
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

english

[IASM]
Amina Manafli 195995IASM

APPLYING TSP HEURISTICS TO SOLVE
WAREHOUSE ORDER PICKING

PROBLEMS

Master’s Thesis

Supervisor: Uljana Reinsalu

Researcher

Co-Supervisor: Stefano Fiorenza

Software Engineer, Java mentor

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond
Arvutisüsteemide instituut

[IASM]
Amina Manafli 195995IASM

PROOVIREISIJA ÜLISANDE HEURISTIKA
KASUTAMINE LAOTELLIMUSTE

TÄITMISEKS

Magistritöö

Juhendaja: Uljana Reinsalu

Teadur

Kaasjuhendaja: Stefano Fiorenza

Tarkvarainsener, Java mentor

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, the literature
and the work of others have been referenced. This thesis has not been presented for
examination anywhere else.

Author: Amina Manafli

2021-05-21

3

Abstract

In this thesis the warehouse routing problem is addressed in the context of conventional
parallel aisle warehouse system with multiple blocks. Exact algorithms for this NP-hard
Steiner traveling salesman problem (TSP) exist only for specific warehouse configura-
tions. We investigate whether reformulating and solving the problem as a classical TSP
will yield good results using common TSP heuristics and state-of-the-art TSP solvers. To
accomplish this, we introduced a preprocessing stage that converts the routing problem
into an instance of a traditional TSP. Additionally, we evaluate the influence of the ware-
house layout design on the performance of the selected and implemented TSP algorithms.

This thesis is written in English and is 66 pages long, including 6 chapters, 28 figures,
and 10 tables.

4

Table of Contents

1 Introduction 10

1.1 Problem Formulation and Motivation . 11

2 Background 15

2.1 Warehouse . 15

2.1.1 Warehouse Layout . 17

2.1.2 Storage Policies . 20

2.1.3 Order Picking Process . 23

2.2 Combinatorial Optimization Problems and NP-hard Problems 25

2.3 Traveling Salesman Problem . 26

2.4 Steiner Traveling Salesman Problem . 27

3 State of the Art 28

4 Implementation 30

4.1 Preprocessing . 30

4.1.1 Steiner Graph Construction . 33

4.1.2 Final Distance Matrix Construction 38

4.1.3 Output Data Types . 39

4.2 TSP Algorithms and Solvers . 40

4.2.1 Overview . 41

4.2.2 Nearest-Neighbour Algorithm 43

4.2.3 2-opt algorithm . 44

4.2.4 Lin-Kernighan . 46

5

4.2.5 TSP Solvers: Google OR-Tools and Concorde TSP 48

4.3 Data Output . 50

5 Results and Analysis 51

5.1 Case Study: Kuehne + Nagel Warehouse 60

6 Summary 63

References 64

Appendix 1 Non-exclusive Licence 67

Appendix A Class Diagram of the Java Application 68

Appendix B Implementation Source Code 69

6

List of Figures

1 Example of dedicated routing methods [6] 13

2 Key indicators, warehousing and support activities for transportation
(NACE Division 52), EU-27, 2012 - Source: Eurostat (sbs_na_1a_se_r2) . 15

3 Typical warehouse functions and flows Smith [12] 16

4 Illustration of a Typical Order Picking Area 18

5 Traditional Warehouse Layouts . 19

6 Flying-V (left) and Fishbone (right) Layouts 19

7 Typical layout decisions in order picking system design Tompkins, White,
Bozer, et al. [17] . 19

8 Two ways of organising the warehouse for within-aisle and across-aisle
storage policies [4] . 21

9 Example of Four ABC-Storage Assignment Policies [14]. Black locations
indicate A-items, dark gray locations indicate B-items and light grey lo-
cations indicate C-items . 22

10 Illustration of the warehouse order picking case in schematic form (a) and
its graph representation (b) . 24

11 Warehouse: graph representation, small example 27

12 Sequence Diagram: Preprocessing . 31

13 Flowchart: orders.py . 35

14 Constructing Steiner Graph for the order picking case illustrated in Figure
10a . 37

15 Steiner graph and the distance matrix constructed from this Steiner graph
as the output of the process.py function 38

16 The two file formats generated by the preprocessing stage representing
the TSP graph . 39

17 Class Diagram for Java Application . 42

18 Path constructed by the Nearest Neighbour algorithm. Path cost: 88 . . . 43

7

19 An example of a 2-opt move . 44

20 Path constructed by the 2-opt algorithm. Path cost: 88 45

21 Path constructed by the Lin-Kernighan algorithm. Path cost: 84 48

22 Path constructed by Google OR-Tools TSP. Path cost: 84 49

23 Bar Charts illustrating runtime decrease of the TSP solvers and algorithms
when compared to 2-opt with different changing parameters 53

24 Deviation changes of the TSP solvers and algorithms with the change of
storage policy type . 56

25 Distance changes of the TSP solvers and algorithms with the change of
storage policy type . 57

26 Plots illustrating distance changes of the TSP solvers and algorithms with
different changing parameters . 58

27 Plots illustrating deviation of the TSP solvers and algorithms with differ-
ent changing parameters . 59

8

List of Tables

1 Typical distribution of warehouse operating expenses 10

2 Activities that compose order picking process 11

3 Warehouse parameters used in the simulation 51

4 General Statistics . 52

5 Performance changes with the increase in the number of orders 54

6 Runtime decreases compared to 2-opt. In bold: smallest, in italic: largest
degradation values . 55

7 Runtime results in ms (10−3 s). In bold: smallest, in red italic: largest
runtime values . 55

8 Route Length (Distance) values of each algorithm on the selected test
cases. In bold: smallest, in italic: largest distance values 58

9 Route Length Deviation values of each algorithm on the selected test
cases. In bold: smallest, in italic: largest deviation values 59

10 Run results for the Kuehne + Nagel case 61

9

1 Introduction

Warehouses are an essential component of any supply chain. Without agreeing on the
location, construction, and management of warehouses, no supply chain design and man-
agement is complete. Warehouses are also used not only as storage facilities, but also as
value-addition facilities. Several warehouses have manufacturing, storage, and mainte-
nance processes on-site. Warehouse decision models are critical to a company’s viability.
Existing literature indicates that learning warehouse architecture and management con-
cepts will play a critical role in optimizing operational performance.

Warehouse’s typical operations include the following processes: receiving, put-away, pro-
cessing customer orders, order-picking, accumulating and sorting, packing, cross dock-
ing, and shipping. Many research papers have been written about these processes, for
example a survey by Cormier and Eng [1] and paper by Gu, Goetschalckx, and McGinnis
[2] covered considerable number of topics in almost all of the aspects of the warehouse
operations, including warehouse design models, picking policies, batching policies, stor-
age assignment policies, and issues about costs of space, leasing, and inventory.

Challenges that warehouses face are continuously changing through the years and require
new solutions - supply chains are shortening and becoming more integrated, globalization
of the operations is increasing, while customers are more demanding and technology
changes are occurring rapidly. To meet these demands, companies are implementing
novel approaches such as warehouse management systems (WMS).

Warehouse management systems may be standalone or integrated into an ERP (Enterprise
Resource Planning) or supply chain execution suite. The primary function of a WMS is
to coordinate the transfer and handling of products within a warehouse. The WMS may
be paper-based, RF/wireless-based, or a hybrid of the two.

Table 1. Typical distribution of warehouse operating expenses.

Function % of annual operating expense

Picking 55%

Shipping 20%

Storage 15%

Receiving 10%

10

Real-world order-picking system design is often complicated by a variety of external and
internal factors that influence design decisions. Goetschalckx and Ashayeri [3] mention
such external factors as: marketing channels, customer demand pattern, inventory lev-
els, overall demand for a product, and state of the economy. They also describe system
characteristics, organisation, and operational policies of order-picking systems as internal

factors. The organisation and operational policies are: routing, storage, batching, zoning
and order release mode (five in total) [4]. In this work we focus on a variety of routing
and storage policies, as well as the influence of storage policies on the results of routing
process.

Bartholdi, Hackman, and Technology. [5] pointed out that in a typical warehouse manage-
ment system the order-picking operation cost accounts for 55% of warehouse operating
cost (Table 1) and order-picking itself may be further broken down as the following ac-
tivities in Table 2. It’s easily noticeable that travelling comprises the biggest part of the
order picking costs, which is itself the most expensive part of the warehouse operating
expenses (Table 1).

Based on these figures, we can draw the conclusion that reducing the travel distance when
receiving a picking order is a critical problem that deserves careful consideration. In re-
lation to reducing travel time in the picking process, we are concerned with the following
question: how to minimize warehouse routing time?

Table 2. Activities that compose order picking process.

Activities Order-picking time (%)

Travel 50%

Search 20%

Pick 15%

Setup 10%

Other 5%

1.1 Problem Formulation and Motivation

There are various ways to decrease handling time, for example by introducing new han-
dling machines to the warehouse or by changing the design of the picking areas. However,
less costly and radical methods are commonly available for reducing the handling time,

11

for example through continuous improvement in the operational procedures.

"The productivity of the order picking process depends on factors such as the storage sys-
tems, the layout and the control mechanisms" [6]. It can be improved by reducing the time
needed for picking an order which, as shown in Table 2 mainly comprises of travelling at
around 55% of the total order-picking time. Previous works have also shown that pick-
ing and storage strategies are closely interrelated, meaning that decisions on the storage
policy have a major influence on order picking performance (Petersen and Schmenner [7]
and Petersen and Aase [8]).

In this thesis we limit the scope to systems that implement picker-to-parts order picking
method, consist of multiple parallel aisles and blocks, and all orders include more than
one product at a time. These systems form the very large majority of picking systems in
warehouses worldwide, over 80% of all order-picking systems in Western Europe accord-
ing to Le-Anh and De Koster [9].

The problem of sequencing and routing order pickers in conventional rectangular ware-
house systems with multiple parallel aisles classifies as a Steiner Traveling Salesman

Problem, a variant of the classical Traveling Salesman Problem which is one of the most
important Combinatorial Optimization Problems and belongs to the class of NP-hard
problems.

To solve the Steiner TSP means finding a tour of minimum length that contains every non-
Steiner node. We can represent the problem by a graph that contains two types of vertices:
vertices that must be visited (representing order locations) and Steiner vertices that are not
required to be visited and represent the intersections between aisles and cross-aisles. To
solve this problem various approaches were proposed by different authors, predominantly
focusing on dedicated heuristic algorithms such as S-shape, return, composite, midpoint
and largest gap heuristics Roodbergen and Koster [6]. Examples of the three most com-
mon of these algorithms are shown in Figure 1.

Another approach used in Theys, Bräysy, Dullaert, et al. [10] uses the fact the the Steiner
TSP is a special kind of the classical TSP and, therefore, can be reformulated into the lat-
ter by recalculating the distances between any two pickup locations and removing Steiner
nodes. This work published by Theys et. al. focuses on comparing the state-of-the-art
Lin-Kernighan-Helsgaun heuristic to the dedicated heuristics for routing order pickers.
In our work, we use a similar approach to test the performance of three common TSP

12

(a) S-shape. (b) Largest Gap. (c) Aisle by Aisle.

Figure 1. Example of dedicated routing methods [6].

heuristic algorithms and two TSP solving tools in the context of a conventional multi-
parallel-aisle warehouse with the goal to determine, how the less sophisticated TSP solv-
ing algorithms perform on the Steiner TSP when compared to the optimal and optimized
TSP solving tools such as Google OR-Tools and Concorde TSP solver.

This thesis was inspired by the aforementioned paper by Theys, Bräysy, Dullaert, et al.

[10], as well as my internship with Kuehne + Nagel International AG, a global transport
and logistics company whose employees, including my co-supervisor Stefano Fiorenza,
were kind enough to provide valuable insights and domain knowledge related to vari-
ous warehouse design and management aspects necessary for successfully conducting the
thesis.

In this work we first examine how three traditional TSP heuristics work on the problem
of order picker routing in standard multiple-block warehouses (RQ1). To accomplish
this, we adapt the routing and sequencing problem of order pickers in traditional multi-
parallel-aisle systems to a classical TSP during the preprocessing stage.

Second, we investigate the impact of warehouse layout and order list size on the outcomes
of these heuristic algorithms (RQ2). We also perform a case study on one of the Kuehne
+ Nagel’s existing warehouse configurations and discuss whether our solution could be
integrated in such warehouse.

Finally, we examine whether a sophisticated heuristic is needed for routing order pickers

13

in warehouses, or whether an existing tool will suffice to produce optimal and near optimal
results.

The implementation and detailed explanation of the preprocessing stage that makes the
use of TSP heuristics on the routing issue possible is also considered a contribution of this
work.

This study starts with a summary of the associated context subjects, such as warehouse
operations including picking problem and storage assignment, traveling salesman prob-
lem and steiner traveling salesman problem formulations in section 2. Section 3 examines
related literature and state-of-the-art papers on the thesis subject. Section 4 is devoted to
describing the implementation of the preprocessing stage and TSP algorithms, followed
by an experimental results section (4) in which we discuss and compare the simulation
results and attempt to answer the research questions described above. In this segment, we
also discuss our study on the Kuehne + Nagel warehouse case and assess the applicabil-
ity of the work done on this case. Finally, we wrap up the report with a review of the
outcomes and possible changes for future work.

14

2 Background

This section provides an overview of the theory underlying the thesis subject, introduc-
ing information on warehouse design and operations, combinatorial optimization, NP-
complete problems, and Travelling Salesman Problem that is required to understand the
following sections.

2.1 Warehouse

"Warehouses form an important part of a firm’s logistics system allowing storage or
buffering of products at and between points of origin and points of consumption" [4].
According to Warehousing and Transport Support Services Statistics provided by NACE
[11] as of 2012 there existed 136.3 thousands warehouse facilities in the European Union,
employing over 2.5 million people with a turnover of 478 754 million Euros (Figure 2).

Figure 2. Key indicators, warehousing and support activities for transportation (NACE Division 52), EU-27,
2012 - Source: Eurostat (sbs_na_1a_se_r2).

Most supply chains need product items to be stored and/or buffered. This means that
warehouses play a very important role in a company’s logistics performance. For that
reason it’s important to understand the inner-workings of the warehouses in order to min-
imize operational costs.

15

Figure 3. Typical warehouse functions and flows Smith [12].

Ackerman [13] describes some of the common tasks that a warehouse performs in addition
to storage as follows:

Stockpiling, is the practice of using a warehouse as a reservoir to manage excess demand.
This may happen in two cases: either there is seasonal production and level sales, or there
is steady production and seasonal sales. In either case, the warehouse is where supply and
demand are balanced.

Product mixing is the process of assembling half-finished products into customer-ordered
products.

Consolidation is the act of gathering different products for a consumer order. The con-
sumer can need goods that are manufactured in different locations or by different manu-
facturers.

Distribution is the inverse of consolidation. It, like consolidation, is largely justified by
the freight savings realized in higher volume shipments. The seller pushes finished goods
to the consumer by distribution, while the buyer pulls stocks through aggregation.

According to Smith [12] this list can be expanded by adding receiving, inspection, inven-

tory control, replenishment, order picking, checking, packing and marking processes.

Unloading goods from the transport carrier, reviewing the inventory record, and inspect-
ing for any quantity or quality inconsistencies are all part of the receiving operation.

16

Inspection is the stage in the flow that controls whether the purchased order is met and if
the shipped goods satisfy the minimum quality requirements that the customers requested.
The primary aim of inspection is to maintain data communication so that data regarding
stock levels and stocking locations of products in the warehouse are up to date.

Order picking is the most important task in most warehouses. It entails obtaining the
correct number of the correct items for a series of customer orders.

Inventory control entails moving goods to their proper locations in the factory after they
have been received. It is important to keep track of which goods are kept where in order
to monitor the positions and amounts of products on hand.

Order picking process involves the process of grouping and planning the customer orders,
releasing orders to the order picking area, picking the products from storage locations and
the disposal of the picked articles [4].

After the order has been picked the order should be checked through the checking process
to assure that the order fulfills the customer order regarding quantity and quality.

After the orders have been selected and reviewed, the process flow is completed by pack-

aging the orders for shipping and marking them according to customer demands or com-
pany policy.

2.1.1 Warehouse Layout

Warehouse design, as defined by Roodbergen, Vis, and Taylor Jr [14], is comprised of
three interdependent parts: "the form of systems used, the layout, and the policies that
govern all operating processes". To choose the system, product characteristics must be
considered, for example larger and heavier products tend to be stored on pallets in pallet
racks, while smaller products may be stored on shelving racks that have a lower storage
capacity and require less floor space. More variations are described in Hackman, Frazelle,
Griffin, et al. [15] in detail.

"For all warehouse systems a layout must be determined such that each system can
achieve the required performance" [14]. In Figure 4 a typical order picking area is graphi-
cally depicted, while in Figure 7 some common questions of order picking system design
are defined. The layout of the warehouse pick area can be defined through the following

17

parameters: number of aisles, number of cross aisles that break down aisles into sub aisles

and form blocks. "A depot functions as the central point where orders are administered to
employees" [14].

Figure 4. Illustration of a Typical Order Picking Area.

Other layouts exist and feature diagonal cross aisles and picking aisles that are not parallel,
such as "Fishbone" or "Flying V" layout (Figure 6). These layouts appear in the literature,
for example in the work by Pohl, Meller, and Gue [16], but because the parallel aisles with
one or multiple blocks layout is most common in real life (Figure 5), we’ll be focusing on
such warehouse layout in this work.

18

Figure 5. Traditional Warehouse Layouts.

Figure 6. Flying-V (left) and Fishbone (right) Layouts.

Figure 7. Typical layout decisions in order picking system design Tompkins, White, Bozer, et al. [17].

19

2.1.2 Storage Policies

After the products are received at the warehouse they must be assigned storage locations.
A storage assignment policy is a set of rules for determining this allocation. A large
number of ways to assign products to storage location exists, and there are five ways
that are used most frequently: random storage (Petersen and Schmenner [7], Choe [18]),
closest open location storage (Hausman, Schwarz, and Graves [19]), full turnover storage,
class-based and dedicated storage.

Random Storage. In the random storage policy, incoming goods are allocated to a ware-
house location that is chosen at random from all suitable empty locations with equal
probability. Because of its simplicity, this storage policy is often used in practice; for ex-
ample, in dynamically evolving product assortments where insufficient data is available to
evaluate demand frequencies of individual goods De Koster, Van der Poort, and Wolters
[20].

Full Turnover-based Storage. "All products are ranked from most frequently to least
frequently requested and all locations are ranked from best, usually meaning that they’re
closest to the depot, to worst" Roodbergen [21]. The products are then assigned to the
available locations by matching these two rankings.

Dedicated Storage. In this policy each product has a fixed location in the warehouse it’s
assigned to. The downside is that even when the items are out of stock they’re allocated a
storage space, causing inefficient storage usage when compared to a random storage.

Class-based Storage. The concept of class-based storage is based on the Pareto’s method.
The goal is to organize products into classes so that the most frequently incoming/out-
going class accounts for 85% of the total turnover but only contains about 15% of the
products stored. For each class dedicated storage spots are assigned in a random manner
within each area.

"Generally, the number of classes equals three, which may give about 85% of the poten-
tial efficiency gains of full turnover-based storage" [19]. This allows storing frequently
incoming/outgoing items closer to the depot and reducing the travel time required to get
them while retaining some of the flexibility of the random storage policy within each class
area.

20

Figure 9 illustrates the four variations of class-based (ABC) storage policies and Figure 8
shows the two common ways of implementing the Within-Aisle and Across-Aisle storage
policies. A-items (black) account for products which turnover rate are high and the num-
ber of locations is rather small. C-items (light grey) represent products which average
storage time are much longer than the storage time of A-items. B-items (dark gray) is an
in-between category, concerning turnover rate and space needed [22].

"Across-aisle storage is an ABC storage policy in which A-items are allocated to the
front-most position of each pick aisle. C-items are kept at the back of each pick aisle,
while B-locations are stored in between" [21]. De Koster, Le-Duc, and Roodbergen [4]
advocate for this method.

For within-aisle storage, all items in a pick aisle belong to the same item class. The A-
items are located in the pick aisles closest to the depot. Jarvis and McDowell [23] support
this approach.

For nearest-aisle storage all items in a subaisle belong to the same class. "The subaisles
with their center closest to the depot contain the A-items. This is actually a variation on
the within-aisle storage rule" [21]. This policy is the most effective for multiple block
layouts, otherwise within-aisle storage is implemented.

With nearest-location storage, the A-items are assigned to the locations that are closest
to the depot. "This policy is closely related to the method of diagonal storage Petersen
and Schmenner [7], which defines class boundaries based on diagonal lines in the picking
such that the A-items are closest to the depot" [21].

Figure 8. Two ways of organising the warehouse for within-aisle and across-aisle storage policies [4].

21

Figure 9. Example of Four ABC-Storage Assignment Policies [14]. Black locations indicate A-items, dark
gray locations indicate B-items and light grey locations indicate C-items.

22

2.1.3 Order Picking Process

Order picking, as defined earlier in the work, entails grouping and planning customer
orders, issuing orders to the order picking area, picking items from storage locations, and
disposing of the picked articles [4]. Order picking is not a simple or cheap to automate
and despite all of our technological advancements, order picking is still largely a manual
activity Ackerman [13].

Order picking can be manual, power-assisted, automatic or it may be a combination of
these methods. Order picking also varies in terms of order distribution among pickers; it
can be discrete (single order) or batch picking.

Discrete (single order) picking requires the picker to assemble the total order before mov-
ing on to another one. An advantage of such picking method is that it maintains single
order integrity and therefore avoids repacking and provides fast customer-order service.
Batch picking is selecting of the total quantity of each item for a group of orders. Batches
are then resorted into the quantities defined in each order. It allows to reduce travel to
pick the total quantities of orders, especially when a large quantity of a stock unit needs
to be collected. In this work we focus on discrete picking, however, batching methods are
mentioned extensively in the literature and their effect on the order picking process would
is an interesting research subject.

There are various order-picking system types that exist in warehouse systems today. The
majority of warehouses employ people for order picking, the most common being the
picker-to-parts systems. Another type of systems is part-to-picker and such systems in-
clude automated storage and retrieval systems (AS/RS).

The main objective for order picking systems is to minimise the order retrieval time (pick-
ing/travel time). Bartholdi, Hackman, and Technology. [5] refer to travel time as a "waste.
It costs labour hours but does not add value".

Minimising travel time means optimising the total travel distance of the order picker in
a picking tour. Such problem in a warehouse is known as an Order Picking Problem,
and it is a specific subclass of the Traveling Salesman Problem (TSP) – Steiner Traveling
Salesman Problem [4], [6], [24]. This problem can be shortly formulated as following:

Given n products to pick in a rectangular warehouse what is the shortest tour to collect

23

all these products? [25]

The traveling salesman problem got its name from the following situation. Starting in
his hometown, a salesman must visit each city exactly once before returning home. The
distance between each pair of cities is known to him and he needs to decide the order in
which he would visit the cities so that the overall distance traveled is as short as possible.

The condition of the traveling salesman is close to that of an order picker in a warehouse.
The order picker begins at the depot (home city), where he receives a pick list, travels to
all pick locations (cities), and returns to the depot. A warehouse example with picking
locations (black squares) and a corresponding graph representation are given in Figure
10.

Traveling salesman problem is an NP-hard problem (as shown by Karp [26]) in combina-
torial optimization, important in theoretical computer science and operations research.

(a) Schematic representation. (b) Graph representation.

Figure 10. Illustration of the warehouse order picking case in schematic form (a) and its graph representa-
tion (b).

24

2.2 Combinatorial Optimization Problems and NP-hard Problems

Our warehouse routing problems are classified as combinatorial optimization problems.
Combinatorial optimization problems can be defined as those in which an optimal solution
must be found from a finite number of possible solutions. Combinatorial optimization is
a very active field of applied optimization research that combines techniques from com-
binatorics, linear and nonlinear programming, and algorithm and data structure theory to
solve problems over discrete structures Geng [27].

Combinatorial optimisation problems can be distinguished as one of the two variants
(Hoos and Stützle [28]):

� The search variant: given a problem instance, find a solution with minimal (or
maximal, respectively) objective function value;

� The evaluation variant: given a problem instance, find the optimal objective func-
tion value (i.e., the solution quality of an optimal solution).

Recent advances in combinatorial optimization, including cutting-plane methods, branch
and cut, branch and bound, local search and meta-heuristics together with advances in
computer technology, have made it possible to apply combinatorial optimization to a wide
range of practical problems. Many combinatorial optimization problems, however, are
computationally unsolvable. Therefore, a practical approach for solving such problems
is to employ heuristic (approximation) algorithms that can find near optimal solutions
within a reasonable amount of computation time.

NP is a class of computational decision problems for which any given yes-solution can be
verified as a solution in polynomial time by a deterministic Turing machine. A decision
problem H is NP-hard when for every problem L in NP, there is a polynomial-time many-
one reduction from L to H.

Traveling salesman problem was proven to belong to the class of NP-hard problems by
Papadimitriou [29] and Itai et al. in 1984. We will describe the formulations of TSP and
Steiner TSP in the following section.

25

2.3 Traveling Salesman Problem

The result of solving a standard TSP where the distance between two vertices is given
by the shortest path in the warehouse will correspond to finding the optimal tour in the
warehouse. Specifically, we define the problem through a complete graph, where the ver-
tices represent orders (including the depot). "Every vertex has to be visited exactly once,
by minimizing the travel distance. The distance between two vertices is given by di j" as
defined by Pansart, Catusse, and Cambazard [25], [30]. The conventional formulation of
the traveling salesman problem as defined by Dantzig, Fulkerson, and Johnson [31] is the
following:

We define a variable x′i j for each pair of products: ∀i, j ∈ R

x′i j =

1, if the tour uses the arc (i j)

0, otherwise
(1)

min ∑i, j∈R di jx′i j (1)

subject to ∑ j∈R x′i j = 1 ∀i ∈ R(2)

∑ j∈R x′ji = 1 ∀i ∈ R(3)

x′(S : S̄)≥ 1 ∀S⊂ R : 2≤ |S| ≤ |R|2 (4)

x′i j ∈ N ∀i, j ∈ R(5)

Constraints (2) and (3) impose that the order picker comes exactly once at each product
and leaves them exactly once. However, these two constraints are not enough to guarantee
that the model’s result has only one path. Constraints (4) defines that "for any partition
into two subsets S and S, the order picker transits from S to its complementary at least
once" [30].

Based on whether or not di j = d ji (i.e., if the cost of going from A to B is the same as going
from B to A), the TSP can be divided into two general types: the symmetric TSP (STSP)
and the asymmetric TSP (ATSP). In this work we’re only concerned with the symmetric
TSP. Also all of our TSP discussion in this work is about the Metric TSP, which means it
satisfies the triangle inequality.

ci j ≤ cik + ck j,∀(i, j) ∈ A,∀k ∈V,k 6= i, j (2)

26

2.4 Steiner Traveling Salesman Problem

The order picking problem can be formulated as a special case (Steiner) of the Traveling
Salesman Problem (TSP). The Steiner special case of the traveling salesman problem
was proposed by Cornuéjols, Fonlupt, and Naddef [24]. The principle is that the graph
includes some vertices that are required to be visited and vertices of Steiner (Steiner

vertices) that may or may not be visited. In addition, the graph is not complete and the
edges can be travelled multiple times as well as vertices can be visited once or more.

The problem can be represented by a graph G = (N,A) with node set N = S∪ R and
edge set A. Node subset R = {1, . . . ,n}+ {0} contains all n order items that need to be
picked up in the warehouse, as well as the depot which is represented by node 0. Node
subset S = {n+1, . . . ,n+ p} contains the Steiner nodes indicating all p "crossing nodes"
between two or more aisles, where p equals the product of the number of cross aisles
and the number of pick aisles in the warehouse. Edge set A ⊆ R×R represents all travel
possibilities between order items and the depot.

This concept is illustrated by Figure 11 with 6 pick aisles and 2 cross aisles (p= 12) where
6 items and the depot location need to be visited (n = 6). Node subset R = {0,1, . . . ,6}
contains all nodes that need to be visited at least one, since they represent either an picking
location or the depot. The Steiner nodes in S= {S00,S01, . . . ,S14,S15} do not necessarily
have to be part of an order picker’s route. As a results of the special (rectangular) structure
of the warehouse, they might, however, be visited while visiting nodes in R.

4

65

0

1

2

4

3

S00 S01 S02 S03 S04 S05

S10 S11 S12 S13 S14 S15

Figure 11. Warehouse: graph representation, small example.

27

3 State of the Art

The order picking literature has primarily focused on four major study streams: structure
design, storage assignment, batching, and routing. In the following, two research streams
are discussed: storage assignmnent and routing since they have the most significance for
our work. For more details on the rest of the topics we refer to: De Koster et al. (2007),
Gu et al. (2007), and Shah and Khanzode (2017).

The literature on warehouse storage policies is somewhat limited. examined the per-
formance of an automated warehouse with random and volume-based storage. Schwarz,
Graves, and Hausman [32] investigated the efficiency of an integrated warehouse with ran-
dom and volume-based storage. Furthermore, Gibson and Sharp [33] discovered that find-
ing large volume objects near the p/d point increases picking productivity significantly.
They may not, however, provide details about how they are implementing volume-based
storage. Jarvis and McDowell [23] state that the optimal storage strategy is to place the
most frequently picked items in the aisle nearest the p/d point and the next most frequently
picked items in the next aisle. Their study was constrained in that it assumed the aisles
only enabled one-way travel and were only capable of transversal routing. In a number of
working environments, this paper compares two volume-based storage policies to random
storage. Routing seeks the fastest path through the warehouse to retrieve all things needed
in an order.

Routing aims at finding the shortest tour through the warehouse for retrieving all items
requested in an order. Different authors have proposed several general types of routing
algorithms, specifically optimal routing policies, simple heuristics, and meta-heuristics
[30].

The implementation of optimal routing algorithms and the comparison of routing heuris-
tics are topics covered in the routing policy literature. Ratliff and Rosenthal [34] and
Goetschalckx and Ashayeri [3] have developed optimal algorithms for routing pickers in
a rectangular warehouse. Furthermore, De Koster and Van der Poort [35] compare opti-
mal and the S-shape heuristic in a decentralized warehouse with no fixed p/d point. This
work, on the other hand, focuses on heuristics in the more common manual warehouse.
Hall [36] examined routing heuristics in a manual warehouse. In addition, Hall studied
the effect of warehouse shape on distance approximations for multiple routing heuristics
in a random storage warehouse. Petersen and Schmenner [7] expanded on this by testing

28

a new routing heuristic and investigating the effect of form in a fixed-capacity warehouse.

In terms of TSP heuristics, "Makris and Giakoumakis [37] used a tweaked k-interchange
heuristic to boost the solution of a basic routing heuristic. Grosse et al. (2014) investi-
gated traditional architecture B with small aisles and used the savings algorithm for rout-
ing order pickers, among other things. Clarke and Wright (1964) suggested the savings
formula, which begins with a series of tours in which each object is chosen individually.
It then assesses the travel distance that can be avoided by combining two existing tours
into a single tour and combines the tours that result in the greatest travel distance savings"
Masae, Glock, and Vichitkunakorn [38].

Some authors have suggested exact algorithms developed originally to solve the TSP for
the order picker routing problem in multi-block warehouses. To find an order picking tour
with the least amount of travel time in a narrow-aisle warehouse, Roodbergen and Koster
[6] used a branch-and-bound approach in their TSP formulation. "The branch-and-bound
algorithm’s downside is its inconsistent run-time behavior, which makes it unsuitable for
practical implementations" [25]. Theys, Bräysy, Dullaert, et al. [10] applied the exact
Concorde TSP algorithm to a traditional warehouse with two blocks, assuming that a
picking tour begins and ends at a single depot in the front cross aisle, which may be in the
middle (central depot) or at some other location (decentral depot). The exact concorde
TSP algorithm was created to solve the symmetric TSP using a branch-and-cut approach.
To find the shortest path for a given pick-list, the same concorde TSP solver was used.

The last work by Theys et al. researched the following questions: are the findings for
routing in single-block or conveyor-equipped warehouses also valid in conventional multi-
parallel-aisle warehouses, or does the adoption of problem-specific features make dedi-
cated multiple-block order picking heuristics more efficient? How do the performances of
TSP-based heuristic solution strategies correspond to those of dedicated heuristics (other
than S-shape) suggested in the literature, and can they be developed further? The latter
question has inspired this thesis to investigate further on the usage of the TSP heuristics
in the warehouse order picking problem.

29

4 Implementation

In this section, we will explain how the implementation was carried out and what its
key components are. We will start with preprocessing stage and then go over each of
the implemented algorithms (Nearest Neighbor, 2-opt, Lin-Kernighan) and TSP Solvers
(Google OR-Tools, TSP Concorde) that were integrated in the final java application. The
implementation is available through author’s GitLab repository (see Appendix B).

4.1 Preprocessing

Preprocessing stage was implemented in Python. The main objective of the preprocessing
stage is to construct a valid input for the TSP heuristics based on the given warehouse
layout and order information.

This information is provided as a set of parameters containing the following information
about the warehouse layout: number of blocks, number of aisles, number of storage loca-
tions per sub-aisle (rows), type of the storage policy, as well as some optional parameters
as shown in Listing 2. We refer to these parameters as warehouse parameters in the next
sections. Number of orders (pick locations) must also be provided.

The primary way to run the python application is using generate.py with PREFIX argu-
ment which defines the prefix for the generated files. Other optional arguments are also
available, see Listing 3.

A simple command line interface is implemented using the Click Library [39] that allows
entering the command line arguments. It also provides a progress bar based on the total
number of tests to be generated.

The warehouse and order parameters in this case are defined through global array vari-
ables as shown in Listing 1. The test cases are then generated by finding all the possible
combinations of the provided parameter values.

30

AISLES = [4, 8, 12, 20]

BLOCKS = [1, 3, 5, 11]

ROWS = [50, 100, 500]

STORAGE_POLICY = ['RANDOM', 'ABC', 'ABCACROSS']

ORDERS = [5, 7, 20, 50]

ABC_CAPACITY = [(1, 1), (1, 3), (2, 4), (4, 8)]

ABC_ACROSS_CAPACITY = [(0.1, 0.2), (0.1, 0.2), (0.1, 0.2)]

SEEDS = list(range(10))

Listing 1. Warehouse parameters defined as global arrays in generate.py.

For each test case the generate() function first generates a Steiner graph by calling the
generate_steiner_graph() function. The generated Steiner graph is then passed to
the process() function that removes the Steiner nodes and produces the final graph that
can be used by the TSP algorithms.

Finally, the generated graph is stored in two different formats using the
save_graph_file() and save_tsp_file() functions.

The full flow of the function calls is described by the sequence diagram in Figure 12. Here,
graph_args include all the parameters of the test case, and graph_args only consist of
blocks, aisles, rows, and orders values.

Preprocessingsd

generate generate_steiner_graph process save_graph_file save_tsp_file generate_steiner_nodes generate_orders generate_order

1 : initiate cli
2 : graph_args 3 : graph, blocks, aisles

4 : graph,graph_params,generate_order
5 : none

6 : order_params
7 : none

8 : steiner_graph
9 : steiner_graph

10 : final_graph

11 : filename, final_graph

12 : filename, final_graph

Figure 12. Sequence Diagram: Preprocessing.

31

process.py
python3 process.py --help

usage: process.py [-h] [--a-prob A_PROB] [--b-prob B_PROB] [--c-prob C_PROB]

[--a-capacity A_CAPACITY] [--b-capacity B_CAPACITY]

[--seed SEED]

blocks aisles rows orders storage_policy

To generate a simulation file define following parameters:

positional arguments:

blocks Number of blocks

aisles Number of aisles

rows Number of product positions per sub-aisle

orders Number of orders

storage_policy Storage Policy.

Existing policies: RANDOM, ABC, ABCACROSS

optional arguments:

-h, --help show this help message and exit

--a-prob A_PROB Probability to place an order of type A

--b-prob B_PROB Probability to place an order of type B

--c-prob C_PROB Probability to place an order of type C

--a-capacity A_CAPACITY

Capacity for A (# of aisles for ABC, percentage for ABCACROSS)

--b-capacity B_CAPACITY

Capacity for B (# of aisles for ABC, percentage for ABCACROSS)

--seed SEED Random seed

Listing 2. Arguments for running process.py.

generate.py
./generate.py --help

Usage: generate.py [OPTIONS] PREFIX

Options:

--max-tests INTEGER maximum # of tests to be generated

--help Show this message and exit.

Listing 3. Arguments for running generate.py.

32

4.1.1 Steiner Graph Construction

The construction of the Steiner graph happens in the generate_steiner_graph() func-
tion. It starts by parsing the input arguments and creating an empty graph using the Net-

workX Library [40].

As described in Section 2.4 the Steiner TSP is represented by a graph G = (N,A) with
two types of nodes: Steiner and order nodes. Each node is defined as Steiner or order
nodes by setting the steiner node attribute to True or False.

Steiner nodes are nothing else but the intersection points between aisles and cross aisles
which makes it easy to calculate their exact quantity. This calculation is performed in the
generate_steiner_nodes function where all of the Steiner nodes are generated. The
neighbouring Steiner nodes are then connected horizontally with edges of weight equal
to 2. This weight value is selected for our simulation but can be adjusted when needed.
A snippet of the described function can be seen in Listing 4. Steiner nodes are named
using the format S<block><aisle> and follows the zero based naming convention. For
example the Steiner node at the intersection of block 2 and aisle 3 has the name S23.

Afterwards, the depot is added as node 0 and connected to the S00 Steiner node with an
edge of weight equal to 0.

def generate_steiner_nodes(g, blocks, aisles):
Generate steiner nodes
for block in range(blocks + 1):

for aisle in range(aisles):
g.add_node('s%d%d' % (block, aisle), steiner=True)

Generate horizontal edges
for block in range(blocks + 1):

for aisle in range(aisles - 1):
source = 's%d%d' % (block, aisle)
target = 's%d%d' % (block, aisle + 1)
weight = 2
g.add_edge(source, target, weight=weight)

Listing 4. Snippet of the generate_steiner_nodes function.

33

4.1.1.1 Storage Policies

The storage policy defines the position of the products in the warehouse and influences the
order locations. For that reason, for each of the storage policies we define a function that
generates order nodes based on the specifics of that storage policy (see Figure 13). These
functions all return a tuple with the following information defining location of an order:
(block, aisle, row, position). Here, row means vertical position of the order in
the sub-aisle and position is either equal to 0 or 1, meaning it is either on the left or
on the right side of the selected aisle respectively. The latter is based on the assumption
that aisle width is negligible and the products facing each other on the same aisle have a
distance of zero between them.

The simplest storage policy is the Random policy where the location of any product is
random and, therefore, when generating orders we don’t need to take any additional con-
siderations. The function implementing the random storage policy can be seen in List-
ing 5.

def generate_order_random_policy(blocks, aisles, rows):
block = random.randint(0, blocks - 1)
aisle = random.randint(0, aisles - 1)
row = random.randint(1, rows)
position = random.randint(0, 1)
return block, aisle, row, position

Listing 5. Function generating an order based on the Random storage policy.

Other storage policies, namely Within-Aisle (ABC) and Across-Aisle (ABCACROSS) poli-
cies both belong to the class-based storage policy type and are implemented in a similar
manner. Main difference, as may be seen from Figure 9 on the top left and right images,
is in the direction that the warehouse storage is split into sections for the three product
types: A, B and C.

34

generate_steiner_graph()

generate_steiner_nodes()

storage_policy
== RANDOM

generate_order =
generate_order_random_policy()

storage_policy
== ABC

storage_policy ==
ABCACROSS

generate_order =
generate_order_abc_policy()

generate_order =
generate_order_abc_across_policy()

generate_orders(graph,
order_params,

generate_order())

Figure 13. Flowchart: orders.py.

There are different aspects we need to consider when implementing these storage policies.
First, we need to define the probability of each of the product types to occur among
the orders. As was described in Section 2.1.2, type A items are the most frequently
occurring, type C are the least frequently occurring and type B items are in between. In
our implementation these values are predefined with probability for type A equal to 60%,
for type B - 30%, and for type C - the remaining 10%. While these values are fixed for our
simulations, they can be modified through optional parameters as was shown in Listing 2.

Other parameters that define the class-based storage policies are the storage capacities
defined for each product type. We define these values differently for ABC storage policy
and for ABCACROSS storage policy. When defining a_capacity and b_capacity values
for ABC policy we define a specific number of aisles that each type of products will be
assigned to. At the same time for the ABCACROSS policy these values are defined as
percentage of the total number of rows. This decision is mainly related to the fact that
the values selected for experiments are low for the number of aisles in accordance with
common warehouse configurations as described by other papers [6] [21]. These values

35

will be discussed in the next section.

Based on the policy parameter appropriate function for order generation is determined
from the three available as shown in Figure 13. It’s worth noting, that our implementation
allows trivial expansion on the available storage policy types by adding corresponding
order generation function and another values in the StoragePolicy enumerator class.

Finally, when generate_order() function object is defined the generate_orders()

function is executed, where for the defined number of orders the generate_order()

function is called to define the potential position of each order. To keep track of the
nodes’ positions a set is used (nodes_set). If that position is not taken (doesn’t exist in
the nodes_set) it’s added to the set, otherwise a new position is calculated until a unique
one is found. All the generated orders are added to the order_nodes dictionary with a
key based on the block, aisle, and position values.

After generating all of the steiner and order nodes the next step is to create edges between
these nodes. First, the Steiner nodes are connected to the order nodes that are placed
closest to them. For each subaisle it means connecting the top steiner node with the first
order node below it and connecting the bottom steiner node with the first order node above
it. This will result in a situation illustrated in Figure 14b.

After that is done, the edges between the order nodes should be constructed as shown in
Figure 14c. Finally, the vertical edges between the Steiner nodes must be created in the
aisles where no orders were placed (see Figure 14d).

As a result we will receive a graph that contains Steiner nodes (S00. . .S<blocks><aisles
- 1>) and order nodes (0. . . orders). This graph can be used as an instance of the Steiner
TSP problem.

36

(a) Step 1: Generate depot, Steiner nodes and horizontal edge
between Steiner nodes.

(b) Step 2: Create edges between Steiner nodes and order nodes
closest to them.

(c) Step 3: Create edges between the order nodes. (d) Step 4: Connect the rest of the Steiner nodes vertically.

Figure 14. Constructing Steiner Graph for the order picking case illustrated in Figure 10a.

37

4.1.2 Final Distance Matrix Construction

In order to use TSP algorithms on our order routing problem we need to take one more
step and "eliminate" the Steiner nodes from the constructed Steiner graph by finding the
distances between order nodes. This step is implemented in the process() function. In
order to achieve that result, the Dijkstra algorithm for finding the shortest path between the
order nodes is used. This is done with the use of the NetworkX Library [40] for working
with graphs and networks. Applying this algorithm to our Steiner graph results in a new
graph where the shortest path between each order node is found.

Figure 15 illustrates the resulting Steiner graph that is passed to the process() function
(15a) and the corresponding distance matrix that represents distances between order nodes
in the final graph (15b) with the Steiner nodes removed.

(a) Final Steiner Graph.

0 1 2 3 4 5 6 7 8 9 10

0 0 10 14 15 13 19 12 10 12 23 14

1 10 0 12 17 11 17 18 8 2 13 8

2 14 12 0 9 1 9 10 4 12 9 14

3 15 17 9 0 10 8 5 13 15 12 17

4 13 11 1 10 0 10 11 3 13 10 15

5 19 17 9 8 10 0 9 13 15 12 17

6 12 18 10 5 11 9 0 14 16 13 18

7 10 8 4 13 3 13 14 0 10 13 12

8 12 2 12 15 13 15 16 10 0 11 10

9 23 13 9 12 10 12 13 13 11 0 13

10 14 8 14 17 15 17 18 12 10 13 0

(b) Final Distance Matrix.

Figure 15. Steiner graph and the distance matrix constructed from this Steiner graph as the output of the
process.py function.

38

4.1.3 Output Data Types

Finally, the resulting graph is saved in two formats:

� .tsp type is generated by the save_tsp_file() function as an input for the TSP
Concorde solver and follows the format described in TSPLIB [TSPLIB95]. An
example of such file is shown in Figure 16b;

� .graph files are used by the rest of the algorithms and follow the format shown in
Figure 16a and are generated by the save_graph_file() function.

#Nodes

n - number of nodes

node_0

...

node_n

#Edges

m - number of edges

node_0 node_1 weight(0,1)

...

node_i node_j weight(i,j)

...

node_m-1 node_m weight(m-1,m)

(a) .graph file format.

NAME: filename

TYPE: TSP

DIMENSION: 7

EDGE_WEIGHT_TYPE: EXPLICIT

EDGE_WEIGHT_FORMAT: FULL_MATRIX

EDGE_WEIGHT_SECTION

0 9 13 13 12 17 10

9 0 10 16 9 16 17

13 10 0 8 1 8 9

13 16 8 0 9 6 3

12 9 1 9 0 9 10

17 16 8 6 9 0 7

10 17 9 3 10 7 0

EOF

(b) .tsp file format (example).

Figure 16. The two file formats generated by the preprocessing stage representing the TSP graph.

39

4.2 TSP Algorithms and Solvers

To solve the TSP problem, local search algorithms are commonly used. They refine the
current solution iteratively by looking for a stronger one in its pre-defined neighborhood.
When there is no better solution in the given neighborhood, or when a certain number of
iterations has been completed, the algorithm terminates.

Let’s begin with describing the traditional λ -opt TSP operator. The theory behind these
operators is that a TSP instance’s solution tour can be improved by switching any of its
edges if the new edges reduce the tour’s length. In each step λ links of the current rout
are replaced by λ links in such a way that a shorter tour is achieved.

It is evident that an optimum tour for a TSP with n cities must be n-optimal. However, the
method’s complexity increases with the scale of the operator: 2-opt is a O(n2), 3-opt is a
O(n3), and so on, producing larger values of λ unusable.

We will use the following notation to describe the algorithms.

� c(·) the weight (cost) of an edge or a tour;

� G[i] array represents the neighbours of i in the graph G;

� T [i] represents the neighbours of i in the tour T , so its predecessor and successor;

� an edge is composed of a head and a tail: (ti, t j)

All of the implemented algorithms are classified as local search algorithms, Google OR-
Tools are also implementing an effective heuristic, while Concorde TSP is based on
the branch-and-cut algorithm (combination of cutting plane method and the branch-and-
bound algorithm). Before describing each of the algorithms and solvers in more detail,
the high level overview of the implementation is given in section 4.2.1.

It is also worth noting that the implementation of the TSP algorithms was performed
in reference to articles by Maheo [41], [42]. These papers are often referred to when
discussing the algorithms in the following sections.

40

4.2.1 Overview

The traveling salesman problem instance derived from the warehouse routing problem,
as was described in the previous section, is solved using the integrated third-party TSP
solvers and our Java implementation of the TSP heuristic algorithms. In order to use all
these TSP solving options in the same platform an extensible framework was created.

The abstract class TSP implements the essential functionality that is common for all
of the TSP algorithms and solvers. Each of them is implemented in a separate class that
inherits from the TSP class. They all implement the _optimize() method that solves
the TSP. The following TSP heuristic algorithms are implemented: Nearest-Neighbour,
2-opt, Lin-Kernighan.

For all the custom implemented TSP heuristics as well as for the Google OR-Tools inte-
gration the _optimize() method includes the calculations required for solving the prob-
lem based on the data provided by the .graph file. In the case of Concorde TSP, this
method calls its command line executable and solves the TSP based on the distance ma-
trix loaded in the .tsp file. The results of the Concorde executable are shown in the
console and parsed using Regular Expressions.

The Application class is responsible for running the TSP algorithms and solvers for all
the test files and saving the results into a csv file. All the .graph and .tsp files in the
specified directory with a defined prefix are iterated over. Each file name is generated
the way that it contains the test parameters and they are parsed into a TestParams data
structure to be used by algorithms and saved into a csv file.

Additionally, a GraphReader class is used for the .graph files to parse the graph data
into nodes and edges arrays that are used by the TSP algorithms and Google-OR solver.

An overview of the classes for the application can be seen in Figure 17. For the complete
class diagram see Appendix A.

41

TSP

Integer[][] edges
Integer[] nodes
Integer[] heuristicPath
int heuristicCost
Map<String, Route> routes
Long runtime

TSP(Integer[] nodes, Integer[][] edges, boolean fast)
void save(Integer[] path, int cost)
void optimize()
void _optimize()

Route

Integer[] path;
int cost;

Tour

List<Integer> path;
Set<Pair<Integer, Integer>> edges;

Concorde

final String filename;
final TestParams data;

_optimize()

TestParams

Integer seed;
Integer batch;
Integer testCase;
Integer crossAisles;
Integer aisles;
Integer rows;
Integer orders;
String policy;
Float aCapacity;
Float bCapacity;
String algorithm;
String route;
Integer distance;
Long runtime;

Object clone()
String[] getRow()

GoogleOR

RoutingIndexManager manager;
RoutingModel routing;
RoutingSearchParameters searchParameters;
final int transitCallbackIndex;

_optimize()

LinKernighan

Set<String> solutions;
Map<Integer, List<Integer>> neighbors;

boolean improve()
_optimize()

TwoOpt

Integer[] swap(Integer[] oldPath, int start, int end)
Saved improve(Integer[] bestPath, int size)
_optimize()

Saved

int n
int m
int change

NearestNeighbour

_optimize()

Application

TestParams parseFilename(String filename)
void runAlgorithm(algorithm, tsp, original, writer)
void main(String[] args)

GraphReader

Integer[] nodes;
Integer[][] edges;

GraphReader(String fileName)
void readEdges(BufferedReader in)
void readNodes(BufferedReader in)

Figure 17. Class Diagram for Java Application.

42

4.2.2 Nearest-Neighbour Algorithm

The basic operator of the λ -operators is the 1-opt operator. The algorithm will choose the
nearest neighbor for each node before all nodes have been reached, at which point it will
reconnect with the starting node. The pseudocode for the algorithm is given in Listing 6.

The Nearest Neighbour algorithm is inefficient since it does not consider the final relink-
ing stage and may result in a local solution with a very long edge to return to the depot.
Figure 18 illustrates the route constructed by this algorithm for the given warehouse.

node = 0
visited = set()
while len(visited) < len(nodes):

tour.append(node)
visited.add(node)
Find the closest, non-visited neighbour
next = find_closest(G[i], visited)
node = i

Listing 6. Nearest Neighbour pseudocode as described by Maheo [41].

(a) Schematic representation. (b) Graph representation.

Figure 18. Path constructed by the Nearest Neighbour algorithm. Path cost: 88.

43

4.2.3 2-opt algorithm

The 2-opt algorithm is most likely the most fundamental and commonly used TSP local
search heuristic. 2-Opt begins with an arbitrary initial tour and incrementally strengthens
it by allowing consecutive adjustments that exchange two of the tour’s edges with two
other edges. Here, we want to choose two edges that, if swapped, will result in a shorter
tour. The algorithm terminates in a local optimum in which no further improving step is
possible.

A 2-opt move consists in finding a pair of nodes (i and j) for which changing their outgoing
edge with a new one will reduce the cost of the tour. In other words, we replace: (i, i+1)
with (i, j) and (j, j+ 1) with (i+ 1, j+ 1). The gain offered by such move is calculated
as the difference between the old edges and the new ones as shown in Equation (3). If the
gain is positive, we have an improving move.

g = c(i, i+1)+ c(j, j+1)− c(i, j)− c(i+1, j+1) (3)

To complete the move, the tour is kept unchanged until node i, add its new neighbor (tail
of the chosen edge), append the tour between i+1 and j in reverse order, and finish with
the tail of j and the rest of the original tour. This is known as a "swap." An example of
such swap is shown in Figure 19.

Figure 22 illustrates the route constructed by this algorithm for the given warehouse.

Figure 19. An example of a 2-opt move.

44

while improved:
best = c(tour) # start with an initial tour
size = len(tour)
improved = False
for i in tour[0:size-3]:

i+2 because i+1 will be the tail of the edge
for j in tour[i+2:size]:

Calculate gain: old edges - new edges
gain = c(i, i+1) + c(j, j+1) - c(i, j) - c(i+1, j+1)
if gain > 0:

best -= gain
i is the last element in place
tour = swap(tour, i + 1, j)
improved = True
break # return to while

Listing 7. 2-opt pseudocode as described by Maheo [41].

(a) Schematic representation. (b) Graph representation.

Figure 20. Path constructed by the 2-opt algorithm. Path cost: 88.

45

4.2.4 Lin-Kernighan

A generalization of the simple principle that defines the 2-opt algorithm forms the basis
for one the most effective [43] approximate algorithms for solving the symmetric TSP,
the Lin-Kernighan algorithm.

As it was described in the beginning of this section, Lin-Kernighan algorithm is a variation
of the λ -opt algorithm. The λ -opt algorithms is based on the consept of λ -opt:

"A tour is said to be λ -optimal if it is impossible to obtain a shorter tour by replacing any

λ of its links by other set of λ links." [43]

Unfortunately, the number of operations to test all λ -exchanges increases rapidly as the
number of cities increases. In a naive implementation the testing of a λ -exchange has a
time complexity of O(nλ) . Additionally, the λ value must be defined in advance. The
Lin-Kernighan heuristic answers the question: which λ -opt to execute to improve the

current tour?

The algorithm keeps two sets of edges to represent the moves to execute: one with edges
that will be omitted from the current tour and one with edges that will be added. Removing
and inserting λ edges is equal to performing a λ -opt step.

Lin-Kernighan begins by choosing a node from which to begin the current tour (t1); from
there, it chooses either the predecessor or successor of the node on the tour (t2), creating
the first edge to eliminate. Then it chooses the first edge with a positive gain to have in
the neighbours of t2 that do not belong to the tour (t3). It chooses either its predecessor
or successor from t3 (t4). If relinking t4 with t1 results in a better tour, we restart the
algorithm with the new tour; otherwise, if the gain remains positive, we search for another
node outside of the tour (t5) with a possible edge to add. This process continues. We may
define four sections of the algorithm based on the description in Helsgaun’s report [43]:

1. The main loop which will be use to restart the search (Listing 8).

2. The selection of the first two edges, that is selecting: t1, t2, and t3.

3. The selection of the next edge to remove, which is called chooseX(), during which
we may stop the search if we have an improved tour.

4. The selection of the next edge to add, chooseY().

46

tour is the current tour to improve
while improved:
improved = improve(tour)

Listing 8. Lin-Kernighan: Main Loop; as described by Maheo [41].

The move selection loop (Listing 9) is the core of the algorithm: it chooses the nodes to
optimise from, the first edge to remove and the first to add, then it calls chooseX().

tour is the current tour to otimise
for t1 in tour: # Step 2

for t2 in tour.around(t1): # Step 3
x1 = (t1, t2)
X = set(x1)
for t3 in neighbours[t2]: # Step 4

y1 = (t2, t3)
Y = set(y1)
gain = c(x1) - c(y1)
if gain > 0:

if self.chooseX(tour, t1, t3, gain, broken, joined): # Step 6
Return to Step 2, that is the initial loop
return True

Else try the other options, note how we retain X and Y with the
right data. (Step 8-12)

No improvement found
return False

Listing 9. Lin-Kernighan: Move Selection Loop; as described by Maheo [41].

The rest of the pseudocode along with the detailed description of the implementation
can be found in Maheo [42] and won’t be replicated in this work, since we refer to his
implementation entirely.

The results of running the implemented Lin-Kernighan algortihm can be seen in 21.

47

(a) Schematic representation.

4

108

0

1

6

3

5 9

2

4

7

S00 S01 S02 S03 S04 S05

S10 S11 S12 S13 S14 S15

S20 S21 S22 S23 S24 S25

(b) Graph representation.

Figure 21. Path constructed by the Lin-Kernighan algorithm. Path cost: 84.

4.2.5 TSP Solvers: Google OR-Tools and Concorde TSP

The integration of the two TSP solvers was done in a similar way to the other algorithms
in order to minimize the runtime overhead. Another goal was to completely integrate the
solvers with the main application so that the same output format could be achieved for all
the algorithms and solvers.

For Google OR-Tools we based our integration on the official example [44] provided by
Google. The only change was that all of the tool’s setup was placed in the constructor of
the GoogleOR class and the actual TSP solver was called in the optimize() function. In
this TSP solver the local search algorithm and first solution strategy can be selected from
a list of available heuristics. For more details see Google OR-Tools [45].

Concorde TSP is slightly different from the rest of the solvers in several aspects. Firstly,
because instead of calling a library we used the command line tool. Also, unlike the
rest of the solvers, where the entire _optimize() method is timed to receive runtime

48

results, for Concorde TSP the runtime values were provided by the tool itself with slight
modifications to the Concorde source code.

The modifications mainly affected the format of the runtime result, changing it from show-
ing the runtim in seconds to nanoseconds. In order to achieve that, the timing function
was changed to a more modern one that supported timing in nanoseconds.

To support all different test cases considered in our simulation, different Concorde TSP
executables were used. This is due to the limitations of the Concorde software. Lin-
Kernighan executable (linkern) only supports graphs that contain over 10 nodes. For
that reason in tests where graphs did not contain enough nodes the concorde executable
was used.

Finally, one regular expression is used to parse the output of each executable in order to
store the runtime results.

(a) Schematic representation.

4

108

0

1

6

3

5 9

2

4

7

S00 S01 S02 S03 S04 S05

S10 S11 S12 S13 S14 S15

S20 S21 S22 S23 S24 S25

(b) Graph representation.

Figure 22. Path constructed by Google OR-Tools TSP. Path cost: 84.

49

4.3 Data Output

Output of the algorithms is a single .csv file that contains the following data

� test parameters:

– random seed: seed

– # of cross aisles: cross_aisles

– # of aisles: aisle

– # of rows: rows

– # of orders: orders

– storage policy: policy

– # of aisles of type A (or %): a_capacity,

– # of aisles of type B (or %): b_capacity

� simulation results:

– which algorithm: algorithm

– found route: route

– route length: distance

– run time: runtime

This data is generated for all of the test cases and processed using Google Sheets.

50

5 Results and Analysis

The experimental design consists of several factors: routing algorithms, storage poli-
cies, number of orders, and parameters defining the warehouse layout. The routing al-
gorithms factor includes Nearest Neighbour, 2-opt, Lin-Kernighan (LK) algorithms, and
TSP solvers: Google OR-Tools and Concorde TSP. The storage policy factor consists of
random, within-aisle, and across-aisle storage policies. The parameters of the warehouse
vary as shown in Table 3. The a_capacity and b_capacity for the ABC policy are
defined manually for each of the values of the aisle parameter (Table 3b). For AB-
CACROSS these parameters are fixed and set to a_capacity = 0.1 and b_capacity =

0.2.

Table 3. Warehouse parameters used in the simulation.

Cross-Aisles Aisles Rows Orders Storage Policy
1 4 50 5 RANDOM
3 8 100 7 ABC
5 12 500 20 ABCACROSS
11 20 50

(a) Test Parameters.

Aisles a_capacity b_capacity
4 1 2
8 1 3
12 2 4
20 4 8

(b) a_capacity and b_capacity.

All possible combinations of these parameters are found and each combination defines a
single test case. To gain insight into the performance of the different heuristics presented
in Section 4 we set up a large simulation experiment based on these test instances.

Each of the algorithms was applied to the generated 576 test cases, so that in total 2880 test
configurations were obtained, which were each replicated 10 times for statistical signifi-
cance using different seed values for the random number generator. In all of the settings,
the length between two consecutive pick aisles and the width of each cross aisle is equal
to 1. For each of these situations, we receive the route found by each algorithm, travel
distance, and runtime values (in nanoseconds) by the means of simulation.

Computational testing was done on a 2,7 GHz Dual-Core Intel Core i5 processor with 8
GB 1867 MHz RAM. Results were saved as a csv file as described in Section 4.3 and
they are analyzed using Google Sheets online spreadsheets platform.

This section will discuss several aspects of the simulation results. First, we will address
the general trends of each algorithm on all of the generated test cases, by comparing the

51

route length calculated. Next, the impact on the runtime and route cost of varying a sin-
gle parameter in a fixed warehouse configuration is analyzed and compared for different
algorithms. Results of the simulation are shown in the form of tables, charts and plots.

It can be seen from Table 4 that Concorde TSP is the algorithm that finds the lowest cost
routes in most of the test cases, specifically 98.26%. This fact is the reason that further
in the analysis Concorde will be referred to as the baseline algorithm in terms of minimal
route cost. On the other hand, we can also see that the algorithm that hasn’t produced
any minimal results and produced the worst route costs in over 75% of total test cases is
the Greedy (Nearest-Neighbour) algorithm. This algorithm is also the one that has the
highest deviation values, making it the least optimal among the tested algorithms.

Lin-Lernighan (LK) and Google OR-tools are both producing near baseline results, with
0.67% average deviation for LK and half that at 0.3% for Google OR. However, LK is not
as consistent at achieving the optimal results (optimal refers to the best result among the
algorithms), while Google OR-tools achieve them in almost half of the test instances.

When evaluating these average results, it is worth noting that the 2-opt algorithm does
not stand out as most or least optimal (when comparing to Concorde), generating average
results with a deviation of about 7%. These values, however, are insufficient for us to
draw any conclusions, so we will go through each algorithm in more depth later on.

Table 4. General Statistics.

Algorithm AVG deviations from baseline (%) % of most baseline results % of least baseline results

Greedy 10.92% - 76.22%

2-opt 7.53% 0.35% 23.96%

LK 0.67% 9.55% -

OR-tools 0.30% 49.65% -

Concorde 0.00% 98.26% -

52

We’d like to note that in order to evaluate the influence of the parameters on the perfor-
mance and calculated route lengths we selected a base test configuration with 3 blocks,

8 aisles, 100 rows, 7 orders and Random policy selected as the storage policy. We then
changed a single parameter in this configuration to receive the results discussed further in
this section.

In terms of runtime 2-opt shows best results and for that reason it is used as a baseline
for evaluating the rest of the algorithms. We may refer to it as "optimal" in the context
of this work. For each algorithm Table 6 shows the performance decrease value of that
algorithm when compared to the performance of 2-opt on the same test case and Table 7
shows the actual runtime values rounded to ms (10−3s). These performance decreases are
also visualised by charts Figure 23 for clearer view of peaks and trends.

(a) Number of blocks. (b) Number of aisles.

(c) Number of rows. (d) Type of the storage policy.

Figure 23. Bar Charts illustrating runtime decrease of the TSP solvers and algorithms when compared to
2-opt with different changing parameters.

The first highlight of the runtime results is the consistently low degradation of the Greedy
algorithm. This is opposed to the previously noted trend of this algorithm producing the
longest routes, making it less of an interest for us. At the same time, Lin-Kernighan on

53

average performs better than Google OR and Concorde except for the two cases where a
larger number of orders is defined. On the same test cases when changing the number of
orders from 20 to 50 we notice thatperformance degradation for all three of the other al-
gorithms drops around 60%, implying that these algorithms appear to handle the growing
number of orders more efficiently than LK and 2-opt. It also expands to the other values
of orders parameter, meaning thatperformance decrease consistently reduces with the
increase of the number of orders.

These results can be seen more clearly from Table 5 which shows that Greedy, Google
and Concorde scale in a more stable manner when increasing the number of orders than
2-opt. LK shows over 17.4 times increase in runtime when orders number is changed
from 7 to 20, compared to only 1.8 time for Google OR and 2.1 times for Concorde.
We relate this large difference in the runtime degradation to the fact that Lin-Kernighan
algorithm was implemented in an inefficient manner and should be further optimized in
terms of memory usage and data structure choice. This Algorithm is more complex than
Nearest-Neighbour and 2-opt algorithms, as was described in Section 4.2.4 and therefore
requires a more careful approach in implementation to achieve better performance.

Table 5. Performance changes with the increase in the number of orders.

Orders change 2-opt Google OR Greedy LK Concorde

from 5 to 7 1.18x 0.42x 0.90x 3.05x 1.19x

from 7 to 20 7.75x 3.85x 1.83x 17.4x 2.18x

from 20 to 50 13.67x 4.51x 3.12x 20.7x 5.45x

Another notable fact from this table and from the original runtime results is that when
the storage policy is changed from random to any of the two class-based policies, the
runtimes increase for all of the algorithms except for Concorde, drops by 23% when the
storage policy is set to ABCACROSS instead of Random.

54

Table 6. Runtime decreases compared to 2-opt. In bold: smallest, in italic: largest degradation values.

Cross Aisles Aisles Rows Orders Storage PolicyGoogle OR Greedy LK Concorde

1 8 100 7 RANDOM 344.3x 4.2x 140.1x 466.7x
3 8 100 7 RANDOM 758.0x 4.0x 144.7x 732.5x
5 8 100 7 RANDOM 623.4x 4.1x 262.8x 424.4x
11 8 100 7 RANDOM 636.6x 3.4x 236.9x 543.4x

3 4 100 7 RANDOM 744.3x 3.9x 163.8x 763.5x
3 8 100 7 RANDOM 758.0x 4.0x 144.7x 732.5x
3 12 100 7 RANDOM 679.9x 3.8x 222.1x 686.6x
3 20 100 7 RANDOM 1535.8x 4.3x 254.5x 813.2x

3 8 50 7 RANDOM 558.5x 4.0x 116.2x 604.4x
3 8 100 7 RANDOM 758.0x 4.0x 144.7x 732.5x
3 8 500 7 RANDOM 555.1x 3.4x 559.7x 598.3x

3 8 100 5 RANDOM 2132.5x 5.2x 24.9x 727.9x
3 8 100 7 RANDOM 758.0x 4.0x 133.6x 732.5x
3 8 100 20 RANDOM 376.4x 0.9x 300.6x 206.1x
3 8 100 50 RANDOM 124.1x 0.2x 454.5x 82.1x

3 8 100 7 ABC 765.1x 4.0x 227.4x 685.8x
3 8 100 7 ACROSS 337.1x 2.8x 152.3x 224.4x
3 8 100 7 RANDOM 758.0x 4.0x 144.7x 732.5x

Table 7. Runtime results in ms (10−3 s). In bold: smallest, in red italic: largest runtime values.

Cross Aisles Aisles Rows Orders Storage Policy 2-opt Google OR Greedy LK Concorde

1 8 100 7 RANDOM 0.034 11.580 0.140 4.713 15.694
3 8 100 7 RANDOM 0.024 18.152 0.095 3.465 17.542
5 8 100 7 RANDOM 0.032 20.062 0.132 8.458 13.657
11 8 100 7 RANDOM 0.025 16.164 0.087 6.016 13.799

3 4 100 7 RANDOM 0.026 18.981 0.101 4.178 19.471
3 8 100 7 RANDOM 0.024 18.152 0.095 3.465 17.542
3 12 100 7 RANDOM 0.022 15.220 0.086 4.971 15.370
3 20 100 7 RANDOM 0.025 38.139 0.106 6.319 20.193

3 8 50 7 RANDOM 0.023 13.073 0.094 2.720 14.148
3 8 100 7 RANDOM 0.024 18.152 0.095 3.465 17.542
3 8 500 7 RANDOM 0.027 14.950 0.091 15.073 16.114

3 8 100 5 RANDOM 0.020 43.102 0.106 0.503 14.712
3 8 100 7 RANDOM 0.024 18.152 0.095 3.200 17.542
3 8 100 20 RANDOM 0.186 69.874 0.174 55.811 38.260
3 8 100 50 RANDOM 2.538 314.880 0.544 1153.594208.352

3 8 100 7 ABC 0.026 20.219 0.105 6.010 18.125
3 8 100 7 ACROSS 0.060 20.319 0.169 9.179 13.529
3 8 100 7 RANDOM 0.024 18.152 0.095 3.465 17.542

55

The overall deviation trends in Table 9 correspond to the results discussed earlier based
on the general deviation trends (Table 4 with Google OR results deviating the least from
baseline and LK results slightly worse. The results shown in this table and in Table 8
will be analyzed in more detail with respect to the influence of changing of each of the
warehouse parameters.

Starting at the bottom of Table 9 and from Figure 24 it can be seen that change in storage
policy affects the four algorithms differently. While 2-opt and Greedy algorithms show
more than twice improvement in results when the policy is changed from Random to any
of the two class-based policies, LK and Google OR show slight decrease in precision.
Specifically, Nearest-Neighbour algorithm goes down from 14% deviation when Random
policy is set to 7.87% with ABCACROSS and even further down with ABC at 3.29%.

Figure 24. Deviation changes of the TSP solvers and algorithms with the change of storage policy type.

56

Figure 25. Distance changes of the TSP solvers and algorithms with the change of storage policy type.

Google OR is not affected by the change in neither cross-aisles, aisles nor rows, while
other algorithms are significantly more sensitive to these changes but don’t follow specific
trends. However, when analyzing the influence of the number of orders we can see that
the general trend is that with the increase of that number rises the deviation, because of
the fact that the number of orders (nodes) is the main parameter adding complexity to the
traveling salesman problem.

Interestingly, LK shows better result than Google OR on the largest tested number of
orders (50). Here the difference is at almost 1% while in most other cases this value
never exceeds 0.1 except for two more cases: when the number of blocks is only 1 and
when the number of rows is equal to 50. This leads us to a conclusion that LK generally
finds better routes in larger warehouse cases. For that reason, we consider optimizing the
implementation of LK algorithm in order to improve the performance results, making it
the best choice of algorithm in the context of this work.

At the same time the results of the Greedy algorithm are consistent with its overall bad
trends: the average deviation remains at around 14% while the worst deviation can be
noticed in the case of largest order number at almost 20%.

Overall, each of the algorithms in the current implementation has advantages and disad-
vantages.

57

(a) Number of blocks. (b) Number of aisles.

(c) Number of rows. (d) Number of orders.

Figure 26. Plots illustrating distance changes of the TSP solvers and algorithms with different changing
parameters.

Table 8. Route Length (Distance) values of each algorithm on the selected test cases. In bold: smallest, in
italic: largest distance values.

Cross Aisles Aisles Rows Orders Storage Policy 2-opt Google OR Greedy LK Concorde Min route Max route

1 8 100 7 RANDOM 372.4 371.4 379.4 374 371.4 371.4 379.4
3 8 100 7 RANDOM 645.4 593.6 676.8 593.6 593.6 593.6 676.8

5 8 100 7 RANDOM 958 933.4 993.4 933.8 933.4 933.4 993.4
11 8 100 7 RANDOM 1957.8 1917.4 1970.2 1918.2 1917.4 1917.4 1970.2

3 4 100 7 RANDOM 614.2 564.4 624.8 564.4 564.4 564.4 624.8
3 8 100 7 RANDOM 645.4 593.6 676.8 593.6 593.6 593.6 676.8
3 12 100 7 RANDOM 683.2 626.6 686.8 627.2 626.6 626.6 686.8
3 20 100 7 RANDOM 745.8 692.4 757 696.8 692.4 692.4 757

3 8 50 7 RANDOM 342.6 314.2 358.2 320.6 314.2 314.2 358.2
3 8 100 7 RANDOM 645.4 593.6 676.8 593.6 593.6 593.6 676.8
3 8 500 7 RANDOM 3155.2 2975.8 3348.8 2976.8 2975.8 2975.8 3348.8

3 8 100 5 RANDOM 565.2 531.8 559.2 531.8 531.8 531.8 565.2
3 8 100 7 RANDOM 645.4 593.6 676.8 593.6 593.6 593.6 676.8
3 8 100 20 RANDOM 1160.8 1011.4 1096.4 1011.8 1009 1009 1160.8
3 8 100 50 RANDOM 1829.4 1680.8 1985.6 1665.8 1662 1662 1985.6

3 8 100 7 ABC(1,3) 578.4 559.2 577.2 559.2 558.8 558.8 578.4
3 8 100 7 ACROSS(0.1,0.2) 436.8 424.6 458 425 424.6 424.6 458
3 8 100 7 RANDOM 645.4 593.6 676.8 593.6 593.6 593.6 676.8

58

(a) Number of blocks. (b) Number of aisles.

(c) Number of rows. (d) Number of orders.

Figure 27. Plots illustrating deviation of the TSP solvers and algorithms with different changing parameters.

Table 9. Route Length Deviation values of each algorithm on the selected test cases. In bold: smallest, in
italic: largest deviation values.

Cross Aisles Aisles Rows Orders Storage Policy 2-opt Google OR Greedy LK Min deviation % Max deviation %

1 8 100 7 RANDOM 0.27% 0.00% 2.15% 0.70% 0.27% 2.15%
3 8 100 7 RANDOM 8.73% 0.00% 14.02% 0.00% 0.00% 14.02%
5 8 100 7 RANDOM 2.64% 0.00% 6.43% 0.04% 0.04% 6.43%
11 8 100 7 RANDOM 2.11% 0.00% 2.75% 0.04% 0.04% 2.75%

3 4 100 7 RANDOM 8.82% 0.00% 10.70% 0.00% 0.00% 10.70%
3 8 100 7 RANDOM 8.73% 0.00% 14.02% 0.00% 0.00% 14.02%
3 12 100 7 RANDOM 9.03% 0.00% 9.61% 0.10% 0.10% 9.61%
3 20 100 7 RANDOM 7.71% 0.00% 9.33% 0.64% 0.64% 9.33%

3 8 50 7 RANDOM 9.04% 0.00% 14.00% 2.04% 2.04% 14.00%
3 8 100 7 RANDOM 8.73% 0.00% 14.02% 0.00% 0.00% 14.02%
3 8 500 7 RANDOM 6.03% 0.00% 12.53% 0.03% 0.03% 12.53%

3 8 100 5 RANDOM 6.28% 0.00% 5.15% 0.00% 0.00% 6.28%
3 8 100 7 RANDOM 8.73% 0.00% 14.02% 0.00% 0.00% 14.02%
3 8 100 20 RANDOM 15.04% 0.24% 8.66% 0.28% 0.28% 15.04%
3 8 100 50 RANDOM 10.07% 1.13% 19.47% 0.23% 0.23% 19.47%

3 8 100 7 ABC(1,3) 3.51% 0.07% 3.29% 0.07% 0.07% 3.51%
3 8 100 7 ACROSS(0.1,0.2) 2.87% 0.00% 7.87% 0.09% 0.09% 7.87%
3 8 100 7 RANDOM 8.73% 0.00% 14.02% 0.00% 0.00% 14.02%

59

5.1 Case Study: Kuehne + Nagel Warehouse

The following warehouse layout characteristics were provided by Kuehne + Nagel:

� Warehouse dimensions: 197200 sf (340 feet by 560 feet)

� Parallel-aisle warehouse for the Picking operation

� Number of aisles: 23 (2 are end aisles ’one-sided’, 21 ’full’ aisles with shelving on
both sides)

� Number of blocks: 3; blocks may vary in length

� Number of locations per subaisle: 500; so each end aisle has 500 and each full aisle
has 1000 pick locations

� Average order list size: Ecomm @ 1.1 units/order; Store orders @ 7 units/order on
Average

� Storage Policy: Random

� Routing: Use robot technology to bring order to pick location; picker uses serpen-
tine path to locate robots in their zone and picks robots needs as they cross path.

This gives us the following configuration:

#For Kuehne+Nagel
BLOCKS = [3]
AISLES = [23]
ROWS = [500]
STORAGE_POLICY = ['RANDOM']
ORDERS = [7]
ABC_CAPACITY = [(3, 5)]
ABC_ACROSS_CAPACITY = [(0.1, 0.2)]
SEEDS = list(range(10))

Listing 10. Global array values set in generate.py to generate the test values for the Kuehne + Nagel
case.

For this specific configuration we summarized the results in the following form: the av-
erage route length and average runtime in microseconds are depicted in Table 10. From
this table we can derive that 2-opt shows the best performance, similarly to the results
achieved in the main simulation. Based on this fact Figure 28b represents the decrease of
the other four algorithms when compared to the 2-opt algorithm’s runtime. The Figure 28a

60

shows the deviation of the route costs found by the four algorithms besides Concorde (that
remains the baseline of the evaluation).

We can see controversial results from these two figures. While Greedy shows the lowest
performance decrease from the 2-opt algorithm it also shows the highest deviation from
the baseline at around 11%, which makes it inappropriate for this case. On the contrary,
LK shows near baseline results with deviation of only 0.02% but the performance of this
algorithm is the worst of all the rest.

This analysis leads us to comparing the remaining two algorithms: 2-opt and Concorde.
The advantage of the Concorde solver is that it achieves minimal results in most of the
cases, including the Kuehne + Nagel case. However, it is over 10 times slower than 2-opt.
On the other side, 2-opt is the fastest of all the tested algorithms but it produces routes
with over 5% increase in cost.

(a) Deviation from baseline route length. (b) Performance performance decrease compared to 2-opt.

Table 10. Run results for the Kuehne + Nagel case.

2-opt Concorde Google OR Greedy LK

Route Length (AVG) 3378.8 3200.8 3200.8 3551.6 3201.6

Runtime (mcs, AVG) 1.552705 16.431 89.045872 1.876476 140.447075

However, for both of these TSP solving options, the disadvantages are almost negligible.
In case of the performance decrease of the Concorde, solver when looking at the actual
numbers, we can see that the difference in runtime is only 15 microseconds, which is
insignificant for a human user or even some machines.

61

On other hand, the 5% increase in route length as calculated by the 2-opt algorithm is,
in our case, only at around 160 units, which in a large warehouse may or may not be
an important decision point since the total distances are considerably larger. It would,
influence the time travel time and if a slow machine or a human picker are performing the
task this value might be more significant.

Another important point we’d like to make is that in the current layout, this warehouse
allows blocks to be of different lengths and the order picking is automated with robot
systems that may start and end their routes anywhere in the warehouse. These two aspects
of the warehouse are not yet considered in the current implementation of the algorithms,
but are part of our future work.

62

6 Summary

Selecting a suitable algorithm for solving the warehouse routing problem strongly de-
pends on the requirements and parameters of the given warehouse. We have derived the
strong connection between the performance and the results of each of the tested algo-
rithms and the warehouse parameters, especially with the number of orders and the type
of the storage policy defined in the warehouse. At the same time, some algorithms have
shown better results on test cases that could characterize smaller warehouse types, while
the others scaled better and showed significantly better performance when the complexity
of the underlying traveling salesman problem increased with the increase of the ware-
house size and number of orders.

Another important aspect that needs to be considered is the complexity of the imple-
mented TSP algorithms and solvers. While Google OR-tools was simpler in our integra-
tion process it may cause issues for mobile platforms with certain types of processors,
that are often used in the warehouse. On the other hand Concorde TSP, that produced
best route options and showed stable performance on all of the tested warehouse config-
urations, may also be difficult in integration, but more suitable for large warehouse that
accommodate appropriate devices for such integration.

Both Lin-Kernighan and 2-opt are commonly used for solving TSP problems and are easy
to integrate. In the case of Lin-Kernighan, the algorithm has produced results closest to
the baseline, showing worse performance results in terms of runtime. We are convinced
that this problem is resolvable if more time was spent on optimizing the implementation
of this algorithm.

Overall, we can see from the results of this work that using TSP algorithms to solve
warehouse order picking problem is a viable solution that deserves further investigation.
While the performance of the preprocessing stage wasn’t considered in the evaluation, we
believe that in its current state it serves its purpose and can be further modified for future
use.

63

References
[1] G. Cormier and P. Eng, “A brief survey of operations research models for ware-

house design and operation”, CORS-SCRO Bulletin, vol. 31, no. 3, pp. 15–20, 1997.
[2] J. Gu, M. Goetschalckx, and L. F. McGinnis, “Research on warehouse operation: A

comprehensive review”, European journal of operational research, vol. 177, no. 1,
pp. 1–21, 2007.

[3] M. Goetschalckx and J. Ashayeri, “Classification and design of order picking”,
Logistics World, 1989.

[4] R. De Koster, T. Le-Duc, and K. J. Roodbergen, “Design and control of ware-
house order picking: A literature review”, European journal of operational re-
search, vol. 182, no. 2, pp. 481–501, 2007.

[5] J. Bartholdi, S. Hackman, and G. I. of Technology., Warehouse and Distribution
Science. Supply Chain, Logistics Institute, School of Industrial, and Systems En-
gineering, Georgia Institute of Technology, 2008. [Online]. Available: https://
books.google.se/books?id=aNFFnQAACAAJ.

[6] K. J. Roodbergen and R. Koster, “Routing methods for warehouses with multi-
ple cross aisles”, International Journal of Production Research, vol. 39, no. 9,
pp. 1865–1883, 2001.

[7] C. G. Petersen and R. W. Schmenner, “An evaluation of routing and volume-based
storage policies in an order picking operation”, Decision Sciences, vol. 30, no. 2,
pp. 481–501, 1999.

[8] C. G. Petersen and G. Aase, “A comparison of picking, storage, and routing policies
in manual order picking”, International Journal of Production Economics, vol. 92,
no. 1, pp. 11–19, 2004.

[9] T. Le-Anh and M. De Koster, “A review of design and control of automated guided
vehicle systems”, European Journal of Operational Research, vol. 171, no. 1,
pp. 1–23, 2006.

[10] C. Theys, O. Bräysy, W. Dullaert, and B. Raa, “Using a tsp heuristic for routing
order pickers in warehouses”, European Journal of Operational Research, vol. 200,
no. 3, pp. 755–763, 2010.

[11] Eurostat, “Warehousing and transport support services statistics - nace rev. 2”,
2015.

[12] J. D. Smith, The warehouse management handbook. Tompkins press, 1998.
[13] K. B. Ackerman, Practical handbook of warehousing. Springer Science & Business

Media, 2012.
[14] K. J. Roodbergen, I. F. Vis, and G. D. Taylor Jr, “Simultaneous determination of

warehouse layout and control policies”, International Journal of Production Re-
search, vol. 53, no. 11, pp. 3306–3326, 2015.

[15] S. T. Hackman, E. H. Frazelle, P. M. Griffin, S. O. Griffin, and D. A. Vlasta,
“Benchmarking warehousing and distribution operations: An input-output ap-
proach”, Journal of Productivity Analysis, vol. 16, no. 1, pp. 79–100, 2001.

[16] L. M. Pohl, R. D. Meller, and K. R. Gue, “Optimizing fishbone aisles for dual-
command operations in a warehouse”, Naval Research Logistics (NRL), vol. 56,
no. 5, pp. 389–403, 2009.

[17] J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco, Facilities plan-
ning. John Wiley & Sons, 2010.

64

https://books.google.se/books?id=aNFFnQAACAAJ
https://books.google.se/books?id=aNFFnQAACAAJ

[18] K. Choe, “Aisle-based order pick systems with batching, zoning, and sorting.”,
1992.

[19] W. H. Hausman, L. B. Schwarz, and S. C. Graves, “Optimal storage assignment
in automatic warehousing systems”, Management science, vol. 22, no. 6, pp. 629–
638, 1976.

[20] M. De Koster, E. S. Van der Poort, and M. Wolters, “Efficient orderbatching meth-
ods in warehouses”, International Journal of Production Research, vol. 37, no. 7,
pp. 1479–1504, 1999.

[21] K. J. Roodbergen, “Storage assignment for order picking in multiple-block ware-
houses”, in Warehousing in the global supply chain, Springer, 2012, pp. 139–155.

[22] Erasmus logistica, https://www.erim.eur.nl/material-handling-forum/
research-education/tools, Accessed: 2021-05-10.

[23] J. M. Jarvis and E. D. McDowell, “Optimal product layout in an order picking
warehouse”, IIE transactions, vol. 23, no. 1, pp. 93–102, 1991.

[24] G. Cornuéjols, J. Fonlupt, and D. Naddef, “The traveling salesman problem on a
graph and some related integer polyhedra”, Mathematical programming, vol. 33,
no. 1, pp. 1–27, 1985.

[25] L. Pansart, N. Catusse, and H. Cambazard, “Exact algorithms for the order picking
problem”, Computers & Operations Research, vol. 100, pp. 117–127, 2018.

[26] R. M. Karp, “Reducibility among combinatorial problems”, in Complexity of com-
puter computations, Springer, 1972, pp. 85–103.

[27] Y. Geng, “On warehouse routing problems”, Ph.D. dissertation, 2005.
[28] H. H. Hoos and T. Stützle, Stochastic local search: Foundations and applications.

Elsevier, 2004.
[29] C. H. Papadimitriou, “On the complexity of unique solutions”, J. ACM, vol. 31,

no. 2, pp. 392–400, 1984-03, ISSN: 0004-5411. DOI: 10.1145/62.322435. [On-
line]. Available: https://doi.org/10.1145/62.322435.

[30] L. Pansart, N. Catusse, and H. Cambazard, “Exact algorithms for the picking prob-
lem: Thesis”, 2016.

[31] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-
salesman problem”, Journal of the operations research society of America, vol. 2,
no. 4, pp. 393–410, 1954.

[32] L. B. Schwarz, S. C. Graves, and W. H. Hausman, “Scheduling policies for auto-
matic warehousing systems: Simulation results”, AIIE transactions, vol. 10, no. 3,
pp. 260–270, 1978.

[33] D. R. Gibson and G. P. Sharp, “Order batching procedures”, European journal of
operational research, vol. 58, no. 1, pp. 57–67, 1992.

[34] H. D. Ratliff and A. S. Rosenthal, “Order-picking in a rectangular warehouse: A
solvable case of the traveling salesman problem”, Operations research, vol. 31,
no. 3, pp. 507–521, 1983.

[35] R. De Koster and E. Van der Poort, “Routing orderpickers in a warehouse: A com-
parison between optimal and heuristic solutions”, IIE transactions, vol. 30, no. 5,
pp. 469–480, 1998.

[36] R. W. Hall, “Distance approximations for routing manual pickers in a warehouse”,
IIE transactions, vol. 25, no. 4, pp. 76–87, 1993.

65

https://www.erim.eur.nl/material-handling-forum/research-education/tools
https://www.erim.eur.nl/material-handling-forum/research-education/tools
https://doi.org/10.1145/62.322435
https://doi.org/10.1145/62.322435

[37] P. A. Makris and I. G. Giakoumakis, “K-interchange heuristic as an optimization
procedure for material handling applications”, Applied Mathematical Modelling,
vol. 27, no. 5, pp. 345–358, 2003.

[38] M. Masae, C. H. Glock, and P. Vichitkunakorn, “Optimal order picker routing in
the chevron warehouse”, IISE Transactions, vol. 52, no. 6, pp. 665–687, 2020.

[39] Click library, https://palletsprojects.com/p/click/, Accessed: 2021-05-
10.

[40] Networkx library, https://networkx.org/, Accessed: 2021-05-10.
[41] A. Maheo, Local tsp heuristics in python, https://arthur.maheo.net/python-

local-tsp-heuristics/, Accessed: 2021-05-10.
[42] ——, Implementing lin-kernighan in python, https://arthur.maheo.net/

implementing-lin-kernighan-in-python/, Accessed: 2021-05-10.
[43] K. Helsgaun, “An effective implementation of the lin–kernighan traveling salesman

heuristic”, European Journal of Operational Research, vol. 126, no. 1, pp. 106–
130, 2000.

[44] Google or-tools: Tsp example, https : / / developers . google . com /
optimization/routing/tsp#program1, Accessed: 2021-05-10.

[45] Google or-tools, https://developers.google.com/optimization, Accessed:
2021-05-10.

66

https://palletsprojects.com/p/click/
https://networkx.org/
https://arthur.maheo.net/python-local-tsp-heuristics/
https://arthur.maheo.net/python-local-tsp-heuristics/
https://arthur.maheo.net/implementing-lin-kernighan-in-python/
https://arthur.maheo.net/implementing-lin-kernighan-in-python/
https://developers.google.com/optimization/routing/tsp#program1
https://developers.google.com/optimization/routing/tsp#program1
https://developers.google.com/optimization

Appendix 1 – Non-exclusive Licence

0.1 Non-exclusive licence for reproduction and publication of a graduation thesis

I Amina Manafli

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my the-
sis "Applying TSP Algorithms to Solve Warehouse Order Picking Problems" , supervised
by Uljana Reinsalu

1.1. to be reproduced for the purposes of preservation and electronic publication of the
graduation thesis, incl. to be entered in the digital collection of the library of Tallinn
University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be entered
in the digital collection of the library of Tallinn University of Technology until expiry of
the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’ intel-
lectual property rights, the rights arising from the Personal Data Protection Act or rights
arising from other legislation.

10.05.2021

67

Appendix A – Class Diagram of the Java Application

TSP

Integer[][] edges
Integer[] nodes
Integer[] heuristicPath
int heuristicCost
Map<String, Route> routes
Long runtime

TSP(Integer[] nodes, Integer[][] edges, boolean fast)
int distance(int i, int j)
int pathCost(Integer[] path)
String pathString(Integer[] path)
void save(Integer[] path, int cost)
void optimize()
void _optimize()

Route

Integer[] path;
int cost;

Route(Integer[] path, int cost)

Tour

List<Integer> path;
int size;
int cost;
Set<Pair<Integer, Integer>> edges;

Tour(Integer[] path, int cost)
static Pair<Integer, Integer> makePair(int i, int j)
void makeEdges()
boolean contains(Pair<Integer, Integer> edge)
int index(int i)
Integer[] around(int node)
Integer[] generate(broken,joined)

Concorde

final String filename;
final TestParams data;

_optimize()

TestParams

Integer seed;
Integer batch;
Integer testCase;
Integer crossAisles;
Integer aisles;
Integer rows;
Integer orders;
String policy;
Float aCapacity;
Float bCapacity;
String algorithm;
String route;
Integer distance;
Long runtime;

Object clone()
String[] getRow()

GoogleOR

RoutingIndexManager manager;
RoutingModel routing;
RoutingSearchParameters searchParameters;
final int transitCallbackIndex;

_optimize()

LinKernighan

Set<String> solutions;
Map<Integer, List<Integer>> neighbors;

List<Pair<Integer, Integer>> closest(t2i, tour, gain, broken, joined)
boolean chooseX(tour, t1, last, gain, broken, joined)
boolean chooseY(tour, t1, t2i, gain, broken, joined)
boolean improve()
_optimize()

TwoOpt

Integer[] swap(Integer[] oldPath, int start, int end)
Saved improve(Integer[] bestPath, int size)
_optimize()

Saved

int n
int m
int change

NearestNeighbour

_optimize()

Application

TestParams parseFilename(String filename)
void runAlgorithm(String algorithm, tsp.TSP tsp, TestParams original, CSVWriter writer)
void main(String[] args)

GraphReader

Integer[] nodes;
Integer[][] edges;

GraphReader(String fileName)
Integer[] getNodes()
Integer[][] getEdges()
void readEdges(BufferedReader in)
void readEdge(BufferedReader in)
void readNodes(BufferedReader in)
Integer readInt(BufferedReader in)

Figure 1. Complete Class Diagram for the Java application.

68

Appendix B – Implementation Source Code

GitLab Repository: https://gitlab.cs.ttu.ee/ammana/master-thesis-ttu

The structure of the repository is as following:

� algo-maven: contains the implementation of the TSP algorithms
� preprocessing: includes the entire preprocessing code
� data: contains data generated by preprocessing

69

https://gitlab.cs.ttu.ee/ammana/master-thesis-ttu

	Introduction
	Problem Formulation and Motivation

	Background
	Warehouse
	Warehouse Layout
	Storage Policies
	Order Picking Process

	Combinatorial Optimization Problems and NP-hard Problems
	Traveling Salesman Problem
	Steiner Traveling Salesman Problem

	State of the Art
	Implementation
	Preprocessing
	Steiner Graph Construction
	Final Distance Matrix Construction
	Output Data Types

	TSP Algorithms and Solvers
	Overview
	Nearest-Neighbour Algorithm
	2-opt algorithm
	Lin-Kernighan
	TSP Solvers: Google OR-Tools and Concorde TSP

	Data Output

	Results and Analysis
	Case Study: Kuehne + Nagel Warehouse

	Summary
	References
	Appendix Non-exclusive Licence
	Appendix Class Diagram of the Java Application
	Appendix Implementation Source Code

