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Preface

The 11th International Workshop on Coalgebraic Methods in Computer Science,
CMCS 2012 was held on March 31–April 1, 2012 in Tallinn, Estonia, as a satellite
event of the Joint Conference on Theory and Practice of Software, ETAPS 2012.
In more than a decade of research, it has been established that a wide variety
of state-based dynamical systems, like transition systems, automata (including
weighted and probabilistic variants), Markov chains, and game-based systems,
can be treated uniformly as coalgebras. Coalgebra has developed into a field
of its own interest presenting a deep mathematical foundation, a growing field
of applications, and interactions with various other fields such as reactive and
interactive system theory, object-oriented and concurrent programming, formal
system specification, modal and description logics, artificial intelligence, dynam-
ical systems, control systems, category theory, algebra, analysis, etc. The aim
of the CMCS workshop series is to bring together researchers with a common
interest in the theory of coalgebras, their logics, and their applications.

Previous workshops have been organised in Lisbon (1998), Amsterdam (1999),
Berlin (2000), Genoa (2001), Grenoble (2002) Warsaw (2003), Barcelona (2004),
Vienna (2006), Budapest (2008), and Paphos (2010). Starting in 2004, CMCS
has become biennial, alternating with the International Conference on Algebra
and Coalgebra in Computer Science (CALCO), which, in odd-numbered years,
has been formed by the union of CMCS with the International Workshop on
Algebraic Development Techniques (WADT).

This volume contains the short contributions presented at CMCS 2012, com-
plementing the proceedings volume presenting the regular papers. Short contri-
butions describe work in progress, summarise work submitted to a conference or
workshop elsewhere, or in some other way appeal to the CMCS audience. They
underwent a light reviewing process. As for regular papers, contributions that
describe the application of coalgebraic methods in areas that are not the central
focus of the community have been particularly welcome.

March 12, 2012
London and Erlangen

Dirk Pattinson
Lutz Schröder
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Distributive Laws of Directed Containers
[Extended Abstract]

Danel Ahman1 and Tarmo Uustalu2

1 Computer Laboratory, University of Cambridge,
15 J. J. Thomson Avenue, Cambridge CB3 0FD, United Kingdom,

danel.ahman@cl.cam.ac.uk
2 Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia, tarmo@cs.ioc.ee

Containers [1] are an elegant representation of a wide class of datatypes in
terms of shapes and positions in shapes. In our FoSSaCS 2012 work [2], we
introduced directed containers as a special case to account for the common sit-
uation where every position in a shape determines another shape, informally
the subshape rooted by that position; some examples being the datatypes of
nonempty lists and trees and the corresponding zipper datatypes. While con-
tainers interpret into set functors via a fully faithful monoidal functor, directed
containers interpret into comonads. Further, it is also true that every comonad
whose underlying functor is a container is represented by a directed container.
In this paper, we develop a characterization of distributive laws between such
comonads.

A container S � P is given by a set S (of shapes) and a shape-indexed
family P : S → Set (of positions). A morphism between containers S � P and
S′ � P ′ is a pair t � q of maps t : S → S′ and q : Π{s : S}. P ′ (t s) → P s.
(We use Agda’s syntax of braces for implicit arguments.) Containers form a
category Cont carrying a monoidal structure defined by Idc = 1 � λ ∗ . 1 and
(S0 � P0) ·c (S1 � P1) = Σs : S0. P0 s → S1 � λ (s, v). Σp0 : P0 s. P1 (v p0)
together suitable unital and associativity laws.

The interpretation of a container S � P is the set functor given by
�S�P �c X = Σs : S. P s → X, �S�P �c f (s, v) = (s, f ◦v). The interpretation of
a container map t�q is the natural transformation �t�q�c(s, v) = (t s, v ◦q {s}).
�−�c is a fully faithful monoidal functor from Cont to [Set,Set].

A directed container is a container S � P together with three operations

– ↓ : Πs : S. P s → S (the subshape for a position),
– o : Π{s : S}. P s (the root),
– ⊕ : Π{s : S}. Πp : P s. P (s ↓ p) → P s (translation of subshape positions

into positions in the global shape),

satisfying the following two shape equations and three position equations:

1. ∀{s}. s ↓ o = s,
2. ∀{s, p, p′}. s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′,



3. ∀{s, p}. p ⊕ {s} o = p,
4. ∀{s, p}. o{s} ⊕ p = p,
5. ∀{s, p, p′, p′′}. (p ⊕ {s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′).

Notice that, modulo the fact that the positions involved come from different sets,
equations 3-5 are the equations of a monoid. Equations 1-2 make sure that equa-
tions 4-5 are well-typed. A morphism between directed containers (S � P , ↓, o,⊕)
and (S′ � P ′, ↓′, o′,⊕′) is a morphism t � q between the containers S � P and
S′ � P ′ that satisfies these equations:

1. ∀{s, p}. t (s ↓ q p) = t s ↓′ p,
2. ∀{s}. o {s} = q (o′ {t s}),
3. ∀{s, p, p′}. q p ⊕ {s} q p′ = q (p ⊕′ {t s} p′).
Here, equations 2-3 are reminiscent of the equations of a monoid morphism.
Directed containers form a category DCont.

The interpretation �S�P, ↓, o,⊕�dc of a directed container is the set functor
�S�P �c together with natural transformations ε, δ where ε (s, v) = v (o {s}) and
δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′))), making a comonad. The interpreta-
tion �t � q�dc of a directed container morphism is �t � q�c, which is a comonad
morphism. �−�dc is a fully-faithful functor DCont → Comonads(Set). More-
over, every comonad whose underlying functor is a container is represented by
a directed container. Actually, DCont is isomorphic to Comonoids(Cont)),
and that in turn is easily seen to be the pullback of U : Comonads(Set) →
[Set,Set] along �−�c : Cont → [Set,Set].

A sufficient condition for the composition of the underlying functors of two
comonads to carry a comonad structure is that they distribute over each other.
We develop the corresponding concept for directed containers and show that it
is adequate.

For two directed containers (S0 �P0, ↓0, o0,⊕0) and (S1 �P1, ↓1, o1,⊕1), we
define a distributive law to be given by operations

– t1 : Πs : S0. Πv : P0 s → S1. P1 (v (o0 {s})) → S0,
– q0 : Π{s : S0}. Π{v : P0 s → S1}. Πp1 : P1 (v (o0 {s})).

P0 (t1 s v p1)) → P0 s,
– q1 : Π{s : S0}. Π{v : P0 s → S1}. Πp1 : P1 (v (o0 {s})).

Πp0 : P0 (t1 s v p1). P1 (v (q0 {s} {v} p1 p0))
satisfying the equations

1. ∀{s, v, p1, p0}. t1 s v p1 ↓0 p0
= t1 (s ↓0 q0 p1 p0) (λp

′
0. v (q0 p1 p0 ⊕0 p′0)) (q1 p1 p0),

2. ∀{s, v}. t1 s v o1 = s,
3. ∀{s, v, p1, p′1}. t1 s v (p1 ⊕1 p′1) = t1 (t1 s v p1) (λp0. v (q0 p1 p0) ↓1 q1 p1 p0) p

′
1,

4. ∀{s, v, p1}. q0 {s} {v} p1 o0 = o0 ,
5. ∀{s, v, p1, p0, p′0}. q0 {s} {v} p1 (p0 ⊕0 p′0) = q0 p1 p0 ⊕0 q0 (q1 p1 p0) p

′
0,

6. ∀{s, v, p0}. q0 {s} {v} o1 p0 = p0,
7. ∀{s, v, p1, p′1, p0}. q0 {s} {v} (p1 ⊕1 p′1) p0 = q0 p1 (q0 p

′
1 p0),



8. ∀{s, v, p1}. q1 {s} {v} p1 o0 = p1,
9. ∀{s, v, p1, p0, p′0}. q1 {s} {v} p1 (p0 ⊕0 p′0) = q1 (q1 p1 p0) p

′
0,

10. ∀{s, v, p0}. q1 {s} {v} o1 p0 = o1,
11. ∀{s, v, p1, p′1, p0}. q1 {s} {v} (p1 ⊕1 p′1) p0 = q1 p1 (q0 p

′
1 p0) ⊕1 q1 p

′
1 p0.

If we ignore that both P0 and P1 are families rather than sets (i.e., confine
ourselves to the special case S0 = S1 = 1), the equations 4-11 are the equations
required of two monoids to have a knit or Zappa-Szép product (see [3, Lemma
3.13 (xv)]).

A distributive law as above determines a container morphism t � q :
(S0 � P0) ·c (S1 � P1) → (S1 � P1) ·c (S0 � P0) by t (s, v) = (v (o0 {s}), t1 s v)
and q {s, v} (p1, p0) = (q0 {s} {v} p1 p0, q1 {s} {v} p1 p0). The interpreting nat-
ural transformation �t � q�c gives a distributive law θ between the comonads
�S0 � P0, ↓0, o0,⊕0�

dc and �S1 � P1, ↓1, o1,⊕1�
dc by θ (s, v) = (π0 (v (o0 {s})),

λp1. (t1 s (π0◦v) p1, λp0. π1 (v (q0 (p1, p0))) (q1 (p1, p0)))). And conversely, any dis-
tributive law between these two comonads corresponds to a distributive law
between the two directed containers. The fact that the composition of two di-
rected containers distributing over each other is a directed container follows from
the properties of �−�dc (“via the semantics”), but is also easily proved directly
(“syntactically”).

We see that, just as comonads whose underlying functor is the interpreta-
tion of a container have some special properties (the outer shape of the nested
datastructure returned by the comultiplication is the shape of the given datas-
tructure), so do distributive laws between such comonads have some similar
properties (the outer shape of the nested datastructure returned by the dis-
tributive law is the inner shape at the outer root position of the given nested
datastructure).

In the paper, we present and analyze several generic distributive laws of
comonads (e.g., distributivity of any comonad over the product comonad, dis-
tributive laws for cofree comonads) in this form as well as some that are specific
to comonads whose underlying functors are containers.

Acknowledgements This research was supported by the Estonian Ministry of
Education and Research target-financed research theme no. 0140007s12, the Es-
tonian Science Foundation grant no. 9475 and the Estonian Centre of Excellence
in Computer Science, EXCS, an European Regional Development Fund funded
project.
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Final coalgebras in categories
with factorization systems
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Abstract. For a functor T : C → C, we show that if C admits a factoriza-
tion system (L,R) with all arrows in R monic and C is R-well-powered,
then the final coalgebra is characterized constructively as the R-union
of certain sets of T -coalgebras, provided that the final sequence of T has
an R-arrow at some ordinal α, and T preserves R-morphisms.

Final sequence: Let T be an endofunctor on a category C with final object and
limits of ordinal-indexed diagrams. The final sequence of T is a limit-preserving
functor A : Ordop → C such that, for all ordinals γ ≤ β, A(β+1) = TA(β),
A(β+1 → γ+1) = TA(β → γ), and A(0) = 1. Note that, since A preserves
limits, for all limit ordinals β, the arrow A(β) → limγ<β A(γ) is an isomorphism.

In [1,2], it is shown that if this sequence stabilizes at some α, in the sense that
f = A(α+1 → α) is an isomorphism, then (A(α), f−1) is a final T -coalgebra.
This follows since, for any T -coalgebra (X,h) and ordinal β, there exists a cone
(X, (hγ)γ∈βop) on A�β1 uniquely determined by A(γ+1 → γ) ◦Thγ ◦h = hγ , for
all γ ≤ β. Therefore, hα : (X,h) → (A(α), f−1) is a morphism of T -coalgebras,
which is easily seen to be unique. Note that, this method is constructive if one
can determine an ordinal α at which the final sequence stabilizes.

In [3], Worrell shows that for any mono-preserving accessible endofunctor on a
locally presentable category the final sequence stabilizes. However, the proof does
not give any constructive bound for stabilization. If one restricts the attention
to only κ-accessible endofunctors on Set, κ+ κ steps are sufficient for the final
sequence to stabilize. This bound depends heavily on the fact that in Set, all
monomorphisms split, which is indeed a very strong requirement.

Both the results need that the final sequence A reaches a monic arrow at
some α, then stabilization follows since the category is well-powered and all
A(γ) are subobjects of A(α), for all γ ≥ α. The restriction on accessible functors
on locally accessible categories ensures that these requirements hold, and that
the underlying category has a (strong-epi, mono) factorization system.

A new characterization: Let (L,R) be a factorization system for C, such that
arrows in R are monic, and let C be R-well-powered. Under these hypotheses,
we give a characterization of a final coalgebra for a functor T : C → C via its
final sequence. The use of the final sequence is twofold: it guarantees unicity of

1 A�β : βop → C restricts A on the full subcategory of Ordop of all ordinals γ ≤ β.
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the final homomorphism, and provides a weakly final coalgebra. Notably, we do
not need any bound for stabilization, still the proof is constructive.

Theorem 1. Assume A, the final sequence of T , is such that A(α+1 → α) ∈ R,

for some α, and that T preserves R-morphisms.
Then, for any T -coalgebra (X,h) and ρh ◦ λh

(L,R)-factorization of hα, there exists a unique
arrow φh making the diagram aside commute.

X Fh A(α)

TX TFh A(α+1)

h φh

Tλh Tρh

λh ρh

Moreover, if (X,h) is weakly final, then (Fh, φh) is a final T -coalgebra.

Proof. (Sketch) Since T preserves R-morphisms, Tρh ∈ R. Therefore, the outer
square diagram is a lifting problem for λh ∈ L and A(α+1 → α) ◦ Tρh ∈ R,
and φh is solution to it. Assume (X,h) is weakly final, then (Fh, φh) is weakly
final too, since λh is a T -homomorphism. Unicity follows by left cancellability
of ρh, since, for any T -coalgebra (Y, k) and arrow f : Y → A(α) such that f =
A(α+1 → α) ◦ Tf ◦ k, one proves by transfinite induction that f = kα. ��
Note that, (L,R)-factorizations of morphisms are not unique, hence for a given
T -coalgebra (X,h), the associated T -coalgebra (Fh, φh) is not uniquely deter-
mined. However, under the hypothesis of Theorem 1, one can fix any factorization
hα = ρh ◦ λh to obtain an endofunctor F on the
category of T -coalgebras, mapping objects (X,h)
to (Fh, φh), and morphisms f : (X,h) → (Y, k) to
the unique solution ϕf of the lifting problem on
the right. Functoriality crucially depends on the

X Fh A(α)

Y Fk A(α)

f ϕf

λk
ρk

λh ρh

assumption that all R-morphisms are monic (see the Appendix for details).
Finally, observe that, for all T -coalgebras (X,h), Fh is an R-subobject of

A(α), and since C is assumed to be R-well-powered, there must be only a set
I (up to isomorphism) of such Fh’s. Thus, if C has coproducts, we are allowed
to take the coproduct coalgebra

∐
I(Fi, φi), which is readily seen to be weakly

final, with homomorphism from any T -coalgebra (X,h) given by

X Fh Fi

∐
Fi

λh ∼= ini

where Fi is the representative of Fh in I.
Applying Theorem 1 to

∐
I(Fi, φi), the final T -coalgebra is just the R-union

of the coalgebras in I. Notably, finality does not depend on the choice of I, which
can be determined constructively by an analysis on the R-subobjects of A(α).
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On Coalgebraic Logic over Posets
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Abstract. We relate the abstract coalgebraic logic for finitary Set-functors
with the corresponding logic for their Pos-extensions.

Keywords: coalgebraic logic, duality, positive modal logic

This contribution continues the previous work of [3] and [1].
We start by recalling the following adjunction between the category of sets

and the category of Boolean algebras, namely

Setop ⊥T op ��
P

�� BoolAlg
S

��
L�� (1)

where P maps a set to its powerset, while S maps a Boolean algebra to its set of
ultrafilters. T is a (finitary) Set-functor coalgebraically modeling the semantics
of some transition systems and L stands for the T -associated abstract Boolean
logic, as in [4]. Remember that L preserves sifted colimits and coincides with
PT opS on finitely generated free algebras. 4

Denote by Pos the category of posets and monotone functions and by D :
Set → Pos the functor endowing each set with the discrete order. One has a
chain of adjunctions U  D  C : Pos → Set, where U is the forgetful functor
and C maps a poset to the set of its connected components. If one regards Set as
discretely enriched over Pos, then D and C form an enriched adjunction, while
U fails to be locally monotone.

Following [1], for a given T : Set → Set, we shall call the enriched5 left Kan
extension LanD(DT ) of DT along T the posetification of T . For example, it was

� Supported by the CNCSIS project PD-56 no. 19/03.08.10.
�� Supported by EPSRC EP/G041296/1.

� � � Supported by the grant P202/11/1632 of the Czech Science Foundation.
4 Or, equivalently, L = LanJ(PT opSJ), where J : BoolAlgω → BoolAlg is the inclusion
functor from the category BoolAlgω of finite Boolean algebras.

5 Over Pos, ‘enriched’ means that all functors involved, in particular LanD(DT ), are
locally monotone, that is, they preserve the order on the homsets.
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shown in [5] that the posetification of the finite powerset functor is the finitely
generated convex powerset with convex subsets ordered by the Egli-Milner order.

We recall the (Pos-enriched) adjunction between Pos and DLat, the category
of distributive lattices,

Posop ⊥
P ′

�� DLat
S′

��
(2)

where P ′ maps a poset to the distributive lattice of its uppersets, and S′ asso-
ciates to each distributive lattice the poset of prime filters.

For each finitary locally monotone functor T ′ on Pos, one can build as in
[3] a dual functor L′ : DLat → DLat, also locally monotone. Specifically, L′

is P ′T ′opS′ on finitely generated free distributive lattices and extended to all
distributive lattices using sifted colimits.

Denote by W the forgetful functor BoolAlg → DLat.

Theorem. Let T be a Set-functor preserving weak pullbacks and T ′ its posetifica-
tion. Let L and L′ be the associated logic functors given by PT opS and P ′T ′opS′

on finitely generated free algebras.

Setop ⊥

D
��

T op ��
P

�� BoolAlg

W
��

S
��

L��

Posop ⊥T ′op ��
P ′

�� DLat L′��
S′

��

(3)

Then L′ is the positive fragment of L in the sense that L′W ∼= WL.

For the special case where T is the powerset functor, we have that L is the
functor associated with Kripke’s modal logic K and L′ the functor associated
with Dunn’s positive modal logic [2]. Then L′W ∼= WL is an abstract formulation
of the following well-known facts: 1) every formula φ in K can be written as a
positive formula φ+ with negation only appearing on atomic propositions. 2) φ
and ψ are provably equivalent in K iff φ+ and ψ+ are provably equivalent in
positive modal logic.
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Coalgebraic Dynamic Quantum Logic
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We present our on-going work on Coalgebraic Quantum Logic, a new devel-
opment that brings together the work on quantum (labelled) transition systems
(introduced in [2]) to describe the behavior of quantum systems and coalgebraic
logic [3]. The setting of our framework is inspired by Abramsky’s [1] coalge-
braic representation of physical systems, which can be used to generalize the
non-probabilistic setting of [2] to a quantum coalgebraic and probabilistic level.

Preliminaries We first review the basics of predicate-lifting coalgebraic logic;
see, e.g., [3] for a detailed exposition. Given any set functor F , an F -coalgebra is a
set S together with a function σ : S → FS. A predicate lifting λ for F is a natural
transformation λ : Q → QF , where Q is the contravariant powerset functor.
Fixing a set Λ of predicate liftings for F , we define a language L inductively
from a fixed set Prop of proposition letters, with operators ¬, ∧, ∨ and unary
[λ] for all λ ∈ Λ. Given a coalgebra (S, σ) and a valuation V : Prop → PS, we
define the interpretation �−� : L → PS inductively with the classical Boolean
clauses for ¬, ∧, ∨, and �[λ]φ� = σ−1 ◦λS�φ�.

Abramsky [1] represents physical systems with coalgebras for the following
set functor F . Fixing a set Π of questions (or testable properties, i.e., closed
subspaces of a given Hilbert space in the quantum case), define

F : X �−→ [{0}+ (0, 1]×X]Π .

Write π1 and π2 for the projections from {0}+ (0, 1]×X to [0, 1] and X; π2 is
partial, with π2(0) undefined. Then, given a set S of states, a coalgebra (S, σ)
represents that asking a question q ∈ Π at a state s ∈ S yields the answer “yes”
with probability π1(σ(s)(q)), bringing the system to the next state π2(σ(s)(q)).

Probabilistic coalgebraic logic Using Abramsky’s coalgebras, we introduce
coalgebraic logic of probabilistic dynamic modalities. Consider the family Λ of
predicate liftings λq,p for F , each labelled with q ∈ Π and p ∈ [0, 1], such that

λq,p
X (Y ) := { δ ∈ FX | δ(q) ∈ [p, 1]× Y }

for p > 0, and λq,0
X (Y ) :=

⋃
p>0 λ

q,p
X (Y ). This Λ gives rise to coalgebraic logic

in which [λq,p]φ is true at a state s ∈ S iff asking the question q (or applying
the “program” q) yields yes (or success) with probability at least p (or any
probability, in the case of p = 0) and, after yes, φ is true at the next state.
[λq,0]φ expresses the “weakest precondition” that ensures φ after q.

� The research of these authors has been made possible by VIDI grant 639.072.904 of
the Netherlands Organization for Scientific Research (NWO).
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Coalgebraic quantum semantics We further extend the framework by con-
sidering how quantum systems are characterized in terms of Abramsky’s repre-
sentation, thereby obtaining coalgebraic quantum semantics. Take any sets T of
subsets P ⊆ S and U of functions U : S → S, and let Π = T ∪ U be our set of
programs; our goal is to axiomatize T and U as the sets of testable properties and
unitary transformations in quantum systems. (We write P? for P ∈ T regarded
as an element of Π, to indicate that it is a test rather than a proposition.)

Let us introduce the following notation. A coalgebra σ : S → FS associates
with each q ∈ Π a partial function q = π2(σ(−)(q)) : S ⇀ S. The set of states
reachable from s by some test P? is T ?(s) := {P?(s) | P ∈ T }. We say that t is
orthogonal to s, and write t ⊥ s, if t /∈ T ?(s). Let ∼P := { s | s ⊥ t for all t ∈ P }
be the orthocomplement of P ⊆ S, and P � Q := ∼(∼P ∩ ∼Q) the quantum
join of P and Q. Now, we say that σ is a quantum coalgebra if it satisfies the
following axioms, which are a probabilistic extension of those in [2].

1. Closure under arbitrary conjunctions:
⋂ T ′ ∈ T for any T ′ ⊆ T .

2. Closure under orthocomplementation: if P ∈ T , then ∼P ∈ T .
3. Atomicity : states are testable, i.e., {s} ∈ T for any s ∈ S.
4. Adequacy : testing a true property always succeeds and does not change the

state, i.e., σ(s)(P?) = (1, s) if s ∈ P ∈ T .
5. Repeatability : any testable property holds after a succesful test thereof, i.e.,

for any P ∈ T and s ∈ S, P?(s) ∈ P whenever P?(s) is defined.
6. Covering law : if P?(s) �= t ∈ P , then v ⊥ s for some v ∈ T ?(t) ∩ P .
7. Self-adjointness: π1(σ(P?(s))({t}?)) = π1(σ(P?(t))({s}?)) for any s, t ∈ S.
8. Proper superposition: T ?(s) ∩ T ?(t) �= ∅ for any s, t ∈ S.
9. For any P0, P1 ∈ T such that P0 ⊆ ∼P1 and for all s ∈ S, we have

π1(σ(s)(P0 � P1?)) = π1(σ(s)(P0?)) + π1(σ(s)(P1?)).
10. Reversibility and totality : unitary evolutions U ∈ U are deterministic (and

total) bijections, i.e., for every s ∈ S there is a t ∈ S such that σ(s)(U) =
(1, t) and for every t ∈ S there is an s ∈ S such that σ(s)(U) = (1, t).

11. Orthogonality preservation: s ⊥ t iff U(s) ⊥ U(t) for any s, t ∈ S and U ∈ U .
12. Mayet’s condition: there exist U ∈ U , P ∈ T and t, w ∈ S such that {U(s) |

s ∈ P } � P , t ⊥ w, and, for every s ∈ ∼∼{t, w}, U(s) = s.

Conclusion These structures exhibit the basic ingredients to describe the be-
haviour of single quantum systems. In the future we should axiomatize the coal-
gebraic quantum logic of these structures, as well as extend them to the multi-
partite case in order to construct coalgebraic models of quantum computation.
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Abstract. The aim of this talk is to introduce a coalgebraic setting in
which it is possible to generalize and compare the two known approaches
to weak bisimulation for labelled transition systems. We introduce two
definitions of weak bisimulation for coalgebras over ordered functors,
show their properties and give sufficient conditions for them to coincide.

The notion of a strong bisimulation plays an important role in theoretical
computer science and more specifically in the theory of coalgebras (see e.g. [6]).
A weak bisimulation defined for many transition systems is a relaxation of this
notion by allowing silent, unobservable transitions. In the case of labelled transi-
tion systems there are two equivalent approaches to defining weak bisimulation.

Definition 1. Let Σ be a set of labels and let τ ∈ Σ be a silent transition label.
Let 〈A,Σ,→〉 be a labelled transition system. A symmetric relation R ⊆ A× A
is a weak bisimulation if it satisfies one of the following two conditions:
Approach 1. The inclusion (a, b) ∈ R implies that for any σ ∈ Σ for which

σ �= τ if a
σ→ a′ then b

τ→∗ ◦ σ→ ◦ τ→∗
b′ for some b′ ∈ A and (a′, b′) ∈ R, and

for σ = τ if a
τ→ a′ then b

τ→∗
b′ for b′ ∈ A and (a′, b′) ∈ R.

Approach 2. The inclusion (a, b) ∈ R implies that for any σ ∈ Σ for which

σ �= τ we have a
τ∗
→ ◦ σ→ ◦ τ∗

→ a′ if and only if b
τ∗
→ ◦ σ→ ◦ τ∗

→ b′ for some b′ ∈ A

for which (a′, b′) ∈ R, and for σ = τ we have a
τ→∗

a′ if and only if b
τ→∗

b′ for
b′ ∈ A for which (a′, b′) ∈ R.

Many mathematicians and computer scientists have attempted to generalize
the notion of a weak bisimulation to coalgebras (see for instance [3], [4], [5] and
many other). In this talk we will present a setting in which two approaches to
defining weak bisimulation will be possible. We will list their properties and give
conditions for their coincidence.

Let Pos be the category of all posets and monotonic mappings. Let U : Pos →
Set be the forgetful functor. An order on a functor S : Set → Set (see [1] for
details) is a functor ≤: Set → Pos for which U◦ ≤= S.

Note that for instance the powerset endofunctor P : Set → Set is ordered by
the functor ≤: Set → Pos, which assigns to any set X the poset (P(X),⊆). Given
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an order on a functor S : Set → Set and two mappings f, g : X → SY we write
f ≤ g whenever f(x) ≤ g(x) for any x ∈ X. Let C be full subcategory of the cat-
egory of S-coalgebras and homomorphisms between them which is closed under
taking inverse images of homomorphisms. During the talk we will introduce a
notion of coalgebraic saturator with respect to a class C as functor s : C → SetS
satisfying a list of very natural properties. Based on the definition of saturator
we present two approaches to generalized versions of weak bisimulations.

Definition 2. Let S : Set → Set be an ordered functor, let C be subcategory
of all S-coalgebras and homomorphisms which is closed under taking inverse
images of homomorphisms and let s be a coalgebraic saturator with respect to C.
Let 〈A,α〉 and 〈B, β〉 be two S-coalgebras which are members of the class C of
S-coalgebras.
Approach 1. A relation R ⊆ A×B is called a weak bisimilation provided that
there is a structure γ1 : R → SR and a structure γ2 : R → SR for which:

– α ◦ π1 = Sπ1 ◦ γ1 and Sπ2 ◦ γ1 ≤ sβ ◦ π2,
– β ◦ π2 = Sπ2 ◦ γ2 and Sπ1 ◦ γ2 ≤ sβ ◦ π1.

Approach 2. A relation R ⊆ A×B is said to be a weak bisimulation provided
that there is a structure γ : R → SR for which sα ◦ π1 = Sπ1 ◦ γ and sβ ◦ π2 =
Sπ2 ◦ γ.
Note that the two approaches from Definition 2 coincide with those presented
in Definition 1 when S is put to be P(Σ × (−)) with a natural order and an
intuitively defined saturator. During the presentation we will compare the two
approaches. The most notable of the results is the following.

Theorem 1. Let 〈A,α〉 be an S-coalgebra and let S : Set → Set weakly preserve
kernel pairs. If R ⊆ A×A is an equivalence relation which is a weak bisimulation
in the sense of Approach 1 then R is a weak bisimulation in the sense of Ap-
proach 2. If additionally S preserves the so called downsets then an equivalence
relation R ⊆ A×A which is a weak bisimulation from Approach 2 is also a weak
bisimulation in the sense of Approach 1.

We will also show interesting examples of functors and coalgebras for which the
two approaches do not coincide.
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4. Rothe, J., Mašulović, D.: Towards weak bisimulation for coalgebras. In: Proc. Cat-

egorical Methods for Concurrency, Interaction and Mobility. ENTCS 68 (2002).
5. Rutten, J. J. M. M.: A note on coinduction and weak bisimilarity for while pro-

grams. Theoretical Informatics and Applications (RAIRO) 33, 393400 (1999)
6. Rutten, J. J. M. M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.

249(1): 3-80 (2000)



Nondeterminism as first class citizen for
Hidden Logic

Daniel Gebler and Jörg Endrullis

Department of Computer Science, VU University Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

e.d.gebler@vu.nl j.endrullis@vu.nl

Introduction Hidden Logic provides behavioral equivalence as indistinguisha-
bility under experiments [2, 3]. In hidden logic nondeterminism is modeled by
underspecification (e.g. [3, Example 9]). Underspecification results in a class of
models that span the possible nondeterministic choices but in every model the
choice is taken in a deterministic manner. This prevents to reason about the
true nature of nondeterministic choices [5]. We extend hidden logic to model
nondeterminism as first class citizen by evaluating functions to sets. Further-
more, we introduce subterm sharing to model dependency of nondeterministic
choices. This allows to reason in a natural way about nondeterministic polyadic
operations (e.g. stream computation, process composition).

Behavioral Specifications with Nondeterminism Let S = V ∪H where V
is a set of visible sorts andH a set of hidden sorts. LetΣ = Σfun∪Σrel∪{⊕s | s ∈
S} be a signature over sorts S consisting of deterministic operations Σfun and
nondeterministic operations Σrel, and nondeterministic choice operators ⊕s :
s× s → s for every s ∈ S. As the sort of ⊕s can be derived form the sorts of its
arguments, we will omit s and write ⊕ for short.

Behavioral Specifications. A behavioral nondeterministic equation � = r or be-
havioral deterministic equation � ·= r consists of terms �, r ∈ Ter(Σ,X )s for
some s ∈ S. Relational symbol = denotes equality of the set of nondeterminis-
tic choices, and ·= additionally requires that the choice is unique (deterministic
choice). For example, a random bit stream is specified by rand = (0⊕ 1) : rand.
A behavioral specification E is a set of behavioral formulas.

Behavioral Equivalence. A Σ-algebra A is a tuple 〈A, �·�〉 consisting of an S-
sorted set A and for every f ∈ Σ, f : s1 × . . . × sn → s an interpretation �f� :
As1×. . .×Asn → P+(As) such that �f�(a1, . . . , an) is a singleton if f ∈ Σfun. For
f : An → P+(A) and B1, . . ., Bn ⊆ A we let f(B1, . . . , Bn) =

⋃ {f(b1, . . . , bn) |
b1 ∈ B1, . . . , bn ∈ Bn}. For α : X → A we define �·�α : Ter(Σ,X ) → P+(A)
by: �x�α = {α(x)}, �f(t1, . . . , tn)�α = �f�(�t1�α, . . . , �tn�α), and �s ⊕ t�α =
�s�α∪�t�α. Elements a, b ∈ As (s ∈ S) are behaviorally equivalent, denoted a ≡ b,
if �C[∗ : s]�∗�→a = �C[∗ : s]�∗�→b for every context C ∈ Ter(Σ, {∗})v with ∗ : s and
v ∈ V . Due to nondeterminism, the equality here is set equality. Sets of elements
A,B ⊆ As are behaviorally equivalent, denoted A ≡ B, if∀a ∈ A. ∃b ∈ B. a ≡ b
and ∀b ∈ B. ∃a ∈ A. a ≡ b, that is, the sets consist of the same set of behaviors. A
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Σ-algebraA satisfies a behavioral specification E,A |= E, if for every α : X → A
we have: ���α ≡ �r�α for every � = r ∈ Es and � ·= r ∈ Es, and |���α| = |�r�α| = 1
for every � ·= r ∈ Es. Observe that here ≡ is behavioral equivalence between sets
of elements. Let E be a behavioral specification, and e a behavioral equation.
Then e is said to be satisfied in E, denoted by E |= e, if A |= E implies A |= e
for every Σ-algebra A.

Behavioral Reasoning with Sharing In the presence of real nondeterminism,
the ordinary equational reasoning is no longer sound. For instance, consider the
specification:

rand = (0⊕ 1) : rand hd(x : σ) ·= x

dup(σ) ·= hd(σ) : hd(σ) : dup(tl(σ)) tl(x : σ) ·= σ

where Σfun = {hd, tl, dup, 0, 1, :} and Σrel = {rand}. In every model, of the
specification, the interpretation �dup(rand)� is the set of all streams τ such that
τ(2n) = τ(2n+ 1) for all n ∈ N. Let s = dup(rand) and t = hd(rand) : hd(rand) :
dup(tl(rand)). Although s equates to t, the semantics of s and t do not agree.
The term s contains one nondeterministic choice rand while t contains three
nondeterministic choices. As a consequence, it is not guaranteed that τ(0) = τ(1)
for every τ ∈ �r�. The problem is caused by the lack of expressiveness of terms.

We propose a variant of term graph rewriting [1] with sharing to specify
whether repeated occurrences of subterms are independent or represent the same
nondeterministic choice. Then we get:

dup(rand) = 〈 hd(X) : hd(X) : dup(tl(X)) | X = rand 〉

where now X is a recursion variable used to share the occurrences of rand. That
is, we introduce sharing whenever a term containing a nondeterministic symbol
from Σrel is duplicated. For terms with sharing, we introduce semantics �·�α,
equational reasoning, transformations for introduction and removal of sharing
and a circular coinduction principle [4]. This interpretation of dup(rand) allows
to deduce the equality of s and t.

Example We extend the above specification with:

add(σ, τ) ·= (hd(σ) + hd(τ)) : add(tl(σ), tl(τ)) zeros ·= 0 : zeros

where add, zeros ∈ Σfun and + the summation on the data algebra containing
elements 0 and 1. We prove

〈 add(X,X) | X = rand 〉 ·= 〈 zeros 〉

using circular coinduction. We have:

〈 hd(add(X,X)) | X = rand 〉
·= 〈 hd(add(X,X)) | X = (0⊕ 1) : rand 〉 rewriting
·= 〈 hd(add(Y : Z, Y : Z)) | Y = 0⊕ 1, Z = rand 〉 unsharing Σfun

·= 〈Y + Y | Y = 0⊕ 1, Z = rand 〉 rewriting
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By a case distinction on 0⊕ 1 we obtain:

(Y = 0) . . . ·= 〈Y + Y | Y = 0, Z = rand 〉 ·= 〈 0 + 0 | 〉 ·= 〈 0 〉, and
(Y = 1) . . . ·= 〈Y + Y | Y = 1, Z = rand 〉 ·= 〈 1 + 1 | 〉 ·= 〈 0 〉

by unsharing both Y and Z, and then a rewrite step. Thus

〈 hd(add(X,X)) | X = rand 〉 ·= 〈 0 〉 ·= 〈 hd(zeros) 〉

Now we use the coinduction hypothesis (CIH, [4])

〈 freeze(add(X,X)) | X = rand 〉 ·= 〈 freeze(zeros) 〉

to prove that the tails are equal

〈 freeze(tl(add(X,X))) | X = rand 〉 ·= 〈 freeze(tl(zeros)) 〉

We have:

〈 freeze(tl(add(X,X))) | X = rand 〉
·= 〈 freeze(tl(add(Y : Z, Y : Z))) | Y = 0⊕ 1, Z = rand 〉 as above
·= 〈 freeze(tl((Y + Y ) : add(Z,Z))) | Y = 0⊕ 1, Z = rand 〉 rewriting
·= 〈 freeze(add(Z,Z)) | Y = 0⊕ 1, Z = rand 〉 rewriting
·= 〈 freeze(add(Z,Z)) | Z = rand 〉 unsharing
·= 〈 freeze(zeros) 〉 CIH
·= 〈 freeze(tl(zeros)) 〉 rewriting ��

Conclusion We have proposed an extension of behavioral specifications with
nondeterministic operations Σrel. If all symbols are deterministic (Σrel = ∅)
then we obtain ordinary behavioral specifications, and symbols from Σfun can
always be ‘unshared’, reducing equations with sharing back to usual equations
without sharing.
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In the semantics of programming there are two important traditions: one founded

by Scott and Strachey using complete ordered sets, and one started by de Bakker and

Zucker using complete metric spaces. In the ordered approach, recursion is modeled

via the fixed point theorem for complete partial orders, while in the metric approach,

one uses Banach’s fixed point theorem. See [4] for an overview from a coalgebraic

perspective.

Both traditions can also be used in the coalgebraic description of trace semantics.

Trace semantics has been modeled in Kleisli categories that are enriched in directed

complete partial orders (dcpos). This short paper illustrates a metric analogue of this

approach, that works for a monad on Sets, which we call the ball monad B. It describes

complex probability distributions on a set.

The Ball Monad The ball monad B has been introduced in [3]. On a set X one defines

B(X) as:

B(X) = {ϕ : X → C | ∑x∈X |ϕ(x)| ≤ 1},
where C is the set of complex numbers. An element ϕ ∈ B(X) may be understood as

a formal sum ϕ =
∑

i zixi, if X = {xi | i ∈ I} and zi = ϕ(xi) ∈ C.

For a function f : X → Y one defines B(f) : B(X) → B(Y ) by:

B(f)(
∑

i zixi) =
∑

i zif(xi).

We wish to describe trace semantics for coalgebras of the form c : X → BFX ,

where F is an endofunctor on Sets. We will do this by lifting the functor F to a functor

F on the Kleisli category K�(B), and then viewing c as a coalgebra for F in K�(B).
Before carrying out this procedure for the ball monad, we will show how it works for

order-enriched Kleisli categories.

Trace Semantics in Kleisli Categories In this section we recall the essence of the

coalgebraic description of trace semantics in Kleisli categories developed in [1,2]. This

approach starts with a monad T and an endofunctor F , both on Sets, together with a

distributive law λ : FT ⇒ TF between them. This law corresponds to a lifting of F to

an endofunctor F : K�(T ) → K�(T ) on the Kleisli category, given by F (X) = F (X)

and F (f) = λ ◦ F (f). Under suitable additional conditions, an initial algebra F (A)
∼=→

A in Sets, then yields a final coalgebra A
∼=→ F (A) in the Kleisli category K�(T ).
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Theorem 1. In the above situation, assume that:

1. T (0) ∼= 1, making 0 ∈ K�(T ) a zero object;
2. the Kleisli category K�(T ) is Dcpo-enriched, in such a way that the zero maps are

bottom element in the Kleisli homsets;
3. the lifted functor F is locally continuous, i.e. preserves the directed joins in Kleisli

homsets;
4. the functor F has an initial algebra α : F (A) → A.

Then η ◦ α−1 : A → F (A) is a final coalgebra in K�(T ).

Trace Semantics for the Ball Monad Theorem 1 depends crucially on the dcpo-

enrichment of the Kleisli category. It cannot be applied to the ball monad, so we will

now switch from dcpos to complete metric spaces.

Let Cms be the category of complete metric spaces and non-expansive maps. A

map f : X → Y between metric spaces is called non-expansive if

dY (f(x), f(x
′)) ≤ dX(x, x′)

for all x, x′ ∈ X .

Proposition 1. The category K�(B) is Cms-enriched with metric on Hom(X,Y ) given
by

d(f, g) = sup
x∈X

∑
y∈Y

|f(x)(y)− g(x)(y)|.

We can use this metric stucture on the Kleisli category K�(B) to obtain trace seman-

tics for the ball monad. The proof is more complicated than in the order-enriched case,

since we need a contractive operator on the Kleisli homsets, as is standard in metric

semantics. To achieve this, we have to modify the metrics on the homsets.

Theorem 2. Let F be a polynomial functor on Sets with initial algebra α : A
∼=→

F (A), and let λ : FB ⇒ BF be a distributive law. Then η ◦ α−1 : A → F (A) is a
final coalgebra for F : K�(B) → K�(B).
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The following categorial definition of course-of-value (cov) iteration as a
recursion scheme is due to [2].

Definition 1 (Course-of-Value Iteration). Let F be a Set-endofunctor and
F×
C = C × F (−). Let (A, in) be an initial F -algebra. Let (Ω, out) be a final F×

C -
coalgebra. Then every operation ϕ : FΩ → C induces a function {|ϕ|}F : A → C:

{|ϕ|}F = π1 ◦ out ◦ (|out−1 ◦ 〈ϕ, idFΩ〉|)F
The paradigmatic example is, of course, the Fibonacci function, where C = N

and F = 1+ (−), hence A = N, Ω = N+ ∪Nω and FΩ = N∞ = N∗ ∪Nω. Define
ϕ : N∞ → N as

ϕ() = 0 ϕ(a) = 1 ϕ(a, b, . . . ) = a+ b

to obtain fib = {|ϕ|}F . The same functor and basic pattern applies to many
recursive functions that may depend on their own result for arbitrary smaller
(in the sense of an initial algebra) arguments, as well as to black-box models in
software engineering, and scientific models of history-dependent systems, such
as the vast field of Box–Jenkins alias auto-regressive moving-average (ARMA)
models [1].

Cov iteration is an elegant description for the sake of programming semantics
or modelling theory. But often a more concrete presentation in terms of ordinary
iteration and explicit state is preferable in either domain of application. For
instance, for the Fibonacci function a well-known algorithm with linear time
and constant space complexity exists that does not follow immediately from the
cov-iterative presentation.

Here we give a simple definition of cov-controllable state systems, incorporating
a sufficient condition that ensures correct simulation of a given cov operation. In
the following, fix F = 1 + (−) as above and C to an arbitrary set.

Definition 2 (State System). A triple (S, σ : C∞ → S, τ : C × S → S) is
called a state system with state space S, abstraction σ and transition τ .
It is called an epi-state system if and only if σ is epi. It is said to factor some
cov operation ϕ if and only if there is an arrow ϕ̃ : S → C such that ϕ = ϕ̃ ◦ σ
and τ ◦ 〈ϕ̃, idS〉 ◦ σ = σ ◦ cons ◦ 〈ϕ, idC∞〉.

For epi-state systems, ϕ determines ϕ̃ uniquely. The morphism specified by
the second equation is abbreviated to δ : C∞ → S.
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Theorem 1. A state system (S, σ, τ) factoring a cov operation ϕ simulates it.

{|ϕ|}F = π1 ◦ (|〈π1, τ〉 ◦ 〈ϕ̃, idS〉 ◦ [σ ◦ ι1, π2]|)F
Definition 3. A cov operation is called k-bounded for 0 ≤ k ≤ ω if and only if
there is a sequence h ∈ Ck and operation ϕ̂ : Ck → C such that

ϕ = ϕ̂ ◦ take(k) ◦ append(h)
The minimal k such that ϕ is k-bounded is called the horizon of ϕ. 1-bounded
cov iteration coincides with primitive recursion, cf. [2].

Theorem 2. A first-in-first-out buffer of k elements of C is a state system
factoring any k-bounded cov operation with codomain C, with ϕ̃ = ϕ̂.

S = Ck σ = take(k) ◦ append(h) τ
(
c0, (c1, . . . , ck)

)
= (c0, . . . , ck−1)

The Fibonacci operation is well-known to have a horizon of two, with h =
(1,−1) and ϕ̂(a, b) = a + b. The resulting state system specifies precisely the
usual iterative algorithm. Note that this is not an epi-state system. Some relevant
cov operations have infinite horizon, e.g. fractionally integrated ARMA models.

Definition 4. A state system homomorphism between (S1, σ1, τ1) and (S2, σ2, τ2),
both factoring ϕ, is a map h : S1 → S2 such that h ◦ σ1 = σ2 and h ◦ δ1 = δ2.
Put differently, h is a morphism between two pairs of coslices under C∞, (Si, σi)
and (Si, δi), simultaneously.

Theorem 3. The state systems factoring a fixed cov operation ϕ form a category
State(ϕ). The epi-state systems factoring ϕ form a subcategory EpiState(ϕ).
Morphisms in State(ϕ) are morphisms in EpiState(ϕ) if and only if they are
epi in the underlying category Set.

Theorem 4. EpiState(ϕ) has initial and final objects:

– The trivial state system (C∞, idC∞ , cons) is initial, with ϕ̃ = ϕ. The corre-
sponding unique homomorphism to any (S, σ, τ) is σ.

– The coimage or coequalizer of the kernel pair of ϕ, (S†, ψ), gives rise to a
final object (S†, σ†, τ †), where σ† = ψ ◦ ϕ, and τ † exists as a (non-unique)
solution to τ † ◦ 〈ϕ, σ†〉 = σ† ◦ cons ◦ 〈ϕ, idC∞〉. ϕ̃† is the unique retraction of
ψ. The corresponding unique homomorphism from any (S, σ, τ) is ψ ◦ ϕ̃.
The uniqueness of the model operation ϕ̃ for epi-state systems and the

placement of a particular system along the initial–final (syntax–semantics) axis
have far-reaching implications for the philosophy of black-box models in science
and software engineering. Details are out of scope here and will be given in
forthcoming companion papers.
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1 Introduction

Lindenmayer systems, or L-systems, are a formal model of structural growth
due to the theoretical botanist Lindenmayer in 1968, in the wake of research on
Chomsky grammars in computer science. They have been immensely influential
as a conceptual tool for botany, as well as an application domain for computer-
based modelling [2]. Like grammars, L-systems come in various classes of com-
plexity, with optional nondeterminism, context-sensitivity or parametrization.
Unlike grammars, L-systems consider only derivations where all symbols are
rewritten in parallel, that is, they are models of decentral, vegetative growth.

Context-free grammars have been given a coalgebraic treatment [6], extend-
ing earlier work on coalgebraic representations of regular languages and au-
tomata (see e.g. [3]). In [6], grammars in Greibach normal form are first re-

garded as coalgebras over the functor 2 ×
(
P(−∗)

)A
, which are then extended

to 2 × (−)A-coalgebras using an instance of the generalized powerset construc-
tion [4]. In this framework, rules are applied sequentially, making use of leftmost
derivations: this presents a fundamental difference with the case of L-systems,
where we deal with parallel rewriting of all symbols present at a certain stage.

2 Coalgebraic L-Systems

The classical presentation of L-systems follows Chomsky grammars, and is strictly
syntactic. Here we suggest an alternative, semantical perspective on L-systems.
The key idea is to represent the single-step rules of an L-system as a finite coal-
gebra for a monadic functor on the category of sets. The Kleisli extension then
yields a function that can be iterated to formalize multi-step derivations.

The simplest class of deterministic context-free L-systems without terminals
is modelled by the list functor and its standard monadic structure. Common
extensions such as terminals, nondeterminism and probabilism can be added
modularly by composing the list functor with the coproduct with a constant set,
the covariant finitary powerset functor and the finitely supported distribution
functor, respectively. Each of these comes with a standard monadic structure.
In general, the composition of monads is not a monad, but for all pairs of the
functors in question, distributive laws can be given that make for a composite
monadic structure consistent with the traditional semantics of L-systems.
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Parametric L-systems can be incorporated using a different, but equally se-
mantical technique. The traditional syntactical approach is to hoist parameter
datatypes, guard predicates and operators onto the finite set of basic symbols.
Instead, we suggest to relax the condition of finiteness on the carriers of coal-
gebras, and merely require that they have a finite homomorphic image. Thus,
the kernel quotient of that homomorphism can be seen as a finite collection of
symbols, and the internal structure of each quotient class as parametrization.

Context-sensitive L-systems are a more complicated matter. As for the Chom-
sky grammar case, no obvious coalgebraic presentation is available. We conjec-
ture that a bialgebraic approach is promising, by analogy to the bialgebraic
semantics of cellular automata [5].

3 Conclusion

The coalgebraic presentation of L-systems is concise, elegant and natural. Some
typical problems regarding L-systems reappear as standard coalgebraic notions
in disguise, while other problems even become apparent only in coalgebraic form.
As an example of the former effect, consider the vast subject of botanical reason-
ing with L-systems, namely the classification of branching structures and organ
placement on higher plants (phyllotaxis): it can be understood as an instance of
bisimulation. As an example of the latter effect, consider the definition of prob-
abilistic L-systems in the definitive resource [2]: productions are weighted with
probabilities, and it is obviously implied that parallel rewriting steps be stochas-
tically independent, but an explicit statement has simply been forgotten. Such
an oversight is not possible in the coalgebraic form; stochastic independence is
exactly the content of the distributive law between lists and distributions.

L-systems are very easily understood models and appeal to intuition. They
showcase basic concepts of coalgebraic modelling in such a way that they could
be a useful pedagogic example in the introductory teaching of coalgebra.
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Abstract. I propose the use of categorical methods of theoretical com-
puter science as key tools for reflexive economics. Reflexive methods are
deemed appropriate to model the peculiarity of social systems where
the theory and the modeled system interact. This allows to approach
many long standing key features not addressable by current methods.
The proposed program is a far reaching approach with new and ma-
jor applications for categories, coalgebras or domain theory. Reflexiv-
ity points towards a non reductionistic scientific approach of behavioral
modelling of social systems and their parts beyond mechanistic analogies
from physics.

Key words: economics, reflexive modelling, endogeneous control the-
ory, biological system theory, evolutionary economics, institutional eco-
nomics, coalgebra, domain theory, category theory

This short note sketches the possibilities that categorical, coalgebraic and
domain theoretical structures open up for long standing modelling issues in
economics. Reflexive structures, see the overviews in (Winrich 1984, Knudsen
1993, Sandri 2008), arise in economics if theory and the modelled system inter-
act and the controller is part of the controlled and thus self-organizing system.
(Morgenstern 1972), p. 707, and similarly in (Morgenstern 1928), writes

There is thus a back-coupling or feedback between the theory and the
object of the theory, an interrelation which is definitely lacking in the
natural sciences.

Reflexive mathematical structures are in need to model key social hyper struc-
tures like expectations as beliefs of beliefs, organizations as repair of repair, in-
stitutions as rules to change rules, markets as decentralized solving for solution
concepts and other phenomena like life, value, money, culture or democracy.

Reflexivity allows a change of point of view from the outside to the inside
of a system and can be thought as a generalization of the quantum mechanical
situation where the observer influences the observed to the more complex situ-
ation where the observed may change the observer as well, see (Frigg 2010) for
a philosophical discussion.
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A key problem in economics is a model of a system, company, organization or
institution, now discussed as a means for transaction cost reduction initiated in
(Coase 1937, Coase 1960). Reflexive economics can address the nature of a firm or
organization by a model of biological metabolism-repair systems of (Rosen 1991)
which is a generalization of autopoiesis. An approach to their realization in linear
systems is (Casti 1988) which we currently formalize with Samson Abramsky, by
improving the lambda calculus approach in (Mossio, Longo, and Stewart 2009)
which seems to involve reflexivity at the type level. By a model of a system with
an internal model of itself we can model interaction. Autopoiesis and reflexivity
are the core of the non mathematical sociology of (Luhmann 1998) which closely
resembles the ideas for reflexive economics.

Interactive game theory is heading towards modal logic but without dwelling
into reflexivity. An exception is (Heifetz and Samet 1998) who construct Hasanyi
type spaces to model beliefs of beliefs in situations of incomplete information.
This was modelled coalgebraically in computer science by (Moss and Viglizzo
2004). A non mathematical reflexive theory is also proposed by George Soros,
one of the most successful investors, who has based his analysis of financial
markets on reflexivity, the Russell paradox and open world assumptions, see
(Cross and Strachan 1997, Soros 2003). Recently a first n-players Russell paradox
appeared in economic game theory and has been modelled in (Abramsky and
Zvesper 2010).

The only papers formally approaching reflexive structures I know about in
economics are the categorical and domain theoretical papers (Vassilakis 1991,
Vassilakis 1992, Vassilakis 2002a, Vassilakis 2002b). Vassilakis models games
over games and rules to change rules as an approach to institutions and some
other applications. These papers are largely unknown in economics which might
be due to the unclear relation to usual economic models, to the lack of hints to
the many applications of categories and reflexivity in economics and to the fact
that there are few economists able to understand categorical mathematics. This
points to the need to use the unifying nature of categories for calculus, as in
(Rutten 2003) or modal logic, as in (Kurz 2006), which are the major languages
currently used in economics.

(Alameddine 1990) builds on the work of Vassilakis and rules to change rules
as an approach to the famous theory of justice of (Rawls 1999) who has not suc-
ceeded in treating the reflexive structure of this problem in his natural language
approach. Another reflexivity arises as preferences over preferences as the core
of a concept of a person, see (Frankfurt 1971) in philosophy and (Nehring 2006)
in economics.

(Lescanne 2009, Lescanne and Matthieu 2010) develop the notion of rational
escalation strategies in infinite coalgebraic games which should give hints how to
model financial bubbles in economics. The usual economic approach to dynamics
with infinite time horizons is (informally) recursive, see (Stokey, Prescott, and
Lucas 1989), but should be corecursive and a clarification is an important part
of dynamics in reflexive economics where the context and content coevolve. The
non reflexive (expectation) dynamics in economics so far excludes bubbles at the
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fundamental level but nevertheless is in need to model them, see (Santos and
Woodford 1997). This is related to local and global epistemic and ontological
states and behavior in economies. A proper discussion of computability, the
fundamental decision problem, open world semantics and similar problems along
the lines of (Lawvere 1969) has to be addressed.

As the first steps towards reflexive economics I would like to build on the
beginnings of a coalgebraic research in the field of ecological management science
which is rather close to economics in terms of objectives, current methods, their
shortcomings and the possibilities of categorical and coalgebraic approaches. In
the first paper on a model of modelling in (Hauhs and Trancon yWidemann 2010,
Trancon y Widemann 2011) the usual inverse functional or state based approach
inherited from physics is contrasted to the coalgebraic behavioral approach, see
also (Willems 2007).

(Trancon y Widemann and Hauhs 2011a) contrast a recursion theoretical
approach to path dependent dynamics with infinite histories to the reductionistic
notion of markovian path independent processes. Path dependency is at the heart
of evolutionary and institutional economics, see (Dopfer 2005) which is a rich
source of modelling challenges in economics.

Finally (Trancon y Widemann and Hauhs 2011b) show a bialgebraic model
of space and time for agent based modelling (called multi agent systems in
computer science) as a solution to the usual (and naive state based) defect ob-
ject oriented programming. The core problem is the need for intentional states
which can not be understood in object oriented code without a formal seman-
tics. This extends the scientific method based on states inherited from physics
to the behavioral modelling of epistemic or ontological states. It allows to dis-
cuss emergent behavior of the whole system which is the explicit goal of agent
based and social modelling, see (Colander 2006). Multi-agent logic and espe-
cially its compositionality as in (Abramsky 2007) is therefore a very important
but largely not understood topic in economics. Interactive and decentralized
models are a prerequisite to understand the fundamental economic issues of why
there are markets, price systems, money or economic value, see (Hellwig 1993),
who describes the challenges of monetary theory. Its underyling (to be general-
ized space-time) double accouting seems to be an early form of a process logic,
see (Katis, Sabadini, and Walters 2008). The lack of an economic monetary the-
ory and its need for reflexive and decentralized structures was and is my major
motivation towards reflexive economics.

Challenges in network economics are summarized by (Jackson 2009, Jackson
2010) with (Kranton and Minehart 2001) being one interactive market model be-
yond general equilibria which are criticized by (Ackerman 2002). Placing market
models as (Kranton and Minehart 2001) into the agent based modelling frame-
work of (Trancon y Widemann and Hauhs 2011b) is a natural candidate for the
first steps into reflexive economics.
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W

Winschel, Viktor 21
Winter, Joost 19


