
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Karl Viik 185043IAIB

SERVER-SIDE APPLICATION OF

KNOWLEDGE SHARING SYSTEM IN

QUESTION AND ANSWER FORMAT

Bachelor's thesis

Supervisor: Ago Luberg

 MSc

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Karl Viik 185043IAIB

KÜSIMUSTE JA VASTUSTE VORMINGUS

TEADMISTE JAGAMISE SÜSTEEMI

SERVERIPOOLNE RAKENDUS

Bakalaureusetöö

Juhendaja: Ago Luberg

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Karl Viik

11.05.2021

4

Abstract

The goals of the given thesis is to implement a back-end application of a knowledge

sharing system. This system is in the questions and answers format, where users can

submit questions onto the platform on topics or details they would like answered, and

other users can then submit answers to the questions. These questions are stored in a

searchable format to reduce the need to ask questions that have already been asked and

answered.

In the analysis, functional and non-functional requirements are set that the system must

fulfil. Different systems created in the application for fulfilling these requirements are

separately covered, including the system for grouping users and permissions together and

the permission system itself.

Result of the thesis is a Spring Boot application which the front-end application can

interact with through 68 different API endpoints to ask and answer questions, group

content and users, and manage user access to the content.

This thesis is written in English and is 49 pages long, including 7 chapters and 10 figures.

5

Annotatsioon

Küsimuste ja vastuste vormingus teadmiste jagamise süsteemi

serveripoolne rakendus

Antud töö eesmärk on luua serveripoolne rakendus, mida kasutatakse teadmiste

jagamiseks kollaboratiivses keskkonnas. Formaat, mida kasutakse süsteemis teadmiste

jagamiseks, on küsimused ja vastused, kus kasutajad saavad esitada küsimusi eri teemade

ja detailide kohta, ning teised kasutajad saavad antud küsimustele vastata. Küsitud

küsimused salvestatakse süsteemi otsitaval kujul, et vähendada vajadust juba küsitud

küsimuste esitamiseks läbi otsimise võimaluse.

Analüüsis täpsustatakse funktsionaalsed ja mitte-funktsionaalsed nõuded, mida

implementeeritav süsteem peab täitma. Arenduse peatükis kaetakse loodava aplikatsiooni

alam-süsteeme, mille eesmärk on varem defineeritud nõudeid täita, nagu näiteks

kasutajate ja õiguste grupeerimise süsteem või rollide süsteem.

Töö tulemuseks on Spring Bootil põhinev serverirakendus, millega süsteemi visualiseeriv

veebisait saab suhelda läbi 68 erineva sissetulevat infot valideeriva end-pointi, et luua

küsimusi, anda vastuseid neile küsimustele, lisada kommentaare nii küsimustele ja

vastustele, grupeerida kasutajate poolt loodud sisu kasutades kategooriaid ja sharde, ning

kontrollida nendele ligipääsu läbi gruppide, õigustega rollide, ning eelmainitud

shardidega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 7 peatükki, 10

joonist.

6

List of abbreviations and terms

Content User-created questions in the system

DAO Database Access Object

DTO Data Transfer Object

FR Functional Requirement

JWT JSON Web Token

NFR Non-Functional Requirement

Nibble Any user-created submission in the system

POJO Plain Old Java Object

SaaS Software as a Service

Shard Grouping of content with permissions to limit their access

URI Universal Resource Identifier

URL Uniform Resource Locator

7

Table of contents

1 Introduction ... 10

2 Existing solutions .. 11

3 Analysis ... 12

3.1 Functional requirements ... 12

3.2 Non-functional requirements .. 13

3.3 Technological choices .. 13

3.3.1 Java .. 13

3.3.2 Spring Boot .. 13

3.3.3 Gradle .. 13

3.3.4 PostgreSQL .. 14

3.3.5 Liquibase ... 14

4 Development .. 15

4.1 Architecture .. 15

4.1.1 Filters ... 15

4.1.2 Controllers ... 16

4.1.3 Services .. 16

4.1.4 Repositories ... 16

4.1.5 Database Access Objects ... 16

4.1.6 Database .. 17

4.2 Questions and answers system ... 17

4.3 Shard system ... 18

4.4 Endpoints .. 19

4.4.1 Request objects .. 19

4.4.2 Data transfer objects .. 20

4.4.3 Endpoint documentation .. 20

4.5 Input validation ... 21

4.5.1 First layer ... 21

4.5.2 Second layer .. 21

4.6 Authentication and authorization .. 22

8

4.6.1 Username and password based authentication .. 22

4.6.2 OpenID Connect based authentication .. 22

4.6.3 Authorization ... 24

4.7 Permission system .. 24

4.7.1 User’s account status ... 25

4.7.2 User’s role in a shard ... 25

4.7.3 User’s role in all parent shards .. 26

4.8 Shared Identifiers .. 26

4.8.1 Parties .. 27

4.8.2 Nibbles ... 27

4.8.3 Content .. 27

4.9 Exception handling ... 28

4.10 Database access .. 28

4.10.1 DAOs ... 28

4.10.2 Repositories ... 29

4.11 Testing .. 29

4.11.1 Unit testing .. 29

4.11.2 Integration testing .. 29

5 Deployment ... 31

5.1 Docker .. 31

5.2 GitLab CD .. 31

6 Future plans ... 32

7 Summary .. 33

References .. 34

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 36

Appendix 2 – Database schema of the system ... 37

Appendix 3 – Table of endpoints with short description of the action and the required

permissions ... 38

Appendix 4 – Table of existing solutions with short describing summaries 46

9

List of figures

Figure 1. Architectural layers of the system. .. 15

Figure 2. Relationship between question, answer, and comment entities. 17

Figure 3. Example of an organization’s structure represented with shards. 18

Figure 4. Section of user interface for interacting with the API endpoints. 20

Figure 5. Request object’s field validation and OpenAPI properties. 21

Figure 6. OpenID Connect authorization flow implementation in the application. 23

Figure 7. Relationship diagram for describing relationship between shards, users, and

permissions. .. 26

Figure 8. Visualization of entities using the shared party identifier. 27

Figure 9. Visualization of entities using the shared nibble and content identifiers. 27

Figure 10. Error message from a search request with a disallowed page size. 28

10

1 Introduction

Sharing of knowledge is a natural component of a collaborative environment, be it a

commercial project, a university course, or a whole company spanning multiple projects.

One way of sharing knowledge is by posing a question to ask the others. This question

can then be asked in for example the environment specific messaging solution or face-to-

face. Problems with such approaches are that the shared knowledge may not spread as

easily to everyone who could benefit from it and they don’t leave an easily searchable

trace for when someone else has that question in the future. These are the problems that

knowledge sharing systems aim to solve.

One format for a knowledge sharing system is a questions-answers format, where

individuals ask questions and answer those questions collaboratively. The value of the

system comes from storing those questions and answers in a searchable format and

making them available to others.

The objective of this thesis is to implement such knowledge sharing system that is aimed

for a closed collaborative environment, where access is limited to a preapproved list of

individuals, for example employees of a company or students of an university, and where

the system allows organizing the questions in a way that matches organization structure

while also having ways to limit access and permissions.

11

2 Existing solutions

Due to the sharing of knowledge being an important part of many collaborative

environments, many question and answer format knowledge sharing systems have been

created. All existing solutions that were gone over as part of this thesis are listed in

Appendix 4 along with a short summary for each of them.

Many of the solutions are not actively maintained which makes them a bad choice if

looking for a minimal hassle solution. When it comes to being tailored for organizational

usage, then most of the solutions fall short due to not having features that can be used to

effectively organize content. An example of an existing solution that has such feature is

SabaiDiscuss, but it in turn is limited by being a WordPress plugin.

TalkYard is an open-source solution that is aimed towards many use cases, including

usage in companies and schools. It however lacks a mechanism to efficiently represent

different separate parts of an organization.

In summary, when looking for solutions to use in an organization and not a single team,

the choices are largely limited to expensive paid solutions such as AllAnswered and

Confluence Questions. There seems to be room for a free or affordable solution that is

tailored specifically for usage in organizations.

12

3 Analysis

This section describes the higher-level requirements for the system as well as the

technological choices that are used for implementing the system.

3.1 Functional requirements

Functional requirements specify the actions the system performs to accomplish the tasks

that users are trying to perform with the system [1]. The following list contains the

functional requirements of the system, numbered with the prefix FR (Functional

Requirement):

• FR01 Create shards that group content, such as questions, with permissions.

• FR02 Create categories in shards for grouping content without permissions

• FR03 Create roles in shards for grouping permissions

• FR04 Create groups in shards for grouping users

• FR05 Assign users and groups to roles

• FR06 Submit questions

• FR07 Submit answers to questions

• FR08 Submit comments to questions and answers

• FR09 Search for questions

• FR10 Vote on questions, answers and comments

• FR11 Edit questions, answers or comments

• FR12 Store previous versions of questions and answers

• FR13 Set an answer as the accepted answer of a question

• FR14 Follow shards, questions, answers or comments to receive notifications on

notable events.

• FR15 Create notifications on certain actions to relevant users

• FR16 Manually create accounts

• FR17 Option of incorporating an OpenID Connect identity provider

13

3.2 Non-functional requirements

Non-functional requirements refer to the general qualities of a system [1]. The following

list specifies the requirements for the system, numbered with the prefix NFR (Non-

Functional Requirement):

• NFR01 Users may only perform actions and access resources to which they have

the required permissions

• NFR02 Simple to deploy system

• NFR03 Sufficiently documented external interfaces

• NFR04 Validate incoming data

• NFR05 Support complex organizational structures

3.3 Technological choices

This section describes the technologies chosen for implementing the application.

3.3.1 Java

Java is an object-oriented programming language first released in 1995 by Sun

Microsystems [2]. As of May 2021, it is the third most popular programming language

according to TIOBE index [3].

Choice of using Java is based on author’s familiarity with and preference of the language.

Java version 11 is used due to it being the latest Long-Term-Support version as of start

of 2021 [4].

3.3.2 Spring Boot

Spring is a framework for building Java applications with out of the box features to speed

up the development, and Spring Boot simplifies development further by removing the

need of some of the configuration that must be present with plain Spring and by having

embedded web server [5].

3.3.3 Gradle

Gradle [6] is an open source tool used for building software. It was chosen over Maven,

another popular build tool for Java-based applications, due to its better performance on

building after small changes [7].

14

3.3.4 PostgreSQL

PostgreSQL [8] is an open source relational database system. It is used due to author’s

familiarity with it.

3.3.5 Liquibase

Liquibase [9] is a database schema management library. It is used to simplify upgrading

database schema. Liquibase was chosen over Flyway, another popular library, due to the

rollback support being in the free version. This feature can act as a backup in a production

environment in case a database schema upgrade goes wrong.

15

4 Development

This section describes the architecture and different parts of the whole application along

with choices made in implementation of these parts in detail.

4.1 Architecture

The system’s architecture follows a layered approach, where each layer fulfils a separate

task. The layers are brought out in Figure 1. The processes to fulfil a request travel through

the specified layers.

4.1.1 Filters

The filter layer is the first layer incoming requests travel through. In practice, the filters

implement the authentication and authorization of users. Authentication filters also act as

controllers to take advantage of Spring’s existing security mechanisms and interfaces to

simplify the authentication implementation. Authorization filters trigger on all non-

authentication requests to verify the user is authenticated and give the user’s identifier

that is making the request to the controllers to be used as a context for the request.

Figure 1. Architectural layers of the system.

16

4.1.2 Controllers

The controllers define the available non-security related endpoints and what kind of

information they require. Controllers perform initial validation of the data, described in

paragraph 4.5.1.

If the incoming requests pass the initial validation at the controller level, a service method

is invoked to perform the processing and obtain the data required for the response.

4.1.3 Services

The services perform further validation of the data, check if the user has permission for

the requested action and perform other processes required for fulfilling the request.

Data validation at service layer involves checking validity of the data in relation to

existing data in the system, described in detail in paragraph 4.5.2.

Validating that the user has the required permissions to perform the action is done at the

service layer due to there not being enough information to do it at the filter layer. Details

of the permission system and how they are calculated are described in paragraph 4.7.

Other processes to fulfil the request can involve obtaining different pieces of data and

constructing a response from them, or creating notifications, or invalidating permission

cache on actions that affect permissions.

4.1.4 Repositories

The repositories are the only way services interact with the persistent data storage.

Repositories abstract away the schema of the database from the services. This is required

for certain entities whose representation in the database span multiple tables. Examples

and reasons for such entities are described in chapter 4.8.

4.1.5 Database Access Objects

DAOs (Database Access Objects) implement the SQL required to create, read, update,

and delete information in the database. This layer is described in more detail in chapter

4.10.1.

17

4.1.6 Database

The database layer is the persistent storage of the system. The database schema is kept

simple and does not include anything more complex than foreign keys and simple

constraints such as disallowing nulls or requiring unique values or value pairs.

4.2 Questions and answers system

The questions and answers system forms the core of the system that the other systems

enhance through the additional features they bring to the whole system. The entities of

the system are the questions, answers, and comments, with their relationship illustrated

in Figure 2, showing that a question can have many answers, both questions and answers

can have many comments, and that each comment can have many comments.

A question is regarded to as a single piece of content. Due to future plans described in

chapter 6, content is used as a more general concept and a question is one realization of

that concept. This is reflected in the system through the usage of Java interfaces and in

the database schema, described in more detail in chapter 4.8.3.

With each update to a question or answer, a new version of the item is created instead of

overwriting the existing entry. This allows to store a version history for questions and

answers for transparency, because different users can edit one question or answer if they

have the required permissions.

A voting system is used to allow users to easily interact with submissions from other

users, be it a question, an answer, or a comment, by showing their general like or dislike

towards a submission by up-voting or down-voting it. Action of voting for any type of

Figure 2. Relationship between question, answer, and comment entities.

18

submission is implemented through just a single endpoint by using a shared identifier for

all named types, described in detail in chapter 4.8.2.

4.3 Shard system

Shard system is implementation of FR01. Each shard has its separate set of roles for

permissions, own groups for grouping other groups and users, and own categories. In

essence, each shard is a separate fully functional sub-system of the whole system.

The shard system is used even when no shards are created by the user as on initial start-

up of the system, a special shard is created that acts as the root shard.

In order to also have support for complex organizational structures as required by NFR05,

it is possible to make shards recursively, this means that a sub-shard of a shard can in turn

have its own sub-shards. This however introduces additional challenges with the

permission system, described in detail in chapter 4.7.

An example of a fictional organization’s structure represented via usage of shards is

shown in Figure 3. In short, any organizational structure that can be represented as a tree

can be one-to-one implemented as shards in the system.

Figure 3. Example of an organization’s structure represented with shards.

19

4.4 Endpoints

The application’s resources are accessed via HTTP endpoints, where the action type is

defined by the HTTP verb and the required data for the action is provided via query

parameters or request body, depending on the HTTP verb used. This approach is

commonly called REST [10].

POJOs (Plain Old Java Objects) are used to represent the required fields and structure of

incoming data as well as fields and structure of outgoing data. POJOs of incoming data

are called request objects, and POJOs of outgoing data are called DTOs (Data Transfer

Objects).

There currently are 68 endpoint and HTTP verb combinations in total, described in detail

in Appendix 3, and summarized in the following list:

• 2 for username and password authentication

• 2 for OpenID connect

• 5 for shards

• 3 for shard members

• 8 for shard groups

• 8 for shard roles

• 5 for shard categories

• 5 for user’s followed content and shards

• 3 for user’s favourite shards preference

• 5 for user management

• 2 for content and user or group searching

• 3 for content voting

• 13 for questions, answers, and comments

• 4 for user notifications

4.4.1 Request objects

Requests objects are exclusively used to represent incoming data at API endpoints. This

approach increases code repetition by in essence being subsets of DTOs, but in return the

request objects act as a documentation for the required data and its structure at each

endpoint and also reduces risk of causing accidental changes in the API interfaces that

20

may cause front-end clients to break in some way. They also act as first layer of input

validation, reducing the amount of validations at the service layer. This input validation

is described in chapter 4.5.1.

4.4.2 Data transfer objects

DTOs are used for representing outgoing data. In general, each entity has just one

representation as a DTO, this means that there is one DTO each for shards, roles,

questions, and other entities. This approach keeps the structure of responses same,

regardless of if the vote entity is attached to a comment or a question, which simplifies

development of a front-end application by allowing to reuse components without

modifications to their input data, if the front-end is developed in a modern framework

such as Vue or React.

4.4.3 Endpoint documentation

Endpoints are automatically documented with OpenAPI specification [11] by using

SpringFox [12]. The generated documentation is used for generating an interactive user

interface for front-end developers to assist in development. Figure 4 contains a section of

the page containing all endpoints of a single controller. Different annotations are used in

controllers and on request objects to provide more info to SpringFox to use in the

generation of the schema, such as short description of the action performed with the

endpoint, as seen on the figure.

Figure 4. Section of user interface for interacting with the API endpoints.

21

4.5 Input validation

Validation of data submitted with the request is done in two layers, first layer being at the

controller layer, and second layer being at the service layer.

4.5.1 First layer

The validation at the controller layer performs validation on the structure and individual

values of the provided input.

Spring automatically checks the validity of the provided JSON where the endpoint

requires input in form of request body. Incoming JSON data is automatically mapped to

specified request objects. These request objects have per-field validation rules which are

checked before executing code in the controller methods. The validation rules validate,

for example, that a field is present, or that a numeric field’s value is in a certain range.

They also contain some additional information used by SpringFox, described in chapter

4.4.3.

Figure 5 contains an example of the validation rules on a field of a request object along

with properties for SpringFox. The message in validation rules is returned in the request’s

response, mechanism for this is described in chapter 4.9.

@ApiModelProperty(

 notes = "Name of the group",

 required = true

)

@NotNull(message = "Name must be present")

@Length(

 min = 2,

 max = 50,

 message = "Name must be between {min} and {max}
characters"

)

private String name;

Figure 5. Request object’s field validation and OpenAPI properties.

4.5.2 Second layer

Data validation at service layer involves checking validity of the data in relation to

existing data in the system, such as validating that the category the user wants to set to a

question exists in the shard where the question is, or that the role’s permissions that the

22

user is trying to change are actually modifiable. If any of these validations fail, an

appropriate exception is thrown.

4.6 Authentication and authorization

This section describes the authentication and authorization mechanisms used to limit

access to API endpoints.

4.6.1 Username and password based authentication

Username and password authentication is the default method of obtaining access to the

system’s resources, meaning no additional configuration is required to enable it. Users

can log in via manually administration-made accounts by providing a username and a

password. It is checked if a user with such name exists and if their password matches the

salted and hashed password of that account that is stored in the database. Bcrypt

password-hashing function is used for protecting the passwords.

4.6.2 OpenID Connect based authentication

OpenID Connect 1.0 is an identity layer built on top of OAuth 2.0 [13]. An example of

the specification’s implementation is Microsoft’s Azure Active Directory B2C [14],

which plays the identity provider role.

The OpenID Connect 1.0 specification has three types of authentication flows:

authorization code flow, implicit flow, and hybrid flow. The authorization flow is used to

require the front-end client to do a second request to the system to complete the

authentication. This allows to cleanly wrap the authentication result in a way that makes

the exact authentication method irrelevant to the authorization. The exact steps to perform

an authentication are described in Figure 6. Checking if an user of identity provider exists

in the system is done using the subject identifier field of the identity token as that value

is unique for every identity [15].

Implementation of the feature is done using Spring’s OpenID Connect library, but in order

to have better and simpler control over the library’s behaviour, the security filters, which

handle the authentication process, are manually added to the application’s security

configuration. This is done to control on what endpoints the flow is initiated and how the

23

authentication result is handled, as the default configuration initiates authentication on

any endpoint and is more complex to configure in a way so that the result can be wrapped.

Figure 6. OpenID Connect authorization flow implementation in the application.

The configuration required to use OpenID Connect is very minimal but requires the

identity provider to support the optional discovery mechanism that exposes the data

required for interacting with it to relying parties in a standard way. The required

configuration values are the following:

• Client ID: an identifier for the application, obtained from identity provider upon

registration of the application as a new relying party.

• Client secret: a secret for the application, obtained during registration at identity

provider

• Issuer URI (Universal Resource Identifier): URI for the issuer that the system uses

to discover the discovery endpoint to obtain rest of the information required for

interacting with the identity provider.

24

• Redirect URL (Uniform Resource Locator): URL for the front-end application of

the system that is given to the identity provider on redirect, this must be one of

the configured redirect URLs for the application in identity provider’s

configuration.

4.6.3 Authorization

On successful authentication, an access and refresh JWTs (JSON Web Tokens) are

returned. These tokens contain the user’s identifier which is used as a context in

processing of the requests. An access token is checked for with every request to protected

resources in the Authorization header of the HTTP request, and if present, the system

checks if the token is valid and non-expired. Refresh token has a longer expiration time

than access token and is used to obtain a new access token.

4.7 Permission system

Permission system encompasses roles with permissions along with shard structure of the

application and is independent of the previously covered authentication and authorization

using JWT tokens.

Permissions are grouped into roles. Each shard holds 3 default roles:

• Non-members for everyone not a member of the shard

• Member for everyone that is member of the shard

• Admin with all available permissions

The exception is the root shard which does not have a non-member role as all users of the

platform are automatically members of the root shard. It is possible to create custom roles

or to modify the permissions of all but the predefined admin role.

Permissions define what resources user has access to and what actions they can perform

with the resources. On each request, the presence of required permissions is checked at

the service level, and on absence of the permission an appropriate error is thrown.

Appendix 3 contains the permissions that are required for each API endpoint.

The permissions of a user in a specific shard are determined by the following:

25

• User’s account status

• User’s role in the shard

• User’s roles in all parent shards

The permission checking is done at service layer due to decisions to flatten the API

structure. This means that the shard’s identifier is not apparent from the request’s URI

path. This API structure simplification however reduces the amount of validation checks

that are required, reducing the risk of mistakes in validation logic.

Due to the calculation of permissions of a user in a shard also requires calculating

permissions in all parent shards, a caching system is used to reduce load on the database

and to speed up the requests.

4.7.1 User’s account status

User’s account can be in 3 different states: enabled, disabled, or in a state requiring a

password change. When user’s state is not enabled, then the user has no permissions. The

password change state is used to prompt the user to change their password after an

administration has created the account with an administrator-set password.

4.7.2 User’s role in a shard

User may not directly be a holder of a role, but instead may hold the role indirectly by

being a member of a group or member of a group’s group that holds the role. If they hold

the predefined admin role, then they have all permissions in the shard as well as in all its

recursive sub-shards.

Figure 7 illustrates the relationship between users, shards, and permissions. Of note is that

each user is related to at least one group. This is due to shard membership being

implemented as a group in order to not require another table for representing that relation.

A detail that is omitted from the figure is that the groups used in these relations can only

be groups belonging to the shard where the roles are in or belonging to that shard’s

recursive parents.

Another detail of note is that each permission is related to at least one role. This is caused

by the existence of the admin role in the root shard, which holds all permissions defined

in the system, while admin roles of other shards hold a subset of these permissions.

26

Figure 7. Relationship diagram for describing relationship between shards, users, and permissions.

4.7.3 User’s role in all parent shards

There can be cases where user is a member of one shard but is not a member of a parent

shard as it is difficult and error-prone to prohibit it due to the recursive nature of shards

and groups. In such scenarios, these users are limited to the subset of the permissions they

have in the parent shards to prevent these users from having permissions they should not

have.

Another case where role in parent shard matters is the admin role, as every admin is also

an admin in all sub-shards.

4.8 Shared Identifiers

Throughout the API, numeric identifiers are used to reference items such as specific

shards, groups, or users. In order to reduce the number of endpoints and therefore the

complexity of the API, some items share an identifier. This means that for an item that is

part of the shared identifier mechanism, it is guaranteed that it is the only item that holds

that identifier among the item types that share the identifier.

27

4.8.1 Parties

In order to simplify group and user management related endpoints, a shared identifier is

used between groups and users. This removes the need to have separate endpoints for

actions such as adding parties to a shard, or adding parties to a group. Visualization of

user’s and group’s relationship to the shared party identifier is shown in Figure 8.

Figure 8. Visualization of entities using the shared party identifier.

4.8.2 Nibbles

A nibble is a term that covers all user-created submissions under all content types. Nibble

covers questions, answers, and comments. Having these entities under a shared identifier

allows to implement voting as a single simple endpoint. It also allows to simplify

following of items for receiving notifications. Figure 9 is a visualization of entities using

that shared identifier.

Figure 9. Visualization of entities using the shared nibble and content identifiers.

4.8.3 Content

Content shared identifier is used for grouping together different content types. Currently

question is the only content type that is supported, but this approach simplifies

28

introducing other content types, such as polls or articles. Figure 9 holds a visualization of

how the content shared identifier is related to the nibble shared identifier.

4.9 Exception handling

During processing, different exceptions can happen that are either the result of an user

error, for example trying to access a resource for which they don’t have the required

permissions, or a system error, for example a database access fails. To give the API

consumers a standard format, a global exception handling system is used. This handler

maps business logic exceptions to appropriate HTTP error codes and includes the

exception’s message in the response, and on system exceptions returns a generic HTTP

500 response to avoid leaking system information outside.

Due to the Spring’s provided method of implementing a central place for exception

handling being limited by only working on exceptions thrown from controllers, an

additional handler is introduced in order to catch exceptions that happen before the

request arriving at controllers, such as security exceptions that happen at security filters.

This handler rethrows the exception from a controller context so that they can be handled

by the global exception handler.

An example of an error message returned as a result of having a disallowed page size in

request object is shown in Figure 10.

{

 "error": "Bad Request",

 "message": "Page size has to be between 1 and 200",

 "status": 400

}

Figure 10. Error message from a search request with a disallowed page size.

4.10 Database access

Database access is done using two layers, repositories and DAOs.

4.10.1 DAOs

DAOs contain the SQL used for performing queries against the database. This approach

is more error prone, but in turn allows to construct complex queries that allow to dome of

the processing required for the request that is being fulfilled at the database layer, such as

29

using a recursive SQL query to find all users that are members of a specific group.

Another reason for using plain SQL are the shared identifiers that cause the entities to be

spread across multiple database tables.

SQL injection is prevented by using prepared statements to provide input to be used in

the queries.

4.10.2 Repositories

Repositories are used in order to abstract away database schema implementation details

from services. The database schema implementation may be more complex from entity

classes due to shared identifier model. The schema used in database is illustrated in

Appendix 2.

4.11 Testing

Testing is used to verify that the system behaves as expected when put under pre-defined

scenarios.

4.11.1 Unit testing

Unit testing involves validating the behaviour of login in a small piece of code without

inclusion of other layers of the system. In case of Spring, unit tests are in essence tests

that do not initialize the Spring context. They are seldom used in this system due to there

not being many things that can be easily tested without inclusion of other components.

4.11.2 Integration testing

In context of Spring, integration tests are tests that use the Spring context. These types of

tests are extensively used for tests of the application’s layers.

Due to the system requiring PostgreSQL-specific features for the database schema, an in-

memory PostgreSQL is used. This embedded database is configured to clean its contents

after every test class.

The tests largely test from three layers:

• Filter layer: check if username and password based authentication and JWT based

authorization function as expected by sending HTTP requests to the servlet.

30

• DAO layer: validate if the written SQL in the classes functions as expected by

using the embedded PostgreSQL database as the target for the tests.

• Controller layer: check that the endpoint methods only allow access for users with

required permissions, and that the underlying layers behave as expected.

To avoid setting up the initial data with every integration test, some tests use an ordering

system where after initial setup, multiple tests are ran in the specified order. An example

is a commonly used pattern where first test tests if insertion works as intended, and second

test tests if deletion behaves as expected by deleting the record inserted with the first test.

31

5 Deployment

This chapter covers the different aspects of deploying the system.

5.1 Docker

Application is made deployable as a Docker image. This allows for platform independent

deployment without the need to install the correct dependencies on the hosting server

[16]. Using Docker is part of fulfilling NFR02.

The two parts of using docker is the Dockerfile and the docker-compose file. Dockerfile

defines how the application’s Docker image should be built and ran, while docker-

compose file defines other required images for running the application and is used to

simplify the deployment of the system. In this case, the only other image required for

running the application is the database image.

5.2 GitLab CD

During the development process, the updated application was automatically deployed to

a server in order to make it available to the front-end developer using GitLab CI/CD. The

automatic deployment consists of multiple steps:

• Build the application, verifying that there are no dependency or invalid code issues

• Test the application by running all unit and integration tests

• Create a docker image

• Deploy the docker image

These tests are all automatically ran consecutively on the same machine, but they can be

configured to run on different machines, for example to deploy the image in a separate

server.

32

6 Future plans

The future plans for the system is to develop it further to improve existing systems and

introduce new systems to better fit the needs of organizations.

Some improvements that are planned is a more extensive OpenID Connect support along

with adding SAML support.

It is also planned to add numerous other content types, such as articles and polls. Along

with that a dynamic content morphing system would be explored, where questions and

answers can be combined into an article for example, while still retaining the interactive

nature of the question content type.

In the long term there is a plan to offer the system in a SaaS (Software as a Service)

format. This can require fundamental changes to be able to securely, efficiently, and

reliably host many instances of the platform with the least resources possible.

33

7 Summary

The goal of this thesis was to create a knowledge sharing system that is aimed at usage

inside organizations, such as private companies with multiple active projects or

universities. The created system supports representing the organizational structure with

usage of the shard system, which allows to group user-created content with permissions

to limit access to that content, should such separation between different parts of the

organization be required. There are also the group and role systems to assist in

management of users. It is also possible for users to contribute to the sharing of

knowledge by creating questions and collaboratively answering them.

The created Spring Boot application fulfils the defined functional and non-functional

requirements and the author plans to develop it further to increase the usefulness of the

application in the organizational collaborative environment.

34

References

[1] AltexSoft, “Functional and Nonfunctional Requirements: Specification and

Types,” AltexSoft, 29 May 2018. [Online]. Available:

https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/.

[Accessed 9 May 2021].

[2] Oracle Corporation, “What is Java and why do I need it?,” Oracle Corporation,

[Online]. Available: https://java.com/en/download/help/whatis_java.html.

[Accessed 9 May 2021].

[3] TIOBE Software, “TIOBE Index,” TIOBE Software, 2 May 2021. [Online].

Available: https://www.tiobe.com/tiobe-index/. [Accessed 9 May 2021].

[4] Oracle Corporation, “Oracle Java SE Support Roadmap,” Oracle Corporation, 2

April 2021. [Online]. Available: https://www.oracle.com/java/technologies/java-

se-support-roadmap.html. [Accessed 9 May 2021].

[5] Baeldung, “A Comparison Between Spring and Spring Boot,” Baeldung, 24

March 2021. [Online]. Available: https://www.baeldung.com/spring-vs-spring-

boot. [Accessed 9 May 2021].

[6] Gradle Inc., “Gradle Build Tool,” Gradle Inc., 2021. [Online]. Available:

https://gradle.org/. [Accessed 9 May 2021].

[7] Gradle Inc., “Gradle vs Maven Comparison,” Gradle Inc., [Online]. Available:

https://gradle.org/maven-vs-gradle/. [Accessed 9 May 2021].

[8] The PostgreSQL Global Development Group, “PostgreSQL,” The PostgreSQL

Global Development Group, [Online]. Available: https://www.postgresql.org/.

[Accessed 9 May 2021].

[9] https://www.liquibase.org/, “Liquibase,” https://www.liquibase.org/, [Online].

Available: https://www.liquibase.org/. [Accessed 9 May 2021].

[10] Codecademy, “What is REST?,” Codecademy, [Online]. Available:

https://www.codecademy.com/articles/what-is-rest. [Accessed 9 May 2021].

[11] “What Is OpenAPI?,” [Online]. Available:

https://swagger.io/docs/specification/about/. [Accessed 9 May 2021].

[12] “SpringFox,” [Online]. Available: http://springfox.github.io/springfox/. [Accessed

9 May 2021].

[13] “OpenID Connect,” [Online]. Available: https://openid.net/connect/. [Accessed 9

May 2021].

[14] “What is Azure Active Directory B2C?,” 19 September 2019. [Online]. Available:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/overview. [Accessed

9 May 2021].

[15] N. Sakimura, NRI, J. Bradley, P. Identity, M. Jones, Microsoft, B. d. Medeiros,

Google, C. Mortimore and Salesforce, “OpenID Connect Core 1.0 incorporating

errata set 1,” 8 November 2014. [Online]. Available:

35

https://openid.net/specs/openid-connect-core-1_0.html#IDToken. [Accessed 9

May 2021].

[16] “Why Docker?,” [Online]. Available: https://www.docker.com/why-docker.

[Accessed 10 May 2021].

36

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Karl Viik

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Server-Side Application of Knowledge Sharing System in Question and

Answer Format”, supervised by Ago Luberg

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

11.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

37

Appendix 2 – Database schema of the system

38

Appendix 3 – Table of endpoints with short description of the action and the required permissions

HTTP verb Endpoint path Description of endpoint Required permissions

POST /api/auth/login

Authenticate the user with username

and password combination. N/A

GET /api/auth/token

Retrieve a fresh access token with

the provided refresh token. N/A

GET /api/oauth2/authorization/oidc

Redirect to identity provider’s site

for authentication. N/A

GET /api/oauth2/login/oidc

Exchange identity provider’s token

for access and refresh token. N/A

GET /api/v1/follow/shard

Retrieve list of the shards the

requesting user is following.

Only shards where user has the READ permission are

returned.

POST /api/v1/follow/shard Start following a new shard.

Can only start following shards where user has the READ

permission.

DELETE /api/v1/follow/shard/{id} Stop following a shard. No permissions are required.

39

POST /api/v1/follow/item Start following a nibble.

Can only start following nibbles that are from a shard

where user has the READ permission.

DELETE /api/v1/follow/item/{id} Stop following a nibble. No permissions are required.

GET /api/v1/favourite/shard

Get list of shards that the user has

marked as favourite.

Only shards where user has the READ permission are

returned.

POST /api/v1/favourite/shard Mark a new shard as a favourite.

Can only mark shards where user has READ permission

as favourite.

DELETE /api/v1/favourite/shard/{id} Unmark a shard as a favourite. No permissions are required.

GET /api/v1/category

Retrieve the list of categories of a

category specified as a query

parameter. Requires READ permission of the shard.

POST /api/v1/category Create a new category in a shard.

Requires the CATEGORIES permission in the shard

where user is attempting to add a new category.

GET /api/v1/category/{id}

Retrieve details of a specific

category.

Requires READ permission of the shard where the

category is in.

DELETE /api/v1/category/{id} Delete a specific category.

Requires CATEGORIES permission in the shard where

the category is in.

PUT /api/v1/category/{id} Update a category.

Requires the CATEGORIES permission in the shard

where the category is in.

POST /api/v1/user Create a new user.

Requires the USER_ADMINISTRATION permission in

the root shard.

40

GET /api/v1/user/self

Retrieve details of currently

authenticated user, including

permissions in all shards. No permissions are required.

GET /api/v1/user/{id} Retrieve details of a specific user. No permissions are required.

PUT /api/v1/user/{id} Update details of a specific user.

Either requires the USER_ADMINISTRATION

permission or the updating user to match the updated

user.

POST /api/v1/user/{id}/password Change password of a specific user.

Either requires the USER_ADMINISTRATION

permission or the updating user to match the updated

user.

POST /api/v1/search

Search for content in specified

shards, with option of including

content from sub-shards of the

specified shards.

Only results from shards where user has the READ

permission are returned.

GET /api/v1/content/vote/item/{id} Get the vote data of a certain nibble.

Requires READ permission in the shard where the nibble

is.

POST /api/v1/content/vote/item/{id} Vote on a certain nibble.

Requires the CONTRIBUTE_CONTENT permission in

the shard where the nibble is in.

GET /api/v1/content/vote/content/{id}

Get the vote data of all nibbles under

a certain content identifier.

Requires READ permission for the shard where the

content is in.

POST /api/v1/content/qa

Create a new question type content

in the specified shard.

Requires the CONTRIBUTE_CONTENT permission in

the shard.

41

DELETE /api/v1/content/qa/{id}

Delete a specified question type

content item.

Requires the DELETE_CONTENT permission in the

shard where the content is in.

GET /api/v1/content/qa/{id}

Retrieve data about a certain

question type content.

Requires READ permission in the shard where the

content is in.

GET /api/v1/content/qa/{id}/history

Retrieve version history of the

specified question.

Requires READ permission in the shard where the

question is in.

PUT /api/v1/content/qa/{id} Update a question.

Either requires the EDIT_CONTENT permission or the

updating user to be the creator of the question whilst

having the CONTRIBUTE_CONTENT permission.

POST /api/v1/content/qa/{id}/accept

Mark a specified answer as the

accepted answer of a question.

Either requires the EDIT_CONTENT permission or the

marking user to be the creator of the question whilst

having the CONTRIBUTE_CONTENT permission.

DELETE /api/v1/content/qa/{id}/accept Remove the accepted answer.

Either requires the EDIT_CONTENT permission or the

unmarking user to be the creator of the question whilst

having the CONTRIBUTE_CONTENT permission.

POST /api/v1/content/qa/{id}/answer

Create a new answer for the

specified question.

Requires the CONTRIBUTE_CONTENT permission in

the shard where the question is in.

GET /api/v1/content/qa/{id}/answer/{id}

Retrieve details of the specified

answer.

Requires the READ permission in the shard where the

question is in.

GET /api/v1/content/qa/{id}/answer/{id}/history

Retrieve version history of the

specified answer.

Requires the READ permission in the shard where the

question is in.

42

PUT /api/v1/content/qa/{id}/answer/{id} Update the specified answer.

Requires either the EDIT_CONTENT permission or the

updater to be the creator of the answer whilst having

CONTRIBUTE_CONTENT permission.

POST /api/v1/content/qa/{id}/comment

Create a comment under the

specified nibble under the specified

question.

Requires the CONTRIBUTE_CONTENT permission in

the shard where the question is in.

PUT /api/v1/content/qa/{id}/comment/{id} Update the specified comment.

Requires the updater to be the creator of the comment and

hold the CONTRIBUTE_CONTENT permission.

GET /api/v1/shard Get list of all shards.

Only shards where user has the READ permission are

returned, and list of sub-shards only includes those sub-

shards where user also has the READ permission.

POST /api/v1/shard

Create a new shard as a sub-shard of

the specified shard.

Requires the SHARD_CHANGE permission in the parent

shard of the newly created shard.

GET /api/v1/shard/{id}

Retrieve details of the specified

shard.

Requires the READ permission in the shard. Only these

sub-shards are detailed in the response where user also

has a READ permission.

DELETE /api/v1/shard/{id}

Delete a shard if it does not have any

sub-shards. Requires the SHARD_DELETE permission for the shard.

PUT /api/v1/shard/{id} Update the details of a shard.

Requires the SHARD_CHANGE permission in the shard.

Additionally, requires the SHARD_MOVE permission if

user is attempting to change the parent of the shard.

GET /api/v1/shard/{id}/member

Retrieve list of all members of the

shard. Requires the READ permission in the shard.

43

POST /api/v1/shard/{id}/member

Add a new party to the list of

members of the shard.

Requires the SHARD_MEMBERS permission in the

shard.

DELETE /api/v1/shard/{id}/member/{id}

Remove a party from the members

of the shard.

Requires the SHARD_MEMBERS permission in the

shard.

GET /api/v1/shard/{id}/group

Retrieve list of all groups defined in

the shard. Requires the READ permission in the shard.

POST /api/v1/shard/{id}/group Create a new group in the shard. Requires the SHARD_GROUPS permission in the shard.

GET /api/v1/shard/{id}/group/{id}

Get details of a specific group in the

shard. Requires the READ permission in the shard.

PUT /api/v1/shard/{id}/group/{id}

Update details of the specified

group. Requires the SHARD_GROUPS permission in the shard.

DELETE /api/v1/shard/{id}/group/{id} Delete the specified group. Requires the SHARD_GROUPS permission in the shard.

GET /api/v1/shard/{id}/group/{id}/member

Get the members of the specified

group. Requires the READ permission in the shard.

POST /api/v1/shard/{id}/group/{id}/member

Add a new party to the list of

members of the specified group. Requires the SHARD_GROUPS permission in the shard.

DELETE /api/v1/shard/{id}/group/{id}/member/{id}

Remove a party from the list of

members of the group. Requires the SHARD_GROUPS permission in the shard.

GET /api/v1/shard/{id}/role

Retrieve list of roles defined in the

shard. Requires the READ permission in the shard.

44

POST /api/v1/shard/{id}/role

Create a new custom role in the

shard. Requires the SHARD_ROLES permission in the shard.

GET /api/v1/shard/{id}/role/{id}

Get details of the specified role,

including list of permissions. Requires the READ permission in the shard.

PUT /api/v1/shard/{id}/role/{id} Update the specified role. Requires the SHARD_ROLES permission in the shard.

DELETE /api/v1/shard/{id}/role/{id}

Delete the specified role if it is a

custom role. Requires the SHARD_ROLES permission in the shard.

GET /api/v1/shard/{id}/role/{id}/member

Retrieve the list of parties that hold

the specified role. Requires the READ permission in the shard.

POST /api/v1/shard/{id}/role/{id}/member

Add a new party to the list of the

role's holders. Requires the SHARD_ROLES permission in the shard.

DELETE /api/v1/shard/{id}/role/{id}/member/{id}

Revoke the specified role from the

specified party. Requires the SHARD_ROLES permission in the shard.

GET /api/v1/notification

Retrieve list of notifications, ordered

by freshness. These notifications

contain data the front-end can use to

construct a link to the resource the

notification is about. No permissions are required.

GET /api/v1/notification/count

Retrieve the amount of notifications

the user has. No permissions are required.

DELETE /api/v1/notification/manage/{id} Delete a certain notification. No permissions are required.

45

PUT /api/v1/notification/manage/{id} Mark a certain notification as read. No permissions are required.

POST /api/api/v1/partysearch

Search for parties, used to simplify

adding parties to roles, groups, and

shards.

Requires the READ permission in the shard from which

the search is being made, specified in the search request.

46

Appendix 4 – Table of existing solutions with short describing summaries

Name Link Summary

Wpmudev QA https://github.com/wpmudev/qa

Open-source questions and answers system PHP plugin for Wordpress,

allowing to set permissions for each role used on the site, not maintained since

2016.

PHPancake https://sourceforge.net/projects/phpancake/

An open-source questions and answers system made in PHP, not maintained,

last active with a beta release in 2009.

Cahoots! https://sourceforge.net/projects/cahoots/

An open-source questions and answers platform made in PHP, aimed towards

communities. Not maintained, last active in 2010.

CNPROG https://github.com/chagel/CNPROG

An open-source questions and answers system made in Python. Features tags,

votes and revision history for questions and answers. Not maintained, last

active in 2010.

Shapado https://github.com/ricodigo/shapado

An open-source questions and answers system for hosting different

communities implemented in Ruby. Not maintained, last active in 2012.

LampCMS https://github.com/snytkine/LampCMS

An open-source questions and answers program implemented in PHP using

MongoDB, aimed towards being highly scalable. Not maintained, last active in

2015.

https://github.com/wpmudev/qa
https://sourceforge.net/projects/phpancake/
https://sourceforge.net/projects/cahoots/
https://github.com/chagel/CNPROG
https://github.com/ricodigo/shapado
https://github.com/snytkine/LampCMS

47

OSQA

https://github.com/OSQA/osqa

https://github.com/dzone/osqa

An open-source questions and answer system implemented in Python, fork of

the CNPROG project. The open-source project has been abandoned by the

creators in favour of the paid version, AnswerHub. Last active in 2015.

Smartr https://github.com/dkd/smartr/

An archived open-source questions and answers system implemented in Ruby

with support for common features such as votes and tags. Not maintained,

last active in 2014.

Qaror https://github.com/mateuszdw/qaror

A simple open-source questions and answers platform developed in Ruby. Not

maintained, last active in 2016.

Kunjika / Memoir

https://github.com/shivshankardayal/Kunjika

https://github.com/shivshankardayal/memoir

A simple open-source questions and answers system built out of creator’s

dissatisfaction with other existing open-source options for interacting with

readers of their books. Built in Python, not maintained, last active in 2017.

Qwench https://github.com/anantgarg/Qwench

An open code self-proclaimed StackOverflow clone built using PHP in around

2010, not maintained, last active in 2018.

Django-

knowledge https://github.com/zapier/django-knowledge

A simple open-source questions and answers style knowledge base built using

Python, aimed towards using as a help desk with features such as anonymous

questions or limiting visibility to the question asker and the configured staff.

Not maintained, last active in 2017.

Haydle https://haydle.com/

A closed source questions and answers system aimed towards enterprises,

currently not being made available to new customers as of May 2021.

SabaiDiscuss https://sabaidiscuss.com/

A paid questions and answers plugin for WordPress sites. Has features such as

hierarchical categories and limiting access based on roles. Actively supported

by the creator.

https://github.com/OSQA/osqa
https://github.com/dkd/smartr/
https://github.com/mateuszdw/qaror
https://github.com/shivshankardayal/Kunjika
https://github.com/anantgarg/Qwench
https://github.com/zapier/django-knowledge
https://haydle.com/
https://sabaidiscuss.com/

48

Coordino https://github.com/Datawalke/Coordino

An open-source knowledge software built with PHP, more aimed towards wider

communities with features such as user rewards and spam filtering. Not

maintained, last active in 2015.

Quora https://www.quora.com/

A popular closed source and free to use question and answer community

platform.

Question2Answer https://www.question2answer.org/

A widely used open-source questions and answers system built in PHP, aimed

towards being used on public sites for interaction with and between visitors.

Still maintained with latest commit in repository being from November of

2020.

Allanswered https://www.allanswered.com/

A closed source and paid knowledge management system encompassing

questions and answers format interaction as well as wiki pages. Contains many

integrations with other tools such as Slack and Microsoft Teams. Has feature of

creating communities for grouping different things together.

Askbot https://github.com/ASKBOT/askbot-devel

A standard open-source Q&A forum system built with Python. Somewhat

maintained with last activity in December of 2020.

Talkyard https://github.com/debiki/talkyard

An actively maintained and open-source community discussion platform

developed in Scala. Is developed with many use cases in mind, such as using as

customer support or obtaining feedback.

Biostar-central https://github.com/ialbert/biostar-central

An open-source questions and answers system built with Python, with common

features such as votes and tags. Actively maintained.

Scoold https://github.com/Erudika/scoold

An open-source questions and answers platform built with Java featuring

common features of a Q&A system. Aimed towards usage in teams. Actively

maintained.

https://github.com/Datawalke/Coordino
https://www.quora.com/
https://www.question2answer.org/
https://www.allanswered.com/
https://github.com/ASKBOT/askbot-devel
https://github.com/debiki/talkyard
https://github.com/ialbert/biostar-central
https://github.com/Erudika/scoold

49

Quandora https://www.quandora.com/

A closed source and paid solution with feature allowing to create separate bases

for grouping questions, in essence categories.

Qpixel https://github.com/codidact/qpixel

An open-source questions and answers system built in Ruby with common

features, used in a network similar to the Stack Exchange communities.

Actively maintained.

Mamute https://github.com/caelum/mamute

An open-source questions and answers platform developed in Java, boasting

common features of a Q&A platform. Not maintained, last activity in 2019.

Tribe https://tribe.so/

A closed source and paid solution for a community platform. Supports many

content types, such as questions and articles. Built to be public and used as a

method of driving user engagement with a brand.

Vanilla https://vanillaforums.com/en/

A closed source and paid solution aimed towards using it as a customer

engagement platform with features such as gamification through points system,

forum, private messaging and support-focused knowledge base.

Questions for

Confluence https://www.atlassian.com/software/confluence/questions

A closed source and paid addition to the already paid Confluence solution

aimed towards usage in companies who are already using Confluence.

AnswerHub https://devada.com/answerhub/

A closed source and paid solution aimed at enterprises with analytics and

different content types. Originated from OSQA.

StackOverflow

for Teams https://stackoverflow.com/teams

A closed source and paid solution aimed at teams and enterprises with features

such as articles, integrations with tools such as GitHub and Slack, and analytics.

https://www.quandora.com/
https://github.com/codidact/qpixel
https://github.com/caelum/mamute
https://tribe.so/
https://vanillaforums.com/en/
https://www.atlassian.com/software/confluence/questions
https://devada.com/answerhub/
https://stackoverflow.com/teams

