30 confusion matrix 

Pred\True 1 0  

1 278 172 450 

0 8 142 150 

 286 314 600 
 

 

5-fold accuracy: 0.7310±0.05 

 

70-30 confusion matrix 

Pred\True 1 0  

1 183 42 225 

0 119 256 375 

 302 298 600 
 

4 common features 

 

5-fold accuracy: 0.8580±0.03 

 

70-30 confusion matrix 

 

5-fold accuracy: 0.8460±0.02 

 

70-30 confusion matrix 
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Pred\True 1 0  

1 262 67 329 

0 23 248 271 

 285 315 600 
 

Pred\True 1 0  

1 281 63 344 

0 29 227 256 

 310 290 600 
 

9 features of L/N dataset 

 

5-fold accuracy: 0.8955±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 285 42 327 

0 21 252 273 

 306 294 600 
 

 

5-fold accuracy: 0.8940±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 267 25 292 

0 38 270 308 

 305 295 600 
 

13 features of L/O dataset 

 

5-fold accuracy: 0.9350±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 294 16 310 

0 20 270 290 

 314 286 600 
 

 

5-fold accuracy: 0.9065±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 296 35 331 

0 22 247 269 

 318 282 600 
 

18 features***** 

 

5-fold accuracy: 0.9410±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 284 17 301 

0 19 280 299 

 303 297 600 
 

 

5-fold accuracy: 0.9170±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 274 33 307 

0 19 274 293 

 293 307 600 
 

All features****** 

 

5-fold accuracy: 0.9505±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 281 15 296 

0 14 290 304 

 295 305 600 
 

 

5-fold accuracy: 0.9210±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 284 28 312 

0 20 268 288 

 304 296 600 
 

*READ_PHONE_STATE permission 

**WAKE_LOCK permission 

***READ_PHONE_STATE and READ_EXTERNAL_STORAGE permissions 

****WAKE_LOCK and INSTALL_PACKAGES permissions 

*****13 features of L/0 and VIBRATE, SYSTEM_ALERT_WINDOW, GET_TASKS, 

MOUNT_UNMOUN_FILESYSTEMS, GET_ACCOUNTS. 

******All permissions, without performing feature selection. 
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Appendix 9 – Hybrid model validation 

# features Legitimate vs. Old Malware Dataset Legitimate vs. New Malware Dataset 

Best system call + best 

permission L/O* 

 

5-fold accuracy: 0.8965±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 278 50 338 

0 10 262 272 

 288 312 600 
 

 

5-fold accuracy: 0.9070±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 274 37 311 

0 17 272 289 

 291 309 600 
 

Best system call + best 

permission L/N** 

 

5-fold accuracy: 0.8800±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 294 48 342 

0 23 235 258 

 317 283 600 
 

 

5-fold accuracy: 0.8900±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 293 45 338 

0 23 239 262 

 316 284 600 
 

2 best system calls L/O + 

2 best permissions L/O 

dataset*** 

 

5-fold accuracy: 0.9450±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 302 19 321 

0 15 264 279 

 317 283 600 
 

 

5-fold accuracy: 0.8990±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 272 35 307 

0 25 268 293 

 297 303 600 
 

2 best system calls L/N + 

2 best permissions L/N 

dataset**** 

 

5-fold accuracy: 0.9035±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 286 36 322 

0 21 257 278 

 307 293 600 
 

 

5-fold accuracy: 0.8950±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 269 40 309 

0 23 268 291 

 292 308 600 
 

All common system calls 

and permissions 

 

5-fold accuracy: 0.9505±0.02 

 

70-30 confusion matrix 

 

5-fold accuracy: 0.9210±0.02 

 

70-30 confusion matrix 
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Pred\True 1 0  

1 284 16 300 

0 14 286 300 

 298 302 600 
 

Pred\True 1 0  

1 278 31 309 

0 17 274 291 

 295 305 600 
 

22 system calls + 18 

permissions 

 

5-fold accuracy: 0.9740±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 308 7 315 

0 5 280 285 

 313 287 600 
 

 

5-fold accuracy: 0.9390±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 277 22 299 

0 14 287 301 

 291 309 600 
 

All features (212+147) 

 

5-fold accuracy: 0.9765±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 311 9 320 

0 7 273 280 

 318 282 600 
 

 

5-fold accuracy: 0.9400±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 273 21 294 

0 18 288 306 

 291 309 600 
 

*clock_gettime system call and READ_PHONE_STATE permission 

**clock_gettime system call and WAKE_LOCK permission 

***clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE 

permissions. 

****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions. 
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Appendix 10 – Malware discrimination model validation 

# features New vs. Old Malware Dataset 

Best system call* 

 

5-fold accuracy: 0.6460±0.05 

 

70-30 confusion matrix 

Pred\True 1 0  

1 91 15 106 

0 197 297 494 

 288 312 600 
 

Best permission of L/O dataset** 

 

5-fold accuracy: 0.6270±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 274 197 471 

0 28 101 129 

 302 298 600 
 

Best permission of L/N dataset*** 

 

5-fold accuracy: 0.5890±0.04 

 

70-30 confusion matrix 

Pred\True 1 0  

1 184 113 297 

0 127 176 303 

 311 289 600 
 

2 best system calls L/O + 2 best permissions L/O dataset**** 

 

5-fold accuracy: 0.7825±0.05 

 

70-30 confusion matrix 

Pred\True 1 0  

1 259 79 338 

0 51 211 262 

 310 290 600 
 

2 best system calls L/N + 2 best permissions L/N dataset***** 

 

5- fold accuracy: 0.7720±0.03 

 

70-30 confusion matrix 
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Pred\True 1 0  

1 235 79 314 

0 55 231 286 

 290 310 600 
 

Common system calls (11) 

 

5-fold accuracy: 0.8175±0.05 

 

70-30 confusion matrix 

Pred\True 1 0  

1 245 57 302 

0 53 245 298 

 298 302 600 
 

Common permissions (4) 

 

5-fold accuracy: 0.6655±0.04 

 

70-30 confusion matrix 

Pred\True 1 0  

1 262 175 437 

0 25 138 163 

 287 313 600 
 

All common system calls and permissions (11+4) 

 

5-fold accuracy: 0.8190±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 231 53 284 

0 55 261 316 

 286 314 600 
 

22 selected system calls 

 

5-fold accuracy: 0.8955±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 264 43 307 

0 20 273 293 

 284 316 600 
 

18 selected permissions 

 

5-fold accuracy: 0.9310±0.01 

 

70-30 confusion matrix 

Pred\True 1 0  

1 272 21 293 

0 18 289 307 
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 290 310 600 
 

22 system calls + 18 permissions (40) 

 

5-fold accuracy: 0.9300±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 274 12 286 

0 29 285 314 

 303 297 600 
 

All system calls (212) 

 

5-fold accuracy: 0.8990±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 273 36 309 

0 30 261 291 

 303 297 600 
 

All permissions (147) 

 

5-fold accuracy: 0.9430±0.03 

 

70-30 confusion matrix 

Pred\True 1 0  

1 288 18 306 

0 16 278 294 

 304 296 600 
 

All features (212+147) 

 

5-fold accuracy: 0.9345±0.02 

 

70-30 confusion matrix 

Pred\True 1 0  

1 277 16 293 

0 23 284 307 

 300 300 600 
 

*clock_gettime 

**READ_PHONE_STATE 

***WAKE_LOCK 

****clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE 

permissions. 

*****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions 
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Appendix 11 – Cross-dataset malware model validation 

Dynamic approach: System calls 

 

System Calls 

(using best feature)* 

 

*clock_gettime 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.8695±0.01 

 

Accuracy: 0.9166 

 

70-30 confusion matrix 

Pred\True 1 0  

1 280 31 311 

0 19 270 289 

 299 301 600 
 

New Dataset 

 

Accuracy: 0.795 

 

70-30 confusion matrix 

Pred\True 1 0  

1 201 24 225 

0 99 276 375 

 300 300 600 
 

0.8910±0.02 

 

System Calls 

(using 3 best 

features)* 

 

*clock_gettime, 

munmap and 

readlinkat 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9025±0.03 

 

Accuracy: 0.8833 

 

70-30 confusion matrix 

Pred\True 1 0  

1 234 9 243 

0 61 296 357 

 295 305 600 
 

New Dataset 

 

Accuracy: 0.815 

 

70-30 confusion matrix 

Pred\True 1 0  

1 211 20 231 

0 91 278 369 

0.8820±0.02 
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 302 298 600 
 

 

System Calls 

(using 11 common 

features) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9305±0.03 

 

Accuracy: 0.81 

 

70-30 confusion matrix 

Pred\True 1 0  

1 198 12 210 

0 102 288 390 

 300 300 600 
 

New Dataset 

 

Accuracy: 0.865 

 

70-30 confusion matrix 

Pred\True 1 0  

1 232 10 242 

0 71 287 258 

 303 297 600 
 

0.8905±0.03 

 

System Calls 

(using 22 selected 

features) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9650±0.01 

 

Accuracy: 0.733 

 

70-30 confusion matrix 

Pred\True 1 0  

1 145 4 149 

0 156 295 451 

 301 299 600 
 

New Dataset 

 

Accuracy: 0.8766 

 

70-30 confusion matrix 

Pred\True 1 0  

1 242 16 258 

0 58 284 342 

 300 300 600 
 

0.9075±0.04 

 

System Calls 

(using all features) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9700±0.01 

 

Accuracy: 0.715 

 

70-30 confusion matrix 



139 

Pred\True 1 0  

1 130 3 133 

0 168 299 467 

 298 302 600 
 

New Dataset 

 

Accuracy: 0.845 

 

70-30 confusion matrix 

Pred\True 1 0  

1 217 8 225 

0 85 290 375 

 302 298 600 
 

0.9270±0.01 

 

 

Static approach: Permissions 

 

Permissions 

(using best feature L/O 

dataset)* 

 

*READ_PHONE_STATE 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.7905±0.02 

 

Accuracy: 0.6633 

 

70-30 confusion matrix 

Pred\True 1 0  

1 194 96 290 

0 106 204 310 

 300 300 600 
 

New Dataset 

 

Accuracy: 0.785 

 

70-30 confusion matrix 

Pred\True 1 0  

1 276 105 381 

0 24 195 219 

 300 300 600 
 

0.6635±0.04 

 

Permissions 

(using best feature 

L/N dataset)* 

 

*WAKE_LOCK 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.6420±0.02 

 

Accuracy: 0.745 

 

70-30 confusion matrix 

Pred\True 1 0  

1 184 42 226 

0 111 263 374 

 295 305 600 
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New Dataset 

 

Accuracy: 0.6783 

 

70-30 confusion matrix 

Pred\True 1 0  

1 137 38 175 

0 155 270 425 

 292 308 600 
 

0.7310±0.05 

 

Permissions 

(using 4 common 

features) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.8580±0.03 

 

Accuracy: 0.84 

 

70-30 confusion matrix 

Pred\True 1 0  

1 275 69 344 

0 27 229 256 

 302 298 600 
 

New Dataset 

 

Accuracy: 0.88 

 

70-30 confusion matrix 

Pred\True 1 0  

1 277 50 327 

0 22 251 273 

 299 301 600 
 

0.8460±0.02 

 

Permissions 

(using 18 features) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9410±0.02 

 

Accuracy: 0.71 

 

70-30 confusion matrix 

Pred\True 1 0  

1 142 11 153 

0 161 286 447 

 303 297 600 
 

New Dataset 

 

Accuracy: 0.8716 

 

70-30 confusion matrix 

Pred\True 1 0  

1 242 14 256 

0 63 281 344 

0.9170±0.01 
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 305 295 600 
 

 

Permissions 

(using all features) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9505±0.02 

 

Accuracy: 0.65 

 

70-30 confusion matrix 

Pred\True 1 0  

1 90 5 95 

0 205 300 505 

 295 305 600 
 

New Dataset 

 

Accuracy: 0.7916 

 

70-30 confusion matrix 

Pred\True 1 0  

1 189 13 202 

0 112 286 398 

 301 299 600 
 

0.9245±0.02 

 

 

 

Hybrid approach: mixing system calls and permissions 

 

Hybrid 

(using best syscall and 

best L/O dataset 

permission)* 

 

*clock_gettime and 

READ_PHONE_STATE 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.8985±0.02 

 

Accuracy: 0.92 

 

70-30 confusion matrix 

Pred\True 1 0  

1 286 28 314 

0 20 266 286 

 306 294 600 
 

New Dataset 

 

Accuracy: 0.87 

 

70-30 confusion matrix 

Pred\True 1 0  

1 253 32 285 

0 46 269 315 

 299 301 600 
 

0.9070±0.02 

 

Hybrid Training \ Testing Old Dataset New Dataset 
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(using best syscall 

and best L/N dataset 

permission)* 

 

*clock_gettime and 

WAKE_LOCK 

Old Dataset 0.8800±0.02 

 

Accuracy: 0.9033 

 

70-30 confusion matrix 

Pred\True 1 0  

1 272 29 301 

0 29 270 299 

 301 299 600 
 

New Dataset 

 

Accuracy: 0.8066 

 

70-30 confusion matrix 

Pred\True 1 0  

1 220 39 259 

0 77 264 341 

 297 303 600 
 

0.8835±0.02 

 

Hybrid 

(using 11 common 

syscalls + 4 common 

permissions) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9500±0.02 

 

Accuracy: 0.866 

 

70-30 confusion matrix 

Pred\True 1 0  

1 228 8 236 

0 72 292 364 

 300 300 600 
 

New Dataset 

 

Accuracy: 0.9016 

 

70-30 confusion matrix 

Pred\True 1 0  

1 258 12 270 

0 47 283 330 

 305 295 600 
 

0.9210±0.02 

 

Hybrid 

(using 22 selected 

syscalls + 18 selected 

permissions) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9740±0.01 

 

Accuracy: 0.7066 

 

70-30 confusion matrix 

Pred\True 1 0  

1 120 3 123 

0 176 301 477 
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 296 304 600 
 

New Dataset 

 

Accuracy: 0.9116 

 

70-30 confusion matrix 

Pred\True 1 0  

1 249 4 253 

0 49 298 347 

 298 302 600 
 

0.9390±0.02 

 

Hybrid 

(using all Dynamic 

and static features) 

Training \ Testing Old Dataset New Dataset 

Old Dataset 0.9765±0.02 

 

Accuracy: 0.6966 

 

70-30 confusion matrix 

Pred\True 1 0  

1 119 2 121 

0 180 299 479 

 299 301 600 
 

New Dataset 

 

Accuracy: 0.8983 

 

70-30 confusion matrix 

Pred\True 1 0  

1 242 4 246 

0 57 297 354 

 299 301 600 
 

0.9400±0.01  
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Appendix 12 – Mixed malware detection validation 

System call best feature: clock_gettime 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.8966 

 

70-30 confusion matrix 

Pred\True 1 0  

1 274 36 310 

0 26 264 290 

 300 300 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.895 

 

70-30 confusion matrix 

Pred\True 1 0  

1 273 33 306 

0 30 264 294 

 303 297 600 
 

 

Accuracy: 0.8675±0.01* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 263 44 307 

0 35 258 293 

 298 302 600 
 

 

Accuracy: 0.9133 

 

70-30 confusion matrix 

Pred\True 1 0  

1 278 27 305 

0 25 270 295 

 303 297 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.8516 

 

70-30 confusion matrix 

Pred\True 1 0  

1 250 39 289 

0 50 261 311 

 300 300 600 
 

 

*5-fold cross validation againsta same dataset. 
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System call 11 common features 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.9 

 

70-30 confusion matrix 

Pred\True 1 0  

1 248 7 255 

0 53 292 345 

 301 299 600 
 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.9616 

 

70-30 confusion matrix 

Pred\True 1 0  

1 289 12 301 

0 11 288 299 

 300 300 600 
 

 

Accuracy: 0.8805±0.03* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 266 46 312 

0 34 254 288 

 300 300 600 
 

 

Accuracy: 0.9383 

 

70-30 confusion matrix 

Pred\True 1 0  

1 265 7 272 

0 30 298 328 

 295 305 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.9133 

 

70-30 confusion matrix 

Pred\True 1 0  

1 259 8 267 

0 44 289 333 

 303 297 600 
 

 

 

System call: 22 selected features 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.845 

 

70-30 confusion matrix 

Pred\True 1 0  

1 209 3 212 

0 90 298 388 

 299 301 600 
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Mixed 

malware 

Dataset 

 

Accuracy: 0.975 

 

70-30 confusion matrix 

Pred\True 1 0  

1 290 4 294 

0 11 295 306 

 301 299 600 
 

 

Accuracy: 0.9080±0.03* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 279 28 307 

0 26 267 293 

 305 295 600 
 

 

Accuracy: 0.9366 

 

70-30 confusion matrix 

Pred\True 1 0  

1 268 6 274 

0 32 294 326 

 300 300 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.94 

 

70-30 confusion matrix 

Pred\True 1 0  

1 272 9 281 

0 27 292 319 

 299 301 600 
 

 

 

 

 

System call: All features (212) 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.866 

 

70-30 confusion matrix 

Pred\True 1 0  

1 223 2 225 

0 78 297 375 

 301 299 600 
 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.9766 

 

70-30 confusion matrix 

Pred\True 1 0  

1 296 5 301 

0 9 290 299 

 305 295 600 
 

 

Accuracy: 0.9195±0.02* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 278 20 298 

0 27 275 302 

 305 295 600 
 

 

Accuracy: 0.9583 

 

70-30 confusion matrix 

Pred\True 1 0  

1 288 10 298 

0 15 287 302 

 303 297 600 
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New 

Dataset 
 

 

Accuracy: 0.9266 

 

70-30 confusion matrix 

Pred\True 1 0  

1 265 6 271 

0 38 291 329 

 303 297 600 
 

 

 

 

Permission feature: READ_PHONE_STATE 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.73 

 

70-30 confusion matrix 

Pred\True 1 0  

1 236 99 335 

0 63 202 265 

 299 301 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.7966 

 

70-30 confusion matrix 

Pred\True 1 0  

1 281 98 379 

0 24 197 221 

 305 295 600 
 

 

Accuracy: 0.7265±0.02* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 241 105 346 

0 60 194 254 

 301 299 600 
 

 

Accuracy: 0.6783 

 

70-30 confusion matrix 

Pred\True 1 0  

1 205 99 304 

0 94 202 296 

 299 301 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.715 

 

70-30 confusion matrix 

Pred\True 1 0  

1 227 99 326 

0 72 202 274 

 299 301 600 
 

 

*5-fold cross validation againsta same dataset. 
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Permission feature: WAKE_LOCK 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.6533 

 

70-30 confusion matrix 

Pred\True 1 0  

1 146 52 198 

0 156 246 402 

 302 298 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.635 

 

70-30 confusion matrix 

Pred\True 1 0  

1 131 50 181 

0 169 250 419 

 300 300 600 
 

 

Accuracy: 0.6780±0.03* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 150 45 195 

0 151 254 405 

 301 299 600 
 

 

Accuracy: 0.745 

 

70-30 confusion matrix 

Pred\True 1 0  

1 179 31 210 

0 122 268 390 

 301 299 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.655 

 

70-30 confusion matrix 

Pred\True 1 0  

1 145 52 197 

0 155 248 403 

 300 300 600 
 

 

 

 

Permission feature: 4 common permissions 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.855 

 

70-30 confusion matrix 

Pred\True 1 0  

1 275 60 335 

0 27 238 265 
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 302 298 600 
 

Mixed 

malware 

Dataset 

 

Accuracy: 0.8616 

 

70-30 confusion matrix 

Pred\True 1 0  

1 284 62 346 

0 21 233 254 

 305 295 600 
 

 

Accuracy: 0.8525±0.02* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 276 65 341 

0 28 231 259 

 304 296 600 
 

 

Accuracy: 0.85 

 

70-30 confusion matrix 

Pred\True 1 0  

1 273 61 334 

0 29 237 366 

 302 298 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.846 

 

70-30 confusion matrix 

Pred\True 1 0  

1 278 65 343 

0 27 230 257 

 305 295 600 
 

 

 

Permission feature: 18 selected permissions 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.8466 

 

70-30 confusion matrix 

Pred\True 1 0  

1 219 7 226 

0 85 289 374 

 304 296 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.9566 

 

70-30 confusion matrix 

Pred\True 1 0  

1 290 15 305 

0 11 284 295 

 301 299 600 
 

 

Accuracy: 0.9160±0.04* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 281 30 311 

0 23 266 289 

 304 296 600 
 

 

Accuracy: 0.9366 

 

70-30 confusion matrix 

Pred\True 1 0  

1 281 17 298 

0 21 281 302 

 302 298 600 
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New 

Dataset 

 

 

 

Accuracy: 0.9016 

 

70-30 confusion matrix 

Pred\True 1 0  

1 248 6 254 

0 53 293 346 

 301 299 600 
 

 

 

 

 

 

 

 

Permission feature: All permissions 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.8316 

 

70-30 confusion matrix 

Pred\True 1 0  

1 203 3 206 

0 98 296 394 

 301 299 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.9566 

 

70-30 confusion matrix 

Pred\True 1 0  

1 289 12 301 

0 14 285 299 

 303 297 600 
 

 

Accuracy: 0.9225±0.03* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 276 20 296 

0 26 278 304 

 302 298 600 
 

 

Accuracy: 0.945 

 

70-30 confusion matrix 

Pred\True 1 0  

1 289 17 306 

0 16 278 294 

 305 295 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.87 

 

70-30 confusion matrix 

Pred\True 1 0  

1 231 6 237 

0 72 291 363 

 303 297 600 
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Hybrid: clock_gettime and READ_PHONE_STATE 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.9116 

 

70-30 confusion matrix 

Pred\True 1 0  

1 284  33 317 

0 20 263 283 

 304 296 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.9283 

 

70-30 confusion matrix 

Pred\True 1 0  

1 289 28 317 

0 15 268 283 

 304 296 600 
 

 

Accuracy: 0.8965±0.01* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 278 33 311 

0 25 264 289 

 303 297 600 
 

 

Accuracy: 0.925 

 

70-30 confusion matrix 

Pred\True 1 0  

1 287 31 318 

0 14 268 282 

 301 299 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.9133 

 

70-30 confusion matrix 

Pred\True 1 0  

1 282 33 315 

0 19 266 285 

 301 299 600 
 

 

 

Hybrid: clock_gettime and WAKE_LOCK 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.915 

 

70-30 confusion matrix 

Pred\True 1 0  

1 281 28 309 

0 23 268 291 
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 304 296 600 
 

Mixed 

malware 

Dataset 

 

Accuracy: 0.8966 

 

70-30 confusion matrix 

Pred\True 1 0  

1 261 22 283 

0 40 277 317 

 301 299 600 
 

 

Accuracy: 0.8730±0.02* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 262 37 299 

0 39 262 301 

 301 299 600 
 

 

Accuracy: 0.9166 

 

70-30 confusion matrix 

Pred\True 1 0  

1 281 28 309 

0 22 269 291 

 303 297 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.88 

 

70-30 confusion matrix 

Pred\True 1 0  

1 266 34 300 

0 38 262 300 

 304 296 600 
 

 

 

 

Hybrid: 11 common syscalls + 4 common permissions 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.9366 

 

70-30 confusion matrix 

Pred\True 1 0  

1 269 6 275 

0 32 293 325 

 301 299 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.965 

 

70-30 confusion matrix 

Pred\True 1 0  

1 287 8 295 

0 13 292 305 

 300 300 600 
 

 

Accuracy: 0.9300±0.02* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 287 20 307 

0 16 277 293 

 303 297 600 
 

 

Accuracy: 0.9683 

 

70-30 confusion matrix 

Pred\True 1 0  

1 288 7 295 

0 12 293 305 

 300 300 600 
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New 

Dataset 

 

 

 

Accuracy: 0.945 

 

70-30 confusion matrix 

Pred\True 1 0  

1 273 6 279 

0 27 294 321 

 300 300 600 
 

 

 

 

Hybrid: 22 selected syscalls + 18 selected permissions 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.865 

 

70-30 confusion matrix 

Pred\True 1 0  

1 223 4 227 

0 77 296 373 

 300 300 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.99 

 

70-30 confusion matrix 

Pred\True 1 0  

1 299 3 302 

0 3 295 298 

 302 298 600 
 

 

Accuracy: 0.9415±0.03* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 282 16 298 

0 20 282 302 

 302 298 600 
 

 

Accuracy: 0.9716 

 

70-30 confusion matrix 

Pred\True 1 0  

1 293 6 299 

0 11 290 301 

 304 296 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.9433 

 

70-30 confusion matrix 

Pred\True 1 0  

1 273 5 278 

0 29 293 322 

 302 298 600 
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Hybrid: all features 

 

Training 

\ 

Testing 

Old Dataset Mixed Malware Dataset New Dataset 

Old 

Dataset 
 

 

Accuracy: 0.8533 

 

70-30 confusion matrix 

Pred\True 1 0  

1 217 5 222 

0 83 295 378 

 300 300 600 
 

 

 

 

Mixed 

malware 

Dataset 

 

Accuracy: 0.9883 

 

70-30 confusion matrix 

Pred\True 1 0  

1 298 3 301 

0 4 295 299 

 302 298 600 
 

 

Accuracy: 0.9375±0.02* 

 

70-30 confusion matrix 

Pred\True 1 0  

1 289 25 314 

0 17 269 286 

 306 294 600 
 

 

Accuracy: 0.9616 

 

70-30 confusion matrix 

Pred\True 1 0  

1 289 7 296 

0 16 288 304 

 305 295 600 
 

New 

Dataset 

 

 

 

Accuracy: 0.9266 

 

70-30 confusion matrix 

Pred\True 1 0  

1 269 8 277 

0 36 287 323 

 305 295 600 
 

 

*5-fold cross validation againsta same dataset. 


