
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mart Jõgi 142755IAPB

Diagrammatic Logic Editor

Bachelor's thesis

Supervisor: Paweł Maria Sobociński

MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mart Jõgi 142755IAPB

DIAGRAMMLOOGIKA REDAKTOR

bakalaureusetöö

Juhendaja: Paweł Maria Sobociński

MSc

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mart Jõgi

18.05.2021

3

Abstract

Peirce's existential graphs are a visual alternative to algebraic notation for logical and

existential expressions. Currently there are no tools for programs to interface with

existential graphs. This work attempts to implement two programs as a proof-of-

concept. An editor for existential graphs, and an evaluator which takes a graph and can

answer questions based on it. The editor is successfully implemented as a web app and

included in this work, but an evaluator was unable to be created and is left merely as a

suggestion.

This thesis is written in English and is 14 pages long, including 5 chapters, 13 figures

and 1 table.

4

Annotatsioon

Diagrammloogika redaktor

Peirce'i olemasolugraafid on visuaalne alternatiiv algebrale predikaatloogika

väljendamiseks. Hetkel ei leidu programme, millega oleks võimalik olemasolugraafe

kasutada muuks, kui vaid nende vaatamiseks. Käesoleva töö eesmärk on välja arendada

tarkvarasüsteem, millega Peirce'i olemasulugraafe (spetsiifiliselt Beta variante) luua ja

kasutada. Süsteem koosneks kahest komponendist: diagrammredaktor, millega

olemasolugraafe luua ja salvestada nende semantikat säilitavas formaadis, ning

evaluaator, mis võtab salvestatud olemasolugraafi ning teostab selle põhjal

mingisuguseid kasulikke arvutusi.

Diagrammredaktor sai implementeeritud veebirakendusena ning on antud tööle lisatud,

evaluaatori loomiseks ei leitud head lahendust ning see jääb antud töö raames vaid

soovituseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 14 leheküljel, 5 peatükki, 13

joonist, 1 tabelit.

5

List of abbreviations and terms

CI Continuous Integration - In gitlab specifically it is an automatic
script that runs when code is pushed, commonly used to test,
build, package, and deploy code.

EGIF Existential Graph Interchange Format

ID Identifier

(software) library A prepackaged collection of reusable code, solving a specific
issue or simplifying a specific workflow

px Pixels

SQL Structured Query Language

URL Uniform Resource Locator

Cut node Outlined/Shaded region on the graph, representing negation of
the subgraph inside

Generator node A subtype of predicate nodes. Rendered as a triangle and
assumed to be true about one and only one identity

Predicate node A text node that represents a statement about all connected lines
of identity. Sometimes (including in this paper) drawn with a
bounding box

Tap node A circular node that acts as a connection point for drawing lines
of identity, can be used to split/join or end a line.

6

Table of Contents

1 Introduction...10

2 Analysis...11

2.1 Diagram editor..11

2.2 Evaluator...13

3 Implementation..15

3.1 Timeline..15

3.2 Terminology..15

3.3 Project setup..17

3.4 Roadblocks..17

4 Results...19

5 Further development..21

5.1 In-editor proof mode...21

5.2 Predicate arity...21

5.3 Saving diagrams online...22

5.4 Sharing diagrams..22

5.5 Visual consistency..22

5.6 Copy and paste..23

 References..24

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis..25

7

List of Figures

Figure 1: Diagram elements..15

Figure 2: Crossing lines of identity...16

Figure 3: Explicit crossing using a tap node..16

Figure 4: No crossing..16

Figure 5: Example of generator node..16

Figure 6: Generator nodes...18

Figure 7: Full editor UI..19

Figure 8: Example from [3]...20

Figure 9: Figure 8 implemented in the editor..20

Figure 10: A compact equivalent alternative to figure 8...20

Figure 11: Example from [4]...20

Figure 12: Figure 11 implemented in the editor..20

Figure 13: Mockup of arbitrary-arity predicate...21

8

List of Tables

Table 1. Analysis of different javascript diagramming libraries.....................................12

9

1 Introduction

In 1896, Charles Sanders Pierce invented a system of logic diagrams called "existential

graphs"[1]. There are three variants, each building upon the previous: Alpha, which

deals with propositions, Beta, which adds the notion of identity, and Gamma, which

attempts to add second order logic but was never completed. These existential graphs

offer a neat alternative to algebra for describing and manipulating logical and existential

statements.

With the popularity of algebraic systems, this kind of diagrammatic reasoning has been

left on the wayside. People who might find these graphs helpful are unlikely to ever

hear of them, and if they do, will find that the only way to use them is to physically

draw them on paper or to use very generic drawing/diagramming software which does

not understand the semantics and will only output an image to look at.

The goal of this thesis is to create a visual editor specifically for the β variant of Peirce's

existential graphs. This would have value as an educational aid, but even more

importantly can serve to create more easily parseable output for other programs to do

something with. (for example, a database might take an existential graph as input in

order to run it as a query, or use it to define validations or schema)

10

2 Analysis

This section will outline the goals for the project, list existing software libraries that

were considered to fulfill those goals, and justify the choice between them.

The goal is to have two separate components: an editor that can be used to create

diagrams, and an evaluator that can take a diagram and do something useful with it, for

example to evaluate queries on it.

The two components should not be strongly coupled - instead it should be possible to

make lots of different evaluators that all take the same output from the editor and do

something different to it. For example there could be logic evaluators that test

statements, query evaluators that convert a diagram into a database query, and

templating systems that use the diagram as a template.

The editor would be the core output of this work, while the evaluator would serve as a

proof-of-concept example that other evaluators could be based on.

2.1 Diagram editor

The diagram editor is the primary component of this work, and should include (at the

minimum) the following functionalities

• Adding the following elements to a diagram:

◦ Lines of identity

◦ Predicates

◦ Cuts (outlined and/or shaded regions that may contain other elements)

• Connecting lines of identity to predicates

• Saving/Exporting the diagram in a format that maintains the semantic meaning

of the diagram

Additionally, the following would be good to have

11

• Subgraphs (grouping/collapsing parts of the graph)

Looking for existing libraries that could be used for the editor, three main requirements

were considered:

1. The library should be free to use (paid libraries might create licensing issues for

this work)

2. The library should work at an appropriate level (low-level enough to allow the

necessary customizations, but high-level enough to not create too much extra

work)

3. The library should have enough documentation to be able to work with it (and to

be able to evaluate the other requiremenets)

Additionally, to save time, it is preferred that the library is easily usable in a

typescript+react project, since that is the stack the author is currently most familiar with.

Given those requirements, the following libraries were considered.

Table 1. Analysis of different javascript diagramming libraries

Syncfusion1 non-free

orgChart2 non-free

Kendo UI3 non-free

JSPlumb4 non-free

DHTMLX5 non-free

Rappid6 non-free

JointJS6 too low-level, and documentation is intermixed with Rappid

mxGraph7 deprecated

1 https://ej2.syncfusion.com/react/documentation/diagram/getting-started/
2 https://www.orgchartpro.com/
3 https://demos.telerik.com/kendo-ui/diagram/index
4 https://jsplumbtoolkit.com/
5 https://dhtmlx.com/
6 https://www.jointjs.com/
7 https://github.com/jgraph/mxgraph

12

Basic Primitives8 Too high-level, specific to organisational hierarchical charts

rete-js1 Bad support for react and typescript

React diagrams2 Bad documentation

GoJS3 Too low-level, possible licensing issues because free only for
'academic' use

litegraph4 Limited documentation - Customizing to fit our needs would
be too low-level

D35 Too low-level

diagram-js6 Appropriate level, but hard to find documentation

bpmn-js7 Possibly too high-level, hard to find documentation

react-flow8 documentation, scope both okay, only missing functionality
is built-in nesting support

For the reasons outlined in the table, react-flow was chosen for the diagram editor.

2.2 Evaluator

The evaluator is the second component of the work, and needs the following

functionalities

• Loading a diagram created in the diagram editor

• Evaluating queries based on the diagram, for example checking if one graph is

locically implied by another

Looking for languages/tools that could be used to build the evaluator, the first to be

considered was Prolog. Prolog is a logic programming language where the program

8 https://www.basicprimitives.com/
1 https://rete.js.org/#/
2 https://projectstorm.gitbook.io/react-diagrams/
3 https://gojs.net/
4 https://github.com/jagenjo/litegraph.js?files=1
5 https://d3js.org/
6 https://github.com/bpmn-io/diagram-js
7 https://bpmn.io/toolkit/bpmn-js/
8 https://reactflow.dev/

13

consists of only facts and rules, and then Prolog is able to check whether a given

statement is provable.

Some initial attempts were made to express an example diagram in Prolog, but these

attempts immediately ran into roadblocks both with encoding the diagram itself, as well

as with defining negative statements (to convert the closed world of Prolog into an open

world). Failing those, the search continued for other languages or tools that could be

used.

Another keyword that stuck out was OWL (Web Ontology Language), which has the

full expressive power of first order logic, but no clear examples or instructions could be

found to determine if it is also able to solve statements or just express them.

Attempts were also made to look for what had been done with peirce graphs previously.

Many papers, for example [2], reference specific formats such as EGIF that a peirce

graph can be encoded into. But similar to OWL, clear examples of EFIG or programs

that take advantage of it could not be found.

Due to time consraints, no other tools were able to be found.

14

3 Implementation

This section will outline the process of development, and the roadblocks encountered

along the way.

3.1 Timeline

The 10 weeks (of 2 days each) available to work on this thesis were split up into the

following stages: planning & research into peirce graphs (2 weeks), working on the

editor (2 weeks), formatting the editor output (1 week), working on the evaluator (2

weeks), polish (1 week), writing the document (1 week), and 1 week spare.

In practice, everything went according to plan for the first few stages, up until it was

time to work on the evaluator. During the evaluator weeks, attempts to use Prolog and

searches for a different tool were all unsuccesful. By the time it was decided to leave the

evaluator out of scope, full effort was already needed for the document, leaving the

editor in it's relatively basic state as the only completed output of this project.

3.2 Terminology

Predicates in the diagram are represented by "predicate nodes",

rendered as a rectangle with a solid outline, containing text.

Cuts are represented by "cut nodes", which are rendered as a

rounded rectangular area with a dashed border. Lines of

identity are represented by the connections between different

nodes.

To allow lines of identity to end without connecting to anything, "tap nodes" are also

implemented. Tap nodes are to be interpreted as a part of the line of identity that makes

up it and all of it's connections. Conceptually, the line of identity can be thought to only

exist at the points where nodes are connected. This means that two connections that

15

Figure 1: Diagram
elements

cross each other without meeting at a tap node should be thought of as if they went past

each other without touching. Likewise, if a connection goes into and out of a cut with

no connection inside the cut, it should be thought of as if it actually went around. And if

a line crosses multiple cut borders with no connections in between, it should be thought

to "jump" straight over. Ideally the author of the graph would make sure such

inconsistencies are ironed out by moving the nodes and connections appropriately and

adding extra tap nodes where needed.

For example, the crossing in figure 2 should be

understood as two separate lines of identity, one

connecting A and B, and the other connecting C and D.

In this sense the diagrams in figure 2 and figure 4 are semantically equivalent. If the

author intended for the lines to represent a single identity, they should add a tap node to

connect the lines explicitly. Otherwise, while the diagram in figure 2 is valid, it is

recommended to move things around so that there aren't any unattached crossings, as in

figure 4.

Finally, taking inspiration from the paper "Compositional

diagrammatic first-order logic."[4], "generator nodes" are

semantically equivalent to predicate nodes, but represent a

predicate which is true for exactly one identity. Generator nodes

are rendered as rightwards-facing triangles, though unlike in the

linked paper we will have them bulged out somewhat to allow for more space for the

text

3.3 Project setup

The core frameworks used for the editor were create-react-app and react-flow, chosen

due to the author's familiarity with React and the availability of a suitable library for it.

16

Figure 5: Example
of generator node

Figure 2: Crossing lines of
identity

Figure 4: No crossingFigure 3: Explicit crossing using
a tap node

Material-UI was used for any generic components like buttons and panels, and Ramda

was used to simplify basic transformations.

Basic type checking was added by enabling and using typescript, but no unit or

integration tests were planned for the editor. Since the design is relatively open and the

amount of custom logic in the editor is very small, automatic tests were not considered

worth it to implement for the editor. For any advanced functionality in the future, Jest

would likely be used. Testing would also be critical for the evaluator, but the exact tool

would depend on the framework/language that the evaluator would be written in.

For deployment, continuous integration was set up on gitlab. The CI script would take

every push on to the "gl-pages" branch and automatically build and deploy it1. This

serves as a basic test that everything compiles fine and it's not "just on my machine",

and enables interested parties to see and test the most recent version of the code at any

time, without having to download and compile the whole codebase themselves.

3.4 Roadblocks

Taking one of the official examples as a base, implementing the basic elements of lines,

predicates, and cuts was rather straightforward.

The first difficulty was with the cut node, as it needed to hold other elements inside.

Since react-flow does not (yet) have support for nested elements, it was instead

implemented as a box that could be clicked through. React-flow also does not allow

clicking through a node, so to bypass that, the node itself was made 1px in size, with the

rest of the node overflowing the container. This allowed the overflowing part to be

made click-through by using pointer-events: none.

To further the illusion of the cut node actually holding other elements inside, a feature

was attempted that when a cut element is moved, it drags all overlapping elements along

with it. This worked okay, but was visually confusing because the other elements only

moved after the cut was dropped. Furthermore, sinze resize can only be done from the

bottom right corner, adding more space to the left side of a cut required moving all

1 CI deployments were hosted at https://mart.jogi.pages.taltech.ee/iaib/, though that address is likely no
longer available by the time this work is published

17

elements inside the cut individually. Finally, it was already possible to move a cut

together with overlapping nodes simply by drawing a selection box around them before

dragging. For these reasons, the drag-along feature was disabled.

Due to their triangular shape, generator nodes were not able to fit

a lot of text without being massive themselves. To remedy this, a

bulge was added to the shape to reduce the amount of wasted

space outside the inscribed rectangle, the text was allowed to

slightly break out of the container, and the use-fit-text library was

used to automatically shrink the text as needed.

18

Figure 6: Generator
nodes

4 Results

This section will describe the application that was implemented. The application is a

react app that runs standalone in the browser. It consists of an empty canvas, a minimap,

and a sidebar containing the different node types. The user can drag node types into the

canvas, where the nodes can be edited and connected to each other. Nodes and

connections on the canvas are able to be selected and deleted. The predicate and cut

nodes are also able to be resized, and the cut node can be clicked through (when it is not

selected).

The created diagram is automatically saved to session storage, to safeguard against

losing work to accidental refreshes. The user also has the option to save manually either

by copying the diagram to the clipboard (making it easy to paste into another program

or share in instant messaging applications), or by downloading it as a file.

19

Figure 7: Full editor UI

This diagram is equivalent to the statements "Alice and Bob are different", "Alice and Bob know the
shared key", "It is not true that there is some third person, who is neither Alice nor Bob, who is able to
eavesdrop on Alice and Bob without having a backdoor"

The biggest limitations right now are that predicates with arity > 2 need to be split up

into binary/unary predicates, and that lines of identity that cross a lot of cuts can be

awkward to draw due to the requirement to insert tap nodes at every level.

Aside from those cases, a lot of graphs can be implemented directly and look very

similar.

20

Figure 9: Figure 8
implemented in the editor

Figure 10: A compact equivalent
alternative to figure 8

Figure 11: Example from [4]
Figure 12: Figure 11 implemented in the

editor

Figure 8: Example
from [3]

5 Further development

This section will cover ideas that were not implemented due to time constraints, but that

would be useful to have.

5.1 In-editor proof mode

If a good engine can not be found to make an automatic evaluator, an alternative could

be to have a "proof" mode in the editor itself. When in the proof mode, the user would

be limited to only making changes to the diagram that are semantically valid.

A proof mode would not be as convenient if the user just wants an answer, but would be

excellent as a teaching/learning aid. Proof mode could save as a list of actions, allowing

users to share and review the whole proof, as well as to undo/redo during the proof,

which is important because some transformations are only valid in one direction (for

example, outside a cut it is always valid to cut a line of identity into multiple, but it is

not allowed to join two separate lines of identity together)

5.2 Predicate arity

Some predicates can have different meanings depending on where a line is connected.

for example a line of identity can connect to the predicate "Is the parent of" as either the

parent or the child. Currently, the editor only distinguishes between connecting on the

left and on the right. It would be more expressive if each node could have an arbitrary

number of different labelled connection points, so that it would be unambiguous which

line of identity corresponds to which part of the relation.

21

Figure 13: Mockup of arbitrary-
arity predicate

5.3 Saving diagrams online

Similar to other platforms like Google Docs, it would be convenient to be able to save

diagrams in the app itself.

One solution to do this would be to use localStorage. While that would be device-

specific and diagrams would be lost if the storage is cleared, it would enable users to

save diagrams without having to register accounts or rely on a server to be available to

host. It is also the simplest to implement.

Alternatively, to allow diagrams to persist for a long time and across devices, the editor

itself could be registered as a Google Drive app, and be made able to store the created

diagrams in the user's own drive. This would allow the user to save diagrams online

without even having to register for another account just for this app, and would still

bypass the need to create and host our own backend services.

5.4 Sharing diagrams

In order to avoid having to send/upload files and instruct users to load them, it would be

convenient to share a diagram just by sending a URL.

If there is going to be a backend to store the user's diagrams, then it's simply a matter of

making sure every diagram has a unique ID, adding a "public" flag that the user can

toggle, and giving the user the option to copy a direct link that contains this ID.

If the editor is registered as a Google Drive app, or a similar system is implemented that

allows storing diagrams on a different platform, then that platform's native file sharing

would be able to be used.

Otherwise, the diagram could also be encoded into the URL itself, similar to how

PlantText does it. Such links would have the benefit of working fully clientside, with no

need to maintain servers to store the diagrams, and the same link would always produce

the same diagram rather than referencing a file that the owner might edit later.

22

5.5 Visual consistency

The current implementation allows the user to draw a line of identity through a cut,

without having a tap node inside. Such cases are not obvious from the diagram data, so

the semantics are that if there's no node inside the cut, we interpret that diagram as if the

line didn't cross the cut at all.

A better solution would be to detect whenever a line of identity crosses a cut, and if it

does to automatically create a tap node inside to make the crossing explicit. If needed,

then this detection could be made simler by removing the curviness from lines and cut

borders. To avoid the automatic nodes from becoming frustrating, it should also be

made easier to delete a tap node from the middle of a line.

One option would be that when a tap node is deleted, all connected tap nodes will be

connected to each other. That is a bit ambiguous though, since there are many ways to

connect the remaining nodes if there's more than two of them.

Another option is to have deleting the node cut the line as normal, but also allow

dragging it over another tap node, which would delete it while connecting all it's other

connections to the node that it was dragged over.

5.6 Copy and paste

For many diagrams, it would be convenient to be able to copy and paste parts of the

diagram to reuse. This should be relatively simple to implement by detecting the copy

and paste shortcuts. On copy, the "selected" elements, which are already tracked, would

be copied into the clipboard. On paste, elements in the clipboard would be pasted onto

the diagram, their positions would be slightly shifted to make it visually obvious, and

the pasted elements would be selected (deselecting any elements that were already

selected)

23

References

[1] Roberts, Don D. "The existential graphs." Computers & Mathematics with Applications
23.6-9 (1992): 639-663.

[2] Sowa, John F. "Existential Graphs and EGIF."

[3] Sowa, John F. "Peirce's tutorial on existential graphs." (2011): 347-394.

[4] Haydon, Nathan, and Paweł Sobociński. "Compositional diagrammatic first-order logic."
International Conference on Theory and Application of Diagrams. Springer, Cham, 2020.

24

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Mart Jõgi

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Diagrammatic Logic Editor", supervised by Paweł Maria Sobociński

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Techno-

logy until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-ex-

clusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' in-

tellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

18.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

25

	1 Introduction 10
	2 Analysis 11
	2.1 Diagram editor 11
	2.2 Evaluator 13

	3 Implementation 15
	3.1 Timeline 15
	3.2 Terminology 15
	3.3 Project setup 17
	3.4 Roadblocks 17

	4 Results 19
	5 Further development 21
	5.1 In-editor proof mode 21
	5.2 Predicate arity 21
	5.3 Saving diagrams online 22
	5.4 Sharing diagrams 22
	5.5 Visual consistency 22
	5.6 Copy and paste 23

	References 24
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 25
	1 Introduction
	2 Analysis
	2.1 Diagram editor
	2.2 Evaluator

	3 Implementation
	3.1 Timeline
	3.2 Terminology
	3.3 Project setup
	3.4 Roadblocks

	4 Results
	5 Further development
	5.1 In-editor proof mode
	5.2 Predicate arity
	5.3 Saving diagrams online
	5.4 Sharing diagrams
	5.5 Visual consistency
	5.6 Copy and paste

	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis

