
DOCTORAL THESIS

Advanced Hardware Protection
Mechanisms: A Study on Logic
Locking and Circuit Obfuscation
Techniques

Antonio Felipe Costa de Almeida

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

42/2025

Advanced Hardware Protection
Mechanisms: A Study on Logic
Locking and Circuit Obfuscation

Techniques

ANTONIO FELIPE COSTA DE ALMEIDA

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
The dissertation was accepted for the defence of the Doctor of Philosophy in
Information and Communication Technology degree on 5th June 2025

Supervisor: Professor Dr. Samuel Pagliarini,
Department of Computer Systems, Centre for Hardware Security,
Tallinn University of Technology,
Tallinn, Estonia

Co-supervisor: Dr. Levent Aksoy,

Opponents:

Department of Computer Systems, Centre for Hardware Security,
Tallinn University of Technology,
Tallinn, Estonia

Professor Dr. Shahin Tajik,
Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute,
Worcester, United States

Professor Dr. Domenic Forte,
Department of Electrical and Computer Engineering,
University of Florida,
Gainesville, United States

Defence of the thesis: 16th June 2025, Tallinn
Declaration:
Hereby, I declare that this doctoral thesis, my original investigation, and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Antonio Felipe Costa de Almeida
signature

Copyright: Antonio Felipe Costa de Almeida, 2025
ISSN 2585–6901 (PDF)
ISBN 978-9916-80-323-3 (PDF)
DOI https://doi.org/10.23658/taltech.42/2025

Costa de Almeida, A. F. (2025). Advanced Hardware Protection Mechanisms: A Study
on Logic Locking and Circuit Obfuscation Techniques [TalTech Press]. https://
doi.org/10.23658/taltech.42/2025

https://digikogu.taltech.ee/et/Item/9840306f-39a2-4ac7-b275-9a841a75857b

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

42/2025

Täiustatud riistvara
kaitsemehhanismid: uuring

loogikalukustamise ja hägustamise
tehnikate kohta

ANTONIO FELIPE COSTA DE ALMEIDA

Contents
List of Publications . 6
Abbreviations . 8
List of Figures . 10

List of Tables . 10
1 Introduction . 11

1.1 Contribution of this Thesis . 12
1.2 Outline of this Thesis. 14

2 Background . 15
2.1 IC Supply Chain and Security Challenges . 15
2.2 Hardware Obfuscation and Logic Locking . 17

2.2.1 Hardware Obfuscation . 17
2.2.2 LL: A Form of Hardware Obfuscation . 18

2.3 Threat Models in Logic Locking . 20
2.3.1 OG Threat Model . 20
2.3.2 OL Threat Model. 20

2.4 LL Defenses . 21
2.4.1 Pre-SAT Techniques. 21
2.4.2 Post-SAT Techniques . 22
2.4.3 Beyond SAT Techniques . 24

2.5 LL Attacks . 25
2.5.1 OG Attacks . 25
2.5.2 OL Attacks . 27

2.6 Benchmark Circuits and Metrics . 27
3 Discussion. 30

3.1 Hybrid Protection of Digital FIR Filters . 30
3.2 Resynthesis-based Attacks Against Logic Locking . 32
3.3 RESAA: A Removal and Structural Analysis Attack Against Compound

Logic Locking . 36

4 Conclusions and Future Work . 40
References . 42
Acknowledgements. 51

Abstract . 52
Appendix A . 55

Appendix B . 71

Appendix C . 81

Curriculum Vitae . 95

Curriculum Vitae (Estonian) . 97

5

List of Publications
The present PhD thesis is based on the following publications.

[I] L. Aksoy, Q. -L. Nguyen, F. Almeida, J. Raik, M. -L. Flottes, S. Dupuis, and S.
Pagliarini, "Hybrid Protection of Digital FIR Filters," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 31, no. 6, pp. 812-825, 2023

[II] F. Almeida, L. Aksoy, Q. -L. Nguyen, S. Dupuis, M. -L. Flottes and S. Pagliarini,
"Resynthesis-based Attacks Against Logic Locking," in 24th International Sympo-
sium on Quality Electronic Design (ISQED), pp. 1-8, 2023

[III] F. Almeida, L. Aksoy, and S. Pagliarini, “RESAA: A Removal and Structural
Analysis Attack Against Compound Logic Locking,” in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 33, no. 3, pp. 1–13, 2025

Other related publications
The author has contributed to other publications during his studies at Tallinn University
of Technology.

[IV] L. Aksoy, Q. -L. Nguyen, F. Almeida, J. Raik, M. -L. Flottes, S. Dupuis, and S.
Pagliarini, "High-level Intellectual Property Obfuscation via Decoy Constants,"
in IEEE 27th International Symposium on On-Line Testing and Robust System
Design (IOLTS), pp. 1-7, 2021

[V] M. Imran, F. Almeida, A. Basso, S. S. Roy, and S. Pagliarini, "High-speed SABER
key encapsulation mechanism in 65nm CMOS.," in Journal of Cryptographic
Engineering, pp. 461–471, 2023

[VI] F. Almeida, M. Imran, J. Raik and S. Pagliarini, "Ransomware Attack as Hardware
Trojan: A Feasibility and Demonstration Study," in IEEE Access, vol. 10, pp.
44827-44839, 2022

[VII] F. Almeida, L. Aksoy, J. Raik and S. Pagliarini, "Side-Channel Attacks on Triple
Modular Redundancy Schemes," in IEEE 30th Asian Test Symposium (ATS), pp.
79-84, 2021

[VIII] M. Imran, F. Almeida, J. Raik, A. Basso, and S. Pagliarini, "Design Space
Exploration of SABER in 65nm ASIC," in Proceedings of the 5th Workshop on
Attacks and Solutions in Hardware Security (ASHES), pp. 85–90, 2021

6

Contribution of the Author to the Publications
The author’s contributions to the core publications included in this thesis are outlined
below:

• Publication I: As the third author, I contributed specifically to the evaluation of
compound logic locking (CLL) schemes. My contributions focused on designing
and implementing circuits employing CLL, generating synthesis metrics such
as area, delay, and power consumption, and assessing their security properties.
Additionally, I participated in attack assessments to measure the effectiveness of
the protection mechanisms applied.

• Publication II: As the first author, I led the research on a resynthesis-based
attack against logic locking (LL), managing all stages of the study. This work
introduced a methodology for manipulating locked netlists using commercial EDA
tools to expose vulnerabilities. I was responsible for designing and implementing
the attack framework, conducting experiments, and analyzing results to assess the
effectiveness of the proposed approach. Furthermore, I prepared the manuscript,
including the presentation of both methodology and results.

• Publication III: As the first author, I developed the RESAA framework for ana-
lyzing and attacking CLL schemes. My work involved designing and implementing
a system capable of classifying locked netlists, identifying critical structures, and
applying targeted attacks to uncover secret keys. I refined the attack strategies
within RESAA, improving their efficiency and increasing their success rate against
various protection schemes. Experimental validation demonstrated the effec-
tiveness of RESAA in analyzing LL techniques. I also prepared the manuscript,
presenting these findings in a structured and detailed manner.

In addition to these core publications, I have contributed to other research papers
published during my PhD studies at Tallinn University of Technology. These works,
listed under Other Related Publications, cover additional aspects of hardware security,
cryptographic implementations, and hardware attack strategies.

7

Abbreviations

AGR AppSAT Guided Removal
AI Artificial Intelligence
AppSAT Approximate SAT
ATPG Automatic Test Pattern Generation
BLE Bilateral Logic Encryption
CAC Corrupt and Correct
CASLock Corruptibility and Security Locking
CAVM Constant Array Vector Multiplication
CG Critical Gate
CLL Compound Logic Locking
CNF Conjunctive Normal Form
CRK Constant Replacement with Key
DFLT Double-Flip Logic Locking Technique
DIP Distinguishing Input Pattern
DSP Digital Signal Processing
DTL Diversified Tree Logic
EDA Electronic Design Automation
Fa-SAT Fault-Aided SAT
FIR Finite Impulse Response
FLL Fault-Based Logic Locking
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GNN Graph Neural Network
HD Hamming Distance
HLS High-Level Synthesis
IC Integrated Circuit
IoT Internet of Things
IP Intellectual Property
KA Knowledgeable Adversary
LL Logic Locking
LOOPLock Logic Optimization-Based Cyclic Logic Locking
LUT Look-Up Table
MCM Multiple Constant Multiplication
ML Machine Learning
MUX Multiplexer
OA Oblivious Adversary
OG Oracle-Guided
OL Oracle-Less
OoT Out of Time
PO Primary Output
PSLL Provably Secure Logic Locking
PUF Physically Unclonable Function
QATT Query Attack

8

QBF Quantified Boolean Formula
RLL Random Logic Locking
RTL Register Transfer Level
SA Specific Adversary
SAT Satisfiability
SCOPE Synthesis-Based Constant Propagation Attack for Security Evaluation
SFLL Stripped Functionality Logic Locking
SFLT Single-Flip Logic Locking Technique
SKG SAT-Resistant Key Gate
SLL Strong Logic Locking
SoC System-on-Chip
TGA Topology-Guided Attack
TMCM Time-Multiplexed Constant Multiplication
TTLock Tenacious and Traceless Logic Locking

9

List of Figures
1 Three foundational works of this thesis. 13
2 Generic IC design flow. 15
3 Locking locking in the IC design flow. 17
4 High-level architecture of (a) SFLT, (b) RLL + SFLT, (c) DFLT, and (d)

RLL + DFLT in a CLL scheme. This figure is reproduced from Figure 2
in Publication III. 19

5 Graph of the netlist resynthesized when the delay constraint is 990 ps.
This figure is reproduced from Figure 5(a) in Publication II. 34

6 Graph of the netlist resynthesized when the delay constraint is 496 ps.
This figure is reproduced from Figure 5(b) in Publication II. 35

7 Overview of the RESAA framework. This figure is reproduced from
Figure 4 in Publication III. 37

8 Classification and execution times (seconds) for attacking ISCAS’85 and
ITC’99 benchmarks in the CLL scheme. Bottom: Classification and
partition time. Hatched: Attack time. Combined: Total execution time.
This figure is reproduced from Figure 9 in Publication III. 38

List of Tables
1 Details of ISCAS’85 circuits. 28
2 Overhead in area, power, and delay for each LL technique, and run-time

of attacks. 28
3 Results of obfuscated and protected multiplier blocks. This table is the

same as the Table V in Publication I. 31
4 Results of locked multiplier blocks. 32
5 Results of OL Attacks on the locked ISCAS’85 Circuits. This table is

the same as the Table III in Publication II. 36
6 Results of attacks on the locked CSAW’19 Circuits. 36
7 Details of existing attacks in ISCAS’85 and ITC’99 circuits locked using

a CLL scheme. This table is the same as the Table IV in Publication III. 38
8 Results of OL Attacks on the locked ISCAS’85 and ITC’99 circuits. This

table is the same as the Table V in Publication III. 39

10

1 Introduction
The increasing integration of hardware systems across various industries, including
automotive, defense, telecommunication, and beyond, has raised concerns about the
security of hardware components. As hardware becomes more complex and intercon-
nected, it faces more significant risks to the security of integrated circuits (ICs), mainly
when intellectual property (IP) cores and chips are outsourced for manufacturing in
the globalized supply chain [1]. The main concerns include reverse engineering, IC
counterfeiting, overproduction, IP piracy, and the insertion of hardware Trojans [2].

Reverse engineering allows adversaries to deconstruct and analyze proprietary designs,
uncovering their structure, functionality, and underlying technologies. This process
exposes sensitive IP to unauthorized access, industrial espionage, and potential ex-
ploitation and facilitates the creation of counterfeit or pirated versions of the original
designs, causing financial losses to the original creators [3]. Counterfeiting involves the
unauthorized reproduction of proprietary designs, replicating original designs without
permission. These imitations often compromise quality and reliability, creating signifi-
cant security risks and introducing potential vulnerabilities [4]. Overproduction occurs
when manufacturers produce quantities exceeding authorized limits, often without the
knowledge or consent of the intellectual property owner [5]. IP piracy involves the
illegal use of designs to produce unauthorized ICs [2], and hardware Trojans introduce
malicious logic that can compromise both functionality and reliability [6].

Various countermeasure techniques have been developed, each offering different
levels of protection and trade-offs regarding area, power, and delay overheads. These
techniques include split manufacturing, hardware metering, watermarking, and hardware
obfuscation, which encompasses logic locking (LL).

In split manufacturing, the metal layers of the IC are divided and fabricated at
different foundries to mitigate security risks [7,8]. Hardware metering involves real-time
monitoring of resource usage within the IC to prevent piracy by tracking and regulating
the allocation of hardware resources, ensuring secure and efficient utilization [9, 10].
Watermarking allows for the detection of IP theft and misuse by embedding signatures
into the design without changing functionality [11,12].

Hardware obfuscation plays an important role in preventing unauthorized access by
modifying circuit architecture, making it significantly more difficult for adversaries to
decipher or reverse engineer its functionality. This method effectively hides the correct
operation of the circuit, safeguarding it from malicious adversaries [13]. LL is a specific
kind of obfuscation technique that uses key-driven gates to ensure that the circuit
operates correctly only when the appropriate key is provided [14–19].

Over the years, several LL techniques have been proposed, ranging from simple
XOR/XNOR-based designs to more sophisticated approaches incorporating multiple
locking strategies for enhanced security. While these methods can successfully obscure
circuit functionality against older attacks [20], they remain vulnerable to more advanced
threats [21]. As a result, continuous research into more robust and efficient LL techniques
is essential for ensuring long-term security. However, LL poses challenges, particularly
in balancing security with overhead in hardware complexity in terms of area, delay, and
power dissipation. High resource usage can be especially problematic for designs with

11

low-power requirements, such as Internet of Things (IoT) devices [21]. Maintaining this
balance is essential for achieving security and efficiency in resource-limited environments.

One of the most well-known attack methods targeting LL techniques is the Satis-
fiability (SAT)-based attack, which systematically removes incorrect keys by finding
distinguishing input patterns (DIPs) [20]. Introduced in 2015, this attack efficiently
reduces the key search space, compromising even advanced LL schemes characterized
by a large number of key bits and increased hardware complexity designed to improve
resiliency against adversarial attacks [22, 23]. In response, designers have developed
SAT-resilient strategies to counter SAT-based attacks, which significantly increase the
computational difficulty for such adversaries [16, 24]. Additionally, efforts have been
made to address other emerging threats, such as structural analysis and removal attacks,
which exploit different vulnerabilities in locking mechanisms [25, 26]. However, as
adversaries continue to refine and combine these techniques, securing hardware remains
a dynamic and evolving challenge.

Effectively addressing SAT-based attacks requires a clear understanding of the
limitations of current defenses. While SAT-resilient techniques, such as Anti-SAT [27]
and SARLock [16], have been proven to be effective against SAT-based attacks, they
suffer from other challenges when integrated into complex designs due to their hardware
complexity overhead and limited output corruption [28]. A combination of LL techniques,
adding an extra layer of protection, has been explored. Methods like compound logic
locking (CLL) have been developed to combine high output corruption with SAT-resilient
mechanisms, increasing the difficulty of key recovery for attackers [29, 30]. However,
these enhanced security measures can significantly impact the design’s complexity,
increasing area, power, and delay, which may pose additional challenges [31].

Attacks on LL are generally divided into oracle-guided (OG) and oracle-less (OL)
approaches. In addition to the locked netlist, OG attacks leverage a functional IC as an
oracle to compare inputs and outputs, systematically deducing the secret key [20,32].
SAT-based attacks are examples of this kind of attack and are effective in this context.
In contrast, OL attacks assume that the attacker has access only to the locked netlist
and no functional IC, making the key extraction process more challenging but still
feasible through methods such as resynthesis-based attacks, which leverage electronic
design automation (EDA) tools to resynthesize the design based on various key guesses,
aiming to converge toward the correct solution [33] or to generate functionally equivalent
versions of the locked netlist and analyze them for vulnerabilities [34].

As OG and OL attacks become more sophisticated, defenses must evolve to account
for both the structural weaknesses in designs and the tools attackers may use. This
ongoing cat-and-mouse game between attackers and designers drives the continued
advancement of security measures.

1.1 Contribution of this Thesis
This thesis is a compilation of three published papers, as shown in Fig. 1. Each paper
addresses specific research questions and challenges related to LL and its vulnerabilities,
contributing to a deeper understanding of attack strategies and countermeasures.

The TVLSI 2023 paper investigates the following research question: Can an attacker

12

Hybrid Protection of
Digital FIR Filters

TVLSI 2023

Resynthesis-based
Attacks Against Logic

Locking

ISQED 2023

RESAA: A Removal
and Structural Analysis

Attack Against
Compound Logic

Locking

TVLSI 2025

Figure 1: Three foundational works of this thesis.

extract the secret key from an obfuscated finite impulse response (FIR) filter despite
existing obfuscation techniques? The paper introduces a query attack that strategically
selects input queries to deduce key bits while bypassing current defenses. The results
demonstrate that traditional obfuscation schemes fail against this attack, revealing
critical security gaps. Furthermore, the paper proposes a hybrid defense strategy
that combines hardware obfuscation with LL, enhancing security without significantly
impacting implementation constraints [35].

The ISQED 2023 paper questions a common assumption in LL research by asking:
How do the synthesis EDA tools impact the security of LL circuits? This study introduces
the resynthesis-based attack, showing that transformations introduced during synthesis
can weaken LL protections. By generating multiple structurally different but functionally
equivalent versions of a locked circuit using EDA tools, attackers can significantly
amplify the effectiveness of existing attacks to recover the secret key. The results
demonstrate that even advanced LL techniques remain vulnerable, emphasizing the
necessity of resilient LL approaches across different synthesis parameters [34].

The TVLSI 2025 paper addresses the research question: Does CLL improve secu-
rity against attacks or introduce new vulnerabilities? The paper presents RESAA, a
framework designed to systematically analyze CLL designs, identify weak points, and
execute targeted attacks under both OL and OG models. By partitioning the CLL
circuit, RESAA successfully exploits inherent weaknesses in multi-layer LL techniques,
improving attack success rates. Experimental results reveal that RESAA can break a
wide range of CLL variants, demonstrating fundamental limitations in CLL security and
highlighting the need for stronger protection mechanisms [30].

Through these contributions, this thesis advances the field of hardware security
by systematically analyzing and exposing weaknesses in both traditional and hybrid
LL techniques. The proposed attack methodologies and defensive strategies provide
valuable information on the evolving landscape of hardware security, helping shape the
development of more resilient countermeasures against LL attacks.

13

1.2 Outline of this Thesis
The remainder of this thesis is organized as follows:

• Section 2: Background – This section provides an overview of hardware security,
focusing on essential concepts, such as the IC supply chain and its associated
challenges, hardware obfuscation, LL, and various attack models. It establishes
a foundation by explaining the core mechanisms and challenges in developing
secure ICs.

• Section 3: Discussions – This section explores the interrelation between the
three papers, covering defensive and offensive hardware security strategies. The
first paper introduces a query attack, a novel technique capable of breaking
obfuscated FIR filters by identifying their hidden coefficients. To counter this, it
also presents a hybrid defense approach that combines hardware obfuscation
with LL, leveraging decoy obfuscation and point functions to enhance security
while maintaining competitive hardware complexity. The second paper proposes a
resynthesis-based attack, which systematically manipulates locked netlists using
commercial EDA tools to expose their vulnerabilities. By generating multiple
functionally equivalent but structurally different versions of a circuit, this approach
reveals weaknesses that remain undetected by traditional attacks, significantly
increasing the number of deciphered key bits. The third paper introduces RESAA,
a framework designed to analyze and attack CLL circuits. RESAA classifies locked
netlists, identifies critical gates (CG), and applies structural analysis to expose
secret keys. Together, these works contribute to a deeper understanding of both
attack methodologies and resilient defense strategies in LL.

• Section 4: Conclusion and Future Work – This section summarizes the key
contributions from each study and discusses their broader impact on hardware
security. It also outlines potential directions for future research, such as enhancing
protection techniques, exploring more advanced attack models, and incorporating
artificial intelligence (AI)-driven tools to strengthen IC security further.

14

2 Background
2.1 IC Supply Chain and Security Challenges
Figure 2 presents a generic design flow for ICs composed of many stages. The process
begins with specification and behavioral design, where the IC’s functionality and
performance requirements are defined. This step is managed by the design house, a
trusted entity that establishes the intended behavior, focusing only on meeting the
specifications and design goals. Although this phase involves minimal participation
from external parties, there are still potential threats. For example, inside threats or
mismanagement of sensitive design data could lead to unintentional leaks or targeted
theft. Additionally, adversaries may analyze early design knowledge to identify potential
weaknesses in the later stages of the design process [36].

Strict access control policies and secure data management protocols should be
implemented to mitigate these risks, especially as cloud-based IC design platforms
become more widely adopted [37]. The use of watermarking can also help identify
unauthorized use of design data [38]. Regular audits and training for design teams can
further minimize the likelihood of insider threats.

Specification and
Behavioral Design

Integration

Logic Synthesis

Physical Synthesis
and Layout

Fabrication,Test,
and Packaging

Distribution IC

Figure 2: Generic IC design flow.

In the integration phase, often done by a contracted team, various IP blocks are
assembled into a unified system-on-chip (SoC). Integration poses heightened risks
because untrusted entities may gain visibility over the entire chip, enabling them to
alter or manipulate the top-level design. An attacker involved in integration could insert
hidden vulnerabilities or introduce malicious components. In addition, untrusted IP
providers or external design teams could embed subtle backdoors to facilitate reverse
engineering or compromise the system’s integrity [39].

Verification procedures, such as IP-level integrity checks and top-level validation
against tampering, are crucial to mitigate these threats during the integration [40].
Utilizing hardware obfuscation techniques such as LL ensures that sensitive components
remain protected even if exposed during integration [41,42]. Furthermore, employing
trusted design environments and ensuring that all IPs are vetted and certified reduces the
likelihood of adversarial modifications [43]. Trusted engineers at the design house must
closely monitor the integration process to ensure that no unauthorized modifications
occur.

In the logic synthesis phase, the high-level design is mapped into a gate-level

15

netlist representing the circuit regarding logic gates and connections. Also, it is the
responsibility of the design house, which may involve using integrated third-party IP
cores. Unverified third-party IPs integrated during this phase could pose significant
risks, including unauthorized data leakage and compromised functionality.

Rigorous verification processes, including checks for malicious alterations and valida-
tion of the netlist against design specifications, help ensure the integrity of the output.
Hardware security techniques, such as the IEEE P1735 standard for netlist encryp-
tion [44], or logic obfuscation, can also deter adversarial exploitation [45]. Collaboration
with certified IP providers and maintaining control over the entire synthesis process
further mitigates risks and upholds the design’s security.

The netlist is converted into a physical representation during physical synthesis
and layout, from floorplan to place and route information within the IC layout. This
phase often involves external parties that may not be fully trusted, especially when
outsourcing the physical implementation to third-party companies. Here, untrusted
layout engineers or third-party contractors gain access to a more detailed view of the
design. An adversary with access to this phase could attempt to reverse-engineer parts
of the layout or insert malicious modifications, mainly if they are familiar with layout
tools and techniques [46].

In fabrication, test, and packaging, the fabrication involves creating the physical IC
from its design and translating the layout into silicon. Testing ensures that the fabricated
chip functions as intended, identifying defects and failures, and in the packaging step,
the chip is enclosed in a protective casing to interface with external systems. These
steps, often outsourced to external foundries and facilities, introduce risks as untrusted
entities gain access to critical design information. At this stage, adversaries can leverage
complete visibility of the chip layout to attempt reverse engineering, necessitating
countermeasures such as obfuscation utilized in previous steps to prevent unauthorized
duplication or tampering [47].

Finally, the chip reaches the market in distribution IC, gets integrated into end-user
products, or is deployed for specific applications. Even at this stage, security threats
persist, including counterfeiting and tampering during distribution. Adversaries may
attempt to duplicate the product, compromise its functionality, or extract proprietary
information through reverse engineering [48].

Manufacturers can mitigate these risks by employing anti-counterfeiting measures
such as unique identifiers, secure boot mechanisms, and hardware-based authentication
protocols [49–51]. Supply chain monitoring and traceability systems ensure that only
authorized and secure ICs reach the end-user. In summary, each phase of the IC design
flow presents distinct security challenges, requiring tailored countermeasures to enhance
the integrity and resilience of the final product.

Figure 3 shows the most common integration of LL techniques to mitigate security
threats. LL is introduced by embedding security features directly into the IC’s design as
part of the Logic Locking process. Applying LL early in the flow safeguards critical
design components from tampering or reverse engineering attempts, ensuring that the
IC remains non-functional until the correct activation key is provided. This approach
effectively protects the design’s intellectual property and functionality.

Upon completion of manufacturing, the key activation phase unlocks the IC’s

16

Specification and
Behavioral Design

Integration

Logic Synthesis Physical Synthesis
and Layout

Fabrication,Test,
and Packaging Distribution ICLogic Locking

Key Activation

Figure 3: Locking locking in the IC design flow.

functionality. This step is typically managed by the same design house that initiated the
design flow and involves securely provisioning the activation (secret) key to the locked
design. After fabrication, the locked circuit undergoes the key activation phase, where
the secret key is securely stored in a tamper-proof memory within the chip. Ensuring
that the key remains protected is critical because if it is compromised, untrusted entities
could deactivate or duplicate the IC, rendering the LL measures ineffective.

Once key activation is complete, the IC enters the market as a fully functional IC.
However, it still faces threats such as counterfeiting, cloning, and reverse engineering,
particularly from adversaries with physical access to the chip. These adversaries may
exploit invasive or semi-invasive methods to extract sensitive design information. LL
mitigates these risks by ensuring that any unauthorized replication or tampering fails
without the secret key, preserving the IC’s integrity and protecting its intellectual
property.

Trusted teams oversee the design, synthesis, and secure key activation processes.
At the same time, untrusted actors—including external IP vendors, third-party tool
providers, offshore foundries, and unauthorized market participants—pose substantial
risks throughout the supply chain. LL is a fundamental defense mechanism, extending
protection from the initial design stages to the IC’s market deployment. The diversity of
adversaries, from insiders to external attackers, underscores the importance of embedding
strong security measures at every stage. The following subsection thoroughly discusses
hardware obfuscation techniques, emphasizing LL as a key strategy for enhancing IC
security.

2.2 Hardware Obfuscation and Logic Locking
2.2.1 Hardware Obfuscation
Hardware obfuscation is a security technique developed to protect the internal design
of an IC by making it challenging to analyze, reverse-engineer, and manipulate. By
modifying the design to obscure its correct functionality from unauthorized users, obfus-
cation aims to make it computationally infeasible for adversaries to extract meaningful
information, thereby securing IP and preventing malicious alterations [14,52,53].

Obfuscation methods can be applied at various stages of the design flow:

• High-level Obfuscation: At the high-level design stage, obfuscation targets
critical components such as proprietary algorithms, data paths, or constants. This
is achieved by introducing decoy elements or misleading logic to obscure sensitive

17

functions, making it difficult for adversaries to understand the system’s intent.
Using high-level synthesis (HLS) tools to embed obfuscation directly into the
design ensures that sensitive portions’ intent remains protected throughout the
flow [54–56].

• Behavioral-Level Obfuscation: At the register-transfer level (RTL), obfuscation
involves altering the control and data flow of the design [57]. Techniques include
obscuring finite state machines (FSMs) by modifying state transitions, introducing
additional states, and leveraging reconfigurable key-based FSMs [32]. This makes
it harder to reverse-engineer the control logic, which explores the interplay between
security and functionality in behavioral-level obfuscation [58].

• Gate-Level Obfuscation: After logic synthesis, gate-level obfuscation is applied
to modify the logical structure of the design. This includes inserting additional
gates, modifying or removing existing gates, or embedding techniques such as LL.
These modifications obscure the circuit’s functionality, requiring a secret key for
correct operation, protecting the IP from reverse engineering [15,16,28,59].

• Layout-Level Obfuscation: At the physical design stage, layout-level obfuscation
or camouflaging is used to protect the physical representation of the IC. This
technique involves designing the layout so that different logic functions appear
identical, making it challenging for attackers to identify the actual functionality of
each component. For example, using standard-cell libraries with indistinguishable
layouts or introducing decoy components can significantly enhance protection
against physical reverse engineering [25,60].

By embedding obfuscation techniques throughout the design flow—from high-level to
layout-level—hardware designers can ensure robust protection against various adversaries,
securing IP and mitigating threats effectively. The following subsection covers the
details of LL and its application and efficacy.

2.2.2 LL: A Form of Hardware Obfuscation
LL is a specialized form of hardware obfuscation that works by inserting key-driven gates
into the design. These gates ensure that the circuit behaves correctly only when the
correct key is applied. Without the secret key, the circuit produces incorrect outputs or
remains non-functional, protecting the IP from reverse engineering and unauthorized
use [61].

The evolution of LL has seen several variations aimed at improving both security
and efficiency. After the introduction of random logic locking (RLL) using XOR/XNOR
gates [14], subsequent research expanded to explore different types of key gates, such
as AND/OR gates, multiplexors, and look-up tables, while considering the hardware
complexity of these gates introduced into the locked circuit [17].

Despite these advances, the original defenses were eventually compromised by the
development of the SAT-based attack [20]. Provably secure logic locking (PSLL) was
introduced as a paradigm offering formal security guarantees against known attack
methods, incorporating point functions that limit the number of incorrect keys DIPs

18

can eliminate. Recall that a DIP is an input vector that produces different outputs on
the locked netlist with two different keys, allowing an attacker to refine the correct key
iteratively. By restricting the effectiveness of DIPs, PSLL forces attackers to explore an
exponential number of them, making key recovery infeasible [27,62–65].

In this context, traditional LL techniques can be categorized into two main groups:
single-flip locking technique (SFLT) and double-flip locking technique (DFLT). Fig-
ure 4(a) presents an SFLT, which relies on a single critical point in the circuit that
corrupts an output under a specific input pattern. Although SFLTs demonstrate re-
silience against SAT-based attacks, they are vulnerable to removal attacks, where an
attacker can identify and eliminate the critical point, separating the design into the
original netlist and locking unit [25, 66, 67]. On the other hand, in Figure 4(c), DFLTs
improve security by introducing two critical points: one in the perturb unit, which
initially corrupts an output, and another in the restore unit, which corrects the output
when the correct key is applied. While this approach enhances security, DFLTs remain
susceptible to advanced structural attacks that exploit the interconnections between the
perturb and restore units and their integration with the original circuit [24, 33,68,69].

Original Circuit

Locking Unit

inputs

key bits

output
X

(a)

Original Circuit

Restore Unit

inputs

key bits

outputPertub Unit

Stripped Circuit

X

X

(c)

RLL Locked
Circuit

Locking Unit

inputs

key bits

output
X

(b)

RLL Locked
Circuit

Restore Unit

inputs

key bits

outputPertub Unit

Stripped Circuit

X
X

(d) X Critical Point

X

Figure 4: High-level architecture of (a) SFLT, (b) RLL + SFLT, (c) DFLT, and (d) RLL +
DFLT in a CLL scheme. This figure is reproduced from Figure 2 in Publication III.

Efforts to strengthen LL techniques have taken various directions, aiming to overcome
their perceived weaknesses. These approaches include the insertion of cyclic logic [70],
the use of emerging materials [71], and look-up table (LUT)-based obfuscation [56, 72].
Each method introduces additional complexity to the locking mechanism, making it
more challenging for adversaries to bypass the protection. However, no single method
has been proven entirely secure against all attacks, which has led to the development
of more advanced strategies.

Despite the potential of CLL, research into attacks specifically targeting this hybrid
technique remains limited, and the exploration of such attacks has only begun to
scratch the surface. For example, the combined use of SAT-based and structural
attacks against CLL has been studied [73,74], but these studies are confined to specific
combinations of techniques. This underscores the broader need for more comprehensive

19

research to understand and fully mitigate the vulnerabilities in CLL designs. One of
the main contributions of this thesis is that it introduces a novel attack strategy that
reveals previously neglected weaknesses in CLL, offering critical insights into its security
limitations.

Figures 4(b) and 4(d) exemplify CLL, which integrates double-layer LL techniques to
improve the security of ICs. Note that RLL is always used as it delivers the critical feature
of (high) output corruption. By combining RLL with other techniques, CLL strives to
take advantage of their respective strengths while mitigating individual weaknesses. This
combined strategy fortifies security by exploiting complementary aspects of diverse LL
techniques, selecting specific corruption levels, and tailoring SAT resilience to optimize
protection against attacks. In these cases, a CG is identified in which one of its inputs
consists exclusively of key inputs from RLL, while the other input of the CG incorporates
key inputs from PSLL. This configuration enhances security by intertwining distinct
locking techniques and increasing the complexity of the attack. However, the presence
of CGs also introduces a potential dependency between the two layers that attackers
may attempt to exploit.

2.3 Threat Models in Logic Locking
Understanding the threat models involved in attacking LL techniques is essential for
evaluating their effectiveness. Threat models help identify potential adversaries and
their capabilities, which is crucial for securing hardware designs against attacks. There
exist two main threat models: OG and OL models.

2.3.1 OG Threat Model
In addition to the locked netlist, the attacker has access to a functional IC that can be
used to query inputs and observe the corresponding outputs. This model assumes that
the attacker has the locked netlist and the capability to apply inputs to the functional
IC but does not have direct access to the secret key.

SAT-based attacks are the most prominent example of OG attacks [16,23,75,76].
These attacks use an oracle to iteratively eliminate incorrect key guesses by applying
DIPs that expose inconsistencies between the locked netlist and the functional IC. The
objective is to eliminate incorrect key guesses and continually reduce the search space.
These attack methods and others have highlighted the effectiveness of SAT-based
methods in exploiting vulnerabilities in LL schemes.

Beyond SAT-based attacks, adversaries may employ other methods to undermine
logic locking. Removal attacks focus on identifying and bypassing the obfuscation
structures within the locked circuit [25]. Approximation attacks, on the other hand,
attempt to create a simplified model of the circuit that replicates its behavior without
requiring the original key [23].

2.3.2 OL Threat Model
The OL threat model represents a more restrictive scenario for an attacker, assuming
that only the locked netlist is available without access to the functional IC. Unlike the
OG threat model, where the attacker can apply inputs to a functional IC and observe its

20

outputs, the OL model does not allow direct simulation of the correct circuit behavior.
This makes the OL threat model significantly more challenging than the OG threat
model since there is no oracle to check the original circuit behavior.

In OL attacks, adversaries often use machine learning (ML) techniques, structural
analysis, or resynthesis-based attacks. These attacks can propagate a constant to find
anomalies in the design after synthesis or take advantage of EDA tools to generate
functionally equivalent but structurally different versions of the locked netlist [34,77,78].
By comparing these versions, attackers can identify patterns that may reveal the secret
key.

Despite the increased difficulty of the OL model, recent advances in attack strate-
gies have demonstrated its abilities. ML approaches have been shown to accurately
predict significant portions of the key by analyzing structural features in the locked
netlist [79]. Structural analysis techniques, such as identifying discrepancies in wire
delays or redundant paths introduced by locking mechanisms, further expose potential
weaknesses [80]. Resynthesis-based attacks remain particularly potent, exploiting design
inconsistencies during synthesis and optimization, effectively reducing the design’s
obfuscation strength [34]. These methods illustrate how attackers exploit the lack of
functional IC by taking advantage of sophisticated tools and algorithms.

Moreover, advanced techniques, such as structural pruning and graph-based analysis,
have been applied to detect areas of high obfuscation density, effectively narrowing down
the key search space [81]. These findings highlight that while the OL model imposes
significant constraints on the attacker, the rapid evolution of attack methodologies
necessitates more resilient and multi-layered defense strategies in LL.

In addition to netlist-based analysis, OL adversaries may exploit physical access to
extract the secret key. In [82], it was shown that the pathway between the key storage
and the logic gates can be vulnerable, even when tamper-proof memory is used. Optical
probing techniques were successfully used to extract the values of key inputs during
runtime. This ability to recover the secret key without a functional IC reinforces the
need to protect both the key storage and the signal path within the chip.

2.4 LL Defenses
Various defense techniques have been developed to strengthen LL’s security against
known attacks, focusing on improving resilience while balancing area, power consumption,
and delay overhead. These techniques are generally classified into Pre-SAT, Post-SAT,
and Beyond-SAT approaches, each addressing different aspects of attack resistance and
security enhancement.

2.4.1 Pre-SAT Techniques
Traditional LL techniques were developed before SAT-based attacks became a significant
threat. Among the earliest methods, RLL aimed to obfuscate circuit functionality by
randomly selecting wires to be locked and inserting additional gates controlled by key
inputs. While XOR/XNOR gates were commonly used, other gate types have been
introduced depending on the locking strategy. In this case, the locked circuit works as
intended only when the correct key is applied [14]. However, due to its random nature,

21

RLL remained vulnerable to structural analysis and SAT-based attacks that exploited
its predictable behavior.

Another early approach, the LUT-based technique, replaced certain circuit parts with
programmable LUTs that required key inputs to function correctly. Unlike RLL, which
inserted additional gates, LUT-based locking modified the circuit topology, making
structural analysis more challenging for attackers attempting to reverse engineer or
extract sensitive information [83]. However, while increasing complexity, this technique
did not directly counteract SAT-based attacks.

MUX-based techniques introduced an alternative form of obfuscation by replacing
certain logic elements with multiplexers (MUXes), where the secret key determined
the active logic path. This approach increased ambiguity by encoding multiple logic
paths, ensuring that only the correct key selected the intended functionality. Compared
to RLL and LUT-based locking, MUX-based locking created structural redundancy,
complicating key extraction through direct circuit analysis. However, similar to other
Pre-SAT LL methods, it remained vulnerable to OG attacks, where an attacker could
infer the correct logic paths by comparing locked and unlocked circuit responses.

Strong logic locking (SLL) was an improvement over RLL aimed at increasing the
complexity of key recovery attacks by introducing interdependencies between key bits.
Unlike RLL, where each key bit could be analyzed independently, SLL made key bits
interdependent, preventing simple brute-force approaches from solving them individually.
Additionally, incorrect key values resulted in significant output corruption, making it
difficult for an attacker to reconstruct the correct circuit behavior through trial and
error [22]. However, despite strengthening resistance against brute force and structural
attacks, SLL remained vulnerable to SAT-based attacks.

In addition, some LL techniques were introduced to counter fault-injection attacks,
which attempt to extract key information by inducing controlled errors into the circuit.
Fault-based logic locking (FLL) was designed to protect against such threats by incor-
porating fault detection and correction mechanisms, ensuring that any induced faults
propagated misleading information to the attacker [84]. FLL was particularly useful in
scenarios where physical attacks were a concern, such as embedded systems and crypto-
graphic hardware. However, like other Pre-SAT techniques, it did not directly counter
SAT-based attacks, as its primary function was to mislead adversaries by manipulating
circuit behavior rather than preventing logic decryption.

2.4.2 Post-SAT Techniques
Anti-SAT was one of the first techniques explicitly designed to mitigate SAT-based
attacks by introducing complementary logic trees. As an SFLT, it employs two com-
plementary functions, e.g., AND- and NAND-tree structures, in such a way that the
locking circuit shown in Figure 4(a), always generates a constant logic value under
all input patterns if the key values are correct and otherwise, generates either 0 or
1 depending on the inputs. It also guarantees that the maximum number of unique
wrong keys is close to the exponential number of key inputs. Thus, Anti-SAT forces the
SAT-based attacks to explore an exponential number of key possibilities, significantly
increasing the time complexity of the attack [27]. However, despite its SAT resilience,
Anti-SAT’s logic structure can be identified and removed through structural analysis,

22

making it vulnerable to removal-based attacks.
Anti-SAT-DTL (Diversified Tree Logic) was introduced to address the structural

detectability of Anti-SAT. Instead of relying solely on AND/NAND trees, this technique
randomly replaces some AND gates with OR/NAND/XOR gates, making the logic
structure more unpredictable [36]. These modifications prevent an attacker from quickly
identifying and eliminating the Anti-SAT circuit, ensuring that SAT resilience remains
intact while reducing vulnerabilities to structural analysis.

Also, as an SFLT, SARLock ensures that only a small subset of inputs yields differing
outputs when incorrect keys are applied, limiting the attacker’s ability to find DIPs
that can eliminate more than one wrong key in each iteration [16]. It adds a layer of
protection by making SAT solvers ineffective, as the output for most incorrect keys
remains unchanged [27].

InterLock and CASLock were introduced as advanced LL techniques to enhance
security against attacks. InterLock improves security by linking critical key bits to
specific circuit functions and intercorrelating logic and routing paths, ensuring that
incorrect keys lead to unpredictable behavior across various circuit regions. This
interdependence creates a complex structure that makes SAT-based attacks highly
ineffective, complicating the analysis for attackers [85]. CASLock, on the other hand,
uses cascaded logic gates, significantly increasing the number of DIPs and forcing
attackers to explore a much larger search space. The cascaded structure provides
multiple layers of protection, each with its own locking mechanism, making it challenging
for attackers to find a solution, even with sophisticated SAT attacks [63].

SKG-Lock extends the concept of SAT resistance by embedding SAT-resistant key
gates (SKG) at multiple locations within the circuit. Unlike Anti-SAT, which relies on
structured complementary logic trees, SKG-Lock strategically distributes SKGs across
different regions of the design to increase attack complexity [65]. This approach disrupts
the ability of SAT attacks to systematically eliminate incorrect keys while also making
structural analysis-based attacks more challenging.

A significant advancement in post-SAT techniques was the introduction of stripped
functionality logic locking (SFLL), which shifted the focus from DIP-based defenses to
functionality removal strategies. Rather than limiting an attacker’s ability to extract
key information, as a DFLT, SFLL removes specific circuit functionalities, which can
only be restored with the correct key [62]. This ensures that an incorrect key results
in missing or altered behavior, making it significantly harder for an attacker to infer
the correct logic structure. SFLL is particularly effective because it does not introduce
easily detectable locking structures, increasing its resilience to both SAT-based and
removal attacks.

A refinement of SFLL, tenacious and traceless logic locking (TTLock) enhances its
effectiveness by ensuring that the locked design only differs from the original design
for a single specific input pattern. This guarantees that, under incorrect keys, the
circuit behaves identically to the unlocked version for all other input patterns, making
it resistant to common attack analysis methods [28]. However, despite its traceless
nature, an attacker can still identify critical points in the locked netlist [30, 69].

An evolution of SFLL, SFLL-HLS, took SFLL to a new level by incorporating
obfuscation techniques during the high-level synthesis stage, creating context-sensitive

23

complex locks. As a DFLT, SFLL-HLS applies multiple layers of protection across
functional units, making the circuit more resistant to SAT-based attacks [86].

Cyclic obfuscation introduces cyclic dependencies into the logic, creating feedback
loops that mislead SAT solvers [87]. These cycles disrupt the fundamental assumption
of acyclic combinational circuits used by traditional SAT-based attacks, causing the
solver to enter infinite loops or fail to converge on a solution.

Logic optimization-based cyclic logic locking (LOOPLock) introduces cyclic depen-
dencies into the logic, creating feedback loops that significantly increase the difficulty
for SAT solvers to break the locking scheme [88]. By carefully optimizing these loops,
LOOPLock ensures that the circuit is resistant to SAT-based attacks, as the solver is
forced to handle the inherent complexity of cyclic dependencies, which creates misleading
paths and significantly enlarges the solution space. Unlike traditional cyclic locking tech-
niques, LOOPLock employs optimization techniques to minimize performance overhead
while maintaining security, making it a more efficient and resilient defense mechanism.

CLL combines two or more LL techniques to create a multi-layered defense against
various attack methods. The combination of techniques in CLL is designed to exploit
the strengths of each method, thereby making the circuit highly resistant to SAT attacks
while also complicating structural attacks [30]. The trade-off for this enhanced security
is an increase in hardware overhead in terms of area, power, and delay. However, the
benefits of improved security often outweigh the cost in applications demanding high
security. Examples include bilateral logic encryption (BLE) and Anti-SAT combined
with RLL. BLE introduces two complementary functions, ensuring that only the correct
key can yield the correct output, while Anti-SAT with RLL leverages Anti-SAT’s SAT
resistance alongside RLL’s high output corruption to enhance security by utilizing
strengths from each technique [29]. These are examples of a CLL technique that
integrates multiple locking strategies to reinforce protection against attacks.

Corrupt and Correct (CAC) 2.0 aims to combat structural analysis attacks. CAC 2.0
builds on previous LL techniques by implementing double CAC, applying obfuscation at
multiple nodes with different protected inputs, and introducing decoy key values [59].
These enhancements increase the attack complexity, forcing adversaries to analyze
multiple incorrect key paths before identifying the correct key. By integrating SAT
resistance, structural complexity, and decoy-based misdirection, CAC 2.0 represents an
advanced LL defense, effectively neutralizing both SAT-based and structural attacks.

2.4.3 Beyond SAT Techniques
Physically unclonable function-based (PUF-based) LL leverages intrinsic device properties
to generate unique keys for each chip. PUFs generate keys based on the physical
variations inherent to each manufactured chip, making it impossible for attackers to
duplicate or reverse engineer the secret key [89]. This method is tied directly to the
manufacturing process, ensuring that each device has a unique and unclonable identity.
However, while PUFs prevent large-scale key extraction across multiple chips, they do
not invalidate the proposed attacks. Since an adversary’s primary goal is to copy the IP
rather than compromise an entire batch, breaking a single chip remains sufficient to
expose the locked design, making the chip and its IP potentially recoverable regardless
of the presence of a PUF.

24

2.5 LL Attacks
LL has been widely adopted as a defense mechanism in hardware security to protect the
IP. However, adversaries have continuously developed sophisticated attack techniques
to bypass these protections.

This subsection presents an overview of the principal LL attack methodologies,
categorizing them into OG attacks, which leverage a functional IC as an oracle, and OL
attacks, which rely solely on the locked netlist for key recovery. Recently, a classification
of adversaries based on their knowledge of the locking techniques was introduced in [30],
defining three types of adversaries: specific adversary (SA), knowledgeable adversary
(KA), and oblivious adversary (OA). SA attacks are tailored to a single, specific LL
technique; KA attacks target a broader set of LL techniques where the adversary has
prior knowledge of the locking mechanisms; and OA attacks use generic tools capable of
yielding effective results without requiring prior knowledge of the LL techniques applied.
Most of the existing attacks fall into the SA and KA categories. However, real-world
security challenges increasingly demand the development of more OA-based attack
strategies.

2.5.1 OG Attacks
One of the first OG attacks was based on automatic test pattern generation (ATPG), a
technique initially designed to detect hardware faults. This method was later adapted
into the ATPG-based attack, which leverages ATPG techniques to expose secret key
values in LL designs. The ATPG-based attack treats locked gates as faults and
generates input patterns that reveal key dependencies. By effectively avoiding brute-
force techniques, this method exposes weaknesses in locked designs that depend on
simple signal dependencies [15]

The SAT-based attack remains one of the most important OG attacks, as it system-
atically refines the key space using DIPs [20,76, 84]. The attack begins by duplicating
the locked netlist, using the same input signals but with different key inputs. A miter
circuit is then introduced, which compares the outputs of the two locked instances and
generates a conjunctive normal form (CNF) representation of this circuit. The SAT
solver is then tasked with finding a DIP that produces different outputs in the two
locked versions. Once a DIP is identified, it is applied to the oracle to determine the
correct output. This process ensures that at least one of the found keys is incorrect,
allowing the solver to eliminate invalid key values progressively. The attack then adds
the CNF constraints corresponding to the observed DIP to prevent the rediscovery of
the same pattern and iterates the process. This continues until the SAT solver fails to
find a new DIP, at this point, the last remaining key is guaranteed to be the correct
secret key. This systematic refinement enables the SAT-based attack to break many
traditional LL schemes, making it a formidable threat to hardware security.

An extension of the SAT-based approach, the Double DIP attack, improves attack
efficiency by leveraging two sets of DIPs to accelerate key recovery. By reducing the
number of iterations required to reach the correct key, Double DIP remains particularly
effective against single-layer LL methods [75].

The AppSAT (approximate SAT) attack was introduced to mitigate high-complexity

25

SAT computations by allowing an approximation mechanism. Instead of fully solving the
key recovery problem, AppSAT finds an approximate key that produces a functionally
equivalent circuit, even if not an exact match to the original design, using a small
number of queries. This approximation is useful against complex LL schemes, as it finds
an approximate correct key that makes the circuit functional for the applied queries [23].

Expanding on AppSAT, the AppSAT guided removal (AGR) attack targets CLL
techniques, particularly those incorporating point functions such as Anti-SAT. AGR
combines AppSAT’s approximation approach with structural analysis, refining key recov-
ery through logical inference. This method applies AppSAT to deduce an approximate
key and then performs structural analysis to pinpoint the exact key bits associated with
the point function-based LL techniques [25].

The Fa-SAT (fault-aided SAT) attack targets CLL designs using a fault-based
approach. It introduces faults in the circuit to guide the SAT solver more efficiently.
By inducing controlled faults, attackers create additional DIPs that enhance the ability
of the SAT attack to converge on the correct key, allowing secret key extraction even
in advanced CLLs such as BLE and RLL combined with Anti-SAT. This attack is
particularly effective against locking schemes that rely heavily on input-output behavior,
as the fault responses provide the SAT solver with rich data, expediting the solution [74].

The query attack applies a set of carefully selected queries to determine the values
of key bits of the secret key using the concept of proof by contradiction. Query attack
is often combined with structural analysis techniques to enhance efficiency and are
exceptionally successful against LL methods that rely solely on input-output behavior
for security [30,35].

The quantified Boolean formula (QBF) solver generalizes the SAT attack by incor-
porating existential (∃) and universal (∀) quantifiers, allowing adversaries to construct
complex logical formulations that expose key dependencies. The QBF-based attack
targets the locking/restore unit in SFLT and DFLT in two steps: it first constructs a
QBF problem by combining the CNF formulas of individual gates and then generates
two separate QBF problems, one where the output is 0 and another where it is 1 for all
possible input combinations. The secret key can be extracted by solving these problems
using a QBF solver. If a solution exists for either QBF problem, the key for the locked
circuit is discovered. This dual-problem formulation ensures that all output possibilities
are evaluated. It is effective against designs like SFLT, whose locking unit produces a
constant value under the secret key for all inputs [26].

Functional analysis attacks exploit input-output behavior to deduce the correct key
in LL schemes by systematically analyzing functional dependencies. This approach
bypasses structural defenses, revealing that even obfuscated circuits may be vulnerable
to attacks based solely on observable functionality, allowing attackers to break the lock
by simplifying the circuit model through functional analysis [68].

The Valkyrie tool is a comprehensive vulnerability assessment and attack framework
created to test and break LL techniques that claim to be secure. Valkyrie probes the
locked circuit’s logic and signal paths by combining structural and functional analysis
to identify areas where key bits impact overall functionality, simulating potential attack
scenarios to reveal weaknesses. It examines signal flow traces to understand how key
values influence the circuit, effectively isolating critical regions susceptible to attack.

26

This approach allows Valkyrie to uncover the correct key by focusing on critical points
within the circuit. Valkyrie is a KA attack where the adversary knows the techniques
employed in advance. Effectiveness across fifteen different techniques demonstrates
that even theoretically secure LL methods may exhibit vulnerabilities in real-world
applications, underscoring the need for continued innovation in hardware security [69].

2.5.2 OL Attacks
The synthesis-based constant propagation attack for security evaluation (SCOPE) attack
identifies constant signal propagation within circuits to expose key values by analyzing
the impact of setting a constant logic value 0/1 to a key input on area, delay, power,
fan-in, fan-out, and other critical design metrics of the locked netlist. Adversaries can
deduce key-related patterns, significantly narrowing down possible key values [78].

The topology-guided attack (TGA) is a structural analysis attack and leverages the
circuit’s structural layout to infer key dependencies. TGA deduces key bits relationships
by mapping the circuit’s topology and identifying sensitive nodes, enabling attackers
to break LL schemes based solely on circuit structure. TGA is quite effective against
LL techniques that do not mask structural dependencies, as it exploits the inherent
connections between key bits and critical nodes [90].

Structural analysis techniques serve as the foundation for many OL attack strategies.
These approaches identify weaknesses in LL designs by detecting irregularities in circuit
connectivity, enabling attackers to extract key dependencies without an oracle [91].

Advances in ML-based attacks have introduced graph neural networks (GNNs) as a
powerful tool for predicting key bits. Attackers can identify patterns in new, unseen
circuits by training ML models on known locking schemes. This approach provides
an OL attack to predict key bits, which is especially effective in modern circuits with
complex locking patterns, as GNNs excel at detecting relational dependencies [92].

Resynthesis-based attacks exploit the synthesis process to reveal key dependencies.
These attacks re-synthesize the locked circuit using various design constraints, gen-
erating functionally equivalent but structurally different versions of the netlist. By
analyzing structural differences across iterations, adversaries can systematically expose
key dependencies [34].

As LL advances, attackers quickly adapt, developing sophisticated methods to bypass
protections. SAT-based attacks remain central among OG approaches, with variants
like Double DIP, AppSAT, and Fa-SAT bringing notable gains in effectiveness against
complex LL designs. Meanwhile, the rise of synthesis-based and ML-driven techniques
has expanded the range of OL attacks, enabling intrusions that sidestep the need for
output data. This continuous evolution in attack strategies emphasizes the need for LL
defenses to keep pace, ensuring robust protection against these persistent threats.

2.6 Benchmark Circuits and Metrics
The benchmark circuits analyzed in this thesis include combinational designs from
the ISCAS’85 [93] and ITC’99 [94] suites, which are widely used to evaluate the
resilience of LL schemes against both OG and OL attacks. Additionally, circuits from
the CSAW’19 [95] benchmark set were used to assess CLL techniques, as they integrate

27

two LL strategies simultaneously. FIR filter circuits were also included to evaluate the
impact of hybrid protection in more application-driven contexts.

Throughout the thesis, a wide range of LL techniques are investigated. These include
RLL [14] as a baseline, as well as more sophisticated approaches such as Anti SAT [27],
Anti SAT DTL [96], CASLock [63], SARLock [16], SKG Lock [65], TTLock [28], and
SFLL [64]. Combinations of RLL with other PSLL schemes were also employed to
construct CLL circuits. Although all these techniques are explored in detail in later
chapters, in this subsection, we focus on evaluating the impact of five LL techniques,
namely RLL, Anti-SAT, TTLock, RLL+Anti-SAT, and RLL+TTLock, on the hardware
complexity in terms of area, power, and delay and on the resiliency to the existing
attacks. These techniques were applied to five circuits from the ISCAS’85 suite and
synthesized using the Cadence Genus logic synthesis tool with a commercial 65nm
standard cell library. The number of key inputs varied between 32 and 64 bits, depending
on the circuit size, to balance security and hardware complexity on a single LL technique.
In CLL, we use the same number of key inputs in the RLL and PSLL techniques.

Table 1 presents the characteristics of the original ISCAS’85 circuits, where #in
and #out denote the number of inputs and outputs, respectively, area is the total
area in µm2, power is the total power dissipation in mW , and delay is the critical
path delay in ps. The corresponding implementation overheads introduced by each LL
scheme—measured in terms of area, power, and delay—are summarized in Table 2.

Table 1: Details of ISCAS’85 circuits.

Circuit Original Netlist
#in #out area power delay

c2670 157 64 1046 3.36 1264
c3540 50 22 1518 6.58 1977
c5315 178 123 2460 9.9 1864
c6288 32 32 3133 8.48 4621
c7552 206 105 2702 1.32 1663

Table 2: Overhead in area, power, and delay for each LL technique, and run-time of attacks.
Technique Area (%) Power (%) Delay (%) Attack Run-time (s)

RLL 19.1 to 31.2 58.2 to 78.0 6.3 to 17.6 SAT [20] 0.29 to 2.69
Anti-SAT 8.2 to 31.9 11.5 to 35.1 2.3 to 10.1 KRATT [26] 0.26 to 1.13
TTLock 5.7 to 30.0 4.4 to 31.8 1.3 to 6.9 KRATT [26] 72.38 to 333.20

RLL+Anti-SAT 20.3 to 42.9 35.8 to 47.3 3.6 to 13.2 RESAA [30] 540.43 to 929.78
RLL+TTLock 24.7 to 54.6 34.8 to 47.7 6.4 to 15.3 RESAA [30] 418.11 to 662.32

To illustrate the impact of these techniques, RLL incurs area overheads ranging from
19.1% to 31.2%, with corresponding power increases from 58.2% to 78.0% and delay
overheads from 6.3% to 17.6%. Anti-SAT exhibits lower power and delay overheads
than RLL, while its impact on area varies from 8.2% to 31.9%. TTLock presents an
overhead ranging from 5.7% to 30.0% in area, between 4.4% and 31.8% in power, and
between 1.3% and 6.9% in delay. When RLL is combined with Anti-SAT or TTLock in
CLL configurations, overheads increase significantly. RLL combined with Anti-SAT leads
to area, power, and delay overheads of up to 42.9%, 47.3%, and 13.2%, respectively,
while RLL combined with TTLock has the largest impact on the hardware complexity.

28

Despite the additional complexity, all these locked circuits remain vulnerable to
known attacks, as shown in Table 2. RLL is broken by SAT-based attacks [20] within
0.29 to 2.69 seconds. Anti-SAT and TTLock are defeated using the structural analysis
attack KRATT [26] in 0.26 to 1.13 seconds and 72.38 to 333.20 seconds, respectively.
CLL schemes, such as RLL combined with Anti-SAT and RLL combined with TTLock,
are broken by the RESAA attack [30], which increases attack time to a range between
418.11 and 929.78 seconds, still within practical limits for an adversary. These results
and evaluations serve as a baseline for the subsequent experimental discussions, which
further analyze attack strategies and the complexity and security tradeoff.

29

3 Discussion
This chapter provides an overview of the three papers on which this thesis is based,
showing the main findings, defense methods, and proposed attacks in the field of
hardware security for digital circuits. These works demonstrate the growing sophistication
of defense and attack mechanisms focused on hybrid techniques and CLL methods that
could integrate resilience against attacks while maintaining performance.

3.1 Hybrid Protection of Digital FIR Filters
FIR filters are fundamental blocks in digital signal processing (DSP) due to their stability
and predictable phase characteristics. Unlike generic digital circuits, where the IP is
often linked to architecture and functional logic, the actual value in FIR filters lies in their
coefficients. These coefficients define the filter’s frequency response and, consequently,
its behavior in applications such as communications, image processing, and biomedical
signal analysis. Without adequate protection, adversaries can extract these coefficients
through reverse engineering, effectively replicating the IP while bypassing the cost and
effort associated with its design [32]. However, only a limited number of techniques
have been proposed to obfuscate DSP circuits, particularly digital filters. Existing
methods have significant vulnerabilities when faced with more advanced attacks [32,97],
necessitating more robust security mechanisms.

This subsection provides an overview of the research published in IEEE TVLSI 2023
as given in Appendix A. This study introduces a novel query attack that exploits
weaknesses in existing protection schemes. An adversary can extract values of key bits
by performing targeted queries, ultimately reconstructing the filter’s coefficients. This
method highlights the limitations of conventional hardware obfuscation and demonstrates
that existing LL techniques alone are insufficient to secure FIR filter designs.

As a countermeasure, a hybrid protection mechanism is proposed, integrating
hardware obfuscation with LL to safeguard both the filter’s coefficients and functionality.
This approach enhances obfuscation by leveraging decoy constants and a key-based
technique, making it significantly harder for adversaries to extract the correct coefficients
or replicate the filter’s behavior.

The security and efficiency of locked architectures depend on the underlying multipli-
cation method used. Constant multiplication generally occurs in many DSP applications,
particularly in FIR filters, where coefficients are multiplied by input values. Three
architectures are commonly used for such operations depending on the filter archi-
tecture, i.e., transposed or direct form: constant array vector multiplication (CAVM),
multiple constant multiplication (MCM), and time-multiplexed constant multiplication
(TMCM). CAVM performs the multiplication of a 1 × n constant array by an n × 1
input vector, generating a single output through the summation of all partial products.
MCM, on the other hand, performs the multiplication of a set of n constants by a
single input variable. Finally, TMCM allows for the time-multiplexed selection of one
constant from a set of n constants, multiplying it by an input variable at each time
step. These architectures enable efficient implementation of FIR filters, particularly in
hardware-constrained environments where reducing multiplications through addition
and shift operations is essential.

30

Table 3: Results of obfuscated and protected multiplier blocks. This table is the same as the
Table V in Publication I.

Block Architecture Technique Synthesis Attacks
SAT ATPG AppSAT DoubleDIP Query SCOPE

area delay power time time time time prv time cdk/dk time
Decoy [32] 15435 4616 4641 155143 OoT OoT OoT 32 9893 20/32 8cavm-mul Proposed Hybrid 15710 4611 4757 OoT OoT OoT OoT 0 OoT 1/1 13
Decoy [32] 15465 4611 4475 36083 4539 OoT OoT 32 9944 20/32 8cavm-sa Proposed Hybrid 15704 4715 4497 OoT OoT OoT OoT 0 29328 1/1 12
Constant [58] 18737 3982 4756 110 1446 OoT OoT 32 897 21/27 11

CAVM

cavm-crk Proposed Hybrid 18976 4265 4809 OoT OoT OoT OoT 0 1937 2/3 16
Decoy [32] 10949 3102 2839 106 OoT 324 243 32 176 27/32 7mcm-mul Proposed Hybrid 11173 3031 2897 OoT OoT OoT OoT 0 197 1/1 11
Decoy [32] 10493 3112 2493 119 OoT 342 254 32 152 27/32 7mcm-sa Proposed Hybrid 10705 3159 2495 OoT OoT OoT OoT 0 115 1/1 11
Constant [58] 12799 2772 2412 159 OoT 415 300 32 459 18/32 7

MCM

mcm-crk Proposed Hybrid 13038 2970 2456 OoT OoT OoT OoT 0 759 1/1 11
Decoy [32] 1545 3517 610 241 6783 378 496 32 7 21/32 4tmcm-mul Proposed Hybrid 1794 4278 639 OoT OoT OoT OoT 0 17 2/3 2
Decoy [32] 2043 4452 1037 738 963 935 OoT 32 37 17/32 4tmcm-sa Proposed Hybrid 2245 4536 1065 OoT OoT OoT OoT 0 42 1/2 3
Constant [58] 1566 2997 623 1035 15571 1032 OoT 32 29 20/32 4

TMCM

tmcm-crk Proposed Hybrid 1776 3655 642 OoT OoT OoT OoT 0 48 1/1 2

The experimental results are presented in Tables 3 and 4. These tables compare
the performance and security resilience of various locked multiplier blocks, showing the
superiority of the hybrid approach. These tables present the evaluation metrics and
attack results. Note that area, delay, and power represent the total area in µm2, critical
path delay in ps, and total power dissipation in µW , respectively. It includes results
from SAT, ATPG, AppSAT, DoubleDIP, and SCOPE attacks, where cdk and dk denote
correctly and total deciphered key bits for SCOPE, respectively. All attacks had a 2-day
time limit, and designs are highlighted where the secret key remained undiscovered.

Different architectures implementing the multiplication block of the FIR filter with
varying hardware complexity were tested to validate the proposed protection mechanism.
mul-based represents a conventional approach where multiplications are performed
directly using hardware multipliers, as in the cavm-mul, mcm-mul, and tmcm-mul
implementations. sa architecture eliminates the need for multipliers by implementing
constant multiplications using only addition, subtraction, and shift operations, as seen in
cavm-sa, mcm-sa, and tmcm-sa. Constant replacement with key bits (crk) enhances
security by replacing selected constant values with key bits, making it harder for an
adversary to infer the correct functionality, as demonstrated in cavm-crk, mcm-crk,
and tmcm-crk. Each of these architectures was locked and evaluated using different
LL techniques, providing a robust dataset for comparing the effectiveness of hybrid
protection against traditional LL techniques.

Table 3 compares the performance of locked multiplier blocks under different ob-
fuscation techniques. The hybrid protection method consistently outperforms existing
obfuscation techniques, particularly in its resilience to the query attack. Although
existing obfuscation techniques may be broken within a specific timeframe, the hybrid
method provides a more robust defense, enduring prolonged attack attempts without
compromising the secret key.

As seen in Table 4, hybrid protection generally demonstrates greater resilience
against the query attack than traditional LL techniques, though some locked designs
remain secure. While LL can be compromised within certain time limits, the hybrid
technique offers a more robust defense, resisting extended attacks without leaking critical

31

Table 4: Results of locked multiplier blocks. This table is the same as the Table VI in
Publication I.

Block Logic Locking Synthesis Attacks
SAT ATPG AppSAT DoubleDIP Query SCOPE

area delay power time time time time prv time cdk/dk time
RLL 16411 3385 4183 171 OoT 205 2609 32 254 0/0 9
RLL+AntiSAT 16492 3416 4127 OoT OoT OoT OoT 16 364 0/0 14
RLL+CASLock 16473 3502 4110 OoT OoT OoT OoT 16 443 0/0 13
RLL+SARLock 16512 3572 4191 OoT OoT 48855 OoT 32 441 8/8 13
RLL+SFLL 16506 3473 4205 339 829 39664 OoT 32 436 0/0 14

CAVM

RLL+SKGLock 16559 3894 4308 OoT OoT OoT OoT 19 513 5/6 14
RLL 8090 2398 2039 86 122 293 371 32 89 0/0 6
RLL+AntiSAT 8244 2434 2065 OoT OoT OoT OoT 16 249 0/0 9
RLL+CASLock 8121 2404 2024 OoT OoT 1054 OoT 16 164 0/0 9
RLL+SARLock 8209 2467 2041 OoT OoT 45013 OoT 32 228 10/10 9
RLL+SFLL 8166 2452 2019 576 7870 2626 OoT 32 243 0/0 9

MCM

RLL+SKGLock 8252 2464 2056 OoT OoT OoT OoT 19 160 5/5 9
RLL 1587 3712 646 8 39 57 77 32 15 0/0 2
RLL+AntiSAT 1659 3545 632 OoT OoT OoT OoT 13 28 0/0 2
RLL+CASLock 1653 3664 628 OoT OoT OoT OoT 15 20 0/0 2
RLL+SARLock 1659 3756 658 OoT OoT 2662 OoT 31 36 6/6 3
RLL+SFLL 1644 3800 653 1095 1089 5363 OoT 32 36 0/0 2

TMCM

RLL+SKGLock 1694 3739 676 OoT OoT OoT OoT 18 34 10/10 2

information. This enhanced resilience, however, incurs a modest trade-off in synthesis
metrics: hybrid protection typically increases the total area and power consumption by
around 1–5%. The delay overhead is usually modest but varies significantly with the
underlying architecture, ranging from negligible to approximately 21% in extreme cases,
such as the TMCM multiplier block. Nonetheless, this trade-off remains reasonable,
given the substantial security improvements.

In conclusion, the hybrid protection technique significantly improves the security of
FIR filters against advanced attack methods such as query attacks. While not entirely
immune to future attack evolutions, this approach considerably strengthens the defense
of critical components in digital signal processing systems, ensuring their integrity
against unauthorized access.

3.2 Resynthesis-based Attacks Against Logic Locking
Attacks using the EDA tools engine have emerged as a powerful technique to break LL
schemes by exploiting changes to the netlist or constant propagation to uncover secret
keys [34,98]. Synthesis tools translate a high-level behavioral description of a circuit
into standard cells from a target technology library. This process involves mapping
abstract logic functions to specific components available in the library, ensuring that
the generated design meets constraints such as area, power, and delay.

This subsection presents a novel resynthesis-based attack that enhances existing
methodologies under the OG and OL threat models. The attack leverages structural
diversity generated by multiple synthesis iterations with varying parameters, enabling
key recovery by exposing inconsistencies across locked netlists. This work demonstrates
that resynthesis inadvertently weakens the security of LL designs, making them more
susceptible to previously ineffective attacks.

The proposed approach and its implications for LL security have been published in
the ISQED Conference, 2023. The complete experimental results and further details
are provided in the Appendix B. The main contribution of this work is to demonstrate

32

that resynthesis not only increases the chances of key recovery but also weakens the
locked circuits against attacks that would otherwise fail.

The resynthesis process systematically generates a large set of unique, yet functionally
equivalent, locked circuits by varying synthesis parameters such as timing and logic
optimization effort. These variations introduce subtle differences in the circuit’s structure,
which attackers exploit to recover key information. This resynthesis-based attack is
applicable to a wide range of LL techniques, including Anti-SAT [27], CASLock [63],
SFLL [64], and SKG-Lock [65]. By creating multiple unique versions of the locked
netlists, the attack uncovers significantly more key bits than traditional attacks on
the original netlists. Furthermore, by combining OL and OG attacks, the proposed
technique strengthens key recovery accuracy, making it a powerful tool against single
LL and CLL schemes.

Figures 5 and 6 highlight the structural differences between two synthesized netlists
generated with different delay constraints. These differences, though subtle, are critical
for understanding why resynthesis amplifies the success of attacks like SCOPE. The
figure shows how small changes in synthesis parameters can drastically alter the circuit’s
gate count and logic depth. Such structural diversity is critical to exposing vulnerabilities
in the locked design, as it allows the attack to leverage variations in the logic structure
to recover more key bits.

Table 5 shows the results of OL attacks on locked ISCAS’85 circuits. The table
compares the success of the SCOPE attack on the original locked netlist versus the
resynthesized netlists. It is evident that while the SCOPE attack is not entirely successful
on the original locked netlist, resynthesis enables the recovery of a significant number of
key bits. For instance, circuits like c2670, when locked with SKG-Lock, have 100% of
their key bits recovered after resynthesis, compared to partial or unsuccessful recovery
without resynthesis. The secret key is also found in other benchmarks when the
undetermined key inputs are assigned a constant logic value of 0 or 1. This underscores
the effectiveness of resynthesis in compromising LL techniques previously considered
resilient to attacks like SCOPE. The results demonstrate that even SKG-Lock, an
SAT-resilient locking technique, is susceptible to resynthesis, revealing the hidden key
bits.

Table 6 extends the analysis to CSAW’19 circuits, which use CLL combining RLL and
SFLL-rem [95]. The table compares the results of the proposed resynthesis-based attack
with traditional OL attacks. Full key recovery is achieved for RLL, even under complex
circuits. While SFLL-rem presents a more difficult challenge, the resynthesis-based
attack still outperforms other OL methods, demonstrating a large number of recovered
key bits, recovering up to approximately 44% of the previously undiscoverable key bits.
This result underscores the robustness of the resynthesis approach in handling both OL
and OG threat models. The ability to break RLL and still recover partial key bits under
more complex schemes like SFLL-rem highlights the broad applicability of the method
across different LL techniques.

33

Figure 5: Graph of the netlist resynthesized when the delay constraint is 990 ps. This figure is reproduced from Figure 5(a) in Publication II.

34

Figure 6: Graph of the netlist resynthesized when the delay constraint is 496 ps. This figure is reproduced from Figure 5(b) in Publication II.

35

Table 5: Results of OL Attacks on the locked ISCAS’85 Circuits. This table is the same as the
Table III in Publication II.

Circuit
Anti-SAT CASLock SFLL SKG-Lock

SCOPE Resynthesis SCOPE Resynthesis SCOPE Resynthesis SCOPE Resynthesis
cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time

c2670 0/0 4s 37/64 34m18s 0/0 4s 35/64 33m47s 0/0 4s 34/64 37m32s 32/32 4s 64/64 44m37s
c3540 0/0 3s 17/32 21m27s 0/0 3s 17/32 18m12s 0/0 2s 19/32 21m29s 17/17 2s 32/32 24m30s
c5315 0/0 5s 38/64 42m34s 0/0 5s 30/64 43m54s 0/0 5s 33/64 46m23s 32/32 5s 62/62 52m06s
c6288 0/0 3s 18/32 29m08s 0/0 3s 16/32 27m18s 0/0 3s 16/31 33m19s 16/16 3s 31/31 34m24s
c7552 0/0 6s 38/64 45m31s 0/0 6s 47/64 49m13s 0/0 6s 38/63 52m26s 32/32 6s 61/61 56m45s

Table 6: Results of attacks on the locked CSAW’19 Circuits. This table is the same as the
Table VII in Publication II.

Approach Attack Scenario
Circuit

small (40+40) medium (60+60) large (80+80) bonus (128+128)
RLL SFLL-rem RLL SFLL-rem RLL SFLL-rem RLL SFLL-rem

Key sensitization [15] OG 40/40 — 60/60 — 80/80 — — —
Hamming distance-based attack [95] OG 30/30 — 50/50 — 72/72 — — —
Automated analysis + SAT [95] OG 11/18 — 31/50 — 10/34 — — —
Sub-circuit SAT [95] OG 17/17 — 29/29 — — — — —
Redundancy-based [99] OL 28/28 4/12 35/35 23/28 45/45 0/51 66/66 8/27
Bit-flipping attack [76] OG 40/40 — 60/60 — 80/80 — — —
Topology guided attack [90] OL 15/32 — 19/50 — 36/73 — 75/108 —
Resynthesis-based attack OG 40/40 20/39 60/60 29/60 80/80 35/79 128/128 55/124

These results demonstrate that a resynthesis-based attack is critical in exposing
weaknesses in logic-locked circuits. The proposed attack significantly improves the
effectiveness of OL attacks by exploiting the structural variations introduced during
resynthesis. Even for circuits locked with SAT-resistant techniques, resynthesis enables
attackers to recover key bits that would have otherwise remained hidden. Furthermore,
by combining OL and OG methods, this approach achieves higher key recovery accuracy,
making it a robust tool against advanced locking schemes like SFLL-rem.

This study highlights the importance of resynthesis in hardware security research.
By systematically altering the structure of locked circuits, we expose vulnerabilities that
are not easily detectable with traditional attacks. The results achieved under both OL
and OG threat models reinforce the effectiveness of the proposed attack.

3.3 RESAA: A Removal and Structural Analysis Attack Against
Compound Logic Locking

CLL schemes have been introduced to integrate a multi-layered LL strategy to protect
ICs against advanced attack methodologies. By combining multiple LL techniques, CLL
aims to leverage the strengths of different approaches while mitigating their weaknesses.
However, recent studies have identified structural vulnerabilities that adversaries can
exploit [25, 74]. These vulnerabilities arise from how LL techniques interact within the
CLL structure, potentially exposing CGs or enabling key differentiation through attack
strategies that partition the locked design.

This subsection introduces RESAA, a novel attack framework that leverages both
removal and structural analysis techniques to break CLL. RESAA was developed as part
of this thesis and has been published in IEEE TVLSI 2025. For further details, the full
version of this work, including extended experimental results, is provided in Appendix C.
The following sections detail the attack methodology, experimental validation, and
implications for future LL defenses.

RESAA exposes vulnerabilities in CLL designs by leveraging a combination of SAT-

36

based attacks, structural analysis, and query-based attacks. The core of RESAA lies
in classifying the keys of a CLL-locked circuit into two categories: RLL and PSLL. By
leveraging the CG, where all key inputs converge before reaching the primary output
(PO), RESAA partitions the design into two distinct netlists. This partitioning not
only simplifies the attack but also reduces the complexity of applying traditional attack
techniques, such as SAT-based or SCOPE attacks.

Figure 7 provides the overview of the RESAA, illustrating the entire workflow from
pre-processing the CLL-locked circuit to uncovering the secret key. The left side of
the figure demonstrates the initial pre-processing steps, where the original circuit is
locked using CLL techniques. It begins by applying RLL to the original circuit, adding
XOR/XNOR gates driven by key inputs, which offer minimal overhead in terms of area
and power but contribute to an increased delay, as described in the paper. Then, CLL
techniques such as Anti-SAT [27], Anti-SAT-DTL [96], CASLock [63], SARLock [16],
or TTLock [28] are applied. These methods increase resistance to attacks but also
introduce hardware complexity and overhead. This locked circuit is then translated
into a mapped Verilog netlist by the synthesis process, which forms the basis for the
subsequent steps.

RLL

Synthesis

CLL circuit Key classification

CG identification

Original circuit

SFLT or DFLT

CLL Netlist

R
ES

AA

Netlist partition

Attack

CLL secret key

Figure 7: Overview of the RESAA framework. This figure is reproduced from Figure 4 in
Publication III.

The classification process starts by identifying the CG and a key classification between
RLL and PSLL. Subsequently, the netlist is divided into two distinct partitions. Each
partition is processed separately, with the RLL-protected portion subjected to SAT-based
and/or query-based attacks. In contrast, the PSLL-protected portion is analyzed using
advanced techniques like QBF-based attacks. This partitioning strategy improves the
attack’s efficiency and allows RESAA to target specific vulnerabilities in each part of the
circuit. By isolating one partition with only RLL keys and another with only PSLL keys
and attacking the distinct portions of the CLL-protected design, the RESAA framework
effectively exposes the secret keys embedded within, overcoming many of the defenses
presented by the CLL mechanisms.

The experiments were conducted on ten benchmark circuits from the ISCAS’85 [93]

37

(a) ISCAS’85 benchmark (b) ITC’99 benchmark

Figure 8: Classification and execution times (seconds) for attacking ISCAS’85 and ITC’99
benchmarks in the CLL scheme. Bottom: Classification and partition time. Hatched: Attack
time. Combined: Total execution time. This figure is reproduced from Figure 9 in Publication
III.

and ITC’99 [94] suites. The locking mechanisms were implemented using a combination
of the Neos tool [100], Python, and Perl scripts.

Table 7: Details of existing attacks in ISCAS’85 and ITC’99 circuits locked using a CLL scheme.
This table is the same as the Table IV in Publication III.

Circuit
Locked Netlist

RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock
sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt

time time time prv time time time time prv time time time time prv time time time time prv time time time time prv time
c2670 OoT 998 OoT 52 48 OoT 170 OoT 50 45 OoT 238 OoT 50 25.4 OoT 114 OoT 55 59 OoT 1055 OoT 48 48
c3540 OoT 766 OoT 30 20 OoT 203 OoT 32 19 OoT 66 OoT 30 8 OoT 91 5 31 22 48656 4499 2 31 19
c5315 OoT 239 OoT 62 50 OoT 9949 OoT 62 52 OoT 131 OoT 62 42 OoT 64 OoT 62 72 OoT 2768 OoT 62 60
c6288 OoT OoT OoT 32 77 OoT 58470 OoT 32 69 OoT 3936 OoT 32 90 OoT 935 OoT 32 119 OoT 6270 OoT 32 93
c7552 OoT 172 OoT 55 96 OoT 543 OoT 55 105 OoT 279 OoT 55 59 OoT 247 OoT 55 108 OoT 51 OoT 55 79
b14_C OoT OoT OoT 109 1822 OoT OoT OoT 112 1383 OoT OoT OoT 106 2082 OoT OoT OoT 109 1335 OoT OoT OoT 111 1783
b15_C OoT OoT OoT 98 466 OoT OoT OoT 97 635 OoT OoT OoT 96 836 OoT OoT OoT 80 513 OoT OoT OoT 87 671
b20_C OoT OoT OoT 115 1562 OoT OoT OoT 115 1647 OoT OoT OoT 109 2645 OoT OoT OoT 115 1645 OoT OoT OoT 113 2187
b21_C OoT OoT OoT 113 1119 OoT OoT OoT 114 1337 OoT OoT OoT 113 1935 OoT OoT OoT 110 1385 OoT OoT OoT 109 1738
b22_C OoT OoT OoT 113 1034 OoT OoT OoT 113 1214 OoT OoT OoT 108 1489 OoT OoT OoT 105 938 OoT OoT OoT 111 1342

Table 7 shows the runtime of attacks required to find the secret key, where out-of-
time (OoT) indicates that no solution could be found within the allowed 48-hour time
limit. As observed from Table 7, the SAT-based (sat) and DoubleDIP (dp) attacks
exhibit low efficiency in deciphering key inputs, as expected. They only found a solution
for one single RLL+TTLock case in the c5315 circuit. The AppSAT attack showed
promising results for small circuits but demanded significant execution time compared
to other attacks. Although AppSAT (appsat) demonstrated nearly 100% efficiency in
breaking ISCAS’85 circuits, it could not solve certain more complex cases, such as the
c6288 circuit locked with RLL+Anti-SAT. Lastly, the query attack from [101], qatt,
displayed varying execution times and degrees of success in deciphering key inputs,
as shown in Table 7. The average proportion of proven values of key inputs prv is
approximately 41%, with execution times ranging from 8 to 2645 seconds.

Next, Figure 8 presents the classification and execution times under the OG threat
model. In this context, “classification time” refers to the duration required for categoriz-
ing the LL technique utilized in the CLL design, depicted in the lower section of the graph.
Conversely, “attack time” is indicated by the hatched portion of the graph. In contrast,
“execution time” represents the total time, including both classification/partition time
and the subsequent attack on each circuit, as depicted by both sections in the graph.

Table 8 compares the results of RESAA under the OL threat model with the SCOPE
attack. RESAA successfully recovers a substeantial portion of the key bits across

38

multiple benchmarks. For example, the attack reveals 37 out of 64 key bits for the
c2670 circuit locked with RLL + Anti-SAT, and a similar performance is observed across
other circuits. These results demonstrate RESAA’s ability to uncover a large portion
of the key even when no functional IC (oracle) is available for validation. In contrast,
traditional attacks, such as SCOPE, fail to reveal any key bits, further underscoring the
effectiveness of RESAA’s partitioning strategy. This attack methodology is particularly
potent when applied to complex CLL designs, where a direct attack on the whole circuit
would otherwise be computationally infeasible.

Table 8: Results of OL Attacks on the locked ISCAS’85 and ITC’99 circuits. This table is the
same as the Table V in Publication III.

Circuit
RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock

SCOPE RESAA SCOPE RESAA SCOPE RESAA SCOPE RESAA SCOPE RESAA
cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time

c2670 0/0 14 73/104 4 0/0 13 80/104 4 0/0 9 84/104 4 32/64 8 97/105 4 16/106 10 68/105 9
c3540 0/0 6 37/43 2 0/0 6 40/64 2 0/0 4 40/45 2 15/32 4 41/43 2 8/42 7 32/45 4
c5315 0/0 15 77/107 5 0/0 16 78/107 5 0/0 12 81/107 5 32/64 10 100/107 5 30/107 12 69/109 11
c6288 0/0 7 41/56 3 0/0 7 42/56 2 0/0 5 42/56 3 17/32 5 49/56 3 4/53 6 40/56 5
c7552 0/0 17 78/108 5 0/0 17 79/105 5 0/0 8 81/108 4 40/64 11 98/107 6 28/107 13 82/109 12
b14_C 0/0 91 160/210 67 0/0 91 168/215 69 0/0 67 180/213 44 68/128 71 168/200 46 36/203 87 38/72 58
b15_C 0/0 117 166/210 87 0/0 120 190/214 90 0/0 88 180/210 58 72/128 89 186/214 59 49/202 109 58/82 72
b20_C 0/0 155 172/203 115 0/0 156 182/200 117 0/0 116 191/211 77 67/128 118 188/209 77 44/201 136 62/86 93
b21_C 0/0 159 183/210 119 0/0 164 185/212 122 0/0 119 173/213 78 77/128 121 178/200 82 52/196 142 60/70 97
b22_C 0/0 231 180/209 172 0/0 233 185/212 175 0/0 177 190/205 116 86/128 175 189/199 116 48/192 193 56/70 139

In summary, RESAA offers a powerful new approach for attacking CLL-locked designs
by partitioning the circuit and applying a combination of SAT-based, structural analysis,
and/or query-based attacks. The results highlight the vulnerabilities in current LL
techniques, even in advanced configurations like TTLock and SARLock combined with
RLL. While these techniques provide better resistance to attacks, RESAA demonstrates
that, with CG identification and proper partitioning, even these defenses can be overcome.
The study emphasizes the need for further research into more robust locking mechanisms
to counter the growing sophistication of attacks like RESAA.

39

4 Conclusions and Future Work
This thesis focuses on one of the most important fields of hardware security, i.e., LL
techniques and their resiliency against existing attacks. As the complexity of ICs
increases, so do the risks of IP theft, reverse engineering, and overproduction. LL, a
heavily studied hardware obfuscation method, is crucial in addressing these threats by
embedding secret keys that ensure proper circuit functionality only when the correct key
is applied. Through rigorous experimentation and novel theoretical contributions, this
thesis makes significant advancements in understanding LL techniques’ vulnerabilities
and potential enhancements.

The research presented in this thesis emphasizes the need for continuous threat
evaluation in the field of hardware security. It introduces a novel query attack that
exploits vulnerabilities in obfuscated FIR filters, revealing how attackers can use carefully
crafted inputs to reveal the secret key. This attack exposes critical flaws in the current
defenses and underscores the importance of continuously evaluating new threats in LL
applications. A hybrid protection mechanism combining hardware obfuscation and LL
was proposed to counter these vulnerabilities. This hybrid solution is more resilient
than standalone LL techniques, mainly when dealing with parallel direct and transposed
FIR filter designs. Experimental results showed that traditional LL methods had 100%
key exposure, while the proposed hybrid protection had a 0% success rate of key
extraction. This was at the expense of modest increases in area and power, typically
between 1% and 5%, and up to approximately 21% in some instances of delay overhead.
The effectiveness of this solution is demonstrated through comprehensive experimental
results, revealing that hardware complexity remains competitive while security levels are
significantly improved.

Second, the thesis introduces a resynthesis-based attack demonstrating how attackers
can exploit structural weaknesses in locked circuits. This attack, applied under both OG
and OL threat models, illustrates the limitations of traditional LL techniques, including
SAT-resilient schemes. By leveraging commercial EDA tools, this attack identifies
design vulnerabilities in the LL mechanisms and successfully compromises a significant
number of key bits. For instance, experiments demonstrated 100% of key recovery from
circuits like c3540 locked with SKG-Lock after resynthesis. This work underscores the
importance of considering the effects of synthesis tools in evaluating LL security and
introduces new challenges for defending against these types of attacks.

Finally, the development of the RESAA framework represents a significant advance-
ment in attacking CLL techniques. The framework was proposed to be an OA attack,
where the adversary does not previously know the LL techniques applied in the CLL. It
systematically identifies critical gates, applies structural analysis, and partitions the de-
sign, revealing specific weaknesses in the CLL technique. RESAA’s ability to break down
designs and efficiently target different layers of security emphasizes the complexities
of securing modern ICs. For example, the average proportion of proven values of key
inputs is approximately 41% under the OG attack, with execution times ranging from 8
to 2645 seconds. Under the OL attack, RESAA recovered a good portion compared
to the SCOPE attack. For example, the attack reveals 37 out of 64 key bits for the
c2670 circuit locked with RLL + Anti-SAT. The experimental results demonstrate

40

the framework’s ability to overcome even the most SAT-resilient defenses, providing
valuable insights into how CLL techniques can be exploited. The findings call for more
sophisticated methods that take into account the interactions between different LL
techniques.

While this research has made significant progress in understanding and addressing
hardware security challenges, it also emphasizes the need for continued innovation in
this rapidly evolving field. Future work should focus on enhancing the resilience of
LL techniques, particularly in the face of more sophisticated attacks. Integrating AI
and ML tools into defensive strategies may offer new opportunities for improving LL’s
robustness. These technologies could detect attack patterns, predict vulnerabilities, and
dynamically adapt the locking mechanisms to different attack scenarios.

Moreover, the interplay between high-level obfuscation methods, such as hardware
watermarking and camouflaging, and LL should be further explored to develop a more
robust and comprehensive defense strategy. Combining these techniques could enable
layered protection, effectively addressing vulnerabilities at multiple stages of the IC supply
chain. Additionally, the integration of novel materials offers promising opportunities for
enhancing hardware security. This integrated approach creates multiple interdependent
defense layers, significantly increasing the complexity of attacks and providing a resilient
protective framework. These advances could redefine the way how LL is implemented,
solidifying its role as a critical component in safeguarding future hardware designs
against evolving threats.

Future work can investigate adapting the LL techniques presented in this thesis to
emerging computing paradigms, such as neuromorphic architectures. These systems
offer promising avenues for dynamic security by enabling LL implementations capable
of real-time adaptation to evolving threats. Such adaptability can significantly enhance
resistance to contemporary attacks. Investigating these novel architectures may lead
to more resilient protection mechanisms and extend hardware security strategies to
technologies with inherently different vulnerabilities.

In conclusion, as the semiconductor industry evolves, so must the security measures
that protect it. This thesis demonstrates that while LL remains a powerful tool in the
fight against IP theft and reverse engineering, it is far from secure. The contributions
made here, including the novel attacks and hybrid defenses, represent critical steps
forward in the ongoing effort to secure the integrity of IC designs. The challenges
outlined in this work highlight the need for a dynamic and proactive approach to hardware
security, ensuring that as attackers evolve their methods, defenders are equipped with
the tools and strategies necessary to protect the core of modern technology.

41

References
[1] H.-C. Hung, Y.-C. Chiu, and M.-C. Wu, “Analysis of competition between

idm and fabless–foundry business models in the semiconductor industry,” IEEE
Transactions on Semiconductor Manufacturing, vol. 30, no. 3, pp. 254–260, 2017.

[2] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security:
Models, Methods, and Metrics,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014.

[3] C. Wiesen, S. Becker, M. Fyrbiak, N. Albartus, M. Elson, N. Rummel, and
C. Paar, “Teaching hardware reverse engineering: Educational guidelines and
practical insights,” in IEEE International Conference on Teaching, Assessment,
and Learning for Engineering (TALE), pp. 438–445, 2018.

[4] G. Zarrinchian, “A chip activation protocol for preventing ic recycling,” Micropro-
cessors and Microsystems, vol. 101, p. 104872, 2023.

[5] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris,
“Counterfeit integrated circuits: A rising threat in the global semiconductor supply
chain,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1207–1228, 2014.

[6] T. M. Supon, M. Seyedbarhagh, R. Rashidzadeh, and R. Muscedere, “A method
to prevent hardware trojans limiting access to layout resources,” Microelectronics
Reliability, vol. 124, p. 114212, 2021.

[7] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks, defenses,
and challenges,” IEEE Access, vol. 8, pp. 184013–184035, 2020.

[8] H. Chakraborty and R. Vemuri, “Combined split manufacturing and logic obfusca-
tion based on emerging technologies at high level for secure 3d ic design,” in IEEE
67th International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 1403–1407, 2024.

[9] F. Koushanfar and G. Qu, “Hardware metering,” in 38th Annual Design Automa-
tion Conference (DAC), p. 490–493, 2001.

[10] F. Koushanfar, “Provably Secure Active IC Metering Techniques for Piracy
Avoidance and Digital Rights Management,” IEEE Transactions on Information
Forensics and Security (TIFS), vol. 7, no. 1, pp. 51–63, 2012.

[11] G. Qu and L. Yuan, Secure Hardware IPs by Digital Watermark, pp. 123–141.
Springer New York, 2012.

[12] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M. Potkon-
jak, P. Tucker, H. Wang, and G. Wolfe, “Watermarking Techniques for Intellectual
Property Protection,” in Design Automation Conference (DAC), pp. 776–781,
1998.

42

[13] J. Zhang, “A practical logic obfuscation technique for hardware security,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 3,
pp. 1193–1197, 2016.

[14] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated
Circuits,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1069–1074, 2008.

[15] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis of Logic
Obfuscation,” in Design Automation Conference (DAC), pp. 83–89, 2012.

[16] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock: SAT Attack
Resistant Logic Locking,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 236–241, 2016.

[17] S. Dupuis and M.-L. Flottes, “Logic Locking: A Survey of Proposed Methods
and Evaluation Metrics,” J. Electron. Test., vol. 35, no. 3, pp. 273–291, 2019.

[18] J. Zhou and X. Zhang, “Generalized sat-attack-resistant logic locking,” IEEE
Transactions on Information Forensics and Security (TIFS), vol. 16, pp. 2581–2592,
2021.

[19] V. S. Rathor, M. Singh, K. S. Sahoo, and S. P. Mohanty, “Gatelock: Input-
dependent key-based locked gates for sat resistant logic locking,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 32, no. 2, pp. 361–371,
2024.

[20] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic encryption
algorithms,” in IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 137–143, 2015.

[21] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor, “Advances in
logic locking: Past, present, and prospects,” Cryptology ePrint Archive, 2022.

[22] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the security
of logic locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 35, no. 9, pp. 1411–1424, 2016.

[23] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Appsat: Approxi-
mately deobfuscating integrated circuits,” in 2017 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 95–100, 2017.

[24] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality Logic Locking
With Hamming Distance-Based Restore Unit (SFLL-hd) – Unlocked,” IEEE
Transactions on Information Forensics and Security (TIFS), vol. 14, no. 10,
pp. 2778–2786, 2019.

[25] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal attacks
on logic locking and camouflaging techniques,” IEEE Transactions on Emerging
Topics in Computing (TETC), vol. 8, no. 2, pp. 517–532, 2020.

43

[26] L. Aksoy, M. Yasin, and S. Pagliarini, “Kratt: Qbf-assisted removal and structural
analysis attack against logic locking,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1–6, 2024.

[27] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack on Logic Locking,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 38, no. 2, pp. 199–207, 2019.

[28] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “Ttlock: Tenacious
and traceless logic locking,” in IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 166–166, 2017.

[29] A. Rezaei, Y. Shen, and H. Zhou, “Rescuing logic encryption in post-sat era by
locking & obfuscation,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 13–18, 2020.

[30] F. Almeida, L. Aksoy, and S. Pagliarini, “Resaa: A removal and structural analysis
attack against compound logic locking,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 3, pp. 1–13, 2025.

[31] R. S. Chakraborty and S. Bhunia, “Harpoon: An obfuscation-based soc design
methodology for hardware protection,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 28, no. 10, pp. 1493–1502,
2009.

[32] L. Aksoy, Q.-L. Nguyen, F. Almeida, J. Raik, M.-L. Flottes, S. Dupuis, and
S. Pagliarini, “High-level intellectual property obfuscation via decoy constants,”
in IEEE 27th International Symposium on On-Line Testing and Robust System
Design (IOLTS), pp. 1–7, 2021.

[33] Z. Han, M. Yasin, and J. Rajendran, “Does Logic Locking Work with EDA Tools?,”
in USENIX Security Symposium, pp. 1055–1072, 2021.

[34] F. Almeida, L. Aksoy, Q.-L. Nguyen, S. Dupuis, M.-L. Flottes, and S. Pagliarini,
“Resynthesis-based attacks against logic locking,” in 24th International Symposium
on Quality Electronic Design (ISQED), pp. 1–8, 2023.

[35] L. Aksoy, Q.-L. Nguyen, F. Almeida, J. Raik, M.-L. Flottes, S. Dupuis, and
S. Pagliarini, “Hybrid protection of digital fir filters,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 31, no. 6, pp. 812–825, 2023.

[36] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin, “IP Protection and
Supply Chain Security through Logic Obfuscation: A Systematic Overview,” ACM
Transactions on Design Automation of Electronic Systems (TODAES), vol. 24,
no. 6, 2019.

[37] X. Yuan, J. Weng, C. Wang, and K. Ren, “Secure integrated circuit design via
hybrid cloud,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 29, no. 8, pp. 1851–1864, 2018.

44

[38] A. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe, “Constraint-based watermarking techniques for
design ip protection,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 20, no. 10, pp. 1236–1252, 2001.

[39] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan: Threats
and emerging solutions,” in IEEE International High Level Design Validation and
Test Workshop (HLDVT), pp. 166–171, 2009.

[40] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for system-on-
chip designs with untrusted ips,” IEEE Transactions on Information Forensics and
Security (TIFS), vol. 12, no. 7, pp. 1515–1528, 2017.

[41] M. R. Muttaki, S. Saha, H. M. Kamali, F. Rahman, M. Tehranipoor, and
F. Farahmandi, “Rtlock: Ip protection using scan-aware logic locking at rtl,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6,
2023.

[42] S. Muzaffar and I. A. M. Elfadel, “Logic locking of finite-state machines using
transition obfuscation,” in IFIP/IEEE 30th International Conference on Very Large
Scale Integration (VLSI-SoC), pp. 1–6, 2022.

[43] T. Hoque, R. S. Chakraborty, and S. Bhunia, “Hardware Obfuscation and Logic
Locking: A Tutorial Introduction,” IEEE Design & Test, vol. 37, no. 3, pp. 59–77,
2020.

[44] IEEE Standards Association, “IEEE Standard for Encryption and Management of
Electronic Design Intellectual Property (IP).” https://standards.ieee.org/
ieee/1735/7237/, 2014. IEEE P1735-2014.

[45] R. S. Chakraborty and S. Bhunia, “Hardware protection and authentication
through netlist level obfuscation,” in IEEE/ACM International Conference on
Computer-Aided Design, pp. 674–677, 2008.

[46] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel trojan insertion -
a practical foundry-side attack via eco,” in IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2021.

[47] M. Nagata, T. Miki, and N. Miura, “Physical attack protection techniques for ic
chip level hardware security,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 30, no. 1, pp. 5–14, 2022.

[48] R. Torrance and D. James, “The State-of-the-Art in IC Reverse Engineering,” in
Cryptographic Hardware and Embedded Systems (CHES), pp. 363–381, 2009.

[49] Y.-C. Chen, W.-L. Wang, and M.-S. Hwang, “Rfid authentication protocol for
anti-counterfeiting and privacy protection,” in The 9th International Conference
on Advanced Communication Technology, vol. 1, pp. 255–259, 2007.

45

https://standards.ieee.org/ieee/1735/7237/
https://standards.ieee.org/ieee/1735/7237/

[50] C. Profentzas, M. Günes, Y. Nikolakopoulos, O. Landsiedel, and M. Almgren,
“Performance of secure boot in embedded systems,” in 15th International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), pp. 198–204,
2019.

[51] V. Lakafosis, A. Traille, H. Lee, G. Orecchini, E. Gebara, M. M. Tentzeris,
J. Laskar, G. DeJean, and D. Kirovski, “An rfid system with enhanced hardware-
enabled authentication and anti-counterfeiting capabilities,” in IEEE MTT-S
International Microwave Symposium, pp. 840–843, 2010.

[52] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 10–25, 2010.

[53] S. Dupuis, P.-S. Ba, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “A novel
hardware logic encryption technique for thwarting illegal overproduction and hard-
ware trojans,” in IEEE 20th International On-Line Testing Symposium (IOLTS),
pp. 49–54, 2014.

[54] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “Tao: techniques for algorithm-
level obfuscation during high-level synthesis,” in Proceedings of the 55th Annual
Design Automation Conference, DAC ’18, (New York, NY, USA), Association for
Computing Machinery, 2018.

[55] K. Zamiri Azar, H. M. Kamali, S. Roshanisefat, H. Homayoun, C. P. Sotiriou,
and A. Sasan, “Data flow obfuscation: A new paradigm for obfuscating circuits,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 4,
pp. 643–656, 2021.

[56] Z. U. Abideen, S. Gokulanathan, M. J. Aljafar, and S. Pagliarini, “An overview
of fpga-inspired obfuscation techniques,” ACM Comput. Surv., vol. 56, no. 12,
2024.

[57] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall, “Interlocking
obfuscation for anti-tamper hardware,” in Proceedings of the Eighth Annual
Cyber Security and Information Intelligence Research Workshop, 2013.

[58] C. Pilato, A. B. Chowdhury, D. Sciuto, S. Garg, and R. Karri, “ASSURE: RTL
Locking Against an Untrusted Foundry,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 7, pp. 1306–1318, 2021.

[59] L. Aksoy, M. Yasin, and S. Pagliarini, “Cac 2.0: A corrupt and correct logic
locking technique resilient to structural analysis attacks,” in IEEE 25th Latin
American Test Symposium (LATS), pp. 1–6, 2024.

[60] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated
Circuit Camouflaging,” in ACM Conference on Computer and Communications
Security (ACM CCS), pp. 709–720, 2013.

46

[61] J. Mellor, A. Shelton, M. Yue, and F. Tehranipoor, “Attacks on logic locking ob-
fuscation techniques,” in IEEE International Conference on Consumer Electronics
(ICCE), pp. 1–6, 2021.

[62] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and O. Sinanoglu,
“Provably-secure logic locking: From theory to practice,” ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2017.

[63] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-Lock: A Security-
Corruptibility Trade-off Resilient Logic Locking Scheme,” IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), vol. 2020, no. 1,
pp. 175–202, 2019.

[64] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu, “Truly Stripping
Functionality for Logic Locking: A Fault-Based Perspective,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 39,
no. 12, pp. 4439–4452, 2020.

[65] Q.-L. Nguyen, M.-L. Flottes, S. Dupuis, and B. Rouzeyre, “On Preventing SAT
Attack with Decoy Key-Inputs,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pp. 114–119, 2021.

[66] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel Bypass Attack and
BDD-based Tradeoff Analysis Against All Known Logic Locking Attacks,” in
Cryptographic Hardware and Embedded Systems (CHES), pp. 189–210, 2017.

[67] A. Sengupta, N. Limaye, and O. Sinanoglu, “Breaking CAS-Lock and Its Variants
by Exploiting Structural Traces,” IACR Transactions on Cryptographic Hardware
and Embedded Systems (TCHES), vol. 2021, no. 3, p. 418–440, 2021.

[68] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic locking,” in
Design Automation & Test in Europe Conference & Exhibition (DATE), pp. 936–
939, 2019.

[69] N. Limaye, S. Patnaik, and O. Sinanoglu, “Valkyrie: Vulnerability assessment
tool and attack for provably-secure logic locking techniques,” IEEE Transactions
on Information Forensics and Security (TIFS), vol. 17, pp. 744–759, 2022.

[70] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking and memristor-
based obfuscation against cycsat and inside foundry attacks,” in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 85–90, 2018.

[71] D. Divyanshu, R. Kumar, D. Khan, S. Amara, and Y. Massoud, “Logic locking
using emerging 2t/3t magnetic tunnel junctions for hardware security,” IEEE
Access, vol. 10, pp. 102386–102395, 2022.

[72] H. Mardani Kamali, K. Zamiri Azar, K. Gaj, H. Homayoun, and A. Sasan, “Lut-
lock: A novel lut-based logic obfuscation for fpga-bitstream and asic-hardware
protection,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 405–410, 2018.

47

[73] M. John, A. Hoda, R. Chouksey, and C. Karfa, “Sat based partial attack on com-
pound logic locking,” in Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), pp. 1–6, 2020.

[74] N. Limaye, S. Patnaik, and O. Sinanoglu, “Fa-sat: Fault-aided sat-based attack
on compound logic locking techniques,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1166–1171, 2021.

[75] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic encryption
algorithms,” in Great Lakes Symposium on VLSI (GLSVLSI), p. 179–184, 2017.

[76] Y. Shen, A. Rezaei, and H. Zhou, “SAT-based Bit-Flipping Attack on Logic
Encryptions,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 629–632, 2018.

[77] A. Raj, N. Avula, P. Das, D. Sisejkovic, F. Merchant, and A. Acharyya, “Deep-
attack: A deep learning based oracle-less attack on logic locking,” in IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2023.

[78] A. Alaql, M. M. Rahman, and S. Bhunia, “SCOPE: Synthesis-Based Constant
Propagation Attack on Logic Locking,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 8, pp. 1529–1542, 2021.

[79] D. Sisejkovic, F. Merchant, L. M. Reimann, and R. Leupers, “Deceptive logic
locking for hardware integrity protection against machine learning attacks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 41, no. 6, pp. 1716–1729, 2022.

[80] D. Sisejkovic, L. M. Reimann, E. Moussavi, F. Merchant, and R. Leupers, “Logic
locking at the frontiers of machine learning: A survey on developments and
opportunities,” in IFIP/IEEE 29th International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 1–6, 2021.

[81] L. Alrahis, S. Patnaik, J. Knechtel, H. Saleh, B. Mohammad, M. Al-Qutayri,
and O. Sinanoglu, “Unsail: Thwarting oracle-less machine learning attacks on
logic locking,” IEEE Transactions on Information Forensics and Security (TIFS),
vol. 16, pp. 2508–2523, 2021.

[82] M. T. Rahman, S. Tajik, M. S. Rahman, M. Tehranipoor, and N. Asadizanjani,
“The key is left under the mat: On the inappropriate security assumption of logic
locking schemes,” in 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 262–272, 2020.

[83] H. Mardani Kamali, K. Zamiri Azar, K. Gaj, H. Homayoun, and A. Sasan, “Lut-
lock: A novel lut-based logic obfuscation for fpga-bitstream and asic-hardware
protection,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 405–410, 2018.

48

[84] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri,
“Fault analysis-based logic encryption,” IEEE Transactions on Computers (TC),
vol. 64, no. 2, pp. 410–424, 2015.

[85] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Interlock: An intercor-
related logic and routing locking,” in IEEE/ACM International Conference On
Computer Aided Design (ICCAD), pp. 1–9, 2020.

[86] M. Yasin, C. Zhao, and J. J. Rajendran, “Sfll-hls: Stripped-functionality logic
locking meets high-level synthesis,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–4, 2019.

[87] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic obfusca-
tion for creating sat-unresolvable circuits,” in Great Lakes Symposium on VLSI
(GLSVLSI), p. 173–178, 2017.

[88] H.-Y. Chiang, Y.-C. Chen, D.-X. Ji, X.-M. Yang, C.-C. Lin, and C.-Y. Wang,
“Looplock: Logic optimization-based cyclic logic locking,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 39,
no. 10, pp. 2178–2191, 2020.

[89] J. B. Wendt and M. Potkonjak, “Hardware obfuscation using puf-based logic,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 270–271, 2014.

[90] Y. Zhang, P. Cui, Z. Zhou, and U. Guin, “Tga: An oracle-less and topology-guided
attack on logic locking,” in Proceedings of the 3rd ACM Workshop on Attacks
and Solutions in Hardware Security Workshop, p. 75–83, 2019.

[91] W. Zeng, A. Davoodi, and R. O. Topaloglu, “Obfusx: Routing obfuscation with
explanatory analysis of a machine learning attack,” in 26th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 548–554, 2021.

[92] L. Alrahis, S. Patnaik, F. Khalid, M. A. Hanif, H. Saleh, M. Shafique, and
O. Sinanoglu, “Gnnunlock: Graph neural networks-based oracle-less unlocking
scheme for provably secure logic locking,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 780–785, 2021.

[93] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Cir-
cuits and a Targeted Translator in FORTRAN,” in IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 663–698, 1985.

[94] F. Corno, M. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and first atpg
results,” IEEE Design & Test of Computers (D&T), vol. 17, no. 3, pp. 44–53,
2000.

[95] B. Tan, R. Karri, N. Limaye, A. Sengupta, O. Sinanoglu, M. M. Rahman, S. Bhu-
nia, D. Duvalsaint, R. D., Blanton, A. Rezaei, Y. Shen, H. Zhou, L. Li, A. Orailoglu,
Z. Han, A. Benedetti, L. Brignone, M. Yasin, J. Rajendran, M. Zuzak, A. Srivas-
tava, U. Guin, C. Karfa, K. Basu, V. V. Menon, M. French, P. Song, F. Stellari,

49

G.-J. Nam, P. Gadfort, A. Althoff, J. Tostenrude, S. Fazzari, E. Breckenfeld, and
K. Plaks, “Benchmarking at the frontier of hardware security: Lessons from logic
locking.” arXiv preprint arXiv:2006.06806, 2020.

[96] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, “On the approximation
resiliency of logic locking and ic camouflaging schemes,” IEEE Transactions on
Information Forensics and Security (TIFS), vol. 14, no. 2, pp. 347–359, 2019.

[97] L. Aksoy, A. Hepp, J. Baehr, and S. Pagliarini, “Hardware obfuscation of digital
fir filters,” in 2022 25th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pp. 68–73, 2022.

[98] A. Alaql, “Scope.” Available: https://github.com/alaql89/SCOPE.

[99] L. Li and A. Orailoglu, “Piercing Logic Locking Keys through Redundancy
Identification,” in Design, Automation and Test in Europe Conference (DATE),
pp. 540–545, 2019.

[100] K. Shamsi, “Netlist Encryption and Obfuscation Suite.” https://bitbucket.
org/kavehshm/neos/src/master/, 2021.

[101] L. Aksoy, “Qatt query attack.” Available: https://github.com/leventaksoy/
qatt.

50

https://github.com/alaql89/SCOPE
https://bitbucket.org/kavehshm/neos/src/master/
https://bitbucket.org/kavehshm/neos/src/master/
https://github.com/leventaksoy/qatt
https://github.com/leventaksoy/qatt

Acknowledgements
I would like to express my deepest gratitude to everyone who supported me throughout
this PhD journey. First and foremost, I am profoundly grateful to my supervisors,
Prof. Dr. Samuel Pagliarini and Dr. Levent Aksoy. Samuel introduced me to
Hardware Security, and despite our disagreements and challenging moments, his extensive
knowledge, guidance, and dedication made this research possible. Levent, thank you
for your exceptional patience, valuable feedback, and unwavering friendship. Your
technical insights and support have significantly shaped my work. I would also like
to thank Prof. Dr. Jaan Raik for his support as my co-supervisor during part of this
journey. Additionally, I extend my sincere thanks to all members of the Centre for
Hardware Security and the Department of Computer Systems for their collaboration
and encouragement.

I am grateful to Tallinn University of Technology for providing the essential resources,
academic structure, and financial support required to complete this thesis. I acknowledge
the generous funding from the ICT programme and the SAFEST project, both supported
by the European Union, as well as the MOBERC35 project funded by ETAG.

Special thanks go to my colleagues Cesar, Tiago, Malik, and Zain, whose compan-
ionship, insightful discussions, and mutual support have made this journey memorable
and enriching. I am particularly grateful to my therapist, Michele, whose professional
guidance has been vital in navigating the emotional challenges of this PhD.

Heartfelt thanks to my friends from the Baku group—Paola, Felipe, Nemaila, Natalia,
Marcelo, and Patrik—for their friendship, joy, and strength during challenging times.
To Carlos, thank you for your unwavering support, constant presence, and genuine care
throughout this journey. I also extend warm appreciation to my wonderful friends in
Germany—Milena, Nicolas, and Esperanza—and to my cherished childhood friends,
Claudia, Isabela, Carlete, Daniel, and Wendyel, whose friendship I deeply value.

Most importantly, I am profoundly thankful to my family—my mother, Zefinha, my
sister, Fernanda, and my late father, Jaime. Their unconditional love, encouragement,
and belief in me have been the foundation of my achievements. I dedicate this thesis to
my father, Jaime, whose memory inspires and guides me.

51

Abstract
Advanced Hardware Protection Mechanisms: A Study on
Logic Locking and Circuit Obfuscation Techniques
This thesis explores innovative protection methods for digital integrated circuits (ICs),
focusing on advanced logic locking (LL) and obfuscation strategies to counteract unau-
thorized access and intellectual property theft. The study introduces several notable
contributions. Firstly, a hybrid protection technique for digital filters combines hardware
obfuscation and LL to enhance resilience against oracle-guided and oracle-less attacks,
addressing direct and transposed filter forms vulnerable to traditional attack vectors.
Experimental results demonstrate that this hybrid approach effectively prevents key ex-
posure, achieving a 0% success rate for attackers, in contrast to traditional LL methods
that suffer up to 100% key recovery. Secondly, the research develops a resynthesis-based
attack model to exploit synthesis-stage vulnerabilities within the IC design flow, demon-
strating how adversaries may bypass traditional defenses without relying on an oracle, a
crucial aspect for practical attack scenarios. By examining synthesis manipulation and
structural diversity, this work underlines potential risks and calls for improved practices
in secure design, achieving key recovery rates ranging from approximately 47% to 73%.
Finally, the thesis presents the RESAA framework—a sophisticated attack model that
breaks compound logic locking (CLL), including configurations resilient to satisfiability
attacks. RESAA strategically classifies designs locked by CLL, identifies critical gates
(CGs), and executes various attacks to uncover secret keys. The approach partitions the
design based on the CG, thereby exposing structural weaknesses within CLL mechanisms
and achieving secret key recovery rates ranging from 68% to 97% across benchmark
circuits. This research highlights the pressing need for evolving IC protection approaches
to meet the growing complexity of security threats and ensure that defense mechanisms
remain robust and flexible. Future research directions could explore the integration of
artificial intelligence (AI) for adaptive responses, ultimately paving the way for more
resilient and self-correcting security solutions in dynamic operational environments.

52

Kokkuvõte
Täiustatud riistvara kaitsemehhanismid: uuring loogikalu-
kustamise ja hägustamise tehnikate kohta
Käesolev doktoritöö uurib uuenduslikke kaitsemeetodeid digitaalsete integraallülituste
(IL) jaoks, keskendudes täiustatud loogikalukustamisele (LL) ja hägustamisstratee-
giatele, et takistada volitamata juurdepääsu ja intellektuaalomandi vargust. Uuring
pakub mitmeid märkimisväärseid uuendusi. Esiteks ühendab digitaalsete filtrite hübriidne
kaitsetehnika riistvara hägustamise ja LL-i, et suurendada vastupidavust nii oraakliga
juhitud kui ka oraaklita rünnakute vastu, käsitledes otseseid ja transponeeritud filtri-
vorme, mis on haavatavad traditsioonilistele ründevektoritele. Eksperimendid näitavad,
et see hübriidne lähenemisviis takistab tõhusalt võtmete avalikustamist, viies rünnete
edukuse 0%ni, samas kui traditsioonilised LL-meetodid kannatavad kuni 100% võt-
mete taastamise all. Teiseks arendab uurimus sünteesipõhise ründe mudeli, et ära
kasutada sünteesietapi haavatavusi IL disainivoos, näidates, kuidas vastased võivad
traditsioonilistest kaitsemehhanismidest mööda minna ilma oraaklit kasutamata, mis on
praktiliste ründestsenaariumide jaoks oluline aspekt. Uurides sünteesimanipulatsiooni ja
struktuurilist mitmekesisust, rõhutab see töö võimalikke riske ja kutsub üles parandama
turvalise disaini praktikaid, saavutades võtmete taastamise määrad vahemikus 47-73%.
Lõpetuseks esitleb doktoritöö RESAA raamistikku—keerukat ründe mudelit, mis murrab
kombineeritud loogikalukustamise (KLL), sealhulgas konfiguratsioone, mis on vastupida-
vad SAT rünnakutele. RESAA klassifitseerib strateegiliselt KLL-iga lukustatud disainid,
tuvastab kriitilised loogikalülitused ja viib läbi erinevaid rünnakuid, et paljastada salajasi
võtmeid. Lähenemisviis jagab disaini kriitilise loogikalülituse alusel, paljastades seeläbi
KLL-mehhanismide struktuursed nõrkused ja saavutades salajaste võtmete taastamise
määrad vahemikus 68-97% üle võrdlusskeemide. Uurimus toob esile pakilise vajaduse
arendada IL kaitsemeetodeid, et tulla toime turvaohtude kasvava keerukusega ja tagada,
et kaitsemehhanismid jäävad tugevaks ja paindlikuks. Tulevased uurimissuunad võiksid
uurida tehisintellekti integreerimist adaptiivsete reaktsioonide saavutamiseks, silluta-
des teed vastupidavamatele ja ennast parandavatele turvalahendustele dünaamilistes
töökeskkondades.

53

Appendix A

[I]
L. Aksoy, Q. -L. Nguyen, F. Almeida, J. Raik, M. -L. Flottes, S. Dupuis,
and S. Pagliarini, "Hybrid Protection of Digital FIR Filters," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no.
6, pp. 812-825, 2023.

55

1

Hybrid Protection of Digital FIR Filters
Levent Aksoy, Member, IEEE, Quang-Linh Nguyen, Felipe Almeida, Jaan Raik, Member, IEEE,

Marie-Lise Flottes, Member, IEEE, Sophie Dupuis, Member, IEEE, and Samuel Pagliarini, Member, IEEE

Abstract—A digital Finite Impulse Response (FIR) filter is a
ubiquitous block in digital signal processing applications and
its behavior is determined by its coefficients. To protect filter
coefficients from an adversary, efficient obfuscation techniques
have been proposed, either by hiding them behind decoys or
replacing them by key bits. In this article, we initially introduce a
query attack that can discover the secret key of such obfuscated
FIR filters, which could not be broken by existing prominent
attacks. Then, we propose a first of its kind hybrid technique,
including both hardware obfuscation and logic locking using a
point function for the protection of parallel direct and transposed
forms of digital FIR filters. Experimental results show that the
hybrid protection technique can lead to FIR filters with higher
security while maintaining the hardware complexity competitive
or superior to those locked by prominent logic locking methods.
It is also shown that the protected multiplier blocks and FIR
filters are resilient to existing attacks. The results on different
forms and realizations of FIR filters show that the parallel direct
form FIR filter has a promising potential for a secure design.

Index Terms—hardware obfuscation, logic locking, oracle-less
and oracle-guided attacks, constant multiplications, FIR filters,
direct and transposed forms.

I. INTRODUCTION

Due to the increase in the design complexity of Integrated
Circuits (ICs) and the rising costs of chip fabrication at
advanced technology nodes, the IC supply chain has become
heavily specialized and globalized [1]. Design houses have
been combining their Intellectual Properties (IPs) with many
others purchased from third-parties and resorting to untrusted
foundries for fabrication. Although such globalization reduces
the overall cost of producing an IC, it leads to serious
security threats – especially for IPs – such as piracy, overuse,
modification, and reverse engineering [2]. Over the years, IP
protection has received a significant amount of interest and
efficient methods, including watermarking [3], digital rights
management [4], metering [5], and hardware obfuscation [6],
have been introduced. Among these techniques, only hardware
obfuscation can prevent IP theft, while the others are useful
to prove the IP owner and reveal the IP owner’s rights during
a litigation process. Hardware obfuscation aims to make the

This work has been partially conducted in the project “ICT programme”
which was supported by the European Union through the European Social
Fund. It was also partially supported by European Union’s Horizon 2020
research and innovation programme under grant agreement No 952252
(SAFEST) and by the project MOOSIC ANR-18-CE39-0005 of the French
National Research Agency (ANR).

L. Aksoy, F. Almeida, J. Raik, and S. Pagliarini are with the Department of
Computer Systems, Tallinn University of Technology, Tallinn, Estonia (e-mail:
{levent.aksoy, felipe.almeida, jaan.raik, samuel.pagliarini}@taltech.ee.)

Q.-L. Nguyen is with STMicroelectronics, Grenoble, France (e-mail: quan-
glinh.nguyen@st.com.)

M.-L. Flottes and S. Dupuis are with LIRMM, University of
Montpellier, CNRS, Montpellier, France (e-mail: {marie-lise.flottes, so-
phie.dupuis}@lirmm.fr.)

design less clear and hard to understand for an adversary,
by hiding the design content using structural transformations,
locking the design functionality using additional logic with
key bits, and exploiting camouflaged gates [6].

Digital filtering is frequently used in Digital Signal Pro-
cessing (DSP) applications and Finite Impulse Response (FIR)
filters are generally preferred due to their stability and linear
phase property [7]. Since filter coefficients determine the
filter behavior, they are actually an IP and need protection
from reverse engineering by an adversary. Although there
exist many efficient high-level and behavioral obfuscation
methods proposed for protecting IPs [8]–[13], digital FIR
filters require specialized obfuscation techniques, since they
should behave according to their specifications, such as pass-
band and stopband frequencies and ripples [14]. However,
there exist only a limited number of techniques proposed
to obfuscate DSP circuits and especially, digital filters [15]–
[18]. The technique of [15] generates the desired filter and
also its obfuscated versions, grouped in two categories as
meaningful and unmeaningful in terms of filter behavior, using
high-level transformations, and combines these realizations
using a key-based finite state machine and a reconfigurator.
To make the reverse engineering of coefficients harder for an
end-user, adding input and output noises was proposed in [16].
Recently, we introduced a hardware obfuscation technique that
hides the filter coefficients behind decoys [17], [18]. In [17],
decoys can be selected based on their Hamming distance
to reduce the hardware complexity or chosen randomly to
increase the corruption at the filter output. Since an obfuscated
FIR filter may still generate the desired behavior under a
wrong key in [17], decoys are selected in such a way that
the obfuscated filter presents the desired behavior only when
the secret key is provided in [18]. To do so, the lower and
upper bounds of each filter coefficient are found and decoys
are selected beyond these bounds. In [17], [18], the folded
design of an FIR filter is considered as a case study and its
Time-Multiplexed Constant Multiplication (TMCM) block is
obfuscated at Register-Transfer Level (RTL).

In this article, we initially introduce the query attack, which
can discover the original filter coefficients hidden behind
decoys [17], [18] or replaced by key bits [9]. Then, we propose
a hybrid technique, which includes both hardware obfuscation
and logic locking, for the protection of digital FIR filters. To
do so, first, we describe a defense technique that obfuscates the
multiplier blocks of parallel direct and transposed forms of an
FIR filter, i.e., Constant Array Vector Multiplication (CAVM)
and Multiple Constant Multiplication (MCM), respectively,
using decoys. We also present their hardware-efficient realiza-
tions with and without multipliers. Second, we enhance this
obfuscation technique by locking the obfuscated design using

2

a point function to make the protected design resilient to well-
known attacks and by thwarting the query attack to determine
the secret key. The hybrid protection technique works at RTL
and can be easily adapted to any application including constant
multiplications, such as image and video processing and neural
networks. The main contributions of this article are as follows:
• Query attack developed for breaking designs generated

by constant obfuscation techniques;
• Secure hybrid technique, consisting of hardware obfus-

cation and logic locking, developed for the protection of
FIR filters with different forms and realizations;

• Comprehensive results on obfuscation and logic locking
of FIR filters in terms of hardware complexity, attack
resiliency, and filter behavior.

Experimental results clearly show that the proposed hybrid
protection technique leads to FIR filter designs with higher
security and competitive hardware complexity when compared
to previously proposed hardware obfuscation and logic locking
methods. As an interesting outcome of this work, we show that
the parallel direct form filter has better resiliency properties
than other FIR filter forms and realizations.

The remainder of this article is organized as follows:
Section II presents background concepts. The query attack is
described in Section III and the hybrid protection method is
introduced in Section IV. Experimental results are presented in
Section V. Further discussions on how other techniques may
identify the original filter coefficients are given in Section VI.
Finally, Section VII concludes the article.

II. BACKGROUND

This section initially presents frequently used notations and
then, gives details on digital FIR filters and multiplierless
constant multiplications. Finally, it summarizes related work.

A. Notations

Table I presents notations of important parameters used in
the description of obfuscation and logic locking techniques.

TABLE I
SUMMARY OF NOTATIONS

c Constant/filter coefficient
C Constant array/set
n Number of constants/filter coefficients

mbw Maximum bit-width of constants/filter coefficients
X Input variable/filter input
ibw Bit-width of the input variable/filter input
Y Output variable/filter output
k Key bit
K Secret key
p Total number of key bits
v Number of key bits for obfuscation
w Number of key bits for logic locking

B. Digital FIR Filters

The FIR filter output Y (j) is given as
∑n−1

i=0 ci ·X(j − i),
where n is the filter length, ci is the ith filter coefficient, and
X(j − i) is the ith previous filter input with 0 ≤ i ≤ n − 1.
Fig. 1 shows the parallel and folded realizations of an FIR
filter. Note that the filter output is obtained in a single clock
cycle in a parallel design, as shown in the direct and transposed

Fig. 1. Designs of an FIR filter: (a) parallel direct form; (b) parallel transposed
form; (c) folded transposed form, where the counter counts from 0 to n− 1.

forms in Figs. 1(a)-(b). On the other hand, the folded realiza-
tion leads to a design with the least hardware complexity, since
the common operations are re-used. However, it requires n
clock cycles to compute the filter output, as shown in Fig. 1(c).

C. Multiplierless Design of Constant Multiplications

Multiplication of constant(s) by variable(s) is a ubiquitous
and crucial operation in many DSP applications. Among others
presented in [24], the CAVM, MCM, and TMCM blocks can
be used in the design of a filter, as shown in Fig. 1. They are
defined as follows:

1) The CAVM operation implements the multiplication of
a 1 × n constant array C by an n × 1 input vector X ,
i.e., Y =

∑
i ciXi with 1 ≤ i ≤ n.

2) The MCM operation computes the multiplication of a set
of n constants C by a single variable X , i.e., Yi = ciX
with 1 ≤ i ≤ n.

3) The TMCM operation realizes the multiplication of a
constant selected from a set of n constants C by a single
variable X at a time, i.e., Y = ciX with 1 ≤ i ≤ n.

Since the constants are determined beforehand, these con-
stant multiplications can be realized using addition, subtrac-
tion, and shift operations under the shift-adds architecture.
Note that parallel shifts can be implemented virtually for free
in hardware using only wires. A straightforward shift-adds de-
sign technique, called the Digit-Based Recoding (DBR) [19],
can realize constant multiplications in two steps: i) define
the constants under a particular number representation, e.g.,
binary; ii) for the nonzero digits in the representation of
constants, shift the input variables according to digit positions
and add/subtract the shifted variables with respect to digit

3

Fig. 2. Realizations of the CAVM (a-c), MCM (d-f), and TMCM (g-h) blocks including constants 57 and 81: (a) using multipliers; (b) the DBR method [19];
(c) the method of [20]; (d) using multipliers; (e) the DBR method [19]; (f) the method of [21]; (g) using a multiplier; (h) the method of [22].

Fig. 3. Conventional logic locking and proposed hybrid protection technique in the IC design flow (adapted from [23]).

values. Furthermore, the number of operations can be reduced
by maximizing the sharing of common subexpressions among
constant multiplications [20]–[22], [25], [26].

As a simple example, consider the CAVM, MCM, and
TMCM blocks realizing constant multiplications, where C
includes 57 = (111001)bin and 81 = (1010001)bin. These
constant multiplications are shown in Fig. 2. Note that the
adder/subtractor shown in Fig. 2(h) behaves as an adder or a
subtractor when its select input is 0 or 1, respectively. Observe
from Figs. 2(b)-(c) and (e)-(f) that the sharing of common
subexpressions can lead to a significant reduction under the
shift-adds architecture in terms of the number of operations
with respect to the DBR method.

D. Related Work
Hardware obfuscation can take place at different stages in

the IC design flow, e.g., high-level synthesis [11], RTL [9],
gate-level [27], and layout level [28]. In hardware obfuscation,
locking the design functionality is a common practice. Fig. 3
presents conventional logic locking applied at gate-level in the
IC design flow. Note that after the layout of the locked netlist
is shipped to the foundry without revealing the secret key, the
locked IC is produced and delivered back to the design house.
Then, values of the secret key are stored in a tamper-proof
memory and the functional IC is sent to the market.

1) Defenses: Earlier logic locking methods have been
applied at gate-level. After the introduction of the concept
of Random Logic Locking (RLL) using XOR/XNOR gates
in [27], many works focused on different types of key logic,
such as AND/OR, multiplexors (MUXes), and look-up tables,
taking into account the hardware complexity of the locked
circuit [29]. However, the satisfiability (SAT)-based attack [30]
overcame all the defenses existing at that time. To thwart the
SAT-based attack and its variants, circuits have been locked
using a point function that forces these attacks to explore an
exponential number of queries [23], [31]–[35]. Moreover, the
obfuscation of a locked design is considered in [36].

However, as mentioned in [8], at a higher level in the IC
design flow, the selection of critical blocks of the design to be
obfuscated gets easier, the exploration of tradeoffs between
overhead and attack resiliency becomes more efficient, and
the optimization of the obfuscated design is more effective.
Recently, high-level and behavioral obfuscation techniques
have been presented in [8]–[12]. Related to digital FIR filters
including a large number of constants, filter coefficients are
obfuscated by replacing their bits by key bits in [9], [11].

We note that our proposed hybrid protection technique
works at one level higher than the gate-level, i.e., at RTL,
as also shown in Fig. 3.

2) Attacks: In logic locking, there are generally two threat
models, namely oracle-less (OL) and oracle-guided (OG). In
the OL threat model, only the gate-level netlist of the locked
circuit is available to an adversary. In the OG threat model, it
is assumed that an adversary can also obtain the functional IC
programmed with the secret key from the market and use it as
an oracle to apply inputs and observe outputs. Hence, in this
model, the adversary has both the netlist of the locked circuit
and the functional IC.

Under the OL threat model, due to the limited information
available to the adversary, patterns in the structure of the
locked netlist are studied using statistical analysis, Automated
Test Pattern Generation (ATPG), and machine learning [37]–
[40]. Structural attacks, which identify and remove the logic
inserted by a logic locking method, are proposed in [41]–[43].

Under the OG threat model, the ATPG-based attack of [44]
leverages testing principles, such as justification and sensiti-
zation while finding the secret key. The SAT-based attack [30]
iteratively finds Distinguishing Input Patterns (DIPs) that
rule out wrong keys and achieves decryption as shown in
Algorithm 1. It generates two locked circuits with the same
inputs (X), but two different keys (K1 and K2) described in a
Conjunctive Normal Form (CNF) formula in a SAT problem
(line 2). Then, it finds a DIP, which generates different outputs
on these circuits, using a SAT solver (line 4) and computes

4

Algorithm 1 The SAT-based attack [30]
Inputs: Locked circuit LC and oracle.
Output: Secret key K.

1: i := 1 . Number of iterations
2: F1 = LC(X,K1, Y1) ∧ LC(X,K2, Y2)
3: while sat[Fi ∧ (Y1 6= Y2)] do
4: Xd

i := sat_assignmentX [Fi ∧ (Y1 6= Y2)]
5: Y d

i := oracle(Xd
i)

6: Fi+1 := Fi ∧ LC(Xd
i ,K1, Y

d
i) ∧ LC(Xd

i ,K2, Y
d
i)

7: i := i+ 1
8: K := sat_assignmentK1(Fi)

the output based on the found DIP using the oracle (line 5).
It adds the Boolean equations including key bits into the SAT
problem, which are obtained after inserting the values of these
inputs and outputs into these circuits (line 6). This process is
iterated until the SAT problem becomes unsatisfiable (line 3),
meaning that there exists no DIP to distinguish wrong keys
from the secret key. Finally, it determines the secret key as
the one found in the last iteration (line 8).

In a similar fashion, the SAT-based attack of [45] eliminates
at least 2 DIPs in a single iteration. A Satisfiability Modulo
Theory (SMT) solver is used instead of a SAT solver, pro-
viding more flexibility while encoding the problem [46], [47].
The so-called approximate attack of [48] aims for approximate
functional recovery. The SAT-based attack of [49] achieves
sequential deobfuscation using dynamic simplifications of key
conditions. The attack of [50] discovers the vulnerabilities of
the SAT-resilient logic locking methods of [31], [32]. In [51],
a generic framework is developed to attack compound locking
techniques. A security diagnosis tool, which can evaluate the
structural vulnerability of a design locked by a provably secure
logic locking technique, is introduced in [52].

III. THE QUERY ATTACK

The SAT-based attack [30] presented in Algorithm 1 guar-
antees that the found values of all key bits are equal to those
of the secret key. To do so, it may use a large number of
queries that are required to eliminate all the wrong keys. On
the other hand, our query attack proves that the found value
of a single key bit is equal to that of the associated one in
the secret key. To do so, it uses a small number of queries
that make each key bit observable at a primary output. Hence,
it slightly increases the SAT problem size when compared to
the SAT-based attack. Thus, it can easily cope with circuits
including a large number of gates and key bits [53] and logic
structures, such as a multiplier and a tree of AND gates [30],
which the SAT-based attack generally finds hard to handle. In
this section, we initially describe the proposed query attack
and then, present its results on obfuscated designs.

A. Description

Our proposed OG SAT-based query attack is described in
Algorithm 2. It initially finds queries using two strategies (line
1). In the first one, an ATPG tool is used to find the test
patterns for the stuck-at-fault of each key bit on the locked
circuit and the values of the related primary inputs are stored

Algorithm 2 The query attack
Inputs: Locked circuit LC and oracle.
Output: Proven values of the secret key K.

1: Q := find_queries(LC)
2: F = LC(X,K, Y)
3: for i := 1 to 2p do
4: Yi := oracle(Qi)
5: F := F ∧ LC(Qi,K, Yi)

6: K := sat_assignmentK(F)
7: for i := 0 to p− 1 do
8: if unsat[F ∧Ki] then
9: Ki = Ki

10: for i := 0 to p− 2 do
11: for j := i+ 1 to p− 1 do
12: if undefined(Ki) & undefined(Kj) then
13: if unsat[F ∧ (Ki 6= Kj)] then
14: Ki = Kj

15: else if unsat[F ∧ (Ki 6= Kj)] then
16: Ki = Kj

as queries. The aim of this strategy is to find input patterns
that can propagate each key bit to a primary output, making it
observable. In the second one, queries are obtained randomly.
The aim of this strategy is to find input patterns that may
make multiple key bits observable at primary outputs. In our
experiments, we generate a total of 2p queries, where p denotes
the total number of key bits.

Then, the locked circuit is described in a CNF formula F
by expressing each gate in its CNF (line 2). For each query
(lines 3-5), it is applied to the oracle and the values of primary
outputs are obtained (line 4). Then, the related input and
output values are assigned to the associated nets in the locked
circuit, the constant values of these nets are propagated, and
the Boolean equations including key bits are derived in a CNF
formula and added into F (line 5).

After all the queries are considered, the SAT problem F
is solved using a SAT solver and the values of key bits are
determined (line 6). Note that the locked circuit with the found
values of key bits behaves exactly the same as the oracle
under the given queries, but not under all possible input values.
Hence, the found key is not guaranteed to be the secret key.

However, the found value of a key bit can be proven correct
by using the concept of proof by contradiction. To do so, for
each key bit (lines 7-9), the complement of its found value
is added into F and the SAT solver is run. If there exists no
solution to F, i.e., the SAT problem is unsatisfiable, the value
of the related key bit in the secret key is proven to be the one
in the found solution.

As an example, consider the majority circuit in Fig. 4(a)
and suppose that it is locked using XOR/XNOR gates as given
in Fig. 4(b). Assume that a query is found as x1x2x3 = 000
and thus, the value of its output y is obtained as 0 using the
oracle. After propagating these values on the locked circuit, a
Boolean equation k0∨k1 = 0, i.e., k0∧k1 in CNF, is obtained
as shown in Fig. 4(c). In the SAT solution, the key bit values
are found as k1k0 = 01. Note also that these are the proven
key values since a SAT solver guarantees that there exists no
solution to the SAT problem F when it is extended by either
the constraint k0 = 0, i.e., k0 in CNF or k1 = 1, i.e., k1 in

5

Fig. 4. Examples on the query attack: (a) majority circuit; (b)-(c) a locked majority circuit; (d)-(e) another locked majority circuit.

TABLE II
DETAILS ON FIR FILTERS AND THEIR TMCM BLOCKS.

Filter Filter Details TMCM Details
n mbw #in #out

Mirzaei10a 71 15 39 47
LimYu07 121 14 39 46
Mirzaei10b 151 15 40 47

TABLE III
ATTACKS ON OBFUSCATED TMCM BLOCKS.

Filter p Architecture
Attacks

SAT ATPG Query
time time prv time

Mirzaei10a 128 TMCM-MUL [17] OoT OoT 128 212
TMCM-CRK [9] OoT OoT 128 341

LimYu07 128 TMCM-MUL [17] OoT OoT 128 112
TMCM-CRK [9] OoT OoT 128 365

Mirzaei10b 256 TMCM-MUL [17] OoT OoT 256 809
TMCM-CRK [9] OoT OoT 256 852

CNF, due to a conflict with the found Boolean equation, i.e.,
k0 ∧ k1 in CNF.

We note that the query attack is also capable of proving if
the value of a key bit, ki, is equal to the value of another key
bit, kj , or its opposite (lines 10-16). To do so, we extend the
SAT problem with ki 6= kj , i.e., (ki ∨ kj)∧ (ki ∨ kj) in CNF,
and ki 6= kj , i.e., (ki ∨ kj) ∧ (ki ∨ kj) in CNF, respectively,
where i < j and 0 ≤ i, j ≤ p− 1. We run the SAT solver and
check if the SAT problem is unsatifiable. In this case, relations
between two key bits are found independent of their values.

Returning back to our majority circuit, consider its another
locked version given in Fig. 4(d). Assume that a query is again
found as x1x2x3 = 000 and hence, the output y is computed
as 0. Thus, after the propagation of input and output values as
shown in Fig. 4(e), a Boolean equation k0⊕k1 = 0, i.e., (k0∨
k1)∧ (k0∨k1) in CNF, is found. In the SAT solution, the key
bit values are found as k1k0 = 10. Although the actual values
of key bits could not be proven, it is found that k0 and k1
have opposite values after the SAT problem is extended with
the Boolean equation k0 6= k1 and it becomes unsatisfiable.
Hence, the values of key bits k1k0 = 10 or k1k0 = 01 in the
locked design lead to the original majority circuit.

B. Results

First, three FIR filters with a large number of coefficients
and a large bit-width of filter input and coefficients were used
to demonstrate the performance of the query attack. They
were taken from [54]. Table II presents their details, where
n and mbw are the number and maximum bit-width of coeffi-
cients, respectively. The folded realization of these filters was
considered. Table II presents details on their TMCM blocks,
where #in and #out are respectively their number of inputs and
outputs when the bit-width of the input variable, i.e., ibw, is
set to 32. These TMCM blocks were obfuscated using decoys
under the architecture including MUXes and a multiplier [17],

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120

R
un

-t
im

e
of

 a
tta

ck
s

(s
)

Number of filter coefficients

Query Attack - TMCM-MUL
Query Attack - TMCM-CRK

SAT-based Attack - TMCM-MUL
SAT-based Attack - TMCM-CRK

Fig. 5. Run-time of attacks on obfuscated TMCM blocks.

denoted as TMCM-MUL, and also obfuscated by replacing
constants with key bits [9], denoted as TMCM-CRK.

Table III presents the number of key bits p and the results of
the query attack along with the SAT- and ATPG-based attacks
taken from [55]. In this table, time denotes the run-time of
an attack in seconds and prv stands for the number of key
bits, whose values are proven by the query attack. Also, OoT
indicates that an attack could not find a solution due to the
time limit, which was set to 2 days. The attacks were run
on a computing cluster including Intel Xeon processing units
at 2.4 GHz with 40 cores and 96 GB memory. The query
attack was developed in Perl and equipped with the ATPG
tool Atalanta [56] and the SAT solver CaDiCaL [57]. It is
available at https://github.com/Centre-for-Hardware-Security/.

Observe from Table III that the query attack can easily find
the secret key of obfuscated designs while it is hard for the
well-known attacks to find a solution. The main reason is
that the TMCM block includes a multiplier block, where one
of its inputs is the 32-bit input variable, and the SAT-based
attack is not effective on designs including a multiplier as
mentioned in [30]. However, the query attack can deal with
a small number of queries, which are sufficient to determine
the value of each key bit, using a little computational effort.

Second, we generated a total of 112 FIR filters, where
n ranges between 16 and 127 when mbw was set to 12,
to find the impact of the number of constants and key bits
on the performance of the query attack. Again, the folded
design of these filters were considered and ibw was set to
32. The TMCM blocks were obfuscated using 2blog2nc+1 key
bits under the TMCM-MUL and TMCM-CRK architectures. The
SAT-based [30] and query attacks were run on these obfuscated
TMCM blocks, where the time limit was set to 2 days. Fig. 5
presents the run-time of these attacks.

Observe from Fig. 5 that as n and p increase, the run-time
of the query attack increases slightly. Note that while the query
attack can find the secret key of each instance, the SAT-based

6

Algorithm 3 Selection of decoys for original constants
Inputs: Original constants C = {c1, c2, . . . , cn} and v key bits.
Output: Decoy set D.

1: noi = 0 . Number of iterations
2: nok = 0 . Number of used key bits
3: D = ∅ . Set of n decoy constant arrays
4: while nok < v do
5: nod = 2noi . Number of decoys to be assigned
6: for i = 1 to n do
7: Di = AssignDecoy(Di, ci, nod)
8: nok = nok + 1
9: if nok == v then

10: break
11: noi = noi+ 1

attack can find a solution on 39 and 43 instances under
the TMCM-MUL and TMCM-CRK architectures, respectively.
Observe that the query attack runs faster than the SAT-based
attack on these instances. Note that Section V presents more
results of the query attack on different multiplier blocks
obfuscated and locked by different techniques.

IV. PROPOSED HYBRID PROTECTION TECHNIQUE

This section initially presents the obfuscation technique
used to hide filter coefficients behind decoys in the CAVM and
MCM blocks of parallel direct and transposed forms of FIR
filters (cf. Section IV-A and Section IV-B, respectively). Then,
it describes the logic locking method using a point function
described at RTL (cf. Section IV-C). Finally, it introduces the
hybrid protection technique including both of these methods
(cf. Section IV-D).

The original constants can be obfuscated using decoys as
described in [17]. The motivation behind such obfuscation
is that the use of decoys enables us to control the tradeoff
between hardware complexity, output corruption, and filter
behavior [17], [18] when compared to logic locking. The
obfuscation technique using decoys requires two main steps:
i) given the number of key bits, determine decoys for each
original constant; ii) realize the obfuscated design, where
original constants are hidden behind decoys using MUXes and
key bits. The selection of decoys for the original constants is
done as shown in Algorithm 3. In its AssignDecoy function
(line 7), decoy selection can be done based on a given criterion,
namely hardware complexity, output corruption, and filter
behavior. In these criteria, decoys are chosen to be unique
to increase the obfuscation.

A. Hardware Obfuscation of the CAVM Block

Given 1 × n original constant array C = [c1, c2, . . . , cn]
and the number of key bits for obfuscation, i.e., v,
let D denote a set of n decoy constant arrays, i.e.,
D = {[d11, . . . , dnd1

1], [d12, . . . , d
nd2
2], . . . , [d1n, . . . , d

ndn
n]},

where ndi is the number of decoy constants selected for the
ith original constant determined based on a given criterion
with 1 ≤ i ≤ n. Then, the set R, which includes each original
constant and its decoys, i.e., Ri = ci ∪Di = [ci, d

1
i , . . . , d

ndi
i]

with 1 ≤ i ≤ n, is formed. Let ri,j denote the jth constant
in Ri with 1 ≤ i ≤ n and 1 ≤ j ≤ ndi + 1. Thus, the

Fig. 6. Realizations of the obfuscation of the CAVM block using decoys:
(a) straightforward design; (b) CAVM-MUL; (c) CAVM-SA.

Fig. 7. Realizations of the obfuscation of the CAVM block including constants
57 and 81: (a) straightforward design; (b) CAVM-MUL; (c) CAVM-SA.

straightforward realization of the obfuscated CAVM block
is given in Fig. 6(a). Note that the key bits determined for
each constant, i.e., kci, have the size of dlog2(ndi + 1)e
with 1 ≤ i ≤ n. The secret key, which is formed as the
concatenation of these key bits, is determined based on the
location of the original constant in the constant array Ri.

Note that the size of a multiplier given in Fig. 6(a) is
related to the bit-width of the original constant and its de-
coy(s). Hence, to reduce the hardware complexity of the
straightforward design, the size of constants, which are inputs
of MUXes, can be decreased. To do so, we implement a
CAVM block, where each entry of its constant array S is
an element of each R array, i.e., S = [s1, s2, . . . , sn] with
si ∈ Ri = [ci, d

1
i , . . . , d

ndi
i] and 1 ≤ i ≤ n. Then, the original

constant and its decoys at inputs of each MUX are computed as
Ti = Ri−si with 1 ≤ i ≤ n. Fig. 6(b) presents the obfuscated
design under the proposed architecture called CAVM-MUL.
Note that the CAVM block realizes s1X1+s2X2+. . .+snXn

and is implemented under the shift-adds architecture using the
algorithm of [20]. The constants to be in S are decided based
on the hardware complexity of the CAVM block and the size
of multipliers. This problem is formulated as a 0-1 Integer
Linear Programming (ILP) problem.

To further reduce the hardware complexity of the design
in Fig. 6(b), each multiplier with a MUX, which represents
a TMCM block, is realized under the shift-adds architecture
using the algorithm of [22]. Fig. 6(c) presents the obfuscated
design under the proposed architecture called CAVM-SA.

Returning to our example in Fig. 2 with C = [57, 81] and as-
suming that the number of key bits is 3, the set D, that includes
decoys for each constant, is found as D = {[61, 59, 56], [80]}

7

Fig. 8. Realizations of the obfuscation of the MCM block using decoys:
(a) straightforward design; (b) MCM-MUL; (c) MCM-SA.

Fig. 9. Realizations of the obfuscation of the MCM block including constants
57 and 81: (a) straightforward design; (b) MCM-MUL; (c) MCM-SA.

based on the hardware complexity criterion. Thus, the set R is
formed as R = {[61, 59, 56, 57], [81, 80]}. The straightforward
realization of the obfuscated CAVM block using decoys is
shown in Fig. 7(a), where the secret key is K = k2k1k0 =
011. Under the CAVM-MUL and CAVM-SA architectures, the
constant array S is determined as S = [56, 80]. Thus, the
set T is formed as {[5, 3, 0, 1], [1, 0]} leading to multipliers
with smaller sizes when compared to those given in Fig. 7(a).
The realization of the obfuscated CAVM design under the
CAVM-MUL architecture is given in Fig. 7(b). Furthermore,
Fig. 7(c) presents the shift-adds realization of the TMCM
blocks implementing the constant multiplications including
those in the set T under the CAVM-SA architecture.

In addition to the obfuscation using decoys on the CAVM
block, we also developed the constant obfuscation technique
used in the ASSURE tool [9]. Given the number of key bits,
constants in the original CAVM block are replaced by key bits
under the architecture called CAVM-CRK.

B. Hardware Obfuscation of the MCM Block

Similarly, the MCM block can also be obfuscated using
decoys. After decoys selected for each original constant are
found based on the given criterion, and the set R is determined,
the straightforward realization of the obfuscated design can
be obtained as illustrated in Fig. 8(a). Moreover, the size of
multipliers can be reduced by determining the set of constants

Fig. 10. (a) Behavior of a Boolean function locked by one-point function;
(b) behavior of a Boolean function locked by relaxed one-point function.

S from the set R and the set T is computed accordingly as
described in Section IV-A. The multiplications of constants
in the set S by the variable X , i.e., s1X, s2X, . . . , snX , are
realized in an MCM block, which is implemented under the
shift-adds architecture using the algorithm of [21]. Fig. 8(b)
presents the obfuscated design under the proposed architecture
called MCM-MUL. Furthermore, the multiplierless realization
of the design obfuscated under the MCM-MUL architecture
can be obtained by realizing the TMCM block under the
shift-adds architecture using the algorithm of [22]. Fig. 8(c)
shows the obfuscated design under the proposed architecture
called MCM-SA.

Returning to our example, Fig. 9 presents the straightfor-
ward realization of the obfuscated MCM block and its designs
under the MCM-MUL and MCM-SA architectures.

In addition to the obfuscation using decoys, constants in
the original MCM block are replaced by key bits under the
architecture called MCM-CRK.

C. Logic Locking with a Point Function

As shown in Sections III and V, the constant obfuscation
techniques are vulnerable to the SAT-based attack and its
variants. The motivation behind locking the obfuscated design
with a point function is to make it resilient to these techniques.
In order to increase the number of DIPs to be explored in a
SAT-based attack, one can lock primary outputs of a multiplier
block using a point function1 at RTL as done at gate-level
in [23], [31]–[33].

Suppose that a Boolean function f : Bq → B is locked
using a one-point function with w key bits, where w ≤ q,
leading to a locked Boolean function g : Bw+q → B and
let K denotes the secret key. Then, f(X) = g(X,K) under
all possible input values. Fig. 10(a) shows the behavior of
the locked function g under each possible key value when
q = w = 3 and k2k1k0 = 011 is the secret key. In this
figure, Ki stands for the assignment of the value i in binary
to key bits, i.e., kw−1 . . . k1k0 = (i)bin with 0 ≤ i ≤ 2w − 1.
Also, the value of logic 0 (1) under each possible key value
denotes that the locked function g is (not) equal to the original
function f . Note that the locked function under the secret key,
i.e., K = K3 highlighted in our example, always generates the
same output as the original function for every input pattern.
Observe from Fig. 10(a) that each input pattern eliminates
at most one wrong key, leading to an exponential number of

1A one-point function is a Boolean function that evaluates to 1 at exactly
one input pattern.

8

// One-point function at RTL
always @(*) begin

if (X == K)
if (K == K)

g = f;
else

g = !f;
else

g = f;
end
//Relaxed one-point function at RTL
always @(*) begin

if ((X - K) >= q’d0 && (X - K) <= q’dcv)
if (K == K)

g = f;
else

g = !f;
else

g = f;
end

Listing 1. Logic locking using a point function at RTL.

Fig. 11. Proposed hybrid protection technique.

DIPs to find the secret key, i.e., 2w. Moreover, such a one-point
function can be relaxed to increase the corruption at a primary
output. For example, Fig. 10(b) presents the behavior of the
locked function g, where each input pattern can eliminate at
most 2 wrong keys. Observe that the exponential number of
tries to find the secret key is still valid, i.e., 2w−1 in this case.
Furthermore, multiple primary outputs can be locked using
point functions with different key bits.

Listing 1 presents the Verilog code snippet, which describes
logic locking using the one-point function at RTL. In this code,
X is an array of primary inputs and K is an equally sized
array of key bits. Moreover, the relaxed one-point function
can also be described at RTL, as shown in the same listing. In
its code, cv stands for the corruption value, which denotes the
maximum number of wrong keys that can be distinguished by
a single input pattern.

We note that since the point function is described at RTL,
the synthesis tool shapes its circuit based on the given syn-
thesis parameters. Thus, its realization does not have a regular
structure like logic locking methods of [32], [33], [35].

D. Combination of Obfuscation and Logic Locking

The hybrid protection technique includes obfuscation and
logic locking using a point function described in previous
subsections. Initially, the obfuscation technique using decoys is
applied and then, the obfuscated design is locked using a point
function. Fig. 11 illustrates the hybrid protection technique,
where X and Y denote the inputs and outputs of the original
design and Kobf and Kll stand for the key bits used for

TABLE IV
DETAILS ON THE FIR FILTER AND ITS MULTIPLIER BLOCKS.
Filter n mbw Multiplier Block #in #out

Johansson08 30 10
CAVM 480 31
MCM 16 733

TMCM 21 26

obfuscation and locking, respectively. Additionally, to thwart
the structural attacks, the key bits used for logic locking, Kll,
are hidden among the key bits used for obfuscation, Kobf ,
using XOR/XNOR gates. In this scheme, an XOR (XNOR) gate,
which has klli and kobfj as inputs, is generated if the value
of kobfj in the secret key is equal to logic 0 (1) value, where
0 ≤ i ≤ w − 1 and 0 ≤ j ≤ v − 1. Then, the output of this
gate is connected to the net, which would be driven by klli .
Moreover, to thwart the query attack, each kobfi is hidden
among another kobfj using an XOR/XNOR gate, where i 6= j
and 0 ≤ i, j ≤ v − 1. By doing so, each key bit is observed
with other key bits at a primary output, making it harder for
the query attack to prove the value of the related key bit.

We developed a Computer-Aided Design (CAD) tool to
automate the design and verification process for the obfus-
cation and locking of the CAVM, MCM, and TMCM blocks
and the parallel direct and transposed form and folded FIR
filters. The CAD tool takes the filter coefficients, the number of
key bits, the design architecture, and other design parameters
as inputs and generates the description of the obfuscated
design in Verilog, the testbench for verification, and synthesis
and simulation scripts. Note that designs are described in a
behavioral fashion at RTL.

V. EXPERIMENTAL RESULTS

In this section, we introduce the gate-level synthesis re-
sults of multiplier blocks protected by the proposed hybrid
technique, obfuscated by previously proposed techniques, and
locked by prominent logic locking methods. We also provide
the results of well-known logic locking attacks and the pro-
posed query attack on these designs. Furthermore, we present
the results of obfuscated and locked FIR filters and also,
introduce the results of prominent attacks on these designs.
Finally, we explore the impact of parameters used in the point
function on the hardware complexity and resiliency to the
SAT-based attack and present gate-level synthesis results of
the obfuscated and locked CAVM block of the direct form
filter, which has promising security properties.

A. Results of Obfuscated and Locked Multiplier Blocks

Based on our experimental observations, similar outcomes
have been observed on FIR filters with a different number
of coefficients and different bit-width of filter input and
coefficients in comparison of design architectures, obfuscation
and locking techniques, and attacks. Hence, in this experiment,
a single FIR filter with a small number of coefficients and
a small bit-width of filter input and coefficients was used to
reveal the effectiveness of obfuscation and locking techniques.
Table IV presents the details of this filter taken from [54],
where #in and #out are respectively the number of inputs and
outputs of the multiplier blocks when ibw is 16.

9

TABLE V
RESULTS OF OBFUSCATED AND PROTECTED MULTIPLIER BLOCKS.

Block Architecture Technique Synthesis Attacks
SAT ATPG AppSAT DoubleDIP Query SCOPE

area delay power time time time time prv time cdk/dk time
Decoy [17] 15435 4616 4641 155143 OoT OoT OoT 32 9893 20/32 8

CAVM-MUL Proposed Hybrid 15710 4611 4757 OoT OoT OoT OoT 0 OoT 1/1 13
Decoy [17] 15465 4611 4475 36083 4539 OoT OoT 32 9944 20/32 8

CAVM-SA Proposed Hybrid 15704 4715 4497 OoT OoT OoT OoT 0 29328 1/1 12
Constant [9] 18737 3982 4756 110 1446 OoT OoT 32 897 21/27 11

CAVM

CAVM-CRK Proposed Hybrid 18976 4265 4809 OoT OoT OoT OoT 0 1937 2/3 16
Decoy [17] 10949 3102 2839 106 OoT 324 243 32 176 27/32 7

MCM-MUL Proposed Hybrid 11173 3031 2897 OoT OoT OoT OoT 0 197 1/1 11
Decoy [17] 10493 3112 2493 119 OoT 342 254 32 152 27/32 7

MCM-SA Proposed Hybrid 10705 3159 2495 OoT OoT OoT OoT 0 115 1/1 11
Constant [9] 12799 2772 2412 159 OoT 415 300 32 459 18/32 7

MCM

MCM-CRK Proposed Hybrid 13038 2970 2456 OoT OoT OoT OoT 0 759 1/1 11
Decoy [17] 1545 3517 610 241 6783 378 496 32 7 21/32 4

TMCM-MUL Proposed Hybrid 1794 4278 639 OoT OoT OoT OoT 0 17 2/3 2
Decoy [17] 2043 4452 1037 738 963 935 OoT 32 37 17/32 4

TMCM-SA Proposed Hybrid 2245 4536 1065 OoT OoT OoT OoT 0 42 1/2 3
Constant [9] 1566 2997 623 1035 15571 1032 OoT 32 29 20/32 4

TMCM

TMCM-CRK Proposed Hybrid 1776 3655 642 OoT OoT OoT OoT 0 48 1/1 2

TABLE VI
RESULTS OF LOCKED MULTIPLIER BLOCKS.

Block Logic Locking Synthesis Attacks
SAT ATPG AppSAT DoubleDIP Query SCOPE

area delay power time time time time prv time cdk/dk time
RLL 16411 3385 4183 171 OoT 205 2609 32 254 0/0 9
RLL+AntiSAT 16492 3416 4127 OoT OoT OoT OoT 16 364 0/0 14
RLL+CASLock 16473 3502 4110 OoT OoT OoT OoT 16 443 0/0 13
RLL+SARLock 16512 3572 4191 OoT OoT 48855 OoT 32 441 8/8 13
RLL+SFLL 16506 3473 4205 339 829 39664 OoT 32 436 0/0 14

CAVM

RLL+SKGLock 16559 3894 4308 OoT OoT OoT OoT 19 513 5/6 14
RLL 8090 2398 2039 86 122 293 371 32 89 0/0 6
RLL+AntiSAT 8244 2434 2065 OoT OoT OoT OoT 16 249 0/0 9
RLL+CASLock 8121 2404 2024 OoT OoT 1054 OoT 16 164 0/0 9
RLL+SARLock 8209 2467 2041 OoT OoT 45013 OoT 32 228 10/10 9
RLL+SFLL 8166 2452 2019 576 7870 2626 OoT 32 243 0/0 9

MCM

RLL+SKGLock 8252 2464 2056 OoT OoT OoT OoT 19 160 5/5 9
RLL 1587 3712 646 8 39 57 77 32 15 0/0 2
RLL+AntiSAT 1659 3545 632 OoT OoT OoT OoT 13 28 0/0 2
RLL+CASLock 1653 3664 628 OoT OoT OoT OoT 15 20 0/0 2
RLL+SARLock 1659 3756 658 OoT OoT 2662 OoT 31 36 6/6 3
RLL+SFLL 1644 3800 653 1095 1089 5363 OoT 32 36 0/0 2

TMCM

RLL+SKGLock 1694 3739 676 OoT OoT OoT OoT 18 34 10/10 2

Table V presents the synthesis results of the CAVM, MCM,
and TMCM blocks of the FIR filter obfuscated by previously
proposed methods [9], [17] and protected by the proposed
hybrid technique. Note that the TMCM-SA architecture denotes
the TMCM block obfuscated using decoys under the shift-adds
architecture. Logic synthesis was performed by Cadence
Genus using a commercial 65 nm cell library with the aim
of area optimization. For this aim, a very high virtual clock
period value, i.e., 80 ns, was used. The encrypted designs
were validated by simulation using 10,000 randomly generated
inputs, where the switching activity data of each node in
the design were collected and stored in a Switching Activity
Interchange Format (SAIF) file, which is later used by the
synthesis tool while computing the power dissipation. For
obfuscation, 32 key bits were used. There were 16 key bits for
locking using the one-point function. Thus, a total of 48 key
bits were used in designs protected by the hybrid technique.
In this table, area, delay, and power stand for the total area
in µm2, delay in the critical path in ps, and total power
dissipation in µW , respectively. This table also presents the
results of OG attacks, namely SAT- and ATPG-based attacks,

the approximate AppSAT attack taken from [55], and the
DoubleDIP attack taken from [58], and the OL SCOPE attack
taken from [59]. For the SCOPE attack, cdk and dk denote
the number of correctly deciphered key bits and the number
of deciphered key bits, respectively. The time limit given to
the attacks was 2 days. In this table, designs, whose secret key
has not been discovered by the given attacks, are highlighted.

1) Comments on Hardware Complexity: Observe from Ta-
ble V that the hybrid protection technique increases the hard-
ware complexity when compared to the obfuscation techniques
simply due to the inclusion of the point function and logic for
the obfuscation of key bits. Note that the increase of area in
the CAVM, MCM, and TMCM blocks reaches up to 1.7%,
2%, and 13.8%, respectively. The obfuscation and hybrid
protection of the CAVM and MCM blocks under the proposed
architectures, i.e., CAVM-MUL, CAVM-SA, MCM-MUL, and
MCM-SA, lead to designs with less area when compared to
those realized under the CAVM-CRK and MCM-CRK archi-
tectures. Note that such a decrease reaches up to 17.6%
and 18% in the CAVM and MCM blocks, respectively. This
is simply because the proposed techniques exploit common

10

TABLE VII
RESULTS OF OBFUSCATED AND LOCKED FIR FILTERS.

Filter

Obfuscation and Hybrid Protection Logic Locking

Architecture Technique Synthesis Attacks
Technique Synthesis Attacks

KC2 SCOPE KC2 SCOPE
area delay power time cdk/dk time area delay power time cdk/dk time

Decoy [17] 19238 4907 3088 Failed 18/32 8 RLL 20233 3566 2906 Failed 15/18 10
CAVM-MUL Proposed Hybrid 19500 4828 3153 OoT 1/1 13 RLL+AntiSAT 20300 3512 2896 Failed 21/26 14

Decoy [17] 19243 4792 3012 Failed 19/32 8 RLL+CASLock 20324 3746 2928 OoT 11/15 14
CAVM-SA Proposed Hybrid 19485 4798 3040 OoT 1/1 13 RLL+SARLock 20326 3630 2936 OoT 31/37 14

Constant [9] 22551 4228 2734 Failed 14/32 10 RLL+SFLL 20307 3619 2892 Failed 21/28 14

Direct

CAVM-CRK Proposed Hybrid 22796 4244 2757 OoT 2/4 15 RLL+SKGLock 20380 4052 2994 Failed 16/24 15
Decoy [17] 25195 3470 3848 100347 25/32 11 RLL 22362 3093 3303 67811 16/21 9

MCM-MUL Proposed Hybrid 25439 3540 3896 OoT 1/1 16 RLL+AntiSAT 22510 3218 3302 OoT 15/24 15
Decoy [17] 24967 3322 3569 82952 26/32 10 RLL+CASLock 22461 3337 3320 OoT 7/8 14

MCM-SA Proposed Hybrid 25139 3346 3562 OoT 1/1 15 RLL+SARLock 22425 3183 3303 OoT 31/41 14
Constant [9] 27126 3240 3273 51973 21/32 11 RLL+SFLL 22389 3116 3311 OoT 19/29 14

Trans.

MCM-CRK Proposed Hybrid 27433 3256 3290 OoT 1/1 17 RLL+SKGLock 22514 3186 3329 OoT 17/24 15
Decoy [17] 9126 4785 869 7478 20/32 2 RLL 9183 4496 904 7845 15/18 3

TMCM-MUL Proposed Hybrid 9379 4665 933 OoT 2/2 3 RLL+AntiSAT 9225 4681 882 OoT 8/15 4
Decoy [17] 9791 5758 1168 11895 18/32 2 RLL+CASLock 9237 4675 926 OoT 8/13 4

TMCM-SA Proposed Hybrid 9966 5646 1236 OoT 9/13 3 RLL+SARLock 9235 4761 911 OoT 31/31 4
Constant [9] 9126 4328 870 5657 22/32 2 RLL+SFLL 9222 4570 892 OoT 16/20 4

Folded

TMCM-CRK Proposed Hybrid 9356 4602 894 OoT 1/1 3 RLL+SKGLock 9288 4434 910 OoT 18/31 4

subexpressions shared in constant multiplications. On the other
hand, the obfuscation and hybrid protection of the TMCM
blocks under the TMCM-MUL and TMCM-CRK architectures
lead to designs with less area with respect to those realized
under the TMCM-SA architecture. Note that such a decrease
reaches up to 24.3%. This is because a single multiplier
is replaced by a large number of addition and subtraction
operations under the TMCM-SA architecture. It is also observed
that the minimum achievable delay values in the critical path
of obfuscated and protected multiplier blocks are very close to
each other, meaning that the inclusion of the point function and
logic for the obfuscation of key bits does not have a significant
impact while realizing the design with the smallest delay.

2) Comments on Attack Resiliency: Observe also from Ta-
ble V that while the OG attacks can easily discover the secret
key on the obfuscated designs, the OL attack can decipher all
the key bits with high accuracy, except for the CAVM design
obfuscated under the CAVM-CRK architecture. On the other
hand, none of these attacks can break the defense built by the
hybrid protection technique. Note that the designs protected
by the hybrid technique were also applied to Fa-SAT [51]
and the Valkyrie tool [52], but without any success due to the
combination of both obfuscation and locking.

Moreover, these multiplier blocks under an architecture
including a multiplier are locked by prominent logic locking
methods, namely, RLL [27] and the SAT-resilient methods of
AntiSAT [32], SARLock [31], SFLL [23], CASLock [33], and
SKGLock [35]. In this case, the multiplier block described
at RTL is initially synthesized and its gate-level netlist is
obtained, and then, this netlist is locked. Note that while
the RLL, AntiSAT, and SFLL methods were applied using
the NEOS tool [60], the script for the SARLock method
was provided by P. Subramanyan, and we implemented the
CASLock and SKGLock methods. In the RLL method, 32 key
bits are used, the same as the obfuscation techniques presented
in Table V. Same as the hybrid protection method shown in
Table V, there are a total of 48 key bits in the combination
of RLL and a SAT-resilient method, while 16 key bits are

designated to a SAT-resilient method. Note that due to the
locking nature of AntiSAT, CASLock, and SKGLock, they
require twice the number of designated key bits. Hence, a total
of 32 key bits are used in these methods. Table VI presents the
results of locked multiplier blocks. The locked designs, whose
secret key has not been discovered by the given attacks, are
also highlighted.

3) Comments on Hardware Complexity: Observe from Ta-
ble VI that SAT-resilient methods with a combination of
RLL lead to designs with hardware complexity very close
to each other. When compared to the results of the hybrid
protection technique given in Table V under the architectures
using multiplier(s), the locked CAVM and MCM blocks have
larger and smaller area, respectively and the locked TMCM
blocks have competitive area. A locked MCM block has less
hardware complexity than an obfuscated or protected MCM
block because the logic locking is applied after the common
subexpressions are exploited by the synthesis tool.

4) Comments on Attack Resiliency: Also, observe from
Table VI that the secret key of designs locked by RLL,
RLL+SARLock, and RLL+SFLL2 can be found by the
given attacks. Note also that the MCM block locked by
RLL+CASlock could be broken by the AppSAT. While the
query attack is also capable of proving the values of most
of the RLL key bits in all logic locking methods and extra
SKGLock key bits, the SCOPE attack can predict the values
of some key bits of designs locked by RLL+SARLock and
RLL+SKGLock with high accuracy.

B. Results of the Obfuscated and Locked FIR Filters

Table VII presents the synthesis results of parallel direct and
transposed form and folded FIR filters, whose CAVM, MCM,
and TMCM blocks are obfuscated by the previously proposed
techniques [9], [17] and the hybrid protection technique,

2Confirmed by the developer of the SFLL method that when a small number
of key bits are used and their values are biased towards all logic 0s or 1s in
the SFLL method, the exponential growth in the number of iterations in the
SAT-based attack is no longer valid.

11

 0

 500

 1000

 1500

 2000

8 9 10 11 12 13 14 15 16

 cv=0 cv=1 cv=2

A
re

a

Number of key bits in locking with the point function

 1

 10

 100

 1000

 10000

8 9 10 11 12 13 14 15 16

 cv=0
 cv=1
 cv=2

N
um

be
r

of
 it

er
at

io
ns

 in
 th

e
S

A
T

-b
as

ed
 a

tta
ck

Number of key bits in locking with the point function

 1

 10

 100

 1000

 10000

 100000

8 9 10 11 12 13 14 15 16

 cv=0
 cv=1
 cv=2

R
un

-t
im

e
of

 th
e

S
A

T
-b

as
ed

 a
tta

ck
 (

s)

Number of key bits in locking with the point function

(a) (b) (c)

Fig. 12. Impact of point function parameters: (a) area; (b) number of iterations; (c) run-time.

respectively. It also shows the synthesis results of FIR filters
locked by prominent logic locking methods. It introduces the
results of attacks that can be applied to sequential circuits
namely, the OG KC2 attack, which was taken from [60], and
the OL SCOPE attack. In this table, failed denotes that the
found solution of the KC2 attack is actually a wrong key
verified through simulation.

1) Comments on Hardware Complexity: Observe from Ta-
ble VII that the direct form filter has less area and consumes
less power, but has a higher delay when compared to the
transposed form filter. On the other hand, the folded design has
the smallest area, but the filter output is computed in 30 clock
cycles, increasing the latency and energy consumption. The
conclusions drawn based on the gate-level synthesis results
on the obfuscated and locked multipliers blocks given in
Tables V-VI are also valid on the obfuscated and locked FIR
filters. However, due to the registers in the filter design, the
overhead on the overall FIR filter design gets smaller. Note
that the proposed hybrid technique achieves the maximum area
reduction with respect to the logic locking methods on the
parallel direct form FIR filters, i.e., 4.4%, obtained when the
FIR filter under the CAVM-SA architecture is compared to the
FIR filter locked by RLL+SKGLock.

2) Comments on Attack Resiliency: Observe also from
Table VII that the KC2 attack is capable of discovering
the secret key of the obfuscated FIR filters using previously
proposed techniques, except for the direct form filters, but it
is not successful on the FIR filters protected by the proposed
hybrid technique. It can also find the secret key locked by
RLL, except for the direct form filter, but fails on the filters
locked by both RLL and a SAT-resilient method. Similarly,
the SCOPE attack generally deciphers all the key bits on
the obfuscated FIR filters with high accuracy, but it can only
decipher a small number of key bits of the FIR filters protected
by the hybrid technique. However, it is capable of deciphering
more key bits on the locked FIR filters when compared to its
results on the locked multiplier blocks. This is heavily due to
the resynthesis of the FIR filter including the locked multiplier
block. Note that the proposed hybrid technique increases the
area and power dissipation of FIR filters when compared to the
previously proposed obfuscation techniques [9], [17] in order
to increase their resiliency to the existing attacks.

C. Analysis on the Point Function

To find the impact of the point function and its parameters
in the hybrid protection technique on the hardware complexity,
the number of iterations taken in the SAT-based attack [30],
and its run-time, we used the TMCM block of our FIR filter
under the TMCM-MUL architecture. Again, the TMCM block
is obfuscated using decoys with 32 key bits when ibw is 16. In
logic locking with the point function, the number of key bits,
i.e., w, is determined to be between 8 and 16, the corruption
value, i.e., cv, is set to be between 0 and 2, and a single
primary output is locked. Fig. 12 presents the impact of point
function parameters on the area of the protected TMCM block
and the number of iterations and run-time of the SAT-based
attack.

Observe from Fig. 12(a) that as the number of key bits
used in logic locking, w, increases, the area of the protected
TMCM block using the hybrid technique increases slightly.
Note that as the corruption value, cv, increases, the design
area increases simply due to the increased range of comparator
logic given in Listing 1. Also, observe from Figs. 12(b)-(c)
that as w increases, the number of iterations and run-time of
the SAT-based attack increases. An exponential growth in the
number of iterations and run-time can be observed till w is
15. As can be seen from Fig. 12(c), for the 15- and 16-bit
keys in the point function, the SAT-based attack cannot find
the secret key in the time limit, i.e., 2 days, denoted by the
red line. Thus, the number of iterations given in Fig. 12(b)
for these number of key bits, is the one obtained in the time
limit. Note also that in all TMCM designs locked by the point
function with the given parameters, the number of iterations
increases exponentially, while it decreases as cv is increased,
but still keeping the exponential growth.

To find the impact of locking an obfuscated design using a
point function on hardware complexity and attack resiliency,
we used the same 112 FIR filters presented in Section III-B,
where n ranges between 16 and 127. In our experiments, the
TMCM blocks of folded FIR filters were obfuscated using
2blog2nc+1 key bits under the TMCM-MUL architecture when
ibw was set to 16. For the point function, 16 key bits were
used. Fig. 13 presents the run-time of the SAT-based attack on
obfuscated and protected TMCM blocks when its time limit
was 2 days.

Observe from Fig. 13 that locking an obfuscated design us-
ing a point function increases the SAT-based attack resiliency

12

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120

R
un

-t
im

e
of

 th
e

S
A

T
-b

as
ed

 a
tta

ck
 (

s)

Number of filter coefficients

Obfuscation
Hybrid Protection

Fig. 13. Run-time of the SAT-based attack on TMCM blocks.

TABLE VIII
DETAILS ON THE PROTECTED AND LOCKED CAVM BLOCKS.

Filter n mbw p
Hybrid RLL+CASLock

area delay power area delay power
Dempster02 25 12 41 11145 5903 7057 16557 3136 4238
Johansson08 30 10 46 14826 4662 4504 16461 3381 4101
Shi11_Y2 34 11 50 12270 3594 3567 12533 3163 3190
Shi11_A 59 10 75 21431 4858 5825 20993 3404 5390
Samueli89 60 13 76 24188 4130 7522 26696 3998 6819
Lim83 63 10 79 22932 4848 6652 24696 3661 6322
Yoshino09 64 13 80 25096 4964 7927 30414 3437 7927
Nielsen89 67 15 83 26187 5318 9645 34950 4071 9164
Maskell07 108 9 124 37306 4811 9049 37148 3604 9522
LimYu07 121 14 137 48354 4947 16862 59492 3888 15346

significantly. Note that the SAT-based attack can find a solution
to all obfuscated TMCM blocks except one. However, the
average area, delay, and power dissipation of the protected
designs are increased by 10.7%, 7.1%, and 9.6%, respectively
when compared to those of the obfuscated designs.

D. Analysis on the Direct Form FIR Filter

Among the parallel design of FIR filters, the direct form is a
good candidate to be used in a secure implementation for sev-
eral reasons based on the results obtained in this work. First,
as shown in Table VII, its obfuscated hardware complexity in
terms of area and power dissipation is significantly smaller
than the transposed form filter. Second, it includes a large
number of multiplication operations in chain, which make the
SAT-based attack and its variants hard to discover the secret
key. Third, the CAVM block of the direct form filter has a
large number of inputs than the MCM block of the transposed
form filter, which enables an increase in the number of key bits
in the point function, improving the resiliency of the design
protected by the hybrid technique as shown in Figs. 12(b)-
(c). This last observation is also true when compared to the
TMCM block used in folded FIR filter design.

To find the impact of the number of coefficients on the
hardware complexity of the protected CAVM block of an FIR
filter, 10 filters were taken from [54], where n ranges between
25 and 121 and mbw is between 9 and 15. In the design
of CAVM blocks, ibw is set to 16. In the hybrid protection
technique, these CAVM blocks were obfuscated using decoys
with n key bits and locked using the point function with ibw
key bits under the CAVM-MUL architecture using a total of
n+ ibw key bits. These protected designs are also compared
with those locked by both RLL and CASLock, where the

-140

-120

-100

-80

-60

-40

-20

 0

 20

 0 0.2 0.4 0.6 0.8 1

M
ag

ni
tu

de
 (

dB
)

Normalized Frequency

With Secret Key
With 100 Wrong Keys

(a)

-100

-50

 0

 50

 0 0.2 0.4 0.6 0.8 1

M
ag

ni
tu

de
 (

dB
)

Normalized Frequency

With Secret Key
With 100 Wrong Keys

(b)
Fig. 14. Behavior of the FIR filter Nielsen89: (a) protected by the hybrid
technique; (b) locked by RLL+CASLock.

number of RLL and CASLock key bits is n− ibw and 2∗ ibw,
respectively. This logic locking method was chosen because
it generally generates a locked multiplier block with a small
area as shown in Table VI. Table VIII presents the gate-level
synthesis results of the CAVM designs protected by the hybrid
technique and locked by both RLL and CASLock.

Observe from Table VIII that as the number of coefficients,
n, increases, the hardware complexity of the protected and
locked CAVM blocks generally increases. The hybrid pro-
tection technique generally leads to a design with a smaller
area when compared to the RLL+CASLock method, where
the gain reaches up to 32.6%. Note that on filters Shi11_A
and Maskell07, the RLL+CASLock method leads to a locked
design with a smaller area, since the bit-width of coefficients
is small, enabling the synthesis tool to optimize the logic.

To find the impact of obfuscation techniques on the filter
behavior, the Zero-Phase Frequency Response (ZPFR) of the
FIR filter Nielsen89 is obtained when the secret key and 100
randomly generated wrong keys are applied. Fig. 14 presents
ZPFRs of FIR filters protected by the hybrid technique and
locked by RLL+CASlock.

Observe from Fig. 14 that both obfuscation techniques may
lead to a filter behavior different from the original one when
a random wrong key is applied. While the filter behavior of
the protected design under a wrong key is meaningful, but
out of desired filter specification, the locked design exhibits
an unmeaningful behavior under a wrong key due to the logic
related to RLL key bits. Thus, the hybrid protection technique

13

may make the adversary believe that the filter behavior under
the wrong key is actually the desired one.

VI. DISCUSSION

Other than the logic locking attacks used in this article, there
exist Reverse Engineering (RE) and Side-Channel Analysis
(SCA) techniques that can identify the filter coefficients in an
obfuscated design. In [18], a machine learning tool that can
determine the decoy selection method used in an obfuscated
design was developed. The same work also proposed an RE
technique that can identify filter coefficients hidden among
decoys determined based on a decoy selection method. It was
shown that if more than one decoy is used to obfuscate a filter
coefficient, where the Hamming distance between each decoy
and filter coefficient is 1, then the coefficient can be identified.
In other cases, the RE technique was not capable of identifying
original filter coefficients.

To the best of our knowledge, there exists no SCA technique
proposed specifically to identify the original filter coefficients
in an obfuscated filter design. The challenge for such a
technique would be to understand how the synthesis tools
embed the constants, i.e., filter coefficients and decoys, into
the gate-level design using efficient methods, which optimize
the hardware complexity of constant multiplications. This pro-
cedure would almost entail reverse engineering the algorithms
used by the synthesis tools. In this case, it will be hard to
reveal the filter coefficients from the power dissipation or
delay values obtained from the obfuscated design since those
data come from a logic combining both filter coefficients
and decoys. Studying SCA and its efficiency to overcome
obfuscation methods remains a formidable path for future
research.

VII. CONCLUSIONS

This article focused on the obfuscation of digital FIR filters.
Initially, it showed that the techniques previously proposed for
the obfuscation of FIR filters are vulnerable to our SAT-based
query attack, which applies several queries and proves that
the found key bit value is the actual value of the related key
bit in the secret key. Then, to secure an FIR filter design, it
proposed the hybrid protection technique, which includes both
obfuscation and locking with a point function. The proposed
technique is applied to parallel direct and transposed forms
of an FIR filter and its folded implementation. Experimental
results clearly showed that the hybrid protection technique is
competitive to prominent logic locking techniques in terms of
hardware complexity and leads to obfuscated designs resilient
to well-known attacks. It is also shown that the direct form
FIR filter is a good candidate for secure filter implementation.

ACKNOWLEDGMENT

The authors would like to thank Nimisha Limaye and
Satwik Patnaik for running our obfuscated designs on their
tools and Mohammad Yasin, Leon Li, and Christian Pilato for
fruitful discussions. The attacks were carried out in the High
Performance Computing Centre of TalTech.

REFERENCES

[1] Defence Science Board Task Force. (2015, February) On High
Performance Microchip Supply Chain. [Online]. Available: https:
//dsb.cto.mil/reports/2000s/ADA435563.pdf

[2] S. Amir, B. Shakya, D. Forte, M. Tehranipoor, and S. Bhunia, “Compar-
ative Analysis of Hardware Obfuscation for IP Protection,” in GLSVLSI,
2017, pp. 363–368.

[3] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Watermarking
Techniques for Intellectual Property Protection,” in DAC, 1998, pp. 776–
781.

[4] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote Activation of
ICs for Piracy Prevention and Digital Right Management,” in ICCAD,
2007, pp. 674–677.

[5] F. Koushanfar, “Provably Secure Active IC Metering Techniques for
Piracy Avoidance and Digital Rights Management,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 1, pp. 51–63, 2012.

[6] T. Hoque, R. S. Chakraborty, and S. Bhunia, “Hardware Obfuscation and
Logic Locking: A Tutorial Introduction,” IEEE Design & Test, vol. 37,
no. 3, pp. 59–77, 2020.

[7] L. Wanhammar, DSP Integrated Circuits. Academic Press, 1999.
[8] M. R. Muttaki, R. Mohammadivojdan, M. Tehranipoor, and F. Farah-

mandi, “HLock: Locking IPs at the High-Level Language,” in DAC,
2021, pp. 79–84.

[9] C. Pilato, A. B. Chowdhury, D. Sciuto, S. Garg, and R. Karri, “ASSURE:
RTL Locking Against an Untrusted Foundry,” IEEE TVLSI, vol. 29,
no. 7, pp. 1306–1318, 2021.

[10] S. A. Islam, L. K. Sah, and S. Katkoori, “High-Level Synthesis of
Key-Obfuscated RTL IP with Design Lockout and Camouflaging,” ACM
TODAES, vol. 26, no. 1, 2020.

[11] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for
Algorithm-Level Obfuscation during High-Level Synthesis,” in DAC,
2018, pp. 1–6.

[12] A. Sengupta, D. Roy, S. P. Mohanty, and P. Corcoran, “DSP Design
Protection in CE through Algorithmic Transformation based Structural
Obfuscation,” IEEE Transactions on Consumer Electronics, vol. 63,
no. 4, pp. 467–476, 2017.

[13] R. S. Chakraborty and S. Bhunia, “RTL Hardware IP Protection Us-
ing Key-Based Control and Data Flow Obfuscation,” in International
Conference on VLSI Design, 2010, pp. 405–410.

[14] Y. J. Yu and Y. C. Lim, “Optimization of Linear Phase FIR Filters in
Dynamically Expanding Subexpression Space,” Circuits, Systems, and
Signal Processing, vol. 29, no. 1, pp. 65–80, 2010.

[15] Y. Lao and K. K. Parhi, “Obfuscating DSP Circuits via High-Level
Transformations,” IEEE TVLSI, vol. 23, no. 5, pp. 819–830, 2015.

[16] G. Bottegal, F. Farokhi, and I. Shames, “Preserving Privacy of Finite
Impulse Response Systems,” IEEE Control Systems Letters, vol. 1, no. 1,
pp. 128–133, 2017.

[17] L. Aksoy, Q.-L. Nguyen, F. Almeida, J. Raik, M.-L. Flottes, S. Dupuis,
and S. Pagliarini, “High-Level Intellectual Property Obfuscation via
Decoy Constants,” in IOLTS, 2021, pp. 1–7.

[18] L. Aksoy, A. Hepp, J. Baehr, and S. Pagliarini, “Hardware Obfuscation
of Digital FIR Filters,” in DDECS, 2022, pp. 68–73.

[19] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[20] L. Aksoy, P. Flores, and J. Monteiro, “ECHO: A Novel Method for
the Multiplierless Design of Constant Array Vector Multiplication,” in
ISCAS, 2014, pp. 1456–1459.

[21] L. Aksoy, E. O. Güneş, and P. Flores, “Search Algorithms for the
Multiple Constant Multiplications Problem: Exact and Approximate,”
Elsevier MICPRO, vol. 34, no. 5, pp. 151–162, 2010.

[22] L. Aksoy, P. Flores, and J. Monteiro, “Multiplierless Design of Folded
DSP Blocks,” ACM TODAES, vol. 20, no. 1, 2014.

[23] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-Secure Logic Locking: From Theory To Prac-
tice,” in ACM CCS, 2017, pp. 1601–1618.

[24] L. Aksoy, P. Flores, and J. Monteiro, “A Tutorial on Multiplierless
Design of FIR Filters: Algorithms and Architectures,” Circuits, Systems,
and Signal Processing, vol. 33, no. 6, pp. 1689–1719, 2014.

[25] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Mul-
tiplication,” ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

[26] P. Tummeltshammer, J. Hoe, and M. Püschel, “Time-Multiplexed
Multiple-Constant Multiplication,” IEEE TCAD, vol. 26, no. 9, pp.
1551–1563, 2007.

[27] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” in DATE, 2008, pp. 1069–1074.

14

[28] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis
of Integrated Circuit Camouflaging,” in ACM CCS, 2013, pp. 709–720.

[29] S. Dupuis and M.-L. Flottes, “Logic Locking: A Survey of Proposed
Methods and Evaluation Metrics,” Journal of Electronic Testing, vol. 35,
pp. 273–291, 2019.

[30] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic
Encryption Algorithms,” in HOST, 2015, pp. 137–143.

[31] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT Attack Resistant Logic Locking,” in HOST, 2016, pp. 236–241.

[32] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack on Logic
Locking,” IEEE TCAD, vol. 38, no. 2, pp. 199–207, 2019.

[33] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-Lock: A
Security-Corruptibility Trade-off Resilient Logic Locking Scheme,”
IACR Transactions on CHES, vol. 2020, no. 1, pp. 175–202, 2019.

[34] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly Stripping Functionality for Logic Locking: A Fault-Based Per-
spective,” IEEE TCAD, vol. 39, no. 12, pp. 4439–4452, 2020.

[35] Q.-L. Nguyen, M.-L. Flottes, S. Dupuis, and B. Rouzeyre, “On Prevent-
ing SAT Attack with Decoy Key-Inputs,” in ISVLSI, 2021, pp. 114–119.

[36] H. Zhou, A. Rezaei, and Y. Shen, “Resolving the Trilemma in Logic
Encryption,” in ICCAD, 2019, pp. 1–8.

[37] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine Learning
Guided Structural Analysis Attack on Hardware Obfuscation,” in Asian
HOST, 2018, pp. 56–61.

[38] L. Li and A. Orailoglu, “Piercing Logic Locking Keys through Redun-
dancy Identification,” in DATE, 2019, pp. 540–545.

[39] A. Alaql, M. M. Rahman, and S. Bhunia, “SCOPE: Synthesis-Based
Constant Propagation Attack on Logic Locking,” IEEE TVLSI, vol. 29,
no. 8, pp. 1529–1542, 2021.

[40] L. Alrahis, S. Patnaik, F. Khalid, M. A. Hanif, H. Saleh, M. Shafique,
and O. Sinanoglu, “GNNUnlock: Graph Neural Networks-based Oracle-
less Unlocking Scheme for Provably Secure Logic Locking,” in DATE,
2021, pp. 780–785.

[41] D. Sirone and P. Subramanyan, “Functional Analysis Attacks on Logic
Locking,” in DATE, 2019, pp. 936–939.

[42] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality Logic
Locking With Hamming Distance-Based Restore Unit (SFLL-hd) -
Unlocked,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 10, pp. 2778–2786, 2019.

[43] Z. Han, M. Yasin, and J. J. Rajendran, “Does Logic Locking Work with
EDA Tools?” in USENIX Security Symposium, 2021, pp. 1055–1072.

[44] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” in DAC, 2012, pp. 83–89.

[45] Y. Shen and H. Zhou, “Double DIP: Re-Evaluating Security of Logic
Encryption Algorithms,” in GLSVLSI, 2017, pp. 179–184.

[46] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT Attack:
Next Generation Attack on Obfuscated Circuits with Capabilities and
Performance Beyond the SAT Attacks,” IACR Transactions on CHES,
vol. 2019, no. 1, pp. 97–122, 2018.

[47] C. Karfa, R. Chouksey, C. Pilato, S. Garg, and R. Karri, “Is Register
Transfer Level Locking Secure?” in DATE, 2020, p. 550?555.

[48] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately Deobfuscating Integrated Circuits,” in HOST, 2017, pp.
95–100.

[49] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “KC2: Key-Condition
Crunching for Fast Sequential Circuit Deobfuscation,” in DATE, 2019,
pp. 534–539.

[50] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel Bypass
Attack and BDD-based Tradeoff Analysis Against All Known Logic
Locking Attacks,” in Cryptographic Hardware and Embedded Systems,
vol. 10529, 2017, pp. 189–210.

[51] N. Limaye, S. Patnaik, and O. Sinanoglu, “Fa-SAT: Fault-aided SAT-
based Attack on Compound Logic Locking Techniques,” in DATE, 2021,
pp. 1166–1171.

[52] ——, “Valkyrie: Vulnerability Assessment Tool and Attack for Provably-
Secure Logic Locking Techniques,” IEEE Transactions on Information
Forensics and Security, vol. 17, pp. 744–759, 2022.

[53] B. Tan et al., “Benchmarking at the Frontier of Hardware
Security: Lessons from Logic Locking,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.06806

[54] FIRSuite. (2009) Suite of Constant Coefficient FIR Filters. [Online].
Available: https://www.firsuite.net/

[55] P. Subramanyan. HOST’15 Code Material. [Online]. Available: https:
//drive.google.com/file/d/19gYMK5lVaynzPhCNJlvzmI0eJmF6kVU0/
view

[56] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for
Combinational Circuits,” Department of Electrical Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, VA, Tech. Rep.
12-93, 1993.

[57] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling Entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[58] Y. Shen. DoubleDIP Code Material. [Online]. Available: https:
//github.com/YuanqiShen/Double_DIP

[59] A. Alaql. SCOPE Code Material. [Online]. Available: https://github.
com/alaql89/SCOPE

[60] Kaveh Shamsi. Netlist Encryption and Obfuscation Suite. [Online].
Available: https://bitbucket.org/kavehshm/neos/src/master/

Levent Aksoy received his Ph.D. degree in electronics engineering from
Istanbul Technical University (ITU), Istanbul, Türkiye, in 2009. He worked
as a researcher at ITU and INESC-ID, Lisbon, Portugal. He also worked at
Dialog Semiconductor, Istanbul, Türkiye, as a senior digital design engineer.
Currently, he is a post-doctoral researcher at the Centre for Hardware Security
at Tallinn University of Technology (TalTech), Tallinn, Estonia. His research
interests include hardware security and CAD for VLSI circuits with emphasis
on solving EDA problems using SAT models and optimization techniques.

Quang-Linh Nguyen currently works as a Design-for-Test engineer at STMi-
croelectronics, Grenoble, France. He received a M.S. degree in Integrated
Circuits and Systems from University of Paris-Saclay, Paris, France, in 2018
and a PhD degree in Micro-Electronics from University of Montpellier,
Montpellier, France, in 2022. His research interests include VLSI Design,
Design-for-Trust, Design-for-Test and Hardware Security.

Felipe Almeida received his bachelor’s degree in Computer Engineering from
the Pernambuco University and a master’s degree in Microelectronics from
the Federal University of Rio Grande do Sul. He is currently affiliated with the
Centre for Hardware Security at Tallinn University of Technology (TalTech) as
a Ph.D. student. His research interests are on Hardware Security and Radiation
Tolerant Circuits.

Jaan Raik is a professor of digital systems’ verification at the Department
of Computer Systems and the head of the Centre for Dependable Computing
Systems of TalTech University, Estonia. Prof. Raik received his M.Sc. and
Ph.D. degrees at TalTech in 1997 and in 2001, respectively. He has co-authored
more than 200 peer-reviewed scientific publications. His research interests
cover a wide area in electrical engineering and computer science domains
including hardware test, functional verification, fault-tolerance and security
as well as emerging computer architectures.

Marie-Lise Flottes is a researcher for the French National Research Center
(CNRS). Since 1990, she has been conducting research at LIRMM, Mont-
pellier, France. She received her Ph.D. degree in 1990 from the University
of Montpellier. Her interests include design for testability, testability and
dependability of secure circuits, test data compression and test management
for SoC and SiP.

Sophie Dupuis has been an Associate Professor with LIRMM, Montpellier,
France, since 2011. She received her M.Sc. and Ph.D. degrees in micro-
electronics and design on integrated circuits from the Pierre & Marie Curie
University, Paris, France, in 2004 and 2009 respectively. Her current research
interests are oriented towards hardware trust, the design of trusted circuits
despite potential untrustworthy design steps in particular.

Samuel Pagliarini received the PhD degree from Telecom ParisTech, Paris,
France, in 2013. He has held research positions with the University of Bristol,
Bristol, UK, and with Carnegie Mellon University, Pittsburgh, PA, USA. He is
currently a Professor at Tallinn University of Technology (TalTech) in Tallinn,
Estonia where he leads the Centre for Hardware Security. His current research
interests include many facets of digital circuit design, with a focus on circuit
reliability, dependability, and hardware trustworthiness.

Appendix B

[II]
F. Almeida, L. Aksoy, Q. -L. Nguyen, S. Dupuis, M. -L. Flottes, and S.
Pagliarini, "Resynthesis-based Attacks Against Logic Locking," in 24th
International Symposium on Quality Electronic Design (ISQED), pp. 1-8,
2023.

71

Resynthesis-based Attacks Against Logic Locking

Felipe Almeida†, Levent Aksoy†, Quang-Linh Nguyen‡, Sophie Dupuis‡, Marie-Lise Flottes‡, and Samuel Pagliarini†
†Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia

‡LIRMM, University of Montpellier, Montpellier, France
Email: † {felipe.almeida, levent.aksoy, samuel.pagliarini}@taltech.ee

Email: ‡ {quang-linh.nguyen, sophie.dupuis, marie-lise.flottes}@lirmm.fr

Abstract—Logic locking has been a promising solution to many
hardware security threats, such as intellectual property infringe-
ment and overproduction. Due to the increased attention that
threats have received, many efficient specialized attacks against
logic locking have been introduced over the years. However, the
ability of an adversary to manipulate a locked netlist prior to
mounting an attack has not been investigated thoroughly. This
paper introduces a resynthesis-based strategy that utilizes the
strength of a commercial electronic design automation (EDA)
tool to reveal the vulnerabilities of a locked circuit. To do
so, in a pre-attack step, a locked netlist is resynthesized using
different synthesis parameters in a systematic way, leading to a
large number of functionally equivalent but structurally different
locked circuits. Then, under the oracle-less threat model, where
it is assumed that the adversary only possesses the locked circuit,
not the original circuit to query, a prominent attack is applied to
these generated netlists collectively, from which a large number
of key bits are deciphered. Nevertheless, this paper also describes
how the proposed oracle-less attack can be integrated with an
oracle-guided attack. The feasibility of the proposed approach
is demonstrated for several benchmarks, including remarkable
results for breaking a recently proposed provably secure logic
locking method and deciphering values of a large number of key
bits of the CSAW’19 circuits with very high accuracy.

Index Terms—Logic locking, resynthesis, EDA tools, oracle-less
and oracle-guided attacks.

I. INTRODUCTION

Due to the globalized integrated circuit (IC) supply chain,
serious security threats, such as hardware Trojans, piracy,
overbuilding, reverse engineering, and counterfeiting, have
emerged [1]. Many defense techniques, such as watermark-
ing [2], digital rights management [3], metering [4], and logic
locking [5], have been introduced over the years to deal
with these threats. Among those, logic locking stands out by
being a well-established technique and by offering protection
against a diverse array of adversaries [6]. Logic locking inserts
additional logic driven by key bits so that the circuit behaves
as expected only when the secret key is applied.

On the other hand, many efficient attacks have been in-
troduced to overcome the defenses built by logic locking [7].
However, the impact of an electronic design automation (EDA)

This work has been partially conducted in the project “ICT programme”
which was supported by the European Union through the European Social
Fund. It was also partially supported by European Union’s Horizon 2020
research and innovation programme under grant agreement No 952252
(SAFEST).

tool on the manipulation of the locked netlist before per-
forming an attack has not been investigated thoroughly. In
this work, we explore if EDA tools can be used to make
a locked circuit vulnerable to existing logic locking attacks.
Thus, the main contributions of this work are three-fold:
(i) we introduce a resynthesis procedure that is a pre-attack
step, where functionally equivalent but structurally different
locked circuits are generated by resynthesizing the original
locked circuit using different optimization parameters and
delay constraints in order to create structural vulnerabilities
that can be exploited by existing attacks; (ii) we present an
oracle-less (OL) resynthesis-based attack, which applies the
prominent SCOPE attack [8] to these resynthesized circuits
and gathers all its solutions to discover the secret key; (iii) we
show that our OL attack can be combined with a traditional
oracle-guided (OG) attack for further improving the number of
correctly deciphered key bits. The last contribution is essential
since we consider circuits from the CSAW’19 contest – these
circuits compound the use of two logic locking techniques at
the same time.

The main finding of this work is that the use of many
resynthesized locked circuits enables us to discover values of
more key bits, and even the whole key, when compared to a
single attack mounted on the original locked netlist.

The remainder of this paper is organized as follows: Sec-
tion II presents the background concepts and related work.
The resynthesis process and the proposed attacks are described
in Section III. Experimental results are given in Section IV.
Finally, Section V concludes the paper.

II. BACKGROUND

A. Logic Locking and Threat Models

The procedure of logic locking is applied at the gate-level
in the IC design flow, as shown in Fig. 1. Note that the layout
of the locked circuit is sent to the foundry without revealing
the secret key. After the locked IC is produced and delivered
to the design house, the values of the secret key are stored in
a tamper-proof memory, before the functional IC is sent to the
market.

It is assumed that the gate-level netlist of the locked
circuit can be obtained directly by an untrusted foundry or
by reverse-engineering a functional IC obtained from the
open market. An adversary can also use the functional IC

Fig. 1. Conventional logic locking in the IC design flow (adapted from [6]).

Original Circuit

Locking Unit

inputs

key bits

output

Original Circuit

Restore Unit

inputs

key bits

outputPertub Unit

Stripped Circuit

X X

X

X Critical Point
(a) (b)

Fig. 2. SAT-resilient logic locking methods: (a) SFLT; (b) DFLT.

programmed with the secret key as an oracle to apply inputs
and observe outputs. Thus, in logic locking, there are generally
two threat models: OL and OG. In the OL threat model, only
the gate-level netlist of the locked circuit is available to the
adversary. The adversary has both the netlist of the locked
circuit and the functional IC in the OG threat model.

B. Related Work

After the introduction of random logic locking (RLL) using
XOR/XNOR gates in [9], earlier work focused on different
types of key gates, such as AND/OR, multiplexors, and look-up
tables, taking into account the hardware complexity of the
locked circuit [5]. However, the OG satisfiability (SAT)-based
attack [10] overcame all the defenses existing at that time.
Note that the SAT-based attack iteratively finds distinguishing
input patterns (DIPs) that rule out wrong keys. To thwart the
SAT-based attack and its variants, circuits are locked using a
point function that sets a limit on the number of wrong keys
which a DIP can eliminate, forcing these attacks to explore an
exponential number of queries [6], [11]–[14].

The SAT-resilient methods can be categorized into two
groups: single-flip locking technique (SFLT) and double-flip
locking technique (DFLT), as shown in Fig. 2. An SFLT
has only one critical point, which is responsible to corrupt
a protected output under a specific input pattern. Under this
category, SARLock [15] adds a comparator and a masking
circuit connected with the original netlist in a way that it
generates a corruption on one input pattern. Anti-SAT [11]
utilizes two complementary AND gate trees, whose output is
merged with the original circuit. CASLock [12] is based on
the same concept of Anti-SAT, however it uses both AND and
OR gates. SKG-Lock [14] uses decoy key bits and provides
a tunable output corruption. Note that SFLTs are susceptible
to removal attacks [16]–[18]. If an attacker can identify this
single critical point, he/she can split the design into a recovered
netlist (original) and the locking unit.

A DFLT has two critical points, one that connects the
original netlist with a perturbation unit and another one that
connects the output of the stripped circuit with the restore
unit. Under this category, stripped functionality logic locking
(SFLL) [6], [13] initially corrupts an output based on an input

combination in the perturbation unit and then, corrects this
output only when the secret key is applied in the restore
unit. Note that a removal attack becomes inefficient for a
DFLT since the original circuit is mixed with the perturbation
unit, even though it can easily identify the restore unit.
However, there exist efficient structural attacks developed for
DFLTs [19]–[22].

Alternative locking techniques have also been introduced.
In [23], a technique, which has more than two critical points,
called the multi-flip locking technique (MFLT), was proposed.
However, it leads to a significant increase in area, power
dissipation, and delay when compared to other techniques.
Compound logic locking techniques were proposed to over-
come the main drawback of a SAT-resilient technique, i.e.,
its low output corruptibility as can be observed in Fig. 2,
by locking a design using both low and high output corrupt-
ibility techniques, such as SFLL and RLL, respectively [24].
Recently, efficient attacks have also been introduced against
compound logic locking [25], [26].

Moreover, the OL attacks explore patterns in the structure
of a locked netlist using statistical analysis [8], [27], [28]. For
example, the SCOPE attack [8] is an unsupervised constant
propagation technique, which analyzes each key bit of the
locked design for critical features that can reveal its correct
value after it is assigned to logic 0 and 1 value. These critical
features include area, power dissipation, delay, and many
other circuit characteristics obtained by a synthesis tool. These
features are analyzed using linear regression and machine
learning based clustering.

III. PROPOSED RESYNTHESIS-BASED ATTACK

This section describes our resynthesis-based attack in detail.
We assume a scenario, where the design house is the only
trusted entity. An attacker has all possible reverse engineering,
synthesis, and computing tools and has an access to the gate-
level locked netlist and the functional IC. In this section,
we initially introduce the pre-attack stage, where the locked
circuit is resynthesized using different synthesis parameters,
leading to a large number of structurally different netlists
with the same functionality. Then, we present the OL attack
that utilizes these resynthesized netlists in order to find the
secret key. Finally, in order to handle the compound logic
locking efficiently, we present its modified version, where our
proposed OL attack cooperates with an OG attack.

A. The Pre-attack Step: Resynthesis of the Locked Netlist

The locked circuit is synthesized multiple times using a
different script each time, where the synthesis parameters are
explored in a systematic way. We use the following parameters
to increase the number of resynthesized locked circuits:

Synthesis Effort: In a synthesis tool, logic optimizations can
be applied with different efforts at different synthesis stages.
This flexibility enables a designer to explore the trade-off
between the quality of results and run time. The following ef-
forts are considered at the given synthesis stage: low, medium,
and high at generic transformations (syn_gen); low, medium,
and high at mapping (syn_map); and low, medium, high, and
extreme at optimization (syn_opt).

Delay Constraint: To meet performance targets, delay con-
straints are used to guide the synthesis tool. We initially
resynthesize the locked circuit without a delay constraint and
find the delay of its critical path, i.e., dcp. Then, in an interval
between 0 and dcp, d − 1 points, which are computed as
(dcp/d)i with 1 ≤ i ≤ d − 1, are set as delay constraints.
Note that d is set to 5 in order to generate a large number
of resynthesized circuits. Even though some delay constraints
are impossible to meet, the synthesis tool always generates a
netlist equivalent to the original one in terms of functionality.

Maximum Transition: The transition time of a net in a circuit
is defined as the longest time required for its driving pin to
change its logic value. The maximum transition value was
chosen to be 5%, 10%, and 15% of the delay constraint for all
the nets in the locked circuit to explore different resynthesized
circuits.

Key Constraints: To direct the synthesis tool to work in-
tensively on the paths that include the keyed logic, a delay
constraint, which is impossible to be satisfied, can also be
used. In this case, we force the delay between all key bits and
all primary outputs to be 1 ps.

Thus, the combination of parameters given above generates
3 × 3 × 4 × 5 × 3 × 2 = 1080 netlists. We eliminate the
resynthesized circuits with identical characteristics and keep
only the unique ones. Additionally, we prevent the use of
XOR/XNOR gates, which can be problematic for the SCOPE
attack, during technology mapping. Note that our resynthesis
methodology aims to generate different versions of the locked
circuit, making it more vulnerable to existing attacks. Thus,
any existing attack, either OL or OG, may potentially benefit
from this pre-attack strategy to discover the secret key. The
resynthesis process is automated for a commercial synthesis
tool in a Perl script. This script, which can be modified for
other synthesis tools, is available at https://github.com/Centre-
for-Hardware-Security/.

B. Attacks on the Resynthesized Netlists

Time-efficient attacks are chosen in order to handle a large
number of resynthesized circuits. In our OL resynthesis-based
attack, SCOPE [8] is used to predict the values of key bits. In
its modified version developed for compound logic locking,
a query attack is used to find the values of key bits in a
deterministic way.

1) Proposed OL Attack: SCOPE is applied to each resyn-
thesized locked circuit and a solution is found. Note that this
solution may return a logic 0, 1, or an unknown value for
a key bit. Then, the values of key bits deciphered for each
netlist are merged into a single solution that represents the

Fig. 3. (a) Majority circuit; (b) Locked majority circuit; (c) Constant
propagation on the locked majority circuit.

overall guess. To do so, for each key bit, ki with 1 ≤ i ≤ p,
where p denotes the number of key bits, we initially count the
number of solutions, where ki is deciphered as logic 0 and
1, denoted as dk0i and dk1i , respectively. Then, if dk0i > dk1i
or dk1i > dk0i , the value of ki is determined to be 0 or 1,
respectively. Otherwise, in the case of a tie, the value of ki is
decided to be unknown.

2) Proposed OG Attack: In order to handle a large number
of resynthesized netlists efficiently, we introduce a SAT-based
query attack, which can determine the actual values of indi-
vidual key bits. Note that traditional SAT-based attacks rather
attempt to find the whole secret key, which increases the
computational effort significantly. In this attack, we initially
find queries, i.e., values of inputs of the oracle circuit, using
two techniques. The first technique uses the ATPG tool Ata-
lanta [29] to find test patterns for the stuck-at-fault of each key
bit on the locked circuit and stores the values of the related
primary inputs as queries. The aim is to find input patterns
that can propagate each key bit to a primary output, making it
observable. The second technique finds queries randomly. The
aim is to find input patterns that may make multiple key bits
observable at primary outputs. In our experiments, we generate
a total of 2p queries, where p denotes the number of key bits.

Then, we describe the locked circuit in a conjunctive normal
form (CNF) formula C by expressing each gate in its CNF.
Each query is applied to the oracle and the values of primary
outputs are obtained. Then, the related input and output values
are assigned to the associated nets in the locked circuit, the
constant values of these nets are propagated, and the Boolean
equations including key bits are derived in a CNF formula E.
The SAT problem including the locked circuit in CNF, i.e.,
C, is augmented with these equations, i.e., C = C ∧ E. After
all the queries are considered, the SAT problem C is solved
using a SAT solver and the values of key bits are determined.
Note that the locked circuit with the found values of key bits
behaves exactly the same as the oracle under the given queries,
but not under all possible input values. Hence, these key values
are not guaranteed to be the values of the secret key.

However, the value found for a key bit can be proved if it is
indeed equal to the actual value of the related bit in the secret
key using the concept of proof by contradiction. To do so, for
each key bit, the complement of its found value is added into
C and the SAT solver is run. If there exists no solution to C,
i.e., the SAT problem is unsatisfiable, the value of the related
key bit is proven to be the one in the found solution.

As a simple example, consider the majority circuit in
Fig. 3(a) and suppose that it is locked using XOR/XNOR

TABLE I
DETAILS OF THE ISCAS’85 CIRCUITS.

Circuit Original Netlist Locked Netlist

p
Anti-SAT CASLock SFLL SKG-Lock

#in #out #gates #gates #gates #gates #gates
c2670 157 64 1193 64 1321 1320 1421 1401
c3540 50 22 1669 32 1733 1732 1783 1773
c5315 178 123 2307 64 2435 2434 2523 2514
c6288 32 32 2416 32 2480 2479 2531 2516
c7552 206 105 3512 64 3640 3639 3729 3713

gates as given in Fig. 3(b). Assume that a query is found as
abc = 000 and thus, the value of its output f is obtained as 0
using the oracle. After propagating these values on the locked
circuit as shown in Fig. 3(c), a Boolean equation k0∨k1 = 0,
i.e., k0 ∧ k1 in CNF, is obtained. In the SAT solution, the key
bit values are found as k0k1 = 01. Note that these are the
proven key values since a SAT solver guarantees that there
exists no solution to the SAT problem C, which is extended
by either k0 = 1, i.e., k0 in CNF, or k1 = 0, i.e., k1 in CNF,
due to a conflict with the found Boolean equation, i.e., k0∧k1
in CNF.

The query attack is run on all the resynthesized circuits and
the proven values of key bits in each netlist are combined into
a single solution. It is developed in Perl and is equipped with
the incremental SAT solver CaDiCaL [30]. It is also available
at https://github.com/Centre-for-Hardware-Security/.

Finally, the solution of the OG resynthesis-based attack is
determined after merging the solution of the SCOPE attack
over all resynthesized circuits into that of the query attack on
all resynthesized circuits without changing the proven values
of key bits.

IV. EXPERIMENTAL RESULTS

This section initially presents the results of the proposed
OL resynthesis-based attack on the ISCAS’85 circuits [31]
and then, those of the OG resynthesis-based attack on the
CSAW’19 circuits [24] including compound logic locking.

A. Results on the ISCAS’85 Circuits

As the first experiment set, five ISCAS’85 circuits were
considered. Table I presents their details. For our exper-
iments, these circuits were locked by the Anti-SAT [11],
CASlock [12], SFLL [6], and SKG-Lock [14] techniques.
Note that while Anti-SAT and SFLL were taken from the
NEOS tool [32], we implemented CASLock and SKG-Lock.
Table I also presents details of the locked circuits. Note that the
number of keys, i.e., p, was determined based on the number
of inputs and overhead of the locking technique, and circuit
characteristics, i.e., the number of inputs, outputs, and gates,
were taken from the gate-level netlist.

Observe from Table I that all logic locking techniques lead
to circuits with a number of gates close to each other, whereas
the one locked by SFLL has a slightly large number of gates.
Besides, the overhead on the number of gates in circuits
locked by SFLL varies from 4.7% to 19.1% when compared
to original circuits.

In the following subsections, we present the results of the
resynthesis process and OL resynthesis-based attack, analyze
the impact of synthesis parameters on the performance of
the resynthesis process and SCOPE attack, and introduce
improvements to the run-time of the resynthesis process.

1) Resynthesis of the Locked ISCAS’85 Circuits: The resyn-
thesis is performed by Cadence Genus with a commercial
65 nm standard cell library. Table II presents the resynthesis
results of locked circuits. In this table, unique denotes the
number of unique locked netlists out of 1080 generated netlists
and area, delay, and power stand respectively for the average
values of the total area in µm2, delay in the critical path
in ps, and total power dissipation in µW on the unique
locked netlists. Finally, time is the total run-time of the
resynthesis process. The resynthesized netlists were generated
on a computing server with Intel Xeon processing units at
3.9 GHz and a total of 1 TB memory.

Observe from Table II that the number of unique netlists is
less than half of the total number of generated netlists, i.e.,
540, except the c3540 circuit locked by SKG-Lock. Note that
Anti-SAT, CASLock, and SFLL lead to fewer unique netlists
when compared to SKG-Lock, which is mainly because the
logic added by these techniques is more compact than that
added by SKG-Lock, which uses a chain of AND gates. We
note that the synthesis tool consumes a large amount of time
to fulfill a delay constraint that is impossible to meet, such
as strict delay constraints and key constraints described in
Section III-A. Hence, the run-time of the resynthesis process
depends on the locked circuit and the logic locking technique,
and more importantly, if there exists enough room for the
synthesis tool to satisfy the constraints.

In order to illustrate the diversity of resynthesized netlists,
the c2670 circuit locked by SFLL is considered. Fig. 4 presents
the area, delay, and power dissipation of each unique netlist,
normalized by their average values given in Table II. Observe
that resynthesis generates circuits significantly different from
each other in terms of hardware complexity. The standard
deviation on area, delay, and power dissipation values of
all these netlists are computed as 1578, 235, and 4964,
respectively. Note also that in this figure, the netlists after
instance number 232 have a distinct profile, since they are
generated using key constraints described in Section III-A.

In order to illustrate the differences in the structure of
generated netlists, the c2670 circuit locked by SKG-Lock
is considered. Fig. 5 presents the graphs of two netlists
resynthesized using the same synthesis parameters, except for
the delay constraint. In this figure, red, green, and blue circles
denote the inputs, key bits, and outputs, respectively; the gray
triangles represent the gates. Observe that a small change in
the delay constraint can lead to a structurally different netlist,
where the difference between the number of gates and logic
levels is 599 and 12, respectively.

2) Attacks on the Locked ISCAS’85 Circuits: Table III
presents the results of the SCOPE attack on the original locked
netlists and those of OL resynthesis-based attack on the unique
locked netlists generated in the resynthesis process. In this

TABLE II
RESULTS OF RESYNTHESIZED LOCKED ISCAS’85 CIRCUITS.

Technique Details c2670 c3540 c5315 c6288 c7552

Anti-SAT

unique 480 537 464 498 439
area 2357 2803 4112 7265 5387
delay 504 818 663 2144 694
power 5518 4934 4297 9403 7479
time 17h14m51s 1d05h56m12s 1d09h56m22s 3d20h50m46s 1d16h01m13s

CASLock

unique 473 449 488 410 479
area 2359 3112 4173 7739 5337
delay 513 874 650 2146 676
power 5170 3304 3852 10693 6765
time 15h29m56s 1d11h02m52s 1d06h52m54s 4d03h12m29s 1d16h06m52s

SFLL

unique 468 484 477 523 504
area 2817 3444 4326 7646 5340
delay 481 870 697 2144 604
power 6189 6337 9053 12115 11320
time 13h13m23s 1d47m51s 21h57m07s 2d22h15m07s 22h40m29s

SKG-Lock

unique 521 541 507 527 521
area 2673 2773 4646 6293 4774
delay 936 986 782 2093 874
power 3881 3831 8160 7201 7822
time 22h22m01s 1d08h8m27s 1d03h56m15s 2d14h29m32s 1d04h19m

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 A
re

a

Number of netlists

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 D
el

ay

Number of netlists

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 P
ow

er

Number of netlists

(a) (b) (c)
Fig. 4. Normalized complexity of resynthesized netlists of the c2670 circuit locked by SFLL: (a) area; (b) delay; (c) power.

table, cdk and dk stand respectively for the number of correctly
deciphered key bits and the total number of deciphered key
bits and time is the total time required for the attack. The
attacks were also run on the same server used to resynthesize
the locked netlists.

Observe from Table III that the SCOPE attack is not entirely
successful on any of the original locked netlists. However, the
use of resynthesized netlists enables us to decipher the values
of a large number of key bits, and even the whole key, e.g.,
for the c2670 and c3540 circuits locked by SKG-Lock. Note
that the SCOPE attack can decipher almost all of the key bits
using the resynthesized netlists locked by SKG-Lock. While
the results on the netlists locked by SKG-Lock are all correct,
the ones on the netlists locked by Anti-SAT, CASLock, and
SFLL are slightly better than a random guess. The run-time
of the SCOPE attack and our resynthesis-based attack depends
mainly on the number of gates and keys in the locked design.

To find the SAT resiliency of resynthesized locked circuits,
the SAT-based attack of [10] was run on 541 netlists of the
c3540 circuit locked by SKG-Lock with a time limit of 2
days. This circuit was chosen since it has the smallest number
of key bits. Note that the SAT-based attack was not able to
find the secret key of any resynthesized locked netlists. This

experiment indicates that the resynthesis changes only the
structure of the circuit as shown in Fig. 5, but maintains its
SAT resiliency.

3) Redundant Synthesis Runs: Observe from Tables II
and III that the total run-time of the proposed attack is
dominated by the resynthesis process. However, it is possible
to reduce the time required to resynthesize the locked netlist
by removing redundant synthesis runs without sacrificing any
unique netlists. For example, it is observed that the high
value of the syn_gen parameter given in Section III-A can be
removed from the parameter list, since all possible synthesis
scripts including this parameter generate the same circuit
when this parameter is low or medium. Thus, the number of
generated circuits, i.e., 1080, reduces to 720.

4) Convergence on the Number of Deciphered Keys: It
is also observed that the number of key bits deciphered
by the SCOPE attack on all unique resynthesized netlists
can actually be obtained using a small number of netlists.
Fig. 6 presents the number of deciphered key bits along the
unique resynthesized netlists of the c2670 circuit locked by
SKG-Lock. Observe from this figure that although a large
number of unique netlists increases the quality of the SCOPE
attack, actually a small number of unique netlists, 147 in this

(a) (b)
Fig. 5. Graphs of resynthesized netlists generated using a difference in the delay constraint dc: (a) dc is 990 ps; (b) dc is 496 ps.

TABLE III
RESULTS OF OL ATTACKS ON THE LOCKED ISCAS’85 CIRCUITS.

Circuit
Anti-SAT CASLock SFLL SKG-Lock

SCOPE Resynthesis SCOPE Resynthesis SCOPE Resynthesis SCOPE Resynthesis
cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time

c2670 0/0 4s 37/64 34m18s 0/0 4s 35/64 33m47s 0/0 4s 34/64 37m32s 32/32 4s 64/64 44m37s
c3540 0/0 3s 17/32 21m27s 0/0 3s 17/32 18m12s 0/0 2s 19/32 21m29s 17/17 2s 32/32 24m30s
c5315 0/0 5s 38/64 42m34s 0/0 5s 30/64 43m54s 0/0 5s 33/64 46m23s 32/32 5s 62/62 52m06s
c6288 0/0 3s 18/32 29m08s 0/0 3s 16/32 27m18s 0/0 3s 16/31 33m19s 16/16 3s 31/31 34m24s
c7552 0/0 6s 38/64 45m31s 0/0 6s 47/64 49m13s 0/0 6s 38/63 52m26s 32/32 6s 61/61 56m45s

 30

 35

 40

 45

 50

 55

 60

 65

 0 100 200 300 400 500

N
um

be
r

of
 d

ec
ip

he
re

d
ke

ys

Number of netlists

Fig. 6. Convergence on the number of deciphered keys over the number of
resynthesized netlists in the SCOPE attack.

case, is sufficient to achieve the same result as when all 521
unique netlists are considered. We note that a similar situation
was also observed on circuits locked by other techniques.

5) Promising Resynthesized Netlists: Moreover, it is ob-
served that the SCOPE attack is more successful on specific
resynthesized netlists. To find a set of synthesis parameters
that enables the SCOPE attack to decipher more key values,
we initially define two categories of netlists based on the slack
time of the design, i.e., the difference between the required
and arrived time in the critical path, as follows: i) netlists
with a slack value less than or equal to 0; ii) netlists with a
slack value greater than 0. The slack value of a design gives
indeed a rough idea of the effort put in by the synthesis tool;
for the netlists in the first category, the synthesis tool works
extremely hard to meet the delay constraint, trying many logic
transformations and optimization techniques.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

c2670 c3540 c5315 c6288 c7552

N
um

be
r

of
 n

et
lis

ts

Circuit

slack ≤ 0
slack > 0

Fig. 7. Classification of resynthesized netlists based on their slack values on
promising solutions of SCOPE attack.

Then, the solutions of the SCOPE attack on all possible
1080 netlists are obtained and sorted based on the number of
deciphered key bits in descending order. The top 10% of these
sorted netlists are categorized based on their slack values.

Fig. 7 presents the results of this experiment on the circuits
locked by SKG-Lock. Observe that the netlists that enable the
SCOPE attack to decipher more key values generally have a
slack value less than or equal to 0. Thus, to generate such
circuits, one can easily add strict delay constraints or key
constraints as described in Section III-A. We note that a similar
result was also observed on resynthesized netlists locked by
other techniques.

6) Structural Analysis: In order to improve the performance
of the resynthesis process, the logic cone, which is the locking
technique is applied on, can be extracted and resynthesized.
Note that the output of this logic cone is a single primary

TABLE IV
RESULTS OF THE RESYNTHESIS PROCESS AND OL RESYNTHESIS-BASED

ATTACK ON ENTIRE CIRCUIT AND LOGIC CONE.

Circuit Entire Circuit Logic Cone
unique time cdk/dk unique time cdk/dk

c2670 468 13h13m23s 34/64 319 7h46m26s 34/64
c3540 484 1d47m51s 19/32 320 6h29m35s 16/32
c5315 477 21h57m14s 33/64 313 7h6m16s 32/64
c6288 523 2d22h15m7s 16/31 302 6h20m57s 19/32
c7552 504 22h40m29s 38/63 279 6h57m14s 38/63

TABLE V
DETAILS OF THE LOCKED CSAW’19 CIRCUITS.

Circuit Details Number of key bits
#in #out #gates RLL SFLL-rem Total

small 522 512 15995 40 40 80
medium 767 757 24008 60 60 120
large 1452 1445 36584 80 80 160
bonus 892 1746 23004 128 128 256

output, while its inputs are primary inputs, but not necessarily
all the primary inputs of the locked design. Thus, the run-
time of the resynthesis process can be decreased, since the
logic cone has a small number of inputs, outputs, and gates
when compared to the whole locked circuit.

Table IV presents details on the resynthesis process on entire
locked circuits and logic cones when the circuits locked by
SFLL are used. Observe that the resynthesis process on a
logic cone generates less number of unique designs and takes
significantly less time without a significant loss on the solution
quality when compared to the resynthesis process on the entire
circuit. We note that similar results were also observed on
circuits locked by other techniques.

B. Results on the CSAW’19 Circuits

As the second experiment set, we used the state-of-the-
art locked circuits from the CSAW’19 contest [24]. Details
of these circuits are given in Table V. Note that two logic
locking techniques – RLL [9] and SFLL-rem [13] – are applied
together to lock a circuit.

In the following two subsections, we present the results of
the resynthesis process and the resynthesis-based attack.

1) Resynthesis of the Locked CSAW’19 Circuits: Table VI
presents the resynthesis results of locked circuits. Observe that
the number of unique resynthesized netlists is larger than half
of the total number of generated netlists, i.e., 540. As the
hardware complexity of designs increases, the run-time of the
resynthesis process increases. We note that diverse netlists in
terms of complexity are obtained, e.g., the standard deviation
on area, delay, and power dissipation values of all the locked
netlists of the small circuit are computed as 8526, 1029, and
20074, respectively.

2) Attacks on the Locked CSAW’19 Circuits: Table VII
presents results of the attacks obtained, after they are applied
to the original locked netlist, denoted as OLN, and all unique
resynthesized netlists, denoted as URNs. In this table, prv
stands for the number of proven values of key bits. Note that
since the secret key is not publicly available, the cdk values
are omitted for the SCOPE and resynthesis-based attacks.

TABLE VI
RESULTS OF RESYNTHESIZED LOCKED CSAW’19 CIRCUITS.

Circuit unique area delay power time
small 557 18935 1631 23571 5d3h22m28s
medium 569 26080 1745 31284 6d12h24m16s
large 567 31348 1798 24610 5d21h42m10s
bonus 560 20643 1758 19090 4d14h44m29s

TABLE VII
RESULTS OF ATTACKS ON THE LOCKED CSAW’19 CIRCUITS.

Circuit-Netlist SCOPE Query Resynthesis
dk time prv time dk time

small - OLN 19 20s 39 1m21s 40 1m41s
small - URNs 77 4h10m42s 40 1d10h4m37s 79 1d14h15m19s
medium - OLN 32 41s 58 6m37s 59 7m18s
medium - URNs 117 8h33m56s 58 3d19h12m13s 120 4d3h46m9s
large - OLN 30 1m7s 79 6m19s 79 7m26s
large - URNs 15212h56m15s 80 3d2h52m11s 159 3d15h48m26s
bonus - OLN 64 1m46s 118 3m2s 120 4m48s
bonus - URNs 233 16h7m17s 125 1d20h29m22s 252 2d12h36m39s

Observe from Table VII that the original SCOPE attack
could only decipher a small number of key bits, all of which
belong to RLL, and the query attack can prove the values of a
large number of key bits, all of which again belong to RLL, on
the original locked circuits. Thus, the resynthesis-based attack
could only decipher the RLL key bits on the original locked
circuits. However, the use of resynthesized circuits makes the
SCOPE attack decipher more key bits that also belong to
SFLL-rem and makes the query attack prove the values of
more key bits that belong to RLL. Thus, the resynthesis-based
attack could decipher almost all the values of the secret key,
proving almost all the values of the key bits of RLL. Note that
all the unknown key bits belong to SFLL-rem. Observe that
the run-time of attacks increases, as the number of gates and
key bits increases.

After the values of key bits of the CSAW’19 circuits were
determined, they were sent to the contest organizers for eval-
uation. Table VIII presents the results of the resynthesis-based
attack along with those of other techniques which participated
in the contest.

Observe from Table VIII that our proposed attack can
determine all the key bits of RLL correctly, even though there
are unproven key bits in the medium and bonus circuits as
shown in Table VII. This observation implies that the guesses
of the SCOPE attack on those key bits are actually correct.
Moreover, the proposed technique can decipher the key bits
of SFLL-rem with a number of deciphered key bits greater
than any other OL technique with high accuracy.

V. CONCLUSIONS

This work has shown that EDA tools can be used to generate
variants of locked circuits that may be vulnerable to existing
logic locking attacks and such circuits can be generated using
a specific set of synthesis parameters. It was shown that the
run-time of the proposed technique can be improved using
a small number of resynthesized netlists without diminishing
its solution quality. Experimental results clearly indicated that
the use of many resynthesized circuits enables existing attacks
to decipher values of a large number of key bits with high

TABLE VIII
RESULTS OF ATTACKS ON THE LOCKED CSAW’19 CIRCUITS.

Approach Attack Scenario
Circuit

small (40+40) medium (60+60) large (80+80) bonus (128+128)
RLL SFLL-rem RLL SFLL-rem RLL SFLL-rem RLL SFLL-rem

Key sensitization [33] OG 40/40 — 60/60 — 80/80 — — —
Hamming distance-based attack [24] OG 30/30 — 50/50 — 72/72 — — —
Automated analysis + SAT [24] OG 11/18 — 31/50 — 10/34 — — —
Sub-circuit SAT [24] OG 17/17 — 29/29 — — — — —
Redundancy-based [27] OL 28/28 4/12 35/35 23/28 45/45 0/51 66/66 8/27
Bit-flipping attack [34] OG 40/40 — 60/60 — 80/80 — — —
Topology guided attack [28] OL 15/32 — 19/50 — 36/73 — 75/108 —
Resynthesis-based attack OG 40/40 20/39 60/60 29/60 80/80 35/79 128/128 55/124

accuracy. Hence, the resynthesis of a locked circuit can be
utilized as a pre-attack step for many existing attacks in order
to improve their success rate. As future work, we plan to
consider other synthesis parameters, such as fanout, capaci-
tance limits, and wire loads, which enable synthesis tools to
generate different circuits. Also, we aim to incorporate other
commercial and open source EDA tools into the resynthesis
process to generate different unique netlists.

ACKNOWLEDGMENT

The authors thank Nimisha Limaye for evaluating the keys
found by the proposed technique on the CSAW’19 bench-
marks.

REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[2] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Watermarking
Techniques for Intellectual Property Protection,” in DAC, 1998, pp. 776–
781.

[3] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote Activation of
ICs for Piracy Prevention and Digital Right Management,” in ICCAD,
2007, pp. 674–677.

[4] F. Koushanfar, “Provably Secure Active IC Metering Techniques for
Piracy Avoidance and Digital Rights Management,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 1, pp. 51–63, 2012.

[5] S. Dupuis and M.-L. Flottes, “Logic Locking: A Survey of Proposed
Methods and Evaluation Metrics,” J. Electron. Test., vol. 35, no. 3, pp.
273–291, 2019.

[6] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-Secure Logic Locking: From Theory To Prac-
tice,” in ACM CCS, 2017, pp. 1601–1618.

[7] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Threats on
Logic Locking: A Decade Later,” in GLVLSI, 2019, pp. 471–476.

[8] A. Alaql, M. M. Rahman, and S. Bhunia, “SCOPE: Synthesis-Based
Constant Propagation Attack on Logic Locking,” IEEE TVLSI, vol. 29,
no. 8, pp. 1529–1542, 2021.

[9] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” in DATE, 2008, pp. 1069–1074.

[10] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic
Encryption Algorithms,” in HOST, 2015, pp. 137–143.

[11] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack on Logic
Locking,” IEEE TCAD, vol. 38, no. 2, pp. 199–207, 2019.

[12] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-Lock: A
Security-Corruptibility Trade-off Resilient Logic Locking Scheme,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2020, no. 1, pp. 175–202, 2019.

[13] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly Stripping Functionality for Logic Locking: A Fault-Based Per-
spective,” IEEE TCAD, vol. 39, no. 12, pp. 4439–4452, 2020.

[14] Q.-L. Nguyen, M.-L. Flottes, S. Dupuis, and B. Rouzeyre, “On Prevent-
ing SAT Attack with Decoy Key-Inputs,” in ISVLSI, 2021, pp. 114–119.

[15] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT Attack Resistant Logic Locking,” in HOST, 2016, pp. 236–241.

[16] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel Bypass
Attack and BDD-based Tradeoff Analysis Against All Known Logic
Locking Attacks,” in Cryptographic Hardware and Embedded Systems,
2017, pp. 189–210.

[17] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
Attacks on Logic Locking and Camouflaging Techniques,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 8, no. 2, pp. 517–532,
2020.

[18] A. Sengupta, N. Limaye, and O. Sinanoglu, “Breaking CAS-Lock and
Its Variants by Exploiting Structural Traces,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2021, no. 3, p.
418–440, 2021.

[19] D. Sirone and P. Subramanyan, “Functional Analysis Attacks on Logic
Locking,” in DATE, 2019, pp. 936–939.

[20] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality Logic
Locking With Hamming Distance-Based Restore Unit (SFLL-hd) –
Unlocked,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 10, pp. 2778–2786, 2019.

[21] Z. Han, M. Yasin, and J. Rajendran, “Does Logic Locking Work with
EDA Tools?” in USENIX Security Symposium, 2021, pp. 1055–1072.

[22] N. Limaye, S. Patnaik, and O. Sinanoglu, “Valkyrie: Vulnerability
Assessment Tool and Attack for Provably-Secure Logic Locking Tech-
niques,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 744–759, 2022.

[23] Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, and A. Srivastava, “Strong
Anti-SAT: Secure and Effective Logic Locking,” in ISQED, 2020, pp.
199–205.

[24] B. Tan et al., “Benchmarking at the Frontier of Hardware
Security: Lessons from Logic Locking,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.06806

[25] M. John, A. Hoda, R. Chouksey, and C. Karfa, “SAT Based Partial
Attack on Compound Logic Locking,” in Asian Hardware Oriented
Security and Trust Symposium, 2020, pp. 1–6.

[26] N. Limaye, S. Patnaik, and O. Sinanoglu, “Fa-SAT: Fault-aided SAT-
based Attack on Compound Logic Locking Techniques,” in DATE, 2021,
pp. 1166–1171.

[27] L. Li and A. Orailoglu, “Piercing Logic Locking Keys through Redun-
dancy Identification,” in DATE, 2019, pp. 540–545.

[28] Y. Zhang, P. Cui, Z. Zhou, and U. Guin, “TGA: An Oracle-Less and
Topology-Guided Attack on Logic Locking,” in ASHES, 2019, p. 75–83.

[29] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for
Combinational Circuits,” Department of Electrical Engineering, Virginia
Polytechnic Institute and State University, Tech. Rep. 12-93, 1993.

[30] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[31] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Targeted Translator in FORTRAN,” in ISCAS,
1985, pp. 663–698.

[32] K. Shamsi, “Netlist Encryption and Obfuscation Suite,” 2021. [Online].
Available: https://bitbucket.org/kavehshm/neos/src/master/

[33] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” in DAC, 2012, pp. 83–89.

[34] Y. Shen, A. Rezaei, and H. Zhou, “SAT-based Bit-Flipping Attack on
Logic Encryptions,” in DATE, 2018, pp. 629–632.

Appendix C

[III]
F. Almeida, L. Aksoy, and S. Pagliarini, “RESAA: A Removal and Structural
Analysis Attack Against Compound Logic Locking,” in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2025. Accepted for
publication.

81

RESAA: A Removal and Structural Analysis Attack
Against Compound Logic Locking

Felipe Almeida1, Levent Aksoy1 and Samuel Pagliarini1 2

1Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia
2ECE Department, Carnegie Mellon University, Pittsburgh - PA, USA
Email: 1{felipe.almeida, levent.aksoy, samuel.pagliarini}@taltech.ee

Email: 2pagliarini@cmu.edu

Abstract—The semiconductor industry’s paradigm shift to-
wards fabless integrated circuit (IC) manufacturing has intro-
duced security threats, including piracy, counterfeiting, hardware
Trojans, and overproduction. In response to these challenges,
various countermeasures, including logic locking (LL), have
been proposed to protect designs and mitigate security risks.
LL is likely the most researched form of intellectual property
protection for ICs. A significant advance has been made with
the introduction of compound logic locking (CLL), where more
than one LL technique is concurrently utilized for improved
resiliency against attacks. However, the vulnerabilities of LL
techniques, particularly CLL, need to be explored further. This
paper presents a novel framework, RESAA, developed to classify
designs locked by CLL, identify critical gates, and execute various
attacks to uncover secret keys. RESAA is agnostic to specific LL
techniques, offering comprehensive insights into CLL’s security
scenarios. Experimental results demonstrate RESAA’s efficacy in
identifying critical gates, distinguishing segments corresponding
to different LL techniques, and determining associated keys
based on different threat models. In particular, for the oracle-
less threat model, RESAA can achieve up to 92.6% accuracy
on a relatively complex ITC’99 benchmark circuit. The results
reported in this paper emphasize the significance of evaluation
and thoughtful selection of LL techniques, as all studied CLL
variants demonstrated vulnerability to our framework. RESAA
is also open-sourced for the community at large.

Index Terms—Compound logic locking, oracle-less attacks,
oracle-guided attacks, electronic design automation.

I. INTRODUCTION

The evolution of the semiconductor industry and the migra-
tion to a fabless integrated circuit (IC) ecosystem has been
revolutionary [1]. Outsourcing IC fabrication to third-party
foundries and incorporating third-party intellectual properties
(IPs) has significantly transformed the security dynamics in
chip design. This shift has brought forth a spectrum of security
threats, such as IC counterfeiting, IP piracy, IC overproduc-
tion, and the insertion of hardware Trojans. All these threats
undermine the integrity of the IC supply chain [2].

Counterfeiting leads to the unauthorized replication of ICs,
which can be associated with a loss in both quality and
reliability [3]. Piracy involves the illicit use of IP fueling the
production of counterfeit ICs [2]. Overproduction increases the
proliferation of counterfeit products by manufacturing beyond
authorized quantities [4]. Hardware Trojans are pieces of ma-
licious logic inserted into a design, potentially compromising
its functionality and/or reliability [5].

a
b

a
c
k0
b
d

k1

a
b

a
c

b
d

output
output

(a) (b)

Fig. 1: (a) Original circuit; (b) Locked circuit where the secret
key is k0k1 = 10.

As chip design and fabrication grow increasingly complex,
maintaining the integrity of ICs and their IPs has emerged as a
preeminent concern. In response to these emerging threats, re-
searchers have proposed diverse countermeasures, such as split
manufacturing, hardware metering, watermarking, and logic
locking (LL). In split manufacturing design, the metal stack is
divided across different foundries to mitigate security risks [6].
Hardware metering involves real-time monitoring of resource
usage within IC against piracy using mechanisms designed
to track and regulate the allocation of hardware resources,
ensuring efficient utilization while maintaining security [7].
Watermarking embeds signatures into designs, without altering
functionality, to detect IP theft and misuse [8]. LL stands out as
likely the most researched technique; however, it offers only
potential protection against several security threats [9]–[13].
The principle behind LL is the insertion of additional logic
driven by key bits, such that the locked circuit behaves like
the original circuit only when the secret key is provided, as
shown in Fig. 1.

Over nearly two decades, researchers have strived to im-
prove LL techniques by developing strategies that promote
output corruption, deliver resilience against attacks, and re-
duce associated overheads [14]. Specific LL methodologies,
like random logic locking (RLL), have been fine-tuned to
simultaneously reduce area overhead and increase output cor-
ruption. Fig. 1 shows an example of RLL, which involves the
insertion of additional gates controlled by key inputs, ensuring
proper functionality solely when the secret key is applied [9].
However, its security has been compromised, primarily by
attacks under the oracle-guided (OG) threat model [15]. The
most prominent of these attacks is known as the SAT-based
attack [15].

To counter the SAT attack, SAT-resilient techniques have

Original Circuit

Locking Unit

inputs

key bits

output
X

(a)

Original Circuit

Restore Unit

inputs

key bits

outputPertub Unit

Stripped Circuit

X

X

(c)

RLL Locked
Circuit

Locking Unit

inputs

key bits

output
X

(b)

RLL Locked
Circuit

Restore Unit

inputs

key bits

outputPertub Unit

Stripped Circuit

X
X

(d) X Critical Point

X

Fig. 2: High-level architecture of (a) SFLT (b) RLL + SFLT
(c) DFLT, and (d) RLL + DFLT in a CLL scheme. The critical
signals are indicated by “X” in red.

been developed under the name of provably secure logic lock-
ing (PSLL) [16]. A single-flip locking technique (SFLT) [10],
[17], [18] incorporates a point function that introduces an
additional block (locking unit), activated by key bits, to secure
a specific output of the IC as shown in Fig. 2(a). Conversely,
a double-flip locking technique (DFLT) [19], [20] employs a
point function but enhances security by inserting a perturb unit
and a restore unit, followed by output correction, as shown in
Fig. 2(c). Although these techniques aim to bolster resilience
against SAT specifically, they remain vulnerable to various
attacks, under both OG and oracle-less (OL) threat models.
Additionally, certain variants may be susceptible to removal
and structural analysis attacks [21], [22].

Approaches to address the perceived weakness of LL tech-
niques have taken many forms, including the deliberate inser-
tion of cyclic logic [23], the use of emerging materials [24],
and look-up table based obfuscation [25], [26]. A hybrid
approach has emerged, too, termed compound logic locking
(CLL), which combines high-output corruptibility and SAT-
resilient LL techniques to address vulnerabilities that are
present in obfuscated circuits when either technique is utilized
alone [27], [28]. As a general trend, there is limited knowledge
about attacks that are CLL-aware. In [27], authors have
explored the combined use of SAT-based and structural attacks
against CLL. It is worth noting that current CLL research is
limited to a single combination of techniques, which highlights
the need for a more comprehensive exploration.

A. Scope of this work

This work explores attacks on CLL, an advanced IP protec-
tion approach characterized by a multi-layered application of
existing LL techniques. We examine the effects of combining
two LL techniques to enhance the security of digital circuits.
In this scenario, we first lock the original circuit using RLL
and then, apply a PSLL technique. Although CLL is generally
described as a more resilient approach, our study reveals that
it may not necessarily mitigate known vulnerabilities. Instead,
CLL could perpetuate or even worsen weaknesses inherent to
the individual LL techniques. In some cases, combining SAT-
resilient techniques with traditional LL has still left designs
vulnerable to removal attacks, where attackers can bypass the

locking mechanisms without finding the secret key. We aim to
clarify how, in specific scenarios, CLL may fail to address
these vulnerabilities, potentially fully exposing the original
circuit.

We put forward RESAA, a comprehensive framework for:
(i) identifying critical gates (CGs), (ii) classifying locked
designs based on LL techniques, (iii) partitioning the design
to apply well-established attacks, and (iv) potentially finding
the secret key using prominent LL techniques. Our investiga-
tions reveal potential security vulnerabilities inherent in CLL
compared to using a singular LL technique. These findings
emphasize the intricate complexities and associated pitfalls
of CLL strategies, highlighting the importance of thorough
evaluation and careful use of LL techniques.

In contrast to previous studies [27], [28], our methodology
takes a practical approach by relying solely on commercial
synthesis tools1. In other words, RESAA is a framework for
security analysis that can be readily used in existing design
flows. Furthermore, all the circuits we study in this work
are mapped to a commercial cell library for the sake of
realism. This industry-minded approach to our CLL analysis
provides insights that are directly applicable to real-world
situations, ensuring that our findings address the challenges
and limitations encountered by design houses attempting to
protect their commercial IP.

B. Contributions

1) We present the RESAA framework, which identifies
CGs in CLL designs and differentiates between RLL
and PSLL techniques.

2) RESAA effectively divides designs into two parts, en-
abling the use of OL and OG attacks to uncover the
secret key, exposing vulnerabilities in multiple CLL
techniques.

3) RESAA is integrated within an industry-grade logic
synthesis tool to ensure a realistic setting.

4) We open source scripts and strategies utilized in RE-
SAA2

5) We expose the keys for large CLL-locked combinational
circuits, even under the difficult OL setting, with a high
accuracy.

It is also important to emphasize that our approach does
not assume that the adversary is aware of the combination of
techniques that make up the chosen CLL scheme. Instead, we
analyze and classify netlists in order to automatically identify
the SFLT/DFLT technique being employed. This aspect sig-
nificantly distinguishes our work from existing methodologies
that rely on assumptions.

The subsequent sections of this paper are structured as fol-
lows: Section II elaborates more on the foundational concepts
surrounding (C)LL. The RESAA framework is described in
full detail in Section III. Our experimental results are thor-

1Without loss of generality, our methodology can be easily adapted to open-
source logic synthesis tools.

2See https://github.com/Centre-for-Hardware-Security/CLL_attack

Specification Behavioral
Design

Logic
Synthesis

Logic
Locking

Locked
Netlist

Physical
Synthesis Layout Fabrication Test &

Packaging
Locked

IC
Key

Activation
Functional

IC

Untrusted Entity Trusted Entity Untrusted EntityTrusted Entity

Fig. 3: Conventional logic locking in the IC design flow (adapted from [16]).

oughly covered in Section IV. Finally, Section V summarizes
our findings.

II. BACKGROUND AND RELATED WORK

This section presents details on LL, the OG and OL threat
models, and existing defenses and attacks, indicating the
never-ending cat-and-mouse game.

A. Logic Locking and Threat Models

Fig. 3 presents the conventional IC design flow augmented
by using LL. The locking process is a security measure
typically implemented at the gate level. LL aims to encode
the circuit’s functionality using key inputs, ensuring that
unauthorized parties cannot access or replicate the design’s
core functionality without the corresponding secret key. No-
tably, implementing LL allows the design house to protect
its proprietary information while engaging with third-party
foundries for manufacturing. Once the locked IC design is
finalized, the layout is sent to the foundry for fabrication.
Upon completion of manufacturing, the values of the secret
key are securely stored within a memory that is designed
to resist unauthorized access and tampering attempts. Sub-
sequently, once the functional ICs are prepared for market
distribution, the locked design and its associated secret keys
remain securely protected within the confines of the design
house, thereby mitigating the risks associated with IP piracy
and unauthorized overproduction.

LL is a countermeasure extensively researched to protect
IP against several threats in the semiconductor industry. This
technique involves strategically inserting extra logic gates into
the design [9]–[13]. These added gates operate under the
control of key inputs, ensuring that the locked design behaves
the same as the original one if the secret key is applied.
Otherwise, it generates a wrong (corrupted) output. LL has
displayed both effectiveness and vulnerability against various
attack methodologies, prompting the development of dozens
of variants of the technique [14], [29].

Threat models play a critical role in identifying potential
adversaries and their capabilities, which are essential for se-
curing hardware designs against attacks. The existing literature
considers two distinct threat models: the OG and OL threat
models. Under both threat models, the adversary is assumed to
have the locked netlist. Moreover, under the OG threat model,
the adversary has a functional IC, which is used as an oracle
to apply inputs and observe outputs.

In this work, we exercise adversarial capabilities in both
OG and OL threat models. We assume that an adversary with
access to a modern logic synthesis tool. We also assume the
adversary can trivially differentiate key inputs from primary

TABLE I: SA, KA, and OA attacks.
Attack SA KA OA
SAT-based [15] ✓ × ×
AppSAT [30] ✓ × ×
Double DIP [32] ✓ × ×
Fa-SAT [28] ✓ × ×
Valkyrie [35] ✓ ✓ ×
This Work (RESAA) ✓ ✓ ✓

inputs3. However, the adversary does not know a priori which
key input corresponds to which LL technique in CLL. Finally,
we assume that the adversary is familiar with existing attacks
and can apply them freely, including the following attacks:
SAT-based [15], AppSAT [30], SCOPE [31], DoubleDIP [32],
and query-based [33] methods. The attack itself can be carried
out on a standard configuration laptop or desktop, with no need
for specialized computational resources or servers. Addition-
ally, the adversary is assumed to have access to logic synthesis
tools and standard cell libraries if resynthesis is sought4.

Furthermore, a more nuanced approach to determining
adversarial knowledge is the classification of specific adver-
saries (SA), knowledgeable adversaries (KA), and oblivious
adversaries (OA). As the names imply, there are varying
levels of awareness regarding the LL techniques employed.
Table I compares various tools/attacks for exploring vulnerable
LL designs. The first tools were developed for specific LL
techniques, with the adversary designing the attack exclusively
for those techniques (therefore classified as SA). For example,
SAT-based attack [15] and AppSAT [30] were initially aimed
at RLL, while Double DIP specifically targeted SARLock de-
signs. However, these attacks have been adapted and can now
be applied to a broader range of LL techniques. Fa-SAT [28]
was one of the first studies to explore CLL attacks, but only
for a few specific combinations of LL techniques, such as
bilateral logic encryption (BLE) [34] and Anti-SAT coupled
with RLL. In contrast, Valkyrie [35] proposed a framework to
attack fifteen LL techniques, which yielded satisfactory results,
but the adversary knew the techniques employed in advance
(therefore classified as a KA tool). Our study explores a more
generic tool capable of achieving remarkable results without
a priori knowledge about the CLL techniques employed
(therefore, RESAA is classified as OA). This setting often has
been employed in logic locking competitions.

B. Defenses

The first attempts at obfuscating a design were of the RLL
form, an attempt to improve security using XOR/XNOR gates
driven by key inputs and internal signals [9]. RLL can easily

3This is considered possible by tracing the key inputs back to the tamper-
proof memory.

4This assumption is reasonable if the adversary is located at the foundry.

achieve high output corruption if enough key gates are in-
serted. Researchers have then modified the original RLL tech-
nique to strengthen its resilience against various attacks. For
example, fault analysis-based methods [36] focus on analyzing
the susceptibility of the locked circuit to fault attacks, and
strong-interference-based LL approaches [37] are designed to
create interference that is strong enough to confuse or mislead
an attacker attempt, ensuring that adversaries cannot easily
determine the correct keys by creating complex dependen-
cies between them. However, the emergence of SAT attacks,
which iteratively find distinguishing input patterns (DIPs) that
rule out wrong keys, has highlighted vulnerabilities in these
methods [15]. A DIP is an input combination that produces
different outputs for two distinct key values. Consequently, a
DIP provides an unequivocally incorrect key value that can
be eliminated. This has led to the exploration of many other
alternative LL techniques.

Figs. 2(a) and 2(c) show how the SAT-resilient LL tech-
niques are divided into two main categories: SFLT and DFLT,
respectively. SFLT uses a single critical signal which corrupts
the original circuit. SFLT techniques use a point function
in their locking unit, thus forcing a SAT-based attack to
explore an exponential number of DIPs. The use of a point
function makes key recovery increasingly challenging as the
SAT problem size grows with each iteration [19]. However,
the characteristic of having only one critical signal can be
exploited for the potential recovery of the original design via
a removal attack aimed precisely at this crucial signal [38].
In contrast, DFLT techniques introduce an additional critical
signal in an attempt to be resilient against removal attacks.
DFLT combines a restore and a perturb unit to secure circuits.
While the perturb unit disrupts the correct operation on a single
input pattern, the restore unit ensures that the correct function-
ality is restored using the secret key. This dual-phase approach
enhances security and resists reverse engineering and SAT-
based attacks. Even if the restore unit is removed in a DFLT,
the original circuit design remains unrecoverable because of
the perturb unit, as shown in Fig. 2(c). Consequently, DFLT
provides enhanced protection by introducing an added layer
of security, thwarting unauthorized access, and preserving the
locked circuit’s integrity.

In the SFLT category, the Anti-SAT [17] method incorpo-
rates a locking unit that executes a complementary function.
This unit is structured around two distinct functions, denoted
as g and ḡ, which are ANDed to generate a single critical
signal. Subsequently, this critical signal is integrated with
the original design by an XOR gate that drives the output
of the original design. The Anti-SAT-DTL [39] approach
has a diversified tree logic (DTL), where some AND gates
in the AND-tree are replaced by OR/NAND/XOR gates. In
CASLock [18], the g block is constructed using cascaded
AND-OR gates, which serve as its distinctive feature. The
effectiveness of CASLock lies in its incorporation of OR
gates within the g and ḡ blocks. This design attribute enables
CASLock to effectively counter-bypass attacks by strategically
altering the placement and quantity of AND/OR gates within

the g and ḡ blocks. SARLock [10] introduces a comparator
and a masking circuit connected to the original netlist, causing
corruption on a specific input pattern.

DFLT techniques, such as stripped functionality logic lock-
ing (SFLL), strip some functionality from the original de-
sign, corrupting its output corresponding to protected input
patterns [16], [19]. SFLL includes a comparator as a restore
unit for particular input vectors, with the ability to utilize a
configurable hamming distance (HD) for protecting multiple
input vectors [16]. Note that tenacious and traceless logic
locking (TTLock) is equivalent to SFLL when HD is equal
to 0 [19].

Figs. 2(b) and 2(d) exemplify CLL which integrates multiple
LL techniques to enhance the security of ICs. Note that RLL
is always used as it delivers the important feature of (high)
output corruption. By combining RLL with other techniques,
CLL endeavors to leverage their respective strengths while
mitigating individual weaknesses. This integration strategy
aims to fortify security by exploiting the complementary
aspects of diverse LL techniques, selecting corruption levels
and SAT resilience tailored to optimize the desired trade-off
between security and corruptibility.

C. Attacks

LL has received much attention for being implementable at
the front-end stage (i.e., as direct modifications to a netlist)
without requiring layout modifications or foundry collabo-
ration (as is the case with split manufacturing). However,
its security has been challenged by various emerging attacks
that have repeatedly succeeded at exposing secret keys. OG
attacks involve comparing a locked design with an activated
device, using the activated circuit as an oracle. This allows an
adversary to examine the differences between the locked and
unlocked designs, enabling them to compare the outputs of the
original circuit with those of the locked circuit [15], [40]. The
most well-known OG attack, the SAT-based attack, iteratively
finds DIPs to break LL techniques [15], [40]. AppSAT [30]
reduces the time to breach LL by finding an approximate
solution instead of fully solving the SAT problem. At the
same time, Double DIP [32] enhances the SAT-based attack by
finding two DIPs in each iteration. Query attacks are another
type of SAT-based attack, where each query is applied to the
oracle, and the values of primary outputs are obtained [33].
Each query q corresponds to a distinct input or a set of inputs
furnished by the attacker to the oracle. Then, the query attack
finds the values of secret key based on these queries and proves
the value of each found secret key bit is the same as in the
original secret key using the concept of proof by contradiction.

In contrast, OL attacks focus on extracting sensitive in-
formation from a locked IC without direct access to an
oracle. Adversaries in OL attacks possess only the locked
design netlist. Techniques such as machine learning, constant
propagation analysis, and resynthesis-based approaches are
commonly employed in the OL setting to extract information
from the locked IC [31], [41], [42]. Note that, by definition,
OL is a much more difficult setting for the adversary than

RLL

Synthesis

CLL circuit Key classification

CG identification

Original circuit

SFLT or DFLT

CLL Netlist

R
ES

AA
Netlist partition

Attack

CLL secret key

Fig. 4: Overview of the RESAA framework: Pre-processing
step to lock using CLL and obtaining the mapped netlist (left)
and attack on the CLL netlist (right).

OG is. The SCOPE attack, which is a prime example of
an OL attack, compromises the locked design by leveraging
synthesis-based constant propagation. Unlike traditional SAT-
based attacks that need an oracle to compare circuits, SCOPE
analyzes and simplifies circuits during synthesis. SCOPE
identifies and propagates constant values through the circuit,
effectively reducing the complexity of the LL and ultimately
producing a guess of the correct key with a relatively high
degree of certainty.

Yet, both OG and OL attacks have shown effectiveness
against specific LL techniques [14]. We will consider both
of them when introducing our framework RESAA.

III. PROPOSED METHODOLOGY

This section describes our attack strategy explicitly aimed
at CLL-protected circuits. The scenario begins with locking
the original design, initially with an RLL technique and sub-
sequently with a PSLL technique, which can be either SFLT
or DFLT. The attacker – equipped with reverse engineering
capabilities to access the gate-level locked netlist mapped to
a commercial library, the functional IC, and EDA tools – then
utilizes RESAA under either the OG or OL scenarios.

We detail our practical classification analysis and the parti-
tioning of the CLL circuit into two distinct netlists facilitated
by CG identification. Each netlist includes all the necessary
inputs related to a particular LL technique. Our method
involves implementing the RESAA attack on these divided
netlists, effectively revealing the secret key.

A. Classification and Partition

Fig. 4 shows our pre-processing method in the left portion
of the RESAA framework, which converts original circuits
into locked CLL circuits (in bench format) and then mapping
them into gate-level netlists (in Verilog) using a commercial
logic synthesis tool. This step is crucial to make the CLL
circuits suitable for analysis during the CG identification and
key classification phase. The steps drawn in orange in Fig. 4
are, conceptually, executed by a defender. They are included

SFLT DFLT

Anti-SAT SARLock

CLL Netlist

Classification /
Partition

RLL Netlist PSLL Netlist

Fig. 5: Classification of techniques employed in a CLL netlist.

here for the sake of completeness. Then, RESAA performs
(re)synthesis on the locked design. When doing this, RESAA
utilizes a commercial synthesis tool. However, RESAA intro-
duces one additional constraint: only 2-input gates are allowed
during mapping, thus simplifying the work of RESAA as
CGs become easier to identify. Under this restriction, there
is always a critical gate where all keys from one technique
converge on one input while the other input links to keys from
the other technique.

As seen in Fig. 4, the CG acts as a common path for all
key inputs derived from the RLL and PSLL techniques. By
utilizing the internal graph representation provided by the EDA
tool, the process was scripted to analyze each key input and
group them based on the primary output (PO) they reach. We
identify the CG as the first gate where all paths from the key
inputs converge before reaching a PO. This gate is crucial for
classifying the LL techniques. One input of the CG is solely
associated with an RLL key, while the other is associated with
PSLL keys.

Our study has identified three distinct behaviors of the key
inputs leading to a PO. The first group, which is associated
with the use of RLL alone, shows no discernible patterns in the
number of reachable outputs. This is predictable, since RLL is
supposed to be random. The second group, related to the use
of PSLL, is recognized when all key inputs lead to the same
number of POs. The third group, a CLL circuit utilizing both
RLL and PSLL techniques, emerges when both behaviors are
present within a design.

The relationship between key inputs and POs reached by
them is a feature that is leveraged by RESAA to perform netlist
partition. Fig. 5 presents our classification methodology, where
RESAA initially partitions the design into two distinct netlists:
one containing exclusively RLL key inputs and the other
consisting of PSLL key inputs. The PSLL netlist is further
categorized into SFLT and DFLT techniques. Within the SFLT
category, further classification is performed to distinguish
between Anti-SAT-like techniques with a complementary func-
tion and SARLock-like techniques without a complementary

a
b

c

b
d

a

a

b

b

Critical
Gate

original + RLL

Anti-SAT

a
b

c

b
d

original + RLL

output

a

a

b

b
Anti-SAT

k0

k1

k2

k3

k4

k5

a

a

k0

k1

k2

k3

k4

k5

f

g f g

Fig. 6: A circuit locked with RLL and Anti-SAT. The CG identification and partition process by RESAA are highlighted.

function. It is important to ensure that the classification of key
inputs is accurate to apply a successful attack. The following
high-level steps outline the classification process:

• Step 1: Generate Key Input Graphs
Create a directed graph for each key input ki that shows
all paths from ki to the POs.

• Step 2: Identify Number of POs for Each Key
Determine how many POs each key input ki can reach
through the paths.

• Step 3: Group Key Inputs
Group key inputs together if they have the same number
of reachable POs, suggesting they belong to the same LL
technique.

• Step 4: Identify the CG
Find the first gate where all paths from the grouped key
inputs meet before reaching a PO. This gate is the CG.

• Step 5: Final Classification
Check the classification by analyzing the paths through
the CG. If a key is misclassified, move to the next
gate and try reclassifying. For instance, if an RLL key
was wrongly classified as a PSLL key because its paths
appeared in both inputs of the CG, the process moves to
the next gate. If no key paths match the new gate, the
key is correctly reclassified as RLL.

RESAA takes the advantage of the fact that a logic synthesis
tool already has, internally, a graph representation of the circuit
and its connections that is efficient and can be queried at
will. Therefore, Step 1, as previously outlined, requires no
effort. With additional scripting, all other steps can be executed
within the environment of the synthesis tool itself. This is a
key feature of RESAA and contributes to its scalability.

To summarize the inner workings of RESAA, Fig. 6 presents
an example of a circuit locked by RLL + Anti-SAT. In this ex-
ample, the CG consolidates all paths from RLL key inputs into
one input of the XNOR gate, while all paths from Anti-SAT
key inputs are connected to the other input. Following this,
RESAA removes this CG, resulting in the generation of two
netlists. A first netlist is created by eliminating the CG and
directly connecting the RLL partition to the design’s PO.

Similarly, the second netlist undergoes this process by taking
the other input of the CG and connecting it directly to the
PO, thereby creating a second netlist containing only the
locking/restore unit.

In a CLL-locked design, the identification of this CG serves
as an anchor for splitting the netlist and applying further
attacks. In other words, the presence of a CG that consolidates
all the various paths from RLL and from the PSLL is a
vulnerability. Identifying this critical node yields valuable
insights into the structural organization of the locked netlist,
enabling the systematic division of the design into two distinct
netlists. By identifying the CG, partitioning the netlist into
two, and employing appropriate attack(s), an adversary can
more easily uncover the secret key with respect to dealing
with the whole CLL-locked circuit.

As shown in the right portion of Fig. 4, with the keys now
accurately classified into RLL and PSLL categories and the
CLL netlist partitioned into two distinct segments, RESAA
can proceed to apply specific attacks. In scenarios, where
the PSLL netlist includes an SFLT, the tool divides the CLL
netlist, separating the original netlist with RLL keys and a
logic unit from the PSLL technique, as illustrated in Fig. 2(b).
Conversely, if the PSLL consists of a DFLT, RESAA separates
the stripped function along with the RLL portion, where the
stripped function includes an original circuit along with a
perturbation module, as shown in Fig. 2(c).

B. Attack Under the OG Threat Model

Fig. 7 shows how attacks under the OG threat model can
be applied. After classification/partition, we have the netlist
consisting of RLL + original/stripped and locking/restore unit.
Three attacks are used for this flow: the quantified boolean for-
mula (QBF)-based attack [22] is applied to the locking/restore
unit, the SAT-based attack [15] or the query attack [33] is
applied to the RLL + original/stripped netlist, where an oracle
is used to obtain input/output patterns.

We note that quantified Boolean formula (QBF) is the gen-
eralization of the SAT problem, in which both existential (∃)
and universal (∀) quantifiers can be applied to each variable.

Locked Netlist

Classification /
Partition

QBF SAT/Query attack

Locking/Restore
Unit

RLL +
original/stripped

PSLL secret key RLL secret key

CLL secret key

Oracle

Fig. 7: RESAA attacks under the OG threat model: Netlists
are highlighted in yellow, attacks are shown in blue, the oracle
is indicated in green, and the resulting secret keys are in red.

Thus, the QBF attack, which targets the locking/restore unit,
operates in two main steps. First, it constructs a QBF problem
by combining the conjunctive normal form (CNF) formulas
of individual gates. Secondly, it generates two distinct QBF
problems: one for when the output of the locking/restore unit
is equal to 0 and another for when this output is 1 for all
possible input combinations. Subsequently, a QBF solver is
employed to find the secret key on these problems. If a solution
exists for either of these QBF problems, it signifies that the
secret key of the partitioned circuit is found. It is important to
highlight that formulating two distinct QBF problems allows
for the evaluation of all possible output values. We note that
the QBF solver can easily find a solution on the locking unit of
an SFLT since it is designed to have a constant value under the
secret key for all input combinations [22]. Thus, when the QBF
attack identifies a solution, it confirms the presence of an SFLT
within the CLL. In this case, a SAT-based attack is applied
to the netlist containing the RLL + original configuration.
However, the query attack becomes necessary if the netlist
is composed of RLL + stripped. The stripped functionality
allows many incorrect keys to produce correct outputs for
many inputs, significantly hindering the SAT solver’s ability to
converge on the proper key. As a result, RESAA can identify
the PSLL secret key using the QBF attack and the RLL secret
key using the SAT-based attack, thus revealing the entire CLL
secret key. In cases, where the CLL is composed of RLL +
DFLT, QBF alone cannot identify the PSLL secret key, but
the query attack can identify the majority of RLL keys.

A combined strategy of SAT-based and query-based attacks
was implemented to enhance the effectiveness of RLL key
extraction. The process begins by converting the locked netlist,
consisting of the RLL + original/stripped configuration, into
CNF to facilitate SAT solver analysis. The SAT solver then
identifies DIPs that differentiate potential key values. These
DIPs are applied to a functional IC, serving as an oracle that

Locked Netlist

1 - Classification /
Partition

2 - QBF

Locking/Restore
Unit

RLL +
original/stripped

3 - SCOPE

Solution
Found?PSLL secret key

4 - SCOPE

PSLL secret key
guess

RLL secret key
guess

CLL secret key
guess

Y

N

Fig. 8: RESAA steps under the OL threat model: Netlists
are highlighted in yellow, attacks are shown in blue, and the
resulting secret keys are in red.

provides the correct output for each input. This correct output
is then used to refine the CNF formula, progressively elim-
inating incorrect key candidates. The SAT solver iteratively
performs this process until no further DIPs can be found,
ensuring that only the correct key values remain.

Subsequently, the flow transitions to a query-based attack
phase in cases where no PSLL secret key was found, which
uses QBF attack, where specific, strategically crafted queries
are directed at the oracle to extract additional insights about
the correct key. Each query is analyzed to deduce logical
inferences, further refining the CNF formula and pruning the
search space. Our combined approach systematically narrows
down the possible key values with increased efficiency and
precision by targeted queries. Integrating these two attack
methodologies ensures a comprehensive and robust evaluation
of the (C)LL scheme, ultimately enhancing the likelihood of
successful key recovery.

C. Attack Under the OL Threat Model

Figure 8 shows our attack under the OL threat model, which
shares its initial steps with the OG threat model and begins
with the same CLL netlist as an input. This is followed by a
partitioning and classification process that can be adjusted to
suit the specific needs of the task. The netlist, now classified
and partitioned in a manner identical to the OG model, is
subjected to the QBF attack on the locking/restore unit. If
this attack is successful, our tool returns the PSLL key,
reaffirming the previous classification as SFLT. In the event
of an unsuccessful QBF attack, then the OL SCOPE attack is
run on this netlist.

As can be observed from Fig. 8, the SCOPE attack is applied
to the locking/restore unit to guess the PSLL secret key if
the QBF attack fails to determine the PSLL secret key and
to the partition containing both RLL + original/stripped and
locking/restore unit to guess the RLL secret key. It is important
to note that the SCOPE solution may yield a logical value of
0, 1, or an undetermined value for a given key input.

To bolster our methodology’s reliability and ensure the
developed tool’s correctness, we introduced an additional step
involving a logic equivalence checking (LEC) tool, specifically
for internal verification. Therefore, this step is not shown in the
graphical representation of the attack flow given in Figures 7
and 8. This integration occurred at two crucial junctures within
our flow. First, following partitioning, we employed the LEC
tool to compare the RLL with the original design, particularly
in scenarios involving SFLT and the preceding netlist locked
solely with the RLL we generated. Secondly, after uncovering
the secret key for CLL, we utilized the LEC tool to ensure
the integrity of our process. This involved comparing the
modified CLL netlist, which includes the recovered secret key,
against the original netlist. The LEC tool checks for logical
equivalence between these two netlists, verifying that the CLL
netlist with the secret key produces the same outputs as the
original netlist for all possible inputs. We solely utilized this
step for verification purposes. An adversary does not possess
this capability since, by definition, the adversary does not
possess the original circuit.

IV. RESULTS

Our methodology utilizes a combination of Perl, Python,
and TCL scripts to interface with the commercial logic syn-
thesis tool Cadence Genus [43]. Synthesis is conducted using
a commercial 65 nm standard cell library. More details about
the logic synthesis process and settings can be found in our
open-sourced scripts. All experiments were performed on a
32-core Intel Xeon processor running at 3.60 GHz with a
RAM capacity of 1 TB. Yet, no attacks are multithreaded,
and the results presented here can be generalized to a personal
computer.

A. Experiments on Small-and Moderate-Size Circuits

Our first study involved the analysis of CLL circuits uti-
lizing a set of ten benchmarks: c2670, c3540, c5315, c6288,
and c7552 from the ISCAS’85 benchmark suite [44], along
with b14_C, b15_C, b20_C, b21_C, and b22_C from the
ITC’99 benchmark suite [45], which are the combinational
logic parts of the related sequential circuits. Table II presents
a comprehensive description of the benchmarks, including the
number of primary inputs (#in) and outputs (#out) alongside
pertinent metrics such as area (µm2), power consumption
(mW), and delay (ps) for each benchmark. It also presents
the area, power, and delay values after the benchmarks were
locked by the RLL technique using the Neos tool [46]. The
methodology for determining the number of RLL key inputs
(p) was guided by considering both the number of inputs
and the overhead associated with the LL technique. In this

TABLE II: Details of ISCAS’85 and ITC’99 circuits.

Circuit Original Netlist
p

RLL Locked Netlist
#in #out area power delay area power delay

c2670 157 64 1046 3.36 1264 64 1424 5.22 1742
c3540 50 22 1518 6.58 1977 32 1655 7.48 2091
c5315 178 123 2460 9.9 1864 64 2864 1.21 1982
c6288 32 32 3133 8.48 4621 32 3303 9.09 5160
c7552 206 105 2702 1.32 1663 64 3209 1.61 2015
b14_C 275 245 8326 3.59 4882 128 8872 4.34 4864
b15_C 485 449 12416 3.11 4809 128 12938 3.78 5188
b20_C 522 512 17210 8.95 5536 128 17731 9.93 5511
b21_C 522 512 17685 9.24 5075 128 18248 9.94 5061
b22_C 767 757 26416 1.33 5358 128 26941 1.39 5282

experiment, we used the same number of key inputs in the
RLL and PSLL techniques. For the ISCAS’85 circuits, p was
chosen as 32 or 64 since the number of key inputs in a PSLL
technique is limited to the number of primary inputs of the
original design. It was chosen as 128 for the ITC’99 circuits
since they are generally larger than ISCAS’85 circuits.

Analysis of the data presented in Table II reveals a consis-
tent trend across all benchmarks subjected to an RLL scheme.
There is a modest increase in area and power consumption,
averaging approximately 4.5%, alongside an average delay
increment of about 10.5%. This trend aligns with the char-
acteristics of the RLL technique (insertion of XOR/XNOR
gates), which minimally affects area and power consumption.
Nevertheless, incorporating additional logic gates along the
critical path contributes to a slight rise in delay.

After the RLL locking phase, the second locking technique
was introduced by utilizing one out of five distinct PSLL
techniques, namely Anti-SAT, Anti-SAT-DTL, CASLock, and
SARLock as SFLTs and TTLock as a DFLT. The implementa-
tion of Anti-SAT, Anti-SAT-DTL, and TTLock was facilitated
using the Neos tool [46]. Meanwhile, SARLock and CASLock
were implemented using a Python and Perl script developed
by P. Subramanyan and L. Aksoy, respectively.

Table III presents the total number of key inputs (k)
alongside associated metrics, including area, power, and delay
across all considered CLL benchmarks. The area exhibited an
average increase of 4.50% compared to the original version.
An average increase of 10% in the CLL of SFLT and around
11.6% when composed with DFLT. Notably, power consump-
tion remains relatively stable compared to benchmarks locked
with only RLL. Moreover, the observed delay overheads are
approximately 5% for SFLT and around 8% for RLL +
TTLock configurations when compared to the netlist locked
with only RLL.

Initially, we performed several attacks documented in the
existing literature to compare against our developed methodol-
ogy, expecting all CLL circuits to withstand SAT-based attacks
and their variants. All benchmarks locked in the CLL scheme
were submitted to four attacks: the SAT-based attack (sat) [15],
AppSAT (appsat) [30], Double-DIP (dp) [32], and query attack
(qatt) [33]. Table IV shows the runtime to find a solution, with
“out-of-time” (OoT) indicating instances where no solution
could be found within the allowed 48-hour time limit. As ob-
served from Table IV, the SAT-based and Double-DIP attacks

TABLE III: Details of locked ISCAS’85 and ITC’99 circuits.

Circuit k
CLL Locked Netlist

RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock
area power delay area power delay area power delay area power delay area power delay

c2670 128 1792 0.63 1727 1789 0.64 1836 1793 0.65 1754 1842 0.65 1842 1748 0.64 1788
c3540 64 1813 0.80 2083 1826 0.81 2052 1846 0.83 2042 1886 0.82 2087 1840 0.81 2096
c5315 128 3226 1.33 1954 3213 1.32 2070 3244 1.35 1980 3280 1.34 2081 3198 1.32 2005
c6288 64 3471 9.15 5233 3446 9.13 5119 3477 9.15 5167 3524 9.16 5250 3508 9.23 5106
c7552 128 3861 1.84 2109 3577 1.73 2011 3378 1.68 2004 3623 1.75 1993 3542 1.77 1972
b14_C 256 9557 4.58 4600 9526 4.56 4640 9637 4.62 4862 9820 4.63 4893 10052 4.65 4949
b15_C 256 13608 4.00 5148 13591 4.00 5144 13695 4.04 5020 13897 4.07 5036 14476 4.43 5067
b20_C 256 18379 10.14 5497 18379 10.12 5470 18468 10.20 5609 18641 10.22 5488 20023 10.91 5728
b21_C 256 18904 10.17 4922 18893 10.17 4954 18968 10.21 5030 19167 10.23 5045 20069 10.98 5127
b22_C 256 27559 14.02 5376 27578 14.03 5367 27703 14.19 5317 27803 14.10 5290 30007 14.51 5421

TABLE IV: Details of OG attacks on locked ISCAS’85 and ITC’99 circuits.

Circuit

Locked Netlist
RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock

sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt
time time time prv time time time time prv time time time time prv time time time time prv time time time time prv time

c2670 OoT 998 OoT 52 48 OoT 170 OoT 50 45 OoT 238 OoT 50 25.4 OoT 114 OoT 55 59 OoT 1055 OoT 48 48
c3540 OoT 766 OoT 30 20 OoT 203 OoT 32 19 OoT 66 OoT 30 8 OoT 91 5 31 22 48656 4499 2 31 19
c5315 OoT 239 OoT 62 50 OoT 9949 OoT 62 52 OoT 131 OoT 62 42 OoT 64 OoT 62 72 OoT 2768 OoT 62 60
c6288 OoT OoT OoT 32 77 OoT 58470 OoT 32 69 OoT 3936 OoT 32 90 OoT 935 OoT 32 119 OoT 6270 OoT 32 93
c7552 OoT 172 OoT 55 96 OoT 543 OoT 55 105 OoT 279 OoT 55 59 OoT 247 OoT 55 108 OoT 51 OoT 55 79
b14_C OoT OoT OoT 109 1822 OoT OoT OoT 112 1383 OoT OoT OoT 106 2082 OoT OoT OoT 109 1335 OoT OoT OoT 111 1783
b15_C OoT OoT OoT 98 466 OoT OoT OoT 97 635 OoT OoT OoT 96 836 OoT OoT OoT 80 513 OoT OoT OoT 87 671
b20_C OoT OoT OoT 115 1562 OoT OoT OoT 115 1647 OoT OoT OoT 109 2645 OoT OoT OoT 115 1645 OoT OoT OoT 113 2187
b21_C OoT OoT OoT 113 1119 OoT OoT OoT 114 1337 OoT OoT OoT 113 1935 OoT OoT OoT 110 1385 OoT OoT OoT 109 1738
b22_C OoT OoT OoT 113 1034 OoT OoT OoT 113 1214 OoT OoT OoT 108 1489 OoT OoT OoT 105 938 OoT OoT OoT 111 1342

exhibit low efficiency in deciphering key inputs, as expected.
The SAT-based attack only found a solution for one single
RLL + TTLock case in the c5315 circuit. The AppSAT attack
showed promising results for small circuits but demanded
significant execution time compared to other attacks. While
the approach demonstrated near 100% efficiency for ISCAS’85
circuits, it failed to break all the locked ITC’99 circuits. This
limitation arises due to the increase in hardware complexity of
locked circuits, making it computationally prohibitive to de-
termine the secret key. Finally, the query attack [33] displayed
varying execution times and degrees of success in deciphering
key inputs, as shown in Table IV. The number of proven key
inputs prv discovered ranged just over 41%, with execution
times spanning from 8 to 2645 seconds.

It is important to note that these attacks are available from
the literature, and when designed, initially targeted circuits
that are locked with a specific LL technique. Interestingly,
according to Table IV, these attacks did not obtain significant
results in uncovering key inputs in experiments carried out
with CLL circuits. The AppSAT attack, despite its potential
to find solutions quickly, presents significant challenges. In
other words, available attacks often prove highly inaccurate
and ultimately ineffective, mainly when dealing with intricate
CLL structures. In this context, we emphasize that a tool like
RESAA is invaluable. Next, we present the results of our OG
and OL attack strategies.

1) Results of RESAA under the OG Threat Model: Under
the OG threat model, two well-known attacks were considered.
Specifically, the QBF attack outlined in [22] was employed to
decipher PSLL keys, along with the SAT-based attack [15] and
the query attack [22] to manage RLL key inputs.

Fig. 9 presents the classification and execution times. In this
context, “classification time” refers to the duration required
for categorizing the LL technique utilized in the CLL design,
depicted in the lower section of the graph. Conversely, “attack
time” is indicated by the hatched portion of the graph, while
‘execution time’ represents the total time, including both
classification/partition time and the subsequent attack on each
circuit, depicted by both sections in the graph. We note
that our methodology could find the critical gates in both
CLL techniques (i.e., RLL+SFLT and RLL+DFLT) with 100%
accuracy.

Upon observation, it is evident that when a CLL design is
classified as RLL + SFLT, a solution emerges during the QBF
attack of the locking/restore unit. Subsequently, the netlist
consisting of RLL + original becomes vulnerable to the SAT-
based attack. RESAA successfully deciphered all key inputs
for CLL circuits with SFLT. In cases where no solution is
found by the QBF attack, the second netlist is mandatorily
classified as RLL + stripped. In this scenario, a query attack
is applied to the RLL + stripped netlist, resulting in proven
RLL key inputs.

In each case, the complete set of key inputs was successfully
exposed by implementing the partitioning approach, achieving
100% discovery when CLL included both RLL and SFLT.
However, when a DFLT was introduced as a second technique,
initial attempts to uncover PSLL key inputs were unsuccessful.
It was only after employing a query attack that some of the
RLL keys were eventually disclosed. A time limit of 1-hour
was set for this query attack, as further execution did not
yield improved results despite prolonging the runtime. We do
hypothesize that this could be improved by changing the query

(a) ISCAS’85 benchmark (b) ITC’99 benchmark

Fig. 9: Classification and execution times (seconds) for attacking ISCAS’85 and ITC’99 benchmarks in the CLL scheme.
Bottom: Classification and partition time. Hatched: Attack time. Combined: Total execution time.

strategy.
Our classification and partitioning step involves processing

a CLL netlist as input, where a timing analysis5 is conducted
to distinguish between RLL and PSLL key inputs, as illus-
trated in Fig. 7. The size and complexity of the CLL design
directly influence the duration of both the classification and
execution phases. For instance, the maximum execution time
for ISCAS’85 benchmarks was approximately 1400 seconds,
whereas it reached around 36000 seconds for the larger ITC’99
benchmarks. The classification time typically accounts for less
than 1/3 of the total execution time.

The validation process, using the LEC tool, was crucial in
cases where all the keys were revealed to validate RESAA.
In each instance, the netlist composed of the RLL + original
portion was equivalent to the netlist previously locked with
RLL. Additionally, the CLL netlist, with the added secret key
inputs, was confirmed to coincide in functionality with the
original design, thereby certifying the accuracy of RESAA in
the partitioning processes. This result confirms a high level of
confidence in RESAA’s outcomes.

2) Results of RESAA under the OL Threat Model: The at-
tack strategy under the OL threat model is more restrictive than
the OG model because it does not use an oracle. The SCOPE
attack, described in [47], and the QBF method from [22] were
employed. Specifically, in the OL threat model, the SCOPE
attack was exclusively used to estimate key inputs for both
RLL and PSLL. This approach was necessary when finding
a solution in the netlist composed of the locking/restore unit
was not feasible, as illustrated in Fig. 8.

Table V presents the results of the SCOPE attack conducted
on both the entire CLL design and the partitioned netlist
generated by RESAA. In this table, cdk and dk represent
the number of correctly deciphered key inputs and the total
number of deciphered key inputs, respectively while time
indicates the runtime of the attack.

Observe from Table V that the SCOPE attack does not
succeed in breaking the CLL designs locked by Anti-SAT,

5Timing analysis here is the static timing analysis (STA) performed by the
logic synthesis tool. By performing STA, inherently a graph is built that can
be used to query whether an input i has a path to an output o.

Anti-SAT-DTL, and CASLock. However, using RESAA, many
key inputs associated with the RLL + original netlists, and
even the entire RLL key, can be uncovered. That is exemplified
by the c3540 circuit locked by Anti-SAT-DTL. It is worth
noting that the SCOPE attack can reveal over 48% of key
bits using the partition netlists locked with any LL technique.
The SCOPE attack on RLL + SARLock circuits resulted in
the dk/k ratio of 50%, where k denotes the total number of
key inputs, with an average cdk/dk ratio of 56%. In contrast,
RESAA demonstrated a higher dk/k ratio, with cases such as
c5315 achieving a cdk/k ratio of 78%. Furthermore, when
a circuit is locked using DFLT, as in RLL + TTLock, the
SCOPE attack showed a higher dk/k ratio, but the cdk/dk ratio
remained lower compared to that achieved by RESAA. In other
words, SCOPE alone makes more incorrect guesses in the
entire locked design than in the partitions obtained by RESAA.
We note that the success of SCOPE in partitions obtained by
RESAA is also related to the resynthesis of the locked design
before the attack, which was also observed in [42], since it
changes the structure of the locked netlist.

The runtime of the SCOPE attack, whether executed on the
entire design or the partitioned design, significantly depends
on the number of gates and keys present in the locked design.
Consequently, the runtime for the netlist generated by RESAA
after the partition step is notably shorter, as it contains only
a fraction of the key inputs and gates. This reduction in
complexity results in a smaller runtime, making the attack
more efficient. Moreover, the runtime is typically smaller for
the partitioned netlist due to the reduced number of gates, as
it represents only a portion of the entire design.

The RESAA results for the ITC’99 b22_C circuit locked
with RLL + CASLock stand out, achieving 190 cdk out of
205 dk, a 92.6% accuracy. These results are very encouraging,
given the size and complexity of the circuit paired with
the restrictive OL setting. Success in this case demonstrates
RESAA’s ability to analyze and navigate complex CLL designs
effectively. This highlights RESAA’s superior performance
in accurately recovering keys, even in more complex CLL
schemes.

TABLE V: Results of OL Attacks on the locked ISCAS’85 and ITC’99 circuits.

Circuit
RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock

SCOPE RESAA SCOPE RESAA SCOPE RESAA SCOPE RESAA SCOPE RESAA
cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time

c2670 0/0 14 73/104 4 0/0 13 80/104 4 0/0 9 84/104 4 32/64 8 97/105 4 16/106 10 68/105 9
c3540 0/0 6 37/43 2 0/0 6 40/64 2 0/0 4 40/45 2 15/32 4 41/43 2 8/42 7 32/45 4
c5315 0/0 15 77/107 5 0/0 16 78/107 5 0/0 12 81/107 5 32/64 10 100/107 5 30/107 12 69/109 11
c6288 0/0 7 41/56 3 0/0 7 42/56 2 0/0 5 42/56 3 17/32 5 49/56 3 4/53 6 40/56 5
c7552 0/0 17 78/108 5 0/0 17 79/105 5 0/0 8 81/108 4 40/64 11 98/107 6 28/107 13 82/109 12
b14_C 0/0 91 160/210 67 0/0 91 168/215 69 0/0 67 180/213 44 68/128 71 168/200 46 36/203 87 38/72 58
b15_C 0/0 117 166/210 87 0/0 120 190/214 90 0/0 88 180/210 58 72/128 89 186/214 59 49/202 109 58/82 72
b20_C 0/0 155 172/203 115 0/0 156 182/200 117 0/0 116 191/211 77 67/128 118 188/209 77 44/201 136 62/86 93
b21_C 0/0 159 183/210 119 0/0 164 185/212 122 0/0 119 173/213 78 77/128 121 178/200 82 52/196 142 60/70 97
b22_C 0/0 231 180/209 172 0/0 233 185/212 175 0/0 177 190/205 116 86/128 175 189/199 116 48/192 193 56/70 139

TABLE VI: Details of large-size ITC’99 circuits.

Circuit Original Netlist
p

RLL Locked Netlist
#in #out area power delay area power delay

b17_C 1452 1446 40033 10.4 6261 256 40734 10.9 6341
b18_C 3357 3343 115197 60.0 7830 256 114014 57.7 7414
b19_C 6666 6670 230786 131.0 7957 256 227491 128.0 7490

B. Experiments on Large-Size Circuits

To demonstrate the scalability of our RESAA framework,
we conducted experiments on three large-size circuits from
the ITC’99 benchmark suite [45], namely b17_C, b18_C, and
b19_C. We used a larger number of key inputs than those used
in small- and medium-sized circuits given in Section IV-A. In
this case, the number of RLL and PSLL key inputs is 256
with a total number of key inputs set to 512.

Table VI presents the details of large-size circuits on the
number of primary inputs and outputs and also, gate-level
synthesis results. It also shows the gate-level synthesis results
of these circuits when locked by RLL using 256 key inputs.
Observe that the hardware complexity of the locked designs
changed slightly with respect to the original design, leading
to 1.8% increase in the area of the b17_C and 1.0% and 1.4%
reduction in the area of the b18_C and b19_C, respectively.
These numbers are within the marging of noise of logic
synthesis tools.

Table VII presents the gate-level synthesis results of circuits
locked by RLL when they are subsequently locked by a PSLL
technique. Observe that while the use of SFLT techniques
increases the hardware complexity slightly, the use of the
DFLT technique leads to locked designs with slightly less
hardware complexity with respect to those of circuits locked
by the RLL technique.

Table VIII presents the result of conventional attacks, i.e.,
SAT-based, AppSAT, Double DIP, and query attack, on the
circuits locked by CLL techniques. The time limit for these
attacks was set to 5 days due to the large-size locked circuits
and large number of key inputs. Observe that none of these
attacks could recover the secret key within the time limit,
highlighting the inherent robustness of CLL schemes against
these attacks. Only the query attack demonstrated limited
success. The minimum (maximum) number of key inputs’
values found by the query attack was 169 (201) obtained on the
b17_C (b18_C) circuit when locked by RLL+TTLock (RLL +
Anti-SAT). Also, observe from Tables IV and VIII that as the

Fig. 10: Classification and execution times (seconds) for
attacking the large-size ITC’99 circuits in the CLL scheme.
Bottom: Classification and partition time. Hatched: Attack
time. Combined: Total execution time.

hardware complexity of the locked design increases, the SAT-
based, AppSAT, and Double DIP attacks cannot find the secret
key and the run-time of the query attack increases significantly.
These results underline the strong security properties of large-
size circuits locked by CLL techniques against these attacks.

Figure 10 presents the classification and execution times of
RESAA on the large-size circuits locked by CLL techniques
under the OG threat model. Observe that RESAA can complete
its tasks in the given time limit, i.e., 5 days, demonstrating its
effectiveness in handling large-size circuits while classifying
the locking techniques and recovering the secret key, with
respect to the conventional attacks as shown in Table VIII.
Similar to the small- and medium-size circuits locked by
CLL techniques, RESAA discovered all the secret keys of
designs locked with the RLL + SFLT technique. However,
as can be observed from Figs. 9 and 10, the run-time of
RESAA increases significantly as the hardware complexity of
the locked design and the number of key inputs increase.

Table IX presents the results of SCOPE and RESAA under
the OL threat model. Observe that SCOPE alone was inef-
fective in discovering the key inputs’ values in the circuits
locked by RLL + Anti-SAT, RLL + Anti-SAT-DTL, and RLL
+ CASLock. However, it managed to uncover values of some
key inputs in circuits locked by RLL + SARLock and RLL +
TTLock. In contrast, RESAA could decipher a large number
of key inputs’ values, such as 417 in the b17_C circuit, 422 in
the b18_C circuit, and 434 in the b19_C circuit when they are
locked by RLL + TTLock. Note also that while the maximum

TABLE VII: Details of large-size locked ITC’99 circuits.

Circuit k
CLL Locked Netlist

RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock
area power delay area power delay area power delay area power delay area power delay

b17_C 512 42086 11.2 6576 42280 11.3 6447 42198 11.4 6767 42379 11.4 6278 40979 10.9 6225
b18_C 512 115364 57.8 7442 115512 57.8 7409 115485 58.2 7649 115641 58.3 7628 105462 58.9 7328
b19_C 512 228943 128.0 7392 229004 129.0 7724 228951 129.0 7558 229097 129.0 7641 206309 127.0 7150

TABLE VIII: Details of OG attacks on large-size locked ITC’99 circuits.

Circuit

Locked Netlist
RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock

sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt sat appsat dp qatt
time time time prv time time time time prv time time time time prv time time time time prv time time time time prv time

b17_C OoT OoT OoT 193 4449 OoT OoT OoT 193 5002 OoT OoT OoT 187 7531 OoT OoT OoT 184 3058 OoT OoT OoT 169 2824
b18_C OoT OoT OoT 201 20174 OoT OoT OoT 192 20608 OoT OoT OoT 190 13218 OoT OoT OoT 182 13586 OoT OoT OoT 178 9946
b19_C OoT OoT OoT 187 65014 OoT OoT OoT 188 63350 OoT OoT OoT 192 43588 OoT OoT OoT 192 42733 OoT OoT OoT 190 33007

TABLE IX: Results of OL Attacks on the large-size locked ITC’99 circuits.

Circuit
RLL+Anti-SAT RLL+Anti-SAT-DTL RLL+CASLock RLL+SARLock RLL+TTLock

SCOPE RESAA SCOPE RESAA SCOPE RESAA SCOPE RESAA SCOPE RESAA
cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time

b17_C 0/0 356 302/416 188 0/0 345 301/416 188 0/0 353 280/406 171 106/256 368 285/406 173 69/250 278 312/417 167
b18_C 0/0 1156 370/417 545 0/0 780 360/416 577 0/0 1093 330/403 547 126/256 1201 319/403 842 80/286 795 315/422 497
b19_C 0/0 2225 377/430 1045 0/0 2256 372/428 1062 0/0 2114 359/424 1105 140/256 2149 350/424 1011 76/272 1005 376/434 894

cdk/k ratio in the SCOPE attack is around 27%, this value in
RESAA reaches up to 73%, where k is the total number of
key inputs.

These results demonstrate that the RESAA framework
scales effectively to handle large-size circuits. By efficiently
partitioning designs and leveraging advanced attack strategies,
it improves the accuracy of key recovery and maintains
practical execution times, making it a powerful tool for the
evaluation of large-size circuits locked by CLL techniques.

V. CONCLUSIONS

The semiconductor industry’s shift towards a fabless model
has necessitated advanced security measures to combat emerg-
ing threats such as piracy and counterfeiting. CLL, which
integrates multiple LL techniques, has been proposed by
researchers as a robust solution to these security challenges.
However, the security of CLL itself has not been extensively
analyzed until now.

Our RESAA framework addresses this gap by systemat-
ically classifying locked designs, identifying critical gates,
and executing attacks to uncover secret keys. Unlike previ-
ous methods, RESAA is agnostic to specific LL techniques,
making it a versatile tool for evaluating a wide range of CLL
implementations. Through our detailed methodology, which
includes classification, partitioning, and applying both OG and
OL attack strategies, we demonstrated the framework’s ability
to expose vulnerabilities in CLL-protected circuits.

Experimental results using ISCAS’85 and ITC’99 bench-
mark suites highlighted the efficacy of RESAA. The frame-
work successfully identified critical points within the CLL
designs, enabling attacks that revealed the secret keys. Our
findings underscore the necessity of careful evaluation and
selection of LL techniques to ensure the security of IC.
The results indicated that even advanced CLL strategies are
susceptible to the RESAA framework’s targeted attacks.

REFERENCES

[1] M. J. Shaw and M. A. Schilling, “The evolution of the semiconductor
industry: A focus on fabless firms,” California Management Review,
2000.

[2] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[3] G. Zarrinchian, “A chip activation protocol for preventing ic recycling,”
Microprocessors and Microsystems, vol. 101, p. 104872, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0141933123001187

[4] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1207–1228, 2014.

[5] T. M. Supon, M. Seyedbarhagh, R. Rashidzadeh, and R. Muscedere, “A
method to prevent hardware trojans limiting access to layout resources,”
Microelectronics Reliability, vol. 124, p. 114212, 2021.

[6] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks,
defenses, and challenges,” IEEE Access, vol. 8, pp. 184 013–184 035,
2020.

[7] F. Koushanfar and G. Qu, “Hardware metering,” in 38th Annual Design
Automation Conference (DAC). New York, NY, USA: Association for
Computing Machinery, 2001, p. 490–493.

[8] G. Qu and L. Yuan, Secure Hardware IPs by Digital Watermark. New
York, NY: Springer New York, 2012, pp. 123–141.

[9] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2008, pp. 1069–1074.

[10] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT Attack Resistant Logic Locking,” in IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 2016, pp. 236–241.

[11] Q.-L. Nguyen, M.-L. Flottes, S. Dupuis, and B. Rouzeyre, “On Prevent-
ing SAT Attack with Decoy Key-Inputs,” in IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2021, pp. 114–119.

[12] S. Dupuis and M.-L. Flottes, “Logic Locking: A Survey of Proposed
Methods and Evaluation Metrics,” J. Electron. Test., vol. 35, no. 3, pp.
273–291, 2019.

[13] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Threats on
Logic Locking: A Decade Later,” in Great Lakes Symposium on VLSI
(GLVLSI), 2019, pp. 471–476.

[14] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor, “Ad-
vances in logic locking: Past, present, and prospects,” Cryptology ePrint
Archive, 2022.

[15] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2015, pp. 137–143.

[16] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2017.

[17] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack on Logic
Locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 38, no. 2, pp. 199–207, 2019.

[18] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “CAS-Lock: A
Security-Corruptibility Trade-off Resilient Logic Locking Scheme,”
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), vol. 2020, no. 1, pp. 175–202, 2019.

[19] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “TTLock:
Tenacious and traceless logic locking,” in IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 2017, pp. 166–166.

[20] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly Stripping Functionality for Logic Locking: A Fault-Based Per-
spective,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 39, no. 12, pp. 4439–4452, 2020.

[21] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
Attacks on Logic Locking and Camouflaging Techniques,” IEEE Trans-
actions on Emerging Topics in Computing (TETC), vol. 8, no. 2, pp.
517–532, 2020.

[22] L. Aksoy, M. Yasin, and S. Pagliarini, “Kratt: Qbf-assisted removal and
structural analysis attack against logic locking,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2024, pp. 1–6.

[23] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking and
memristor-based obfuscation against cycsat and inside foundry attacks,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2018, pp. 85–90.

[24] D. Divyanshu, R. Kumar, D. Khan, S. Amara, and Y. Massoud, “Logic
locking using emerging 2t/3t magnetic tunnel junctions for hardware
security,” IEEE Access, vol. 10, pp. 102 386–102 395, 2022.

[25] H. Mardani Kamali, K. Zamiri Azar, K. Gaj, H. Homayoun, and
A. Sasan, “Lut-lock: A novel lut-based logic obfuscation for fpga-
bitstream and asic-hardware protection,” in IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2018, pp. 405–410.

[26] Z. U. Abideen, S. Gokulanathan, M. J. Aljafar, and S. Pagliarini, “An
overview of fpga-inspired obfuscation techniques,” ACM Comput. Surv.,
jul 2024.

[27] M. John, A. Hoda, R. Chouksey, and C. Karfa, “Sat based partial attack
on compound logic locking,” in Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), 2020, pp. 1–6.

[28] N. Limaye, S. Patnaik, and O. Sinanoglu, “Fa-sat: Fault-aided sat-based
attack on compound logic locking techniques,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021, pp. 1166–1171.

[29] J. Mellor, A. Shelton, M. Yue, and F. Tehranipoor, “Attacks on logic
locking obfuscation techniques,” in IEEE International Conference on
Consumer Electronics (ICCE), 2021, pp. 1–6.

[30] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately Deobfuscating Integrated Circuits,” in IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST),
2017, pp. 95–100.

[31] A. Alaql, M. M. Rahman, and S. Bhunia, “SCOPE: Synthesis-Based
Constant Propagation Attack on Logic Locking,” IEEE Transactions on
Very Large Scale Integration VLSI Systems (TVLSI), vol. 29, no. 8, pp.
1529–1542, 2021.

[32] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic
encryption algorithms,” in Great Lakes Symposium on VLSI (GLSVLSI),
ser. GLSVLSI ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 179–184.

[33] L. Aksoy, Q.-L. Nguyen, F. Almeida, J. Raik, M.-L. Flottes, S. Dupuis,
and S. Pagliarini, “Hybrid protection of digital fir filters,” IEEE Trans-
actions on Very Large Scale Integration VLSI Systems (TVLSI), vol. 31,
no. 6, pp. 812–825, 2023.

[34] A. Rezaei, Y. Shen, and H. Zhou, “Rescuing logic encryption in post-sat
era by locking & obfuscation,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2020, pp. 13–18.

[35] N. Limaye, S. Patnaik, and O. Sinanoglu, “Valkyrie: Vulnerability
assessment tool and attack for provably-secure logic locking techniques,”
IEEE Transactions on Information Forensics and Security (TIFS),
vol. 17, pp. 744–759, 2022.

[36] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu,
and R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions
on Computers (TC), vol. 64, no. 2, pp. 410–424, 2015.

[37] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” in Design Automation Conference (DAC), 2012,
pp. 83–89.

[38] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal at-
tacks on logic locking and camouflaging techniques,” IEEE Transactions
on Emerging Topics in Computing (TETC), vol. 8, no. 2, pp. 517–532,
2020.

[39] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, “On the approxima-
tion resiliency of logic locking and ic camouflaging schemes,” IEEE
Transactions on Information Forensics and Security (TIFS), vol. 14,
no. 2, pp. 347–359, 2019.

[40] Y. Shen, A. Rezaei, and H. Zhou, “SAT-based Bit-Flipping Attack on
Logic Encryptions,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2018, pp. 629–632.

[41] A. Raj, N. Avula, P. Das, D. Sisejkovic, F. Merchant, and A. Acharyya,
“Deepattack: A deep learning based oracle-less attack on logic locking,”
in IEEE International Symposium on Circuits and Systems (ISCAS),
2023, pp. 1–5.

[42] F. Almeida, L. Aksoy, Q.-L. Nguyen, S. Dupuis, M.-L. Flottes, and
S. Pagliarini, “Resynthesis-based attacks against logic locking,” in 24th
International Symposium on Quality Electronic Design (ISQED), 2023,
pp. 1–8.

[43] Cadence Design Systems, Inc., Genus Synthesis Solution, 2024, san
Jose, CA, USA. [Online]. Available: https://www.cadence.com

[44] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Targeted Translator in FORTRAN,” in IEEE
International Symposium on Circuits and Systems (ISCAS), 1985, pp.
663–698.

[45] F. Corno, M. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and
first atpg results,” IEEE Design & Test of Computers, vol. 17, no. 3, pp.
44–53, 2000.

[46] K. Shamsi, “Netlist Encryption and Obfuscation Suite,” 2021. [Online].
Available: https://bitbucket.org/kavehshm/neos/src/master/

[47] A. Alaql, “Scope,” Available: https://github.com/alaql89/SCOPE.

Felipe Almeida received his bachelor’s degree in Computer Engineering from
the Pernambuco University and a master’s degree in Microelectronics from
the Federal University of Rio Grande do Sul. He is currently affiliated with the
Centre for Hardware Security at Tallinn University of Technology (TalTech)
as a Ph.D. student. His research interests are hardware security and radiation
tolerance circuits.

Levent Aksoy received his Ph.D. degree in electronics engineering from
Istanbul Technical University (ITU), Istanbul, Türkiye, in 2009. He worked
as a researcher at ITU and INESC-ID, Lisbon, Portugal. He also worked at
Dialog Semiconductor, Istanbul, Türkiye, as a senior digital design engineer.
Currently, he is a senior researcher at the Centre for Hardware Security
at Tallinn University of Technology (TalTech), Tallinn, Estonia. He is the
recipient of the best paper awards at EUC’15 and DDECS’22 and the first
prize in HeLLO CTF’22. His research interests include hardware security and
CAD for VLSI circuits with emphasis on solving EDA problems using SAT
models and optimization techniques.

Samuel Pagliarini received the PhD degree from Telecom ParisTech, Paris,
France, in 2013. He has held postdoctoral research positions at the University
of Bristol, Bristol, UK, and at Carnegie Mellon University, Pittsburgh, PA,
USA. He led the Centre for Hardware Security at Tallinn University of
Technology, Tallinn, Estonia, from 2019 to 2023. His current research interests
include many facets of digital circuit design, with a focus on circuit reliability,
dependability, and security.

Curriculum Vitae
1. Personal data

Name Antonio Felipe Costa de Almeida
Date and place of birth 12 November 1984, Recife, Brazil
Nationality Brazillian

2. Contact information

Phone +49 0152 35897889
E-mail lipinhw@gmail.com

3. Education

2019–present

2010–2012

2009–2010

2003–2008

Tallinn University of Technology (Taltech)
School of Information Technologies
Information and Communication Technology, PhD studies
Federal University of Rio Grande do Sul (UFRGS)
Graduate Program in Microelectronics
Microeletronics Engineering, MSc
Federal University of Rio Grande do Sul (UFRGS)
IC Digital Design Training
University of Pernambuco (UPE)
Department of Computer Engineering
Computer Engineering, BSc

4. Language competence

Portuguese native
English fluent
Italian advanced

5. Professional employment

2023–2024 Elmos Semiconductor, Backend Engineer
2014–2019 Politecnico di Torino, Researcher Assistant
2019–2020 CPqD, Backend Team Leader
2014–2019 NSCAD Microelectronic, Physical Design Engineer and Instructor
2019–2020 PortoChip, Digital Design Engineer

6. Computer skills

• Operating systems: GNU/Linux and Windows

• Document preparation: Emacs and LATEX

• Programming languages: C/C++, C#, Java and Python

• Hardware description languages: VHDL, Verilog and System Verilog

95

7. Honours and awards

• 2022, 1st Place Award, Attacks on Logic Locking, Obfuscation, Fine-grain Hard-
ware Redaction, & Routing Table Configuration, HeLLO CTF 2022

• 2022, 3rd Place Award, Security Closure of Physical Layouts Design Contest,
International Symposium on Physical Design (ISPD)

8. Defended theses

• 2012, Evaluating Placement Constraints and Majority Voter Insertion Techniques
in Triple Modular Redundancy, Prof. Dr.Fernanda Kastensmidt Federal University
of Rio Grande do Sul, Graduate Program in Microelectronics

• 2008, An Approach to Control Unwanted Messages in Networks using Mail-pot,
Prof. Dr. Wellington dos Santos. Universty of Pernambuco (UPE), Department
of Computer Engineering

9. Field of research

• Hardware security

• Hardware trojans

• Integrated circuits design

96

Curriculum Vitae (Estonian)
1. Isikuandmed

Nimi Antonio Felipe Costa de Almeida
Sünniaeg ja -koht 12. november 1984, Recife, Brasiilia
Kodakondsus Brasiilia

2. Kontaktandmed

Telefon +49 0152 35897889
E-post lipinhw@gmail.com

3. Haridus

2019–praegu

2010–2012

2009–2010

2003–2008

Tallinna Tehnikaülikool (Taltech)
Infotehnoloogia teaduskond
Infotehnoloogia ja kommunikatsioonitehnoloogia, doktorantuur
Rio Grande do Suli Föderaalülikool (UFRGS)
Mikroelektroonika magistriõppe programm
Mikroelektroonika inseneriteadus, magistrikraad
Rio Grande do Suli Föderaalülikool (UFRGS)
IC digitaalse projekteerimise koolitus
Pernambuco Ülikool (UPE)
Arvutitehnika osakond
Arvutitehnika, bakalaureusekraad

4. Keeleoskus

Portugali keel emakeel
Inglise keel sorav
Itaalia keel edasijõudnud

5. Töökogemus

2023–2024 Elmos Semiconductor, tagatöötluse insener
2014–2019 Torino Polütehnikum, teadusassistent
2019–2020 CPqD, tagatöötluse tiimijuht
2014–2019 NSCAD Mikroelektroonika, füüsilise projekteerimise insener ja instruktor
2019–2020 PortoChip, digitaalse projekteerimise insener

6. Arvutioskused

• Operatsioonisüsteemid: GNU/Linux ja Windows

• Dokumenditöötlus: Emacs ja LATEX

• Programmeerimiskeeled: C/C++, C#, Java ja Python

• Riistvara kirjeldamise keeled: VHDL, Verilog ja System Verilog

97

7. Tunnustused ja auhinnad

• 2022, 1. koht, Rünnakud loogikalukustuse, peitmise, peenkraanriistvara redigeer-
imise ja marsruutimistabeli konfiguratsiooni vastu, HeLLO CTF 2022

• 2022, 3. koht, Füüsilise paigutuse kujunduskonkursi turvalisuse lõpetamine,
Rahvusvaheline füüsilise disaini sümpoosion (ISPD)

8. Kaitstud lõputööd

• 2012, Paigutuspiirangute hindamine ja kolmikmodulaarse liigvoolu sisestamise
tehnikad, prof dr Fernanda Kastensmidt Rio Grande do Suli Föderaalülikool,
mikroelektroonika magistriõppe programm

• 2008, Lähend soovimatute sõnumite kontrollimiseks võrkudes kasutades Mail-pot’i,
prof dr Wellington dos Santos. Pernambuco Ülikool (UPE), arvutitehnika osakond

9. Uurimisvaldkond

• Riistvara turvalisus

• Riistvaralised troojalased

• Integraallülituste projekteerimine

98

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-323-3 (PDF)

	List of Publications
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Contribution of this Thesis
	Outline of this Thesis

	Background
	IC Supply Chain and Security Challenges
	Hardware Obfuscation and Logic Locking
	Hardware Obfuscation
	LL: A Form of Hardware Obfuscation

	Threat Models in Logic Locking
	OG Threat Model
	OL Threat Model

	LL Defenses
	Pre-SAT Techniques
	Post-SAT Techniques
	Beyond SAT Techniques

	LL Attacks
	OG Attacks
	OL Attacks

	Benchmark Circuits and Metrics

	Discussion
	Hybrid Protection of Digital FIR Filters
	Resynthesis-based Attacks Against Logic Locking
	RESAA: A Removal and Structural Analysis Attack Against Compound Logic Locking

	Conclusions and Future Work
	References
	Acknowledgements
	Abstract
	Appendix A
	Appendix B
	Appendix C
	Curriculum Vitae
	Curriculum Vitae (Estonian)

