
TALLINN UNIVERSITY OF TECHNOLOGY 
DOCTORAL THESIS

24/2018

Cross-Layer Dependability 
Management in Network on Chip 

based System on Chip

SIAVOOSH  PAYANDEH  AZAD



TALLINN UNIVERSITY OF TECHNOLOGY
School of InformaƟon Technologies 
Department of Computer Systems

This dissertaƟon was accepted for the defence of the degree of Doctor of 
Philosophy in Computer and Systems Engineering on 10.05.2018.

Supervisors: Prof. Thomas Hollstein, PhD,
Prof. Gert Jervan , PhD,
Prof. Jaan Raik , PhD,
Department of Computer Systems
Tallinn University of Technology, Tallinn, Estonia

Opponents: Dr. Leandro Soares Indrusiak
Computer Science department
University of York, United Kingdom

Prof. Dr.-Ing. Alberto Garcia-OrƟz
InsƟtute of Electrodynamics and Microelectronics
University of Bremen, Bremen, Germany

Defense of the thesis: June 13th, 2018, Tallinn

DeclaraƟon:
Hereby I declare that this doctoral thesis, my original invesƟgaƟon and
achievement, submiƩed for the doctoral degree at Tallinn University of
Technology has not been submiƩed for doctoral or equivalent academic degree.

Copyright: Siavoosh Payandeh Azad, 2018 
ISSN 2585-6898 (publicaƟon) 
ISBN 978-9949-83-259-0 (publicaƟon) 
ISSN 2585-6901 (PDF)
ISBN 978-9949-83-260-6 (PDF)



TALLINNA TEHNIKAÜLIKOOL 
DOKTORITÖÖ

24/2018

Kiipvõrkudel põhinevate süsteemide
kihƟdeüleneusaldatavusehaldus

SIAVOOSH  PAYANDEH  AZAD





To Marieh ...





TABLE OF CONTENTS

LIST OF PUBLICATIONS . . . . . . . . . . . . . . . . . . . . 9

OTHER RELATED PUBLICATIONS. . . . . . . . . . . . . . . . . 10

OTHER PUBLICATIONS . . . . . . . . . . . . . . . . . . . . 10

AWAITING PUBLICATION . . . . . . . . . . . . . . . . . . . 11

AUTHOR’S CONTRIBUTIONS TO THE PUBLICATIONS . . . . . . . . . 12

AUTHOR’S CONTRIBUTIONS TO THE OTHER RELATED PUBLICATIONS . . . 13

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . 15

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . 16

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . 17

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . 20

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 21

1. Network-on-Chip Architecture . . . . . . . . . . . . . . . . 30

1.1. IntroducƟon to NoCs . . . . . . . . . . . . . . . . . 30

1.2. Bonfire Framework . . . . . . . . . . . . . . . . . 32

1.2.1. Router Architecture with Handshaking Flow-Control . . 33

1.2.2. Router Architecture with Credit Based Flow-Control. . . 34

1.3. EvaluaƟon of base-line Bonfire routers . . . . . . . . . . 35

1.4. Chapter Summary . . . . . . . . . . . . . . . . . . 36

2. Fault InformaƟon acquisiƟon . . . . . . . . . . . . . . . . 37

2.1. Literature Review . . . . . . . . . . . . . . . . . . 38

2.2. Fault DetecƟon . . . . . . . . . . . . . . . . . . . 39

2.2.1. Control part fault detecƟon. . . . . . . . . . . . 40

2.3. Fault informaƟon abstracƟon . . . . . . . . . . . . . . 49

2.4. Fault ClassificaƟon . . . . . . . . . . . . . . . . . . 49

2.5. Chapter summary . . . . . . . . . . . . . . . . . . 51

7



3. Local and Hybrid Fault Management . . . . . . . . . . . . . 53

3.1. Literature Review . . . . . . . . . . . . . . . . . . 55

3.2. Fault Tolerance EvaluaƟon of Turn-Model based RouƟng
Algorithms. . . . . . . . . . . . . . . . . . . . . 57

3.2.1. EnumeraƟng all Uniform 2D turn models. . . . . . . 58

3.2.2. Robustness evaluaƟon of all 2D turn models . . . . . 59

3.3. Local Fault Handling . . . . . . . . . . . . . . . . . 63

3.3.1. Reachability and parƟƟoning in on-chip networks . . . 65

3.4. Reliability EvaluaƟon and Improvement of Fault Tolerance
Mechanisms . . . . . . . . . . . . . . . . . . . . 69

3.5. Chapter summary . . . . . . . . . . . . . . . . . . 70

4. Global Fault Management . . . . . . . . . . . . . . . . . 72

4.1. Literature Review . . . . . . . . . . . . . . . . . . 73

4.2. ApplicaƟon Modeling . . . . . . . . . . . . . . . . . 75

4.3. Architecture Modeling . . . . . . . . . . . . . . . . 77

4.3.1. System Health Monitoring Unit Model. . . . . . . . 78

4.4. RouƟng Algorithm Modeling . . . . . . . . . . . . . . 78

4.5. OpƟmizaƟon Algorithms . . . . . . . . . . . . . . . 79

4.5.1. VerƟcal Link Placement . . . . . . . . . . . . . 79

4.5.2. Task Clustering . . . . . . . . . . . . . . . . 80

4.5.3. Mapping and Scheduling. . . . . . . . . . . . . 82

4.5.4. Providing parƟal mapping . . . . . . . . . . . . 87

4.5.5. Improving the mapping latency . . . . . . . . . . 91

4.5.6. Environment Simulator . . . . . . . . . . . . . 94

4.6. Chapter summary . . . . . . . . . . . . . . . . . . 97

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . 101

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . 113

KOKKUVÕTE . . . . . . . . . . . . . . . . . . . . . . . . 115

APPENDICIES . . . . . . . . . . . . . . . . . . . . . . . 117

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . 163

ELULOOKIRJELDUS . . . . . . . . . . . . . . . . . . . . . 164

8



LIST OF PUBLICATIONS

The work of this thesis is based on the following publicaƟons:

A T. Hollstein, S. P. Azad, T. Kogge, H. Ying and K. Hofmann,
”NoCDepend: A Flexible and Scalable Dependability Technique for
3D Networks-on-Chip,” 2015 IEEE 18th InternaƟonal Symposium on
Design and DiagnosƟcs of Electronic Circuits & Systems, Belgrade,
2015, pp. 75-78.

B S. P. Azad, B. Niazmand, P. Ellervee, J. Raik, G. Jervan and T.
Hollstein, ”SoCDep2: A framework for dependable task deployment
on many-core systems under mixed-criƟcality constraints,” 2016
11th InternaƟonal Symposium on Reconfigurable CommunicaƟon-
centric Systems-on-Chip (ReCoSoC), Tallinn, 2016, pp. 1-6.

C S. P. Azad, B. Niazmand, K. Janson, N. George, A.S.Oyeniran, T.
Putkaradze, A. Kaur, J. Raik, G. Jervan, R. Ubar, T. Hollstein, ”From
online fault detecƟon to fault management in Network-on-Chips: A
ground-up approach,” 2017 IEEE 20th InternaƟonal Symposium on
Design and DiagnosƟcs of Electronic Circuits & Systems (DDECS),
Dresden, 2017, pp. 48-53.

D S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan and T.
Hollstein, ”Automated area and coverage opƟmizaƟon of minimal
latency checkers,” 2017 22nd IEEE European Test Symposium (ETS),
Limassol, Cyprus, 2017, pp. 1-2.

E S. P. Azad, B. Niazmand, K. Janson, T. Kogge, J. Raik, G. Jervan,
T. Hollstein, ”Comprehensive performance and robustness analysis
of 2D turn models for network-on-chips,” 2017 IEEE InternaƟonal
Symposium on Circuits and Systems (ISCAS), BalƟmore, MD, 2017,
pp. 1-4.

F T. Putkaradze, S. P. Azad, B. Niazmand, J. Raik and G. Jervan, ”Fault-
resilient NoC router with transparent resource allocaƟon,” 2017
12th InternaƟonal Symposium on Reconfigurable CommunicaƟon-
centric Systems-on-Chip (ReCoSoC), Madrid, Spain, 2017, pp.
1-8.

9



OTHER RELATED PUBLICATIONS

G T. Hollstein, S. P. Azad, T. Kogge and B. Niazmand, ”Mixed-
criƟcality NoC parƟƟoning based on the NoCDepend dependability
technique,” 2015 10th InternaƟonal Symposium on Reconfigurable
CommunicaƟon-centric Systems-on-Chip (ReCoSoC), Bremen, 2015,
pp. 1-8.

H B. Niazmand, S. P. Azad, J. Flich, J. Raik, G. Jervan and T.
Hollstein, ”Logic-based implementaƟon of fault-tolerant rouƟng
in 3D network-on-chips,” 2016 Tenth IEEE/ACM InternaƟonal
Symposium on Networks-on-Chip (NOCS), Nara, 2016, pp. 1-8.

I S. P. Azad, B. Niazmand, J. Raik, G. Jervan, T. Hollstein:
”HolisƟc Approach for Fault-Tolerant Network-on-Chip basedMany-
Core Systems”,2nd InternaƟonal Workshop on Dynamic Resource
AllocaƟon and Management in Embedded, High Performance
and Cloud CompuƟng DREAMCloud 2016 (arXiv:cs/1601.04675),
DREAMCloud/2016/05

J A. S. Oyeniran, R. Ubar, S. P. Azad and J. Raik, ”High-level test
generaƟon for processing elements in many-core systems,” 2017
12th InternaƟonal Symposium on Reconfigurable CommunicaƟon-
centric Systems-on-Chip (ReCoSoC), Madrid, Spain, 2017, pp.
1-8.

OTHER PUBLICATIONS

K S. P. Azad, N. Farahini and A. Hemani, ”CustomizaƟon methodology
of a Coarse Grained Reconfigurable architecture,” 2014 NORCHIP,
Tampere, 2014, pp. 1-4.

L S. P. Azad, H. Kinks, M. A. Tajammul and P. Ellervee, ”An
ad-hoc implementaƟon of a remote laboratory,” 2015 IEEE
InternaƟonal Conference on Microelectronics Systems EducaƟon
(MSE), PiƩsburgh, PA, 2015, pp. 48-51.

M M. A. Tajammul, S. P. Azad and P. Ellervee, ”Digital system modeling
and synthesis as an introducƟon to Computer Systems Engineering,”
2015 IEEE InternaƟonal Conference on Microelectronics Systems
EducaƟon (MSE), PiƩsburgh, PA, 2015, pp. 52-55.

10



N U. Reinsalu, S. P. Azad, M. Leier, K. Tammemae and T. Hollstein,
”PracƟcing start-up culture in teaching embedded systems,” 2016
11th European Workshop on Microelectronics EducaƟon (EWME),
Southampton, 2016, pp. 1-6.

O S. K. Dwivedi, S. P. Azad, P. Ellervee and R. Dash, ”Hardware imple-
mentaƟon of face recogniƟon using low precision representaƟon,”
2016 15th Biennial BalƟc Electronics Conference (BEC), Tallinn,
2016, pp. 63-66.

AWAITING PUBLICATION

P Serhiy Avramenko, Siavoosh Payandeh Azad, Stefano Esposito,
Behrad Niazmand, Massimo Violante, Jaan Raik, Maksim Jenihhin,
”QoSinNoC: Analysis of QoS-Aware NoC Architectures for Mixed-
CriƟcality ApplicaƟons”, 2018 IEEE 21st InternaƟonal Symposium
on Design and DiagnosƟcs of Electronic Circuits (DDECS).

Q Siavoosh Payandeh Azad, Adeboye Stephen Oyeniran, Raimund
Ubar, ”ReplicaƟon-Based DeterminisƟc TesƟng of 2-Dimensional
Arrays with Highly Interrelated Cells”, 2018 IEEE 21st InternaƟonal
Symposium on Design and DiagnosƟcs of Electronic Circuits
(DDECS).

R Behrad Niazmand, Siavoosh Payandeh Azad, Tara Ghasempouri,
Jaan Raik, Gert Jervan, ”Checker ExtracƟon Methodology for
Control-Oriented Circuits”, 2018, 2nd InternaƟonal Test Conference
in Asia (ITC-Asia).

S Tara Ghasempouri, Siavoosh Payandeh Azad, Behrad Niazmand,
Jaan Raik, ”An automaƟc approach to evaluate asserƟons’ quality
based on data-mining metrics”, 2018, 2nd InternaƟonal Test
Conference in Asia (ITC-Asia).

T Adeboye Stephen Oyeniran, Siavoosh Payandeh Azad, Raimund
Ubar, ”Combined Pseudo-ExhausƟve and DeterminisƟc TesƟng of
ArrayMulƟpliers”, InternaƟonal Conference on AutomaƟon, Quality
and TesƟng, RoboƟcs (AQTR).

U Adeboye Stephen Oyeniran, Siavoosh Payandeh Azad, Raimund
Ubar, ”Parallel Pseudo-ExhausƟve TesƟng of Array MulƟpliers with
Data-Controlled SegmentaƟon”, 2018 IEEE InternaƟonal Symposium
on Circuits & Systems (ISCAS).

11



AUTHOR’S CONTRIBUTIONS TO THE PUBLICATIONS

ContribuƟon to the papers in this thesis are:

A The author opƟmized the proposed fault informaƟon propagaƟon
algorithm and developed a tool for calculaƟng the off-line algorithm
and later-on extended xHiNoC framework to evaluate the proposed
mechanism.

B The author proposed and developed a framework for dependable
task deployment on NoC-based SoCs under mixed criƟcality
constraints. Also the effecƟveness of the proposed framework was
evaluated by the author.

C The author proposed a local fault management mechanism for
NoC routers based on packet-dropping, along with a proposal for
fault informaƟon abstracƟon, classificaƟon and transfer to the
system-level fault manager.

D The author proposed and developed an automated minimizaƟon
framework for concurrent on-line checkers. Also the concept of
dominance in such checkers and a new metrics for evaluaƟng their
effecƟveness (in contrast to the general fault coverage of such
circuits) were proposed by the author.

E The author proposed a method for enumeraƟng and analysis of all
2D turn-model-based deadlock-free rouƟng algorithms. The author
proposed a new metric for evaluaƟng the degree of adapƟvity of
non-minimal path rouƟng algorithms, Later on, evaluaƟng the fault
tolerance of a selected set of 2D deadlock free rouƟng algorithms
under different amounts of link failures.

F The author proposed the architectures invesƟgated in the work.
Also the author performed the reliability analysis for the proposed
architectures in the paper.

12



AUTHOR’S CONTRIBUTIONS TO OTHER RELATED PUBLICA-
TIONS

G The author extended the previously developed tool to use
NoCDepend method for network parƟƟoning.

H The author proposed opƟmizaƟon in the LBDR3D circuitry to
improve the area overhead of the method alongside collaboraƟng
on designing the experiments.

I The author proposed an architecture for efficient predicƟon and
storage of mapping of applicaƟons on NoC-based SoCs and
evaluated the performance gain for such approach.

J The author developed an implementaƟon of the BIST method in
hardware and evaluated the efficiency of the such approach and
compared to other exisƟng methods.

13





ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Thomas Hollstein for his support
throughout my PhD studies. I would also like to express my deep graƟtude
to my co-supervisors Professor Gert Jervan and Professor Jaan Raik. For the
numerous meeƟngs, discussions, comments and their open-door approach to
supervision. Without your guidance none of this would be possible.

Special thanks to the Head of Department of Computer Systems, Margus
Kruus for supporƟng me throughout my studies.

I would like to thank my colleagues and friends: Muhammad Adeel
Tajammul, Behrad Niazmand, Karl Janson, Hannes Kinks, Tara Ghasempouri,
Adeboye Stephen Oyeniran, Apneet Kaur, Nevin George, Priit Ruberg and Mairo
Leier.

Furthermore, I like to acknowledge the organizaƟons that have supported
my PhD studies: Tallinn University of Technology, Estonian IT Academy program,
EU’s H2020 RIA IMMORTAL, the Estonian Center of Excellence in IT (EXCITE)
and EU’s Twinning AcƟon TUTORIAL project.

Finally, I would like to thank my family, my parents, my brother and especially
my beloved Mari!

Siavoosh Payandeh Azad
Tallinn, 2018

15



ABBREVIATIONS

AG Architecture Graph
AHB Advanced High-performance Bus
AMBA Advanced Micro-controller Bus Architecture
AXI Advanced eXtensible Interface
BIST Built In Self Test
CEI Coverage Efficiency Index
CB Credit-Based
CD Coverage Density
CTG Clustered Task Graph
DMR Double Modular Redundancy
ECC error-correcƟng code
FIFO First-In-First-Out
FSM Finite State Machine
GA GeneƟc Algorithm
GUI Graphical User Interface
HS Hand-Shaking
ILS IteraƟve Local Search
LBDR Logic Based Distributed RouƟng
LS Local Search
MCT Minimum CompleƟon Time
MET Minimum ExecuƟon Time
MPM Most Probable Mappings
MPFS Most Probable Faults Set
MSU Mapper/Scheduler Unit
NoC Network on Chip
OPS Original Problem Size
RG RouƟng Graph
RPS Reduced Problem Size
SA Simulated Annealing

16



SHM System Health Map
SHMU System Health Monitoring Unit
SoC System on Chip
TG Task Graph
TM Turn Model
TMR Triple Modular Redundancy

17



LIST OF FIGURES

1 Progression of bathtub curve with shrinking transistor feature
size[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Components of a possible cross-layer fault management system
for a NoC based SoC . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 An example of a direct network . . . . . . . . . . . . . . . . . 31
1.2 An example of an indirect network . . . . . . . . . . . . . . . . 31
1.3 Block diagram of the hand-shaking router . . . . . . . . . . . . 33
1.4 Packet format in hand-shaking router. . . . . . . . . . . . . . . 33
1.5 Block diagram of the credit based router . . . . . . . . . . . . 34
1.6 Packet format in credit based router. . . . . . . . . . . . . . . 34
1.7 Block diagram of the Credit-based Network Interface . . . . . . 35

2.1 concept of a checker circuit . . . . . . . . . . . . . . . . . . . 40
2.2 Extended checker framework introduced in [2, 3, 4] . . . . . . 42
2.3 Example of number of True Misses for stuck-at-0 for LBDR circuit

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Example of number of True Misses for stuck-at-1 for LBDR circuit

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Proposed Classifier unit’s a)Block Diagram and b)FSM Diagram . 50

3.1 visualizaƟon of all 2D deadlock free turn models which provide
full connecƟvity in the network . . . . . . . . . . . . . . . . . 60

3.2 Comparison of avg. connecƟvity metric of turn models under
a) minimal, b) non-minimal rouƟng by number of available links. 62

3.3 FIFO packet dropping Finite State Machine . . . . . . . . . . . 64
3.4 Packet Drop rate in different packet and fault injecƟon rates . . 65
3.5 8 regions for each node used for back-propagaƟon algorithm . 66
3.6 InformaƟon propagaƟon example for non-rectangle in north . . 66
3.7 InformaƟon propagaƟon example for non-rectangle in north-east 66
3.8 Rectangle merging scenario . . . . . . . . . . . . . . . . . . . 67
3.9 Lossy merging heurisƟcs . . . . . . . . . . . . . . . . . . . . . 67
3.10 Rectangle Expansion Process . . . . . . . . . . . . . . . . . . . 67

4.1 NoC based SoC System Model Architecture . . . . . . . . . . . 76

18



4.2 Architecture graph example for 3×3 mesh network . . . . . . 77

4.3 VisualizaƟon example of a 3D router health . . . . . . . . . . . 78
4.4 Example of rouƟng graph [5] of a single 2D router under XY

rouƟng algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 VL placement: a) IniƟal and b) Final VL placement c) VisualizaƟon

of the connecƟvity metric development during iteraƟve local
search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 a) iniƟal random clustering, b) opƟmized clustering and c) cost
funcƟon progression using random task move, d) opƟmized
clustering and e) cost funcƟon progression using task migraƟon 81

4.7 Cost progression for a) local search and c) iteraƟve local search
algorithm, Final mapping for b) local search and d) iteraƟve
local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Cost reducƟons for SA using a) ExponenƟal c) Custom and e)
Huang’s annealing and Final mappings using SA b) ExponenƟal,
d) Custom and f) Huang’s annealing . . . . . . . . . . . . . . . 86

4.9 Successive mappings using distance between mappings. Figures
a.1, b.1 and c.1, show the link failures in the system health
map. figures a.2, b.2 and c.2 show the task assignment for each
processing element under the fault condiƟon. . . . . . . . . . 89

4.10 Successive mappings using distance between mappings. Figures
d.1, e.1 and f.1 show the link failures in the system health
map. figures d.2, e.2 and f.2 show the task assignment for each
processing element under the fault condiƟon. . . . . . . . . . 90

4.11 example of sequenƟally diagnosable system . . . . . . . . . . . 94
4.12 Example of scheduling test tasks in idle Ɵmes of the processors 94
4.13 Task graph for simulator example . . . . . . . . . . . . . . . . 95
4.14 RouƟng graph for simulator example . . . . . . . . . . . . . . . 95
4.15 a) iniƟal random mapping, b) opƟmized mapping, c) mapping

cost funcƟon progress and d) scheduling of the tasks on the PEs
for a fault-free system . . . . . . . . . . . . . . . . . . . . . . 96

4.16 a) system health map representaƟon, b) mapping, c) mapping
cost progress and d) scheduling of the tasks on the PEs aŌer 12
permanent link failures. . . . . . . . . . . . . . . . . . . . . . 96

19



LIST OF TABLES

1.1 Area break-down results of Bonfire Routers . . . . . . . . . . . 35
1.2 Handshaking router units area breakdown . . . . . . . . . . . . 36
1.3 Credit-based router units area breakdown . . . . . . . . . . . . 36

2.1 Different condiƟons of fault propagaƟon and detecƟon by
checkers and their notaƟons . . . . . . . . . . . . . . . . . . . 41

2.2 DescripƟon of the iniƟal set of checkers for each module for
Bonfire router with Handshaking Flow-Control . . . . . . . . . 43

2.3 EvaluaƟon of greedy algorithm’s results for LBDR module’s
checkers for different iniƟal checkers’ sorƟng method . . . . . 45

2.4 Area comparison of complete concurrent online checkers set
with original, DMR and TMR versions of units’ control path . . 48

2.5 The result of checkers opƟmizaƟon without applicaƟon of area
constraints without use of dominant checkers. . . . . . . . . . 48

2.6 Full list and area, overhead and coverage results of dominant
checkers for each module . . . . . . . . . . . . . . . . . . . . 48

2.7 The result of checkers opƟmizaƟon without applicaƟon of area
constraints using dominant checkers. . . . . . . . . . . . . . . 49

2.8 Classifier unit overhead reports . . . . . . . . . . . . . . . . . 51

3.1 List of previously named turn models . . . . . . . . . . . . . . 57
3.2 DoA and DoAEx for all 2D rouƟng algorithms (being shown in

Fig. 3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Area overhead of proposed packet dropping mechanisms . . . 64

4.1 Comparison of the available tools in terms of different criteria . 74
4.2 Tool performance with growing size of TG . . . . . . . . . . . . 92
4.3 Tool performance with growing size of AG . . . . . . . . . . . . 93

20



INTRODUCTION

With the constant shrinking of the technology node feature size, it is possible to
integrate more components in the system. This in-turn brings up the problem of
communicaƟon between the components, turning the communicaƟon medium
into the system’s boƩleneck. Different approaches have been introduced for
solving this problem, such as modern bus systems. Long wires in the chips with
growing size and limited number of simultaneous accesses to the buses are
driving them unusable. Networks-on-Chip (NoCs) [6] have emerged as a scalable
soluƟon for solving the communicaƟon boƩleneck. This is achieved by reducing
the wire-length between the resources and providing higher flexibility in
communicaƟon. NoCs paradigm replaces the direct connecƟons with a network
of routers where the data is transferred in form of packets. Using this approach,
the network provides simultaneous access to the communicaƟon medium for
every connected resource. Furthermore, the network topologies can be tailored
to fit the applicaƟon requirements. The provided flexibility however is gained
by sacrificing latency and throughput due to data packeƟzaƟon overhead and
number of clock cycles spent in each router.

This shrinking technology feature size results in an increase in systems
suscepƟbility to faults and wear-out leading to a shorter lifeƟme of system.
The shorter component lifeƟme along with growing number of faults during
its lifeƟme, requires new dependability techniques to prolong the systems
lifeƟme with a degraded performance. The NoC-based SoCs suffer even more
from the above problems since even Single Event Upsets (SEU) in the network
components might result in a network-wide congesƟon which in turn can result
in a system failure. The above menƟoned characterisƟcs of failures in the
current technology nodes along with the behavior of the NoCs specifically,
moƟvates research towards more dependable NoC-based systems.

Many works have targeted fault tolerance mechanisms for different parts of
the NoC based SoCs. However, the main problem is that each of these works
solves a single issue regarding dependability in the network with acceptable
overhead (which makes each approach scalable by itself e.g. [7, 8]); However,
combining these mechanisms to cover all of the issues, will result in such an
overhead that will render the final fault tolerance mechanism not scalable. To
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Figure 1 Progression of bathtub curve with shrinking transistor feature size[1]

this end, this thesis provides a scalable cross layer dependability soluƟon for
NoC based SoCs.

In the literature, the following three aƩributes are considered for dependable
systems: Reliability (the probability of a failure free operaƟon of the system
in Ɵme interval [0, t]), Availability(average Ɵme that the system is operaƟonal
during the Ɵme interval [0, t]), and Safety (similar to reliability but while
considering failures that can lead to safety hazards) [9]. This work only focuses
on improving the first two components by providing soŌware and hardware
based soluƟons.

MoƟvaƟon

The shrinking feature size, makes system components more suscepƟble to
failures [10]. The system failure rate during its lifeƟme is transiƟonally visualized
by the famous bath-tub curve [9]; The horizontal axis describes the Ɵme while
the verƟcal axis represents the number of failed devices in Ɵme. Where three
components namely infant mortality, random constant failures and system
wear out produce a bath-tub looking curve over the lifeƟme of the system.
However, the bath-tub curve changes for different technology nodes. Fig.1
shows the bath-tub curve progress over Ɵme. Shrinking technology feature size
have resulted in systems suscepƟbility to new fault types (such as NBTI [11]
resulƟng in components wear-out) alongside with the increased effects of the
known fault sources (e.g. increase in possibility of mulƟple components –gates,
memory cells etc.– being affected by a parƟcle hit). As its shown in the figure,
with each technology node, the constant failure rate grows and shiŌs the curve
upwards. At the same Ɵme higher infant morality and wear-out rates shrink
the size of the tub.
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In the meanƟme, the limitaƟons of tradiƟonal and modern bus based (e.g.
AMBA’s AHB and AXI bus etc.) communicaƟon mediums. However, such
approaches impose limitaƟons once the number of the connected components
grow (16 bus masters in case of AMBA bus1). Also these approaches impose a
communicaƟon boƩleneck on parallel compuƟng in mulƟ/many-core systems.
Network based communicaƟon schemes provide a scalable soluƟon for such
problems, rendering Networks-on-Chip (NoCs) a widely accepted paradigm by
the industry [12]. In tradiƟonal bus based systems, once the access to the
bus is acquired, the data can be sent in burst. In contrast, Network based
communicaƟon requires one or more control flits for navigaƟng the packets in
the network along with some wrapping around the payload data (for forming
the flits) which reduces the data-throughput significantly. Also factors such as
latency of packets in the network (due to packets being forwarded by each router
in the network), considerably limits the communicaƟon. Networks-on-Chip
should be used with great care in Systems-on-Chip(SoCs); Problems such as
deadlock (where packets wait on one another in a circular path for release
of resources), or live-lock (where a packet moves in circles in the network
and never reaches the desƟnaƟon) can easily paralyze the network. Network
congesƟon is another limiƟng factor of NoCs, if the traffic in the network is
not properly distributed. Its important to note that NoCs impose considerable
area overhead to the chips. Hence more faults can occur in the communicaƟon
medium; up to the point that such faults can not be ignored any further.

The shorter lifeƟme of the components in NoC based systems on a chip
(SoCs) –including but not only limited to network components– highlights
the need for fault tolerant soluƟons. The resulƟng soluƟon should prolong
systems availability by providing a graceful performance degradaƟon. To this
end, using classical test methods would not be sufficient. and new fault
detecƟon, localizaƟon and management techniques are required to handle the
new problems. Also system availability [9] which is a vitally important factor,
requires runƟme fault-tolerance mechanisms and methods for shortening
system downƟme due to reconfiguraƟon.

Considering the pressing issues which lead to shorter life in the components,
it is crucial to provide dependable soluƟons which take into account upcoming
problems in all levels of abstracƟon. More specifically, the following challenges
sƟll exist in the field of NoC based SoCs:

• Large area overhead of control-part fault detecƟon and classificaƟon
mechanisms: Fault detecƟon mechanisms for control-path of the units
which provide localizaƟon impose a large area overhead in the NoC
routers. Depending on the considered fault model in the NoC router, the
number of fault signals coming from the detector circuits might be rather

1please refer to hƩps://www.arm.com/products/system-ip/amba-specificaƟons
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large. The exisƟng hardware-based fault classificaƟon methods are not
scalable for applying on all important fault signals in a NoC router.

• Network-wide congesƟon due to faults in the routers’ data-path: Since
routers make rouƟng decision based on the rouƟng informaƟon encoded
in the packet’s header, If a data-path of the router (including input and
output buffers, crossbar switch, physical link between adjacent routers)
becomes faulty, It might cause either packet mis-route or in the worst
case scenario might lead to rouƟng logic becoming incapable of rouƟng
the packet. For example it can happen in cases that the rouƟng algorithm
doesn’t support the turns necessary for required rouƟng. Another
case would be the corrupƟon of flit types which in turn might lead to
congesƟon in the router. CongesƟon in one router can easily propagate
to the rest of the network and cause a network-wide congesƟon.

• Lack of low-latency reachability guarantee for packets in the network
under arbitrary fault configuraƟon: There exist many works in the
literature targeƟng fault avoidance in on-chip networks. However, all
these approaches suffer either from high latency due to path-finding
methods or from incapability of handling concave fault configuraƟons.

• Reliability degradaƟon of the routers due to fault tolerance mechanisms’
hardware overhead: Considering growth of number of faults in relaƟon
to growing the hardware size, and the large area overhead of the fault
tolerant mechanisms, it is not possible to safely assume that the fault
tolerant system is fault free. Since a healthy component with a faulty
fault-tolerance (such as detecƟon, classificaƟon and handling) mechanism
is indisƟnguishable from a faulty component with healthy fault-tolerance
mechanisms, the system’s reliability will suffer regardless of the fault’s
locaƟon. An evaluaƟon of the impacts of such methods on reliability of
routers is needed.

• Lack of a simulaƟon environment for evaluaƟng fault tolerance mech-
anisms: In recent years many simulaƟon environments have been
proposed for NoC based systems. However, a simulator environment
which considers the effects of the faults in the system from applicaƟon
layer and models fault tolerance systems is missing in the literature.

The above menƟoned challenges moƟvates further research on cross-layer
fault management in NoC based SoCs. The next secƟon lays the details of the
tasks at hand.
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Figure 2 Components of a possible cross-layer fault management system for a NoC
based SoC

Problem formulaƟon

Providing support for graceful degradaƟon to the system requires system which
have global view of the system in order to enable system-wide decisions.
However, latency of the global mechanisms’ response is not acceptable. This
moƟvates integraƟon of local mechanisms that are close to hardware which
provide fast response. Such mechanisms should be dependent on the global
system manager as liƩle as possible.

Considering the above menƟoned characterisƟc of global and local
dependability mechanisms, it becomes obvious that a cross-layer dependability
system is required. Such a cross-layer approach may consist of three main
layers: Fault informaƟon acquisiƟon, Local and Global fault management.
Fault informaƟon acquisiƟon can be performed by collecƟon, abstracƟon,
classificaƟon and propagaƟon of fault informaƟon obtained from data-path and
control-part fault detecƟon mechanisms. The fault informaƟon produced in this
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layer should be consumed by other layers. In contrast to the fault informaƟon
acquisiƟon, layer which can be an independent layer, the local and global fault
management are closely intertwined; Most of the mechanisms that act locally
rely on computaƟon and configuraƟon from a global manager. Figure 2 depicts
components of a possible cross-layer fault management mechanism.

Global fault management layer should maintain a system-wide health map
by using obtained fault informaƟon. Based on this health map, the global
fault manager can perform system-wide resource management and applicaƟon
deployment(via mapping and scheduling unit). The mechanisms that rely
on system manager for reconfiguraƟon (such as rouƟng reconfiguraƟon, local
resource management and reachability management) but act directly at the
hardware level, can be excluded from global mechanisms, and may be classified
as hybrid-local fault management.

The local and hybrid fault management layer, can uƟlize the processed fault
informaƟon from the fault informaƟon acquisiƟon layer along with commands
from the global fault management unit to perform local fault handling, rouƟng
and resource management and providing reachability guarantees. Parts of
the local fault management may be controlled/reconfigured globally but act
locally (Hybrid-Local mechanisms). A simple example of such systems can be
the rouƟng units which provides a level of fault management by uƟlizing the
rouƟng adapƟvity to tolerate faulty links in the network, while the rouƟng
algorithm may be reconfigured by the global fault manager. However, since
in this scenario the global fault manager doesn’t make the decisions to avoid
a parƟcular faulty situaƟon, this part would be sƟll considered as local fault
management.

The main goal of this work is to address problems menƟoned in the previous
secƟon by introducing:

• PracƟcal hardware soluƟons for fault-informaƟon processing.

• Scalable Local fault management soluƟons for NoC routers

• Global fault management through dependable applicaƟon deployment
and hardware reconfiguraƟon.

More concretely, considering the challenges discussed in the previous secƟon
under cross-layer fault management approach described above, the following
problems will be tackled in this work:

• Providing a low latency fault detecƟon and classificaƟon mechanism for
control-part faults with acceptable area overhead

• Providing lightweight local fault handling mechanism at the router level
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• Proposing a scalable mechanism for providing reachability guarantee for
packets in the network under arbitrary faulty link configuraƟon and any
turn-model-based rouƟng algorithm

• Proposing reliability evaluaƟon framework for NoC routers that considers
the effects of fault tolerance mechanisms on reliability

• Devising a simulaƟon environment for evaluaƟng the effects of faults at
system level and the efficiency of fault tolerance mechanisms.

The next secƟon describes the contribuƟons of this thesis regarding the
above menƟoned tasks in more details.

ContribuƟons

This work focuses on a cross-layer approach using the above menƟoned
structure. In order to clarify the global and local terms, in this work, a
mechanism is considered local if it is distributed over the system, close to
hardware and does not require global informaƟon for each decision. The
mechanisms that require global reconfiguraƟon but fall under the above
menƟoned criteria are not considered global but are labeled as Hybrid-Local
mechanisms (since their local nature is much more dominant).

The main contribuƟons of the scienƟfic work presented in this thesis are:

• The fault detecƟonmechanisms for control part of the circuit is considered
in this work (concurrent online checkers). This provides detailed fault
localizaƟon informaƟon but has a large hardware overhead. In this work
a minimizaƟon framework for such checkers is proposed. A new metric,
namely coverage density has been introduced for selecƟng the checkers
during the opƟmizaƟon process. Also new concept of dominant checkers
have been introduced for speeding up the process by reducing the search
space of the problem. This contribuƟon led to publicaƟon D [13].

• The large number of fault diagnosis signals in the router (specially
coming from the concurrent online checkers) requires more lightweight
hardware-based classificaƟon methods. This thesis extends the exisƟng
works for hardware-based online fault classificaƟon to make them more
pracƟcal for abstracted checker informaƟon as well as the links. This
contribuƟon led to publicaƟon C [14].

• The current metric available in the literature for comparing adapƟvity of
different turnmodel based rouƟng algorithms only considers minimal path
rouƟng in the networks. This work extends the degree of adapƟveness
used in minimal path rouƟng to cover non-minimal path rouƟng as well.
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This metric provides the possibility of further classificaƟon of turn model
behavior under different link-failure scenarios. This contribuƟon led to
publicaƟon E [15].

• In the current state of the art, several 2D uniform turn-model based
rouƟngs are idenƟfied. However, an enumeraƟon and evaluaƟon of all
possible possible cases was missing. This work provides an enumeraƟon
of all deadlock free, 2D turn-model based rouƟng algorithms which
provide full connecƟvity in 2D mesh networks. Later, these turn models
are compared in terms of their robustness to all configuraƟons of link
failure in the network. This contribuƟon led to publicaƟon E [15].

• Another pressing issue in the field of NoC-based SoC is parƟal or full-scale
network failure due to faults in the data-path of routers. If a router fails
to route or miss-route a packet or parts of a packet due to faults, it is
possible that all the communicaƟon in the upstream routers to become
stalled. This work provides a local fault handling mechanism to protect
the network from such congesƟon scenarios. This contribuƟon was
reported in publicaƟon C [14].

• It is possible that a rouƟng algorithm provides a viable path from a source
to desƟnaƟon but the local rouƟng units might fail to find the path due
to their lack of global informaƟon. This will lead to congesƟon in the
network due to packets being routed in undesired (but absolutely legal)
direcƟons. This work proposes a novel method to guarantee that the
injected packets in the network would reach their desƟnaƟon in faulty
networks. This contribuƟon led to publicaƟon A [16].

• It is crucial to evaluate the effects of faults on NoC-based SoC systems at
the applicaƟon layer along with effecƟveness of global fault management
mechanisms to handle such situaƟons. This work provides a new
simulator for NoC based SoCs for modeling global fault management
under mixed-criƟcality constraints. This contribuƟon led to publicaƟon B
[17].

• Since router architectures are very regular, it is possible to reuse
funcƟoning resources that have been cut-off due to their neighboring
units. Such a task requires a local resource management along with
evaluaƟon of the effects of the addiƟonal supporƟng infrastructure. This
work proposes three architectures for resource reuse in the NoC routers
along with an evaluaƟon framework to compare their effect on reliability
of the router. This contribuƟon led to publicaƟon F [18]
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Thesis organizaƟon

This thesis contains 4 chapters. Chapter 2 provides details of fault detecƟon,
abstracƟon, classificaƟon and propagaƟon mechanisms. Chapter 3 delves into
problem of local and hybrid fault management and chapter 4 discusses system
level fault management schemes. Finally chapter 4.6 concludes this work and
proposes some ideas for future work.
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1. Network-on-Chip Architecture

1.1. IntroducƟon to NoCs

This thesis focuses on cross layer fault tolerance in Network-on-Chip (NoC)
based Systems-on-Chip SoCs. This chapter describes the basics of concept of
NoCs and introduces the Bonfire router which is an in-house NoC router. The
decision to develop an in-house NoC router was twofold: 1) to provide very
simple hardware infrastructure in order to reduce unnecessary complexity and
2) to design a small baseline NoC router in order to magnify the effect of area
overhead of the proposed approaches. The rest of this secƟon describes the
preliminaries of NoCs.

In recent decades NoCs have emerged as a promising communicaƟon
paradigm for replacing tradiƟonal and modern buses. NoCs provide a flexible
soluƟon that reduce the wire-length in the chips by using a network of routers
in the chip instead of long bus wires.

The NoC topologies can be either direct or indirect. In a direct topology,
each Ɵle consists of a router/switch and a resource. However, in an indirect
network, each network Ɵle consists of router/switch, but may or may not
include a resource [19]. Fig. 1.1 depicts an example of a direct network while
Fig. 1.2 provides an example of indirect networks.

This work focuses on direct networks. More specifically, in this work, each
Ɵle in a NoC architecture consists of a router, a network inter f ace and a
resource. The router receives the informaƟon in form of packets from the
network interface or neighboring routers and passes the informaƟon around
to adjacent routers or the network Interface. The network inter f ace acts
as an adapter that connects the Ɵle’s router to the Ɵle’s resource. Usually
the network interface is in charge of making packets out of the informaƟon
received from the local resource and also to de-construct the packets into raw
data to be consumed by the local resource. The resource in the network Ɵle
can be itself a small Bus-based SoC, a single processor, a shared memory etc.

The InformaƟon is transfered in the network in form of messages which
consist of one or several packets. Each packet consists of several flits. As
a common pracƟce, the following types of the flits are used: Header which
contains the rouƟng informaƟon, Body flit which contains the payload and the
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Figure 1.1 An example of a direct
network

Figure 1.2 An example of an indirect network

Tail flit that ends the packet. A packet can only have one header and one tail
flit but can contain several body flits. Each flit in turn consists of one or several
phits. Where a phit is the amount of data that can be transfered over the
physical links in one clock cycle[19].

The NoC routers can either be bufferless or have input and (or) output
buffers. The bufferless routers are smaller (in terms of area) but in case of
network congesƟon, the packets would be either miss-routed or dropped. This
in turn imposes a considerable latency in the communicaƟon. On the other
hand, buffered routers suffer from large area.

AllocaƟon of the network’s resources to packets is managed by the network’s
flow-control mechanism. There exist many approaches for buffer management,
some of the most common methods are: store-and-forward, virtual cut-through
and wormhole switching [19]. In store-and-forward, the buffers of the router
are as big as the largest packet size allowed by the system. A packet is
forwarded to the adjacent router or the local resource once the enƟre packet
is stored in the router’s FIFO. This approach requires huge buffer sizes while
the network has a high latency factor, since a packet’s flits need to wait in
router’s buffer. To improve the latency of store-and-forward, virtual cut-through
method was incorporated. In this method, packets can leave the router as
soon as they reach the router, but the router inputs buffer are as large as the
largest packet supported by the system. While virtual cut-through improves the
latency of store-and-forward, it will result in a inefficient buffer management;
Usually most of the routers will stay unused during the operaƟon. To improve
this, wormhole switching is used. Wormhole switching allows the departure of
the flits as soon as they arrive to the router but also has smaller buffers. In
case of congesƟon in the network, the flit’s of the same packet will be stored
in the routers buffers along the packet’s path.

In order to manage the allocaƟon of network’s physical links to the packets, a
communicaƟon protocol is required between the adjacent routers. There exist
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many protocols such as acknowledge based, on-off and credit based schemes
(for more informaƟon please refer to [19]).

Another important factor in NoCs is the rouƟng management. RouƟng
of packets can be either done using table-based rouƟng, source rouƟng or
algorithmic rouƟng. In table-based rouƟng, each router has a rouƟng table
which contains the rouƟng informaƟon for each source-desƟnaƟon. This
approach is not scalable since the size of the table will grow with network
dimension’s power of two. Source rouƟng approach includes the packet’s path
(in form of direcƟons that a packet needs to take in each step) in the packet.
Each router will remove the part of the processed direcƟon from the packet
and forward the packet further. This approach adds considerable overhead
to the packet’s size. Algorithmic rouƟng implements some rouƟng funcƟon in
hardware that can calculate the direcƟon of packet based on the source and
desƟnaƟon informaƟon in the packet[19].

While rouƟng a packet in the network, its possible to end up in a deadlock
or live-lock situaƟon. A live-lock is the situaƟon that a packet is moving around
the network but never reaches its desƟnaƟon. A deadlock situaƟon describes
the case that several packets form a circular dependency where all are serially
waiƟng for the packet ahead to release a network resource. Both of these cases
should be handled properly by the rouƟng algorithm. Specifically, deadlock is
handled either by ensuring that it can never happen (deadlock avoidance) or by
resolving a deadlock that has already occurred (for more informaƟon see [19]).

The rest of this chapter will focus on the Bonfire framework, a NoC based
SoC which is used in rest of this thesis.

1.2. Bonfire Framework

The work in this thesis uses the Bonfire framework as a hardware demonstrator.
Bonfire [20] is an open-source framework for tesƟng dependability mechanisms
in a NoC-based System-on-Chip (SoC). The target NoC architecture is a 2D mesh
topology. Each network Ɵle consists of a wormhole switching router equipped
with fault tolerance mechanisms and a Processing Element (PE) connected to
it via a Network Interface (NI). Each PE comprises a Plasma core [21]; a 32-bit
MIPS-I based open-source pipelined processor. Two different versions of Bonfire
router have been used in this work; A simple architecture using handshaking
flow-control which only supports determinisƟc turn-model [22] based rouƟng.
And a more sophisƟcated router with credit-based flow-control which supports
any turn-model-based adapƟve rouƟng algorithm [22]. More details of these
architectures are provided bellow:
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Figure 1.3 Block diagram of the hand-shaking router

Figure 1.4 Packet format in hand-shaking router.

1.2.1. Router Architecture with Handshaking Flow-Control

The Bonfire router with handshaking flow-control is a simple wormhole NoC
router, which is not designed for high performance communicaƟon. Fig. 1.3
depicts the block diagram of hand-shaking router. It consists of Input buffer
unit, RouƟng logic , Arbiters and Crossbar Switches (marked as FIFO_x,
LBDR_x, Arb_x and Xbar_x in Fig. 1.3 respecƟvely). The input buffer Unit
consists of a 4-flit deep circular buffer FIFO and performs handshaking with the
upstream router. The Arbiters provide support for determinisƟc rouƟng and
perform handshaking with the downstream router. Two neighboring routers
have to complete a three stage handshaking for each flit transmission. The
handshaking process will force a upper-limit for the network throughput (one
third of its maximal performance). However, this router was used as a simple
design example. This architecture will be referred to as HS router hereaŌer. The
rouƟng logic is implemented using LBDR [23] which is a lightweight distributed
rouƟng mechanism that supports any turn-model based rouƟng algorithm. This
router is used explicitly in the work presented in SecƟon 2.2.1.

The packet format for this architecture consists of 3 types of flits; Header
flit, Body flit and tail flit. Header flit consists of source and desƟnaƟon address
(4 bit each), packet idenƟficaƟon number and packet length counter. Body and
tail flits only contain payload data. Each flit has a three bit one-hot encoded
flit-type tag. The packet format used in this router is depicted in Fig. 1.4.

33



Figure 1.5 Block diagram of the credit based router

Figure 1.6 Packet format in credit based router.

1.2.2. Router Architecture with Credit Based Flow-Control

The Bonfire router with credit-based flow-control is a more sophisƟcated NoC
router with wormhole switching. Fig. 1.5 shows block diagram of the credit
based router used in this work. This router contains input buffers and rouƟng
units for each input port, one switch allocator that provides support for any
turn-model based adapƟve, minimal-path rouƟng algorithm and a crossbar
switch for each output port (marked as FIFO_x, LBDR_x, Allocator Unit and
Xbar_x in Fig. 1.5 respecƟvely). Design of the allocator unit is based on
[19]. As for the flow-control, each upstream router, keeps track of empty
buffers in the downstream router and sends the flits with the assumpƟon
that the downstream router can receive them. The FIFO unit uƟlizes a 4-flit
deep circular buffer and is in charge of issuing credit signal to the upstream
router. The rouƟng logic is using LBDR [23] which is a lightweight distributed
rouƟng mechanism that supports any turn-model based rouƟng algorithm. This
architecture will be referred to as CB router hereaŌer.
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Figure 1.7 Block diagram of the Credit-based Network Interface

Packet format is slightly modified compared to the handshaking router. The
header flit contains only source and desƟnaƟon address-each being 14 bits long
enabling addressing up to 128× 128 networks-. First body flit, contains the
packet idenƟficaƟon number and packet length. The rest of body flits and the
tail are only carrying payload data similar to HS router. Each flit has a three bit,
one-hot encoded flit-type tag. Fig. 1.6 depicts the credit-based router packet
format.

The Network Interface (NI) designed for this router is a memory-mapped
unit connected to the Plasma processor. The network interface includes a
packeƟzer and two FIFO buffers (one from the processor towards the network
-PE2NoC- and one in the opposite direcƟon-NoC2PE-). The depth of the PE2NoC
is set to 32 flits however for calculaƟng the latency and throughput of network,
this number is increased up to 32768 flits (just for simulaƟon purposes). The NI
does not provide a depackeƟzaƟon service and it is assumed that this task will
be handled in soŌware. Fig. 1.7 illustrates the block diagram of the Network
Interface and Processor and Network side signals.

1.3. EvaluaƟon of base-line Bonfire routers

To evaluate the characterisƟcs of Bonfire routers, this secƟon provides data
regarding the area of each router. All routers are synthesized by AMS 0.18µm
library.

Table 1.1 Area break-down results of Bonfire Routers

Router CombinaƟonal SequenƟal Total
name Area (µm) Area (µm) Area (µm)

Hand-Shaking Router 42801 48361 91163
Credit-based Router 47969 52059 100028
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Table 1.2 Handshaking router units area breakdown

Unit CombinaƟonal SequenƟal Total
name Area (µm) Area (µm) Area (µm)
FIFO 5105 8893 13999
LBDR 211 324 536
Arbiter 601 259 860
Xbar 2173 0 2173

Table 1.1 shows the combinaƟonal and sequenƟal area of handshaking and
credit-based routers. As expected, more than half of the area of the router is
consumed by the sequenƟal elements, specially the FIFO unit’s buffer. Tables
1.2 and 1.3 show the unit’s area break down for handshaking and credit-based
routers respecƟvely. The main difference between the two is the presence of
an allocator unit in credit-based router where in the handshaking router only
five arbiters were used before. However, the biggest share of the router area is
consumed by the FIFO units in both designs. The area increase in the FIFO unit
in credit-based router is due to addiƟonal credit counters. Also the increase in
LBDR unit of the credit based router is due to addiƟonal hardware support for
enabling rouƟng reconfiguraƟon.

Table 1.3 Credit-based router units area breakdown

Unit CombinaƟonal SequenƟal Total
name Area (µm) Area (µm) Area (µm)
FIFO 5464 8893 14357
LBDR 745 999 1744

Allocator Unit 6677 2596 9274
Xbar 2173 0 2173

1.4. Chapter Summary

In this chapter some basics of the Network-on-Chip paradigm was discussed.
Also, this chapter provided details of Bonfire, the in-house developed framework,
which is used throughout this thesis. Bonfire architecture being a simple and
lightweight router, enables research on NoC dependability by: 1) removing the
unnecessary complexiƟes and 2) magnifying the area overhead of the fault
tolerance mechanisms. Finally this chapter concluded by area evaluaƟon of
Bonfire framework.
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2. Fault InformaƟon acquisiƟon

One of themost criƟcal parts in a cross-layer dependability scheme, is acquisiƟon
of useful fault informaƟon in each abstracƟon layer. Many approaches exist in
the literature which consider fault detecƟon in soŌware-layer etc.. However,
applicaƟon-level fault detecƟon usually is possible once a failure has happened.
And fixing it requires a roll-back to a correct checkpoint. In contrast, acquiring
fault informaƟon in the hardware would provide the system with possibility of
faster reacƟon –with isolaƟon and/or correcƟon being totally transparent from
the user. Its important to note that once the detecƟon of the faults is moved
to hardware, it is possible that the fault informaƟon produced is too detailed
which would require an abstracƟon stage before being used. Another advantage
of hardware-level fault informaƟon acquisiƟon is the possibility of processing
this informaƟon on site which would be many Ɵmes faster than doing it at
higher abstracƟon layers. To acquire such informaƟon in the hardware level,
four essenƟal tasks should be performed: detecƟon of the faults, abstracƟon
of fault informaƟon, classificaƟon of the faults and finally propagaƟon of such
informaƟon to the consumer. Consumer of such informaƟon being either a
system level resource manager or a local fault management unit or a hybrid of
these approaches.

This thesis focuses on the faults in the routers in a NoC based SoC. The
proposed approach divides the NoC router into data-path and control-part and
uses different exisƟng fault detecƟon mechanisms to address the faults in these
sub-circuits. To detect the faults in the control-path of the router, the concept
of checkers has been used. However, while generaƟng such checkers, the area
constraints of the final product is not considered (the focus is more on the fault
coverage). Also, during this process, it is very likely that mulƟple checkers are
generated which provide overlapping fault coverage. This problem requires a
fully automated minimizaƟon framework for the area of such checkers (while
maximizing the coverage).

Once the fault informaƟon is gathered and abstracted before being used
by the higher abstracƟon layers (e.g. a soŌware-based global system health
manager), It should be classified into transient, intermiƩent and permanent.
Moving the classificaƟon task to hardware provides the system with the
following advantages: (1) the classified fault informaƟon is already available in
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the hardware layer and can be used by local fault miƟgaƟon mechanisms, (2)
reduces the soŌware load for such tasks. The idle soŌware Ɵme can be uƟlized
for other dependabilitymechanisms such as dependable applicaƟon deployment
etc. The current state-of-the-art soluƟons for online fault classificaƟon are
expensive and not scalable for many fault signals provided by fault abstracƟon
mechanisms. A light-weight fault classificaƟon mechanisms is required that
enables massive deployment in the routers.

This chapter provides the following contribuƟons:

• A framework for minimizaƟon of concurrent online checkers

• Extension of the current online fault classificaƟon methods

This chapter is based on the following publicaƟons:

• ”From online fault detecƟon to fault management in Network-on-Chips:
A ground-up approach,” S. P. Azad, B. Niazmand, K. Janson, N. George,
A.S.Oyeniran, T. Putkaradze, A. Kaur, J. Raik, G. Jervan, R. Ubar, T.
Hollstein, DDECS 2017

• Automated area and coverage opƟmizaƟon of minimal latency checkers,
S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan and T. Hollstein,
ETS 2017

2.1. Literature Review

There has been considerable research on NoC fault diagnosis. While works like
[24, 25, 26] only target faults on the links, Other approaches target a broader
space and cover different parts of the router [27, 28] or network [29]. Another
point to disƟnguish these approaches is the Ɵming of the process, hardware
BIST approaches such as [29, 30, 27, 26] require a full or parƟal shutdown
of the system while methods like [31, 32, 33, 34, 35, 36, 37, 38, 39] provide
on-line fault diagnosis. Its also important to note soŌware based BIST methods
such as [25] which use test packets to test the links. The BIST methods have
proven to be very efficient and compact however, since they do not provide
on-line fault detecƟon, the fault can not be handled locally and there is always
the chance of fault informaƟon propagaƟon to the rest of the system. On the
other hand, the area and power overhead imposed by the on-line fault detector
mechanisms is considerable and there is much room for improvement.

In cases that the fault informaƟon are not consumed locally, the granularity
of the informaƟon propagated to the consumer should be adjusted accordingly.
For example, the system level manager does not require informaƟon about
a failing logic gate in a part of the system to make a decision. In fact, if
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the informaƟon is too detailed, it makes the task for the soŌware level more
difficult since it has to make the abstracƟon first. Also its important to consider
the amount of power consumed when transferring all the informaƟon to the
system manager. To this end, it is crucial to combine the fault informaƟon
locally and propagate the absolute minimum required.

The importance of fault classificaƟon can not be understated in these
approaches. BIST approaches can in-fact provide fault classificaƟon [40] by
repeaƟng the test. However, using BIST-like approaches require the system to
be switched fully or parƟally from operaƟon mode to test mode which will lead
to considerable loss of performance. Another approach would be to transfer all
the fault informaƟon to the soŌware layer [41, 42] and leave the classificaƟon
task to those units. There are two main problems with this approach; The
latency and the communicaƟon overhead. Its much faster to perform the
task on-line and locally and send the classified fault informaƟon to the system
manager. Methods like [43] and [44] have made realisƟc aƩempts to provide
on-line hardware support for fault classificaƟon. However, [43] suffers from
a short screening window for the faults, and [44] incurs large area overhead.
Both of these methods cover the faults on the links and there is no pragmaƟc
soluƟon available which provides classificaƟon for all the faults in the NoC
router.

There are different approaches for propagaƟng the fault informaƟon to
a central unit in the system; scan based approaches such as [41, 42, 45],
secondary network systems [46] or through the NoC itself [47, 48]. Each of the
above menƟoned approaches has its own boƩlenecks; Scan based approaches
have very limited number of access points which limits the mapping applicaƟon
choices for deploying central manager tasks. Secondary network soluƟons
provide a fixed amount of overhead to the network but provide a scalable and
very flexible soluƟon. However, considering the size of the secondary network
(which is not negligible) considerable amount of faults might happen inside
this network, which makes it a reliability issue. Lastly using the NoC itself for
sending diagnosis packets has a very low hardware overhead. However, this
method suffers from the fact that due to previous network faults, diagnosis
packets might not reach the central manager unit.

2.2. Fault DetecƟon

Fault detecƟon comes as the first step of producing fault informaƟon. However,
this work addresses fault detecƟon on datapath and control path of the system
differently.

In this work the data path faults are detected using single parity checker.
The parity checker has been chosen due to its low area overhead and its power
to detect all odd number of faults. The enƟre router data-path is divided into
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Figure 2.1 concept of a checker circuit

two secƟons, the path from the upstream router to the input of the FIFO and
from the output of FIFO to the output port. These points are criƟcal locaƟons
since the data in the input of the FIFO is used for generaƟng the credits to the
upstream router and the data on the output of the FIFO is used by the rouƟng
unit (in this case LBDR unit) for rouƟng decisions. A simple parity checker
module is used to cover detecƟon of all single-event upsets on the inputs and
outputs of the FIFO units. The single parity is uƟlized due to its simplicity
and low area overhead compared to other approaches such as hamming code
[14]. However, based on the system requirements, a stronger error detecƟon
code can be used (for example, [49] has evaluated different ECC techniques for
hardening FIFO in a NoC router).

In the following subsecƟon the fundamentals of control path fault detecƟon
is laid out.

2.2.1. Control part fault detecƟon

The work introduced in this secƟon builds on the concept of concurrent online
checkers introduced in [2, 3, 4]. The concept of checkers are used since they
provide 100% coverage of the Stuck-at-Faults in the control part of the router
concurrently which can be used to enable online fault handling in the router.

Fig 2.1 describes the placement of concurrent online checkers; A checker is
a combinatorial circuit that reads the inputs and outputs and some internal
signals of combinaƟonal part of a unit and checks the validity of the internal
and output signals based on the received input. Checker circuit can detect all
the faults happening on the locaƟons marked in Fig. 2.1 with green circles.
However, the faults on the locaƟons marked with red crosses can not be
detected by the checkers. Since either both the checker and the circuit are
receiving faulty input or the fault is not propagated to the checker logic and
directly passed to the output.

Table 2.1 classifies the faults in the unit under checking, into four classes
based on two factors: i) whether the fault propagates to an output of the
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Table 2.1 Different condiƟons of fault propagaƟon and detecƟon by checkers and their
notaƟons

Fault propagated Fault detected CondiƟon
NotaƟon

to outputs by the checkers Name
3 3 True DetecƟon D
3 7 True Miss W
7 3 False PosiƟve F
7 7 Benign Miss X

circuit and ii) whether the checker can detect the fault. Using the notaƟons in
Table 2.1, the Coverage Efficiency Index (CEI) of a checker is calculated as:

CEI =
D

D+W
(2.1)

EquaƟon 2.1 only includes the cases that the fault has propagated to the
output of the circuit and either captured by checkers (True DetecƟon-D) or not
captured (True Miss-W), hence Benign Misses (X) are excluded. Since none
of the checkers resulted in false posiƟves firing, False PosiƟves cases (F) are
excluded from the metric. The checker generaƟon methodology is out of scope
of this thesis, however, the full list of checkers for Handshaking-Router used in
this work is provided in Table 2.2.

Checker minimizaƟon framework

While checkers provide concurrent online fault detecƟon for the units
combinatorial part, they tend to add considerable area overhead to the circuit.
To this end, the framework introduced in [2, 3, 4] has been extended to provide
different minimizaƟon schemes for area of the checkers (see Fig. 2.2).

The framework starts with the ”control part of circuit”. The next step
is ”devising pseudo-combinaƟonal version of the circuit”. During this step
the sequenƟal elements would be removed and the inputs and outputs
of the sequenƟal components would be added to the circuits interface as
pseudo-inputs and pseudo-outputs. Later the ”iniƟal set of checkers” would be
devised for the pseudo-combinatorial part of the circuit. Next, are synthesizing
the circuit along with ”checkers synthesis”. This step will provide ”synthesized
pseudo-combinaƟonal version of the circuit” and synthesized iniƟal set of
checkers. In parallel, the framework includes the ”generaƟon of exhausƟve
set of valid input sƟmuli” for tesƟng the behavior of the checkers (this steps
will be called ”environment generaƟon”). The next step of the process is
”fault-free simulaƟon” of the checkers. In this step the synthesized checkers
and the synthesized combinatorial part of the circuit will be simulated (without
presence of any faults) with exhausƟve input paƩerns. This simulaƟon step
is performed for evaluaƟng fault-free firing of checkers. In the next step the
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Figure 2.2 Extended checker framework introduced in [2, 3, 4]

”fault-free values for each circuit line” is extracted. Later in the process the user
will check if any fault free firing has happened (labeled as ”Any Checkers firing?”
in the Fig. 2.2). Firing of a checker in this part means that either the checker
circuit or the input sƟmuli is incorrect. Once all the fault-free firing cases
are removed, the checkers would be evaluated to extract their effecƟveness
using CEI metric along with their Fault Coverage (FC), False PosiƟve RaƟo (FPR),
Checker’s Weight and Area (for details regarding these metrics please refer
to [2, 3, 4]). These values (except area which is calculated during synthesis
process) are extracted through ”fault simulaƟon” using [50]. In the next step,
”checkers’ weights evaluaƟon”, the checkers weights would be compared and
iniƟal analysis would be performed by the user. Later the checkers would be
fed to the ”checker’s evaluaƟon and minimizaƟon” framework introduced in
this work for opƟmizaƟon (using ”greedy heurisƟc” and ”branch and bound
heurisƟc”). The ”final minimized set of checkers” with minimum area overhead
and maximum detecƟon would be extracted. This work focuses on the checkers
minimizaƟon framework (highlighted in Fig. 2.2)

The proposed framework starts from iniƟal set of checkers provided in table
2.2 for bonfire’s HS router. The numbers in the first column are the numbers
assigned to each checker (these numbers would later be referred to in the
end of this secƟon) and the descripƟon on the right column, introduces the
funcƟonality of each checker. It is important to note that this informaƟon is
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Table 2.2 DescripƟon of the iniƟal set of checkers for each module for Bonfire router
with Handshaking Flow-Control

Checker
num-
ber

Checkers for RouƟng Logic (LBDR)

1
If the flit type is header and input FIFO is not empty, current values of output requests of LBDR must be
one-hot.

2, 4
If the flit type is header or body and input FIFO is empty, the output requests of LBDR must preserve their
previous values.

3
If the flit type is tail, the current values of LBDR output requests must be all zero (there should be no
request generated).

5, 6,
7, 8,
9, 10,
11, 12

Based on the locaƟon of the desƟnaƟon node with respect to the current node, the correct corresponding
internal signal of LBDR, related to each cardinal direcƟon (North, East, West or South) should get acƟvated.

13, 14

If the flit type is header and the input FIFO is not empty, when all the internal signals of LBDR corresponding
to the cardinal direcƟons are zero, only the request for Local (L) output port can be acƟvated. Also, when
the desƟnaƟon address of the header flit is not the same as the current address of the router (node), the
Local (L) output request of LBDR must not go high.

15,
16,
17, 18

If the flit type is header (rouƟng computaƟon must be performed on it) and the input FIFO is not empty,
the output requests of LBDR for the cardinal direcƟons (North, East, West and South) must go acƟve
according to calculated internal signals in one-hot fashion (due to XY rouƟng).

Checkers for ArbitraƟon Logic (Arbiter)

1, 2
If the FSM of Arbiter is in IDLE state, the select lines for XBAR (Crossbar Switch) must correspond to it.
Also, if it is not in IDLE state, the XBAR select lines must always follow the one-hot encoding.

3 If Arbiter’s FSM is in IDLE state, the current value of RTS handshaking signal must be zero.
4-6 If Arbiter is not in IDLE state then corresponding handshaking signals must have correct value.

7, 8, 9
Depending on the values of the handshaking signals, the previous and current values for Arbiter’s FSM
state variable must be set accordingly.

10-14
Depending on the values of the handshaking signals and state of Arbiter’s FSM, the output grant signals of
Arbiter must have the correct value and a one-hot grant should be issued.

15-44
Depending on the previous state of Arbiter’s FSM and the request signals from LBDR modules, the correct
order of prioriƟzaƟon must always be followed in Arbiter’s FSM in a circular way (Local, North, East, West
and then South and then back to Local) and also the state of the FSM must be updated accordingly.

45, 46 The current and next values of Arbiter’s FSM state variable must always follow the one-hot encoding.

47-51
If the handshaking signals are high, depending on the state variable of the Arbiter’s FSM, the grant signal
should also be generated correctly.

52-56 The value of the XBAR select lines must correspond to the state that Arbiter’s FSM is in it.
Checkers for FIFO control part logic

1, 2
Depending on the value of the write enable signal, the write pointer of FIFO’s control part must update
accordingly (one-hot).

7, 8
Depending on the value of the read enable and empty signals, the read pointer of FIFO’s control part must
update accordingly (one-hot).

3, 4 The value of empty signal should be set based on the values of read pointer and write pointer.
5, 6 The value of full signal should be set based on the values of read pointer and write pointer.

9-12
Depending on the previous value the handshaking signals and also the full signal, the current value of
handshaking signals and write enable signals of FIFO’s control part must have the correct values.

13
If FIFO is not empty and at least one of the read enable signals is acƟve, the read enable signal generated
inside FIFO’s control part must be set to one.

provided for reference and the topic of devising checkers is beyond the scope
of this work (for more informaƟon please refer to [2, 3, 4]). Two opƟmizaƟon
algorithms (greedy and branch-and-bound) are proposed for minimizing the
area of the checkers.
Greedy heurisƟc
A greedy heurisƟc has been proposed for finding good quality soluƟons (not
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Algorithm 1: Greedy algorithm pseudo code
1 iniƟalizaƟon; // evaluates individual checkers and stores them in a list with

their CEI
2 sorted_checkers = sort_checker_based_on_CEI()
3 best_CEI = 0
4 current_list = []
5 if check_ f easibility(current_list) then
6 for checker in sorted_checkers do
7 if item not in current_list then
8 temp_list = current_list +[item]
9 if check_ f easibility(temp_list) then
10 CEI = calculate_CEI(temp_list)
11 if CEI > best_CEI then
12 current_list.append(item)
13 best_CEI =CEI
14 end
15 if CEI == 100% then
16 break
17 end
18 end
19 end
20 end
21 end
22 return current_list

necessarily global opƟmal) in few number of steps (In this case the number of
steps are equal to number of checkers). Algorithm 1 describes the process of
greedy algorithm for minimizing the checkers. This algorithm uses Checkers’
Efficiency Index (CEI) for sorƟng the checkers and then tries picking them from
the top of the list. check_ f easibility funcƟon will check if the a set of checkers
violate area constraints set by user. the chosen checker would be evaluated
along with best found checker set (current_list) and if the CEI of the new set is
providing any improvement to the best found checker set, The checker would
be added to the list. Once the CEI value reaches 100%, the process terminates.

The main problem with the greedy approach is the fact that usually checkers
with higher CEI tend to have higher area as well. As an example consider three
checkers C1,C2 and C3 with the areas A1,A2 and A3. These checkers would
have the coverage values of CEI1,CEI2 and CEI3 respecƟvely. However, It
is possible that A1 > A2 +A3 but at the same Ɵme CEI1 <=CEI{2,3}, where
CEI{2,3} describes the overall coverage of the set {C2,C3}. This can happen
due to the overlapping nature of the checkers. This problem will lead to the
algorithm to pick larger checkers in the beginning and which will lead to non
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opƟmal soluƟons. To solve this issue, The following approach is introduced in
this work:
Coverage density as a sorƟng metric:
AŌer invesƟgaƟng the checkers coverage and area, one of the key findings
was that the larger checkers tend to cover more faults, In this sense, if the
opƟmizaƟon starts with checkers with largest CEI value, the area overhead
grows dramaƟcally in the beginning. To remove the advantage of the bigger
checkers, a new metric namely Coverage Density (CD) is introduced as the
sorƟng factor:

CD =
CEIchecker

Areachecker
(2.2)

CD metric shows the fault coverage capability of the each checker in one
unit of its area. Using CD as the sorƟng factor, The algorithm starts with
including checkers with the most valuable area units. Using CD as sorƟng factor,
the greedy algorithm provides higher quality soluƟons under more strict area
constraints. Here, the rouƟng logic of the router can be used as an illustraƟve
example. In case of applying area constraint of 77µm for the checkers (which
is equal to the size of the original unit, forcing the checker unit to apply
maximum 100% area overhead). Table 2.3 describes the results for different
sorƟng methods:

Table 2.3 EvaluaƟon of greedy algorithm’s results for LBDR module’s checkers for
different iniƟal checkers’ sorƟng method

Control Area sorƟng Overhead
Unit Constraint (# NAND) method

Selected Checkers coverage Area (# NAND)
(%)

LBDR 77
CEI 1, 2, 3, 4, 7, 8, 10, 11, 12, 16 87.9% 77 100%
CD 1, 2, 3, 4, 5, 7, 8, 10, 11, 12 89.2% 76 98.7%

Table 2.3 describes the results in terms of selected checkers set and the
resulƟng coverage of the set for different opƟmizaƟon sorƟng methods (i.e.
CEI and CD). Also the area results and area overhead of each of the sets
are reported. In this case, the greedy search using Coverage Density (CD)
results in much beƩer coverage results with lower area overhead. However,
the experiments show that in cases that have stricter or much looser area
constraints, both metrics act similarly.

In the end, greedy algorithms provide local opƟma for the problem and can
not guarantee the quality of the soluƟon. To provide such global soluƟons in
the search space, a beƩer opƟmizaƟon heurisƟc is needed. The next secƟon
covers the implementaƟon and evaluaƟon of Branch and Bound algorithm for
this problem.

Branch and Bound algorithm
Greedy algorithms are fast and provide a soluƟon with few number of steps.
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However, as menƟoned in the previous secƟon, greedy algorithms do not
provide any guarantee on the quality of soluƟon. Branch and Bound algorithm
provides the global opƟmal soluƟon but in the worse case scenario needs larger
number of steps. If there are N checkers, the number of steps to be checked in
the worst case scenario is 2N+1 −2 which is the case of traversing the full tree.
This trade-off between quality and speed will determine which method to be
used.

Depth First Search (DFS) implementaƟon of Branch and Bound algorithm was
used for checker minimizaƟon. At each step, a checker is chosen (to be taken or
being discarded), and the CEI and area of the selected checkers are esƟmated.
Also, opƟmisƟc evaluaƟon of sub-tree below the chosen opƟon is performed
(which is the CEI of all the remaining checkers without considering the area
constraint). In case the opƟmisƟc evaluaƟon of the current step is smaller than
the best soluƟon found so far (i.e. the soluƟon is bounded), the search would
be terminated in that branch. The process will return the set of checkers with
the least area consumpƟon and largest CEI. As already menƟoned, this method
can provide the global opƟma in the search space, however,in the circuits with
large number of checkers this approach becomes in-efficient.
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Figure 2.3 Example of number of True Misses for stuck-at-0 for LBDR circuit nodes.

Figure 2.4 Example of Nnumber of True Misses for stuck-at-1 for NLBDR circuit nodes.



Dominant checkers:
while evaluaƟng the checkers, two main characterisƟcs for each checker are the
number of True DetecƟons (for stuck-at-0 and stuck-at-1) and number of True
Misses (for stuck-at-0 and stuck-at-1) for each circuit line. if all the checkers
are evaluated separately, four tables can be generated; two tables for True
Misses and two for True DetecƟons. Fig. 2.3 and 2.4 shows examples for
true misses tables for stuck-at-0 and stuck-at-1 for the rouƟng logic (LBDR)
respecƟvely. The columns show the node numbers in the synthesized circuit
and the rows show the checker id numbers. the numbers in the table show the
number of true misses of each checker for each circuit node. the cells marked
with green shows the cases where there exists a single dominant checker and
cells marked with red are dominant but are not unique checkers. Nodes that
have zero true detecƟon are marked with ND (not detected) If these tables
are processed individually based on the number of detected and undetected
stuck-at-0 and stuck-at-1 faults (which denote the number of True DetecƟons
and True Misses), it is possible to extract checkers which provides the smallest
values of True Misses for each line in the circuit, hence improving the CEI.

DefiniƟon 1. A dominant checker for a circuit line is defined as a checker that
has a minimum number of True Misses, while having a non-zero value for True
DetecƟons for that specific circuit line. If the number of dominant checkers for
a circuit line is only one, that checker is called a single dominant checker.

By selecƟng single dominant checkers in the beginning of the minimizaƟon
process, the search space size is reduced, leading to speed-up of the opƟmizaƟon
algorithm. However, it should be noted that picking such checkers does not
necessarily result in a global opƟmal soluƟon and it might be the case that
the combinaƟon of other checkers results in 100% CEI with lower area. But,
starƟng the opƟmizaƟon by picking the dominant checkers first, adds significant
speed-up to the process.
OpƟmizaƟon results evaluaƟon:
This secƟon provides the experimental results for the opƟmizaƟon algorithms
on the HS router and compares the effects of using dominant checkers and
different opƟmizaƟon algorithms.

Table 2.4 shows the area of the full units, pseudo combinatorial circuit,
area and hardware overhead of DMR and TMR for control units along with
the number, area and hardware overhead of the full set of the checkers. The
overheads are calculated against the full unit size. From the results, it is
clear that the original checker mostly consume larger area comparable to TMR
(except in the case of FIFO).

Table 2.5 shows the opƟmizaƟon results without the use of dominant
checkers along with the search space size. As it is shown in the table, the
search space size can grow dramaƟcally even for small circuits such as arbiter.
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Table 2.4 Area comparison of complete concurrent online checkers set with original,
DMR and TMR versions of units’ control path

Unit InformaƟon

Control
Control unit area (#NAND) Control unit DMR Control unit TMR Complete set of checkers

Unit
Full pseudo Area Overhead Area Overhead

Number
Area Overhead

unit comb. (#NAND) (%) (#NAND) (%) (#NAND) (%)
LBDR 77 39 91 67.5% 153 148% 18 123 159%
Arbiter 174 124 209 48.8% 464 195% 56 337 193%
FIFO 129 60 133 56.5% 235 135.6% 13 125 96.8%

Table 2.5 The result of checkers opƟmizaƟon without applicaƟon of area constraints
without use of dominant checkers.

OpƟmizaƟon without Dominant checkers
OpƟmized set of checkers

Control Opt.
Selected Checkers

Area Overhead Search space
Unit method (#NAND) (%) size

LBDR
B&B 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18 99 128%

262144
Greedy 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18 111 144%

Arbiter
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17,

7×1016Greedy
21, 22, 26, 31, 32, 36, 37, 42, 45, 46, 52, 53, 54, 55

261 150%

FIFO
B&B 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13 120 93%

8192
Greedy 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 122 94.5%

Table 2.6 Full list and area, overhead and coverage results of dominant checkers for
each module

Dominant checkers for each unit
Unit dominant Checkers Area (#NAND) Overhead Coverage
LBDR 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 121 157.1% 89.6%
Arbiter 1, 2, 7, 8, 9, 13, 14, 17, 31, 45, 46 200 114.9% 89.8%
FIFO 1, 2, 3, 5, 7, 8, 13 105 81.3% 92.5%

The results reported in Table 2.5 for greedy algorithm are obtained using CEI
as sorƟng factor. As its clear, for units with large number of checkers (such as
Arbiter), search space for Branch-and-Bound algorithm grows significantly and
becomes in-efficient. However, it provides global opƟma for smaller problems
(such as LBDR and FIFO) and is preferable.

Full list of dominant checkers for each unit and the characterisƟc of the
dominant checker set are presented in Table 2.6. Complete dominant checkers
set already covers at least 89% of all modules faults.

Finally the opƟmizaƟon results using the dominant checkers in the starƟng
point along with the search space size are reported in Table 2.7. By comparing
the search space size of the algorithms using Dominant Checkers with normal
case, the search space becomes much smaller and the provided soluƟon is sƟll
acceptable. The experimental results show that using the proposed framework,
it is possible to keep the area overhead between DMR and TMR of the control
logic and sƟll provide 100% coverage. This result is important due to the fact
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Table 2.7 The result of checkers opƟmizaƟon without applicaƟon of area constraints
using dominant checkers.

OpƟmizaƟon with Dominant checkers
OpƟmized set of checkers

Control Opt.
Selected Checkers

Area Overhead Search space
Unit method (#NAND) (%) size

LBDR
B&B

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 123 159% 1
Greedy

Arbiter Greedy
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

266 152.8% 3.5×1013
17, 21, 22, 26, 31, 32, 36, 37, 42, 45, 46, 52, 53, 54, 55

FIFO
B&B 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13 120 93%

64
Greedy 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 122 94.5%

that the checkers can provide localizaƟon informaƟon which DMR and TMR can
not provide.

2.3. Fault informaƟon abstracƟon

Despite the importance of providing localizaƟon informaƟon to higher layers,
too detailed fault informaƟon can not be handled efficiently by a system wide
manager. To this end the minimized checkers outputs can be grouped to
generate abstract informaƟon such as Unit-Faults and Turn-Faults in the router.

DefiniƟon 2. A turn is defined as a path from one input port of the router to
an output port of the same router.

Using turn-fault abstracƟon, it is possible to reduce the number of fault
locaƟons from hundreds of circuit lines to twenty turns including eight 90
paths (for example from East to North) and twelve straight paths (for example
from South to North). To generate such abstract informaƟon, signals from the
different unit’s checkers in the router are combined (OR-ed together). This
abstracted informaƟon can be used by system manager which keeps abstract
model of the communicaƟon architecture in order to perform system-wide
reconfiguraƟon. Later on, the classificaƟon of the faults would be performed
on the abstracted checker informaƟon. The fault informaƟon abstracƟon is
beyond the scope of this thesis (For more informaƟon, please refer to [14]).

2.4. Fault ClassificaƟon

Classifying the faults in a circuit involves monitoring the frequency of the faults
in a circuit. There should also be two thresholds for fault occurrence which is
used for discriminaƟng the units into different classes (Healthy, IntermiƩent and
Faulty). This can not be done merely with counƟng faults in a Ɵme window. An
example can be used for illustraƟng this point; Assume two units A and B. Fault
detectors of unit A fault fire once every millisecond and fault detectors of unit
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(a) (b)

Figure 2.5 Proposed Classifier unit’s a)Block Diagram and b)FSM Diagram

B fire three Ɵmes every millisecond. If the thresholds frequency of the faults is
two and three faults per millisecond, using the method described above, unit B
would be classified as intermiƩent and unit A would be classified as healthy.
However, different units in the circuit are used with different frequency. Lets
assume in the example above, that unit A is used (or enabled) once every
millisecond. This would in turn mean that unit A is not only not healthy,
but should be classified as permanently faulty. This problem can be seen on
physical links on the network. It is important to note that while the data on the
link is not valid, the presence of the fault is not affecƟng the system and can
be ignored. The only corner case is the fault affecƟng control signals between
the routers, however, this topic is out of scope of this thesis.

In this work, we target a simple on-line, hardware fault classifier unit based
on method introduced in [44]. The method introduced in [44] is deployed
in each input port of the router and provides 3 states for the link (healthy,
intermiƩent and faulty). It uƟlizes hamming code with one bit error correcƟon
and two bit error detecƟon. The classifier unit monitors a window of n packets
and counts the number of healthy and faulty packets by means of three
counters (one for healthy packets and two for two different fault outputs of
hamming decoder). Each of the counters has its own threshold value. Once
any of these counter reaches this its threshold, all the counters reset and the
state of the link is decided by a controller.

Fault classifier in [44] imposes large area overhead to the router and is only
covering link faults. This work proposes a light weight version of this classifier
that can be deployed on all input links and 20 turn faults [14]. The proposed
classifier achieves the above menƟoned advantages by: 1) replaced hamming
encoding with a single parity (for the links) and 2) shared the counter for
intermiƩent and permanent faults to reduce the area overhead (see Fig. 2.5
a.). The resulƟng classifier was deployed on all the input links and with small
modificaƟon to the abstracted turn fault signals of the checkers. Since the
checkers do not produce a signal while the circuit is not-faulty, the healthy signal
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counter was replaced with a simple counter producing a constant window.
However, this will not produce the same problem as described in the beginning
of the secƟon, since checkers only check combinatorial circuit and such circuit
should provide valid output all the Ɵme. Another specific improvement in this
design is that the FSM controller is designed in such a way that can move the
sate from intermiƩent to healthy which becomes handy in cases that a series of
transient faults are detected as intermiƩent fault (see 2.5 b.). Table 2.8 shows
the area overhead of each classifier unit in the router. The small area overhead
of such classifiers enables the designer to deploy them on criƟcal signals reduce
the latency of classificaƟon (in comparison to soŌware-based soluƟons).

Table 2.8 Classifier unit overhead reports

Unit name Unit area (µm2) Area overhead to baseline router
Classifier unit 1086 1%

Once a link is classified as permanently damaged, the upstream router
would be noƟfied. The LBDR unit will update its connecƟvity bits which reduces
the adapƟvity. All this process would be performed locally. In case of other
units, the classified fault informaƟon would be transmiƩed to the global System
Health Manager and further decisions would be made at soŌware level.

2.5. Chapter summary

An essenƟal part of any dependable system is a mechanism for fault informaƟon
acquisiƟon. This informaƟon would be used by fault miƟgaƟon mechanisms
in different abstracƟon layers. Such soluƟons have four essenƟal parts: fault
detecƟon, abstracƟon, classificaƟon and propagaƟon. SoŌware-based fault
detecƟon soluƟons can detect the faults once a fault in the hardware has
turned into a failure detectable by the soŌware. In contrast, hardware based
low-latency fault informaƟon acquisiƟon detects such faults in single clock cycle
and enables the system to react and contain the fault propagaƟon. This thesis
focuses on the faults in the communicaƟon medium in a NoC based SoC. The
proposed approach divides the NoC routers into data-path and control path
and uses different exisƟng fault detecƟon mechanisms to address the faults in
these sub-circuits. To detect the faults in the control-path of the router, the
concept of checkers have been used. However, while generaƟng such checkers,
the area constraints of the final product is not considered (the focus is more
on the fault coverage). To this end, this chapter introduced a minimizaƟon
framework for reducing the area of the final set of checkers.

The proposed framework uƟlizes Greedy HeurisƟcs and Depth-First Branch-
and-Bound algorithm for reducing fault detecƟon circuitry’s overhead to the
system. The concept of Dominant checkers was introduced in order to reduce
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the search space of the minimizaƟon algorithms. Also a new metric for sorƟng
the checkers, namely coverage density, was introduced which improves the
results by Greedy HeurisƟcs. The proposed method was able to reduce the area
overhead of the checkers from 150%-200% for Arbiter and LBDR unit down to
range of 120%-150%. Similarly for FIFO unit, the area overhead of the checkers
was reduced reduced from 96.8% down to 93%. In all cases the minimizaƟon
framework guarantees 100% fault coverage for all the designs. followed by
discussion about fault informaƟon abstracƟon.

Once the fault informaƟon is gathered and abstracted before being used
by the higher abstracƟon layers (e.g. a soŌware-based global system health
manager), It should be classified into transient, intermiƩent and permanent.
Moving the classificaƟon task to hardware provides the system with the
following advantages: (1) the classified fault informaƟon is already available
in the hardware layer and can be used by local fault miƟgaƟon mechanisms,
(2) reduces the soŌware load for such tasks. The free soŌware Ɵme can be
uƟlized for other dependability mechanisms such as dependable applicaƟon
deployment etc.. This work proposed an improvement to the exisƟng online
hardware fault classificaƟon. Each classifier unit adds only 1% overhead to the
router which would enable deploying such units for combined fault signals such
as turn-faults.
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3. Local and Hybrid Fault Management

Fault management in large systems can be done centrally (globally), distributed
or a hybrid of these methods. Central fault management has an advantage of
having a general view of the system and can make more opƟmal decisions (for
example a system wide reconfiguraƟon while considering system wide metrics
for performance, energy etc.) while handling faults. However, this approach
usually suffers from higher response latency. This high reacƟon latency will
lead to propagaƟon of the fault to other parts of the system and might result
in a system failure. In contrast to global fault management schemes, local fault
management soluƟons , due to their distributed nature, are more scalable. Also
their physical proximity to the hardware, enables them to react much faster
to the faults, and prevent system failures. This work divides the local fault
management mechanisms into two, local mechanisms and hybrid mechanisms.
The local mechanisms are oblivious to the state of the system and are only
aware of the situaƟons in their close vicinity. In contrast, hybrid mechanisms
are reconfigured by the global system manager but they act locally with low
latency. The local mechanisms are prone to making decisions based on local
informaƟon which might not result in an opƟmal soluƟon for the enƟre system.
This work uses a local and hybrid fault management schemes for local issues
(such as handling faulty flits in the router) while using the central manager for
system-wide reconfiguraƟons (applicaƟon mapping or hardware reconfiguraƟon
decisions).

A crucial component in this hybrid approach is a mechanism for propagaƟon
of fault informaƟon to the central manager. In this work its assumed that
the propagaƟng the fault informaƟon from the router to system manager are
handled through two channels: 1) by using IJTAG scan-chain [45] and 2) through
the actual NOC itself. As menƟoned previously, the scan-chains would limit
the mapping possibiliƟes of the system manager on the nodes by requiring a
dedicated access point. On the other hand, adding a small dedicated circuitry
in the Network Interface for each node, provides the possibility of injecƟon
of diagnosis packets to be sent through the network to any designated node
which is handling system manager tasks. In this case, the routers would
pass the classified fault informaƟon to the NI. This classified fault informaƟon
would be either: 1) directly passed to the connected PE in case the system
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manager is mapped on this node, or 2) will be used to compose a diagnosis
packet which will be injected back into the network towards the node with the
system manager mapped on it. In order to accomplish this task the following
funcƟonaliƟes are added to the Network Interface:

• Extension of the packeƟzer to enable generaƟon of diagnosis packets
based on received informaƟon from the node’s router

• A memory mapped register (accessible by the nodes PE) to keep address
of the system manager

• A read-onlymemorymapped register for passing the diagnosis informaƟon
to the node’s PE

• An extension to NI’s flag register. This would enable the PE to check for
incoming diagnosis informaƟon

The problem with sending diagnosis packets through the NoC itself would be
the loss of connecƟvity to system manager, due to the faults in the network
links and resources. However, the proposed approach would open up the
possibility of starƟng the system with more possibiliƟes for mapping system
manager tasks. Once the NoC starts degrading and the connecƟvity to system
manager through the network is lost, It is possible to move the system manager
tasks to nodes with access points to the IJTAG network and conƟnue the tasks
of system manager.

This chapter focuses on local fault management mechanisms in NoC based
SoCs. The problem of local fault management can be broken into the following
sub-problems:

• Providing rouƟng possibility once the system is experiencing permanent
link failures

• Handling transient faults on the data path of the router

• Providing guarantee of reachability for injected packets

• Providing infrastructure for graceful degradaƟon in the NoC routers

This chapter addresses each of these problems separately. This chapter is
based on the following publicaƟons:

• ”NoCDepend: A Flexible and Scalable Dependability Technique for 3D
Networks-on-Chip,” T. Hollstein, S. P. Azad, T. Kogge, H. Ying and K.
Hofmann, DDECS 2015.
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• ”Comprehensive performance and robustness analysis of 2D turn models
for network-on-chips,” S. P. Azad, B. Niazmand, K. Janson, T. Kogge, J.
Raik, G. Jervan, T. Hollstein, ISCAS 2017.

• ”From online fault detecƟon to fault management in Network-on-Chips:
A ground-up approach,” S. P. Azad, B. Niazmand, K. Janson, N. George,
A.S.Oyeniran, T. Putkaradze, A. Kaur, J. Raik, G. Jervan, R. Ubar, T.
Hollstein, DDECS 2017.

• ”Fault-resilient NoC router with transparent resource allocaƟon,” T.
Putkaradze, S. P. Azad, B. Niazmand, J. Raik and G. Jervan, ReCoSoC 2017.

3.1. Literature Review

One of the challenges in fault tolerant NoC design is to find an efficient fault
tolerant rouƟng algorithm. Many fault tolerant rouƟng algorithms have been
proposed in the literature with different characterisƟcs [51, 52, 53, 54, 55, 56,
57, 58]. These approaches can be divided into the following groups:

• Inherently fault tolerant rouƟng algorithms: Works such as [51] and
[53, 54] for 2D and 3D Mesh based NoCs respecƟvely. For instance, in
[51] Bishnoi et al. have proposed a scalable mechanism for implemenƟng
fault-tolerant rouƟng algorithms for topologies derived from the 2D Mesh
due to one or two faulty link scenarios faults in the network. [53] defines
circular rouƟng paths to avoid horizontal and verƟcal faulty links. HARS
[54], proposed a deadlock-free by using a mid-node searching method in
3D NoCs which only considers the faulty verƟcal links.

• Architecture-level support for fault tolerance: On the other hand, some
approaches such as [59, 52, 56, 55], rely on using Virtual Channels (VCs)
in order to avoid the formaƟon of deadlock. AlternaƟvely, some works
avoid using VCs but restrict the number of tolerable faults (e.g. [57])
or assume the existence of verƟcal pillars (a working column in either
corners of the chip) for 3D NoCs.

• System reconfigurability: Works such as [58] tackle this problem from
network reconfiguraƟon side.

However, a missing research point is to provide a general method for
evaluaƟng fault tolerance of rouƟng algorithms which enables a fair comparison
between the rouƟng algorithms. Its equally important to keep the overhead
of such approaches to the system minimal (which means avoiding the use
of virtual channels). To this end, its necessary to go back to basics of the
rouƟng algorithms and provide a thorough invesƟgaƟon of 1) all simple rouƟng
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algorithms and 2) analysis of their behavior under different fault configuraƟon
(see [15]). A set of rouƟng algorithms can be selected that outperform others
in terms of robustness. This small set of rouƟng algorithms can be used by the
system manager in order to idenƟfy the opƟmal rouƟng algorithm under any
fault configuraƟon in the network.

In order to avoid fault propagaƟon in the system, it is crucial to either correct
the faults using error-correcƟon code or alternaƟvely remove the faulty packets
in the network. Adding error correcƟon code for each flit in the packet will
increase the data-path width and has a huge impact on the router’s area (for
example in case of hamming code, an extra 8 bits is required for 32 bit data).
To avoid the menƟoned area overhead, this work opts for the second soluƟon
and introduces a simple packet dropping mechanism for router’s data-path
protecƟon (See [14]).

Another important point in local fault management is to avoid using
faulty links in the network. Four main approaches to this problem are Local
circumvenƟon [60, 61, 62, 63, 64, 65, 66, 67, 68, 69], Global path-basedmethods
[70, 71, 72], Intermediate node soluƟons [73, 74]and Data-spliƫng [75]. Also
hybrids of these methods can be found in the literature. Local circumvenƟon
methods suffer from in-ability to see the reachability of the injected packets
to the desƟnaƟon and other methods suffer from huge overheads in terms of
Ɵme and hardware to the system. To this end, a new method was developed
[16] which keeps a limited number of registers for each router output port
which keep the informaƟon about unreachable areas of the network from that
port. The proposed method can be combined with any turn-model based
rouƟng algorithm. Using the reachability informaƟon, it is possible to provide
guarantee of delivery for each injected packet under arbitrary number of faulty
links in the network. Also, since possibility of delivery of the packet is checked
at every output port that the packet goes through, the proposed method would
prevent rouƟng the packets into paths that would not reach the desƟnaƟon.

As a final note, it is crucial to keep in mind that adding the fault tolerance
mechanisms will in turn increase the router area. Larger chip area and increased
number of components will result in more fault occurrences and will have its
toll on the system’s reliability. This means that fixing one problem might lead
to larger issues once all the impacts of the method are considered. To this end,
this work proposes a framework for evaluaƟng the network’s reliability [18].
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3.2. Fault Tolerance EvaluaƟon of Turn-Model based RouƟng Algo-
rithms

RouƟng algorithms are used as an essenƟal tool to avoid faulty links in the
network. Using the rouƟng adapƟvity, it is possible to route the packets around
the faulty links. The decision about rouƟng algorithm is made globally by a
global system manager, however, the act of rouƟng is performed locally using
limited local informaƟon hence the rouƟng is considered a local fault tolerance
mechanism in this work.

The focus of this work is on the Turn-Model based rouƟng algorithms [22].
A turn is the change of direcƟon in a packet’s path. There are two mainstream
naming convenƟons; Inter and intra router. Intra-router naming that uses the
port names of entrance and exit of a single packet inside a router (e.g. a north
to west turn describes a packet entering the router from north port and leaving
from west port). Inter-router naming considers the turn from previous direcƟon
of the the next direcƟon of the packet (e.g. a north to west turn describes
a packet moving towards north-entering from south port of the router- and
then turning to west-leaving the west port. Using intra-router naming this turn
would be called a south to west). In this work we use the intra-router naming
convenƟon due to its simplicity. In a 2D Mesh network, direcƟons are named
based on the cardinal direcƟons: North (N), East (E), West (W) and South (S).
Since the U-turns (a turn starƟng from one direcƟon and ending in the same
direcƟon) are illegal, maximum of 8 turns can be defined: N2E, N2W, E2N, E2S,
W2N, W2S, S2E and S2W. For instance N2W indicates a turn that enables a
packet coming from the North input port of the router be forwarded to the
West output port. At the moment, only few of all the exisƟng 2D turn models
are reported in the literature. Table 3.1 describes these turn models with their
assigned name in the literature.

Table 3.1 List of previously named turn models
# Allowed turns ConvenƟonal Name
0 E2N, E2S, W2N, W2S XY [76]
13 S2W, S2E, N2W, N2E YX [77]
33 E2S, S2W, S2E, N2W, N2E Restricted North First [78]
39 E2N, E2S, W2N, W2S, S2W, N2W East-First [79]
40 E2N, E2S, W2N, W2S, S2E, N2E West-First [22]
41 E2N, E2S, W2N, W2S, N2W, N2E North-Last [22]
42 E2N, E2S, W2N, S2E, N2W, N2E NegaƟve-First [22]
46 E2N, W2N, S2W, S2E, N2W, N2E South-First [78]
48 E2S, W2S, S2W, S2E, N2W, N2E North-First [78]
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To this end, this work provides a method for enumeraƟng all the Turn-Model
[22] based rouƟng algorithms and an analysis of their robustness in different
fault scenarios.

3.2.1. EnumeraƟng all Uniform 2D turn models

Since eight turns exist in the 2D turn model, total of 28 = 256 turn models
can be formed. However, for a turn model to be useful, it should provide full
connecƟvity in the NoC-meaning any node should be able to be reached from
any other node in the network- and deadlock freeness [19]. To evaluate these
properƟes for 256 exisƟng rouƟng algorithms, the concept of the rouƟng graph
can be used.

DefiniƟon 3. A RouƟng Graph, RG(V, E), is a directed graph, where the set V,
denotes the set of all the input/output ports in the network (including local port
of the router) and E represents the set of (vi,v j) where vi is a vertex (input
or output port) depending on v j port. A vertex v in RouƟng Graph is denoted
as nodei,p,dir, describing direcƟon dir ∈ {in,out} of port p ∈ {N,E,W,S,L} of
node i in the network.

There are two different types of links represented as edges in the rouƟng
graph:

• Inter-router edges, describing physical link connecƟons between routers
(from an output port of a router to an input port of an neighboring
router).

• Intra-router links, describing allowed connecƟons inside the router (from
an input port of a router to an output port in the same router). An
intra-router link can be: 1) From or to local port: describing dependency
between the router’s north, east, west and south ports and the local
port connected to the processing element (PE) of the same router. 2)
Straight connecƟons: describing dependency between ports in straight
connecƟons inside the router (e.g from North input to South output port
of the same router). 3) Turns: dependency of the ports in perpendicular
direcƟon (e.g. from North input to West output port of the same router).
These connecƟons should follow turn model restricƟons in the rouƟng
algorithm.

Since rouƟng graphs show the dependency of resources in the network,
they can be uƟlized for evaluaƟon of deadlock freeness. A deadlock situaƟon
in the network under a specific rouƟng algorithm, will result in a cycle in a
rouƟng graph. In this case, if there is no cyclic dependency of resources (i.e.
deadlock) in the NoC, a deadlock can not occur in the network. Using simple
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Algorithm 2: Filtering out Turn-Models algorithm

1 deadlock_ f ree_T M = [];
2 for turn model T M ∈ f ull_set_o f_turn_modes do
3 RGT M = Generate_Routing_Graph(T M);
4 deadlock_ f ree = True;
5 if RGT M has cycle then
6 deadlock_ f ree = False;
7 break;
8 end
9 for Source_Node ∈ NoC_Nodes do
10 for Destination_Node ∈ NoC_Nodes do
11 if Source_Node! = Destination_Node then
12 if !RG.has_path(Source_Node,Destination_Node) then
13 deadlock_ f ree = False;
14 break;
15 end
16 end
17 end
18 end
19 if deadlock_ f ree then
20 deadlock_ f ree_T M.append(T M);
21 end
22 end

graph algorithms, cycles in rouƟng graphs can be easily detected. Also, to check
connecƟvity of a rouƟng algorithm, its simply enough to check if there exist a
path from every source to every desƟnaƟon in the rouƟng graph. It might be
the case that certain rouƟng algorithm implementaƟons do not support such
paths (due to their limitaƟon). However, it is easy to implement such paths
using source or table-based rouƟng. Algorithm 2 describes the filtering process
of algorithms which result in deadlock. AŌer filtering out the turn models
which result in deadlock or un-connected nodes, 50 deadlock free turn models
with full connecƟvity remain (see Fig. 3.1 for visualizaƟon off all the 50 turn
models).

3.2.2. Robustness evaluaƟon of all 2D turn models

The Degree of AdapƟveness (DoA) introduced in [22] metric can be used to
classify the turn models which only considers the minimal paths with length
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equal to ManhaƩan distance from the source node to desƟnaƟon node. A
general form of DoA metric can be formulated as:

DoA =
∑N−1

i=0 ∑N−1
j=0 NoSPi, j,rg

number of pairs of nodes
(3.1)

Where N is the number of nodes in the network and NoSPi, j is defined as:

NoSPi, j,RG =


number of shortest paths in RG from nodei,L,out
to node j,L,in

i ̸= j

0 otherwise

Table 3.2 DoA and DoAEx for all 2D rouƟng algorithms (being shown in Fig. 3.1)

4 turns 5 turns 6 turns
Turn
Model
Num

0,
13

3, 5,
8, 10

1, 2, 4,
6, 7, 9,
11, 12

14, 15, 16,
17, 28, 33,
36, 37

18-27,
29-32,
34, 35

42, 43,
45, 47

38, 39, 40,
41, 44, 46,
48, 49

DoA 1 1.23 1.43
DoAEx 1 1.41 1.63 2.11 2.41 3.83 4.33

The resulƟng DoA for the turn models are presented in Table 3.2. It
comes naturally that turn models with higher number of turns, would provide
higher DoA. However, as menƟoned before DoA only covers the minimal paths
and hence, can be used for minimal path rouƟng turn model classificaƟon.
Extending this metric (DoAEx) to cover non-minimal paths in the network (i.e.
include all the simple paths in the network-paths that do not have repeaƟng
nodes in them) provides a slightly different picture than the original DoA.
DoAEx makes it possible to classify the turn models even further. The DoAEx
metric can be described as follows:

DoAEx =
∑N−1

i=0 ∑N−1
j=0 NoSP′

i, j,RG

number of pairs of nodes
(3.2)

Where N is the number of nodes in the network and NoSP′
i, j is defined as:

NoSP′
i, j,RG =


number of simple paths in RG from nodei,L,out
to node j,L,in

i ̸= j

0 otherwise
Table 3.2 presents DoA and DoAEx metrics for the turn models in Fig. 3.1.

This table shows that inside each class of turn models (four, five, and six-turn
turn models), there are sub-classes that have different characterisƟcs. As an
example, turn model no. 3 shares two turns with XY and two turns with YX
which allows it to have non-minimal de-routes. Similarly, under non-minimal
rouƟng, turn model no. 1 and 2 have even further advantage in providing path
diversity.
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To evaluate the robustness of the 50 deadlock free turn models with full
connecƟvity rouƟng algorithms, Alg. 3 is used. The proposed method calculates
the average connecƟvity metric of each of the turn models over all possible
combinaƟons of nbroken broken links in the network, for nbroken starts from zero
and goes up to the number of links in the network.

Algorithm 3: average connecƟvity calculaƟon algorithm
1 for nbroken ∈ [0, ntotal ] do
2 list_o f_con f igurations = list of all 3×3 2D mesh NoCs with nbroken broken links
3 sumcon = 0
4 forall con fbroken ∈ list_o f_con f igurations do
5 Generate RG based on con fbroken
6 sumcon += Connectivityrg

7 end
8 avgcon[nbroken] = sumcon/len(list_of_configuraƟons)
9 end

10 return avgcon

(a) (b)
Figure 3.2 Comparison of avg. connecƟvity metric of turn models under a) minimal, b)
non-minimal rouƟng by number of available links.

Fig. 3.2 shows the result of Alg. 3. The average connecƟvity of rouƟng
algorithms in Fig. 3.2 a. for minimal path rouƟng falls on three lines which
correspond to three classes of DoA. Similarly the graphs for non-minimal
rouƟng fall on six lines, corresponding to six classes of DoAex. This means
that, in fact, uniform rouƟng algorithms with higher degree of adapƟvity can
provide beƩer connecƟvity on average with same number of broken links. This
however, will not provide any insight about the fact that the implemented
rouƟng mechanisms which operate under the given turn-model can find this
path. This problem arises from the fact that the rouƟng logic only has
informaƟon regarding the current router or from its immediate neighbors. This
lack of informaƟon might lead to sending the packet in a direcƟon (using a
turn allowed by the rouƟng algorithm) which puts the packet into a path that
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can not reach the desƟnaƟon. In approaches such as table-based rouƟng
mechanisms, the informaƟon can be adjusted so there can be guarantee of
reachability, considering the fact that rouƟng tables are not scalable. Many
other approaches specifically algorithmic rouƟng implementaƟons suffer from
lack of such guarantees. In secƟon 3.3.1 a novel method has been proposed
to tackle this problem. However, assuming the existence of such rouƟng
mechanisms, it is possible to rely on the connecƟvity metric. It is important
to note that for an equal number of broken links, the connecƟvity metric gap
between the graphs grows from minimal to non-minimal path rouƟngs. This
is due to the fact that non-minimal path rouƟngs provide more path diversity
and hence, provide more possibility for the net work to stay connected. An
analyƟcal approach for reliability assessment of rouƟng algorithms has been
described in [80]. However, this work focuses on turn failures in routers and
only considers negaƟve-first turn model for evaluaƟon.

Its equally important to compare these algorithms performance (Latency
and Throughput) and energy. Performance and energy results of all the turn
model based rouƟng algorithms are published online [81]. [81] also contains
the full list of all 3D deadlock-free turn models is provided.

The same method can be applied to compare other rouƟng algorithms. By
using the proposed method, it is possible to single out turn models which
provide beƩer robustness under any fault configuraƟon.

3.3. Local Fault Handling

One of the most important tasks in local fault management is online handling
of the faults. Even one transient fault in control part of the router or packet
(desƟnaƟon address or flit type), might lead to a total network failure. This
secƟon proposes mechanisms to prevent such failures. In order to miƟgate
such failures, in the router, criƟcal locaƟons in the router should be idenƟfied.
These criƟcal router locaƟons are FIFO input where the flow-control signals
are handled and RouƟng-Logic input where rouƟng decisions are made. This
work uses packet dropping as a mechanisms for handling faults in such criƟcal
locaƟons. Similar approach has been proposed in [48], once an error is
detected by the parity checker located at switch’s input ”the transmission can
be interrupted immediately without storing the flit and rouƟng it to an output”.
However, implementaƟon details of such process is not outlined. Removing
the faulty flit in the router is not a trivial task. Specially if the faulty flit is the
header or tail flit of a packet. [82] uses packet dropping for such purpose
as well. And they menƟon the case of corrupƟon of header. However, this
work does not address the problem of tail-less packets. Since rouƟng logic
usually terminates the connecƟon using tail flit, once a tail flit is removed, the
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Figure 3.3 FIFO packet dropping Finite State Machine

Table 3.3 Area overhead of proposed packet dropping mechanisms

unit original unit updated unit area
name area (µm2) area(µm2) overhead(%)
FIFO 14357 16045 11.7%
LBDR 1744 2940 68.5%

successive packet might follow the faulty packet and leave an undesirable port
of the router, leading to deadlock and network congesƟon.

Fig. 3.3 shows the Finite State Machine (FSM) being in charge of controlling
the packet dropping. The FSM starts in Idle state and upon receiving a packet,
goes through states named aŌer the flit type. In case the current flit is faulty
(detected using parity checker for data path), the FSM moves to the packet
dropping state and either completely removes the packet (in case the fault is in
the header flit) or removes the rest of the packet (in case the fault is in the
body or tail flit) and patches it up with a dummy tail. In the later case the
applicaƟon layer would noƟce the miss-match of the value of packet length in
the header flit and the actual length of the packet and will handle the situaƟon.

For the rouƟng logic, since the decision is made using the header flit, it is
relaƟvely easy to perform a packet drop process. Upon detecƟon of a fault in
the output of the FIFO, or in the case that the rouƟng logic can not produce a
valid request (due to broken network links), the rouƟng logic would iniƟate a
packet drop phase. The packet dropping in the rouƟng logic would consist of
sending fake grant signals to the FIFO without producing any requests to the
arbiter unƟl the tail of the packet is dropped.

The overhead of the proposed methods is reported in Table 3.3. These
results should be analyzed considering the fact that the LBDR unit is small in
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Figure 3.4 Packet Drop rate in different packet and fault injecƟon rates

size and the FIFO unit is only four flits deep and does not have any virtual
channels.

Fig. 3.4 shows the experimental results of packet drop rate in different
packet injecƟon under different fault injecƟon rates. In this experiment, all
the faults are injected on the network link. Its important to note that while
network’s packet drop rate can reach to 80%, the network does not suffer from
congesƟon and similar failures menƟoned before.

3.3.1. Reachability and parƟƟoning in on-chip networks

Providing guarantees of reachability of a packet to its desƟnaƟon is a criƟcal
topic in fault tolerant NoCs. If a packet can not each its desƟnaƟon due
to a fault configuraƟon in the network, It either can cause a network-wide
congesƟon or in presence of packet-dropping mechanisms, the data will be lost
which is not acceptable in hard-real Ɵme systems.

This work proposes a mechanism (called NoCDepend) to keep minimal
informaƟon about non-reachable areas of the network in each output port
in order to provide guarantee packet reachability. This guarantee is provided
under arbitrary number of faults as long as a path exist from the source node
to the desƟnaƟon. The proposed mechanism is independent of the rouƟng
algorithm and can be adapted to any turn-model based rouƟng algorithm.
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Figure 3.5 8 regions for
each node used for back-
propagaƟon algorithm

Figure 3.6 InformaƟon prop-
agaƟon example for non-
rectangle in north

Figure 3.7 InformaƟon
propagaƟon example for
non-rectangle in north-east

The informaƟon about unreachable areas is coded as coordinates of the
lower leŌ and upper right (or can be alternaƟvely coded as lower right and upper
leŌ) corners of a rectangle represenƟng the area. The rectangle informaƟon for
each router output is calculated by the Global System Health Monitoring Unit
(SHMU) and is propagated to the routers via an IJTAG infrastructure.

To detect if a packet can reach its desƟnaƟon from a current rouƟng path
posiƟon, it is enough to compare the desƟnaƟon address with the coordinates
of the rectangles stored in the output port. In case a desƟnaƟon is not
reachable, the packet should not be injected in the network or can be easily
dropped as early as possible, noƟfying the SHMU the extent of the failure. Later
on, SHMU should request a re-mapping and re-scheduling of the applicaƟon to
avoid this scenario.

CalculaƟon of the non-reachable areas can be done using a simple back
propagaƟon algorithm (For more informaƟon please refer to Appendix B). The
principle of back-propagaƟon works based on dividing the space for each node
to 8 regions (see Fig. 3.5). The informaƟon about non-reachable region
would be propagated to the proper outputs based on the requirements of
the rouƟng algorithm. This means that if there is an allowed turn in the
turn-model the reachability informaƟon should be transfered in the opposite
direcƟon to the routers upstream which use those turns. Figures3.6 and
3.7 show examples of propagaƟon of informaƟon. However, performing this
algorithm in hardware imposes a large hardware overhead (specially for storing
the rectangle informaƟon).

AlternaƟvely non-reachable areas can be calculated off-line in the System
Health Monitoring Unit (SHMU) using the concept of RouƟng Graph (RG)
introduced in secƟon 3.2.1. Using the RG, it is possible to calculate the
unreachable node coordinates for each output port for each router. These
unreachable area rectangles would be compressed and merged in order to
reduce their number to the available memory slots in each output port. Later,
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Figure 3.8 Rectangle merg-
ing scenario

r1
r2

r4

r3

r4

r3

r1
r2

w3,4

w1,3

w1,2

w2,4

w1,4 w2,3

r1'

w1 ' ,4
w1 ' ,3

w3,4

Figure 3.9 Lossy merging
heurisƟcs

Figure 3.10 Rectangle Ex-
pansion Process

these informaƟon would be sent back to the routers which will have a few
registers for keeping the final minimized informaƟon. Different merging opƟons
are discussed in the subsecƟons bellow:

Loss-Less merging

There are two basic cases for loss-less merging: 1. There are two rectangles
that have same height or same width and which are adjacent on that side, or
2. one rectangle is contained in another one. In first case, we can merge both
rectangles into one larger rectangle (see Fig. 3.8) and in the second, we can
delete the rectangle, being a subset of the other one.

Lossy merging

Lossy merging only occurs when the number of rectangles exceeds the available
number of list entries of a router output port. In this case, some reachable
nodes have to be sacrificed in order to meet the list size constraints. Given
a graph G(V,E) where the set V of verƟces represents the non-reachable
rectangle list of one router output and the weight wi j of an edge ei j ∈ E
between two verƟces vi and v j represents the number of reachable nodes that
would be lost if these two verƟces merge.

Greedy Merging: Adjacent verƟces of edges ei j of the Graph G having
smallest weight wi j are merged as long as |V |> MaxNumAreas.

Full EnumeraƟon: if m rectangles have to be joined into k list entries, for
small m and k a full enumeraƟon of soluƟons (mk) could be evaluated an the
one with the least loss is selected.

HeurisƟc Search: The m verƟces are randomly distributed on k buckets
and then an opƟmizaƟon is performed by the Fiduccia-MaƩheyses [83] group-
migraƟon heurisƟc and the least costly found soluƟon is finally selected.We
would like to cluster Graph G with m verƟces into n clusters where n is
equivalent to the number MaxNumAreas of list entries. This process can be
interpreted as a classic graph clustering problem and can be solved with local
search. The process is shown in Fig. 3.9. In this case, the cost funcƟon for any
parƟcular soluƟon would be the number of reachable nodes that we will loose
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if we choose that soluƟon. Pseudo code of this algorithm is shown in Algorithm
4.

Algorithm 4: HeurisƟc Search for Lossy OpƟmizaƟon
1 soluƟon = randomly assign verƟces to clusters
2 Cost= cost(soluƟon)
3 Best Cost= cost(soluƟon)
4 Best SoluƟon = soluƟon
5 while i < numbero f iterations do
6 choose random Vertex
7 choose random Cluster
8 soluƟon = move chosen vertex to chosen Cluster
9 Cost= cost(soluƟon)

10 if Cost ≤ BestCost then
11 Best Cost = cost(soluƟon)
12 Best SoluƟon =soluƟon
13 end
14 end

Rectangle Expansion

Rectangles which are adjacent and one can be expanded inside the other one.
This means that some unreachable areas will be included in two different
rectangles. This will increase the hit rate when searching in the list in case
of a a fully serialized implementaƟon of the detector circuit. Examples of this
process are shown in Fig. 3.10.

The experiments show that a large number of faults with different
configuraƟons can be handled using the proposed method by applying only
small hardware overhead (4%) to the router. The only drawback of this
method would be the lossy merges; when a reachable node falls into a
non-reachable area due to limited register size in the router. This method can
be combined with any turn-model based rouƟng method and is independent
of the underlying rouƟng mechanism.

The same method can be used in order to parƟƟon the chip into criƟcality
domains in mixed criƟcality SoCs. Details of parƟƟoning method are described
in [84]. The advantage of this process is that there is no need for extra
hardware overhead and mulƟple criƟcality domains with full or parƟal isolaƟon
can be formed by organizing the unreachable rectangles. The proposed method
can provide arbitrary number of parƟƟons in the circuit and at the same Ɵme
provide all the faulty link management capabiliƟes in the original system.

68



3.4. Reliability EvaluaƟon and Improvement of Fault Tolerance Mech-
anisms

The last but not least part in the local fault management, is local resource
management. AŌer classifying a unit as faulty, it should be isolated. Also,
lifeƟme of the router should be prolonged as long as possible (with degraded
performance) using resource management. However, it is important to note
that the inserƟon of fault tolerance mechanisms has an impact on system
reliability. To this end, the several architectures have been proposed in [18]
with the aim of keeping one path in the router funcƟonal.

To evaluate each architecture, this work proposes the use of block-diagram
reliability analysis [9]. In order to evaluate reliability of a router, we consider
a router funcƟonal when at least a path in the router is funcƟonal. A path is
defined as one input and one output channel. In this work, an input channel
consists of an input FIFO and the rouƟng unit and the output channel consists
of the output mulƟplexer and the arbiter unit in charge of the output channel.
To put it more formally, the reliability of a path is calculated as:

Rpath = RChannelin ×RChannelout

Further on, for the baseline handshaking router we can consider that an
input channel consists of a FIFO and an LBDR unit and an output channel
consists of an arbiter and a crossbar switch:

RChannelin = RFIFO ×RLBDR

RChannelout = Rarbiter ×Rxbar

It is possible to normalize reliability of different modules towards FIFO (the
largest unit in the router), using their relaƟve area. Lehtonen et. al. [85] have
used similar approach to invesƟgate NoC-level architecture reliability. In this
work we consider the following for unit x:

Rx =
AreaFIFO

Areax
×RFIFO

We can include all the addiƟonal reconfiguraƟon hardware required for
a path to funcƟon into the general router reliability formula and compare
different architectures impact on the router reliability.

In [18] we proposed several architectures which reuse the NoC router
resources (by adding extra mulƟplexers) in order to improve the router’s
reliability (for more informaƟon please refer to Appendix G). The proposed
architectures are compared in terms of their reliability using the proposed
method. These architectures have been examined against double modular
redundancy (considering an exisƟng fault detecƟon mechanism for each unit)
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and triple modular redundancy techniques. For one architecture, the results
show that with 77% area overhead to the original design, the reliability of the
router can be improved dramaƟcally (compared to methods such as DMR with
fault detecƟon and TMR). Also the proposed method will slightly increase the
criƟcal path delay due to addiƟon of all the mulƟplexers in the router.

3.5. Chapter summary

As the systems move towards feature miniaturizaƟon, it becomes more and
more important to provide scalable local fault management mechanisms that
can protect the system from failure and provide graceful degradaƟon in case of
permanent damages. This chapter targets local and hybrid fault management
approaches in NoC routers which can react to the faults with much lower
latency compared to global schemes. Local fault management schemes are
completely oblivious from the global state of the system. In contrast to local
fault management’s limited view, Hybrid schemes are reconfigured globally
while having all the advantages of closeness to the hardware. The inherent fault
tolerance of the rouƟng algorithm can be used as the first step of managing the
faults in the network. One of the most popular rouƟng techniques is the use of
turn model based rouƟng algorithms. However, even uniform turn-model based
rouƟng algorithms are not fully idenƟfied to begin with. Later a framework for
evaluaƟng their fault tolerance is required as well. To this end, this chapter
enumerated all 2D uniform turn model based rouƟng algorithms. An extension
of adapƟvity metric was introduce that can classify behavior of turn model
based rouƟng algorithms using non-minimal path rouƟng. Last but not least, in
this chapter the selected turn models were evaluated in terms of robustness
in presence of faulty links in the network. The result of this evaluaƟon would
be used to select the best turn-model that outperforms other turn models in
toleraƟng link failures, at the beginning of the system lifeƟme. Also the global
system manager would only evaluate the effecƟveness of a handful of turn
models (which perform beƩer than others) for each criƟcal link failure.

Another pressing issue in NoC routers is the damage that even a single
transient fault can cause in a NoC; it can either cause a packet miss-route or
lead to a network-wide congesƟon. Such packets should be removed from the
network to prevent possible network shutdown. This chapter provided two
lightweight soluƟons for handling fault locally using packet dropping in FIFO and
rouƟng logic. The proposed mechanisms adds 11% to the FIFO size and 68% to
the Logic Based Distributed RouƟng (LBDR) logic respecƟvely. The experiments
show that using this method, the network will preserve its integrity even if up
to 80% of the packets are faulty and dropped.

Another equally important issue is the guarantee of reachability. It might not
be feasible to route the packets in the network under any fault configuraƟon.

70



This means that such packets would be stuck in the network which can lead
to network-wide congesƟon. A light-weight mechanisms is required to restrict
injecƟon of such packets into the network. Furthermore, since the routers are
making their rouƟng decisions locally, they might route the packet in a direcƟon
allowed by the rouƟng algorithm which leads the packet to a direcƟon in which
the desƟnaƟon is not reachable due to the faults in the network. A mechanism
is required to check the possibility of reachability of each node from each
router’s output port. This chapter introduced a mechanism for guarantee of
service in the Network-on-Chips with small hardware overhead (%4) to the
router.

Also it is possible to use the regularity of a NoC router in order to re-use
isolated units to provide performance degradaƟon instead of a total router
shut-down. In this chapter, an evaluaƟon framework for invesƟgaƟng the
effects of fault tolerance mechanism on system’s reliability was introduced along
with soluƟons which provides graceful degradaƟon and enhancing system’s
reliability.
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4. Global Fault Management

Considering the growing number of on-chip components, it is not possible to
manage all the faults locally. The local fault management mechanisms do not
have a global view of the system and can not take into account the effect of
the local decisions on the system behavior. This might lead to situaƟons that a
series of local reconfiguraƟons based on the limited available informaƟon, will
lead to the non-opƟmal soluƟon from global point of the view. AlternaƟvely
many of such approaches rely on configuraƟon from a higher abstracƟon
layers. Therefore it is crucial to have a global fault manager which collects the
fault informaƟon from the lower abstracƟon layers, maintains a holisƟc view
of the system and performs system-wide reconfiguraƟon either by hardware
reconfiguraƟon or by performing parƟal or full applicaƟon mapping/scheduling.
Also by focusing on the local fault manager, the effects of such faults on the
system will be ignored. This means that while a local unit is miƟgaƟng a fault
or dropping a packet in the network etc., The effects of such acƟons on the
applicaƟon behavior is not considered. Moreover the collaboraƟon of local and
global fault management systems should be invesƟgated in order to idenƟfy the
shortcomings of each of these mechanisms in more detail and to opƟmize the
distribuƟon of such tasks over different layers of abstracƟon. To examine the
effects of such global manager, it is necessary to perform high-level simulaƟon
of its behavior. In the next secƟon, the available simulaƟon tools for NoC
based systems are analyzed. The results of such invesƟgaƟon shows that while
there are many high quality soluƟons for simulaƟon of execuƟon of applicaƟon
on NoC based SoC, but a general simulator which support the faulty tolerance
mechanisms and Mixed-CriƟcality applicaƟons is missing in the literature. To
this end, this chapter provides the following contribuƟon:

• A new simulator for NoC based SoCs formodeling global faultmanagement
under mixed-criƟcality constraints

This chapter is based on the following publicaƟon:

• S. P. Azad, B. Niazmand, P. Ellervee, J. Raik, G. Jervan and T. Hollstein,
”SoCDep2: A framework for dependable task deployment on many-core
systems under mixed-criƟcality constraints,” 2016 11th InternaƟonal
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Symposium on Reconfigurable CommunicaƟon-centric Systems-on-Chip
(ReCoSoC), Tallinn, 2016, pp. 1-6.

And borrows from the following supporƟng publicaƟon:

• S. P. Azad, B. Niazmand, J. Raik, G. Jervan, T. Hollstein: ”HolisƟc Approach
for Fault-Tolerant Network-on-Chip based Many-Core Systems”,2nd
InternaƟonalWorkshop onDynamic Resource AllocaƟon andManagement
in Embedded, High Performance and Cloud CompuƟng DREAMCloud
2016 (arXiv:cs/1601.04675), DREAMCloud/2016/05

4.1. Literature Review

Many different approaches exist in the literature for providing global fault
management for NoC based systems. [86, 87, 7] recalculate different applicaƟon
mappings for the NoC under different constraints (mainly targeƟng performance
and energy). In [86], the authors have proposed a system-level Fault-Aware
Resource Management (FARM) approach using spare processing elements to
replace faulty ones. [88] proposed a simulated annealing based mapping
algorithm for minimizing energy consumpƟon, while considering link failures in
the network. [89] uses a Mobile Master which keeps the view of the system
health and an ApplicaƟon manager which is in charge of applicaƟon mapping.
[90] addresses a fault predicƟon method for the network links and acƟng upon
the informaƟon at the OS level.

Aside with proposed mapping and scheduling algorithms and methods in
the literature, different frameworks for mapping and scheduling of applicaƟons
on NoC based systems are proposed in the literature, covering different
mapping algorithms from Meta-heurisƟcs such as GA and SA [92, 96] and
heurisƟcs [91, 93, 97] to different staƟc and dynamic mappings [94, 95] and
random mappings[92, 97] using different cost funcƟons such as performance
[92, 93, 94, 95, 96, 97], average communicaƟon [91] and task execuƟon
Ɵme [98]. These frameworks, uƟlize adapƟve (minimal and non-minimal)
[91, 94, 96, 97] and determinisƟc rouƟng algorithms [92, 93, 94, 95] and are
wriƩen in different programming languages. However, to the best of the
authors knowledge, none of the above menƟoned frameworks have support for
mixed criƟcal applicaƟons and only one has limited support for fault tolerance.

To this end, this work introduces an open-source framework for mapping
and scheduling of applicaƟons on a NoC based system which explores the
design space in different levels. Support of mixed-criƟcal applicaƟons and
fault tolerance mechanisms, are the main moƟvaƟons of this work. Table
4.1 summarizes the features and characterisƟcs of the frameworks menƟoned
above along with the proposed framework (”SoCDep2 ”). As it can be seen
in Table 4.1, ”SoCDep2” includes most of the features provided by the other
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tools and the noƟceable advantages are that (1) it addresses support for NoC
based many-core systems fault tolerance invesƟgaƟon, such as injecƟon of
faults, fault monitoring, tesƟng and classifying faults under mixed-criƟcality
constraints, (2) it provides support for a wide variety of rouƟng algorithms,
mapping algorithms and scheduling and (3) it is open-source, making it possible
for different research groups to reproduce the experiments and contribute as
well.

To tackle dependable task deployment on NoCs, the following sub tasks
should be performed: 1) ApplicaƟon modeling, 2) architecture modeling, 3)
System Health Monitoring Unit modeling, 4) mapping and scheduling and finally
5)to examine the system performance under different faulty environments.

Fig. 4.1 shows the considered simulator architecture. It includes the NoC
based SoC target architecture which has a Processing Element (PE) in each
Ɵle. The system also contains a System Health Monitoring Unit (SHMU) and
a Mapper Scheduler Unit (MSU). The SHMU is in charge of collecƟng fault
informaƟon and maintaining a System Health Map (SHM) and MSU uses this
informaƟon to deploy the applicaƟon -represented in form of a Task Graph
(TG) or a Clustered Task Graph (CTG)- on the system. The MSU models the
target architecture as an Architecture Graph (AG) and represents the rouƟng in
the system by RouƟng Graphs (RG). The current mapping is stored in a shared
memory called Current Mapping Memory(CMM) which will be used by SHMU
to determine the impact of the faults in the system. The system determines
a list of most probable mappings in a memory called Most Probable Mapping
(MPM) Memory.The following secƟons provide detailed descripƟon of different
parts of the framework.

4.2. ApplicaƟon Modeling

In this work, the applicaƟon model is described as a Task Graph (TG). A task
graph is a directed acyclic graph TG(V,E) where V is the set of tasks and E
is a set of edges between tasks which describes tasks data dependency. The
weight of each edge represents the amount of data transfer between tasks.
The proposed framework provides the user with the possibility to specify TG as
manual, random dependent or independent or a benchmark applicaƟon.

Each task (ti) in TG has the following aƩributes:

• ID number of the task in TG

• Task’s Worst Case ExecuƟon Time (WCET)

• Task’s deadline

• CriƟcality Level: tasks in mixed-criƟcal systems are divided into two major
classes, High criƟcal tasks (H) which the system can not tolerate missing
their deadlines and Low criƟcal (L) tasks which the system will conƟnue
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Figure 4.1 NoC based SoC System Model Architecture

to work with degraded performance in case they miss their deadline.
However, two more classes (gateways) are added to the model which are
used for network parƟƟoning [84]. These gateways are not present in the
original task graph and are inserted in order to handle the communicaƟon
between High and Low criƟcal tasks. All the communicaƟon between the
tasks, i.e. the edges, are assumed to fall either under High criƟcal or Low
criƟcal domain. Tasks are divided into the following classes:

– High criƟcal tasks (H): both incoming and outgoing edges are criƟcal.

– Gateway to CriƟcal tasks (GH): the incoming edges are not criƟcal
communicaƟon, but their outgoing edges are considered criƟcal.

– Gateway to Non-CriƟcal tasks (GNH): the incoming edges are
criƟcal communicaƟon, but their outgoing edges are considered
non-criƟcal.

– Low criƟcal tasks (L): the incoming and outgoing edges are both
considered non-criƟcal.

• ID of the cluster that the task is assigned to (in case of having clustering)

• ID of the node in Architecture Graph (AG, which represents the NoC
topology see secƟon 4.3) that the task is mapped onto
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• Release Ɵme: Time which the task becomes available. Release Ɵme is
not necessary for all the applicaƟons.

• Task type: ApplicaƟon or Test. Test applicaƟons are described in secƟon
4.5.5.

Each edge ei j represents communicaƟon between tasks ti and t j. Each edge ei j
in the TG, has the following aƩributes:

• CriƟcality level of the communicaƟon between two tasks.

• ID of the links from the Architecture Graph (AG, which represents the
NoC topology see secƟon 4.3) that the edge is mapped onto.

• The communicaƟon weight between two tasks, measured in terms of the
number of flits.

In addiƟon, This framework supports possibility of different slack(s) inserƟon
for high-criƟcal tasks’ re-execuƟon.

4.3. Architecture Modeling

In this work, the target architecture is modeled using an Architecture Graph
(AG). An Architecture Graph is a directed graph AG(V, E) where V is the set of
nodes including a router and a Processing Element (PE), and E represents the
set of physical links between different routers. Fig 4.2 depicts an example of
an architecture graph for a 3×3 NoC with Mesh topology. For each node the
following aƩributes are associated:

0 1 2

3 4 5

6 7 8

Figure 4.2 Architecture
graph example for 3× 3
mesh network

• task list: list of mapped tasks onto the node

• scheduling: allocated Ɵme-slots for each task
mapped on the node.

• list of unreachable areas for the node: these
are the areas of the network (in the form of
rectangles) that can not be reached from this
node (For more informaƟon please refer to
[16]).

• Node parƟƟon: Each node can be either in
criƟcal or non-criƟcal parƟƟon or can be a
gateway node between the parƟƟons. This will
determine which type of tasks can be mapped
on the node(see [84] for detailed informaƟon).

Similarly, the links keep the informaƟon about mapped packets (edges in
the TG) and their schedule. The ”SoCDep2 ” framework supports both 2D and
3D topologies, including 2D Mesh, 2D Torus, Line, Ring and 3D Mesh.
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4.3.1. System Health Monitoring Unit Model

Figure 4.3 VisualizaƟon ex-
ample of a 3D router
health

System Health Monitoring Unit (SHMU) is in
charge of collecƟng fault informaƟon from the NoC
(as menƟoned in Chapter 1) and maintains a general
view of the system health status(faulty/non-faulty
or performance degradaƟon). The considered fault
model includes permanent and transient faults on
links, router turns and Processing Elements (PEs).
These informaƟon are stored in a shared memory
called System Health Memory (SHM).

The placement of SHMU in the system is a criƟcal
point as well. It can be either mapped on one or
more nodes of the network, or can be separate
unit embedded in the system. Keeping SHMU as a dedicated hardware has
disadvantage of turning this unit into single point of failure. On the other hand,
mapping SHMU tasks on system’s processing elements requires guarantees of
connecƟvity to other parts of system for collecƟng fault informaƟon performing
system reconfiguraƟon. However, placement of the SHMU is not the focus of
this work. In this work the SHMU is considered as a stand-alone unit(as shown
in Fig. 4.1) and communicates with the mapper-scheduler unit (MSU) via a
dual port shared memory(System Health Map). This work also assumes that
there exist a fault propagaƟon mechanism that transfers the fault informaƟon
to SHMU from local fault detectors.

An example visualizaƟon of a node in SHM for a 3D NoC is shown in Fig.
4.3. The big circle shows the router and all the turns in the router and
the small circle on boƩom right corner shows the Processing Element (PE).
Broken components are visualized as red. The outgoing and incoming arrows
towards the router are represenƟng the links between the current router and
its adjacent routers and single arrows inside the router show turns in one
plane. The ⊙ symbol describes the outgoing arrow from the plane, and ⃝
symbol describes the incoming arrow towards the plane. Combining these with
four direcƟons will result in eight 3D turns. As an example, ⊙→, describes
Up-to-East turn. Other eight 3D turns are shown using the circles close to outer
border of the router. A ⃝ near the North port represents a North-Down turn.

4.4. RouƟng Algorithm Modeling

In order to route packets to their desƟnaƟons, ”SoCDep2” uƟlizes concept of
RouƟng Graph (RG) introduced in secƟon 3.2. A RouƟng Graph RG(V,E) is a
directed acyclic graph where V is the set of all the ports in the network (input
and output ports of the routers, including the local ports) and E is the set of
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all connecƟons between the input and output ports [5]. Using rouƟng graphs
enables the tool to use graph algorithms for finding paths between any source
desƟnaƟon.

Figure 4.4 Example of rout-
ing graph [5] of a single
2D router under XY rouƟng
algorithm

The connecƟons in the set E in RG can be either
1) any internal connecƟon inside a router between
the input and output ports (including turns and other
paths inside the router) and 2) the physical link
connecƟon between neighboring routers. By seƫng
the internal connecƟons, it is possible to model any
turn model based rouƟng algorithm under a specific
fault configuraƟon. It is also possible to feed in user
defined turn models and set up non-uniform rouƟng
algorithms such as odd-even rouƟng [99].

Fig. 4.4 illustrates an example of a router in a
2D Mesh network under XY rouƟng. The blue nodes
represent input ports and red nodes represent output
ports of the router. The nodes enclosed in red circle
describe the local ports and the nodes enclosed in
the blue circle are the router ports that are connected to adjacent routers. The
edges inside the blue circle describe the turns and straight paths inside the
router, meanwhile the outgoing and incoming edges to the blue circle describe
the connecƟvity of this router to adjacent routers.

The concept of rouƟng graph is used in reachability analysis for NoCDepend
mechanism which uses path-finding in RG in order to determine non-reachable
regions of network from each router port. Similarly, RG is used in adapƟvity
analysis and robustness of rouƟng algorithms under different fault configuraƟon.
Once the system manager idenƟfies a faulty link, it can find the most effecƟve
rouƟng algorithm in terms of connecƟvity and reconfigure the routers to the
new rouƟng scheme.

4.5. OpƟmizaƟon Algorithms

This secƟon the available opƟmizaƟon algorithms for verƟcal link placement,
task clustering and mapping and scheduling in SoCDep2 are discussed.

4.5.1. VerƟcal Link Placement

In 3D NoC topologies, one of the factors that can affect the performance of
the system is the number and placement of verƟcal links. Due to the large
area overhead of the verƟcal links, its not possible to have a full 3D mesh
network and the number of these links are limited. This problem highlights the
need for placement opƟmizaƟon of such links. One of the criteria that can
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(a) (b) (c)

Figure 4.5 VL placement: a) IniƟal and b) Final VL placement c) VisualizaƟon of the
connecƟvity metric development during iteraƟve local search

be considered for targeƟng opƟmizaƟon of verƟcal links is the connecƟvity of
each source-desƟnaƟon pair in the network. This can be achieved by iniƟal
selecƟon of a rouƟng algorithm for the 3D NoC and moving the verƟcal links in
order to find the opƟmal or high quality placement soluƟon. ”SoCDep2” uses
the RG to evaluate the connecƟvity for each node and maximizes this metric
by running an LS or ILS heurisƟc. The opƟmizaƟon algorithm considers the sum
of the number of connected source-desƟnaƟon pairs as cost funcƟon and tries
to maximize it using LS heurisƟcs.

In this subsecƟon, an example of VerƟcal Link (VL) placement is described.
In this scenario, a 3× 3× 3, 3D-Mesh NoC with NegaƟve-First turn model
rouƟng algorithm is used. We consider the number of pairs of nodes that
can communicate under the constraints of the rouƟng algorithm, with current
configuraƟon of the VLs as our metric for a greedy ILS heurisƟc. Fig. 4.5,
shows the iniƟal (with connecƟvity metric: 342) and final VL placement (with
connecƟvity metric: 648) and increase in connecƟvity metric during the iteraƟve
local search opƟmizaƟon. Each green verƟcal line in Fig. 4.5 c. shows the
beginning of a new local search cycle.

4.5.2. Task Clustering

By growing number of tasks in the TG, the search space of the mapping
algorithm also grows. If the task graph has m tasks and the network has
n nodes then the size of the search space for placing tasks on the network
nodes will be will be: nm. To reduce the problem size, one approach is to
cluster the tasks together and mapping task clusters to the network nodes. To
obtain beƩer mapping result, it is crucial to opƟmize task clustering. This has
been performed using greedy heurisƟcs. In case of mixed-criƟcal applicaƟons
with parƟƟoned network, it is necessary to cluster tasks of the same criƟcality
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(a) (b) (c)

(d) (e)

Figure 4.6 a) iniƟal random clustering, b) opƟmized clustering and c) cost funcƟon
progression using random task move, d) opƟmized clustering and e) cost funcƟon
progression using task migraƟon

together and opƟmizaƟon steps should be restricted in order to prevent their
mixture.

To perform the clustering opƟmizaƟon, we use Clustered Task Graph as
a directed graph CTG(V,E) where V is a set of clusters in which each cluster
contains a set of tasks, and E is the set of edges between two clusters,
encapsulates all the communicaƟons between tasks in those clusters. The
communicaƟon weight of an edge E = (c1,c2) in CTG, is the sum of weights of
all the outgoing communicaƟon from tasks in cluster c1 towards tasks in cluster
c2. The following opƟmizaƟon objecƟves are available to the user - where
ComE for represenƟng the set of communicaƟon weight of all the edges in CTG
and UtilC being the set of uƟlizaƟons of clusters. The term UtilCi represents
the uƟlizaƟon of cluster i ∈ [0,Nc] where Nc is the number of clusters-:

• C1 = σ(ComE)+σ(UtilC): sum of standard deviaƟons of all communi-
caƟon weights and all cluster uƟlizaƟons

• C2 =max(ComE)+max(UtilC): sumofmaximumvalue of communicaƟon
and cluster uƟlizaƟon
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• C3 =C1 +C2

• C4 =
1
N ∑N

i=1UtilCi : Average cluster uƟlizaƟon

• C5 = max(ComE): Maximum communicaƟon edge weight between
clusters.

In case of using greedy search algorithms, it is important to carefully design
the algorithm moves (the change in the soluƟon in each step). To this end,
two different moves have been invesƟgated in this work; 1) Random task
movement, where a task would be randomly selected and moved from its
current cluster to an randomly selected cluster and 2)Group migraƟon, where
two tasks are randomly selected from two different clusters and are migrated
to their cluster to the other cluster. Fig. 4.6 shows the opƟmizaƟon process
of an iniƟal random Clustered Task Graph (Fig. 4.6 a.) using random task
movement (Fig. 4.6 b and c) and task migraƟon (Fig. 4.6 d and e) for cost
funcƟon C2. It became obvious that each of the task movements has its own
advantages and disadvantages. Since greedy heurisƟcs are used, random task
movement can not move across a path where at least one move is not feasible
under greedy constraints (i.e. at least one move will result in worse than
the current soluƟon). Also starƟng with task migraƟon, the opƟmizaƟon gets
stuck in situaƟons where only a single task move is required to reach a beƩer
soluƟon. To overcome this problem, a hybrid of these moves or use of other
search methods such as Tabu Search is required (this invesƟgaƟon is leŌ for
future works).

4.5.3. Mapping and Scheduling

The task of mapping consists of assigning clusters from CTG (and the tasks in
that cluster) to a PE within AG and assigning a the edges in the Task Graph
(TG) to a path of links and routers in the network. This process is followed by
scheduling of the tasks on PEs and packets on links and routers. To assign paths
in the network to TG edges, the rouƟng graph RG is used. Using RG, paths
under determinisƟc/adapƟve, minimal/non-minimal rouƟng from the source to
desƟnaƟon can be extracted using convenƟonal graph algorithms. The process
of the mapping can be formulated as:

M(App,Arch) : T G(V,E)→ AG(P(F),C(F))

or in case of using task clustering:

M(App,Arch) : CT G(V,E)→ AG(P(F),C(F))

Where Arch : AG(PE(F),C(F)) describes a fault prone architecture graph.
PE(F) is a set of {pei(F),∀i ∈ [0,Npe]} and pei(F) is describing the ith
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Processing Element under fault configuraƟon F. And C(F) is the set of
{c j(F),∀ j ∈ [0,Nc]} where each c j(F) is represenƟng the jth communicaƟon
link under fault configuraƟon F . It does not maƩer to directly map TG on AG or
perform mapping on CTG, in the end a PE would be assigned for each task on TG
for execuƟon, that is the main reason that we do not change our representaƟon
for mapping for different cases. This work only focuses on determinisƟc rouƟng
algorithms, since adapƟve rouƟng would result in probabilisƟc scheduling of
the packets.

For TGs with data dependency between tasks, different mapping algorithms
have been implemented in the tool:

• Greedy HeurisƟcs: are mostly LS and ILS. The main idea for using such
algorithms is to find a feasible soluƟon with acceptable quality based on
the current system health, every Ɵme a system failure occurs.

• Meta-HeurisƟcs: The meta-heurisƟcs are used as a benchmark for
comparing greedy heurisƟc soluƟons. Simulated annealing is chosen for
this purpose. Different cooling schedules and cost funcƟons have been
implemented for SA.

Once a mapping is performed, scheduling of the tasks will follow in order to
provide the evaluaƟon metrics for the cost of a mapping. All the conflicts over
the shared resources (such as network links, router resources etc.) would be
resolved during scheduling. The process of scheduling will start from the root of
the TG and will perform ASAP scheduling on each used resource considering the
constraints from the units to which this scheduling is depending. For example,
scheduling of a flit on a link depends on the scheduling of the upstream router.
Using MakespanL to denote the list of scheduling lengths for all the links,
MakespanN to denote the list of scheduling lengths for all the nodes, UtilN as
set of uƟlizaƟon of each node in the network and UtilL as set of uƟlizaƟon of
each link in the network. Different cost funcƟons are available to the user:

• C1 = σ(MakespanL): standard deviaƟon of makespans of packets on the
links. This is mainly used for balancing the schedule length on all the
network links.

• C2 = σ(MakespanN): standard deviaƟon of makespans of tasks on the
nodes. This cost funcƟon is used for balancing the schedule length on all
the network nodes.

• C3 =C1 +C2

• C4 =Max(MakespanL)+Max(MakespanN): sumofmaximummakespans
of packets on the links and tasks on the nodes.

• C5 =C3 +C4
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• C6 = σ(UtilN): standard deviaƟon of uƟlizaƟon of nodes. Which is used
for load balancing on network nodes.

• C7 = σ(UtilL): standard deviaƟon of uƟlizaƟon of links. Which is used
for load balancing on network links.

• C8 =C6 +C7

The cost funcƟon severely penalizes the mapping/scheduling soluƟons that
violate criƟcal tasks’ deadline. However, these soluƟons are not totally
discarded.

For the simulated annealing algorithm, if the new soluƟon has equal or
smaller cost it will always be accepted. In case the new soluƟon has higher
cost than the current soluƟon, the probability of choosing the new soluƟon is
calculated using Metropolis criterion [100]:

Pt = e
Ccurrent−Cnew

Tt

Where Cnew,Ccurrent represent the cost of the new and current soluƟons
respecƟvely and Tt represents the temperature of the process in stept. The
following cooling methods are invesƟgated for temperature control:

• linear: the temperature decreases by a fixed amount at each step. More
formally, temperature at step t can be calculated as Tt = T0 −nt [101].

• ExponenƟal: the temperature in step t is calculated as Tt = T0α t [101]

• Logarithmic: the temperature in step t > 1 is calculated as Tt =
T0

log t+1
[101]

• Aart the cooling mechanism is based on method introduced in [102].

• Huang: its similar to Aart’s cooling schedule except that using two
counters, it dynamically changes the size of the queue based on the
behavior of the system.

• Custom made adapƟve: the algorithm monitors a moving window of
the cost progression and interpolates a line through the data points.
In case the variaƟon is reduced (slope of the line is smaller than a
predefined value) in the window, the algorithm starts cooling down with
a predefined cooling factor (α) [103]. This will allow the process to
start from relaƟvely high temperatures and the system will adapt to the
situaƟon of the system
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(a) (b)

(c) (d)
Figure 4.7 Cost progression for a) local search and c) iteraƟve local search algorithm,
Final mapping for b) local search and d) iteraƟve local search

Figures 4.7 and 4.8 show examples of mapping and cost funcƟon progression
of the greedy heurisƟcs and meta-heurisƟcs under C8 respecƟvely. The Green
lines in Fig. 4.8 visualizes the temperature value at each step. Fig. 4.8
experiments use annealing factor α = 0.99995. For custom annealing the
experiment considers 2000 moves window before each decrease in temperature
and 0.01 as the threshold slope. The process stops if aŌer no improvement
in the past 30,000 steps. Huang schedule uses similar parameters, however,
the process terminated aŌer exceeding 130,000 steps. The experiments show
that although the greedy heurisƟcs do not provide the same quality of soluƟon
as the Meta-heurisƟcs, the soluƟon quality-execuƟon Ɵme raƟo of the greedy
heurisƟcs makes them very pracƟcal in online global applicaƟon management.
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(a) (b)

(c) (d)

(e) (f)
Figure 4.8 Cost reducƟons for SA using a) ExponenƟal c) Custom and e) Huang’s
annealing and Final mappings using SA b) ExponenƟal, d) Custom and f) Huang’s
annealing
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For independent TGs, the following heurisƟcs for mapping are also available:

• Min-Min: sorts the tasks based on Worst Case ExecuƟon Time (WCET)
and maps the shortest task on the list, to the node with the smallest
compleƟon Ɵme (fastest node for that task).

• Max-Min: sorts the tasks based on WCET and maps the longest task on
the list, to the node with the smallest compleƟon Ɵme (fastest node for
that task).

• MET: chooses tasks randomly from the TG and maps them on the fastest
node.

• MCT: chooses tasks randomly from the TG and maps them onto the node
with the smallest compleƟon Ɵme.

However, one of the requirements of such approaches is to provide support
for different PE speed in the system. This has been accomplished by adding a
speedup factor in the architecture graph as node aƩribute.

In the end, the tool automaƟcally generates GanƩ charts of the final
scheduling of the tasks. Please refer to Appendix A for examples of the
generated scheduling GanƩ charts.

4.5.4. Providing parƟal mapping

To decrease the Ɵme of applicaƟon deployment it is crucial to be able to update
the mapping cost funcƟon in order to be able to find the closeness of a soluƟon
to the previous mapping. This will reduce the amount of task migraƟon on
the system. To this end, the proposed framework incorporates the idea of
hamming distance of strings (for example see [104]) to generate an addiƟonal
term ”distance” to the mapping cost funcƟon. To calculate the distance of two
mapping soluƟons, a simple list would be generated where element i of the list
represents the processing elements id where task Ti is mapped:

PEg PEh ... PEi PE j

Where g,h, i, j ∈ [0,n] and n represents number of nodes in the network. If
we have mapping_list0 and mapping_list1 the distance of the two mappings
can be calculated using Alg. 5.

Using the distance as a metric, it is possible to penalize the mappings that
provide good quality soluƟons (for the iniƟal cost funcƟon) but require more
task migraƟon. Once the mapping opƟmizaƟon finishes, it would be necessary
to only apply parƟal task migraƟon and skip full-system reconfiguraƟon. More
formally, if the calculaƟon of a reconfiguraƟon takes TRL where
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Algorithm 5: average connecƟvity calculaƟon algorithm
1 distance = 0
2 for i ∈ [0, len(mapping_list0)] do
3 if mapping_list0[i] != mapping_list1[i] then
4 distance += 1
5 end
6 end
7 return distance

TRL = TMapAlg +TMapp

Where TMapAlg is the Ɵme required for calculaƟon of the mapping algorithm
and TMapp is the Ɵme for applicaƟon deployment on the system. Using the
proposed method this Ɵme would be reduced to:

TRL = T ′
MapAlg +TParExt +TParMap

Where T ′
MapAlg is the Ɵme required for mapping opƟmizaƟon while using

the distance metric. TParExt is the Ɵme required to find the difference between
current mapping and the old mapping (to find how many tasks should be
migrated). And TParMap is the Ɵme required to apply the necessary task
migraƟons.

An example of this process is depicted in Fig. 4.9 and Fig. 4.10, where the
cost funcƟon is heavily penalized by the distance factor. Fig 4.9 1 shows the
iniƟal state of the system where 25 tasks are mapped on a fully funcƟonal 3×3
mesh network. Figures 4.9b-c and 4.10a-c show network’s links degradaƟon
in the system health map and the mapping provided for that configuraƟon
using such heavy distance penalizaƟon. By naming the successive mappings in
Figures 4.9 and 4.10, M0 (for network with no failures) to M5 (for network with
five link failures), its possible to calculated the distance between mappings are
as follows:

• Distance(M0,M1) = 5

• Distance(M1,M2) = 3

• Distance(M2,M3) = 3

• Distance(M3,M4) = 3

• Distance(M4,M5) = 7

This means that it is possible to go from mapping M0 for a fault free network
depicted in Fig. 4.9 a.2 to M1 with the one failed link (see Fig. 4.9 b.1 for the
system health map representaƟon) depicted in Fig. 4.9 b.2 by migraƟng only
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(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

Figure 4.9 Successive mappings using distance between mappings. Figures a.1, b.1 and
c.1, show the link failures in the system health map. figures a.2, b.2 and c.2 show the
task assignment for each processing element under the fault condiƟon.
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(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

Figure 4.10 Successive mappings using distance between mappings. Figures d.1, e.1
and f.1 show the link failures in the system health map. figures d.2, e.2 and f.2 show
the task assignment for each processing element under the fault condiƟon.
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5 tasks. These experiments show the considerable advantage of the proposed
parƟal mapping extracƟon from 25 task migraƟons (in case of a system-wide
re-mapping) to 3-7 task migraƟons which reduces (4.8 task migraƟons on
average resulƟng in 80.8% reducƟon compared to complete reconfiguraƟon of
the system).

4.5.5. Improving the mapping latency

It is important that the SHMU assigns a severity metric to the received fault
informaƟon and takes proper acƟon accordingly. This means that SHMU can
either ignore the fault (in case of no severe effect on the system), or can
issue an order to Mapper-Scheduler Unit (MSU) to prepare another mapping.
A mapping can be ordered in case that SHMU predicts a fault becoming
permanent in near future and assigns high severity to it. This mapping either
should be used immediately (in case of reported faults having severe effect) or
in case of predicƟon of occurrence in short future should be stored in a memory
designated for Most Probable Mappings. It should be noted that no scheduling
informaƟon is stored at this stage. [44] has proposed a predicƟon method
for fault predicƟon and pre-processing of rouƟng table updates. However this
work only focuses on the link faults.

In this work, it is assumed that there exist a predicƟon method (using
machine learning or other methods) for predicƟng future faults. Then its
possible to define Most Probable Faults Set (MPFS) as a set of fi most probable
faults that can occur to each AG(PE(F),C(F)) based on diagnosis informaƟon
received from the architecture under a certain mapping M(App,Arch(F)).
These most probable faults would be stored in the SHMU database. More
formally, set of next Most Probable Mappings (MPM) is defined as:

MPM : {M(App,Arch(F + fi))|∀ fi ∈ MPFS}

To calculate these mappings, SHMU updates the System Health Map with
a certain fault (which is predicted to happen), then issues a map and store
order to the Mapping-Scheduling unit. Upon receiving this, the MSU will
calculate the mapping and store it with a fault tag (which encapsulates the fault
configuraƟon) in MPM memory. AŌerwards, SHMU would return the SHM to
its original state.

Upon receiving a ”Map and Store” order from SHMU, MSU starts calculaƟng
the mapping by choosing proper heurisƟc according to informaƟon received
from SHMU. For each mapping, we define a list which ith element of it
represents the processing element id chosen for mapping for the ith task. Each
mapping also has a fault tag that describes the fault configuraƟon associated
with it. This will result in the following data-structure for each mapping in
MPM:
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Table 4.2 Tool performance with growing size of TG

TG Size
AG
Size

O.P.S.
CTG
Size

CTG Opt.
Time (sec)

R.P.S.
Map Opt.
Time (sec)

10 3×3 3.4e9 9 1 3.8e8 1
20 3×3 1.2e19 9 1 3.8e8 6
40 3×3 1.4e38 9 2 3.8e8 12
80 3×3 2.1e76 9 2 3.8e8 29
160 3×3 4.7e159 9 4 3.8e8 73

Fault Tag pt0 pt1 ... ptm

Different approaches can be taken for Fault Tag generaƟon. The easiest is to
hash the SHM into a fixed size string, since this tag is not going to be re-used to
re-calculate the fault informaƟon, classic one way hashes or data compression
can be used. The size of this memory depends on the applicaƟon size and
system requirements. Bigger number of mappings require more number of
entries in MPM which results in bigger memory size.

Upon receiving a ”Map and Deploy” order from SHMU, MSU first checks
the fault configuraƟon with the pre-calculated mappings tags in MPM. In case
of having a hit in MPM, MSU goes further and extracts the difference with the
current mapping in order to perform a parƟal mapping (and scheduling, since
no scheduling informaƟon is kept in MPM) and then deploys the mapping on
PEs (refer to secƟon 4.5.4). In case of not finding the fault tag in MPM, MSU
starts calculaƟng the mapping for the current fault configuraƟon, performs
parƟal mapping extracƟon and deploys it on PEs.

We define reconfiguraƟon latency TRL as the Ɵme needed for map-
per/scheduler to reconfigure the architecture and map the applicaƟon aŌer a
remap order is received. In cases that the occurred fault is not in MPFS, the
reconfiguraƟon latency would be:

TRL = TMapAlg +TParExt +TParMap

Where TMapAlg is the Ɵme needed for computaƟon of a new mapping and
scheduling algorithm (Since scheduling informaƟon is not kept in the MPM).
TParExt is the Ɵme needed for extracƟng parƟal mapping and TParMap describes
the Ɵme required for applying parƟal mapping on the architecture (this parƟal
mapping consist of migraƟng tasks). If there is a hit in MPM, the reconfiguraƟon
latency TRL would be:

TRL = Tf etch +TSchd +TParExt +TParMap

Where Tf etch refers to Ɵme required to fetch the mapping from the memory
and TSchd is needed for calculaƟng scheduling Ɵmes. TSchd is needed because we
are not storing scheduling Ɵmes for the tasks to save memory. By using ASAP
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Table 4.3 Tool performance with growing size of AG

TG Size
AG
Size

O.P.S.
CTG
Size

CTG Opt.
Time (sec)

R.P.S.
Map Opt.
Time (sec)

80 2×2 1.46e48 4 2 256 17
80 3×3 2.1e76 9 2 3.8e8 30
80 4×4 2.1e96 16 3 1.84e19 39
80 5×5 6.8e111 25 3 8.8e34 50
80 6×6 3.1e124 36 3 1e56 70

scheduling algorithm the system would regenerate the same scheduling from
the mapping which is of the complexity of O(n) since the task graph nodes are
already sorted for ASAP scheduling. This would enable the system to recover
from a failure TMapAlg − (Tf etch +TSchd) Ɵme units faster. It is important to
note that in case of performing mapping, the system has to run the scheduling
algorithm once in each mapping step in order to calculate the cost of mapping
since scheduling length is an important factor in the mapping cost funcƟon.
This would make the gap between these two terms rather significant. Even
though these mapping heurisƟcs are fast, they need tens (someƟmes hundreds)
of steps to find a suitable soluƟon. Tables 4.2 and 4.3 show the performance
of the mapping and scheduling algorithm for different sizes of TG and AG on
a 64-bit linux machine, running on a 3.4 GHz Intel©Core™-i7-6700 CPU with
32GB of Memory. It is clear that the required Ɵme for running such algorithms
on the field on limited resources would require much longer execuƟon Ɵme,
which makes this proposal much valuable. Another important note is that this
improvement is for the best case scenarios, In the cases of MPM miss, the
same long mapping scheduling calculaƟon process is needed. Therefore, the
performance of this approach is heavily dependent on how well the system can
predict the Most Probable Faults.

Test ApplicaƟon Mapping

The tesƟng environment in ”SoCDep2” works based on the concept introduced
in [105] where a graph-based methodology for tesƟng the components of a
system using unreliable components is proposed. In case of a Network-on-Chips,
such graph nodes which test each other are the cores (Processing Elements) of
each Ɵle. In this tesƟng model, nodes of the network detect faults either in
one-stop (called one-step diagnosable system) or each node can test the other
nodes in a sequenƟal manner (called sequenƟally diagnosable system)[105].
Both approaches are supported by ”SoCDep2”.
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Figure 4.11 example
of sequenƟally diag-
nosable system

Based on the approach presented in [105], a Test
Task Graph (TTG) is generated and is mapped in one
step on the network nodes (since it is clear which
tesƟng task belongs to which network node). Fig.
4.11 shows an example of a sequenƟally diagnosable
test task graph for a 3× 3 Mesh NoC. Each node in
the network has a test task and will send the results
according to the data dependency to other nodes. The
mapping of the tasks are predefined in the task graph
however, the scheduling is not decided. It is important
to make sure that the scheduling of these tasks do not
interrupt the normal system scheduling.

(a) Scheduling of the applicaƟon on the processing elements

(b) Scheduling of the test applicaƟon on the processing elements in idle Ɵmes of Nodes

Figure 4.12 Example of scheduling test tasks in idle Ɵmes of the processors

The test tasks will be scheduled in idle Ɵmes on each core (this is done
aŌer scheduling the TG) to provide the guarantee that it will not disrupt the
normal schedule. Fig. 4.12 shows the inserƟon of test tasks in idle Ɵme of
processing elements (test tasks are marked in yellow). Similarly, the idle Ɵme
of the routers is uƟlized for scheduling the communicaƟon packets between
the test tasks over the network. The packets are scheduled to be injected in
the network without disrupƟng the applicaƟon’s packet flow.

4.5.6. Environment Simulator

To test each of the above menƟoned approaches, it is crucial to simulate the
system under different fault injecƟon rates and observe the degradaƟon of the
system during its lifeƟme. In this secƟon the characterisƟcs of the simulaƟon
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Figure 4.13 Task graph for simulator example Figure 4.14 RouƟng graph for
simulator example

support (using SimPy library [106]) of SoCDep2 is discussed and example of the
behavior of the system would be presented.

To elaborate the process of the tool, a randomly generated task graph is
considered with 25 tasks with 35 data transacƟons (represented by the edges
on the task graph). The resulƟng task graph is presented in Fig 4.13. The
tasks dependencies are shown by graph edges and tasks are executed from
top down. Darker and thicker edges show higher dependency between the
tasks.… The applicaƟon is mapped on a 3×3 2D mesh network (see Fig. 4.2) is
considered under X-Y rouƟng algorithm. The system starts with all components
being fault free. Based on the above informaƟon RouƟng Graph of the 3×3
network is generated (presented in Fig. 4.14).

Mapping is performed using local search (LS) algorithm in 1000 moves
starƟng from a random mapping where the mapping cost funcƟon is
C4 = Max(MakespanL)+Max(MakespanN). The iniƟal random mapping, and
opƟmized mapping along with the cost funcƟon progress are shown in 4.15 a-c.
The final scheduling of the tasks on the network nodes (Processing Elements)
is shown in Fig. 4.15 d. As shown in Fig. 4.15 d, the mapping uses almost all
the processing elements (except PE1).

At this point the simulator starts running the applicaƟon and iniƟates fault
injecƟon with mean Ɵme of 0.1 fault per clock cycle. Every Ɵme the system
health monitoring unit receives informaƟon about a permanent failure, a new
mapping and scheduling is prepared and the simulator starts execuƟng the
applicaƟon from the beginning.

To see the performance degradaƟon of the system, the system status is
evaluated aŌer half of the network links are marked as permanently damaged.
Fig. 4.16 a-c, show the system health map, the mapping and mapping cost
progression. Fig. 4.16-d, depicts scheduling of the applicaƟon on the processing
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(a) (b) (c)

(d)

Figure 4.15 a) iniƟal random mapping, b) opƟmized mapping, c) mapping cost funcƟon
progress and d) scheduling of the tasks on the PEs for a fault-free system

(a) (b) (c)

(d)

Figure 4.16 a) system health map representaƟon, b) mapping, c) mapping cost progress
and d) scheduling of the tasks on the PEs aŌer 12 permanent link failures.

elements. Note the concentraƟon of tasks in several processing elements
and the increase in the scheduling Ɵme due to lack of available resources.
Full scheduling Gant charts for the nodes, routers and links for both cases
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are available in Appendix 4.6. The colors on the links and routers represent
individual packets going through the network.

4.6. Chapter summary

Considering growing size of the components on chips, it is not possible to
manage all the faults locally.

The local fault management mechanisms do not have a global view of
the system and can not take into account the effect of the local decisions
on the system behavior. This might lead to situaƟons that a series of local
reconfiguraƟons based on the limited available informaƟon, will lead to the
non-opƟmal soluƟon from global point of the view. Moreover, many of
such local approaches rely on configuraƟon informaƟon from a global system
manager. Therefore it is crucial to have a global fault manager which collects
the fault informaƟon from the lower abstracƟon layers, maintains a holisƟc view
of the system and performs system-wide reconfiguraƟon either by hardware
reconfiguraƟon or by performing parƟal or full applicaƟon mapping/scheduling.
Also by only focusing on the local fault manager, the effects of such faults on
the system will be ignored. Moreover the collaboraƟon of local and global
fault management systems should be invesƟgated in order to idenƟfy the
shortcomings of each of these mechanisms in more detail and to opƟmize the
distribuƟon of such tasks over different layers of abstracƟon. To examine the
effects of such global manager, Its necessary to perform high-level simulaƟon
of its behavior.

This chapter discussed a framework for invesƟgaƟng the global fault
management approaches by simulaƟng them under different fault environment.
The proposed framework provides possibility of modeling different applicaƟons
and system architectures. The SoCDep2 framework uƟlizes a System Health
Monitoring unit which maintains the health map of the system’s components.
This informaƟon would be used to calculate different mapping soluƟons under
faulty system configuraƟon. The proposed framework provides the user with a
wide range of mapping algorithms such as local search, IteraƟve local search,
Simulated Annealing (used for benchmarking) for tasks with data dependencies
along with Min-Min, Max-Min, MET and MCT for independent task mappings.

Two approaches for reducing the down-Ɵme of the system and increasing
the availability of the system are proposed: 1) A parƟal mapping technique
is used for reducing the number of task migraƟons (up to 80%) and 2) An
infrastructure for calculaƟng and storing probable mappings based on the
available fault informaƟon. The chapter concluded by introducƟon to the
simulator included in the framework for tesƟng the proposed approaches under
different fault injecƟon raƟos.
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Conclusions

Growing the number of components in the systems and shrinking feature
size has affected systems suscepƟbility to faults. The shortened system’s
life and increased number system failures during its lifeƟme has highlighted
the need for novel fault tolerance methods. In recent years Network on
Chip (NoC) communicaƟon paradigm has been accepted widely in System on
Chips. NoCs provide an scalable soluƟon for communicaƟon boƩleneck in
mulƟ/many-core systems by transmit informaƟon in form of packets in an
on chip network and eliminaƟng long wires over the chip. Considering the
trends in the component lifeƟme, NoC based systems require light-weight fault
tolerance mechanisms which can provide (1) guarantees for hard real-Ɵme
systems and (2) a graceful performance degradaƟon in presence of faults. This
work focuses on providing scalable soluƟons for cross-layer fault management
for NoC based SoCs. The proposed mechanism consists of local and hybrid
hardware-based fault management mechanisms which provide fast response
Ɵme along with a system health monitoring unit which can fill the shortcomings
of limited informaƟon available to local fault management systems. The local
fault management schemes are hardware based soluƟons that are oblivious
to the system’s state and act based on the informaƟon obtained from their
close vicinity. Hybrid approaches provide the advantages of closeness to the
hardware but they are configured by the global system manager which turns
them into one of the most effecƟve assets in cross-layer fault management
schemes. The main contribuƟons of this work can be listed as:

• The fault detecƟonmechanisms for control part of the circuit considered in
this work (concurrent online checkers) provide detailed fault localizaƟon
informaƟon but have a large hardware overhead. In this work a
minimizaƟon framework for such checkers is proposed. A new metric,
namely coverage density has been introduced for selecƟng the checkers
during the opƟmizaƟon process. Also new concept of dominant checkers
have been introduced for speeding up the process by reducing the search
space of the problem. The experimental result shows that using the
proposed methods, it is feasible to reduce the area of the checkers
bellow 150% of the pseudo-combinaƟonal part of the control part of the
circuit while guaranteeing 100% fault coverage. Which in-turn makes the
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checker circuits an scalable soluƟon for low latency fault detecƟon in
NoCs.

• The large number of fault diagnosis signals in the router (specially
coming from the concurrent online checkers) require more lightweight
hardware based classificaƟon methods. This work extends the exisƟng
works for hardware-based online fault classificaƟon to make them more
pracƟcal for abstracted checker informaƟon as well as the links. The
proposed fault classifier only adds 1% to the area of the router. This low
hardware overhead, enables deploying fault classifiers on all the key fault
informaƟon signals.

• The current metric available in the literature for comparing adapƟvity
of different turn-model-based rouƟng algorithms only considers minimal
path rouƟng in the networks. This work extends the degree of
adapƟveness used in minimal path rouƟng to cover non-minimal path
rouƟng as well. This metric provides the possibility of further classificaƟon
of turn model behavior under different link-failure scenarios.

• In the current state of the art, several 2D uniform turn-model based
rouƟngs are idenƟfied. However, an enumeraƟon and evaluaƟon of all
possible possible cases was missing. This work provides an enumeraƟon
of all deadlock free, 2D turn-model based rouƟng algorithms which
provide full connecƟvity in 2D mesh networks. Later, these turn models
are compared in terms of their robustness to all configuraƟons of link
failure in the network. Using this informaƟon, the global system health
manager can select an opƟmal rouƟng model given a fault configuraƟon.

• Another pressing issue in the field of NoC based SoC is parƟal or full-scale
network failure due to faults in the data-path of routers; If a router
fails to route or miss-route a packet or parts of a packet due to faults,
it is possible that all the communicaƟon in the upstream routers to be
stalled. This work provides a local fault handling mechanism to protect
the network from such congesƟon scenarios using packet dropping. The
experiments show that even if 80% of packets are dropped due to faults
on the network links, the network can sƟll operate without congesƟon.

• It is possible that a rouƟng algorithm provides a viable path from a source
to desƟnaƟon but the local rouƟng units might fail to find the path due
to their lack of global informaƟon. This will lead to congesƟon in the
network due to packets being routed in undesired (but absolutely legal)
direcƟons. This work proposes a novel method to guarantee that the
injected packets in the network would reach their desƟnaƟon in faulty
networks. This method works on arbitrary number of faulty links in
combinaƟon with any turn-model-based rouƟng algorithm.
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• It is crucial to evaluate the effects of faults on NoC based SoC systems at
the applicaƟon layer along with effecƟveness of global fault management
mechanisms to handle such situaƟons. This work provides a new
simulator for NoC based SoCs for modeling global fault management
under mixed-criƟcality constraints.

• Since router architectures are very regular, it is possible to reuse
funcƟoning resources that have been cut-off due to their neighboring
units. Such a task requires a local resource management and evaluaƟon
of the effects of the supporƟng infrastructure. This work proposes an
evaluaƟon framework to compare their effect on reliability of the router.

The contribuƟons in this work, highlights the feasibility and effecƟveness of
cross-layer dependability approaches in NoC based SoCs. However, there are
sƟll many open issues regarding dependability in such systems which will be
considered as future work:

• Currently the informaƟon extracted from the checkers are abstracted,
classified and forwarded to the higher abstracƟon layer. However, as
we saw in case of link faults, faults in the control-part can paralyze the
network. New miƟgaƟon mechanisms are required for the control part
which can use checkers’ fault informaƟon.

• Quality of service in NoC based mixed-criƟcal systems is of utmost
importance. Specially considering the effects of faults in such systems.
Methods of providing guarantees regarding maximum network latency
and throughput in presence of faults should be invesƟgated.

• The dependability of systems can not be considered without considering
system’s security. It is important to consider NoC security while addressing
fault tolerance and dependability.
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ABSTRACT
Cross-Layer Dependability Management in Network on Chip
based System on Chip

The shrinking technology node’s feature size and growing number of transistors
per chip, results in integraƟon of more components on a single chip. Such
massive integraƟon of components can not be handled by the tradiƟonal
and modern buses (resulƟng in the communicaƟon boƩleneck). Networks-
on-Chip have emerged as a scalable communicaƟon soluƟon for handling the
communicaƟon boƩleneck.

At the same Ɵme, the shrinking technology feature size have resulted in
increase in the effects of faults along with occurrence of new types of faults.
Such increase in the number faults results in significant reducƟon in lifeƟme of
the system.

The reduced lifeƟme of the systems and the communicaƟon paradigm
shiŌ towards Networks-on-Chip, moƟvates research on dependability of such
on-chip networks. It is important to augment the system with mechanisms that
prolong the lifeƟme of the system at the cost of graceful degradaƟon of the
system performance.

Providing support mechanisms for graceful degradaƟon to the network
require mechanisms that consider the global state of the system. These
mechanisms enable system-wide decisions. However, using only global
mechanisms imposes unacceptable latency for handling rather small events.
In order to address this shortcoming, local hardware-based soluƟons are also
required. Such mechanisms are inherently fast due to their proximity to the
actual hardware and can act with no or minor support from global mechanisms.

This work focuses on a cross-layered approach which consists of three
main layers; fault informaƟon acquisiƟon, local and hybrid mechanisms and
global mechanisms. In order to model the global effects of the faults, this
work provides a new simulator for network-on-chip based systems-on-chip for
modeling global fault management. A minimizaƟon framework for reducing
area overhead of online fault detecƟon mechanisms is presented. Later, a
light-weight extension of the an already exisƟng hardware-based fault classifier
method is proposed. The small area overhead of the fault classifier enables
massive deployment of such mechanisms in the hardware. Also a new metric is
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proposed for classificaƟon of non-minimal path, uniform 2D Turn-Model based
rouƟng algorithms. The robustness of all such rouƟng algorithms is evaluated
under all possible link failure configuraƟons in the network. A mechanism
for reachability guarantee of the packets in the network under arbitrary link
failure and any turn-model based rouƟng algorithm (as long as the network is
connected under the rouƟng algorithm) is proposed. In order to reduce the
possibility of network-wide failure due to faults in the data-path of routers, two
packet dropping mechanisms have been proposed. And last but not least, this
work provides an evaluaƟon framework for router’s reliability aŌer deployment
of all the dependability mechanisms. This is accompanied by architectures
which provide local resource management and provide a boost in the router
reliability.

The invesƟgaƟons in this work demonstrate the effecƟveness of such cross-
layer approaches for dependability in network-on-chip based system-on-chip.
Details of required mechanisms along their advantages and drawbacks are
discussed. It is shown how the area overhead of all the dependability
mechanisms will influence the reliability of the system as a whole and proposes
mechanisms for system’s reliability improvement.
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KOKKUVÕTE
KiipvõrkudelpõhinevatesüsteemidekihƟdeüleneusaldatavuse
haldus

Aina miniatuursemaks muutuv tehnoloogia ja üha suurem arv transistoreid
kiibis toob kaasa paljude komponenƟde ehk tuumade integreerimise ühele
kiibile. Tuumade massilist integreerimist ei saa läbi viia traditsiooniliste ega
kaasaegsete siiniarhitektuuride abil, sest see tooks endaga kaasa side kitsaskohƟ.
Nimetatud kitsaskohtade lahendamiseks on välja töötatud kiipvõrgu lähenemine
kui skaleeritav sidelahendus. Samal ajal on vähenenud tehnoloogia mõõtmete
tõƩu toimunud rikete arvu kasv kiipides ja samuƟ on esile kerkinud uued
rikketüübid. See omakorda on viinud süsteemi eluea olulise vähenemiseni.
Süsteemide lühenenud eluiga ühelt poolt ja kommunikatsiooni paradigma
suundumus kiipvõrkude suunas teiselt poolt moƟveerib uurima selliste kiipide
töökindlust. Oluline on süsteemi täiustada mehhanismidega, mis pikendavad
süsteemi eluiga süsteemi jõudluse vähenemise hinnaga.

Nimetatud toetusmehhanismid eeldavad struktuure, mis arvestavad süsteemi
seisukorraga. Need struktuurid võimaldavad vastu võƩa kogu süsteemi
hõlmavaid otsuseid. Kuid probleemiks on siin, et vaid globaalsete struktuuride
kasutamisel tekib lokaalsete sündmuste käsitlemise puhul vastuvõetamatu
latentsus. Selle puuduse kõrvaldamiseks on vaja ka kohalikke riistvarapõhiseid
lahendusi. Sellised mehhanismid on oma olemuselt kiired, kuna nad on
lähedased tegelikule riistvarale ja võivad tegutseda globaalsete mehhanismide
toetuseta.

Käesolev dissertatsioon keskendub kihiülesele lähenemisele, mis hõlmab
kolme peamist kihƟ: rikketeabe omandamine, kohalikud ja hübriidsed
mehhanismid ning globaalsed mehhanismid.

Rikete globaalse mõju modelleerimiseks pakub käesolev töö välja uue
kiipvõrgu süsteemide simulaatori.

Lisaks esitatakse töös rikete tuvastamise mehhanismide minimeerimise
keskkond. Seejärel pakutakse välja meetod rikete klassifitseerimiseks. Rikete
klassifikaatori väike pindala võimaldab selliste mehhanismide ulatuslikku
kasutuselevõƩu riistvaras. SamuƟ on töös välja pakutud uus mõõdik miƩe-
minimaalsel teel põhinevatele, 2D marsruuƟmisalgoritmide klassifitseerimiseks.
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Kõikide selliste marsruuƟmisalgoritmide jõudlust hinnatakse võrgu kõigi
võimalike ühenduste rikete konfiguratsioonide all. Pakutakse välja võrgu kõigile
ruutersõlmedele ligipääsu tagamise mehhanism meelevaldse võrguühenduse
rikke korral.

Selleks, et vähendada võimalust võrguruuterite andmevoo riketest tu-
lenevaks kogu võrku hõlmavaks veaks pakutakse töös välja kaks pakeƫde
kustutamise mehhanismi. Ning lisaks annab käesolev töö metodoloogia
kiipvõrgu ruuteri usaldusväärsuse hindamiseks peale kõikide eelpool nimetatud
töökindluse mehhanismide kasutuselevõƩu. Sellega kaasnevad arhitektuurid,
mis tagavad kohaliku ressursside haldamise ja võimaldavad suurendada ruuteri
usaldusväärsust.

Käesolevas dissertatsioonis esitatud uurimistöö näitab kihƟdeülese lähene-
misviisi kiipvõrkude usaldusväärsuse tagamisel. Käsitletud on usaldusväärsuseks
vajalike mehhanismide üksikasju ning arutletud nende eeliste ja puuduste
üle. Töös on näidatud, kuidas kõigi usaldusväärsusmehhanismide pindalanõud-
lus mõjutab kogu süsteemi usaldusväärsust tervikuna ja on välja pakutud
mehhanisme kogu süsteemi töökindluse parandamiseks.
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Appendix A: Scheduling Example

This appendix describe full scheduling reports for mapping of a 25-task task
graph on a fault free 3×3 network and a heavily faulty 3×3 mesh network.
[for more informaƟon regarding this example, please refer to secƟon 4.5.6].
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scheduling of the tasks on the fault free system

scheduling of the tasks on the system under 12 broken links
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Appendix B: PublicaƟon A

T. Hollstein, S. P. Azad, T. Kogge, H. Ying and K. Hofmann, ”NoCDepend: A
Flexible and Scalable Dependability Technique for 3D Networks-on-Chip,” 2015
IEEE 18th InternaƟonal Symposium on Design and DiagnosƟcs of Electronic
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Abstract—In order to be able to handle an arbitrary amount
of static communication segment faults in NoC-based MPSoCs,
a flexible fault tolerance mechanism has to be applied. In
this contribution, we present a flexible and scalable approach
for fault-tolerance in NoCs, which - in contrast to existing
circumvention techniques - can in principle handle any number
of static faults in the routing network. It doesn’t require routing
restrictions (as static routing/source routing) and can basically
be combined with any static or adaptive minimal or non-minimal
routing algorithm. The needed additional hardware effort is low
and the increase of the time for computation of routing decisions
is reasonably low as well. The presented dependability technique
can work hand-in-hand with a task scheduler/mapper and is
applicable in critical, mixed-critical and non-critical application
scenarios.

I. INTRODUCTION AND RELATED WORK

Sophisticated fault tolerance mechanisms are needed in
order to be able to make use of any NoC-based MPSoC
by tolerating any combination of faulty routing segments in
the network. In the recent years, several NoC fault tolerance
approaches have been presented. We can classify the main ap-
proaches as follows: Local circumvention ([1],[2],[3],[4],[5]):
bypass the faulty node locally. These methods are able to
handle a limited number of faulty routing segments, otherwise
the reachability of the destination nodes is not guaranteed.
Additional subclasses are Rectangular fault block models ([6],
[7]) and Fault rings and chains ([8]). Global path-based
methods ([9],[10]): search for possible paths from source to
destination, store path information in the source node and
apply non-adaptive source routing (doesn’t scale well with
the network size). Intermediate node solutions ([11]: Use
intermediate routers legal turns to improve reachability. This
means that the source node sends the packet to an intermediate
node which will forward it to the destination node (might end
up in higher-level deadlocks; additional HW effort in NoC
interface). Data splitting ([12]): partially serialize the faulty
links in order to maintain the network operation. However
this method will drastically degrade the network performance
(disturbs pipeline principle, causing congestion) and has con-
siderable area overhead. Hybrid methods: In [13] a combined
method is propose, but this still needs partially dynamic path
search to guarantee the routability.

In this contribution a new hybrid fault tolerance method for
NoCs is presented, which does not rely on virtual channels,
supports any amount of faults in the network (as long as
the network is not disconnected and there exists a path from
source to destination under routing algorithm constraints), has
very low latency during run-time, doesn’t need path search

packets and provides full support of any adaptive minimal or
non-minimal routing algorithm (turn-model-based or planar-
adaptive) with a very low hardware and run-time overhead.

This paper is organized as follows: In Section II the general
NoCDepend methodology is introduced and an insight on
the needed additional Hardware and Run-time effort is given.
Subsequently a concrete demonstration and validation of the
presented methods based on a well-approved NoC Simulator
is shown, followed by some final conclusions.

II. NOCDEPEND METHODOLOGY

Assumptions: The proposed method is not dependent on a
specific routing algorithm, and it is assumed, that the MPSoC
has the following necessary components already built-in: A
Built-In-Self-Test (BIST) for Mesh-based NoC communication
resources, A central System Health and Resource Manager
(SHRM), running on-chip in a processing tile of the Multi-
processor System-on-Chip (MPSoC). The SHRM is described
in the following section. iJTAG [14] implementation for com-
municating test results to SHRM and later on distribution of
information to nodes.

A. Fault Model and System Health Management

The fault-model of the presented method, considers inter-
router communication link faults. However it can easily be
enhanced to consider intra-router faults (turn faults) as well.
System-Health-Map (SHM) (Fig. 1). The SHM is co-located
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Fig. 1: System-Health and Task Deployment Management

with a Central Task Mapper and Scheduler (CTMS) on a tile
in the network, which can re-locate application tasks, if the
required communications cannot be carried out as a result of
defected communication links between pairs of routers.

The NoCDepend manager NoCDM is calculating individual
non-reachability information for every individual NoC router
output and is sending them as configuration information back
to every router, where they are evaluated by the locally running
routing engines. Every router output can store a limited
number of MaxNumAreas non-reachability zones/areas
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in the network, which cannot be reached via this output.
The additional latency and hardware effort in the routers is
kept low and the method guarantees, that all packets can be
routed and any amount of defective links can be handled.

B. Basic Principle: Non-reachability

The NoCDepend method is designed to be applied to
a mesh-based directed Graph GNoc(R,C, FR). The graph
should be a sub-graph of a N-Dimensional mesh, but its
applicable to other topologies as well. In this paper a two-
dimensional NoC is assumed. The set of nodes R represents
the routers in the mesh. The edge set C represents outgoing
router links Cx,y,dir. F denotes the applied routing function.
An edge has the attributes hx,y,dir and NRx,y,dir. The link
health status hx,y,dir can either be 1 (healthy) or 0 (faulty) and
NRx,y,dir = {NRx,y,dir,1, ...NRx,y,dir,MaxNumAreas} is a
limited list of network areas, which is newly introduced here
and defines, which target nodes in the NoC cannot be reached
via this outgoing router link. It turned out that it is useful to
assume an axis aligned cuboid as shape for the unreachable
network areas, because they can be represented for every
dimension with two points. In this paper the illustration
is limited to rectangles as shape for unreachable areas in
2D-Nocs. Every axis-aligned N-dimensional cuboid can be
represented by 2 coordinates min and max.

Example 1: Fig.(2) illustrates a fault scenario: Since the
outgoing link C2,2,E from router R2,2 to router R3,2 is broken,
h2,2,E = 0 and NR2,2,E,1 (r1) is the first rectangle in the
non-reachability list of this output containing the information,
which part of the network cannot be reached by this link.
Assuming a non-minimal west-first routing scheme, this would
be the region which can be represented by a rectangle spanned
by the routers R3,0 and R5,5. Since the adaptivity of the
routing algorithm allows easy circumvention toward eastern
direction, only router R2,2 needs to store this information in its
eastward outgoing link and no propagation to neighbor routers
is required.
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Fig. 2: Example: Faults and Faulty Area Propagation

If link C0,4,S is broken then the areas r2 and r3 cannot be
reached any more via this link. Then the routers R0,5, R1,4
have to be informed by R0,4, that the rectangular region r4
(cannot be reached via C0,4,{N,E,S{) cannot be reached via
R0,4. Therefore r4 has to be entered in the non-reachability
lists NR0,5,S and in NR1,4,W . R0,5 has to propagate r4 to

R1,5 where this information has to be attributed to the West
output NR1,5,W . Routers R1,4 and R1,5 have to propagate
to eastern direction, that r4 cannot be reached, since the turn
model doesn’t allow any S-to-W turns. This information has
to be propagated through the whole row 5 and row 4 in eastern
direction, since all routers need to know the non-reachability
of r4. This implies, that the routers Rx,5 and Rx,4 (with x ∈
{1, .., 5}) cannot reach r4. Tasks which have to communicate
to r4 have to be re-mapped by the CTMS.

C. Algorithm for Fault Propagation

As shown in section II-B, a local inter-router propagation
for unreacheable NoC zones is needed. Subsequently a generic
algorithm is presented, which can be combined with any non-
minimal or minimal routing algorithm. A turn-model assump-
tion is used for the explanation, but the algorithm can also be
applied separately to the defined routing layers in planar adap-
tive routing approaches. The NoCDepend:FaultPropagation
algorithm (1) will be executed, once the CTMS receives BIST
information about a new broken inter-router connection. Given
a function PrecInp(Cx,y,dir), which returns a list of router
inputs Ix,y,idir, which precede/can reach the output under
application of the currently active routing algorithm F and
a function SuccOutp(Ix,y,idir), which returns all possible
outputs directions (full list independent of destination address)
being reachable via the applied routing algorithm for any
packet coming in at the router input Ix,y,idir, the algorithm for
propagation of non-reachability information in general form is
described in Algorithm 1.
In this algorithm MaxNumAreas is the maximum number of
non-reachable rectangles, which can be stored for an outgoing
port of a router and being used for reachability check by
the routing algorithm. If this number is exceeded, a lossy
compression has to be carried out (lines 3 and 20 of Alg. 1).
Once some additional fault information occurs on the output of
one router, the algorithm checks for every input of this router,
if parts of the newly introduced non-reachable areas can be
reached via other outputs. Only the remaining newly unreach-
able areas will be propagated back to the output of the adjacent
router (or the local port). The algorithm terminates, once no
further propagation is needed (ProcessingList empty). The
communication to the local port is not shown in the algorithm,
but based on the accumulated non-reachability information it
is already known in the SHM if packet destinations (of tasks
being mapped to this node) are in non-reachable areas. In
this case this task must be re-mapped to another processing
location.
Lemma 1: If there exists no path from a specific source
router S to a destination router D under the constraints of
the currently used routing algorithm, then this information is
available at the the source router and the NoCDM can directly
relocate/remap the sending or receiving application task to
another node.
Proof 1: A short proof outline on the completeness of the non-
reachability information (no dead-end paths) can be done with
mathematical induction as follows: 1) If a specific destination
D of a routing path, outgoing from a source location S cannot
be reached by the last router R on a minimal path via a
broken link, then this non-reachability information has to be
propagated to all inputs (and their predecessors = adjacent
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Algorithm 1: Generic Non-Reachability Propagation in
the SHRM

1 receive broken link information for Cx,y,dir from BIST
2 compute non-reachable areas NRnewx,y,dir of output
3 NRnewx,y,dir :=
Minimize(NRnewx,y,dir,MaxNumAreas)

4 NRx,y,dir := NRnewx,y,dir // new assignm. to
NRx,y,dir since directly adjacent link is
broken

5 ProcessingList := Cx,y,dir

6 while ProcessingList not empty do
7 Cxf ,yf ,dirf := GetAndRemoveHead(ProcessingList)
8 forall the Ii ∈ PrecInp(Cxf ,yf ,dirf ) do

// potentially possible incoming
directions - all other inputs don’t
need to be updated

9 NRprop := NRnewxf ,yf ,dirf
// init rectangle list which has to be

propagated to Predecessor of Ii
10 for Oj ∈ {SuccOutp(Ii) \Output(dirf )} do

// for all outputs without the one
where the new fault propagation
came from

11 forall the non-reachable router destinations
D(xd, yd) in rectangles ∈ NRprop do

12 if destination routable via Oj according to
routing algorithm F then

13 if ReachabilitySearch(Rxd,yd , Oj)
successful then

14 NRprop := NRprop \Rxd,yd
// Rxd,yd is reachable from

Ii via other output
port Oj and has to be
removed from the list

15 NRnewxp,yp,dirp := NRprop
16 NRreallynew :=

NRnewxp,yp,dirp \ (NRnewxp,yp,dirp ∩NRxp,yp,dirp)
// only non-reachable areas which were

not yet contained in the output’s
non-reachable areas list

17 if NRreallynew �= ∅ then
18 NRxp,yp,dirp := NRxp,yp,dirp ∪NRreallynew
19 NRnewxp,yp,dirp := NRreallynew
20 NRcompressed :=

Minimize(NRxp,yp,dirp ,MaxNumAreas)
21 NRadditionally := NRcompressed \NRxp,yp,dirp)

22 NRxp,yp,dirp := NRxp,yp,dirp ∪NRadditionally
23 NRnewxp,yp,dirp :=

NRnewxp,yp,dirp ∪NRadditionally
24 ProcessingList = ProcessingList ∪ Cxp,yp,dirp

25 else
26 {nothing has to be done since no new information}

routers), which cannot reach D on a non-minimal path via
another valid output of the same router R, applying allowed
turns only according to the currently valid turn model (initial
condition).
2) If a router R on any location of any possible path from S
to D knows that D cannot be reached via one of its outputs,
this information has to be propagated to all inputs of R(and
their predecessors = adjacent routers), which cannot reach D
on a non-minimal path via another valid output of the same
router R, applying allowed turns only according to the actually
valid turn model (conclusion from n to n+1). This leads to
the following conclusion: If there is no routing path to a
destination D, then this information is known on any point
of all possible paths at any router position in the NoC. If this
information reaches S, then there is no working path from S

(a) (b)
Fig. 3 (a) Proposed detector circuit, (b) Example fault scenario

to D and the initiating the communication has to be placed
on another network location.
Furthermore the deadlock-freeness of the proposed method has
to be confirmed:
Lemma 2: The NoCDepend method returns deadlock-free
routing schemes, if the underlying basic routing algorithm is
deadlock-free.
Proof 2: The used routing algorithm can be represented as a
directed routing graph GR for the concrete non-defect 2D/3D
NoC If the underlying routing algorithm is deadlock-free then
GR is deadlock-free, since cycle-free. If some edges (defect
links) are removed from GR, resulting in G∗

R, then G∗
R is

still cycle-free and therefore the resulting defective scheme is
deadlock-free as well (partial edge usage due to unreachable
areas cannot cause cycles).
The deadlock-freeness has been verified applying a self-
developed graph-based prooving engine.

D. Additional Hardware and Routing-Time Complexity

Assuming, the iJTAG standard and/or the NoC itself is used for
communication between SHRM and routers, no significant ad-
ditional effort is needed for communication of link fault infor-
mation and non-reachability information to be stored in router
outputs. In the 2D-case non-reachable areas are represented as
rectangles rdiri with Cartesian coordinates of two corners as
a tuple (xlowerleft, ylowerleft, xupperright, yupperright). This
lists should have limited length and be rather short in order
to keep the overhead in terms of area and static power
consumption quite limited.
It is fairly easy to check if a node falls inside a rectangle
just by use of simple comparators. The detector circuit can
be implemented either fully serial or parallel. The schematics
for the detector circuit for one list entry is shown in Figure
3a. This circuit must be small, since it is needed in all routers
(alternative: access arbitration).

III. RESULTS

In this project, the GSNoC simulator [15] in combination with
the XHiNoC [16] architecture and an implementation of a
minimized East-First deadlock-free routing algorithm has been
used for validation of the NoCDepend method. A link fault
model has been implemented and a set of registers for non-
reachable areas has been integrated to every output. A detector
is identifying non-routable packets (which should not arrive -
dead end situation).
Algorithmic Results: Figure 3b shows the configuration of
faulty links in a 6×6 mesh network. In this case it is assumed
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Node East-List West-List South-List North-List
00 [45,42] – – [05,05]
10 [45,42] [05,05] – –

20,30 [45,42] – – –
40 – – – [45,42]
50 – [45,42] – –
01 [45,42] – [00,50] [05,05]
11 [45,42] [05,05], [00,00] – –

21,31 [45,42] – – –
41 – – – [05,52]
51 – [45,42] –
02 – – [00,00] –
12 – [00,00], [05,05] – –
22 – – – [04,13]

32,42,52 – – – [03,13]
03 [55,50] – [00,00] [05,05]
13 [55,50] [05,05], [00,00] – –
23 [55,50] [05,10] – [04,14]

33,43 [55,50] [03,13] – [04,14]
53 – [03,13] – [04,14]
04 – – – [05,55]
14 – [05,05], [00,00] – –
24 – [05,10] [03,13] –

34,44,54 – [04,14] [03,13] –
05 – – [00,00] –
15 – [00,00] – –

25,35,45,55 – – [04,14] –

TABLE I Unreachable rectangles for the example of Fig. 3b

that two rectangle entries exist per outgoing link in each router
(according to cost limits). Red arrows represent faulty links.
Example: the outgoing link of node 24 to the west is broken.
After the propagation phase (Alg. 1, called once for every
detection of a faulty link), a list of non-reachable areas for
each concerned router output is calculated in the central
SHRM (Table I). These rectangles are sent to the real NoC’s
specific router output ports (in the NoC simulator). A series
of simulations of random based Generic Scalable Pseudo
Applications (GSPA) [17] was performed using the GSNoC
simulator. The resulting non-reachability information is shown
in table I.
Correctness Analysis: Exhaustive simulations have been car-
ried out on 2D 6x6 and 10x10 NoCs, applying XY routing (de-
terministic, minimal routing) and West-First routing (adaptive,
non-minimal routing) schemes. The simulations have been
carried out on the basis of a large amount of a) random source,
random destination and b) all-sources to all-destinations packet
injections. If the non-reachability information for a specific
destination has been already available at the injection point,
then the injection has been prevented (in a real application
this would be a case for task-remapping in the SHRM).
Exhaustive Simulation results validate, that in cooperation with
a task/mapper scheduler 100% reachability can be guaranteed
(as long as there exists a path from source to destination under
routing algorithm constraints or prior detection of the need
of re-mapping). The higher the degree of adaptivity of the
routing, the less often re-mapping is required. Applying the
non-minimal West-First routing algorithm, and increase of the
simulation time and average packet latency can be observed
for deterministic all-to-all traffic patterns
Analysis of Implementation Overhead: In order to examine
the direct implementation overhead of the non-reacheability
rectangle storage and evaluation logic we have implemented
the fast parallel evaluation method in VHDL and synthesized it
on a 65nm ASIC library using SYNOPSYS. Table II shows the
resulting overheads storing and evaluating two non-reacheable
rectangles in every router output link: 4% in area, 3% in static
power and 5% in dynamic power. Since the evaluation of
rectangle matches can be done in parallel to logic computation
in the routing algorithm no additional delay is generated here
(can vary depending on the length of critical path within the

Orig. Router with NoCDepend overhead
area (μm2) 157662 165149 4%

Dynamic power (mW ) 114.3 118.5 3%
Static power (μW ) 725.3 762.8 5%

TABLE II Area and power overhead in 65nm technology

routing logic).

IV. CONCLUSIONS

In this paper, we presented a scalable and functionally safe
dependability technique for NoCs, which can tolerate any
number of faulty links. The method is resource-efficient and
universal and can be combined with any routing algorithm
in 2D and 3D. The implementation results show a significant
improvement in reachability: if the destination is reachable
under routing algorithm constraints, NoCDepend will enable
this. In combination with a central task mapper/scheduler
100% reachability can be achieved.
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Abstract—In this paper, an open-source framework for task
deployment of mixed-critical and non-critical applications under
dependability constraints in Network-on-Chip (NoC) based sys-
tems is introduced. This system level design space exploration
is guided by a System Health Monitoring Unit which keeps a
holistic view of system health status. The framework supports
task clustering, mapping and scheduling of different applications,
using different heuristics, on a NoC-based architecture which
can have different topologies. This enables exploration of 2D and
3D typologies, any turn model based routing algorithm, fault
monitoring mechanisms and different fault models (Link, Turn,
Node).

Keywords—Dependability, Scheduling, Mapping, Many-Core.

I. INTRODUCTION

The ever-increasing trend in using many-cores platforms
in safety critical systems has made their dependability aspects
more significant. The goal of this work is to introduce a
framework for design space exploration of dependable (mixed-
or non-critical) task deployment on Network-on-Chip (NoC)
based many-core systems. A dependable system requires sup-
port for fault detection, maintaining a holistic view of the sys-
tem’s health status and a separate unit in charge of re-mapping
(fault isolation and re-configuration). The proposed framework
is called SoC Dependable application Deployment (SoCDep2),
which addresses all the above mentioned requirements. The
architecture of the framework is demonstrated in Fig. 1. The
system is composed of the following components:

• Target Architecture: which is assumed to be a 2D or
3D Network-on-Chip based many-core system.

• System Health Map (SHM): a shared memory that
contains diagnostic information.

• System Health Monitoring Unit (SHMU): gathers
fault information from different components and up-
dates SHM.

• Mapper-Scheduler Unit (MSU): maps and schedules
the application tasks to target architecture, based on
fault configuration of the system.

To simulate such infrastructure, a Graphical User Interface
(GUI) based open-source tool is written in Python language

Fig. 1: Proposed SoCDep2 framework architecture

that encapsulates SHMU, SHM and MSU, and provides de-
pendable mapping and scheduling solutions under mixed-
criticality constraints.

The rest of this paper is organized as follows: Section II
describes the related works and compares them to the proposed
approach. Sections III to IX will discuss details of different
parts of the proposed framework. Section X describes some
experimental results obtained using the tool and Section XI
concludes our work and describes our plans for future work.

II. RELATED WORK

This section is dedicated to the review of the state-of-
the-art in existing tools and frameworks which support map-
ping of applications onto NoC-based architectures, addressing
mixed-criticality and fault-tolerance aspects and performing
optimization algorithms, with brief explanation of their specific
features. However, the focus of this work is only on NoC-based
architectures, thus, works that exclusively focus on bus-based
many-core systems are not in the scope of this paper. Finally,
a comparison of the proposed framework and other existing
frameworks is provided.978-1-5090-2520-6/16/$31.00 c©2016 IEEE



TABLE I: Comparison of the available tools in terms of different criteria

Tool Name Cost Function Mapping
Algorithm(s) Routing Algorithm(s) GUI Open

Source
Programming
Language

Scheduling
Support

Mixed-
Criticality
Support

Fault
Tolerance
Support

SUNMAP [1]

average com-
munication
delay, area,
power

Minimum-path
mapping (based on
NMAP)

Dimension ordered,
minimum path, traffic
splitting across all
paths

+ – C++/
SystemC

Not men-
tioned – –

SMAP [2] Performance Spiral-based, GA,
random

XY, rest not men-
tioned + – MATLAB + – –

xENoC [3] Performance Based on SUNMAP XY, Diagonal XY – – SystemC Not men-
tioned – –

Atlas [4] Performance,
Power Static and dynamic XY, turn model

(West-First) routing + + Java/
SystemC + – Limited to

HERMES
HeMPS [5] Performance Static and dynamic XY + + C++/SystemC + – –

GSNoC [6]
Performance,
Energy
Consumption

GA, SA

Minimal and non-
minimal routing,
adaptive routing, turn
model routing

+ – C++/SystemC + – –

NoCTweak [7]
Performance,
communica-
tion energy

Random, NMAP

Minimal routing,
deterministic and
adaptive routing, turn
model routing

– + C++/SystemC + – –

Project Ched-
dar [8]

Task execution
time Not mentioned Not mentioned + + Ada + – –

SoCDep2

[proposed
method]

Scheduling
Makespan

LS, ILS, SA, Min-
Min, Max-Min,
MCT, MET, NMAP

Minimal and non-
minimal turn model
based, Adaptive and
Deterministic

+ + Python + + +

LS:Local Search, ILS:Iterative Local Search, SA: Simulated Annealing, GA:Genetic Algorithm, MCT:Minimum Completion Time, MET:Minimum Execution Time,
GUI:Graphical User Interface

Different frameworks for mapping and scheduling of appli-
cations on NoC based systems are proposed in the literature,
covering different mapping algorithms from Meta-heuristics
such as GA and SA [2, 6] and heuristics [1, 3, 7] to different
static and dynamic mappings [4, 5] and random mappings
[2, 7] using different cost functions such as performance
[2–7], average communication [1] and task execution time
[8]. These frameworks, utilize adaptive (minimal and non-
minimal) [1, 4, 6, 7] and deterministic routing algorithms
[2–5] and are written in different programming languages. In
addition, some of these frameworks are open-source projects,
such as [4, 5, 7, 8]. However, to the best of our knowledge,
none of the above mentioned frameworks have support for
mixed critical applications and only one has limited support
for fault tolerance. An open-source framework for mapping
and scheduling of applications on a NoC based system that
provides the possibility of design space exploration in different
levels, while supporting mixed-critical applications along with
fault tolerance mechanisms, is the main motivation of this
work.

Table I summarizes the frameworks explained above. In
addition to the state-of-the-art, we have also listed our pro-
posal, ”SoCDep2 ”. As it can be seen in Table I, ”SoCDep2”
includes most of the features provided by the other tools
and the noticeable advantages are that (1) it addresses fault
tolerance aspects of NoC based many-core systems, such as
injection of faults, fault monitoring, testing and classifying
faults under mixed-criticality constraints and (2) it is open-
source, making it possible for different research groups to
reproduce the experiments and contribute as well. In the
following sections, a detailed description of the mentioned
features and other modules of the proposed framework are
provided.

III. APPLICATION MODELING

In ”SoCDep2”, the application is modeled as a Task Graph
(TG). A task graph is a directed acyclic graph TG(V,E) where
V is the set of tasks and E is a set of edges between tasks. An
edge between two tasks describes their data dependency. The
proposed framework provides the user with the possibility to
specify TG as manual, random dependent or independent or a
benchmark application.

Each task (ti) in TG has the following attributes:

• ID number of the task in TG
• Task’s Worst Case Execution Time (WCET)
• Task’s deadline
• Criticality Level: tasks in mixed-critical systems can

be divided into two major classes, High critical tasks
(H) which the system can not afford missing their
deadlines and Low critical (L) tasks which the sys-
tem can tolerate their deadlines’ miss and continue
to work with degraded performance. However, two
more classes (gateways) are added which are used
for network partitioning (for more information please
refer to [9]). All the communication between the tasks,
i.e. the edges, are assumed to fall either under High
critical or Low critical domain.

• ID of the cluster that the task is assigned to
• ID of the node in Architecture Graph (AG, which is

the NoC) that the task is mapped onto
• Release time: Time which the task becomes available.

Release time is not necessary for all the applications.
In case of having task dependency, release times can
be set to zero.

• Task type: the type of task, which can be either
Application or Test.

Each edge eij represents communication between task ti and



tj . Each edge eij in the TG, has the following attributes:

• Criticality level of the communication between two
tasks.

• ID of the link from the Architecture Graph (AG, which
is the NoC) that the edge is mapped onto.

• The communication weight between two tasks, mea-
sured in terms of the number of flits.

In addition, ”SoCDep2 ” provides possibility to insert different
slack(s) for high-critical tasks’ re-execution and packet re-
transmission.

IV. ARCHITECTURE MODELING

In the proposed framework, the target architecture is mod-
eled as an Architecture Graph (AG). An Architecture Graph
is a directed graph AG(V, E) where V is the set of nodes
consisting of a router and a Processing Element (PE), and E
represents the set of links between different nodes. For each
node the following attributes are associated:

• A list of all tasks mapped onto the node
• The allocated time-slots for tasks which are mapped

on the node (showing the sequence of their execution
on the AG).

• A list of unreachable areas for the node (For more
information please refer to [10]).

• Node region, used for network partitioning. Each node
can be in critical or non-critical region or it be a
gateway itself (see [9] for detailed information).

Similarly, the links keep the information about mapped packets
(TG edges) and their allocated time-slots. The organization of
the nodes in a Network-on-Chip is dictated by its topology.
”SoCDep2 ” supports both 2D and 3D topologies, including
2D Mesh, 2D Torus, Line, Ring and 3D Mesh.

V. SYSTEM HEALTH MONITORING UNIT

System Health Monitoring Unit (SHMU) is a unit that
gathers fault information from the NoC based architecture
(by means of either online fault detection or testing mecha-
nisms) and keeps a general view of the system health status
(faulty/non-faulty or performance degradation). The used fault
model covers permanent and transient faults on links, router
turns and Processing Elements (PEs) and aging (only for PEs).
This status information is stored in a shared memory called
System Health Memory (SHM). For detailed information re-
garding SHMU please refer to [11].

VI. ROUTING

In order to route packets to their destinations, ”SoCDep2”
utilizes a Routing Graph (RG) [12]. This enables the tool to use
conventional graph algorithms for such purposes. A Routing
Graph RG(V,E) is a directed acyclic graph where V is the
set of all the ports in the network (input and output ports of
the routers, including the local ports) and E is the set of all
connections between the ports.

The connections in the set E in RG can be either (a)
from/to the local port of a router to/from input/output ports
of the same router, (b) straight connections between opposite

direction ports (such as from North to South or from West
to East), (c) turns which connect an input port node to an
adjacent output port of the same router (defined as 90-degree
turns, for instance from North input to East output, denoted
as N2E) or (d) connections from output ports of one router
to input ports of another router (representing physical links
in the network). By setting these connections, it is possible to
model any turn model based routing algorithm under a specific
fault configuration. It is also possible to feed in user defined
turn models and set up non-uniform routing algorithms such
as odd-even routing [13].

Using Routing Graphs, NoCDepend method [10] is im-
plemented in ”SoCDep2” for reachability calculations and
network partitioning [9] configuration.

VII. TASK CLUSTERING

”SoCDep2” provides the user with the possibility to clus-
ter tasks together and perform clustering optimization using
greedy heuristics in order to reduce the search space for
the mapping algorithm. In case of having mixed-crticial ap-
plications, clustering might result in a poor quality solution
and the user can skip the clustering step, however, for either
hard or soft real time applications, clustering can be very
useful. These clusters will later be mapped onto the Processing
Elements (PEs). In general, we can describe a Clustered Task
Graph as a directed graph CTG(V,E) where V is a set of
clusters in which each cluster contains a set of tasks, and E
is the set of edges between two clusters, which encapsulates
all the communications between tasks in those clusters. The
communication weight of an edge in CTG, is the sum of all
the communication weights of the encapsulated TG edges. The
following optimization objectives are available to the user:

• C1 = σ(ComE) + σ(UtilC)
• C2 = max(ComE) +max(UtilC)
• C3 = C1 + C2

• C4 = 1
N

∑N
i=1 UtilCi

• C5 = max(ComE)

Where ComE represents the set of communication weight
of all the edges in CTG and UtilC is the set of utilization of
clusters. The term UtilCi represents the utilization of cluster
i ∈ [0, N ] where N is the number of clusters.

VIII. MAPPING AND SCHEDULING

The task of mapping can be described as assigning a PE
from AG to each cluster (and the tasks in each cluster) from
CTG and assigning a path in the network to each edge in
the Task Graph (TG). This process is followed by As Soon
As Possible (ASAP) scheduling of the tasks on PEs and
packets on links. To assign paths in the network to TG edges,
RG is used which returns result of a deterministic/adaptive,
minimal/non-minimal routing from the source to destination
using conventional graph algorithms. However this work only
focuses on deterministic routing algorithms, since adaptive
routing would result in probabilistic scheduling of the packets
(which should eventually be reduced to a deterministic case
of it to be simulated). For dependent TGs, different mapping
algorithms have been implemented in the tool:



• Greedy Heuristics: are mostly LS and ILS. The main
idea for using such algorithms is to find a feasible
solution with acceptable quality based on the current
system health, every time a system failure occurs.

• Meta-Heuristics: The meta-heuristics are not going
to be used to calculate a mapping solution, but are
used as a benchmark for comparing greedy heuristic
solutions. At the moment the only fully implemented
meta-heuristic algorithm is SA. Different cooling
schedules and cost functions have been implemented
for SA.

Different cost functions are available to the user:

• C1 = σ(MakespanL)
• C2 = σ(MakespanN )
• C3 = C1 + C2

• C4 =Max(MakespanL) +Max(MakespanN )
• C5 = C3 + C4

• C6 = σ(UtilN )
• C7 = σ(UtilL)
• C8 = σ(UtilN ) + σ(UtilL)

where MakespanL denotes the list of scheduling lengths
for all the links, MakespanN denotes the list of scheduling
lengths for all the nodes, UtilN is a list of utilization of
each node in the network and UtilL is a list of utilization of
each link in the network. The cost function severely penalizes
the mapping/scheduling solutions that violate critical tasks’
deadline. However, these solutions are not totally discarded.

For independent TGs, the following heuristics for mapping
are also available:

• Min-Min: sorts the tasks based on Worst Case Exe-
cution Time (WCET) and maps the shortest task on
the node with the smallest completion time.

• Max-Min: sorts the tasks based on WCET and maps
the longest task on the node with the smallest com-
pletion time.

• MET: chooses tasks randomly from the TG and maps
them on the fastest node.

• MCT: chooses tasks randomly from the TG and maps
them onto the node with the smallest completion time.

In the end, the tool automatically generates Gantt charts of the
final scheduling of the tasks.

IX. GUI, DOCUMENTATION AND MAINTENANCE

In addition to the visualizations generated by ”SoCDep2”,
it includes a GUI, written in Python using Tkinter library,
which makes it simple for the user to set different parameters
in the tool, instead of changing them manually in the CONFIG
file. The project is available under GNU-GPL2 license in
GitHub [14]. All the documentation is available in project wiki.

X. EXPERIMENTAL RESULTS

In this section, some examples are discussed which go
through all the steps of the process of mapping an appli-
cation onto the architecture. Also, an example of vertical
link placement process is provided. All these experiments are

reproducible by running the script provided by the authors at
[15]. In the end of this chapter, some performance metrics of
the tool will be discussed.

A. Example Scenario

In this section we use a simple scenario and will use the
visualizations generated automatically by the tool to display
the process. Figure 2a shows the randomly generated TG for
our experiment which contains 25 tasks and 35 edges. The
AG for this example is shown in Fig. 2b which is a 3 × 3
2D Mesh topology (all the links shown in the figure are bi-
directional). For the sake of simplicity we have not used a
mixed criticality example and any partitioning in the network.
Using initial faulty turns in the routers, SHM implements the
deterministic XY routing algorithm. The SHM and Routing
Graph (RG) representation are visualized in Fig. 2c and Fig.
2d. Considering the fact that each of the tasks of the TG
can be mapped onto any Processing Element (PE), it gives
us the problem size of 7, 17 × 1023. To reduce the size
of the problem, the tasks are grouped in 9 clusters (same
as the number of nodes in the network) which reduces the
problem size to 3, 87 × 108. In order to find a good quality
clustering solution, a simple LS is applied with the sum of
the maximum communication weight between clusters and
maximum utilization (duration of the tasks in each cluster)
on cluster nodes (see C2 in section VII) as cost function. The
process of optimization is shown in Fig. 2g which reduces
the cost from 77 to 47 in 70 steps. The final Clustered Task
Graph (CTG) (see Fig 2f) will be mapped randomly on the
Architecture Graph (AG) under the constraints of Routing
Graph (RG). The result of this initial mapping is shown in
Fig. 2h.

Next, mapping optimizations are performed to distribute
the tasks equally between the Processing Elements and also to
distribute the communication weight evenly between the links
(i.e. reducing standard deviation of the processing elements
and links utilization, see C8 from section VIII). Fig 3 shows
different mapping heuristics using the same cost function
starting from the initial mapping of Fig. 2h with cost of 32.24
and ending up with different mappings having different costs,
The ILS optimization usually has more chance of hitting a
good quality solution (with cost of 11.48) due to its wider
search range, however, LS can also give a good quality solution
(with cost of 11.41) but the solution’s quality is rather based on
luck. Simulated Annealing (SA) optimization has been used for
benchmarking our heuristics using different annealing sched-
ules. The tool provides the user with seven different annealing
schedules for SA optimization, however, only three of these
schedules are discussed here due to lack of space. Fig. 3e
shows the cost development of SA using exponential annealing
schedule (with an α = 0.9995 which is relatively fast using
only 6000 steps and converging to a local minimum with cost
of 11.43). And Fig. 3g shows the cost reduction of the mapping
using SA with an adaptive annealing mechanism designed by
the authors (which took more than 65k steps, converging to
a solution with cost of 10.87). The last annealing schedule
(see Fig. 3i) to be discussed here is Huang’s schedule (which
took around 90k steps, converging to a solution with cost of
10.87). The problem size is relatively small which resulted in
short convergence in heuristics (this problem size was chosen
for demonstration purposes, bigger scenarios can be tested



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2: a) Random dependent Task Graph with 25 tasks and 35 edges b)
Architecture Graph modeling a 3×3 Mesh NoC c) SHM visualization: Using
initial faulty turns, XY routing has been implemented d) Routing Graph e)
Initial random clustering f) Clustered task graph after ILS optimization g)
CTG cost during ILS optimization h) Initial random mapping of CTG on AG

using the tool). By using these heuristics (LS and ILS), a
new mapping is calculated (based on SHM configuration) after
each fault occurrence. This provides a mechanism for graceful
degradation of resource utilization which will continue until
total system failure. This scenario can be simulated using [14].

B. Tool Performance

To show the performance of the tool, two experiments
are carried out using a randomly generated TG, where the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3: a) Cost reduction for LS, b) Final Mapping (LS) c) Cost reduction for
ILS d) Final Mapping (ILS) e) Cost reduction for SA (Exponential annealing
with α = 0.9995) f) Final Mapping (SA) g) SA (Custom Made adaptive
annealing method) h) Final mapping using SA with costume made annealing i)
SA using Huang’s annealing schedule j) Final mapping using Huang annealing
schedule



TABLE II: Tool performance with growing size of TG

TG
Size

AG
Size O.P.S. CTG

Size
CTG Opt.
Time (sec) R.P.S. Map Opt.

Time (sec)
10 3×3 3.4e9 9 1 3.8e8 1
20 3×3 1.2e19 9 1 3.8e8 6
40 3×3 1.4e38 9 2 3.8e8 12
80 3×3 2.1e76 9 2 3.8e8 29
160 3×3 4.7e159 9 4 3.8e8 73

TABLE III: Tool performance with growing size of AG

TG
Size

AG
Size O.P.S. CTG

Size
CTG Opt.
Time (sec) R.P.S. Map Opt.

Time (sec)
80 2×2 1.46e48 4 2 256 17
80 3×3 2.1e76 9 2 3.8e8 30
80 4×4 2.1e96 16 3 1.84e19 39
80 5×5 6.8e111 25 3 8.8e34 50
80 6×6 3.1e124 36 3 1e56 70

number of edges is 150% of the number of nodes. These
TGs will be clustered to CTGs with number of nodes equal
to the number of tiles in the AG. Later, CTG optimization
will be performed using only 1000 steps and finally LS
mapping optimization will be performed using 1000 mapping
steps. Tables II and III show the time spent to perform each
optimization along with the Original Problem Size (O.P.S) and
Reduced Problem Size (R.P.S.) due to clustering. These results
are obtained by running the tool on a 64-bit linux machine,
running on a 3.4 GHz Intel c©CoreTM-i7-6700 CPU with 32GB
of Memory. However, as the problem size grows, regardless of
the clustering, every task and every communication between
the tasks should be scheduled in each mapping step which
results in a longer optimization process.

XI. CONCLUSIONS

In this paper, a framework for dependable mixed critical
task deployment on NoC based many-core systems which
is accompanied by an open-source tool for simulations was
introduced. Different parts of the framework were discussed
and comparisons with similar frameworks were made. The
proposed approach enables fault detection, isolation and re-
configuration by incorporating health monitoring and map-
ping/scheduling units. As future work, we plan to connect the
tool to a cycle-accurate NoC simulator, in order to acquire
cycle-accurate results for the simulation of the considered
application, along with system’s evaluation in terms of average
latency, throughput and communication energy. Furthermore,
the issue of heat dissipation should be addressed, as the
mapping-scheduling process should not create hotspots in the
network, especially in case of scheduling testing applications.
Different fault classification methods are under investigation
and will soon be added to the tool. Moreover, implementation
and emulation of the whole NoC on a Field Programmable
Gate Array (FPGA) which can be used to verify the results
provided by the tool, is in progress.

ACKNOWLEDGMENTS

The work has been supported by EU FP7 STREP BAS-
TION, EUs H2020 RIA IMMORTAL, EUs H2020 Twinning
TUTORIAL, Estonian Science Foundation grant ETF9429,
Estonian institutional research grant IUT 19-1, and funded by
Estonian Ministry of Education and Research.

REFERENCES

[1] S. Murali and G. De Micheli, “Sunmap: a tool for automatic topology
selection and generation for nocs,” in Design Automation Conference,
2004. Proceedings. 41st, July 2004, pp. 914–919.

[2] S. Saeidi, A. Khademzadeh, and A. Mehran, “Smap: An intelligent
mapping tool for network on chip,” in Signals, Circuits and Systems,
2007. ISSCS 2007. International Symposium on, vol. 1, July 2007, pp.
1–4.

[3] J. Joven, O. Font-Bach, D. Castells-Rufas, R. Martinez, L. Teres, and
J. Carrabina, “xenoc - an experimental network-on-chip environment
for parallel distributed computing on noc-based mpsoc architectures,” in
Parallel, Distributed and Network-Based Processing, 2008. PDP 2008.
16th Euromicro Conference on, Feb 2008, pp. 141–148.

[4] “Atlas: A noc generation and evaluation framework,” https://corfu.pucrs.
br/redmine/projects/atlas.

[5] E. Carara, R. de Oliveira, N. Calazans, and F. Moraes, “Hemps - a
framework for noc-based mpsoc generation,” in Circuits and Systems,
2009. ISCAS 2009. IEEE International Symposium on, May 2009, pp.
1345–1348.

[6] H. Ying, T. Hollstein, and K. Hofmann, “Gsnoc; the comprehensive
design platform for 3-dimensional networks-on-chip based many core
embedded systems,” in High Performance Computing and Simulation
(HPCS), 2013 International Conference on, July 2013, pp. 217–223.

[7] A. T. Tran and B. M. Baas, “Noctweak: a highly parameterizable
simulator for early exploration of performance and energy of networks
on-chip.”

[8] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: A flexible
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Abstract—Due to the ongoing miniaturization of silicon tech-
nology beyond the sub-micron domain and the trend of inte-
grating ever more components on a single chip, the Network-
on-Chip (NoC) paradigm has emerged to address the scalability
and performance shortcomings of bus-based interconnects. As
the feature size shrinks, the system gets much more susceptible
to faults caused by wear-out and environmental effects. Thus,
in order to increase the reliability, creates the need for having
mechanisms embedded into such a system that could detect and
manage the faults in run-time.

In this paper, a ground-up approach from fault detection
to fault management for such a NoC-based system on chip
is proposed that utilizes both local fault management for fast
reaction to faults and a global fault management mechanisms
for triggering a large-scale reconfiguration of the NoC. Also,
detailed description of strategies for fault detection, localization,
classification and propagation to a global fault management
unit are provided and methods for local fault management are
elaborated.

Keywords—Fault Detection, Checkers, Fault Classifica-
tion, Fault Localization, Fault management, Reconfiguration,
Network-on-Chip.

I. INTRODUCTION

Network-on-Chip (NoC) has emerged as a paradigm to
address the scalability and performance shortcomings of tradi-
tional bus-based architectures [1], [2]. The trend of nano-scale
electronics shrinking in size, makes them more susceptible
to wear-out and environmental effects. This necessitates the
detection and management of faults occurring at the run-time
of the system, in order to provide higher reliability.

This work addresses a reliable NoC framework, which is
maintained as an open-source project named Bonfire [3]. It
provides support for fault detection and localization, local fault
management, local fault classification, and fault information
propagation to a global system health monitoring unit. In
a NoC-based System-on-Chip, routers are responsible for
transmitting data between the Processing Elements (PEs).

In Network-on-Chip, a router is composed of a data-path
and a control part. The packets are transmitted via the data-
path, while the control part directs the flow of data and the path
the data should take when being transmitted between routers.
Thus, both for the data-path and the control part, fault toler-
ance is of utmost importance for a reliable communication.

For the data-path, error detection and/or error correction
techniques (such as single parity and Hamming encoding [4])
can be used. However, due to the area overhead of error
correction techniques such as Hamming, the focus of this work
is on single bit parity for the detection of faults in the data-path
(inter-router links and data-path components of the routers).

On the other hand, faults in the control part of NoC routers
should be handled. One way is to detect them via concurrent
online checkers (for instance via the approaches proposed in
[5], [6]) due to their low fault detection latency. There are also
other methods such as Built-In-Self-Test (BIST) [7]. However,
they interrupt the normal operation of the system for testing
upon a fault occurrence. Thus, in the scope of this work, we
focus on concurrent online detection of faults for the control
part of routers. It is important to note that the checker outputs
also facilitate fault localization [8], pinpointing the defective
part in the circuit. Additionally, higher abstract deductions can
be made based on them, such as existence of defect in turns
in a router (a path from an input port to an output port). Such
information can be used for reconfiguration of the routing
algorithm or re-mapping of the tasks by units in charge of
application mapping and scheduling. Works such as [9] have
addressed multi-layer fault diagnosis and combining checkers
at different levels of abstraction, however, they impose high
latency. Furthermore, they have not addressed any mechanism
for classification of faults and fault management, which are
considered in our work.

In this work a ground-up approach from fault detection
to management for NoC-based System-on-chips is proposed.
Strategies for fault detection, localization, classification and
propagation to a global fault management unit are described.
Furthermore, in order to improve the reaction time to faults,
methods for local fault management are elaborated.

The rest of this paper is organized as follows: in section II
the basics of the Bonfire framework, including the NoC and
router architecture are discussed. Section III describes the fault
model used in this work and the method of fault injection on
the links. In section IV different fault detection mechanisms
for control and data path of the routers are discussed. Section
V describes methods of fault localization. Sections VI describe
the the process of fault classification and Section VII provides
methods of handling faulty packets at the router level. Section
VIII details fault information propagation to system health
monitoring unit and finally, section X concludes the paper.

II. BONFIRE FRAMEWORK

A. Bonfire NoC Architecture

The aim of the Bonfire project is to create a fault-tolerant
framework for testing dependability mechanisms in a NoC-
based System-on-Chip(SoC). The targeted NoC is using a 2D
mesh topology where each tile of the network consists of
a wormhole switching router equipped with fault tolerance



Fig. 1. Overview of the architecture of baseline credit-based flow control
NoC router used in Bonfire network

mechanisms and a Processing Element (PE) connected to it via
a Network Interface (NI). Each PE comprises a Plasma core
[10], which is a 32-bit MIPS-I based open-source processor
with three pipeline stages, along with 8 KB of RAM (as local
memory). Details of the components of the framework are
described in the following subsections. Bonfire is maintained
as an open-source project, available at [3] .

B. Bonfire Router
The Bonfire network described in this paper utilizes 32

bit credit-based wormhole switching in the routers. Fig. 1
shows an overview of the baseline router used in the Bonfire
network, without any fault-tolerance mechanism. The router
comprises of an input buffer (implemented as First-In-First-
Out (FIFO)), routing computation unit (implemented using
Logic-Based Distributed Routing (LBDR) mechanism [11]),
switch allocator (prioritizing multiple requests to the same
output port based on Round-Robin policy) and crossbar switch.

We have opted for LBDR [11], since it is scalable compared
to table-based routing in NoCs. Furthermore, LBDR describes
the topology and the routing algorithm in a 2D NoC in terms
of a fixed number of configuration bits, i.e. connectivity and
routing bits. This makes it possible to use the connectivity bits
for the indication of links in the 4 main directions as healthy
or faulty, by setting the corresponding connectivity bit to zero
(faulty) or one (healthy). Routing algorithm re-configuration
(if necessary) can be done by changing the routing bits.

C. System Health Monitoring Unit (SHMU)
The Bonfire project targets a holistic system health monitor-

ing and management solution. To implement this, a dedicated
unit, called System Health Monitoring Unit (SHMU) [12],
[13], is proposed which handles fault information collection
and system-scale fault management and reconfiguration.

In Bonfire project SHMU runs as software on one of the
Processing Elements (PEs) in the network. And if the proces-
sor fails, the SHMU tasks can be mapped on another node.
Details about functionality and implementation of SHMU is
beyond the scope of this paper.

III. FAULT MODEL

In this work, we focus on single stuck-at fault model [14],
which means in each router module only one fault can occur at
a time. For data-path related modules, including the links, only
one bit can get faulty at a time on the specific link. The same
applies to the control part related modules. Thus, separate
control part modules and data links from different ports can

get faulty at the same time, but only one fault in each of them
at a time. Transient faults are modeled as single stuck-at faults
which last one clock cycle. Intermittent faults are modeled as
bursts of transient faults in short periods. Permanent faults are
modeled as a moving from transient fault to intermittent state
and then finally with a permanent stuck-at fault.

In this work, fault injection is done using force command of
ModelSim from Mentor Graphics [15]. The injection points are
links between routers and also internal signals of the individual
modules inside the router.

IV. FAULT DETECTION

The Bonfire framework uses different methods for detection
of faults in data-path and in the control part of the network.

A. Data-path Fault Detection
Since this work focuses on a single stuck-at-fault model,

a simple parity checker module is used to cover all single-
bit faults on the input ports of the router. Upon receiving a
faulty flit, the router starts a fault classification process and
also manages the fault locally in order to prevent network
congestion (for more information, please refer to section VII).

B. Control Part Fault Detection
Concurrent Online checkers are utilized to detect faults

in the control part of the NoC routers. A checker is a
concurrent online fault detection module [5], [6]. It detects
faults occurring at inputs and outputs of fan-out free regions
[16] of the circuit with low latency. Since checkers provide
fault information required for fault localization, this method
is preferable to Double or Triple Modular Redundancy (DMR
and TMR) schemes. The use of concurrent checkers for online
fault detection in control part of NoC routers are described in
more detail in [5], [6], [17], [18]. It is worth noting that the
complete set of checkers for the control part of Bonfire NoC
are available at [3], which covers the control part of FIFO,
routing logic (LBDR) and allocator unit (allocator) shown in
Fig. 1.

V. FAULT LOCALIZATION

As the number of checkers can grow very large (in the
order of hundreds per router), it is not feasible to send the
fault detection information from all these checkers to SHMU.
Also, in case of a NoC router, for example, flipping of a bit
in a register in one of the router’s internal modules will not
provide valuable information to the SHMU in the application
layer. However, if the outputs of the checkers connected to this
module are combined, it is possible to translate the output of
the checkers into more meaningful abstracted information.

By combining the checkers for the control part of the router,
it is possible to report faults at a more abstract level. For
instance, in [8], a fault localization method is introduced
which groups sets of checkers, making an assertion vector,
facilitating finding fault location at different granularity levels
in the control part of a NoC router. This can also be used
when signaling higher levels in the architecture, such as the
application level about the occurrence of faults.

Works such as [19], model faults in the control part as
a complete node failure. In [20], illegal turns in the routers
are detected, however, each router depends on the information



Fig. 2. General structure of the fault detection, grouping and classification
mechanisms

Fig. 3. Finite State Machine (FSM) for the fault classifier unit

its neighbor routers for online fault detection. On the other
hand, in our work, we combine checker outputs (as shown
in Fig. 2) for the control part of a router. Further, this can
be translated into detection of a turn fault. Unlike [20], we
use the checker outputs in the current router to model turn
faults, and there is no need for collecting information from
neighbor routers. A turn fault is defined as a fault occurring
in one of the components on the path from an input port to
an output port of the router (e.g. a West to North turn fault or
a straight path). This information can be passed to SHMU to
the application layer. Later, if required, the SHMU can initiate
re-configuration of the routing algorithm or re-mapping of the
tasks on the nodes based on the fault information received
from the lower (hardware) level.

VI. FAULT CLASSIFICATION

With the growing number of transient faults, it would be
impractical to send a separate notification to SHMU for each
occurring fault. Not only would this impose additional latency
by sending a notification from hardware to application layer,
but it will also incur a significant power overhead.

To overcome this problem, faults are classified locally
in the routers as permanent, intermittent or transient. The
classified fault information is transmitted to SHMU if the fault
is classified as intermittent or permanent. In [21], [22], an
online fault classification mechanism is introduced as part of
a cross-layer fault management framework, however no details
regarding the implementation of the fault classifier is provided.
Whereas, in our work, a fault classification method based on
[23], [24] is implemented; where a set of counters are used to
count the healthy and faulty packets going through a network
link. Each of the counters are compared with a threshold value.
When a counter reaches its threshold, a signal is issued which
is used by a control Finite State Machine (FSM) in charge of
health making decision. Fig. 3 illustrates the FSM Diagram
of the classifier unit. Every time the faulty packet counter

Fig. 4. Fault classifier block diagram

reaches its threshold, the FSM moves one step closer to the
Faulty state. Every time the a counter reaches its threshold,
both counters would be reset. It is noteworthy to mention that
there could be different variations of state diagram models
implemented for classification. The current state diagram as
described in the Fig. 3 implements a scheme where there is
no recycling of once faulty links. In contrast to [23], [24], since
no error correction method has been used in this method, only
two four-bit counters are utilized (see Fig. 4).

VII. LOCAL FAULT MANAGEMENT

Once a fault has been detected in the system, if it is
classified as intermittent or permanent, the SHMU is notified.
After obtaining the fault information, processing and making
a decision, the SHMU can issue a command regarding that
particular fault. But, during this time the effect of the fault
has already propagated to other parts of the system and
containment of the effects would be difficult if not impossible.
So even though SHMU is responsible for fault management in
the system, it can only manage the faults (in global scale) and
some more detailed, distributed, mechanisms are needed for
management of faults locally. This problem can be solved by
implementing local fault management at each router. In this
section two solutions for local management of the faults are
provided.

A. Packet Dropping Mechanism
One of the important cases to be addressed is appearance

of faulty flit at the input port of a router, where the following
situations might happen:
‚ Fault in the flit type: in this case, it is usually not possible

to identify the flit type and it (and also subsequent flits
belonging to the same packet) cannot be routed. If this is
not taken care of, eventually the input buffer (FIFO) of the
router will get full, which can, in turn, leads to network
congestion.

‚ Fault in the payload data: this type of fault does not have
any effect on the network performance. However, since the
packet data is corrupt, the fault will manifest itself in the
application layer.

‚ Fault in the destination address field: the routing module
might not be able to route the packet or the packet gets
forwarded to a wrong destination. This might also result in
network congestion if it is not properly taken care of.
One of the approaches to bypass the problem of having

faulty flits is to use error-correction techniques, such as
Hamming coding (single bit error correction, double bit error
detection) for all flits. By comparing the overhead of these



TABLE I
AREA AND FLIT SIZE OVERHEAD COMPARISON OF SINGLE BIT PARITY

AND HAMMING DECODER

Unit name Unit Overhead in
area (µm2) flit size (bits)

32-bit single bit parity checker 663 1
32-bit Hamming decoder 7050 8

Fig. 5. Finite State Machine (FSM) diagram for the packet dropping
mechanism

methods (shown in Table I) using AMS 0.18 µm CMOS
technology library [25], it becomes clear that those methods
impose additional area overhead to the correction circuit and
also increase the flit (due to the additional bits needed for
error correction). This, will affect the size of other network
parameters, such as the physical link width which, in turn,
also increases the size of the input buffer (FIFO) and crossbar
switch.

In order to handle the above-mentioned situations, a packet
dropping mechanism is incorporated in Bonfire framework.
However, while using wormhole switching, in some cases,
dropping the packet is not possible, for instance, when packet’s
header flit has already left the router. In such case, it is possible
to cut the packet from the current position and attach a fake
tail to it and forward it, while dropping the rest of the packet.
This will not affect the network’s operation. The results of
such measures would manifest themselves in the application
layer by comparing the packet length with the information in
the header flit or as corrupt data. In our router architecture,
the packet dropping mechanism is handled by a Finite State
Machine (FSM), as is shown in Fig. 5. Additionally, the
packet dropping mechanism has to generate fake credits for
the upstream router in order not to interrupt the flow of the
traffic.

In the Bonfire router, the packet dropping mechanism is
improved even further by adding the flit saving functionality
– a capability to detect position of the error in flits. In case the
error is in the payload part, the packet will still be transmitted
to its destination, thus making the application layer to handle
the data errors. This will avoid re-transmissions in non-critical
applications (for example many multimedia applications).

B. Routing Management

Once a link is classified as faulty, the router automatically
sends this information to upstream router to update its LBDR

connectivity bits (these bits can be over-written by SHMU
later). If the change in connectivity bits happens when a
packet is being processed, it might result in the packet being
divided or mis-routed. In order to avoid this problem, the new
connectivity bits should be stored in a register and routing
module should wait until a new header flit arrives. The same
approach is applied to routing bits of LBDR reconfiguration.
The reconfiguration command is issued by the processing
element at each node (once the reconfiguration message is
issued by SHMU).

Another important point is to take care of faults occurring in
the FIFOs which will be propagated to LBDR modules. In this
case, to prevent congestion and network failure, the routing
module (LBDR) should manipulate the FIFO modules in order
to drop the packet. This is performed with a secondary and
much simpler packet dropping mechanism, which generates
fake grant signal to the FIFO when a faulty header is detected
using a simple parity unit. Since LBDR is only sensitive to
the header flit when making routing decisions, there is no need
for support for cutting the packet and attaching fake tail. It is
assumed that the dropped packets would be handled at the
application layer.

VIII. FAULT INFORMATION PROPAGATION

The process of information transmission to the SHMU is
also crucial. This can be done either (1) via reusing the existing
network, or (2) by using an additional infrastructure working in
parallel with the main NoC. There have been many proposals
for fault information propagation to a global fault management
unit. Some of the proposals, such as iJTAG [21], [22], [26],
use scan chains. However, using an infrastructure like iJTAG
requires single (or very limited) number of access points which
limits the mapping possibilities for the SHMU on nodes since
SHMU must have direct access to iJTAG access point. In
addition, in approaches such as [21], [22], [26], the Instrument
Manager (IM), which works as the iJTAG network controller
and knows the structure of the instrumentation network, can
become a single point of failure.

Some of the previous works in the literature have taken
advantage of dual NoC architectures, such as [27]–[34]. In
[34], in addition to the main network, a checker network is
used (which is assumed to be 100% reliable) in order to deliver
data to its destination in case of a fault occurrence in the
main network. In [33], in parallel to the main NoC (which is
used for transmitting the data), an additional control network
is considered which is used for sending reconfiguration data
for updating the connectivity and routing bits of LBDR in
the network routers. The control network is used to inform
a global manager node regarding faults occurring in different
nodes. Despite the advantages these works might bring, they
all incur additional area and power overhead. Moreover, if
the area of the augmented circuitry for transmitting the fault
information is not negligible, it can increase the probability of
faults occurring in the additional network itself as well.

In this work, the classified fault information is propagated to
SHMU via the NoC itself. The information would be bypassed
to the Network Interface (NI). The NI will check the address
of the SHMU and will pass the info to the node if SHMU is
mapped on the same node (self diagnostic) or will generate
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TABLE II
AREA AND AVERAGE PACKET AND FLIT DROP FOR DIFFERENT PACKET

DROPPING MECHANISMS.

Unit name Unit Area Average Average
area (µm2) overhead% packet drop flit drop

Original FIFO 14357 – – –
FIFO with packet dropping 16045 11.7% »1% 3.3%
FIFO with flit saving 16042 11.7% »1% 1.14%

and send packets through the network to SHMU as soon as it
finds idle time.

As mentioned in the previous section, after the local classi-
fication of the faults the information is sent to SHMU, which
updates the system health map and can also trigger global
re-configuration of the system in order to compensate for
the faults. The reconfiguration packets will be sent to each
node from SHMU and the node will send the reconfiguration
information through the NI to the router. However, if the main
NoC is used for transmission of the fault information and
reconfiguration packets, under the running routing algorithm,
the faults that should be reported, might also themselves
prevent the messages to be correctly transmitted to the SHMU.

IX. RESULTS

Table II shows the area overhead of solutions for FIFO
described in section VII (obtained using AMS 0.18 µm CMOS
technology library [25] and synthesized via Synopsys Design
Compiler [35]) along with the average flit and packet drop-
ping ratio with random single stuck-at-fault injection on the
network links with average rate of 5ˆ106 faults per second. As
it can be seen, when comparing the packet dropping approach
to flit saving, the average full packet drop rate is not changing.
This is due to the faults occurring in the header flit. However,
the amount of flit drops is reduced by half, since the flits with
the faulty payload will not be dropped in case of flit saving.

Table III shows the area overhead of the self updating LBDR
unit. Both the area overhead of the self updating LBDR over
the original LBDR (around 68%) and also its area overhead
with respect to the baseline router without any fault tolerant
mechanism (around 6%) are assessed.

TABLE III
AREA OVERHEAD RESULTS OF SELF-UPDATING LBDR OVER BASELINE

LBDR

Unit Unit Increase in Increase in
name area (µm2) LBDR size baseline router size

LBDR 1744 – –
Self updating LBDR 2940 68.5% 5.9%

By putting together all the mechanisms described in pre-
vious sections (fault detection, localization, classification and
local management as shown in Fig. 6), the router grows 60.7%
in area which is still lower than duplicate/triplicate-based
methods such as DMR and TMR, while it also provides fault
localization, management and system reconfiguration support
at the same time. Moreover, the instantaneous detection of
faults in the control part via the concurrent online checkers
and combining them facilitates inferring more abstract and
high level fault information (such as turn faults). Two main
reasons for using such abstraction of the information are:
(1) there is no advantage in transmitting very detailed fault
information to the SHMU, since in order to make high-level
decisions, SHMU has to abstract the information into turn
faults. (2) Additionally, it reduces the amount of information
to be transferred to SHMU through the NoC, thus, reducing
the network latency and power consumption.

X. CONCLUSION

In this paper, a ground-up approach from fault detection
to fault management for a Network-on-Chip based system is
proposed. Concurrent online checkers are utilized to detect
the faults in the control path and single parity check is
used for the data-path. Fault localization and abstraction (into
turn faults) are achieved by grouping information gathered
from the control part checkers. Moreover, methods of local
fault management at the hardware level using different packet
dropping mechanisms are introduced and compared. To reduce
the overhead of fault information propagation to application
layer and its additional processing load, local fault classifi-
cation mechanism is implemented which generates minimal,
classified fault information for propagation.



Additionally, the necessity of having a relocatable System
Health Monitoring Unit (SHMU) at the software layer is
elaborated. SHMU utilizes the NoC itself for transmitting
fault information after classification, thus avoiding a dual-
NoC architecture and results in lower area overhead. The
experimental results show the overall cost of applying such
mechanisms, having 60.7% area overhead, which still makes
it a better option than DMR/TMR-based approaches.
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Abstract—With the scaling of silicon technology beyond the
sub-micron domain, the probability of the system being exposed
to different sources of faults increases. Manifestation of new
defects during system’s run-time, necessitates the need for a
mechanism providing cost-effective online fault detection which
performs concurrently with the circuit’s normal operation and
has low area overhead and high fault coverage. Especially crucial
is the fault detection latency, as the system’s ability to isolate
faults and recover from them is highly dependent on the detection
time. This paper proposes two heuristics (branch-and-bound and
greedy) for minimization of concurrent online checkers. Both
algorithms use the concept of dominant checkers, proposed in
this work. The method allows generating minimal area checkers
satisfying a target fault coverage with the shortest possible fault
detection latency. Experimental results demonstrate the area
efficiency of the approach compared to other methods.

I. INTRODUCTION

Miniaturization of nano-electronic technology increases the
vulnerability of components towards wear-out and environ-
mental effects. Thus, concurrent online checkers for detecting
faults during circuit’s life-time are a must in modern reliable
systems. In this paper, we propose an approach for evaluation
and minimization of concurrent online checkers using two
different heuristics: branch-and-bound, and greedy. Greedy
heuristic scales well with the growing number of checkers
while branch-and-bound provides an exact solution. Both
algorithms utilize the concept of dominant checkers, proposed
in this work, in order to speed up the heuristics. The method
allows generating minimal area checkers satisfying a target
fault coverage with the shortest possible fault detection latency.

II. CONCURRENT ONLINE CHECKERS CONCEPT

In this work, the concept of concurrent online checkers,
introduced in [1], has been utilized, and single stuck-at fault
model has been used. When applying a set of valid input
stimuli to the circuit under check, four different conditions
may occur, which are named as True Detection, True Miss,
False Positive and Benign Miss. Checkers’ Efficient Index
(CEI) [2] has been used as a metric for evaluating the checkers
for minimization heuristics.

III. CHECKERS EVALUATION AND MINIMIZATION FLOW

The proposed flow for evaluation and minimization of the
checkers is demonstrated in Fig. 1. Details of the framework’s
flowchart has been explained in [2]. An important part of the
framework is to minimize the area of the checkers (by trading-
off with fault localization capability) while having 100% CEI.
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Fig. 1: Checkers Evaluation and Minimization Framework Flowchart

In this work, the minimization part of the flow is equipped
with two new heuristics, Branch-and-Bound and Greedy.

It is worth noting that this work focuses on combinational
checkers for control-oriented circuits. Regarding the data-
path, it is assumed to be already protected by an error detec-
tion/correction technique. As an example in our experiments,
we have used the control part of a NoC router as the circuit
under check. However, the idea of checkers is not limited to
a specific control-oriented circuit and it can be applied to any
arbitrary one.

IV. CHECKERS’ MINIMIZATION HEURISTICS

In this work, two heuristics are used for the minimization
and optimization part of the flow: greedy and branch-and-
bound. Greedy algorithm uses Checkers’ Efficiency Index
(CEI) for sorting the checkers and then tries picking them
from the top of the list and calculates CEI and checks
for the area feasibility of the solution. Also, a depth First
Search (DFS) implementation of Branch-and-Bound algorithm
was implemented for checker minimization. At each step, a
checker is chosen (to be taken or being discarded), and the
CEI and area of the selected checkers are estimated. Also,
optimistic evaluation of sub-tree below the chosen option is
estimated (which is the CEI of all the remaining checkers
without considering the area constraint). Branch-and-bound
algorithm provides exact solution for any set of checkers. In
our experiments, two techniques are used to improve the result
quality:



TABLE I: The result of checkers optimization without application of area
constraints and comparison with DMR and TMR of the control circuit.

Unit Information

Control
Control unit area Control unit DMR Control unit TMR Complete set of checkers

Unit
Full pseudo Area Overhead Area Overhead Number Area Overhead
unit comb. (%) (%) (%)

Routing Logic 77 39 91 67.5% 153 148% 18 123 159%
Arbiter 174 124 209 48.8% 464 195% 56 337 193%
FIFO 129 60 133 56.5% 235 135.6% 13 125 96.8%

Optimization Results
Opt. checkers without Dominant checkers Opt. checkers with Dominant checkers

Control Opt. Area Overhead Search Control Opt. Area Overhead Search
Unit method (%) space size Unit method (%) space size

Routing B&B 99 128%
262144

Routing Greedy 123 159% 1
Logic Greedy 111 144% Logic B&B

Arbiter Greedy 261 150% 7 ˆ 1016 Arbiter Greedy 266 152.8% 3.5 ˆ 1013

FIFO B&B 120 93%
8192 FIFO B&B 120 93%

64
Greedy 122 94.5% Greedy 122 94.5%

1) Coverage Density (CD) as sorting factor: In this variation,
instead of just using CEI as the selection function of checkers
for greedy algorithm, the coverage density (CD) is utilized as
the sorting factor (based on the checker’s area) (Eq. 1):

CD “
CEIchecker

Areachecker
(1)

2) Dominant checkers’ extraction : While evaluating the
checkers separately, based on the number of detected and
undetected stuck-at-0 and stuck-at-1 faults (which denote the
number of True Detections and True Misses), it might be
possible to extract checkers which provides the smallest values
of True Misses for each line in the circuit, hence improving
the CEI. A dominant checker for a circuit line is defined
as a checker that has a minimum number of True Misses,
while having a non-zero value for True Detections for that
specific circuit line. If the number of dominant checkers for
a circuit line is only one, that checker is called a single
dominant checker. By selecting single dominant checkers in
the beginning of the minimization process, the search space
size is reduced, leading to speed-up of the optimization algo-
rithm. However, it should be noted that picking such checkers
does not necessarily result in a global optimal solution and
it might be the case that the combination of two or more
checkers results in 100% CEI with lower area. But, starting
the optimization by picking the dominant checkers first, adds
significant speed-up to the process.

V. EXPERIMENTAL RESULTS

In this section, experimental results of checker minimization
for control part of a NoC router are presented, which include
the control part of FIFO, the routing logic and the arbitration
unit. The synthesis of all the circuitsis performed using Class
library by means of Synopsys Design Compiler [3]. For
fault simulation, all the experiments are carried out using an
extension of an in-house freeware test system Turbo Tester
[4]. The experimental results for checker minimization are
represented in Table I. DMR and TMR circuits for pseudo-
combinational equivalent of each control unit circuitry are
designed and synthesized. For routing logic and control part
of FIFO, both optimization methods are used, but branch-and-
bound algorithm was not applied to arbiter unit due to the huge
problem size. The area overhead of the checkers are calculated
based on the original control circuit size. The greedy algorithm
used in the experiments, uses Coverage Density (CD) as
sorting factor for checkers. The experiments show that the
proposed method falls between DMR and TMR in terms of

TABLE II: Area comparison of router with checkers and with the base-line
router

area area critical path critical path
(µm2) overhead (%) delay (ns) overhead (%)

Baseline router 91163 – 3.38 –
Router with opt.
checkers

107237 14.9% 3.43 1.4%

area overhead while providing fault localization information.
Considering the search space size, using dominant checkers
for speeding up the search process depends on the design
of the checkers. In case of routing logic, mostly structural
checkers are used which are directly extracted from the RTL.
Most of the resulting fine tuned checkers will be categorized as
dominant checkers which in turn results in massive reduction
in search space and leaves no room for optimization (in case
of routing logic, reducing the search space size to 1). A more
balanced initial set of checkers (for example in case of arbiter
unit), will result in a more balanced set of dominant checkers
and will provide a reasonable search space size.

The full router with final set of minimized checkers and the
baseline router (without any checkers) are synthesized using
AMS 0.18 µm CMOS technology library [5]. The full router
with checkers includes the control part, the data-path and the
minimized set of checkers obtained from table I. The results of
the synthesis and area overhead and critical path delay of the
proposed method are presented in Table II. The area overhead
compares the router including all checkers for all modules of
the control part, with the baseline router without any checkers.
The area overhead when considering the minimized set of
checkers (while still reaching 100%) is about 15%, which
is small compared to the total area of the baseline router.
Moreover, with regards to the timing, the additional delay in
the critical path of the router is also negligible.
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Abstract—Routing algorithms play an important role in
Network-on-Chip (NoC) based System-on-Chips. Turn model
based routing disallows some of the turns in order to avoid
deadlock, while providing partial adaptivity. In this paper, all
2D uniform turn models are examined for deadlock freeness and
connectivity; 50 deadlock free turn models are extracted that
provide full connectivity in the network. An extended adaptivity
metric is introduced to classify the turn models; all extracted
turn models are compared in terms of adaptivity, robustness
and latency. Experimental results identify the most robust turn
models and the most efficient ones in terms of latency.

Keywords—Turn Model, Routing Algorithm, Robustness, Min-
imal Path, Network-on-Chip.

I. INTRODUCTION

Network-on-Chip (NoC) has emerged as a paradigm to
overcome some of the limitations existing in the conventional
shared medium bus-based architectures [1], such as perfor-
mance and scalability issues. In a NoC, the communication
between cores is administered by on-chip routers based on
a routing algorithm. Routing algorithms can be either clas-
sified as deterministic or adaptive [2]. Deterministic routing
algorithms, use a single path for each source-destination pair,
whereas adaptive routing provides more path diversity, taking
into account criteria such as traffic load on links, etc. One
of the important factors when choosing a routing algorithm is
deadlock freeness. Deadlock occurs when a cyclic dependency
is created between the packets in a NoC, waiting for resources
held by other packets in the cycle [2].

Two main approaches exist for addressing deadlocks: dead-
lock avoidance where deadlocks are completely avoided and
deadlock recovery where deadlock can happen, but is handled
using a deadlock recovery mechanism. The focus of this
paper is on deadlock avoidance. Turn model approach was
first introduced in [3] for deadlock avoidance in 2D Mesh
Network-on-Chips. A turn is defined as a change of direction
in a packet’s path. Directions are named based on cardinal
directions: North (N), East (E), West (W) and South (S). In a
2D Mesh network, maximum of 8 turns exist: N2E, N2W,
E2N, E2S, W2N, W2S, S2E and S2W. For instance S2E
indicates a é turn that, if allowed, it enables a packet coming
from the South input port of the router be forwarded to the
East output port. A total number of 28 “ 256 uniform 2D turn
models can be derived from eight possible turns. In a uniform
turn model, all network nodes have the same disallowed turns.

In [3], three deadlock free turn models are introduced,
i.e. West-First, North-Last and Negative-First. Furthermore,

[4] introduces the North-South First (NSF) turn model, by
combining North-First and South-First. Moreover, the East-
First turn model is addressed in [5].

Even though, some of the previous works such as [6] have
covered performance comparison of some of the well-known
turn models, to the best of our knowledge, exploration of the
entire search space of all possible turn models for a 2D mesh
NoC have not been thoroughly performed. In this paper, all
256 uniform turn models for routing in 2D Mesh NoCs are
enumerated and the characteristics of the deadlock-free turn
models are evaluated. The proposed approach uses metrics for
connectivity and adaptivity, based on which turn models are
classified. In addition, latency and robustness of all turn model
groups are assessed.

The rest of this paper is organized as following: in section
II a methodology for evaluation of deadlock freeness of turn
models is discussed. In section III metrics for network connec-
tivity and routing adaptiveness are introduced. In section IV
robustness and latency of the chosen routing algorithms have
been evaluated in minimal and non-minimal routing. Finally,
section V concludes the paper.

II. EVALUATING DEADLOCK FREENESS

In [7], the concept of Cyclic Dependency Graph (CDG)
is used for deadlock detection, where nodes represent the
network channels and edges denote the channels dependency.
It is proven that for guaranteeing deadlock-freeness, CDG
must be acyclic. In this work similar approach has been used,
but instead of CDG, we use the concept of Routing Graphs
(RGs) which was introduced in [8]. The rest of this section
overviews the construction of routing graphs and describes the
process of evaluating deadlock freeness.

A. Routing Graph
A Routing Graph, RG(V, E), is a directed graph, in which

the set of vertices (V) denotes the set of all the input/output
ports in the network (two nodes per port) and the set of edges
(E) represent the set of (vi, vj) where vi is a vertex (input
or output port) that is depending on vj port. For the sake of
simplicity, a vertex v in RG is denoted as nodei,p,dir, which
describes direction dir P tin, outu of port p P tN,E,W, S, Lu
of node i in the network. There are two different types of links
represented as edges in the routing graph:
‚ Inter-router edges, representing connections between

routers (from an output port of a router to an input port
of an adjacent router).
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Fig. 1. a) Example of a 3 ˆ 3 mesh network and b) the resulting routing
graph for XY routing algorithm

‚ Intra-router links, representing allowed connections in-
side the router (from an input port of a router to an
output port in the same router). An intra-router link can
be: 1) From or to local port: representing dependency
between the router’s north, east, west and south ports and
the local port connected to the processing element (PE).
2) Straight connections: describing dependency between
ports involved in maintaining straight connections inside
the router (e.g from west input to east output port of a
router). 3) Turns: dependency of the ports in perpendic-
ular direction (e.g. from east input to south output port).

As an example, Fig. 1b shows the RG for XY routing for a
3x3 2D Mesh network, corresponding to Fig. 1a. In order for
a routing algorithm to be deadlock free, its corresponding RG
must also be acyclic.

B. Proof of Deadlock Freeness
Theorem 1. A deadlock in a turn model results in a cycle in
the RG derived from the turn model.

Proof. Let us assume that a deadlock in the turn model results
in a RG with no cycles. Since the RG represents a sequence of
all dependencies between the inputs and outputs of a routers
under the applied turn model and there are no cycles in RG,
there cannot be cyclic dependencies between the inputs and
outputs of routers in the network. Hence, no deadlock can be
formed. This is in contradiction with our initial assumption
of having a deadlock for the turn model. This means that a
deadlock in a turn model results in a cycle in the RG derived
from the turn model.

Using this method, it is possible to discard 35 turn models
that have deadlocks, which leaves 221 deadlock free turn
models.

III. METRICS FOR CONNECTIVITY AND ADAPTIVITY

Out of 221 deadlock free turn models, some provide partial
connectivity. Examples of this case are: one turn model with
zero turns and 8 turn models with one turn. To evaluate the
connectivity of turn models, a simple metric has been used:

ConnectivityRG “

N´1
ÿ

i“0

N´1
ÿ

j“0

Ci,j,RG (1)

where N is number of nodes in the network and:

Ci,j,RG “

$

’

&

’

%

1 if exists a path from nodei,L,out to nodej,L,in

in RG where i ‰ j

0 otherwise

TABLE I
LIST OF PREVIOUSLY NAMED TURN MODELS

# Allowed turns Conventional Name
0 E2N, E2S, W2N, W2S XY [9]
13 S2W, S2E, N2W, N2E YX [10]
33 E2S, S2W, S2E, N2W, N2E Restricted North First [4]
39 E2N, E2S, W2N, W2S, S2W, N2W East-First [5]
40 E2N, E2S, W2N, W2S, S2E, N2E West-First [3]
41 E2N, E2S, W2N, W2S, N2W, N2E North-Last [3]
42 E2N, E2S, W2N, S2E, N2W, N2E Negative-First [3]
46 E2N, W2N, S2W, S2E, N2W, N2E South-First [4]
48 E2S, W2S, S2W, S2E, N2W, N2E North-First [4]

TABLE II
DoA AND DoAEx FOR ALL 2D ROUTING ALGORITHMS OF FIG. 2

4 turns 5 turns 6 turns
Turn
Model
Num

0,
13

3, 5,
8, 10

1, 2, 4,
6, 7, 9,
11, 12

14, 15, 16,
17, 28, 33,
36, 37

18-27,
29-32,
34, 35

42, 43,
45, 47

38, 39, 40,
41, 44, 46,
48, 49

DoA 1 1.23 1.43
DoAEx 1 1.41 1.63 2.11 2.41 3.83 4.33

and RG is representing the routing graph. In this case,
the assumption is that RG represents a full mesh under a
turn model based routing algorithm. Path search in RG can
be either minimal or non-minimal. For a 3 ˆ 3 mesh, the
maximum connectivity is 72 which means that each node
can communicate with eight other nodes. Using this simple
metric, all the deadlock free turn models were evaluated and
turn models that do not provide full connectivity have been
excluded. There are only 50 uniform turn models that are
deadlock free and also provide full connectivity. These turn
models are visualized in Fig. 2. There are 14 four-turn turn
models, 24 five-turn turn models and 12 six-turn turn models.
Table I lists the turn models which are previously named and
addressed in the literature.

In order to classify turn models, we can use the Degree of
Adaptiveness (DoA) introduced in [3] which only considers
the shortest paths from a source node to destination node. A
general form of DoA metric can be formulated as:

DoA “

řN´1
i“0

řN´1
j“0 NoSPi,j,rg

number of pairs of nodes
(2)

Where N is the number of nodes in the network and
NoSPi,j is defined as:

NoSPi,j,RG “

$

&

%

number of shortest paths in RG from
nodei,L,out to nodej,L,in

i ‰ j

0 otherwise
The resulting DoA for the turn models are presented in

Table II. However, it is no surprise that turn models with
higher number of turns, also have higher DoA. Extending this
metric (DoAEx) to include all the simple paths in the network
(paths that do not have repeating nodes in them) provides
a slightly different picture than the original DoA. DoAEx

makes it possible to classify the turn models even further. The
DoAEx metric can be described as follows:

DoAEx “

řN´1
i“0

řN´1
j“0 NoSP 1i,j,RG

number of pairs of nodes
(3)

Where N is the number of nodes in the network and
NoSP 1i,j is defined as:

NoSP 1i,j,RG “

$

&

%

number of simple paths in RG from
nodei,L,out to nodej,L,in

i ‰ j

0 otherwise



Fig. 2. Visualization of all deadlock free 2D turn models with full connectivity. The forbidden turns are drawn in red.

Table II presents DoA and DoAEx metrics for the turn
models in Fig. 2. This table shows that inside each class of
turn models (four, five, and six-turn turn models), there are
sub-classes that have different characteristics. As an example,
turn model no. 3 shares two turns with XY and two turns with
YX which allows it to have non-minimal de-routes. Similarly,
under non-minimal routing, turn model no. 1 and 2 have even
further advantage in providing path diversity.

Similar investigation has been conducted for 3D routing
algorithms, where there are 24 turns available. Out of over 16
million possible 3D turn models, over 95 thousand deadlock
free turn models which provide full connectivity in the network
are extracted. The full list of these turn models and their
visualizations are accessible at [11].

IV. EXPERIMENTAL RESULTS

In this section, all the 50 turn models extracted in the
previous section, are compared in terms of robustness and
latency.

A. Robustness Evaluation

Robustness of a routing algorithm is defined here as the
average connectivity metric of routing algorithm running on
a 2D mesh NoC with specific number of faulty links. Ex-
periments were conducted to evaluate the robustness of each
routing algorithm. Using the connectivity metric introduced in
section III, average connectivity of the network with nbroken

permanently broken links (out of total number of ntotal inter-
router links), can be calculated using Algorithm 1. Where
avgcon is a list of average connectivities and avgconrks is
average connectivity for a 3ˆ 3 network with k broken links.

For each turn model and each possible amount of broken
links (nbroken) the connectivity metric is calculated and aver-
aged over all possible configurations with nbroken links.

Fig. 3 illustrates the difference between average connectivity
metrics for the turn models listed in Table II. Fig 3a shows
the average connectivity metric of the turn models under
minimal path routing for different number of working links.
The three lines in the figure correspond to three classes of
DoA in Table II, where turn models with higher DoA provide
better connectivity. However, the gap between the curves is not

Algorithm 1: average connectivity calculation algorithm
for nbroken P [0, ntotal] do

list of configurations = list of all 3ˆ 3 2D mesh NoCs with
nbroken broken links

sumcon = 0
forall confbroken P list of configurations do

Generate RG based on confbroken

sumcon += Connectivityrg

end
avgconrnbrokens “ sumcon{len(list of configurations)

end
return avgcon

(a) (b)
Fig. 3. Comparison of avg. connectivity metric of turn models under a)
minimal, b) non-minimal routing by number of available links.

substantial. Fig 3b depicts the average connectivity metric of
turn models under non-minimal routing for different numbers
of working links. In this case the curves diverge more, which
corresponds to the seven classes, when considering DoAEx,
and the gap between the curves is rather substantial where turn
models with higher DoAEx provide better connectivity (Red
and Blue marked regions in Fig 3).

B. Latency Evaluation

In this section, all the 50 deadlock free turn models shown
in Fig. 2 are evaluated under synthetic traffic patterns using
Noxim [12] NoC simulator. The experimentation setup pa-
rameters are as follows: A 4x4 2D mesh was considered. The
system clock frequency is set to 1 GHz for all routers. As a
synthetic traffic pattern, random uniform is considered in the
simulations. Packets are generated using Poisson distribution.
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Fig. 4. Latency results under random uniform traffic for a) four, b) five, c) six-turn turn models.

The length of the packets is fixed and set to 8 flits, and FIFO
depth of routers is 4 flits. For each simulation, the warm-up
time is considered 1000 cycles in order to allow the transient
effects to stabilize and subsequently, the simulation has been
run up to 20000 cycles.

The average latency results are grouped based on the
number of turns allowed, i.e. 4-turn, 5-turn and 6-turn turn
models. Fig. 4a-c shows the average latency results for these
turn models under random uniform traffic pattern (with packet
injection rate ranging from 0.001 to 0.025). The curves are
color coded in each figure to distinguish different classes of
DoAEx (see Table II). The dotted lines in Fig. 4a-c indicate
the corresponding highest value of the Fig. 4c and lowest value
of Fig. 4a, since the range of axes is different between Fig.
4a-c. As it can be observed in Fig. 4a, two of the turn models
(0 and 13 which are highlighted with thick cyan color), which
correspond to XY and YX routing, outperform the other turn
models in terms of average latency which conforms to the
observations made in [13]. After those two turn models, both
classes of 6-turn turn models and 5-turn turn models with
lower DoAEx perform better than others. The performance
(average latency and average throughput) and communication
energy of all the 50 deadlock free turn models under different
synthetic (Random uniform, Bit-reversal, Shuffle, Transpose
and Butterfly) traffic patterns are available at [11].

V. CONCLUSION

In this paper, an in depth comparison of all 2D uniform turn
models in terms of connectivity, adaptivity and robustness has
been made. All possible 50 deadlock-free turn models that
provide full connectivity have been extracted. An extended
adaptivity metric have been introduced to classify the turn
models even further. It became clear that one class of turn
models with highest degree of adaptivity is much more robust
under non-minimal path routing. The latency results shows that
aside from XY and YX routing algorithms which outperform
all other turn models under random uniform traffic pattern, 2
more classes fall very close to this class which are 5-turn turn
models with lower adaptivity metric and 6-turn turn models
with higher adaptivity metric.
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Abstract—The current trend of aggressive technology scaling
results in a decrease in system’s reliability. This motivates in-
vestigation of fault-resilient architectures which provide graceful
degradation of system’s functionality. In this paper, three novel
fault-resilient Network-on-Chip (NoC) router architectures are
proposed. These architectures, exploit the regularity of the router
and reallocate available existing and spare units to maintain func-
tionality of certain turns. The resource reallocation is performed
transparently from system’s resource manager and is based on
predefined priorities. A new metric for architecture reliability
comparison based on reliability block diagrams is introduced.
In contrast to Silicone Protection Factor (SPF) metric, the
proposed metric also takes into account the areas of different
units. Area overhead and reliability of proposed architectures
are compared with Triple Modular Redundancy (TMR) and
Unit-Duplication mechanisms. All proposed architectures showed
remarkable reliability improvement compared to original, TMR
and Unit Duplication architectures; while at the same time,
their area overhead is less than or equal to unit-duplication
mechanisms.

I. INTRODUCTION

Network-on-Chip (NoC) has emerged as an interconnec-
tion network infrastructure to overcome the performance and
scalability issues of the previously existing shared medium
bus-based architectures [1]–[3]. Even though NoCs provide
many advantages over bus-based architectures, the extreme
down-scaling of digital circuits jeopardizes the reliability of
the system and makes it prone to wear-out and increases the
probability of permanent faults.

This paper introduces three architectures and presents the
comparison with Unit-Duplication and TMR architectures, in
terms of area and reliability improvements. The novelty of
developed architectures is the transparent replacement of any
faulty router unit with either a spare unit or a unit with less
priority or with a healthy unit that is located in a faulty turn.
Architectures are exploiting the regularity of the router to
obtain this ability. This paper also introduces a new metric
for reliability comparisons, based on the concept of reliability
block diagrams [4] and provides an analytical assessment of
the dependability of the proposed architectures.

The rest of this paper is organized as follows, section II is
the literature review, section III talks about NoC router that
was used during the work. In section IV proposed architectures
are described. In section V the details of synthesis and
reliability improvements are presented and discussed.

II. RELATED WORK

Fault tolerance in Network-on-Chips (NoCs) is a broad
topic. The approaches in this research area can be classified
based on (1) hardware redundancy, (2) information redundancy
and coding techniques, and (3) resource sharing (which, in
turn, is classified as internal and external resource sharing).

Two common techniques usually used for fault tolerance
which are categorized as hardware redundancy techniques
are Dual Modular Redundancy (DMR) [5]–[8] and Triple
Modular Redundancy (TMR) [9]–[14]. Constantinides et al.
have introduced BulletProof router [11] and a method that
automatically injects sparing logic to the net-list of a router
and is able to replace faulty circuitry. However, it imposes area
overhead of up to 3.4× with respect to the baseline non-fault
tolerant router. In [5] Shield NoC router is introduced, in which
DMR is used for making parts of the NoC router tolerant to
hard errors. However, considering Virtual Channel (VC) and
VC allocator and hardening these modules against hard faults
incurs additional area overhead. Moreover, Shield imposes a
31% power overhead at the price of providing fault tolerance.
[9] utilizes redundant multiplexers (MUXes) in the input port
controller of the router. In [6] all the physical links between
the routers are doubled in order to improve the reliability of
the NoC, by maintaining its connectivity. Limitations of this
work are that it is not considering the faults in internal circuit
of the router and the additional overhead is incurred due to
replicating the links between routers.

In [7] Crosspoint redundancy and redundant links are used
to improve yield and reliability of on-chip communication
fabrics, including the crossbar switch. In [8], redundant routing
computation unit is used. In the case of a fault, the circuit is
replaced by a light-weight routing unit, which is static but
provides reliable routing services. [12] and [13] use TMR in
order to protect the control signals of a NoC router. [9] uses
TMR for control part of FIFO. In [10], TMR is used to harden
the multiplexers of the crossbar switch. In [15], the network
is divided into 2x2 blocks, with a spare router in each block.
The main drawback of DMR and TMR-based approaches is
the imposed area overhead, especially in the case of TMR,
whose additional area is incurred due to using a voter to vote
among the outputs of the three redundant replicas. Moreover,
the voter can become a single point of failure if it becomes
defective. Moreover, in methods such as [15] in which spares978-1-5386-3344-1/17/$31.00 ©2017 IEEE



Fig. 1. Block diagram of original version of Bonfire router. The figure shows only a North channel. Exact same architecture is for other channels.

are applied at the granularity level of routers rather than router
components, significant area overhead is incurred.

Another group of works address fault tolerance via in-
formation redundancy and error detection/correction coding
techniques [9], [10], [12]. In [9] Hamming coding is used
to make data links of the NoC routers fault-tolerant. One of
the drawbacks of Hamming coding is the overhead of added
bits for error detection and correction, as it is dependent on
the original data’s number of bits. Authors of [10] utilize
row and column parity bits in order to protect routing tables
against Single Event Upsets (SEUs). However, all the above
mentioned methodologies apply to the data-path only and do
not detect and correct the faults in the functionality of the
architecture itself, hence, do not provide any improvement in
fault tolerance of the control circuits.

The third approach is exploitation of regularity of the
network by resource sharing. There are two main approaches
in this category; internal resource sharing and external resource
sharing. In internal resource sharing, functionality is usually
borrowed from a module inside the same router, if a com-
ponent gets faulty, whereas, in external resource sharing, the
functionality is borrowed from the component of a neighbor
or adjacent router. In the literature, the following works [9],
[14], [16], [17] have utilized internal resource sharing. In [16]
the NoC router is able to tolerate faults in the FIFO module by
replacing the defective module with a healthy one from another
input port (input port swapping). One of the drawbacks of this
work is its high hardware overhead (as stated in [17]). In [9],
fault tolerance for data-path of FIFO (the memory elements) is
provided via reconfiguration. This is performed by borrowing
from adjacent FIFOs of the same router. The approach in
[17] uses decoupled resource sharing approach in input ports,
in which a faulty input port can use its adjacent ports for
data transmission. Also, a fault tolerant crossbar switch is
utilized. However, this approach cannot handle the case in
which both adjacent input ports of a port are faulty. Moreover,
fault tolerance in the arbitration logic of the router is not
addressed. [14] uses slice sharing (three identical router slices)
for fault-tolerance. In case of occurrence of a fault in any of the
slices, resource sharing is enabled in order to improve fault-
tolerance. However, all the fault-tolerance advantages come at

the price of performance degradation.
RoCo [18] uses external resource sharing to provide fault

tolerance, in which, functionality is borrowed from neighbor
switches in order to recover from the faults occurring in the
current switch’s components. One of the limitations of this
work is the complexity of its virtual channel allocation logic.
Similar to [5], this approach also provides a bypass path for the
crossbar switch. In [19], switches are equipped with internal
Default Backup Paths (DBPs), which are connected to form
a ring topology if the regular topology has faulty resources.
However, this approach degrades performance (latency) in
order to provide connectivity between all Processing Elements
(PEs) even when all the routers are faulty.

Existing architectures provide reliability improvements with
the cost of performance degradation or they only address the
reliability of data path. Also, the above mentioned approaches
use the Silicon Protection Factor (SPF [11] ) metric for
reliability comparison which has many shortcomings (see
section V). This paper focuses mainly on addressing transpar-
ent resource sharing and re-using of components to improve
NoC routers reliability. Three architectures are presented and
compared against Unit-Duplication and TMR approaches in
terms of area and reliability. The comparison of routers is done
through a new metric developed and described in this paper
which covers the shortcomings of SPF. The main contributions
of this work are the new metric for reliability comparison and
developed architectures that can replace any defective router
unit: (1) with a spare unit or (2) with a unit with less priority
or (3) with a healthy unit that is located in a faulty turn.

III. BONFIRE NETWORK-ON-CHIP ROUTER

Bonfire [20] router, an open-source wormhole switching
NoC router, is used in this work. It is chosen due to its
simplicity and regularity, which makes it easier to implement
the ideas of architectures proposed in this paper.

The Bonfire router consists of four parts: 1) FIFO Buffer
that is used to store the flits of a packet in the router until
it is being sent. The current design, used in synthesis and
simulations, has the size of four flits. 2) Routing logic: which is
implemented using Logic-Based Distributed Routing (LBDR)
[21], to decide where the packet will be transmitted. Currently,



Fig. 2. Possible Fault scenario in router and the router after reconfiguration.
Single Spare version of router. - represents faulty unit. - unit that is
healthy but is connected to faulty unit.

XY routing algorithm is used. However, it can be reconfigured
to any deadlock-free turn model based routing algorithm.
LBDR acquires destination information from header flit that
is provided by the FIFO. 3) Arbiter - which is responsible for
communicating with neighboring routers that provide infor-
mation on empty spaces in their FIFOs. It also decides which
input request on specific output, will be served first. Current
Arbiter implements Round-Robin algorithm, that prioritizes
neighbors dynamically. 4) XBAR - the crossbar switch which
is used to direct the data into neighbor routers. It is controlled
by the arbiter.

Figure 1 shows the architecture of router. In total, there are
five input and five output channels in the router, North, East,
West, South and Local channels. An input channel consists
of FIFO and LBDR modules. An Output channel consists of
Arbiter and XBAR. A turn consists of a pair of input and
output channels where those channels do not belong to the
same direction. In total there are 20 turns (5 × 4) in each
router.

IV. PROPOSED ARCHITECTURES

In this work three fault tolerant architectures are proposed,
which operate by using resource managing and sharing. The
resource sharing granularity is at the unit level (FIFO, LBDR,
Arbiter, XBAR) and will be performed either on the system’s
functional units or on spare units. In all three architectures,
a unit controller is in charge of selecting the module that
provides the output when necessary. The fault information
provided to the unit controller is fed from a set of fault
monitors, called concurrent online checkers [22], [23], which
perform the fault detection in each of the control part modules
(control part of FIFO, LBDR and arbiter). For the data-path
of FIFO and crossbar switch (XBAR), a single parity checker
detects the fault. The following subsections provide a detailed
description of all three architectures.

A. Architecture 1 : Single Spare

The single Spare architecture utilizes spare units available
to replace faulty units. The architecture includes a Unit
Controller, that selects the spare units when necessary. As

Fig. 3. Single Spare architecture. FIFO units, multiplexers and Unit Con-
troller. suffixes N, E, W, S, L denote the channel names: North, East,
West, South, Local. Turn Priority version of router.

mentioned before, the router has four different units, and
correspondingly, the current implementation of Single Spare
architecture has a single spare unit of each type.

Fig 2 depicts a possible fault scenario in the router. On the
left side of the picture, it is assumed there is a fault in FIFO
of East input channel. In this scenario then LBDR of the east
channel is healthy but it gets incorrect data from FIFO and
correspondingly data sent to any direction is faulty.

In the original version of the router, if the north input
channel’s LBDR is faulty corresponding FIFO’s correct func-
tionality goes in vain; Because faulty LBDR might transmit
data in the wrong direction. On the other hand, in Single Spare
architecture, LBDR or any other faulty unit can be replaced
with a spare unit.

Figure 3 displays the schematic of Single Spare architecture
only for FIFO units in the router. It is visible that only the spare
FIFO has five-input-one-output multiplexer and its output can
be multiplexed with any of the FIFO output, all multiplexers
are controlled from the Unit Controller. The Unit Controller
receives information about fault locations and replaces a faulty
unit with the spare one, by selecting the right multiplexers. The
Unit Controller is also capable of prioritizing the channels.
For example in a case that there are faults on North and Local
channels, it can select the channel with higher pre-programmed
priority. For each type of unit in the router, there is a separate
Unit Controller.

B. Architecture 2 : Turn Priority

Turn Priority version of router exploits the regularity of the
router. It gathers data on all units and then tries to utilize all
available units to assemble as many input and output channels
as possible. The unit controller prioritizes the channels in
the following order: Local, North, East, West, South for
Input channel and East, West, South, North, Local for output
channel. This order of prioritization ensures that in the worst
case, the current node can still send packets in the network..
This operation can be done without any modification in the



Fig. 4. Possible Fault scenario in router and the router after reconfiguration.
Turn Priority version of router. - represents faulty unit.

Fig. 5. Turn Priority architecture. FIFO units, multiplexers and Unit Con-
troller.

units since all the units of the same type are identical. There
is only one Unit Controller in each router since it should
perform router-wide configuration. In comparison with Single
Spare, this architecture does not have extra spare units; it only
consists of the original circuit with added multiplexers and a
Unit Controller. An example of a fault scenario is shown in
Fig. 4. If there exists at least one unit of each type, it can
be utilized to build a pre-defined turn, for example, North to
East.

Fig. 5 depicts that the multiplexers and Unit Controller
used in the design are different from Single Spare version.
Multiplexers are placed in front of every FIFO so that any
inputs going through any FIFO can be redirected to any other
FIFO.

C. Architecture 3: Stay Alive

The idea behind the Stay Alive architecture is to combine
the features of Turn Priority and Single Spare approaches. The
functionality of Unit Controller used in this architecture is the
same as in Turn Priority, but it controls an additional spare
unit of each type which results in the larger area, Fig. 6. The
additional spare unit also leads to an increase in multiplexers
number (from 5 to 6) and size(6×1 instead of 5×1 multiplexer
in outputs).

Fig. 6. Stay Alive architecture. FIFO units, multiplexers and Unit Controller.

V. RELIABILITY ANALYSIS

This section introduces a framework for reliability compari-
son and provides a comparison of developed architectures with
TMR and Unit Duplication architectures. For comparison with
other routers SPF [11] was considered at first. SPF is a silicone
protection factor used for comparing architecture reliability. It
equals to:

SPF =
Meannumberoffaultsforfailure

area of fault-tolerant architecture
area of baseline architecture

(1)

In [5], [11], [16], [17] SPF is used for assessing the
reliability of the architecture. However, this methodology has
following aspects missing:

• SPF does not consider the effect of area of units on the
probability of faults. While units with the smaller area
have less probability to be faulty. For example, in this
work FIFO has the area of 14315 µm2 and LBDR has
an area of 375µm2, then the probability of FIFO failing
is extremely larger than LBDR. Thus probing that simple
best case, worst case scenarios are not sufficient.

• SPF over-emphasizes the number of units during best
case(max number of faults for failure) scenario calcu-
lation. For example, if we make a unit, with the smallest
area, n-modular (n � 3) that will improve best-case
scenario radically without a significant increase in area.
Thus, improving SPF radically without significant or no
improvement in reliability since the bottleneck for faults
most probably is a unit with the largest area.

• SPF uses a ratio of the area of the original and modified
router. This ratio will result in an unfair comparison of
fault-tolerant architectures if they are applied on different
original routers. For example, if we apply same fault
tolerant architecture on two different original routers, one
of them having initial area two times larger than other(e.g.
caused by virtual channels), then the area contribution of
introduced fault-tolerant architecture to the routers, are
different; resulting in an unfair comparison.



Because of above-mentioned reasons analytical analysis of
reliability is conducted using reliability block diagrams [4].
In this method of calculation areas of units are taken into
consideration. The probability of a single turn (single input
channel and single output channel) being alive is calculated.
The method takes one unit as a reference point and applies
multiple values of reliability, in the range [0:1]. Probabilities
of rest of the units are normalized against this unit.

The reliability of a router having all channels faulty except
one input channel and one output channel will be used as a
comparison point of architectures. The reliability calculations
will include all router units and added multiplexers.
Interconnection area and Unit controller are not considered
in reliability calculations. It is assumed that Unit controller
is fault-free by using n-modular redundancy or other fault
tolerant techniques.

A. The Original Router

In the original version of the router, one permanent fault in
a unit involved in a channel used by a turn is enough to stop
its correct functionality. Regardless of the location of the fault.
To have at least one functional turn, at least one input channel
and one output channel should be operational. The Reliability
of input and output channels are shown on equations 2, 3.

Where, RFIFO and RLBDR refer to the reliability of failure
in FIFO and LBDR. Similar definitions for rest of the units.

The reliability formula of single turn available in the original
router is shown equation 4.

RIC = RFIFO × RLBDR (2)

ROC = RARBI × RXBAR (3)

ROriginal = RIC × ROC (4)

Fig. 7a illustrates the reliability diagram for the baseline
router.

B. Single Spare version

Single Spare architecture has a higher level of dependability
due to the existence of spare units. Reliability of one input
and output channels are shown on equations: 5, 6, where
RFIFO-MUX-IN stands for the reliability of multiplexer that is
located on the input port of FIFO, and RFIFO-MUX-OUT is located
on the output port of FIFO. The probability of at least single
turn staying alive is shown on equation 7.

RIC = (1 − (1 − RFIFO × RFIFO-MUX-IN) × (1 − RFIFO)) × RFIFO-MUX-OUT×

(1 − (1 − RLBDR × RLBDR-MUX-IN) × (1 − RLBDR)) × RLBDR-MUX-OUT
(5)

ROC = (1 − (1 − RARBI × RARBI-MUX-IN) × (1 − RARBI)) × RARBI-MUX-OUT×

(1 − (1 − RXBAR × RXBAR-MUX-IN) × (1 − RXBAR)) × RXBAR-MUX-OUT
(6)

RSingle-Spare = RIC × ROC (7)

Fig. 7b shows the reliability diagram for the Single Spare
architecture.

C. Turn Priority and Stay Alive version

To have at least one turn functional in Turn Priority ar-
chitecture, its needed to have at least one working instance
of each unit along with its input and output multiplexers.
Accounting multiplexers, the reliability of input and output
channels are shown on equations : 8, 9. And reliability of
single turn available in the router is shown on equation 10.

RIC = (1 − (1 − RFIFO-MUX-IN × RFIFO × RFIFO-MUX-OUT)
5
)×

(1 − (1 − RLBDR-MUX-IN × RLBDR × RLBDR-MUX-OUT)
5
)

(8)

ROC = (1 − (1 − RARBI-MUX-IN × RARBI × RARBI-MUX-OUT)
5
)×

(1 − (1 − RXBAR-MUX-IN × RXBAR × RXBAR-MUX-OUT)
5
)

(9)

RTurn-Priority = RIC × ROC (10)

Since the difference between Turn Priority and Stay Alive
version is only one extra spare unit of each type; The prob-
ability of survival for Stay Alive version can be similarly
calculated. Formulas are shown on equations : 11, 12, 13.

RIC = (1 − (1 − RFIFO-MUX-IN × RFIFO × RFIFO-MUX-OUT)
6
)×

(1 − (1 − RLBDR-MUX-IN × RLBDR × RLBDR-MUX-OUT)
6
)

(11)

ROC = (1 − (1 − RARBI-MUX-IN × RARBI × RARBI-MUX-OUT)
6
)×

(1 − (1 − RXBAR-MUX-IN × RXBAR × RXBAR-MUX-OUT)
6
)

(12)

RStay-Alive = RIC × ROC (13)

The reliability diagrams for Turn Priority and Stay Alive
architectures are demonstrated in Fig. 7c and Fig. 7d, respec-
tively.

D. Unit-Duplication

For a fair comparison, it is necessary to compare design
with Unit-Duplication. Fig. 8 depicts the block diagram of
Unit-Duplication architecture used for this comparison. It is
assumed that fault information is provided for each unit and
it is used for healthy unit selection. The architecture applies
this method to every unit in the router. Reliability of input
and output channels are shown on equations : 14, 15. Hence,
the probability of Survival of at least one turn in the original
router architecture is shown on equation 16.

RIC = ((1 − (1 − RFIFO) × (1 − RFIFO)) × RFIFO-MUX)

((1 − (1 − RLBDR) × (1 − RLBDR)) × RLBDR-MUX)
(14)

ROC = ((1 − (1 − RARBI) × (1 − RARBI)) × RARBI-MUX)

((1 − (1 − RXBAR) × (1 − RXBAR)) × RXBAR-MUX)
(15)

RUnit-Duplication = RIC × ROC (16)



(a)

(b)

(c)

(d)

Fig. 7. Reliability diagram of proposed architectures: a)Baseline router, b)Single Spare, c)Turn Priority d)Stay Alive.

E. TMR

Two TMR architectures are implemented with regular voter
(see Fig. 9). Unit TMR, that triplicates each unit in the router;
and system TMR architecture, that triplicates the whole router.
It is worth noting that TMR is inherently different compared
to the proposed architectures due to its ability to detect faults.
However, it is provided as reference.

Fig. 8. Unit Duplication Fig. 9. Triple Modular Redundancy

In unit TMR, similar to Unit Duplication, the reliability of
input and output channels are shown on equation 17, 18. And
accordingly, the probability of the whole router, having single
turn available is shown on equation 19.

RIC = ((3 × R
2
FIFO − 2 × R

3
FIFO) × RFIFO-MUX)

((3 × R
2
LBDR − 2 × R

3
LBDR) × RLBDR-MUX)

(17)

ROC = ((3 × R
2
ARBI − 2 × R

3
ARBI) × RARBI-MUX)

((3 × R
2
XBAR − 2 × R

3
XBAR) × RXBAR-MUX)

(18)

RUnit-TMR = RIC × ROC (19)

On the other hand reliability of system TMR is using
original router for its modules, thus having same formula for
router, equations : 20, 21, 22. And additionally, equation of
reliability after applying TMR is shown on equation: 23

RIC = RFIFO × RLBDR (20)

ROC = RARBI × RXBAR (21)

Rsingle-router = RIC × ROC (22)

RSystem-TMR = (3 × R
2
single-router − 2 × R

3
single-router) × Rvoter (23)

F. Reliability Discussion

In this work, it is assumed that probability of failure of units
is proportional to unit’s cell area and the probability of failure
of all units are normalized against FIFO. For example, in the
case of the original version of the router if the probability
of failure in FIFO is 0.5 while its area is 14315, then, the
probability of failure in Arbiter with an area of 860, would
be: 0.5 * (860/14315) = 0.03 .

In Fig. 10, X axis represents the probability of FIFO failing;
The probabilities of other units are derived according to FIFO
reliability. And Y axis represents the probability of survival
of the router.

The reliabilities can be applied on different time
frames(hour, day, month, etc.).

During this architecture space exploration, all developed
architectures improved the reliability of original router. Turn
Priority and Stay Alive architectures outperformed all others.
Followed by Unit Duplication and then Single Spare architec-
ture. It should be noted that Unit Duplication outperformed
system TMR and unit TMR architectures. System and unit
TMR architectures become worse than original router after
reliability goes down to 0.7 and 0.49, respectively. Results
can be seen on fig. 10.

To measure overall reliability improvement in numbers, for
each value of FIFO reliability, router reliability improvement



Router Version ARBITER FIFO LBDR XBAR Unit Controller(s) Spare Units Interconnection, % Total Overhead
(µm2) (µm2) (µm2) (µm2) (µm2) (µm2) (µm2) (µm2) (µm2) (%)
Original 860 14315 375 2334 0 0 44 803 (33.37 %) 134244 –
Single Spare 1533 15 542 913 3515 1420 21 772 67 525 (35.32 %) 191165 42
Turn Priority 2070 19 206 1351 4969 5975 0 93 694 (39.36 %) 238068 77
StayAlive 2253 19 736 1438 5472 7702 21 772 113 776 (39.48 %) 288160 115
Unit-Duplication 2040 29547 945 5526 0 0 96 871 (33.73 %) 287176 114
Unit TMR 2966 44108 1320 8086 0 0 143 797 (33.74 %) 426220 217
System TMR 860 14315 375 2334 0 0 143 574 (34.86 %) 411897 207

TABLE I
AREA RESULTS FOR INTERCONNECTION AND ITS AREA PERCENTAGE OF CORRESPONDING ROUTER, AREA OF ROUTER UNITS INCLUDING INTEGRATED

VOTERS OR MULTIPLEXERS, AND AREA OVERHEAD PERCENTAGE OF ALL ROUTERS - COMPARED TO BASELINE ROUTER(ORIGINAL)

Fig. 10. Reliability of routers. Probability that at least single turn will be
functional.

factor is calculated, then summed up and averaged to the
number of samples, this equation is shown below.

Roverall =
1

n
∗

n∑
i=1

Rdeveloped[i]/Roriginal[i] (24)

The results of this calculations are displayed on table II.
The numbers are averaged on the whole range: [1:0] since it
is preferable to generalize the results.

Architecture Reliability
Version in range [1:0]
Original 1
Single Spare 1.432
Turn Priority 2.118
Stay Alive 2.298
Unit Duplication 1.562
Unit TMR 0.842
System TMR 0.672

TABLE II
RELIABILITY IMPROVEMENTS OF ARCHITECTURES. DEVELOPED

ARCHITECTURES ARE MARKED WITH YELLOW

VI. AREA COMPARISON

Different architectures are synthesized using Synopsys De-
sign Vision 2015 [24] along with AMS 180 nm technology
library [25]. In figure 11 the total cell area and critical path
delay of all versions are compared to Unit-Duplication (with
an assumption of an existence of fault detection mechanism)
and TMR. The router is synthesized using 10ns clock period.
The increase in the critical path, which was due to insertion
of multiplexers between units, does not violate the original

timing constraints. The critical path of the original router
which was 3.24ns, was increased in the Single Spare router to
3.83ns, in Turn Priority to 4.26ns and in Stay Alive to 4.48ns.
Since the clock period is not changed and no extra pipeline
stage is added to the router, the latency and throughput of the
network do not change. This was verified by simulations using
Questasim 2015 simulator [26].

Detailed synthesis results are presented in table : I. In the
table, areas of different units are listed for all architectures,
note that areas of multiplexers are included in the units. For
Unit-Duplication and unit TMR, the voter and multiplexer area
is included in the unit area. The last column lists the total
area overhead compared to the original router. The Single
Spare version has four small Unit Control units, each one of
them having an area of 355. In other two versions, there were
single Unit Control units having significantly larger areas,
while providing more logic and control over units.

According to table I, multiplexers contribute significantly
to the area overhead. For example in Stay Alive version, the
area of Arbiter is 3.45 times larger than the original arbiter
because of multiplexers.

VII. CONCLUSION

In this paper a new metric for comparing the reliability of
NoC router architectures is introduced. This metric derives
reliability value of router based on the areas of the units in
contrast to SPF which does not take into account the areas for
assessing the reliability. Also, this work proposes three novel
architectures which use transparent resource allocation to
improve the reliability of the router. Also, a comparison of the

O
rig

in
al

Si
ng

le
-S

pa
re

Tu
rn

-P
r.

St
ay

-A
liv

e
U

ni
t-D

up
U

ni
t-T

M
R

Sy
s-

TM
R

0

1

2

3

4

·105

+42 %

+77 %

+115 %+114 %

+217 %+207 %

To
ta

l
C

el
l

A
re

a
(µ
m

2
)

(a) Total area

O
rig

in
al

Si
ng

le
-S

pa
re

Tu
rn

-P
r.

St
ay

-A
liv

e
U

ni
t-D

up
U

ni
t-T

M
R

Sy
s-

TM
R

0

1

2

3

4 +18 %
+31 %

+38 %

+2 % +0 % +0 %

C
ri

tic
al

Pa
th

L
en

gt
h

(n
s)

(b) Critical path in nanoseconds

Fig. 11. Total area and critical path comparison for all versions of router.



proposed architectures in terms of reliability improvement and
area overhead with respect to the baseline, Unit-Duplication
and TMR architectures is provided. Developed architectures
improved the reliability of the router 1.4-2.9 times with area
overhead 42%-115%. As for future work, it is planned to
develop an architecture, implementing channel multiplexing
instead of unit multiplexing and applying multiple spares.
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