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Chapter 1

Introduction

The field of automatic speech processing has achieved remarkable success, par-
ticularly in controlled, single-speaker environments [6, 7]. However, a significant
gap remains in processing the speech of multiple individuals in natural settings
such as meetings, interviews, and broadcast media [8]. This complexity is best
exemplified by the “cocktail party problem” [9], where the acoustic scene contains
multiple concurrent speakers, environmental noise, and temporally overlapping
speech. Effectively processing such recordings involves determining speaker identity
(“who spoke?”), temporal localization (“when did they speak?”), and isolating speech
content (“what did they say?”).

This chapter introduces the domain of multi-talker speech processing (MTSP), a
research area encompassing interconnected computational tasks for the analysis, seg-
mentation, and attribution of speech in complex multi-talker environments. These
tasks aim to extract speaker-specific information across a spectrum of detail, from
fine-grained temporal analysis (e.g., detecting precise speaker turn changes) to com-
prehensive scene understanding (e.g., complete diarization and speech separation).
Robust MTSP systems are critical for applications such as multi-talker automatic
speech recognition (ASR), meeting summarization, speech-to-speech translation,
voice anonymization, and speech enhancement. In ASR and meeting summarization,
a failure to correctly attribute utterances to speakers can result in fundamentally
flawed records of the conversation. Similarly, in systems for speech-to-speech trans-
lation and voice anonymization, inaccurate speaker attribution can corrupt identity
mapping, leading to mismatched voices, inconsistent context, or the unintended
disclosure of a speaker’s identity.

In this chapter, the core computational tasks within MTSP are outlined. This
is followed by a discussion of the challenges that motivate the work in this thesis:
domain mismatch between training and deployment conditions, the difficulty of
processing overlapping speech, and the ambiguity in human annotations. These

challenges serve as the motivation for the training methods proposed in this thesis.
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1.1 Underlying tasks

1.1.1 Speaker diarization

Speaker diarization (SD) addresses the question “who spoke when?” by partitioning
an audio stream into temporal segments that are homogeneous by speaker identity
and assigning a unique label to each segment [10, 11]. Modern systems typically
operate via either a multi-stage pipeline [12] or an end-to-end neural network [13].

Multi-stage pipelines traditionally comprise the following sequential subtasks:

1. Voice activity detection (VAD): Distinguishes regions containing speech
from non-speech audio.

2. Speaker change detection (SCD): Pinpoints the precise temporal moments

when the active speaker changes.

3. Speaker embedding extraction: Converts each uniform-speaker speech
segment into a fixed-size numerical vector (an embedding) that captures the

unique acoustic characteristics of the speaker’s voice.

4. Speaker clustering: Groups the extracted embeddings based on similarity
to determine the number of unique speakers and assign a consistent identity
label to each segment. Common techniques include spectral or Bayesian
clustering methods [14].

A major limitation of this traditional pipeline is its inability to effectively handle
overlapping speech. This led to the emergence of end-to-end neural diarization
(EEND) models [13, 15], which learn to generate the speaker activity timeline
directly from the audio in a single step. By framing diarization as a multi-label
prediction problem, EEND systems inherently accommodate overlapping speech, as
they can simultaneously predict activity for multiple speakers.

However, EEND systems face their own challenges. They often suffer from high
computational and memory costs, making them difficult to apply to long-duration
recordings. Initial models were also restricted to a predefined, fixed number of
speakers, although later extensions like EEND-EDA [15] addressed this limitation.
Furthermore, because a single training sample encompasses an entire recording,
these models rely heavily on synthetically generated conversations.

To combine the strengths of both paradigms, hybrid approaches such as EEND-
vector clustering (EEND-VC) have been developed [16, 17|. These systems utilize an
EEND model to perform overlap-aware diarization on short, localized audio segments,
replacing the separate VAD and SCD steps of the traditional pipeline. EEND-VC
benefits from the precise, overlap-aware segmentation of EEND while retaining
the scalability and speaker-agnostic nature of clustering-based methods for long

recordings. This thesis further explores the use of such clustering-based strategies,

11



particularly concerning their integration with speaker embedding extraction and

speech separation.

1.1.2 Speaker change detection

Speaker change detection (SCD) is the task of identifying the exact temporal points
in an audio stream where the speaker identity changes. Conceptually, this is a
sequence labeling task, where the system predicts the probability of a speaker
change event for each time frame. Beyond its role as a component in traditional
SD pipelines, SCD is also applied independently in scenarios such as automatic
subtitling where explicit speaker clustering is not required [18§].

The underlying assumption for SCD is that the audio can be cleanly segmented
into regions of single-speaker activity (i.e., speakers do not overlap). This assumption
is crucial for the subsequent embedding extraction step in multi-stage SD [12]. The
quality of SCD is crucial, as imprecise segment boundaries can result in mixed-
speaker segments that degrade the accuracy of speaker embeddings. Modern SCD
approaches often leverage deep neural networks that learn to detect changes directly

from the audio’s spectral features [19].

1.1.3 Speaker recognition

Speaker recognition (SR) focuses on analyzing the acoustic characteristics of a
speech segment to determine a speaker’s identity [20, 21]. The central component of
modern SR is the creation of speaker embeddings: a function is learned to map
a variable-length speech segment to a fixed-size numerical vector that represents
the speaker’s unique voice characteristics. This function is trained to maximize
inter-speaker discriminability (ensuring embeddings from different speakers are
distant) and minimize intra-speaker variability (ensuring embeddings from the same
speaker are closely clustered).

These embeddings underpin three primary applications:

e Speaker verification: A one-to-one comparison task to confirm or deny the

claim that two speech segments originate from the same speaker.

e Speaker identification: A one-to-many task that assigns a speech segment

to the most probable speaker from a known set of enrolled individuals.

e Speaker clustering: An unsupervised task that groups a collection of speech
segments into clusters, where each cluster corresponds to a distinct speaker.

This is also the final step of the multi-stage diarization approach.

The evolution of SR has moved from generative models, such as gaussian mixture
models with universal background models (GMM-UBM) [22] and factor analysis
approaches like i-vectors [23], to discriminative deep neural architectures. Contem-
porary state-of-the-art systems employ encoders like x-vectors [24], ECAPA-TDNN
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[25], and ResNet variants [26], and are typically trained on massive speaker verifica-
tion datasets using angular margin losses [27]. Despite achieving stellar performance
in clean, single-speaker conditions, these models exhibit significant performance

degradation when deployed in challenging multi-speaker environments [28].

1.1.4 Speech separation

Speech separation is arguably the most comprehensive task in MTSP, aiming to
solve the “cocktail party problem” by decomposing a mixed audio signal containing
multiple concurrent speakers into individual, clean audio streams for each speaker.

Contemporary deep learning methodologies, including Conv-TasNet [29], dual-
path RNN (DPRNN) [30], and transformer-based models [31, 32], have achieved
remarkable separation performance. The standard approach to training and eval-
uating these systems relies solely on synthetic data created by artificially mixing
clean, single-speaker recordings. This is because obtaining ground-truth clean
sources for real-world recordings is practically impossible, as individual headset
microphones inevitably pick up cross-talk during a conversation. However, this
creates a significant domain mismatch when models are applied to real-world conver-
sations, which are characterized by complex room acoustics, microphone effects, and
realistic conversational dynamics such as interruptions and backchannels 33, 34].
To mitigate this and enable generalization to real-world, unsupervised methods like
mixture invariant training (MixIT) [35] have been introduced. MixIT bypasses the
need for clean source signals by training the model on "mixtures of mixtures" and
calculating the loss with respect to the original mixtures. This approach presents its
own set of difficulties, such as a proneness to over-separation and achieving reliable

inference on long-form audio.

1.2 Fundamental challenges and research gaps

It is clear that despite substantial progress in individual MTSP tasks, several
fundamental challenges persist. The research presented in this thesis concentrates
on a few of these, focusing mainly on the themes of annotation ambiguity and
domain mismatch.

1.2.1 Annotation ambiguity and evaluation mismatch

Manually annotating the precise start and end times of speech segments is an
inherently challenging and subjective task. Human annotators routinely disagree
on the exact location of a speaker change due to factors such as inter-turn silences,
subtle speech overlaps, and the limits of human perception. This disagreement
typically falls within a range of 100 to 500 ms. Further discrepancies can arise from

variations in dataset-specific annotation guidelines.
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To account for this subjectivity, standard evaluation protocols for tasks like SD
and SCD employ a “forgiveness collar”. A predicted change point is deemed correct
if it falls within a tolerance window (e.g., 250 ms) of a ground-truth annotation
[36].

However, a critical mismatch arises during model training. Most models are
trained using standard point-wise loss functions (e.g., binary cross-entropy) that
penalize any predictions that do not perfectly match the single ground-truth frame.
This training objective entirely ignores the temporal tolerance permitted in evalua-
tion, potentially yielding models that are overly brittle and sub-optimally tuned for

the final evaluation metric.

1.2.2 Domain mismatch

A second fundamental bottleneck across many MTSP tasks is the significant disparity
between the data used for training and the real-world conditions where models are
deployed.

Reliance on synthetic data for separation. As discussed, speech separation
models are predominantly trained on artificially mixed audio. This synthetic
environment fundamentally lacks the genuine acoustic properties (e.g., reverb, noise)
and realistic conversational dynamics present in real recordings [33]. Consequently,
models trained exclusively on synthetic data often fail to generalize effectively to
authentic multi-speaker conversations.

Single-speaker training for speaker embeddings. Speaker embedding
models, which are central to robust diarization, face a similar domain mismatch.
They are typically trained on vast collections of single-speaker utterances (e.g.,
VoxCeleb [37]). Yet, in real-world applications, these models must process speech
segments that are frequently contaminated by concurrent speech from other speakers,
which severely degrades embedding quality and reduces speaker discriminability
[28]. Furthermore, current systems require that each speaker in an overlapping
segment be processed sequentially. Thus, a significant speed-up and a potential
improvement in accuracy could be achieved by learning to process these concurrent

speakers simultaneously.

1.3 Thesis outline and contributions

This thesis addresses the aforementioned challenges by exploring a set of targeted
methodologies designed to enhance the robustness and practical utility of MTSP
systems. The primary contributions are:

e Aligning training and evaluation objectives by developing a novel collar-

aware loss function for speaker change detection that directly incorporates the
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temporal tolerance for annotation errors used in standard evaluation protocols
(Chapter 2).

e Bridging domain gaps in separation and diarization by designing a
joint training methodology that leverages real-world, multi-speaker recordings
to simultaneously learn speaker diarization and long-form speech separation,
building upon and extending the MixIT line of work (Chapter 3).

¢ Enhancing robustness and speed of overlap processing by proposing a
technique to guide speaker embedding models with diarization information,
adapting them for multi-speaker audio and enabling simultaneous processing

of concurrent speakers (Chapter 4).
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Chapter 2

Collar-aware training for

speaker change detection

This chapter is based on the work in publication I.

As discussed in Section 1.2.1, a critical mismatch exists between the training
and evaluation of speaker change detection (SCD) systems. While evaluation
protocols commonly use a “forgiveness collar” to account for the inherent ambiguity
in manual annotations, models are typically trained with loss functions that penalize
any deviation from a single ground-truth frame. This discrepancy can result in
models that are not optimally tuned for the metric by which they are judged. This
chapter introduces a novel training method designed to directly address this issue

by incorporating the concept of a tolerance collar into the training objective itself.

2.1 Background

SCD is a task of locating precise points in an audio recording when a different
speaker starts speaking. It is often used as the first step in speaker diarization
systems. Depending on the application, SCD systems can be either streaming (also
known as online) or batch-processing (offfine). In a batch processing system, the
whole audio recording is available when the SCD system is applied. This allows
the model to use all information from both past and future frames when locating
speaker change points. A streaming model, on the other hand, needs to identify
speaker change points with low latency, using typically only one or two seconds
of audio from the future. Streaming SCD is needed as a preprocessing step in
streaming speech recognition systems that perform unsupervised speaker adaptation,
e.g. using i-vectors [38], so that the speaker adaptation state could be reset at
speaker change points. SCD is also often an explicit requirement in realtime closed

captioning systems for broadcast television [18].
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Most modern SCD systems are based on supervised learning. Large speech
datasets, manually annotated with speaker change points, are used for training and
SCD is treated as a binary sequence classification task. Long short-term memory
(LSTM) recurrent neural networks [19, 39] or convolutional neural networks [40-42]
are often used as models. An important issue when training such models for SCD is
that the annotated change points in the training data are ambiguous and imbalanced.
The ambiguousness comes from the fact that often there is a substantial amount
of silence between the speech of two adjacent speakers, yet only a single frame is
marked as a change point. The choice where exactly the annotated change point
resides is often inconsistent, resulting in training data that is confusing for the
model. Also, the number of frames in the training data labelled as change points is
usually less than 1% of all the frames, causing problems with model convergence.

This chapter proposes a novel objective function for training sequence classifica-
tion models for SCD. This collar-aware objective function gives the SCD model
more freedom by allowing it to choose an appropriate speaker change point within
the neighbourhood of the annotated change point. This method addresses both
the problems of imbalanced data as well as the ambiguousness of the annotated
labels. Furthermore, the models trained using this method are especially well
suited for streaming applications, as the resulting model generates “peaky” change
points that do not require any post-processing to find local maxima. We show
that the method also achieves notably higher accuracy in both streaming and

batch-processing scenarios, compared to several well-established baselines!.

2.2 Related work

SCD approaches can be divided into two main categories: metric- and model based.
The first approach operates by applying a pair of sliding windows on the sequence
of feature vectors extracted from the underlying audio signal and uses a divergence
metric for comparing their contents. A speaker change point is detected if the
divergence between two adjacent windows is larger than a predefined threshold and
the divergence achieves a significant local maximum. The advantage of this method
is that it doesn’t require a large annotated training corpus for training: only the
value of the threshold parameter needs finetuning on a small validation set. This
method is used in many speaker diarization systems that use Gaussian mixture
models (GMMs) as their main building blocks (e.g. [43])

A model based approach, on the other hand, uses a a training corpus with
manually annotated speaker change points to train a model for this task. Many
different models have been proposed, such as hidden Markov models [44], GMMs

[45], eigenvoices [46], deep neural networks (DNNs) [42, 47], convolutional neural

!Code and demo available at https://github.com/alumae/online_speaker_change_
detector
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networks [40-42|, recurrent neural networks [19, 39] and Siamese networks [48].

Since models based on neural networks have become popular in recent years
for this task, we review three approaches based on them more carefully. In [19],
SCD is formulated as a standard binary sequence labelling task that can be tackled
using bidirectional LSTMs: the model’s task is to label each frame with either 0 (no
speaker change) or 1 (speaker change). One problem with this approach is that the
training data is heavily imbalanced: the number of frames that are labelled with
0 is much larger than the number of frames labelled with 1 (only 0.4% according
to [19]). Under standard training, the model converges to a state in which a 0 is
predicted for each frame. To address this, the approach in [19] increases the number
of positive labels artificially by labelling frames 50 ms on each side of the annotated
change point as 1. During inference, local score maxima exceeding a pre-determined
threshold are marked as speaker change points.

In [42], a somewhat similar approach is used, but instead of a bidirectional LSTM,
a CNN is used that “sees” a fixed-size window of feature frames prior and after
the current frame. This allows operating the model with low latency in streaming
mode. As with the LSTM-based approach, a large number of frames in the direct
neighbourhood of the annotated change point are labelled as positive during model
training, in order to make the training data more balanced.

In [48], a Siamese architecture is used for low-latency SCD: a 2-second window
prior and after the current frame is processed by a bidirectional LSTM, resulting
in two embedding vectors. The embeddings are then processed by a classification
module that decides whether the two segments correspond to different speakers.
Various pretraining schemes can be applied to the embedding computation module
that are found to improve the detection performance by a large amount. This work
handles the imbalanced data problem by sampling a predefined ratio of speaker
change points from the training data to each batch.

Inconsistent and unreliable speaker turn boundaries in manually annotated
training data can also have a negative effect on the performance of end-to-end
speaker diarization systems. In [49], a modification to the standard multilabel
classification loss for speaker diarization is introduced that simply ignores the errors

in a defined radius around annotated speaker change points.

2.3 Collar-aware training

Speaker change detection is often regarded as a binary sequence labelling problem.
We consider an audio recording consisting of feature vectors z; for i = 1,..., N and
the corresponding speaker boundary labels y; € {0,1} with y; = 1 meaning that
the frame corresponds to an annotated speaker boundary.

When a SCD system is evaluated in terms of precision and recall of detected

speaker boundaries, it is a standard practice to use a collar (typically 250 ms) for
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Figure 2.1: Outline of three supervision methods for speaker change detection:
(a) corresponds to standard sequence labelling objective; (b) increases the number of positive
labels artificially by setting several frames in the neighbourhood of the annotated change
point as positive [19]; (c) the proposed method sums over all paths that have exactly one
positive label in the neighbourhood of the annotated change point.

annotated speaker boundaries: if the boundary detected by the model is within the
tolerated amount of milliseconds of the annotated boundary, the detected speaker
change point is assumed to be correct. However, under standard sequence labelling
objective (Figure 2.1, a), the collar is not used, making the training objective

different from the evaluation scenario.

As pointed out in the previous section, some approaches [19, 42] have suggested
to artificially modify the training data of the speaker boundary detection model by
labelling a predefined number of frames around the annotated speaker boundary
as additional (pseudo-)boundaries (Figure 2.1, b). This is done in order to make
the training data more balanced in terms of label frequencies, and to model the

inherent ambiguousness of the speaker boundaries.

We propose to use a modified objective function for training SCD models that
solves both the problems of imbalanced data and ambiguous annotated boundaries.
Instead of labelling points around the annotated boundary as pseudo-boundaries, it
supervises the model to label exactly one frame within the given collar as a speaker

boundary, but the exact position of the boundary can be freely chosen (Figure 2.1,
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1 def collar_bce_loss(log_probs, change_points, collar):

Compute collar-aware binary CE loss.

Arguments:
6 log_probs -- tensor of shape (seq_len, 2), containing log likelihoods of non-boundary
and boundary events
8 change_points -- indexes of annotated boundaries
collar -- value of the collar (in frames)

won

| result = log_probs[:, 0].sum()
for change_point in change_points:

1
1

1

13 collar_variant_logs = []

14 collar_start_i = change_point - collar

1 collar_end_i = change_point + collar

1 time_index = range(collar_start_i, collar_end_i + 1)

17 event_index = torch.eye(collar_end_i - collar_start_i + 1).long()

18 collar_variant_logprobs = log_probs[time_index, event_index].sum(1)
19 result -= log_probs[time_index, 0].sum()

result += torch.logsumexp(collar_variant_logprobs, 0)
return -result

Figure 2.2: PyTorch code for efficient calculation of the collar-aware binary cross-entropy
loss.

¢). This method has several advantages: (1) it matches the evaluation criteria better
than method (b); (2) it solves the imbalanced data problem similarly or better than
method (b); (3) the model trained in this manner can be easily applied in online
mode without any post-processing to find the local maximum, since the output of
the model is now very “peaky” (see Section 2.5.1).

Formally, given the reference labels y and model predictions vj;, the standard

binary sequence labelling objective is:
N
L(Gy) =—Y _ yilog(yis) + (1 — ;) log(1 — 5j;)
i=1

Since the boundaries occur very sparsely, this objective can be efficiently cal-
culated by summing over the log likelihoods of the no-boundary events, and then
modifying it to account for the few boundary events. Given annotated boundary

positions Z = {z|y, = 1}, the standard sequence labelling loss becomes:

N
L(g,72) = —(Zlog(l — i)
=1
=3 log(1—g2) + Y loa(i-))

2 €Z 2, €Z

In order to calculate the proposed collar-aware objective, we have to consider a
superset S(Z) of all sets of boundary events Z’ where for each original change
point z; € Z there is exactly one boundary event that is within it’s collar set
C; = {z|z; — ¢ < x < z; + ¢}, where c is the value of the collar. Alternatively,

S(Z) = {{z1, ., 2N}z € CiVi € {1,...,N}},
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Figure 2.3: Architecture of the streaming Resnet-LSTM model: Filterbank features
from speech frames are fed into a Resnet module that is pretrained on a speaker recognition
task and then trained jointly with the rest of the model. The outputs from the Resnet
module are fed into a LSTM layer that identifies speaker boundaries (label = 1). Since
this cannot be done without the knowledge of future frames, the identification is done with
a label delay that corresponds to 1 second of speech (in streaming mode).

where N is the total number of original change points. For example, if the reference
label sequence is [00100], then Z’ at collar = 2 corresponds to a set of label sequences
{[01000], [00100], [00010]}.

The proposed objective sums over all such change point configurations:

£Collar(1}7 Z) = — IOg Z e—ﬁ(ﬂ,Z/)
Z'eS(Z)

The idea of this objective function is somewhat similar to the CTC loss function
[50] used for training end-to-end speech recognition models. As with CTC, it is not
practical to compute it using brute force. In order to make it more efficient, we can
again use our knowledge that the number of speaker boundaries occur very sparsely.
Figure 2.2 lists the PyTorch implementation of this idea. The collar-aware loss can
be calculated by summing over the log-likelihoods of the non-boundary events (line
11), subtracting the log likelihoods of the non-boundary events that lie within a
boundary collar (line 19), and then adding the marginalized log-likelihood of having
exactly one boundary somewhere within the collar (line 20). While this approach is
computationally more expensive than the standard binary cross-entropy loss, this
overhead is limited to the training phase and does not impact the model’s inference

speed.
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Table 2.1: A comparison of lengths and the number of speaker change points in the datasets
used in the erperiments.

Dataset ‘ Train Development Test

Estonian | 497.2h / 80k 1.2h / 166 0.7h / 102
English 128.3h / 19.5k 6.1h / 893 5.4h / 893

2.4 Experiments

2.4.1 Datasets

The experiments were carried on both English and Estonian datasets. For English,
we used the HUB4 speech dataset [51, 52]. The Estonian dataset consists of TV
and radio broadcasts. Both datasets are manually transcribed and annotated with
speaker information. Test and development data were separated similarly for both
datasets: 10 recordings were chosen for each at random. An overview of dataset
sizes and annotated boundary counts is provided in Table 2.1. The datasets are
similarly balanced, with 0.04% of the frames being labelled as speaker change points.

2.4.2 Implementation details

We consider two different architectures which we train using both the standard
training method and the proposed collar-aware one.

The first architecture was chosen to closely resemble that of [19]. 33-dimensional
acoustic features are extracted every 10ms on a 25ms window, consisting of 11-
dimensional MFCCs and their first and second derivatives. The model is made up of
two Bi-LSTM layers having 64 outputs and 40 outputs and a multi-layer-perceptron
with 40-, 10- and 1-dimensional layers.

The second architecture uses a Resnet-based feature extractor before a LSTM
layer. The Resnet module is extracted from a speaker recognition model pretrained
on VoxCeleb2 [53], as described in [54]. It results in 1280-dimensional features with
a frame subsampling rate of 8. In the low-latency streaming model, the Resnet
layer is followed by two 256-dimensional LSTM layers, and 1-second label delay is
used in order for the model to see the data past the current frame (see Figure 2.3).
In the offline model, the LSTMs are replaced with bidirectional LSTMs, and no
label delay is used.

All our training methods use extracted segments with random lengths between
10s and 30s.

The first training method used also follows [19]. Namely the training data is
artificially modified by positively labelling every frame in a 50ms neighborhood of an
annotated change point. Notably, no additional labelling is needed for the Resnet-
based architecture since the subsampling that happens during feature extraction

results in frames of 80ms duration and thus a 50ms neighborhood corresponds to
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Table 2.2: Precision (P), recall (R) and F1 results of various batch-mode and streaming
models on Estonian and English datasets with two two different forgiveness collar values.

‘ Estonian dataset H English dataset

‘ collar=0.25s ‘ collar=0.50s ‘ ‘ collar=0.25s ‘ collar=0.50s
Model ‘ P R FI1 ‘ P R FI1 ‘ ‘ P R FI1 ‘ P R F1

|

Batch-mode processing

Pretrained speaker diarization (VBx) [0.68 0.68 0.68|0.96 0.96 0.96 |[0.48 0.64 0.55|0.67 0.88 0.76

Pretrained pyannote.audio 0.62 0.73 0.67 0.68 0.79 0.73 ||0.42 0.38 0.40 |0.57 0.51 0.54
+ finetuned on the given dataset 0.82 0.82 0.820.89 0.89 0.89 [|0.60 0.49 0.54|0.73 0.59 0.65
BLSTM 0.7 0.85 0.77 |0.74 0.88 0.81 [|0.44 0.59 0.50 {0.50 0.62 0.55
f- collar aware training 0.75 0.81 0.78 |0.86 0.80 0.83 [|0.59 0.57 0.58 |0.61 0.61 0.61
Resnet + BLSTM 0.80 0.78 0.79 |0.84 0.80 0.82/0.59 0.66 0.62|0.65 0.69 0.67
+ collar aware training 0.92 0.89 0.91]0.96 0.92 0.94 ||0.76 0.69 0.73|0.79 0.76 0.78

Streaming processing ‘

pyannote.audio with latency=1.0s 0.34 0.67 0.45]0.37 0.73 0.49(/0.21 0.33 0.26 |0.28 0.44 0.34

+ finetuned on our data 0.42 0.68 0.510.46 0.75 0.57 {|0.26 0.45 0.32|0.30 0.52 0.38
Resnet + LSTM 0.73 0.73 0.73]0.76 0.75 0.76 ||0.56 0.62 0.59 | 0.58 0.71 0.64
f- collar aware training 0.89 0.83 0.86|0.92 0.86 0.89(/0.66 0.71 0.68|0.72 0.75 0.74

roughly a single frame. A standard binary sequence labelling objective is used as

the loss function for this method.

The second training method includes no artificial labelling and instead uses the
proposed collar-aware objective as the loss function. The size of the collar was
chosen to be ¢ = 250ms and the effects of varying the collar size are discussed in
Section 2.5.2.

During training, data augmentation is applied: background noise and/or rever-
beration is added to each training segment, both with a probability of 0.3. The
background noises originate from the MUSAN corpus [55]. For reverberation, we
used simulated small and medium room impulse responses [56] and real room
impulse responses from the BUT Speech@FIT Reverb Database [57].

2.4.3 Evaluation metrics

The evaluation metrics are standard precision (P), recall (R), and F1-score, calcu-
lated on the test sets. Predicted change points are considered correct if they match
an annotated change point within a forgiveness collar (closest pairs are matched
first until no pairs remain). Although our main evaluation metrics are precision and
recall of detected speaker change points at a forgiveness collar of 250 ms, we also
show the same metrics using a larger 0.5 second collar. A change point is predicted
to happen if the local maximum of the models output is higher than a threshold,
the value of which is determined by maximizing the F1 score on the development

set.
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Figure 2.4: Precision-recall curves for models trained on the English dataset.
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Figure 2.5: Random samples of Resnet+BLSTM model outputs for neighborhood- and
collar-based models trained on the English dataset centered around annotated speaker change
points.

2.4.4 Baselines

In addition to the pure LSTM-based speaker segmentation system [19], we compare
our results to various baselines. Since speaker change points can be easily derived
from the output of a speaker diarization system, we use several speaker diarization
models that have achieved competitive results on various diarization benchmarks.

The recently proposed VBx diarization method [14]| has produced state-of-the-
art results on CALLHOME, AMI and DIHARD II datasets. The method uses a
Bayesian hidden Markov model to find speaker clusters in a sequence of x-vectors.
We used the open source implementation of the method available at GitHub?.
The diarization pipeline first extracts x-vectors from the sections of the audio

that contain speech. The provided x-vector models are trained on VoxCelebl [37],

’https://github.com/BUTSpeechFIT/VBx
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VoxCeleb2 [53] and CN-CELEB [58]. The x-vectors are extracted every 0.25 seconds
from overlapping sub-segments of 1.5 seconds. The x-vectors are centered, whitened
and length normalized [59]. The x-vectors are pre-clustered using agglomerative
hierarchical clustering to obtain the initial speaker labels and finally further clustered
using the VBx model. The used the VBx parameters Flu, F}, and Py, tuned on
the respective development sets in order to minimize the boundary detection F1
score with a 250 ms forgiveness collar.

We also compare to the neural speaker segmentation method implemented in
pyannote.audio [60] that performs joint voice activity detection, speaker segmenta-
tion and overlapped speech detection. Similarly to the original EEND approach
[13], here speaker segmentation is modeled as a multi-label classification problem
using permutation-invariant training. The model operates on short audio chunks (5
seconds) at a temporal resolution of every 16 ms and outputs speaker activation
probabilities that are stitched together across frames. More specifically, we use
the model available at https://huggingface.co/pyannote/segmentation that is
trained on the DIHARDS3 corpus [61]. We also experiment with the same model
in a low-latency setting [62], using the open-source implementation®. In streaming
mode, the latency of the segmentation output is configurable. To make the results
comparable to our streaming model, we used a latency of 1 second.

In addition to using the publicly available pyannote.audio segmentation model,
we also experimented with finetuning it on our training data. This was done on each
dataset and resulted in further baselines for both streaming and offline settings.

In order to convert the output of the diarization systems to speaker change
points we consider all the consecutive pairs of speaker segments where the speaker
ids differ. If there is less than 2 seconds between the two segments then a speaker
change point is predicted at the beginning of the second segment. This was found
to give better results than other choices in the gap like the midpoint or the end of

the first segment.

2.5 Results

A comparison of the model performances on the two datasets is provided in Table
2.2. The results are divided into two categories: models that perform change point
detection in batch mode, and streaming models. The Resnet+LSTM based models
trained using the proposed collar-aware loss function clearly outperform the same
models trained using the standard training method on both datasets. Furthermore,
these models also provide higher speaker change point detection accuracy than the
baseline speaker diarization models. The state-of-the-art VBx diarization model
actually results in impressive accuracy at a collar of 0.5 seconds but much lower
accuracy at the standard 0.25 second collar. This might be due to the fact that the

3https://github.com/juanmc2005/StreamingSpeakerDiarization/
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VBx model uses a relatively large temporal resolution of 0.25 seconds which causes
the detected change point to be considered an error if it is off by just one timestep.

Precision-recall curves obtained by varying the classification threshold on the
English test set are presented in Figure 2.4. It can be seen that collar-aware training
outperforms neighbourhood-based training at all operation points for both LSTM
and Resnet-BLSTM based models.

2.5.1 Peakiness of model output

One benefit of the collar-aware loss-function discussed above was the “peaky” output
of the model. Figure 2.5 demonstrates this effect by visualizing samples obtained
from Resnet+BLSTM model outputs centered around randomly chosen annotated
boundaries for the English dataset. The output obtained from a model trained
using the neighborhood-based method is spread out over multiple frames requiring
finding the exact local maximum in post-processing. In comparison, the change
points predicted by the model trained with the collar-based method can be obtained
by simply comparing the model outputs to a threshold since the activations tend to

be limited to a single frame.

2.5.2 Tuning the collar size
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Figure 2.6: F1 scores on the English dataset for models of varying training collar size.

Figure 2.6 shows the influence of the collar size used during training on the F1
score on English test data. The optimal size for the collar is dependant on the
nature of the data, how imbalanced it is and how reliable the annotated boundaries
are. Overall, there seems to be flexibility to the choice of collar size as the F1 score
does not change a lot across the tested range. Notably, all of the tested collar sizes

lead to a better result than the neighborhood based models.
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2.6 Conclusion

This chapter presented a novel supervision method for speaker change detection
models using a collar-aware objective function. Our experiments compared it with
a conventional training method, which artificially labels a neighborhood of an
annotated boundary as positive, as well as with various state-of-the-art speaker
diarization models. We found that our collar-aware training yields improved results
for both a purely LSTM-based model and one that uses pretrained embeddings
with 8-fold subsampling.

The exact choice of collar size was found to not have a great effect on performance,
with choices from 80 ms to 500 ms all outperforming the conventional training
method.

We analyzed model outputs around randomly chosen boundaries and showed
that the activations for our method are concentrated to a single frame. This makes
our training method well-suited for online applications, as it eliminates the need for
local maxima detection in post-processing.

Due to these benefits, the introduced SCD system was deployed as part of an
online closed captioning system for the Estonian Parliament and the Estonian
Public Television [63].
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Chapter 3

Joint training of speaker
diarization and speech

separation

This chapter is based on the work presented in publications II, III, and IV.
Processing real-world, multi-speaker audio for applications like speaker-attributed
automatic speech recognition (SA-ASR) presents significant challenges, primarily
due to overlapping speech. While speaker diarization identifies active speakers
and speech separation isolates their voices, conventional training paradigms limit
their real-world applicability. Supervised separation systems suffer from a domain
mismatch because they rely on synthetic training data, and unsupervised alternatives
like mixture invariant training (MixIT) often over-separate a single speaker’s voice
into multiple output streams. This chapter introduces PixIT, a joint training
framework that combines these two tasks. The main contribution is a multi-
task objective that uses permutation invariant training (PIT) for diarization and
MixIT for separation, requiring only speaker diarization labels to train on real-
world recordings. This approach not only improves separation quality but also
enhances diarization by enabling the extraction of speaker embeddings from the
cleaned, separated audio. This chapter details architectural explorations, the critical
impact of matched ASR fine-tuning, and PixIT’s successful performance on several

competitive benchmarks.

3.1 Background

Speech separation—the task of isolating individual speakers’ voices from mixed
audio signals—is crucial for downstream tasks such as speaker-attributed automatic

speech recognition (SA-ASR). The predominant training paradigm for deep learning-
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based speech separation has been supervised learning, typically using permutation
invariant training (PIT) with synthetically mixed clean audio sources [29, 30].
However, models trained on synthetic data often fail to generalize to real-world
recordings due to the inherent domain mismatch, as clean, isolated sources are

rarely available in practice.

To overcome the reliance on synthetic data, unsupervised methods have been
developed. Mixture invariant training (MixIT) is a prominent unsupervised approach
that trains on real-world recordings by creating a “mixture-of-mixtures” (MoM)
from two original mixtures and training a model to separate them [35]. A key
limitation of MixIT is that the separation model must handle twice the number
of speakers present in a single mixture, which often leads to over-separation—a
single speaker’s voice being split across multiple output channels—when applied to

standard mixtures during inference.

Another significant challenge is processing long-form audio. Separation models
are typically trained on short segments, and applying them to long recordings
requires a stitching mechanism. Continuous speech separation (CSS) is a common
technique that applies a separation model on a sliding window and stitches the
outputs based on source similarity in the overlap regions [64]. However, this
approach can fail if a speaker is silent for a period longer than the window overlap,
necessitating a separate speaker diarization system to maintain long-term speaker
identity.

The complementary nature of speech separation and speaker diarization has
inspired several joint training approaches. Models like the recurrent selective atten-
tion network (RSAN) [65] and end-to-end neural diarization and speech separation
(EEND-SS) [66] have shown promise. However, these methods still depend on
synthetic data for training their separation components, which prevents them from

fully bridging the gap to real-world data.

This chapter introduces PixIT, a joint training framework that addresses these
limitations by combining PIT for speaker diarization with MixIT for speech separa-
tion. PixIT leverages real-world recordings, requiring only speaker diarization labels
for training. By constraining the number of speakers in the MoMs, this method
mitigates the over-separation problem inherent in MixIT. A core benefit of PixIT is
that it produces separated audio sources that are temporally aligned with speaker
activity predictions, which simplifies inference on long-form audio and allows for
effective post-processing.

The effectiveness of PixIT is validated in several contexts. It substantially
improves SA-ASR performance on challenging meeting datasets, such as the
NOTSOFAR-1 Challenge [67]. Furthermore, its strong diarization capabilities
are demonstrated in the DISPLACE 2024 Challenge, where using PixIT-separated
sources for speaker embedding extraction contributed to the winning system’s

performance.
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The main contributions detailed in this chapter are:

e The proposal of PixIT, a novel framework for jointly training speaker diariza-
tion and speech separation on real-world data using a combined PIT and
MixIT loss.

e An in-depth analysis of architectural choices for the joint model, including
alternative self-supervised learning (SSL) features and advanced masking

networks.

e A demonstration that fine-tuning an ASR system on PixIT-separated sources
significantly boosts downstream SA-ASR performance, surpassing fine-tuning

on original mixtures.

e A novel approach for improving speaker diarization by extracting speaker em-
beddings from separated sources, validated in the DISPLACE 2024 Challenge.

e A comprehensive evaluation showing PixIT’s competitiveness against strong

baselines, including CSS-based systems, on multiple public benchmarks.

e The release of open-source recipes to facilitate further research and repro-
ducibility!.

3.2 Methodology

Our model is based on the TasNet architecture [29], which consists of a 1-D
convolutional encoder, a separator module that predicts N masking matrices, and a
1-D convolutional decoder. We also leverage pre-trained WavLM features [68], which
are particularly well-suited for speech separation due to their pre-training with an
utterance mixing data augmentation strategy. These features are concatenated
with the convolutional encoder outputs. The diarization network takes the encoded
separated signals as input and processes each source independently to perform
what is effectively voice activity detection (VAD). This independent processing of
sources is required to maintain alignment between the separation outputs and the
diarization branches. The joint model architecture, which we call ToTaToNet?, is
illustrated in Figure 3.1. Components of the model related to the

branch are colored , components related to separation are colored purple,
and components used by branches are colored with a gradient between the

two. This color scheme is kept consistent across all figures in this chapter.

"https://github.com/joonaskalda/PixIT and https://github.com/joonaskalda/
PixIT-design-choices
2A name reflecting the collaboration between labs in Toulouse, Tallinn, and Toulon.

30


https://github.com/joonaskalda/PixIT
https://github.com/joonaskalda/PixIT-design-choices
https://github.com/joonaskalda/PixIT-design-choices

5 .|||“||| .......... ..||||| ......

Figure 3.1: The architecture of the proposed ToTaToNet model.
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Figure 3.2: Training the joint model. The upper part shows the calculation of the MixIT
and PIT losses on MoMs. The bottom part shows the calculation of PIT losses on the
original mixtures.

> ToTaTol

3.2.1 Training

The joint training method for speech separation and speaker diarization is illustrated
in Figure 3.2. Consider an audio chunk X and the reference speaker activity labels
y € {0, 1}EmaxxT where y,; = 1 if speaker k is active at frame ¢, and yi; = 0
otherwise. Here, Ky,.x specifies the maximum number of speakers anticipated in an
audio chunk. For diarization, we use the well-established PIT objective [13]:

Kmax

Lerr(y,y) = min > Loew (i [PIk)
k=1

where ¥ are the predicted speaker activations, P is a K .x X Kpnax permutation
matrix, and Lpcg is the standard binary cross-entropy loss.
Using the speaker annotations, we construct two audio chunks, (X!, y!) and

(X2, y?), containing non-overlapping sets of speakers, with the total number of
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speakers being no greater than K,,,. Limiting the total number of speakers is
critical for solving the over-separation issue of MixIT. The MoM is constructed
as XMoM — X1 4 X2 and the corresponding speaker activity labels yM°M are
formed by concatenating the labels of active speakers from both chunks so that
yMoM ¢ [0, 1} KmaxxT  The MixIT loss function is then given by:

2
Latisit {Xa},8) = min ; Lsrspr (Xn, [AS],),

where § are the predicted separated sources, M is the number of output sources, A

12%M yunder the constraint that each column sums to

is a mixing matrix A € {0,1
1, and Lgsr.spr is the negative scale-invariant signal-to-distortion ratio [69].

Our combined multi-task loss is:

LpixaT = )\(£PIT ' 9Y + Leir(y2,52)

+£P1T(yMOM,§’MOM)) + (1 = N Lyisat ({Xn},8),

where A = 0.5 was selected from 0.1, 0.5, 0.9 based on its superior performance on
the development data. While a thorough sensitivity analysis of the A hyperparameter
was not conducted, the optimal balance between diarization and separation losses

likely relates to dataset characteristics, such as the degree of speech overlap.

3.2.2 Inference

During inference, an audio stream is partitioned into shorter chunks, as depicted in
Figure 3.3. The joint model processes each chunk and outputs aligned estimates
for speaker sources and speaker activations. The resulting speaker activations and
sources are clustered as in [70]. First, speaker activations are binarized using a
detection threshold 6 € [0, 1] to identify speaker segments. Second, a local speaker
embedding is extracted for each active speaker in a chunk. For this, we use only the
regions of the chunk where the corresponding speaker is active. Speaker embeddings
are computed by feeding the concatenation of original audio samples from these
regions to the pre-trained ECAPA-TDNN model [25] available in [71]. Finally,
agglomerative hierarchical clustering is performed on these embeddings using a
clustering threshold 6.

As an important post-processing step, we perform leakage removal by setting the
stitched separated sources at time t to zero when the diarization output indicates
that the corresponding speaker is not active within a window [t — At, ¢ + At]. This
is a key benefit of having aligned speaker activations and sources, as it eliminates
cross-talk when a speaker is inactive. The goal of introducing At is to provide
downstream ASR systems with additional context. The hyperparameters 6, §, and

At are optimized on the development dataset.
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Figure 3.3: Inference on long-form audio. For ease of visualization, inference using non-
overlapping sliding windows is shown.

3.2.3 SSL features

The ToTaToNet architecture can incorporate features from pre-trained self-supervised
learning (SSL) models to improve its representations. We evaluate two such models.
The first is WavLM (large version) [68], which is particularly suited for this work
as its pre-training includes an utterance mixing data augmentation strategy that
helps the model learn to handle overlapping speech.

We compare this to a more recent and larger model, the Conformer-based W2v-
BERT 2.0 [72] from the Seamless project [73]. It features a larger architecture (580M
vs. 315M parameters for WavLM-large), combines a masked language modeling
(MLM) objective with a contrastive loss, and was pre-trained on a significantly
larger and more diverse multilingual dataset (4.5 million hours vs. 96k hours). For

the remainder of this study, we use WavLM to refer to its large version.

3.2.4 Masking networks

The masking network is a core component of the ToTaToNet separation module.
The original implementation uses the dual-path recurrent neural network (DPRNN)
[30]. DPRNN processes encoded audio features by segmenting them into chunks
and applying recurrent layers both within chunks (intra-chunk) and across chunks
(inter-chunk) to model local and global dependencies.

To potentially improve separation performance, we also evaluate a more recent

architecture: the monaural speech separation transformer 2 (MossFormer2) [74].
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MossFormer?2 replaces the sequential processing of RNNs with self-attention mecha-
nisms to better capture global context. It is composed of stacked blocks containing
local and global self-attention layers and a feed-forward sequential memory network
(FSMN) [75] to model long-range dependencies more effectively than traditional
RNNs. This change comes at a computational cost, with MossFormer2 having a
significantly larger parameter count (20-50M vs. 2-3M for DPRNN) and longer

training times.

3.2.5 ASR fine-tuning

Although modern ASR models achieve impressive performance on general speech
recognition tasks, their effectiveness often deteriorates in domain-specific scenarios
that differ from their training data. Therefore, ASR models are often fine-tuned
on in-domain data to improve accuracy. This adaptation is particularly crucial
for multi-party meeting scenarios due to significant divergences from standard
ASR training distributions, such as speaker overlap, variable signal-to-noise ratios,
reverberation, and non-stationary background noises. Multi-party conversations also
feature non-uniform speaker turns, frequent interruptions, and context dependencies
spanning multiple turns.

Fine-tuning adapts both acoustic and language models to these domain-specific
phenomena. A primary challenge in multi-party meeting transcription is handling
overlapping speech. Contemporary ASR architectures typically cannot generate
parallel token streams for simultaneous speakers and instead process overlapping
segments sequentially, ordered by utterance onset. This sequential processing can
complicate the accurate determination of word timestamps.

This challenge is specific to single-channel audio containing multiple overlapping
speakers. While speech separation preprocessing can mitigate this issue, it introduces
its own challenges. When processing separated streams, the ASR system must
contend with reduced contextual information, as each stream contains only the
speech of a single participant. This limitation can impact the model’s ability to
leverage broader conversational context. Additionally, isolating individual speakers
complicates the processing of short backchannel utterances, which often derive
meaning from their temporal relationship to other speakers’ contributions.

While both single-stream and separated-stream approaches have distinct chal-
lenges, it is essential to maintain consistency between the preprocessing methods
applied during training and inference. Specifically, if speaker separation is used
during inference, the training data must be processed similarly. During the training
phase, separation can be guided using reference information, such as speaker-
attributed word timestamps. In some cases, individual microphone recordings are
available, providing “gold standard” separated streams. In our experiments, we
investigate this consistency hypothesis by evaluating ASR models fine-tuned on both

single-stream and separated-stream configurations across both testing conditions.
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Figure 3.4: Speaker embedding extraction using either the active frames from separated
sources or the original audio as input.

3.2.6 Separated sources as input to speaker embeddings

During inference, clustering local speaker segments requires extracting a represen-
tative speaker embedding for each active speaker in a given chunk. As illustrated
in Figure 3.4, these embeddings can be extracted either from the original mixture
audio or from the corresponding separated source signal generated by PixIT. Each
approach presents a trade-off. Extracting embeddings from the original audio is
challenging in regions with overlapping speech, as this can corrupt the speaker rep-
resentation. Using the separated source mitigates this by providing an overlap-free
signal. However, the separation process may introduce audio artifacts that could
degrade the quality of the speaker embedding.

This work systematically evaluates this trade-off by comparing diarization and SA-
ASR performance when using both embedding extraction methods across multiple
datasets. The clustering hyperparameters are tuned independently for each approach

to ensure a fair comparison.

3.2.7 Tackling ASR timestamp errors caused by long silent
regions

PixIT’s file-level separated sources often contain substantial periods of silence. This
issue is particularly pronounced in the NOTSOFAR-1 dataset, where meetings
can have up to eight speakers. During our challenge participation, we used faster-
whisper?, a reimplemented Whisper decoder that incorporates VAD to remove silent
regions before processing the audio. However, this approach introduced a timing
issue, as Whisper-assigned word timestamps could fall on the incorrect side of a
VAD boundary. When this happens, the final timestamps can be shifted by the
duration of the removed silent region, which leads to large timing errors. These

misalignments can increase the tcpWER by falling outside the acceptable time

Shttps://github.com/SYSTRAN/faster-whisper
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Figure 3.5: An example of timestamp errors caused by long silences. From left to right:
Active speech segments predicted by PixlIT, speaker-attributed ASR output’s tcp WER
alignment visualized before timestamp refinement, and after refinement.

collar, as illustrated in Figure 3.5.

Faster-whisper includes a heuristic to mitigate this issue, but utterances can
still be split between distant VAD segments. Instead of using Silero VAD*, as
in faster-whisper, we use active speech segments from PixIT’s diarization output.
This approach incurs no additional computational cost and better aligns the VAD
train-test domains. To account for artifacts introduced by PixIT’s separation, we
further refine the heuristic to adjust timestamps only when diarization detects
inactivity for more than half of the utterance’s duration.

3.3 Experiments

3.3.1 Datasets

Our experiments use three distinct and publicly available datasets, all sourced
from single-microphone meeting recordings. The first is AMI [76], which consists

of 100 hours of recordings from multi- and single-channel microphones across 171

‘https://github.com/snakers4/silero-vad
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meetings. The dataset includes both scenario-driven and natural meetings. The
second is AliMeeting [77], a Mandarin corpus with approximately 120 hours of

natural meeting recordings across 212 sessions.

While AMI contains approximately 15-20% overlapping speech, AliMeeting
presents more challenging scenarios with around 40% overlap. Finally, the NOTSOFAR-
1 [67] dataset contains 150 hours of single-channel recordings and 110 hours of
multi-channel recordings, totaling 280 meetings. The dataset also includes 1000
hours of tailored synthetic mixtures. Due to computational limitations, we do
not use this synthetic data for training PixIT. While AMI and AliMeeting contain
recordings of approximately 30 to 60 minutes, NOTSOFAR-1 is composed of shorter,

6 to 7-minute files. Since PixIT is a single-channel method, our experiments focus on
AMI-SDM (single distant microphone), AliMeeting channel 1, and NOTSOFAR-SC.
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Figure 8.6: Histogram of the total number of speakers per 5-second chunk across the training
sets of the datasets.

As shown in Figure 3.6, AMI-SDM contains the fewest speakers per 5-second
chunk, making it the least challenging of the three datasets. In contrast, NOTSOFAR-
1 is the most challenging for both diarization and separation due to a high number
of active speakers per chunk. Furthermore, the large number of recorded meetings

adds significant diversity to the scenarios.

3.3.2 Evaluation metrics

Our systems were evaluated on speaker diarization and speaker-attributed tran-
scription. For speaker diarization, we employed the diarization error rate (DER), a

standard metric computed as:

FA+MISS + SC
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where FA (false alarm) is the duration of non-speech wrongly classified as speech,
MISS (missed detection) is the duration of speech incorrectly classified as non-
speech, and SC (speaker confusion) is the duration of speech assigned to the wrong
speaker. TOTAL is the sum of reference speech durations for all speakers, counting
overlapped speech multiple times. We report DER with a 0-second collar.

To evaluate speaker-attributed transcription, we rely on the concatenated
minimum-permutation word error rate (cpWER) [78] and the time-constrained
minimum-permutation WER (tcpWER) from MeetEval [79]. Both are extensions
of the word error rate (WER), which is defined as:

WER=—""2 (3.2)

where I, S, D, and C are the number of inserted, substituted, deleted, and correct
words, respectively.

The cpWER penalizes speaker confusion errors. To compute it, reference and
hypothesis segments are grouped by speaker and then concatenated. The Hungarian
algorithm [80] is then used to find the permutation of speakers that minimizes
the WER. Transcripts from unmatched speakers (either in the hypothesis or the
reference) are counted as errors.

The tcpWER adds a temporal constraint to penalize matching words that are far
apart, thereby evaluating the quality of the temporal prediction. In our experiments,
we use a temporal collar of 5 seconds, consistent with the NOTSOFAR-1 Challenge.

For text normalization, we used Whisper’s normalizer on AliMeeting and AMI,
and the slightly modified version from the NOTSOFAR-1 challenge on its respective
dataset. Metrics were aggregated by summing the individual components across
all files, except for NOTSOFAR-1, where we averaged the metric values per file to
match the challenge evaluation protocol.

3.3.3 Speaker attribution methods

The standard approach for adding speaker attribution to an off-the-shelf ASR system
is to integrate it with a speaker diarization system, as illustrated in Figure 3.7.
Each ASR speech segment is assigned to the speaker who is most active during
that segment according to the diarization output. A CSS system can be used as a
preprocessing step to better handle overlapping speech, but this requires tailored
synthetic training data.

The NOTSOFAR-1 challenge baseline includes such a CSS-based system, which
we use for comparison. Since no publicly available synthetic datasets exist that are
tailored for AMI or AliMeeting, we also use the NOTSOFAR-1 baseline system for
comparison on those datasets.

PixIT offers a more integrated approach. It outputs long-form separated sources

that are inherently speaker-attributed through their alignment with the diarization
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Table 3.1: Overview of parameter counts, training hyperparameters, and real-time factors
(RTFs) for the proposed ToTaToNet architectures. RTF is measured on the AMI develop-
ment set.

SSL Masking # Params B&.ltch Learning rate RTF
network Frozen Trainable S'%€ SSL Other
WavLM DPRNN 0 319M 16 le-5 3e-4  0.005
WavLM MossFormer2 0 319M 8 le-5 3e-4  0.009
W2v-BERT DPRNN 580M 5M 16 le-5 (LoRA)  3e-4 0.012
W2v-BERT MossFormer2 580M 21M 8 le-5 (LoRA) 3e-4 0.017

output. Consequently, performing SA-ASR with PixIT simply involves passing each
long-form source directly to an ASR system. We use these two SA-ASR methods
to benchmark PixIT’s separation capabilities, as a direct evaluation is not possible

on real-world audio due to the lack of clean reference signals.

Speaker A: Hello. How are you?

Speaker B: Hello. Great.

Speaker C: Good morning.
Hello. How are you?

Hello. Great. Good
morning.

.||-|||||||||||H|||||l|| ﬁ)-—){Speaker A: Hello. How are you? |
||||..||||||-||v||||||||"~||||| mSpeaker B: Hello. Great. |
’ """"”||‘H\H '—){Speaker(}: Good morning. |

Figure 3.7: Speaker attribution for ASR via either diarization or separation.

Attribution through diarization

Diarization

Attribution through separation

3.3.4 Implementation details

All models were optimized using the Adam optimizer [81] and employ 3 output
masks. The WavLM and W2v-BERT components were fine-tuned with a learning
rate of 1e-5, while the remainder of the model used a learning rate of 3e-4. Given
the size of W2v-BERT, we adopted LoRA (low-rank adaptation) with a rank r = 8
and scaling factor o = 32 for fine-tuning. Table 3.1 summarizes the configurations
explored.

The training configuration was consistent across AMI and AliMeeting. For
NOTSOFAR-1, we focused on enhancing the ASR back-end of our challenge-trained
system rather than training new systems. All models were trained on a single
A100-80GB GPU.

Our separation and diarization pipelines use speaker embeddings extracted by
the ECAPA-TDNN model from Speechbrain [71]. Hyperparameter optimization
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involves a two-step process. First, we determine the optimal segmentation threshold
and ASR collar (padding for leakage removal) using Oracle clustering. Second, we
optimize clustering parameters (threshold and minimum cluster size) based on this
threshold. Optimization is performed with respect to DER or cpWER, depending
on the task.

3.4 Results

3.4.1 Effect of speaker embeddings as inputs

Table 3.2 reports DER and cpWER on the development sets for pipelines extracting
embeddings from mixtures versus separated sources, as detailed in Section 3.2.6.
Hereafter, we refer to embeddings from the original mixture as mizture embeddings
and those from separated signals as source embeddings. For AliMeeting and AMI,
we use the original ToTaToNet systems (WavLM and DPRNN). For NOTSOFAR-1,
we use our best challenge system. To expedite optimization, we use the Whisper
small.en and small models for ASR.

We observe a general trend that datasets with higher overlap tend to benefit
from using source embeddings. On AliMeeting, SA-ASR performance improves,
but diarization degrades with source embeddings. Conversely, on NOTSOFAR-1,
the opposite occurs. The benefit of source embeddings for diarization was further
confirmed in the DISPLACE 2024 challenge, where this technique was part of
the winning system. Further analysis revealed that merging clusters to improve
diarization can sometimes introduce artifacts into the separated signal that cause
ASR hallucinations, worsening the tcpWER. This highlights a limitation of using
SA-ASR to evaluate separation performance.

The fact that source embeddings can improve performance with an off-the-
shelf model is promising. As shown in Section 3.4.4, fine-tuning the ASR system
on separated sources yields significant SA-ASR improvements, suggesting that
speaker embedding models could also benefit from fine-tuning on such data. For the
remainder of the experiments, we adopt the method that yields the best development

performance for each task and dataset.

3.4.2 Performance of different ToTaToNet architectures

This section evaluates the performance of the proposed ToTaToNet architectures on
the AMI and AliMeeting datasets. Table 3.3 presents SA-ASR results on AMI using
PixIT-based separation and Whisper large-v3. MossFormer2 outperforms DPRNN
for both SSL models, aligning with findings for supervised speech separation [74].
An unexpected observation is the underperformance of W2v-BERT SSL features
compared to WavLM; this is analyzed further in Section 3.4.3.

To assess broader applicability, we also trained the best-performing architecture
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Table 3.2: DER (%) and cpWER (%) for different embedding extraction methods across
datasets on the development split.

Dataset Overlap (%) Em!aeddtlngs DER (%) cpWER (%)
lnpu FA MD SC total sub del ins total
Mixtures 4.9 6.3 4.8 16.0 7.3 20.0 2.3 29.6
AMI 14.6 Sources 4.9 6.3 85 19.7 6.7 21.7 2.3 30.7
. . Mixtures 4.6 6.6 6.1 17.4 16.2 22.2 3.4 41.8
AliMeeting 204 Sources 4.6 6.6 7.1 18.3 15.6 22.2 3.2 41.0
NOTSOFAR-1 394 Mixtures 42 9.1 94 22.7 84 222 4.2 34.9

Sources 42 9.1 81 21.3 82 23.1 4.5 35.8

(WavLM with MossFormer2) on AliMeeting, with the results shown in Table 3.4.
These findings confirm the generalizability of the trends. The PixIT-based systems
outperform the CSS-based NOTSOFAR-1 baseline in all configurations.

Table 3.5 provides the diarization results. Performance remains consistent across
configurations, suggesting that while more capable masking networks enhance
separation, this does not directly translate to better diarization with the current,
relatively simple diarization module. A trade-off exists between performance and
architectural size in the masking networks (see Table 3.1). While MossFormer?2
outperforms DPRNN, the improvement is slight, questioning the utility of the

increased computational cost.

Table 3.3: tecpWER (%) and cpWER (%) for various ToTaToNet architectures with speaker
attribution via diarization or separation on the AMI-SDM dataset using Whisper large-v3.

Masking Speaker  Attribution cpWER (%) tcpWER (%)
SSL model ¢ K ttributi del

networ attribution mode sub del ins total sub del ins total
Not used Not used Diarization pyannote 3.1 7.2 278 4.8 39.7 6.1 295 6.4 42.0

Not used Conformer Diarization NeMo 10.7 19.2 7.0 36.9 10.6 204 8.7 39.7

Diarization = ToTaToNet 7.5 26.0 3.4 36.9 6.4 27.8 54 39.5
Separation ~ ToTaToNet 7.0 19.6 2.8 29.3 7.3 214 4.6 334
WavLM MossFormer? Diarization ~ ToTaToNet 7.3 26.3 3.3 36.9 6.2 28.0 5.0 39.2
o ’ Separation ~ ToTaToNet 6.9 194 2.6 28.9 7.1 21.3 45 32.9
Diarization =~ ToTaToNet 7.3 26.5 3.3 37.1 6.2 28.2 5.1 39.4
Separation ~ ToTaToNet 7.3 22.7 2.6 32.6 7.7 239 45 36.0
Diarization =~ ToTaToNet 7.5 26.2 3.2 36.8 6.2 28.0 5.0 39.2

W2v-BERT  MossFormer2 g o tion  ToTaToNet 7.8 19.6 3.2 30.6 7.4 21.8 54 34.7

WavLM DPRNN

W2v-BERT DPRNN

3.4.3 Comparison of SSL features

Surprisingly, the results in Tables 3.3 and 3.5 show that W2v-BERT did not improve
over WavLM, and in some cases, led to performance degradation. To investigate
this, we trained separate segmentation and separation models.

For diarization, we trained a segmentation model on AMI using the same
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Table 3.4: tecpCER (%) and cpCER (%) for various ToTaToNet architectures with speaker
attribution on the AliMeeting channel 1 dataset using Whisper large-v3.

Masking Speaker  Attribution cpCER (%) tcpCER (%)
SSL model : K ttributi del

networ attribution mode sub del ins total sub del ins total
Not used Not used Diarization pyannote 3.1 17.3 385 10.0 65.9 9.8 46.0 17.5 73.3
Not used Conformer Diarization NeMo 156 27.0 7.0 49.5 152 28.0 81 51.3

Diarization =~ ToTaToNet 18.3 37.6 9.2 65.1 10.1 45.6 17.2 72.9
Separation ~ ToTaToNet 10.8 28.6 2.7 42.1 13.4 30.9 5.0 49.4

Diarization ~ ToTaToNet 19.1 37.0 85 64.6 10.3 45.5 17.0 72.8
Separation =~ ToTaToNet 124 25.0 3.3 40.7 15.1 28.8 7.1 51.1

WavLM DPRNN

WavLM MossFormer2

Table 3.5: DER (%) on AMI-SDM and AliMeeting channel 1 for different ToTaToNet
systems. State-of-the-art as of December 2024 is denoted with ®.

SSL model lr\ﬁilzﬁf A DER (%)
| FA' MD SC | total
AMI-SDM systems
Han et al. [82] ‘ | 154 ®
DPRNN 10 44 72 55 |17.1
WavLM DPRNN 05|39 82 56 |17.7
WavLM MossFormer2 0.5 | 5.0 85 3.9 | 17.5
DPRNN 05|50 88 39| 17.6
W2v-BERT MossFormer2 0.5 | 49 86 4.2 | 17.7
AliMeeting systems
Hérkonen et al. [83] | | 13.2®
DPRNN 1.0 47 65 83 | 19.5
WavLM DPRNN 05|58 73 83214
WavLM MossFormer2 0.5 ‘ 6.8 69 7.7 ‘ 21.4

hyperparameters as in PixIT. Audio representations were extracted directly from
the SSL model and passed through 4 LSTM layers and a final linear layer to predict
speaker activity. For separation, we used the same DPRNN masking network and
TasNet encoder hyperparameters as in the PixIT models. We evaluated these
models on the WSJ0-2Mix dataset to directly measure separation gains (SDR,
SDRi, SI-SDRI) on artificial mixtures where ground truth sources are available. In
both cases, W2v-BERT and WavLM were fine-tuned under the same conditions as
their respective ToTaToNet models.

Table 3.6 shows a clear benefit from using W2v-BERT when the tasks are trained
disjointly. For diarization, a relative 10% improvement in DER is observed. For
separation, we see a 14% relative improvement in dB across all metrics. These
results confirm that W2v-BERT should improve performance for both tasks, which
was not the case in the end-to-end ToTaToNet models.
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Table 3.6: DERs (%) for segmentation models trained on AMI-SDM and separation gains
(dB) for models trained on WSJ0-2Mix. Both models use a DPRNN masking network.

SSL model DER (%) Gains (dB)
FA MD SC total ‘ SDR SDRi SI-SDRi
WavLM 43 88 6.2 19.2 | 164 16.2 16.0

W2v-BERT 40 72 58 17.3 | 186 184 18.2

This suggests a potential bottleneck in how the ToTaToNet models leverage
SSL representations for both tasks simultaneously. To investigate, we performed a
layer-wise analysis by freezing the SSL models and training a weighted average of

their 24 transformer layers for each task.

WavLM Layer Weight

SD -
. . ..

PixIT -

Tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layers

W2v-BERT 2.0 Layer Weight

- .. .
Pt - B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layers

Figure 8.8: Layer contribution of W2v-BERT 2.0 and WavLM (large version) for Speaker
Diarization (SD), Speech Separation (SS), and the joint task (PizIT).

Tasks
»
)

As shown in Figure 3.8, for WavLM, both diarization and separation tasks
activate the early layers (1-7), which are known to be important for speaker identity.
This behavior translates well to PixIT, which also activates these layers. In contrast,
for W2v-BERT, diarization activates the top layers while separation activates both
early and top layers. This discrepancy forces the joint PixIT model to compromise,
leveraging a mix of early and top layers, which may trade off performance in each
task. This suggests that for a joint model like PixIT, using an SSL model where
optimal representations for each task reside in different layers presents a challenge.
Further investigation is needed to explore more effective ways to integrate features

from such SSL models.

3.4.4 Fine-tuning ASR

Fine-tuning ASR models on in-domain data typically yields significant improvements.
We investigated this by creating two fine-tuned versions of Whisper large-v3: one
trained on the original AMI-SDM training data with merged transcripts, and another

trained on separated audio sources and their corresponding speaker-attributed
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Table 3.7: cpWER (%) and tecpWER (%) on AMI-SDM test set for various fine-tuned
Whisper large-v8 models and attribution methods, with relative changes compared to no
fine-tuning.

ASR fine-tuning  Attribution cpWER (%) tcpWER (%) Relat. change (%)
sub del ins total sub del ins total cpWER tcpWER

None Diarization 73 264 32 36.9 64 279 49 39.2

On original audio Diarization 99 140 7.1 309 82 159 9.3 334 -16.2 -14.8

On separated sources Diarization 7.8 229 23 329 71 243 38 35.1 -10.8 -10.5

None Separation 5.8 21.7 1.7 293 6.5 228 28 32.2 - -

On original audio Separation 141 9.5 19.1 42.8 11.1 13.1 23.1 47.3 +46.1 +47.0

On separated sources Separation 4.1 16.7 1.8 22.6 6.8 144 3.7 24.8 -22.9 -23.0

transcripts. Training utterances were created from the word-level transcriptions
provided with the AMI dataset.

Both models were trained for three epochs using identical hyperparameters. Table
3.7 presents the results on the AMI-SDM test set. When the original single-channel
audio is used as input, both fine-tuned models improve over the base model, with
the model fine-tuned on single-channel audio performing best.

However, when these models are applied to each separated source independently,
the results diverge. The model fine-tuned on multi-speaker audio shows a noticeable
decline in accuracy. Conversely, the model fine-tuned on separated sources delivers
a substantial improvement. This result demonstrates that when using PixIT for
separation, it is crucial to fine-tune the ASR model on separated audio that matches

the test-time input.

3.4.5 Improving on our NOTSOFAR-1 Challenge submission

Table 3.8 presents results for our NOTSOFAR-1 Challenge systems on the eval-small
dataset, using the same ToTaToNet checkpoint as our challenge submission. Similar
to the AMI experiments, fine-tuning the large-v3 model on single-channel audio
results in a large WER increase, likely due to frequent hallucinations.

Conversely, fine-tuning on separated sources significantly improves the tcpWER
to 33.7%, a 20% relative reduction compared to the baseline, again demonstrating
the effectiveness of aligning fine-tuning with the test configuration. Notably, our
method slightly improves on the NOTSOFAR-1 baseline when using an identical
downstream ASR model (Whisper large-v2). This shows that PixIT is a promising
alternative to CSS, even when domain-matched synthetic data is available for the
CSS system.

3.4.6 Effect of the timestamp fix heuristic

The effect of our timestamp correction heuristic, introduced in Section 3.2.7, is
detailed in Table 3.9. The heuristic generally mitigates error increases caused by the

time collar, with the most pronounced improvements seen in the model fine-tuned
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Table 3.8: Performance on the NOTSOFAR-1 eval-small split. This table includes cpWER,
tepWER, and the relative tcp WER change with respect to the baseline system.

cpWER (%) tcpWER (%) AtcpWER (%)

System lative)

sub del ins total sub del ins total (relative
NOTSOFAR-1 baseline 11.3 22.0 74 40.7 10.0 233 8.8 42.1 0.0
Our NOTSOFAR-1 submission 10.7 14.2 9.8 34.7 10.3 17.6 13.2 41.1 -24
large-v2 77 254 37 368 74 2719 6.3 41.7 -1.0
large-v3 71 249 37 356 7.2 275 63 409 -2.9
large-v3, ft. on single channel 21.8 14.0 45.0 80.8 14.2 21.4 524 88.1 +109.3
large-v3, ft. on sep. sources 8.0 163 6.0 303 7.2 183 81 33.7 -20.0

on separated sources. These results demonstrate that while PixIT can introduce
timestamp errors due to long silences in the separated sources, such errors can be

largely corrected with lightweight post-processing.

Table 3.9: Effect of the timestamp fix heuristic on the tcp WER metric. This table presents
the total cpWER, tcpWER before and after the fiz, the relative error proportion from the
collar, and the relative change in collar errors after fixing.

tcpWER (%) Rel. collar err. Rel. change to collar

E et Mo AR .
System cPWER (%) before fix after fix Proportion (%)  err. from fix (%)
large-v3 35.6 41.6 40.9 13.2 -11.7
large-v3, ft. on sep. sources 30.3 34.8 33.7 12.9 -24.4

3.5 Conclusion

This chapter presented and evaluated PixIT, a framework for jointly training speaker
diarization and unsupervised speech separation using only diarization labels from
real-world data. The experiments investigated its effectiveness and the influence of
different architectural choices and downstream components. The results indicated
that advanced masking networks like MossFormer2 can improve separation within
the ToTaToNet architecture. For self-supervised features, we found that it is
important for the layer contributions for the separation and diarization tasks to be
similar.

The results demonstrate that fine-tuning an ASR system on PixIT-separated
sources significantly boosts downstream SA-ASR performance. Notably, these gains
are greater than those for a standard diarization-based SA-ASR system where the
ASR is fine-tuned on the original mixtures.

PixIT-separated sources also show potential for speaker embedding extraction,
contributing to the winning submission in the DISPLACE 2024 challenge. This
suggests that fine-tuning speaker embedding models on separated sources is a
promising direction for future work.

PixIT is a strong competitor to traditional SA-ASR methods, outperforming
a CSS baseline on the NOTSOFAR-1 Challenge dataset without relying on the
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tailored synthetic data used by the CSS system. Therefore, in addition to being
easier to train, PixIT can rival supervised separation approaches on real-world

mixtures.
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Chapter 4

Diarization-guided

multi-speaker embeddings

This chapter is based on the work in publication V.

Building on the theme of domain mismatch, this chapter addresses some of
the challenges faced by speaker embedding systems in multi-speaker scenarios. As
noted in Section 1.2.2, embeddings trained on clean, single-speaker data degrade
significantly when processing real-world audio containing overlapping speech. Fur-
thermore, current systems process speakers sequentially, which is inefficient. This
chapter presents a method to extract robust and discriminative embeddings for all
speakers concurrently from a single audio chunk, using guidance from a diarization

model to improve both accuracy and processing speed.

4.1 Background

High-quality speaker embeddings are essential for multi-speaker speech processing
tasks. In speaker diarization, EEND-vector clustering (EEND-VC) systems rely
on speaker embeddings derived from local segmentation outputs to cluster and
stitch these local segments [16]. Similarly, in multi-speaker automatic speech
recognition (ASR), transducer-based systems produce segment-wise transcriptions
with timestamp estimates, which are subsequently attributed to individual speakers
using speaker embeddings [84]. For voice conversion of long-form audio, it is
desirable that speaker embeddings are modelled consistently [85]. In all the above
use cases, it would be beneficial for all the speakers to be modeled concurrently.
Previous studies have explored joint training of ASR and segmentation models
with multi-speaker embeddings [17, 84], but these approaches have underperformed
compared to standalone embedding systems [86]. This discrepancy is likely due
to the difference in data quality: speaker verification datasets, which are more

easily annotated, tend to be larger and more diverse than those used for ASR and
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speaker diarization [37]. These datasets contain only single-speaker utterances,
leading to a domain mismatch when applied in multi-speaker scenarios. To address
this, guided speaker embeddings (GSE) were recently introduced for multi-speaker
environments [28]. GSE is trained on synthetic multi-speaker mixtures derived
from a speaker verification dataset, with oracle activity labels guiding the process.
Activity labels for both target and interference speakers are used as additional
inputs to the embedding encoder and for masking attention scores. However, these
systems still produce embeddings for only one speaker at a time.

This chapter proposes extending GSE by modeling all speakers present in a
chunk at once. Additionally, since the practical deployment of a GSE system relies
on a speaker segmentation model, we also propose using its output as a guide for
training instead of oracle labels. Features from a segmentation model can offer
more detailed guidance. For example, areas of high confidence indicate it is easier
to extract speaker-specific information there.

The main contributions of this chapter are as follows:

e Proposing a diarization-guided training method for multi-speaker embedding

systems.

e Introducing a modified attention module to allow for multi-speaker modeling

in existing speaker embedding models.

e Proposing a new validation metric optimized for speaker embeddings in a

multi-speaker context.

e Providing a thorough evaluation of the multi-speaker embeddings on multiple

speaker diarization and verification datasets.

e Open-sourcing the code for the above!.

4.2 Method

Figure 4.1 illustrates our joint architecture, which combines a local speaker segmen-
tation model with a speaker embedding model using a shared feature extractor. We
opt for an SSL-based features extractor, namely WavLM, since it demonstrates good
performance in both speaker diarization and speaker verification tasks [68]. It is
also the choice for state-of-the-art for speaker diarization as of writing [82, 87]. We
use the same LSTM-based segmentation probing head as in [87]. For the embedding
module, we use an ECAPA-TDNN, which has been shown to perform better than
smaller probing heads [25, 88|.

Given the frame-level features extracted from an audio chunk x € R”*¥ and

assuming a maximum of K, speakers, the segmentation module extracts powerset

Mhttps://github.com /joonaskalda/multi-speaker-embeddings
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features p € RT*Kes where K is the number of powerset classes. These are
binarized and converted into a multi-label format a € {0,1}7*&max [89]. The
powerset features are concatenated with x to form combined features of dimension
F 4 Ky, which are fed into the embedding encoder. Only the input channel
dimension of the encoder is modified in our approach.

The encoder output h € R7”*P is reshaped to introduce a speaker dimension,
resulting in h’/ € REmaxXTx(D/Kmax)  The attention module remains unchanged
from the original ECAPA-TDNN, except that all the channel dimensions are scaled
down by a factor of K.y, except for the bottleneck attention dimension, which is
kept at 128. The batch size after the encoder is effectively increased Ky,ax times,
with the speakers being processed in parallel.

Similarly to GSE, we apply silent masking for each predicted speaker but use
binarized predicted speaker activations instead of oracle labels. The embedding
dimension for the predicted multi-speaker embeddings {eq,...,ek, . } € R9% is
kept unchanged from the original ECAPA-TDNN.

Note that this approach would require slight modifications if the encoder output
channel dimension D is not divisible by K,.x by e.g. adding an adaptation layer.
In the above we also assumed, for simplicity, that the embedding encoder leaves
the temporal resolution unchanged, as is the case for ECAPA-TDNN, used in
our experiments. If that is not the case, the speaker activation masks should be
interpolated to match the embedding output temporal resolution.

To train the multi-speaker embedding model we use synthetic VoxCeleb mixtures
as in [28]. We use the standard ArcFace loss [27] but only compute it for an
embedding if the segmentation model correctly predicts the corresponding speaker’s
activation for at least one second.

In our experiments, we use a segmentation probing head trained using powerset
loss [89], but this is not a requirement. The only new components that need to be
trained in our method are in the speaker embedding branch. For the segmentation
branch and feature extractor, any off-the-shelf model can be utilized, and no specific
adaptation is needed. Our proposed training method generalizes naturally to any
local segmentation and speaker embedding architecture, with no requirement for a
shared feature extractor.

To summarize, our method builds on top of GSE by

e Changing the attention module to extract multi-speaker embeddings instead
of single-speaker embeddings.

e Utilizing detailed information from the segmentation module.

4.2.1 Validation metric

The standard validation metric for speaker embedding models is the equal error

rate (EER), computed on single-speaker utterance trials. However, this does not
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reflect performance in multi-speaker scenarios. We argue that speaker diarization
performance is a more appropriate metric, as the clustering stage directly depends
on embedding quality. We therefore propose using diarization performance for both
evaluation and validation. Validation is challenging; normally, it would require
hyperparameter optimization after each epoch, which is a resource-intensive process.

To address this, we propose a simplified pipeline for validation (Figure 4.2). In
each validation batch, all audio chunks are sampled from the same file using a
sliding window, ensuring that the first chunk starts at the beginning of the audio
and the last one stops at the file’s end. The step size S between consecutive chunks
is chosen so that all chunks are evenly spaced i.e. S = %, where D is the file
duration, B is the batch size, and T is the chunk length. Chunks overlap if and
only if BT > D.

The batch is then fed to the model, which returns segmentation predictions and
speaker embeddings for each chunk. These embeddings are then clustered using
the K-means algorithm, where the number of clusters is fixed based on the oracle
number of speakers in the file used to create the batch. For efficiency, we assume
the number of speakers is known, which eliminates the need for tuning clustering
parameters. Finally, segments are assigned to speakers as in a standard diarization
pipeline, and a diarization error rate (DER) over the validation files is calculated

based on the pipeline output and the corresponding cropped reference.

4.3 Experiments

4.3.1 Datasets

The feature extractor and diarization branch are trained on a composite dataset
consisting of AMI-SDM [76], AliMeeting (first channel) [77], AISHELL-4 (first
channel) [90], MSDWILD [91], RAMC [92], and EGO4D [93]. Since EGO4D does
not include an evaluation set, we use it only for training and validation.

The speaker embedding systems are trained on either VoxCeleb 1 and 2 utterances

[37, 94] or synthetic mixtures generated from these datasets.

4.3.2 Data simulation

For training speaker embedding systems in multi-speaker contexts, we use 10-
second synthetic VoxCeleb mixtures, following the approach in GSE. However, we
modify the simulation method to better reflect real-world multi-speaker scenarios.
Specifically, we allow arbitrary speaker order and permit delays of up to 0.5 seconds
after the preceding utterance ends to introduce natural silent regions. Utterance
lengths are sampled from an exponential distribution with A = 0.2, truncated to the
range [1,10] seconds. Additionally, we apply room background noise to the mixtures

using data from [55] and simulated room impulse responses from [56].

50



—»{ WavLM bH Segmentationﬁ

(T'x F)|x

A (T'x Kp) | P
Ne
DA

Y Y

Binarize
(TxD) |n (T Kna)

(Kmax XTX D/Kmdx) I
| Z
A 4 53’
Attention o
calculation
Vv \ 4 (Kmax X T x 1)

[Attentive stats pooling + Linear]
(Kmax % 192) | i v

€3

€2

€1

Figure 4.1: Proposed joint architecture for a mazimum of Kmax = 3 speakers per audio
chunk. We opt for a segmentation branch trained using a powerset loss, but this is not a
requirement.

4.3.3 Implementation details

Segmentation model. Training chunks are 10 seconds long, with a maximum
of Kpnax = 3 speakers per chunk. We train a standard diarization system using
powerset loss, assuming that no more than two speakers are active at a time,
resulting in K3 = 7 powerset classes, assuming no more than two concurrent
speakers. Our segmentation module follows the architecture from [87].

We use a WavLM Base+ model as the shared feature extractor, fine-tuned
together with the segmentation module as in [82]. The learning rates are set to
10~° for WavLM and 3 x 10~* for the segmentation module, with a batch size of
32. The embedding and segmentation models use separate learnable weighted sums
of the WavLM layers.

Speaker embedding model. Our speaker embedding extractor is an ECAPA-
TDNN model with 1024 channels. As a baseline, we train an unguided single-
embedding system on 3-second utterances with a batch size of 512.

For all other speaker embedding systems, we adopt the training strategy from
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Figure 4.2: Proposed validation pipeline with a batch size of B.

[28]. We employ the Adam optimizer with a cyclical learning rate schedule over
three cycles, using a batch size of 128 mixtures. This results in an effective batch
size of 384 for ArcFace loss computation. Each cycle consists of 50k steps, beginning
with a 1k-step warm-up phase, followed by cosine annealing decay. The learning
rate starts at a peak of 1072 and decays by a factor of 0.75 at the start of each new
cycle.

Validation metrics. For our proposed DER-based validation metric, we randomly
sample 10 files from each dataset’s validation set, yielding a total of 58 batches 2.
The baseline validation metric is the equal error rate (EER), calculated on the widely
used VoxCeleb test set 1-O, containing 37611 test trials based on single-speaker
utterances [37].

Speaker diarization inference. For speaker diarization inference, we use the
pyannote 3.1 pipeline [95] with the same configuration as [28]. After selecting
the optimal checkpoint based on the validation metric, we optimize the speaker
diarization clustering hyperparameters for each system using Optuna [96]. Hyperpa-
rameter tuning is performed on the compound validation set using the multivariate
Tree-structured Parzen Estimator for 100 iterations.

Evaluation. Direct evaluation of speaker embeddings in a multi-talker context
would require a multi-talker real-world verification dataset, which currently does
not exist. Previous work has used synthetic mixtures based on VoxCeleb to assess
multi-speaker performance [28], but these do not accurately capture real-world
conversational dynamics [97]. Because of this, we assess embedding quality indirectly

2AliMeeting validation set only has 8 files
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Single-embedding Unguided 24.3M DER 14 51 80 83 122 7.9 8.1
. . AN EER 1.8 29 38 3.6 121 7.3 5.9
Single-embedding [28] Oracle 24.3M DER Lo 97 37 3.6 1.8 7.2 59
. . . , EER 1.6 3.0 6.2 42 134 6.7 6.5
Multi-embedding Oracle 22.5M DER 22 3256 44 112 7.1 6.2
. . e EER 1.7 3.2 37 50 114 73 6.2

- P o BN\
Multi-embedding Diarization 22.5M DER 18 95 38 35 114 72 57

Table 4.1: Comparison of single-speaker (single-embedding) and multi-speaker (multi-
embedding) embedding systems with different guiding mechanisms and validation metrics.
We report EER on VoxCeleb 1-O and speaker confusion rates on diarization datasets,
as well as the macro-average (Macro-avg) for the latter. Speaker confusion using oracle
clustering is included as a topline reference.

via diarization pipeline performance. With a fixed local segmentation model, false
alarm and missed detection rates are constant. Consequently, we only report speaker
confusion rates, determined by clustering and directly reflecting embedding quality.

Scores on the VoxCeleb test set 1-O are also reported for reference.

4.4 Results

A comparison of multi-speaker and single-speaker embeddings, along with different
guiding methods, is presented in Table 4.1. All guided systems outperform the
standard unguided system in diarization but underperform in EER, consistent
with the findings of [28]. Switching from oracle-guided single-embedding to multi-
embedding leads to a performance drop, which is expected since the encoder must
now model all participating speakers rather than a single target speaker, while
the model size is slightly reduced (due to scaling down the channel dimension
in the attention module). However, this degradation is mitigated by replacing
oracle-guided training with diarization-guided training.

Multi-speaker models are also more compact, as the channel dimension is scaled
down by K,.x after the encoder. The oracle clustering system serves as an upper
bound, assuming perfect speaker clustering, with non-zero speaker confusion scores
arising only from intra-chunk segmentation errors. Validation using the proposed
simplified diarization pipeline demonstrates clear improvements in most cases, with
comparable results for the GSE system, where the selected checkpoints had very
similar performance.

Figure 4.3 shows the EER and speaker confusion scores as a function of step
count for the diarization-guided multi-speaker embedding system. The two curves
display low correlation after initial fast convergence, further highlighting that the
standard VoxCeleb 1-O EER is not optimal in multi-speaker applications.
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Dataset MSE ResNet34 SOTA

AISHELL-4 12.0 12.4 10.6 [87]
AMI-SDM 15.7 16.5 15.4 [82]
AliMeeting 15.9 17.4 13.2 [83]
MSDWILD 22.9 21.6 19.6 [87]
RAMC 11.8 11.1 11.1 [83)
Macro-average  15.0 15.1 13.4

Table 4.2: Comparison of DERs for multi-speaker embeddings (MSE), and ResNet3/
embeddings across datasets. State-of-the-art (SOTA) DERs are provided for reference.

Dataset Ovr. (%) Spk. # RTF Imp. (%)
AISHELL-4 5.0 2.0 39
AMI-SDM 14.6 2.2 43
AliMeeting 20.4 2.8 53
MSDWILD 12.4 2.0 40
RAMC 9.4 1.8 36
Macro-average 12.0 2.1 42

Table 4.3: Comparison of overlapping speech percentage (Ovr.), average speaker count per
chunk (Spk. #), and relative RTF improvements (RTF Imp.) across datasets.

In Table 4.2, we compare our diarization-guided multi-embedding system to
a state-of-the-art ResNet-based speaker embedding model [26] from pyannote 3.1
based on DER, keeping the segmentation model the same. State-of-the-art DER,
scores are also provided for reference. Although the ResNet system employs a more
sophisticated training strategy, including speed augmentation and large-margin fine-
tuning, our system displays competitive results across the board, with significantly
better results on the higher-overlap datasets AMI-SDM and AliMeeting.

Table 4.3 explores the real-time factor (RTF) of multi-speaker embeddings
compared to single-speaker embeddings, which requires encoding each speaker in a

chunk separately. We first measure the total time for inference using a diarization
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Figure 4.3: Validation EER and speaker confusion (SC) (%) scores as a function of step
count. The optimal checkpoints based on either metric are highlighted with a dotted line.
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pipeline with oracle speaker clustering, where no speaker embeddings are calculated.
Then we measure the increase in RTF from performing clustering using either
system. Comparing the results for the two systems gives us the relative decrease in
RTF. We also report both the percentage of frames containing overlapped speech
and the average number of speakers in a 10-second chunk sampled from the dataset.
The latter directly reflects the number of separate forward passes required by the
single-speaker embedding encoder, in contrast to the single pass needed for our
multi-speaker approach. Even for the relatively low-overlap scenarios represented
by AISHELL-4 and RAMC, the multi-embedding system achieves an RTF relative

improvement of at least 36%.

4.4.1 Future work

Training of our diarization-guided multi-speaker embeddings relies on synthetically
generated mixtures, which, while useful, fail to capture the complexity of real-world
conversation dynamics [97]. Training or fine-tuning the embeddings directly on
real-world data should help performance, although a comparatively small number
of speakers in real-world conversational datasets poses a challenge here.

We keep the speaker embedding encoder unchanged from the single-speaker
case, but since it now has to model multiple speakers, the architecture should be

optimized for this.

4.5 Conclusion

This chapter introduced a novel diarization-guided training method for multi-
speaker embeddings. We extended guided speaker embeddings by modeling speakers
concurrently using diarization-based guidance. We also introduced a novel clustering-
based validation metric for training embeddings in a multi-speaker context, which
we showed to be more effective than standard speaker verification EER based on
single-speaker utterances. Keeping the embedding encoder unchanged, we compared
the effects of both modifications on multiple speaker diarization datasets. We
showed that while switching to modeling multiple speakers concurrently degrades
performance, this deficit is offset by using diarization-based guidance, which contains
more information and better matches testing conditions. The result is a speaker
embedding system that is smaller, more accurate, and considerably faster than

comparable systems trained using previous methods.
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Chapter 5

Conclusion

This thesis has examined some of the central challenges in multi-talker speech
processing (MTSP), particularly those arising from the mismatch between con-
trolled training conditions and the complexity of real-world acoustic scenes. The
work explored how the limitations of current systems—such as annotation ambigu-
ities, reliance on synthetic training data, and difficulties in handling overlapping
speech—can be mitigated by incorporating more realistic data constraints and

evaluation-oriented objectives into the training process.

The contributions of this thesis focus on three related areas. First, a collar-aware
loss function for speaker change detection was proposed, designed to better reflect the
temporal tolerance of manual annotations and evaluation protocols. This approach
improved detection accuracy and produced models more suitable for streaming
applications. Second, a joint training framework called PixIT was introduced
to learn speaker diarization and speech separation simultaneously from multi-
speaker recordings. By combining permutation-invariant training for diarization
with mixture-invariant training for separation, PixIT enables long-form speech
separation to be trained on real-world data. Third, a diarization-guided method
for learning multi-speaker embeddings was developed. By using guidance from a
diarization model, modifying the embedding encoder, and adopting a more suitable
validation metric, this approach produced embeddings that were more accurate,

smaller, and faster to compute in multi-speaker conditions.

Taken together, these contributions aim to move beyond idealized assumptions
toward a more integrated system design. By considering annotation ambiguities,
emphasizing conversational data, and combining related tasks, this thesis seeks to
provide more practical and robust approaches to multi-speaker processing. It is
hoped that the methods described here will prove useful for the development of
future MTSP systems.
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5.1 Future work

The research presented in this thesis opens up several promising avenues for future
investigation. The core principles of aligning training with evaluation and pursuing
joint learning paradigms can be extended to address some of the remaining challenges
in the field.

A natural extension of collar-aware training is its application to speaker diariza-
tion. End-to-end diarization systems typically use a frame-wise binary cross-entropy
loss. This is the same loss that is used in speaker change detection and suffers
from a similar mismatch with the standard evaluation metric. The diarization
error rate (DER) has often been computed with a forgiveness collar, though recent
trends are moving away from this practice, as the collar can mask performance
in the most challenging regions. Nevertheless, the inherent ambiguity in human
segment annotations, exacerbated by differences in annotation guidelines, suggests
that collar-aware training for diarization remains a promising direction. Such an
approach could give models greater flexibility to learn from annotations of varying
quality, potentially leading to substantial improvements in the temporal accuracy
of end-to-end diarization systems.

Furthermore, this thesis motivates a deeper investigation into joint training
paradigms that leverage the fact that different MTSP tasks extract speaker-specific
information at varying resolutions. While PixIT successfully integrated diarization
(time-level information) and separation (time-frequency-level information), a more
comprehensive framework could also incorporate speaker embedding extraction
(utterance-level information). Future research could focus on designing a unified
architecture that jointly performs diarization, separation, and speaker identification.
In such a system, information could flow bidirectionally between components: robust
speaker embeddings could guide the separation module to better isolate a target
speaker’s voice, while cleaner separated signals could, in turn, be used to refine the
speaker embeddings. This suggests an iterative refinement process, leading to a
feedback cycle where improvements in one task directly enhance the performance of
others within a single, powerful model. Training such a system on real-world data
with a PixIT-style objective could lead to further improvements in accuracy and a
more complete understanding of complex conversational dynamics.

Future work on multi-speaker embeddings could focus on moving beyond the
limitations of synthetic data by using real-world conversational datasets for either
training or fine-tuning the embeddings. Furthermore, as text-to-speech (TTS)
technology improves, especially in its capacity to generate realistic conversational
speech, the performance of embeddings trained on such enhanced synthetic data is
also poised for improvement. This approach has shown promise for conversational
speech recognition [98], although generating overlapping speech remains a challenge.
Another promising avenue is the exploration of a joint training paradigm for the

segmentation and embedding modules. While our initial experiments in this direction
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were not fruitful, it is possible that an optimal configuration was missed within the
high-dimensional hyperparameter space. Lastly, the embedding encoder architecture
itself, which was adapted from single-speaker models, could be further modified and
optimized specifically for the more complex task of concurrently modeling multiple
speakers.
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Abstract

The proliferation of multi-speaker audio content—from conference recordings and
broadcast media to conversational Al systems—has created an urgent need for
robust automatic processing of complex acoustic scenes. While single-speaker
speech processing has achieved remarkable success, the transition to multi-speaker
environments introduces fundamental challenges that current methodologies struggle
to address effectively.

This thesis investigates core problems in multi-talker speech processing (MTSP),
with a particular focus on the domain mismatch between training conditions and
real-world deployment scenarios. We propose novel methodologies that bridge
the gap between controlled single-speaker settings and the acoustic complexity of
natural conversations, where speakers overlap, interrupt each other, and exhibit
diverse acoustic characteristics.

The primary contributions of this work span three interconnected areas:

e collar-aware training methodologies that align model optimization with evalu-
ation protocols,

e joint training frameworks that leverage real-world multi-speaker recordings

for both diarization and separation tasks,

e robust speaker embedding techniques that maintain discriminability and

improve processing speed in overlapping speech scenarios.

These contributions address fundamental limitations in current MTSP systems and

demonstrate substantial improvements in realistic evaluation conditions.
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Kokkuvote

Mitme radkijaga helimaterjali tekib aina juurde, alates koosolekusalvestistest ku-
ni vestluslike tehisintellektisiisteemideni. See on omakorda suurendanud vajadust
keerukate akustiliste stseenide usaldusviirseks automaattootluseks. Kui liksikkonele-
ja kone t66tlus on saavutanud markimisvéarseid tulemusi, siis lileminek mitme
radkijaga keskkondadesse toob kaasa pohimottelisi véljakutseid, millega senised
meetodid ei suuda tohusalt toime tulla.

Kéesolev viitekiri uurib mitme riikijaga kone t66tluse (MRKT) keskseid prob-
leeme, keskendudes eriti domeenierinevusele treeningutingimuste ja reaalse kasu-
tuskeskkonna vahel. Pakutakse vilja uusi meetodeid, mis aitavad iiletada lohet
kontrollitud tiksikkoneleja korpuste ja loomulike vestluste vahel, kus konelejad raa-
givad iiksteisega samaaegselt, katkestavad iiksteist ning kus esineb suur akustiline
varieeruvus.

Antud véitekiri panustab kolme omavahel seotud uurimissuunda:

e kraetundlikud treeningumeetodid, mis viivad mudeli treenimise vastavusse

hindamisprotokollidega;

e iihistreeningraamistikud, mis kasutavad mitme raakijaga salvestisi nii diariseer-

imise kui ka eraldamise iilesanneteks;

e tookindlad konelejaesituste meetodid, mis séilitavad eristusvoime ja suuren-

davad tootlemiskiirust kattuva kone korral.

Need panused aitavad iiletada MRKT-siisteemide seniseid kitsaskohti ning tos-

tavad tépsust realistlikes hindamistingimustes.
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Abstract

In this paper, we present a novel training method for speaker
change detection models. Speaker change detection is often
viewed as a binary sequence labelling problem. The main chal-
lenges with this approach are the vagueness of annotated change
points caused by the silences between speaker turns and im-
balanced data due to the majority of frames not including a
speaker change. Conventional training methods tackle these
by artificially increasing the proportion of positive labels in the
training data. Instead, the proposed method uses an objective
function which encourages the model to predict a single posi-
tive label within a specified collar. This is done by marginal-
izing over all possible subsequences that have exactly one pos-
itive label within the collar. Experiments on English and Es-
tonian datasets show large improvements over the conventional
training method. Additionally, the model outputs have peaks
concentrated to a single frame, removing the need for post-
processing to find the exact predicted change point which is
particularly useful for streaming applications.

1. Introduction

Speaker change detection (SCD) is a task of locating precise
points in the audio recording when a different speaker starts
speaking. It is often used as the first step in speaker diarization
systems. Depending on the application, SCD systems can be
either streaming (also known as online) or batch-processing (of-
fline). In a batch processing system, the whole audio recording
is available when SCD is applied. This allows the model to use
all information from both past and future frames when locating
speaker change points. A streaming model, on the other hand,
needs to identify speaker change points with low latency, us-
ing typically only one or two seconds of audio from the future.
Streaming SCD is needed as a preprocessing step in streaming
speech recognition systems that perform unsupervised speaker
adaptation, e.g. using i-vectors [1], so that the speaker adapta-
tion state could be reset at speaker change points. SCD is also
often an explicit requirement in realtime closed captioning sys-
tems for broadcast television [2].

Most modern SCD systems are based on supervised learn-
ing. Large speech datasets, manually annotated with speaker
change points, are used for training and SCD is treated as a
binary sequence classification task. Long short-term memory
(LSTM) recurrent neural networks [3, 4] or convolutional neu-
ral networks [5, 6, 7] are often used as models. An important
issue when training such models for SCD is that the annotated
change points in the training data are ambiguous and imbal-
anced. The ambiguousness comes from the fact that often there
is a substantial amount of silence between the speech of two ad-

tanel.alumaeltaltech.ee

jacent speakers, yet only a single frame is marked as a change
point. The choice where exactly the annotated change point re-
sides is often inconsistent, resulting in training data that is con-
fusing for the model. Also, the number of frames in the training
data labelled as change points is usually less than 1% of all the
frames, causing problems with model convergence.

In this paper, we propose a novel objective function for
training sequence classification models for SCD. This collar-
aware objective function gives the SCD model more freedom
by allowing it to choose an appropriate speaker change point
within the neighbourhood of the annotated change point. This
method addresses both the problems of imbalanced data as well
as the ambiguousness of the annotated labels. Furthermore, the
models trained using this method are especially well suited for
streaming applications, as the resulting model generates “peaky”
change points that do not require any post-processing to find lo-
cal maxima. We show that the method also achieves notably
higher accuracy in both streaming and batch-processing scenar-
ios, compared to several well-established baselines'.

2. Related work

SCD approaches can be divided into two main categories: metric-
and model based. The first approach operates by applying a pair
of sliding windows on the sequence of feature vectors extracted
from the underlying audio signal and uses a divergence metric
for comparing their contents. A speaker change point is de-
tected if the divergence between two adjacent windows is larger
than a predefined threshold and the divergence achieves a sig-
nificant local maximum. The advantage of this method is that
it doesn’t require a large annotated training corpus for training:
only the value of the threshold parameter needs finetuning on a
small validation set. This method is used in many speaker di-
arization systems that use Gaussian mixture models (GMMs) as
their main building blocks (e.g. [8])

A model based approach, on the other hand, uses a a train-
ing corpus with manually annotated speaker change points to
train a model for this task. Many different models have been
proposed, such as hidden Markov models [9], GMMs [10], eigen-
voices [11], deep neural networks (DNNs) [12, 7], convolu-
tional neural networks [5, 6, 7], recurrent neural networks [3, 4]
and Siamese networks [13].

Since models based on neural networks have become pop-
ular in recent years for this task, we review three approaches
based on them more carefully. In [4], SCD is formulated as
a standard binary sequence labelling task that can be tackled
using bidirectional LSTMs: the model’s task is to label each

Code and demo available atht tps: //github.com/alumae/
online_speaker_change_detector



frame with either O (no speaker change) or 1 (speaker change).
One problem with this approach is that the training data is heav-
ily imbalanced: the number of frames that are labelled with 0
is much larger than the number of frames labelled with 1 (only
0.4% according to [4]). Under standard training, the model con-
verges to a state in which a 0 is predicted for each frame. There-
fore, [4] increases the number of positive labels artificially by
labelling frames 50 ms on each side of the annotated change
point as 1. During inference, local score maxima exceeding a
pre-determined threshold are marked as speaker change points.

In [7], a somewhat similar approach is used, but instead
of a bidirectional LSTM, a CNN is used that “sees” a fixed-size
window of feature frames prior and after the current frame. This
allows operating the model with low latency in streaming mode.
As with the LSTM-based approach, a large number of frames
in the direct neighbourhood of the annotated change point are
labelled as positive during model training, in order to make the
training data more balanced.

In [13], a Siamese architecture is used for low-latency SCD:
a 2-second window prior and after the current frame is pro-
cessed by a bidirectional LSTM, resulting in two embedding
vectors. The embeddings are then processed by a classifica-
tion module that decides whether the two segments correspond
to different speakers. Various pretraining schemes can be ap-
plied to the embedding computation module that are found to
improve the detection performance by a large amount. This
work handles the imbalanced data problem by sampling a pre-
defined ratio of speaker change points from the training data to
each batch.

Inconsistent and unreliable speaker turn boundaries in man-
ually annotated training data can also have a negative effect on
the performance of end-to-end speaker diarization systems. In
[14], a modification to the standard multilabel classification loss
for speaker diarization is introduced that simply ignores the er-
rors in a defined radius around annotated speaker change points.

3. Collar-aware training

Speaker change detection is often regarded as a binary se-
quence labelling problem. We consider an audio recording con-
sisting of feature vectors x; fori = 1, ..., N and the correspond-
ing speaker boundary labels y; € {0,1} with y; = 1 meaning
that the frame corresponds to an annotated speaker boundary.

When a SCD system is evaluated in terms of precision and
recall of detected speaker boundaries, it is a standard practice
to use a collar (typically 250 ms) for annotated speaker bound-
aries: if the boundary detected by the model is within the tol-
erated amount of milliseconds of the annotated boundary, the
detected speaker change point is assumed to be correct. How-
ever, under standard sequence labelling objective (Figure 1, a),
the collar is not used, making the training objective different
from the evaluation scenario.

As pointed out in the previous section, several papers [4, 7]
have suggested to artificially modify the training data of the
speaker boundary detection model by labelling a predefined num-
ber of frames around the annotated speaker boundary as addi-
tional (pseudo-)boundaries (Figure 1, b). This is done in or-
der to make the training data more balanced in terms of label
frequencies, and to model the inherent ambiguousness of the
speaker boundaries.

We propose to use a modified objective function for train-
ing SCD models that solves both the problems of imbalanced
data and ambiguous annotated boundaries. Instead of labelling
points around the annotated boundary as pseudo-boundaries,

Speaker A Speaker B
True y=
X1 X2 *3 Xy X5 X6 X7
(a)
(b)
(c)

Collar

Figure 1: Outline of three supervision methods for speaker
change detection: (a) corresponds to standard sequence la-
belling objective; (b) increases the number of positive labels
artificially by setting several frames in the neighbourhood of the
annotated change point as positive [4]; (¢) the proposed method
sums over all paths that have exactly one positive label in the
neighbourhood of the annotated change point.

it supervises the model to label exactly one frame within the
given collar as a speaker boundary, but the exact position of the
boundary can be freely chosen (Figure 1, ¢). This method has
several advantages: (1) it matches the evaluation criteria better
than method (b); (2) it solves the imbalanced data problem sim-
ilarly or better than method (b); (3) the model trained in this
manner can be easily applied in online mode without any post-
processing to find the local maximum, since the output of the
model is now very “peaky” (see Section 4.5.1).

Formally, given the reference labels y and model predic-
tions y;, the standard binary sequence labelling objective is:

N
L(g,y) =— Zyz log(y:) + (1 — yi) log(1 — 7i)

Since the boundaries occur very sparsely, this objective can
be efficiently calculated by summing over the log likelihoods of
the no-boundary events, and then modifying it to account for the
few boundary events. Given annotated boundary positions Z =
{z|y- = 1}, the standard sequence labelling loss becomes:

N
L£(,2) = —(Zlog(l — )
= > log(1 = ge)) + Y log(i,))

2, €Z 2, €Z



def collar_bce_loss (log_probs,

nun

Compute collar-aware binary CE loss.

Arguments:
log_probs —-- tensor of shape
and boundary events

(seq_len, 2),

change_points,

collar):

containing log likelihoods of non-boundary

change_points -- indexes of annotated boundaries

collar -- value of the collar

nnwn

(in frames)

result = log_probs[:, 0].sum()

for change_point in change_points:
collar_variant_logs = []
collar_start_i = change_point - collar
collar_end_i = change_point + collar
time_index = range(collar_start_i,
event_index =
collar_variant_logprobs =
result -=

log_probs|[time_index, 0].sum()

collar_end_i + 1)
torch.eye(collar_end_i - collar_start_i + 1).long()
log_probs[time_index,

event_index] .sum(1l)

result += torch.logsumexp(collar_variant_logprobs, 0)

return -result

Figure 2: Pytorch code for efficient calculation of the collar-aware binary cross-entropy loss.

In order to calculate the proposed collar-aware objective, we
have to consider a superset S(Z) of all sets of boundary events
Z' where for each original change point 2; € Z there is ex-
actly one boundary event that is within it’s collar set C; =
{z|zi —c < © < 2z + ¢}, where c is the value of the collar.
Alternatively,

S8(Z) ={{z,...,an}zi € CiVi € {1,...,N}},

where N is the total number of original change points. For
example, if the reference label sequence is [00100], then
Z'" at collar = 2 corresponds to a set of label sequences
{[01000], [00100], [00010]}.

The proposed objective sums over all such change point
configurations:

ﬁcollar(ga Z) = log Z efﬂ(@,Z )
Z'e€S(2)

The idea of this objective function is somewhat similar to the
CTC loss function [15] used for training end-to-end speech
recognition models. As with CTC, it is not practical to compute
it using brute force. In order to make it more efficient, we can
again use our knowledge that the number of speaker boundaries
occur very sparsely. Figure 2 lists the Pytorch implementation
of this idea. The collar-aware loss can be calculated by sum-
ming over the log-likelihoods of the non-boundary events (line
11), subtracting the log likelihoods of the non-boundary events
that lie within a boundary collar (line 19), and then adding
the marginalized log-likelihood of having exactly one bound-
ary somewhere within the collar (line 20).

4. Experiments
4.1. Datasets

The experiments were carried on both English and Estonian
datasets. For English, we used the HUB4 speech dataset [16,
17]. The Estonian dataset consists of TV and radio broadcasts.

Table 1: A comparison of lengths and the number of speaker
change points in the datasets used in the experiments.

Dataset ‘ Train Development Test
Estonian | 497.2h/ 80k 1.2h / 166 0.7h /102
English 128.3h / 19.5k 6.1h /893 5.4h /893

Both datasets are manually transcribed and annotated with speaker
information. Test and development data were separated simi-
larly for both datasets: 10 recordings were chosen for each at
random. An overview of dataset sizes and annotated bound-
ary counts is provided in Table 1. The datasets are similarly
balanced, with 0.04% of the frames being labelled as speaker
change points.

4.2. Implementation details

We consider two different architectures which we train using
both the standard training method and the proposed collar-aware
one.

The first architecture was chosen to closely resemble that of
[4]. 33-dimensional acoustic features are extracted every 10ms
on a 25ms window, consisting of 11-dimensional MFCCs and
their first and second derivatives. The model is made up of two
Bi-LSTM layers having 64 outputs and 40 outputs and a multi-
layer-perceptron with 40-, 10- and 1-dimensional layers.

The second architecture uses a Resnet-based feature extrac-
tor before a LSTM layer. The Resnet module is extracted from
a speaker recognition model pretrained on VoxCeleb2 [18], as
described in [19]. It results in 1280-dimensional features with
a frame subsampling rate of 8. In the low-latency streaming
model, the Resnet layer is followed by two 256-dimensional
LSTM layers, and 1-second label delay is used in order for the
model to see the data past the current frame (see Figure 3). In
the offline model, the LSTMs are replaced with bidirectional
LSTMs, and no label delay is used.



label delay

0 0 0 0 1 Labels
LSTM

Resnet
JUUUURUT UL e
Audio

i

Speaker change point

Figure 3: Architecture of the streaming Resnet-LSTM
model: Filterbank features from speech frames are fed into a
Resnet module that is pretrained on a speaker recognition task
and then trained jointly with the rest of the model. The outputs
from the Resnet module are fed into a LSTM layer that iden-
tifies speaker boundaries (label = 1). Since this cannot be
done without the knowledge of future frames, the identification
is done with a label delay that corresponds to 1 second of speech
(in streaming mode).

All our training methods use extracted segments with ran-
dom lengths between 10s and 30s.

The first training method used also follows [4]. Namely
the training data is artificially modified by positively labelling
every frame in a 50ms neighborhood of an annotated change
point. Notably, no additional labelling is needed for the Resnet-
based architecture since the subsampling that happens during
feature extraction results in frames of 80ms duration and thus a
50ms neighborhood corresponds to roughly a single frame. A
standard binary sequence labelling objective is used as the loss
function for this method.

The second training method includes no artificial labelling
and instead uses the proposed collar-aware objective as the loss
function. The size of the collar was chosen to be ¢ = 250ms
and the effects of varying the collar size are discussed in Section
452.

During training, data augmentation is applied: background
noise and/or reverberation is added to each training segment,
both with a probability of 0.3. The background noises origi-
nate from the MUSAN corpus [20]. For reverberation, we used
simulated small and medium room impulse responses [21] and
real room impulse responses from the BUT Speech@FIT Re-
verb Database [22].

4.3. Evaluation metrics

The evaluation metrics are standard precision and recall calcu-
lated on the test sets. Predicted change points are considered
correct if they match an annotated change point within a for-
giveness collar (closest pairs are matched first until no pairs re-
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Figure 4: Precision-recall curves for models trained on the En-
glish dataset.

main). Although our main evaluation metrics are precision and
recall of detected speaker change points at a forgiveness collar
of 250 ms, we also show the same metrics using a larger 0.5
second collar. A change point is predicted to happen if the local
maximum of the models output is higher than a threshold, the
value of which is determined by maximizing the F1 score on the
development set.

4.4. Baselines

In addition to the pure LSTM-based speaker segmentation sys-
tem [4], we compare our results to various baselines. Since
speaker change points can be easily derived from the output of
a speaker diarization system, we use several speaker diariza-
tion models that have achieved competitive results on various
diarization benchmarks.

The recently proposed VBx diarization method [23] has
produced state-of-the-art results on CALLHOME, AMI and DI-
HARD II datasets. The method uses a Bayesian hidden Markov
model to find speaker clusters in a sequence of x-vectors. We
used the open source implementation of the method available at
GitHub?. The diarization pipeline first extracts x-vectors from
the sections of the audio that contain speech. The provided x-
vector models are trained on VoxCelebl [24], VoxCeleb2 [18]
and CN-CELEB [25]. The x-vectors are extracted every 0.25
seconds from overlapping sub-segments of 1.5 seconds. The
x-vectors are centered, whitened and length normalized [26].
The x-vectors are pre-clustered using agglomerative hierarchi-
cal clustering to obtain the initial speaker labels and finally fur-
ther clustered using the VBx model. The used the VBx parame-
ters Fa, Iy and Pj,,p tuned on the respective development sets
in order to minimize the boundary detection F1 score with a 250
ms forgiveness collar.

We also compare to the neural speaker segmentation method
implemented in pyannote.audio [27] that performs joint voice
activity detection, speaker segmentation and overlapped speech
detection. Similarly to the original EEND approach [28], here
speaker segmentation is modeled as a multi-label classification
problem using permutation-invariant training. The model op-

2https://github.com/BUTSpeechFIT/VBx



Table 2: Precision (P), recall (R) and F1 results of various batch-mode and streaming models on Estonian and English datasets with

two two different forgiveness collar values.

| Estonian dataset I English dataset
| collar=0.25s | collar=0.50s I collar=0.25s | collar=0.50s
Model ‘ P R Fl1 ‘ P R Fl1 H P R Fl1 ‘ P R F1
Batch-mode processing ‘
Pretrained speaker diarization (VBx) | 0.68 0.68 0.68 | 0.96 096 0.96 || 0.48 0.64 0.55 | 0.67 0.88 0.76
Pretrained pyannote.audio 062 0.73 0.67 | 068 0.79 0.73 || 042 038 040 | 0.57 0.51 0.54
+ finetuned on the given dataset 0.82 0.82 08208 0.8 0.89 || 0.60 049 054 | 0.73 059 0.65
BLSTM 07 085 0.77 | 0.74 0.88 0.81 || 044 0.59 0.50 | 0.50 0.62 0.55
+ collar aware training 075 0.81 0.78 | 0.86 0.80 0.83 || 0.59 0.57 0.58 | 0.61 0.61 0.61
Resnet + BLSTM 080 0.78 0.79 | 0.84 0.80 0.82 || 0.59 0.66 0.62 | 0.65 0.69 0.67
+ collar aware training 092 0.89 091 | 096 092 094 || 0.76 0.69 0.73 | 0.79 0.76 0.78
Streaming processing ‘
pyannote.audio with latency=1.0s 034 0.67 045|037 073 049 || 021 033 026 | 028 044 034
+ finetuned on our data 042 0.68 0.51 | 046 0.75 057 || 026 045 032 | 030 0.52 038
Resnet + LSTM 073 073 073 | 076 0.75 0.76 || 0.56 0.62 059 | 0.58 0.71 0.64
+ collar aware training 089 0.83 086 | 092 0.86 089 | 066 0.71 0.68 | 0.72 0.75 0.74
1.0 1 1 q 1 7 1 q 1
i i i i
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Figure 5: Random samples of Resnet+BLSTM model outputs for neighborhood- and collar-based models trained on the English dataset

centered around annotated speaker change points.

erates on short audio chunks (5 seconds) at a temporal resolu-
tion of every 16 ms and outputs speaker activation probabilities
that are stitched together across frames. More specifically, we
use the model available at https://huggingface.co/
pyannote/segmentation thatis trained on the DIHARD3
corpus [29, 30]. We also experiment with the same model in
a low-latency setting [31], using the open-source implementa-
tion®. In streaming mode, the latency of the segmentation output
is configurable. To make the results comparable to our stream-
ing model, we used a latency of 1 second.

In addition to using the publicly available pyannote.audio
segmentation model, we also experimented with finetuning it on
our training data. This was done on each dataset and resulted in
further baselines for both streaming and offline settings.

In order to convert the output of the diarization systems to
speaker change points we consider all the consecutive pairs of

3https://github.com/juanmc2005/
StreamingSpeakerDiarization/

speaker segments where the speaker ids differ. If there is less
than 2 seconds between the two segments then a speaker change
point is predicted at the beginning of the second segment. This
was found to give better results than other choices in the gap
like the midpoint or the end of the first segment.

4.5. Results

A comparison of the model performances on the two datasets
is provided in Table 2. The results are divided into two cat-
egories: models that perform change point detection in batch
mode, and streaming models. The Resnet+LSTM based mod-
els trained using the proposed collar-aware loss function clearly
outperform the same models trained using the standard training
method on both datasets. Furthermore, these models also pro-
vide higher speaker change point detection accuracy than the
baseline speaker diarization models. The state-of-the-art VBx
diarization model actually results in impressive accuracy at a
collar of 0.5 seconds but much lower accuracy at the standard



0.25 second collar. This might be due to the fact that the VBx
model uses a relatively large temporal resolution of 0.25 sec-
onds which causes the detected change point to be considered
an error if it is off by just one timestep.

Precision-recall curves obtained by varying the classifica-
tion threshold on the English test set are presented in Figure 4. It

can be seen that collar-aware training outperforms neighbourhood-

based training at all operation points for both LSTM and Resnet-
BLSTM based models.
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Figure 6: F1 scores on the English dataset for models of varying
training collar size.

4.5.1. Peakiness of model output

One benefit of the collar-aware loss-function discussed above
was the ”peaky” output of the model. Figure 5 demonstrates this
effect by visualizing samples obtained from Resnet+BLSTM

model outputs centered around randomly chosen annotated bound-

aries for the English dataset. The output obtained from a model
trained using the neighborhood-based method is spread out over
multiple frames requiring finding the exact local maximum in
post-processing. In comparison, the change points predicted by
the model trained with the collar-based method can be obtained
by simply comparing the model outputs to a threshold since the
activations tend to be limited to a single frame.

4.5.2. Tuning the collar size

Figure 6 shows the influence of the collar size used during train-
ing on the F1 score on English test data. The optimal size for the
collar is dependant on the nature of the data, how imbalanced it
is and how reliable the annotated boundaries are. Overall, there
seems to be flexibility to the choice of collar size as the F1 score
does not change a lot across the tested range. Notably, all of the
tested collar sizes lead to a better result than the neighborhood
based models.

5. Conclusion

This work presented a novel supervision method for speaker
change detection models using a collar-aware objective func-
tion. In our experiments we compared it with a conventional
training method that artificially labels a neighborhood of an
annotated boundary as positive as well as various state-of-the-
art speaker diarization models. We find that our collar-aware

training yields improved results both for a purely LSTM-based
model and one that uses pretrained embeddings with 8-fold sub-
sampling.

We analyzed model outputs around randomly chosen bound-
aries to show that the activations for our method are concen-
trated to a single frame. This makes our training method well
suited for online applications as there is no need for local max-
ima detection in post-processing.

The exact choice of collar size was determined to not have
a great effect on performance with choices from 80ms to 500ms
all outperforming the conventional training method.
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Abstract

A major drawback of supervised speech separation (SSep) sys-
tems is their reliance on synthetic data, leading to poor real-
world generalization. Mixture invariant training (MixIT) was
proposed as an unsupervised alternative that uses real record-
ings, yet struggles with over-separation and adapting to long-
form audio. We introduce PixIT, a joint approach that com-
bines permutation invariant training (PIT) for speaker diariza-
tion (SD) and MixIT for SSep. With a small extra require-
ment of needing SD labels during training, it solves the problem
of over-separation and allows stitching local separated sources
leveraging existing work on clustering-based neural SD. We
measure the quality of the separated sources via applying auto-
matic speech recognition (ASR) systems to them. PixIT boosts
the performance of various ASR systems across two meeting
corpora both in terms of the speaker-attributed and utterance-
based word error rates while not requiring any fine-tuning.

1. Introduction

Speech separation is the task of estimating individual speaker
sources from a mixture. It is an important part of automatic
speech technologies for meeting recordings as a significant
proportion of the speech can be overlapped. Supervised
training approaches, mainly permutation invariant training
(PIT), have been shown to perform well on few seconds
long fully-overlapped synthetic speech mixtures that fit in the
memory for the model [1, 2]. To extend a PIT-based approach
to more realistic data, [3] proposed the task of continuous
speech separation (CSS). This involves generating long-form
separated sources from a continuous audio stream that contains
multiple utterances that partially overlap. The standard method
for extending PIT-based separation systems to CSS is by
applying them on a sliding window and reordering sources in
neighboring chunks based on a similarity metric calculated
on the overlapped region. In long-form audio, however, the
speaker tracking breaks down if a speaker stops speaking for
longer than the overlapping portion of the sliding window.
Another problem of PIT-based training that remains in
CSS approaches is the reliance on clean single-speaker isolated
sources for the synthetic mixtures. The supervised approach
does not generalize well to real-world data as clean ground
truth separated reference signals are not available in recordings
due to cross-talk. To combat this, mixture invariant training
(MixIT) was introduced in [4], an unsupervised method that
does not require clean separated sources for training. Two
mixtures from the target domain are added together to obtain a
mixture of mixtures (MoM) and a separation model is trained
to estimate sources so that they can be combined to obtain the

original mixtures. In [5] it was demonstrated that this method
is effective in using real-world meetings as the target domain.
A limitation of MixIT is that the number of output sources for
the separation model has to be twice the maximum number of
speakers of a single mixture. This can lead to over-separation
and makes it difficult to generalize to long-form audio. Over-
separation can be mitigated by performing semi-supervised
training but this still relies on synthetic data. In [6], MixIT was
used in combination with speaker diarization pre-processing
to perform source separation on real-world long-form meeting
audio. Separation was done at the utterance level and the
correct speaker sources to use were determined by comparing
speaker embeddings with global embeddings obtained from
diarization. This resulted in superior speaker-attributed auto-
matic speech recognition (ASR) performance. A limitation
of this approach is the need for extra voice activity detection
(VAD) and speaker diarization models to segment long-form
audio into speaker-attributed utterances, as speech separation is
performed solely at the utterance level.

Traditional speaker diarization approaches have relied on a
multi-step approach consisting of VAD to obtain speaker seg-
ments, local speaker embeddings, and clustering [7]. End-to-
end diarization (EEND) is a newer approach that is able to han-
dle overlapped speech but comes with its own limitations, such
as needing a large amount of data and mispredicting the number
of speakers [8, 9]. Recently the two approaches have been com-
bined into the best-of-both-worlds framework [10, 11] which
performs EEND on small chunks and stitches the results to-
gether using speaker embeddings and clustering.

Speech separation and speaker diarization are both often
parts of multi-speaker automatic transcription systems. The
models used to carry out these two tasks are mostly cascaded
in two different ways. Since the sources extracted by a speaker
separation system no longer have speech overlap regions, they
can greatly facilitate the speaker diarization task improving its
performance. An example of such a system is the speaker sep-
aration guided diarization system (SSGD) [12, 13]. A draw-
back of this method is that diarization depends on the quality
of the separated sources. Another option is to place a diariza-
tion system upstream of a speaker separation system, like in
[14, 15]. Indeed, source separation is easier if the speech ac-
tivity of each speaker is known, provided that the diarization
system is able to manage speech overlap. Similarly to the pre-
vious approach, the speech separation performance depends on
the quality of the speaker diarization. Thus, we can see that
these two tasks can benefit from the results of the other, high-
lighting their interdependence, and the fact that there is no ob-
vious choice whether to start the processing with a diarization
or speech separation system. This has served as motivation



for joint learning approaches. The Recurrent Selective Atten-
tion Network architecture (RSAN) [16] was the first all-neural
model to jointly perform the speech separation, speaker diariza-
tion, and speaker counting tasks. In this model, the extraction
is made over time using sliding blocks. In each block, speakers
are iteratively extracted from the mixture by estimating a mask
for each of them, given speaker embeddings determined in the
previous blocks, and a residual mask from the previous itera-
tions in the current block. Another architecture that performs
jointly these three tasks is the end-to-end neural diarization and
speech separation architecture (EEND-SS) [17]. This system is
based on the EEND framework for the diarization and speaker
counting tasks and Conv-TasNet [1] for the speaker separation
one. In the EEND-SS architecture, the information given by the
diarization branch is used to refine the separation part, by pro-
viding an estimation of the number of speakers and using the
probability of speech activity to enhance the separated source
signals. These joint approaches, however, still all rely on syn-
thetic data for separation training.

We propose a joint framework for performing both speaker
diarization and speech separation on long-form real-world
audio. We name the approach PixIT, as it combines PIT for
speaker diarization and MixIT for speech separation. We
leverage speaker diarization information that is often available
for meeting corpora to create MoMs that have the maximum
number of speakers limited to better mimic real-world mixtures.
Our separation/diarization model processes the mixture/MoM
and outputs separated source predictions and the respective
speaker activity predictions. When training the joint model we
combine the PIT-loss for both the original mixtures and MoMs
with the MixIT loss for the MoM. Aligning speaker sources
with the speaker activations also solves the over-separation
problem of MixIT. In inference, we are able to stitch together
the separated sources across the sliding windows by first stitch-
ing the speaker activations as is done in the best-of-both-worlds
approach for diarization. To measure the quality of the long-
form stitched separated sources, we feed them into a variety
of off-the-shelf ASR systems. We observe improvements
over the baseline method of speaker attribution done through
diarization for all ASR systems and two real-word meeting
datasets: AMI [18] and AliMeeting [19]. Furthermore, we
show that when the speaker-attributed transcripts are combined
into a single output, the utterance-wise word error rate (WWER)
improves.

2. Joint model

We base our model on the TasNet architecture [20], which
consists of a 1-D convolutional encoder, a separator module
that predicts N masking matrices and a 1-D convolutional
decoder. We additionally leverage pre-trained WavLM features
[21] which are especially suited for speech separation due to the
use of the utterance mixing augmentation in their pre-training.
These are concatenated with the convolutional encoder outputs.
The diarization network takes the encoded separated signals
as input and processes each source independently effectively
performing VAD. The independent processing of the sources
in the diarization module is required to maintain alignment
between the separation outputs and the diarization branches.
The joint model architecture, which we call ToTaToNet', is
illustrated in Figure 1. The components of the model related
to the branch are colored , the components
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Figure 1: The architecture of the proposed ToTaToNet model.

related to separation are colored purple and the components
used by branches are colored a gradient between the
two. This color scheme is kept consistent across all the figures
in the paper.

2.1. Training

The joint training method for speech separation and speaker di-
arization is illustrated in Figure 2. Consider an audio chunk X
and the reference speaker activity labels y € {0, 1}/max*T
where yi,, = 1 if speaker k is active at frame ¢t and yi,; =
0 otherwise. Here Kax specifies the maximum number of
speakers anticipated in an audio chunk. For diarization, we
utilize the well-established permutation-invariant training (PIT)
objective [8]:

Kmax

Lerr(y,y) = min kz Lecr (yx, [PF]r)
=1

where § are the predicted speaker activations and P is an
Kmax X Kmax permutation matrix and Lpcg is the standard
binary cross entropy loss.

Using the speaker annotations, we construct two audio
chunks (X', y') and (X2, y?) with non-overlapping sets of
speakers with the total number of speakers no greater than
Kmax. Limiting the total number of speakers is critical in
solving the over-separation issue of MixIT. The MoM is con-
structed as XMM = X1 4 X2 and the corresponding speaker
activity labels y™M are given by y™™ = (y!,,y2;) where the
rows corresponding to non-active speakers are removed so that
yMM € {0, 1} Kmax*T Then the MixIT loss function is given

by,



Xl

8
y! ||||||||.||||| As
—_— III|||I|”llllunn-"]l""---
XXMM ||||||I|nun~|||||ll-~- 7W
S e — . & o]
Do— sl || I || ToTaToNet .-»-.--»-||||||||||||||||||||||| L
YW
—= :—
X2 Py
--------- o]
2 S

ll ToTaToNet

y

st
[ ||||||||.|||||

e

Apply e
o ) P:
Y.

Figure 2: Training the joint model. The upper part shows calculating the MixIT and PIT losses on MoMs. The bottom part shows

calculating PIT losses on the original mixtures.

2
Lyt ({Xn},8) = H}in Z Lsrspr (Xn, [A8]n),

n=1

where § are the predicted separated sources, M is the number of

output sources and A is a mixing matrix A € {0, 1}*** under

the constraint that each column sums to 1 and Lsrspr is the

negative scale-invariant signal-to-distortion ratio [22]. Thanks

to how we limit the total number of speakers when sampling the

mixtures, we are able to use a significantly lower value for M.
Our combined multi-task loss is,

Lpiar = )\(»CPIT(ylv ¥+ Ler(y2,57)
+£p1T(yM°M7§/M°M)) + (1 = A)Lmiar ({Xn},8),

where among the three values, 0.1, 0.5, and 0.9, A = 0.5 was se-
lected due to its superior performance on the development data.

2.2. Inference

During inference, an audio stream is partitioned into shorter
chunks as depicted in Figure 3. The joint model processes each
chunk and outputs aligned estimates for speaker sources and
speaker activations. The resulting speaker activations and cor-
responding sources are clustered as in [23]. First, speaker ac-
tivations are binarized using a detection threshold 6 € [0,1]
to obtain speaker segments. Second, local speaker embeddings
are extracted from each chunk for all the active speakers. We
only utilize the regions of the chunk where the corresponding

speaker is active. Speaker embeddings are computed by feed-
ing the concatenation of original audio samples corresponding
to those regions to the pre-trained ECAPA-TDNN model [24]
available in [25]. Finally, agglomerative hierarchical clustering
is performed on these embeddings using a clustering threshold
4. As an important post-processing step, we perform leakage
removal by setting the stitched separated sources at time ¢ to
zero when the diarization outputs predict that the correspond-
ing speaker is not active and has not been active in a window
[t — At,t + At]. This is a key benefit of the aligned speaker
activations and speaker sources since it eliminates all cross-talk
when the corresponding speaker is not active. The goal of in-
troducing At is to give downstream ASR systems additional
context. The hyperparameters 0, d, and At are optimized on
the development dataset.

3. Experiments
3.1. Datasets

We chose two publicly-available real-world meeting datasets
AMI and AliMeeting for our experiments. AMI [18] consists of
roughly 100 hours of English data. AliMeeting [19] is a Man-
darin Chinese dataset with approximately 120 hours of record-
ings. As our goal is single-channel speech separation we only
use the first channel of the microphone array also known as the
single distant microphone (SDM) audio from AMI and channel
1 from AliMeeting for our experiments. Table 1 shows statistics
for the two datasets [15]. While both datasets consist of meet-
ing recordings, AliMeeting contains significantly more overlap.
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Figure 3: Inference on long-form audio. For ease of visualiza-
tion inference using non-overlapping sliding windows is shown.

In all our experiments, the ToTaToNet model is trained only on
the train set of the corresponding dataset.

3.2. Evaluation

Metrics. As ground-truth reference sources are not available for
real-world data we use ASR performance as a proxy for eval-
uating the quality of long-form separation. We apply an ASR
system independently on each of the separated sources and re-
port the word error rate (WER) between the speaker-attributed
predictions and references. Multiple definitions of WER have
been proposed for ASR systems that process audio with multi-
ple speakers and output multiple word sequences (MIMO) [26].
We choose concatenated minimum permutation WER (cpWER)
[27] as our main metric because it is the only one that penalizes
speaker confusion which is unwanted for long-form speaker
sources. On Mandarin data, this metric corresponds to the con-
catenated minimum-permutation character error rate (cpCER).
We use the same text normalizer as Whisper for both English
and Mandarin.

It is important to note that the definition of cpWER that we
used does not penalize redundant hypothesis speaker channels
[26]. For transparency we include results using a definition of
cpWER that includes this penalization using MeetEval’s imple-
mentation [28]. These can be found in Appendix A.

On English data, we also report the utterance-wise WER
(uWER) which ignores speaker attribution. The uWERs are cal-
culated using Kaldi scripts [29] which in turn utilize asclite [30].
‘When using the long-form separated sources as input the single
transcript is generated by first concatenating the ASR predic-
tions from all the long-form sources and then sorting the words
by start time.

Our metric for evaluating the diarization performance is
the diarization error rate (DER) [31], which is defined as the
sum of false alarm, missed detection, and speaker confusion
rates. No forgiveness collar is used.

ASR systems. To verify the quality of the separated sources we
experiment with multiple ASR systems. For English data, we
chose the small.en, medium.en, and large-v2 Whisper models
[32] and NVIDIA's stt_en_conformer_ctc_large available in the
NeMo toolkit [33] on the basis that they were among the top
performers on AMI as indicated by [34]. On Mandarin data,
we only tested the aforementioned Whisper models with the
English-only variants replaced with multilingual ones.

Speaker attribution. When evaluating cpWER (or cpCER for
Mandarin AliMeeting), we compare two methods of adding
speaker attribution (SA) to an ASR system. One through
long-form separated sources and the other through speaker
diarization. In the first case, the ASR systems are applied
on the long-form separated sources immediately yielding
speaker-attributed transcripts. In the latter, an ASR system is

Table 1: Statistics of datasets used for evaluations. The k-
speaker durations are in terms of fraction of total speaking time.

AMI AliMeeting
Train Dev  Test Train  Eval  Test

Duration (h:m) 79:23  9:40  9:03 111:21 4:12  10:46
Num. sessions 133 18 16 209 8 20
Silence (%) 18.1 215 19.6 7.11 7.7 8.0
1-speaker (%) 755 743 730 52.5 62.1 634
2-speaker (%) 21.1 222 210 32.8 27.6 249
>2-speaker (%) 34 35 6.0 14.7 102 11.7




used on the original audio, and the predicted utterances are
divided between speakers according to a speaker diarization
system. Namely, each utterance is attributed to the speaker
whose speaking segments have the most overlap with it. In the
rare case that multiple speakers have fully overlapping speaking
segments with the utterance, it is randomly attributed to one of
them. In the following, we will refer to these two approaches
as SA methods and refer to the system that was used to perform
either diarization or separation as the SA system.

Word timestamps.  For experiments with the Whisper
family of models, we utilized WhisperX [35] which has
implemented word-level time-stamps using forced align-
ment with a wav2vec2.0-based phoneme model [36]. The
NeMo toolkit also provides word-level timestamps for the
stt_en_conformer_ctc_large model.

Baselines. Our baseline systems perform speaker attribution
through the pyannote.audio 3.1 speaker diarization pipeline
[37].

3.3. Implementation details

During training, we sample the first mixture randomly across
all the annotated regions from all the training files. Then we
sample the second mixture from the same file while ensuring
that it has no speakers in common with the first mixture and
the total number of speakers is not greater than the number of
output sources of the model. Sampling the other chunk from
the same file has two benefits. First, it is important that the two
mixtures come from the same recording conditions, otherwise
the model might learn to exploit this difference as found in [5].
Second, this approach generalizes better because it does not re-
quire dataset-wise consistent speaker IDs.

Our system is implemented in the pyannote.audio toolkit
[23] with the help of the Asteroid library [38]. We use 5-second
sliding windows with a step size of 500ms as in [23] and in line
with [5]. For both AMI and AliMeeting, there is a less than
1% chance that a 5-second window contains more than three
active speakers [37]. Motivated by this statistic and aiming to
mitigate over-separation, we set Kmax = 3. As a consequence
of our sampling method for the mixtures, training data does not
include windows with more than three speakers.

In ToTaToNet, the 1D conv encoder and decoder use a ker-
nel size of 32, a stride of 16, and 64 filters. We concatenate the
encoder output with WavLM-large pre-trained features which
have a stride of 320 so the WavLM features are repeated 20
times. For the separator module we chose a DPRNN [2] with
chunk size 100, hop size 50, and the rest of the hyperparameters
kept the same as in the original work. The diarization module
starts with an 8-fold average pooling layer to decrease the tem-
poral resolution to that of [23]. We follow it with a simple di-
arization model consisting of a fully connected neural network
with two 64-dimensional layers. We thus rely on the masking
network to do the bulk of the work for speaker diarization. Im-
portantly, due to the PIT training for diarization, the diarization
module has to process each encoded masked source separately
(as does the 1D conv decoder) otherwise the diarization outputs
might be permuted with respect to the separated sources.

We use a learning rate of 1e~° for the WavLM parameters
and 3e™* for the rest of the parameters. The learning rate is
halved whenever the validation loss plateaus for 5 epochs. We
use the Adam optimizer [39] with the gradients clipped to a Lo-
norm of 5 and train all models for 100 epochs.

Table 2: The cpWER (%) on AMI-SDM for various ASR sys-
tems with speaker attribution (SA) done through diarization or
the joint model

cpWER(%) Relative

ASR model Change

SA method SAsystem __ — 077
sub del ins total

Diarization pyannote 3.1 8.7 27.2 3.7 39.6
Diarization PixIT 85 273 2.1 379 -43%
Separation PixIT 6.7 258 1.4 339 -144%

Diarization pyannote 3.1 7.4 28.0 3.4 388
‘Whisper medium.en Diarization PixIT 73 27.8 2.0 371 -44%
Separation PixIT 59 258 1.2 328 -154%

Diarization pyannote 3.1 7.1 29.3 1.8 38.3
Diarization PixIT 6.9 266 2.1 357 -6.7%
Separation PixIT 56 247 13 317 -172%

Diarization pyannote 3.1 11.5 36.0 1.4 48.9
NeMo conformer large Diarization PixIT 133 339 1.3 485 -0.8%
Separation PixIT 134 246 14 394 -194%

Whisper small.en

Whisper large-v2

Table 3: The uWER (%) on AMI-SDM for various ASR sys-
tems using either the original audio or the separated sources as
input

UWER (%) Relative

ASR model
change

InputtoASR ____ —— — "7
sub del ins total
Original audio 6.7 29.6 1.4 37.6
Separated sources 6.9 279 1.5 363 -3.5%
Original audio 5.8 30.0 1.3 37.1

Separated sources 6.0 27.7 14 351 -54%
Original audio 52 289 1.3 354

Separated sources 5.5 269 1.4 338 -4.5%

Original audio  10.7 36.7 1.8 49.3
Separated sources 12.6 26.4 2.6 41.6 -15.6%

Whisper small.en

‘Whisper medium.en

Whisper large-v2

NeMo conformer large

When optimizing for the hyperparameters At, 6, and 9, we
used either ccWER/cpCER or DER as the target metric depend-
ing on whether the pipeline was used for separation or diariza-
tion.

To ensure reproducibility, the code for both training and in-
ference using PixIT will be available in the open-source pyan-
note.audio library. The recipes and separated source samples
will be publicly available at github.com/joonaskalda/PixIT.

3.4. Results

The cpWERs for the various ASR systems on AMI-SDM test
set are shown in Table 2. We can see that long-form sepa-
ration via PixIT significantly improves the quality of speaker-
attributed transcripts across the variety of ASR systems used.
Notably, the ASR systems are applied on the separated sources
off-the-shelf with no fine-tuning required.

We also report the uWER scores using either the original
audio or the separated sources in Table 3. Across the ASR
models, the bulk of the WER improvement comes from dele-
tions. Having the original audio as input the ASR models may
miss the quieter speakers utterances during overlap and utilizing
separated sources helps recover those.

Table 4 shows the cpCERs for the AliMeeting channel 1
dataset. We can see that the improvement from utilizing sep-
arated sources is greater than 20% across the tested ASR sys-
tems. Notably, the relative improvements are greater than they
were for the corresponding models on AMI data even though
‘WavLM has been pre-trained on English data. This can be ex-
plained by the greater percentage of overlap present in AliMeet-
ing as mentioned in section 3.1.



Table 4: The cpCER (%) on Alimeeting channel 1 for various
ASR systems with speaker attribution (SA) done through di-
arization or the joint model

cpCER(%) Relative

ASR system SA SA model Change

sub del ins total

Diarization pyannote 3.1 23.4 35.6 9.6 68.6
Whisper small Diarization PixIT 233 351 95 679 -1.0%
Separation PixIT 162 334 44 540 -213%

Diarization pyannote 3.1 18.5 37.9 9.5 65.9
Whisper medium Diarization PixIT 188 372 89 649 -15%
Separation PixIT 11.8 342 42 503 -23.7%

Diarization pyannote 3.1 17.6 38.0 9.5 65.1
‘Whisper large-v2 Diarization PixIT 18.1 373 9.0 644 -1.1%
Separation PixIT 10.6 33.6 4.0 48.3 -25.8%

Table 5: The cpWER (%) on AMI-SDM for speaker-attribution
(SA) done through PixIT speech separation with different
configurations of WavLM and leakage removal. ~Whisper
medium.en is used for ASR and pyannote 3.1 diarization as the
baseline SA method.

SA method WavLM Leakagi cpWER(%) Rgauve
removal qub  del ins total ©MAnge

pyannote 3.1 74 280 34 388
X X 19.2 153 15.6 50.1 +29.1%
PixIT separation X v 64 28.1 1.7 362 -6.7%
paral v X 93 210 38 341 -121%
v v 59 258 1.2 328 -15.5%

In Table 5, we show the effects of adding the WavLM fea-
tures and performing leakage removal through the diarization
output on our system performance when performing SA-ASR
on AMI-SDM with Whisper medium.en. The system without
WavLM features clearly has issues with leakage, with a lot of it
passing through the VAD component of WhisperX. When using
WavLM features the effect of our leakage removal is smaller but
it still outperforms using only WhisperX. Notably, a decrease
in substitution errors from applying leakage removal can be ob-
served in both cases. A possible explanation is that since the
leakage removal reduces the length of the predicted text, some
words in the reference that previously corresponded to substi-
tution errors now count as deletion errors. This is verified by
the fact that the decrease in substitution errors is smaller than
the increase in deletion errors. This effective method for leak-
age removal is a further benefit of ToTaToNet’s aligned outputs.
Leveraging the WavLM features significantly improves our sys-
tem’s performance which makes sense given the relatively small
amount of data we have access to for training and the utterance
mixing component of the pre-training. Still, even without using
pre-trained features, we are able to improve on the baseline of
WhisperX.

We also analyze PixIT’s speaker diarization performance by
measuring the DERs on AMI-SDM and AliMeeting for various
training and hyperparameter optimization strategies as shown in
Table 6. For the systems optimized for cpWER, we use At = 0,
as that represents the real diarization capabilities. We have in-
cluded the state-of-the-art (SOTA) systems as of February 2024.
For AliMeeting this is the pyannote 3.1 system utilizing power-
set training [37] and for AMI-SDM it is the end-to-end diariza-
tion model leveraging the Mask2Former architecture proposed
in [40]. The DER scores are broken down into false alarm (FA),
missed detection (MD), and speaker confusion (SC) rates. Op-

Table 6: DER (%) comparison with state-of-the-art systems
on AMI-SDM and AliMeeting channel 1 for different training
strategies and ways of optimizing the hyperparameters 6, §, and
At. For the latter, the underlying ToTaToNet is kept the same.

DER(%)
AMI-SDM systems FA MD SC total
Hirkonen et al. [40] 18.9

PixIT, A = 0.5, optimized for cpWER 1.3 17.9 6 253
PixIT, A = 0.5, optimized for DER 39 82 56 177

PixIT, \ = 1 44 72 55 171
AliMeeting systems
Plaquet et al. [37] 3.7 104 9.2 233

PixIT, A = 0.5, optimized for ccWER 2.7 13.2 124 28.3
PixIT, A = 0.5, optimized for DER 58 73 83 214
PixIT, A =1 47 65 83 195

timizing for cpWER yields lower FA values. This means that a
higher speaker activation threshold 6 is used and only segments
for which the diarization branch is confident are considered for
ASR. Optimizing the A = 0.5 system for DER improves on the
SOTA for both AliMeeting and AMI-SDM. Training our system
for only the easier task of speaker diarization i.e. with A = 1,
we achieve a further boost to performance on both datasets.

4. Conclusion

In this paper, we proposed PixIT, a novel approach for per-
forming multitask training for speaker diarization and speech
separation. This method does not depend on clean single-
speaker individual sources, only requiring single-channel
recordings with speaker diarization labels which are usually a
part of annotation. The local separated source and diarization
predictions of the proposed ToTaToNet model are aligned
allowing for long-form inference via the best-of-both-worlds
approaches that have been developed for speaker diarization.
A further benefit of the aligned sources is that we can perform
effective leakage removal by zeroing out inactive speaker
sources. We perform various experiments to demonstrate
the quality of the long-form separated sources obtained from
real-world meeting data by using them as input for various ASR
systems. Indeed, the cpWERs show significant improvements
over the baseline of performing speaker attribution using
speaker diarization with the improvements increasing with the
proportion of overlapped speech present. Furthermore, we
observe a decrease in utterance-based WER when the ASR
outputs from separated sources are combined into a single
transcript. These results come from using the ASR systems
on the separated sources off the shelf with no fine-tuning
required. Finally, we show that PixIT achieves state-of-the-art
speaker diarization performance on both the AMI-SDM and
AliMeeting datasets.
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A. On the evolution of cpWER definitions
A.1. Review of cpWER definitions

Here we provide a brief literature review on cpWER definitions
as of early 2023, which served as the basis for our choice of a
cpWER variant that does not penalize overestimation.

The original cpWER definition, as proposed in CHiME-6,
was limited to scenarios involving a fixed number of speakers
[27]. In our work, we adopted the extended cpWER defini-
tion from [26], which offered a comprehensive review of multi-
speaker word error rate definitions. Given the clarity and ex-
tensiveness of their approach, it seemed appropriate for us to
follow their methodology. In this definition, underestimation of
speakers is penalized by adding empty dummy channels to the
hypothesis, whereas overestimation is not penalized. However,
in a subsequent paper [28], the authors revised their definition
to also penalize overestimation by adding dummy channels to
the reference.

In other papers dealing with scenarios involving an
unknown number of speakers, the definitions were often am-
biguous, or they indicated that redundant hypothesis speakers
were discarded. For instance, [6] and [41] mention the removal
of redundant speakers, denoting this variant as cpWER-us
when dealing with an unknown number of speakers.

In the series of papers on Serialized Output Training by
Naoyuki Kanda et al., the initial paper, [42], touches on the
problem of having more hypothesis speakers than references
but is vague about the exact resolution (referring to the metric
as WER, though effectively it aligns with coWER). Later works
in this series did not provide further clarification on this issue.

A.2. Results using the MeetEval cpWER definition

For completeness, we provide the results calculated using the
cpWER definition that penalizes overestimation, utilizing the
MeetEval toolkit [28]. The inference hyperparameters 6, d, and
At were re-optimized on the development dataset using this cp-
WER definition. Results based on this updated cpWER can be
found in Tables 7 and 8 for AMI-SDM and Alimeeting channel
1, respectively. The relative changes in cpWER are consistent
with those obtained using the original definition.

Table 7: MeetEval cpWER (%) results on AMI-SDM for vari-
ous ASR models with speaker attribution (SA) through diariza-
tion or separation.

cpWER(%) Relative

ASR model Change

SA method SAsystem & "7 7
sub del ins total

Diarization pyannote 3.1 7.6 29.0 4.0 40.5
Diarization ToTaToNet 7.8 272 22 372 -8.1%
Separation ToTaToNet 8.8 242 24 354 -12.6%

Diarization pyannote 3.1 6.7 29.7 3.6 40.0
‘Whisper medium.en  Diarization ToTaToNet 7.0 28.1 2.0 37.1 -7.3%
Separation ToTaToNet 7.6 24.1 22 339 -153%

Diarization pyannote 3.1 6.4 28.0 3.9 38.3

Diarization ToTaToNet 6.8 263 2.1 352 -8.1%

Separation ToTaToNet 7.3 22.7 2.6 32.6 -149%

Diarization pyannote 3.1 12.0 355 2.9 50.4

Nemo conformer large Diarization ToTaToNet 13.2 34.1 1.6 48.9 -3.0%
Separation ToTaToNet 15.7 23.7 2.0 414 -17.9%

‘Whisper small.en

‘Whisper large-v2

Table 8: MeetEval cpCER (%) results on Alimeeting channel 1
for various ASR models with speaker attribution (SA) through
diarization or separation.

cpCER(%) Relative

ASR model Change

SA method SAsystem """ 77
sub del ins total

Diarization pyannote 3.1 23.2 354 10.0 68.6
Whisper small Diarization ToTaToNet 23.1 350 9.6 67.7 -1.3%
Separation ToTaToNet 18.9 324 24 53.7 -21.7%

Diarization pyannote 3.1 18.5 37.9 9.5 659
Whisper medium Diarization ToTaToNet 18.7 37.3 89 649 -1.5%
Separation ToTaToNet 12.5 34.7 1.6 487 -26.1%

Diarization pyannote 3.1 17.9 37.9 9.9 65.6
Whisper large-v2 Diarization ToTaToNet 18.1 373 93 64.7 -1.4%
Separation ToTaToNet 13.0 32.5 1.8 47.3 -27.9%
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Abstract

This paper describes the submissions of team TalTech-IRIT-LIS
to the DISPLACE 2024 challenge. Our team participated in
the speaker diarization and language diarization tracks of the
challenge. In the speaker diarization track, our best submis-
sion was an ensemble of systems based on the pyannote.audio
speaker diarization pipeline utilizing powerset training and our
recently proposed PixIT method that performs joint diarization
and speech separation. We improve upon PixIT by using the
separation outputs for speaker embedding extraction. Our en-
semble achieved a diarization error rate of 27.1% on the eval-
uation dataset. In the language diarization track, we fine-tuned
a pre-trained Wav2Vec2-BERT language embedding model on
in-domain data, and clustered short segments using AHC and
VBX, based on similarity scores from LDA/PLDA. This led to
a language diarization error rate of 27.6% on the evaluation
data. Both results were ranked first in their respective challenge
tracks.

Index Terms: DISPLACE 2024, speaker diarization, language
diarization

1. Introduction

Speaker diarization is the task of dividing an audio recording
into segments based on the speaker identity. The conventional
method for tackling this is a multi-stage approach that joins
speaker segmentation, local speaker embeddings, and cluster-
ing [1]. This approach struggles with overlap-heavy speech,
a domain that is better suited for end-to-end neural diarization
(EEND) [2, 3]. On the other hand, EEND is data-hungry and
has the issue of mispredicting the number of speakers. This has
motivated a hybrid approach that replaces the speaker segmen-
tation step of the multi-stage approach with local EEND [4].

Language diarization is the less-studied task of segmenting
a recording by the spoken language. It is used as the first step
in processing multilingual code-switched speech. Inspired by
speaker diarization, both multi-stage [5] and end-to-end neural
[6] approaches have been used to solve this task.

The DISPLACE 2024 Challenge is centered on advancing
research in the domains of speaker and language diarization, as
well as automatic speech recognition (ASR), within multilin-
gual and multi-accent environments [7]. The challenge empha-
sizes the utilization of realistic speech data, characteristically
featuring frequent language switches by speakers at both sen-
tence and phrase levels. DISPLACE 2024 is structured around
three evaluation tracks: speaker diarization, language diariza-
tion, and ASR.

The dataset for the first two tracks comprises far-field,
multi-party multilingual conversational speech recordings, fea-

Track 1: Speaker Diarizaat‘{osn Track 2: Language Diarization
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Figure 1: The results of top-performing teams on DISPLACE
2024 evaluation data.

turing speakers who engage in code-mixing or code-switching
across multiple languages. The development set for these tracks
consists of 35 recordings, summing up to nearly 20 hours of
audio. The evaluation set encompasses 32 recordings, totaling
almost 18 hours. Each recorded conversation, lasting around 30
to 60 minutes, involves 3-5 participants fluent in various Indian
languages as well as English (with an Indian accent).

For the third track, dedicated to speech recognition, a sep-
arate development dataset is provided. This dataset includes 8
recordings, each segmented into single-language regions. The
segments are labeled with the corresponding language and ac-
companied by an orthographic transcript.

Participants in the challenge are permitted to employ any
publicly available or proprietary datasets for training and re-
fining their diarization systems. This includes leveraging de-
velopment data from other tracks within the challenge. These
development sets can be utilized for model training and hyper-
parameter optimization. The performance of systems in Tracks
1 and 2 is evaluated based on the diarization error rate (DER),
with overlap and without forgiveness collar.

Our team participated in Tracks 1 and 2 of the challenge.
Figure 1 shows that we outperformed other teams in both tracks.

2. Track 1: Speaker diarization
2.1. Methods

2.1.1. Powerset training

Our first standalone system is based on the same approach as the
submission #5 of the pyannote team at VoxSRC 2023 [8]. This



hybrid approach consists of local end-to-end neural speaker seg-
mentation on a few-second sliding window, neural speaker em-
bedding of each speaker of each window, and agglomerative hi-
erarchical clustering (AHC). The backbone of our local speaker
segmentation model is a WavLM-base model [9] pre-trained
from scratch on a compound dataset consisting of AISHELL
[10], AliMeeting [11], AMI [12], AVA-AVD [13], DIHARD
[14], Ego4D [15], MSDWild [16], REPERE [17], and VoxCon-
verse 0.3.0 [18] which is applied on a 10-second sliding win-
dow with a stride of 1 second. The 8th layer of this WavLM
is fed into an LSTM-based network. The WavLM and the
LSTM-based network consist of 94.4M parameters and 2.1M
parameters respectively. The training uses powerset multi-label
cross-entropy loss [19] with Kmax = 3 speakers. Speaker em-
beddings were extracted using the pre-trained ResNet34 model
from the WeSpeaker toolkit [20].

2.1.2. PixIT

We also experimented with our recently proposed PixIT
method, combining permutation invariant training (PIT) for
speaker diarization and mixture invariant training (MixIT) for
speech separation [21]. For PixIT, the multitask loss is defined
as Lpiar = Alpir + (1 — A)Lmisar. It is calculated on
pairs of mixtures extracted from the same recording environ-
ments so that they contain disjoint sets of speakers and the com-
bined number of speakers is at most Kmax. The mixtures are
added together to create mixtures of mixtures (MoMs). LtixiT
is calculated only on the MoMs while Lpir also utilizes the
original mixtures. The local joint model is based on the TasNet
architecture [22]. The feature encoder concatenates the outputs
of the pre-trained WavLM-large [9] model and a 1-D convo-
lutional encoder. The masking network outputs K ax masks
which are then independently processed by either a 1-D convo-
lutional decoder or a fully connected neural network for local
speech separation or speaker diarization respectively.

To perform global speaker diarization, the speaker diariza-
tion branch of the local joint model is used in the same pipeline
as in Section 2.1.1. The only difference is that for speaker
embeddings we used a pre-trained ECAPA-TDNN model [23]
available in [24].

We experimented with multiple improvements to the origi-
nal PixIT system. First, we utilized separated sources output by
the joint model for speaker embedding extraction instead of the
original audio. This allows for additional information from the
overlapped regions and further integrates the two tasks. A po-
tential downside is that separation outputs can include artifacts
the speaker embedding model has not seen during its training.
Second, we used a DPTNet [25] instead of a DPRNN [26] as the
masking network which was shown to perform better at speech
separation albeit on synthetic data. We kept the hyperparam-
eters the same as in the original work. Finally, to improve the
quality of the local speaker embeddings we increased the length
of the sliding window from 5 to 10 seconds while increasing the
stride of the convolutional encoder two-fold.

The total number of parameters for the PixIT model is
319M when using a DPRNN and 324M when using a DPTNet.

2.2. Results

For fine-tuning our speaker diarization systems, we divided the
DISPLACE 2024 development set further into train and devel-
opment splits with the latter containing the recordings M030,
B022, M019, and B034. Accordingly, we will only report re-
sults on the evaluation dataset of the challenge.

Table 1: DERs (%) obtained on Track 1 evaluation data for
different configurations of the PixIT method. % denotes submis-
sions made during the post-evaluation phase of the competition.

Submission Eval
DISPLACE 2024 baseline 34.76
#1  Original PixIT system with A = 0.1 30.05

#2  #1 + embeddings from separated sources 29.44
#3  #2 + DPTNet as the masking network 27.15"
#4  #3 + 10s sliding window 26.70"

Table 2: DERs (%) obtained on Track 1 evaluation dataset for
different system configurations. Our best-performing system for
Phase 1 of the competition is in bold.

Submission Eval

DISPLACE 2024 baseline 3476
#2  PixIT 29.44
#5 powerset off-the-shelf 30.57
#6 powerset fine-tuned 27.34

#7 powerset fine-tuned, max_speakers =5  29.09
#8 powerset fine-tuned, max_speakers = 6 28.35
#9 powerset fine-tuned, max_speakers =7  27.29

#10 DOVER-Lap of #2, #6 and #9 27.27
#11 DOVER-Lap of #2, #6, #7, #8 and #9 27.12
#12 DOVER-Lap of #2, #6 and #7 27.08

The performance on the evaluation dataset for our PixIT-
based systems is detailed in Table 1. Optimizing for the DER
on the development data, we found A = 0.1 to perform the
best. Using the separated sources predicted by the joint model
for extracting speaker embeddings instead of the original au-
dio yields an improvement in DER from 30.1% to 29.4%. This
shows that the additional information extracted from the over-
lapped regions outweighs the negative effect of the presence
of artifacts in the separated sources. An additional 7.8% rel-
ative improvement is achieved by replacing the DPRNN with
a DPTNet as the masking network. The superior performance
of DPTNet thus extends to the case of shared training on real
data. Lastly, extending the sliding window length to 10 seconds
further improves DER by a relative 1.7%.

The results of our systems using powerset training and en-
semble methods are shown in Table 2. Fine-tuning the powerset
system allowed us to get from 30.6% down to 27.3% DER on
the evaluation data. We also experimented with constraining the
maximal number of speakers in clustering to either 5, 6, or 7.
The last case yields slight improvements to DER while others
perform worse than the unconstrained system. Finally, we use
greedy DOVER-Lap [27] to combine the PixIT system with var-
ious powerset systems. We found the best results from choosing
the unconstrained fine-tuned version and the fine-tuned version
constrained to a maximum of 5 speakers. This is likely because
the variation in outputs is the greatest for that pair of systems.

2.3. Runtime performance

The powerset system was fine-tuned using a single V100 GPU
for approximately 1h. On the same hardware, it takes 10m30s
to process the DISPLACE 2024 evaluation set. PixIT systems
were trained on a single 80GB A100 GPU for approximately 3
days. It takes 1.2 hours for these systems to process the evalua-
tion dataset.



3. Track 2: Language diarization
3.1. Methods

In the language diarization track, we used the more conven-
tional diarization technique, consisting of speech detection, seg-
mentation into short overlapping windows, extraction of seg-
ment embeddings, and clustering of the segments, with VBx
[1] based refinement of the initial clustering hypothesis.

As the first step in processing target speech data, segments
containing speech were found from the recordings, using the
Silero VAD model [28]. Speech segments were further subseg-
mented, using a 5-second window with a 1-second shift. The
use of 5-second window was inspired by the results from DIS-
PLACE 2023 [29] and verified by our own initial experiments.

The resulting 5-second segments were processed by the lan-
guage embedding model, which produces a 512-dimensional
vector for each short segment. The backbone of the embed-
dings extractor is the Wav2Vec2-BERT model' shared by the
Seamless4MT project [30]. This model was pre-trained on
4.5M hours of unlabeled audio data covering more than 143
languages, using self-supervised loss. Wav2Vec2-BERT fol-
lows the same architecture as Wav2Vec2.0 [31], but replaces
the attention-block with a Conformer-block as introduced in
[32]. It also uses mel-spectrogram representation of the au-
dio as input, instead of the raw waveform. This particular
Wav2Vec2-BERT model comprises 24 Conformer layers with
approximately 600M parameters. The Wav2Vec2-BERT model
was converted into a language identification model by feeding
its outputs through an attentive pooling layer, a fully connected
layer with ReLU and BatchNorm, and the final output layer,
corresponding to the languages of the training set. The model
is trained using cross-entropy loss on random 2 to 4-second
chunks of language-labeled training data. Point source noises
and simulated room impulse responses (RIRs) from the SLR28
Room Impulse Response and Noise Database [33] were used
for on-the-fly data augmentation. Segment embeddings are ex-
tracted from the output of the first dense layer after the pooling
layer. Low-rank adaptation (LoRA) [34] is used for finetun-
ing the pre-trained Wav2Vec2-BERT model, with rank = 32,
o = 32 and dropout = 0.05. Supervised training was per-
formed using an effective batch size of 64, peak learning rate
1072 and weight decay 1073, Due to the use of LoRA, the
number of trainable parameters in the model is only 7.9M.

We tried various datasets for training the language em-
bedding model. Initial experiments with the VoxLingualO7
dataset [35] gave poor results on DISPLACE data (see sec-
tion 3.3). Therefore, we opted to use data from NIST Lan-
guage Recognition Evaluations (LREs) and Speaker Recog-
nition Evaluations (SREs) for training the embedding model.
Specifically, the language embeddings extractor was trained on
NIST LRE 2003 evaluation data (LDC2006S31), NIST LRE
2005 evaluation data (LDC2008S05), NIST LRE 2007 eval-
uation data (LDC2009S04), NIST LRE 2009 evaluation data
(LDC2014S06), NIST LRE 2007 training data (LDC2009S05),
NIST SRE 2008 training data (LDC2011S05). Those datasets
contain mostly conversational telephone speech, including En-
glish with Indian accent. The amount of speech data per lan-
guage is given in Table 3.

Although the languages used in DISPLACE 2024 Track 2
development and evaluation data were not known during the
challenge period, the DISPLACE 2023 [36] report suggests
that they could include Indian-accented English, Hindi, Telugu,

"https://huggingface.co/facebook/w2v-bert-2.0

Table 3: Amount of training data per language for training the
language embedding model for Track 2.

Language Hours ‘ Language  Hours ‘ Language  Hours

Ambharic 5.4 | Haiti Creole 4.4 | Russian 30.4
Arabic 13.4 | Hausa 5.3 | Spanish 26.0
Azerbaijani 5.0 | Hindi 32.9 | Swahili 5.4
Belarusian 4.9 | Indonesian 1.7 | Tagalog 6.0
Bengali 9.8 | Italian 4.6 | Tamil 8.6
Bosnian 4.8 | Japanese 27.1 | Thai 352
Bulgarian 5.1 | Khmer 0.1 | Tibetan 5.0
Cantonese 7.6 | Korean 27.6 | Tigrinya 0.0
Chinese 113.9 | Lao 0.1 | Turkish 54
Croatian 5.1 | Pashto 5.4 | Ukrainian 53
English 646.3 | Persian 18.0 | Urdu 11.6
French 9.3 | Portuguese 5.4 | Uzbek 5.8
Georgian 5.5 | Punjabi 0.7 | Vietnamese  29.5
German 5.6 | Romanian 5.4

Table 4: Amount of data per language in Track 3 development
data.

Language Amount (hh:mm)

Bengali 0:26
Hindi 0:24
English 1:47
Kannada 0:12
Telugu 0:37

Bangla/Bengali, Kannada, Tamil. Table 3 shows that Telugu
and Kannada were not covered by the training data used for
training language embeddings. In order to adapt the embed-
dings to the DISPLACE 2024 scenario, we fine-tuned the em-
beddings model on development data from Track 3 which has
been segmented and transcribed according to the language. This
gives us around 3.5 hours of in-domain data (see Table 4). Fine-
tuning was performed for 6 epochs from the checkpoint trained
on 10 epochs of NIST data, using a learning rate schedule where
the peak learning rate is 10 times smaller than when training the
initial model.

The 5-second segments were clustered using a language
recognition model based on a LDA/PLDA, trained on Track
3 development data. The LDA/PLDA model transforms cen-
tered language embeddings to 150 dimensions using LDA and
estimates a PLDA model on the length-normalized features.
The LDA/PLDA model is used to evaluate the cross-similarity
across all 5-second segment pairs in each target recording. The
similarities are used to perform initial clustering of the 5-second
segments, using AHC. The initial language segmentation is fi-
nally refined using Bayesian HMM clustering (VBX) [1], using
the following parameters: Pioop = 0.9, F, = 9, Fj, = 4.

3.2. Results

Table 5 presents the performance of various baseline systems
and our own models on the development and evaluation datasets
for Track 2. Confidence intervals [37] on development data are
computed by treating each recording as IID. Notably, the DIS-
PLACE 2023 baseline, which uses an EPACA-TDNN model
trained on VoxLingual(O7 dataset for generating language em-
beddings, followed by the clustering of short segments using
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Figure 2: Top 5 most frequent predicted languages for Track 3 development utterances in the five given languages, based on the

language identification model trained on VoxLingual07.

Table 5: Language diarization error rates (DER) on Track 2
development and evaluation data, using different model config-
urations.

Training data for

embeddings LDA/PDA | VBx | Dev (conf. int.) |Eval
Baselines

No segmentation 44.4 (41.9-49.1)
DISPLACE 2023 baseline 48.6 (46.3-52.8)
DISPLACE 2024 baseline 40.7 (37.9-45.3)| 32.7
VL107 VL107 X |38.3(35.7-43.4)
VL107 Track3 dev| X |32.9(30.3-37.5)
VL107 + Track3 dev | Track3 dev| X [30.1 (27.7-34.8)
NIST NIST X 130.9 (28.4-35.6)
NIST NIST v |29.7 (27.6-34.9)
NIST Track3 dev| X |31.3(28.9-36.3)
NIST Track3 dev| v |28.7(26.1-33.5)|29.6
NIST + Track3 dev |Track3 dev| X |29.3 (26.8-34.2)
NIST + Track3 dev |Track3 dev| v/ |28.2(25.6-33.0)|27.6

AHC, does not outperform the simplistic baseline that attributes
all speech to a single language. However, the DISPLACE 2024
baseline that substitutes the EPACA-TDNN language embed-
dings with language detection posterior probabilities derived
from Whisper, and incorporates VBx into the clustering step,
achieves an improvement over the “uninformative” baseline.

The results further indicate that language embeddings
trained using data from NIST LREs and SRE:s significantly out-
perform those trained with VoxLingual07 (VL107) data for the
DISPLACE 2024 dataset. However, substantial gains are ob-
served when in-domain data from Track 3 is utilized for esti-
mating the LDA/PLDA model and for finetuning the embed-
dings. This approach not only enhances the performance of
the VoxLingualO7 based model but also narrows the gap to the
models trained on NIST datasets. The system corresponding to
the last line in the table obtained the best results on evaluation
data among all teams.

3.3. Analysis

Our investigation revealed that the VoxLingualO7 dataset, ef-
fective for various language recognition tasks, showed weak
performance on the DISPLACE 2024 dataset. To decipher the
underlying causes of this problem, we assessed the language
identification capabilities of a model trained on VoxLingual07
using the Track 3 development dataset, evaluating it through its
posterior probabilities without employing LDA/PLDA postpro-

cessing. Although the model achieved an accuracy of 95.4% on
the VoxLingualO7 development dataset, its performance dra-
matically decreased to 22.2% on the Track 3 dataset. Our anal-
ysis, shown in Figure 2, identified a trend across languages:
while the correct language was often identified, recall rates were
significantly low, from 15% for English to 42% for Telugu.
This drop in accuracy can be attributed to factors like environ-
mental noise and the conversational speech style. However, a
major reason for the decline was the inclusion of non-native
speech in the DISPLACE 2024 data. Prior study has shown
that models trained on VoxLingual(Q7 face dramatic accuracy
losses with non-native accents [38], and that such models could
be improved by also using a lexicon-free character-based speech
recognition for various languages to transcribe speech, followed
by applying a text-based classification model on these tran-
scripts. The combined model approach could potentially en-
hance language diarization and segmentation tasks as well.

3.4. Runtime performance

Training of the language embedding model was performed on 6
P100 GPUs and it took approximately 4 hours. Finetuning the
model on Track 3 data takes a few minutes on one GPU. Pro-
cessing test data from start to finish takes about 0.08 x realtime,
assuming one GPU and one CPU.

4. Conclusion

This work presents our submissions to the DISPLACE 2024
challenge. For the speaker diarization track, our best system
combines pyannote.audio speaker diarization pipelines where
the segmentation is done either by a model trained with a power-
set objective function or by a joint separation-diarization model
trained with our recently proposed PixIT loss. The latter system
is improved upon by extracting speaker embeddings directly
from local separated sources. The ensemble reaches a DER
of 27.1% on the phase one evaluation data. In the language
diarization track, a 27.6% DER score is achieved by combin-
ing local language embeddings from a pre-trained Wav2Vec2-
BERT model with clustering using AHC and VBx, based on
similarity scores from LDA/PLDA. Our systems achieved first
places in both of the tracks.

5. Acknowledgements

The research reported in this paper was supported by the
Agence de I’Innovation Défense under the grant number
2022 65 0079, and by the Estonian Centre of Excellence in Al
This work was granted access to the HPC resources of GENCI-
IDRIS under the allocations AD011014274.



[1

[2

3

[4

[5

[6

[7

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

6. References

F. Landini, J. Profant, M. Diez, and L. Burget, “Bayesian HMM
clustering of x-vector sequences (VBXx) in speaker diarization:
theory, implementation and analysis on standard tasks,” Computer
Speech & Language, vol. 71, p. 101254, 2022.

Y. Fujita, N. Kanda, S. Horiguchi, K. Nagamatsu, and S. Watan-
abe, “End-to-end neural speaker diarization with permutation-free
objectives,” in Interspeech, 2019.

Y. Fujita, N. Kanda, S. Horiguchi, Y. Xue, K. Nagamatsu, and
S. Watanabe, “End-to-end neural speaker diarization with self-
attention,” in ASRU, 2019.

K. Kinoshita, M. Delcroix, and N. Tawara, “Integrating end-to-
end neural and clustering-based diarization: Getting the best of
both worlds,” in ICASSP, 2021.

S. Baghel, S. Ramoji, S. Jain, P. R. Chowdhuri, P. Singh, D. Vi-
jayasenan, and S. Ganapathy, “Summary of the DISPLACE chal-
lenge 2023—diarization of speaker and language in conversational
environments,” arXiv preprint arXiv:2311.12564, 2023.

J. Mishra, A. Agarwal, and S. M. Prasanna, “Spoken language di-
arization using an attention based neural network,” in NCC, 2021.

S. B. Kalluri, P. Singh, P. R. Chowdhuri, A. Kulkarni, S. Baghel,
P. Hegde, S. Sontakke, D. K. T, S. R. M. Prasanna, D. Vijayase-
nan et al., “The Second DISPLACE Challenge : Dlarization of
SPeaker and LAnguage in Conversational Environments,” in In-
terspeech, 2024.

S. Baroudi, H. Bredin, A. Plaquet, and T. Pellegrini,
“pyannote.audio speaker diarization pipeline at VoxSRC
2023 http://mm kaist.ac.kr/datasets/voxceleb/voxsrc/

data_workshop-2023/reports/pyannote_report.pdf,
2023.

S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li,
N. Kanda, T. Yoshioka, X. Xiao et al., “WavLM: Large-Scale
Self-Supervised Pre-Training for Full Stack Speech Processing,”
IEEE Journal of Selected Topics in Signal Processing, vol. 16,
no. 6, pp. 1505-1518, 2022.

H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “AlShell-1: An open-
source Mandarin speech corpus and a speech recognition base-
line,” in Oriental COCOSDA, 2017.

F. Yu, S. Zhang, Y. Fu, L. Xie, S. Zheng, Z. Du, W. Huang, P. Guo,
Z. Yan, B. Ma et al., “M2Met: The ICASSP 2022 multi-channel
multi-party meeting transcription challenge,” in ICASSP, 2022.

J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot,
T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal et al.,
“The AMI meeting corpus: A pre-announcement,” in /ICMI, 2005.

E. Z. Xu, Z. Song, S. Tsutsui, C. Feng, M. Ye, and M. Z. Shou,
“AVA-AVD: Audio-visual speaker diarization in the wild,” in
ACM MM, 2022.

N. Ryant, P. Singh, V. Krishnamohan, R. Varma, K. Church,
C. Cieri, J. Du, S. Ganapathy, and M. Liberman, “The third dihard
diarization challenge,” arXiv preprint arXiv:2012.01477, 2020.

Tech. Rep.,

K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari,
R. Girdhar, J. Hamburger, H. Jiang, M. Liu, X. Liu et al., “Ego4d:
Around the world in 3,000 hours of egocentric video,” in CVPR,
2022.

T. Liu, S. Fan, X. Xiang, H. Song, S. Lin, J. Sun, T. Han, S. Chen,
B. Yao, S. Liu et al., “MSDWild: Multi-modal speaker diarization
dataset in the wild.” in Interspeech, 2022.

A. Giraudel, M. Carré, V. Mapelli, J. Kahn, O. Galibert, and
L. Quintard, “The REPERE Corpus : a multimodal corpus for
person recognition,” in LREC’12, 2012.

J. S. Chung, J. Huh, A. Nagrani, T. Afouras, and A. Zisserman,
“Spot the conversation: Speaker diarisation in the wild,” in Inter-
speech, 2020.

A. Plaquet and H. Bredin, “Powerset multi-class cross entropy
loss for neural speaker diarization,” in Interspeech, 2023.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

H. Wang, C. Liang, S. Wang, Z. Chen, B. Zhang, X. Xiang,
Y. Deng, and Y. Qian, “Wespeaker: A research and production
oriented speaker embedding learning toolkit,” in JCASSP, 2023.

J. Kalda, C. Pagés, R. Marxer, T. Alumde, and H. Bredin,
“PixIT: Joint training of speaker diarization and speech separation
from real-world multi-speaker recordings,” arXiv preprint arX-
ivL:2403.02288, 2024.

Y. Luo and N. Mesgarani, “TasNet: Time-domain audio separa-
tion network for real-time, single-channel speech separation,” in
ICASSP, 2018.

B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-
TDNN: Emphasized channel attention, propagation and aggrega-
tion in tdnn based speaker verification,” in Interspeech, 2020.

M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell,
L. Lugosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong
et al., “Speechbrain: A general-purpose speech toolkit,” arXiv
preprint arXiv:2106.04624, 2021.

J. Chen, Q. Mao, and D. Liu, “Dual-Path Transformer Net-
work: Direct Context-Aware Modeling for End-to-End Monaural
Speech Separation,” in Interspeech, 2020, pp. 2642-2646.

Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path RNN: Efficient long
sequence modeling for time-domain single-channel speech sepa-
ration,” in ICASSP, 2020.

D.Raj, P.Garcia, Z.Huang, S.Watanabe, D.Povey, A.Stolcke, and
S.Khudanpur, “DOVER-Lap: A method for combining overlap-
aware diarization outputs,” in SLT, 2021.

Silero Team, “Silero VAD: pre-trained enterprise-grade voice ac-
tivity detector (VAD), number detector and language classifier,”
https://github.com/snakers4/silero-vad, 2021.

B. Vachhani, D. Singh, and R. Lawyer, “Multi-resolution ap-
proach to identification of spoken languages and to improve over-
all language diarization system using Whisper model,” in Infer-
speech, 2023.

Seamless Communication, L. Barrault, Y.-A. Chung, M. C.
Meglioli, D. Dale, N. Dong, M. Duppenthaler, P.-A. Duquenne,
B. Ellis, H. Elsahar et al., “Seamless: Multilingual expressive and
streaming speech translation,” arXiv preprint arXiv:2312.05187,
2023.

A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” NeurIPS, 2020.

A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” arXiv preprint
arXiv:2005.08100, 2020.

T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur,
“A study on data augmentation of reverberant speech for robust
speech recognition,” in /ICASSP, 2017.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “LoRA: Low-rank adaptation of large lan-
guage models,” arXiv preprint arXiv:2106.09685, 2021.

J. Valk and T. Alumde, “VoxLingualQ7: a dataset for spoken lan-
guage recognition,” in SLT, 2021.

S. Baghel, S. Ramoji, Sidharth, R. H, P. Singh, S. Jain, P. Roy
Chowdhuri, K. Kulkarni, S. Padhi, D. Vijayasenan et al., “The
DISPLACE Challenge 2023 - Dlarization of SPeaker and LAn-
guage in Conversational Environments,” in Interspeech, 2023.

L. Ferrer and P. Riera, “Confidence intervals for evaluation
in machine learning.” [Online]. Available: https:/github.com/
luferrer/Confidencelntervals

K. Kukk and T. Alumie, “Improving language identification of
accented speech,” in Interspeech, 2022.



104



Appendix 4

v

Joonas Kalda, Séverin Baroudi, Martin Lebourdais, Clément Pagés, Ri-
card Marxer, Tanel Alumée, and Hervé Bredin. Design choices for PixIT-
based speaker-attributed ASR: Team ToTaTo at the NOTSOFAR-1
challenge. Computer Speech € Language, page 101824, 2026

105






)

\
N

HAL

open science

Design Choices for PixIT-based Speaker-Attributed
ASR: Team ToTaTo at the NOTSOFAR-1 Challenge

Joonas Kalda, Séverin Baroudi, Martin Lebourdais, Clément Pagés, Ricard

Marxer, Tanel Alumée, Hervé Bredin

» To cite this version:

Joonas Kalda, Séverin Baroudi, Martin Lebourdais, Clément Pagés, Ricard Marxer, et al.. Design
Choices for PixIT-based Speaker-Attributed ASR: Team ToTaTo at the NOTSOFAR-1 Challenge.
Computer Speech and Language, 2025, 95, pp.101824. 10.1016/j.¢s1.2025.101824 . hal-05084070

HAL Id: hal-05084070
https://hal.science/hal-05084070v1
Submitted on 26 May 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépdt et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche frangais ou étrangers, des laboratoires
publics ou privés.



Design Choices for PixIT-based Speaker-Attributed
ASR: Team ToTaTo at the NOTSOFAR-1 Challenge

Joonas Kalda?, Séverin Baroudi®, Martin Lebourdais®, Clément Pagés®,
Ricard Marxer®, Tanel Alumie?, Hervé Bredin®

@ Tallinn University of Technology, Tallinn, Estonia
b Université de Toulon, Aix Marseille Univ, CNRS, LIS, Toulon, France
¢IRIT, Université de Toulouse, CNRS, Toulouse, France

Abstract

PixIT is a recently proposed joint training framework that integrates Per-
mutation Invariant Training (PIT) for speaker diarization and Mixture In-
variant Training (MixIT) for speech separation. By leveraging diarization
labels, PixIT addresses MixIT’s limitations, producing aligned sources and
speaker activations that enable automatic long-form separation. We investi-
gate applications of PixIT on the speaker-attributed automatic speech recog-
nition (SA-ASR) task based on our systems for the NOTSOFAR-1 Chal-
lenge. We explore modifications to the joint ToTaToNet by integrating ad-
vanced self-supervised learning (SSL) features and masking networks. We
show that fine-tuning an ASR system on PixIT-separated sources signif-
icantly boosts downstream SA-ASR performance, outperforming standard
diarization-based baselines without relying on synthetic data. We explore
lightweight post-processing heuristics for improving SA-ASR timestamp er-
rors caused by long silences and artifacts present in file-level separated sources.
We also show the potential of extracting speaker embeddings for the di-
arization pipeline directly from separated sources, with performance rivaling
standard methods without any fine-tuning of speaker embeddings. On the
NOTSOFAR-1 Challenge dataset, our PixIT-based approach outperforms
the CSS-based baseline by 20% in terms of tcpWER after fine-tuning the
ASR system on the separated sources. Notably, even when using the same
ASR model as the baseline, our system is able to outperform it, without us-
ing any of the provided domain-specific synthetic data. These advancements
position PixIT as a robust and flexible solution for real-world SA-ASR.

Keywords: Speech Separation, Speaker Diarization, Speaker-Attributed
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1. Introduction

Speech separation, also known as the cocktail party problem, involves
isolating individual speakers’ voices from a mixed audio signal. The pre-
dominant approaches for training deep-learning models for this task have
been based on supervised training, using clean isolated speaker signals as
training labels [1, 2, 3]. Such signals are unavailable in real-world scenarios.
Even when using close-distance microphones, recorded signals typically con-
tain cross-talk from other speakers, making truly isolated recordings difficult
to obtain. Thus synthetic data has to be used for supervised training where
two or more independently recorded clean speaker signals are added to create
an artificial mixture. However, this approach results in a domain mismatch
when applied to real-world scenarios. This is not an issue for unsupervised
approaches that do not rely on the existence of clean ground-truth signals. A
variety of methods have been proposed for this, utilizing multi-channel audio,
which allows to estimate spatial locations of sources [4, 5]. A more general
approach that also works for single-channel training data is Mixture Invari-
ant Training (MixIT) [6]. MixIT operates by combining two mixtures from
the target domain to create a “mixture of mixtures” (MoM). The separation
model is then trained to estimate source signals so that they can be combined
to recreate the original mixtures. An obvious limitation of MixIT is that the
number of speakers in a MoM is twice that of a single mixture. This means
that the separation model now faces a different kind of domain mismatch
problem. The number of outputs for the separation model is doubled and as
a result, the model struggles with over-separation when applied to real-world
conversations — a single speaker’s signal can end up divided across multiple
predicted sources. Combining the use of MixIT and traditional supervised
separation training has been shown to reduce this problem [7] at the cost of
re-introducing reliance on synthetic data.

Besides domain mismatch, speech separation struggles with inference on
long-form audio. Speech separation networks are trained on short mixtures
and inference on long recordings requires some way of stitching together local
outputs. The predominant approach for this has been continuous speech
separation (CSS) [8]. Separation outputs on overlapping sliding windows



are stitched together based on a similarity metric that is calculated on the
overlapped region. However, when there is a longer pause between utterances
of a particular speaker, these utterances can end up in different channels.
Thus for long-form separation, CSS has to be accompanied by a speaker
diarization system that predicts which speaker each utterance corresponds
to.

Speaker diarization is the process of identifying who speaks when in an
audio recording. Traditional approaches follow a multi-step process: first
using voice activity detection (VAD) to locate speech segments, then ex-
tracting speaker-specific voice characteristics (embeddings), and finally ap-
plying clustering algorithms to group similar voices together [9, 10]. While
often effective, these methods struggle with overlapping speech segments.
End-to-end neural diarization (EEND) has been introduced to address over-
lapping speech by directly modeling speaker activities with a single network
[11, 12]. However, EEND requires substantial training data and can struggle
with estimating the number of speakers. To leverage the strengths of both
approaches, a hybrid framework has been developed. This method applies
EEND to shorter audio segments and subsequently integrates the results
using speaker embeddings and clustering techniques [13, 14].

Speech separation and speaker diarization systems frequently work to-
gether, particularly for CSS applications. Applying the diarization system
to already separated speech sources solves the overlapped speech problem,
thus enabling the use of multi-step approaches [15]. However, this arrange-
ment has a drawback: any errors or artifacts introduced during the speech
separation process will affect the subsequent diarization results. The two
systems can also be arranged in the reverse order, with diarization preced-
ing separation. In this configuration, the speech separation model benefits
from the diarization system’s output of time-domain speaker masks, which
provide a natural foundation for time-frequency domain masking. This in-
terdependence highlights how the two tasks complement each other, as they
both extract speaker-specific information but at different levels of detail —
separation focusing on the acoustic signal level and diarization on the speaker
identity level.

These observations have motivated a suite of joint training approaches.
The Recurrent Selective Attention Network (RSAN) architecture [16] was
the first all-neural model to jointly perform speech separation, speaker di-
arization, and speaker counting. RSAN processes audio iteratively using
sliding blocks, extracting speakers by estimating masks for each, guided by
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embeddings and residual masks from previous blocks and iterations. Another
joint approach is the End-to-End Neural Diarization and Speech Separation
(EEND-SS) architecture [17]. Built on the EEND framework for diarization
and speaker counting, and Conv-TasNet [1] for separation, EEND-SS refines
separation using diarization outputs. This includes leveraging the estimated
number of speakers and probabilities of speech activity to enhance separation.
While these joint methods offer promising results, they still rely on synthetic
data for training the separation components. A joint training method on
real-world data was proposed in [18] but is restricted to multi-channel audio.

PixIT [19] was proposed as a joint training approach for speaker diariza-
tion and speech separation that builds on MixIT by incorporating PIT for
diarization. It solves the main problems of MixIT while imposing the small
requirement of speaker diarization labels being available for training. A
key advantage of models trained with PixIT is that they produce sources
aligned with speaker sources, meaning that when local diarization outputs
are stitched following the best-of-both-worlds approach, the long-form sepa-
rated audio sources are automatically obtained. The effectiveness of PixIT
has been demonstrated in practical applications. It was shown to improve the
performance of off-the-shelf ASR systems on single-channel meeting record-
ings substantially over the standard speaker attribution baseline that does
not rely on synthetic data, where the speaker diarization model is used to
divide speech segments between speakers. Further validation came through
our DISPLACE challenge submission [20], which revealed an additional ben-
efit of this joint training approach: using locally separated sources instead of
the original audio for extracting speaker embeddings can improve diarization
performance.

In this work we extend our submission [20] to the Natural Office Talkers in
Settings of Far-field Audio Recordings (NOTSOFAR-1) Challenge [21]. The
NOTSOFAR-1 Challenge addresses the SA-ASR task in diverse and realistic
meeting scenarios, featuring both single-channel and known-geometry multi-
channel tracks. PixIT was originally introduced for single-channel scenarios
and thus our participation focused exclusively on this track. Leveraging
PixIT in a multi-channel context remains a topic for future work.

We extend prior efforts by exploring new architectures for the joint To-
TaToNet model, aiming to improve separation performance. We demon-
strate that fine-tuning an ASR system on PixIT-separated sources signifi-
cantly boosts downstream speaker-attributed ASR (SA-ASR) performance.
We show the further potential of PixIT in intertwining the separation and
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diarization tasks by analyzing the use of separated sources for the clustering
step of speaker diarization. Finally, we validate PixIT’s generalizability by
applying it to the NOTSOFAR-1 dataset, demonstrating that it can outper-
form CSS even in the presence of domain-specific synthetic data.

The main contributions of this work are as follows:

e Exploring the use and impact of alternative self-supervised learning
(SSL) features and masking networks to improve for the ToTaToNet.

e Conducting an in-depth analysis of speaker embedding extraction from
separated sources across multiple datasets and varying overlap percent-
ages.

e Improving downstream SA-ASR performance by fine-tuning the ASR
model on PixIT-separated sources and developing a post-processing
heuristic for timestamps.

e Improving our system for the NOTSOFAR-1 Challenge, demonstrat-
ing the effectiveness of PixIT in comparison to CSS without using the
provided domain-specific synthetic data.

e Open-sourcing the recipes for the above!.

2. Methodology

2.1. PixIT

PixIT employs a joint modeling approach that produces both speaker
activations and aligned source signals. Specifically, the i?* predicted speaker
activation corresponds to the same speaker as the i** separated source for
all values of i. Our joint ToTaToNet model is shown in Figure 1. It builds
on a standard TasNet architecture [22]. We enhance the 1-D encoder by
concatenating SSL features to enrich the input representation. To enforce
alignment, the diarization branch operates directly on the separated encoded
sources, processing each source independently similarly to a VAD system [19].

Supervised speaker diarization is trained on samples consisting of an audio
segment X and the corresponding speaker activity labels y € {0, 1}fmaxT

'https://github.com/joonaskalda/PixIT-design-choices
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Figure 1: The ToTaToNet architecture for joint speaker diarization and speech
separation.

where y;,, = 1 indicates speaker k is active at time frame ¢ and K,,ax is the
maximum number of speakers per segment. The standard PIT-loss is,

Kmax
L ,y) = min L ,[Pyle),
pir(Y,¥) B kz:; BCE (Yr: [PY]k)
where § € [0, 1]%m»*T denotes the predicted activities, P € {0, 1}Hmax>Kmax
the permutation matrix, and Lpcg is the standard binary cross-entropy loss.
For MoMs we sample two non-overlapping audio chunks (X!, y!) and
(X2 y?) with distinct speaker sets, ensuring the total number of speakers does
not exceed K. This restriction mitigates MixIT’s over-separation issue.
The mixture XM°M ig formed by summing the chunks: XMeM = X! 4 X2,

The corresponding labels are concatenated as yN°M = (y!,,42), removing



inactive speaker rows to maintain yMoM € {0, 1} KmaxT,
The MixIT loss is defined as:

2
L"MiXIT({XH}? S) = Hxn nzj; ESI*SDR (X'm [ASLL) 3

RMXT }2><M

where § € are the separated sources, A € {0,1 is a mixing matrix
with each column summing to one, and Lg;_spg is the negative scale-invariant
signal-to-distortion ratio loss [23]. Limiting the number of speakers allows
using a smaller M = K.

The overall multi-task loss combines PIT and MixIT losses:

Lpiar = )‘(ﬁPIT(Yl, ¥ + Lerr (v, %) + Lo (yMM, yNIONI))
+ (1 = A) Lytiar ({ X0}, 8)

where A = 0.5 was empirically chosen.

2.2. SSL features

A basic ToTaToNet architecture relies on WavLM [24] (LARGE version),
a self-supervised model pre-trained beforehand on raw unlabeled audio, and
subsequently employed to generate meaningful representations that are used
by PixIT to solve both diarization and separation in an end-to-end fashion.
The SSL model ingests audio that is processed through a series of convo-
lutional layers (CNN) which extract low-level acoustic features. After ran-
domly masking parts of these features, the representations are passed through
a series of Transformer encoders which model long-range dependencies and
capture contextualized informations. The task of the SSL model is to pre-
dict the hidden units (pseudo-labels) related to the masked portions of the
Transformer input. To generate these labels, waveforms are first processed,
either through MFCCs or from another SSL model, to generate features that
are discretized to produce hidden units (or tokens) using k-means clustering.

Deriving from Masked Language Modeling (BERT [25]) applied to au-
dio (HuBERT [26]), WavLM attempts to specialize itself towards speaker-
identity related tasks, and overlapping speech scenarios by introducing an
utterance/noise mixing strategy to the input audio. While the pseudo-labels
to predict are those of the clean utterance, the model implicitly learns to
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de-noise the input in a self-supervised manner. By ingesting noisy and/or
overlapping utterances, the SSL model becomes more robust in handling such
scenarios, making it particularly beneficial for tasks such as speaker diariza-
tion or speech separation, which are of equal importance for PixIT.

To further improve upon the current ToTaToNet (and study the impact of
SSL features in said architecture), we replace the current WavL.M model with
the open-source Conformer-based W2v-BERT 2.0 [27] speech encoder? from
the Seamless project [28]. While WavLM uses a Masked Language Modeling
(MLM) loss only, W2v-BERT 2.0 combines it with a contrastive loss derived
from wav2vec2.0 [29]. The pseudo-labels are generated from a quantization
block that produces both the target-context vectors (used to compute the
contrastive loss over a first series of 12 layers), and the hidden units for the
MLM loss (which concerns the 12 last layers). As a result, W2v-BERT 2.0
possesses a much larger architecture than WavLM, featuring 24 Conformer
layers [30] (580M parameters), as opposed to the 24 Transformer layers from
WavLM-LARGE (315M parameters). The pre-training dataset is also sig-
nificantly larger for W2v-BERT 2.0 (4.5 millions of hours, and 143 different
languages), as opposed to WavLM-LARGE (96k hours of English-only con-
tent assembled from LibriLight, VoxPopuli, GigaSpeech). For the remainder
of our study, we will use WavLM referring to the LARGE version.

2.83. Masking networks

The masking network employed by ToTaToNet is the Dual-Path Recur-
rent Neural Network (DPRNN) [2]. Following the TasNet principle [22],
the features Z extracted from the encoder are segmented into S overlapping
chunks of fixed size K and overlap P (as depicted in Figure 2) :

Z eRV = 7, e RVXEXS (1)

where IV represents the feature size, L represents the total number of frames
resulting from the encoder, and b being the index of the current layer (Z,—;
refers to the input of the first layer and the output of the segmentation step).

After concatenating each chunk, the DPRNN ends up with an effective
3D-tensor Z, of dimensions N x K x S. The latter is processed and normalized

2https: //huggingface.co/facebook /w2v-bert-2.0
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Figure 2: Segmentation process of the DPRNN masking network (figure extracted
from [2]).

by intra-chunk (f;) and inter-chunk (h;) BiLSTMs respectively, for a specific
amount of layers (as summarized in Figure 3):
Ub:fb(Zb[avl]) Vi e {1575} (2)

with U, representing the output of the b-th intra-chunk RNN and Z[:, :, ]
referring to Z, applied to the chunk dimension S. After passing U, through
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Figure 3: Segmentation process of the DPRNN masking network (figure extracted
from [2]).

a linear fully connected (FC) layer (to retrieve the same dimension as that
of Z}) and applying layer normalization (LN), the output Z, is obtained.



Zy = Zy+ LN(FC(U,)) (3)

This output is then passed and processed in the same manner on the K
dimensions to obtain Vj, :

Vi = hy(Zy[,4,7]) Vie{l,.. K} (4)

with Zb[:,i, ;| referring to Z, applied to the chunk length dimension K.
Finally, the output of the b-th layer becomes the input of the next one.

Zysr = Zy + LN(FC(V3)) (5)

By alternating the processing either on the chunk size dimension K (intra),
or the chunk index dimension S (inter), the model is capable of learning
both short and long-term dependencies. After multiple iterations of this pro-
cess, the 3D tensor is reshaped using overlap-add, to retrieve a signal output.

To further increase the separation capability of ToTaToNet and test its
impact on the diarization performance, we replace the current DPRNN with
the recent Monaural Speech Separation TransFormer 2 (MossFormer2) [31].
MossFormer2 removes the sequential processing of RNNs to the benefit of
self-attention mechanisms that allow for better capturing of the global con-
text. This masking network features two subsequent blocks that are repeated
multiple times. The first one, the MossFormer [32], is composed of 4 convo-
lution modules and a main Single-Head Self-Attention (SHSA) layer which
serves for both local and global modeling. The convolutional layers receive
the normalized and position-embedded features from the TasNet encoder,
and their outputs are combined into the SHSA module. A gating mechanism
is applied to control the flow of information through the attention layer to
capture both local and global context. The second block of MossFormer?2 is
the Recurrent Module which mainly features a “RNN-free" recurrent network
called FSMN (Feedforward Sequential Memory Networks) [33]. The latter
has been shown to outperform conventional RNNs and LSTMs in modeling
sequential signals, while also modeling longer dependencies.

While typical DPRNN masking networks count approximately 2M to 3M

parameters (depending on the TasNet encoder parameters), MossFormer2
consequently increases it to 20M to 50M. Furthermore, due to the attention
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mechanisms of the latter, training a ToTaToNet model with MossFormer2
as the masking network takes 2 to 3 times longer than using a traditional
DPRNN.

2.4. ASR fine-tuning

While modern ASR models achieve impressive performance on general
speech recognition tasks, their effectiveness often deteriorates when con-
fronted with domain-specific scenarios that differ significantly from their
training data. Therefore, ASR models are often fine-tuned on in-domain
data to make them more accurate in specific use-cases. Domain adapta-
tion through fine-tuning is particularly crucial for multi-party meeting sce-
narios due to significant divergence from standard ASR training distribu-
tions. Meeting environments present distinct technical challenges that ne-
cessitate model adaptation, such as speaker overlap, variable signal-to-noise
ratios due to speaker-microphone distances, reverberation effects and non-
stationary background noises. Multi-party conversations often include non-
uniform speaker turns with frequent interruptions, short utterance segments
interleaved with overlapping confirmatory responses and extended context
dependencies spanning multiple speaker turns. Fine-tuning allows for the
adaptation of both acoustic and language models to these domain-specific
phenomena.

Fine-tuning ensures model adaptation to the specific characteristics of the
target domain data, enabling the system to effectively handle domain-specific
phenomena during the decoding phase. In the context of multi-party meeting
speech, a primary challenge lies in the handling of overlapping speech: con-
temporary ASR architectures typically lack the capability to generate multi-
ple parallel token streams corresponding to simultaneous speakers. Instead,
these models are commonly trained to process overlapping speech segments
sequentially, ordered by utterance onset times. This sequential processing
introduces complications in the accurate determination of word timestamps,
whether directly from the ASR model or through secondary forced alignment
models, as the temporal ordering of individual words becomes non-linear rel-
ative to their actual occurrence.

This challenge is specifically associated with single-channel audio input
containing multiple overlapping speakers. While speaker separation prepro-
cessing can mitigate this particular issue, it introduces its own set of chal-
lenges. When processing speaker-separated streams, the ASR system must
contend with reduced contextual information, as each stream contains only
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the speech of a single participant within a multi-party conversation. This lim-
itation impacts the model’s ability to leverage broader conversational context
for improved recognition accuracy. Additionally, the isolation of individual
speakers complicates the processing of short backchannel utterances, which
often derive meaning from their temporal relationship to other speakers’ con-
tributions.

While both single-stream and separated-stream approaches present dis-
tinct challenges in multi-party meeting transcription, it is essential to main-
tain consistency between the preprocessing methodologies applied during
training and inference phases. Specifically, if speaker separation is employed
during inference, the training data must undergo similar processing. During
the training phase, speaker separation can be guided using reference informa-
tion, such as speaker-attributed word timestamps. In some scenarios, indi-
vidual speaker-specific microphone recordings are available, providing natu-
ral “gold standard” separated streams. In the experiments presented later in
the paper, we investigate this preprocessing consistency hypothesis by eval-
uating ASR models fine-tuned on both single-stream and separated-stream
configurations across both testing conditions.

b ) ———

Joint model

—_—
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4

Embeddings from Embeddings from
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Figure 4: Speaker embedding extraction using either the active frames from sep-
arated sources or original audio as input.
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Figure 5: An example of timestamp errors caused by long silences. From left to
right: Active speech segments predicted by PixIT, speaker-attributed ASR output’s
tcpWER alignment visualized before timestamp refinement, and after refinement.

2.5. Separated sources as input to speaker embeddings

In [34], we demonstrated that PixIT diarization performance can improve
when speaker embeddings are extracted from the locally separated sources
rather than the original audio. In this section, we further investigate this
observation. Extracting speaker embeddings from the original audio is clearly
disadvantageous in regions with overlapping speech, so it seems natural that
separation would be beneficial. However, separated sources may introduce
artifacts that could potentially confuse speaker embedding models.

We evaluate and compare the performance of the two embedding ex-
traction approaches (depicted in Figure 4) across multiple datasets for both
diarization and SA-ASR tasks. Clustering hyperparameters are optimized
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separately on the corresponding development sets for each approach. Results
are reported on development sets, and in subsequent sections, we adopt the
extraction method that has delivered superior performance for each dataset
and task.

2.6. Tackling ASR timestamp errors caused by long silent regions

PixIT’s file-level separated sources often contain substantial periods of
silence. This issue is particularly pronounced in the NOTSOFAR-1 dataset,
where meetings can include up to eight speakers. During our challenge par-
ticipation, we used faster-whisper®, a reimplemented version of OpenAl’s
Whisper decoder that incorporates VAD to remove silent regions before pro-
cessing the audio. However, this approach introduced a timing issue: some-
times Whisper-assigned word timestamps fall on the incorrect side of a VAD
boundary. When this happens, the final timestamps can be shifted by the
duration of the removed silent region, leading to large timing errors. These
misalignments can cause an increase in tcpWER because they fall outside the
acceptable time collar. This issue is illustrated in Figure 5 using MeetEval’s
tcpWER alignment visualizer.

Faster-whisper includes a heuristic to mitigate this issue. When a word’s
timestamps span two VAD segments separated by more than two seconds of
silence, it is assigned to the segment where its temporal midpoint aligns in
the post-VAD timeline. However, this method can still lead to utterances
being split between distant VAD segments.

Instead of using Silero VAD?*, as in faster-whisper, we utilize active speech
segments from PixIT’s diarization output. This approach incurs no addi-
tional computational cost and better aligns the VAD train-test domains. To
account for artifacts introduced by PixIT’s separation, we further refine the
heuristic to adjust timestamps only when diarization detects inactivity for
more than half of the utterance’s duration.

3. Experiments

3.1. Datasets

Our experiments are conducted on three distinct and publicly available
datasets, all sourced from meeting recordings captured using a single micro-

3https://github.com/SYSTRAN/faster-whisper
4https://github.com/snakers4/silero-vad
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phone. The first one, AMI [35], consists of 100 hours of recordings coming
from multi- and single-channel microphones, spread across 171 meetings.
Part of the dataset consists of scenario-driven meetings, where participants
take on predefined roles, while the rest comprises real-life, natural meetings.
The second one is AliMeeting [36]. It is a Mandarin corpus comprising ap-
proximately 120 hours of natural meeting recordings across 212 sessions.

While AMI contains approximately 15-20% of overlapping speech, Al-
iMeeting presents more challenging scenarios with around 40% overlap. Fi-
nally, the NOTSOFAR-1 [21] dataset contains 150 hours of single-channel
recordings from 5 different devices and 110 hours of multi-channel record-
ings from 4 devices, all accounting for a total of 280 meetings. The dataset
also includes 1000 hours of tailored synthetic mixtures. Due to computa-
tional limitations, we do not utilize this synthetic data for training PixIT in
this work. While AMI and AliMeeting both contain audio recordings rang-
ing from 30 to 60 minutes approximately, NOTSOFAR-1 is composed of 6
to 7 minutes long files. Since PixIT is a single-channel method, we focus
our experiments on AMI-SDM (Single Distant Microphone version of AMI),
AliMeeting channel 1, and NOTSOFAR-SC.
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Figure 6: Histogram of the total number of speakers per 5-second chunk across
datasets generated on the train sets.

As shown in Figure 6, AMI-SDM contains the smallest amount of speakers
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per 5-second chunk, which makes this dataset the least challenging of the
three. On the contrary, NOTSOFAR-1 is the most challenging dataset for
both diarization and separation, due to a very large amount of active speakers
per chunk. Furthermore, the fact that the number of recorded meetings is
significantly higher than AMI or AliMeeting adds a lot of diversity in the
possible scenarios to solve.

3.2. Evaluation metrics

Our systems were evaluated on the speaker diarization and speaker-attributed
transcription task. For the speaker diarization task, we have employed the
Diarization Error Rate (DER), which is one of the most used metrics to eval-
uate and compare systems on this task. The DER is computed as follows:

DER:FA+MISS+SC7 (6)

TOTAL

where FA stands for False Alarm and is equal to the duration of non-speech
wrongly classified as speech. MISS is for missed detection and is the opposite
case, which means speech is incorrectly classified as non-speech. SC (Speaker
Confusion) is the duration correctly classified as speech but assigned to the
wrong speaker. Finally, TOTAL is the sum over all speakers of their reference
speech duration, so overlapped speech is counted multiple times. We did not
apply any collar to compute the DER in the results reported in this article.

To evaluate our systems on the speaker-attributed transcription task, we
rely on the concatenated minimum-permutation word error rate (cpWER)
[37] and the time-constrained minimum-permutation WER (tcpWER) from
MeetEval[38]. Both metrics are an extension of the Word Error Rate, a
widely used metric for the transcription task. This one is defined by:

I+S+D
WER_S+D+C’ @
with I, S, D, and C respectively the number of inserted, substituted, deleted,
and correct words when comparing the hypothesis provided by the system
with the reference. WER has been designed for single-speaker ASR systems
and thus does not take into account speaker attribution.

The cpWER was introduced to penalize systems on speaker confusion. To
compute this metric, the reference and hypothesis segments are first grouped
by speaker and then concatenated. Next, the Hungarian algorithm [39] is
applied to find the permutation that minimizes the WER, resulting in the
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reported cpWER. Unmatched hypothesis and predicted speaker transcripts
both count as errors.

Lastly, tcpWER adds a temporal constraint to prevent matching words
that are far apart temporally, thereby evaluating the quality of temporal
transcript prediction. In our experiments, we use a temporal collar of 5
seconds as is done in the NOTSOFAR-1 Challenge.

When evaluating the transcripts, text normalization is first applied. On
AliMeeting and AMI we used Whisper’s normalizer. On NOTSOFAR-1 we
used the slightly modified Whisper normalizer used in the challenge.

There are two ways of aggregating the above metrics across files. The
first is to sum up all the individual components (e.g. FA, MISS, SC, TOTAL
for DER) across the files and then calculate the metric. The second is by
averaging the metric values across files therefore weighting all files equally.
We followed the first approach for all evaluations except NOTSOFAR-1 where
we used the second approach to match the challenge evaluation.

3.8. Speaker attribution methods

The standard approach to adding speaker attribution to an off-the-shelf
ASR system involves integrating it with a speaker diarization system, as il-
lustrated in Figure 7. Each speech segment produced by the ASR system is
assigned to the speaker who is the most active during that segment based
on the diarization output. While a CSS system can be used as a preprocess-
ing step to better handle overlapping speech, it requires tailored synthetic
training data, as discussed earlier.

The NOTSOFAR-1 challenge baseline includes a CSS-based system trained
on a tailored synthetic dataset, which we use for comparison with PixIT. To
our knowledge, no publicly available synthetic datasets exist for AMI or Al-
iMeeting. While generating such datasets and training a CSS-based system
would strengthen the baseline, this is beyond the scope of our work. There-
fore, our baselines for AMI and AliMeeting exclude CSS, relying solely on
Whisper for ASR and pyannote.audio 3.1 [40] for diarization.

PixIT, on the other hand, offers a more seamless approach to SA-ASR. It
outputs long-form separated sources that are inherently speaker-attributed
through alignment with diarization. As a result, SA-ASR with PixIT simply
involves passing each long-form source directly into an ASR system. In the
following, we will use these two SA-ASR methods for benchmarking PixIT’s
separation capabilities, since due to the lack of clean reference signals a direct
evaluation is not possible on real-world audio.
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Attribution through diarization
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Speaker A: Hello. How are you?
Speaker B: Hello. Great.
Speaker C: Good morning.
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Figure 7: Adding speaker attribution to ASR as performed through either di-
arization or separation.

Diarization

Attribution through separation

3.4. Implementation details

Following the original work, every model has been optimized using the
Adam optimizer and employs 3 output masks. The WavLM and W2-BERT
components are respectively fine-tuned with a learning rate of le-5, while
the remainder of the model utilizes a learning rate of 3e-4. Given the size of
W2v-BERT, which makes full fine-tuning impractical, we adopt LoRA [41]
(Low-Rank Adaptation) with a rank r = 8 and scaling factor o = 32. Table 1
provides a detailed summary of the different configurations explored.

The training configuration remains consistent across both AMI and Al-
iMeeting systems. Rather than training new systems for NOTSOFAR-1, our
focus is on maximizing the potential of our challenge-trained system by en-
hancing the ASR back-end. All models have been trained using a single
A100-80 GB GPU.

Our separation and diarization pipelines utilize speaker embeddings ex-
tracted by the ECAPA-TDNN model from Speechbrain [42]. These pipelines
require the optimization of three or four key hyperparameters. The first is
the segmentation threshold, which determines when a segmentation output is
considered active. The other two parameters are critical during the clustering
phase: the clustering threshold and the minimum cluster size. Additionally,
for the separation pipeline, there is an ASR collar hyperparameter, which
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Table 1: Overview of parameter counts, training hyperparameters, and Real Time
Factors (RTFs) for the proposed ToTaToNet architectures. RTF is measured by
inferring each model on the AMI development set.

SSL Masking # Params Bz?tch Learning rate RTF
network Frozen Trainable S'%€ SSL Other
WavLM DPRNN 0 319M 16 le-5 3e-4  0.005
WavLM MossFormer2 0 319M 8 le-5 3e-4  0.009
W2v-BERT DPRNN 580M 5M 16 le-5 (LoRA) 3e4 0.012
W2v-BERT MossFormer2 580M 21M 8  1le-5 (LoRA) 3e4 0.017

specifies the amount of padding applied to the speech segments determined
by diarization when leakage removal is performed [19].

We employ Agglomerative Hierarchical Clustering to group similar speak-
ers. In this method, the clustering threshold defines the minimum distance
required to separate clusters, while the minimum cluster size parameter dic-
tates the merging of smaller clusters. The optimization process follows a
two-step approach. First, we determine the optimal segmentation threshold
and ASR collar using Oracle clustering. Next, we optimize the clustering
parameters based on this threshold. Optimization is done with respect to
DER or cpWER depending on the task.

3.5. Results
3.5.1. Effect of speaker embeddings inputs

The DER and cpWER scores on the development sets of the various
datasets are reported in Table 2 for pipelines extracting embeddings from
mixtures and sources. We also provide the percentage of overlapped frames
for the explored datasets for reference. For the AliMeeting and AMI datasets,
we use the original ToTaToNet systems, featuring WavLM and DPRNN. For
the NOTSOFAR-1 dataset, we employ our best-performing system submitted
to the challenge. To expedite optimization, we use the Whisper small.en
and small models for the ASR system in this evaluation. This approach
is also followed in subsequent sections when optimizing SA-ASR systems.
In the following, we refer to speaker embeddings extracted from estimated
single-speaker intervals of the original mixture as mixture embeddings and
those extracted from separated signals as source embeddings.

We observe a general trend: datasets with higher overlap tend to show
better performance with source embeddings compared to mixture embed-
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dings. Results on AliMeeting exhibit a conflicting pattern where SA-ASR
performance improves, but diarization degrades when using separated sources.
Conversely, NOTSOFAR-1 shows the opposite trend. Further analysis re-
veals that merging two clusters to improve speaker diarization can some-
times introduce artifacts into the separated signal that lead to Whisper’s
hallucinations and significantly worsen the tcpWER score. This highlights a
limitation of using SA-ASR for evaluating separation performance.

The fact that extracting embeddings from separated sources can improve
performance with an off-the-shelf speaker embedding model is promising. As
shown in Section 3.5.4, fine-tuning the ASR system on separated sources,
yields a significant improvement to SA-ASR performance — Whisper adapts
to the separation artifacts. This suggests promising opportunities for lever-
aging separated sources in speaker embedding extraction, provided the em-
bedding models are fine-tuned to handle such artifacts effectively.

Table 2: DER (%) and cpWER (%) for different embedding extraction methods
across datasets as calculated on the development split.

Embeddings DER (%) cpWER (%)
Input  pA MD SC total sub del ins total

Mixtures 4.9 6.3 4.8 16.0 7.3 20.0 2.3 29.6
Sources 49 6.3 85 19.7 6.7 21.7 2.3 30.7

Mixtures 46 6.6 6.1 17.4 16.2 22.2 3.4 41.8
Sources 46 6.6 7.1 18.3 15.6 22.2 3.2 41.0

Mixtures 42 91 94 22.7 84 222 42 34.9
Sources 42 9.1 81 21.3 82 23.1 4.5 35.8

Dataset Overlap (%)

AMI 14.6

AliMeeting 20.4

NOTSOFAR-1 39.4

3.5.2. Performance of different ToTaToNet architectures

This section details the separation and diarization performance of the pro-
posed ToTaToNet architectures on the AMI and AliMeeting datasets. Table
3 presents the SA-ASR results on AMI using PixIT-based separation and
Whisper large-v3. MossFormer2 outperforms DPRNN for both SSL mod-
els. Aligning with findings for supervised speech separation [31] reinforcing
the generalizability of the joint ToTaToNet framework. An unexpected ob-
servation is the underperformance of W2v-BERT SSL features compared to
WavLM in all cases. This is analyzed further in Section 3.5.3.
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To assess broader applicability, we train the best-performing architecture
(WavLM with MossFormer2) on AliMeeting, and the results are displayed in
Table 4. These findings underscore the generalizability of the trends observed
earlier.

Table 5 provides the diarization results for both datasets. For the new
architectures, we only trained the A = 0.5 models due to computational con-
straints. Diarization performance remains consistent across configurations.
While more capable masking networks enhance separation performance, this
improvement does not appear to directly translate to better diarization. This
may be attributed to the relatively simple diarization module currently inte-
grated into ToTaToNet. A comment can be made about the trade-off between
performance and architectural size in the masking networks (by looking at
the RTFs of Table 1). While MossFormer2 outperforms DPRNN, its results
on AMI show only a slight improvement over the baseline while requiring
significantly longer training and inference times. This raises concerns about
the relevance of such changes for our ToTaToNet systems. On AliMeeting,
the performance gain is greater, making the change in the masking network
more justified for this particular dataset.

Table 3: tcpWER (%) and cpWER (%) for various ToTaToNet architectures with
speaker attribution via diarization or separation evaluated on AMI-SDM dataset
using Whisper large-v3 for ASR.

Masking Speaker  Attribution cpWER (%) tcpWER. (%)
SSL model twork ttributi del

networ attribution mode sub del ins total sub del ins total
Not used Not used Diarization pyannote 3.1 7.2 27.8 4.8 39.7 6.1 29.5 6.4 42.0

Diarization ToTaToNet 7.5 26.0 34 36.9 64 27.8 54 39.5
Separation  ToTaToNet 7.0 19.6 2.8 29.3 7.3 214 4.6 33.4

Diarization =~ ToTaToNet 7.3 26.3 3.3 36.9 6.2 28.0 50 39.2
Separation ~ ToTaToNet 6.9 194 2.6 28.9 7.1 21.3 45 32.9

Diarization =~ ToTaToNet 7.3 26.5 3.3 37.1 6.2 282 51 39.4
Separation ~ ToTaToNet 7.3 22.7 2.6 32.6 7.7 239 4.5 36.0

Diarization =~ ToTaToNet 7.5 26.2 3.2 36.8 6.2 28.0 5.0 39.2
Separation ~ ToTaToNet 7.8 19.6 3.2 30.6 7.4 21.8 54 34.7

WavLM DPRNN

WavLM MossFormer?2

W2v-BERT DPRNN

W2v-BERT MossFormer2

3.5.3. Effect of self-supervised models

In this section, we focus on analyzing the performance of both WavLM
and W2v-BERT for diarization and separation respectively. Surprisingly, Re-
sults in Tables 3 and 5 show that W2v-BERT did not improve over WavL M.
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Table 4: tcpCER (%) and cpCER (%) for various ToTaToNet architectures with
speaker attribution via diarization or separation evaluated on AliMeeting channel
1 dataset using Whisper large-v3 for ASR.

Masking Speaker  Attribution cpCER (%) tcpCER (%)
network attribution model

SSL model
sub del ins total sub del ins total

Not used Not used Diarization pyannote 3.1 17.3 38.5 10.0 65.9 9.8 46.0 17.5 73.3

Diarization = ToTaToNet 183 37.6 9.2 65.1 10.1 45.6 17.2 72.9
Separation ~ ToTaToNet 10.8 28.6 2.7 42.1 134 309 50 49.4

Diarization ToTaToNet 19.1 37.0 85 64.6 10.3 455 17.0 72.8
Separation ~ ToTaToNet 12.4 25.0 3.3 40.7 15.1 288 7.1 51.1

WavLM DPRNN

WavLM Mossformer2

In fact, the larger SSL model leads to a performance degradation. To fur-
ther investigate this issue we train from scratch separate segmentation and
a separation models.

For the diarization part, we fix the hyperparameters to be the same as in
PixIT (same audio chunk size, same batch size, etc). Since we no longer re-
quire any TasNet encoder, we directly extract the audio representations from
the self-supervised model and pass them through 4 LSTM layers to capture
temporal dependencies on the features. Finally, the output of the LSTM is
fed into a linear layer to get probabilities of active classes corresponding to
each active speaker (mimicking the process in PixIT). The training dataset
for the segmentation is AMI, in order to properly compare to PixIT’s seg-
mentation performance.

For separation, we use the same masking network (DPRNN) as in PixIT
while also fixing the same kernel and stride hyperparameters for the Tas-
Net encoder. Since we want to directly assess the separation capabilities
of the tested SSL architectures (without any bias coming from a transcrip-
tion model), we choose the WSJ0-2Mix dataset in order to evaluate directly
the separation gains instead of the cpWER. The latter consists of artificial
mixtures created from distinct clean utterances, providing ground truths for
the separated sources. Regarding metrics, we evaluate the separation per-
formance of each system by computing the Signal-to-Distortion Ratio (SDR)
between the ground truth and each predicted source [? ]. To get a more
relevant evaluation, we also compute the SDR improvement (SDRi) and the
Scale-Invariant SDRi (SI-SDRi).

Finally, to maintain comparability to PixIT, W2v-BERT and WavLM are
fine-tuned under the same conditions as their respective ToTaToNet models.
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Table 5: DER (%) on AMI-SDM and AliMeeting channel 1 for different ToTa-~
ToNet systems trained with PixIT. State-of-the-art as of December 2024 is denoted
with ®.

SSL model ﬁii‘;‘f A DER (%)
‘ FA MD SC ‘ total
AMI-SDM systems
Han et al. [? ] ‘ ‘ 154 ®
DPRNN 10]44 72 55171
WavLM DPRNN 0.5]39 82 56 |17.7
WavLM MossFormer2 0.5 ‘ 50 85 39 ‘ 17.5
DPRNN 05]50 88 39176
W2-BERTy jossFormer2 05 | 49 86 42 | 17.7
AliMeeting systems
Héirkénen et al. [43] | |13.2 @
DPRNN 1047 65 83195
WavLM DPRNN 05|58 73 83214
WavLM MossFormer2 0.5 ‘ 6.8 6.9 7.7 ‘ 21.4

Table 6 shows a clear benefit from using W2v-BERT for audio represen-
tations compared to WavLM. For diarization, a relative 10% improvement
is observed on the DER metric. Analyzing each sub-component of the DER
reveals consistent gains in performance, with a significant boost in the detec-
tion of missed speech (MD). For separation, we observe a 14% relative con-
stant improvement in dB from using W2v-BERT instead of WavLM across
all different metrics. These results indeed confirm that W2v-BERT is sup-
posed to increase the performance for both tasks, which cannot be said for
its implementation in the end-to-end ToTaToNet models.

While [19] demonstrated the benefit of using WavLM to boost both di-
arization and separation capabilities in PixIT, the experiment conducted on
this section highlights a potential bottleneck in the way ToTaToNet mod-
els leverage SSL representations. One limitation stems from the way the
SSL representations are equally used in both the diarization and separation
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Table 6: DERs (%) and gains in dB (higher is better) on various metrics for
WavLM (fine-tuned) and W2v-BERT 2.0 (fine-tuned with LoRA) trained disjointly
on segmentation and separation models respectively. The segmentation models are
trained on AMI-SDM, while the separation models (using DPRNN as the masking
network) are trained on WSJ0-2Mix.

SSL model DER (%) Gains (dB)
FA MD SC total ‘ SDR SDRi SI-SDRi
WavLM 43 88 6.2 19.2| 164 16.2 16.0

W2v-BERT 40 72 58 17.3| 186 184 18.2

tasks. To further investigate this aspect, we perform a layer-wise analysis
of the used SSL models with regards to the speaker diarization and separa-
tion tasks, as well as for the joint task (PixIT). To do so, we freeze the SSL
models and apply a weighted average to the 24 “former” layers (such that
S"a; = 1, where a; represents a scalar associated with i" layer). We train
each downstream task until convergence and observe the activations related
to each layer.

WavLM Layer Weight

SD -
il
PixIT - ..
1 2 3 4 s

1

Tasks

6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
Layers

w2v-BERT 2.0 Layer Weight

- .. .
PiT - .
6 17 8 19 20

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 1
Layers

Tasks
»
a

1 21 22 23 24

Figure 8: Layer contribution of w2v-BERT 2.0 and WavLM (LARGE version)
for Speaker Diarization (SD), Speaker Separation (SS), and the joint task (PixIT)

By looking at the layer contribution of the WavLM model for the down-

stream tasks of speaker diarization and source separation, we see a clear
activation towards the first layers of the architecture (from layer 1 to layer 7
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mainly). These layers contribute the most to speaker identity-related tasks.
This behavior translates well for PixIT, whose activation is mostly located
on the same part as with each task (early layers). On the other hand, when
looking at the activations for the W2v-BERT 2.0 model, we see a more
heterogenous contribution. For diarization, it is mostly top layers that are
active, showing a similar trend as SSL models pretrained on conversational
data instead of single-speaker content [44]. For separation, both the early
and top layers are active (which is also contradictory to the activations seen
for WavL.M). The discrepancy observed for the activations related to the two
tasks translates to the joint one, as PixIT attempts to leverage both the early
and top part of w2v-BERT 2.0. For a joint model like PixIT, which requires
a unified set of representations for both diarization and separation, using an
SSL model such as W2v-BERT — where layer contributions are concentrated
at opposite ends of the architecture — a choice must be made that trades off
performance in each of the tasks.

As a result, further investigations and experiments are necessary to ex-
plore how features from SSL models can be effectively integrated with ToTa-
ToNet, to ensure an optimal contribution of the SSL model to both tasks.

3.5.4. Fine-tuning ASR

Fine-tuning ASR models on in-domain training data has been shown to
yield significant improvements compared to employing universal ASR models.
To investigate the impact of fine-tuning using different speaker diarization
and separation methods, we created two versions of fine-tuned Whisper large-
v3 models: (1) trained on the original AMI-SDM training data with merged
transcripts, and (2) trained on AMI-SDM data, but using separated audio
sources and corresponding speaker-attributed transcripts.

The AMI dataset includes word-level timestamps for transcriptions. To
convert word-based transcripts into utterances, words attributed to the same
speaker were concatenated into sequences, which were then segmented into
utterances. Segmentation was based on sentence-ending punctuation marks,
utterance length exceeding 10 seconds, or pauses longer than one second
between words. For the first model, trained on original SDM data, the
segmented utterances from different speakers were merged based on their
temporal order. For the second model, trained on separated audio sources,
utterances were filtered to exclude those which did not have a corresponding
speech segment, as detected by the ToTaToNet model. This filtering primar-
ily affected short backchannels and hesitation sounds which the ToTaToNet
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Table 7: cpWER (%) and tcpWER (%) on AMI-SDM test set for various fine-
tuned Whisper large-v8 models, with various attribution methods, including rela-
tive changes compared to no fine-tuning.

ASR fine-tuning  Attribution cpWER (%) tcpWER (%) Relat. change (%)
sub del ins total sub del ins total cpWER tcpWER

None Diarization 7.3 26.4 3.2 36.9 6.4 279 49 39.2 - -

On original audio Diarization 99 140 71 30.9 82 159 93 334 -16.2 -14.8

On separated sources Diarization 7.8 229 23 329 7.1 243 38 35.1 -10.8 -10.5

None Separation 58 21.7 1.7 29.3 6.5 228 28 32.2 - -

On original audio Separation 14.1 9.5 19.1 42.8 11.1 13.1 23.1 47.3 +46.1 +47.0

On separated sources Separation 4.1 16.7 1.8 22.6 6.8 144 3.7 24.8 -229 -23.0

often misses.

Both fine-tuned Whisper large-v8 models were trained with an identical
hyperparameter configuration, which had not been optimized specifically for
the AMI dataset but was based on prior experiments with other datasets.
The training data was divided into 30-second segments, and the models were
trained for three epochs using the AdamW optimizer. Each epoch used an
effective batch size of 64 segments, a peak learning rate of 107°, 50 warm-up
steps, and a linear learning rate decay schedule. Stochastic weight averaging
[45] was applied during the final epoch, using a constant learning rate of
1075,

Table 7 presents cpWER and tcpWER results for the AMI-SDM test set,
comparing various Whisper models and speaker separation configurations.
When the original single-channel SDM audio is used as input, both fine-
tuned models demonstrate improvements over the non-fine-tuned model. No-
tably, the model fine-tuned on the original single-channel audio, which aligns
with the test-time configuration, achieves superior performance. In contrast,
when Whisper models are applied to each separated source independently,
the differences between models become more pronounced. Surprisingly, the
Whisper model fine-tuned on multi-speaker single-channel audio results in
a noticeable decline in ASR accuracy. Conversely, the model fine-tuned on
separated sources delivers a substantial improvement. This indicates that
when employing PixIT to separate multi-speaker ASR test data into speaker-
specific channels, it is crucial to fine-tune the ASR model on separated audio
that reflects the test-time configuration.

26



3.5.5. Improving on our NOTSOFAR-1 Challenge submission

Table 8 presents cpWER and tcpWER metrics for our NOTSOFAR-1
Challenge systems evaluated on the eval-small dataset. It includes the rel-
ative error increases from the collar, changes after applying the timestamp
fix heuristic detailed in Section 2.6, and comparisons to the baseline system
post-heuristic. The effect of the timestamp fix heuristic is analyzed in detail
in Section 3.5.6.

The ToTaToNet checkpoint used here is always the same as in our sub-
mission for the challenge. Unlike in preceding sections, results are calculated
by averaging error rates across files, as done in the challenge evaluation.

Fine-tuning the large-v3 model on the original single-channel audio results
in an even bigger increase in both cpWER and tcpWER, than for AMI. One
explanation for this might be that the number of file-level separated sources
output by PixIT is larger for NOTSOFAR-1. Based on eyeing the output and
the huge insertion error rate, the issues for this system seems to be caused by
frequent hallucination. We experimented with using Whisper’s hallucination
detection functionality but this yielded limited improvement.

Conversely, fine-tuning on separated sources (“large-v3, ft. on sep. sources”)
notably improves the tcpWER to 33.7%, achieving a 20% relative reduction
compared to the baseline, thereby again demonstrating the effectiveness of
aligning the fine-tuning process with the test-time configuration.

Notably, we are able to slightly improve on the NOTSOFAR-1 base-
line using identical downstream ASR (Whisper large-v2). Thus PixIT is
a promising alternative to CSS even in cases where carefully constructed
domain-matched synthetic datasets are available.

3.5.6. Effect of the time-stamp fix heuristic

The effect of our time-stamp fix heuristic is detailed in Table 9. The appli-
cation of the heuristic generally mitigates error increases, with the most pro-
nounced improvements observed in the separated sources fine-tuned model.
While further gains could likely be achieved through more refined post-
processing heuristics, these results demonstrate that despite PixIT exhibiting
a higher relative proportion of timestamp errors, such errors can largely be
corrected without retraining by applying lightweight post-processing tech-
niques.
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Table 8: Detailed performance of systems on the eval-small split. This table in-
cludes cpWER with its components, tcpWER with its components, and the relative
tcpWER change with respect to the baseline system.

cpWER (%) tcpWER (%) AtcpWER (%)
System lati
sub del ins total sub del ins total (relative)
NOTSOFAR-1 baseline 11.3 220 74 40.7 100 23.3 88 421 0.0
Our NOTSOFAR-1 submission 10.7 14.2 9.8 34.7 10.3 17.6 13.2 41.1 -2.4
large-v2 77 254 37 368 74 279 6.3 41.7 -1.0
large-v3 7.1 249 3.7 356 7.2 275 6.3 40.9 -2.9
large-v3, ft. on single channel 21.8 14.0 45.0 80.8 14.2 21.4 524 88.1 +109.3
large-v3, ft. on sep. sources 8.0 163 6.0 30.3 7.2 183 81 33.7 -20.0

Table 9: Effect of time-stamp fix heuristic on tcpWER metric. This table presents
the total cpWER, tcpWER before and after applying the fix, along with the relative
collar error proportion before the fix and the relative change to collar errors from
fixing.

tcpWER (%) Rel. collar err. Rel. change to collar

System cPWER (%) before fix after fix Proportion (%)  err. from fix (%)
large-v3 35.6 41.6 40.9 13.2 -11.7
large-v3, ft. on sep. sources 30.3 34.8 33.7 12.9 -24.4

4. Conclusion

This work evaluates PixIT, a joint training approach for supervised speaker
diarization and unsupervised speech separation, and builds on our systems
for the NOTSOFAR-1 Challenge to demonstrate its effectiveness. We exam-
ine alternative choices for the joint ToTaToNet in terms of masking networks
and self-supervised learning (SSL) features. We show that MossFormer2
improves separation performance over DPRNN like in the supervised sepa-
ration case. Although W2v-BERT has been shown to improve the two tasks
independently, it underperforms for joint training. This might be due to mis-
matched layers needed for separation and diarization, highlighting the need
for more careful integration of these features into the joint architecture.

We show that fine-tuning ASR systems on PixIT-separated sources sig-
nificantly boosts downstream SA-ASR performance. Notably, the gains are
bigger than for a standard diarization-based SA-ASR system when ASR is
fine-tuned on original mixtures. We also demonstrate that time-stamp er-
rors produced by PixIT-based SA-ASR can be effectively mitigated with
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lightweight post-processing.

PixIT-separated sources prove useful for speaker embedding extraction
in the diarization pipeline, achieving results comparable to embeddings from
original mixtures. Considering how well it works for SA-ASR, fine-tuning
speaker embeddings on separated sources appears to be a promising area for
improvement.

We apply the aforementioned techniques to our NOTSOFAR-1 Challenge
submission to achieve a 20% tcpWER improvement over the CSS-based base-
line by 20% without using any of the provided domain-specific synthetic data
that the CSS system was trained on. Even with the same ASR model as the
baseline, PixIT outperforms it, showing that in addition to being much eas-
ier to train, it is able to rival supervised separation approaches on real-world
mixtures.
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Abstract

Reliable speaker embeddings are critical for multi-speaker
speech processing tasks. Traditionally models are trained on
single-speaker utterances and suffer from domain mismatch
when applied in multi-speaker contexts. Recently proposed
guided speaker embeddings (GSE) were shown to improve this
by training on synthetic multi-speaker mixtures guided by or-
acle speaker activity labels. Additionally modeling all speak-
ers present in a chunk is desirable but the performance of such
methods has been sub-par up to now. We build on GSE by mod-
eling multiple speakers together and using diarization features
for guiding. We also propose a new validation metric for em-
beddings in multi-speaker context and demonstrate its effective-
ness. Results on multiple speaker diarization datasets demon-
strate that we improve on speed and performance while reduc-
ing the embedding model size.

Index Terms: speaker diarization, speaker verification

1. Introduction

High-quality speaker embeddings are essential for multi-
speaker speech processing tasks. In speaker diarization, EEND-
vector clustering (EEND-VC) systems rely on speaker embed-
dings derived from local segmentation outputs to cluster and
stitch these local segments [1]. Similarly, in multi-speaker au-
tomatic speech recognition (ASR), transducer-based systems
produce segment-wise transcriptions with timestamp estimates,
which are subsequently attributed to individual speakers using
speaker embeddings [2]. For voice conversion of long-form au-
dio, it is desirable that speaker embeddings are modelled con-
sistently [3]. In all the above use cases, it would be beneficial
for all the speakers to be modeled concurrently.

Previous studies have explored joint training of ASR and
segmentation models with multi-speaker embeddings [2, 4, 5],
but these approaches have underperformed compared to stan-
dalone embedding systems [6]. This discrepancy is likely due
to the difference in data quality: speaker verification datasets,
which are more easily annotated, tend to be larger and more
diverse than those used for ASR and speaker diarization [7].
These datasets contain only single-speaker utterances, leading
to a domain mismatch when applied in multi-speaker scenar-
ios. To address this, guided speaker embeddings (GSE) were
recently introduced for multi-speaker environments [8]. GSE
is trained on synthetic multi-speaker mixtures derived from a
speaker verification dataset, with oracle activity labels guid-
ing the process. Activity labels for both target and interference
speakers are used as additional inputs to the embedding encoder
and for masking attention scores. However, these systems still
produce embeddings for only one speaker at a time.

This work proposes extending GSE by modeling all speak-

ers present in a chunk at once. Additionally, since the practical
deployment of a GSE system relies on a speaker segmentation
model, we also propose using its output as a guide for training
instead of oracle labels. Features from a segmentation model
can offer more detailed guidance. For example, areas of high
confidence indicate it is easier to extract speaker-specific infor-
mation there.
The main contributions of this work are as follows:

Proposing a diarization-guided training method for multi-
speaker embedding systems.

Introducing a modified attention module to allow for multi-
speaker modeling in existing speaker embedding models.
Proposing a new validation metric optimized for speaker em-
beddings in a multi-speaker context.

Providing a thorough evaluation of the multi-speaker em-
beddings on multiple speaker diarization and verification
datasets.

Open-sourcing the code for the above'.

2. Method

Figure 1 illustrates our joint architecture, which combines a
local speaker segmentation model with a speaker embedding
model using a shared feature extractor. We opt for an SSL-
based features extractor, namely WavLM, since it demonstrates
good performance in both speaker diarization and speaker ver-
ification tasks [9]. It is also the choice for state-of-the-art for
speaker diarization as of writing [10, 11]. We use the same
LSTM-based segmentation probing head as in [11]. For the
embedding module, we use an ECAPA-TDNN, which has been
shown to perform better than smaller probing heads [12, 13].

Given the frame-level features extracted from an audio
chunk x € R™*F and assuming a maximum of Kyax speak-
ers, the segmentation module extracts powerset features p €
RT>*Krs where K is the number of powerset classes. These
are binarized and converted into a multi-label format a €
{0, 1} Kmax [14]. The powerset features are concatenated
with x to form combined features of dimension F'+ K5, which
are fed into the embedding encoder. Only the input channel di-
mension of the encoder is modified in our approach.

The encoder output h € RT*P is reshaped to introduce
a speaker dimension, resulting in b’ € R¥maxXTx(D/Kmax)
The attention module remains unchanged from the original
ECAPA-TDNN, except that all the channel dimensions are
scaled down by a factor of Kmax, except for the bottleneck at-
tention dimension, which is kept at 128. The batch size after the
encoder is effectively increased Kmax times, with the speakers
being processed in parallel.

!https://github.com/joonaskalda/multi-speaker-embeddings



Similarly to GSE, we apply silent masking for each pre-
dicted speaker but use binarized predicted speaker activations
instead of oracle labels. The embedding dimension for the pre-
dicted multi-speaker embeddings {ex, .. .,ex,..} € R'*?is
kept unchanged from the original ECAPA-TDNN.

Note that this approach would require slight modifications
if the encoder output channel dimension D is not divisible by
Kmax by e.g. adding an adaptation layer. In the above we
also assumed, for simplicity, that the embedding encoder leaves
the temporal resolution unchanged, as is the case for ECAPA-
TDNN, used in our experiments. If that is not the case, the
speaker activation masks should be interpolated to match the
embedding output temporal resolution.

To train the multi-speaker embedding model we use syn-
thetic VoxCeleb mixtures as in [8]. We use the standard Arc-
Face loss [15] but only compute it for an embedding if the seg-
mentation model correctly predicts the corresponding speaker’s
activation for at least one second.

In our experiments, we use a segmentation probing head
trained using powerset loss [14], but this is not a requirement.
The only new components that need to be trained in our method
are in the speaker embedding branch. For the segmentation
branch and feature extractor, any off-the-shelf model can be
utilized, and no specific adaptation is needed. Our proposed
training method generalizes naturally to any local segmentation
and speaker embedding architecture, with no requirement for a
shared feature extractor.

To summarize, our method builds on top of GSE by

» Changing the attention module to extract multi-speaker em-
beddings instead of single-speaker embeddings.

» Utilizing detailed information from the segmentation mod-
ule.

2.1. Validation metric

The standard validation metric for speaker embedding models
is the equal error rate (EER), computed on single-speaker utter-
ance trials. However, this does not reflect performance in multi-
speaker scenarios. We argue that speaker diarization perfor-
mance is a more appropriate metric, as the clustering stage di-
rectly depends on embedding quality. We therefore propose us-
ing diarization performance for both evaluation and validation.
Validation is challenging; normally, it would require hyperpa-
rameter optimization after each epoch, which is a resource-
intensive process.

To address this, we propose a simplified pipeline for vali-
dation (Figure 2). In each validation batch, all audio chunks are
sampled from the same file using a sliding window, ensuring
that the first chunk starts at the beginning of the audio and the
last one stops at the file’s end. The step size S between consec-
utive chunks is chosen so that all chunks are evenly spaced i.e.
S = B=T 'where D is the file duration, B is the batch size, and
T is the chunk length. Chunks overlap if and only if BT > D.

The batch is then fed to the model, which returns segmenta-
tion predictions and speaker embeddings for each chunk. These
embeddings are then clustered using the K-means algorithm,
where the number of clusters is fixed based on the oracle num-
ber of speakers in the file used to create the batch. For effi-
ciency, we assume the number of speakers is known, which
eliminates the need for tuning clustering parameters. Finally,
segments are assigned to speakers as in a standard diarization
pipeline, and a diarization error rate (DER) over the validation
files is calculated based on the pipeline output and the corre-
sponding cropped reference.
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Figure 1: Proposed joint architecture for a maximum of
Kmax = 3 speakers per audio chunk. We opt for a segmen-
tation branch trained using a powerset loss, but this is not a
requirement.

3. Experiments
3.1. Datasets

The feature extractor and diarization branch are trained on a
composite dataset consisting of AMI-SDM [16], AliMeeting
(first channel) [17], AISHELL-4 (first channel) [18], MSD-
WILD [19], RAMC [20], and EGO4D [21]. Since EGO4D
does not include an evaluation set, we use it only for training
and validation.

The speaker embedding systems are trained on either Vox-
Celeb 1 and 2 utterances [7, 22] or synthetic mixtures generated
from these datasets.

3.2. Data simulation

For training speaker embedding systems in multi-speaker con-
texts, we use 10-second synthetic VoxCeleb mixtures, follow-
ing the approach in GSE. However, we modify the simula-
tion method to better reflect real-world multi-speaker scenarios.
Specifically, we allow arbitrary speaker order and permit delays
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Figure 2: Proposed validation pipeline with a batch size of B.

of up to 0.5 seconds after the preceding utterance ends to in-
troduce natural silent regions. Utterance lengths are sampled
from an exponential distribution with A = 0.2, truncated to the
range [1,10] seconds. Additionally, we apply room background
noise to the mixtures using data from [23] and simulated room
impulse responses from [24].

3.3. Implementation details

Segmentation model. Training chunks are 10 seconds long,
with a maximum of Kn.x = 3 speakers per chunk. We train a
standard diarization system using powerset loss, assuming that
no more than two speakers are active at a time, resulting in
Kp,s = T powerset classes, assuming no more than two con-
current speakers. Our segmentation module follows the archi-
tecture from [11].

We use a WavLM Base+ model as the shared feature extrac-

tor, fine-tuned together with the segmentation module as in [10].
The learning rates are set to 10~° for WavLM and 3 x 10~* for
the segmentation module, with a batch size of 32. The embed-
ding and segmentation models use separate learnable weighted
sums of the WavLM layers.
Speaker embedding model. Our speaker embedding extractor
is an ECAPA-TDNN model with 1024 channels. As a baseline,
we train an unguided single-embedding system on 3-second ut-
terances with a batch size of 512.

For all other speaker embedding systems, we adopt the
training strategy from [8]. We employ the Adam optimizer with
a cyclical learning rate schedule over three cycles, using a batch
size of 128 mixtures. This results in an effective batch size of
384 for ArcFace loss computation. Each cycle consists of 50k
steps, beginning with a 1k-step warm-up phase, followed by co-
sine annealing decay. The learning rate starts at a peak of 10~3
and decays by a factor of 0.75 at the start of each new cycle.
Validation metrics. For our proposed DER-based validation
metric, we randomly sample 10 files from each dataset’s valida-
tion set, yielding a total of 58 batches 2. The baseline validation
metric is the equal error rate (EER), calculated on the widely
used VoxCeleb test set 1-O, containing 37611 test trials based

2 AliMeeting validation set only has 8 files
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Figure 3: Validation EER and speaker confusion (SC) (%)
scores as a function of step count. The optimal checkpoints
based on either metric are highlighted with a dotted line.

on single-speaker utterances [7].

Speaker diarization inference. For speaker diarization infer-
ence, we use the pyannote 3.1 pipeline [25] with the same con-
figuration as [8]. After selecting the optimal checkpoint based
on the validation metric, we optimize the speaker diarization
clustering hyperparameters for each system using Optuna [26].
Hyperparameter tuning is performed on the compound valida-
tion set using the multivariate Tree-structured Parzen Estimator
for 100 iterations.

Evaluation. Direct evaluation of speaker embeddings in a
multi-talker context would require a multi-talker real-world ver-
ification dataset, which currently does not exist. Previous work
has used synthetic mixtures based on VoxCeleb to assess multi-
speaker performance [8], but these do not accurately capture
real-world conversational dynamics [27]. Because of this, we
assess embedding quality indirectly via diarization pipeline per-
formance. With a fixed local segmentation model, false alarm
and missed detection rates are constant. Consequently, we only
report speaker confusion rates, determined by clustering and di-
rectly reflecting embedding quality. Scores on the VoxCeleb
test set 1-O are also reported for reference.

4. Results

A comparison of multi-speaker and single-speaker embeddings,
along with different guiding methods, is presented in Table 1.
All guided systems outperform the standard unguided system in
diarization but underperform in EER, consistent with the find-
ings of [8]. Switching from oracle-guided single-embedding
to multi-embedding leads to a performance drop, which is
expected since the encoder must now model all participating
speakers rather than a single target speaker, while the model
size is slightly reduced (due to scaling down the channel di-
mension in the attention module). However, this degradation is
mitigated by replacing oracle-guided training with diarization-
guided training.

Multi-speaker models are also more compact, as the chan-
nel dimension is scaled down by K. after the encoder. The or-
acle clustering system serves as an upper bound, assuming per-
fect speaker clustering, with non-zero speaker confusion scores
arising only from intra-chunk segmentation errors. Validation
using the proposed simplified diarization pipeline demonstrates
clear improvements in most cases, with comparable results for
the GSE system, where the selected checkpoints had very simi-
lar performance.

Figure 3 shows the EER and speaker confusion scores as a
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Oracle clustering - - - - 1.3 19 23 28 35 25
. . . EER 1.1 47 83 102 126 81 84
Single-embedding Unguided 24.3M DER L4 51 80 83 122 79 81
. . EER 1.8 29 38 36 121 73 59
Single-embedding [8] Oracle 24.3M DER 19 27 37 36 118 72 59
. . EER 1.6 30 62 42 134 67 65
Multi-embedding Oracle 22.5M DER 29 32 56 44 112 71 62
. . - EER 1.7 32 37 50 114 73 62
Multi-embedding Diarization 22.5M DER 18 25 38 35 114 72 57

Table 1: Comparison of single-speaker (single-embedding) and multi-speaker (multi-embedding) embedding systems with different
guiding mechanisms and validation metrics. We report EER on VoxCeleb 1-O and speaker confusion rates on diarization datasets, as
well as the macro-average (Macro-avg) for the latter. Speaker confusion using oracle clustering is included as a topline reference.

Dataset MSE  ResNet34 SOTA
AISHELL-4 12.0 12.4 10.6 [11]
AMI-SDM 15.7 16.5 15.4[10]
AliMeeting 15.9 17.4 13.2[28]
MSDWILD 229 21.6 19.6 [11]
RAMC 11.8 11.1 11.1[28]
Macro-average  15.0 15.1 13.4

Table 2: Comparison of DERs for multi-speaker embeddings
(MSE), and ResNet34 embeddings across datasets. State-of-
the-art (SOTA) DERs are provided for reference.

Dataset Ovr. (%) Spk.# RTF Imp. (%)
AISHELL-4 5.0 2.0 39
AMI-SDM 14.6 22 43
AliMeeting 20.4 2.8 53
MSDWILD 12.4 2.0 40
RAMC 9.4 1.8 36
Macro-average 12.0 2.1 42

Table 3: Comparison of overlapping speech percentage (Ovr.),
average speaker count per chunk (Spk. #), and relative RTF
improvements (RTF Imp.) across datasets.

function of step count for the diarization-guided multi-speaker
embedding system. The two curves display low correlation after
initial fast convergence, further highlighting that the standard
VoxCeleb 1-O EER is not optimal in multi-speaker applications.

In Table 2, we compare our diarization-guided multi-
embedding system to a state-of-the-art ResNet-based speaker
embedding model [29] from pyannote 3.1 based on DER, keep-
ing the segmentation model the same. State-of-the-art DER
scores are also provided for reference. Although the ResNet
system employs a more sophisticated training strategy, includ-
ing speed augmentation and large-margin fine-tuning, our sys-
tem displays competitive results across the board, with signif-
icantly better results on the higher-overlap datasets AMI-SDM
and AliMeeting.

Table 3 explores the real-time factor (RTF) of multi-speaker
embeddings compared to single-speaker embeddings, which re-
quires encoding each speaker in a chunk separately. We first
measure the total time for inference using a diarization pipeline

with oracle speaker clustering, where no speaker embeddings
are calculated. Then we measure the increase in RTF from
performing clustering using either system. Comparing the re-
sults for the two systems gives us the relative decrease in RTF.
We also report both the percentage of frames containing over-
lapped speech and the average number of speakers in a 10-
second chunk sampled from the dataset. The latter directly re-
flects the number of separate forward passes required by the
single-speaker embedding encoder, in contrast to the single pass
needed for our multi-speaker approach. Even for the relatively
low-overlap scenarios represented by AISHELL-4 and RAMC,
the multi-embedding system achieves an RTF relative improve-
ment of at least 36%.

4.1. Future work

Training of our diarization-guided multi-speaker embeddings
relies on synthetically generated mixtures, which, while useful,
fail to capture the complexity of real-world conversation dy-
namics [27]. Training or fine-tuning the embeddings directly on
real-world data should help performance, although a compar-
atively small number of speakers in real-world conversational
datasets poses a challenge here.

We keep the speaker embedding encoder unchanged from
the single-speaker case, but since it now has to model multiple
speakers, the architecture should be optimized for this.

5. Conclusion

This work introduces a novel diarization-guided training
method for multi-speaker embeddings. We extend guided
speaker embeddings by modeling speakers concurrently us-
ing diarization-based guidance. We also introduced a novel
clustering-based validation metric for training embeddings in
a multi-speaker context, which we showed to be more effective
than standard speaker verification EER based on single-speaker
utterances. Keeping the embedding encoder unchanged, we
compared the effects of both modifications on multiple speaker
diarization datasets. We showed that while switching to model-
ing multiple speakers concurrently degrades performance, this
performance deficit is offset by switching to diarization-based
guiding, which contains more information and matches testing
conditions. We end up with a speaker embedding system that is
smaller, more accurate, and considerably faster than compara-
ble systems trained using previous methods.
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