

Department of
 Materials and Environmental Technology

Scenario Generation for Wind Power Using Ramping
Behaviour Analysis (RBA)

Tuuleenergia Stsenaariumide Genereerimine RBA (Nõlv Käitumise

Analüüsi) Abil

MASTER THESIS

Student: Esin Ören

Student code: KAYM156318

Supervisor: Sambeet Mishra, Early Stage Researcher

Co-supervisor: Prof. Ivo Palu

Tallinn, 2018

2

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major viewpoints and

data of the other authors used in this thesis have been referenced.

“.......” 201…..

Author:

/signature /

Thesis is in accordance with terms and requirements.

“.......” 201….

Supervisor: ….........................

/signature/

“.......” 201….

Co-supervisor: ….........................

/signature/

Accepted for defence

“.......”....................201… .

Chairman of theses defence commission: ...

 /name and signature/

aydin
Typewriter
30

aydin
Typewriter
May

aydin
Typewriter
8

aydin
Typewriter
30

aydin
Typewriter
May

aydin
Typewriter
8

3

Department of Materials and Environmental Technology

THESIS TASK

Student: Esin Ören, ID:1563181

Study programme: Materials and Processes for Sustainable Energetics, KAYM

Main speciality: Processes for Sustainable Energetics

Supervisor(s): Sambeet Mishra, Early Stage Researcher, 620 3759

 Prof. Ivo Palu, 620 3752

Consultants: N/A

Thesis topic:

(in English) Scenario Generation for Wind Power Using Ramping Behaviour Analysis (RBA)

(in Estonian) Tuuleenergia Stsenaariumide Genereerimine RBA (Nõlv Käitumise Analüüsi) Abil

Thesis main objectives:

1. Preprocessing of the data

2. Identification of events using new RBA with persistence

3. Generation of forecast

4. Generation of scenarios

Thesis tasks and time schedule:

No Task description Deadline

1. Literature review 25.02.2018

2. Preprocessing of the data 9.03.2018

3. Event detection 23.03.2018

4. Scenario generation 20.05.2018

Language: English Deadline for submission of thesis: 30.05.2018

Student: Esin Ören .. “.......”....................201….a

/signature/

Supervisor: Sambeet Mishra ………….............................. “.......”......................201….a

 /signature/

Co-supervisor: Phd. Ivo Palu …………............................ “.......”......................201….a

/signature/

aydin
Typewriter
30

aydin
Typewriter
May

aydin
Typewriter
8

aydin
Typewriter
30

aydin
Typewriter
May

aydin
Typewriter
8

4

To find the secrets of the universe,

think in terms of energy, frequency and vibration.

Nikola Tesla

5

CONTENTS

PREFACE ... 7

List of abbreviations ... 8

List of symbols .. 9

1 INTRODUCTION ... 10

1.1 Task definition and goal ... 10

1.2 Literature review .. 11

1.3 Outline .. 12

2 Ramp Events .. 13

2.1 Preprocessing of the data .. 14

2.1.1 Smoothing with B-splines ... 14

2.1.2 Spectral density analysis .. 16

2.2 Ramp event definition .. 19

2.2.1 Ramp events after preprocessing the data .. 21

2.3 Ramp events with Rainflow analysis .. 22

2.4 Persistence analysis .. 23

3 Scenarıo generatıon... 25

3.1 Artificial neural networks(ANNs) ... 25

3.1.1 Basics with ANNs .. 25

3.1.2 Neural network architecture .. 27

3.2 Recurrent neural networks (RNNs) .. 30

3.2.1 Forecasting with Long-short term memory (LSTM) ... 30

3.3 Forecasting with Generative adversarial network (GAN) .. 33

3.4 Scenarios with Monte Carlo Markov Chains(MCMC) ... 36

3.4.1 Markov Chains .. 36

3.4.2 Spatial Markov .. 36

4 Conclusıons .. 38

4.1 Future work .. 38

4.2 Summary .. 38

5 BIBLIOGRAPHY ... 40

6

TABLE OF FIGURES

Figure 2.1 Wind park power output (capacity factor) data ... 13

Figure 2.2 Cubic B-spline interpolation of the data with different smoothness factor 15

Figure 2.3 Dataset filtered with Haar wavelet ... 16

Figure 2.4 Blackman window and its frequency response from (Scipy.org) 17

Figure 2.5 Power spectral density (Welch-periodogram)of x[n] after interpolation with cubic splines,

with the whole data as the time window using Blackman window ... 18

Figure 2.6 Filtered data with 0.2 Hz cut-off frequency .. 18

Figure 2.7 Ramp events extracted from a small sample of the data with 0.04 T 20

Figure 2.8 Ramp events extracted from the small sample of the data with 0.08 T 20

Figure 2.9 Ramp events extracted from the small sample of the data with 0.12 T 21

Figure 2.10 Events extracted after preprocessing our data ... 22

Figure 3.1 The representation of perceptron (Nielsen, 2015). .. 25

Figure 3.2 Multilayer perceptrons ... 28

Figure 3.3 One cell LSTM memory block (Graves et al., 2009) .. 30

Figure 3.4 Forecast with LSTM for time ranges ... 31

Figure 3.5 Forecast with LSTM for changes in amplitude .. 32

Figure 3.6 Forecast with LSTM for the angle of events .. 32

Figure 3.7 GAN working principle (Chen et al., 2018) .. 33

Figure 3.8 Distribution functions of the generator(blue) and the discriminator(orange) 34

Figure 3.9 Discriminator loss .. 35

Figure 3.10 Representation of areas defined for each turbine in the shapefile used in spatial analysis

with corresponding numbers ... 36

Figure 3.11 Neighbouring relationships based on weights with Queen principal 37

7

PREFACE

This thesis work was conducted in collaboration with the Department of Electrical Power

Engineering and Mechatronics, Tallinn University of Technology. It is dedicated to computer vision

and aims to bring more application of machine learning to sustainable energy technologies.

The author would like to thank supervisor Sambeet Mishra for all the assistance and inspiration to

the work, and her family who believed in her and supported her whenever and wherever.

Keywords: Renewable integration, scenario generation, generative models, deep learning

8

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

CNN Convolutional Neural Network

DTFT Discrete-Time Fourier Transform

GAN Generative Adversarial Network

MLP Multilayer Perceptron

RNN Recurrent Neural Network

SDE Spectral Density Estimation

U.S.NRC United States Nuclear Regulatory Commission

LSTM Long Short Term Memory

9

LIST OF SYMBOLS

𝐶𝑓 Capacity factor

𝑃𝑔𝑒𝑛𝑛𝑒𝑡 Net generated power

𝑃𝑟𝑎𝑡𝑒𝑑 Rated power

𝑠(𝑥) Spline function

𝑐𝑖 Spline coeifficients

𝐵𝑘(𝑥) Basis spline polynomials on the order of k

𝑥[𝑛] Discrete time series

𝑋(𝑒𝑗𝜔) Fourier series of x[n]

𝜔 Frequency variable

𝑡 Time

∆𝑡 Time interval

𝑤(𝑡) Power output at t

∆𝑤 Ramp event

∆𝑤𝑠 Significant ramp event

𝑇 Threshold

10

1 INTRODUCTION

Renewable sources, in general, have been growing in the last decade becoming a more and more

important component of the energy supply in many areas around the world. The reasons behind

this growth are the growing demand, increasing fossil fuel prices and the necessity to reduce the

greenhouse gas emissions. It can easily be predicted that these reasons will not disappear in the

upcoming years even with intentions to increase energy efficiency and decrease fossil-based energy

production(European Commission, n.d.). All this makes wind energy very attractive as an

alternative, which is expected to grow in the years to come.

Electricity is an instantaneous commodity that is consumed as and when produced. Though efficient

technologies exist to store energy, the current technologies can only store a limited amount. Hence,

the essential principle of power system management is to ensure the balance between the supply

and demand sides at all grid points and at all times. Conventionally, this achieved by power stations

to provide the power whenever and as much as the consumers need electricity.

However, the wind is a natural and renewable energy source. Wind energy is produced by the wind,

thus inherits the stochastic nature of wind.

When there is a small penetration of wind into the power systems, the uncertain behaviour of the

wind power generation is treated as just another uncertainty on the demand side, and the

conventional power stations cover for this variability which requires additional energy and reduces

the environmental benefits.

Forecasting is one of the many possible solutions to this problem, as well as an interconnected grid,

energy storage technologies, demand-side management such as electric vehicles. Forecasting aims

to model the uncertainties inherited by the grid through wind power production and thus are a

necessary and cost-effective element for the optimal integration of wind power into energy

systems. However, forecasting is never accurate and literature suggests providing bounds for the

forecast or confidence intervals.

1.1 Task definition and goal

The objective of this study is to propose novel indicators using methods to quantify ramp events

from temporal wind production along with features of these events, generate forecasts using

11

Artificial Neural Networks(ANNs) the multivariate and spatiotemporal characteristics derived from

Markov chains to generate probabilistic scenarios.

The goal is to generate realistic sets of scenarios depending on previous wind power generations,

creating a set of tools that could contribute to advancing the limits of wind power forecasting. The

purpose of this study is to analyse the underlying patterns in wind power production looking from

a zoomed out perspective. Also, the indicators explain the characteristics of an event. Instead of

forecasting the raw data, we generate scenarios for the significant events.

1.2 Literature review

There are many studies in the literature on characteristics of wind power, correlations of wind and

wind power, forecasting wind and wind power output, scenario generation. (Bianco et al., 2016)

proposed a model to forecast ramp events as well. They modelled observed wind speeds into

forecast models and converted this into power forecasts with the help of the power curve of the

wind turbines. It suggests that the same method could be implemented for solar power plants.

Another noteworthy one is a model-free forecast generation implemented with Generative

Adversarial Networks(GAN)(Chen, Wang, Kirschen, & Zhang, 2018). GANs have two

deconvolutional, one that starts ou generating random data and the out discriminates whether its

input is coming from the generator or historical data. These two neural networks play a Nashville

game while giving feedback to each other, both getting better over time until the generator

generates data that is almost like a forecast so that the discriminator can not discriminate anymore.

(Ming-jian Cui et al., 2015) proposed a probabilistic forecasting method, utilising a Neural

Network(NN) to generate possible future scenarios, employing an objective function based on

cumulative distribution functions and autocorrelation functions to train the NN, primarily teaching

it their distribution. Again another (Karatepe & Corscadden, 2013) proposed a model to synthesised

wind speed scenarios based on statistical parameters of wind and Markov chains. In contrast, (Kaut,

2014) proposes a new heuristic to generate scenarios that use copulas instead of common

correlation functions. (Mishra, Leinakse, & Palu, 2017) introduced the terminology for identification

of ramp events, ramping behaviour analysis(RBA), which comprises the perspective used in this

study. They also filtered and extracted events, and clustered them into groups. More studies exist

on identifying ramp events (Mingjian Cui et al., 2016), (Bossavy, Girard, & Kariniotakis, 2013),

(Bossavy, Girard, Kariniotakis, & Antipolis, 2013).

12

1.3 Outline

In the first chapter, the main idea is introduced, the motivation behind this thesis is explained.

Thesis’ task definition is clarified, and the goal is specified as well. Overviewed of the literature,

which has already become a milestone in this field, and previous researcher related to this thesis

task. In the overview part, we explained the essential concepts and methods which are related to

the topic. Those will be compared with this thesis work to improve the result.

Based on the defined tasks in the first chapter and drawn boundaries, we will search for the most

efficient methods to apply in the second chapter to our data after introducing our data. That is used

for further analysis are explained, and methods are built up as we go further. At the very end of this

chapter, we will have a set of algorithms applied to our data, and that will enable us to progress

within the next chapters.

Since the chosen solution is already too wide to explain in the third chapter, explanation of the

specific solution will take place in the third chapter with its boundaries and specific parameters.

Implementation of the solution is going to be another task too. The result of this chapter is going

to get the finalised algorithm to progress with experimentation section.

In the fourth, experimentation chapter, our chosen type of Neural Networks(NN), a GAN (Chen et

al., 2018) and a common Long Short Term Memory(LSTM) will be used to develop our forecasts

then using a multivariate copula simulation, a set of possible scenarios will be generated. Testing

the finally implemented solution is going to be a task at the end of this chapter, and of course,

evaluation is a must in this section. “What could be better?” and “How to make it more efficient?”

are going the be answered in this part of the research.

In the concluding chapter, future works will be mentioned based on what could be done differently

in this thesis work. Moreover, of course, the summary is another must at the very the end of this

thesis.

All computational work done is made available through GitHub with the standard academic licence.

Toolboxes used are Numpy, Scipy, Pysal, Tensorflow and Keras.

13

2 RAMP EVENTS

The data for this analysis is obtained from Paldiski wind farm(Nelja Energia) located in Harju County,

on the territory of the town Paldiski. It contains the power output of seventeen wind turbines, each

of which has a capacity of 2,5MW. It has ten-minute resolution and starts from September ending

at the end of December 2013. All data points coincide with each other date and time-wise for each

turbine. Figure 2.1 represents the wind park power generation for September 2013 including all

turbines. It shows that, even though the data has quite a lot fluctuation, there seems to be a time-

wise correlation between turbines.

Firstly, it is translated into capacity factor values before any method applied. Definition of the

capacity factor denoted in Equation (2.1) is the ratio of the net power generated to the optimum

power that could have been generated at continuous full-power operation during a period of the

time (U.S.NRC, 2015). Therefore values after translation range between one and zero according to

how much potential generation achieved.

𝐶𝑓 = 𝑃𝑔𝑒𝑛𝑛𝑒𝑡/𝑃𝑟𝑎𝑡𝑒𝑑
(2.1)

Figure 2.1 Wind park power output (capacity factor) data

14

2.1 Preprocessing of the data

We presume that the data includes an unknown degree of noise looking at its erratic nature with

many minor fluctuations. We are interested in significant changes rather than smaller, so we

propose a chain of methods to apply to the data.

2.1.1 Smoothing with B-splines

Splines are piecewise polynomial curves that are differentiable up to a prescribed order. The curve

𝑠(𝑥) is a spline of degree k-1 (or a spline of order k)with knots 𝑡0,..,𝑡𝑚, where 𝑡𝑖 ≤ 𝑡𝑖+1 and 𝑡𝑖 ≤

𝑡𝑖+𝑘 for all possible i, if 𝑠(𝑥) is k−r-1 times differentiable at any r-fold knot, and 𝑠(𝑥) is a polynomial

of degree ≤ k over each knot interval [𝑡𝑖, 𝑡𝑖+1], for i=0,...,m-1.

A spline of order k 𝑠(𝑥) is represented as an affine combination of coefficients 𝑐𝑖, with 𝐵𝑗,𝑘
𝑘 as the

basis spline functions.

𝑠(𝑥) =∑ 𝑐𝑖 𝐵𝑖
𝑘(𝑥)

(2.2)

When the knot sequence 𝑡𝑖 is 𝑡, biinfinite and strictly increasing in sequence, which means 𝑡𝑖 ≤ 𝑡𝑖+1

for all i,

𝐵𝑖
0(𝑥) = 1, 𝑖𝑓 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1, 0 otherwise. (2.3)

𝐵𝑖
𝑘(𝑥) = 𝛼𝑖

𝑘−1𝐵𝑖
𝑘−1(𝑥) + (1 − 𝛼𝑖+1

𝑘−1)𝐵𝑖+1
𝑘−1(𝑥) (2.4)

where

𝛼𝑖
𝑘−1 =

𝑥 − 𝑡𝑖
𝑡𝑖+𝑘− 𝑡𝑖

 (2.5)

is the local parameter with respect to the support of 𝐵𝑖
𝑘−1(𝑥). (Prautzsch, Boehm, & Paluszny,

2002).

When we introduce a smoothing condition is to the interpolation, there exists a trade-off between

closeness and smoothness of the fit, which after a certain point the interpolation turns into a simple

least mean square regression.

15

Figure 2.2 Cubic B-spline interpolation of the data with different smoothness factor

The structure of the algorithm we apply takes three arguments, the data, smoothness factor and

the degree of the spline which are set to a default of 0.01 and 3, respectively. We choose to

implement a cubic spline with the smoothness of 0.01 to be able to preserve the behaviour of the

curve while smoothing out minor fluctuations.

There is another option that would do this task, wavelets. Wavelets are quite popular in signal

processing and compressing because they can represent localisations in time and frequency

contrary to the traditional Fourier. Figure 2.3 that was plotted using a Haar mother wavelet which

is a rectangular filter shows that Fourier transform is much more useful for our case.

16

Figure 2.3 Dataset filtered with Haar wavelet

2.1.2 Spectral density analysis

In electronics, control theory and statistics, the frequency domain means the analysis of

mathematical functions or signals in reference to frequency rather than time. A given function or

signal can be transformed to the time domain from the frequency domain, and vice versa with

mathematical operators called transforms. In this study, we focus on Fourier transforms.

The Fourier transform of a function contains all the information about the original signal, and with

this information, it is possible to reconstruct the function entirely by an inverse Fourier transform.

This information includes amplitude and phase of each frequency present in the function.

Usually, there is no actual signal available, like it is in our case, but the discrete-time sequence of

samples. The Fourier transform of a discrete-time signal x[n], n=0,..,N is called the discrete-time

Fourier transform (DTFT), which provides a mathematical approximation of the full integral

solution, and yields a periodic frequency spectrum. The DTFT of the sequence x[n] denoted in

17

Equation (2.6) is a function of a continuous frequency variable 𝜔 and 𝑋(𝑒𝑗𝜔) and is always periodic

with period 2𝜋. (McClellan, Schafer, & Yoder, 2003)

𝑋(𝑒𝑗𝜔) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 (2.6)

𝑥[𝑛] =
1

2𝜋
∫ 𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛
𝜋

−𝜋

𝑑𝜔
(2.7)

Equation (2.7) represents the inverse DTFT of x[n] (McClellan et al., 2003).

Discrete Fourier Transform(DFT) can be obtained from the DTFT if we evaluate Equation (2.6) at a

discrete set of equally spaced frequencies.

To be able to determine the spectrum of a sampled signal correctly using DFT, we have to select a

finite number of samples for Fourier analysis. Then, it is possible to represent this selection as the

multiplication of x[n] by another sequence w[n] which is called a window.

In this study, the window we choose is a Blackman window plotted in Figure 2.4. Its time-domain

representation is denoted in Equation (2.8).

w(n) = 0.42 − 0.5cos (
2𝜋𝑛

𝑁 − 1
) + 0.08cos (

4𝜋𝑛

𝑁 − 1
) 0 ≤ n ≤ M− 1 (2.8)

Where N – the length of the Blackman window

 M – N/2, if N is even, (N+1)/2 if N is odd (Agarwal, Singh, & Pandey, 2014)

Figure 2.4 Blackman window and its frequency response from (Scipy.org)

18

Figure 2.5 Power spectral density (Welch-periodogram)of x[n] after interpolation with cubic splines, with
the whole data as the time window using Blackman window

 After inspecting Figure 2.5 Power spectral density (Welch-periodogram)of x[n] after interpolation

with cubic splines, with the whole data as the time window using Blackman windowFigure 2.5, we

choose the cut-off frequency 𝑓𝑠 as 0.2 Hz. A sample of the filtered signal with Blackman and its

original can be seen in Figure 2.6.

Figure 2.6 Filtered data with 0.2 Hz cut-off frequency

19

2.2 Ramp event definition

When discrete time points are denoted as t and the time point after t as t+∆t, the wind output are

represented as 𝑤(𝑡) and 𝑤(t + ∆t), respectively, and the difference between two consecutive

wind power outputs is defined as a ramp, ∆𝑤;

∆𝑤 = 𝑤(t + ∆t) − 𝑤(𝑡)
(2.9)

A positive value of ∆𝑤 is an increase in the wind power output which will be identified as an “up

ramp”, while a negative value of ∆𝑤 stands for a decrease in the wind power output, hence a “down

ramp”.

A ramp event ∆𝑤𝑠 is defined as an event where a significant change in power production happens

in a time period ∆t. The significance comes from the parameter T, which stands for an adjustable

threshold to neglect ∆𝑤 values that are smaller than T.

∆𝑤𝑠 = ∆𝑤, 𝑖𝑓 ∆𝑤 > 𝑇
(2.10)

When there are two or more consequential ∆𝑤𝑠, they get connected together and counted as one,

even if there might be neglected ∆𝑤 in between.

Values needed for further analysis are α which is the angle between the time interval and the

change in amplitude, and the mean for every significant event.

mean(∆𝑤𝑠) = [𝑤𝑠(𝑡) + 𝑤𝑠(t + ∆t)]/2
(2.11)

α(∆𝑤𝑠) = arctan (∆𝑤𝑠, ∆𝑡) (2.12)

Algorithm I: Event extraction

Inputs: T, 𝒘(𝒕),t=1,...,N

∆𝒘 = 𝒘(𝐭 + ∆𝐭) − 𝒘(𝒕)

For 𝒊 ← 1 to length(∆𝒘) do:

 If sign(∆𝒘[𝒊]) = sign(∆𝒘[𝒊 + 𝟏]):

 concatenate(∆𝒘)

For 𝒊 ← 1 to length(∆𝒘) do:

 If ∆𝒘>T:

 ∆𝒘𝒔 ← ∆𝒘

20

For 𝒊 ← 1 to length(∆𝒘𝒔) do:

 If sign(∆𝒘𝒔[𝒊]) = sign(∆𝒘𝒔[𝒊 + 𝟏]):

 concatenate(∆𝒘𝒔)

Return 𝒘𝒔(𝒕), 𝒘𝒔(𝐭 + ∆𝐭),t, 𝐭 + ∆𝐭, ∆𝒘𝒔, 𝛂(∆𝒘𝒔), 𝐦𝐞𝐚𝐧(∆𝒘𝒔)

End

Figure 2.7 Ramp events extracted from a small sample of the data with 0.04 T

Table 2.1 Ramp events in Figure 2.7

Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) t 𝐭 + ∆𝐭 ∆𝒘𝒔(𝒕) ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔)

1 0.104 0.172 3 9 0.067 6 6.428 0.138

2 0.12 0.172 6 9 0.049 3 9.313 0.14

3 0.1692 0.074 11 16 -0.095 5 -10.780 0.121

4 0.048 0.169 21 24 0.120 3 21.867 0.109

5 0.169 0.074 24 28 -0.094 4 -13.278 0.122

6 0.074 0.184 28 34 0.109 6 10.314 0.129

7 0.184 0.113 34 36 -0.070 2 -19.494 0.148

Figure 2.8 Ramp events extracted from the small sample of the data with 0.08 T

Table 2.2 Ramp events in Figure 2.8

21

Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) t 𝐭 + ∆𝐭 ∆𝒘𝒔(𝒕) ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔)

1 0.169 0.074 11 16 -0.095 5 -10.780 0.121

2 0.048 0.169 21 24 0.120 3 21.867 0.109

3 0.169 0.07 24 28 -0.094 4 -13.278 0.122

The optimum T for meaningful event extraction is unknown, but we use the assumption of 10% of

the nominal capacity, i.e. 0.01 T as the threshold value. Given that the wind turbines not necessarily

operate on full capacity in general, an alternative would be to cluster the input dataset to find the

peak point that occurs the highest time, and this peak may be used as the nominal power.

Figure 2.9 Ramp events extracted from the small sample of the data with 0.12 T

After extracting events with different T values from data points of the same size, we observe that

the bigger the T, the fewer events there is.

Table 2.3 Ramp events in Figure 2.9

Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) T 𝐭 + ∆𝐭 ∆𝒘𝒔 ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔)

1 0.048 0.169 21 24 0.120 3 21.867 0.109

2.2.1 Ramp events after preprocessing the data

We decided T to be 0.1 after several trials and concluded that it preserves the events best to our

interest. It can be seen in Figure 2.1 that preprocessing alters the peak points slightly, most of the

meaning in the data is preserved.

22

Figure 2.10 Events extracted after preprocessing our data

2.3 Ramp events with Rainflow analysis

Rainflow counting algorithm (Downing & Socie, 1982) was developed to be used in the analysis of

fatigue data in order to reduce a spectrum of varying stress into a set of simple stress reversals. The

input to the algorithm is a simple series of peaks and valleys (troughs), i.e., local maxima and

minima, that form hysteresis loops. Closed loops are full cycles, and unclosed loops are half cycles.

The algorithm uses a change in slope as an indicator that the time series is going through a peak or

valley. Only the magnitude of the peak or valley is then entered into the Rainflow counting

algorithm.

We introduced this algorithm to extract ramp events as an alternative method, with modifications

to extract the starting and ending points of ramp events hence the time range, the starting and

ending power of the events hence the amplitude, the angle of the event, and the cycle with some

modification. It was created with the help of (Jennifer Rinker, n.d.).

Table 2.4 Details of Rainflow cycles extracted from the small sample of the data

Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) t 𝐭 + ∆𝐭 ∆𝒘𝒔(𝒕) ∆𝒕 𝒎𝒆𝒂𝒏(𝒘𝒔(𝒕)) Cycle 𝛂(∆𝒘𝒔)

1 0.152 0.165 0 1 0.013 1 0.158 0.5 0.779

2 0.165 0.12 1 2 -0.043 1 0.143 0.5 -2.496

3 0.161 0.13 4 6 -0.030 2 0.145 1 -0.882

4 0.199 0.16 8 10 -0.039 2 0.179 1 -1.134

5 0.121 0.20 2 11 0.084 9 0.163 0.5 0.534

6 0.205 0.06 11 18 -0.140 7 0.135 0.5 -1.152

7 0.064 0.146 18 24 0.081 6 0.105 0.5 0.779

8 0.146 0.088 24 28 -0.058 4 0.117 0.5 -0.83

9 0.088 0.109 28 30 0.0216 2 0.098 0.5 0.618

23

2.4 Persistence analysis

Persistence of an event is defined here as how repetitive that event is regarding one of its

parameters. Persistance values are calculated for parameters ∆𝑤𝑠, ∆𝑡,mean(∆𝑤𝑠) and α(∆𝑤𝑠) are

calculated from the extracted events, individually with their corresponding ranges. Bins are linearly

spaced between the corresponding ranges to the defined number of bins which is set to a default

of 100. Bins divide the whole range for the parameter into equivalent ranges. Then if the value

equals to the bin value or is in between with the consequential bin, then the persistance value is

incremented one. Once all the events are visited, the accumulated persistence values are found.

In short, the persistence value for one parameter of one event is the number of events that has the

value for that parameter between the same two bins.

Table 2.5 Ranges of bins of the corresponding event parameters

Event parameter begins ends

∆𝒘𝒔 -1 1

∆𝒕 1 max(∆𝑡)

𝐦𝐞𝐚𝐧(∆𝒘𝒔) min(mean(∆𝑤𝑠)) max(mean(∆𝑤𝑠))

𝛂(∆𝒘𝒔) -90° 90°

Algorithm III: Persistence

Inputs: X, bins

For 𝒊 ← 0 to length(bins) do:

 For 𝒊 ← 0 to length(array) do:

 If bins[i] ≤ X < bins[i+1]:

 persistance +1

For 𝒊 ← 0 to length(bins) do:

 For 𝒊 ← 0 to length(array) do:

 If bins[i] ≤ X < bins[i+1]:

 P[X] = persistance

End

24

To be able to get consistent results for spatial analysis, all turbine outputs are concatenated,

processed with ramp extraction method and Rainflow Analysis; then persistence values are parted

accordingly to corresponding turbines.

Table 2.6 Persistence values for events in Table 2.1

 Event ∆𝒘𝒔 ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔) 𝑷(∆𝒘𝒔) 𝑷(∆𝒕) 𝑷(𝛂(∆𝒘𝒔)) 𝑷(𝐦𝐞𝐚𝐧(∆𝒘𝒔))

1 -0.044 1 -23.557 0.143 3058 24948 1467 848

2 0.076 5 8.600 0.167 3934 2033 498 853

3 0.046 1 24.512 0.182 3047 24948 1527 926

4 -0.141 7 -11.373 0.135 2211 388 706 852

5 0.082 6 7.744 0.105 3934 884 353 676

6 -0.058 4 -8.306 0.117 4735 4581 590 759

Table 2.7 Persistence values for events in Table 2.4 Details of Rainflow cycles extracted from the small

sample of the data

Event ∆𝒘𝒔(𝒕) ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔) Cycle 𝑷(∆𝒘𝒔) 𝑷(∆𝒕) 𝑷(𝛂(∆𝒘𝒔)) 𝑷(𝐦𝐞𝐚𝐧(∆𝒘𝒔))
Total
Cycle

1 -0.0436 1 -23.557 0.1434 0.5 3058 24948 1467 848 10.5

2 0.0756 5 8.597 0.1678 0.5 3934 2033 498 853 1

3 0.0456 1 24.5129 0.1828 1 3047 24948 1527 926 1.5

4 -0.1408 7 -11.372 0.1352 1 2211 388 706 852 1

5 0.0816 6 7.74471 0.1056 0.5 3934 884 353 676 0.5

6 -0.0584 4 -8.3065 0.1172 0.5 4735 4581 590 759 2

25

3 SCENARIO GENERATION

In this section, we will focus on the generation of forecasts, probabilistic models and scenario

generation depending on them.

3.1 Artificial neural networks(ANNs)

In the first section, the primary explanation about ANNs will take place. In this section, the basics

of ANN will be introduced. The contribution of ANN to this work will be evaluated.

Starting from the second section, recurrent neural networks, capsule networks and generative

adversarial networks will be briefly explained for forecasting, and the contribution of these

architectures to this work will be explained.

3.1.1 Basics with ANNs

To be able to explain what an ANN is, we should introduce some concepts first. Then we will

progress towards ANN. As the most basic definition, ANNs are biologically inspired networks that

mimic the human brain. The smallest sub-unit in the human brain is a neuron. In the ANN

terminology, those are called as perceptrons. In the following sub-section the smallest sub-units of

networks will be explained and after that will have a better understanding of how ANN works and

why those are powerful and robust structures.

Perceptrons

Perceptron (as shown in Figure 3.1) is one of the artificial neuron models as already mentioned. In

this part, the perceptron will be explained as an idea, and the mathematics behind will be studied.

Figure 3.1 The representation of perceptron (Nielsen, 2015).

26

The working mechanism of a perceptron is quite simple, it takes inputs and produces output. Input

and output are in binary form. Weights 𝑤𝑖 is used to express the output. Sum of the multiplied

inputs by their weights give a result to determine the output as explained in Equation (3.1) (Nielsen,

2015). We can see that perceptron is able to make a decision based on our defined threshold. If the

result is bigger than the threshold, then the perceptron gives out a 1.

𝑜𝑢𝑡𝑝𝑢𝑡 =

{

 0 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑗

1 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑗 }

 (3.1)

𝑤. 𝑥 =∑ 𝑤𝑗𝑥𝑗
𝑗

 (3.2)

 𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 𝑤. 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓𝑤. 𝑥 + 𝑏 > 0

} (3.3)

Where w is a vectorial representation of the weight,

x is a vectorial representation of the input,

b is bias and 𝑏 ≡ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

Perceptrons can be used as an elementary function. For instance, if there is a perceptron which has

two inputs and one output. Both inputs has one value, the given weights are -2, and the bias value

is 3. The output value is going to be (−2) ∗ 1 + (−2) ∗ 1 + 3 = −1. Since -1 is smaller than 0

output value of the perceptron is going to be 0. In this case, our perceptron behaves as NAND logic

gate. It is also possible to program the perceptrons as AND, OR gate. NAND gates are used

universally for computations. Hence a perceptron can be a universal computation unit(Nielsen,

2015).

Sigmoid Neurons

In most cases, we want the change in the output of the network to be in accordance with the change

in the weights or bias. The problem with perceptrons is that when there is a change in a weight or

bias, it might affect the entire result, even to a point where correct outputs become incorrect. There

is another model of neuron that overcomes this problem and allows us to change weights and bias

effectively so that its output changes but does not cause dramatic changes in entire output. They

function similarly with perceptrons. This small change in the behaviour of the neuron makes quite

a difference in the network, gives it a chance to learn better.

27

Let’s assume that presented neuron in Figure 3.1 is sigmoid neuron. Sigmoid neuron also has inputs,

weights, bias, and output. The only thing is that the input of the sigmoid neuron can get any values

in a range of 0 to 1. Since the input not binary, the output gets calculated by using Equation (3.4)

by using a sigmoid function which is given in Equation (3.5).

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎(𝑤. 𝑥 + 𝑏) (3.4)

𝜎(𝑧) ≡
1

1 + 𝑒−𝑧
 (3.5)

If we use Equation (3.5) in Equation(3.4), the Equation (3.6) will give the output of a sigmoid neuron.

𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1 + exp (−∑ 𝑤𝑗𝑥𝑗 − 𝑏𝑗)
 (3.6)

3.1.2 Neural network architecture

Perceptrons can be connected as layers to each other as shown in Figure 3.2. The leftmost layer is

called input layer that corresponds to inputs. In the middle, we have a hidden layer. The reason for

calling it as the hidden layer is because while the information just passes on it, there is no “real

world” meaning for humans to comprehend. There might be several hidden layers depending on

the application. The rightmost layer is output layer which makes decisions. This concept is called

multilayer perceptrons (MLPs).

This concept takes the input from the first layer and passes on to the hidden layer, and finally to

the output layer which makes the decision as mentioned. This kind of straight network is called a

feed-forward network. There is no connection between neurons in the same layer, and the

information always goes straight. However, some networks have neurons which are connected to

each other in the same layers, and those are called as recurrent neural networks (RNNs). Since in

our task we use RNN type network, it is explained in the next section.

28

Figure 3.2 Multilayer perceptrons

Assume that we have an input in a 25-by-25 matrix. Then the hidden layer consists of 25𝑥25 = 625

neurons. If we have complex tasks, then we can use more hidden layers. If there are many neurons

in a layer, it makes the network memory greater, but if there are many layers, then it makes the

network more powerful.

Gradient descent

Gradient descent is an optimisation algorithm used to find the values of parameters (coefficients)

of a function (f) that minimises a cost function (cost). Gradient descent is best used when the

parameters cannot be calculated analytically (e.g. using linear algebra) and must be searched for

by an optimisation algorithm.

Gradient descent is an optimisation algorithm that used to find the parameters that are not linear.

Gradient descent aims to minimise the cost function. To achieve that, it finds values of parameters

of a function y. With the help of this function, the cost function gets minimised. After minimisation

of the cost function, weights and biases of the network get updated and generate a better pattern.

Therefore gradient descent is the essential parameter in a network. Let’s say that y(x) the desired

output of a network where x represents inputs of the network. The cost function can be written as

shown in Equation (3.7).

𝐶(𝑤, 𝑏) ≡
1

2𝑛
∑‖𝑦(𝑥) − 𝑎‖2

𝑥

 (3.7)

 Where w represents all the weights in network,

 b all biases,

29

 n total number of inputs,

 x is the input vector of the network,

 a is the output vector of the network,

 C is the quadratic cost function of mean squared error (MSE).

Since 𝑎 = 𝑤. 𝑥 + 𝑏, the output value of the network depends on the weight and bias factor on the

independent value of the input, if we find the correct values of weight and bias parameters, our

output value of the network will be equal to the input value. Once we get this stage, see Equation

(3.7), ‖𝑦(𝑥) − 𝑎‖ part of the function will be zero, but in reality, it is hardly possible to get it equal

to zero. Therefore, cost function tries to minimize it. During this training phase, updating the

weights and biases with the reaction of the algorithm helps to make the cost function get closer to

zero. When the cost function is closer to zero, then the system will take the weights and biases as

learned parameters and use for the test data or predict/classify the inputs (Nielsen, 2015).

For the further information about how gradient works let’s keep the function simple and call it as

𝑣 and cost function 𝐶(𝑣) instead of 𝐶(𝑤, 𝑏). Assume that 𝑣 changes small amount ∆𝑣, in the 𝑣

direction. This small change will affect the cost function as shown in Equation (3.8), and gradient of

cost function can be expressed as shown in Equation (3.9).

∆𝐶 ≈
𝜕𝐶

𝜕𝑣
∆𝑣 (3.8)

∇𝐶 ≡ (
𝜕𝐶

𝜕𝑣
∆𝑣)

𝑇

 (3.9)

 Where ∇𝐶 is the gradient vector,

 T is the transpose operation.

∆𝐶 can be written as shown in Equation (3.10).

∆𝐶 ≈ ∇𝐶. ∆𝑣 (3.10)

30

3.2 Recurrent neural networks (RNNs)

RNNs might be less potent than feed-forward networks but they are applicable in some cases which

require communication between each neuron as it is in our task.

3.2.1 Forecasting with Long-short term memory (LSTM)

LSTM is a specified RNN architecture, and it is one of the most applicable networks for forecast time

series. RNN is possibly the closest network that mimics the human brain. As it can be understood

from the term “long-short”, the aim of this network is to model temporal sequences and their long-

term dependencies. LSTM uses stochastic gradient descent as an optimisation tool. The reason

behind RNN outperforms than feed-forward networks is it contains cyclic connections. Thanks to

these connections it is easier to model sequence data (Beaufays, Sak, & Senior, 2014).

Figure 3.3 One cell LSTM memory block (Graves et al., 2009)

An LSTM type hidden layer has subnets that are recurrently connected as shown in Figure 3.3. These

subnets have a set of cells whose activation is controlled by an input gate, forget gate and output

gate. Gates affect the cells ability to store and access information for a long term. What it means is

that when an input is absent, the input gate stays closed, and there is no overwriting on the

activation cell. Cell activation is available as long as output gate stays open, and forget gate switches

on and off the recurrent connection of the cell (Graves et al., 2009).

The architecture of LSTM that we used in this thesis work is deep LSTM (DLSTM) which has two

LSTM in the architecture. As it can be seen in representation below, each LSTM forwards its output

to next step and takes it as input to itself too.

31

𝐼𝑁𝑃𝑈𝑇 → 𝐿𝑆𝑇𝑀↶ ⟶ 𝐿𝑆𝑇𝑀↶ ⟶𝑂𝑈𝑇𝑃𝑈𝑇

As an architecture, this can be considered as a feed-forward network. Within this configuration,

networks can learn parameters from input at different time scales (Hermans & Schrauwen, 2013).

Keras (Keras) is used for this task.

(Pascanu et al., 2013)

We implemented a simple LSTM network with two LSTM layers and a fully connected output layer.

The outputs in Figure 3.4, Figure 3.5 and Figure 3.6 shows forecasts for

∆𝒘𝒔, ∆𝒕 and 𝛂(∆𝒘𝒔) which are the most important features of events. The forecasts are following

the real inputs behaviour which we concluded that this structure was satisfactory for this work.

Many adjustments can be made for this network. The number of iterations, the number of epochs,

the number of layers and the neuron size in the layers, batch size, a different kind of activation

function and a different kind of an optimiser, adding a classifier that would make it a supervised

machine learning structure are few of the many.

Figure 3.4 Forecast with LSTM for time ranges

32

Figure 3.5 Forecast with LSTM for changes in amplitude

Figure 3.6 Forecast with LSTM for the angle of events

33

3.3 Forecasting with Generative adversarial network (GAN)

The generative adversarial network consists of two networks, generative one and discriminator

one. These two networks compete, one tries to overcome the other one. Therefore, it is called

adversarial. It is proposed by (Goodfellow et al., 2014).

Figure 3.7 GAN working principle (Chen et al., 2018)

According to (Goodfellow et al., 2014) GAN’s generator model uses an adversarial process. Both

networks get trained at the same time. Data distribution is captured by the generator model, and

the discriminator model estimates the data whether it came from the generator model or the

historical data. Training procedure of the generator network aims to maximise the probability of

discriminator to make a mistake.

Backpropagation (Rumelhart, Hinton, & Williams, 1986) method can be used while training the

entire system. Dropout (Srivastava et al. , 2014) took place to prevent overfitting and to memorise

the data in the network.

In this network, the generator produces as good made up data as it can, then sends it to the

discriminator. While generator expects discriminator to accept it, discriminator defines the data

either it comes from historical data or discriminator. In this game, if discriminator does not accept

the data which comes from the generator, then the generator gets feedback to produce better fake

data. This competition allows both networks to readjust themselves. At one point, it gets harder for

the discriminator to predict, and the generator to generate better. In this stage, we get a model

which is very close the real dataset which discriminator does not understand if it is real or fake.

34

Since this network is compatible with many artificial intelligence tasks and scenario generation is

one of these tasks, it makes this system applicable to our task. It helps to create a model which can

apply scenario generation. Therefore, this network will be using for the scenario generation task.

Both networks use a type of ANN which is called multilayer perceptron (MLP). This concept is

explained in the previous section. Both networks uses backpropagation and dropout methods while

training. For the sample which comes from the generative model is used forward propagation

(Goodfellow et al., 2014).

After training the network for 500 iterations which are quite low for a network to converge, the

discriminator loss (Figure 3.9) diverges from a meaningful value. Even though it can be seen in

Figure 3.8 that the probabilistic distribution functions of generated and real samples seem close,

generated values were too far away from the real values. Either this network needs to be deeper

with more layers which is a complicated task, or it is not suitable for our data.

Figure 3.8 Distribution functions of the generator(blue) and the discriminator(orange)

35

Algorithm 1 GAN minibatch stochastic gradient descent training

Input: k is a hyperparameter which identifies the number of steps that will be applied to the discriminator, and it is
defined as k=1.

 for number of training iterations do

 for k steps do

 Sample minibatch if m noise samples {𝑧(1), … , 𝑧(𝑚} from noise prior 𝑝𝑔(𝑧),

 Sample minibatch of m examples {𝑥(1), … , 𝑥(𝑚} from data generating a distribution 𝑝𝑑𝑎𝑡𝑎(𝑥).

 Update the discriminator by increasing its stochastic gradient:

 ∇𝜃𝑑
1

𝑚
∑ [𝑙𝑜𝑔𝐷(𝑥(𝑖)) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))]𝑚
𝑖=1 .

 end for

 Sample minibatch if m noise samples {𝑧(1), … , 𝑧(𝑚} from noise prior 𝑝𝑔(𝑧),

 Update the generator by decreasing its stochastic gradient:

 ∇𝜃𝑔
1

𝑚
∑ log (1 − 𝐷(𝐺(𝑧(𝑖))))𝑚
𝑖=1

 end for

Figure 3.9 Discriminator loss

36

3.4 Scenarios with Monte Carlo Markov Chains(MCMC)

3.4.1 Markov Chains

A first-order Markov chain is the realization of the stochastic process in the discrete data x where

every discrete point is attained to a discrete state value S=1,...,m. Here, the state of the process

depends only on the previous state and a conditional probability.

3.4.2 Spatial Markov

A shapefile in Figure 3.10 is made with 17 random turbines chosen from Paldiski wind farm using

the open source geographic information system, QGIS. A commonly-used type of weights is Queen-

contiguity weights, which reflects adjacency relationships as a binary indicator variable denoting

whether or not a polygon shares an edge or a vertex with another polygon. These weights are

symmetric. The neighbouring relationships are shown in Figure 3.11.

Spatial Markov can show the correlations between the features of the events we extracted. Most

importantly, it can help show the correlations between turbine locations and can be used for long

and short-term probabilistic scenario generations for different turbines. We implemented LISA

Markov which is based on Moran’s I and show the transition probabilities while placing each areas

behaviour into quantiles based on whether they behave similarly to their neighbours or not,and a

basic spatial Markov which can show the relationship between the global and regional relationships

of transition dynamics(Pysal, n.d.).

Figure 3.10 Representation of areas defined for each turbine in the shapefile used in spatial analysis with
corresponding numbers

37

Figure 3.11 Neighbouring relationships based on weights with Queen principal

38

4 CONCLUSIONS

We have improved the wind ramping behaviour analysis by introducing new indicators for events.

We introduced forecasting events with extracted indicators rather than raw data. The advantage

here is that there is more meaning in the forecasts we generate from the point of significant ramp

events rather than small fluctuations in the generation, which was our thesis goal.

4.1 Future work

As a possible future implementation, Capsule networks could be added to the structure of GAN to

make it able to converge with a smaller amount of data. Also, features can clustered in a

multidimensional way and scenarios can be generated using a GAN architecture that includes a

classifier discriminator that would draw its classes from these clusters.

4.2 Summary

In the first chapter, we introduced the main idea and the motivation behind this thesis work. Thesis’

task definition is clarified, and the goal is specified as well. Overviewed of the literature, which has

already become a milestone in this field, and previous researcher related to this thesis task. In the

overview part, we explained the essential concepts and methods which are related to the topic.

Based on the defined tasks in the first chapter and drawn boundaries, after introducing our data,

we filtered it from smaller fluctuations using cubic B-spline polynomials and Fourier transform.

After smoothing our data, we defined what a significant ramp event is and what the features we

will extract. We also introduced an alternative method that can be used for event extraction which

is called Rainflow counting that is typically used for fatigue analysis. These extracted features are

used for further analysis which was explained and methods were built up as we went further. After

event extraction, we defined a new indicator called persistence, and we calculated them according

to the event parameters. At the very end of this chapter, we had a set of algorithms applied to our

data, and that enabled us to progress within the next chapters.

39

Explanation of the concept, NNs took place in the third chapter with its boundaries and specific

parameters. The result of this chapter is going to get the finalised algorithm to progress with

experimentation section.

In the fourth chapter, our chosen type of Neural Networks(NN), a GAN (Chen et al., 2018) and a

common Long Short Term Memory(LSTM) were tested to develop our forecast. LSTM model

performed better than GAN for now. After generation of forecasts, we proposed to use a

multivariate MCMC, to generate a set of possible scenarios.

In the concluding chapter, future works will be mentioned based on what more could be done

within the scope of this thesis work. “What could be better?” and “How to make it more efficient?”

are going the be answered in this part of the research.

Moreover, of course, the summary is another must at the very the end of this thesis.

40

5 BIBLIOGRAPHY

Agarwal, P., Singh, S. P., & Pandey, V. kumar. (2014). Mathematical analysis of blackman

window function in fractional Fourier transform domain. In 2014 International Conference on

Medical Imaging, m-Health and Emerging Communication Systems (MedCom) (pp. 120–125).

https://doi.org/10.1109/MedCom.2014.7005988

Beaufays, F., Sak, H., & Senior, A. (2014). Long Short-Term Memory Recurrent Neural Network

Architectures for Large Scale Acoustic Modeling Has. Interspeech, (September), 338–342.

https://doi.org/arXiv:1402.1128

Bianco, L., Djalalova, I. V., Wilczak, J. M., Cline, J., Calvert, S., Konopleva-Akish, E., … Freedman,

J. (2016). A Wind Energy Ramp Tool and Metric for Measuring the Skill of Numerical Weather

Prediction Models. Weather and Forecasting, 31(4), 1137–1156.

https://doi.org/10.1175/WAF-D-15-0144.1

Bossavy, A., Girard, R., & Kariniotakis, G. (2013). Forecasting ramps of wind power production

with numerical weather prediction ensembles. Wind Energy, 16(1), 51–63.

Bossavy, A., Girard, R., Kariniotakis, G., & Antipolis, S. (2013). A novel methodology for

comparison of different wind power ramp characterization approaches. In EWEA 2013 -

European Wind Energy Association annual event (pp. 4–7). https://doi.org//10.1002/we.526

Chen, Y., Wang, Y., Kirschen, D., & Zhang, B. (2018). Model-Free Renewable Scenario

Generation Using Generative Adversarial Networks. IEEE Transactions on Power Systems,

33(3), 3265–3275. https://doi.org/10.1109/TPWRS.2018.2794541

Cui, M., Ke, D., Sun, Y., Gan, D., Zhang, J., & Hodge, B. (2015). A scenario generation method

for wind power ramp events forecasting. In 2015 IEEE Power & Energy Society General

Meeting (pp. 1–5). https://doi.org/10.1109/PESGM.2015.7285818

Cui, M., Zhang, J., Florita, A. R., Hodge, B. M., Ke, D., & Sun, Y. (2016). An optimized swinging

door algorithm for identifying wind ramping events. IEEE Transactions on Sustainable Energy,

7(1), 150–162. https://doi.org/10.1109/TSTE.2015.2477244

Downing, S., & Socie, D. F. (1982). Simple rainflow counting algorithms. International Journal

of Fatigue, 4(1), 31--40. https://doi.org/10.1016/0142-1123(82)90018-4

41

European Commission. (n.d.). 2020 Energy strategy. Retrieved May 25, 2018, from

https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2020-energy-

strategy

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y.

(2014). Generative Adversarial Networks, 1–9.

https://doi.org/10.1001/jamainternmed.2016.8245

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A

novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(5), 855–868.

https://doi.org/10.1109/TPAMI.2008.137

Hermans, M., & Schrauwen, B. (2013). Training and Analyzing Deep Recurrent Neural

Networks. Nips, 190–198.

Jennifer Rinker. (n.d.). Rainflow cycle counting. Retrieved February 10, 2018, from

https://gist.github.com/jennirinker/688a917ccb7a9c14e78f

Karatepe, S., & Corscadden, K. W. (2013). Wind Speed Estimation: Incorporating Seasonal Data

Using Markov Chain Models. ISRN Renewable Energy, 2013, 1–9.

https://doi.org/10.1155/2013/657437

Kaut, M. (2014). A copula-based heuristic for scenario generation. Computational

Management Science, 11(4), 503–516. https://doi.org/10.1007/s10287-013-0184-4

Keras. (n.d.).

McClellan, J. H., Schafer, R. W., & Yoder, M. A. (2003). Signal Processing First.

Mishra, S., Leinakse, M., & Palu, I. (2017). Wind power variation identification using ramping

behavior analysis. In Energy Procedia (Vol. 141, pp. 565–571). Elsevier B.V.

https://doi.org/10.1016/j.egypro.2017.11.075

Nelja Energia. (n.d.). Paldiski wind farm. Retrieved May 7, 2018, from

https://www.4energia.ee/en/projects/pakri-wind-park

Nielsen, A. M. (2015). Neural Networks and Deep Learning. Determination Press.

42

Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to Construct Deep Recurrent

Neural Networks, 1–13.

Prautzsch, H., Boehm, W., & Paluszny, M. (2002). Bézier and B-Spline Techniques.

https://doi.org/10.1007/978-3-662-04919-8

Pysal. (n.d.). Spatial Dynamics. Retrieved May 20, 2018, from

http://pysal.readthedocs.io/en/latest/users/tutorials/dynamics.html

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323, 533.

Scipy.org. (n.d.). Blackman window. Retrieved May 25, 2018, from

https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.signal.blackman.html

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A

Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning

Research, 15, 1929–1958. https://doi.org/10.1214/12-AOS1000

U.S.NRC. (2015). Capacity factor. Retrieved May 7, 2018, from http://www.nrc.gov/reading-

rm/basic-ref/glossary/capacity-factor-net.html

