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1 Introduction

1.1 Background

The production, distribution, and utilisation of electricity are undergoing significant
changes. Due to the growing concerns about global climate issues, the European Union
(EU) has been promoting sustainable development in the energy sector. Since the
introduction of the Renewable Energy Directive [1], the share of renewable energy
sources (RES) in gross final energy consumption at the EU level has increased from 12.5%
in 2010 to 23% in 2022 [2]. In Estonia, the share of RES in gross final energy consumption
increased from 24.6% to 38.5% during the same period [3]. Initially, the Renewable
Energy Directive had set the target of meeting 32% of overall energy needs with
renewable energy by 2030. However, due to the rapid pace of clean energy transition,
the target was increased in 2018 to 42.5% [4]. Furthermore, an ambitious goal has been
set by the European Green Deal for Europe to become the world’s first climate-neutral
continent by 2050 [5].

The regulatory pressure to shift towards sustainable energy production has resulted
in increasingly more Variable Renewable Energy (VRE) sources, such as wind and solar,
being integrated into power. However, unlike traditional power sources, the generation
of VREs is uncontrollable, stochastic, and challenging to predict. As a result of the growing
employment of VREs, the grid operators face increasingly significant challenges to
preserve grid stability as they must constantly balance energy supply and demand in
order [6]. Absence of flexibility in a power network is characterised by fluctuations in
voltage [7], [8], [9], frequency [10], and electricity price [11]. To address this challenge,
additional innovative solutions are required, such as the utilisation of aggregated energy
flexibility from energy storage systems, flexible loads [12], and demand response
programs [13]. Grid-scale battery energy storage systems (BESS) play a crucial role in
maintaining grid stability by offering ancillary services like frequency regulation, voltage
management, and relieving congestion. Recent studies [Paper VI] on integrating BESS in
the Baltic region have shown their capacity to improve power system flexibility, optimise
energy distribution, and facilitate the incorporation of renewable energy sources.
Leveraging these solutions would allow grid operators to supply energy efficiently and
reliably while reducing the power sector’s carbon footprint. However, it is challenging to
supply more than 30% of annual demand using VRE at the present levels of energy
flexibility [14].

The sources of energy flexibility may be roughly classified into two main categories:
demand-side and supply-side flexibility [15]. Traditionally, power balance has been
controlled from the supply side by modifying the output of power plants to adapt to
variations in demand. Supply-side flexibility can be obtained by integrating power
production units with varying response times into the power grid.

Demand-side flexibility sources include controllable loads in residential [16],
commercial [17], and industrial [18] settings. Flexibility sources in residential buildings
include appliances like electric heating systems, water heaters, refrigerators, dishwashers,
washing machines, battery storage systems, and electric cars that may be controlled to
some degree while still preserving user comfort. In commercial buildings, the heating,
ventilation, and air conditioning system (HVAC) and lighting are significant consumers
that account for around 74% of the electricity consumption [19]. These systems can be a
good source of energy flexibility as they can be controlled within the regulatory bounds
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set for workers’ well-being. Sources of flexibility in industrial loads are case-specific;
for example, cold storage can be used as a source of flexibility in the food or fishing
industry [18].

Due to the small scale of individual households, they may not provide enough
flexibility to contribute to grid improvements or to participate in energy markets alone.
Therefore, aggregation is necessary to build up a portfolio of smaller controllable loads
that act as a more sizeable entity [Paper Il]. Aggregators act as intermediaries between
end-users and system operators, offering their combined flexibility to various energy
markets such as wholesale, reserve, and ancillary.

At present, changes within households are occurring at a rapid pace; they are evolving
into prosumers and forming communities that display similar behavioural patterns based
on their geographical locations. A study [20] assessing the flexibility potential in Northern
Europe, which includes Sweden, Denmark, Norway, Finland, Estonia, Latvia, and Lithuania,
estimated it to be between 12 and 23 GW, or 15 to 30% of the region’s peak consumption,
thus highlighting the significance of this issue. Consequently, the flexibility potential of
community microgrids in Northern Europe (hereafter: CMGs), comprising households as
well as businesses and services, ranges from 8 to 19 GW, with households accounting for
3 to 13 GW of that total. Research indicates [Paper V] that local energy communities can
enhance their economic performance by over 10% by functioning as aggregators and
delivering grid services directly to system operators.

1.2 Motivation

The existing electrical grids have been designed with a large focus on centralised power
generation. However, grid management has become more challenging with the growing
use of renewable distributed energy resources. To address these challenges, one
potential solution is to utilise demand-side energy flexibility. Unfortunately, residential
demand-side energy flexibility has not been fully utilised, as individual prosumers cannot
provide enough capacity. An aggregator is required to manage demand-side energy
flexibility. However, aggregators must use an appropriate quantification method to make
informed decisions about utilising prosumers’ energy flexibility in their portfolios.
Therefore, this research was motivated by the current topical direction of research of
developing appropriate methods for assessing the quantity of aggregated energy
flexibility of residential electricity consumers. This PhD thesis aims to contribute to the
existing literature by proposing a novel quantification method for aggregated energy
flexibility based on the relationship between flexible power and the duration its
activation can be sustained. The flexibility curves offer crucial insights for aggregators to
make informed decisions about utilising their portfolios.

1.3 Aims, hypothesis, and research tasks

The main aim of this PhD research is to study and develop a novel method for quantifying
aggregated energy flexibility of flexible devices in residential buildings, which will allow
aggregators to gain better insights into how to utilise energy flexibility.

Hypotheses:

1. Quantifying energy flexibility using power-duration curves provides a more
accurate and practical representation of flexibility compared to single-value
metrics, offering insights into both short-term and long-term flexibility
potentials.
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2. Aggregated energy flexibility is asymmetric and non-linear, with different
capacities for increasing and decreasing power and a non-proportional
relationship between activation power and duration.

3.  Asymmetry of energy flexibility potential impacts the grid stability differently,
with demand increase showing more significant rebound effects.

4. Rebound effects in demand-side flexibility activations cause more significant
changes to the demand profile than the flexibility activations themselves.

Research tasks:

1. Analysis of definitions, sources, aggregation process, and aggregation barriers
for demand-side energy flexibility (Chapter 2).

2. Analysis of existing quantification methods of residential demand-side energy
flexibility (Chapter 3).

3. Development of a novel method that quantifies energy flexibility using
power-duration curves (Chapter 4).

4. Conducting a simulation-based case-study to illustrate the quantification
process and showcase its strengths and weaknesses (Chapter 5).

1.4 Contribution and dissemination

This research contributes to advancing the understanding of energy flexibility in
residential energy systems. The proposed methodology for quantifying flexibility through
power-duration curves offers a novel and dynamic approach that addresses significant
gaps in current methods. In contrast to static or single-value indicators, the approach
developed captures the non-linear, asymmetric, and temporal characteristics of energy
flexibility, presenting a thorough framework for both short-term and long-term
applications.

The results of this thesis have been disseminated within academic and professional
communities. Key findings have been presented at one international conference and
have been published in two peer-reviewed journals, ensuring that the methodology and
insights are accessible to a wider audience. The novelties of this thesis are as follows:

e Development of a power-duration curve approach as a new method for
quantifying energy flexibility. This method offers a detailed and dynamic
representation of flexibility over various time frames, providing a more
nuanced overview compared to single-value metrics.

e The identification of asymmetric and non-linear properties of energy
flexibility that challenge the traditional linear models of energy flexibility,
providing a more accurate and comprehensive understanding, which is
essential for improving demand response and load management strategies.

e The identification of the rebound overshoot phenomenon, where energy
consumption starts oscillating after the rebound effect, which system
operators would need to account for to maintain the balance.

This doctoral thesis was supported by the Estonian Research Council grant PSG739,
the European Commission through H2020 project Finest Twins grant No. 856602,
the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings
and Districts ZEBE, grant 2014-2020.4.01.15-0016 funded by European Regional
Development Fund, the Project “Increasing the Knowledge Intensity of Ida-Viru
Entrepreneurship” co-funded by European Union under Grant 2021-2027.6.01.23-0034,
and by European Union and Estonian Research Council via Project TEM-TA78.
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1.5 Application

Over the past ten years, there has been considerable growth in residential energy
systems in Estonia, driven by the rising adoption of renewable energy sources and
advanced energy technologies. During this timeframe, around 60 000 new residential
dwellings were built. These buildings are outfitted with various energy systems, such as
heating systems, water heaters, and sometimes battery storages, providing significant
energy flexibility opportunities. It is essential to quantify the flexibility of these systems
effectively.

The most significant energy-consuming devices in residential homes are space heaters
and water heaters, accounting for approximately 60% and 20% of total energy use,
respectively [21]. This illustrates the considerable flexibility residential loads could offer
when integrated with smart control systems. Battery storage systems, which are becoming
more prevalent in residential and commercial buildings due to their integration with
rooftop solar panels, have the capacity to provide both short-term and long-term
flexibility for maintaining grid stability.

Aggregators play a critical role in harnessing this flexibility. By pooling the flexibility
potential from separate households and commercial structures, aggregators can generate
a valuable resource for engaging in energy markets. For instance, if 50 000 residential
units each provide 0.5 kW of flexibility during a demand response event, the total
aggregated flexibility would reach 25 MW — enough to influence grid stability and the
dynamics of energy markets significantly. In the context of Estonia, the flexibility provided
by residential energy systems could greatly improve the ability to incorporate renewable
energy into the grid. With manual frequency restoration reserve (mFRR) activations
averaging 8.7 MWh during up-regulation events in 2022 [22], the possible contribution
from residential systems could account for a substantial portion of this demand.

The power-duration curve method proposed in this research offers a strong tool
for quantifying and optimising aggregated flexibility. By accounting for the dynamic,
non-linear, and asymmetric characteristics of these energy systems, the method
facilitates accurate forecasting and operational planning. It allows flexibility to be utilised
efficiently, aligning the grid’s requirements with the operational limitations of each
system. Additionally, the rebound effects and asymmetric behaviours identified in this
research emphasise the necessity for advanced methods, such as the power-duration
curve, to ensure that flexibility is utilised both effectively and sustainably.

1.6 Thesis outline

The thesis is structured into three main sections. Chapter 2 offers a comprehensive analysis
of the concept of energy flexibility, its sources, aggregation, and the challenges and barriers
faced by aggregators. Chapter 3 provides an analysis of existing quantification methods
highlighting the need for a more robust approach. In Chapter 4, a new quantification
method based on power-duration curves is proposed and explained in detail. Chapter 5
presents case studies that quantify the energy flexibility of residential space heating,
domestic water heaters, and battery systems. Finally, Chapter 6 concludes the thesis and
offers recommendations for future research topics.
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2 State of the art

As energy systems adapt to accommodate greater shares of renewable energy, the role
of demand-side flexibility has become increasingly significant. This chapter offers a
thorough examination of energy flexibility, its sources, and the challenges associated
with its aggregation. It investigates the potential of various flexible resources, such as
residential loads, battery storage, and electric vehicles, while also analysing the role of
aggregators in utilising these resources for grid stability and market participation.
The discussion highlights existing regulatory and market barriers, laying the groundwork
for the subsequent analysis of flexibility quantification methods in the following chapter.

2.1 Characterisation of energy flexibility

2.1.1 Definition of energy flexibility

The concept of energy flexibility currently lacks a universally accepted definition. Various
researchers have made efforts to define it within their respective fields of specialisation.
Some researchers define flexibility simply as “the ability to deviate from its reference
electric load profile” [23] or as “the ability to reshape consumption patterns when
interacting with the power grid” [24]. More comprehensive definitions include “DSF can
be defined as the ability to strategically alter electricity usage by consumers (either
commercial or residential) from their normal consumption profiles, by responding to
control signals from grid operators and/or financial incentives from electricity
generators/aggregators. The scope of these signals is to modulate and optimise
electricity usage and to balance electricity production and consumption” [25]. The IEA
EBC Annex 67 project ‘Energy Flexible Buildings’ [26] has compiled an overview of the
definitions of energy flexibility used by researchers in the literature, leading to the
proposal of a general definition: “The energy flexibility of a building is the ability to
manage its demand and generation according to local climate conditions, user needs, and
grid requirements. Energy flexibility of buildings will thus allow for demand-side
management/load control and thereby demand response based on the requirements of
the surrounding grids”.

2.1.2 Properties of flexibility

Flexibility services in the electrical grid refer to modifications in power generation or
consumption that occur at a designated time, last for a specified period, and take place
at a certain location within the grid. These services are characterised by several aspects,
including whether they (a) increase or decrease power (direction), (b) the capacity of
power adjustment, (c) when the adjustment begins, (d) how long it lasts, and (e) where
it happens in the grid [27], [28], [29], as shown in Figure 2.1.
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Figure 2.1. Properties of a flexibility service.

Additionally, other key attributes often discussed include how controllable and
predictable these services are, their availability over time, the timing of delivery, and the
associated costs or efficiency losses incurred by activating these services.

The directional property describes the power flow direction of flexibility
sources, distinguishing between those that consume energy and those that
generate it. Flexibility sources may be unidirectional, either purely generating
or consuming, or bidirectional, capable of both. Appliances like heat pumps,
water heaters and washing machines, which only consume energy, are
examples of purely consuming flexibility sources. Conversely, sources like PV
panels and wind turbines, which generate power, are purely generating
sources. There are also sources like battery storage systems and electric
vehicles that are capable of both consuming and generating energy, thus
classified as having bidirectional flexibility or being prosumer-capable loads.
The power capacity attribute defines the power adjustment that a flexibility
service can alter. When combined with the duration for which the flexibility
service can be activated, flexibility sources can be classified as either capacity
or energy type sources. Capacity type sources can be activated for a brief
period with high power, while energy type sources can be activated for a
longer duration but with lower power output.

The starting time property refers to the delay between receiving the
activation signal and the commencement of the flexibility service.
Furthermore, certain flexible sources may only be activated during specific
times of the day, either due to the owner’s specifications or the inherent
characteristics of the source.

The location property describes the real position of the flexibility source in
the distribution grid. For the distribution system operator (DSO), identifying
the location where flexibility is required could be crucial for resolving
congestion issues, whereas for the transmission system operator (TSO) and
balance responsive party (BRP), the location holds less significance as their
goal may simply be to balance generation and consumption [27].
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2.1.3 Flexibility function

The Flexibility Function (FF) is a more complex characterisation method that can be
employed to characterise energy flexibility controlled through penalty signals. Penalty
signals are external control signals used by flexibility sources with penalty-aware
controllers to adjust their demand. The consumer’s incentive is to minimise their
accumulated penalty. Depending on the purpose of controlling flexibility, penalty signals
can represent different properties [30], such as:

e Real-time CO: emissions from consumed energy, where the flexibility
controller aims to reduce overall carbon emissions, thus becoming emission
efficient.

e Real-time electricity prices, where the objective is to minimise the total cost
of consumption, thus achieving cost efficiency.

e Ifaconstant penalty is in place, the flexibility controller will work to minimise
total energy consumption and achieve energy efficiency.

e A penalty signal could consist of the mentioned elements combined, or it
could be designed with different goals in mind, like decreasing peak power
usage, addressing voltage and frequency issues, or managing grid congestion
[31]; in such instances, the location of the utilised flexibility is also considered
when creating a penalty signal.

P i

- AN\

\e
Penalty un-aware
N B demand
Penalty aware
demand = Flexibility
Function

Penalty signal

A
Figure 2.2. Flexibility Function depicting the expected response of energy flexible buildings.

FF was first introduced in [32] to capture the dynamic connection between the penalty
signal and a penalty-aware demand that reacts to it. Typically, energy flexibility is
characterised using static functions for specific stable states that do not account for
changes over time, so the FF aims to explain the dynamic behaviours that result from
utilising energy flexibility. It is crucial to observe the dynamics because activating energy
flexibility inherently involves deviating from normal operational set points. The FF can be
developed by analysing time-series data, simulations, or from the first principles of a
comprehensive model that encompasses constraints, occupancy behaviour, controllers,
and boundary conditions. An illustration of an FF is provided in Figure 2.2, where energy
flexibility can be characterised by the following parameters [30]:
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e 1, the time delay from when the penalty signal is adjusted to the earliest
response in demand. This delay can be caused by communication delays or,
in some instances, by extensive computation in optimisation algorithms.
Additionally, certain appliances may require time to complete their current
operations before they can be shut off.

e a,the duration for flexibility to become fully activated after the beginning of
the response. This is influenced by the reaction speed or the energy inertia
of the flexibility source.

e B, the duration for which the flexibility can be activated, which varies based
on the energy capacity of the flexibility source. For instance, well-insulated,
large, heavy buildings can have long durations, whereas smaller, poorly
insulated buildings cannot adjust their demand for significant periods.

e A, maximum demand adjustment that refers to the power capacity of the
flexibility source.

e A, the total amount of energy that the flexibility source can decrease (or
increase) in demand before reaching the constraints set by the owner of the
flexibility source. It is a crucial factor if activating flexibility requires shifting
significant energy.

e B, represents the total energy required to rebound from the deviation caused
by the previously activated flexibility. The type of flexibility source influences
this. For instance, if heating is turned off to reduce demand, it will
subsequently need to be turned on again to return to the initial temperature.
However, in the case of dimmed lighting, there is no need to increase the
brightness above normal levels afterwards; therefore, in such case, there is
no rebound.

Building 1 gyiiding 2
-~ /\/
1l K /\
/
/

by v Building 3

!
[ | I [ [ | |
0 5 10 15 20 25 30

Time (hours)

Figure 2.3. Flexibility functions of buildings with different energy inertia.

FF can be used to assess an individual or a group of flexibility sources, such as a single
building or a combination of buildings. Figure 2.3 illustrates an instance of FF for buildings
with varying thermal mass. Building 1 possesses a substantial thermal mass, resulting in
a notable rebound effect, building 2 is of medium size, and building 3 has poor insulation
and resistive heating. The combined FF of these buildings is depicted by the black line.
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2.2 Sources of energy flexibility

Buildings have great potential to be used as a source of aggregated energy flexibility.
In 2018, the building sector in the EU was responsible for about 40.3% of final energy
usage (26.1% in households and 14.2% in the service sector) [33]. Various factors influence
the energy flexibility that a building can offer [32]:

e The physical attributes of a building (including its thermal mass, insulation,
and architectural layout).

e The controllable loads within the building (such as ventilation, heating, and
storage equipment).

e The installed control systems that allow controllable loads to respond to
external signals (such as control or penalty signals based on electricity price,
emissions, etc. [34]).

e The behaviour of the building occupants and their comfort needs.

The Annex 67 project categorised building energy loads into three groups according to
their importance and the necessary conditions for adjusting or altering their consumption.

e Shiftable loads can be rescheduled to off-peak hours by using a penalty
signal. These loads can usually be rescheduled without significantly affecting
the occupant’s comfort. Shiftable loads are further categorised into shiftable
profile loads, such as washing machines, which have a fixed energy profile
but can be moved, and shiftable volume loads, such as charging devices,
which allow the energy profile to change within certain limits while meeting
the total volume over a specific time period [35].

o Non-shiftable loads, such as lighting, cooking appliances, computers, and
televisions, cannot be easily adjusted and cannot be moved, regardless of the
energy cost. This is primarily because of occupant comfort requirements.

e Other controllable loads can be regulated using optimal control methods
through thermostat adjustments, fan speed regulation, or dimming (for
example, in HVAC systems, water heaters, and non-essential lighting).

2.2.1 Residential flexible loads

The flexibility of residential loads can be defined based on the type of appliance they
are, categorised as storable, non-storable, shiftable, non-shiftable, curtailable, or
non-curtailable loads [36], [37]. This categorisation helps to deduce an appliance’s
potential to participate in demand response. Residential loads can be first grouped into
storable and non-storable loads, with non-storable loads further classified as shiftable
and non-shiftable. Additionally, non-shiftable loads can be subcategorised into curtailable
and non-curtailable loads. Non-curtailable loads, such as non-storable, non-shiftable, and
non-curtailable, are considered inflexible base loads that cannot be controlled.

e Storable loads decouple power consumption from the end-use service
through the use of batteries or thermal inertia. These types of loads store
electrical energy in a different form, such as thermal or electrochemical.
Examples of this type of load include batteries, electrical heating/cooling
(HVAC) [38], and domestic electric water heating (EWH) appliances that store
energy in a thermal mass.

e Shiftable loads can be rescheduled in time to operate earlier or later than
they should because they have temporal flexibility. It is necessary to plan
ahead for shiftable loads, as they often have a predetermined operational
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cycle that must be maintained. Some examples of shiftable loads include
washing machines, dryers, and dishwashers.

Curtailable loads cannot be shifted because of the consumers’ comfort
requirements or because there is no need to shift them, such as in the case
of room lighting. Nevertheless, curtailable loads can be stopped if consumers
are provided with enough incentives.

A summary of typical residential loads based on the aforementioned classification and
their adaptability features is provided in Table 2.1. In order to evaluate the potential for
aggregation of flexible loads, it is possible to categorise them based on whether they are
capacity or energy-based, their response direction (unidirectional upward or downward,
or bidirectional), speed of response, duration of response, availability, and predictability

[39].

The type (capacity or energy) indicates the energy-to-power ratio of the
flexible load. Flexible loads with a low ratio can deliver high power but cannot
sustain it for a long time, making them more suitable for providing short-term
flexibility services such as ancillary services. On the other hand, loads with a
high ratio can provide power for extended periods and are therefore
categorised as energy-type loads, making them better suited for longer
applications like load levelling.

The response direction determines the direction of power flow for the load.
Some may only be in one direction, either up or down, and function as either
a load or a producer, but not both. Bi-directional sources of flexibility, such
as battery storage devices, can operate as prosumers, sometimes consuming
power and other times supplying power.

The response speed at which residential flexible resources activate is typically
fast, ranging from seconds to minutes, but it also relies on the availability of
the load for flexibility usage.

The response duration is the time period for which a flexible load can
maintain its power at the maximum level in relation to its nominal power
when required. According to [39], the maximum response duration can
sometimes be calculated by dividing the allowable energy range by the
maximum power capacity (for example, for a 50 kWh battery with a 10 kW
charging/discharging power, it would be 5 hours). The response duration of
flexible loads may vary based on the technology used and consumer
behaviour.

The availability determines how often and when the flexible load is available
for activation, which varies depending on the load. Electric vehicles, for
example, are typically accessible in the evening and at night, as they are often
parked away from residential areas during the day. Conversely, wet
appliances may have limited availability, as they can only be activated at
specific times and usually once a day.

The concept of predictability refers to the accuracy of estimating the
availability of a flexible load. Certain loads, such as battery systems, can be
highly predictable, while electric vehicles (EVs) are more likely to be
accessible between 6 PM and 6 AM. On the other hand, loads like washing
machines and dishwashers are less predictable due to their usage being
limited to a few hours per week and being influenced by consumer
behaviour.
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Table 2.1. Characterisation of residential flexible loads.

Non-storable appliances

Shiftable Non-shiftable appliances
Appliance type Storable appliances appliances  Curtailable  Non-curtailable
Cooking
Heating Electric Devices and
Battery and Water Wet other ‘must-
Flexibility Electric Storage cooling Heater appliances use’ home
characteristics  Vehicles (EV) (BESS) (HVAC) (EWH) Refrigerators  and dryers Lighting devices
Interruptible Yes Yes Yes Yes Yes No?! Yes No
Capacity or . . . 2
energy type Both Both Capacity Both Capacity Capacity Depends
R
e.SPOrjse Bidirectional®*  Bidirectional Downward Downward Downward Downward Downward -
direction
Response speed Quick Quick Fast Fast Fast Moderate Quick -
Respor?se Hours Hours Minutes Hours Minutes Minutes Hours -
duration
Availability Eve:;;g]tand Always Often Often Always Rarely Evening -
Predictability High Perfect High High High Moderate Good -

! Wet appliances such as washing machines are interruptible for up to couple of minutes.

2 New efficient low-power LED lighting systems are energy type while older less-efficient lighting systems are power type.

3 With vehicle-to-grid technology EVs can respond in both directions.



2.2.2 Distributed battery storages
Compared to flexible loads that only consume energy, battery storages operate
bidirectionally as prosumer devices, offering energy flexibility by adjusting their demand
profiles. Battery storage systems are valuable for energy flexibility because they can
store electrical energy for future use.

Battery storage systems are frequently installed alongside PV systems to allow for the
self-consumption of PV power on-site [40]. Storing surplus PV energy for later use can
lessen the strain on distribution grids during peak demand periods [41] and alleviate PV
curtailment during low-demand midday hours when PVs often generate excess power
[42].

Distributed battery storages are a crucial source of energy flexibility for aggregators
due to their rapid response time, immediate availability, constant knowledge of
state-of-charge (SOC), and direct electrical energy flexibility. In contrast, flexible loads
achieve energy flexibility indirectly through control of temperature or scheduling of loads
[43].

Aggregated battery storages can serve other purposes that individual residential
owners of smaller storage systems cannot achieve:

e When the aggregated battery storage reaches a sufficient capacity, the
aggregator can utilise it to take part in the reserve markets [44]. Battery
storage is well-suited for this purpose because of its quick response time.

e  Aggregators can manage the energy distribution of battery systems within a
community through energy sharing to enhance the self-consumption of
renewable energy [45]. They can also be used for local power balancing [46]
and peak shaving [47], which helps decrease the ramping stress on traditional
power generation during periods of rapid changes in demand.

e Aggregated battery storage can offer extra support for ancillary services [48],
such as congestion management [49] on the distribution grid and black start
support [50].

2.2.3 Electric vehicles

Considerable research has been devoted to exploring the use of electric vehicles (EVs) as
sources of flexibility, given the increasing adoption of EVs. When compared to stationary
battery systems, EVs present more complex factors to consider. Their inherent mobility
can be viewed as either an advantageous feature or a disadvantage in certain situations.

The mobility aspect of electric vehicles allows them to travel between different parts
of the grid. For residential energy flexibility aggregators, this means that the vehicles may
not always be available as their owners use them to commute to various locations.
Therefore, research on residential EV energy flexibility has significantly been focused on
overnight charging [51]. The development of non-residential charging infrastructure will
be crucial for utilising daytime charging as a source of flexibility.

Most EVs are parked and not in use for approximately 22 hours a day [52], which
means they could be utilised for other purposes during that time, such as providing
demand response, ancillary services, utilising renewable energy generation on-site, and
peak shaving. However, an intermediate aggregator is needed to engage EVs in these
applications.

The primary focus of research on EV flexibility has been on determining the best
scheduling and optimisation strategies for charging to minimise costs [53], [54]. This is
often studied in the presence of renewable generation.
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Unidirectional charging isn’t the only function of EVs. When paired with smart
charging infrastructure, EVs can also offer vehicle-to-grid (V2G) capability, making them
bidirectional devices. With V2G technology, EVs can charge and discharge, essentially
serving as mobile battery systems. However, V2G must be approached with caution due
to battery degradation considerations. Offering frequency containment reserve (primary
reserve) can contribute an additional 1-2% degradation to the typical 7-12% capacity
reduction over 5 years [55]. As per [56], providing a combination of frequency containment
reserve and peak-shaving is more profitable than offering either of them individually.

The use of residential electric vehicles for frequency regulation was examined in [57]
by analysing the dynamic relationship between the battery SOC and the frequency target
in the system. In a similar study [58], it was found that the ability to regulate power
bidirectionally during the daytime was approximately one-third less than that during the
nighttime because there were fewer parked cars in the residential grid.

An analysis of the EV charging infrastructures, the main roles and participants of
markets, and the future governmental interventions required for extensive EV
advancement is provided in [59].

2.3 Demand-side flexibility aggregation

Due to the untapped potential for energy flexibility, a new market participant known as
the aggregator has appeared. The aggregators’ role involves pooling together a variety
of smaller flexibility resources to function as a larger entity, as an individual residential
or commercial customer often lacks sufficient capacity to engage in the markets
independently. Therefore, the aggregator plays a crucial role in transforming passive
residential or commercial consumers into prosumers by consolidating the energy
flexibility of their adjustable loads. The aggregator has the potential to deliver significant
benefits to power systems. As noted in [60], the aggregator can offer fundamental,
transitory, and opportunistic value. The fundamental value arises from the process of
aggregation itself, while transitory value refers to the temporary worth generated as the
power system progresses from older regulations and technologies to newer, more
advanced ones. Opportunistic value, on the other hand, emerges in response to
regulatory flaws.

2.3.1 Existing energy flexibility markets

At present, aggregators can trade flexibility in markets that have traditionally been
structured for centralised power plants. As a result, an individual residential household
cannot independently engage in these markets. Consequently, aggregators can potentially
combine the flexibility of numerous smaller producers and sell it in the markets.
The markets where flexibility can be traded currently include markets such as the
day-ahead, intra-day, and balancing reserve markets. The first two are organised by
power exchanges, such as Nord Pool or EEX, while the third is managed by regional TSOs.
A comprehensive overview of the involvement of aggregators in these markets is
provided in [61].

The day-ahead market (DAM) facilitates bidding for the purchase or sale of energy
production for the following day by the hour. Bidding typically closes at noon the day
prior to delivery. This means that for participation in the DAM, aggregators must forecast
the available flexibility at least one day in advance while accounting for reasonable
uncertainties. A significant amount of research has been conducted on how aggregated
flexibility can be utilised in DAMs [62]. Many studies in this area focus on maximising
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profits under various conditions utilising different approaches. For instance, a robust
optimisation model for an EV profit-maximising aggregator is introduced in [63],
which demonstrates that their model can reduce deviations from energy balance by
approximately 9-15% compared to stochastic models and 60-64% compared to
deterministic models. Additionally, a stochastic optimisation model was created in [64]
to establish an optimal day-ahead bidding strategy to increase an EV aggregator’s profits.
A coordination optimisation model based on marginal pricing was created in [65] using
mixed-integer linear optimisation to manage two EV aggregators. A forecasting model
utilising support vector machines was developed for aggregated smart household
flexibility in the context of the day-ahead market [66], which was further advanced in
[67] by establishing an optimal bidding strategy for load aggregators to mitigate financial
risks associated with price fluctuations. A robust optimisation model aimed at minimising
the operational costs of smart household aggregators was developed in [68], resulting in
a 5.7% cost reduction. An optimal bidding strategy for a multi-energy virtual power plant
aggregator was devised in [69], achieving approximately a 5% cost decrease. An optimal
bidding strategy for a multi-energy distributed energy resources (DER) aggregator was
formulated in [70] using stochastic mixed-integer linear programming for the day-ahead
market.

Bidding in the intra-day market (IDM) occurs on the delivery day. Participation in IDM
can utilise more precise forecast data acquired closer to the delivery time. Therefore,
for aggregators, engaging in an intra-day market may serve as a strategy to mitigate the
risks associated with inaccurate day-ahead flexibility forecasts [71]. A model for an
incentive-based demand response program was developed in [72] for involvement in
both the day-ahead and intra-day markets. The research findings indicate that
participating in the intra-day market can be financially comparable to participating in the
day-ahead market. It was noted that there is a scarcity of research concerning aggregated
flexibility provision in intra-day markets.

The balancing market aims to address frequency deviations caused by imbalance
issues or unexpected generation loss by acquiring reserve capacity [73]. The EU
Commission has set a regulatory guideline for energy balancing to standardise balancing
markets across Europe [74]. This regulation requires all EU member states to eventually
offer three types of balancing reserve products: automatic Frequency Restoration
Reserve (aFRR), manual Frequency Restoration Reserve (mFRR) — which represents
secondary and tertiary reserves — and Replacement Reserve (RR). Additionally,
the Frequency Containment Reserve (FCR), known as the primary reserve, is being
adopted voluntarily throughout Europe.

The bidding process for RR concludes 1 hour before the delivery time and 30 minutes
before the delivery for aFRR and mFRR [75]. Thus, although tapping into the reserve
markets may seem appealing to aggregators due to the minimal forecast errors
associated with near real-time operations, participation in these markets necessitates
flexible power that can be deployed rapidly. The maximum activation time required is
5 minutes for aFRR, 12.5 minutes for mFRR, and 30 minutes for RR [75]. The potential of
aggregated energy flexibility from EVs in reserve markets has been explored in [76], [77],
[78], [79], [80], [81]. Similarly to DAM publications, generally, the emphasis is on
maximising profits through optimal bidding strategies utilising various optimisation
techniques.
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2.3.2 Emerging markets for flexibility

2.3.2.1 Local flexibility markets

Local flexibility markets (LFMs) are platforms for trading electricity where flexibility
can be traded in specific geographical areas, like small towns, neighbourhoods, or
communities [82]. The models and clearing methods for local flexibility markets are
reviewed in [27], revealing that participants in LFMs may hold overlapping roles; either
the DSO or aggregator can operate the LFM, or the aggregator might also serve as its
own balance responsible party (BRP). As a result, LFMs can be tailored to accommodate
various conditions and regulatory frameworks. Additionally, the interaction between
LFMs and the balancing market must be taken into account if the TSO acquires flexibility
from the LFM through coordination with the DSO. The significance of TSO-DSO
coordination is further emphasised in [83] and [28].

One of the initial large-scale demand response demonstrations occurred within the
EcoGrid EU project [84], involving approximately 1,900 residential customers, where
real-time pricing was utilised to encourage changes in consumption. It was found that
price incentives provide the DSO with limited security since they merely encourage loads
to adjust their consumption rather than mandating it. Furthermore, pricing structures
penalise rigid loads that cannot shift or alter their consumption.

These limitations were tackled through the EcoGrid 2.0 project [85], which involved
aggregating flexible loads and trading them on a fully operational experimental LFM
under realistic conditions. In that initiative, two categories of services were established
to manage congestion in the distribution grid: capacity limitation services and baseline
flexibility services. It was demonstrated that these services can offer an additional safety
net against network overloads and outages; however, their necessity is infrequent.
Additionally, it was also pointed out that there are widespread shortcomings and
unrealistic assumptions in the literature. Clear definitions for flexibility services are rarely
provided, indicating that there are currently no well-defined standardised flexibility
products available. A similar concern was highlighted in the quantification section of this
thesis, where an excessive number of quantification parameters were observed,
underscoring the need for standardised flexibility products that would outline the
outcome parameters for quantifying flexibility to enable its sale as realistic products.

In [86], a decentralised LFM design that was introduced that accounts for demand
uncertainty alongside a right-to-use (RtU) option, enabling the DSO to reserve flexibility
that can be activated in real-time to address potential congestion with medium
likelihood. A study in [87] explored an LFM design that enables the provision of various
flexibility services at the distribution network level. In this proposed framework, the
aggregator facilitates flexibility trading within the local energy community, functioning
as a local market operator. An assessment of twenty-three distinct European LFM design
proposals for congestion management was conducted in [88]. The findings revealed that
the majority of these market design proposals do not fulfil the criteria of a “market”;
furthermore, the definitions of products, contract lengths, market clearing processes,
and matching methods showed significant variation across different designs.

2.3.2.2 Peer-to-peer trading

A novel concept of peer-to-peer (P2P) trading has emerged recently [89]. The concept of
P2P trading enables peers (prosumers and consumers) to exchange energy directly. This
promotes the local use of surplus renewable energy generated within the community.
P2P trading can serve as a means to engage end-users in energy transactions, as opposed
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to traditional capacity and balancing markets, which impose minimum capacity
requirements. However, there is no agreement on the optimal market design, such as
trading methods, clearing processes, regulatory mechanisms, or business models that
P2P trading should adopt.

Research has identified essential components and strategies in P2P energy trading by
creating a three-dimensional system framework [90]. The first dimension focuses on
enabling the seamless exchange of information among the power grid layer, ICT layer,
control layer, and business layer. The second dimension takes into account the size of
the participants, which includes premises, microgrids, cells, and regions. In the third
dimension, the temporal aspect of P2P trading is represented through the processes of
bidding, exchanging energy, and settling transactions.

There have been several real-life demonstration projects related to P2P trading [91],
including EnerChain, Electron [92], Piclo [93], SonnenCommunity [94], and Vandebron
[95]. An overview of these and additional P2P initiatives can be found in [96], [97],
and [98]. A trading platform named “Elecbay” was developed in [90] to support P2P
trading within a grid-connected LV microgrid. That study indicated that a greater variety
of energy consumers and prosumers can enhance the balance of local generation and
consumption.

In [99], three types of P2P market designs were suggested: bill sharing, mid-market
rate, and auction-based pricing methods. It was determined that with moderate PV
penetration, P2P trading could lead to a cost reduction of approximately 30% for
end-users. According to another study [100], P2P trading achieved savings of 16%,
and when combined with either centralised or decentralised battery storage, it resulted
in savings of 24% and 31%, respectively.

The study in [98] examined three distinct designs for P2P markets: a complete
P2P market design in which peers engage in direct trade with one another;
a community-based market design that involves a community manager facilitating
inter-community trading and acting as an intermediary between the community and the
broader system; and a hybrid P2P design that merges the two previous approaches,
establishing a hierarchy of various layers where peers trade directly within their own
layer. The paper concluded that the hybrid P2P market design serves as an effective
compromise, offering appropriate scalability while allowing for P2P interactions.

A hierarchical framework is proposed in [101] that facilitates peer-to-peer (P2P)
trading through smart contracts based on blockchain technology across residential,
commercial, and industrial domains. It is observed that scalability presents a challenge
for the execution of P2P trading. To tackle the scalability issue, the authors of [102]
suggested a dynamic allocation of P2P clusters that optimally aligns various load and
renewable profiles that can enhance each other. The advantage of clustering is
highlighted as the improved scalability of P2P trading with an increasing number of
participants.

A thorough review of P2P energy trading is presented in [103], highlighting key
research areas as follows: (1) the architecture of trading platforms, security assessments,
and scalability; (2) transaction mechanisms that utilise blockchain technology;
(3) modelling participant behaviour through game theory; (4) simulations to validate
the other primary subjects; (5) strategies to enhance the economic advantages for peers;
and finally, (6) algorithms that integrate the aforementioned primary topics.
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2.3.2.3 Selling energy efficiency

An alternative business model for aggregators could involve selling surplus energy
efficiency (EE) to entities that are unable to meet the legally mandated EE requirements
[104]. This is necessitated by the various emissions, environmental, and energy efficiency
regulations that generation stakeholders must follow. If the energy efficiency achieved
through the aggregated flexibility exceeds the legally required minimum, the business
model would need to monetise this surplus EE for profit. This type of demand response
(DR) business approach is commonly known as “energy savings certificates (ESC)”,
“energy efficiency credits (EEC)”, or “white tags” [105].

2.4 Barriers and challenges faced by aggregators

The EU has recognised through the Internal Electricity Market Directive [106] that in the
future, “market participants engaged in aggregation are likely to play an important role
as intermediaries between customer groups and the market”. Consequently, they have
established various regulatory guidelines [74], [106], [107] to motivate Member States
to eliminate discriminatory provisions and obstacles concerning aggregators’ access to
electricity markets and their involvement in ancillary services. Nonetheless, it is the
responsibility of each individual Member State to “choose the appropriate implementation
model and approach to governance for independent aggregation while respecting the
general principles set out in this Directive” [106].

The Clean Energy for All Europeans Package [107], issued in 2019, established new
regulations aimed at creating a more flexible and market-driven EU electricity market
that can accommodate a more significant proportion of renewable energy sources.
While it does not mandate that Member States actively support aggregation business
models, the package instead focuses on ensuring fair market conditions for aggregators,
with the expectation that once a “levelled playing field” is established, innovative
products and services will emerge [108].

The survey [109] carried out by the European Network of Transmission System
Operators for Electricity (ENTSO-E) regarding the procurement of ancillary services and
the design of electricity balancing markets reveals significant variances in market designs
across European countries. These disparities could be attributed to the historical
development of markets in these countries or arise from the mix of electricity generation;
some countries rely on fewer large, traditionally centralised producers, while others
utilise a more significant share of renewable energy in a decentralised approach.

Due to varying market designs, the obstacles for aggregators to enter the markets
differ by country. The challenges for aggregators in Denmark, France, Germany, and the
UK were evaluated in [110]. Similarly, the hurdles in Austria, Germany, and the
Netherlands were examined in [111], and the authors of [112] investigated the Belgian,
Finnish, French, and UK market barriers. Barriers preventing participation in ancillary
services within the U.S. electricity markets were also analysed in [113]. The general
obstacles that deter customers from participating in demand response programs are
discussed in [114].

A modular framework was created in [142] to evaluate the obstacles faced by
distributed energy resources (DERs) in primary and secondary reserve markets. This
framework is organised into three hierarchical modules, with the first having a more
significant influence than the second, which in turn influences the third the most.
The first module addresses “rules regarding the aggregation of DERs”, which include
technical biases against combined resources, interoperability between DSOs, and levels
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of aggregation. The second module covers barriers from “rules defining the products in
the market”, such as minimum bidding requirements, product time definitions, proximity
to real-time reservations, and product symmetry. The challenges in the third module
arise from “rules defining the payment scheme for grid services”, which involve the
payment type and additional incentives for flexibility.

The research discussed in [110] was further developed by the authors of [111] and
[112] who introduced their models to categorise the obstacles faced by DER aggregators.
According to the framework established in [111], barriers that prevent aggregators from
participating in the electricity market can primarily be divided into two categories: those
related to market access and those related to auction configuration. Market access
barriers encompass formal access requirements, administrative elements, and technical
prequalification criteria, whereas auction configuration barriers consist of bid-related
specifications, time-related factors, and remuneration issues. The framework presented
in [112] classifies barriers into three types: regulatory, technical, and economic.

According to [110], to encourage aggregator participation, the rule changes should
involve lowering the minimum bid size, adopting a more adaptable definition of the
delivery period, conducting auctions daily, and allowing the delivery of asymmetrical
products. Research of [111] indicates that flexible pooling conditions, increased bidding
frequency, improved product resolution, and the acceptance of non-precontracted bids
could facilitate the integration of DERs into the market. Additionally, the authors of [112]
suggest that the minimum bid size, bid symmetry, and product resolution significantly
influence aggregator income.

Building on previous researchers’ work, the barriers aggregators face are categorised
in this thesis into four categories: those related to the regulatory framework, market
conditions, economic challenges, and the technological aspects of aggregation. A summary
of these barriers is provided in Figure 2.4.

The regulatory framework barriers include restrictive rules prohibiting or hindering
aggregators’ operations. The organisations that create these regulations may consist of
government bodies, regulatory agencies, TSOs, and other entities with authoritative
power. Examples illustrating the origins of regulatory framework barriers may include:

o  Explicit discrimination against aggregated resources: Some rules may
explicitly favour certain players, like large industrial participants,
disadvantaging aggregated resources. TSOs and DSOs might also prefer
players connected to their specific grid region; however, aggregated
resources can include units from various parts of the grid.

e Inadequate definition of clear roles and responsibilities for market actors:
The insufficient clarity in defining the roles and responsibilities of market
participants is a significant obstacle across Europe, as it restricts free-market
competition, raises risks for all involved, and can lead to the violation of
consumer rights [115].

e Prequalification requirements: Balancing service providers must meet
specific prequalification criteria to confirm that their systems can technically
supply the necessary products. Guidelines should be established to facilitate
the aggregation of DERs; otherwise, aggregators will have to prequalify every
unit in their portfolio, undermining the purpose of aggregation, which relies
on the combined strength of smaller resources.

e Portfolio requirements: Rules might be implemented to regulate the unit mix
of aggregators’ portfolios. For instance, there could be requirements regarding
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the proportion of relatively uncertain sources such as VREs and flexible loads
compared to more reliable sources like battery storage and traditional
generation or demand.

Additional agreements: Aggregators might need to secure authorisation
from other market players. For example, the consent of a large consumer’s
energy supplier or the BRP might be necessary [111].

Market aspect barriers are challenges that arise from the market side when an
aggregator aims to offer flexible resources.

Lack of specific products for flexibility service: The guidelines for LFMs
remain undefined, which currently prevents aggregators from tapping into
this revenue source.

Incompatible product definitions of traditional services: Traditional balancing
product specifications were designed with conventional generation in mind.
Certain specifications significantly hinder the development of flexibility
aggregators; for example, the minimum bid size in many market structures is
too large for smaller aggregators to meet. The requirement for bid symmetry
limits the usable flexibility resources, as flexible load-oriented demand
response aggregators typically have greater potential for downward
regulation. Other factors that may influence the ability of aggregators to offer
flexible resources include timing considerations, such as notification period,
delivery time, and delivery length.

Market bidding and clearing frequency: In balancing markets, the frequency
of bidding and clearing directly impacts how long flexible resources must be
reserved if they need to be activated. If this frequency is low, it complicates
aggregators’ ability to accurately predict their available resources in advance,
which diminishes their confidence in participating in these balancing markets
[115].

Economic barriers refer to obstacles that affect the profitability of aggregation. Some
of these include:

Initial investment costs: In contrast to traditional plants, where expenses are
clearly defined, the costs associated with aggregation are not as easily
understood. Residential flexibility aggregators face technical expenses
related to the installation of smart metersand communication and
control technologies, which can lead to significant initial investment costs.
The minimum bid size of 10 MW or greater adds to this concern,
as aggregators must engage a substantial number of residential customers in
their portfolio before they can participate in the market and have a chance
for financial returns.

Inadequate subsidisation: Peaking power plants compete directly with
aggregated services. Providing subsidies to these plants can create an
uneven playing field since they are already well-established. Instead,
the encouragement of largely untapped energy flexibility resources offered
by aggregators should receive subsidies.

High penalisation: Maintaining a balance between production and
consumption is crucial for system reliability, so there should be penalties for
non-delivery. However, these penalties should not be excessively high to
exclude aggregated resources from markets.
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Technological implementation barriers refer to the challenges aggregators face when
carrying out aggregation.

RERGULATORY FRAMEWORK

Lacking ICT infrastructure: The successful technological implementation of
aggregation depends on having sufficient ICT infrastructure. These barriers
can be broadly categorised into sensing-related, computing-related, and
communication-related issues [116]. Comprehensive metering and data
collection are vital for assessing the availability and predicting flexible
resources. Therefore, a high penetration rate of smart meters is critical for
successful aggregation. Managing substantial data volumes also incurs
high computational costs, necessitating powerful servers. Additionally,
the communication aspect must prioritise ensuring data security and privacy.
Lack of widespread “Smart Grid Ready” devices: Home appliances must be
controllable via a data connection for the aggregation of residential energy
flexibility. Although the number of smart devices is on the rise, a significant
obstacle is the lack of standardised software needed to connect and manage
SG-ready devices.

Interoperability among DSOs: The technological implementation is also
complex from the grid perspective, as the aggregator’s portfolio may include
units from different regions managed by different DSOs. This is particularly
important for electric vehicles (EVs) that may transition from one DSO’s
region to another within the same day [110].

MARKET ASPECTS

®  lack of specific products for flexibility
service

® |ncompatible product definitions of

traditional services

Market bidding and clearing

frequency

TECHNOLOGICAL IMPLEMENTATION
®  lacking ICT infrastructure

®  lack of widespread “Smart Grid Ready”
devices

® Interoperability among DSOs

Explicit discrimination against aggregated
resources

Inadequate definition of clear roles and
responsibilities for market actors
Prequalification requirements
Portfolio requirements
Additional agreements

BARRIERS

ECONOMIC BARRIERS

® |nitial investment cost

® |nadequate subsidization
®  High penalization

Figure 2.4. Summary of barriers faced by aggregators.
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2.5 Conclusions

The state-of-the-art review highlights the growing importance of energy flexibility as
a cornerstone of modern energy systems, driven by the increasing penetration of
variable renewable energy sources and the need for improved grid stability. This chapter
explored the critical dimensions of energy flexibility, including its definitions, sources,
aggregation, and challenges, while emphasising its role in transitioning toward
sustainable and efficient energy systems.

The analysis of existing sources of energy flexibility has shown that residential
flexible loads, distributed battery storage systems, and electric vehicles offer unique
opportunities and challenges. Although flexible loads and batteries can deliver significant
flexibility, their activation is limited by physical and operational constraints. Electric
vehicles add further complexity because of their mobility and unpredictable availability.
Aggregating these resources is essential to facilitating substantial engagement in energy
markets; however, obstacles like communication infrastructure, market design, and
regulatory issues continue to exist.

While the potential benefits of energy flexibility are clear, this review also
acknowledges the barriers and challenges aggregators face. These include the technical
complexities of integrating diverse flexible loads, regulatory constraints, and market
dynamics. Emerging markets for energy flexibility offer promising opportunities, yet they
require robust frameworks and technological advancements to fully realise their
potential.

In conclusion, this chapter’s review establishes a foundation for analysing existing
quantification methods and identifying their shortcomings, which will be discussed in the
next chapter.
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3 Analysis of demand-side energy flexibility quantification
methods

To successfully incorporate demand-side flexibility into energy systems, suitable
quantification methods are necessary. This chapter provides an analysis of current
approaches for quantification, emphasising their advantages and drawbacks.
The discussion delves into how various quantification frameworks — spanning from
single-value metrics to more intricate models — represent the dynamic characteristics of
flexibility. Special emphasis is placed on the impact of asymmetry and non-linearity in
existing methodologies, setting the development of a more robust quantification method
in the following chapter.

3.1 Existing quantification methods

A brief summary of methods and frameworks for quantifying energy flexibility is provided
in Table 3.1. The evaluation encompasses the parameters, metrics, and indices used in
flexibility quantification. Flexibility quantification methods can generally be classified
based on whether they assess flexibility as a single value or as a curve or region that
illustrates the relationship between two or more variables, as well as whether symmetry
or linearity is taken into account. It was observed that when flexibility is assessed using
a singular value, it is usually measured in relation to flexible power or energy values [25],
[117], or temporal factors such as the duration that consumption can be altered [118],
or in a more conceptual way through flexibility indices that, for instance, indicate
flexibility’s capability for load covering, shifting, and scheduling [24]. Conversely, when a
curve is employed, it establishes a correlation between two parameters, such as flexible
energy and activation cost [23]. More sophisticated methods define flexibility as a region
or domain of workable operations considering factors like network constraints, ramp
rates, and others [119].

Another key element is whether the method of quantification recognises flexibility as
a non-linear and asymmetrical resource. The concept of “asymmetry” refers to the
disparity in the capacity to increase or decrease demand. In this context, the coincidence
factor plays a crucial role for loads. For example, electric water heaters exhibit a low
coincidence factor, indicating that only a small portion is in use at any one time.
Therefore, there are many more water heaters that could be activated to boost demand,
unlike the limited number of devices available to lower demand. The same principle
applies to battery systems, which are not consistently at a 50% state-of-charge to provide
equal up- and downregulation capabilities. Thus, when assessing the flexibility of an
entire portfolio, it becomes evident that there are unequal levels of flexibility available
to increase or decrease demand. It is vital for quantification methods to consider the
asymmetry of flexibility, as some markets necessitate symmetrical bids, even though the
sources of flexibility are often not symmetrical.

Linearity refers to the existence of a linear connection between two or more variables;
for instance, the relationship between power and the duration for which flexibility can
be enabled. A consideration of the non-linear nature of flexibility is crucial for providing
an accurate estimate of flexibility, as there may be a non-linear correlation between
power and duration, power and cost factors, etc. The flexibility envelope approach
outlined in [120] considers the asymmetry by offering envelopes for both upward and
downward regulation. The cost curves method discussed in [23] takes into account both
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asymmetry and non-linearity by depicting flexibility as the connection between available
flexible energy and the associated costs, represented as a curve for both demand
increases and decreases. According to the literature review, there is a shortage of
quantification methods that address both the asymmetry and non-linearity of energy
flexibility. Hence, this thesis proposes a novel quantification method that assesses the
relationship between flexible power and energy with respect to the duration of its
activation while factoring in the asymmetrical nature of non-linearity.
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Table 3.1. Overview of quantification methods for energy flexibility.

Flexibility quantified Considers
Quantification parameters, using asingle value, asymmetry,
Ref. Short description Case study metrics, indices curve, or a region non-linearity
[25] A unified framework is proposed for One building with Indices of self-consumption, Single value Asymmetry
capturing the DR potential of thermal and heat pump, PV storage capacity, storage
electrical systems system, EV, and BESS  efficiency
[24] A quantification methodology for five energy  Office building with Indices related to load covering, Single value No
flexibility indices is proposed HVAC, dimmable shifting, scheduling, moderate
lighting, EV charging regulation, and fast regulation
[121] A methodology that models flexible Office and apartment  Power and energy capacity, Single value No
resources as a virtual energy storage system  building ventilation State of Charge, self-discharge
systems rate
[117] The proposed model schedules a set of Aggregated HVACs, Flexible power Single value No
appliances and calculates the aggregated pool pumps, electric
flexibility according to the energy and water heaters
flexibility prices
[23] A methodology for computing the flexibility Office building HVAC Flexible energy and its Curve Asymmetry and
of buildings using cost curves related cost non-linearity
[119] A framework to model and characterise DER  Distributed network PQ chart of a flexible Region Asymmetry and
flexibility using the concept of nodal consisting of a BESS, operating region non-linearity
operating envelope under network load, and a generator
constraints, ramping rate, cost, etc.
[120] A methodology based on determining the Wet appliances, Flexible power and energy Region Asymmetry
flexibility envelopes of two boundaries domestic hot water
conditions when loads are activated either buffers and EVs
as early or as late in the day as possible
This The proposed method quantifies energy Aggregated residential  Flexible power and energy, Curve Asymmetry and
thesis  flexibility as a power-duration curve heat pumps duration of activation non-linearity




3.1.1 Flexibility envelope

The flexibility envelope concept is proposed in [122] to quantify energy flexibility.
This method involves determining the two extreme scenarios of operation when demand
is shifted to either as early as possible or as late as possible. The methodology for
quantifying flexibility is depicted in Figure 3.1, where flexibility is employed to (a) increase
or (b) decrease power consumption.

The lines E ¢ and E i, represent upper and lower energy boundaries that illustrate
the two extreme scenarios. The upper energy boundary is determined when all flexible
devices are set to consume as early and as much as possible. This results in high power
consumption until user comfort and system constraints are reached, such as when the
room temperature hits a specified upper limit, and the heating is turned off, or
schedulable appliances like washing machines complete their cycle and do not need to
be turned on again for a while. Similarly, the lower energy boundary is achieved when all
devices are programmed to consume as late and as little as possible. In this case,
the operation of devices is delayed until lower constraints are reached, for example,
when the domestic water heater becomes too cold, or the latest deadline for the
dishwasher to turn on is reached.
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Figure 3.1. Concept of the envelope quantification method: (a) flexible increase and (b) flexible
decrease in power consumption.

The limitations of this approach include its assumption that the system’s starting and
ending conditions are predefined. Additionally, it has been noted in [122] that this
quantitative method primarily indicates potential flexibility rather than serving as a tool
for scheduling or calculating the rebound effect.

The quantification method was employed in [123] to quantify a home's flexibility using
a rule-based controller and model predictive controller with cost-oriented, emissions-
oriented, and flexibility-oriented objectives.

The flexibility envelopes were developed further in [124] to encompass non-intrusive
load monitoring (NILM) for disaggregation of shiftable appliances from overall energy
consumption. The study findings showed that the NILM integrated quantification
method accurately identified 90% of the available energy flexibility. The overall
characterisation of energy flexibility was enhanced by 40%.
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3.1.1 Nodal operating envelope

A framework is introduced in [125] to model, describe, characterise, and quantify the
flexibility of distributed energy resources (DER) based on a nodal operating envelope
(NOE). The NOE outlines the possible operating region of a device or system under various
constraints, which allows this quantification method to assess network-compliant energy
flexibility, unlike other methods that often overlook network limitations. Utilising this
framework, the main flexibility metrics — capacity, ramp, duration, and cost — are evaluated
using features related to capability, feasibility, ramp, duration, economics, technical
aspects, and commercial factors. These flexibility features are represented in an
active-reactive power space (PQ-space). The total flexibility is calculated using Minkowski
summation across the individual DER P-Q regions.
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Figure 3.2. Nodal operating envelopes in PQ plane (capability — the combination of red and blue
regions, feasibility — blue region in NOE figure) [125]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web verions of this article).
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Figure 3.3. Ramping flexibility (OP — operational point, C — capability region, F — feasibility region,
RFE — ramping flexibility envelope, T — ramp time) [125].
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This approach differentiates between virtual and physical flexibility. Virtual flexibility
refers to the capability operation region of the DER to deliver flexibility without being
limited by network constraints encountered in actual implementation. Physical flexibility,
on the other hand, is the feasibility operation region that results when the capability
region is restricted by network and other constraints, as illustrated in Figure 3.2.

Various techno-economic aspects of distributed energy resource aggregation (DERA)
flexibility can be measured as potential operating zones by utilising other nodal operating
areas. For instance, the ramping flexibility can be quantified with contours on these
regions that display the maximum active and reactive power that can be utilised
depending on the needed ramp rate, as illustrated in Figure 3.3.

These envelopes can also be designed to quantify additional features of flexibility.
Duration flexibility indicates how long the activation of flexibility can be maintained.
Economic flexibility refers to the costs associated with activating flexibility for a given
timeframe. Technical flexibility involves the capacity to alter the current operational
state concerning time and duration limitations. Finally, commercial flexibility is essential
for engaging in the market while considering the techno-economic factors of time,
service duration, and expected clearing prices. Example envelopes illustrating these
flexibility traits can be found in [125].

3.1.2 Quantification parameters

In various studies, a consistent approach to quantifying energy flexibility is frequently
absent. Rather, flexibility is assessed through a variety of different parameters that
describe electrical, temporal, comfort, and cost aspects. The parameters utilised to
measure energy flexibility are outlined in Table 3.2. It has been noted that flexibility can
be measured across three primary dimensions: power [kW], energy [kWh], and time [h].
Depending on the specific application or context, these dimensions may illustrate entirely
different attributes; for instance, both duration and regeneration time are considered
time-related factors.

e The power dimension refers to the power capacity [kW] of flexible loads. This is
the primary factor for flexibility sources that have power regulation features,
like adjustable lighting. Parameters related to power dimension identified in the
literature include instantaneous power flexibility, maximum power, mean
power, maximal charging power, and power capacity.

e The energy [kWh] dimension is the primary factor for loads that can be stored
or flexible loads that can be shifted in volume. Various energy parameters
identified in the literature include shiftable energy, energy reduction, energy
capacity, storage capacity, and available storage capacity.

e The dimension of time [h] is crucial for measuring flexible loads that can be
scheduled or have a variable profile. For instance, the start and end times of the
washing machine, along with the length of its operational cycle. The literature
includes various time characteristics, including duration, comfort capacity,
regeneration time, comfort recovery, maximum curtailment duration, and
availability period.

In addition to the primary three dimensions for measuring flexibility, there are various
other methods to quantify flexibility using combined, relative, or alternative approaches.

e Combined parameters seek to quantify flexibility based on two variables, such
as the power shifting capability that illustrates the relationship between the
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shiftable power and the time length it can be shifted, or a cost curve that
represents the volume of shiftable energy along with its related costs.

Relative parameters quantify flexibility as a ratio of two characteristics:
self-consumption, which indicates the percentage of demand met by onsite
generation, or storage efficiency; relative peak reduction; demand response
potential; and the state of charge (SOC) of batteries.

Relative parameters quantify flexibility as a ratio of two characteristics, these
are self-consumption, which is the proportion of demand covered by onsite
generation or storage efficiency, relative peak reduction, demand response (DR)
potential, and battery SOC.

Other parameters identified in the literature include those that do not fall into
any of the above mentioned categories, such as coefficient of variation of
power, ramping rate, frequency of operation, consistency of operation, peak
time operation and a score indicating the flexibility of a system on a scale from
Oto1l.
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Table 3.2. Flexibility quantification parameters in the literature.

Type Parameter Descriptions as given in publications Ref.
Power Instantaneous power The potential power flexibility of TES and power-to-heat in any case of charging, [126]
[kW] flexibility discharging, or idle mode
The peak response after a trigger signal is sent [127]
Maximum power The corresponding mean power for the duration of an activation [127]
Mean power The EV station maximal charging power* [128]
Maximal charging power Average lighting power curtailment during the curtailable duration [129]
Average power curtailment How much power can be delivered as flexible power [130]
Power capacity
Energy Available storage capacity The amount of energy that is shifted during optimal control [126]
[kWh] The amount of energy that can be added to the storage system, without jeopardizing [131]
comfort, in the time-frame of an ADR-event and given the dynamic boundary conditions
Shiftable energy The energy content below the curve; this energy can be consumed by the pool over the [127]
period of activation
Energy reduction How much energy can be reduced during a whole day [129]
Energy capacity How much energy can be delivered during the flexibility action [130]
Storage capacity The energy that can be added to the building thermal mass during a specific DR action [132]
Time Duration The time until the electricity consumption of the activated pool falls below the level of [127]
[h] baseline operation
Regeneration time The time additional to the duration until the power consumption of the pool is back to [127]
Availability period normal [128]
Maximum curtailment The time when EV is available for flexible usage* [129]
duration The sum of time in which the curtailment is possible during a whole day [130]
Comfort capacity How long the response can be sustained before the comfort limits are reached [130]

Comfort recovery

How long the building requires to restore the nominal comfort




ov

Combined Power shifting capability The relation between the change in power and the time length that this shift can be [131]
[kW, h] maintained, considering the future boundary conditions
The amount of flexibility (shiftable energy) and its associated cost [133]
Cost curve [kWh, EUR]
Relative Self-consumption [%] Proportion of increased demand covered by onsite generation during DR action [132]
Storage efficiency [%] A measure of the energy cost associated with the specific DR action [132]
The ratio between discharging and charging events over the entire 24 h control horizon [126]
The fraction of the heat stored during the DR event that can be used subsequently to [131]
reduce the heating power needed to maintain thermal comfort
Battery SOC (%) The state-of-charge of the (EV) battery* [128]
Relative peak reduction [-] Compares the deviation from the average of the minimum lighting power profile to the [129]
reference scenario
DR potential (%) Potential power change during DR operation compared to baseline power consumption* [134]
Other Coefficient of variation of Determines whether the lighting system can provide a stable power curtailment capacity [129]
power curtailment [-] or a fluctuating capacity
Ramping rate [kW/min] How fast the building reacts [130]
Frequency of operation [0-1]  The ratio of the number of days that an appliance has been activated compared to the total [135]
number of historical days
Consistency of operation [0-1] The extent to which a user’s behaviour is deterministic or stochastic across subsequent [135]
Peak time operation [0-1] days [135]
The energy consumption during the DR timeframe across historical days using min—max
Potential score [0-1] normalisation [135]

Flexibility “score” based on the above 3 parameters

* Own descriptions based on the context of the work since the definitions were not provided in those publications



3.2 Forecasting of demand-side energy flexibility

For aggregators to engage in flexibility markets, they must evaluate the resources within
their portfolio, specifically the available aggregated energy flexibility. Considering that
contracts in flexibility markets are established prior to the actual delivery date,
aggregators need to determine the volume of flexibility they can provide and which
flexibility requests to bid on by forecasting the available flexibility in the future while
accounting for reasonable uncertainty. However, forecasting flexibility is a complex
endeavour, as it is affected by customer behaviour, consumption trends, weather
conditions, and other influencing factors, making precise modelling challenging. Artificial
intelligence (Al) is increasingly being incorporated into the management of power
systems to improve the accuracy of forecasting and optimise flexibility. Recent studies
[Paper V] have shown that predictive models powered by Al enhance demand response,
load forecasting, and the management of distributed energy resources, thereby
becoming essential tools for aggregators overseeing flexibility resources. To avoid facing
penalties for failing to deliver the appropriate amount of contracted flexibility,
aggregators also need to predict how customers will respond to flexibility activation
signals (such as price signals) to ensure that the correct volume of flexibility is indeed
activated.

There are limited publications available that focus specifically on forecasting residential
demand-side energy flexibility. The majority of research appears to concentrate more on
load forecasting [136], [137], [138], [139], which does not directly equate to flexibility
forecasting. The flexibility of data centres that participate in demand response initiatives
is assessed in [140]. The flexibility associated with virtual power plants is forecasted
through the application of machine learning techniques in [141]. The potential for
flexibility in demand response within the industrial sector is analysed in [142]. Load
forecasting related to industrial machinery is addressed in [143]. A general assessment
of flexibility potential is investigated using long-term historical data in [122], [144], [145]
or through surveys gauging customer readiness to engage in demand response programs
in [146], [147].

According to [136], having smart meter coverage of just 5% is sufficient to generate
data for accurately forecasting the flexibility of a group of aggregated customers.
Additionally, predicting the flexibility profile of an aggregated group is significantly easier
than forecasting the flexibility of individual customers because of their stochastic nature
[136], [148], [124].

An overview of the studies concentrated on flexibility forecasting is provided in
Table 3.3, where they are categorised by the type of forecasting model used:

e  Deterministic models operate under the assumption of certainty in the input
parameters, which means they rarely provide uncertainty assessments in
their predictions.

e In probabilistic models, the objective of forecasting is to represent the
distribution of potential available flexibility rather than to predict a specific
value, inherently incorporating prediction uncertainty.

e Machine learning models are utilised to analyse customer behaviour during
demand response and regular operations to assess the potentially available
flexibility.
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In existing research, various approaches have been employed for predicting flexibility,
corresponding to the initial two checkmark columns on the left in Table 3.3. For instance,
some studies focus on predicting flexibility based on a price signal, framing the
forecasting question as “What price incentive should be provided for certain hours ahead
to achieve the required amount of flexibility?” rather than “How much flexibility will be
available during specific hours in the future?”. Research utilising this method frequently
views forecasting as an optimisation challenge and often includes finding an optimal
schedule for devices.

Other approaches discussed in the literature aim to predict flexibility through real-
time simulations [149] or using historical data. Studies that employ this technique
typically seek to gather insights regarding both controllable and uncontrollable loads
from previously recorded measurements. The forecasting of flexibility related to
shiftable loads (like washing machines, tumble dryers, and dishwashers) as well as
thermostatically controlled loads (including domestic water heaters, space heating,
and HVAC systems) is most frequently addressed in the literature. In contrast, forecasts
related to storable loads, such as battery storage and residential electric vehicles,
are infrequently found in existing studies.
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Table 3.3. Flexibility forecasting models used in the literature.
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Machine Support Vector Machine (SVM) 4 v v 4 [163]
learning Suppcjvrt_Vector Data v v [164]
models Description (SVDD)
Logistic Regression v 4 4 [165]
Piecewise-linear regression 4 4 [166]




3.3 Conclusions

This chapter offers an analysis of existing methods for quantifying demand-side energy
flexibility, noting both their strengths and weaknesses. Energy flexibility is a dynamic
concept that encompasses adjusting energy consumption or generation in response to
external signals, such as market prices or grid demands. The reviewed literature
highlights the need for proper quantification methods.

Existing approaches often oversimplify flexibility’s complex and dynamic nature by
relying on static or single-value metrics. Significant progress has been made with the
development of flexible envelopes and nodal operating envelopes. These limitations
highlight the need for more advanced methodologies, such as power-duration curves,
which better capture flexible loads’ non-linear and time-dependent behaviours.
Characterising rebound effects and their implications for energy savings and grid stability
introduces a critical dimension frequently overlooked in traditional models.

The review also examined the role of flexibility forecasting. Accurately predicting
available flexibility is crucial for integrating demand-side flexibility into energy markets.
However, the literature review revealed a notable lack of publications in this field.

In summary, this chapter highlighted the limitations of existing quantification
methods and emphasised the need for a new approach that tackles the asymmetry
and non-linearity of flexibility. These insights provide the grounds for the development
of a power-duration curve method, which will be presented in the next chapter as a
more thorough and practical tool for quantifying energy flexibility.
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4 Development of energy flexibility quantification method

Building upon the insights gained in the previous chapter, this chapter introduces a
novel approach to quantifying energy flexibility using power-duration curves [Paper I].
The proposed method addresses key challenges in flexibility assessment, particularly the
non-linear and asymmetric nature of flexible loads. By mapping the relationship between
power and duration, this approach provides a more accurate and practical representation
of energy flexibility, which can be applied to various flexible loads such as space heating,
electric water heaters, and battery storage systems and various markets such as reserve
or day-ahead markets.

4.1 Flexibility power-duration curves

Energy flexibility can be perceived as a resource that can be used and replenished. It is
utilised through demand response and then restored during the subsequent rebound
effect. Figure 4.1 illustrates how various power levels and durations can decrease
demand using aggregated energy flexibility. When the maximum power of a specific
portfolio is utilised, it leads to the most significant decrease in demand but can only be
maintained for a short period. Conversely, a modest activation produces the opposite
effect. This offers insights into how energy flexibility functions as a resource — the more
itis utilised, the faster it is exhausted. To quantify aggregated energy flexibility, this thesis
proposes a new approach. The approach focuses on mapping a curve that describes the
relationship between the power and duration of potential flexibility activations.
Aggregators might obtain a more comprehensive picture of their energy flexibility
resources by employing this quantifying technique. This approach is adaptable, allowing
aggregators to participate in a variety of energy markets, each with its own requirements
regarding both the amount and the duration of deliveries. For example, only need to
activate their flexibility for a maximum of fifteen minutes in reserve markets, but
activations for day-ahead wholesale markets might extend over several hours. It is
apparent that for long-duration wholesale market activations, the aggregator would not
be able to maintain the same high-power activations as in the case of the reserve market.

Rebound
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power/duration

Flexibility
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activation
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Figure 4.1. lllustration of flexibility activations at different power levels.
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4.2 Proposed quantification method

Figure 4.2 presents an outline of the proposed quantification method. The first step
involves importing relevant data that impacts the usage of flexible devices. For space
heating, meteorological data such as outdoor ambient temperature and solar irradiance
forecasts influence the demand for heating energy. As for other flexible devices like
electric water heating units, the hot water usage profile needs to be imported.

In the second step, it is crucial to choose a suitable model for each type of device and
determine its parameters. Modelling the behaviour of devices is important to ensure that
the appliances remain within the comfort boundaries set by consumers when the
flexibility is activated. Thermostatically controlled loads (TCLs), such as a building’s
heating system or a EWH unit, can be modelled using a thermal resistive-capacitive
model.

The third step involves modelling the appliance’s business-as-usual (BaU) operation
case to determine the electrical demand profile under normal operation without flexible
activation. This step can be considered part of the baseline estimation in the quantification
process.

In the fourth step, potential flexibility can be quantified based on the demand profiles
determined in the previous step, the models of flexible devices, and the state of each
flexible device within their comfort ranges. This involves simulating flexibility activations
of devices at each time step, meaning turning devices on/off until the comfort boundaries
are reached.

In the final, fifth step, the power-duration curves can be constructed by knowing the
devices’ power and the duration that the flexibility can be activated.
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Figure 4.2. The quantification process of the proposed method.

4.3 Modelling of space heating

It is crucial to accurately model a building’s thermal behaviour in order to quantify a
heating system’s energy flexibility. This is necessary because indoor temperature must
always remain within the comfort range of the occupants. As a result, the energy required
for heating can vary from building to building, taking into account the building’s thermal
insulation and thermal mass. Some need more energy for heating, while others can go
for extended periods with the heating turned off.

This study used a Resistive-Capacitive (RC) model to model buildings’ thermal
behaviour. Unlike more detailed white-box models, the RC model is a grey-box model
that approximates building parameters related to their thermal dynamics. Similar to
electrical circuits with resistors and capacitors, the thermal RC model incorporates
different building components’ thermal capacitances and resistances (U-values).

The 3R2C thermal model used in the study consists of three thermal resistors and two
thermal capacitors. It considers the building envelope (external walls), the windows,
and the internal thermal mass (interior walls, furniture, and air) as the three primary
components of a building.
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Figure 4.3 shows the simplified thermal network design applied in this work. It shows
that the outdoor temperature T,,,; affects the indoor temperature T;, through both the
building envelope and the windows. Additionally, it assumes that the solar effect only
impacts the indoor temperature through the windows. The study also assumes that the
indoor temperature remains uniform throughout the building. The inputs, outputs, and
parameters of the thermal RC model are shown in Table 4.1.

Indoor Envelope Outdoor
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| ]
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Tin Rin T Re
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@y,
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Figure 4.3. RC thermal networks of a building.
Table 4.1. Description of Thermal Network Parameters.
Symbol Description
Inputs Tout Ambient temperature, °C
bsor Global horizontal solar irradiance, W/m?
bn Heating power, W
Outputs T; Indoor air temperature, °C
T, Envelope temperature, °C
Parameters R, Envelope thermal resistance, °C/W
Ce Envelope thermal capacitance, J/°C
Rin Inner mass thermal resistance, °C/W
Cin Inner mass thermal capacitance, ] /°C
Ry, Window thermal resistance, °C/W
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The generic heat-balance equation (3.1) can be used to create a first-order differential
equation for each node n in a thermal system with N elements:
dT, T, — T,

AL od
dt 4 R; n
IEN

Cn

(4.1)

where C, and T, represent the thermal capacitance and the temperature of node n,
respectively, R; represents the thermal resistance between two connected nodes i and
n, and @,, represents the total heat fluxes applied to node n [167].

Equation (4.1) illustrates how the number of components taken into account can
affect the complexity of a thermal RC model. By combining elements from several
architectural components — such as the roof, the construction of exterior and interior
walls, and insulating layers —a more comprehensive model may be produced. In essence,
therefore, RC thermal networks are models that can consist of different arrangements of
resistors and capacitors that represent various architectural components.

The differential equations describing the temperature of the interior mass (4.2) and
the envelope (4.3) of a building may be obtained by applying the heat-balance equation
(4.1) to the thermal RC network structure shown in Figure 4.3.

T_lT(1+1)T+1T+1 F L pd, (42)
: _RinCin ¢ RinCip  RyCin i Ry Cin out Cind)h Cind)sm w :
P ( 1 + 1 )T 1 _— 1 r w3)
e RinCe ReCe e RinCe in ReCe out .

Converting the above differential equations into difference equations (4.4) and (4.5)
allows modelling of building’s thermal behaviour for each timestep.

Te (t) - Ti(t) Ta (t) - Ti (t) Cbsol(t)Aw

R;C; R, C; G (4.4)
+ &) Q) At '
G
T,(t+1) =T, + (T"(t)R,_CTe ®, Ta(t;_CTE(t)> At (4.5)

The thermal behaviour of buildings is affected by different factors such as their size,
insulation level, construction materials, window-to-wall ratio, number of inner walls,
and more. Since these factors vary from building to building, it's important to simulate
various types of buildings when studying aggregated energy flexibility. However,
estimating the parameters of an RC model for a specific building is a complex process.
To the best knowledge of the author, there is no publicly available database that includes
the necessary number of actual building thermal network parameters for simulating
aggregated control.

Therefore, it is necessary to generate these parameters based on existing guidelines.
From Table 4.1, it can be seen that six different parameters for each building need to be
determined to model its thermal behaviour. Table 4.2 provides typical thermal network
values for residential buildings categorised by weight class. The range of values for typical
building envelopes was determined in [168] through a first-principles analysis of various
building construction materials. The standard I1SO 52016-1:2017 [169] presents typical
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values for the inner thermal mass of buildings. The weight class of a building describes
its construction materials. For example, the exterior walls of lightweight buildings consist
of stucco, insulation, and plaster/gypsum. Medium-weight buildings use brick, air space,
insulation, and gypsum, while heavy-weight buildings use brick, heavyweight concrete,
insulation, and gypsum. We assumed that the thermal resistance of windows corresponds
to that of typical double-glazed windows, while the thermal capacitance of windows is
considered negligible.

Table 4.2. Typical thermal network parameters for different types of residential buildings.

Envelope Thermal Network Parameters

2
Class R, (mvc /mz) Ce (% : mz)
Light-Weight  3.1498/A4, 76.852 - A,
Medium-Weight 3.8238/A4, 183.724- A,
Heavy-Weight 2.1917/A4, 402.102- 4,
Windows 0.8333/4,, 0
Inner Mass Thermal Network Parameters
2
Class R, (mTC /mz) C; (nlec . mz)
Medium-Weight ~ 0.13/Ag; 165+ Agy
Heavy-Weight 0.13/Ag 260 Af

Building Size Parameters
Floor Area, Ar;  uniform(50,200), m?
Building Height  uniform(5,12), m
Window-to-Wall Ratio  uniform(20,50), %

4.4 Modelling of domestic electric water heaters

In order to accurately quantify the energy flexibility of electric water heaters (EWHs),
it is necessary to develop a model that captures their thermal behaviour. This approach
guarantees that the consumer’s comfort is maintained even during flexible operation.
It is essential that the hot water temperature stays within the specific ranges mandated
by the homeowners to ensure their comfort and willingness to participate in demand
response programs.

The thermal behaviour of EWHs was modelled using an RC-thermal network.
This grey-box model loosely incorporates the parameters related to EHWs’ thermal
dynamics. Thermal RC models are analogous to electrical circuits with resistors and
capacitors, which, in this case, represent the thermal resistance and thermal capacitance
of different water tank elements.

In this thesis, a simple 1R1C model consisting of one thermal resistor and one thermal
capacitor was considered. This simple model assumes that the water temperature inside
the tank is homogeneous. Figure 4.4 illustrates the EHW model. The convective loss
through the shell of the EWH is modelled using a resistor, and the thermal mass of the
water inside the EWH is modelled using a capacitor. A current source is used to model
the heating power, and a current sink is used to represent the thermal loss through hot
water drainage, which is replaced by colder tap water.
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Figure 4.4. Thermal network model of EWHs.

The generic heat-balance equation (4.6) can be used to create a first-order differential
equation for each node n in a thermal system with N elements:
dT, T, — T,

= b
dt 4 R; n
IEN

Cn

(4.6)

where C, and T, represent the thermal capacitance and the temperature of node n,
respectively, R; represents the thermal resistance between two connected nodes i and
n, and @,, represents the total heat fluxes applied to node n.

The heat-balance equation can be applied to the thermal network in Figure 4.4 to
derive the difference equation (4.7) that describes the water temperature of EWHs.

TEWH (t + 1) = TEWH (t) + Qheat (t) - erain (t) - Qloss (t) (4'7)

where the positive heat flux from electric heating that increases the water temperature
is Qneqt (t) = Pgyy(t). The electrical heating power was assumed to scale with the tank’s
size, starting from 1.5 kW to 2.5 kW in 0.5 kW steps.

The negative heat flux from hot water drainage (4.8) that reduces the water
temperature is:

Viow () Gy (TEWH ®) — Tinfiow (f))

CoVewn

(4.8)

Qarain(t) =

where the volume of water being replaced in the tank is Vf;,, (t), the specific heat
capacity of water is C,, the volume of the water tank is Vg, and the temperature of
inflow water is Tj, 100 ().

The thermal mass of EWH units is dependent on the size of the water tanks. A total of
1000 EWH units were modelled with varying sizes of 50 L to 200 L capacity with 50 L step
(250 EWH units for each step). The specific heat capacity of water was assumed to be
4182]/(kg - °C).Theinflow water temperature was assumed to be 15 °C. The hot water
usage data was generated for each EWH using DHWCALC software that samples from
statistical distributions derived from real-world measurements of residential hot water
consumption [170].
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Table 4.3. Model parameters of EWHs.

Symbol Description
Inputs Ta Room temperature, °C
Tinfiow Inlet water temperature, °C
Prwn Heating power, W
szow Hot water consumption, L/min
Parameters U U-value of tank insulation, WK~ 1m—2
A Surface area of the water tank, m?
Cp Specific heat capacity of water, J/(kg - °C)
Vewn Volume of the water tank, L
Output Tewn Hot water temperature, °C

50 . . .
00:00 06:00 12:00 18:00 00:00

Time

Figure 4.5. Water temperature of one simulated EHW.

The negative heat flux from convective loss through the shell (4.9) that reduces the
water temperature is:

UA (TEWH ) -T, (t))
CoVewn

Quoss(t) = (4.9)
where the insulation of the shell is given with a U-value, the area of the shell is 4, and
the ambient room air temperature is T, (t). The U-value was taken as 0.66 WK™1m™2
that is typical for water tanks [171], and the water tank surface area was assumed
to be of cylindrical shape. The room ambient temperature was assumed to be 20 °C.
The parameters of the EWH model are summarised in Table 4.3.

The Business-as-Usual (BaU) operation of EWH was modelled as a typical hysteresis
on-off control that turned the heating on when the temperature dropped 1 degree below
the setpoint and turned the heating off when the temperature rose 1 degree above
the setpoint. The water temperature set points were sampled from 60 to 75 °C, with
5 °C steps to accommodate different consumer requirements. Using the model described
above, the BaU operation of EWHs was simulated. An example of the water temperature
trajectory of one simulated EHW is shown in Figure 4.5. It can be seen that during the
morning hours, there are two large drops in the temperature when people often shower
and multiple smaller drops throughout the day from faucet usage. The aggregated
electricity demand of 1000 EWHs is shown in Figure 4.6.
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Figure 4.6. Aggregated electricity demand of 1000 simulated EHWs.

4.5 Modelling of battery energy storage system

Local on-site battery energy storage systems (BESS) are bound to become another
important source of energy flexibility in future residential buildings. BESS are usually not
installed as standalone devices except for universal power supply (UPS) systems. Thus,
a combination of 1000 PV and BESS systems were modelled.

A rule-based controller was used for the BaU operation of the BESS system. The BaU
algorithm works by storing the excess PV energy during a surplus time when solar
generation is higher than consumption until the state-of-the-charge (SOC) of the battery
reaches 100%, after which the excess PV power is exported. The release of energy
happens during the solar deficit time when consumption is higher than PV production
until the SOC reaches 20%, after which the deficit energy is imported. This is a typical
residential PV and BESS system control which regulates BESS usage based on the energy
flows through the connection point and the BESS's state of charge (SOC).

The battery systems were modelled using the typical battery energy balance
equations (4.10) and (4.11).

Epgss,a(t)
Epgss(t) = Eppss(t — 1) + ucEgpss,(t) — % (4.10)
E t
soc(e) = Leess(® (4.11)
BESS max

where the energy stored within the BESS is given with Eggss(t), the energy stored or
withdrawn through charging or discharging are Epggs -(t) and Epgss 4(t), the charging
and discharging efficiencies are u. and pg4, and the capacity of the BESS is Epgss max-

The parameters of a Tesla Powerwall 2 were used for the battery system, which has
an energy capacity of 13.5 kWh, charging and discharging power of 5 kW, and charging
and discharging efficiencies of 95% (round-trip efficiency of 90%).

This simulation requires the inclusion of solar generation profiles and residential
building energy demand profiles to determine when there is an excess or a deficit of solar
generation. The PV generation profiles were taken from measurements of a 4.2 kW PV
system located in Estonia, Tallinn, on the 1% of April 2020 [172]. The demand profiles of
1000 residential buildings were generated using the “CREST domestic electricity demand
model” [173]. Figure 4.7 shows the PV production data and the generated demand
profile of one of the buildings.
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Figure 4.7. Consumption and PV generation data.

4.6 Conclusions

This chapter introduced a new method for quantifying energy flexibility through the use
of power-duration curves, offering a dynamic and scalable way to capture the key
attributes of energy flexibility. The developed approach addresses the limitations
of existing single-value metrics by considering the non-linear, time-dependent, and
asymmetric nature of flexibility. This advancement enables a more precise representation
of flexibility potential, offering valuable insights for aggregators and grid operators.

The flexibility power-duration curve method provides a framework for quantifying
flexibility in different scenarios and types of loads, such as residential heating, water
heaters, and battery storage systems. By connecting flexible power capacity with the
duration of activation, this method reflects the dynamic relationship between these
factors, making it suitable for both short-term and long-term flexibility uses. This
characteristic enhances its applicability for demand response programs, reserve markets,
and balancing services, ensuring it can meet diverse operational and market needs.

The quantification method was described step-by-step, and in the next chapter 5,
a simulation-case study is conducted to illustrate its implementation to quantify the
aggregated energy flexibility of space heating, electric water heaters, and battery
systems.
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5 Simulation case-study

This chapter presents a simulation-based case study focusing on aggregated flexibility
from mainly residential heating but also electric water heaters and battery systems to
illustrate the process of employing the proposed flexibility quantification method.
The case study demonstrates the practical application of power-duration curves and
evaluates their effectiveness in representing energy flexibility. The analysis also
considers rebound effects and their implications for demand-side management,
emphasising the need for advanced quantification techniques.

5.1 Aggregation framework

To showcase the benefits of the proposed quantification method, a simulation-based
case study was conducted to quantify the aggregated energy flexibility of 1000 buildings
using heat-pump based space heating. The aggregation framework illustrated in
Figure 5.1 can be applied to real-world scenarios, although some simplifications were
made for the sake of the simulation. The framework comprises two main components:
the aggregator and the Home Energy Management Systems (HEMS) of each building.
HEMS takes inputs from weather forecasts, heat pumps, and homeowners (step 1 of the
quantification). For simulation purposes, data from PVGIS was used, although, in reality,
ambient temperature T, and solar irradiance (GHI) would be obtained from external
cloud servers. HEMS receives indoor temperature T;, and electricity consumption P,
data via a datalink with the heat pump. Homeowners can also input their comfort
preferences by setting upper T, and lower T,,;, temperature limits for the indoor
environment.

The HEMS is designed to carry out three primary tasks: identifying the thermal
model, simulating business-as-usual scenarios, and simulating flexible operations.
First, the thermal model needs to be identified for each building in a real-world
implementation (step 2 of the quantification). However, for simulation purposes,
the RC parameters are sampled from guidelines and publications. Based on the identified
thermal model, the weather forecasts, heat pump telemetry, and the homeowners’
comfort requirements, a BaU simulation is performed to determine the baseline
behaviour without any flexibility activations (step 3 of the quantification). Once the
baseline has been established, a flexibility activation simulation is performed to estimate
the amount of time that the heating system may be turned on t,priex OF Off taounriex
until the comfort boundaries (step 4 of the quantification). Together with the baseline
power profile Pg,y, these durations are sent to the aggregator, which enables it to map
the flexibility curves.
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Figure 5.1. Overview of the aggregation framework.
5.2 Energy flexibility quantification

5.2.1 Space heating
This section will provide an example of how to use the proposed approach depicted in
Figure 4.2 to assess aggregated energy flexibility for space heating.

The initial step in the quantification method involves importing relevant meteorological
data regarding space heating. Weather data from PVGIS starting from April 2020 was
used for the simulation. This date was selected because, as Figure 5.2 illustrates,
it captures both the low outside temperature and solar heating elements that influence
the amount of indoor heating used.
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Figure 5.2. Meteorological data obtained from PVGIS [174].

In the next step of the quantification method, we model the thermal dynamics of
buildings. The study uses a simple 3R2C thermal network, but for greater accuracy,
the model can be made more complex by adding extra resistors and capacitors. Table 4.2
shows that all thermal network parameters are proportional to the floor area Af,
exterior wall area A, or window area A,,. This means that by sampling typical values for
building constructional parameters [175], [176], many different building thermal network
parameters can be generated. Buildings of different sizes, with floor areas ranging from
50 to 200 square meters, building heights of 5 to 12 meters, and window-to-wall ratios
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of 20 to 50%, were sampled from a uniform distribution. The exterior envelope area 4,
was calculated based on the floor area Ay, and building height, and the window area
capacity was derived using the generated window-to-wall ratio. By generating different
types of buildings, it is possible to simulate a portfolio that includes many different kinds
of buildings with respect to their thermal characteristics.

The initial values for the heating system’s on/off status, indoor temperature, and
building envelope were determined by running a 0-day simulation. This was done to
minimise the initial fluctuations in the simulation that result from random state
parameter initialisation. The 0-day simulation began by setting the indoor and envelope
temperatures to random values between 22 and 24 degrees Celsius, and the heating
system’s on/off state to a random value of 0 or 1. The results of the 0-day simulation
were then used as the starting point for the subsequent flexibility simulations.
The thermal heating power was assumed to be proportional to the building’s floor area
and varied between 6 kW and 12 kW. Additionally, the coefficient of performance (COP)
of the heat pump was set to be between 3 and 4, taking into account devices from
different manufacturers.

In the third step of quantification, the Business-as-Usual (BaU) scenario needs to be
simulated to determine the baseline demand without any flexibility activations.
The RC-thermal network models created in the previous step can be used to simulate
the BaU scenario. Equations (4) and (5) allow us to simulate the temperature trajectories
by knowing the initial interior temperature as well as the impacts of external elements
like solar effects and the outside ambient temperature. In the BaU scenario, it is assumed
that the target indoor temperature is set at 23 °C, with an on/off control deadband of
plus or minus 1 °C. Ten distinct building temperature trajectories are shown in Figure 5.3,
illustrating the differences in the time it takes for a building to heat up and cool down.
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Figure 5.3. Examples of 4 simulated building temperature trajectories.

Figure 5.4 displays the demand profile for the BaU case. Comparing the graph to the
ambient temperature in Figure 5.2 reveals that during the first five days of the week
when the temperature ranges from +1 °C to +5 °C, the demand for 1000 heat pump units
fluctuates between 850 kW and 1100 kW. Towards the end of the week, as the
temperature increases, there is a noticeable reduction in electricity demand.

57



—
[\
(=3
[}

1000

800

6001 .

Aggregated BaU demand, kW

Apr01 Apr02 Apr03 Apr04 Apr05 Apr06 Apr07 Apr08
Calendar Date 2020

Figure 5.4. Aggregated demand of 1000 simulated heat pumps for BaU case.

After identifying the demand profile and on-off switching of the heat pumps in the
BaU case, flexible operation is simulated. The flexibility provision is assumed to occur
within the same temperature range as the BaU scenario (22—-24 °C ). For instance, if the
ambient temperature in a building is 22.5 °C and the heat pump is turned off, activating
it allows us to raise the temperature to 24 °C. If a homeowner chooses to exceed the BaU
range and offers additional flexibility (up to 25 °C), then the duration aspect of the
house’s flexibility would be extended. The potential for flexibility in heating systems
relies on the comfort preferences of the owners and their readiness to adjust them.
In this thesis, we have established a strict requirement of a maximum deviation of +1 °C
from the setpoint.

Figure 5.5 illustrates this concept. The energy flexibility available in each building
varies based on the proximity of the indoor temperature to the temperature boundaries
at any given time. When the indoor temperature is near the upper boundary, there is
limited flexibility to increase the demand because the heating can only be turned on for
a short period. Conversely, there is more flexibility to turn off the heating. The reverse is
true when the indoor temperature is close to the lower boundary.
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Figure 5.5. Illustration of temperature trajectories with flexible activation.

In the final step of the quantification process, all buildings provide the necessary data
to the aggregator for quantifying aggregated energy flexibility. The data includes the

on-off status of the heat pumps and the durations for which heating can be turned on or
off until the temperature comfort boundaries are reached. Using this information,
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the aggregator can create two curves that describe the potential flexibility to increase or
decrease the demand, as shown in Figure 5.6. Since the aggregator does not have access
to the demand profiles, interior temperatures, or boundary levels, this method guarantees
a better level of privacy.
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Figure 5.6. Aggregated flexibility power-duration curves.

Aggregators can obtain valuable knowledge about the energy flexibility of their
portfolios and make better decisions regarding how to use that flexibility by employing
the quantification approach developed in this thesis. For example, an aggregator who is
focused on reserve markets, may be interested in activations that last up to 15 minutes.
As seen in Figure 5.6, based on the previously discussed scenario, there is potential
flexibility to increase or reduce the demand by 1200 kW and 900 kW for 15 minutes.
On the other hand, if the aggregator is focused on day-ahead markets and aims to
provide flexibility for 60 minutes, they will notice that the potential aggregated energy
flexibility to increase or reduce demand has dropped to 450 kW and 350 kW. It’s
important to note that flexible power not only reduces with longer activation but is also
asymmetrical, which may be relevant for markets that require symmetrical bids.
Additionally, flexible power can be visualised in the context of flexible energy, as shown
in Figure 5.7. This visualisation allows us to see how much flexible energy is available to
increase or decrease consumption based on the activation duration.
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Figure 5.7. Aggregated flexibility energy-duration curves.

5.2.2 Electric water heater

Energy flexibility can be seen as an asset that can be utilised and restored. It is used
during demand response activation and replenished during the subsequent rebound
effect. Figure 4.1 illustrates different levels of flexibility activations. When flexibility is
activated at maximum power (shown as a red line), it results in the most significant drop
in demand. Still, this activation can only be sustained for a short duration. Conversely,
a modest activation (shown as a purple line) has the opposite effect. This characteristic
provides insight into how energy flexibility functions as an asset — the more it is used,
the more quickly it is depleted. This thesis approaches the quantification of aggregated
energy flexibility with a focus on mapping a curve showing the relationship between the
power and duration of potential flexibility activations (shown as a blue line).

Energy flexibility on a device level can be evaluated by measuring the distance of the
state variable (such as temperature or state of charge) from its boundaries. For instance,
if the water temperature is 65 °C and consumers have set their comfort boundaries
between 60 °C and 80 °C. Having a thermal model of the EWH would allow us to determine
how long it can be turned on or off before reaching those boundaries. Figure 5.8
illustrates this concept in the example of an EWH.
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Figure 5.8. lllustration of EWH temperature trajectories with flexible activation.
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A simulation was performed in MATLAB software to quantify the energy flexibility
of 1000 EWHs and BESSs. In this simulation, the EWHs were either turned on or off,
and the BESSs were set to charge or discharge with maximum power. This simulation was
performed every minute of the day to determine the duration that each device can alter
from its BaU behaviour. Based on this, the aggregated power/duration curves were
created that describe the duration and the power that the BaU profile can be altered
with flexibility activations.

The power and duration curves of aggregated EWHs are depicted in Figure 5.9 for both
increasing and reducing the demand. These curves are presented as a surface toillustrate
the fluctuations in energy flexibility throughout the day. The flexibility power/duration
curve discussed in the previous section can be visualised as a segment of this surface at
a specific time of the day. Examining the peak demand time in the morning (8 am),
it is possible to see that the amount of flexible power available to increase the demand
drops while simultaneously, the amount of flexible power to reduce the demand rises.
The following observations can be made about the aggregated energy flexibility of EWHs:

e The amount of energy flexibility available from EWHs is not consistent
throughout the day. This is mainly because the hot water usage is also not
consistent throughout the day.

e The energy flexibility provided by EWHs is very asymmetrical. There is much
greater potential to increase the demand than to reduce it. This is because
the coincidence factor of EWHs is typically very low since they are turned off
most of the time.

e There is a significant difference in the duration that flexibility can be
activated. The duration for which the demand can be increased is much less
than it can be reduced. The demand can be increased for up to 1 hour and
reduced for up to 8 hours. This large difference is seen because EWH units
can be heated up rather quickly, while it takes much longer to cool down
from either passive losses or hot water usage.
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Figure 5.9. EWH aggregated energy flexibility curves for one day (a) Demand increase, (b) Demand
reduction.
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5.2.3 PV and battery system

The power and duration curves of aggregated BESSs are displayed in Figure 5.10 for both
increasing and reducing demand. From these curves, we can make the following
observations about the flexibility provided by residential small BESSs.

e Similar to EWH units, the flexibility provided by BESSs is not consistent
throughout the day. This is because the SOC of batteries also varies throughout
the day.

e Thereis aninverse relationship in the amount of available flexibility based on
the direction it is provided. During the first half of the day, the BESSs provide
more flexibility to increase the demand and no flexibility to reduce it. This is
because up to noon, the BESSs are at the lower part of the SOC. However,
an opposite phenomenon can be observed during the day as the on-site PV
systems are charging the BESSs. In the afternoon, the SOC of BESSs starts
increasing, which provides potential flexibility to reduce the demand by
discharging the batteries.

(a) Demand Increase (b) Demand Reduction

5000

4000

W

o

o

o
L

Flexible Power, kW
N
o
o
o
1

1000 0

50

0+ -~
00:00 18:00 12:00 06:00

100 .
o 150 Duration, min 00:00 18:00 12:00

100

00:0f 06:00  (g.99 Duration, min

Time of the Day Time of the Day

Figure 5.10. BESS aggregated energy flexibility curves for one day (a) Demand increase, (b) Demand
reduction.

5.3 Rebound effect quantification

One crucial component of energy flexibility that needs to be taken into account is the
rebound effect, which can affect grid balance and pose new difficulties. Figure 5.11
illustrates how this impact appears in the power profile following the flexibility
activations of space heating. The simulation involves several independent flexibility
activations of different durations (5, 15, 30, and 60 minutes). Subtracting the baseline
power profile from the profile after flexibility is activated results in baseline-adjusted
profiles, revealing the rebound effect.
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Figure 5.11. Baseline adjusted power profiles.

Simulations for flexibility activations up to 60 minutes in duration were run in order
to have a better understanding of the rebound effect. The goal was to find out if the
rebound effect is affected in any way by the magnitude of the flexibility activations.
The duration, peak power, and energy characteristics were compared between the
flexibility activations and the rebound effect, as seen in Figure 5.12. It is noteworthy that
the rebound effect has an oscillatory behaviour, with an overshoot upon returning to the
baseline. It is difficult to estimate the genuine rebound impact because of this
phenomenon.
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Figure 5.12. Flexibility activation characteristics.

Figure 5.13 displays the various properties of the rebound effect with respect to the
duration of flexibility activation. Figure 5.14 displays the ratios of flexible power and
energy to rebound power and energy. The following observations can be made regarding
the peak power of the rebound effect:

e Increasing the demand using flexibility results in a significantly higher power
rebound compared to reducing the demand. The highest power rebound
occurs when the flexibility is activated for 20 to 40 minutes Figure 5.13.a).
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The longer the flexibility is activated, the closer the ratio of rebound power
to activated flexibility power gets to 1 (Figure 5.14.a).

When it comes to energy rebound, we can draw the following conclusions:
Increasing demand results in a much higher energy rebound compared to
reducing demand. The highest energy rebound occurs when flexibility is used
for 30 to 60 minutes (Figure 5.13.b).

The ratio of rebound energy to flexible energy levels off after activations
longer than 10 minutes, reaching around 1.8 for demand increase and 1.5 for
demand reduction. This means that for every unit of increased energy demand,
1.8 units are reduced later due to the rebound effect (Figure 5.14.b).
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Figure 5.13. Rebound effect properties.
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Figure 5.14. The power and energy ratios of flexibility and rebound.

In summary, an assessment of the rebound effect can be performed after energy
flexibility. To quantify the rebound impact based on flexibility activations, the above
numbers might be utilised as a guideline. For example, if an aggregator in reserve
markets intends to utilise energy flexibility for 15 minutes, based on the flexibility
quantification from Figure 5.6, there is a potential to increase demand power by a
maximum of 1200 kW. The rebound effect of this activation would last approximately
130 minutes (Figure 5.13.c), with a peak power of 400 kW (Figure 5.13.a) and a total
rebounded energy of around 500 kWh (Figure 5.13.b). It’s important to note that these
numbers are approximate and may vary based on portfolio size and seasonality.
Nevertheless, they still illustrate the potential of the proposed quantification method.

In order to gain a better understanding of the oscillatory nature of the rebound
effect, individual simulations were conducted for each weight class of buildings.
The demand profiles with flexibility activations and without are shown in Figure 5.15
which illustrates the impact of rebound oscillations across different building types —
light-weight, medium-weight, and heavy-weight. The findings reveal notable variations
in the behaviour of flexibility recovery based on the thermal characteristics of each
building type. Light-weight structures showed fast and short rebound oscillations, which
is due to their lower thermal mass, which permits faster temperature adjustments but
restricts long-lasting flexibility. Conversely, heavy-weight buildings exhibited slower and
more extended rebound effects, marked by substantial power fluctuations, indicative of
their greater thermal inertia.
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5.4 Conclusions

This chapter applied the developed power-duration curve method for quantifying energy
flexibility through a simulation-based case study. The results demonstrated the method’s
effectiveness in characterising the flexibility potential of various residential energy
systems, including space heating, electric water heaters, and battery storage systems.
The aggregated energy flexibility of 1000 heating systems, electric water heaters and
battery energy storage systems was quantified through a simulation-based case
study. The aggregated energy flexibility was assessed by mapping out the flexibility
power-duration curves, which illustrate the potential aggregated power that flexible
devices can activate with respect to the maximum duration the activation can be
sustained.

The results revealed that both electric water heaters and battery systems exhibit
inconsistent flexibility profiles throughout the day. Electric water heaters can offer
significantly more flexibility to increase demand compared to reducing it, but the
duration for increasing demand is shorter than for reducing it. Battery systems
demonstrate an inverse relationship in their potential to increase or reduce demand.
They provide greater flexibility to increase demand until noon, after which the potential
to reduce demand becomes more dominant.

These findings highlight the proposed power-duration curve methods’ ability to
provide insights for grid operators and aggregators, enhancing their ability to integrate
and manage flexible resources effectively by addressing the non-linear asymmetric
behaviour of flexible resources.
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6 Conclusions and future work

The main goal of this PhD research was to advance the understanding and practical
application of energy flexibility within residential energy systems by developing an
innovative approach for quantifying flexibility through power-duration curves.

A comprehensive literature review was performed that underscores the rising
significance of energy flexibility as a fundamental aspect of modern energy systems,
influenced by the increasing integration of variable renewable energy sources and the
need for enhanced grid stability. The state-of-the-art analysis investigated the key
aspects of energy flexibility, including its definitions, sources, methods of quantification,
and associated challenges, while highlighting its importance in the shift toward
sustainable and efficient energy systems. It was found that current methodologies
frequently simplify the complex and dynamic characteristics of flexibility by depending
on static or single-value measures, which emphasises the need for more sophisticated
approaches, such as power-duration curves, that more accurately reflect the non-linear
and time-varying behaviours of flexible loads.

The content section of the thesis focused on developing a new method for quantifying
aggregated energy flexibility based on power-duration curves. The proposed method
overcomes the drawbacks of current approaches by considering the non-linear,
time-varying, and asymmetric characteristics of flexibility. By linking flexible power
capacity with the duration of its activation, this method captures the dynamic interplay
between these elements, making it applicable for both short-term and long-term
flexibility applications. This broadens its usefulness for demand response programs,
reserve markets, and balancing services, ensuring it can fulfil various operational and
market requirements. The quantification method was explained in a detailed,
step-by-step manner, and a simulation-based case study was carried out to demonstrate
its application in quantifying aggregated energy flexibility.

One key finding of this research was the identification of inherent asymmetry in
potential energy flexibility. The power capacity of flexibility was observed to vary
considerably between increases and decreases in power, with the latter typically
exhibiting less intense rebound effects. This asymmetry is vital for maintaining grid
stability, as increases in power were found to generate more significant rebound
oscillations, which could present challenges for operational planning. Additionally,
the study showed that the connection between activation power and duration is
fundamentally non-linear, challenging the assumption set by conventional linear
models. This finding highlights the need for more advanced methodologies, such as the
power-duration curve approach, to quantify and manage flexibility effectively.

The rebound effect emerged as another critical aspect of energy flexibility.
The research showed that, in many cases, energy consumption during the recovery phase
can offset or even exceed the energy savings achieved during activation. These effects
were especially evident in systems with high thermal inertia, such as heavy-weight
buildings, which displayed prolonged rebound oscillations. This behaviour highlights
the necessity of factoring in rebound effects when designing and implementing
demand-side management programs to ensure overall energy savings and maintain grid
stability.
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At the beginning of this thesis, four hypotheses were made. Based on the results,
the following conclusions can be made:

The first hypothesis, which proposed that quantifying energy flexibility using
power-duration curves provides a more accurate and practical representation
compared to single-value metrics, was confirmed. The power-duration curve
method demonstrated its ability to capture the dynamic interplay between
power and duration, providing valuable insights into both short-term and
long-term flexibility potential.

The second hypothesis, which stated that aggregated energy flexibility is
inherently asymmetric and non-linear, was also confirmed by the research
findings. The results showed significant differences in the capacity for
increasing and decreasing power, emphasising the need for models that
account for this asymmetry. Additionally, the relationship between activation
power and duration was found to be non-linear, challenging the assumptions
of traditional linear models.

The third hypothesis, which stated that rebound effects in demand-side
flexibility activation result in more energy being consumed during the
recovery phase than saved during the flexibility activation, was partially
validated. The research identified significant rebound effects, particularly in
systems with high thermal inertia, where recovery energy often exceeded
initial savings. However, the magnitude and impact of these effects varied
depending on the type of system and operational scenario, suggesting that
rebound effects are context-dependent and require careful consideration in
flexibility management.

Finally, the fourth hypothesis, which suggested that the asymmetry of energy
flexibility impacts grid stability differently, with power increases showing
more significant rebound effects, was confirmed. The findings demonstrated
that power increases often led to more pronounced rebound oscillations,
posing more significant challenges to grid stability compared to same
magnitude power decreases. This highlights the importance of understanding
and managing the asymmetric impacts of flexibility to ensure reliable grid
operation.

6.1 Future work

The research conducted in this work can be expanded upon in future studies by
researching and developing the following aspects:

This thesis employed simplified heat pump models to demonstrate the
quantification process of the developed method. To achieve a more precise
evaluation of heat pump flexibility, more detailed models that consider the
coefficient of performance (COP) variations with ambient temperature,
along with various control strategies, such as partial load functioning and
temperature setpoint management for flexible operations, should be
considered.

One potential direction is to apply the quantification approach developed in
this thesis to other kinds of flexible devices, such as electric vehicles and
shiftable appliances.
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An alternative avenue for research could focus on predicting flexibility.
The method for quantifying flexibility developed in this thesis could be
enhanced for forecasting by incorporating weather predictions and
modelling temperature trends for the following day.

The approach of the power-duration curve could be enhanced to incorporate
techno-economic factors, including the expenses associated with activating
flexibility, income from engaging in energy markets, and the operational
costs of equipment. By including these elements, the method could deliver a
more comprehensive assessment of flexibility, facilitating improved decision-
making for aggregators and grid operators. This would enable stakeholders
to maximise the technical capabilities and the economic feasibility of
activating flexibility.

Future research could focus on a more in-depth investigation of rebound
effects that occur after the activation of flexibility. This involves measuring
both the magnitude and duration of rebound energy use across various types
of devices and operational situations. Gaining insights into the factors that
affect rebound behaviour, such as the thermal inertia of devices, control
methods, and user habits, would aid in the creation of mitigation strategies.
Furthermore, studies could evaluate the cumulative effects of rebound
phenomena on grid stability and energy market dynamics, providing valuable
information for enhancing demand-side management initiatives.
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Abstract

Research and Development of Quantification Methods for
Aggregated Energy Flexibility

The growing adoption of renewable energy sources has increased the need for flexibility
on the demand side to maintain grid stability and efficient energy management.
Nevertheless, current methods for quantifying flexibility often do not adequately capture
the non-linearity, asymmetry, and rebound effects in flexible energy systems. This thesis
introduces a novel method utilising power-duration curves to quantify aggregated
energy flexibility within residential systems. The proposed approach offers a dynamic
representation of flexibility over time, overcoming the drawbacks of traditional staticand
single-value methods.

The thesis starts with a comprehensive review of energy flexibility, its sources, and the
challenges involved in its aggregation. Existing methods for quantifying flexibility are
analysed. This evaluation emphasises the limitations of traditional methods, especially
their shortcomings in capturing the non-linear and asymmetric characteristics of
flexibility.

A novel power-duration curves method was developed to address these
shortcomings. This approach defines flexibility by mapping power activation levels
against the maximum sustainable activation duration, offering a more thorough and
adaptable method. The process of applying the developed method is illustrated through
simulation-based case studies that quantify the flexibility of residential heating
systems, electric water heaters, and battery storage units. The findings suggest that the
power-duration method offers a more accurate representation of flexibility, especially in
capturing the asymmetry and non-linearity of flexibility.

A significant insight was gained in identifying rebound overshoot phenomena, where
energy usage after activating flexibility displays oscillatory patterns, frequently
surpassing initial consumption levels. This phenomenon carries substantial implications
for demand-side management and grid stability, as improper flexibility activation may
result in unintended variations in energy demand. The research also indicates that the
asymmetry in energy flexibility significantly impacts grid stability, with power increases
showing more substantial rebound effects compared to reductions.

The findings of this thesis contribute to the ongoing development of demand-side
flexibility methods, delivering novel perspectives for energy aggregators, grid
operators, and policymakers. By presenting a scalable and data-driven framework,
the power-duration curve method improves the accuracy of flexibility quantifications
and enables better integration of flexible resources into energy markets. Future research
could focus on incorporating techno-economic factors into the model and further
refining flexibility forecasting techniques.
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Lihikokkuvote

Agregeeritud energiapaindlikkuse kvantifitseerimismeetodi
uurimine ja arendamine

Taastuvenergiaallikate (ha laialdasem kasutuselevott on suurendanud vajadust
tarbimispoolse paindlikkuse jarele, et sailitada vOrgu stabiilsus ja tagada tOhus
energiakasutus. Siiski, olemasolevad paindlikkuse kvantifitseerimise meetodid ei suuda
sageli piisavalt arvestada paindlike energiastisteemide mittelineaarsuse, asimmeetria ja
tagasiloogiefektiga. Kdesolevas doktoritdds arendati valja uus meetod, mis kasutab
vOimsus-kestuse kdveraid, et kvantifitseerida elamupiirkondade agregeeritud
energiapaindlikkust. Esitatud ldahenemisviis pakub paindlikkuse diinaamilist kujutamist
ajas, Ulletades traditsiooniliste staatiliste ja Uksikvaartusel pohinevate meetodite
puudusi.

Doktorito6 algab paindlikkuse allikate ja nende agregeerimise valjakutsete pdhjaliku
ilevaatega. Olemasolevad paindlikkuse kvantifitseerimise meetodite analiilis toob esile
traditsiooniliste meetodite piirangud, eriti nende vdimetuse kajastada paindlikkuse
mittelineaarset ja asimmeetrilist olemust.

Selle puuduse uletamiseks tootati valja uus voimsus-kestuse kdveratel pdhinev
meetod, mis mdaaratleb paindlikkuse kaardistades vGimsuse aktiveerimise tasemed
maksimaalse aktiveerimisaja suhtes, pakkudes seeldbi tdpsemat kvantifitseerimismeetodit.
Meetodi rakendamise protsessi illustreeritakse simulatsioonipdhiste uuringutega,
kus kvantifitseeritakse elamute kitteslisteemide, elektriliste veeboilerite ja
akusalvestusseadmete paindlikkust. Tulemused viitavad sellele, et vdimsus-kestuse
meetod voimaldab tdpsemat paindlikkuse hinnangut, eriti paindlikkuse asimmeetria
ja mittelineaarsuse kajastamisel.

Uuring tGi esile olulise ndhtuse paindlikkuse tagasiloogiefektis, kus paindlikkuse
aktiveerimisele jargnev energiatarbimine naitab vonkuvat mustrit, Gletades sageli
esialgse tarbimise taseme. See nahtus on oluline tarbimisjuhtimise ja vrgu stabiilsuse
seisukohalt, kuna ebadige paindlikkuse aktiveerimine vdib pdhjustada soovimatuid
energiatarbimise k&ikumisi. Lisaks viitavad uuringutulemused sellele, et paindlikkuse
asiimmeetria mdjutab vorgu stabiilsust, kusjuures vdimsuse suurendamine pdhjustab
tugevamaid tagasiloogiefekte kui vahendamine.

Selle  doktorito6 tulemused aitavad kaasa tarbimispoolse paindlikkuse
kvantifitseerimise meetodite edasiarendamisele, pakkudes uusi perspektiive
agregaatoritele, vOrguoperaatoritele ja poliitikakujundajatele. Doktoritods viélja
tootatud meetod vdimaldab paremat paindlikkuse kvantifitseerimise tapsust ning
soodustab  paindlike ressursside paremat integreerimist energiaturgudele.
Tuleviku-uuringud voiksid keskenduda tehnilis-majanduslike tegurite kaasamisele
ja paindlikkuse prognoosimismeetodite taiustamisele.
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ABSTRACT Energy flexibility aggregation is an emerging concept regarded as a potential solution to the
challenges of integrating distributed renewable energy sources. For aggregators to make informed decisions
on how to utilise the energy flexibility of prosumers in their portfolios, it is crucial for them to use a
suitable quantification method. This paper proposes a novel quantification method for aggregated energy
flexibility based on flexibility curves created from the relationship between flexible power and its sustained
duration. The proposed method also considers the asymmetric and non-linear properties of energy flexibility.
The flexibility curves provide valuable insights for aggregators to make informed decisions on how to
utilise their portfolios in a more optimal manner. We describe the quantification method with a step-by-step
process. A simulation-based case study is conducted to illustrate the quantification process of residential
heating systems. The aggregated flexibility curves and the rebound effects of 1000 different heat-pump-
based buildings are constructed. The building’s thermal behaviour is modelled using a resistive-capacitive
model. We found that the power at which the flexibility can be activated highly depends on the activation
duration. Additionally, the rebound effect can be quite substantial, with around 1.8 times the energy of the
activation itself. We also noted an interesting phenomenon of rebound overshooting as the system oscillates
to a stable position.

INDEX TERMS Aggregation, energy flexibility, heating system, rebound effect, quantification.

1. INTRODUCTION demand of energy [2]. At present, the level of flexibility may

There has been an increase in the use of Renewable Energy
Sources (RES) due to growing concerns about global climate
change. The proportion of RES in the European Union’s (EU)
power consumption has more than doubled from 16.9% in
2008 to 41.2% in 2022 [1]. Power networks are progres-
sively integrating Variable Renewable Energy (VRE) sources
such as wind and solar energy to accommodate this trend.
However, VRE sources are subject to fluctuation and, there-
fore, require additional flexibility to balance the supply and

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabio Mottola

not be sufficient to meet more than approximately 30% of the
yearly demand through VREs [3]. There are two categories
of energy flexibility sources: demand-side flexibility and
supply-side flexibility [4]. Traditionally, the supply side has
been responsible for balancing power by adjusting the output
of power production units based on changes in demand.
Incorporating generation units with different reaction times
into the electricity grid allows for the creation of supply-side
flexibility.

Demand-side flexibility refers to the ability to quickly
adjust electrical loads in response to changes in supply
or to smooth out long-term demand patterns. Examples of

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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demand-side flexibility sources include the thermal mass of
buildings, as well as flexible residential [5], commercial [6],
and industrial [7] loads. These loads can be managed within
users’ comfort ranges. Residential loads that can be con-
trolled include air conditioning, water heaters, refrigerators,
dishwashers, washing machines, battery storage systems, and
electric cars.

Evaluating the degree of flexibility of power systems can
be a challenging task. Inflexibility indicators are usually more
apparent [8], [9] and can include the following:

1) Inability to maintain a balance between supply and
demand, leading to significant and repeated frequency
excursions.

2) Substantial curtailment of RES due to transmission
issues or excess traditional and inflexible electrical
power.

3) Negative market pricing can indicate various inflexibil-
ities, such as an abundance of renewable energy, a lack
of demand, and constrained transmission infrastructure
capacity.

4) Additional warning signs may include price volatility,
high redispatch rates, area balancing violations, loss-
of-load, and subsidised overcapacity.

Residential demand-side energy flexibility is a valuable
asset that is currently not being fully utilised. Since individ-
ual household prosumers have limited capacity, they cannot
contribute significantly to grid improvement and may find it
challenging to participate in market activity [10]. Therefore,
an aggregator should create a portfolio of several smaller
controlled loads to form a more substantial entity. Aggre-
gators act as intermediaries between end users and system
operators, making contracts and participating in markets such
as wholesale, reserve, and ancillary markets on behalf of
prosumers [11].

Real-time aggregation processes and summarises data
as it arrives, providing immediate insights and trigger-
ing quick actions. This enables real-time monitoring and
control, for example in energy management systems [12].
On the other hand, predictive aggregation uses historical
data to forecast future aggregated values, supporting strategic
planning and resource optimisation by anticipating future
conditions [13]. While real-time aggregation is crucial for
operational decision-making with minimal delays, predictive
aggregation focuses on long-term planning, allowing organ-
isations to balance immediate responsiveness with proactive
strategies.

Aggregators looking to participate in flexibility markets
need to evaluate the available assets in their portfolio. This
involves quantifying the total energy flexibility that can be
aggregated. Since contracts for these markets are established
before the actual delivery date, aggregators must estimate
the amount of flexibility they can deliver and which flex-
ibility requests to bid on. This requires forecasting the
available flexibility in the future with a reasonable margin
of uncertainty. However, factors like consumer behaviour,
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consumption habits, weather, and other variables can affect
the availability of flexibility, making quantification and fore-
casting a challenging task [14].

Currently, there is no universally accepted definition
for energy flexibility. Various researchers have attempted
to define it according to their area of expertise. Some
researchers consider a simple definition for flexibility as
“the ability to deviate from its reference electric load pro-
file” [15] or as “the ability to reshape consumption patterns
when interacting with the power grid” [16]. Other more
comprehensive definitions include: “DSF can be defined as
the ability to strategically alter electricity usage by con-
sumers (either commercial or residential) from their normal
consumption profiles, by responding to control signals from
grid operators and/or financial incentives from electricity
generators/aggregators. The scope of these signals is to
modulate and optimise electricity usage and to balance elec-
tricity production and consumption” [17]. An overview of the
definitions of energy flexibility used by researchers in the lit-
erature has been compiled in the IEA EBC Annex 67 project
“Energy Flexible Buildings™ [18], based on which a general
definition of energy flexibility was proposed: “The energy
flexibility of a building is the ability to manage its demand
and generation according to local climate conditions, user
needs, and grid requirements. Energy flexibility of buildings
will thus allow for demand-side management/load control
and thereby demand response based on the requirements of
the surrounding grids” .

Activating energy flexibility is crucial for maintaining the
stability and reliability of the grid. It allows for real-time
adjustment of electricity supply and demand to prevent black-
outs or grid failures [19]. Flexibility enables rapid changes
in power consumption or generation, helping to keep grid
frequency [20] and voltage levels stable, thus safeguarding
infrastructure and service quality. This dynamic capability
is especially valuable for handling unexpected changes in
demand or disruptions like power plant outages or extreme
weather events, which could otherwise threaten grid stability.

Furthermore, energy flexibility supports the integration of
renewable energy sources, such as solar and wind, which
are inherently variable and unpredictable. By allowing the
energy system to adapt to fluctuations in renewable gener-
ation, flexibility makes it possible to maximise the use of
clean energy and reduce dependence on fossil fuels. This
minimises the curtailment of excess renewable energy, which
might otherwise go unused during periods of low demand
or insufficient storage capacity [21]. Ultimately, enhanced
flexibility enables a more reliable, resilient, and sustainable
energy grid that can effectively incorporate an increasing
share of renewable power.

When traded on markets, energy flexibility is a valuable
asset that can be used to provide services for grid enhance-
ments. Therefore, for practical purposes, it is crucial to
quantify energy flexibility meaningfully and quantitatively.
Various types of quantification methods are discussed in
the existing literature. In [22], six different quantification
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methods were reviewed and evaluated using a simulation
case study based on thermal storages. A review of energy
flexibility key performance indicators related to load match-
ing and grid interactions is given in [23]. Other flexibility
metrics such as peak power reduction, flexibility factor,
self-sufficiency, and capacity of active demand response are
discussed in [24].

Depending on the source of flexibility, these quantifica-
tion methods rely on data related to building characteristics,
weather, indoor environment, building automation systems,
power and energy metering, and occupancy usage. The acces-
sibility of how difficult it is to obtain this data is discussed
in [25].

A short overview of energy flexibility quantification meth-
ods and frameworks is presented in TABLE 1. The analysis
includes the parameters, metrics, and indices quantifying
flexibility. The quantification methods can be broadly cate-
gorised based on whether the flexibility was evaluated as a
singular value, or as a curve or a region that maps out the
relationship between two or more values, and if the symmetry
or linearity is considered. It was found that if flexibility is
evaluated using a single number, then it is typically quantified
in relation to flexible power [26] or energy values [17], [27],
or temporal aspects such as the length of time consumption
can be shifted [28] or in a more abstract manner using flexi-
bility indices that for example describe flexibility’s potential
for load covering, shifting and scheduling [16]. If instead a
curve is used, then a relationship between two parameters is
established, for example the flexible energy and the cost of
activation [15]. More complex methods quantify flexibility
as a region or a domain of feasible operations under the
considerations of network constraints, ramp rate, etc [29].

Another important aspect is whether the quantification
method considers flexibility as an asymmetrical and non-
linear resource. The term ‘“‘asymmetry” refers to the differ-
ence in the amount of flexibility to either increase or decrease
demand. The coincidence factor is a significant factor for
loads in this context. For instance, electric water heaters have
a low coincidence factor, meaning that only a small fraction
of them are turned on at any given time. Therefore, there are
many more water heaters that could be turned on to increase
the demand, as opposed to a few devices that can be turned off
to reduce the demand. The same applies to battery systems,
as they are not always at 50% state-of-charge to provide equal
amounts of up- and downregulation. Thus, when quantifying
the flexibility of the entire portfolio, it becomes clear that
there are unequal levels of flexibility to increase or decrease
the demand. It is important for quantification methods to
consider the asymmetry of flexibility since some markets
require symmetrical bids, while flexibility sources are not
always symmetrical.

Linearity describes whether there is a linear relationship
between two or more parameters; for example, the power and
the duration the flexibility can be activated. It is important to
consider the non-linearity of flexibility to provide a realistic
flexibility estimate, as there can be a non-linear relationship
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between power and duration, power and cost aspects, etc. The
flexibility envelope method presented in [30] considers the
asymmetry by providing the envelopes for both up and down-
regulation. The cost curves method of [15] considers both
asymmetry and non-linearity by quantifying flexibility as the
relationship between potential flexible energy and the cost
associated as a curve for both demand increase and reduction.

Based on the literature review, there is a lack of quantifica-
tion methods that consider the asymmetry and non-linearity
of energy flexibility. Therefore, this paper proposes a new
quantification method that evaluates the relationship of flexi-
ble power and energy with the duration that it can be activated
while considering the asymmetry of non-linearity. The nov-
elties presented in this paper are as follows:

1) A method for quantifying the connection between the
flexible power and energy with the duration of activa-
tion.

2) The proposed method considers the properties of
asymmetry and non-linearity of aggregated energy
flexibility.

The paper is structured as follows: Section II provides an
overview of the proposed quantification method. Section III
describes modelling and simulation of buildings and their
heating system. Section IV presents a case study to illustrate
the proposed quantification method. Section V delves into a
discussion related to the findings and future work. Finally,
Section VI concludes the paper.

Il. PROPOSED QUANTIFICATION METHOD
A. FLEXIBILITY POWER DURATION CURVES
Energy flexibility can be thought of as an asset that can
be spent and regenerated. It is spent when it is activated
with demand response and regenerates during the subsequent
rebound effect. Fig. 1 illustrates different intensity levels of
flexibility activations and their rebound effects for thermo-
statically controlled loads, such as heating systems. Note that
not all types of flexibility need to be regenerated immediately,
for example BESS and EV-charging. When flexibility is acti-
vated with maximum power (shown as a red line), it results
in the most significant drop in demand, but this activation can
only be sustained for a short duration. However, the opposite
effect is observed when a modest activation is performed
(shown as a purple line). This characteristic provides insight
into how energy flexibility works as an asset - the more it is
used, the more quickly it is depleted.

To quantify aggregated energy flexibility, a novel approach
is proposed in this paper. The approach focuses on mapping a
curve that shows the connection between the power and dura-
tion of possible flexibility activations (shown as a blue line).
Utilising this quantification method would provide aggrega-
tors with a more detailed overview of their energy flexibility
assets. Aggregators can engage in various energy markets,
each with its own specifications for the amount of electric-
ity to be provided and the delivery duration. For instance,
in reserve markets, aggregators would need to activate their
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TABLE 1. Overview of quantification methods for energy flexibility.

Quantification Flexibility quantified Considers
parameters, using a single value, asymmetry,
Ref. Short description Case study metrics, indices curve, or a region non-linearity
[17] A unified framework is proposed for One building with heat  Indices of self- Single value Asymmetry
capturing the DR potential of thermal and pump, PV system, EV,  consumption, storage
electrical systems. and BESS capacity, storage
efficiency
[16] A quantification methodology for five energy Office building with Indices related to Single value No
flexibility indices is proposed. HVAC, dimmable load covering,
lighting, EV charging shifting, scheduling,
moderate regulation,
and fast regulation
[31] A methodology that models flexible resources  Office and apartment Power and energy Single value No
as a virtual energy storage system building ventilation capacity, State of
systems Charge, self-
discharge rate
[27] The proposed model schedules a set of Aggregated HVACs, Flexible power Single value No
appliances and calculates the aggregated pool pumps, electric
flexibility according to the energy and water heaters
flexibility prices
[15] A methodology for computing the flexibility Office building HVAC  Flexible energy and Curve Asymmetry and
of buildings using cost curves its related cost non-linearity
[29] A framework to model and characterise DER Distributed network PQ chart of a flexible ~ Region Asymmetry and
flexibility using the concept of nodal consisting of a BESS, operating region non-linearity
operating envelope under network constraints,  load, and a generator
ramping rate, cost, etc.
[30] A methodology based on determining the Wet appliances, Flexible power and Region Asymmetry
flexibility envelopes of two boundaries domestic hot water energy
conditions when loads are activated either as buffers and EVs
early or as late in the day as possible.
This  The proposed method quantifies energy Aggregated residential  Flexible power and Curve Asymmetry and
paper  flexibility as a power-duration curve heat pumps energy, duration of non-linearity
activation
A Flexibility Rebound vation for long-duration wholesale market activation. Thus,
PowEr effect the method of quantification proposed in this paper provides
Baseline Demand P& aggregators with a greater insight into their flexibility assets,
e enabling for a more informed decision-making.
Modest — \
Flexibility
power/duration
a’:g\"':t'l'g Moderate Bve B. QUANTIFICATION METHOD
Fig. 2 provides an overview of the proposed quantification
e method. In the first step, the quantification method starts with

FIGURE 1. lllustration of flexibility activations at different power levels.

flexibility for a short period (up to 15 minutes), while for
day-ahead wholesale markets, activations can last for several
hours. It is apparent that the aggregator would be unable to
sustain the same high power reserve market flexibility acti-
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data processing. This includes the acquisition, cleaning, and
filtering of the data. The relevant data needed for quantifica-
tion consists of measurement or device specification data that
influences the usage of flexible devices. When it comes to
space heating, meteorological data such as weather forecasts
of outdoor ambient temperature and solar irradiance affect the
demand for heating energy. For other flexible devices, such as
domestic hot water (DHW) units, the hot water usage profile
would need to be acquired.
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In the second step, it is essential to select an appropriate
model for each type of device and to determine its parameters.
The modelling of the behaviour of devices is crucial to ensure
that the appliances remain within the comfort boundaries
established by the consumers when the flexibility is activated.
Thermostatically controlled loads (TCLs), such as the heating
system of a building or a DHW unit, can be modelled using
a thermal resistive-capacitive model.

In the third step, the business-as-usual (BaU) operation
case of appliances should be modelled to determine the elec-
trical demand profile under normal operation without flexible
activation. This step can be considered as baseline estimation
part of the quantification process.

In the fourth step, the potential flexibility can be quantified
based on the demand profiles determined in the previous step,
the models of flexible devices, and the state of each flexible
device within their comfort ranges. This involves simulating
flexibility activations of devices at each time step, meaning
the on/off turning of devices until the comfort boundaries are
reached.

In the last, fifth step, the power-duration curves can be
constructed by knowing the power of the devices and the
duration that the flexibility can be activated.

C. AGGREGATION FRAMEWORK

In order to demonstrate the advantages of the proposed
method of quantification, a simulation-based case study was
conducted, which aimed to quantify the aggregated energy
flexibility of 1000 different buildings that use heat-pump
based space heating.

The Aggregation framework shown in Fig. 3 can be used
for real-world implementation. However, some simplifica-
tions have been made for the simulation-based case study.
The framework consists of two main components: the aggre-
gator and the Home Energy Management Systems (HEMS) of
each building. HEMS receives inputs from weather forecasts,
heat pumps, and homeowners (step 1 of the quantification).
While the ambient temperature 7, and solar irradiance (GHI)
would be received from outside cloud servers, we have used
data from PVGIS for simulation purposes Through a datalink
with the heat pump, HEMS receives the indoor temperature
Ti, and electricity consumption P,;. Homeowners can input
their comfort requirements by setting upper 7,4, and lower
Tnin limits for the indoor temperature.

The purpose of the HEMS is to perform three main
operations: thermal model identification, Business-as-Usual
simulation, and flexible operation simulation. Thermal model
identification is necessary since, in a real-world implementa-
tion, the RC thermal model would need to be trained for each
building (step 2 of the quantification).

However, for simulation purposes, the RC parameters were
sampled from publications and guidelines, this process will
be discussed in section III.

Based on the identified thermal model, the weather fore-
casts, heat pump telemetry, and the homeowners’ comfort
requirements, a BaU simulation is conducted to model
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FIGURE 2. The quantification process of the proposed method.

the baseline behaviour without any flexibility activations
(step 3 of the quantification). After establishing the baseline,
a simulation is conducted to determine the duration that the
heating system can either be turned on tpFiex 0r off tyownFiex
(step 4 of the quantification). These durations are then com-
municated to the aggregator alongside the baseline power
profile Pp,y. This data allows the aggregator to map the
flexibility curves (step 5 of the quantification).

Ill. MODELLING AND SIMULATION OF SPACE HEATING
To accurately quantify the energy flexibility of a heating
system, it is necessary to model the thermal behaviour of
the building. This is because the indoor temperature must
always be kept within the comfort range of the occupants,
so the building’s thermal insulation and thermal mass must be
taken into account. As a result, the kWh/°C relationship can
vary from building to building, meaning that some buildings
require more energy for heating, while others can go for more
extended periods with the heating turned off.

A Resistive-Capacitive RC model was used to model build-
ings’ thermal behaviour. In contrast to white-box models,
which integrate more detailed characteristics, an RC model is
a grey-box model that roughly incorporates building parame-
ters related to their thermal dynamics. Similar to electrical
circuits with resistors and capacitors, thermal RC models
include the thermal capacitances and resistances (U-values)
of various building components.

This study used a 3R2C thermal model consisting of three
thermal resistors and two thermal capacitors [32]. The model
considers the building envelope (external walls), the win-
dows, and the internal thermal mass (interior walls, furniture,
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FIGURE 3. Overview of the energy flexibility quantification framework.

and air) as the three primary components of a building. Fig. 4
displays a simplified thermal network design applied in this
work. It can be observed that the outdoor temperature 7y,
influences the indoor temperature 7j, through both the build-
ing envelope and the windows. The solar effect is assumed to
transmit only through the windows. The study assumes that
the indoor temperature is uniform throughout the building.
TABLE 2 describes the thermal RC model’s inputs, outputs,
and parameters.

The generic heat-balance equation (1) can be used to create
a first-order differential equation for each node » in a thermal
system with N elements:

dT, T, — T,
= — 1
0 Z A (1
ieN

where C,, and T, represent the thermal capacitance and the
temperature of node n, respectively, R; represents the thermal
resistance between two connected nodes i and n, and @,
represents the total heat fluxes applied to node n [33].

Ca

TABLE 2. Description of th | networl t

Symbol

Description

Inputs Tout Ambient temperature, °C
Dsor Global horizontal solar irradiance, W/m?
bn Heating power, W
Outputs Tin Indoor air temperature, °C
T, Envelope temperature, °C
Parameters R, Envelope thermal resistance, °C/W
C, Envelope thermal capacitance, ] /°C
Rin Inner mass thermal resistance, °C/W
Cin Inner mass thermal capacitance, ]/°C
Ry, Window thermal resistance, °C/W
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FIGURE 4. RC thermal ks of a building, adapted from [32].

The equation (1) shows that the complexity of a thermal
RC model may vary depending on the number of components
considered. A more detailed model may be achieved by inte-
grating features from several architectural elements, such as
the construction and insulation layers of outside and interior
walls, the roof, and other building components. RC thermal
networks are, thus, essentially models that may be made up of
various combinations of resistors and capacitors representing
parts of buildings.

The heat-balance equation (1) can be applied to the thermal
RC network topology in Fig. 4 to derive the differential
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TABLE 3. Typical thermal network parameters for different types of
residential buildings.

Envelope Thermal Network Parameters [34]
mZC T
Class R, (W/mz) C, (ﬁ m )

Light-Weight  3.1498/4, 76.852- A,
Medium-Weight ~ 3.8238/4, 183.724 - A,
Heavy-Weight  2.1917/4, 402.102 - A,
Windows  0.8333/4,, 0

Inner Mass Thermal Network Parameters [35]
Class R (Z¢/m?) (2L m?)

m2C

Light-Weight ~ 0.13/A, 110 Ap
Medium-Weight  0.13/Ag 165 Ap
Heavy-Weight  0.13/Ap 260 Ap

Building Size Parameters
Floor Area, A
Building Height

Window-to-Wall Ratio

uniform(50,200), m?
uniform(5,12), m
uniform(20,50), %

equations that describe the temperature of the inner mass (2)
and the envelope (3) of a building.

. 1 1 1
T = T, — + )T~
" RinCin ¢ (Rincin R.Cin) "

1 1 1
—T, — — ds0lA 2
+ RoCin out Cin ¢h + Cin ¢sol w 2
T, = L) S
‘T RinCe R.C. ¢ RinCe " R.Ce o

3

It is possible to model the thermal behaviour of a building
for each timestep by converting the above differential equa-
tions into difference equations (4) and (5).

T.(t) —T;(t T, (@) —T;(t
Ti(t+1):T,~(t)+( (;Q-C- ® (1)3 = (1)
q>s0l (t)Aw th (l‘)
+T + C )At )
Ti — TC’ Ta - Tg
Tg(t+]):Te([)+( (Z)R»c ) (zl)e _ m)m

®

The thermal behaviour of buildings is influenced by
various factors such as size, insulation level, construction
materials, window-to-wall ratio, number of inner walls, and
others. These factors may differ from one building to another,
so when studying the aggregated energy flexibility of mul-
tiple buildings, it’s crucial to simulate various types of
buildings. However, estimating the parameters of an RC
model for a specific building is a complicated process. To the
best of the author’s knowledge, no publicly available database
includes the number of actual building thermal network
parameters required for simulating aggregated control.

Therefore, in this work, we need to generate parameters
based on existing guidelines. From TABLE 2, it is clear that
we need to generate six different parameters for each building
to model its thermal behaviour. Typical thermal network
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gical data obtained from PVGIS [36].

values for residential buildings are shown in TABLE 3 based
on weight class. The ranges of values for typical building
envelopes were determined in [34] based on a first-principles
analysis of different building construction materials. The
standard ISO 52016-1:2017 [35] provides typical values for
the inner thermal mass of buildings.

The weight class of a building refers to its construction
materials. For instance, the exterior walls of light-weight
buildings comprise stucco, insulation, and plaster/gypsum.
Medium-weight buildings use brick, air space, insulation,
and gypsum, while heavy-weight buildings use brick, heavy-
weight concrete, insulation, and gypsum. We assumed that
the thermal resistance of windows is that of typical double-
glazed windows, while the thermal capacitance of windows
is negligible.

IV. CASE STUDY

A. FLEXIBILITY QUANTIFICATION

In this subsection, we will demonstrate an example of how
to quantify aggregated energy flexibility for space heating
using the proposed method shown in Fig. 2. The modelling
and simulations were carried out using the MatLab software.

The quantification process begins by importing the relevant
data for space heating, specifically the meteorological data.
For this simulation, we used meteorological data from the
beginning of April 2020 obtained from PVGIS [36]. We chose
this date because it reflects both the cold outdoor temperature
and solar heating factors that affect space heating usage,
as depicted in Fig. 5.

The next step in the quantification method involves mod-
elling the thermal dynamics of buildings. In this paper,
a simple 3R2C thermal network was used. However, for
higher accuracy, this model can be made more complex
by incorporating additional resistors and capacitors. From
TABLE 3, it can be observed that all thermal network param-
eters are proportional to either the floor area capacity Az, the
exterior wall area capacity A,, or the window area capacity
A,,. This means that many different building thermal network
parameters can be generated by sampling typical values for
building constructional parameters [37], [38]. Different-sized
buildings, with floor areas ranging from 50 to 200 square
meters, building heights of 5 to 12 meters, and window-
to-wall ratios of 20 to 50%, were sampled from a uniform
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FIGURE 7. Aggregated demand of 1000 simulated buildings for BaU case.

distribution. Based on the floor area capacity Ag and the
building height, the area of the exterior envelope A, was
calculated. Using the generated window-to-wall ratio, the
area of the windows capacity A, can be derived. By gener-
ating different types of buildings, it is possible to simulate an
aggregator’s portfolio that includes many different kinds of
buildings with respect to their thermal characteristics.

The initialization values for the heating system’s on/off sta-
tus, the temperature of the indoor area and the envelope were
determined by performing a preliminary BaU simulation.
This was necessary to reduce the transients at the beginning
of the simulation that occur from random initialization of
state parameters. The preliminary simulation was initialized
by sampling the indoor and envelope temperatures from a uni-
form distribution between 22 and 24 degrees Celsius and the
heating system on/off state from integer sampling between
0 and 1. The output of the preliminary simulation was then
used to initialize the flexibility quantification simulations.
In a real-world case, this step would not be needed as the
indoor temperature and the state of the heating system would
already be known. The thermal heating power was assumed
to be proportional to the floor area of the building between
6 kW and 12 kW. The COP of the heat pump was assumed
to be between 3 and 4 to account for devices from different
manufacturers.

The third step in quantification involves simulating the
Business-as-Usual (BaU) scenario, which is necessary to
determine the baseline demand without any flexibility acti-
vations. The BaU scenario can be simulated using the
RC-thermal network models created in the previous step.
By knowing the starting indoor temperature and the effects
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of external factors such as outdoor ambient temperature and
solar effects, we can model the temperature trajectories using
equations (4) and (5). In the BaU scenario, it is assumed that
the setpoint for indoor temperature is 23 °C and the deadband
of the on/off control is +1°C. Fig. 6 provides an example
of 4 different building temperature trajectories, showing that
different buildings take varying amounts of time to heat up
and cool down. Fig. 7 shows the demand profile for the BaU
case. Comparing it to the ambient temperature graph in Fig. 5,
we can notice that during the first five days of the week, when
the temperature is between +1 °C and +5 °C, the demand
for 1000 heat pump units is between 850 kW and 1100 kW.
Towards the end of the week, when the temperature increases,
we see a reduction in the electricity demand.

Once we have determined the demand profile and on-off
switching of the heat pumps during the BaU case, we can sim-
ulate flexible operation. The flexibility provision is assumed
to take place in the same temperature range as the BaU
scenario (22 — 24°C). Let’s say the room temperature of a
building is 22.5°C, and the heat pump is in the off state;
then, by turning it on we can increase the temperature up
to 24°C. If a homeowner is willing to go beyond the BaU
range and provide more flexibility (up to 25°C), then the
duration aspect of the house’s flexibility would increase. The
flexibility in heating systems depends on the owners’ comfort
requirements and their willingness to deviate from them.
For this paper, we have assumed a strict requirement of a
maximum = 1°C deviation from the setpoint. The flexibility
can be quantified by determining the distance of the current
indoor temperature from the upper and lower boundaries.
Using this information, we can predict how long we can
turn the heating on or off. Fig. 8 provides an illustration of
this. We can observe that the amount of energy flexibility
available in each building varies, depending on the proximity
of the indoor temperature to the temperature boundaries at
any given time. If the indoor temperature is close to the upper
boundary, there is very little flexibility to increase the demand
as the heating can only be turned on for a short period. Con-
versely, there is more flexibility to turn off the heating. The
opposite is true if the indoor temperature is close to the lower
boundary.
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FIGURE 10. Aggregated flexibility energy-duration curves.

During the final step of the quantification process, all the
buildings involved in the process provide the required data
to the aggregator for quantification of aggregated energy
flexibility. The data consists of the on-off status of the heat
pumps and the time durations for which heating can either
be turned on or off until the temperature comfort boundaries
are reached. Based on this information, the aggregator can
plot two curves that show the potential flexibility to increase
or decrease the demand, as depicted in Fig. 9. This approach
ensures a higher level of privacy since the demand profiles,
indoor temperatures, and boundary levels themselves are not
shared with the aggregator.

By using the proposed quantification method, aggrega-
tors can gain important insights into the energy flexibility
of their portfolios and can help them make more informed
decisions on how to use their flexibility. For instance, if an
aggregator’s business plan is focused on reserve markets, they
might be interested in activations with durations of up to
15 minutes. Fig. 9 shows that there is potential aggregated
energy flexibility to increase or reduce demand by 1,200 kW
and 900 kW respectively. On the other hand, if an aggregator
is instead focused on day-ahead markets and wants to provide
flexibility for 60 minutes, they will notice that using the
same portfolio of 1000 heat pumps, the potential aggregated
energy flexibility to increase or reduce the demand has now
dropped to 450 kW and 350 kW, respectively. It is possible
to deduce from these flexibility curves that the amount of
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flexible power not only reduces with longer activation but is
also unsymmetrical. This is relevant because some markets
require symmetrical bids. Additionally, the flexible power
can be plotted in the context of flexible energy, as shown in
Fig. 10. Here, it is possible to see how much flexible energy
is available to increase or decrease consumption based on the
activation duration.

B. REBOUND QUANTIFICAITON

Energy flexibility has an important aspect called the rebound
effect that must be considered, as it can impact the grid
balance and create new challenges. This effect can be seen
in the power profile after the flexibility activation, as shown
in Fig. 11. The simulation includes multiple independent
flexibility activations of different durations (5, 15, 30, and
60 minutes). By subtracting the baseline power profile from
the profile after flexibility is activated, we obtain baseline-
adjusted profiles. After the flexibility activation, a rebound
effect is observed.

To gain a better understanding of the rebound effect, sim-
ulations were conducted for flexibility activations lasting
up to 60 minutes. The aim was to investigate whether the
magnitude of the flexibility activations has any impact on the
rebound effect. The properties of duration, peak power, and
energy, as shown in Fig. 12, were compared between the flexi-
bility activations and the rebound effect. It’s worth noting that
the rebound effect appears to have an oscillating behaviour,

132833



IEEE Access

F. Plaum et al.: Novel Quantification Method of Aggregated Energy Flexibility

(a)

1 (b)
Demand Increase
Demand Reduction

0 1 1 1
0 10 20 30 m 50 60
2 250 : : : : :
£
2000 “
£ 150} J1€
a
2 Lo . . . . .
0 10 20 30 40 50 60

Flexibility Acitvation Duration, min

FIGURE 13. Rebound effect properties.

g
IS
<3
=, 075 (a)
z Demand Increase
o 0 | | Demand Reduction
0 10 20 30 40 50 60
§3 T T T T T
&
2%}
< 2t 1 (b
o (b)
&
< ; . . . .
0 10 20 30 40 50 60

Flexibility Acitvation Duration, min

FIGURE 14. The power and energy ratios of flexibility and rebound.

overshooting as it returns to the baseline. This phenomenon
makes quantifying the true rebound effect challenging.

The results for the rebound effect related to different dura-
tions of flexibility activation are displayed in Fig. 13, and
the ratios of rebound power and energy compared to flexible
power and energy are shown in Fig. 14. The following obser-
vations can be made regarding the peak power of the rebound
effect:

1) Increasing the demand using flexibility leads to a
significantly higher power rebound compared to reduc-
ing the demand. The highest power rebound happens
when the flexibility is activated for 20 to 40 minutes
(Fig. 13.a).

2) The longer the flexibility is activated, the closer the
ratio of rebound power to activated flexibility power
gets to 1 (Fig. 14.a).

3) In terms of energy rebound, the following conclusions
can be made:

4) Increasing the demand leads to a substantially higher
energy rebound compared to reducing the demand.
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The highest amount of energy rebound occurs when
flexibility is activated for 30 to 60 minutes (Fig. 13.b).

5) The ratio of rebound energy to flexible energy reaches
a plateau after activations longer than 10 minutes,
at around 1.8 and 1.5 for demand increase and reduc-
tion, respectively. This means that for every unit of
increased energy demand, 1.8 units of are reduced due
to the rebound effect (Fig. 14.b).

To summarise, the rebound effect can be quantified after
energy flexibility. The figures provided can be used as
guidelines to quantify the rebound effect based on flexi-
bility activations. For instance, if an aggregator operating
on reserve markets wants to dispatch energy flexibility for
15 minutes, based on the flexibility quantification from Fig. 9,
there is potential to increase the demand power by a max-
imum of 1200 kW. The rebound effect associated with this
activation would last around 130 minutes (Fig. 13.c), have
a peak power of 400 kW (Fig. 13.a), and a total rebounded
energy of around 500 kWh (Fig. 13.b). Note that these fig-
ures are indicative and subject to change based on portfolio
size and seasonality. Nonetheless, they still demonstrate the
potential of the proposed quantification method.

V. DISCUSSION AND FUTURE DIRECTIONS

In this study, a new method was developed to quantify the
aggregated energy flexibility and the subsequent rebound
effect. This method provides valuable insights into the poten-
tial of energy flexibility as an asset that aggregators can
use to make informed decisions on how to use it. However,
it is important to note that the flexibility curves shown in
this paper’s case study are only indicative. The curves may
change depending on the ambient temperature and seasons.
The crucial conclusion to draw is that the potential amount of
flexibility a system has is highly dependent on the duration
the flexibility is activated. Therefore, it may not be appropri-
ate to quantify the total energy flexibility of a system using a
singular power or energy value.

For the case study simulation performed in this paper, all
the model parameters were chosen from practical guidelines
to represent a diverse range of aggregated buildings. How-
ever, in order to use the RC model and the quantification
method developed in this paper for real-world applications,
the parameters would have to be determined for each build-
ing. One way to achieve this is by using an opposite approach
where the inputs and outputs of the model (indoor and
outdoor temperatures, solar irradiance, heating power) are
measured, and the RC model parameters are deduced using
parameter identification techniques to obtain the best fit
for the model. A similar approach was employed in [32]
to determine the parameters of a 3R2C thermal network
using the least-squares method based on six days of train-
ing data, resulting in a root-mean-squared error (RMSE) of
0.62 degrees Celsius.

In Fig. 11, if we examine the power profiles that are
adjusted to the baseline, we can notice an intriguing rebound
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FIGURE 15. Heating system quantification curves for one day: (a) Demand increase, (b) Demand reduction.

overshooting effect. To the best knowledge of the authors,
this effect has not been studied in previous research. For
substantial flexibility activations, this rebound overshooting
might be a significant factor that requires consideration.

The research conducted in this work can be expanded
upon in future studies. This work used simplified mod-
els of heat pumps to illustrate the developed quantification
process. In order to provide a more accurate estimate of
the flexibility of heat pumps more comprehensive models
are needed that account for the COP dependence on ambi-
ent temperature, different control methods, such as partial
load operations, and temperature setpoint control for flexible
operations.

Another possible direction is to also apply the quantifica-
tion method introduced in this paper to other types of flexible
devices, such as domestic hot water heating units, battery sys-
tems, and electric vehicles. The quantification method used
in this study relies on knowing the current state of the device
and its distance from boundaries. For instance, in the case
of domestic hot water units, the flexibility can be measured
by knowing the current water temperature and the maximum
and minimum temperature limits. Similarly, in the case of
battery systems, the current state of charge and the upper
and lower allowed limits need to be known to quantify the
flexibility.

Another possible research direction could involve fore-
casting flexibility. The flexibility quantification method pre-
sented in this paper could be developed further for flexibility
forecasting by integrating weather forecasts and simulating
temperature patterns for the next day. This would allow us
to estimate, with a reasonable degree of accuracy, the future
indoor temperature and how close it is to the upper and
lower limits, enabling the creation of day-ahead flexibility
power-duration curves. Fig. 15 shows surfaces created from
power-duration curves of one day. From these surfaces it can
be observed that heating system is able to provide consistent
amount of flexibility throughout the day. This simulation

VOLUME 12, 2024

was performed deterministically assuming perfect knowledge
of influencing variables. For a reliable day-ahead flexibil-
ity forecast the uncertainty of weather forecast and models
should be accounted for.

VI. CONCLUSION

This study introduces a novel approach to quantifying energy
flexibility using power-duration curves to demonstrate the
relationship between flexible power and its sustained dura-
tion. The quantification method is explained step by step, and
a case study is conducted as an illustration. The case study
involves modelling an aggregated portfolio of 1000 buildings
with heat-pump-based heating systems. The results empha-
sise the significant impact of the asymmetry and non-linearity
of energy flexibility. Specifically for heat pumps, they show
that the power at which flexibility can be activated depends
greatly on the activation duration, and there are notice-
able differences between demand increase and decrease
scenarios. This asymmetry suggests that energy flexibility
behaves differently depending on whether power is being
increased or reduced, which is a crucial factor to consider
in energy management strategies. The study also brings
attention to the rebound effect, where a heat pump-based
energy system experiences a rebound response after flex-
ibility activation that can be as much as 1.8 times the
energy used during the activation. Additionally, the research
identifies a rebound overshooting phenomenon, where the
system oscillates before stabilising, that could potentially
cause disturbances in grid stability. The observed asymmetry
and non-linearity of energy flexibility emphasise the need
for tailored demand response strategies that can adapt to
varying conditions and flexibility sources. Future research
should expand on these findings by applying the developed
approach to different types of flexible loads and energy
storage systems, developing flexibility forecasting methods,
and further investigating the rebound overshooting effect and
its implications for grid stability.
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ABSTRACT

Existing grids have been designed with traditional large centralized generation in mind; however, with
the ever-increasing utilization of renewable distributed energy resources, the challenges of proper grid
management have intensified. Demand-side energy flexibility is seen as one potential way to alleviate
these challenges. Presently, residential demand-side energy flexibility has remained a largely untapped
resource since individual prosumers are too small to provide enough capacity, thus necessitating the
need for an aggregator. In view of the aforementioned, this paper conducts a literature review on the
aggregated residential demand-side energy flexibility. The paper gives an overview of characterization
methods of energy flexibility. The sources of residential energy flexibility are identified and categorized
based on their flexibility characteristics. In addition, the quantification methods and parameters of
energy flexibility are analyzed. Moreover, the forecasting methods of energy flexibility in the context
of different flexibility sources are outlined. Additionally, an overview of existing markets and potential
new emerging flexibility markets is given. The challenges and barriers faced by the aggregators
attempting to enter flexibility markets are examined. Finally, the paper is concluded by providing
a discussion of the key findings that summarize the current research directions and highlight the gaps

for future development of aggregated energy flexibility.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Due to the rising concerns about global climate issues, an
increase in the usage of renewable energy sources (RES) has been
reported. The share of energy from RES in electricity consumption
of the European Union (EU) increased from 16.9% in 2008 to 32.1%
in 2018 (Eurostat, 2020b). Thus, Variable Renewable Energy (VRE)
sources such as wind and solar energy are increasingly integrated
into the power grids. However, due to the fluctuating nature of
VRE, more flexibility is needed to balance the varying supply and
demand of energy (Lund et al., 2015).

Supplying for more than about 30% of annual demand using
VRE can be challenging at the present levels of flexibility (Perera
et al, 2019). In the study of Electrical Energy Storage (EES) re-
quirements for Europe and the US (Cebulla et al., 2018), it was
found that to achieve over 80% VRE penetration, an additional
1-3 TWh of storage would be necessary for PV-dominated grids
and 0.2-1.0 TWh of storage for wind-dominated grids. Flexibility
Tracker, an assessment methodology to estimate the readiness
of existing power systems for high shares of VRE based on 80
standardized Key Performance Indicators (KPI), was developed in
Papaefthymiou et al. (2018).

Energy flexibility sources can be broadly divided into two cate-
gories: demand-side flexibility and supply-side flexibility (Aduda
et al., 2016). Conventionally, the power balancing has been han-
dled on the supply side by varying the output of power generation
units in response to changes in the demand. Supply-side flex-
ibility is obtained by integrating power plants with different
response times into the power grid. Based on their response
times, power plants can be divided into base load power plants,
load following (intermediate) power plants, and peaking power
plants (Alizadeh et al., 2016).

Base load power plants (e.g., nuclear, coal, geothermal and
oil-shale) provide continuous power to cover the base of the
power demand as the name suggests. These types of power plants
react slowly and are thus operated at constant power near nom-
inal output levels for higher efficiency. They are typically only
turned off for periodic maintenance, upgrading, and other major
services. Intermediate load-following power plants (e.g., hydro-
electric, wind, and solar) supplement base load power plants by
enabling the transition between base load and peak load demand.
These types of power plants react faster than base load plants
and are not as expensive to operate as peak load plants. Wind
and solar plants also fall into this category because their output
depends on the weather conditions. They cannot cover the base
without an effective energy storage system and nor can they
be immediately employed in response to peak power demand.
Peaking power plants (e.g., natural gas and oil plants, hydro-
facilities) are operated during the daily peak power demands. This
type of power plant is the fastest of the three; however, it is also
the most expensive per MWh base.

Demand-side flexibility allows for reduction, increase, or shift-
ing of electrical loads within short notice to balance short-term
fluctuations in supply or to level out the demand profile in
the long run. Demand-side flexibility sources incorporate the
thermal mass of buildings, residential (Li and Pye, 2018), com-
mercial (Aduda et al., 2017), and industrial (Heffron et al., 2020)
flexible loads, whose consumption can be controlled to some
extent within the users’ comfort ranges. Controllable and flexible
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residential loads include air conditioning, water heaters, fridges,
dishwashers, washing machines, battery storage systems, and
electric vehicles. Characterization of residential flexibility sources
is further discussed in Section 2. In commercial buildings, heat-
ing, ventilation, and air cooling (HVAC) and lighting are major
consumers and are somewhat flexible within certain comfort and
regulatory ranges, thus being a good source for energy flexibility.
Sources of flexibility in industrial loads are case-specific, for ex-
ample in the food or fishing industry, cold storage can be used as
a source of flexibility (Heffron et al., 2020). Different price-based
and incentive-based demand response (DR) programs can be used
to control these loads (Palensky and Dietrich, 2011).

The uncertainty of available flexibility influences the effec-
tiveness of DR programs and thus it is important to forecast
flexibility. Available demand-side flexibility can be estimated by
predicting the size of controllable loads from the load mix using
load decomposition, i.e. disaggregation (Ponocko and Milanovic,
2018). Broadly, disaggregation can be divided into two cate-
gories: Non-Intrusive Load Monitoring (NILM), which uses a sin-
gle monitoring meter, usually a smart meter and Intrusive Load
Monitoring (ILM), which consists of measuring one or few appli-
ances locally (Ridi et al., 2014). The forecasting of demand-side
flexibility is discussed in detail in Section 3.

Assessing the flexibility of a system might be a difficult task,
instead, the signs of inflexibility are sometimes more visible.
Signs of inflexibility (Papaefthymiou et al., 2018; Cochran et al.,
2014) include:

e Difficulty in balancing demand and supply that results in
severe recurring frequency excursions.

e Significant renewable energy source (RES) curtailment due
to transmission constraints or overproduction of conven-
tional inflexible power.

o Negative market prices can indicate numerous types of in-
flexibilities, such as overproduction of inflexible power, ex-
cess of renewable energy, shortage of demand, and limited
transmission capacity.

e Other signs include price volatility, high levels of re-
dispatch, area balancing violations, loss-of-load, and subsi-
dized overcapacity.

A single household on its own does not provide enough flex-
ibility for grid improvement and might find it difficult to par-
ticipate in markets due to its small scale. Thus, an aggregator
is needed to build up a portfolio of many smaller controllable
loads to act as a single entity. Aggregators serve as intermediaries
between end-users and system operators (Burger et al., 2017).
The aggregator offers their aggregated flexibility to the markets
(e.g., wholesale, reserve, ancillary). The position and the roles of
an aggregator are discussed further in Section 4.

In the literature, various parts of energy flexibility have been
covered. For example, the technical parameters of distributed
energy resources (DERs) and incentives for market operation have
been provided in Eid et al. (2016). The flexible control of district
heating and cooling networks has been reviewed in Vander-
meulen et al. (2018). The quantification methodologies of energy
flexible buildings with thermal storage case studies have been
analyzed in Reynders et al. (2018). The concepts, models, and
clearing methods of local flexibility markets have been assessed
in Jin et al. (2020). The demand response (DR) incentives for
efficient operation of distributed energy resources (DERs) have
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Fig. 1.1. Graphical description of the review paper topics.

been reviewed in Chen et al. (2018). However, there seems to be
a lack of existing research that provides a comprehensive review
of specifically aggregated residential energy flexibility. Thus, this
paper attempts to bridge the gap by contributing to the existing
research in the following manner:

1. This paper provides a comprehensive review of residential

demand-side energy flexibility specifically in the context of

aggregation.

. Sources and characteristics of residential demand-side en-
ergy flexibility are identified.

. The quantification methods and parameters are analyzed.

. The existing and potential new emerging markets for ag-
gregated energy flexibility are reviewed.

. The barriers and challenges faced by the aggregators at-
tempting to enter the market are examined.

w

This paper presents a review, classification, and discussion of
many relevant aspects of aggregated residential demand-side en-
ergy flexibility. A graphical description of the review paper topics
is given in Fig. 1.1. Section 2 provides an overview of characteriza-
tion and quantification methods of aggregated demand-side flex-
ibility. Section 3 outlines commonly used methods for flexibility
forecasting. Section 4 is dedicated to the market aspect of aggre-
gated energy flexibility and the barriers and challenges faced by
the aggregators. Section 5 contains the discussion summarizing
key findings and conclusions.

2. Characterization of flexibility

According to Jin et al. (2020) and Villar et al. (2018), flexibility
products can also be divided into three different types based on
which system (transmission or distribution) needs flexibility and
from which system (transmission or distribution) it is procured:

1. Transmission network balancing flexibility procured by the
transmission system operator (TSO) from the transmission
system. Traditionally traded in fully developed intra-day
energy markets or reserve markets.

. Transmission network balancing flexibility procured by the
TSO from the distribution system (Roos, 2017). The flexibil-
ity of this type is needed to support the flexibility trading of
the first type. The TSO-distribution system operator (DSO)
coordination is necessary here to avoid problems caused
for the distribution grid by the flexibility services provided
for the TSO (Hansen et al.,, 2013). The major driver for the
development of a market for this type of flexibility is the
TSO’s need for flexibility from the distribution system.

. Distribution network flexibility procured by the DSO from
local DERs for local balancing, voltage regulation, conges-
tion management, or losses reduction. The development of
local flexibility markets (LFMs) is driven by the DSO’s need
for more active system management and control that pro-
vide the opportunities and trading environments for this
type of flexibility. In this review, the third type of flexibility
is addressed from the perspective of an aggregator.
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2.1. Definition of flexibility

At this moment, there is no clear definition for energy flexi-
bility. Many authors have attempted to define it based on their
specific field of research. A general definition of energy flexi-
bility of a building has been given in the IEA EBC Annex 67
project “Energy Flexible Buildings” (Pernetti Roberta and Seren
@stergaard Jensen, 2019) as “The energy flexibility of a building
is the ability to manage its demand and generation according
to local climate conditions, user needs, and grid requirements.
Energy flexibility of buildings will thus allow for demand-side
management/load control and thereby demand response based
on the requirements of the surrounding grids”.

The newer IEA EBC Annex 82 project “Energy Flexible Build-
ings Towards Resilient Low Carbon Energy Systems” (IEA, 2022a)
focuses on expanding the Annex 67 by considering the clusters of
buildings and multi-carrier energy systems. Additionally, it aims
to understand what would motivate the stakeholders to utilize
such systems and what barriers prevent further participation.

Another IEA EBC Annex 83 project “Positive Energy Districts”
(IEA, 2022b) aims to develop in-depth definitions of positive
energy districts (PEDs), technologies, planning tools, and planning
and decision-making processes related to PEDs. In the scope
of this projects 60 existing European PED projects have been
reviewed finding that most projects are in their early planning
and implementation stages, illustrating the actuality of PEDs.

2.1.1. Properties of flexibility

From a technical point of view, electrical flexibility services
can be defined as power generation or consumption adjustments
starting at a given time for a given duration at a specific loca-
tion in the electrical grid. Therefore, the properties of flexibility
services can be expressed by their (a) direction (up or down, as
in generation or consumption), (b) the amount of power that
is adjusted, (c) the starting time, (d) the duration, and (e) the
location in electrical grid (Jin et al., 2020; Villar et al., 2018; Eid
et al,, 2015), as shown in Fig. 2.1. Other frequently mentioned
properties in the literature include controllability, predictability,
time availability, delivering time, and cost (resulting cost or loss
of efficiency from activating flexibility service).

e The directional property describes the power flow direction
of the flexibility sources, whether they are generation or
consumption types. Flexibility sources can be unidirectional
‘up’ or ‘down’, or bidirectional. Controllable household ap-
pliances, such as water heaters and washing machines, have
a ‘down’ direction, meaning that they are consumers, while
curtailable PV and wind generation have an ‘up’ direction,
meaning that they are producers. Bidirectional flexibility
includes sources such as battery storage or electric vehicles;
they can act as both consumer loads and generating sources,
i.e. prosumer capable loads.
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Fig. 2.1. Properties of a flexibility service (based on Roos (2017)).

e The power capacity property describes the power adjust-
ment that a flexibility service is capable of modifying. Com-
bined with the duration for which the flexibility service can
be activated, the flexibility sources can be categorized as
either capacity or energy type sources. Capacity type sources
can activate for a short duration with high power, while
energy type sources can be activated for a longer duration,
however with smaller power output.

Starting time property describes the delay from receiving

the activation signal to when the flexibility service engages.

In addition, some flexible sources can only be activated at

a certain time of the day, either because the owner of the

flexibility source has defined it as such or because of the

intrinsic nature of the source.

e The location property describes the actual location of the
flexibility source in the distribution grid. For the DSO, the
location where flexibility is needed might be important to
solve congestion problems, while for the TSO and balance
responsive party (BRP), the location is less important since
their objective might be to just balance the generation and
consumption (Jin et al., 2020).

2.1.2. Flexibility function

Flexibility Function (FF) is a more complex characterization
method that can be used to characterize energy flexibility that
is controlled through the use of penalty signals. Penalty signals
are external control signals that flexibility sources with penalty-
aware controllers use to adjust their demand. The incentive is
for the consumer to minimize their accumulated penalty. De-
pending on the reason or the objective of controlling flexibil-
ity, the penalty signals can represent different properties (Per-
netti Roberta and Seren @stergaard Jensen, 2019), such as:

e Real-time CO, emissions of consumed energy, in which case
the flexibility controller tries to minimize the total carbon
emissions and thus become emission-efficient.

o Real-time electricity price, in which case the goal is to
minimize the total cost related to consumption and thus
become cost-efficient.

e A constant, if the penalty is constant, then the flexibility
controller simply tries to minimize the total energy con-
sumption and thus become energy-efficient.

A penalty signal might be a combination of the above or
constructed with other objectives in mind, such as reducing peak
power consumption or to solve voltage, frequency problems, or
manage grid congestions (Junker et al, 2019); in those cases,
the location of the activated flexibility is also considered when
a penalty signal is constructed.
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Fig. 2.2. Flexibility Function depicting the expected response of energy flexible
buildings.
Source: Adapted from (Aduda et al., 2016).

FF was introduced in Junker et al. (2018) to describe the
dynamic relationship between the penalty signal and a penalty-
aware demand that responds to it. Commonly, energy flexibility
is described using static functions for particular steady states
that ignore the dynamics of changes, thus the FF attempts to de-
scribe the dynamic behaviors that arise from utilizing the energy
flexibility. Observing the dynamics is important since activating
energy flexibility inherently means deviating from normal oper-
ational set points. The FF can be constructed from the analysis of
time-series data, through simulations, or from the first principles
of a detailed model that includes constraints, occupancy behav-
ior, controllers, and boundary conditions. An example of a FF is
depicted in Fig. 2.2.

From the FF in Fig. 2.2, the energy flexibility can be charac-
terized by the following parameters (Pernetti Roberta and Seren
@stergaard Jensen, 2019):

e 7, the time delay from the adjustment of the penalty sig-
nal to the earliest response in demand. The delay can be
attributed to communication delays or in some cases due to
heavy computation in optimization algorithms. Also, some
appliances might need time to finish their current opera-
tions before they can be turned off.

«, the time it takes for flexibility to fully activate from initial
change. This is affected by the reaction speed or the energy
inertia of the flexibility source.

B, total amount of time for which the flexibility can be
activated, which depends on the energy capacity of the
flexibility source. For example, large heavy buildings that are
well insulated can have large values, while smaller poorly
insulated building cannot deviate their demand for too long.
A, maximum demand adjustment, which describes the
power capacity of the energy flexibility source.

e A, total amount of energy that the flexibility source is ca-
pable of reducing (or increasing) in demand before reaching
constraints set by the owner of said flexibility source. It is an
important parameter if the reason for activating flexibility
requires shifting a lot of energy.

B, total amount of energy needed to rebound back from the
deviation caused by the previously activated flexibility. It
depends on the type of the flexibility source, for example, if
the heating is turned off to reduce demand, then afterwards
it needs to be turned on again to return to the original
temperature. However, when lighting is dimmed, then af-
terwards it is not needed to increase the brightness above
the normal levels; in such case, there is no rebound.
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Fig. 2.3. Flexibility functions of buildings with different energy inertia.
Source: Adapted from Aduda et al. (2016).

FF can be used to characterize an individual or a combination
of flexibility sources, i.e. a building or a combination of buildings.
An example of FF for buildings with different thermal mass is
shown in Fig. 2.3, where building 1 has a significant amount of
thermal mass with a large rebound effect, building 2 is medium-
sized, and building 3 is poorly insulated with resistive heating,
the black line shows the combined FF of these buildings.

2.2. Sources of demand-side flexibility

Buildings have great potential to be used as a source of aggre-
gated energy flexibility. The building sector in the EU accounted
for approximately 40.3% of final energy consumption in 2018
(26.1% households and 14.2% service sector) (Eurostat, 2020a).
The energy flexibility that a building can provide is affected by
several factors (Junker et al., 2018):

e Physical characteristics of a building (its thermal mass, in-
sulation, and architectural layout)

e Controllable loads that are present in the building (ventila-
tion, heating, storage equipment, etc.)

e Implemented control systems that enable controllable loads
to react to external signals (control or penalty signals based
on electricity price, CO, emissions, etc. Dadashi-Rad et al.,
2020)

e The behavior of the building occupants and their comfort
requirements

Building energy loads were classified in the Annex 67 project
(Pernetti Roberta and Seren @stergaard Jensen, 2019) into three
categories based on their priorities and the requirements needed
to shift or change their consumption:

o Shiftable loads, these loads can be rescheduled to off-peak
hours with the use of a penalty signal. This type of load
can be usually shifted or interrupted without influencing
the occupant’s comfort too much. Shiftable loads can also
be divided into shiftable profile loads (which have a rigid
energy profile that cannot be changed but can be moved,
such as washing machines) and shiftable volume loads
(which allow the energy profile to change within some lim-
its, whereas the total volume must be met over some time
period, such as charging devices) (Ottesen and Tomasgard,
2015).

Non-shiftable loads are those that are not flexible and can-
not be shifted regardless of the energy cost; this is mainly
due to occupant requirements, for example, lighting, cook-
ing appliances, computers, and television.
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e Other controllable loads can be controlled with optimal
control strategies by thermostatic control, fan speed control,
or dimming (e.g., HVAC, water heaters, and non-essential
lighting).

2.2.1. Residential flexible loads

Residential loads can be characterized by the appliance type in
the context of flexibility as either storable, non-storable, shiftable,
non-shiftable, curtailable, or non-curtailable loads (He et al,
2013; Mancini et al,, 2019). This way, an appliance’s poten-
tial to participate in demand response can be reflected in the
load characterization. Starting from the most flexible loads to
the least flexible loads, the residential loads can be first seg-
mented into storable and non-storable loads. Non-storable loads
can be further divided into shiftable and non-shiftable loads.
Next, non-shiftable loads can also be divided into curtailable and
non-curtailable loads. Non-curtailable loads can be considered
as inflexible base loads that cannot be controlled as they are
non-storable, non-shiftable, and non-curtailable.

o Storable loads have a decoupled power consumption from
the end-use service through the means of batteries or ther-
mal inertia. This type of loads stores electrical energy in
some other form (thermal, electrochemical, etc.). Examples
of this type of load are batteries, electrical heating/cooling
(HVAC) (Hdring et al., 2021), and domestic hot water (DHW)
appliances that store energy in a thermal mass.

Shiftable loads are loads that have temporal flexibility in
the sense that they can be moved in time, rescheduled to be
activated later or earlier. Shiftable loads need to be planned
in advance since they often have a predetermined opera-
tional cycle that cannot be interrupted. Washing machines,
dryers, and dishwashers are some examples of shiftable
loads.

Curtailable loads cannot be shifted due to either the con-
sumers’ comfort needs or because there is no need to shift
them, for example, there is no need to shift room lighting.
However, curtailable loads can be interrupted if consumers
are incentivized sufficiently.

An overview of common residential loads based on the above
classification and their flexibility characteristics is given in
Table 1. To assess the potential of flexible loads for aggregation,
they can be characterized by whether they are capacity or energy
type, by their response direction (unidirectionally upwards or
downwards, or bidirectional), response speed, response duration,
availability, and predictability (Eid et al., 2016).

e Type (capacity or energy) states the energy/power ratio
of the flexible load. Those loads that have a low ratio can
provide high power but are not able to maintain it for a long
period of time and are thus more suitable to provide short-
term flexibility services (e.g. ancillary services). In contrast,
loads that have a high ratio can provide power for longer
durations and can thus be considered as energy type loads
and are better suited for longer applications, such as load
leveling.

Response direction determines the load’s power flow di-
rection. Some might be unidirectionally upwards or down-
wards, meaning that they either act as a load or a producer,
but not as both. Bidirectional flexibility sources can act as
a prosumer that at times consume power and at different
times provide power back, such as battery storage devices.
Response speed for residential flexible resources is gener-
ally quick in the order of seconds to minutes but it also
depends on whether the load is available for flexibility us-
age.
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Table 1
Characterization of residential flexible loads.

Energy Reports 8 (2022) 9344-9362

Appliance type Storable appliances

Non-storable appliances

Shiftable Non-shiftable appliances
appliances
Curtailable Non-curtailable
Flexibility Electric Battery Heating and Domestic hot Refrigerators ~Wet appliances  Lighting Cooking Devices and
characteristics Vehicles (EV)  Storage (EES)  cooling (HVAC)  water (DHW) and dryers other ‘must-use’
home devices
Interruptible Yes Yes Yes Yes Yes No* Yes No
Capacity or Both Both Capacity Both Capacity Capacity Depends® -
energy type
Response Bidirectional® Bidirectional Downward Downward Downward Downward Downward -
direction
Response speed Quick Quick Fast Fast Fast Moderate Quick -
Response Hours Hours Minutes Hours Minutes Minutes Hours -
duration
Availability Evening and Always Often Often Always Rarely Evening -
night
Predictability High Perfect High High High Moderate Good -

2Wet appliances such as washing machines are interruptible for up to couple of minutes.
bNew efficient low-power LED lighting systems are energy type while older less-efficient lighting systems are power type.

‘With vehicle-to-grid technology EVs can respond in both directions.

e Response duration can be expressed as time for the max-
imum duration that a flexible load can sustain its power
with respect to its nominal power when it is called upon.
As stated in Eid et al. (2016), the response duration can
sometimes be computed by dividing the allowed energy
range with the maximum power capacity (for a 50 kWh
battery with a 10 kW charging/discharging power, it would
be 5 h). The response duration of flexible loads might be
technology-specific and dependent on consumer behavior.
Availability determines how often and when the load is
available for flexible activation. Some devices, such as EVs,
are usually available during the evening and nighttime since
during the day, they would be parked away from residen-
tial homes. While others, such as wet appliances, could be
available rarely as there is a specific time when there is an
opportunity to activate them and only for once a day or so.
Predictability expresses how accurately the availability of a
flexible load can be estimated. Some loads can be very pre-
dictable like battery systems, while EVs are more likely to
be available between 6 PM and 6 AM. Some loads, however,
like washing machines and dishwashers, are less predictable
since they are operated only a few hours a week and are
subject to consumer behavior.

2.2.2. Distributed battery storages

Compared to unidirectional consumption type flexible loads,
which can provide energy flexibility through the adjustment of
their demand profiles, battery storages work bidirectionally as
prosumer type devices. Battery storage systems can be excellent
sources of energy flexibility due to their inherent nature of being
able to store electrical energy for later usage.

Distributed battery storage systems are often installed to-
gether with PV systems as they can enable onsite self-consum-
ption of PV power (Ahmadiahangar et al., 2022). Storing the
excess energy from PVs for later use can reduce the loading
of distribution grids during the peak demand time (Jankowiak
et al,, 2020) and mitigate the PV curtailment during low demand
noontime when PVs are often overproducing (Segundo Sevilla
et al,, 2018).

For aggregators, distributed battery storages are a very im-
portant resource of energy flexibility since their response time is
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very quick, they can be immediately called upon, their state-of-
charge (SOC) is always known, and their energy flexibility comes
directly in an electrical manner, whereas for flexible loads, the
energy flexibility is achieved through a roundabout control of
temperature or scheduling of loads (Fischer et al., 2020).

Aggregated battery storage can be utilized for additional pur-
poses that are not achievable for individual residential owners of
smaller storage systems.

e If a high enough capacity for the aggregated battery storage
is reached, then the aggregator can use it to participate in
the reserve markets (Nitsch et al., 2021). Battery storage is
ideal for this due to its fast response time.

Aggregators can coordinate the energy flow of battery sys-
tems in a community, i.e. the energy sharing concept, to
further increase the self-consumption of renewable energy,
Riesen et al. (2017), or for local power balancing (Plaum
et al,, 2020) and peak shaving (Wang et al, 2019b) that
reduces the ramping stress of conventional generation.
Aggregated battery storage can provide additional ancillary
service support (Sanjareh et al., 2021), such as distribution
grid congestion management (Agbonaye et al.,, 2020) and
black start support (Choi et al., 2021).

2.2.3. Electric vehicles

With the ever-increasing employment of electric vehicles
(EVs), substantial research has focused on their utilization as flex-
ibility sources. Compared to stationary battery systems, EVs have
more nuanced considerations to keep in mind. Their inherent
mobile nature can be considered in some circumstances either
as a beneficial characteristic or as a drawback.

The mobile aspect of EVs means that they can travel between
different parts of the grid. From the perspective of residential
energy flexibility aggregators, this means that they might not
always be present as their owners use them to commute to dif-
ferent locations. Due to this reason, overnight charging has been
a large focus on the research of residential EV energy flexibil-
ity (Jian et al., 2017). The advancement of non-residential charg-
ing infrastructure will be the key to utilizing daytime charging as
a flexibility source.

Since most EVs are parked and not operated for roughly 22 h
a day (Brooks, 2003), they could be put in use for other purposes
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during that time, such as demand response, ancillary service
provision, on-site use of renewable generation, and peak shaving.
However, all these potential applications require an intermediate
aggregator to engage EVs in these use-cases.

The research surrounding EV flexibility has mainly focused on
optimal scheduling and optimization strategies of charging and
cost minimization; often studied in the presence of renewable
generation (Palmiotto et al., 2021; Wang et al., 2021).

Unidirectional charging is not all that EVs are able to provide,
as together with smart charging infrastructure, the vehicle-to-
grid (V2G) possibility becomes available, rendering EVs as bidi-
rectional devices. V2G technology adds additional flexibility, as
the EVs are then able to both charge and discharge, essentially
becoming mobile battery systems. Although, V2G needs to be
done under the considerations of battery degradation. Provid-
ing frequency containment reserve (primary reserve) can add
an additional 1%-2% degradation to the typical 7%-12% capacity
reduction over 5 years (Calearo and Marinelli, 2020). According
to Bhoir et al. (2021), providing the combination of frequency
containment reserve and peak-shaving is more profitable than
providing either of them individually.

Frequency regulation using residential EVs was investigated
using a dynamic relationship between the state-of-charge and
the frequency setpoint in Muhssin et al. (2021). In a similar
study (Meng et al., 2016) with droop control, it was also found
that the bidirectional power regulation potential during the day
was about one-third of that from during the night due to the lack
of parked cars in the residential grid.

An outline in LaMonaca and Ryan (2022) provides the markets
of EV charging infrastructure, with a focus on the existing charg-
ing types, the main market functions and actors, and future policy
actions needed for widespread EV development.

2.3. Quantification of flexibility

As previously mentioned, there is no single commonly agreed-
upon definition for energy flexibility. The definitions in the lit-
erature are usually worded in an abstract, vague manner and
do not necessarily provide a means to quantify the amount of
flexibility a given system or a flexible load has. An overview
of the definitions of energy flexibility in the literature is given
in Pernetti Roberta and Seren @stergaard Jensen (2019). When
traded on flexibility markets it is a resource with a price tag and
when aggregated on a large scale it can be used to affect electrical
grid parameters, such as voltage and frequency. Thus, for real-
world purposes, it is important to be able to quantify flexibility in
a meaningful, quantitative manner. Quantification methodologies
of thermal storages have been reviewed in Reynders et al. (2018)
and Bampoulas et al. (2021).

In the literature, many quantification methods are used for
energy flexibility. However, no one best quantification method
fits every use-case, thus the method of quantification depends
on the type of flexibility that is being quantified, i.e. storable,
shiftable, or curtailable.

2.3.1. Flexibility envelope

A methodology proposed in D’hulst et al. (2015) is based on a
flexibility envelope concept where energy flexibility is quantified
by the possible power increase or decrease for the duration it
can be sustained until constrained operational limits, e.g. user
comfort and system constraints are reached. The concept of this
quantification methodology is illustrated in Fig. 2.4, where flexi-
bility is used to (a) increase power consumption and (b) decrease
power consumption.

The lines Ep,x and En;, depict upper and lower energy bounds
that represent two extreme scenarios. The upper energy bound
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Fig. 2.4. Concept of the envelope quantification method: (a) flexible increase
and (b) flexible decrease in power consumption.
Source: adapted from D’hulst et al. (2015).

is obtained when all devices are set to consume as early and as
much as possible. This high-power consumption will continue un-
til user comfort and system constraints are approached, e.g. room
temperature reaches a specified upper limit and heating is turned
off or schedulable appliances, such as washing machines, end
their cycle and there is no need to turn them back any time soon.
Likewise, the lower energy bound is obtained when all devices
are set to consume as late and as little as possible. This time, the
operation of devices is postponed as long as possible until lower
constraints are approached, e.g. domestic water heater becomes
too cold or the latest deadline when dishwasher should turn on
is reached.

The available flexibility of a building or an individual device is
determined by the current energetic status, “how far” it is from
the limits imposed by the constraints, and the available time until
the constraints or a set specific status is reached. Thus, in Fig. 2.4,
the energy flexibility is quantified by the combination of possible
power increase P, or decrease Pge. and the time interval AT
this power change can be sustained until constraints are reached.
P signifies the reference power consumption, i.e. the power
consumption at the time when energy flexibility usage is started
and P is the maximal or minimal power consumption that does
not violate constraints for the duration specified by the AT.

The drawbacks of this methodology are that it assumes that
the initial and final states of the system are specified. Also, it
is pointed out in D’hulst et al. (2015) that this quantification
methodology is more of an indication of flexibility potential,
rather than a tool for scheduling or rebound effect calculation.

This quantification methodology was used in Gasser et al.
(2021) to quantify the flexibility of a house using a rule-based
controller and model predictive controller with cost-oriented,
emission-oriented, and flexibility-oriented objectives.

The flexibility envelopes were expanded in Azizi et al. (2021)
to include NILM for the disaggregation of Shiftable appliances
from the total consumption. The results of the study indicated
that NILM integrated quantification method was able to extract
the energy flexibility with 90% similarity to actually available en-
ergy flexibility. The aggregated energy flexibility characterization
was improved by 40%.

2.3.2. Nodal operating envelope

A framework is presented in Riaz and Mancarella (2021) to
model, describe, characterize, and quantify DER flexibility based
on the concept of a nodal operating envelope (NOE). The NOE
describes the feasible operating region of a device or a system un-
der different constraints, meaning that this quantification method
can be used to determine the network-feasible energy flexibility,
contrasting other quantification methods that usually completely
disregard network constraints. With this framework, the key flex-
ibility metrics — capacity, ramp, duration, and cost, are quantified
using the capability, feasibility, ramp, duration, economic, techni-
cal, and commercial flexibility features. These flexibility features
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Fig. 2.6. Ramping flexibility (OP — operational point, C — capability region, F
— feasibility region, RFE — ramping flexibility envelope, 7 — ramp time) (Riaz
and Mancarella, 2021).

are mapped in an active-reactive power space (PQ-space). The
aggregated flexibility is estimated using Minkowski summation
over the individual DER P-Q regions.

This methodology distinguishes between virtual and physical
flexibility. Virtual flexibility is described as the capability oper-
ation region of the DER to provide flexibility regardless of the
network constraints encountered in real implementation. Phys-
ical flexibility is described as the feasibility operation region that
is obtained when the capability operation region is constrained by
the network and other constraints, as shown in Fig. 2.5.

Different techno-economical aspects of distributed energy re-
source aggregation (DERA) flexibility can be quantified as possible
operating regions using other nodal operating regions. For ex-
ample, the ramping flexibility can be quantified with contours on
these regions indicating the maximum active and reactive power
that can be called upon based on the required ramp rate, as
shown in Fig. 2.6.

These envelopes can be made to also quantify other flexibility
features. The duration flexibility, which shows how long the flex-
ibility activation can be sustained. The economic flexibility, which
describes the cost of activating flexibility for a specific time.
The technical flexibility, which is the ability to deviate from the
current operational point with regard to the time and duration
constraints. Lastly, the commercial flexibility, which is required to
partake in the market with considerations to techno-economic
constraints of time, service duration, and anticipated clearing
price. Example envelopes for these flexibility characteristics can
be found in Riaz and Mancarella (2021).

2.3.3. Quantification parameters
In numerous papers, no real systematized quantification
methodology is used. Instead, flexibility is quantified using many
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different parameters describing electrical, time, comfort, cost
domains. The parameters used to quantify energy flexibility are
given in Table 2. Flexibility was observed to be quantifiable with
three main dimensions: power [kW], energy [kWh], and time [h].
Depending on the use-case or the context, these dimensions can
describe completely different properties, for example, duration
and regeneration time are both time characteristics.

o Power dimension describes the capacity [kW] of the flexible
loads. This is the main parameter for flexibility sources
with power regulation capabilities, such as dimmable lights.
Power dimension parameters found in the literature include
instantaneous power flexibility, maximum power, mean
power, maximal charging power, and power capacity.

e Energy [kWh] dimension is the main parameter for storable
loads or volume shiftable flexible loads. Different energy pa-
rameters found in the literature include shiftable energy, en-
ergy reduction, energy capacity, storage capacity, and avail-
able storage capacity.

e Time [h] dimension is important to quantify flexible loads
that are schedulable or with a shiftable profile. For example,
starting and ending time of the washing machine and the
duration of its operating cycle. Time properties discussed
in the literature include the duration, comfort capacity, re-
generation time, comfort recovery, maximum curtailment
duration, and availability period.

Besides the main three flexibility quantification dimensions,
others ways used to quantify flexibility are either through com-
bined, relative, or other means.

e Combined parameters attempt to quantify flexibility as a
function of two variables, for example, as a power shifting
capability that gives a relation between change in power and
the duration it can be sustained, or as a cost curve depicting
the amount of shiftable energy and its associated cost.

e Relative parameters quantify flexibility as a proportion of
two properties, these are self-consumption that is the pro-
portion of demand covered by onsite generation or storage
efficiency, relative peak reduction, DR potential, and battery
SoC.

e Other parameters found in the literature are those that do
not fit any of the above, such as coefficient of variation of
power, ramping rate, frequency of operation, consistency of
operation, peak time operation, and the potential score for
how flexible a system is between 0 and 1.
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Table 2
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Flexibility quantification parameters in the literature.

Type Parameter Descriptions as given in publications Ref.
Power Instantaneous power The potential power flexibility of TES and power-to-heat in any case of charging, Finck et al. (2018)
[kW] flexibility discharging, or idle mode
Maximum power The peak response after a trigger signal is sent Fischer et al. (2017)
Mean power The corresponding mean power for the duration of an activation Fischer et al. (2017)
Maximal charging power The EV station maximal charging power? Zade et al. (2020)
Average power curtailment Average lighting power curtailment during the curtailable duration Yu et al. (2020)
Power capacity How much power can be delivered as flexible power Hurtado et al. (2017)
Energy Available storage capacity The amount of energy that is shifted during optimal control Finck et al. (2018)
[kWh] The amount of energy that can be added to the storage system, without jeopardizing Reynders et al. (2017)
comfort, in the time-frame of an ADR-event and given the dynamic boundary conditions
Shiftable energy The energy content below the curve; this energy can be consumed by the pool over Fischer et al. (2017)
the period of activation
Energy reduction How much energy can be reduced during a whole day Yu et al. (2020)
Energy capacity How much energy can be delivered during the flexibility action Hurtado et al. (2017)
Storage capacity The energy that can be added to the building thermal mass during a specific DR action Bampoulas et al.
(2021)
Time Duration The time until the electricity consumption of the activated pool falls below the level of  Fischer et al. (2017)
[h] baseline operation
Regeneration time The time additional to the duration until the power consumption of the pool is back to Fischer et al. (2017)
normal
Availability period The time when EV is available for flexible usage® Zade et al. (2020)
Maximum curtailment The sum of time in which the curtailment is possible during a whole day Yu et al. (2020)
duration
Comfort capacity How long the response can be sustained before the comfort limits are reached Hurtado et al. (2017)
Comfort recovery How long the building requires to restore the nominal comfort Hurtado et al. (2017)
Combined Power shifting capability The relation between the change in heating power and the duration that this shift can Reynders et al. (2017)
[kW, h] be maintained, taking into account the future boundary conditions
Cost curve [kWh, EUR] The amount of flexibility (shiftable energy) and its associated cost De Coninck and
Helsen (2016)
Relative Self-consumption [%] Proportion of increased demand covered by onsite generation during DR action Bampoulas et al.
(2021)
Storage efficiency [%] A measure of the energy cost associated with the specific DR action Bampoulas et al.
(2021)
The ratio between discharging and charging events over the entire 24 h control horizon  Finck et al. (2018)
The fraction of the heat stored during the DR event that can be used subsequently to Reynders et al. (2017)
reduce the heating power needed to maintain thermal comfort
Battery SOC (%) The state-of-charge of the (EV) battery® Zade et al. (2020)
Relative peak reduction [-] Compares the deviation from the average of the minimum lighting power profile to the  Yu et al. (2020)
reference scenario
DR potential (%) Potential power change during DR operation compared to baseline power consumption® Yin et al. (2016)
Other Coefficient of variation of Determines whether the lighting system can provide a stable power curtailment Yu et al. (2020)

power curtailment [-]
Ramping rate [kW/min]
Frequency of operation
[0-1]

Consistency of operation
[0-1]

Peak time operation [0-1]

Potential score [0-1]

capacity or a fluctuating capacity

How fast the building reacts

The ratio of the number of days that an appliance has been activated compared to the
total number of historical days

The extent to which a user’s behavior is deterministic or stochastic across subsequent
days

The energy consumption during the DR timeframe across historical days using
min-max normalization

Flexibility “score” based on the above 3 parameters

Hurtado et al. (2017)
Afzalan and Jazizadeh
(2019)
Afzalan and Jazizadeh
(2019)
Afzalan and Jazizadeh
(2019)
Afzalan and Jazizadeh
(2019)

20wn descriptions based on the context of the work since the definitions were not provided in those publications.

3. Forecasting demand-side flexibility

For aggregators to participate in flexibility markets, they need
to assess the resources in their portfolio, i.e. the available ag-
gregated energy flexibility. Since the contracts on the flexibility
markets will be made before the actual delivery date, it is cru-
cial for aggregators to determine the amount of flexibility they
can offer and which flexibility request to bid on by forecasting
available flexibility in the future within reasonable uncertainty.
However, flexibility forecasting is a complicated task, since it is
influenced by customer behavior, consumption patterns, weather
conditions, and other variables, which make it challenging to
model accurately. In the interest of avoiding penalties from the
failure to deliver the correct amount of contracted flexibility,
the aggregators must also forecast how the customers react to
flexibility activation signals (price signals) to determine that the
correct amount of flexibility is indeed activated.
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To the best knowledge of the authors, there are few papers in
the literature that consider specifically the forecasting of residen-
tial demand-side energy flexibility. Research seems to be more
oriented around load forecasting (Ponocko and Milanovic, 2018;
Rajabi and Estebsari, 2019; Gurses-Tran et al., 2020; Hernandez
et al, 2013), which is not necessarily the same as flexibility
forecasting. Flexibility is predicted in Vesa et al. (2020) for data
centers engaged in demand response programs. The flexibility of
virtual power plants is forecasted using machine learning tech-
niques in Macdougall et al. (2016). Flexibility potential for DR in
the industry is evaluated in Lee et al. (2020). Load forecasting
of industrial machine tools is discussed in Dietrich et al. (2020).
General estimation of flexibility potential is explored based on
long-term historical data (D’hulst et al., 2015; Dyson et al., 2014;
Bustos-Turu et al.,, 2015), or by surveys on customer readiness to
participate in DR programs (Yamaguchi et al., 2020; Vellei et al,,
2020).
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According to Ponocko and Milanovic (2018), smart meter cov-
erage of only 5% is enough to provide data to forecast the flex-
ibility of a group of aggregated customers with high confidence.
Furthermore, the flexibility profile of a group of aggregated cus-
tomers is much more easily predicted than the flexibility of
individual customers due to their stochastic nature (Ponocko and
Milanovic, 2018; Heleno et al., 2015; Azizi et al., 2021).

An overview of the papers focused on flexibility forecasting is
given in Table 3, where they are divided by the forecasting model
type:

e Deterministic models assume certainty in the input param-
eters and thus rarely provide uncertainties in their forecasts.

o Probabilistic models where the aim of the forecasting is
not to predict a single value, but the distribution of the
possible available flexibility, meaning that the uncertainty
of the prediction is inherently included.

e Machine learning models are implemented to learn cus-
tomer behavior during DR and normal operations to esti-
mate the potentially extractable flexibility.

In the literature, different methodologies have been used to
approach flexibility forecasting corresponding to the first two
checkmark columns from the left in Table 3. For example, some
papers attempt to forecast flexibility in response to a price signal,
meaning that the forecasting question is “What price incentive
should be given certain hours away to extract the certain needed
amount of flexibility?” and not “How much flexibility will there
be available in certain hours away?”. Papers using this type of
method usually treat forecasting as an optimization problem and
often include finding an optimal schedule for appliances.

Other methods found in the literature attempt to forecast
flexibility based on real-time simulations (AhmadiAhangar et al.,
2019), or historical data. Papers using this method usually at-
tempt to extract information about controllable and uncontrol-
lable loads from historical measured data.

Forecasting flexibility of shiftable loads (washing machines,
tumble dryers and dishwashers, etc.) and thermostatically con-
trolled loads (domestic water heater, space heating, HVAC, etc.)
are most common in the literature. Storable loads, such as battery
storage and residential electric vehicles, are rarely forecasted in
the literature.

4. Demand-side flexibility aggregation

Resulting from the untapped energy flexibility potential, a
new market participant called the aggregator has emerged. In the
paper at hand, the aggregator of demand-side flexibility, i.e., de-
mand aggregator (DA), is considered. The role of the DA is to pool
together a portfolio of many smaller flexibility resources to act as
a bigger unit since a single residential or commercial customer is
typically not able to provide enough capacity to participate in the
markets on its own. Thus, the DA provides an important service
of transforming passive residential or commercial customers into
prosumers by aggregating the energy flexibility of their con-
trollable loads. The DA can provide substantial value to power
systems. According to Burger et al. (2017), the DA may provide
fundamental, transitory, and opportunistic value. Fundamental
value is derived from the act of aggregation itself, transitory
value refers to the temporary value created as the power system
advances from previous regulations and technologies to the next
more advanced ones, and the opportunistic value emerges in
response to regulatory flaws.
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4.1. Energy flexibility markets

4.1.1. Existing developed markets

Currently, aggregators can trade flexibility on markets that
have been historically designed for conventional centralized
power plants. A single residential household is thus unable to
participate in these markets alone. Therefore, aggregators could
potentially combine (aggregate) the flexibility of many smaller
producers together and sell it on markets. The existing markets
where flexibility can be traded are the day-ahead, intra-day,
and balancing reserve markets. The first two are managed by
power exchanges, such as Nord Pool or EEX, while the third
one is operated by the regional TSOs. An in-depth overview of
aggregators’ participation in these markets is given in Okur et al.
(2021).

The day-ahead market (DAM) hosts bidding for the buying
or selling of the next day’s hourly energy production. The bid-
ding is usually closed at noon of the day before the delivery.
This means that to participate in the DAM, aggregators need to
be able to forecast the available flexibility for at least one day
ahead within reasonable uncertainty. There has been a substantial
amount of research done about the utilization of aggregated
flexibility on DAMs (Rosin et al., 2020). Most papers in this
field investigate profit maximization under different conditions
using various methods. For example, a robust optimization model
profit-maximizer aggregator of EVs is presented in Porras et al.
(2020), where it was found that compared to stochastic and
deterministic models, around 9%-15% and 60%-64% reduction in
deviations from energy balance could be achieved using their
model. An optimal day-ahead bidding strategy using a stochastic
optimization model was developed to maximize the profits of
an EV aggregator in Zheng et al. (2020). A marginal price-based
coordination optimization model using mixed-integer linear op-
timization was developed in Ding et al. (2020) to coordinate
two EV aggregators. A support vector machine-based forecasting
model of aggregated smart household flexibility in the context of
DAM is developed in Wang et al. (2020), which is continued in
Wang et al. (2019a) by developing an optimal bidding strategy
of load aggregators to reduce the financial risk related to price
volatility. A robust optimization model to reduce the operational
cost of smart household aggregators was proposed in Correa-
Florez et al. (2018), in which a 5.7% reduction was achieved. An
optimal bidding strategy for a multi-energy virtual power plant
aggregator was developed in Zhao et al. (2021), in which around
5% of the costs were reduced. An optimal bidding strategy of a
multi-energy DER aggregator was developed in Di Somma et al.
(2019), using stochastic mixed linear integer programming for the
day-ahead market.

Intra-day market (IDM) bidding is done on the day of deliv-
ery. Bidding on IDM can be done based on more accurate forecast
information that is obtained closer to the time of delivery. Thus,
participating in an intra-day market might provide a means to
deal with the risk involved with an incorrect day-ahead flexibil-
ity forecast (Schwabeneder et al., 2021). An incentive-based DR
program model was proposed for participation in both day-ahead
and intra-day markets in Shahryari et al. (2018). The results of the
study show that participating in the intra-day market is profit-
wise comparable to participation in the day-ahead market. It was
found that there is a lack of research in the field of aggregated
flexibility provision in intra-day markets.

The purpose of the balancing market is to deal with fre-
quency deviations due to imbalance issues or unexpected loss
of generation, through procurement of reserve capacity (Hirth
and Ziegenhagen, 2015). The EU commission has established a
regulative guideline for energy balancing (European Commis-
sion, 2017) to harmonize European balancing markets. This reg-
ulation entails that all EU member states should at one point
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Table 3
Flexibility forecasting models used in the literature.
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model type
v v Heleno et al. (2015)
Mixed Integer v v v v v v Rasouli et al. (2020)
o Linear v v v De Zotti et al. (2019)
Deterministic Programming v v v Ruiz et al. (2015)
models (MILP) v v v Kotsis et al. (2015)
v v v v Gorria et al. (2013)
Algorithmic method v v Muller et al. (2017)
Chance-Constrained (CC) v v v De Zotti et al. (2019)
L Autoregressive v v Kouzelis et al. (2015)
Probabilistic integrated moving v v v Pertl et al. (2019)
models average (ARIMA) v v Kara et al. (2014)
Data analysis based v v Wang et al. (2018a)
Neural Networks v v v Ponocko and
(NN) Milanovic (2018)
Machine v v Paridari and
learning Nordstrom (2020)
models Support Vector Machine (SVM) v v v v Wang et al. (2020)
Support Vector Data Description (SVDD) 4 4 Pinto et al. (2017)
Logistic Regression v v v Neupane et al. (2018)
Piecewise-linear regression v v Wang et al. (2018b)

provide three balancing reserve products: automatic Frequency
Restoration Reserve (aFRR), manual Frequency Restoration Re-
serve (mFRR), i.e. secondary and tertiary reserves, and Replace-
ment Reserve (RR). In addition to these, the Frequency Contain-
ment Reserve (FCR), i.e. the primary reserve, is being voluntarily
implemented across Europe.

The bidding on RR ends 1 h before the time of delivery and
30 min for the aFRR and mFRR (ENTSO-E, 2020). Therefore, on the
one hand, capitalizing on the reserve markets can look promising
to aggregators due to low forecast errors of near to real-time
operation. However, on the other hand, participation in reserve
markets requires flexible power to be deployed at a fast rate,
since the required full activation time of aFRR is 5 min, mFRR is
12.5 min, and RR is 30 min ENTSO-E (2020). Aggregated energy
flexibility of EVs for reserve markets has been investigated in Tian
et al. (2020), Sengor et al. (2020), Farahmand-Zahed et al. (2020),
Cui et al. (2020), Sarker et al. (2016) and Liu et al. (2021). Similar
to DAM publications in general, the focus is on the optimiza-
tion of profits through optimal bidding strategies using various
optimization algorithms.

4.1.2. Emerging markets for flexibility

Local flexibility markets

Local flexibility markets (LFMs) are electricity trading plat-
forms where flexibility can be traded in geographically limited
areas, such as small cities and towns, districts, communities,
or neighborhoods (Olivella-Rosell et al., 2018b). Local flexibility
market models and clearing methods are reviewed in Jin et al.
(2020); it was found that LFM participants can have overlapping
positions, either DSO or aggregator could be the LFM operator
or the aggregator could be its own BRP. Thus, LFMs can be
designed to suit diverse conditions and regulations. Moreover, the
coordination between LFM and the balancing market should be
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considered if the TSO procures flexibility from LFM through TSO-
DSO coordination. The importance of TSO-DSO coordination is
further emphasized in Minniti et al. (2018) and Villar et al. (2018).

One of the first large-scale DR demonstrations was conducted
in the frame of the EcoGrid EU project that involved around
1900 residential customers where real-time prices were used
to incentivize change in the demand (Ding et al., 2013). It was
concluded that price incentives grant the DSO limited security
since they do not require the loads to shift their consumption,
only incentivize it. Moreover, pricing schemes penalize inflexible
loads that cannot shift or change their consumption.

These shortcomings were addressed with the EcoGrid 2.0
project where flexible loads were aggregated together and traded
on a fully functioning experimental LFM under real conditions
(Heinrich et al., 2020). In that project, two types of services were
defined to manage congestions in the distribution grid: capacity
limitation services and baseline flexibility services. It was shown
that these services can provide an additional safety net against
network overloadings and outages; however, they are rarely
needed. It was also pointed out that there are widespread short-
comings and unrealistic assumptions in the literature. Rarely,
clear definitions of flexibility services are given, meaning that
presently no clearly standardized flexibility products are avail-
able. The same issue was also identified in the quantification
section of this review paper where an overabundance of quan-
tification parameters was seen, which illustrates the need for
standardized flexibility products that would provide the outcome
parameters of how the flexibility should be quantified to sell it as
realistic flexibility products.

In Esmat et al. (2018), a decentralized LFM design that consid-
ers the uncertainty of the demand was introduced together with
a right-to-use (RtU) option that would allow the DSO to reserve
some flexibility that could be called upon in real-time if needed
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to manage potential congestions with medium probability. In
Olivella-Rosell et al. (2018a), an LFM design was investigated
where multiple flexibility services at the distribution network
level could be provided. In the proposed framework, the aggrega-
tor manages the flexibility trading in the local energy community
by acting as a local market operator. Twenty-three different Eu-
ropean LFM design proposals for congestion management were
evaluated in Radecke et al. (2019). According to the evaluations,
most of the market design proposals do not pass the definition of
a “market”; in addition, the product definitions, contract lengths,
market clearing, and matching procedures were found to vary
substantially between different designs.

Peer-to-peer trading

A novel concept of peer-to-peer (P2P) trading has emerged in
recent years (Liu et al, 2017). The notion of P2P trading is to
allow peers (prosumers and consumers) to directly trade energy
between one another. This encourages the local consumption
of excess renewable generation within the neighborhood. P2P
trading can be used as a way to involve end-users in energy
trading since unlike in traditional capacity and balancing markets,
there are no minimum capacity requirements in P2P trading.
However, there is no consensus on which market design, e.g. trad-
ing schemes, clearing methods, market-regulatory mechanisms,
or business models, should P2P trading employ.

Studies in Zhang et al. (2018) identified key elements and
strategies involved in P2P energy trading by composing a three-
dimensional system architecture. In the first dimension, the in-
teroperable exchange of information is facilitated between the
power grid layer, the ICT layer, the control layer, and the business
layer. In the second dimension, the size of the peers is considered,
i.e. premises, microgrids, cells, and regions. In the third dimen-
sion, the time sequence of P2P trading is expressed as a bidding,
energy exchanging, and settlement processes.

There have been multiple real-life demonstration projects
involving P2P trading, such as EnerChain (EnerChain Website,
2021), Electron (Electron Website, 2021), Piclo (Piclo Website,
2021), SonnenCommunity (SonnenCommunity Website, 2021),
Vandebron (Vandebron Website, 2021). An overview of these
and other P2P projects is given in Zhang et al. (2017), Park
and Yong (2017), and (Sousa et al., 2019). A trading platform
called “Elecbay” was designed in Zhang et al. (2018) to facilitate
P2P trading in a grid-connected LV microgrid. According to that
study, increased diversity of energy consumers and prosumers
can increase local generation and consumption balancing.

In Long et al. (2018), three different P2P market designs were
proposed: bill sharing, mid-market rate, and auction-based pric-
ing strategies. It was found that at a moderate level of PV pene-
tration, the P2P trading would result in a reduction of the energy
cost of around 30% for end-users. As reported in Liith et al. (2018),
the utilization of P2P trading resulted in 16% savings and coupled
together with centralized or decentralized battery storages, the
P2P trading resulted in 24% and 31% savings respectively.

The study in Sousa et al. (2019) focused on three different P2P
market designs: full P2P market design where peers negotiate
trades directly with each other; community-based market design
where a community manager manages inter-community trading
and is the middle-man between the community and the rest
of the system; hybrid P2P design that combines previous two
designs where there is a hierarchy of different layers and direct
trading is performed between the peers on their layer. The paper
concluded that the hybrid P2P market design is a good middle-
ground, providing suitable scalability and giving room for P2P
interactions.

A hierarchical framework is proposed in Li et al. (2019) that
enables P2P trading using smart contracts of blockchain technol-
ogy in residential, commercial, and industrial sectors. It is noted

9355

Energy Reports 8 (2022) 9344-9362

that the implementation of P2P trading is faced with a challenge
of scalability. To address the issue of scalability, the authors of
Hashemipour et al. (2021) proposed a dynamic allocation of P2P
clusters that create an optimal match between different load and
renewable profiles that complement each other. The benefit of
clustering was given as the increased scalability of P2P trading
when the number of participants increases.

A comprehensive review on P2P energy trading is given in Soto
et al. (2021) where the main areas of interest in the research
are identified as the topics of (1) trading platform architecture,
security testing, and scalability; (2) blockchain technology based
transaction mechanisms; (3) game theory based modeling of par-
ticipant behavior; (4) simulations to validate other main topics;
(5) optimizations to maximize the economic benefit of peers, and
lastly, (6) algorithms that implement previous main topics.

Selling energy efficiency

According to Behrangrad (2015), another business plan for
aggregators could be to sell the excess energy efficiency (EE) to
other entities that could not achieve the minimum legally re-
quired EE. This is due to the numerous emissions, environmental,
and energy efficiency codes that generation stakeholders have
to adhere to. If the achieved EE of the aggregated flexibility is
higher than the legally required minimum, then the business
model would have to liquidate this excess EE for profit. This type
of DR business model has been referred to as “energy savings
certificates (ESC)”, “energy efficiency credits (EEC)”, or “white
tags” (Bertoldi and Huld, 2006).

4.1.3. Network-feasible operation

In any real-world implementation, the operation of aggrega-
tors should be network-feasible and respectful towards the net-
work constraints. Maintaining the flexibility dispatching within
network limits can be a difficult challenge since aggregators usu-
ally do not have access to the data about market bidding and the
state of the grid (Attarha et al., 2020). This aspect is oftentimes
ignored in existing research; however, some researchers have
attempted to tackle it.

As previously discussed in Section 2.3.2, a quantification
method based on nodal operating envelopes has been proposed
in Riaz and Mancarella (2021) that can be used to determine the
network-feasible energy flexibility. Research surrounding
network-feasible bidding strategies oftentimes includes sepa-
rate constraints for network parameters. For example, in Iria
et al. (2020) a network constrained bidding optimization strategy
is proposed to coordinate the aggregation of prosumers in a
day-ahead and secondary reserve markets.

A framework for local energy and flexibility trading was pro-
posed in Khorasany et al. (2022), in which prosumers first partici-
pate in P2P market energy trading. Then, the network constraints
are checked by the DSO concerning the energy scheduling of
prosumers. If the operation ends up being network-unfeasible,
then the DSO calculates the flexibility needed to avoid network
issues. At the end, prosumers form a community and participate
in flexibility market with respect to DSO’s request.

A bidding strategy has been proposed in Attarha et al. (2021)
that aims to tackle the limitations of inelastic bids that do not
reflect DER flexibility and bids that result in network-infeasible
operation. A hierarchical control framework consisting of a utility
controller, community aggregators, and multiple home energy
management systems (HEMS) was developed in Utkarsh et al.
(2022) to compute the optimal setpoints of DERs that results in
network-feasible operation.
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4.2. Barriers and challenges faced by aggregators

With the Internal Electricity Market Directive (European Par-
liament, 2019), the EU has acknowledged that in the future “mar-
ket participants engaged in aggregation are likely to play an im-
portant role as intermediaries between customer groups and the
market”. Thus, they have adopted different regulatory guide-
lines (European Commission, 2017; European Parliament, 2019;
European Commission, 2019) to encourage the Member States
to remove discriminatory provisions and barriers regarding ag-
gregators’ access to electricity markets and their participation in
ancillary services provision. However, it is up to every individual
Member State to “choose the appropriate implementation model
and approach to governance for independent aggregation while re-
specting the general principles set out in this Directive” (European
Parliament, 2019).

The Clean Energy for All Europeans Package (European Com-
mission, 2019) issued in 2019 set new rules with the aim to
establish a modern design for the EU electricity market that
is more flexible, more market-oriented, and able to integrate a
greater share of renewables. Although it does not require the
Member States to actively support aggregation business models,
instead, it aims to ensure non-discriminatory market rules for
the aggregators in hopes that once a “leveled playing field” is
created, the innovative products and services will appear (Nysten
and Wimmer, 2019).

According to the survey (ENTSO-E, 2019) conducted by the
European Network of Transmission System Operators for Electric-
ity (ENTSO-E) on ancillary services procurement and electricity
balancing market design, there are still large differences between
market designs of European nations. These differences may be
due to the way markets developed in these nations historically,
or stem from the electricity generation mix; some nations use
fewer traditionally centralized large producers while others may
use more renewables in a decentralized manner.

Due to the different market designs, the barriers for aggrega-
tors to participate in the markets also vary by nation. Barriers
for aggregators in Denmark, France, Germany, and the UK were
assessed in Borne et al. (2018); similarly, the barriers in Austria,
Germany, and the Netherlands were explored in Poplavskaya and
de Vries (2019), and the authors of Barbero et al. (2020) looked
at the barriers in Belgium, Finland, France, and UK markets. Bar-
riers to providing ancillary services in the U.S electricity markets
were also assessed in Cappers et al. (2013). Barriers that discour-
age customers from engaging in demand response programs are
discussed in general in Parrish et al. (2020).

A modular framework to assess the barriers of entry for DERs
in primary and secondary reserve markets was developed in
Attarha et al. (2020). The framework contains three modules in
a hierarchical order, where the first module has more impact
than the second module, which has more impact than the third.
The first module contains “rules regarding the aggregation of
DERs”, such as the technical discrimination against aggregated
resources, interoperability among DSOs, and aggregation level.
The second module includes barriers from the “rules defining
the products in the market”, such as minimum bid size, time
definition of products, distance to the real-time reservation, and
symmetry of products. The barriers in the third module stem from
“rules defining the payment scheme for grid services”, such as the
nature of payment and extra remuneration bonus for flexibility.

The work presented in Borne et al. (2018) was continued by
the authors of Poplavskaya and de Vries (2019) and Barbero et al.
(2020) who proposed their frameworks to classify the barriers for
DER aggregators. From the framework developed in Poplavskaya
and de Vries (2019), the barriers for aggregators to enter the
electricity market can largely be classified as either market access
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oriented or auction configuration oriented, where market access
oriented barriers include formal access requirements, adminis-
trative aspects, technical prequalification criteria, while auction
configuration oriented barriers include bid-related requirements,
time-related characteristics, and remuneration. The framework
developed in Barbero et al. (2020) classifies barriers as either
regulatory, technical or economic.

According to Borne et al. (2018), to support the participation
of aggregators, the changes in rules should include: the reduction
of the minimum bid size, more flexible definition of the period of
delivery, whereas auctions should be held daily and it should be
possible to deliver asymmetrical products. Studies in Poplavskaya
and de Vries (2019) found that flexible pooling conditions, higher
bidding frequency, and product resolution, and the authorization
of non-precontracted bids could help to integrate DERs into the
market, while (Barbero et al,, 2020) showed that the minimum
bid size, bid symmetry, and product resolution strongly affect the
income of aggregators.

Relying on the work of previous authors, the barriers for
aggregators have been categorized in the paper at hand as bar-
riers stemming from the factors regarding regulatory framework,
market aspects, economic barriers, and the technological imple-
mentation aspects of aggregation. The barriers are summarized in
Fig. 4.1.

Regulatory framework barriers refer to a restraining set of
rules that either forbid or inhibit the activities of aggregators. The
entities that lay down these rules can be either governmental or
regulatory agencies, TSOs, and other units with the power to do
so. Examples showing where the regulatory framework barriers
can stem from are:

e Explicit discrimination against aggregated resources:
Rules may be established that provide priority to certain
players such as large industrial participants. TSOs and DSOs
may also prefer players who are connected to their region of
the grid; however, in the case of aggregated resources, the
portfolio can consist of units originating from different parts
of the grid.

Inadequate definition of clear roles and responsibilities
for market actors: This is a critical barrier throughout
Europe since it hampers free-market competition, increases
risks for all actors, and enables the abuse of consumer
rights (Smart Energy, 2015).

Prequalification requirements: Balancing service providers
need to pass prequalification requirements to verify that
their units can technically deliver the products. Rules should
be established that enable the pooling of DERs, otherwise,
aggregators would need to prequalify each unit of their
portfolio, which defeats the purpose of the aggregation itself
as the intrinsic value of aggregation comes from the pooling
of smaller resources.

Portfolio requirements: Rules may be set that regulate the
unit mix of aggregators’ portfolios. Examples are the share of
relatively uncertain sources such as VRES and flexible loads
to the share of more certain sources like battery storage and
conventional production or demand.

Additional agreements: Aggregators may be required to
obtain authorization from other market participants. For
instance, consent may be needed from the energy supplier
of a large consumer, or the BRP (Poplavskaya and de Vries,
2019).

Market aspect barriers refer to obstacles encountered from
the market side as the aggregator wishes to make an offer for
their flexible resources.
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devices

Interoperability among DSOs

Fig. 4.1. Summary of barriers faced by aggregators.

o Lack of specific products for flexibility service: The rules
of local flexibility markets (LFMs) have not yet been clearly
defined, meaning that for now, aggregators are deprived of
this source of revenue.

Incompatible product definitions of traditional services:
The specifications of conventional balancing products have
been developed with the traditional generation in mind.
Some of these specifications greatly inhibit the emergence of
flexibility aggregators, for instance, the minimum bid size in
most market designs is set too high for smaller aggregators
to pass. The bid symmetry requirement effectively restricts
the potentially usable flexibility resources, since flexible
load-oriented DR aggregators have much more downward
regulation potential. Other specifications that may affect
the offering of aggregators’ flexibility resources are tempo-
ral aspects, such as notification time, time to delivery, the
duration of the delivery.

Market bidding and clearing frequency: For balancing
markets, the bidding and clearing frequency directly affects
the duration for which the flexible resources should be
reserved in case they need to be activated. If the bidding
and clearing frequency is too low, then it will be difficult for
the aggregators to reliably forecast their available resources
beforehand, which reduces the aggregators’ confidence in
participation in these balancing markets (Smart Energy,
2015).

Economic barriers refer to barriers that impact the profitabil-
ity of aggregation, some of these are:

o Initial investment cost: Unlike with conventional plants
where the costs are well understood, the costs surrounding
aggregation are not so clearly comprehensible. Aggregators
of residential flexibility are faced with technical costs of
smart meter installation, communication and control tech-
nologies that can accumulate into large initial investment
costs. The 10 MW or more minimum bid size makes this
especially relevant since aggregators would have to attract
a large number of residential customers into their portfolio
before they can even participate in the market and have a
chance for returns.
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o Inadequate subsidization: Peaking power plants are in di-
rect competition to aggregated services. Subsidizing those
plants can create an uneven playfield since they are already
well established. It is the utilization of largely untapped
energy flexibility resources that the aggregators provide that
should be encouraged with subsidization.

High penalization: A balance between production and con-
sumption is essential to ensure system reliability, mean-
ing that in the case of non-delivery they should be penal-
ized. That said, penalties should not be excessively high to
incentivize the inclusion of aggregated resources.

Technological implementation barriers refer to the hurdles
that aggregators encounter when attempting to implement ag-
gregation.

e Lacking ICT infrastructure: Technological implementation
of aggregation relies on the presence of an adequate ICT in-
frastructure. Barriers of this kind can be loosely divided into
sensing-related, computing-related, and communication-
related (Good et al, 2017). Extensive metering and data
acquisition are essential to determine the availability and
forecast of flexible resources. A high level of smart meter
penetration is thus crucial for aggregation. Processing a
large amount of data is also computationally expensive,
requiring large servers. The communication aspect requires
data security and privacy to be ensured.

Lack of widespread “Smart Grid Ready” devices: For the
aggregation of residential energy flexibility, the devices
(home appliances) themselves should be controllable over a
data connection. The prevalence of smart devices is increas-
ing; however, one important barrier is a lack of standardiza-
tion in the software used to connect and control SG-ready
devices.

Interoperability among DSOs: The technological implemen-
tation is also complicated from the grid-side since the portfolio
of the aggregator can consist of units from regions operated
by different DSOs. This is especially relevant for EVs that can
cross from the region of one DSO to another within the same
day (Borne et al., 2018).
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5. Discussion and conclusions

Demand-side energy flexibility has remained a largely un-
tapped resource. Not only could both prosumers and aggregators
profit from selling energy flexibility, but it is also seen as an at-
tractive alternative option to enhance grid reliability by managing
the congestion and balancing problems. This paper presents a
comprehensive literature review on the aggregated demand-side
energy flexibility in order to give an overview of current research
directions and highlight the gaps for future developments. In this
paper, the properties and sources of aggregated energy flexibility
were characterized. The quantification and forecasting methods
were reviewed. The existing and potential new markets together
with the barriers of entry for aggregators of energy flexibility
were assessed.

It was found that there is no clear commonly agreed-upon
definition for energy flexibility; however, it can be mainly char-
acterized by the power capacity of the response, duration of the
response, and the rebound effect. Many different methodologies
are used in the literature to quantify energy flexibility. No one
best methodology that fits all use-cases was observed, rather
the employed method depends on the type of flexibility source
that is being quantified whether it is a storable or shiftable type.
An overabundance of quantification parameters was noted, illus-
trating that there is no one agreed-upon quantification method.
This issue can also be observed from the market implementation
perspective as the flexibility services and products are often
given general descriptions such as “peak-shaving services” and
“congestion management services”, without specifying the exact
parameters for those flexibility products. There have been LFM
demonstrations such as EcoGrid 2.0 that have tried to address
this issue by specifying the exact parameters for congestion man-
agement. However, further research is needed to develop clearly
defined flexibility products for different use-cases, which would
then provide the outcome of quantification methods for other
researchers. The research for LFM and P2P trading is substantial
as there are many different market designs, trading schemes, and
clearing methods.

It is important for aggregators to forecast the available flex-
ibility in their portfolio; however, from the conducted literature
review, a lack of papers in this field was observed. Research seems
to be more oriented around load forecasting, which is not neces-
sarily the same as flexibility forecasting. Papers oriented around
flexibility forecasting often attempt it through prosumer surveys
or historical data to construct a more probabilistic estimation of
long-term annual flexibility potential, which is a more general
estimation than, for instance, short-term day-ahead forecasting.

Aggregators are faced with a diverse number of barriers and
challenges. These challenges exist in the regulatory framework,
technical implementation, and economic aspects. The regulatory
laws relevant to aggregation are inappropriate or incomplete
as the roles and responsibilities of future markets that include
aggregators are not specifically defined. It is important to have
some form of cooperation between aggregators, DSO, and the TSO
since the activities of aggregators could cause potential issues
in grid reliability. The technical implementation of aggregation
would require not only smart grid-ready controllable appliances
but also smart meters, which are still not widely implemented
in many European nations. From the economic aspect, the future
flexibility products are not properly defined yet and it might
be difficult for aggregators to build a large enough portfolio to
participate in current existing energy markets.

In summary, this review covers different aspects from the
sources of flexibility, the methods of characterization, quantifica-
tion, and forecasting, to the delivery on the present traditional
markets, future potential flexibility markets, and explores the
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barriers and challenges faced by the aggregators. Based on the key
findings of this review paper, the authors would like to provide
the following suggestions for the direction of the future research:

Researchers need to be on the same page when discussing
their ideas, thus there is a need for research that provides
an adequate, robust definition of energy flexibility.

The end goal of energy flexibility lies in its utilization for
some grid purpose, thus the delivery mechanisms, i.e. the
flexibility product and services need to be properly defined.
Delivering energy flexibility requires it to be properly quan-
tified as a resource; therefore, further research is needed to
provide quantification methodologies that are applicable for
flexibility products and services.

For aggregators to trade energy flexibility, they need to be
able to forecast it into the future. A lack of research in the
field of energy flexibility forecasting was noted.

Future research should in general provide input to legisla-
tors to improve the regulatory laws that define the roles and
responsibilities of parties that participate in the trading of
energy flexibility.

This review paper covers demand-side flexible loads and
bidirectional sources. The energy flexibility of residential
generation sources should be investigated to give an all-
encompassing picture of residential energy flexibility.
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Abstract—The rising relevance of such concepts as smart
grids and demand response has led to power systems that are
more closely monitored and managed. Utilization of demand-
side energy flexibility, which is currently a largely untapped
resource, is considered a potential way to alleviate challenges
surrounding the integration of renewable distributed energy
resources. In this paper, the aggregated energy flexibility of
residential heat pumps was simulated. A resistor-capacitor
thermal network in combination with a state-space model was
used to model the thermal response of buildings. A total of 1500
different buildings were modeled as part of the aggregators'
portfolio. Response to flexibility activation was simulated with
two different controls depending on the strictness of consumers
regards temperature comfort.

Keywords—aggregation, energy flexibility, heat pump,
thermal network

1. INTRODUCTION

The phasing out of traditional generation with renewable
distributed energy resources (DERs) has complicated the
challenges surrounding grid congestions and frequency
control since historically grids have been designed with
traditional large producers in mind [1]. Demand-side energy
flexibility has been seen as one potential resource that could
be used to alleviate these issues through the management of
flexible loads in consideration of the comfort requirements of
consumers [2]. Currently, residential demand-side energy
flexibility has remained a largely untapped resource.

Managing a single household does not provide enough
energy flexibility for any tangible grid improvement.
Therefore, it is necessary to aggregate the energy flexibility
of many smaller buildings to attain the capacity needed to
participate in wholesale, reserve, or ancillary markets for an
effect on the electrical grid. The aggregator is supposed to
serve as an intermediary between the owners of flexible loads
and system operators [3].

Flexibility services provided by aggregators will surely
become more relevant in the future residential grids.
Oftentimes PV systems are installed in nearly zero energy
buildings and modernized old buildings. As mentioned
before renewable DERs can have a negative effect on the grid
due to their fluctuating nature, thus it is vital for aggregators
to provide local flexibility services to residential grids [4].

The residential loads that aggregators are interested in are
those that are controllable and flexible in their operation [5].
This includes loads such as battery systems, heating systems,
domestic hot water heaters, refrigerators, washing machines,
dishwashers, etc. [6]. In this work, residential heat pumps are
considered as a source of energy flexibility.

Based on the literature, building thermal energy models
can be broadly divided into three different categories: white-
box, grey-box, and black-box models [7].

978-1-6654-9678-0/22/$31.00 ©2022 IEEE

White-box models are complex analytical models that
rely on detailed thermodynamical equations for energy
modeling. This type of model captures the dynamics of
buildings well, however developing and solving them can be
time-consuming. Due to this reason, white-box models might
not be suitable for simulations that include a large number of
buildings. White-box models are usually packaged into
prebuilt software such as EnergyPlus [8] and IDA ICE [9].
An overview of strategies related to developing and
simulating white-box models is given in [10].

Black-box models are extremely data-driven models that
require extensive on-site measurement data to train models
which can accurately predict the behavior of buildings under
different conditions. Models of this type can be statistical or
machine learning based models such as artificial neural
networks, support vector machines, deep learning, and
reinforcement learning based models [11]. Using black-box
models for the simulation of aggregated energy flexibility of
buildings is complicated by the requirement of extensive
amounts of data that may not be available.

Grey-box models are a combination of analytical and
data-driven models that include simplified physical
equations. This combination provides a middle ground
between the data requirement and computation efficiency.
Due to this reason, a type of grey-box model called resistor-
capacitor thermal network (RC-model) is used in this work to
simulate aggregated energy flexibility of many buildings.
RC-models are analogous to electrical circuits in the sense
that they model thermal behavior with a circuit where
resistors stand for thermal resistance and capacitors for
thermal capacitance. Different types of RC-models, their
parameter estimation, and applications have been reviewed in
[12]. Accuracy comparison between RC-models with a
different number of resistors and capacitors has been
performed in [13], [14] from which it can be concluded that
including the building envelope and inner mass into the
model gives accurate results.

Research surrounding RC-models has been largely
related to investigating methods of parameter estimation.
This usually entails conducting in sifu measurements of
building construction dimensions, heating energy, indoor and
outdoor temperature, and solar irradiance [15]-[17]. Thus,
the novelty of this work stands in the utilization of RC
thermal models for a purpose that is rarely used in the
literature. To the best knowledge of the authors, very few
papers have been published [18] that consider RC thermal
models for aggregated energy flexibility.

The rest of the paper is organized as follows: Section II
provides a description of the RC-model developed in this
work. Section III outlines the simulation of aggregated
energy flexibility and its results. Section IV concludes the

paper.
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II. MODEL DESCRIPTION

A. Thermal Resistor-Capacitor Model of a Building

The thermal behavior of a building was modeled using an
RC-model. This is a grey-box model that loosely incorporates
the parameters of buildings related to their thermal dynamics,
as opposed to white-box models that include very detailed
parameters. Thermal RC-models are analogous to electrical
circuits with resistors and capacitors that in this case
represent the thermal resistance and thermal capacitance of
different building elements.

In this paper, a 3R2C thermal model was applied that
includes three thermal resistors and two thermal capacitors.
The topology of a simplified thermal network implemented
in this work is depicted in Fig. 1 which considers three
different main components of a building: the building
envelope (exterior walls), the windows, and the inner thermal
mass (interior walls, furniture, and air). It can be seen that the
outside temperature T, influences the indoor temperature
T;, through the exterior walls and the windows. The solar
heating power is carried also through the envelope walls and
the windows. A description of the inputs, outputs, and
parameters of the thermal RC model is given in TABLE 1.

In a thermal system with N elements a first-order
differential equation can be constructed for each node n
using the general heat-balance equation (1):

dr, T,—T,
Ch—— = ()
ndr R, " (H

iEN

where C, and T,, are the thermal capacitance and the
temperature of the element n, R; is the thermal resistance
between the elements i and n, and @,, is the sum of all heat
fluxes applied to the node n [19].

From the above equation, it can be observed that the
complexity of a thermal RC model can be varied by the
number of elements that are considered. A more detailed
model can be constructed by including many elements of
different building components, e.g. construction and
insulation layers of exterior and interior walls, roof, etc.
Therefore, RC thermal networks are just models that can
compose of a different number of resistors and capacitors and
it is difficult to trace back in the literature the first instance of
a 3R2C model.

Based on the thermal RC network topology shown in Fig.
1 and the heat-balance equation (1), the differential equations
describing the temperature of inner mass (2) and the envelope
(3) can be constructed.

Tin = ! Te—( L2 )Tm+
Rin Cin Rin Cin Rw Cin
! Taut + (ph + id’solAw (2)
R Cm in Cin
T-e=_(;+¢)re_;m+
RinCe  R.C Ry C, (€)
R C Taut + d)solA

The above differential equations can be used to simulate
the thermal behavior of a building with the use of a state-
space model (4) where A is the state matrix, B is the input

¢h (I)SO/ Aw ¢sol Ae

IC;,, IC

Fig. 1. Simplified 3R2C thermal resistor-capacitor network of a building

TABLE 1. DESCRIPTION OF THERMAL NETWORK PARAMETERS

Symbol  Description
Inputs Tout Ambient temperature, C
bsor Global horizontal solar irradiance, W/m?
bn Heating power, W

Outputs Tin Indoor air temperature, C

T, Envelope temperature, C
Parameters R, Envelope thermal resistance, C/W
C, Envelope thermal capacitance, ] /C
Rin Inner mass thermal resistance, C/W
Cin Inner mass thermal capacitance, J/C
R, Window thermal resistance, C/W
A, Area of exterior walls, m?
A Area of windows, m?

S

matrix, C is the output matrix, and D is the feedthrough
matrix.

X =Ax + Bu
y=Cx+Du @

In the context of the thermal RC model at hand, the above
general state—space model representation (4) becomes (5):

1 ) 1
[ m] [ RwCin Rm in

RmCe (Rm(:
1 1 A
[R Cn Cin C_-W] Tou
|W mn lTLI ¢ (5)
1 0 A, ¢h
L 7.c, [
-1 S S o
00 o

B. Generation of Aggregated Buildings Parameters

The thermal behavior of buildings is influenced by many
factors such as their size, level of insulation, construction
materials, window-to-wall ratio, number of inner walls, etc.
These factors can vary building-to-building. Thus, in order to
investigate the aggregated energy flexibility of heat pumps, it
is necessary to include various types of buildings in the
simulation. Estimating the parameters of an RC-model for
any specific building is a difficult process and to the best
knowledge of the authors no publicly available database
contains the amount of real building thermal network
parameters needed to simulate aggregated control.

Therefore, these parameters need to be generated based
on existing guidelines. From TABLE 1, it can be seen that to
model the thermal behavior of buildings 7 different
parameters need to be generated for each of the buildings.
The guidelines that describe the range in between these
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values lay for typical residential buildings are shown in
TABLE II.

The building envelope was divided into two separate
components, namely the exterior walls and windows. Three
different types of residential buildings were considered in the
terms of construction.

Light-weight buildings with exterior walls consisting of
stucco, insulation, and plaster/gypsum. Medium-weight
buildings with brick, insulation, air space, and gypsum layers.
Heavy-weight buildings with brick, heavyweight concrete,
insulation, and gypsum layers.

The thermal resistance and capacitance parameters of
these building types were derived by the authors of [20]. The
thermal resistance of windows was assumed to be that of
typical double-glazed windows, while the thermal
capacitance of windows was assumed to be negligible.

The inner mass of the building consists of inner walls, air,
and furniture. The calculation guideline for their thermal
parameters is given in ISO 52016-1:2017 [21]. Again three
different weight classes were given also for the inner mass.
For consistency, when generating building parameters, the
same weight classes were chosen for both envelope and inner
mass.

It can be observed that all of the thermal network
parameters of the building envelope and inner mass are
proportional to either the floor area Ay, the exterior wall area
A,, or the window area A,,. This means that building thermal
network parameters can be generated by sampling typical
values for building constructional parameters [22], [23].
Based on the generated floor area A, and building height the
area of the exterior envelope 4, can be deduced. Using the
generated window-to-wall ratio the area of the windows 4,,
can be derived.

III. AGGREGATED ENERGY FLEXIBILITY SIMULATION

A. Simulation Setup

It is possible to simulate the thermal behavior of buildings
to assess the potential of aggregated heat pump energy
flexibility using the simplified thermal network described in
previous sections. The aim is to simulate a total of 1500
buildings that consist of equal amounts of light-, medium-,
and heavy-weight buildings.

As described in TABLE 11, the inputs of the model are the
ambient temperature T, global horizontal solar irradiance
bso1, and the heating power ¢;,. Ambient temperature and
solar irradiance were taken from real-life
I-week measurement data of Tallinn, Estonia in 2021
between 15" and 22" November. This time period lies in the
winter heating season with the outside ambient temperature
between —0.6 C and +6.6 C as shown in Fig. 2. The heating
power input was set as either 0 kW when the heat pump was
off or between 6 and 12 kW when the heat pump was on
depending on the size of the building.

The heat pumps coefficient of performance (COP) was
sampled from a uniform distribution between 4 to 5, which is
typical for residential heat pumps, dividing the heating power
by COP gives the electrical consumption power.

The default non-flexible operation of heat pumps was
modeled as hysteresis control with a +1 C deadband around
the setpoint temperature. An example of temperature

TABLE II. GENERATED BUILDING PARAMETERS

Envelope Thermal Network Par ters
2
Class R, (mvc/mz) C, (% mz)
Light-Weight  3.1498/A4, 76.852 " A,
Medium-Weight  3.8238/4, 183.724 - A,
Heavy-Weight  2.1917/4, 402.102- A,
Windows  0.8333/4,, 0

Inner Mass Thermal Network Parameters
2C k]
Class R; (mw /mz) C; (—-mz)

m?2C

Light-Weight  0.13/A, 110 Ag,
Medium-Weight  0.13/A 165 Ap
Heavy-Weight  0.13/4, 260 Ap

R

Building Size Par
Floor Area, Ay,
Building Height

Window-to-Wall Ratio

S

uniform(50,200), m?
uniform(5,12), m
uniform(20,50), %

Lo A

0
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Fig. 2. Meteorological data used as model input
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Fig. 3. Indoor temperature trajectories of 10 different example buildings,
where each line represents one example building

trajectories of 10 buildings is shown in Fig. 3 where it can be
seen that for a setpoint of 23 C if the temperature drops to
22 C the heating system turns on until 24 C is reached.

B. Control Within Strict Comfort Range

The energy flexibility of the heating system was
simulated with two different control methods. First, a
simulation was conducted where the flexible operation was
performed within a very strict comfort range set by the
consumers that could not be violated even during flexible
operation. This comfort range was set as +1 C around the
setpoint 23 C. The control method in this scenario was a
direct on-off signal.

Two energy flexibility scenarios were investigated:
demand downregulation and upregulation. The results of this
simulation are shown in Fig. 4. The flexible activation began
at the simulation time of 17" November at 2 AM when the
heating power was at a higher level than during the day due
to no influence from solar heating. The flexibility activation
signal was sent to all of the participants in the aggregator's
portfolio. It can be observed that for a short period of time
there was either an increase or decrease in the demand
depending on the DR activation signal.
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Fig. 4. Aggregated power regulation in strict comfort range scenario: (a)
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C. Control With Setpoint Adjustments

The second energy flexibility control method was
implemented through the adjustment of the indoor
temperature setpoint. This scenario simulates the situation
where the consumers in aggregators portfolio have less strict
needs for temperature comfort range and allow short-term
deviation of 1 C in either direction from the normal 23 C.
This results in a setpoint of 24 C for demand upregulation
and 22 C for demand downregulation. The results of this
scenario are shown in Fig. 5.

D. Results

For both control methods, the heating systems responded
appropriately. It can be observed from Fig. 4 and Fig. 5 that
for downregulation the aggregated heating power dropped to
almost 0 however, the demand reduction recovered within 1
hour for control within strict comfort range and within 4
hours for control with setpoint adjustments. This is due to a
larger temperature decrease or increase potential attained
with setpoint change. For demand upregulation, there was not
as big of a difference as for control within a strict comfort
range demand increase recovered within 2.5 hours and for
setpoint control within 3.5 hours.
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Fig. 5. Aggregated power regulation in setpoint adjustment scenario: (a)
Downregulation; (b) Upregulation
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Fig. 6. Aggregated power of different building types: (a) Light-weight, (b)
Medium-weight, (c) Heavy-weight buildings

The gradual recovery from energy flexibility activation is
due to the difference between the temperature at the time of
control activation and the lowest or highest temperature
boundary as some buildings were already close to their
allowed temperature bounds.

A “rebound effect” was observed after temperature
recovered from the activation of energy flexibility resulting
in demand change to the opposite direction from its activation
direction. The rebound effect was similar in terms of capacity
and length for both control scenarios.

It was observed that the activation of energy flexibility
caused small deviations from the demand profile in
subsequent days compared to the “business as usual” demand
profile without flexibility activation. This means that any
demand or energy flexibility forecasting algorithms should
take into account disturbances caused by the activation of
energy flexibility itself.

With 1500 buildings a 1 MW up- or downregulation could
be sustained for around 1 hour. In order to facilitate demand
response with higher capacity, the aggregator would either
need to increase the number of heat pumps in its portfolio or
integrate additional sources of energy flexibility into its
portfolio such as domestic hot water units, shiftable wet
appliances, or battery systems.

The difference between light-weight, medium-weight,
and heavy-weight buildings is shown in Fig. 6. It can be
observed that light-weight buildings have fast reaction speed
and shorter, but more numerous oscillations in power draw.
Heavy-weight buildings can provide flexibility for longer
duration, but are accompanied by large power swings.

IV. CONCLUSIONS

In this paper, energy flexibility activation of residential
heat pump systems was investigated. For this, a 3R2C
thermal resistor-capacitor network in combination with a
state-space model was used to simulate the thermal behavior
of buildings. A total of 1500 different buildings were
modeled that consisted of equal amounts of low-, medium-,
and heavy-weight buildings. Two different energy flexibility
control methods were simulated: first, flexibility activation
with direct on-off control with a strict temperature comfort
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range requirement, and second, control through setpoint
adjustment with a more relaxed temperature comfort range
requirement. The activation of energy flexibility was
modeled for both demand up- and downregulation. The
results indicated that using setpoint control allows for longer
energy flexibility activations due to a larger range for changes
in indoor temperature.

Future work can include simulating flexibility activation
with a specific capacity target in mind, e.g. 30% reduction in
demand, this could be achieved by controlling the loads
individually. Additionally, the forecasting of available
energy flexibility could be investigated by determining the
difference between building indoor temperature and
temperature bounds.
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Abstract: Community energy projects have gained popularity in recent years, and encouraging
citizens to form local energy communities (LEC) is considered an effective tool for raising awareness
about renewable energy. Since no single universal method exists for operating LECs, this study
investigated the impact that different business models and asset dispatch methods have on LECs’
economic and energy-related indicators. We carried out a case study, which included the development,
modelling, and simulation of seven scenarios using mixed-integer linear programming (MILP). To
measure and compare the prospective performance of the LECs in each scenario, six key metrics
were evaluated and assessed. The authors find that simple, rule-based control systems might be
well suited for LECs with a limited number of controllable assets that aim to provide increased
levels of self-consumption of up to 3%. We also conclude that when the LEC utilises an energy
cooperative business model, the selected asset dispatch method provides only minor differences
in LEC performance, while for prosumer communities, the importance of selecting a suitable asset
dispatch method is higher. We also conclude that LECs have the potential to significantly increase
their economic performance by more than 10% by acting as aggregators and providing grid services
directly to system operators.

Keywords: local energy community; asset dispatch; optimisation; energy management; battery
energy storage; renewable energy sources; power system flexibility

1. Introduction

Increased penetration of renewable energy sources (RES) is changing the structure [1],
planning [2] and modelling [3] of the energy system. In this context, flexibility [4] or power
smoothing approaches [5] aim to address the technical challenges arising due to the difficult-
to-control nature of electricity generation from local RES. On a higher level, various local
energy generation and distribution solutions, such as local energy communities (LECs),
need to be analysed as well, where additional challenges arise in the fields of the economic
validity of the local system and the desire of consumers to get involved in the creation of
such a system. One of the ways to overcome these challenges is to use LEC optimisation
methods [6]—Economic Load Dispatch (ELD) optimisation associated with appropriate
business models [7,8]. Several authors have addressed these two aspects very extensively.

Regarding ELD, the authors in [7] developed an algorithm for stochastic load schedul-
ing for local energy systems, thus providing an opportunity to model the future load
and generation structures and to carry out further planning and development measures.
Other publications have addressed ELD modelling with various optimisation methods:
Ref. [8] by using two-stage stochastic mixed-integer programming with cost, balance, and
flexibility constraints, where the cost could be reduced by up to 5%, Ref. [9] by proposing
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dynamic ELD, including demand response activities, variable renewable energies and
storage systems, but Ref. [10] describes ELD as isolated local energy system by using Parti-
cle Swarm Optimisation. When looking at business models, a review of the literature on
energy communities in [11] gives insight into energy community business model structures,
aspects, and pros and cons from the consumer perspective. Authors of [12] reviewed
emerging energy community-related business models, strengths, and barriers to energy
community development.

Although recent publications provide innovative solutions for ELD, as well as for the
analysis of business models and the possibilities of their use in specific LEC layouts, a lack
of connection between ELD and business models can be observed. There is a significant
research gap on the impact of relevant business models on ELD optimisation measures and
their results on social and economic welfare.

To fill this gap, this paper aims to determine the mutual influence of business models
and ELD optimisation on LEC economic and energy-related indicators (self-consumption,
self-sufficiency, levelized cost of energy and revenues). Furthermore, results of ELD
optimisation for different business models are provided with the help of case studies.

The paper is organised as follows: Section 2 describes power system asset dispatch
methods and provides an overview of LEC business models, Section 3 includes the de-
scription of the conducted case study and studied object, Section 4 provides a detailed
description of the modelled and simulated scenarios, Section 5 includes the discussion, and
Section 6 summarises relevant conclusions.

2. Power System Asset Dispatch and Energy Community Business Models
2.1. Power System Asset Dispatch

In this study, the ELD problem is extended to enable objectives aside from economic
costs and to include different types of dispatchable power system assets (e.g., energy storage
systems). Power system asset dispatch is considered a general minimisation problem with
constraints and can be written in the following form:

min f(x), subject to g(x) =0, h(x) <0, @))]

where f(x) is the objective function, g(x) and h(x) are, respectively, the set of equality and
inequality constraints, x is the vector of control and state variables [13]. There are general
constraints applied in this study:

e Thebattery energy storage system (BESS) cannot charge and discharge simultaneously.
o The power balance equation is described as an equality constraint (2):

Ppcc,out + PBESS,c + PProsumer = LIpec,in + PBESS,d + PPV,prodr (2)

where Py out is the active power exported from the LEC, Pggss . the active power consumed
by the BESS for battery charging, Ppypsumer the aggregated active power consumption of all
prosumers, Py i, the active power imported to the LEC, Pggss 4 the active power produced
during BESS discharging operation and Ppy 04 the total active power produced by LEC
photovoltaic generation plant (PV). However, there will always be some power loss, which
is neglected by this equation.

The objective function varies based on the applied asset dispatch method. In this
study, three different asset dispatch methods are investigated based on this general
minimisation description:

e  Maximisation of LEC self-consumption (LSC): If energy import from the grid can
be minimised, the cost of buying additional energy is reduced. This minimisation
of energy import means maximisation of self-consumption. For this minimisation
method, the assets are shared equally in the community.

e  Minimisation of levelized cost of energy (MLC): Shifting the import of energy to times
with lower electricity prices reduces the cost of buying additional energy. Thus, this
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method’s minimisation goal is directly based on the imported electricity price instead
of the electricity amount.

e  Peer-to-peer energy trading (P2P): Like in the LSC method, minimising energy im-
port to the LEC reduces the cost of buying additional energy. However, the P2P
method considers the prosumers individually. There is a trading within the commu-
nity where the prosumers try to reach their goals individually, maximising the energy
matching within the community, which maximises self-consumption and minimises
energy import.

2.2. Business Models Applied in Local Energy Communities

According to the authors of [14], new regulations and arrangements for electricity
markets are necessary to encourage people to engage more in community initiatives and
regional energy and power markets. Various business models may be applied in LECs.
A comprehensive review of different LEC business models has been given in [12]. The
following subsections give an overview of business models relevant to this study.

2.2.1. Energy Cooperatives (EC)

Energy cooperatives are one of Europe’s most common energy community types [15].
According to the European Federation of citizen energy cooperatives, over 1900 energy
cooperatives across the European Union member states have at least 1.25 million active
customers [16]. Energy cooperatives are created through citizen-led initiatives where end-
users fund the installation of local generation systems [17], as shown in Figure 1. Energy
cooperatives can be run with many different organisational forms and financing models.
Some are run as companies with profit-making in mind, where the shareholders finance
medium to large-scale PV or wind power plants. Others can be non-profit organisations
that finance local production of renewables to cover the self-consumption and the sale of
surplus [18].

)_[@0

g (5
COMMUNITY ﬁ i

ASSETS

0—0
CONSUMER 2 PROSUMER

Figure 1. LEC organised as Energy Cooperative.

Energy cooperatives may be given the right to act as a sort of local distribution
system operator (DSO) responsible for managing their low-voltage network. This operation
enables them to exempt cooperative members from some of the use-of-system tariffs
while incentivising self-consumption through dynamic pricing schemes and other billing
conditions [19]. The roles that energy cooperatives may take are not standardised on
the European legislative level and, thus, may depend on the regulations and network
codes from country to country. For example, in Portugal, energy communities may be
allowed to take over the responsibility of the DSO for the local community grid, while in
the Netherlands, it is explicitly forbidden [20].
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2.2.2. Prosumer Communities (PC)

Energy prosumer communities are often established by prosumers acting as decision-
makers, investors, and customers. They cooperate to take advantage of favourable financing
circumstances when buying assets in bulk and to acquire dimension for participation in
flexibility markets, benefiting from collective energy efficiency (EE) initiatives or participat-
ing in local energy markets (LEM) [12]. In contrast to energy cooperatives, where end-users
cooperate in acquiring medium to large-scale on-site generation, the prosumer community
business model consists of individual small-scale prosumers in local communities, as de-
picted in Figure 2. These prosumers can act as decision-makers, investors, and customers.
The source of revenue comes from trading their flexibility on LEMs, EE initiatives, and
participation in flexibility markets [19]. Residents of the community sign a long-term
public purchase agreement (PPA) with energy providers to sell the excess generation and
purchase the leftover deficit energy. Members of the community can also trade energy
among themselves (LEM or P2P trading), which relieves them of the obligation to pay fees
associated with medium- and high-voltage distribution and transmission networks outside
of their own grid [21].

: %
+
m_____

PROSUMER 2 PROSUMER 4

Figure 2. LEC organised as Community of Prosumers.

An example of community prosumerism includes the city of Litoméfice in the Czech
Republic, where the local municipality and households financed a project that involved
installing PV systems and energy efficiency measures to reduce the community’s energy
consumption from the main grid [12].

Prosumers are individuals who generate, utilise, and modulate their own renewable
energy [19]. They include residential, commercial, and industrial entities [19]. The difficul-
ties faced by energy systems are widely perceived as being resolved through prosumerism.
In the light of this, the implementation of distributed energy systems (DES), in which
energy is generated and consumed locally, is led by prosumers, lowering greenhouse gas
emissions and assuring local value creation.

The advantages of energy “autarky” are emphasised by proponents, where various
energy vectors, such as electricity, heating, transportation, and valuable work, may be
obtained locally from sources such as solar, wind, geothermal, waste, and biogenic sources
in increasingly closed-loop, circular systems. As a way to counteract the erratic nature of
renewable energy sources, these scenarios also include demand-side behavioural changes
such as storage and flexibility service offering and time-of-use (TOU) prices.

The necessity of new business models has been emphasised by several authors as a
means of easing the transition to decentralized and prosumer-driven energy systems. These
models may make it easier for people to use more renewable energy on their own, trade
electricity locally, maintain the stability of the grid, and switch to other energy sources for
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heating and transportation. Limited number of studies have highlighted the various forms
of value that such business models may produce as well as how they may be managed [22].

As per Ref. [23], the energy prosumer comprises two entities: the prosumer subject
and its resources. The prosumer subject can be described as an owned who is proactive
or its delegated manager (autonomous agent). The prosumer subject is responsible for
formulating its strategic goals, e.g., emphasise renewable energy rather than minimise
energy cost. The prosumer subject comprises of a well-informed agent, prosumer ob-
jectives, and requirements, and the prosumer assets are its financial assets, goods, and
technology system.

Asset dispatch in CP energy communities can be performed with the following methods:

Peer-to-peer energy trading;
Maximising self-consumption;
e  Minimising levelized cost of energy.

2.2.3. Community Flexibility Aggregation (CFA)

Due to its limited size and lack of flexibility, a single household does not offer sufficient
flexibility for any significant grid enhancement and may find it difficult to engage in
markets. When prosumers join, additional value may be created by aggregating their
demand, supply, and energy flexibility. Thus, aggregation allows the prosumers to combine
their resources, which allows them to gain more substantial leverage in negotiations with
retailers and last-resort traders.

In addition to on-site RES, residential prosumers can find value in the intelligent
management of smart appliances. These devices can broadly be divided into three cate-
gories [24]. Thermostatically controlled loads (TCLs) include space heating systems with
smart thermostats and domestic water heaters (DHW). TCLs can be controlled within spe-
cific temperature ranges according to the prosumer’s comfort requirements [25]. Shiftable
appliances include wet appliances such as dishwashers, clothes washing machines, and
drying machines. The usage of these devices can be shifted when there is a surplus of
PV power or a cheaper electricity price. Storage devices such as battery systems can store
surplus energy as electricity for later usage. In future electricity grids, electric vehicles
(EVs) constitute a large share of local community energy demand that could be intelli-
gently controlled. In the case of vehicle-to-grid (V2G) technology, the EVs can also provide
bidirectional energy flow support and be considered a sort of mobile battery system [26].

The aggregation of residential community flexibility has many benefits. However, the
real-world implementation would require consent from all aggregation participants and
citizens might not have the technical skills or resources to implement this. In addition,
cyber-physical infrastructure would become vital to facilitate the proper activation of
devices and logging information related to billing purposes. Other aggregation challenges
include legislative hindrances, such as the lack of clearly defined roles of the participant
and the lack of definitions of flexibility services [27].

Communities formed with the purpose of aggregating power system flexibility aim
to use demand side management (DSM) incentives to collectively and directly participate
in flexibility services procured by system operators. CFA can also be realised through
an aggregator that pools demand flexibility to reach sufficient volumes to make offers
in reserve, balancing, or ancillary markets [28] or to an electricity retailer to balance its
portfolio to avoid deviation penalties [29]. Residential demand flexibility is likely to become
more appealing to businesses thanks to energy communities [30], while the author of [31]
states that residential demand flexibility has already become economically feasible for LECs.

Compared with PC, the CFA business model does not expect all members to include
energy production, as shown in Figure 3. Thus, their uptake is considered less costly and
with lower complexity, meaning the technological infrastructure for such communities is
easier to establish. For CFA-based LECs that are made up of residential dwellings, the
flexibility pool consists of larger electricity consumers, e.g., heat pumps, electric vehicle (EV)
chargers, and air conditioning (AC) units. The initiative for forming these communities
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might stem from aggregators [12] or property developers. A key enabler for forming such
systems is the uptake of consumer devices that feature built-in functionality to participate
in DSM incentives, e.g., OpenADR certified products [32], which reduce the integration
cost of flexible loads.

/\
PROSUMER 2 ﬁ

O0—0
CONSUMER 1 CONSUMER 2

Figure 3. LEC organised as Community for Flexibility Aggregation.

LEC business models require different approaches for solving asset dispatch. A
mapping of analysed asset dispatch methods that apply to more common LEC business
models is provided in Table 1.

Table 1. Asset dispatch methods that apply to different LEC business models.

LEC Business Model P2P LSC MLC
EC v v
PC v v v
CFA v

A case study is carried out to understand the economic performance of different asset
dispatch methods under different business models.

3. Case Study and Object Description

Six scenarios are studied corresponding to the combinations of LEC business models
and asset dispatch methods (Table 1). A benchmark simulation, which incorporates asset
dispatch in the form of a robust rule-based controller for controlling a BESS, is also carried
out for comparison. The topology of an actual segment of an electricity distribution system
of a residential area in Riga is used. The generalised topology of the electric power system
is depicted in Figure 4. To prevent possible breaches of privacy, the metering data used
in the study is not collected from the same system. Instead, residential consumers and
PV production plants” individually collected and anonymised metering data is mapped to
the LEC power system nodes. The dataset used for the study has a time step of 1 hand a
range of 3 years. The distribution grid used in the case study includes one common grid
connection point (point of common coupling—PCC) and 53 nodes, from which 38 are plain
consumers, and 15 are prosumers.

Additionally, a generic prosumer (denoted as Py) is included in the system. The generic
prosumer incorporates a larger (rated at 50 kW) PV production unit and a grid-scale BESS
(rated at 75 kW, 200 kWh). The ownership and operation of prosumer P, vary between
different scenarios.
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Figure 4. Topology of the LEC power system used in the case study.

Based on the collected data, a set of control and state variables is synthesised for
each consumer and prosumer node. A summary of the connection capacity and available
flexibility for each node is provided in Table 2. We use a simplified approach to incorporate
power system flexibility. The following estimations and simplifications are applied:

e  FEach prosumer node is characterised by the amount of flexibility it has available
(Table 2), which should be treated as synthesized sample values;

e  Since the timestep of the simulation is 1 h, the flexibility is described as available
energy;

Each prosumer can provide up or down-regulation with a duration of 1 h;

For up-regulation (decreasing output energy), for each prosumer, the rebound is con-
sidered with a duration of 2 h, during which a total of 30% more energy is consumed
than what was used for flexibility activation;

e  For down-regulation (increasing output energy), for each prosumer, the rebound is
considered with a duration of 2 h, during which a total of 30% less energy is consumed
than what was used for flexibility activation;

e  Flexibility activation in both directions is always available for each prosumer, except
during rebound.

A more accurate presentation of prosumer flexibility and its activation, including
data about actual system requirements for purchasing flexibility, is in the scope of future
research. For the utilisation of flexibility, a set of state space variables was generated, which
is used to indicate how much of the magnitude can be utilised for each specific time-space.
The control variables remain the same throughout all studied scenarios.

Mixed-integer linear programming (MILP) is used to evaluate the different scenarios.
For the six scenarios, a deterministic setup is created using a one-year segment of the input
data, PV production data for the year 2018 acquired from the EU Science Hub using the
PVGIS Online tool [33] and Nord Pool Spot Market prices for years 2021 and 2022 [34].

The simulations aim to evaluate the differences between the potential of LECs that
operate with different business logic and utilise different methods for asset dispatch. Six
key indicators are used to assess LEC performance: self-consumption, self-sufficiency,
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levelized cost of energy (LCOE), import cost, export revenue and revenue from monetising
available power system flexibility.

Table 2. A general summary of control and state variables for LEC nodes used in the case study.

Node Connection Flexibility Node Connection Flexibility Node Connection Flexibility
Capacity (kW) (kWh) Capacity (kW) (kWh) Capacity (kW) (kWh)
1 11 0.2 19 11.0 0.2 37 11.0 13
2 11 0.0 20 21.0 1.8 38 13.0 0.0
3 11 0.6 21 11.0 0.8 39 13.0 0.8
4 11 0.0 22 11.0 0.5 40 13.0 1.3
5 11 0.0 23 11.0 0.2 41 11.0 0.5
6 11 0.0 24 11.0 0.0 42 11.0 0.5
7 11 0.0 25 13.0 0.0 43 21.0 1.3
8 11 0.2 26 11.0 0.2 44 11.0 1.1
9 11 0.2 27 11.0 0.5 45 26.0 45
10 16 1.6 28 16.0 2.5 46 11.0 0.0
11 16 0.6 29 16.0 1.6 47 11.0 0.5
12 11 0.0 30 11.0 0.2 48 11.0 0.0
13 11 0.2 31 11.0 0.2 49 11.0 1.3
14 16 0.5 32 11.0 0.0 50 11.0 0.5
15 16 0.8 33 11.0 0.6 51 11.0 0.8
16 16 45 34 11.0 0.0 52 13.0 0.0
17 16 3.1 35 11.0 0.5 53 13.0 0.8
18 16 1.6 36 11.0 0.6 Px 75.0 160.0

The self-consumption, denoted as SC, is calculated by Equation (3) as the ratio of PV
generation used on-site to the total PV production.

Y. produced PV energy — Y exported pv energy

5= Y. produced PV energy

®)

The self-sufficiency of the LEC, denoted as SS, is considered as the share of prosumer
demand, which is covered by on-site generation and is calculated using Equation (4).

- Z Eprosumer - Z EPCC,imp

SS 4
Z Eprosumer ( )

In a general form, the LCOE can be defined as:
LCOE — sum of costs over lifetime 5)

sum of energy produced over lifetime,

but this definition is typically applied to generation units only. In the concept of this work,
the focus is on the LCOE for an entire LEC, which means Equation (5) is adapted separately
for each investigated scenario. A detailed description of the calculation of the LCOE is
provided with the description of each scenario. The cost of importing energy is calculated
by Equation (6).

Cimport = EPcc,imp‘(Pe + tariff), (6)

where Epecinp denotes the energy imported through the PCC, p, is the price of energy at
the Nord Pool Spot Market and tarif f the summarised capacity-based value for system
operator tariffs and taxes specific to the environment. Nord Pool Spot Market prices for the
year 2021 for Estonia (EE) market region are used. The case study uses a simplified approach
for considering grid tariffs and relevant taxes, where a constant value of 0.025 €/kWh is
used throughout the study. The energy export revenue is considered a negative cost and is
calculated using Equation (7).

Cexpart = EPcc,exp ‘Pes (7)
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where Epcexp denotes the energy exported through the PCC. Based on the existing tariff
structure of Estonia, energy export is not taxed with grid tariffs and respective taxes. We
use a simplified approach for assessing the value generated through flexibility incentives
to manage the complexity of this work. We have purposely simplified the commonly
applied method for incentivising flexibility, where the generated revenue comprises two
components: separate remuneration for availability and activation. This study calculates
the revenue generated through flexibility incentives using Equation (8).

Cprosmer,flex = pflex'Eprosumer,flex, (8)

where pj,, denotes the price of flexibility activation and Essumer, flex the energy used for
flexibility activation. We have neglected input data about actual flexibility activations from
the grid, and in this study, we use a simplified notion that the grid is willing to purchase
flexibility activation at each time step. Improving the modelling of flexibility remuneration
and considering actual activations is the subject of future work. Following is a detailed
description of each scenario.

4. Modelling and Simulation of Optimisation Scenarios

The following subsections present the formulation of the optimisation problems. Let
the set of time horizons be H = {1,2,... H}, where H is the length of the optimisation hori-
zon and ¢ the index of the time step. Let the set of prosumers be p = {1,2,...,53}, where
the index of a prosumer is j. To manage computational requirements, the optimisation is
performed with a 1-week time horizon, and all weeks of the year are simulated sequen-
tially, with the results of the previous weeks used as input for the subsequent simulations.
Optimisations for scenarios 1 to 5 are performed in this manner. The last, 6th scenario uses
a 1-day horizon, and all scenarios utilise a 1h timestep.

4.1. Benchmark Scenario

A rule-based controller for the PV and BESS of P, was developed to provide a com-
parative benchmark. The operational algorithm for controlling the BESS in the benchmark
scenario is presented in Figure A1 (Appendix B). The control of the BESS in the benchmark
scenario is based on energy flows through the PCC and the BESS’s state of charge (SOC).
The control is implemented such that the BESS aims to maximise self consumption. If the
local generation produces more energy than is consumed by the LEC loads, excess energy
is stored in the BESS until the SOC reaches 100%, upon which the excess energy is exported
to the grid. However, if the local generation is not sufficient to cover LEC demand, the
BESS is discharged to cover the deficit until the SOC drops to 20%, upon which the deficit
is covered by importing energy from the grid. The equations below are used to determine
the SOC of the BESS:

E t
Epess(t) = Epgss(t — 1) + pcEpess () — %/d(), )
soc(t) — Leess(t) (10)
EBESS,mux

where Epgss denotes the energy stored in the battery, Egrss, the energy consumed by
the BESS during charging, Eggss . the energy produced by the BESS during discharging,
U charging efficiency and p,; the discharging efficiency; SOC denotes the battery state
of charge and Egggs max describes the nominal capacity of the battery. The developed
algorithm is designed to prohibit energy arbitrage by the BESS, and only excess PV energy
can be exported through the PCC to the grid. Thus, Equation (3) can be reformulated as:

_ ZEPV(t) - ZEPcc,exp(t)
S v O

(11)
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The LCOE for the benchmark scenario is calculated using Equation (12).

Cino + Cingint + Cimport - Cexport
s

LCOE =
Z P‘D}’OSHWWV

12)

where, Cj,p, Ciuaint, stand for the cost of investment and maintenance of the PV and BESS
systems, respectively. The PV’s investment cost is 556.99 €/kWp with a maintenance cost of
5.57 €/kWp per year [15]. The investment cost of the BESS is 1876.00 €/kW + 469.00 €/kWh,
with a maintenance cost of 10.00 €/kW per year [13].

The results of the benchmark scenario indicate that the LEC has a high self-consumption
rate of 92.9%. The self-sufficiency of the LEC was 25.2%, while the LCOE was calculated to be
0.134 €/kWh. The accumulated cost of importing energy for one year was 51,404 €, and the
revenue from selling energy to the grid was 640 €. The total operation cost (the import less the
export and flexibility revenues) was 50,764 € for the simulation period (1 year). To compare
the performance of different scenarios, the results of all simulations are compiled in Table 3.

Table 3. Summary of simulation results with 2021 Nord Pool Spot Prices.

Parameter Benchmark EC+LSC EC+MLC PC+P2P PC+LSC PC+MLC CFA+MLC
Self-consumption [%] 92.86 92.77 92.02 92.77 92.87 91.03 85.35
Self-sufficiency [%] 25.20 25.01 24.79 28.25 25.18 25.23 24.10
LCOE [€/kWHh] 0.1338 0.1338 0.1329 0.1278 0.1328 0.1307 0.1192
Import cost [€] 51,404 51,478 51,165 51,522 51,082 48,665 47,085
Export revenue [€] 640 691 902 690 686 1043 2941
Flexibility revenue [€] - - - - 466 581 3682
Total operation cost [€] 50,764 50,787 50,263 50,832 49,930 47,041 40,462

4.2. Scenario 1: LEC as Energy Cooperative to Maximise Self-Consumption (EC+LSC)

In this scenario, the LEC is formed as an Energy Cooperative, where all 53 prosumers
are equal members, and the assets of P are treated as community owned, where all profits
and losses are shared among community members. The goal of the LEC is to maximise
self-consumption, while the power output of the BESS is the only manipulated variable.

For this scenario, the optimisation variables include the charging and discharging
energies of the BESS (Epgss . and Eggss 4), the energy output of the BESS (Epgss), and the
imported and exported energy through the PCC (Epcc,inp and Epccexp)- The maximisation
of self-consumption of the LEC can be defined as maximising the share of locally produced
energy that is consumed locally. In scenario 1, only the energy produced by the local PV
systems can be exported. Thus the objective function can be formulated as to minimise the
exported energy:

. H
min EPcc,exp :thl EPcc,exp(t)' (13)

The optimisation task in this scenario is subject to different constraints. The defined
BESS has a capacity of 200 kWh, with a minimum SOC value of 20%.

40 kWh < SoCppss(t) < 200 kWh. (14)

The energy state evolution of the BESS can be described by an equality constraint
Equation (15). The BESS is assumed to start the first timestep in a depleted state of 20% SOC.

E alt
SOCpess(t) = SOCpess(t — 1) + Epgss,c(t)-pec — %'()~ (15)
The charging power of the BESS is limited by inequality constraints Equation (16),
Equations (17) and (18), where Epgss ¢ max and Epgss 4 max denote the maximum allowed
charging and discharging power of the BESS (75 kW), which is considered the maximum
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amount of energy the BESS can absorb or release in 1 h. Additional auxiliary binary
variables (. and (; are introduced to forbid simultaneous charging and discharging.

0 < EBESS,c < EBESS,c,max'gc/ (16)
0 < Egess,d < EBEssdmaxCas (17)
Ceta<1, (18)

Even though the throughput limit of the PCC is not considered in this work, the
constraints Equations (19)—(21) were implemented to forbid the simultaneous import and
export through the PCC using auxiliary binary variables {;,, and (ou:. A large constant of
10 MWh was used as an energy limit.

0< EPcc,imp < 10,000-Cjy, (19)
0 S EPcc,exp S 10/ Ooo'gout, (20)
gin + gout <1, (21)

In this scenario, the idea was to entirely utilise the locally produced PV power. Thus
additional constraints Equations (22) and (23) were implemented to forbid energy arbitrage
through charging and discharging the BESS from and to the grid.

Ca+Gour <1, (22)

Cet+lin<l, (23)

An energy balance constraint Equation (24) was included to ensure that there would
be a balance between the produced/imported energy and consumed/exported energy.
The demand of prosumers is denoted with E prosumer @and the combined PV production of
grid-scale PV and the prosumer PV-s is given with Epy.

EPcc,exp + EBESS,C + Eprasumer = EPcc,imp + EBESS,d + EPV/ (24)

The LCOE for this scenario is calculated using Equation (12), the same as for the
benchmark scenario. The results of the EC+LSC scenario show that maximising the self-
consumption resulted in 92.8% of PV energy being consumed locally (self-consumption),
while the self-sufficiency of the LEC was 25.0%. The levelized cost of energy was 0.134 €/kWh,
while the accumulated cost for importing energy for one year was 51,478 €, revenue from
selling to the grid 691 €, and total operation cost 50,787 €.

4.3. Scenario 2: LEC as Energy Cooperative to Minimise Levelized Cost of Energy (EC+MLC)

The second scenario uses the same Energy Cooperative business model utilised in
the EC+LSC scenario but minimises the LCOE. Like the previous scenario, the only ma-
nipulated variable is the power output of the BESS, but the optimisation includes a price
component. The algorithm attempts to shift the discharging of the battery to times of
high electricity price to lower the cost of consumed energy. The optimisation variables
and constraints remain the same as used in the EC+LSC scenario, while the optimisation
objective is subject to change. The LCOE for this scenario is calculated using Equation (12),
the same as for the benchmark scenario. The only influenceable parts of the LCOE equation
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are energy import and export cost components. Therefore, the optimisation objective of
this scenario can be formulated as Equation (25).

. H
min LCOE :thl Cimpart(t) - Cexport(t) (25)

where Cimport denotes the cost of imported energy and Ceyport the revenue of exported
energy (presented as negative cost).

The results of the EC+MLC scenario show that the maximisation of LCOE resulted in
92.0% self-consumption and 24.8% self-sufficiency. The LCOE of the LEC was 0.133 €/kWh,
while the accumulated cost for importing energy for one year was 51,165 €, the revenue
from PV energy export 902 €, and the total operation cost 50,832 €.

4.4. Scenario 3: LEC as Prosumer Community to Facilitate Peer-to-Peer Trading (PC+P2P)

The third scenario uses peer-to-peer (P2P) trading in a prosumer community. The LEC
comprises 54 prosumers (all 53 prosumer nodes and the node denoted as Py), which have
formed a community to facilitate intra-community P2P trading. All prosumers are assumed
to act selfishly to meet their individual goals. In this scenario, the demand flexibility of
prosumers and consumers is also considered. The flexibility is monetised through an
abstract aggregator which resides outside of the LEC and remunerates flexibility activation
with a constant p s, value of 0.01 €/kWh. The objective in this scenario is to maximise the
matched energy production with consumption within the LEC. This objective is based on
the hypothesis that matching energy inside the LEC increases economic feasibility since
energy import is reduced. Thus, the cost of grid tariff is lower.

Additional optimisation variables need to be incorporated into the optimisation due
to the inclusion of prosumer flexibility. The flexibility-aware prosumer load is denoted as
Eprosumer,flex- The prosumer flexibility activations are considered with a binary variable
Prosgie,. Two binary variables are declared to represent the state of rebound for each of the
rebound hours, Rebound; and Rebound,. Additional constraints need to be included in the
addition of prosumer flexibility. The flexibility and rebound aware load of prosumers can
be formulated with Equation (26).

Eprosumer,ﬂex (]/ t) = EPYOSHMEV (]/ t) + EFtex (j)'prosflex (]' t) — Erebound (]) (26)
Reboundy (j, t) — Epepound (j)-Rebound; (j, t),

where Epjey(j) and E,epound(j) are the energies of activated flexibility and their subsequent
rebound (as shown in Table 2 and described in Section 3). To prevent the activation of
flexibility from resulting in negative demand for the prosumers, the following constraint
is included:

Eprusumer,flex(jf t) >0, (27)

The rebound activation must happen directly in the subsequent timesteps of the
flexibility activation. Therefore constraints Equations (28) and (29) are included. It is
assumed that there is no rebound event in the first 2 h of the simulation year.

Reboundy (j,t + 1) = Prosgie.(j, ), (28)

Rebound, (j,t + 1) = Prosgiec(j, ), (29)

Due to the nature of a weekly optimisation horizon, it is assumed that the flexibility
cannot be activated during the last 2 h of each week. This is because the optimisation
algorithm is unaware of the demand of prosumers and the PV production of next week.
Therefore, activating flexibility on the final 2 timesteps could result in an unfeasible solution
for the next week. Flexibility activation during the rebound process is prevented with
constraints Equations (30) and (31).

-1< Prosf;gx(j,t) + Rebound; (j, t) <1, (30)
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—1 < Prosgiec(j, t) + Rebounds (j, t) <1, (31)

The energy balance constraint used in previous scenarios was modified to include the
flexibility and rebound-aware prosumer load. The resulting constraint is formulated by
Equation (32).

EPcc,exp + EBESS,C + Eprosumer,flex = EPcc,imp + EBESS,d + Epy, (32)

In P2P trading, the goal is to maximise the matched energy production and consump-
tion within the LEC. This is implemented using Equation (33), where the optimisation goal
is to minimise the absolute difference between imported and exported energy through
the PCC.

. H
min Epec i :(thl |EPcc,imp(t) + EPcc,exp(t) 1), (33)

The LCOE for this scenario is calculated using Equation (12), the same as for the
benchmark scenario. The results of the PC+P2P scenario show that maximising the self-
consumption resulted in self-consumption of 92.8% and self-sufficiency of 28.3%. The LCOE
energy was 0.128 €/kWh, while the accumulated cost for importing energy for one year was
51,522 €, the revenue from selling to the grid 690 €, and the total operation cost 50,832 €.

4.5. Scenario 4: LEC as Prosumer Community to Maximise Self-Consumption (PC+LSC)

Like the EC+LSC scenario, this scenario aims to maximise the LEC’s self-consumption,
using the Prosumer Community business model described in the PC+P2P scenario. Since
prosumers are assumed to act selfishly, they all attempt to maximise their individual self-
consumption. The prosumers do this by timing their consumption to coincide with the period
when PV is produced though their energy flexibility. The energy flexibility of consumers is
not considered since they have no on-site generation to shift their demand. The prosumer Py
is considered different and aims to maximise the self-consumption of the entire LEC.

The simulation is performed in two steps: first, the operation of every prosumer is
optimised individually; second, the operation of Py is optimised using the results from the
first step. For the second step, the optimisation variables and constraints remain the same
as for the PC+P2P scenario. For the first step, the only difference is the energy balance
constraint Equation (34), which does not include the BESS component.

EPcc,eXp + Eprosumer,flex = EPcc,imp + EPV,prosumer- (34)

The optimisation goal Equation (35) remains the same as for the EC+LSC scenario,
which also aims to maximise LEC self-consumption. However, it is used separately for
each prosumer.

. H
min EProsume‘r,exp = Et:l EPcc,exp(t)~ (35)

The calculation of the LCOE for comparing LEC performance includes the flexibility
component Equation (8), which incentivises prosumers to use their flexibility.

Cino + Cnaint + Cimport - Cflex - Cexport
’

LCOE =
Z EPYOSM mer

(36)

The results of the EC+LSC scenario show that maximising the self-consumption in a
Prosumer Community resulted in self-consumption of 92.9% and self-sufficiency of 25.2%.
The LCOE energy was 0.133 €/kWh, while the accumulated cost for importing energy for
one year was 51,082 €, and the revenue from selling to the grid was 686 €. The revenue
generated by providing flexibility was 466 €, and the total operation cost was 49,930 €.

4.6. Scenario 5: LEC as Prosumer Community to Minimise Levelized Cost of Energy (PC+MLC)

This scenario is like the EC+MLC scenario that attempts to minimise the LCOE of the
LEC. However, in this scenario, the optimisation is carried out for a Prosumer Community
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described in the PC+P2P scenario. For this case, the prosumers are assumed to minimise
their individual LCOE. Like the EC+LSC scenario, the optimisation is performed in two
steps: first, for the 53 prosumer nodes, and second, for the prosumer Py. Compared to the
EC+LSC scenario, new optimisation variables are included that describe the flexible energy
of the prosumers: Eprosumer,flex,up and Eprosumer,flex,downr' The ObjeCtive function Equation
(37) is extended from the EC+MLC scenario to include the component of revenue generated
from flexibility Equation (38), and it is applied to individual prosumers.

. H
min LCOEpyosymer = Zt:l Cimport(t) - Cexport(t) - Cprosumer,flex (37)

Cprosumer,flex = Eprosumer,flex,dawn’pflex - Eprosumer,flex,up'pflexr (38)

The goal of the prosumer Py is still to minimise the LCOE of the entire LEC using the
objective function Equation (25) described in the EC+MLC scenario.

The results of the PC+MLC scenario show that minimising the LCOE in a Prosumer
Community resulted in self-consumption of 91.0% and self-sufficiency of 25.2%. The LCOE
energy was 0.131 €/kWh, while the accumulated cost for importing energy for one year
was 48,665 €, and the revenue from selling to the grid was 1043 €. The revenue generated
by providing flexibility was 581 €, and the total operation cost was 47,041 €.

4.7. Scenario 6: LEC as Collective Flexibility Aggregation to Minimise Levelized Cost of Energy
(CFA+MLC)

The final scenario considers a LEC which operates under a Collective Flexibility
Aggregation business model. In this scenario, the flexibility of the 53 prosumer nodes and
the prosumer P, is controlled by an aggregator, which resides inside the LEC. We consider a
hypothetical setup where the DSO procures flexibility (up- and downregulation) with a step
of 100 kW in 1 h blocks. To paraphrase it, the LEC operates as an aggregator and provides
flexibility directly to the DSO. The activation of flexibility is rewarded with a constant
Pflex value of 0.02 €/kWh. The remuneration of flexibility is double than considered in
the PC+LSC and PC+MLC scenarios since there is no aggregator between the LEC and
the system operator. The LEC aims to minimise its LCOE. Due to the computational
requirements of this scenario, the optimisations are performed within a 1-day time horizon.

The previously used optimisation variables for prosumers were decoupled to represent
the direction of energy flow: pros ey up, Prosfiex,down, reboundy ., rebounds y,p, reboundy gowp,
and rebound, 4,,,,. Additionally, new optimisation variables were included in determining
the binary activation of aggregated flexibility (AGGyjex,up and AGG ey down) and the re-
bound of aggregated flexibility (AGGyep,up,1, AGGrepup2s AGGrep,down,1 and AGGrep doron,2)-
The energy of the BESS of P, was decoupled into energy used during the period when
no flexibility was activated (Epgss. and Epgssq) and the period when flexibility was
used (Eggss, fiex,c and Eggss, fiex,q)- The energy of aggregated flexibility was denoted as
(AGGflex,pwr,up and AGGflex,pwr,dazvn)~

Additional constraints Equations (39) and (40) were included for the aggregated
control to ensure the flexibility of prosumers is only activated during aggregation.

prosflex/up(jl t) < AGGflex,up(t) (39)

PTOSflex,down (]r t) < AGGflex,down (t) (40)

The addition of constraints Equations (39) and (40) allows only a part of the prosumer
portfolio to be activated if needed, so not all the prosumer flexibility has to be used
simultaneously. To prevent the activation of aggregated energy flexibility during the
rebound process, the constraints Equations (41)—(44) were included.

AGGflex,up + AGG‘reb,down,l <1 (41)
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AGGflex,up + AGGreb,down,Z < 1 (42)
AGGflex,duwn + AGGreb,up,l < 1 (43)
AGGflex,duwn + AGGreb,up,Z < 1 (44)

The energy of aggregated flexibility was determined with equality constraints Equa-
tions (45) and (46).

AGGerx,pwr,up(t) = EFlex(j)'prOSerx,up(jf t) + EBESS,flex,C(t) (45)

AGGflgxlpwy,dou)n(t) = EFlex (j)'prosflex,down (]/ t) + EBESS,erx,d(t) (46)

In this scenario, the aggregated flexibility can only be activated with 100 kW steps,
which provides the LEC only two options: up- or downregulation of 100 kW of aggregated
flexibility. The constraints Equations (47) and (48) were introduced to implement this.

AGGflex,pwr,up = AGGerx,up'lOO kw (47)

AGGflex,pwr,down = AGGflex,down'loo kw (48)

Due to the nature of the optimisation horizon of 1 day, it was necessary to prohibit
the activation of aggregated flexibility during the 23rd and 24th hour of each day since the
optimisation algorithm is not aware of the feasibility of the rebound effect at the beginning
of the next day. Thus, AGGyiey,up(23) = 0, AGGrier,up(24) = 0, AGGfiex,down (23) = 0, and
AGGflex,down (24) =0.

The energy balance constraint used in previous scenarios was modified to include the
flexibility component of the BESS system and is formulated as Equation (49):

EPcc,exp + EBESS,C + EBESS,erx,c + Eprusumer,flex = (49)
EPcc,imp + EBESS,d + EBESS,flex,d + EPV-

The goal of scenario 6 is to minimise the LCOE. Therefore the previously used LCOE
minimisation objective is modified to include the fixed aggregated flexibility activation
incentive Equation (50) and is formulated as Equation (51).

CAGG,erx(t) = O'OZ'AGGflex,pwr,down(t) - O‘OZ'AGGflex,pwr,up(t) (50)

. H
min LCOE = Zt:l Cimport(t) - Cexpart(t) + CAGG,flex(t)/ (51)

The results of the CFA+MLC scenario show that minimising the LCOE in a LEC that
utilises a Flexibility Aggregation business model resulted in self-consumption of 85.4% and
self-sufficiency of 24.1%. The LCOE energy was 0.119 €/kWh, while the accumulated cost
for importing energy for one year was 47,085 € and the revenue from selling to the grid
2941 €. The revenue generated by providing flexibility was 3682 €, and the total operation
cost was 40,462 €.

5. Discussion

For this study, six scenarios and a benchmark case were simulated to investigate a
LEC’s potential performance. The same LEC setup was used in each simulation, but the
different business models and methods for asset dispatch in Table 1 were applied. To
evaluate the performance of different scenarios, the simulation results are analysed using
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the indicators in Sections 3 and 4. The relative difference in the performance of simulated
scenarios compared to the benchmark scenario is provided in Figure 5.

[ Self-consumption @ Self-sufficiency LCOE X Total operation cost
5.00%

0.00% X - J<_|

[
EC+LSC EC+MLC PC+P2P PC%SC PE—FMLC CHA+MLC
-5.00%

X
-10.00%

-15.00%

DIFFERENCE COMPARED TO
BENCHMARK SCENARIO

-20.00% X

-25.00%

Figure 5. The relative difference in the performance of simulated scenarios compared to the bench-
mark scenario; self-consumption, self-sufficiency: higher is better; LCOE, total operation cost: lower
is better.

The results of the benchmark scenario indicate that rule-based control of prosumer Py
provides considerably good results, as it provided the second highest self-consumption and
third highest self-sufficiency rate compared to other scenarios while providing satisfactory
economic performance. It can be concluded that if the sole aim of the LEC is to provide high
levels of self-consumption, satisfactory results can be obtained using simple, rule-based
control systems. Many state-of-the-art BESSs already provide an energy management sys-
tem (EMS) to execute similar control as described in Figure A1, resulting in an inexpensive
solution with relatively low computational requirements.

For the EC business model, insignificant differences exist between the simulation
results of the maximisation of local self-consumption and the minimisation of LCOE. This
is mainly due to the limited options for the LEC to influence its behaviour. Increased
self-consumption also lowers the LCOE, which results in minimal differences between
utilised asset dispatch methods.

An interesting observation is that the results of the EC+LSC scenario provided a
lower self-consumption value than what was obtained for the benchmark scenario. This is
caused by constraints Equations (22) and (23), which prohibit the BESS from charging and
discharging to the grid. When simulating the EC+LSC scenario without these constraints,
the resulting self-consumption reaches a value of 93.13 %, which would result in the highest
self-consumption rate, but the number of BESS charge and discharge cycles would also
increase significantly. We analysed the BESS charge and discharge operations for both cases
(the charging and discharging to the grid allowed and prohibited) of the EC+LSC scenario.
A summary of general properties describing the studied cases is provided in Table 4, while
the BESS utilisation analysis is provided in Appendix B. When charging and discharging to
the grid is prohibited, the number of cycles is reduced, while charge and discharge cycles
are deeper. When charging and discharging to the grid is allowed, the number of cycles is
increased by over 30%, and each cycle’s depth is significantly lower than for the alternative
case. The number of battery cycles affects their life cycle. Hence prohibiting the charge
and discharge to the grid remained the preferred case in this study. We acknowledge that
by modelling the impact of battery depletion into the optimisation algorithm, it would
also consider the number of cycles and their depth of discharge. The improvement of the
optimisation algorithm to consider the mentioned effects is the subject of future work.
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Table 4. Analysis of BESS charging and discharging cycles during the EC+LSC scenario for the cases
of charging and discharging to the grid prohibited and allowed.

Case Description Charging and Discharging to Charging and Discharging to

Grid Allowed Grid Are Not Allowed
Nr of cycles 332 252
[Woil;agggsl\gifc?ty] 2159 53.84
(P of BESS capaciy 33 1.
ot BEGS capacity] 1786 5238
(P of BESS capaciy] 391 19.0

The simulation results for the PC business model have a higher variance than the EC.
This indicates that for LECs operated as PCs, the significance of choosing the suitable asset
dispatch method is higher than for LECs operated as ECs. One scenario that stands out is the
PC+P2P, which produced the highest ratio of self-sufficiency and the best LCOE for the PC
business model. The PC+P2P scenario provided a better LCOE than the PC+MLC scenario
while having only 0.1% less self-consumption than the PC+LSC scenario. This can be
explained by the nature of the simulation, where the optimisation algorithm aims to match
energy production and consumption inside the LEC by utilising flexibility, which results
in similar self-consumption rates and total operational cost as the benchmark scenario,
but significantly higher self-sufficiency, which lowers the LCOE. Simulating the P2P asset
dispatch with improved flexibility characterisation is a point of interest for future studies.
Additionally, simulating and comparing operational P2P algorithms to the results obtained
in this study are in the scope of future research.

When comparing the performance of the LSC asset dispatch method, the self-cons-
umption values between the benchmark, EC+LSC and PC+LSC scenarios fall within 0.1%.
The PC+LSC scenario produced the best values for LCOE and total operation cost, which
can be accounted for by utilising flexibility. This indicates that different business models
have an insignificant effect on maximising the self-consumption of the LEC.

The findings of the MLC asset dispatch method indicate, as predicted, that the use
of power system flexibility has a considerable influence on the overall operating cost and
the levelized cost of energy (LCOE). The lowest LCOE was achieved for the CFA+MLC
scenario, where the LEC takes the role of the aggregator and provides grid services directly
to the system operator. Since this work aimed to quantify the potential of different LEC busi-
ness models and asset dispatch method combinations, the implementation and increased
operation costs for the LEC to operate as an aggregator were neglected. The calculation
of flexibility remuneration considering actual activations and providing detailed financial
calculations for integrating and operating a virtual power plant by the LEC is the subject of
future work.

The same simulations were run using 2022 Nord Pool Spot Market pricing to further
investigate how the Spot Market affected the simulation findings. The respective benchmark
and results of the simulations with 2022 Spot Prices are summarised in Table 5. The average
energy prices on the Nord Pool Spot market in the EE price region were 0.087 €/kWh in
2021 and 0.192 €/kWh in 2022, corresponding to a price increase of 120.7%. Comparing
benchmark values, self-consumption and self-sufficiency remain the same, while the LCOE
increases by 49.5% and the total operation cost by 74.4%. Figure 6 displays the difference
between the results of simulations that used 2021 and 2022 Nord Pool Spot market prices.
The values displayed in Figure 6 are relative value differences, compared to respective
benchmark values, between the results of simulations with different Nord Pool Spot market
prices. As expected, the main differences are between LCOE and total operation cost, while
the decrease is most notable for LECs utilising the MLC method for asset dispatch. For
those LECs that utilise the MLC method for asset dispatch, it can be observed that the ratio
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of self-consumption is also decreasing. This means that under relatively high market prices,
the LECs utilising the MLC asset dispatch method need to account for significantly reduced
self-consumption.
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LCOE 0.25% -1.13% -0.07% 0.75% -2.18% -5.09%
Total operation cost ~ 0.33% -1.33% -0.24% 1.08% -1.38% -3.39%

Figure 6. Differences between scenario simulation results (compared to benchmark) with different
Nord Pool Spot market data. Simulation results with 2021 and 2022 Nord Pool Spot market prices
are compared. Self-consumption, self-sufficiency: negative values show better performance with
2021 Nord Pool Spot market prices than with 2022 prices and vice versa; LCOE, Total operation cost:
positive values show better performance with 2021 Nord Pool Spot market prices than with 2022
prices and vice versa.

Table 5. Summary of simulation results with 2022 Nord Pool Spot Prices.

Parameter Benchmark EC+LSC EC+MLC PC+P2P PC+LSC PC+MLC CFA+MLC
Self-consumption [%] 92.86 92.77 91.01 93.03 92.86 89.86 80.08
Self-sufficiency [%] 25.20 25.01 24.57 28.21 25.18 24.90 22.58
LCOE [€/kWh] 0.2000 0.2005 0.1964 0.1909 0.2000 0.1910 0.1680
Import cost [€] 90,421 90,908 89,595 90,384 90,492 85,052 84,869
Export revenue [€] 1889 2040 3112 1942 1991 3644 13,171
Flexibility revenue [€] - - - - 466 591 4136
Total operation cost [€] 88,532 88,868 86,483 88,442 88,035 80,817 67,562

Overall, it can be noted that the best PC+MLC and CFA+MLC scenarios give the best
results from an economic point of view. However, the self-consumption and self-sufficiency
are reduced in most cases. The PC+P2P and PC+LSC scenarios show lower improvements
from the economic point of view, however, self-sufficiency and self-consumption never
show significantly lower results compared to the benchmark case. Thus, the preferred
combination depends on the overall goal for the LEC.

6. Conclusions

This study investigated the impact that different LEC business models and asset
dispatch methods have on the performance potential of LECs. A benchmark and six
scenarios were developed, modelled, and simulated using MILP. For each scenario, six key
parameters were calculated and evaluated in order to estimate the prospective performance
of the LECs and to benchmark their performance against other LECs. The key conclusions
are stated below.
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1. If the LEC aims to provide high levels of self-consumption, while there exists a limited
number of controllable assets, simple, rule-based control systems provide a solution
with low computational complexity that is easy to implement.

2. The utilisation of flexibility increases the LEC’s economic performance, but different
asset dispatch methods provide different rates of self-sufficiency.

3. When the LEC is utilising an energy cooperative business model, the selected asset
dispatch method provides only minor differences in LEC performance.

4. For LECs operated as prosumer communities, the significance of choosing the suitable
asset dispatch method is higher than those operating as energy cooperatives.

5. The LEC’s business model has an insignificant effect on maximising its self-consumption.

6.  For LECs operated as prosumer communities, the P2P asset dispatch method can
provide a lower LCOE than other asset dispatch methods while realising that potential
through operational P2P algorithms remains to be verified.

7. The LEC has the potential to significantly increase its economic performance by taking
the role of the aggregator and directly providing grid services to system operators.

8.  Increased energy prices reduce the self-consumption of the LECs that utilise the MLC
asset dispatch method.

As a result of this work, we have quantified the potential of different LECs, the
outcomes of this work will serve as a benchmark for evaluating the effectiveness of various
operational optimisation and control techniques, which is the subject of future work.
Secondly, the aim is to improve the presentation of prosumer flexibility availability and
delivery, where data about power system flexibility requirements, activations and respective
remuneration is included. The calculation of flexibility remuneration considering actual
activations and providing detailed financial calculations for integrating and operating a
virtual power plant by the LEC is the subject of future work, as well as simulating the P2P
asset dispatch with improved flexibility characterisation. Another focus lies in improving
the optimisation algorithm to consider the degradation of the battery based on BESS usage.
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Appendix A

A rule-based controller for controlling the BESS in the benchmark scenario is presented
in Algorithm Al. If production exceeds consumption at the PCC, the BESS is charged
until the SOC reaches 100%, upon which the excess energy is exported to the grid. If
consumption exceeds production at the PCC, the BESS is discharged until the SOC reaches
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20%, upon which the deficit is imported from the grid.

Algorithm A1: benchmark scenario

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Input: Eprosumers Epy , SOC
Output: Epgss, Epec, SOC

if EPV > Eprasumer then

if SOC < 100 then

else

end

else

end

if Epy — Pyrosumer > 75 kW then
Egpss = 75 kW

Epce = Epgss + Eprosumer — Epv
calculate SOC

else
Egrss = Epy — Eprosumer
Epec =0

calculate SOC

end

Eppss =0
— Epy

Epec = Eprosumer

calculate SOC

if SOC > 20 then

else

end

if Eprosumer — Epy > 75 kW then
Epgss = =75 kW

EPcc = Eprosumer + EBESS
calculate SOC

else
Epgss = _(Eprasumer - EPV)
Epee =0

calculate SOC

end

Eppss =0
Epee = Eprosumer — Epy

calculate SOC

Appendix B

A BESS utilisation analysis was carried out to evaluate the usage of the BESS with and

without permission to use the grid for unlimited charging and discharging. In Figure A1,
the BESS’s capacity for each charging and discharging operation is depicted as a histogram.
When no restrictions on using the grid apply, the BESS is used to perform cycles with
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lower capacities. Although battery manufacturers use the number of cycles to characterise
battery lifetime, for some battery types, the impact of cycles on battery degradation is lower
when these cycles are executed at higher SOC levels. To evaluate at which SOC levels the
BESS is operated, the SOC at the end of each charge and discharge cycle is depicted in
Figure A2. For both scenarios, the SOC of the battery is mostly around 20% at the end of
the discharge cycles, which indicates that the battery of the BESS is operated mainly at the
lower SOC levels.

It is concluded that applying the constraints for charging and discharging to the grid
reduces the number of BESS cycles while the capacity of individual cycles increases.
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Figure Al. Comparison of BESS’s capacity for each charging and discharging operation: (a) Charging
and discharging to grid allowed; (b) Charging and discharging to grid not allowed.
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Figure A2. BESS SOC values at the end of each charge (SOC High) and discharge (SOC Low) cycle:
(a) Charging and discharging to grid allowed; (b) Charging and discharging to grid not allowed.
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ABSTRACT As the landscape of electric power systems is transforming towards decentralization, small-
scale electric power systems have garnered increased attention. Meanwhile, the proliferation of artificial
intelligence (Al) technologies has provided new opportunities for power system management. Thus, this
review paper examines Al technology applications and their range of uses in small-scale electrical power
systems. First, a brief overview of the evolution of small-scale electric power systems and the importance
of Al integration is given. The background section explains the principles of small-scale electric power
systems, including stand-alone systems, grid-interactive systems, microgrids, hybrid systems, and virtual
power plants. A thorough analysis is conducted on the effects of Al technologies on power system aspects
such as energy consumption, demand response, grid management, operation, energy generation, and storage.
Based on this foundation, Al Acceleration Performance Indicators (AAPIs) for small-scale electric power
systems are developed to establish a standardized framework for evaluating and comparing different studies.
AAPI framework considers a binary scoring for five quantitative Key Performance Indicators (KPIs) and

five qualitative KPIs examined through a three-tiered scale — established, evolved, and emerging.

INDEX TERMS Artificial intelligence, electric power systems, performance indicators.

I. INTRODUCTION
A. BRIEF OVERVIEW OF THE EVOLUTION OF
SMALL-SCALE ELECTRIC POWER SYSTEMS
Significant developments in societal expectations, regulatory
frameworks, and technology paradigms have shaped the
evolution of small-scale electric power systems. Small-scale
systems have historically served isolated locations or sectors,
taking on a supporting role to centralized power grids. Due
to technological breakthroughs, renewable energy sources
have become more prevalent over time, and power gen-
eration equipment has become more affordable, propelling
small-scale systems to become an essential component of
modern-day sustainable energy solutions [1].

Decentralized energy production emerged in the early 20th
century when small-scale systems used local resources like

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Rabiul Islam

wind and water to produce electricity. These systems were
distinguished by their independence from large-scale grids,
and their location frequently served rural populations. There
was a technological innovation boom in the late 20th century,
especially in the area of renewable energy. Photovoltaic cells,
wind turbines, and other clean energy technologies grew more
efficient and affordable, as demonstrated by the increase in
solar energy output from 30 GW to 118 GW and wind energy
production from 78 GW to 167 GW within the European
Union between 2010 and 2019 [2].

The need to switch to carbon-neutral energy sources
has become more pressing due to growing worries about
climate change and environmental pollution. As essential
parts of the broader energy infrastructure, small-scale electric
power systems are crucial in reducing the carbon footprint
of conventional energy sources [3]. Nations all across the
globe have pledged to cut greenhouse gas emissions and
move toward sustainable energy practices under international

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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agreements like the Paris Agreement [4]. Since small-scale
electric power systems allow for localized, clean energy
production with lower transmission losses, they provide
a reasonable and practical solution to meet these global
sustainability targets.

Although small-scale systems have evolved promisingly,
there are still challenges, especially when incorporating
fluctuating renewable energy sources. Advanced solutions
like aggregated energy flexibility are required for efficient
grid management because of the operational problems
posed by the intermittent and variable nature of renew-
able energy sources like solar and wind [5]. In addition
to benefiting the environment, small-scale electric power
systems empower nearby communities by promoting energy
independence, creating job opportunities, and boosting
the local economy [6]. Decentralized energy resources
in small-scale systems improve community sustainability
overall and increase resilience to disruptions from the main
grid.

B. IMPORTANCE OF INTEGRATING Al TECHNOLOGIES IN

MODERN ENERGY SYSTEMS

The incorporation of artificial intelligence (Al) technology
presents unique potential for enhancing the performance
and reliability of small-scale electric power infrastructures.
By employing machine learning, predictive maintenance
algorithms can evaluate past data, identify patterns, and
anticipate equipment breakdowns before they happen [7].
This lowers total maintenance costs by extending the lifespan
of crucial components and minimizing downtime [8].

Al-powered load forecasting models make real-time
energy demand forecasts possible, making grid management
and resource allocation more effective [9]. These models
improve the flexibility of small-scale systems by analyzing
variables like user behavior, weather patterns, and past
consumption data, guaranteeing that supply and demand
are balanced [10]. Given that renewable energy sources
are naturally uncertain, this capability becomes even more
essential.

The introduction of Al-powered smart grid technologies
is revolutionizing energy transmission, distribution, and
usage. Fig. 1 demonstrates the components of small-scale
power systems, which are the scope of this review paper.
Al algorithms make real-time grid monitoring and control
possible, allowing for automatic response to changing
conditions. In addition to improving grid stability, it regulates
fluctuations and keeps a steady supply of power, which
facilitates the integration of various energy sources, including
renewables [11].

Al plays a crucial role in coordination and control as
small-scale electric power systems adopt increasingly decen-
tralized energy resources. Decentralized energy management
systems use Al to balance loads, optimize power flows, and
coordinate the use of various energy sources. This raises
the system’s overall efficiency and strengthens the grid’s
resistance to disturbances [12].

VOLUME 12, 2024

Because renewable energy resources, such as wind and
solar power, are unpredictable, sophisticated forecasting
methods are required. To generate reliable renewable energy
generation forecasts, Al algorithms analyze meteorological
data, historical trends, and current conditions [13]. This
makes it possible for grid operators to effectively incorporate
renewable energy into small-scale power systems and manage
fluctuations proactively.

For small-scale electric power systems to balance supply
and demand, energy storage systems need to be optimized
- Al technologies are key to this process. Optimizing
energy storage devices’ charging and discharging processes
enhances their lifespan and efficiency, which is achieved via
machine learning algorithms that analyze demand patterns,
weather forecasts, and grid conditions [14].

Demand response programs powered by Al enable users
to actively participate in energy-saving activities. These
technologies help to increase overall energy efficiency and
sustainability by allowing users to modify their energy
consumption according to grid conditions through intelligent
automation and real-time communication [15].

The paper is organized as follows: Section II provides
background information on small-scale electric power sys-
tems. Section III is dedicated to an in-depth analysis of the
existing literature related to Al applications in small-scale
electric power systems. Section IV discusses the find-
ings and proposes Al Acceleration Performance Indicators
(AAIPs) that enable evaluating and comparing different
studies. Section V concludes the review paper with relevant
findings.

C. RELATED WORK AND MOTIVATION

The deployment of Al in power systems has become topical in
the scientific literature as the number of publications related
to deep learning and electric power systems in the ScienceDi-
rect database has grown from around 20 in 2015 to 200 in
2019 [16]. Review articles related to this paper primarily
focus on AI’s applications in power systems [17], [18]. For
example, the research status in the operation, optimization,
control, dispatching, and management of Smart Grid and
Energy Internet fields using Al has been reviewed in [19],
where it was found that the bottlenecks for future develop-
ment include the lack of training datasets, the interpretability
and reliability of models, and semantic reasoning issues
of language models. Machine learning algorithms, such as
Support Vector Machines (SVMs) and Gradient Boosting
Machines (GBMs), have been utilized to predict energy
consumption patterns with high accuracy, enabling more
efficient demand response and load forecasting [20], [21].
Al supports VPPs by optimizing the utilization of renewable
resources based on their availability and demand predic-
tions [22]. Deep learning models, particularly Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks, have demonstrated exceptional capability
in identifying and diagnosing faults within microgrids,
thus reducing downtime and maintenance costs [23], [24].

109985



IEEE Access

A. Shahid et al.: Al Technologies and Their Applications in Small-Scale Electric Power Systems

Distributed Energy

Residential

Commercial

Communication
Flexibility Services
Electric Power
Grid Services

Generation Transmission R

) esources
side ®
o
3
o
o
3
o
3
@
%
| 1 o
1 ' @
1 1 3
1 1 ﬂé
' ' &
f ' ' 8
% % 4 —| end-users z
-3
DSO . Grid Management -, g
Q
=
o
j
«
<
P
@
3

FIGURE 1. Illustration of the structure of a power system.

Furthermore, reinforcement learning approaches, including
Deep Q-Networks (DQNs) and Proximal Policy Optimization
(PPO), have been utilized to optimize microgrid operations
and manage distributed energy resources more effectively,
thereby enhancing overall system performance and sustain-
ability [25], [26]. The authors of [27] reviewed Explainable
Artificial Intelligence techniques for energy and power
systems. The application of resilience enhancement of power
systems using Al was reviewed by the authors of [28],
who concluded that supervised deep learning is particularly
suited for anomaly detection, classification, and damage
detection. In contrast, unsupervised deep learning methods
are suitable for defending against cyber-attacks. Thus, the
research has primarily focused on Al applications in power
systems; however, to the authors’ best knowledge, there
is a lack of research in evaluating and benchmarking the
efficacy of Al implementations in electric power systems.
Therefore, the motivation of this research paper is not
only to give a comprehensive review of Al applications in
small-scale electric power systems but also to provide a
framework for evaluating and benchmarking the efficacy of
Al implementations using the AAPI framework developed in
this paper.

D. REVIEW METHODOLOGY

A thorough literature search was conducted across major
academic databases such as Scopus, ScienceDirect, and
IEEE Xplore. The search strategy included a combination
of the following keywords and many more: “Al tech-
nologies,” “‘small-scale electric power systems,” ‘‘micro-
grids,” “‘energy consumption,” ‘“demand response,” “‘grid
management,” “‘energy generation,” and ‘“‘energy storage.”
The focus was on newer studies conducted from 2019
to 2024.

LR RT3
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The inclusion criteria for selecting relevant studies include
peer-reviewed journal articles and conference papers that
specifically address the focus of this study, namely the impact
of Al technologies in small-scale electric power systems.
Studies that either provided insufficient information about
the uses of Al technology or did not explore the relationship
between Al and small-scale electric power networks were
excluded from the analysis.

The key themes of the literature were identified through
systematic data extraction. The data was compiled into tables
based on which the objectives, methodologies, Al models,
key findings, and limitations of existing research can be
analyzed.

Il. FUNDAMENTALS OF SMALL-SCALE ELECTRIC POWER
SYSTEMS

The effective operation of small-scale electric power systems
is essential in meeting the changing energy demands. The
basic concepts of these systems, which include standalone,
grid-interactive, microgrid, hybrid, and other configurations,
including Virtual Power Plants (VPPs), are examined in this
section.

A. STANDALONE SYSTEMS

Reliable electricity supply in isolated or off-grid places
relies heavily on small-scale electric power systems, mainly
standalone designs. These systems have become essential in
addressing issues related to energy access because of their
independence from the main grid [29]. Standalone systems
include devices such as production units, energy storage, and
loads. Energy is produced with diesel generators, combined
heat and power units, or renewable energy sources like
solar or wind. At the same time, the storage, which usually
takes the form of batteries, guarantees a steady supply of
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electricity at times when production is low. Optimizing the
performance of standalone systems requires understanding
how these components interact [30].

Although standalone systems provide energy indepen-
dence, they have maintenance, fuel supply, and reliability
issues. Despite these challenges, standalone systems are
viable for some applications due to their flexibility, auton-
omy, and lower environmental impact [31]. Examples from
real life demonstrate the adaptability and efficiency of
standalone systems [32]. Applications for standalone systems
are diverse; they can be used to power distant communication
stations or provide electricity in rural areas or areas affected
by disasters. In situations when grid access is difficult or
economically unreasonable, these systems showcase their
importance in meeting energy demands [33].

B. GRID-INTERACTIVE SYSTEMS

Grid-interactive systems are a type of small-scale electric
power systems that integrate with the main grid. By enabling
bidirectional power flow, these systems allow an interchange
of electricity between the main grid and the local power
sources [34].

Integrating grid-interactive equipment with the main grid is
a crucial component that makes a consistent and dependable
power supply possible. Grid compatibility and control
methods are subject to additional challenges in the context of
bidirectional power flow, allowing electricity to be provided
to and consumed from the grid [35].

Grid-interactive systems have several advantages, such as
improved energy efficiency and higher reliability, thanks to
grid assistance. However, for deployment to be effective,
obstacles to maintaining grid stability and resolving regula-
tory concerns must be carefully considered [36].

C. MICROGRIDS

Microgrids represent a significant shift in small-scale
electrical power systems, offering localized control and
independence. Microgrids are characterized by having the
ability to function both autonomously and alongside the
main grid, i.e., in off-grid or on-grid modes. These attributes
are among the major reasons for their increasing appeal.
There are several use cases of microgrids, each designed to
meet specific requirements, e.g., community, campus, and
remote microgrids [37]. It is necessary to understand these
distinctions to develop microgrids that meet the particular
needs of various settings.

Microgrid management is greatly aided by advanced
control systems, which ensure optimal performance and
coordination between various energy sources. The respon-
siveness and flexibility of microgrid systems are improved by
integrating intelligent technologies such as optimization and
machine learning algorithms [38]. Enhancing power supply
reliability is one of microgrids’ distinguishing features.
Microgrids play an important role in attaining energy security
and contribute to grid stability by offering localized solutions
to energy-related problems [39].

VOLUME 12, 2024

D. HYBRID SYSTEMS

Hybrid systems are a complex solution to small-scale electric
power systems since they integrate multiple energy sources.
These systems combine the benefits of many technologies
by integrating renewable energy sources with conventional
generators [40]. The viability and versatility of this technique
are demonstrated by examples of hybrid systems, such
as wind-hydro or solar-diesel combinations. Intermittency-
related issues are resolved by combining renewable and
conventional sources to ensure a more steady power
output [41]. Other benefits include better environmental
sustainability, decreased dependency on fossil fuels, and
enhanced efficiency. However, the challenges in designing
and integrating complex systems call for both careful
planning and innovative technologies [42].

E. VIRTUAL POWER PLANTS

The concept of Virtual Power Plants (VPPs) is new in the
world of small-scale electric power systems. These designs
provide a scalable and adaptable solution by combining
distributed energy resources through the use of modern
technologies. Due to their ability to coordinate operations
centrally, VPPs are essential for optimizing the usage
of distributed resources [43]. Beyond conventional power
generation, VPPs are also applicable for energy storage and
demand-side control, which improves system efficiency as a
whole [44]. Improved stability of the grid, effective resource
use, and a lower carbon footprint are just a few of the
economic and environmental advantages that come with the
deployment of VPPs [45]. It is anticipated that as technology
develops, VPPs will have an even more significant impact on
small-scale electric power systems.

IIl. Al APPLICATIONS IN SMALL-SCALE ELECTRIC
POWER SYSTEMS

Integrating Artificial Intelligence into small-scale electric
power systems presents a promising opportunity for man-
aging and optimizing energy resources distinct from those
encountered in large-scale systems. While AI’s applications
in both contexts aim to enhance efficiency, reliability, and
optimization, the scale of operation significantly influences
the nature and impact of these applications.

In small-scale systems, the applications of Al range from
enhancing the efficiency and reliability of distributed energy
resources, such as through predictive maintenance, optimal
segmentation of renewable sources, and accurate forecasting,
to optimizing battery energy storage and consumption by
predicting remaining useful life (RUL), SoC patterns, and
charging and discharging times. Al in these settings is focused
on enhancing local grid stability, managing dynamic load,
and integrating a higher proportion of renewable energy
sources. Due to the smaller scale, Al-driven strategies are
more agile, tailored to local conditions, and responsive to
rapid changes in demand and supply. It plays a pivotal
role in intelligent load management and demand response,
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providing dynamic pricing strategies and balancing sup-
ply and demand while predicting consumer behavior for
optimized energy distribution. Furthermore, Al significantly
boosts small-scale grid management by enabling real-time
anomaly detection, predictive maintenance, and dynamic
reconfiguration in microgrids to enhance grid stability and
resilience and maintain continuous and efficient power
delivery.

On the other hand, Al applications in large-scale power
systems typically deal with the complexity of interconnected
networks and centralized generation facilities, focusing more
on high-level grid management, large-scale energy trading,
and maintaining the reliability and security of supply across
vast geographical areas.

The scope of Al in small systems extends to sophisticated
applications such as coordinating VPP and community
energy systems, aggregating, and intelligently managing
diverse energy resources. Following the overview, the
subsequent sections will thoroughly discuss the specifics of
each area, exploring the enhancement of energy generation,
storage, consumption, grid management, and advanced appli-
cations within small-scale electric power systems through Al
technologies.

A. ENERGY CONSUMPTION AND DEMAND RESPONSE

In the domain of small-scale electric power systems, the
application of artificial intelligence in energy consump-
tion and demand response offers model-free solutions as
compared to traditional mathematical models to analyze con-
sumption patterns, predict demand peaks, exploit consumer
energy flexibility, and implement dynamic load adjustments,
perform real-time pricing and offering innovative solu-
tions for intelligent energy management at both household
and building scales either with residential or community
settings.

A DRL algorithm to schedule ESS and HVAC loads
in a smart home without building thermal dynamics is
proposed in [46]. The results indicate 8.10%—15.21% cost
minimization compared to rule-based control approaches.
In [47], the Temporal Convolutional Networks (TCNs) are
utilized for community energy management using PV and
ESS. Energy consumption optimization includes data-driven
models for occupant behavior, user comfort, and RES
management using Random Forest [48], NARX ANN [49],
DNN [50], and Q-Learning [51]. Similarly, energy demand
prediction for economic and energy savings is also a key
aspect of DR strategies. In the literature, authors employed
different machine-learning techniques for short-term [52],
[53], [54] and day-ahead load forecasting [55], [56],
[57] to enhance consumer engagement in energy trading,
renewable energy integration, and dynamic tariff schemes.
Table 1 comprehensively examines Al-driven strategies
for enhancing energy consumption patterns and refining
demand response mechanisms for small-scale electric power
systems.
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B. GRID MANAGEMENT AND OPERATIONS

Energy fluctuations from intermittent renewable energy
generations introduce vulnerability in grid operations [69].
ML plays a crucial role in transforming grid management,
particularly in enhancing the capabilities for on-grid sys-
tem optimizations, dynamic reconfiguration in microgrids,
and anomaly detection in power systems. For example,
the LSTM-based reinforcement learning model improved
renewable energy integration and load balancing optimization
in a smart grid with 92% accuracy as compared to other
ML algorithms [70]. On-grid system optimization involves
interactions between various microgrid components such as
consumers, renewable energy producers, electricity suppliers,
and storage systems. This interaction is characterized by
dynamic reconfiguration, adapting microgrid operations to
varying factors like renewable energy production, con-
sumption patterns, and storage capacities [71]. A techno-
environmental-economic strategy using multi-agent DRL for
microgrid planning and optimization is presented in [72].
Effective grid management requires improved prediction
stability of microgrids. This includes load-shifting, demand
offsetting, decision-making in virtual power plants, and
providing ancillary services, thereby focusing on urban
scales and their inherent complexities [73]. To ensure
grid reliability and security, federated learning techniques
allow for on-device model training and parameter updat-
ing, significantly enhancing privacy and reducing data
transmission requirements. These approaches, secured with
SSL/TLS protocols, effectively mitigate challenges related
to bandwidth, latency, and security, aligning with stringent
privacy regulations [74]. To provide security to client data
in microgrids from being compromised, a CNN-BiLSTM
categorization criterion for cyber-attacks has shown a success
rate of 99% compared with traditional approaches [75].
Table 2 summarizes the research on Al applications in grid
management and operations of small-scale electric power
systems.

C. ENERGY GENERATION

Smart grid technology has enabled the potential benefits of
RES for consumers in small-scale electric power systems.
In this context, the application of Al becomes instrumental
in enhancing energy generation capabilities by optimally
positioning and controlling RES to maximize the efficiency
of these installations, specifically for the task of maximum
power point tracking (MPPT) and adaptive power manage-
ment [76]. By analyzing historical data from various sensors,
Al algorithms predict potential failures, remaining useful
life (RUL), and schedule timely maintenance of equipment,
thus minimizing downtime and extending the lifespan of the
generation equipment. Furthermore, accurate solar irradiance
and wind speed forecasts enable proper load scheduling and
grid power allocation, ensuring a steady and reliable energy
supply [77]. A SHAP cat-boost algorithm improves MPPT
control in PV systems by minimizing steady-state error
during low irradiance and partial shading conditions [78].
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TABLE 1. Summary of Al studies for energy ¢

Ref. | Objective
[58] Efficient
residential
demand
control

[59] Manage
energy
demand by
exploiting
consumer
flexibility for
participation
in energy
trading
Analyze energy
consumption
patterns to
enhance
consumer
engagement in
energy
markets

[60]

Characterize
the flexibility
of residential
electricity
consumption
for demand
response

[61]

[62] Balance
energy
consumption
and
production in
buildings to
work as a local
power plant
Improve Short-
term Load
Forecasting
accuracy and
privacy for
residential
users

[63]

[64] Optimize
energy
management
through
occupancy
forecasting
[65] Optimize
energy
consumption
and maximize
user comfort
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Al Technology

Deep Learning

Deep Learning

Unsupervised
Learning, Data
Mining

Interactive
Learning (IL)

Machine
Learning

Federated
Learning

Semi-
supervised,
Deep
Reinforcement
Learning

Transfer
Learning

1

p ion and d

Data Source

German
building
dataset for
PV and WWO
API for
weather data

MATLAB
simulation
data

Five house
data UK-Dale
dataset

IRISE Energy
dataset

DesignBuilder
Simulation

Australian
SGSC
customer
dataset

Real-world
datasets from
Belgium and
Germany

UK-DALE,
REFIT
datasets

Methodology Scale

rTPNN-FES Household
algorithm for

concurrent RES

forecasting and

appliance

scheduling

optimization

LSTM for
demand
predictions and
matrix-based
control system to
maximize RES
consumption

Community

K-means Household
clustering for
appliance-time
association and
FP Growth for
appliance-to-
appliance
association.
NILM for Residential
disaggregation,
Random Forest
to estimate
appliance ON-
OFF events, and
k-means for
flexibility curves
By managing
energy supply
and demand
using PV
systems,
XGBoost is used
to predict future
energy balance.
K-means based
privacy-
preserving user
clustering with a
hierarchal
federated ANN
forecasting
model to
enhance fault
tolerance

LSTM integrated
LTPWE for
occupancy
estimation
integrated with
SAC for energy
scheduling
Deep Q-learning
is employed to
transfer
knowledge from
the expert's

Urban
Building
Complex

Residential

Residential
and
Commerecial

Household

Key Findings

Single algorithm
provides near-
optimal
appliance
scheduling 37.5
times faster than
traditional
methods

21% demand
reduction during
DR events, 15%
reduced
interaction with
the electricity
network

Identification of
Appliances of
Interest for
efficient demand
management
and end-user
participation

High accuracy in
characterizing
flexible
appliances using
IL-based
disaggregation

Surplus energy
generation from
April to
December for
peak demand
management

Compared with
benchmark
methods,
37.25%
improvement in
prediction
accuracy

Reduced energy
cost by 18.79%—
55.79% without
sacrificing

thermal comfort

Significant
reduction in
energy
consumption
with minimum
user discomfort

Limitations

Lacks
integration of
thermal
models with
HVAC control
systems

Only considers
residential
load

Focuses on
the frequency
of appliance
usage rather
than their
actual energy
consumption
or duration of
use.

Limited to
low-resolution
smart-meter
data

Accurate
system
modeling
challenges,
need for
extensive data

Vulnerable to
eavesdropping
attacks, does
not account
for social
relationships
in clustering

Dependency
on ambient

data quality
and labeling
frequency

Preprocessing
and fine-
tuning
requirements
in knowledge
transfer

Further
Research

Application to
microgrid
dispatch and
intelligent
energy
distribution

Integration
with other
renewable
sources and
wider
geographical
application

Predicting
appliance
usage on a
short-term
and long-term
basis to
analyze
consumer
preferences
Integration of
more diverse
datasets,
including EVs,
solar PV, and
batteries

Optimizing PV
plant siting
and operation
to maximize
profits

Expansion to
diverse
residential
environments,
Integration of
encryption
technologies
for enhanced
security

Optimization
with varying
environmental
conditions

Use of graph
neural
networks for
enhanced TL
efficiency
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TABLE 1. (C d) s y of Al studies for energy c p and d d resp
in smart home to the
homes learner's home.

[66] Optimize Deep UK Power DRL is utilized in Household Minimized Black-box Interpretability
energy Reinforcement =~ Networks an MDP electricity cost nature of DRL, = and scalability
consumption Learning (DRL) =~ and Nordpool | framework with and reduced high- of the DRL
in the home database. a state set of transformer load.  dimensional model
energy appliances, EV, Power peak cut state-action
management and ESS of 24% in some space
system attributes, and a instances

reward function

[67] @ Designing DR Clustering Smart meter Utilized k-means, | Community  Effective DR Low volume Deployment as
programs for Algorithms data from k-medoids, and segmentation of data, an application
prosumers Italian utility agglomerative minimized limited to a for

clustering to reverse power specific aggregators,
identify and flow, a PPS of community incorporating
optimize DR 0.689 for k- forecasts and
program for means dynamic DR
prosumers strategies

[68] = Mitigate high Deep Learning = Grid Development University Reduced Specific to Expansion to
rate of change emulator and testing of Campus frequency conditions different
of frequency in data with PV ANN-based DR deviation by near the geographic
PV-operated systems, controller for 23%, improved equatorial and grid
grid systems Malaysia frequency ROCOF by 19.7% line, requires conditions

regulation in high-quality
high PV data
intermittency

areas

A Q-learning-based control strategy has identified optimal
equilibrium policies for various power system operating
conditions and improved control performance by around 10%
compared to other ML algorithms [79]. Similarly, for predict-
ing the RUL of rotating machines, a DNN-based model is
utilized that considers time—frequency-wavelet joint features
to effectively represent the degradation of bearings [80].
A deep learning-based RNN model is designed to forecast
short-term intra-hour solar irradiance by using infrared sky
images, resulting in reduced algorithm computational cost
and grid operational cost with high participation of solar
energy [81]. Table 3 provides a detailed overview of Al
applications for optimizing energy generation in small-scale
electric power systems.

D. ENERGY STORAGE

Efficient energy storage management is essential for the
effectiveness and reliability of small-scale electric power
systems that rely on intermittent renewable energy sources,
such as solar and wind [101]. The development of energy
storage system (ESS) technologies such as compressed air,
flywheel, pumped hydro storage, and batteries can increase
the ESS capacity to store energy from power grids. This
stored energy can then be used when needed. The advance-
ment of ESS technologies with microgrid utilization has
created a large market for ESS to offer bulk energy storage,
transmission and distribution support, ancillary services,
and energy management solutions [102]. Al technologies
significantly enhance the capabilities and functionalities of
ESS by providing battery-based control and monitoring
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solutions, predicting battery health, optimizing charging
cycles based on real-time energy demands, and identifying
degradation patterns [103]. A predictive control mechanism
has demonstrated an 84% overall efficiency in microgrid
peak shaving by managing the flow rate of energy storage
systems for stable power generation [104]. To improve the
real-time charging/discharging decision-making of ESS, RL-
based actor-critic agents are used to optimize the power flow
while minimizing the energy cost [105]. Battery state of
health is determined with a mean absolute error of 1.39%
by using a simple ANN with a small amount of data. This
helps optimize the operation and management of energy
storage systems [106]. A degradation model of lithium
batteries is developed to predict the remaining useful life
using ensemble learning methods for fault diagnosis during
the equipment operation service period to ensure an effective
energy supply [107].

Table 4 analyzes Al-based techniques to improve the
operation of energy storage systems in small-scale electric
power systems.

IV. DISCUSSION

A. Al ACCELERATION PERFORMANCE INDICATORS
(AAPIS) FOR SMALL-SCALE ELECTRIC POWER SYSTEMS

In the rapidly evolving field of small-scale electric power
systems, the integration of Al has shown promising potential.
However, a critical gap exists in the standardization of
evaluating and comparing the diverse Al methodologies
being employed for similar tasks. This requires a set of
baseline assessment parameters to establish a standardized
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TABLE 2. Summary of Al studies for grid

Ref. Objective
[82] Implementing
efficient energy
management in
microgrids

[70] Optimize
renewable
energy
production in

smart grids

[83] Enhance Smart
Grid security via

theft detection

[84] Simulate critical
scenarios to
optimize smart
grid operation
and flexibility

[85] Energy
management in
vehicular ad hoc
networks
(VANETs) using
loT and
microgrids

[86] Improve smart
grid prediction
stability to
enhance system

efficiency

[87] Identify and
classify transient
conditions in

microgrid

VOLUME 12, 2024

t and

Al Model

Deep
Reinforceme
nt Learning

Deep
Learning,
Reinforceme
nt Learning

Federated
Learning

Deep
Learning,
Reinforceme
nt Learning

Reinforceme

nt Learning

Supervised
Learning

Supervised
Learning

5 P

Data Source

Data from Institut
Polytechnique de
Paris microgrid

Smart Meter
Power
Consumption Data
in London
Households

US Open Energy
Data Initiative
(OEDI) portal

European
ebalance-plus
project data

VANET system data

UCI ML database

MATLAB
simulation of
WBREDA and
WBSEDCL
distribution system

Methodology

Deep LSTM for
time series
prediction, ILP
for optimal
action
calculation,
and
reinforcement
learning for
decision-
making
LSTM-RL for
demand
patterns; RL-SA
for load
balancing;
CNN-PSO for
energy
production
forecasting
FL-ConvGRU
decentralized
model for theft
detection by
capturing
spatial
patterns and
temporal
dependencies
LSTM for
prediction,
DQN for
optimizing
multi-agent
systems to
achieve
operational
flexibility
Variational
Encoder NN
algorithm
within an loT-
based edge
cloud
computing
framework and
integration
with smart
microgrid
architecture
Cascade ML
system with
feature
selection and
FCMFW-
Bagged Tree
algorithm-
based
classification.
Signal
processing
through
Discrete
Wavelet
Transform.

Scale

Microgri
d

Smart
Grid

Smart
Grid

DC
Microgri
d

Microgri
d

Smart
Grid

Microgri
d

Key Findings

DRL system
achieves up
to 95%
accuracy
compared to
optimal
actions,
outperformin
gthe Q-
learning
method
LSTM-RL
accuracy:
0.92; RL-SA
load
balancing
accuracy:
0.91; CNN-
PSO's RMSE:
18.57.

High efficacy
in detecting
theft with
data privacy
at 0.980
accuracy,
0.970 Recall,
0.980 F1-
Score
Optimal
actions were
achieved with
90% accuracy
in
consumption
patterns and
NMAE of 0.72

The model
achieved 96%
energy
efficiency
while
reducing
communicatio
n overhead by
55%

Achieved
99.9%
accuracy in
predicting SG
stability

100%
accuracy in
detecting and
discriminating
transient
events

Limitations

Complexity in
model
representatio
n with ILP,
long
execution
time of Q-
learning

Reliance on
precise input
data,
computationa
| complexity in
large-scale
systems

Complexity of
the model
and data
synchronizatio
n

System’s non-
scalability due
to
environmenta
|
requirements

Security,
privacy,
interoperabilit
y in VANET-
Cloud

Specific to the
dataset used,
may require
adaptation for
other SG
systems

Generalizabilit
y to different
microgrid
configurations
or noise
sensitivity.

Further
Research
Further
exploration of
DRL in various
use cases,
including
deployment on
micro-
controllers

Dynamic
pricing and DR
strategies,
alternative
optimization
methods

Hyperparamet
er
optimization,
alternative
deep-learning
architectures
for improved
theft detection

Expand
scalability with
amore
dynamic
environment
definition

Addressing
VANET-Cloud
challenges

loT-based E-
stability
determination
systems

Exploration of
transient
events and
grid-connected
hybrid network
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TABLE 2. (C d) s y of Al studies for grid g t and op
Training with nonlinear
Decision Tree load
classifier using
extracted
features.
[88] Optimize control Federated VPP operation FDRL with a Virtual Achieved the Complexity in Expansion of
strategies for Deep data, EV stochastically Power highest managing FDRL
multiple VPPs Reinforceme charging/dischargi controlled Plant reward values | disturbances, application to
integrating EVs nt Learning ng data stochastic at 3.85 x 10°, data privacy larger grid
(FDRL) gradient with indicating concerns systems
Markov better VPP
decision control
process strategies
formulation
[89] Optimize VPP Reinforceme BRCET database Utilized DDPG Urban Improved Simulation Integrating RL
decision-making nt Learning for optimal VPP economic interval limits, =~ with game
in urban areas VPP control, benefits via electricity theory for
addressing load-shifting, market electricity
spatial/tempor demand bidding market
al offset, and process not bidding,
uncertainties market considered extending VPP
via scenario participation modeling with
analysis RL
[90] Optimize EV Reinforceme KEPCO’s EV Model-free Smart Reduced user Uncertainties Inclusion of
charging/dischar nt Learning charging data sequential Grid costs by 59%- in driving detailed user
ging for V2G decision- 62% and behavior and requirements,
integration making using extended battery improving the
MDP and battery degradation DDPG
DDPG lifespan algorithm,
algorithm
[91] Anomaly Federated Ausgrid, KDD 99, Locally train Smart FL-1D-CNN Limited by Optimizing FL
detection in Learning NSL-KDD, CIDDS global models Grid Classifier data and for lower
smart grids datasets (RNN, 1D-CNN, showed the device resource
LSTM) while highest 0.981 heterogeneity = consumption
securely accuracy with on edge
updating the 0.871 devices
central model precision.

via SSL/TLS

framework that enables evaluating and comparing different
studies. Considering the variations in methodologies and
outcomes in energy sector research, the Al-Acceleration
Performance Indicators (AAPIs) are proposed as an initial
proposition to provide a consistent benchmark for Al-
accelerated approaches. It involves identifying key per-
formance indicators (KPIs) crucial for evaluating Al in
small-scale electric power systems. The process is guided by
the dual objectives of ensuring technological viability and
enhancing user-centric outcomes. AAPI framework serves
as a starting point for standardization in the field, with the
main purpose of establishing a foundation upon which further
research and validation can be built.

The accelerated KPIs are designed to speed up the commer-
cialization of Al technologies in energy systems by ensuring
user comfort, scalability, and practical applicability while
enhancing user engagement. The framework categorizes
KPIs into quantitative and qualitative measures, as outlined
in Table 5.

Key performance areas critical to Al applications in energy
systems are identified, such as cost-effectiveness, demand
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management, and prediction accuracy, along with qualitative
aspects like innovation level and practical applicability.
AAPIs framework employs a binary scoring system for
quantitative KPIs to highlight which aspects are clearly
covered in the studies. In contrast, the qualitative aspects are
examined through a three-tiered scale — established, evolved,
and emerging, where established indicator shows real-world,
data-driven, and validated Al solutions with reliable results
in different operating scenarios, evolving parameter shows
the ongoing development and incremental improvements in
the research with simulated analysis to enhance practical
viability. In contrast, emerging shows new machine learning
concepts and early-stage Al solutions that are yet to be
extensively tested but point to new directions that could
drive future advancements. This assessment approach guides
the field towards practical, user-oriented, and commercially
sustainable Al solutions.

These indicators are applicable across various types
of Al applications, be they computational, experimental,
or integrative. Researchers can track the evolution and
performance enhancements of these systems by consistently
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TABLE 3. Summary of Al studies for optimizing energy generation for small-scale electric power systems.

Ref.

[78]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Objective

Improve
MPPT in PV
systems

Accurate RES
prediction to
reduce
consumer
energy cost
Improve
short-term
wind and
solar power
prediction

Predictive
maintenance
in wind
turbine
gearboxes

Estimate
global solar
radiation and
quantify
simulation
uncertainty
Optimize
hybrid solar
PV and wind
energy
generation

Improve PV
panel
segmentation
for capacity
estimation

Optimize RES
generation
by
considering
cost and life
cycle
Predictive
maintenance
of generation
equipment

Fault
detection for
PV system
operational
planning
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Al
Technology
Supervised
Learning

Deep
Learning

Deep
Learning

Ensemble
Learning

Supervised
Learning,
Deep
Learning

Deep

Learning

Deep
Learning

Supervised
Learning

Supervised
Learning

Supervised
Learning

Data Source

MATLAB
Simulated PI
controller
data

NREL,
NSRDB
dataset

Chinese
State Grid
data

Vibration
and acoustic
sensor data

AERONET,
BSRN,
LIESMARS
database

MATLAB
environment
operating
cases

Remote
sensing
images from
Germany

Home Pro
simulation,
100
buildings
data

Simulated
turbine data

GPVS-Faults
data

Methodology

SHAP-CatBoost is
used to minimize
steady-state error
during low
irradiance and
partial shading.
MH-CNN based
forecasting model
for efficient energy
management

CNN-LSTM
enhanced with the
Coati Optimization
Algorithm for
hyperparameter
tuning

Sensor data were
processed using
DWT, and by using
entropy features
faults were
classified

Radiative transfer
model coupled
with XGBoost, RF,
MARS, MLP, DNNs,
LightGBM

ZOA-ANFIS for
MPPT in PV and
wind systems;
integration of
novel HEPMSG
design

GenPV model
employing multi-
scale feature
learning with
inductive learning
and Focal loss
function

Decision tree to
forecast life cycle,
weighted sum
model for optimal
decision-making

Developing a
binary
classification
system for
maintenance
prediction using
DT and ANN
Three ML models
(LR, RF, NB) were
benchmarked
using classification
metrics on a noisy
dataset.

Scale

Household

Community

Community

Microgrid

Small-scale
solar PV
systems

Microgrid

Community

Community

Microgrid

Microgrid

Key Findings

Adjustable MLGB
controller
outperforms
traditional PI
with response

Decrease energy
bills by 58.32%

without ESS and
63.02% with ESS

RMSE decreased
by 0.5% and
5.8% for 1hr and
day-ahead
predictions

92% fault
classification
accuracy

RTM-RF is most
efficient with
MAE of 15.57
W/m? and R? of
0.98

ZOA-ANFIS
computes
26.17% faster for
PV and 35.5% for
Wind than GTO

Outperformed
U-Net and FPN
with 0.916
precision and
0.651 loU.

84% and 54.59%
reduction in cost
and
environmental
impact

98% accuracy in
maintenance
identification

0.96 F-score by
RF and 1.76
seconds training
time

Limitations

Lack of real-
world
experimental
validation

Limited to
residential area

Potential
limitations in
the
applicability
across different
environments
Stationary load
and speed
operating
conditions

Limited data,
less accuracy in
cloudy and
rainy
conditions

Study
conducted on a
small scale;
cost not
considered

Difficulty in
segmenting
small PV panels
and similar
object

Algorithm
scalability,
linear decision-
making model

Specific to
hydroelectric,
dependent on
the quality of
sensor data

Noisy
measurements,
scalability
issues with LR

Further
Research

Experimental HIL
validation;
scalability
analysis for
microgrid
integration
Implementation
in a real-world
scenario

Scaling to
various
geographic and
climatic
conditions

Consideration of
dataset
imbalance and
different
condition
monitoring
schemes
Improving
accuracy in
diverse
environmental
conditions

Including cost
optimization in
analysis while
maintaining
performance

Integration of
LiDAR,
hyperspectral
imagery, and
application of
explainable Al

Expansion to
different
geographic
locations and
larger scales

Application in
other industrial
contexts, testing
new approaches
like SGTM

Exploration of
more efficient
algorithms
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TABLE 4. Summary of Al studies for energy storage in small scale power systems.

Ref.

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
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Objective

Nelo
estimation
for lithium-
ion batteries

Improve SoC
estimation
for different
batteries

Monitor and
predict
Flywheel
energy
storage
remaining
useful life
Optimize
BESS
scheduling
with the PV
system

Optimal
energy
storage
planning
under
renewable
energy
uncertainty
Predict the
remaining
useful life
(RUL) of
lithium-ion
batteries
Predict RUL
of lithium-
ion batteries

Nelo
estimation
for Li-ion
batteries

Optimize
energy
storage in
hybrid grids

Al Technology

Deep Learning

Transfer
Learning

Supervised
Learning

Reinforcement
Learning

Deep
Reinforcement
Learning

Deep Learning

Deep Learning

Deep Learning

Supervised
Learning

Data Source

Localized
testing
platform
dataset

Lab batteries
under
different
loading
conditions

Accelerated
life test
platform
PRONOSTIA

Chungbuk
PV
distribution
data

California
ISO
curtailment
data, Edison
TOU plans

NASA and
CALCE
battery
datasets

Severson
124
batteries
dataset

INR 18650~
20R and
Panasonic
NCR18650PF
batteries
datasets

Solar, wind,
and battery
simulation
data

Methodology

Combined CNN for
spatial feature
extraction and
LSTM for time
series analysis

Deep Domain
Adaptation
Network with
domain adversarial
mechanism and
maximum mean
discrepancy

PCA for health
indicator
construction, EMD-
Kriging for RUL
prediction

RL-based optimal
scheduling model
using various
algorithms: A2C,
PPO, TD3, SAC

A policy-based DRL
approach for real-
time decisions
while considering
the stochastic
nature of RES.

Use of ISSA-LSTM
for accurate RUL
prediction based
on battery capacity
analysis

Evaluation of 7
ANN models with
Feature extraction
and
hyperparameter
optimization
Multi-variable data
was sent to CNN-
TCN and RNN
layers for temporal
and spatial feature
extraction to
estimate SOC

GA is used for
discharge-charge
cycle calculation
and battery health,
and TD-Lambda is
used for grid
dynamic
optimization.

Scale

PV energy
storage
system

Battery
energy
storage
system

hybrid

energy
storage
system

Building PV
energy
storage
system

Microgrid

Portable
energy
storage
system

Battery
energy
storage
system

Battery
management
system

Standalone
hybrid grid

Key Findings

0.31% RMSE,
0.18% MAE,
with minimal
deviation
during voltage
jumps

Average error
of 1.8% - 2.4%
for the target
battery

Accurate
prediction with
RMSE of 0.0425

The PPO model
was most
effective in
maximizing
self-sufficiency
and economic
profits
Outperformed
scenario-based
stochastic
optimization;
achieved 90%
profit accuracy

ISSA-LSTM
outperformed
with 0.0112
MAE and
0.0147 RMSE
for CS33
ResNet attains
10.7% MAPE
using 30% of
data as the
training

Over 45%
improvement
in estimation
accuracy with
KF integration

Enhanced
optimization of
load demand,
efficient
battery health
management,
and energy
pricing

Limitations

Focuses on a
specific type
of battery and
system
configuration

Limited to
similar battery
chemistries;
not
considering
battery aging.

Verified only
under
constant
operating
conditions

Data
limitations,
focusona
specific
residential
setting

Need for
extensive
training data,
potential for
overfitting

Specific to
datasets used

Complexity in
capturing
patterns from
extensive time
dependencies

Computational
Complexity,
Limited to
specific
battery
models and
dynamic
conditions
Scalability
limitations,
Generalization
of the Model

Further
Research
Exploration of
model
applicability to
different
battery types
and larger
systems
Exploring
model
mechanism for
transfer
learning in SoC
estimation

Adaptive RUL
prediction for
variable
conditions

Scale-up to
include
various
battery sizes
and regional
energy-sharing
communities
Enhancing
model
accuracy and
application in
larger grid
systems

Potential for
real-time RUL
prediction in
electric vehicle
batteries

Exploration of
additional
architectural
configurations
and cycle
windows
Optimization
of deep
learning
models and KF
for broader
battery types

Potential for
real-time
adaptation,
refining
optimization
techniques
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TABLE 4. (Continued.) S y of Al studies for energy storage in small scale power systems.
[117] Optimize Reinforcement = Microgrid DRL-based
energy Learning simulated framework with
storage data imitation learning
system pre-training to
operation reproduce a user-
and defined heuristic

maintenance

TABLE 5. Overview of assessment criterion for Al applications.

Al Acceleration Performance Indicators

Quantitative KPIs

Qualitative KPIs

Cost Effectiveness:
Evaluate the cost benefits
of Al-based solutions.

Innovation Level: Evaluate
the novelty or significant
improvement of the Al
methodology.

Evaluate the computational
requirements of Al
solutions.

b.  Demand Management: Practical Applicability:
Assess the effectiveness of Assess real-world
Al in reducing energy implementation or effective
demand. simulation.

c.  Prediction Accuracy: Scalability Potential:
Measure the improvement Examine the adaptability of
in algorithm forecasting Al findings to various
accuracy. operational scales

d.  Computational Simplicity: Operational Efficiency:

Evaluate the effectiveness of
Al in managing grid
operations.

User Comfort: Assess
whether Al outcomes
maintain user comfort
levels or not

Reliability in Residential
Settings: Assess Al
effectiveness in home
environments.

applying AAPIs in the development and assessment of
new Al-based energy platforms. This standardized approach
enables comparing varied Al algorithms, from traditional
algorithm-based systems to more advanced, innovative
applications such as deep neural network models. To pro-
vide context and demonstrate the potential application of
the AAPIs, the paper applies the framework to various
Al-driven studies in the realm of small-scale electric power
systems. As a demonstration, these KPIs are applied to
various studies to evaluate their accelerated performance for
different applications of electric power systems, as shown in
Table 6.

The quantitative assessment of the reviewed literature
highlights distinct trajectories in the application of Al across
various domains of small-scale electric power systems.
Regarding energy generation and energy storage, Al plays
a significant role in grid management and operations,
energy consumption, and demand response with respect to
optimizing renewable energy production in smart grids and
managing energy flexibility for demand response and other
processes. The advancement in Al technologies, especially
deep learning, makes the prediction accuracy more accurate
but at the cost of higher computational demand and complex
ML algorithms. The assessment of demand management
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Microgrid 15% increase in = Real-world More accurate
profit, reduced data ESS
ESS application, degradation
replacements Large modeling,
computational = extension to
effort islanded
microgrids,

indicates enhanced Al capability in managing energy demand
by improving load forecasting and performing complex oper-
ational decisions by executing real-time analytics to modulate
energy supply in correspondence with consumption patterns.
However, energy generation and energy storage register a less
pronounced engagement with Al for demand management,
implying that current research has not fully exploited
the potential of Al in this regard. Fig. 2 demonstrates
the comparative performance of key indicators by scoring
Al-based reviewed articles in various application areas — such
as energy storage, grid management and operations, energy
generation, and energy consumption and demand response
against the quantitative KPIs of cost-effectiveness, demand
management, prediction accuracy, computational simplicity,
and user comfort to highlight emerging research trends.

The qualitative assessment of the reviewed articles pro-
vides information about the advancement and maturity
of Al-accelerated solutions within diverse domains of
small-scale electric power systems. In the case of energy
storage, Al applications are mainly in the evolving phase
as methods are being developed for more accurate battery
RUL and SOC predictions. In the same way, Al applications
seem more established for grid management and operations
due to the proven effectiveness of reinforcement learning in
optimizing the decision-making process of integrating and
maximizing the use of renewables in microgrids and virtual
power plants. Similarly, the higher innovation level in the
case of energy consumption and demand response indicates
real-world implementation of most of the AI applications
in forecasting demand, optimizing energy consumption,
and scheduling controllable appliances with more research
focused on improving the already developed solutions for
better grid operational efficiency. The scalability potential for
energy generation shows the dynamic phase of Al solutions,
such as federated and transfer learning, in improving
renewable energy generation and predicting the maintenance
of generation equipment while delving into expanding the
impact of Al in larger systems. Fig. 3 highlights the
qualitative spectrum of small-scale electric power systems
across multiple operational domains ranging from established
practices to emerging innovations within energy storage,
grid management and operations, energy consumption, and
energy generation.

Similarly, the research trends are more oriented towards
microgrids with household-level energy management to
address various objectives related to renewable energy
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TABLE 6. Demonstration of the use of KPIs in ing the perfor e of Al-driven research in electric power systems.
Application Article Quantitative KPIs Qualitative KPIs
Area a b c d e a b c d e
Energy [92] * * Evolving Emerging Emerging Evolving Evolving
Generation [118] * * Established | Established | Established | Emerging | Established
Energy [58] * * * Established Evolving Established Emerging Established
Consumption
and Demand [119] * * * Evolving Emerging Evolving Emerging Evolving
Response
Grid [70] * Evolving Evolving Established | Established Evolving
Management . . . . .
and Operations [120] * * * * Evolving Established Evolving Established | Established
[112] * * * * Established Emerging Emerging Established Evolving
Energy Storage . . . . .
[121] * * Emerging Evolving Emerging Emerging Evolving
Cost Effectiveness Cost Effectiveness
User Comfort Demand Management User Comfort Demand Management

Computational Simplicity Prediction Accuracy

—— Energy Storage
—— Grid Management and Operations

Computational Simplicity Prediction Accuracy

— Energy Generation
—— Energy Consumption and Demand Response

FIGURE 2. Comparative radar charts illustrating the performance of reviewed articles across key quantitative indicators for small-scale

electric power systems.
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FIGURE 3. Qualitative analysis of Al application across different domains in small-scale electric power systems.

optimization, energy efficiency, and load forecasting.
Microgrids-related studies represent 29.4% of the literature,
while smart grids and VPPs account for 14.7% and 8.8%,
respectively, thus pointing towards a trend of decentralized,
consumer-focused energy solutions. Compared to building-
level studies, which comprise 13.3% of the studies,
household-level studies make up 26.5% of the research,
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indicating the significant emphasis on Al in the residential
sector.

Al applications show promising results in several
small-scale power system domains. However, based on
AAPI analysis, certain application limitations and areas
require further research to fully exploit AI's potential in
this sector. Many Al applications are data-dependent and
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are confined to specific scenarios. For instance, studies
using federated learning or interactive learning require
large, diversified datasets for training and validation that
impact the performance and generalizability of Al models
to different environments, operational conditions, and grid
configurations. Most of the studies focus on the specific area
of energy management systems, such as only consideration
of shiftable appliances while lacking integration of thermal
models with HVAC control systems, which hinders practical
applicability. Computational complexity, data synchroniza-
tion, and resource demands of advanced Al systems pose
significant challenges to scalability and real-time application.
Al applications in power systems also pose security and
privacy concerns, such as vulnerability to eavesdropping
attacks and [oT integration in microgrids that affect reliability
in the residential sector. In the case of energy storage,
Al-based battery energy storage system shows limited
focus on different battery chemistries and aging factors.
By incorporating a broader range of datasets, enhancing the
processing capability of Al models in dynamic environments,
implementing robust security protocols, and exploring
unified Al models that can adapt to various power system
scenarios related to energy storage and grid management will
significantly contribute to the user-centric and feasible Al
solution in small-scale electric power systems.

V. CONCLUSION

Small-scale electric power systems have been instrumental in
enhancing energy resilience and sustainability. These systems
allow for a more flexible and efficient energy management
approach, facilitating the local generation, storage, and
distribution of energy, thereby mitigating the challenges
associated with the integration of renewables. This review
paper presents an extensive analysis of Al applications within
these systems, highlighting the transformative role Al plays
across various aspects of energy generation, storage, and
consumption, offering a unique perspective on the future
trajectory of Al in enhancing the efficiency and reliability of
small-scale electric power systems.

Firstly, a brief overview of small-scale electric power
systems’ evolution is presented. Subsequently, the review
explores their key role in enhancing the resilience and
efficiency of modern energy distribution. A detailed analysis
of Al across various domains of power systems is presented,
from optimizing energy consumption and demand response
through smart load management and dynamic pricing to
enhancing grid operations with real-time anomaly detection
and predictive maintenance. The discussion converges on
the AAPIs framework, representing an initial step towards
establishing a standardized evaluative framework for Al
applications in small-scale electric power systems. This
framework incorporates both quantitative and qualitative
KPIs, such as cost-effectiveness, prediction accuracy, and
innovation level, providing a comprehensive metric for
assessing Al technologies. The AAPIs framework reveals
significant research trends, with 70% of studies focusing
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on computational simplicity and only 10% considering
user comfort in energy storage methodologies. Conversely,
research related to grid management and operations has
shown a robust interest in prediction accuracy and demand
management, with 80% of articles emphasizing these aspects.
Qualitatively, innovation in energy generation has emerged
as a critical area with approximately 60% of research
marked as ‘Emerging’, indicating a promising frontier for
future research. The AAPIs framework serves not only as a
benchmarking tool for current research performance but also
guides future Al applications toward achieving user-centric
and economically viable solutions.
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POWER SYSTEMS

Grid-scale BESS can be utilised for many different purposes in

ROLES OF GRID-SCALE BESS IN

Freddy Plaum"™ | Tobias Haring"”> | Imre Drovtar"

| Argo Rosin™?

Abstract

Grid stability can be affected by the large-scale utilisation of renewable energy sources
because there are fluctuations in generation and load. These issues can be effectively
addressed by grid-scale battery energy storage systems (BESS), which can respond quickly
and provide high energy density. Different roles of grid-scale BESS in power systems are
addressed, following optimal operation approaches classification. Furthermore, inte-
grating BESSs into distribution grids is discussed to manage challenges from distributed
generation. BESSs aid in voltage control, enhance frequency regulation, and offer black-
start services. Aggregating distributed BESSs can provide ancillary services and improve
grid economics. For consumers, BESSs optimise energy costs, enhance reliability, and
support self-consumption from renewables. Novel BESS services include congestion
relief, system adequacy, and power quality enhancement. Moreover, the ancillary services
provided in different European countries through BESS are analysed. Finally, a case study
was conducted among three Baltic DSOs to analyse the required amendments to Grid
Codes and Electricity Market Acts for the integration of grid scale BESS.

KEYWORDS
energy storage, power distribution control

1.1 | Grid reliability and power quality
impact
1.1.1 | Ancillary service provision

electricity systems. At its core, BESS provides means to store
clectrical energy for later usage; large grid-scale storage can
have a substantial impact on grid performance. This energy
could be used to improve the grid reliability and power quality
by providing ancillary services such as frequency regulation.
Additionally, BESS can provide virtual inertia, which will
become especially relevant in future largely RES-dominated
grids. The stored energy can be used even out the daily po-
wer curve by reducing the peak power. Furthermore, it can
enable renewable integration in current grids and postpone
grid reinforcement that will inevitably be needed. In this sec-
tion these roles have been studied further.

Ancillary services are supportive services that enable the
transmission of electrical power from generation to con-
sumption by ensuring that the grid parameters are kept in safe
viable ranges. The term ancillary service can refer to a variety
of different services but from the perspective of grid-scale
BESS what ate interesting and what are currently widely be-
ing researched are the frequency regulation, voltage regulation,
and black start services.

The ancillary service market designs and product de-
scriptions vary from country to country as illustrated by the
ancillary services procurement and electricity balancing market
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design survey [1] conducted by the European Network of
Transmission System Operators for Electricity (ENSTO-E).
These discrepancies could stem from the historic development
of ancillary service markets or the generation mix of these
nations. However, the EU has moved towards harmonising the
ancillary service markets with the energy balancing guideline
regulation [2|, which entails that at one point all of the EU
member states should start to provide three balancing reserve
products: namely the automatic Frequency Restoration Reserve
(aFRR), manual Frequency Restoration Reserve (mFRR), that
is, secondary and tertiary reserves respectively, and Replace-
ment Reserve (RR). The provision of the primary reserve, that
is, the Frequency Containment Reserve (FCR), has not been
made mandatory; despite that many nations across Europe are
voluntarily implementing it. An illustration of different fre-
quency reserve products is given in Figure 1.

The purpose of the primary control reserve, that is, FCR
service is to be the first response to the sudden occurrence of
imbalance. Assets that provide FCR activate automatically
within 30 s in the entire synchronous are. The activation signal
for FCR does not come from the TSO, rather it is based on the
continuous measurements of the grid frequency. Adjustments
to the production and consumption of FCR providing assets
are done proportionally to the grid frequency deviation from
the norm. If the frequency deviation persists then the aFRR is
subsequently activated [3].

The secondary reserve, that is, the aFRR service will begin
to replace the FCR gradually 30 s after the imbalance occurs
and reaches the full activation within 5 min. If the grid
imbalance persists after 12.5 min of occurring then the mFRR
service, that is, the tertiary reserve, starts gradually activating
reaching the full activation at the 15-min mark and has a
minimum delivery period of 5 min [3].

The last source of reserves, that is, the replacement reserve
(RR) uses generators with longer start-up time to either
complement the previous reserves or to release them back into
their state of readiness. The RR has to reach full activation
within 30 min of the disturbance and has a minimum delivery
period of 15 min [3]. An alternative could be to instead use
large grid-scale BESS. Battery storage can be a good alternative

w
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A —FCR — aFRR — mFRR|— RR
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FIGURE 1 [Illustration of frequency reserve product activations based
on ENTSO-E grid codes.

due to its fast reaction speed, and environmental friendliness
when used in combination with RES.

From the experience of the operation of Zurich 1T MW
BESS that is used for FCR, peak shaving, and islanded oper-
ation; the main challenge for the provision of FCR is the
management of the state of the charge (SOC) shifting, which is
complicated by the internal losses of the battery and the acti-
vation signals that are generally not zero-mean [4]. The relation
between the required energy capacity with respect to power
capacity was found to be around 220 kWh per MW for FCR
provision [5]. The effectiveness of BESS to provide ancillary
services is investigated within the PRESTO (Primary REgu-
lation of STOrage) research project [6], in particular by man-
aging the storage SOC with variable droop control.

The profitability of grid-scale battery systems for purposes
of Primary Containment Reserve (PCR), peak-shaving (PS),
and Enhanced Frequency Response (EFR) was analysed in Ref.
[7]. It was found that EFR purpose has the highest profitability
of the three; however, combining EFR and PS applications
improves the profitability even further.

Grid-scale BESS usage for FCR in a low inertia grid using
grid-forming and grid-following methods was investigated in
Ref. [8]. It was found that large-scale BESS can significantly
improve system frequency containment, especially in the grid-
forming converter control mode. Future smart grids will also
inevitably encompass smaller distributed battery systems. The
authors of Ref. [9] combined smaller BESS, RES, and flexible
loads to create one large virtual energy storage system (VESS)
for the purpose of voltage regulation. An overview of ancillary
service provision with different types of ESS including BESS is
given in Ref. [10], where it was found that the overall
deployment cost of microgrids is reduced with the utilisation
of ESS for ancillary services.

1.1.2 | Virtual inertia emulation
With the increasing RES penetration, the conventional syn-
chronous generation is starting to be phased out. The future
grids will undoubtedly have more converter interfaced gener-
ation which will result in the reduction of grid inertia. The grid
needs to have an adequate level of inertia to maintain a stable
grid voltage and frequency. With a low level of inertia, the
imbalance between the generation and consumption will start
to negatively affect the grid parameters much sooner than in
the case with higher levels of inertia. Ensuring an acceptable
balance will be even more difficult on a smaller microgrid scale.
One novel technique to increase the grid inertia would be to
perform virtual inertia emulation with large grid-scale BESS.
Virtual inertia emulation works by imitating the inertial
response of traditional synchronous generators (SG). The
implementation of virtual inertia is based on the swing
equation of SG that is incorporated into the inverter control
so that the typical inertia less inverter could emulate the
inertial characteristics of SG. It is considered “virtual” since
the inertia is emulated without the utilisation of any rotating
mass [11].
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In general, the implementation models of virtual inertia
emulation can be divided into three main categories [12].

o Synchronous generator model is based on operating in-
verters as synchronverters, that is, as inverters with similar
dynamics to SG [13]. This is achieved by detailed modelling
of electrical and mechanical parts of SG. Integration of this
model into solar and wind production is explored in Ref.
[14] and for a battery system in Ref. [15].

o Swing equation-based is based on operating inverters with
only the swing equation of SG rather than modelling the
entire electrical and mechanical parts. This method works by
measuring the grid frequency and the active power output of
the inverter. One well-known method for this is the Ise
Lab's topology [16].

o Frequency-power response is based on the idea of emulating
the ability of SG to respond to frequency changes. This
approach is considered as one of the simplest methods of
providing virtual inertia since it does not involve a detailed
SG model. One well-known method in this category is the
virtual synchronous generator (VSG) [17]. The main
shortcoming of this method is that if the converter has to
operate as a grid forming unit in islanded mode then it can't
provide virtual inertia at the same time.

The impact of different levels of minimum inertia con-
straints with two decarbonisation scenarios was investigated in
Ref. [18]. The authors concluded that setting minimum inertia
levels may be useful during the transition phase to higher RES
penetration levels, however, if not replaced in a timely manner
they might end up impeding emission goals. Virtual inertia was
used to suppress voltage fluctuations using a BESS in a DC
microgrid with a large share of renewables in Ref. [19]. Optimal
BESS sizing for virtual inertia emulation in islanded microgrid
operation scenario was performed in Ref. [20]. The authors of
Ref. [21] concluded that the problems of inertia and frequency
stability of power systems with large-scale renewable genera-
tion could be addressed with wind turbine emulated inertia,
integration of energy storage systems, and involving smart
controllable appliances of prosumers.

1.1.3 | Peak power reduction
Peak power reduction, that is, peak-shaving entails a power
reduction from the grid during morning and evening peak
periods of consumption. During this period the power is
supplied by a large energy storage system such as a BESS. The
energy stored in the BESS is consumed during off-peak pe-
riods when the consumption is lower; at night time or during
the daytime when the PV production is highest. With
increasing renewable production, it will be crucial to have an
adequate level of storage to shift the overproduced energy to
mornings and evenings.

Compared to frequency regulation, which is a short-term
power-intensive application, peak shaving is a more long-
term energy-intensive application. Usually, the peak shaving

process needs to be performed for the duration of 1-10 h [22],
highlighting the need for large grid-scale energy storage. The
main objective of reducing peak power is to alleviate the issues
surrounding grid over-loading, reduce the ramp rate during
peak consumption, and postpone the need for grid infra-
structure reinforcement [23].

An overview of existing peak shaving implementation
strategies and challenges based on energy storage systems
(ESS), electric vehicles (EV), and demand-side management
(DSM) has been given in Ref. [24]. It was found that challenges
surrounding EVs are their availability, aggregated control, and
lack of large-scale deployment. The challenges with EVs are
regarding the customer willingness, presence of proper ICT
infrastructure and the overall complexity of the system.
Nevertheless, implementing peak shaving using BESS faces
challenges of scheduling the optimum operation, optimal
sizing, and high capital and maintenance costs.

A decision-tree-based peak shaving algorithm has been
developed in Ref. [25] to mitigate peak demand complications
in an islanded microgrid with a grid-scale BESS resulting in
cost-savings from economic arbitrage, postponed system up-
grades, reduced fuel consumption, losses, and carbon emis-
sions. The authors expanded this research for a PV-BESS
hybrid system in Ref. [26].

Currently, peak shaving using battery storage might be too
expensive of an option, especially in places that are suitable for
other large-scale storage systems such as pumped hydro or
compressed air storage. However, BESS could be considered
as an option in locations that lack the specific geographical
features needed for those storage types [27, 28].

1.2 | Renewable enetrgy integration

The ever-increasing renewable penetration has introduced
challenges from the power system side that mainly stem from
the intermittency and the variability of RES. These challenges
have led to a growing need for grid-scale storage. The
following BESS applications can further facilitate the integra-
tion of renewable energy [29]:

RES energy shifting addresses the intermittency of RES.
This is because the most prominent renewable sources such as
wind and PV are intermediate by nature and thus might pro-
duce at times when not needed or vice-versa. RES energy
shifting entails incorporating BESS into the existing power
system to store the surplus renewable energy. This can be
especially relevant in PV-dominated grids that have high pro-
duction peak during the daytime which might result in an
overproduction that would otherwise be curtailed as illustrated
in Figure 2.

RES wvariability smoothing tackles the variability of RES.
Traditionally, renewable energy sources are considered non-
dispatchable, meaning that their power output cannot be
controlled by the operators dynamically. Although modern
control rooms dispatch wind, this is more just limiting their
output rather than balancing dispatch. Solar and wind power
plants produce energy when the sun shines or when the wind
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FIGURE 2 Daily excess RES energy shifting.
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FIGURE 3 Short-term RES variabilitsy smoothing,

blows, but neither of those is guaranteed to be constant. Due
to the stochastic nature of renewable sources, there is a need
for short-term power smoothing that reduces the sharp
ramping changes as shown in Figure 3. The sharp ramping
rates are especially troublesome in the case when RES has a
large contribution to the generation mix. Power smoothing
requires far less energy storage than load shifting [29]; how-
ever, since it is a continuous process that is accompanied by
frequent charging and discharging it results in faster degrada-
tion of BESS. A literature review of control strategies for wind
power output smoothing with BESS has been given in Ref.
[30]. A bibliomettic review of articles related to renewable
energy integration with BESS has been given in Ref. [31].

1.3 | Environmental impact
The applications of grid-scale BESS can have a positive effect
on the environment. As discussed beforehand, grid-scale BESS
can facilitate the integration of more renewable energy into the
generation mix which would increase consumption of more
environmentally friendly sustainable energy, while at the same
time, the traditional generation would be phased out. The au-
thors of Ref. [32] investigated the potential of grid-scale battery
systems to replace combined cycle gas turbine (CCGT) plants
in responding to variable peak demand in the UK. It was found
in the future projection of 2035 that in the UK around
5.5 TWh of battery storage would be needed to replace the
energy that would otherwise come from CCGT plants.
Utilising grid-scale BESS for the purpose of grid reliability
and power quality can also have a positive impact on the
environment by replacing the traditional fast-reacting peaking
plants that are usually based on fossil fuels. An example of this

would be the work of the authors of Ref. [33], who replaced
diesel generators in a university campus microgrid with an
unreliable grid power supply with a PV-BESS hybrid system
that reduced peak-hour energy purchases from the grid
significantly by phasing out diesel generators almost entirely.
The authors also concluded that the transition to a PV-BESS
hybrid system yielded substantial annual savings and calcu-
lated the payback petiod to be around 6 years.

Nevertheless, when dealing with large grid-scale battery
systems the environmental impact of their production, trans-
portation, and recycling needs to be accounted for. Other grid-
scale storage types such as pumped hydro and compressed gas
storage have comparably trivial environmental and health im-
pacts [34] since they don't require the mining, refining, and
recycling of potentially hazardous elements. A review of life
cycle assessment (LCA) studies was conducted in Ref. [35]
which found that producing 1 Wh of storage capacity is across
all battery chemistries on average associated with a cumulative
energy demand of 328 Wh and greenhouse gas emissions of
110 gCOzeq. The potential end-of-life options for batteries
could include reuse or repurposing for a “second life”, recy-
cling to recover materials, and disposal [36]. Presently less than
3% of lithium-ion batteries are recycled [37], however in the
near future the increased demand coupled with restricted ac-
cess to virgin materials is hoped to increase the recycling rate.

2 | OPTIMAL GRID-SCALE BESS
OPERATION APPROACHES

The charging and discharging behaviour of BESS can be
implemented with different approaches. Independent of the
BESS size, small, medium or grid-sized, three basic operation
approach categories need to be considered to determine the
optimal method. The first category is conventional operation
approaches that is based on traditional control methods, like
droop control [36]. The second category is based on heuristic
operation methods [37, 38]. These methods do not claim to be
perfect, optimal or even rational. Instead, they try to present a
practical and satisfactory solution for complex systems, like
techno-economic optimisations [39]. The third category is
meta heuristic approaches. Which is based on general appli-
cable optimisation algorithms that might be tailored to the
problem that needs to be solved, like particle swarm optimi-
sation [40]. These three categories are discussed in more detail
in the following subchapters.

2.1 | Conventional
Conventional operation approaches for grid-scale BESS are
presented in several publications. These methods are often
focused on basic control strategies to provide ancillary services.
The comparison of different presented operation approaches is
shown in Table 1.

The comparison shows that all the provided publications
aim to provide ancillary services, especially primary reserve,
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TABLE 1 Comparison of conventional operation approaches.
Position LV, RES DR
Publication Method Power/Capacity MV, HV Cell technology integration integration Geo location Services
[36] Droop control ~ — MV - + - Milan, Italy Ancillary
(primary reserve)
[41] Droop control 5 MW, 5 MWh - Li-ion - - Germany Ancillary
(primary reserve)
[42] Droop control 16 MWh - - - - Baja California Ancillary
Sur, Mexico (primary reserve)
[43] Droop control 200 MW, - - - - United Kingdom  Ancillary
100 MWh (primary
& secondary
reserve)
[44] Droop control 10 MW - Li-ion - - Northern Ireland  Ancillary (primary
reserve)
[45] Model predictive 20 MW, 80 MWh  — - + + - Ancillary
control (primary reserve);
operation cost
reduction (real
time price)
[46] Droop control 225 MW, HV Lithium- - - Europe Ancillary (primary
175 MWh Titanate- reserve,
Oxide restoration)
Note: + = considered/integrated; — = not mentioned/integrated.

with the conventional operation approaches for grid-scale
BESS. Since this is directly related to frequency control,
nearly all proposed methods are based on droop control ap-
proaches. As expected for grid-scale BESS, the power and
capacity considered are in the MW/MWh range. Unfortu-
nately, it is often not mentioned, on which voltage level the
BESS is connected, but the two mentioned levels are medium-
and high voltage levels. The popular battery cell technology is
lithium-ion based. Eight of the 9 publications use simulations,
whereas only 1 publication presents an experimental setup for
research. Due to the droop control implemented in most of the
publications, renewable energy sources and demand response
are not directly integrated into most of the conventional bat-
tery operation approaches.

Apart from this scientific literature which is based mostly
on simulations as the comparison shows, there are multiple
TSOs and DSOs that started implementing large battery
storage into their grids. Of course, based on the TSOs and
DSOs main interests, these systems are controlled by con-
ventional algorithms, like droop control, to provide ancillary
services to the grid and improve the power quality this way.
Examples for those implementations wotldwide would be in
USA [47], United Kingdom [48], Australia [49], Denmark [50],
or Germany [51, 52].

2.2 | Heuristic

The most popular operation approaches for grid-scale BESS
are heuristic methods. There is a wide range of publications
that present different heuristic approaches to build a

coordination framework not only for battery storage but often
in combination with larger renewable generation sites. A
comparison of different presented heuristic operation methods
is shown in Table 2.

In heuristic operation approaches for grid-scale BESS,
there are often multiple objectives that are considered. These
include not just ancillary services but also economic, envi-
ronmental and local power quality focused goals. For these
goals, there are different approaches presented in every pub-
lication. These reach from energy market based control de-
cisions to combinations with conventional approaches and
prediction based models. Unfortunately, for some of these
articles the grid scale BESS start at medium capacities, like
20 kWh, but most of them consider the MWh-range as ex-
pected. Like with the conventional methods, the preferred
battery cell type is lithium-ion based. Due to the multi-
objective orientation of these operation strategies, there is a
direct integration of renewable energy sources and/or demand
response into most of these control methods. Like the con-
ventional methods, these operation strategies are simulation
based as well.

2.3 | Meta heuristic

There are many publications that present different meta heu-
ristic operation approaches for BESS, such as particle swarm
optimisation [40] or discrete-time-gradient optimisations [59].
However, most of these publications present operation ap-
proaches in the framework of small or medium microgrids. In
the context of grid-scale BESS the number of available
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publications is reduced to a few relevant ones. A comparison
of the presented approaches is shown in Table 3.

As mentioned before, the number of meta heuristic oper-
ation approaches for grid-scale BESS is more limited than the
other approaches. The presented methods implement a general
optimisation technique in the control strategy, namely particle
swarm-, discrete-time-gradient- and generic optimisation al-
gorithms. However, the capacity considerations for those
methods seem to be set between medium and grid-scale level.
This is also shown in the presented voltage level connection.
Many publications show smaller sized BESS of less than
100 kW with meta-heuristic operation approaches. This
indicates a higher popularity of these methods on microgrid-
scale to primarily achieve an optimised operation for a pri-
vate investor or customer rather than the DSO or TSO. As
with the two previously discussed methods, lithium-ion cell
technology is preferred as well as simulations instead of
experimental setups. All methods integrate only renewable
energy production and do not consider demand response
methods. The focus of these publications is, as expected for
medium scale BESS, on microgrid services, like increased self-
consumption and operation cost reduction. Ancillary services
are not considered at all.

In summary, the three different operation approach cate-
gories are oriented at specific goals. While conventional ap-
proaches are focussing on ancillary service provision, heuristic
and meta heuristic approaches are tailored to provide
maximum cost reductions with multiple objectives. Based on
that, it can be concluded that heuristic and meta heuristic grid-
scale BESS control is most suitable for private investors, as
their goal is cost saving and quick return-of-investment. For
TSOs and DSOs, conventional control methods are the
best fit, as their primary goals are grid stabilisation, reliability,
and power supply security. This is confirmed by the examples
of practical implementations of TSOs and DSOs with grid-

scale BESS which are all based on conventional operation
methods.

3 | PARTICIPATION OF GRID-SCALE
BESS GRID SERVICES TO OVERCOME
POWER QUALITY ISSUES

All electrical devices require the voltage level to remain within
a certain magnitude and parameters. The required voltage
levels and parameters are determined with European Standard
EN 50160 [68]. The standard defines, describes, and specifies
the voltage regarding its frequency, magnitude, waveform, and
symmetry of the line voltages and is addressed as power quality
in the professional literature. Voltage related power quality
events (power surges, sags, transients, momentary inter-
ruptions, etc) are usually caused by external events that is,
weather (high winds, lightning), starting and stopping heavy
equipment (motors driving mechanical processes, utility
switching), circuit overloading or system failures (short circuits,
fault clearings, wrong dimensioning of system). If previously
most of the power quality issues could be omitted to con-
sumers and power electronics driven non-linear loads [69-72],
then in the past years, growing concerns regarding the clec-
tricity consumption and production's impact on the environ-
ment have introduced a new set of sources for power quality
issues — low carbon technology. The European Green Deal
[73], The 2030 Climate and Energy Framework [74], and the
2050 long-term strategy [75], have the aim of the EU to
become climate-neutral by 2050. To accomplish this, govern-
ments are creating different incentives for energy end-users
and producers to invest in low carbon technologies, that is,
photovoltaics (PV), wind energy (WE), electric vehicles (EV),
battery energy storage systems (BESS), and similar. As the load
demand keeps growing and the integration of stochastic

TABLE 3 Comparison of meta heuristic operation approaches.
Position LV,  Cell RES DR Geo

Publication Method Power/Capacity MV, HV technology integration integration location Services

[40] Particle swarm 110 kW LV Li-ion + - - Increased self-
optimised consumption
fuzzy control

[59] Multi-timescale >100 MW - - + - - Operation cost
and discrete- reduction (day-
time-gradient ahead & 15 min);
optimisation balance RES &

load

[60] Genetic algotithm 200 kWh-700 kWh MV Li-ion + - - Operation cost

reduction (day-
ahead)

[61-67] Genetic algorithm, <100 kW (LV) - + +/= - Increased self-
artificial bee consumption,
colony, grey wolf, operation cost
particle swarm, reduction
wild horse;

Note: + = considered/integrated; — = not mentioned/integrated.
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generation increases, new challenges arise in the power system
operations.

3.1 | Power quality issues caused by
stochastic loads and generation

Although renewable electricity generation from weather-
influenced sources introduces uncertainties on the generation
side, the load side can introduce similar uncertainties due to
market price-driven demand-side management actions. Coin-
ciding stochastic events on both the generation and con-
sumption can lead to voltage and frequency events as described
in Refs. [76, 77]. Another issue that might arise in power sys-
tems with high penetration of renewable generation is the
increased need for ancillary services to mitigate the possible
stochastic generation down curtailment and the corresponding
loss of energy, as discussed in Refs. [78, 79].

3.1.1 | Stochastic loads

Authors in Ref. [80] prove with numerical simulations that the
stochastic nature of the load can suddenly make the system
lose its voltage stability. According to Ref. [81], residential
loads are subjected to variations that are biased with the
household's inhabitant's lifestyle. The latter can help classify
household loads according to its inhabitant's lifestyles and level
out specific stochastic characteristics, but eventually, a certain
amount of unpredictable variability remains. Furthermore, with
the increasing share of renewable electricity generation assets
and deregulated operation of the energy markets, novel ser-
vices (i.e., demand-side management) introduce yet another
level of variability to the load that is hard to forecast to a
certain magnitude. Economics-based shifting of loads can
accumulate unwanted power quality parameters to limited pe-
riods where otherwise evenly distributed power quality phe-
nomenon is magnified to an unaccepted level, putting
additional strain on the distribution network. Most electricity
consumers with integrated renewable energy sources are con-
nected to the low-voltage distribution system. This system
already includes a high number of single-phase loads, and
together with the distributed generators (DG), they could
cause unwanted effects in distribution networks, as discussed
in Ref. [82].

The majority of residential electricity consumers are single-
phase loads and together with uneven loading of the phases
causes an existing voltage to unbalance phenomenon in the
distribution grid. Single-phase PV-s, residential battery energy
storages, and home electric vehicle charging stations could
further increase the voltage unbalance in the network. Ac-
cording to scientific literature [82, 83|, voltage unbalance
causes issues with induction motors as it raises the tempera-
ture, increases losses, and lowers their efficiencies. Additionally,
the voltage unbalance is often accompanied by negative
sequence voltage that causes negative sequence current, which
does not do any useful work and contributes to energy losses

and decreased transmission capacity in the distribution lines.
From the perspective of the load, the most important factors
are the load power variation speed and its magnitude, as
described in Ref. [76]. Such variations, for example, could be
introduced by plug-in electric vehicles [84, 85], as every
different car plugged in for charging could introduce different
load profiles depending on the manufacturer, battery capacity,
charging technology, the initial state of charge, ambient tem-
perature, etc.

According to numerous tests carried out on 68 different
EV models in Refs. [86, 87] the charging capacity amongst
different EVs can remain between 27 and 205 kW (average
92 kW), whilst the duration remains between 18 and 51 min
(average 32). It should be noted that the charging experi-
ments were carried out in public fast-charging facilities,
meaning that such large variability in duration and capacity is
stochastic and could occur in the system any time of the
day. Although the energy consumption remains relatively
stable (47 kWh on average), the load variation speed and
magnitude can change significantly. According to the Inter-
national Energy Agency's report [88], the global electric
vehicle market has doubled roughly every 2 years. With the
rapid changes imposed by stochastic charging activities, such
a trend inevitably increases the difficulty of keeping an
acceptable voltage profile in the distribution systems [89].
Fast-changing loads with high magnitudes could cause over-
and under voltage events since the dedicated system ele-
ments (i.e., transformer on-line tap changers or reactive
power support devices) have an unavoidable delay in
adjusting to the new system state. The growing number of
electric vehicles and home chargers contribute to the voltage
drop and the total harmonic distortion (THD) that could
exceed the set boundaries by standards in the low voltage
distribution netwotks as discussed in Refs. [82, 90]. Addi-
tional THD sources are power-electronic devices that are
widely used in home appliances for example, TV sets, per-
sonal computers, compact fluorescent lamps, LED lamps,
and similar. The concurring harmonics increase losses
(similarly to the negative current components) and deterio-
rate equipment life span due to additional heat dissipation
[91]. The large increasing share of power-electronic driven
clectric vehicle home chargers and time shifting of loads
could eventually lead to a situation where the THD of the
low voltage distribution network exceeds the safe and rec-
ommended operational values. A study [91] showed that
when electric vehicle penetration reaches 70% (with three-
phase rectifier chargers), the fifth order harmonic level in
the distribution network is doubled. Another study [92]
indicated that low voltage distribution networks could have
issues with transformer capacities and low voltage line
thermal ratings when the electric vehicle penetration in the
grid reaches 40%.

With the paradigm shift currently occurring in the power
industry, it is essential to develop the energy demand and
supply domain and manage and develop the control and
hardware of the physical system. Without the integrated
approach, considerable challenges hinder reaching the climate
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neutrality target. In future distribution grids, the following five
aspects need to be addressed regarding the impact of stochastic
loads on power quality:

. The capacity of transmission/distribution equipment
. Harmonic distortion

[SSRN R

. Voltage unbalance
. Overvoltage
. Undervoltage

SIS

3.1.2 | Stochastic generation

Mainly two factors pose challenges for grid integration of
renewable systems: the variability and the decentralisation of
energy generation. For example, the variability of solar power
occurs in two stages: the first stage is variability over day and
night, the second stage is due to solar irradiation fluctuations
caused by intermittency of clouds. Similar variability can be
omitted also to wind power as described in Refs. [76, 92, 93].
The reliability of the electrical grid is endangered by the high
penetration of such volatile energy sources, causing problems
in balancing supply and demand, voltage instability and power
quality [94]. Decentralised energy generation mitigates prob-
lems in transmission grids, for example, reduced line losses, but
can induce new problems in distribution grids, such as over-
voltages, and requires new operation strategies [95]. Another
aspect to consider is that traditionally the low voltage distri-
bution grids have been unidirectional regarding power flows —
usually towards the loads. As the distribution networks were
initially designed to serve loads, the high penetration of local
renewable energy production can lead to network congestions
as coinciding generation peaks tend to occur irrespective of the
residents' lifestyles.

Authors in Ref. [89] discuss that the stochastic nature of
weather dependant renewable energy sources pose challenges
for the currently used voltage management devices, that is,
online load tap changing (OLTC) transformers, voltage regu-
lators (VR), or shunt capacitors and reactors. While the
weather impacted generation can have sudden changes in po-
wer output in a matter of seconds, then the voltage regulating
devices tend to have longer reaction times due to their me-
chanical switching nature. From one side, this causes excessive
wear and tear on the voltage regulating devices resulting in a
shorter lifespan but, in worst cases, can lead to generation
curtailment or even switch off due to network protection al-
gorithms. In addition to sudden voltage changes, the high
penetration of distributed energy resources can also impact the
power quality on several levels [83]. Rapid voltage changes
might lead to varying light intensity, also perceived by the
human eye, known as flicker. Single-phased PV-s can lead to
and contribute to unallowed voltage unbalance. According to
Ref. [82], a high number of single-phase low carbon technol-
ogies (PVs and electric vehicles) can increase the voltage un-
balance in single nodes and the entire low voltage network.
The stochastic nature of the PV-s output can increase the
voltage unbalance fact in the distribution system during

specific periods of the day if compared to a system without
PV-s installed.

Since small-scale renewable energy sources are coupled to
the grid through power electronic devices, they tend to impact
the harmonic distortion in distribution systems. With the large-
scale integration of low carbon technology to our low voltage
distribution grids, it is becoming more challenging to satisfy the
required level of power quality [96]. In future distribution grids,
the following five aspects need to be addressed regarding the
impact of stochastic generation on power quality:

1. The capacity of transmission/distribution equipment
2. Harmonic distortion

3. Flicker

4. Voltage unbalance

5. Overvoltage

3.2 | Battery energy storage systems for
power system setvices

BESS-s are an important enabler for the integration of sto-
chastic and renewable generation installations not only on grid
level, but also near prosumers. BESS-s increase flexibility in
balancing supply and demand but can also increase safety,
reliability, and quality of distribution grids by performing
ancillary services for frequency stability, voltage stability and
availability of energy and power reserves for balancing. As
European Union is parallelly promoting the transition of the
traditional generation-centric ancillary services energy market
towards a market with an increased role also for prosumers
[97], participating in ancillary services provision could make
the investment in BESS-s economically more feasible [78] and
at the same also enhance the possibility and performance of
demand-side response.

BESS-s have the possibility to provide a variety of ancillary
services. More generic ancillary services today mainly focus on
voltage regulation [98—100] or frequency regulation [101-109].
The following table (Table 4) adopted from Ref. [110] and
modified according to ENTSO-E and European Union ter-
minology summatises the traditional ancillary services that
could be delivered with battery energy storages to different
target groups. The target group includes three main fields
of activities: system operators (also including transmission
system operators, distribution system operators and any other
operational forms, that could be present), utility companies
(mainly owners of assets, including generation, storage, lines,
etc.), and electricity consumers (residential, industrial, com-
mercial, etc.).

3.2.1 | BESS services for the TSOs and DSOs

Authors of Refs. [98, 99, 107] discussed advanced methods in
voltage control strategies to meet the challenges that arise due
to the large amount of distributed generation penetration into
the distribution grids. The idea of using BESS for voltage
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TABLE 4 Battery enabled traditional ancillary services, their definitions, target groups and coverage in scientific literature.

Service name Definition

Target group Papers

Load-frequency control
and regulation reserves
grid instabilities.

(Spinning) energy reserves

Mechanism used to restore the balance between load and generation within a

Generating capacity that is either online (spinning) and instantaneously

System operators [79, 101-109]

control area to maintain the power frequency in the desired range to avoid

System operators [78, 101-109]

available or available in the matter of minutes (usually <15 min) and can

provide output in response to contingency events (e.g., generation or

interconnection trip).

Voltage support and
regulation

Mechanism that ensures the voltage level in the power system is kept within
acceptable operations range and to avoid system wide incidents that is,

System operators [98-100]

voltage collapse, or inefficient operation conditions.

Black start capability

Energy cost optimisation
and selling it on-peak

Increased distributed
generation
self-consumption

In the event of total system failure that causes grid outage, the ability to bring
a regional part of the grid back online without external grid connection.

Also known as energy arbitrage or storing power purchased at off-peak times

Minimising the export of stochastic and distributed renewable generation

utilising it during high consumption periods.

System operators, [111-114]
utility companies,
clectricity

consumers

[78, 79, 94, 97,
115-120]

Utility companies,
clectricity

consumers

Electricity consumers

[100, 115-120]

produced electricity from a region during low consumption periods and

regulation lies in the controlled charging and discharging of the
BESS according to the operation of distributed generation and
the corresponding voltage level fluctuations in the distribution
system. Additionally, the authors of Ref. [100] bring out that
the integration of BESS into the voltage control strategy in
distribution systems could increase the life expectancy of on-
load tap changers and step voltage regulators that otherwise
would suffer from the increased workload and shorter lifespan
due to the additional work cycles caused by the distributed
generation.

Authors of Refs. [101, 104, 108] discuss the challenges
posing in utilising batteries for frequency regulation. A special
control system could also overcome the issues associated with
more frequent usage of BESS for frequency regulation that
increase the operating costs or decrease the battery lifetime.
The authors of Refs. [102, 103] on the other hand discuss and
validate the possibility to use distributed BESS-s to provide
FCR (or primary reserves, as usually referred to in specialised
literature) in Germany. The importance of the pilot project lies
in the fact it successfully demonstrated the possibility of a
distributed storage capacity successfully providing services that
were previously provided by large conventional power plants.
Authors of Ref. [105] discuss about the suitable dimensioning
of the BESS unit for FCR provision in wind dominated power
systems, Brogan et al in Ref. [106] analyse the minimum re-
quirements for BESS to participate in frequency control ac-
tivities and during a high and low rate of change of frequency
events. The author of Ref. [109] brings in yet another aspect
that BESSs could be suitable for that is, distributed control of
BESS to prevent under-frequency load shedding. All the pre-
viously mentioned papers bring out the challenges of large-
scale renewable energy penetration and the lack of ancillary
services from a conventional generation that is being actively

phased out due to the changing energy policy and increasing
share of renewables.

Additionally, BESS-s combined with weather impacted
generation could provide a viable alternative for black start
ancillary services that are currently provided with conventional
generation units. Authors in Ref. [111] discuss the possibility to
combine wind power plants with energy storage systems to
provide black-start power. If traditionally the black-start power
is provided with thermal, nuclear, or hydropower, then the
instability of the output of the wind power plant is one reason
that these assets are seldom used as a black-start power
resource. The paper proposes a method of energy storage
configuration to enable this possibility with wind power plants.
Similarly, to wind power plants also PV-s is neglected when
discussing black-start capability. Authors in Ref. [112] discuss
the challenges to combine BESS-s with PV installations to
provide black-start capability. The key challenge is caused by
the random output of the PV installation and high variability of
power and energy during black-start events that could lead to
cither over-charging or over-discharging of the BESS. With
suitable control and optimisation algorithms, these issues can
be overcome and could provide a valuable alternative soutrce of
black-start capacity. Authors of Refs. [113, 114] discuss about
the possibility to use the BESS to provide black-start capability
for the distribution system with either a single unit or with a
multi-energy storage power system. Generally, all authors come
to the same conclusion that BESS-s are a universal asset that
can extend the black-start capability of a variety of technolo-
gies. More than that, in order to enhance power system resil-
ience, battery energy storage systems (BESS) play an integral
role in addressing power system events and outages. In these
scenatios, BESS operation involves rapid response to imbal-
ances in supply and demand, frequency deviations, and voltage
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m

fluctuations. To maintain grid stability during sudden load
changes or power outages, BESS can quickly inject or absorb
power. Backup power from BESS can ensure essential services
are maintained during longer outages. Having fast response
capabilities and flexibility, BESS can mitigate the impact of
power system disturbances, ensure uninterrupted power sup-
ply, and contribute to overall grid resilience.

In addition, the versatility of BESS cab be further increased
through the aggregation of distributed battery assets. This way
even the distributed BESS-s could be used to provide similar
services as large-scale bulk energy storage units, as discussed in
Ref. [121]. The aggregation of distributed BESS assets in dis-
tribution gtids are suitable for providing ancillary services
meanwhile also increasing their economic performance. With
the increasing share of stochastic renewable energy production,
the planning and maintaining the main grid becomes ever
more challenging and with higher operational cost. BESS, both
on distributed and centralised levels, could be one possible
solution to help transform the energy sector to a more
decentralised and less carbon-intensive without compromising
the security of supply or making it too expensive to hinder its
further development. BESSs could be the versatile link to
speed up this process, due to it possibility to cope with many of
the existing issues starting from localised problems (voltage
quality, congestion relief, etc.) to a more centralised alternative
to traditional generating capacity provided services (frequency,
control, voltage control, asset adequacy, etc.).

3.2.2 | BESS services for consumers

BESS are mainly marketed for their energy cost optimisation
through retail energy time shift, peak shaving, and increased
self-consumption from distributed generation through behind-
the-metre solutions as discussed in Refs. [79, 100, 115-120,
122]. Also, the power reliability can be increased through BESS
usage in weak grid locations to cope with voltage sag ride
though and provide back-up power and even island solutions
[123]. Although these services are mainly targeted at residential
customers, then as discussed before, with coordinated control
these BESS units could be used also for ancillary service
providers, and thus increase the added value created by BESS
units for both their owners and the society. Otherwise, the
market prices are not favourable to make the BESS econom-
ically viable for all residential customers as discussed in Refs.
[115, 117, 120]. Other aspects that hinder the benefits from
increased self-consumption are location-based limitations to
distributed renewable generation as discussed in Refs. [116,
119], making it even clearer that BESS systems should combine
different services provision (e.g, ancillary services) to make
them economically viable. The increasing demand for elec-
tricity and substituting traditional generation with stochastic
technology also increases the strain on the physical network.
Novel solutions are needed to cope with both operational and
planning challenges of the power system. Both, the consumer
and power and utility companies, can benefit from it though
increased socioeconomic welfare.

3.2.3 | Novel services with BESS

Novel ancillary services from BESS-s include congestion relief
[124-128], transmission/distribution system adequacy related
services [127, 129-131], and power quality-related issues [98,
132-138]. Authors of Ref. [124] desctibe a case study where the
battery located at a congestion point can provide backup energy
storage during a contingency event to relieve thermal overload,
thereby allowing the transmission limit to be increased.
Although not specified, authors of Ref. [125] discuss the dis-
tribution system level optimisation of different assets (including
energy storage) to avoid congestion during intraday operation.
Authors of Ref. [126] propose to include the energy storages as
service within a sharing economy concept to relieve trans-
mission congestions by utilising the idle capacity on the open
market for a fee, while in Refs. [127, 131] the authors propose a
similar solution but instead with the energy storage capability of
electric vehicles. Also, the possibility to utilise energy storage to
defer upgrade of the existing electric grid infrastructure is
introduced in Refs. [127, 129-131]. The latter one could lead to
reduced cost for utility ratepayers and prolong the usage of
existing infrastructure while maximising its utilisation factor.

Power quality issues due to stochastic generation and load
are becoming increasingly important, as discussed in the Sec-
tions 1.1.1 and 1.1.2. The mentioned power quality issues
(voltage unbalance, voltage variations, harmonic distortion,
and flicker) can be successfully managed with BESS-s as dis-
cussed in Refs. [123, 139, 140]. Especially important power
quality issues are the transient voltage variations and harmonic
distortion of the network voltage due to the frequent starting
and stopping of distributed generation as discussed in Refs.
[98, 132]. Authors in Refs. [133, 135] bring out that a variety of
power quality issues in microgrids (i.c., element failures, voltage
swells and sags with short transients and high frequencies) are
ideal to be met by energy storages with high ramping capability.
Authors in Ref. [134] introduce a hybrid energy storage system
that includes in addition to a battery also superconducting
magnetic energy storage to compensate long and short-term
voltage fluctuations to extend the lifetime of the battery. Au-
thors in Refs. [136, 137] give a comprehensive overview about
research regarding energy storage capabilities and summarise
that an energy storage system can cope with most of the
possible power quality-related issues. Ref. [138] summarised
that voltage quality improvements are complementary other-
wise to the load shifting application performed by the energy
storage system.

The following table (Table 5) adopted from Ref. [110] and
modified according to ENTSO-E and European Union ter-
minology summarises the novel ancillary services that could be
delivered with battery energy storages to different target groups.

3.3 | Application of grid scale BESS in
different countries

In the 2020 ENTSO-E carried out a survey on ancillary ser-
vices procurement and electricity balancing market design
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TABLE 5 Battery enabled additional ancillary services in the future, their definitions, target groups, and coverage in scientific literature.

Service name Definition

Target group Papers

Resource and reserves
Adequacies

Distribution/Transmission

system adequacy by utilising (battery) energy storage assets.

Transmission/Distribution
congestion relief

Power quality services

Incrementally defer or postpone investments in peak load capacities
on inertia reserves by utilising (battery) energy storage assets.
Incrementally defer or postpone investments in grid to meet peak load capacities

Utilisation of (battery) energy storages to minimise the congestion on

Power quality maintenance and backup power for electricity consumers.

System operators, [101-109]

utility companies

System operators [127, 129-131]

System operators [100, 124-128]

transmission/distribution lines duting congestion hours

[98, 132-139].

Electricity consumers

amongst TSOs [141]. 47 countries (53 TSOs) were involved in
the survey, and 30 (33 TSOs) of them provided answers. The
TSOs were asked to answer questions of five topics: imbalance
settlement, ancillary services, demand-side response, voltage
control and black start. From the survey, we see that ancillary
services are provided mainly via five assets: generators,
demand-side response, pump storage, distributed generation,
and batteries. The following table (Table 6) summarises the
analysis regarding ancillary services and possibilities to provide
it with BESS assets.

It should be noted that countries who stated that “All
possible options” are accepted for different frequency regula-
tion services were considered to accept services also from
BESS units. Italy also stated in the survey that one sig-
nificant/important change that is being implemented regarding
the ancillary services is to involve low-consumption resources
such as batteries coupled with PV in the ancillary services
provision.

Regarding voltage control all the answered TSOs (100%
from the ancillary services group) and additionally Lux-
embourg considers voltage control as an ancillary service. Only
three TSOs (Finland, Germany, and Slovakia) consider stor-
ages as voltage control service providers. Since the survey does
not specify the types of storages it consider, the authors as-
sume that it also includes BESS. Other parts of the survey did
not cover storages as assets for setvices.

Although ancillary services are a vital part of services that
could be provided with BESS-s the future outlook forecasts
that by 2030 the global grid-related annual deployment of
energy storages will be focusing on capacity management,
energy shifting, transmission and distribution management,
and PV-s combined with storage applications in various sectors
[142].

4 | CASE STUDY: BALTIC REGION DSOS

Increased integration of BESSs into distribution systems re-
quires amendments to Grid Codes and Electricity Market Acts
(EMA) to ensure their safe and fair operation. To identify
possible issues and improvements into existing regulations, a
case study was conducted among three Baltic DSOs: Elektrilevi
OU of Estonia, AS Sadales tikls of Latvia and Ignitis Group of
Lithuania. The study was conducted during autumn 2021 and
winter of 2021/2022.

The study was carried out in the form of an interview with
Elektrilevi OU and in the form of e-mail exchange with AS
Sadales tikls and Ignitis Group. The interviewees of Elektrilevi
OU were the Head of Market Relations and the Head of
Technology. The method of the interview was semi-structured,
where the discussed topics were known to the interviewees
beforehand, and the interview results were followed up with
internal discussions and manifested in a structured and
reviewed interview protocol document. The interview was
carried out in the national language to avoid miscommunica-
tion regarding legal and technical terms. The e-mail survey was
composed of eight questions, some of which were com-
plemented by one to three follow-up questions (a total of 20
individual questions). The communication with AS Sadales
tikls was relayed through Riga Technical University, who also
provided relevant translations of their responses. The
communication with Ignitis Group was conducted with their
Head of Innovation and carried out in English.

The study focused mainly on two aspects regarding behind
the metre energy storage systems: regulatory and technical. A
summary of the DSO responses is provided in Table 7. All
Baltic DSOs stated that they are not allowed to own or operate
ESSs, which will change when the current EMA amendment
draft enters into force. The EMA draft amendment states that
grid operators can own, develop, manage, and operate ESSs
when they are considered as fully integrated grid components,
or they are required to enable efficient, reliable, and safe
operation of the grid and not used for buying or selling elec-
tricity. The aim is to clearly separate grid operations form other
processes involving ESSs, which is a similar approach as used
for distributed generation. The described approach emphasises
the involvement of private capital, rather than relying on
strategic National investments for the large-scale integration of
ESSs into the power grid.

All DSOs stated that they are currently unable to procure
ancillary grid services. The reasons for this are limitations in
regulations and the lack of service providers. However, the
Lithuanian DSO has indicated that they are currently working
towards a set of flexibility procurement rules, while the
Estonian DSO has suggested that they support an exception
to the grid tariff structure, where such ESS that are used to
provide ancillary grid services are excluded from (some) tariffs.
Matters become complicated when the purpose of the ESSs is
not fixed to either energy management or network services,
for example, mixed generation, load and storage assets
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TABLE 7 Summary of survey results carried out among Baltic DSOs.

Category

Estonia

Latvia

Lithuania

DSOs and ESS
ownership

Grid connection
requirements
for ESSs

Grid tariffs for
stored energy

Perspective and
planned
changes in
orid tariffs

The EMA amendment draft states that grid

operators can own, develop, manage, and
operate ESSs when they are considered as
fully integrated grid components, or
necessary to enable efficient, reliable, and
safe operation of the grid and not used for
buying or selling electricity

When a storage unit is behind a single inverter,

the technical specifications are solved
through manufacturer requirements. Most
technical aspects regarding ESS
integration to the grid are derived from
the requirements identified for generators.

Although network charges do not apply for

produced energy, there is a separate
statement in the draft EMA amendment
regarding stored energy: no network
charge is applied when returning stored
energy to the network. This clause is
aligned with the current situation, where
distribution fees do not apply for
generated electricity.

The Estonian DSO suggests transitioning

from mostly energy-based network
charges to more capacity-based network
charges, resulting in a larger revenue base
from grid availability.

Existing legislation prohibits DSO to
operate and maintain EES for their
own needs. A draft EMA amendment
provides DSOs the possibility to own
and operate ESS with permission of
the regulating body.

Current connection regulations of the
Public Utlities Commission (PUC) do
not separate or stipulate the
connection process of EESs from
producers and consumers. It is
considered that since EESs are
inverter-based generation units, the
connection requirements must be
similar to (micro)generation units.
Therefore, the EES connection
process depends on generation
capacity.

No special distribution tariff for ESS
charging and discharging cycles and no
actual plans to create such tariffs. The
Latvian DSO supports the opinion
that customers who offer the DSO
services through ESSs must be
proportionally remunerated for their
services.

The Latvian DSO states that it is exploring
a new tariff structure. Due to the
reduction in distributed electricity (due
to increased distributed generation), it
is likely that the new tariff structure
will have the fixed (capacity)
component with a higher weight than
the variable (electricity) component.

Current legislation prohibits DSOs to
own, develop, or operate energy
storage facilities. There is an
exception, which allows for DSOs to
own ESSs in cases where they can be
considered as an integrated grid
component.

ESSs are treated as generators and their
functionality and protection
requirements are same as for PV
systems. The connection of ESSs is
handled case-by-case. The technical
connection conditions should include
capacity (consumption and
generation), while relevant technical
characteristics of should meet
generator grid code requirements
(e.g, frequency and voltage
protection, ramp rates, remote
control, reactive power support etc.)

No special grid tariffs for providing
energy to the grid from ESSs.

The Lithuanian DSO indicates that there
is an ongoing study aiming to provide
regulatory guidelines, including
recommendations for grid tariffs, for
the regulating body.

installed behind the metre. Additionally, there is a consensus
of vision among Baltic DSOs, where they see a transition from
mostly energy-based network charges to more capacity-based
network charges, resulting in a larger revenue base from grid
availability.

In terms of technical aspects, the integration process of
ESSs into the power grid is currently analogous to electricity
producers. Most technical aspects regarding ESS integration
to the grid are derived from the requirements identified for
generators. Although it is a resource efficient approach, it is
recommended to state separate technical procedures and
requirements for the integration of ESSs into the larger grid
to account for the full extent of their flexibility. Addition-
ally, the Estonian DSO recognises that it is possible that
there are less sophisticated solutions currently connected to
the grid that the DSO is unaware of and that for the dif-
ferentiation of ESSs, they propose four options, which are
based on:

a) capacity — similar to classifying (distributed) generators;

b) purpose — identify the use of the ESS, for example, strictly
for influencing behind-the metre assets, energy trading,
provision of network services, etc.;

c) control — which control functions are required from the
perspective of the grid and the device;

d) dimensioning of protection equipment — what is the size of
the necessary relay protection equipment required by the
ESS.

5 | CONCLUSION

With the rapid development of technology, union policies
with incentives, and a corresponding decrease of low carbon
technology prices, more consumers connect PVs, BESSs, and
EVs to the low voltage distribution grids. With the required
infrastructure for public EV charging and demand-side
management activities, the challenges for the system opera-
tors increase. The stochastic nature of the weather-impacted
generation and new stochastic loads (e.g, EV charging)
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introduces challenges in voltage control and power quality
assurance. The distribution grid needs to cope with bidirec-
tional power flows and possibly amplified issues related to
poor power quality caused by the scheduling of stochastic
(and possibly non-linear) loads. Although PV systems can
help mitigate some voltage magnitude and unbalance issues,
the untimely scheduling of non-linear loads can cancel those
effects. Grid stability can be affected by the large-scale uti-
lisation of renewable energy sources because there are fluc-
tuations in generation and load. These issues can be
effectively addressed by grid-scale battery energy storage
systems (BESS), which can respond quickly and provide high
energy density which were thoroughly discussed in this
papet.

Despite the fact that Battery Energy Storage Systems
(BESS) offer effective solutions for managing power quality
issues in the grid, their operation can also introduce harmonics.
This incident occurs as a result of BESS' connection to the
grid through inverters using Pulse Width Modulation (PWM).
While BESS can reduce voltage fluctuations and improve po-
wer factor, PWM-based inverters can inadvertently gen-
erate harmonics, which can negatively affect grid power
quality. Therefore, harmonic mitigation strategies must be
carefully considered to minimise adverse effects when inte-
grating BESS.

A case study was carries out in to analyse impacts of grid
scale BESS on the Baltic DSOs and possible requirements to
change their grid code. To summarise the survey case study
results, the following conclusions can be drawn.

® Baltic DSOs will have the possibility to own and operate
ESSs in case they can be considered as fully integrated grid
components.

® Currently, there are no dedicated requirements for con-
necting ESSs to the grid and requirements for generators are
commonly applied.

® Currently, there is no standard procedure for connecting
ESSs to the grid and they are handled case-by-case, but
procedures similar to connecting PV inverters to the grid are
envisaged by the DSOs for the future.

® No special tariff or exemption is neither applied nor planned
by the Baltic DSOs for stored energy.

® All DSOs have shown interest in using ESSs for grid ser-
vices and the procurement of such services from respective
service providers. As grid services are not supported by
current legislation, the specific application of such mecha-
nisms remains to be determined.

® It is deemed likely that current grid tariffs in the Baltic
States are subject to change, mainly to adjust to the
decrease in distributed energy and increase in distributed
generation.
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	The production, distribution, and utilisation of electricity are undergoing significant changes. Due to the growing concerns about global climate issues, the European Union (EU) has been promoting sustainable development in the energy sector. Since the introduction of the Renewable Energy Directive [1], the share of renewable energy sources (RES) in gross final energy consumption at the EU level has increased from 12.5% in 2010 to 23% in 2022 [2]. In Estonia, the share of RES in gross final energy consumption increased from 24.6% to 38.5% during the same period [3]. Initially, the Renewable Energy Directive had set the target of meeting 32% of overall energy needs with renewable energy by 2030. However, due to the rapid pace of clean energy transition, the target was increased in 2018 to 42.5% [4]. Furthermore, an ambitious goal has been set by the European Green Deal for Europe to become the world’s first climate-neutral continent by 2050 [5].
	The regulatory pressure to shift towards sustainable energy production has resulted in increasingly more Variable Renewable Energy (VRE) sources, such as wind and solar, being integrated into power. However, unlike traditional power sources, the generation of VREs is uncontrollable, stochastic, and challenging to predict. As a result of the growing employment of VREs, the grid operators face increasingly significant challenges to preserve grid stability as they must constantly balance energy supply and demand in order [6]. Absence of flexibility in a power network is characterised by fluctuations in voltage [7], [8], [9], frequency [10], and electricity price [11]. To address this challenge, additional innovative solutions are required, such as the utilisation of aggregated energy flexibility from energy storage systems, flexible loads [12], and demand response programs [13]. Grid-scale battery energy storage systems (BESS) play a crucial role in maintaining grid stability by offering ancillary services like frequency regulation, voltage management, and relieving congestion. Recent studies [Paper VI] on integrating BESS in the Baltic region have shown their capacity to improve power system flexibility, optimise energy distribution, and facilitate the incorporation of renewable energy sources. Leveraging these solutions would allow grid operators to supply energy efficiently and reliably while reducing the power sector’s carbon footprint. However, it is challenging to supply more than 30% of annual demand using VRE at the present levels of energy flexibility [14].
	The sources of energy flexibility may be roughly classified into two main categories: demand-side and supply-side flexibility [15]. Traditionally, power balance has been controlled from the supply side by modifying the output of power plants to adapt to variations in demand. Supply-side flexibility can be obtained by integrating power production units with varying response times into the power grid. 
	Demand-side flexibility sources include controllable loads in residential [16], commercial [17], and industrial [18] settings. Flexibility sources in residential buildings include appliances like electric heating systems, water heaters, refrigerators, dishwashers, washing machines, battery storage systems, and electric cars that may be controlled to some degree while still preserving user comfort. In commercial buildings, the heating, ventilation, and air conditioning system (HVAC) and lighting are significant consumers that account for around 74% of the electricity consumption [19]. These systems can be a good source of energy flexibility as they can be controlled within the regulatory bounds set for workers’ well-being. Sources of flexibility in industrial loads are case-specific; for example, cold storage can be used as a source of flexibility in the food or fishing industry [18].
	Due to the small scale of individual households, they may not provide enough flexibility to contribute to grid improvements or to participate in energy markets alone. Therefore, aggregation is necessary to build up a portfolio of smaller controllable loads that act as a more sizeable entity [Paper II]. Aggregators act as intermediaries between end-users and system operators, offering their combined flexibility to various energy markets such as wholesale, reserve, and ancillary. 
	At present, changes within households are occurring at a rapid pace; they are evolving into prosumers and forming communities that display similar behavioural patterns based on their geographical locations. A study [20] assessing the flexibility potential in Northern Europe, which includes Sweden, Denmark, Norway, Finland, Estonia, Latvia, and Lithuania, estimated it to be between 12 and 23 GW, or 15 to 30% of the region’s peak consumption, thus highlighting the significance of this issue. Consequently, the flexibility potential of community microgrids in Northern Europe (hereafter: CMGs), comprising households as well as businesses and services, ranges from 8 to 19 GW, with households accounting for 3 to 13 GW of that total. Research indicates [Paper IV] that local energy communities can enhance their economic performance by over 10% by functioning as aggregators and delivering grid services directly to system operators.
	The existing electrical grids have been designed with a large focus on centralised power generation. However, grid management has become more challenging with the growing use of renewable distributed energy resources. To address these challenges, one potential solution is to utilise demand-side energy flexibility. Unfortunately, residential demand-side energy flexibility has not been fully utilised, as individual prosumers cannot provide enough capacity. An aggregator is required to manage demand-side energy flexibility. However, aggregators must use an appropriate quantification method to make informed decisions about utilising prosumers’ energy flexibility in their portfolios. Therefore, this research was motivated by the current topical direction of research of developing appropriate methods for assessing the quantity of aggregated energy flexibility of residential electricity consumers. This PhD thesis aims to contribute to the existing literature by proposing a novel quantification method for aggregated energy flexibility based on the relationship between flexible power and the duration its activation can be sustained. The flexibility curves offer crucial insights for aggregators to make informed decisions about utilising their portfolios.
	The main aim of this PhD research is to study and develop a novel method for quantifying aggregated energy flexibility of flexible devices in residential buildings, which will allow aggregators to gain better insights into how to utilise energy flexibility.
	Hypotheses:
	1. Quantifying energy flexibility using power-duration curves provides a more accurate and practical representation of flexibility compared to single-value metrics, offering insights into both short-term and long-term flexibility potentials
	2. Aggregated energy flexibility is asymmetric and non-linear, with different capacities for increasing and decreasing power and a non-proportional relationship between activation power and duration
	3. Asymmetry of energy flexibility potential impacts the grid stability differently, with demand increase showing more significant rebound effects
	4.  Rebound effects in demand-side flexibility activations cause more significant changes to the demand profile than the flexibility activations themselves
	Research tasks:
	1. Analysis of definitions, sources, aggregation process, and aggregation barriers for demand-side energy flexibility (Chapter 2)
	2. Analysis of existing quantification methods of residential demand-side energy flexibility (Chapter 3)
	3. Development of a novel method that quantifies energy flexibility using power-duration curves (Chapter 4)
	4. Conducting a simulation-based case-study to illustrate the quantification process and showcase its strengths and weaknesses (Chapter 5)
	This research contributes to advancing the understanding of energy flexibility in residential energy systems. The proposed methodology for quantifying flexibility through power-duration curves offers a novel and dynamic approach that addresses significant gaps in current methods. In contrast to static or single-value indicators, the approach developed captures the non-linear, asymmetric, and temporal characteristics of energy flexibility, presenting a thorough framework for both short-term and long-term applications. 
	The results of this thesis have been disseminated within academic and professional communities. Key findings have been presented at one international conference and have been published in two peer-reviewed journals, ensuring that the methodology and insights are accessible to a wider audience. The novelties of this thesis are as follows:
	 Development of a power-duration curve approach as a new method for quantifying energy flexibility. This method offers a detailed and dynamic representation of flexibility over various time frames, providing a more nuanced overview compared to single-value metrics.
	 The identification of asymmetric and non-linear properties of energy flexibility that challenge the traditional linear models of energy flexibility, providing a more accurate and comprehensive understanding, which is essential for improving demand response and load management strategies.
	 The identification of the rebound overshoot phenomenon, where energy consumption starts oscillating after the rebound effect, which system operators would need to account for to maintain the balance.
	This doctoral thesis was supported by the Estonian Research Council grant PSG739, the European Commission through H2020 project Finest Twins grant No. 856602, the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts ZEBE, grant 2014-2020.4.01.15-0016 funded by European Regional Development Fund, the Project “Increasing the Knowledge Intensity of Ida-Viru Entrepreneurship” co-funded by European Union under Grant 2021-2027.6.01.23-0034, and by European Union and Estonian Research Council via Project TEM-TA78.
	Over the past ten years, there has been considerable growth in residential energy systems in Estonia, driven by the rising adoption of renewable energy sources and advanced energy technologies. During this timeframe, around 60 000 new residential dwellings were built. These buildings are outfitted with various energy systems, such as heating systems, water heaters, and sometimes battery storages, providing significant energy flexibility opportunities. It is essential to quantify the flexibility of these systems effectively. 
	The most significant energy-consuming devices in residential homes are space heaters and water heaters, accounting for approximately 60% and 20% of total energy use, respectively [21]. This illustrates the considerable flexibility residential loads could offer when integrated with smart control systems. Battery storage systems, which are becoming more prevalent in residential and commercial buildings due to their integration with rooftop solar panels, have the capacity to provide both short-term and long-term flexibility for maintaining grid stability.
	Aggregators play a critical role in harnessing this flexibility. By pooling the flexibility potential from separate households and commercial structures, aggregators can generate a valuable resource for engaging in energy markets. For instance, if 50 000 residential units each provide 0.5 kW of flexibility during a demand response event, the total aggregated flexibility would reach 25 MW – enough to influence grid stability and the dynamics of energy markets significantly. In the context of Estonia, the flexibility provided by residential energy systems could greatly improve the ability to incorporate renewable energy into the grid. With manual frequency restoration reserve (mFRR) activations averaging 8.7 MWh during up-regulation events in 2022 [22], the possible contribution from residential systems could account for a substantial portion of this demand.
	The power-duration curve method proposed in this research offers a strong tool for quantifying and optimising aggregated flexibility. By accounting for the dynamic, non-linear, and asymmetric characteristics of these energy systems, the method facilitates accurate forecasting and operational planning. It allows flexibility to be utilised efficiently, aligning the grid’s requirements with the operational limitations of each system. Additionally, the rebound effects and asymmetric behaviours identified in this research emphasise the necessity for advanced methods, such as the power-duration curve, to ensure that flexibility is utilised both effectively and sustainably.
	The thesis is structured into three main sections. Chapter 2 offers a comprehensive analysis of the concept of energy flexibility, its sources, aggregation, and the challenges and barriers faced by aggregators. Chapter 3 provides an analysis of existing quantification methods highlighting the need for a more robust approach. In Chapter 4, a new quantification method based on power-duration curves is proposed and explained in detail. Chapter 5 presents case studies that quantify the energy flexibility of residential space heating, domestic water heaters, and battery systems. Finally, Chapter 6 concludes the thesis and offers recommendations for future research topics.
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	As energy systems adapt to accommodate greater shares of renewable energy, the role of demand-side flexibility has become increasingly significant. This chapter offers a thorough examination of energy flexibility, its sources, and the challenges associated with its aggregation. It investigates the potential of various flexible resources, such as residential loads, battery storage, and electric vehicles, while also analysing the role of aggregators in utilising these resources for grid stability and market participation. The discussion highlights existing regulatory and market barriers, laying the groundwork for the subsequent analysis of flexibility quantification methods in the following chapter.
	The concept of energy flexibility currently lacks a universally accepted definition. Various researchers have made efforts to define it within their respective fields of specialisation. Some researchers define flexibility simply as “the ability to deviate from its reference electric load profile” [23] or as “the ability to reshape consumption patterns when interacting with the power grid” [24]. More comprehensive definitions include “DSF can be defined as the ability to strategically alter electricity usage by consumers (either commercial or residential) from their normal consumption profiles, by responding to control signals from grid operators and/or financial incentives from electricity generators/aggregators. The scope of these signals is to modulate and optimise electricity usage and to balance electricity production and consumption” [25]. The IEA EBC Annex 67 project ‘Energy Flexible Buildings’ [26] has compiled an overview of the definitions of energy flexibility used by researchers in the literature, leading to the proposal of a general definition: “The energy flexibility of a building is the ability to manage its demand and generation according to local climate conditions, user needs, and grid requirements. Energy flexibility of buildings will thus allow for demand-side management/load control and thereby demand response based on the requirements of the surrounding grids”. 
	Flexibility services in the electrical grid refer to modifications in power generation or consumption that occur at a designated time, last for a specified period, and take place at a certain location within the grid. These services are characterised by several aspects, including whether they (a) increase or decrease power (direction), (b) the capacity of power adjustment, (c) when the adjustment begins, (d) how long it lasts, and (e) where it happens in the grid [27], [28], [29], as shown in Figure 2.1.
	/
	Figure 2.1. Properties of a flexibility service.
	Additionally, other key attributes often discussed include how controllable and predictable these services are, their availability over time, the timing of delivery, and the associated costs or efficiency losses incurred by activating these services.
	 The directional property describes the power flow direction of flexibility sources, distinguishing between those that consume energy and those that generate it. Flexibility sources may be unidirectional, either purely generating or consuming, or bidirectional, capable of both. Appliances like heat pumps, water heaters and washing machines, which only consume energy, are examples of purely consuming flexibility sources. Conversely, sources like PV panels and wind turbines, which generate power, are purely generating sources. There are also sources like battery storage systems and electric vehicles that are capable of both consuming and generating energy, thus classified as having bidirectional flexibility or being prosumer-capable loads.
	 The power capacity attribute defines the power adjustment that a flexibility service can alter. When combined with the duration for which the flexibility service can be activated, flexibility sources can be classified as either capacity or energy type sources. Capacity type sources can be activated for a brief period with high power, while energy type sources can be activated for a longer duration but with lower power output.
	 The starting time property refers to the delay between receiving the activation signal and the commencement of the flexibility service. Furthermore, certain flexible sources may only be activated during specific times of the day, either due to the owner’s specifications or the inherent characteristics of the source.
	 The location property describes the real position of the flexibility source in the distribution grid. For the distribution system operator (DSO), identifying the location where flexibility is required could be crucial for resolving congestion issues, whereas for the transmission system operator (TSO) and balance responsive party (BRP), the location holds less significance as their goal may simply be to balance generation and consumption [27].
	The Flexibility Function (FF) is a more complex characterisation method that can be employed to characterise energy flexibility controlled through penalty signals. Penalty signals are external control signals used by flexibility sources with penalty-aware controllers to adjust their demand. The consumer’s incentive is to minimise their accumulated penalty. Depending on the purpose of controlling flexibility, penalty signals can represent different properties [30], such as:
	 Real-time CO2 emissions from consumed energy, where the flexibility controller aims to reduce overall carbon emissions, thus becoming emission efficient.
	 Real-time electricity prices, where the objective is to minimise the total cost of consumption, thus achieving cost efficiency.
	 If a constant penalty is in place, the flexibility controller will work to minimise total energy consumption and achieve energy efficiency.
	 A penalty signal could consist of the mentioned elements combined, or it could be designed with different goals in mind, like decreasing peak power usage, addressing voltage and frequency issues, or managing grid congestion [31]; in such instances, the location of the utilised flexibility is also considered when creating a penalty signal.
	/
	Figure 2.2. Flexibility Function depicting the expected response of energy flexible buildings.
	FF was first introduced in [32] to capture the dynamic connection between the penalty signal and a penalty-aware demand that reacts to it. Typically, energy flexibility is characterised using static functions for specific stable states that do not account for changes over time, so the FF aims to explain the dynamic behaviours that result from utilising energy flexibility. It is crucial to observe the dynamics because activating energy flexibility inherently involves deviating from normal operational set points. The FF can be developed by analysing time-series data, simulations, or from the first principles of a comprehensive model that encompasses constraints, occupancy behaviour, controllers, and boundary conditions. An illustration of an FF is provided in Figure 2.2, where energy flexibility can be characterised by the following parameters [30]:
	 𝝉, the time delay from when the penalty signal is adjusted to the earliest response in demand. This delay can be caused by communication delays or, in some instances, by extensive computation in optimisation algorithms. Additionally, certain appliances may require time to complete their current operations before they can be shut off.
	 𝜶, the duration for flexibility to become fully activated after the beginning of the response. This is influenced by the reaction speed or the energy inertia of the flexibility source.
	 𝜷, the duration for which the flexibility can be activated, which varies based on the energy capacity of the flexibility source. For instance, well-insulated, large, heavy buildings can have long durations, whereas smaller, poorly insulated buildings cannot adjust their demand for significant periods.
	 𝚫, maximum demand adjustment that refers to the power capacity of the flexibility source.
	 A, the total amount of energy that the flexibility source can decrease (or increase) in demand before reaching the constraints set by the owner of the flexibility source. It is a crucial factor if activating flexibility requires shifting significant energy.
	 B, represents the total energy required to rebound from the deviation caused by the previously activated flexibility. The type of flexibility source influences this. For instance, if heating is turned off to reduce demand, it will subsequently need to be turned on again to return to the initial temperature. However, in the case of dimmed lighting, there is no need to increase the brightness above normal levels afterwards; therefore, in such case, there is no rebound.
	/
	Figure 2.3. Flexibility functions of buildings with different energy inertia.
	FF can be used to assess an individual or a group of flexibility sources, such as a single building or a combination of buildings. Figure 2.3 illustrates an instance of FF for buildings with varying thermal mass. Building 1 possesses a substantial thermal mass, resulting in a notable rebound effect, building 2 is of medium size, and building 3 has poor insulation and resistive heating. The combined FF of these buildings is depicted by the black line.
	Buildings have great potential to be used as a source of aggregated energy flexibility. In 2018, the building sector in the EU was responsible for about 40.3% of final energy usage (26.1% in households and 14.2% in the service sector) [33]. Various factors influence the energy flexibility that a building can offer [32]:
	 The physical attributes of a building (including its thermal mass, insulation, and architectural layout).
	 The controllable loads within the building (such as ventilation, heating, and storage equipment).
	 The installed control systems that allow controllable loads to respond to external signals (such as control or penalty signals based on electricity price, emissions, etc. [34]).
	 The behaviour of the building occupants and their comfort needs.
	The Annex 67 project categorised building energy loads into three groups according to their importance and the necessary conditions for adjusting or altering their consumption.
	 Shiftable loads can be rescheduled to off-peak hours by using a penalty signal. These loads can usually be rescheduled without significantly affecting the occupant’s comfort. Shiftable loads are further categorised into shiftable profile loads, such as washing machines, which have a fixed energy profile but can be moved, and shiftable volume loads, such as charging devices, which allow the energy profile to change within certain limits while meeting the total volume over a specific time period [35].
	 Non-shiftable loads, such as lighting, cooking appliances, computers, and televisions, cannot be easily adjusted and cannot be moved, regardless of the energy cost. This is primarily because of occupant comfort requirements.
	 Other controllable loads can be regulated using optimal control methods through thermostat adjustments, fan speed regulation, or dimming (for example, in HVAC systems, water heaters, and non-essential lighting).
	The flexibility of residential loads can be defined based on the type of appliance they are, categorised as storable, non-storable, shiftable, non-shiftable, curtailable, or non-curtailable loads [36], [37]. This categorisation helps to deduce an appliance’s potential to participate in demand response. Residential loads can be first grouped into storable and non-storable loads, with non-storable loads further classified as shiftable and non-shiftable. Additionally, non-shiftable loads can be subcategorised into curtailable and non-curtailable loads. Non-curtailable loads, such as non-storable, non-shiftable, and non-curtailable, are considered inflexible base loads that cannot be controlled.
	 Storable loads decouple power consumption from the end-use service through the use of batteries or thermal inertia. These types of loads store electrical energy in a different form, such as thermal or electrochemical. Examples of this type of load include batteries, electrical heating/cooling (HVAC) [38], and domestic electric water heating (EWH) appliances that store energy in a thermal mass.
	 Shiftable loads can be rescheduled in time to operate earlier or later than they should because they have temporal flexibility. It is necessary to plan ahead for shiftable loads, as they often have a predetermined operational cycle that must be maintained. Some examples of shiftable loads include washing machines, dryers, and dishwashers.
	 Curtailable loads cannot be shifted because of the consumers’ comfort requirements or because there is no need to shift them, such as in the case of room lighting. Nevertheless, curtailable loads can be stopped if consumers are provided with enough incentives.
	A summary of typical residential loads based on the aforementioned classification and their adaptability features is provided in Table 2.1. In order to evaluate the potential for aggregation of flexible loads, it is possible to categorise them based on whether they are capacity or energy-based, their response direction (unidirectional upward or downward, or bidirectional), speed of response, duration of response, availability, and predictability [39].
	 The type (capacity or energy) indicates the energy-to-power ratio of the flexible load. Flexible loads with a low ratio can deliver high power but cannot sustain it for a long time, making them more suitable for providing short-term flexibility services such as ancillary services. On the other hand, loads with a high ratio can provide power for extended periods and are therefore categorised as energy-type loads, making them better suited for longer applications like load levelling.
	 The response direction determines the direction of power flow for the load. Some may only be in one direction, either up or down, and function as either a load or a producer, but not both. Bi-directional sources of flexibility, such as battery storage devices, can operate as prosumers, sometimes consuming power and other times supplying power.
	 The response speed at which residential flexible resources activate is typically fast, ranging from seconds to minutes, but it also relies on the availability of the load for flexibility usage.
	 The response duration is the time period for which a flexible load can maintain its power at the maximum level in relation to its nominal power when required. According to [39], the maximum response duration can sometimes be calculated by dividing the allowable energy range by the maximum power capacity (for example, for a 50 kWh battery with a 10 kW charging/discharging power, it would be 5 hours). The response duration of flexible loads may vary based on the technology used and consumer behaviour.
	 The availability determines how often and when the flexible load is available for activation, which varies depending on the load. Electric vehicles, for example, are typically accessible in the evening and at night, as they are often parked away from residential areas during the day. Conversely, wet appliances may have limited availability, as they can only be activated at specific times and usually once a day.
	 The concept of predictability refers to the accuracy of estimating the availability of a flexible load. Certain loads, such as battery systems, can be highly predictable, while electric vehicles (EVs) are more likely to be accessible between 6 PM and 6 AM. On the other hand, loads like washing machines and dishwashers are less predictable due to their usage being limited to a few hours per week and being influenced by consumer behaviour.
	Table 2.1. Characterisation of residential flexible loads.
	1 Wet appliances such as washing machines are interruptible for up to couple of minutes.
	2 New efficient low-power LED lighting systems are energy type while older less-efficient lighting systems are power type.
	3 With vehicle-to-grid technology EVs can respond in both directions.
	Compared to flexible loads that only consume energy, battery storages operate bidirectionally as prosumer devices, offering energy flexibility by adjusting their demand profiles. Battery storage systems are valuable for energy flexibility because they can store electrical energy for future use.
	Battery storage systems are frequently installed alongside PV systems to allow for the self-consumption of PV power on-site [40]. Storing surplus PV energy for later use can lessen the strain on distribution grids during peak demand periods [41] and alleviate PV curtailment during low-demand midday hours when PVs often generate excess power [42].
	Distributed battery storages are a crucial source of energy flexibility for aggregators due to their rapid response time, immediate availability, constant knowledge of state-of-charge (SOC), and direct electrical energy flexibility. In contrast, flexible loads achieve energy flexibility indirectly through control of temperature or scheduling of loads [43].
	Aggregated battery storages can serve other purposes that individual residential owners of smaller storage systems cannot achieve:
	 When the aggregated battery storage reaches a sufficient capacity, the aggregator can utilise it to take part in the reserve markets [44]. Battery storage is well-suited for this purpose because of its quick response time.
	 Aggregators can manage the energy distribution of battery systems within a community through energy sharing to enhance the self-consumption of renewable energy [45]. They can also be used for local power balancing [46] and peak shaving [47], which helps decrease the ramping stress on traditional power generation during periods of rapid changes in demand.
	 Aggregated battery storage can offer extra support for ancillary services [48], such as congestion management [49] on the distribution grid and black start support [50].
	Considerable research has been devoted to exploring the use of electric vehicles (EVs) as sources of flexibility, given the increasing adoption of EVs. When compared to stationary battery systems, EVs present more complex factors to consider. Their inherent mobility can be viewed as either an advantageous feature or a disadvantage in certain situations.
	The mobility aspect of electric vehicles allows them to travel between different parts of the grid. For residential energy flexibility aggregators, this means that the vehicles may not always be available as their owners use them to commute to various locations. Therefore, research on residential EV energy flexibility has significantly been focused on overnight charging [51]. The development of non-residential charging infrastructure will be crucial for utilising daytime charging as a source of flexibility.
	Most EVs are parked and not in use for approximately 22 hours a day [52], which means they could be utilised for other purposes during that time, such as providing demand response, ancillary services, utilising renewable energy generation on-site, and peak shaving. However, an intermediate aggregator is needed to engage EVs in these applications.
	The primary focus of research on EV flexibility has been on determining the best scheduling and optimisation strategies for charging to minimise costs [53], [54]. This is often studied in the presence of renewable generation.
	Unidirectional charging isn’t the only function of EVs. When paired with smart charging infrastructure, EVs can also offer vehicle-to-grid (V2G) capability, making them bidirectional devices. With V2G technology, EVs can charge and discharge, essentially serving as mobile battery systems. However, V2G must be approached with caution due to battery degradation considerations. Offering frequency containment reserve (primary reserve) can contribute an additional 1–2% degradation to the typical 7–12% capacity reduction over 5 years [55]. As per [56], providing a combination of frequency containment reserve and peak-shaving is more profitable than offering either of them individually.
	The use of residential electric vehicles for frequency regulation was examined in [57] by analysing the dynamic relationship between the battery SOC and the frequency target in the system. In a similar study [58], it was found that the ability to regulate power bidirectionally during the daytime was approximately one-third less than that during the nighttime because there were fewer parked cars in the residential grid.
	An analysis of the EV charging infrastructures, the main roles and participants of markets, and the future governmental interventions required for extensive EV advancement is provided in [59].
	Due to the untapped potential for energy flexibility, a new market participant known as the aggregator has appeared. The aggregators’ role involves pooling together a variety of smaller flexibility resources to function as a larger entity, as an individual residential or commercial customer often lacks sufficient capacity to engage in the markets independently. Therefore, the aggregator plays a crucial role in transforming passive residential or commercial consumers into prosumers by consolidating the energy flexibility of their adjustable loads. The aggregator has the potential to deliver significant benefits to power systems. As noted in [60], the aggregator can offer fundamental, transitory, and opportunistic value. The fundamental value arises from the process of aggregation itself, while transitory value refers to the temporary worth generated as the power system progresses from older regulations and technologies to newer, more advanced ones. Opportunistic value, on the other hand, emerges in response to regulatory flaws.
	At present, aggregators can trade flexibility in markets that have traditionally been structured for centralised power plants. As a result, an individual residential household cannot independently engage in these markets. Consequently, aggregators can potentially combine the flexibility of numerous smaller producers and sell it in the markets. The markets where flexibility can be traded currently include markets such as the day-ahead, intra-day, and balancing reserve markets. The first two are organised by power exchanges, such as Nord Pool or EEX, while the third is managed by regional TSOs. A comprehensive overview of the involvement of aggregators in these markets is provided in [61].
	The day-ahead market (DAM) facilitates bidding for the purchase or sale of energy production for the following day by the hour. Bidding typically closes at noon the day prior to delivery. This means that for participation in the DAM, aggregators must forecast the available flexibility at least one day in advance while accounting for reasonable uncertainties. A significant amount of research has been conducted on how aggregated flexibility can be utilised in DAMs [62]. Many studies in this area focus on maximising profits under various conditions utilising different approaches. For instance, a robust optimisation model for an EV profit-maximising aggregator is introduced in [63], which demonstrates that their model can reduce deviations from energy balance by approximately 9–15% compared to stochastic models and 60–64% compared to deterministic models. Additionally, a stochastic optimisation model was created in [64] to establish an optimal day-ahead bidding strategy to increase an EV aggregator’s profits. A coordination optimisation model based on marginal pricing was created in [65] using mixed-integer linear optimisation to manage two EV aggregators. A forecasting model utilising support vector machines was developed for aggregated smart household flexibility in the context of the day-ahead market [66], which was further advanced in [67] by establishing an optimal bidding strategy for load aggregators to mitigate financial risks associated with price fluctuations. A robust optimisation model aimed at minimising the operational costs of smart household aggregators was developed in [68], resulting in a 5.7% cost reduction. An optimal bidding strategy for a multi-energy virtual power plant aggregator was devised in [69], achieving approximately a 5% cost decrease. An optimal bidding strategy for a multi-energy distributed energy resources (DER) aggregator was formulated in [70] using stochastic mixed-integer linear programming for the day-ahead market.
	Bidding in the intra-day market (IDM) occurs on the delivery day. Participation in IDM can utilise more precise forecast data acquired closer to the delivery time. Therefore, for aggregators, engaging in an intra-day market may serve as a strategy to mitigate the risks associated with inaccurate day-ahead flexibility forecasts [71]. A model for an incentive-based demand response program was developed in [72] for involvement in both the day-ahead and intra-day markets. The research findings indicate that participating in the intra-day market can be financially comparable to participating in the day-ahead market. It was noted that there is a scarcity of research concerning aggregated flexibility provision in intra-day markets.
	The balancing market aims to address frequency deviations caused by imbalance issues or unexpected generation loss by acquiring reserve capacity [73]. The EU Commission has set a regulatory guideline for energy balancing to standardise balancing markets across Europe [74]. This regulation requires all EU member states to eventually offer three types of balancing reserve products: automatic Frequency Restoration Reserve (aFRR), manual Frequency Restoration Reserve (mFRR) – which represents secondary and tertiary reserves – and Replacement Reserve (RR). Additionally, the Frequency Containment Reserve (FCR), known as the primary reserve, is being adopted voluntarily throughout Europe.
	The bidding process for RR concludes 1 hour before the delivery time and 30 minutes before the delivery for aFRR and mFRR [75]. Thus, although tapping into the reserve markets may seem appealing to aggregators due to the minimal forecast errors associated with near real-time operations, participation in these markets necessitates flexible power that can be deployed rapidly. The maximum activation time required is 5 minutes for aFRR, 12.5 minutes for mFRR, and 30 minutes for RR [75]. The potential of aggregated energy flexibility from EVs in reserve markets has been explored in [76], [77], [78], [79], [80], [81]. Similarly to DAM publications, generally, the emphasis is on maximising profits through optimal bidding strategies utilising various optimisation techniques.
	Local flexibility markets (LFMs) are platforms for trading electricity where flexibility can be traded in specific geographical areas, like small towns, neighbourhoods, or communities [82]. The models and clearing methods for local flexibility markets are reviewed in [27], revealing that participants in LFMs may hold overlapping roles; either the DSO or aggregator can operate the LFM, or the aggregator might also serve as its own balance responsible party (BRP). As a result, LFMs can be tailored to accommodate various conditions and regulatory frameworks. Additionally, the interaction between LFMs and the balancing market must be taken into account if the TSO acquires flexibility from the LFM through coordination with the DSO. The significance of TSO-DSO coordination is further emphasised in [83] and [28].
	One of the initial large-scale demand response demonstrations occurred within the EcoGrid EU project  [84], involving approximately 1,900 residential customers, where real-time pricing was utilised to encourage changes in consumption. It was found that price incentives provide the DSO with limited security since they merely encourage loads to adjust their consumption rather than mandating it. Furthermore, pricing structures penalise rigid loads that cannot shift or alter their consumption.
	These limitations were tackled through the EcoGrid 2.0 project [85], which involved aggregating flexible loads and trading them on a fully operational experimental LFM under realistic conditions. In that initiative, two categories of services were established to manage congestion in the distribution grid: capacity limitation services and baseline flexibility services. It was demonstrated that these services can offer an additional safety net against network overloads and outages; however, their necessity is infrequent. Additionally, it was also pointed out that there are widespread shortcomings and unrealistic assumptions in the literature. Clear definitions for flexibility services are rarely provided, indicating that there are currently no well-defined standardised flexibility products available. A similar concern was highlighted in the quantification section of this thesis, where an excessive number of quantification parameters were observed, underscoring the need for standardised flexibility products that would outline the outcome parameters for quantifying flexibility to enable its sale as realistic products.
	In [86], a decentralised LFM design that was introduced that accounts for demand uncertainty alongside a right-to-use (RtU) option, enabling the DSO to reserve flexibility that can be activated in real-time to address potential congestion with medium likelihood. A study in [87] explored an LFM design that enables the provision of various flexibility services at the distribution network level. In this proposed framework, the aggregator facilitates flexibility trading within the local energy community, functioning as a local market operator. An assessment of twenty-three distinct European LFM design proposals for congestion management was conducted in [88]. The findings revealed that the majority of these market design proposals do not fulfil the criteria of a “market”; furthermore, the definitions of products, contract lengths, market clearing processes, and matching methods showed significant variation across different designs.
	A novel concept of peer-to-peer (P2P) trading has emerged recently [89]. The concept of P2P trading enables peers (prosumers and consumers) to exchange energy directly. This promotes the local use of surplus renewable energy generated within the community. P2P trading can serve as a means to engage end-users in energy transactions, as opposed to traditional capacity and balancing markets, which impose minimum capacity requirements. However, there is no agreement on the optimal market design, such as trading methods, clearing processes, regulatory mechanisms, or business models that P2P trading should adopt.
	Research has identified essential components and strategies in P2P energy trading by creating a three-dimensional system framework [90]. The first dimension focuses on enabling the seamless exchange of information among the power grid layer, ICT layer, control layer, and business layer. The second dimension takes into account the size of the participants, which includes premises, microgrids, cells, and regions. In the third dimension, the temporal aspect of P2P trading is represented through the processes of bidding, exchanging energy, and settling transactions.
	There have been several real-life demonstration projects related to P2P trading [91], including EnerChain, Electron [92], Piclo [93], SonnenCommunity [94], and Vandebron [95]. An overview of these and additional P2P initiatives can be found in [96], [97], and [98]. A trading platform named “Elecbay” was developed in [90] to support P2P trading within a grid-connected LV microgrid. That study indicated that a greater variety of energy consumers and prosumers can enhance the balance of local generation and consumption. 
	In [99], three types of P2P market designs were suggested: bill sharing, mid-market rate, and auction-based pricing methods. It was determined that with moderate PV penetration, P2P trading could lead to a cost reduction of approximately 30% for end-users. According to another study [100], P2P trading achieved savings of 16%, and when combined with either centralised or decentralised battery storage, it resulted in savings of 24% and 31%, respectively.
	The study in [98] examined three distinct designs for P2P markets: a complete P2P market design in which peers engage in direct trade with one another; a community-based market design that involves a community manager facilitating inter-community trading and acting as an intermediary between the community and the broader system; and a hybrid P2P design that merges the two previous approaches, establishing a hierarchy of various layers where peers trade directly within their own layer. The paper concluded that the hybrid P2P market design serves as an effective compromise, offering appropriate scalability while allowing for P2P interactions.
	A hierarchical framework is proposed in [101] that facilitates peer-to-peer (P2P) trading through smart contracts based on blockchain technology across residential, commercial, and industrial domains. It is observed that scalability presents a challenge for the execution of P2P trading. To tackle the scalability issue, the authors of [102] suggested a dynamic allocation of P2P clusters that optimally aligns various load and renewable profiles that can enhance each other. The advantage of clustering is highlighted as the improved scalability of P2P trading with an increasing number of participants.
	A thorough review of P2P energy trading is presented in [103], highlighting key research areas as follows: (1) the architecture of trading platforms, security assessments, and scalability; (2) transaction mechanisms that utilise blockchain technology; (3) modelling participant behaviour through game theory; (4) simulations to validate the other primary subjects; (5) strategies to enhance the economic advantages for peers; and finally, (6) algorithms that integrate the aforementioned primary topics.
	An alternative business model for aggregators could involve selling surplus energy efficiency (EE) to entities that are unable to meet the legally mandated EE requirements [104]. This is necessitated by the various emissions, environmental, and energy efficiency regulations that generation stakeholders must follow. If the energy efficiency achieved through the aggregated flexibility exceeds the legally required minimum, the business model would need to monetise this surplus EE for profit. This type of demand response (DR) business approach is commonly known as “energy savings certificates (ESC)”, “energy efficiency credits (EEC)”, or “white tags” [105].
	The EU has recognised through the Internal Electricity Market Directive [106] that in the future, “market participants engaged in aggregation are likely to play an important role as intermediaries between customer groups and the market”. Consequently, they have established various regulatory guidelines [74], [106], [107] to motivate Member States to eliminate discriminatory provisions and obstacles concerning aggregators’ access to electricity markets and their involvement in ancillary services. Nonetheless, it is the responsibility of each individual Member State to “choose the appropriate implementation model and approach to governance for independent aggregation while respecting the general principles set out in this Directive” [106].
	The Clean Energy for All Europeans Package [107], issued in 2019, established new regulations aimed at creating a more flexible and market-driven EU electricity market that can accommodate a more significant proportion of renewable energy sources. While it does not mandate that Member States actively support aggregation business models, the package instead focuses on ensuring fair market conditions for aggregators, with the expectation that once a “levelled playing field” is established, innovative products and services will emerge [108].
	The survey [109] carried out by the European Network of Transmission System Operators for Electricity (ENTSO-E) regarding the procurement of ancillary services and the design of electricity balancing markets reveals significant variances in market designs across European countries. These disparities could be attributed to the historical development of markets in these countries or arise from the mix of electricity generation; some countries rely on fewer large, traditionally centralised producers, while others utilise a more significant share of renewable energy in a decentralised approach.
	Due to varying market designs, the obstacles for aggregators to enter the markets differ by country. The challenges for aggregators in Denmark, France, Germany, and the UK were evaluated in [110]. Similarly, the hurdles in Austria, Germany, and the Netherlands were examined in [111], and the authors of [112] investigated the Belgian, Finnish, French, and UK market barriers. Barriers preventing participation in ancillary services within the U.S. electricity markets were also analysed in [113]. The general obstacles that deter customers from participating in demand response programs are discussed in [114].
	A modular framework was created in [142] to evaluate the obstacles faced by distributed energy resources (DERs) in primary and secondary reserve markets. This framework is organised into three hierarchical modules, with the first having a more significant influence than the second, which in turn influences the third the most. The first module addresses “rules regarding the aggregation of DERs”, which include technical biases against combined resources, interoperability between DSOs, and levels of aggregation. The second module covers barriers from “rules defining the products in the market”, such as minimum bidding requirements, product time definitions, proximity to real-time reservations, and product symmetry. The challenges in the third module arise from “rules defining the payment scheme for grid services”, which involve the payment type and additional incentives for flexibility.
	The research discussed in [110] was further developed by the authors of [111] and [112] who introduced their models to categorise the obstacles faced by DER aggregators. According to the framework established in [111], barriers that prevent aggregators from participating in the electricity market can primarily be divided into two categories: those related to market access and those related to auction configuration. Market access barriers encompass formal access requirements, administrative elements, and technical prequalification criteria, whereas auction configuration barriers consist of bid-related specifications, time-related factors, and remuneration issues. The framework presented in [112] classifies barriers into three types: regulatory, technical, and economic.
	According to [110], to encourage aggregator participation, the rule changes should involve lowering the minimum bid size, adopting a more adaptable definition of the delivery period, conducting auctions daily, and allowing the delivery of asymmetrical products. Research of [111] indicates that flexible pooling conditions, increased bidding frequency, improved product resolution, and the acceptance of non-precontracted bids could facilitate the integration of DERs into the market. Additionally, the authors of [112] suggest that the minimum bid size, bid symmetry, and product resolution significantly influence aggregator income.
	Building on previous researchers’ work, the barriers aggregators face are categorised in this thesis into four categories: those related to the regulatory framework, market conditions, economic challenges, and the technological aspects of aggregation. A summary of these barriers is provided in Figure 2.4.
	The regulatory framework barriers include restrictive rules prohibiting or hindering aggregators’ operations. The organisations that create these regulations may consist of government bodies, regulatory agencies, TSOs, and other entities with authoritative power. Examples illustrating the origins of regulatory framework barriers may include:
	 Explicit discrimination against aggregated resources: Some rules may explicitly favour certain players, like large industrial participants, disadvantaging aggregated resources. TSOs and DSOs might also prefer players connected to their specific grid region; however, aggregated resources can include units from various parts of the grid.  
	 Inadequate definition of clear roles and responsibilities for market actors: The insufficient clarity in defining the roles and responsibilities of market participants is a significant obstacle across Europe, as it restricts free-market competition, raises risks for all involved, and can lead to the violation of consumer rights [115].
	 Prequalification requirements: Balancing service providers must meet specific prequalification criteria to confirm that their systems can technically supply the necessary products. Guidelines should be established to facilitate the aggregation of DERs; otherwise, aggregators will have to prequalify every unit in their portfolio, undermining the purpose of aggregation, which relies on the combined strength of smaller resources.  
	 Portfolio requirements: Rules might be implemented to regulate the unit mix of aggregators’ portfolios. For instance, there could be requirements regarding the proportion of relatively uncertain sources such as VREs and flexible loads compared to more reliable sources like battery storage and traditional generation or demand.  
	 Additional agreements: Aggregators might need to secure authorisation from other market players. For example, the consent of a large consumer’s energy supplier or the BRP might be necessary [111].
	Market aspect barriers are challenges that arise from the market side when an aggregator aims to offer flexible resources.  
	 Lack of specific products for flexibility service: The guidelines for LFMs remain undefined, which currently prevents aggregators from tapping into this revenue source.
	 Incompatible product definitions of traditional services: Traditional balancing product specifications were designed with conventional generation in mind. Certain specifications significantly hinder the development of flexibility aggregators; for example, the minimum bid size in many market structures is too large for smaller aggregators to meet. The requirement for bid symmetry limits the usable flexibility resources, as flexible load-oriented demand response aggregators typically have greater potential for downward regulation. Other factors that may influence the ability of aggregators to offer flexible resources include timing considerations, such as notification period, delivery time, and delivery length.  
	 Market bidding and clearing frequency: In balancing markets, the frequency of bidding and clearing directly impacts how long flexible resources must be reserved if they need to be activated. If this frequency is low, it complicates aggregators’ ability to accurately predict their available resources in advance, which diminishes their confidence in participating in these balancing markets [115].
	Economic barriers refer to obstacles that affect the profitability of aggregation. Some of these include:  
	 Initial investment costs: In contrast to traditional plants, where expenses are clearly defined, the costs associated with aggregation are not as easily understood. Residential flexibility aggregators face technical expenses related to the installation of smart meters and communication and control technologies, which can lead to significant initial investment costs. The minimum bid size of 10 MW or greater adds to this concern, as aggregators must engage a substantial number of residential customers in their portfolio before they can participate in the market and have a chance for financial returns.
	 Inadequate subsidisation: Peaking power plants compete directly with aggregated services. Providing subsidies to these plants can create an uneven playing field since they are already well-established. Instead, the encouragement of largely untapped energy flexibility resources offered by aggregators should receive subsidies.
	 High penalisation: Maintaining a balance between production and consumption is crucial for system reliability, so there should be penalties for non-delivery. However, these penalties should not be excessively high to exclude aggregated resources from markets.
	Technological implementation barriers refer to the challenges aggregators face when carrying out aggregation. 
	 Lacking ICT infrastructure: The successful technological implementation of aggregation depends on having sufficient ICT infrastructure. These barriers can be broadly categorised into sensing-related, computing-related, and communication-related issues [116]. Comprehensive metering and data collection are vital for assessing the availability and predicting flexible resources. Therefore, a high penetration rate of smart meters is critical for successful aggregation. Managing substantial data volumes also incurs high computational costs, necessitating powerful servers. Additionally, the communication aspect must prioritise ensuring data security and privacy.
	 Lack of widespread “Smart Grid Ready” devices: Home appliances must be controllable via a data connection for the aggregation of residential energy flexibility. Although the number of smart devices is on the rise, a significant obstacle is the lack of standardised software needed to connect and manage SG-ready devices.
	 Interoperability among DSOs: The technological implementation is also complex from the grid perspective, as the aggregator’s portfolio may include units from different regions managed by different DSOs. This is particularly important for electric vehicles (EVs) that may transition from one DSO’s region to another within the same day [110].
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	Figure 2.4. Summary of barriers faced by aggregators.
	The state-of-the-art review highlights the growing importance of energy flexibility as a cornerstone of modern energy systems, driven by the increasing penetration of variable renewable energy sources and the need for improved grid stability. This chapter explored the critical dimensions of energy flexibility, including its definitions, sources, aggregation, and challenges, while emphasising its role in transitioning toward sustainable and efficient energy systems.
	The analysis of existing sources of energy flexibility has shown that residential flexible loads, distributed battery storage systems, and electric vehicles offer unique opportunities and challenges. Although flexible loads and batteries can deliver significant flexibility, their activation is limited by physical and operational constraints. Electric vehicles add further complexity because of their mobility and unpredictable availability. Aggregating these resources is essential to facilitating substantial engagement in energy markets; however, obstacles like communication infrastructure, market design, and regulatory issues continue to exist.
	While the potential benefits of energy flexibility are clear, this review also acknowledges the barriers and challenges aggregators face. These include the technical complexities of integrating diverse flexible loads, regulatory constraints, and market dynamics. Emerging markets for energy flexibility offer promising opportunities, yet they require robust frameworks and technological advancements to fully realise their potential.
	In conclusion, this chapter’s review establishes a foundation for analysing existing quantification methods and identifying their shortcomings, which will be discussed in the next chapter.
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	To successfully incorporate demand-side flexibility into energy systems, suitable quantification methods are necessary. This chapter provides an analysis of current approaches for quantification, emphasising their advantages and drawbacks. The discussion delves into how various quantification frameworks – spanning from single-value metrics to more intricate models – represent the dynamic characteristics of flexibility. Special emphasis is placed on the impact of asymmetry and non-linearity in existing methodologies, setting the development of a more robust quantification method in the following chapter.
	A brief summary of methods and frameworks for quantifying energy flexibility is provided in Table 3.1. The evaluation encompasses the parameters, metrics, and indices used in flexibility quantification. Flexibility quantification methods can generally be classified based on whether they assess flexibility as a single value or as a curve or region that illustrates the relationship between two or more variables, as well as whether symmetry or linearity is taken into account. It was observed that when flexibility is assessed using a singular value, it is usually measured in relation to flexible power or energy values [25], [117], or temporal factors such as the duration that consumption can be altered [118], or in a more conceptual way through flexibility indices that, for instance, indicate flexibility’s capability for load covering, shifting, and scheduling [24]. Conversely, when a curve is employed, it establishes a correlation between two parameters, such as flexible energy and activation cost [23]. More sophisticated methods define flexibility as a region or domain of workable operations considering factors like network constraints, ramp rates, and others [119].
	Another key element is whether the method of quantification recognises flexibility as a non-linear and asymmetrical resource. The concept of “asymmetry” refers to the disparity in the capacity to increase or decrease demand. In this context, the coincidence factor plays a crucial role for loads. For example, electric water heaters exhibit a low coincidence factor, indicating that only a small portion is in use at any one time. Therefore, there are many more water heaters that could be activated to boost demand, unlike the limited number of devices available to lower demand. The same principle applies to battery systems, which are not consistently at a 50% state-of-charge to provide equal up- and downregulation capabilities. Thus, when assessing the flexibility of an entire portfolio, it becomes evident that there are unequal levels of flexibility available to increase or decrease demand. It is vital for quantification methods to consider the asymmetry of flexibility, as some markets necessitate symmetrical bids, even though the sources of flexibility are often not symmetrical.
	Linearity refers to the existence of a linear connection between two or more variables; for instance, the relationship between power and the duration for which flexibility can be enabled. A consideration of the non-linear nature of flexibility is crucial for providing an accurate estimate of flexibility, as there may be a non-linear correlation between power and duration, power and cost factors, etc. The flexibility envelope approach outlined in [120] considers the asymmetry by offering envelopes for both upward and downward regulation. The cost curves method discussed in [23] takes into account both asymmetry and non-linearity by depicting flexibility as the connection between available flexible energy and the associated costs, represented as a curve for both demand increases and decreases. According to the literature review, there is a shortage of quantification methods that address both the asymmetry and non-linearity of energy flexibility. Hence, this thesis proposes a novel quantification method that assesses the relationship between flexible power and energy with respect to the duration of its activation while factoring in the asymmetrical nature of non-linearity.
	Table 3.1. Overview of quantification methods for energy flexibility.
	Considers asymmetry, non-linearity
	Flexibility quantified using a single value, curve, or a region
	Quantification parameters, metrics, indices
	Case study
	Short description
	Ref.
	Asymmetry
	Single value
	Indices of self-consumption, storage capacity, storage efficiency
	One building with heat pump, PV system, EV, and BESS
	A unified framework is proposed for capturing the DR potential of thermal and electrical systems
	[25]
	No
	Single value
	Indices related to load covering, shifting, scheduling, moderate regulation, and fast regulation
	Office building with HVAC, dimmable lighting, EV charging
	A quantification methodology for five energy flexibility indices is proposed
	[24]
	No
	Single value
	Power and energy capacity, State of Charge, self-discharge rate
	Office and apartment building ventilation systems
	A methodology that models flexible resources as a virtual energy storage system
	[121]
	No
	Single value
	Flexible power
	Aggregated HVACs, pool pumps, electric water heaters
	The proposed model schedules a set of appliances and calculates the aggregated flexibility according to the energy and flexibility prices
	[117]
	Asymmetry and non-linearity
	Curve
	Flexible energy and its related cost
	Office building HVAC
	A methodology for computing the flexibility of buildings using cost curves
	[23]
	Asymmetry and non-linearity
	Region
	PQ chart of a flexible operating region
	Distributed network consisting of a BESS, load, and a generator
	A framework to model and characterise DER flexibility using the concept of nodal operating envelope under network constraints, ramping rate, cost, etc.
	[119]
	Asymmetry
	Region
	Flexible power and energy
	Wet appliances, domestic hot water buffers and EVs
	A methodology based on determining the flexibility envelopes of two boundaries conditions when loads are activated either as early or as late in the day as possible
	[120]
	Asymmetry and non-linearity
	Curve
	Flexible power and energy, duration of activation
	Aggregated residential heat pumps
	The proposed method quantifies energy flexibility as a power-duration curve
	This thesis
	The flexibility envelope concept is proposed in [122] to quantify energy flexibility. This method involves determining the two extreme scenarios of operation when demand is shifted to either as early as possible or as late as possible. The methodology for quantifying flexibility is depicted in Figure 3.1, where flexibility is employed to (a) increase or (b) decrease power consumption.
	The lines 𝐸max and 𝐸min represent upper and lower energy boundaries that illustrate the two extreme scenarios. The upper energy boundary is determined when all flexible devices are set to consume as early and as much as possible. This results in high power consumption until user comfort and system constraints are reached, such as when the room temperature hits a specified upper limit, and the heating is turned off, or schedulable appliances like washing machines complete their cycle and do not need to be turned on again for a while. Similarly, the lower energy boundary is achieved when all devices are programmed to consume as late and as little as possible. In this case, the operation of devices is delayed until lower constraints are reached, for example, when the domestic water heater becomes too cold, or the latest deadline for the dishwasher to turn on is reached.
	/
	Figure 3.1. Concept of the envelope quantification method: (a) flexible increase and (b) flexible decrease in power consumption.
	The limitations of this approach include its assumption that the system’s starting and ending conditions are predefined. Additionally, it has been noted in [122] that this quantitative method primarily indicates potential flexibility rather than serving as a tool for scheduling or calculating the rebound effect.
	The quantification method was employed in [123] to quantify a home's flexibility using a rule-based controller and model predictive controller with cost-oriented, emissions-oriented, and flexibility-oriented objectives.
	The flexibility envelopes were developed further in [124] to encompass non-intrusive load monitoring (NILM) for disaggregation of shiftable appliances from overall energy consumption. The study findings showed that the NILM integrated quantification method accurately identified 90% of the available energy flexibility. The overall characterisation of energy flexibility was enhanced by 40%.
	A framework is introduced in [125] to model, describe, characterise, and quantify the flexibility of distributed energy resources (DER) based on a nodal operating envelope (NOE). The NOE outlines the possible operating region of a device or system under various constraints, which allows this quantification method to assess network-compliant energy flexibility, unlike other methods that often overlook network limitations. Utilising this framework, the main flexibility metrics – capacity, ramp, duration, and cost – are evaluated using features related to capability, feasibility, ramp, duration, economics, technical aspects, and commercial factors. These flexibility features are represented in an active-reactive power space (PQ-space). The total flexibility is calculated using Minkowski summation across the individual DER P-Q regions.
	/
	Figure 3.2. Nodal operating envelopes in PQ plane (capability – the combination of red and blue regions, feasibility – blue region in NOE figure) [125]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web verions of this article).
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	Figure 3.3. Ramping flexibility (OP – operational point, C – capability region, F – feasibility region, RFE – ramping flexibility envelope, τ – ramp time) [125].
	This approach differentiates between virtual and physical flexibility. Virtual flexibility refers to the capability operation region of the DER to deliver flexibility without being limited by network constraints encountered in actual implementation. Physical flexibility, on the other hand, is the feasibility operation region that results when the capability region is restricted by network and other constraints, as illustrated in Figure 3.2.
	Various techno-economic aspects of distributed energy resource aggregation (DERA) flexibility can be measured as potential operating zones by utilising other nodal operating areas. For instance, the ramping flexibility can be quantified with contours on these regions that display the maximum active and reactive power that can be utilised depending on the needed ramp rate, as illustrated in Figure 3.3.
	These envelopes can also be designed to quantify additional features of flexibility. Duration flexibility indicates how long the activation of flexibility can be maintained. Economic flexibility refers to the costs associated with activating flexibility for a given timeframe. Technical flexibility involves the capacity to alter the current operational state concerning time and duration limitations. Finally, commercial flexibility is essential for engaging in the market while considering the techno-economic factors of time, service duration, and expected clearing prices. Example envelopes illustrating these flexibility traits can be found in [125].
	In various studies, a consistent approach to quantifying energy flexibility is frequently absent. Rather, flexibility is assessed through a variety of different parameters that describe electrical, temporal, comfort, and cost aspects. The parameters utilised to measure energy flexibility are outlined in Table 3.2. It has been noted that flexibility can be measured across three primary dimensions: power [kW], energy [kWh], and time [h]. Depending on the specific application or context, these dimensions may illustrate entirely different attributes; for instance, both duration and regeneration time are considered time-related factors.
	 The power dimension refers to the power capacity [kW] of flexible loads. This is the primary factor for flexibility sources that have power regulation features, like adjustable lighting. Parameters related to power dimension identified in the literature include instantaneous power flexibility, maximum power, mean power, maximal charging power, and power capacity.
	 The energy [kWh] dimension is the primary factor for loads that can be stored or flexible loads that can be shifted in volume. Various energy parameters identified in the literature include shiftable energy, energy reduction, energy capacity, storage capacity, and available storage capacity.
	 The dimension of time [h] is crucial for measuring flexible loads that can be scheduled or have a variable profile. For instance, the start and end times of the washing machine, along with the length of its operational cycle. The literature includes various time characteristics, including duration, comfort capacity, regeneration time, comfort recovery, maximum curtailment duration, and availability period.
	In addition to the primary three dimensions for measuring flexibility, there are various other methods to quantify flexibility using combined, relative, or alternative approaches.  
	 Combined parameters seek to quantify flexibility based on two variables, such as the power shifting capability that illustrates the relationship between the shiftable power and the time length it can be shifted, or a cost curve that represents the volume of shiftable energy along with its related costs.
	 Relative parameters quantify flexibility as a ratio of two characteristics: self-consumption, which indicates the percentage of demand met by onsite generation, or storage efficiency; relative peak reduction; demand response potential; and the state of charge (SOC) of batteries.
	 Relative parameters quantify flexibility as a ratio of two characteristics, these are self-consumption, which is the proportion of demand covered by onsite generation or storage efficiency, relative peak reduction, demand response (DR) potential, and battery SOC.
	 Other parameters identified in the literature include those that do not fall into any of the above mentioned categories, such as coefficient of variation of power, ramping rate, frequency of operation, consistency of operation, peak time operation and a score indicating the flexibility of a system on a scale from 0 to 1.
	Table 3.2. Flexibility quantification parameters in the literature.
	* Own descriptions based on the context of the work since the definitions were not provided in those publications
	For aggregators to engage in flexibility markets, they must evaluate the resources within their portfolio, specifically the available aggregated energy flexibility. Considering that contracts in flexibility markets are established prior to the actual delivery date, aggregators need to determine the volume of flexibility they can provide and which flexibility requests to bid on by forecasting the available flexibility in the future while accounting for reasonable uncertainty. However, forecasting flexibility is a complex endeavour, as it is affected by customer behaviour, consumption trends, weather conditions, and other influencing factors, making precise modelling challenging. Artificial intelligence (AI) is increasingly being incorporated into the management of power systems to improve the accuracy of forecasting and optimise flexibility. Recent studies [Paper V] have shown that predictive models powered by AI enhance demand response, load forecasting, and the management of distributed energy resources, thereby becoming essential tools for aggregators overseeing flexibility resources. To avoid facing penalties for failing to deliver the appropriate amount of contracted flexibility, aggregators also need to predict how customers will respond to flexibility activation signals (such as price signals) to ensure that the correct volume of flexibility is indeed activated. 
	There are limited publications available that focus specifically on forecasting residential demand-side energy flexibility. The majority of research appears to concentrate more on load forecasting [136], [137], [138], [139], which does not directly equate to flexibility forecasting. The flexibility of data centres that participate in demand response initiatives is assessed in [140]. The flexibility associated with virtual power plants is forecasted through the application of machine learning techniques in [141]. The potential for flexibility in demand response within the industrial sector is analysed in [142]. Load forecasting related to industrial machinery is addressed in [143]. A general assessment of flexibility potential is investigated using long-term historical data in [122], [144], [145] or through surveys gauging customer readiness to engage in demand response programs in [146], [147].
	According to [136], having smart meter coverage of just 5% is sufficient to generate data for accurately forecasting the flexibility of a group of aggregated customers. Additionally, predicting the flexibility profile of an aggregated group is significantly easier than forecasting the flexibility of individual customers because of their stochastic nature [136], [148], [124]. 
	An overview of the studies concentrated on flexibility forecasting is provided in Table 3.3, where they are categorised by the type of forecasting model used: 
	 Deterministic models operate under the assumption of certainty in the input parameters, which means they rarely provide uncertainty assessments in their predictions.  
	 In probabilistic models, the objective of forecasting is to represent the distribution of potential available flexibility rather than to predict a specific value, inherently incorporating prediction uncertainty.  
	 Machine learning models are utilised to analyse customer behaviour during demand response and regular operations to assess the potentially available flexibility.
	In existing research, various approaches have been employed for predicting flexibility, corresponding to the initial two checkmark columns on the left in Table 3.3. For instance, some studies focus on predicting flexibility based on a price signal, framing the forecasting question as “What price incentive should be provided for certain hours ahead to achieve the required amount of flexibility?” rather than “How much flexibility will be available during specific hours in the future?”. Research utilising this method frequently views forecasting as an optimisation challenge and often includes finding an optimal schedule for devices.
	Other approaches discussed in the literature aim to predict flexibility through real-time simulations [149] or using historical data. Studies that employ this technique typically seek to gather insights regarding both controllable and uncontrollable loads from previously recorded measurements. The forecasting of flexibility related to shiftable loads (like washing machines, tumble dryers, and dishwashers) as well as thermostatically controlled loads (including domestic water heaters, space heating, and HVAC systems) is most frequently addressed in the literature. In contrast, forecasts related to storable loads, such as battery storage and residential electric vehicles, are infrequently found in existing studies.
	Table 3.3. Flexibility forecasting models used in the literature.
	This chapter offers an analysis of existing methods for quantifying demand-side energy flexibility, noting both their strengths and weaknesses. Energy flexibility is a dynamic concept that encompasses adjusting energy consumption or generation in response to external signals, such as market prices or grid demands. The reviewed literature highlights the need for proper quantification methods. 
	Existing approaches often oversimplify flexibility's complex and dynamic nature by relying on static or single-value metrics. Significant progress has been made with the development of flexible envelopes and nodal operating envelopes. These limitations highlight the need for more advanced methodologies, such as power-duration curves, which better capture flexible loads’ non-linear and time-dependent behaviours. Characterising rebound effects and their implications for energy savings and grid stability introduces a critical dimension frequently overlooked in traditional models.
	The review also examined the role of flexibility forecasting. Accurately predicting available flexibility is crucial for integrating demand-side flexibility into energy markets. However, the literature review revealed a notable lack of publications in this field.
	In summary, this chapter highlighted the limitations of existing quantification methods and emphasised the need for a new approach that tackles the asymmetry and non-linearity of flexibility. These insights provide the grounds for the development of a power-duration curve method, which will be presented in the next chapter as a more thorough and practical tool for quantifying energy flexibility.
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	Building upon the insights gained in the previous chapter, this chapter introduces a novel approach to quantifying energy flexibility using power-duration curves [Paper I]. The proposed method addresses key challenges in flexibility assessment, particularly the non-linear and asymmetric nature of flexible loads. By mapping the relationship between power and duration, this approach provides a more accurate and practical representation of energy flexibility, which can be applied to various flexible loads such as space heating, electric water heaters, and battery storage systems and various markets such as reserve or day-ahead markets.
	Energy flexibility can be perceived as a resource that can be used and replenished. It is utilised through demand response and then restored during the subsequent rebound effect. Figure 4.1 illustrates how various power levels and durations can decrease demand using aggregated energy flexibility. When the maximum power of a specific portfolio is utilised, it leads to the most significant decrease in demand but can only be maintained for a short period. Conversely, a modest activation produces the opposite effect. This offers insights into how energy flexibility functions as a resource – the more it is utilised, the faster it is exhausted. To quantify aggregated energy flexibility, this thesis proposes a new approach. The approach focuses on mapping a curve that describes the relationship between the power and duration of potential flexibility activations.
	Aggregators might obtain a more comprehensive picture of their energy flexibility resources by employing this quantifying technique. This approach is adaptable, allowing aggregators to participate in a variety of energy markets, each with its own requirements regarding both the amount and the duration of deliveries. For example, only need to activate their flexibility for a maximum of fifteen minutes in reserve markets, but activations for day-ahead wholesale markets might extend over several hours. It is apparent that for long-duration wholesale market activations, the aggregator would not be able to maintain the same high-power activations as in the case of the reserve market.
	/
	Figure 4.1. Illustration of flexibility activations at different power levels.
	Figure 4.2 presents an outline of the proposed quantification method. The first step involves importing relevant data that impacts the usage of flexible devices. For space heating, meteorological data such as outdoor ambient temperature and solar irradiance forecasts influence the demand for heating energy. As for other flexible devices like electric water heating units, the hot water usage profile needs to be imported.
	In the second step, it is crucial to choose a suitable model for each type of device and determine its parameters. Modelling the behaviour of devices is important to ensure that the appliances remain within the comfort boundaries set by consumers when the flexibility is activated. Thermostatically controlled loads (TCLs), such as a building’s heating system or a EWH unit, can be modelled using a thermal resistive-capacitive model.
	The third step involves modelling the appliance’s business-as-usual (BaU) operation case to determine the electrical demand profile under normal operation without flexible activation. This step can be considered part of the baseline estimation in the quantification process.
	In the fourth step, potential flexibility can be quantified based on the demand profiles determined in the previous step, the models of flexible devices, and the state of each flexible device within their comfort ranges. This involves simulating flexibility activations of devices at each time step, meaning turning devices on/off until the comfort boundaries are reached.
	In the final, fifth step, the power-duration curves can be constructed by knowing the devices’ power and the duration that the flexibility can be activated.
	/
	Figure 4.2. The quantification process of the proposed method.
	It is crucial to accurately model a building’s thermal behaviour in order to quantify a heating system’s energy flexibility. This is necessary because indoor temperature must always remain within the comfort range of the occupants. As a result, the energy required for heating can vary from building to building, taking into account the building’s thermal insulation and thermal mass. Some need more energy for heating, while others can go for extended periods with the heating turned off.
	This study used a Resistive-Capacitive (RC) model to model buildings’ thermal behaviour. Unlike more detailed white-box models, the RC model is a grey-box model that approximates building parameters related to their thermal dynamics. Similar to electrical circuits with resistors and capacitors, the thermal RC model incorporates different building components’ thermal capacitances and resistances (U-values).
	The 3R2C thermal model used in the study consists of three thermal resistors and two thermal capacitors. It considers the building envelope (external walls), the windows, and the internal thermal mass (interior walls, furniture, and air) as the three primary components of a building.
	Figure 4.3 shows the simplified thermal network design applied in this work. It shows that the outdoor temperature 𝑇𝑜𝑢𝑡 affects the indoor temperature 𝑇𝑖𝑛 through both the building envelope and the windows. Additionally, it assumes that the solar effect only impacts the indoor temperature through the windows. The study also assumes that the indoor temperature remains uniform throughout the building. The inputs, outputs, and parameters of the thermal RC model are shown in Table 4.1.
	/
	Figure 4.3. RC thermal networks of a building.
	Table 4.1. Description of Thermal Network Parameters.
	The generic heat-balance equation (3.1) can be used to create a first-order differential equation for each node 𝑛 in a thermal system with N elements:
	(4.1)
	where 𝐶𝑛 and 𝑇𝑛 represent the thermal capacitance and the temperature of node 𝑛, respectively, 𝑅𝑖 represents the thermal resistance between two connected nodes 𝑖 and 𝑛, and Φ𝑛 represents the total heat fluxes applied to node 𝑛 [167].
	Equation (4.1) illustrates how the number of components taken into account can affect the complexity of a thermal RC model. By combining elements from several architectural components – such as the roof, the construction of exterior and interior walls, and insulating layers – a more comprehensive model may be produced. In essence, therefore, RC thermal networks are models that can consist of different arrangements of resistors and capacitors that represent various architectural components.
	The differential equations describing the temperature of the interior mass (4.2) and the envelope (4.3) of a building may be obtained by applying the heat-balance equation (4.1) to the thermal RC network structure shown in Figure 4.3.
	Converting the above differential equations into difference equations (4.4) and (4.5) allows modelling of building’s thermal behaviour for each timestep.
	The thermal behaviour of buildings is affected by different factors such as their size, insulation level, construction materials, window-to-wall ratio, number of inner walls, and more. Since these factors vary from building to building, it’s important to simulate various types of buildings when studying aggregated energy flexibility. However, estimating the parameters of an RC model for a specific building is a complex process. To the best knowledge of the author, there is no publicly available database that includes the necessary number of actual building thermal network parameters for simulating aggregated control.
	Therefore, it is necessary to generate these parameters based on existing guidelines. From Table 4.1, it can be seen that six different parameters for each building need to be determined to model its thermal behaviour. Table 4.2 provides typical thermal network values for residential buildings categorised by weight class. The range of values for typical building envelopes was determined in [168] through a first-principles analysis of various building construction materials. The standard ISO 52016-1:2017 [169] presents typical values for the inner thermal mass of buildings. The weight class of a building describes its construction materials. For example, the exterior walls of lightweight buildings consist of stucco, insulation, and plaster/gypsum. Medium-weight buildings use brick, air space, insulation, and gypsum, while heavy-weight buildings use brick, heavyweight concrete, insulation, and gypsum. We assumed that the thermal resistance of windows corresponds to that of typical double-glazed windows, while the thermal capacitance of windows is considered negligible.
	Table 4.2. Typical thermal network parameters for different types of residential buildings.
	In order to accurately quantify the energy flexibility of electric water heaters (EWHs), it is necessary to develop a model that captures their thermal behaviour. This approach guarantees that the consumer’s comfort is maintained even during flexible operation. It is essential that the hot water temperature stays within the specific ranges mandated by the homeowners to ensure their comfort and willingness to participate in demand response programs.
	The thermal behaviour of EWHs was modelled using an RC-thermal network. This grey-box model loosely incorporates the parameters related to EHWs’ thermal dynamics. Thermal RC models are analogous to electrical circuits with resistors and capacitors, which, in this case, represent the thermal resistance and thermal capacitance of different water tank elements.
	In this thesis, a simple 1R1C model consisting of one thermal resistor and one thermal capacitor was considered. This simple model assumes that the water temperature inside the tank is homogeneous. Figure 4.4 illustrates the EHW model. The convective loss through the shell of the EWH is modelled using a resistor, and the thermal mass of the water inside the EWH is modelled using a capacitor. A current source is used to model the heating power, and a current sink is used to represent the thermal loss through hot water drainage, which is replaced by colder tap water.
	/
	Figure 4.4. Thermal network model of EWHs.
	The generic heat-balance equation (4.6) can be used to create a first-order differential equation for each node 𝑛 in a thermal system with N elements:
	(4.6)
	where 𝐶𝑛 and 𝑇𝑛 represent the thermal capacitance and the temperature of node 𝑛, respectively, 𝑅𝑖 represents the thermal resistance between two connected nodes 𝑖 and 𝑛, and Φ𝑛 represents the total heat fluxes applied to node 𝑛.
	The heat-balance equation can be applied to the thermal network in Figure 4.4 to derive the difference equation (4.7) that describes the water temperature of EWHs. 
	(4.7)
	where the positive heat flux from electric heating that increases the water temperature is 𝑄ℎ𝑒𝑎𝑡(𝑡)=P𝐸𝑊𝐻𝑡. The electrical heating power was assumed to scale with the tank’s size, starting from 1.5 kW to 2.5 kW in 0.5 kW steps.
	The negative heat flux from hot water drainage (4.8) that reduces the water temperature is:
	
	where the volume of water being replaced in the tank is 𝑉𝑓𝑙𝑜𝑤𝑡, the specific heat capacity of water is 𝐶𝑝, the volume of the water tank is 𝑉𝐸𝑊𝐻, and the temperature of inflow water is 𝑇𝑖𝑛𝑓𝑙𝑜𝑤𝑡. 
	The thermal mass of EWH units is dependent on the size of the water tanks. A total of 1000 EWH units were modelled with varying sizes of 50 L to 200 L capacity with 50 L step (250 EWH units for each step). The specific heat capacity of water was assumed to be 4182 J/(kg ∙ °C). The inflow water temperature was assumed to be 15 °C. The hot water usage data was generated for each EWH using DHWCALC software that samples from statistical distributions derived from real-world measurements of residential hot water consumption [170].
	Table 4.3. Model parameters of EWHs.
	/
	Figure 4.5. Water temperature of one simulated EHW.
	The negative heat flux from convective loss through the shell (4.9) that reduces the water temperature is:
	(4.9)
	where the insulation of the shell is given with a U-value, the area of the shell is 𝐴, and the ambient room air temperature is 𝑇𝑎(𝑡). The U-value was taken as 0.66 WK−1m−2 that is typical for water tanks [171], and the water tank surface area was assumed to be of cylindrical shape. The room ambient temperature was assumed to be 20 °C. The parameters of the EWH model are summarised in Table 4.3.
	The Business-as-Usual (BaU) operation of EWH was modelled as a typical hysteresis on-off control that turned the heating on when the temperature dropped 1 degree below the setpoint and turned the heating off when the temperature rose 1 degree above the setpoint. The water temperature set points were sampled from 60 to 75 °C, with 5 °C steps to accommodate different consumer requirements. Using the model described above, the BaU operation of EWHs was simulated. An example of the water temperature trajectory of one simulated EHW is shown in Figure 4.5. It can be seen that during the morning hours, there are two large drops in the temperature when people often shower and multiple smaller drops throughout the day from faucet usage. The aggregated electricity demand of 1000 EWHs is shown in Figure 4.6.
	/
	Figure 4.6. Aggregated electricity demand of 1000 simulated EHWs.
	Local on-site battery energy storage systems (BESS) are bound to become another important source of energy flexibility in future residential buildings. BESS are usually not installed as standalone devices except for universal power supply (UPS) systems. Thus, a combination of 1000 PV and BESS systems were modelled. 
	A rule-based controller was used for the BaU operation of the BESS system. The BaU algorithm works by storing the excess PV energy during a surplus time when solar generation is higher than consumption until the state-of-the-charge (SOC) of the battery reaches 100%, after which the excess PV power is exported. The release of energy happens during the solar deficit time when consumption is higher than PV production until the SOC reaches 20%, after which the deficit energy is imported. This is a typical residential PV and BESS system control which regulates BESS usage based on the energy flows through the connection point and the BESS’s state of charge (SOC). 
	The battery systems were modelled using the typical battery energy balance equations (4.10) and (4.11).
	(4.10)
	(4.11)
	where the energy stored within the BESS is given with 𝐸𝐵𝐸𝑆𝑆(𝑡), the energy stored or withdrawn through charging or discharging are 𝐸𝐵𝐸𝑆𝑆,𝑐(𝑡) and 𝐸𝐵𝐸𝑆𝑆,𝑑(𝑡), the charging and discharging efficiencies are 𝜇𝑐 and 𝜇𝑑, and the capacity of the BESS is 𝐸𝐵𝐸𝑆𝑆,𝑚𝑎𝑥. 
	The parameters of a Tesla Powerwall 2 were used for the battery system, which has an energy capacity of 13.5 kWh, charging and discharging power of 5 kW, and charging and discharging efficiencies of 95% (round-trip efficiency of 90%).
	This simulation requires the inclusion of solar generation profiles and residential building energy demand profiles to determine when there is an excess or a deficit of solar generation. The PV generation profiles were taken from measurements of a 4.2 kW PV system located in Estonia, Tallinn, on the 1st of April 2020 [172]. The demand profiles of 1000 residential buildings were generated using the “CREST domestic electricity demand model” [173]. Figure 4.7 shows the PV production data and the generated demand profile of one of the buildings.
	/
	Figure 4.7. Consumption and PV generation data.
	This chapter introduced a new method for quantifying energy flexibility through the use of power-duration curves, offering a dynamic and scalable way to capture the key attributes of energy flexibility. The developed approach addresses the limitations of existing single-value metrics by considering the non-linear, time-dependent, and asymmetric nature of flexibility. This advancement enables a more precise representation of flexibility potential, offering valuable insights for aggregators and grid operators.
	The flexibility power-duration curve method provides a framework for quantifying flexibility in different scenarios and types of loads, such as residential heating, water heaters, and battery storage systems. By connecting flexible power capacity with the duration of activation, this method reflects the dynamic relationship between these factors, making it suitable for both short-term and long-term flexibility uses. This characteristic enhances its applicability for demand response programs, reserve markets, and balancing services, ensuring it can meet diverse operational and market needs.
	The quantification method was described step-by-step, and in the next chapter 5, a simulation-case study is conducted to illustrate its implementation to quantify the aggregated energy flexibility of space heating, electric water heaters, and battery systems.
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	This chapter presents a simulation-based case study focusing on aggregated flexibility from mainly residential heating but also electric water heaters and battery systems to illustrate the process of employing the proposed flexibility quantification method. The case study demonstrates the practical application of power-duration curves and evaluates their effectiveness in representing energy flexibility. The analysis also considers rebound effects and their implications for demand-side management, emphasising the need for advanced quantification techniques.
	To showcase the benefits of the proposed quantification method, a simulation-based case study was conducted to quantify the aggregated energy flexibility of 1000 buildings using heat-pump based space heating. The aggregation framework illustrated in Figure 5.1 can be applied to real-world scenarios, although some simplifications were made for the sake of the simulation. The framework comprises two main components: the aggregator and the Home Energy Management Systems (HEMS) of each building. HEMS takes inputs from weather forecasts, heat pumps, and homeowners (step 1 of the quantification). For simulation purposes, data from PVGIS was used, although, in reality, ambient temperature 𝑇𝑎 and solar irradiance (GHI) would be obtained from external cloud servers. HEMS receives indoor temperature 𝑇𝑖𝑛 and electricity consumption 𝑃𝑒𝑙 data via a datalink with the heat pump. Homeowners can also input their comfort preferences by setting upper 𝑇𝑚𝑎𝑥 and lower 𝑇𝑚𝑖𝑛 temperature limits for the indoor environment.
	The HEMS is designed to carry out three primary tasks: identifying the thermal model, simulating business-as-usual scenarios, and simulating flexible operations. First, the thermal model needs to be identified for each building in a real-world implementation (step 2 of the quantification). However, for simulation purposes, the RC parameters are sampled from guidelines and publications. Based on the identified thermal model, the weather forecasts, heat pump telemetry, and the homeowners’ comfort requirements, a BaU simulation is performed to determine the baseline behaviour without any flexibility activations (step 3 of the quantification). Once the baseline has been established, a flexibility activation simulation is performed to estimate the amount of time that the heating system may be turned on 𝑡𝑢𝑝𝐹𝑙𝑒𝑥 or off 𝑡𝑑𝑜𝑤𝑛𝐹𝑙𝑒𝑥 until the comfort boundaries (step 4 of the quantification). Together with the baseline power profile 𝑃𝐵𝑎𝑈, these durations are sent to the aggregator, which enables it to map the flexibility curves.
	/
	Figure 5.1. Overview of the aggregation framework.
	This section will provide an example of how to use the proposed approach depicted in Figure 4.2 to assess aggregated energy flexibility for space heating. 
	The initial step in the quantification method involves importing relevant meteorological data regarding space heating. Weather data from PVGIS starting from April 2020 was used for the simulation. This date was selected because, as Figure 5.2 illustrates, it captures both the low outside temperature and solar heating elements that influence the amount of indoor heating used.
	/
	Figure 5.2. Meteorological data obtained from PVGIS [174].
	In the next step of the quantification method, we model the thermal dynamics of buildings. The study uses a simple 3R2C thermal network, but for greater accuracy, the model can be made more complex by adding extra resistors and capacitors. Table 4.2 shows that all thermal network parameters are proportional to the floor area 𝐴𝑓𝑙, exterior wall area 𝐴𝑒, or window area 𝐴𝑤. This means that by sampling typical values for building constructional parameters [175], [176], many different building thermal network parameters can be generated. Buildings of different sizes, with floor areas ranging from 50 to 200 square meters, building heights of 5 to 12 meters, and window-to-wall ratios of 20 to 50%, were sampled from a uniform distribution. The exterior envelope area 𝐴𝑒 was calculated based on the floor area 𝐴𝑓𝑙 and building height, and the window area capacity was derived using the generated window-to-wall ratio. By generating different types of buildings, it is possible to simulate a portfolio that includes many different kinds of buildings with respect to their thermal characteristics.
	The initial values for the heating system’s on/off status, indoor temperature, and building envelope were determined by running a 0-day simulation. This was done to minimise the initial fluctuations in the simulation that result from random state parameter initialisation. The 0-day simulation began by setting the indoor and envelope temperatures to random values between 22 and 24 degrees Celsius, and the heating system’s on/off state to a random value of 0 or 1. The results of the 0-day simulation were then used as the starting point for the subsequent flexibility simulations. The thermal heating power was assumed to be proportional to the building’s floor area and varied between 6 kW and 12 kW. Additionally, the coefficient of performance (COP) of the heat pump was set to be between 3 and 4, taking into account devices from different manufacturers.
	In the third step of quantification, the Business-as-Usual (BaU) scenario needs to be simulated to determine the baseline demand without any flexibility activations. The RC-thermal network models created in the previous step can be used to simulate the BaU scenario. Equations (4) and (5) allow us to simulate the temperature trajectories by knowing the initial interior temperature as well as the impacts of external elements like solar effects and the outside ambient temperature. In the BaU scenario, it is assumed that the target indoor temperature is set at 23 °C, with an on/off control deadband of plus or minus 1 °C. Ten distinct building temperature trajectories are shown in Figure 5.3, illustrating the differences in the time it takes for a building to heat up and cool down.
	/
	Figure 5.3. Examples of 4 simulated building temperature trajectories.
	Figure 5.4 displays the demand profile for the BaU case. Comparing the graph to the ambient temperature in Figure 5.2 reveals that during the first five days of the week when the temperature ranges from +1 °C to +5 °C, the demand for 1000 heat pump units fluctuates between 850 kW and 1100 kW. Towards the end of the week, as the temperature increases, there is a noticeable reduction in electricity demand.
	/
	Figure 5.4. Aggregated demand of 1000 simulated heat pumps for BaU case.
	After identifying the demand profile and on-off switching of the heat pumps in the BaU case, flexible operation is simulated. The flexibility provision is assumed to occur within the same temperature range as the BaU scenario (22–24 °C ). For instance, if the ambient temperature in a building is 22.5 °C and the heat pump is turned off, activating it allows us to raise the temperature to 24 °C. If a homeowner chooses to exceed the BaU range and offers additional flexibility (up to 25 °C), then the duration aspect of the house’s flexibility would be extended. The potential for flexibility in heating systems relies on the comfort preferences of the owners and their readiness to adjust them. In this thesis, we have established a strict requirement of a maximum deviation of ±1 °C from the setpoint.
	Figure 5.5 illustrates this concept. The energy flexibility available in each building varies based on the proximity of the indoor temperature to the temperature boundaries at any given time. When the indoor temperature is near the upper boundary, there is limited flexibility to increase the demand because the heating can only be turned on for a short period. Conversely, there is more flexibility to turn off the heating. The reverse is true when the indoor temperature is close to the lower boundary.
	/
	Figure 5.5. Illustration of temperature trajectories with flexible activation.
	In the final step of the quantification process, all buildings provide the necessary data to the aggregator for quantifying aggregated energy flexibility. The data includes the on-off status of the heat pumps and the durations for which heating can be turned on or off until the temperature comfort boundaries are reached. Using this information, the aggregator can create two curves that describe the potential flexibility to increase or decrease the demand, as shown in Figure 5.6. Since the aggregator does not have access to the demand profiles, interior temperatures, or boundary levels, this method guarantees a better level of privacy.
	/
	Figure 5.6. Aggregated flexibility power-duration curves.
	Aggregators can obtain valuable knowledge about the energy flexibility of their portfolios and make better decisions regarding how to use that flexibility by employing the quantification approach developed in this thesis. For example, an aggregator who is focused on reserve markets, may be interested in activations that last up to 15 minutes. As seen in Figure 5.6, based on the previously discussed scenario, there is potential flexibility to increase or reduce the demand by 1200 kW and 900 kW for 15 minutes. On the other hand, if the aggregator is focused on day-ahead markets and aims to provide flexibility for 60 minutes, they will notice that the potential aggregated energy flexibility to increase or reduce demand has dropped to 450 kW and 350 kW. It’s important to note that flexible power not only reduces with longer activation but is also asymmetrical, which may be relevant for markets that require symmetrical bids. Additionally, flexible power can be visualised in the context of flexible energy, as shown in Figure 5.7. This visualisation allows us to see how much flexible energy is available to increase or decrease consumption based on the activation duration.
	/
	Figure 5.7. Aggregated flexibility energy-duration curves.
	Energy flexibility can be seen as an asset that can be utilised and restored. It is used during demand response activation and replenished during the subsequent rebound effect. Figure 4.1 illustrates different levels of flexibility activations. When flexibility is activated at maximum power (shown as a red line), it results in the most significant drop in demand. Still, this activation can only be sustained for a short duration. Conversely, a modest activation (shown as a purple line) has the opposite effect. This characteristic provides insight into how energy flexibility functions as an asset – the more it is used, the more quickly it is depleted. This thesis approaches the quantification of aggregated energy flexibility with a focus on mapping a curve showing the relationship between the power and duration of potential flexibility activations (shown as a blue line).
	Energy flexibility on a device level can be evaluated by measuring the distance of the state variable (such as temperature or state of charge) from its boundaries. For instance, if the water temperature is 65 °C and consumers have set their comfort boundaries between 60 °C and 80 °C. Having a thermal model of the EWH would allow us to determine how long it can be turned on or off before reaching those boundaries. Figure 5.8 illustrates this concept in the example of an EWH.
	/
	Figure 5.8. Illustration of EWH temperature trajectories with flexible activation.
	A simulation was performed in MATLAB software to quantify the energy flexibility of 1000 EWHs and BESSs. In this simulation, the EWHs were either turned on or off, and the BESSs were set to charge or discharge with maximum power. This simulation was performed every minute of the day to determine the duration that each device can alter from its BaU behaviour. Based on this, the aggregated power/duration curves were created that describe the duration and the power that the BaU profile can be altered with flexibility activations.
	The power and duration curves of aggregated EWHs are depicted in Figure 5.9 for both increasing and reducing the demand. These curves are presented as a surface to illustrate the fluctuations in energy flexibility throughout the day. The flexibility power/duration curve discussed in the previous section can be visualised as a segment of this surface at a specific time of the day. Examining the peak demand time in the morning (8 am), it is possible to see that the amount of flexible power available to increase the demand drops while simultaneously, the amount of flexible power to reduce the demand rises.
	The following observations can be made about the aggregated energy flexibility of EWHs:
	 The amount of energy flexibility available from EWHs is not consistent throughout the day. This is mainly because the hot water usage is also not consistent throughout the day. 
	 The energy flexibility provided by EWHs is very asymmetrical. There is much greater potential to increase the demand than to reduce it. This is because the coincidence factor of EWHs is typically very low since they are turned off most of the time.
	 There is a significant difference in the duration that flexibility can be activated. The duration for which the demand can be increased is much less than it can be reduced. The demand can be increased for up to 1 hour and reduced for up to 8 hours. This large difference is seen because EWH units can be heated up rather quickly, while it takes much longer to cool down from either passive losses or hot water usage.
	/
	Figure 5.9. EWH aggregated energy flexibility curves for one day (a) Demand increase, (b) Demand reduction.
	The power and duration curves of aggregated BESSs are displayed in Figure 5.10 for both increasing and reducing demand. From these curves, we can make the following observations about the flexibility provided by residential small BESSs.
	 Similar to EWH units, the flexibility provided by BESSs is not consistent throughout the day. This is because the SOC of batteries also varies throughout the day.
	 There is an inverse relationship in the amount of available flexibility based on the direction it is provided. During the first half of the day, the BESSs provide more flexibility to increase the demand and no flexibility to reduce it. This is because up to noon, the BESSs are at the lower part of the SOC. However, an opposite phenomenon can be observed during the day as the on-site PV systems are charging the BESSs. In the afternoon, the SOC of BESSs starts increasing, which provides potential flexibility to reduce the demand by discharging the batteries.
	/
	Figure 5.10. BESS aggregated energy flexibility curves for one day (a) Demand increase, (b) Demand reduction.
	One crucial component of energy flexibility that needs to be taken into account is the rebound effect, which can affect grid balance and pose new difficulties. Figure 5.11 illustrates how this impact appears in the power profile following the flexibility activations of space heating. The simulation involves several independent flexibility activations of different durations (5, 15, 30, and 60 minutes). Subtracting the baseline power profile from the profile after flexibility is activated results in baseline-adjusted profiles, revealing the rebound effect.
	/
	Figure 5.11. Baseline adjusted power profiles.
	Simulations for flexibility activations up to 60 minutes in duration were run in order to have a better understanding of the rebound effect. The goal was to find out if the rebound effect is affected in any way by the magnitude of the flexibility activations. The duration, peak power, and energy characteristics were compared between the flexibility activations and the rebound effect, as seen in Figure 5.12. It is noteworthy that the rebound effect has an oscillatory behaviour, with an overshoot upon returning to the baseline. It is difficult to estimate the genuine rebound impact because of this phenomenon.
	/
	Figure 5.12. Flexibility activation characteristics.
	Figure 5.13 displays the various properties of the rebound effect with respect to the duration of flexibility activation. Figure 5.14 displays the ratios of flexible power and energy to rebound power and energy. The following observations can be made regarding the peak power of the rebound effect:
	 Increasing the demand using flexibility results in a significantly higher power rebound compared to reducing the demand. The highest power rebound occurs when the flexibility is activated for 20 to 40 minutes Figure 5.13.a).
	 The longer the flexibility is activated, the closer the ratio of rebound power to activated flexibility power gets to 1 (Figure 5.14.a).
	 When it comes to energy rebound, we can draw the following conclusions:
	 Increasing demand results in a much higher energy rebound compared to reducing demand. The highest energy rebound occurs when flexibility is used for 30 to 60 minutes (Figure 5.13.b).
	 The ratio of rebound energy to flexible energy levels off after activations longer than 10 minutes, reaching around 1.8 for demand increase and 1.5 for demand reduction. This means that for every unit of increased energy demand, 1.8 units are reduced later due to the rebound effect (Figure 5.14.b).
	/
	Figure 5.13. Rebound effect properties.
	/
	Figure 5.14. The power and energy ratios of flexibility and rebound.
	In summary, an assessment of the rebound effect can be performed after energy flexibility. To quantify the rebound impact based on flexibility activations, the above numbers might be utilised as a guideline. For example, if an aggregator in reserve markets intends to utilise energy flexibility for 15 minutes, based on the flexibility quantification from Figure 5.6, there is a potential to increase demand power by a maximum of 1200 kW. The rebound effect of this activation would last approximately 130 minutes (Figure 5.13.c), with a peak power of 400 kW (Figure 5.13.a) and a total rebounded energy of around 500 kWh (Figure 5.13.b). It’s important to note that these numbers are approximate and may vary based on portfolio size and seasonality. Nevertheless, they still illustrate the potential of the proposed quantification method.
	In order to gain a better understanding of the oscillatory nature of the rebound effect, individual simulations were conducted for each weight class of buildings. The demand profiles with flexibility activations and without are shown in Figure 5.15 which illustrates the impact of rebound oscillations across different building types – light-weight, medium-weight, and heavy-weight. The findings reveal notable variations in the behaviour of flexibility recovery based on the thermal characteristics of each building type. Light-weight structures showed fast and short rebound oscillations, which is due to their lower thermal mass, which permits faster temperature adjustments but restricts long-lasting flexibility. Conversely, heavy-weight buildings exhibited slower and more extended rebound effects, marked by substantial power fluctuations, indicative of their greater thermal inertia.
	/
	Figure 5.15. Aggregated power of different building types: (a) Light-weight, (b) Medium-weight, (c) Heavy-weight buildings [Paper III].
	This chapter applied the developed power-duration curve method for quantifying energy flexibility through a simulation-based case study. The results demonstrated the method’s effectiveness in characterising the flexibility potential of various residential energy systems, including space heating, electric water heaters, and battery storage systems. 
	The aggregated energy flexibility of 1000 heating systems, electric water heaters and battery energy storage systems was quantified through a simulation-based case study. The aggregated energy flexibility was assessed by mapping out the flexibility power-duration curves, which illustrate the potential aggregated power that flexible devices can activate with respect to the maximum duration the activation can be sustained. 
	The results revealed that both electric water heaters and battery systems exhibit inconsistent flexibility profiles throughout the day. Electric water heaters can offer significantly more flexibility to increase demand compared to reducing it, but the duration for increasing demand is shorter than for reducing it. Battery systems demonstrate an inverse relationship in their potential to increase or reduce demand. They provide greater flexibility to increase demand until noon, after which the potential to reduce demand becomes more dominant. 
	These findings highlight the proposed power-duration curve methods’ ability to provide insights for grid operators and aggregators, enhancing their ability to integrate and manage flexible resources effectively by addressing the non-linear asymmetric behaviour of flexible resources.
	6 Conclusions and future work
	6.1 Future work

	The main goal of this PhD research was to advance the understanding and practical application of energy flexibility within residential energy systems by developing an innovative approach for quantifying flexibility through power-duration curves.
	A comprehensive literature review was performed that underscores the rising significance of energy flexibility as a fundamental aspect of modern energy systems, influenced by the increasing integration of variable renewable energy sources and the need for enhanced grid stability. The state-of-the-art analysis investigated the key aspects of energy flexibility, including its definitions, sources, methods of quantification, and associated challenges, while highlighting its importance in the shift toward sustainable and efficient energy systems. It was found that current methodologies frequently simplify the complex and dynamic characteristics of flexibility by depending on static or single-value measures, which emphasises the need for more sophisticated approaches, such as power-duration curves, that more accurately reflect the non-linear and time-varying behaviours of flexible loads.
	The content section of the thesis focused on developing a new method for quantifying aggregated energy flexibility based on power-duration curves. The proposed method overcomes the drawbacks of current approaches by considering the non-linear, time-varying, and asymmetric characteristics of flexibility. By linking flexible power capacity with the duration of its activation, this method captures the dynamic interplay between these elements, making it applicable for both short-term and long-term flexibility applications. This broadens its usefulness for demand response programs, reserve markets, and balancing services, ensuring it can fulfil various operational and market requirements. The quantification method was explained in a detailed, step-by-step manner, and a simulation-based case study was carried out to demonstrate its application in quantifying aggregated energy flexibility.
	One key finding of this research was the identification of inherent asymmetry in potential energy flexibility. The power capacity of flexibility was observed to vary considerably between increases and decreases in power, with the latter typically exhibiting less intense rebound effects. This asymmetry is vital for maintaining grid stability, as increases in power were found to generate more significant rebound oscillations, which could present challenges for operational planning. Additionally, the study showed that the connection between activation power and duration is fundamentally non-linear, challenging the assumption set by conventional linear models. This finding highlights the need for more advanced methodologies, such as the power-duration curve approach, to quantify and manage flexibility effectively.
	The rebound effect emerged as another critical aspect of energy flexibility. The research showed that, in many cases, energy consumption during the recovery phase can offset or even exceed the energy savings achieved during activation. These effects were especially evident in systems with high thermal inertia, such as heavy-weight buildings, which displayed prolonged rebound oscillations. This behaviour highlights the necessity of factoring in rebound effects when designing and implementing demand-side management programs to ensure overall energy savings and maintain grid stability.
	At the beginning of this thesis, four hypotheses were made. Based on the results, the following conclusions can be made:
	 The first hypothesis, which proposed that quantifying energy flexibility using power-duration curves provides a more accurate and practical representation compared to single-value metrics, was confirmed. The power-duration curve method demonstrated its ability to capture the dynamic interplay between power and duration, providing valuable insights into both short-term and long-term flexibility potential.
	 The second hypothesis, which stated that aggregated energy flexibility is inherently asymmetric and non-linear, was also confirmed by the research findings. The results showed significant differences in the capacity for increasing and decreasing power, emphasising the need for models that account for this asymmetry. Additionally, the relationship between activation power and duration was found to be non-linear, challenging the assumptions of traditional linear models. 
	 The third hypothesis, which stated that rebound effects in demand-side flexibility activation result in more energy being consumed during the recovery phase than saved during the flexibility activation, was partially validated. The research identified significant rebound effects, particularly in systems with high thermal inertia, where recovery energy often exceeded initial savings. However, the magnitude and impact of these effects varied depending on the type of system and operational scenario, suggesting that rebound effects are context-dependent and require careful consideration in flexibility management.
	 Finally, the fourth hypothesis, which suggested that the asymmetry of energy flexibility impacts grid stability differently, with power increases showing more significant rebound effects, was confirmed. The findings demonstrated that power increases often led to more pronounced rebound oscillations, posing more significant challenges to grid stability compared to same magnitude power decreases. This highlights the importance of understanding and managing the asymmetric impacts of flexibility to ensure reliable grid operation.
	The research conducted in this work can be expanded upon in future studies by researching and developing the following aspects: 
	 This thesis employed simplified heat pump models to demonstrate the quantification process of the developed method. To achieve a more precise evaluation of heat pump flexibility, more detailed models that consider the coefficient of performance (COP) variations with ambient temperature, along with various control strategies, such as partial load functioning and temperature setpoint management for flexible operations, should be considered.
	 One potential direction is to apply the quantification approach developed in this thesis to other kinds of flexible devices, such as electric vehicles and shiftable appliances. 
	 An alternative avenue for research could focus on predicting flexibility. The method for quantifying flexibility developed in this thesis could be enhanced for forecasting by incorporating weather predictions and modelling temperature trends for the following day.
	 The approach of the power-duration curve could be enhanced to incorporate techno-economic factors, including the expenses associated with activating flexibility, income from engaging in energy markets, and the operational costs of equipment. By including these elements, the method could deliver a more comprehensive assessment of flexibility, facilitating improved decision-making for aggregators and grid operators. This would enable stakeholders to maximise the technical capabilities and the economic feasibility of activating flexibility.
	 Future research could focus on a more in-depth investigation of rebound effects that occur after the activation of flexibility. This involves measuring both the magnitude and duration of rebound energy use across various types of devices and operational situations. Gaining insights into the factors that affect rebound behaviour, such as the thermal inertia of devices, control methods, and user habits, would aid in the creation of mitigation strategies. Furthermore, studies could evaluate the cumulative effects of rebound phenomena on grid stability and energy market dynamics, providing valuable information for enhancing demand-side management initiatives.
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