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Abstract

The widespread adoption of the Internet of Things (IoT) introduces significant security
challenges, particularly in securing devices from cyber threats. This thesis explores the
application of data mining and machine learning (ML) techniques to improve the security
of IoT devices by analyzing and predicting vulnerabilities within their networks, aimed to
identify patterns and behaviors indicative of potential security threats. The [oT-23 dataset
is used, comprising network traffic from various IoT devices, to implement association
rule mining (ARM) and ML methodologies.

Two methods for analyzing IoT network traffic are presented. The first approach employs
three ARM algorithms: Apriori, FP-Growth, and ECLAT. The goal is to analyze network
traffic and discover association rules that show regular patterns indicative of specific traffic
activity and potential malicious behavior. The experimental results suggest that FP-Growth
offers the best performance in terms of consistent time and memory efficiency, particularly

in the larger datasets.

The second method employs three ML techniques: Decision Tree, Random Forest, and K-
Nearest Neighbors. The goal is to accurately predict and classify benign and different types
of malicious activities within [oT traffic data. The models demonstrated high precision in
identifying traffic activities, with Decision Tree and Random Forest achieving an accuracy

of 86%, while K-Nearest Neighbors showed a slightly lower accuracy of 85%.

The comparison of ARM and ML results showed that ARM provides clear, interpretable
patterns useful to make the decisions of models more clear and comprehensible to people.
On the other hand, ML offers stronger predictive capabilities, handling complex data

patterns and relationships.

The thesis is written in English and is 47 pages long, including 6 chapters, 3 figures and 12
tables.



Annotatsioon
IoT-seadmete haavatavuste analiiiis ja ennustamine andmekaeve ja

masinoppe meetodite abil

Asjade Interneti (IoT) laialdane kasutuselevott toob kaasa olulisi turvaprobleeme, eriti
seadmete kaitsmisel kiiberohtude eest. See t66 uurib andmekaeve ja masindppe tehnikate
rakendamist IoT-seadmete turvalisuse parandamiseks, analiiiisides ja ennustades nende
vorkude haavatavusi, tuvastades turvaohtudele viitavaid mustreid ja seaduspérasusi and-
metes. Metoodikate rakendamiseks kasutatakse [oT-23 andmestikku, mis sisaldab erinevaid

vorguliikluse tiitipe mitmesugustest [oT-seadmetest.

IoT-vorguliikluse analiitisimiseks esitatakse kaks meetodit. Esimene kasutab kolme as-
sotsiatsioonireeglite kaevandamise algoritmi: Apriori, FP-Growth ja ECLAT. Eesmirk
on analiilisida vorguliiklust ja leida seoseid ja mustreid, mis viitavad voi iseloomustavad
kindlat vorguliikluse tiitipi voi vdimalikku kiiberohtu. Eksperimentide tulemused vi-
itavad, et FP-Growth pakub aja ja mélu kasutuse osas parimat tulemust, eriti suuremate

andmemahtude korral.

Teine meetod kasutab kolme masinOppe meetodit: Decision Tree, Random Forest ja
K-Nearest Neighbors. Eesmirk on IoT vorguliikluse andmetes tidpselt ennustada ja klas-
sifitseerida tavalist kditumist ja erinevat tiilipi kiiberohte. Treenitud mudelid niitasid
vorguliiklustegevuste tuvastamisel head tipsust, Decision Tree ja Random Forest saavu-

tasid 86% tidpsuse, samas kui K-Nearest Neighbors niitas veidi madalamat tdpsust 85%.

Assotsiatsioonireeglite kaevandamise ja masindppe tulemuste vOrdlus nditas, et assotsiat-
sioonireeglite kaevandamine pakub selgeid ja tdlgendatavaid mustreid, mis teevad mudelite
otsuseid inimestele arusaadavamaks. Masindpe pakub aga paremaid ennustamisvdimalusi,

kisitledes keerulisi andmemustreid ja seoseid.

Loputoo on kirjutatud inglise keeles ning sisaldab teksti 47 lehekiiljel, 6 peatiikki, 3 joonist,
12 tabelit.
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1. Introduction

The Internet of Things (IoT) is a broad network where devices, sensors, and everyday
items are connected through the internet, allowing fast and efficient communication and
data exchange. 10T devices have electronics, sensors, and software that enables them to

collect and exchange data automatically, without human intervention [1].

IoT has been actively integrated into different processes of everyday routines, improving
efficiency and accuracy in many fields, from healthcare to transportation and automotive
industries [2]. The International Data Corporation (IDC) estimates that investments in the
IoT ecosystem would exceed $1 trillion by 2026, with a compound annual growth rate
(CAGR) of 10.4% between 2023 and 2027 [3].

I0T creates a dynamic infrastructure, where devices automatically communicate and
exchange data from sensors with each other. This connectivity results in an effective
technology, optimizing processes, offering convenience and efficiency in various aspects

of daily living and industrial operations [1].

Unfortunately, the broad adoption of 10T has also led to serious security challenges. Due
to interconnected nature, the devices are especially vulnerable to cybersecurity attacks and
risks. The devices may leak sensitive data, violating user privacy and potentially resulting
in serious consequences like data breaches and unauthorized access [4], [S]. For example,
unauthorized access to IoT devices can enable attackers to manipulate critical healthcare

devices or disrupt transportation systems, leading to major consequences.

Moreover, traditional security measures are often insufficient for IoT devices, due to their
unique characteristics, such as limited processing power, high volume of data, and energy
constraints [6], [7], [8]. As a result, there is a need to develop adaptive security solutions
capable of protecting IoT ecosystems without compromising their functionality. This work

aims to address these gaps by utilizing data mining and machine learning techniques.

The main goal of this work is to improve the security of IoT devices by accurately
identifying, analyzing, and predicting the behavior and potential vulnerabilities in these
devices, using association rule mining and machine learning techniques. The goal is to
uncover patterns and traffic characteristics indicative of various 10T traffic activity types

and predict these potential security threats, enabling proactive measures.



The main goal is divided into three objectives:

1. To use association rule mining techniques to analyze and discover interesting patterns
and rules from IoT device traffic data.

2. Apply machine learning algorithms to predict and classify different types of traffic
activity or potential attacks.

3. Evaluate the effectiveness of different association rule mining and machine learning
methods in identifying and predicting various loT traffic activity types, providing
insights into the suitability of each method for addressing the specific challenges of

IoT device security.
This work aims to provide insights into mitigating vulnerabilities in IoT devices by

analyzing, comparing, and evaluating data mining and machine learning methodologies,

thereby contributing to a safer and more secure interconnected society.
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2. Background

In the following sections, the related background and concepts of association rule mining

and machine learning are elaborated.

2.1 Association Rule Mining

Organizations can now gather large amounts of data as a result of the rapid progress in the
collection of user data and storage systems. However, because of the enormous amount
of data, the process of selecting and extracting valuable data patterns happens to be quite

difficult, standard data analysis tools are frequently useless or inefficient [7].

Data mining (DM) is a process of extracting and analyzing useful information or data
patterns in large amounts of data [9]. While data mining includes a range of techniques
for data analysis, its main goal is the exploration and description of data patterns. These
processes involve identifying significant data patterns or relationships, that represent the

underlying connections within the data [10].

Association rule mining (ARM) is a major DM technique used to discover interesting
patterns or relationships, known as association rules, within large datasets. Association
rules describe the different correlations, frequent patterns, relationships, or dependencies

among items in transactions or records [11].

An association rule is an expression of the type X = Y, where X and Y are sets of items
or variables and X N'Y = @. X is referred to as the antecedent, it represents a set of
items that are found together in transactions or records. Y is known as the consequent, it
represents another set of items that are associated with or likely to occur together with the
items in set X. The rule X = Y implies that if items in set X are present, then items in set

Y are also likely to be present in the same transaction or record [12].

Before association rules can be mined, frequent itemsets need to be identified, which
refer to groups of variables in data that appear together with a significant frequency [13].
This frequent occurrence together indicates potential strong relationships or associations

between the variables.

Support of the rule evaluates how frequently the combination of items X and Y appears

11



together in the dataset. It is the percentage of transactions that contain both X and Y [11].

For the rule X = Y, the support is calculated by the following formula [13]:
Support(X = Y)=P(XUY) (1)

The probability P(X UY’) indicates that a transaction contains both X and Y, which is
the union of itemsets X and Y. For example, if we have a dataset of 100 transactions and
40 of them contain both items X and Y, then the support for the association rule X = Y
would be 40%.

The minimum support threshold is used to determine the frequency of an itemset. It is
the minimum value that an itemset must meet to be considered frequent. If the frequency

of the itemset meets or exceeds the specified threshold, it is considered frequent [9].

Confidence of the rule is a measure of the strength of the association between X and Y.
For the rule X = Y/, the confidence is calculated by the following formula [13]:

Confidence(X = Y) = P(Y|X) (2)

It measures the probability of finding item Y in a transaction given that item X is also
present there, which is the conditional probability P(Y|X). For example, if out of the
40 transactions containing both X and Y, 30 transactions also contain item X, then the

confidence for the association rule X = Y would be 75%.

The minimum confidence threshold is the minimum value that the confidence of a rule
must meet in order to be considered useful. If the confidence of the rule meets or exceeds

the specified threshold, the rule is considered strong [9].

ARM focuses on finding association rules that meet the set minimum support and confi-
dence thresholds [12]. Given the large amount of data processed, users usually set values
of support and confidence to exclude rules that may not be interesting or relevant. This

allows to focus on more important, useful, and reliable rules.

While ARM techniques have been effectively used in a number of fields, including market
basket analysis, recommendation systems, healthcare, and manufacturing sectors, they are
not without their limitations [14]. The execution time grows exponentially as the number
of items increases. Standard ARM techniques need a substantial amount of computational
time when processing immense volumes of data [8]. Along with that, ARM needs data
preparation prior to application. The algorithms expect binary data, which requires the

converting or discretization of continuous numerical values [15].

12



In the following sections, the most commonly used ARM algorithms are presented and

explained.

2.1.1 Apriori

Apriori is the first ARM technique that introduced the use of support-based pruning to
effectively manage the exponential growth of candidate itemsets. The algorithm employs a
systematic approach to identify frequent itemsets within a dataset, which are then used to

derive meaningful association rules [12].
Apriori is comprised of four primary steps [12]:

1. Inmitialization: Scanning the dataset to calculate the support for each item and
collecting those that meet a predefined minimum support threshold.

2. Candidate Generation: Using a breadth-first search to iteratively generate larger
candidate itemsets based on the frequent itemsets discovered in the previous iteration.

3. Pruning: Applying the Apriori principle, where all supersets of an infrequent itemset
are also infrequent, thus significantly reducing the number of candidate itemsets.

4. Termination: Ending the process when no new frequent itemsets are generated, the

algorithm outputs the discovered frequent itemsets with their corresponding support.

Pseudocode for the Apriori Algorithm [16]

Algorithm 1 Apriori

1: Inputs:

2: D: Dataset of transactions;

3: min_support: Minimum support threshold;

4: QOutputs:

5. L: List of all frequent itemsets;

6: Procedure:

7: Initialize L, with frequent 1-itemsets. > Initialization
8 k=2

9: while L;,_; # 0 do
10: Generate C}, by joining L, with itself; > Candidate Generation
11: Count support for each candidate in CY;
12: Prune candidates in C}; not meeting min_support; > Pruning
13: Ly, = {c € Cy | Supp(c) > min_support};
14: E=k+1
15: end while > Termination
16: Concatenate Ly, Lo, ..., Ly into L, containing all sizes’ frequent itemsets;
17: Return L.

13



Algorithm 1 presents the details of the Apriori algorithm. In this algorithm, DD denotes the
dataset of transactions, where each transaction is a set of items, and min_support is the
minimum support threshold that determines which itemsets are considered frequent enough
for further analysis. In line 7, the initialization process involves identifying individual
items in the dataset that meet the minimum support threshold, forming the first layer of
potential itemsets L;. In lines 8 to 15, the algorithm iterates to find all frequent itemsets.
In line 10, candidate itemsets C', are generated by joining itemsets from L;_; with itself.
In lines 11 to 14, the support for each candidate in CY, is calculated. Transactions in D
are scanned and each candidate’s support count is updated. Itemsets not meeting the
min_support are pruned, and those that do are added to L. The algorithm increments &
and continues this process until L;_; is empty. Finally, in line 16, all frequent itemsets of
various sizes from Ly, Lo, ..., Lj_; are concatenated into L, which contains all frequent

itemsets identified by the algorithm.

Apriori also has its limitations. It can still be computationally expensive, especially for
large datasets, due to multiple scans of the data for support counting and the expensive

generation of candidate itemsets [17].

2.1.2 FP-Growth

The FP-Growth (Frequent Pattern Growth) algorithm is a notable improvement in ARM. It
addresses several limitations of the Apriori algorithm by using a more efficient approach
for detecting frequent itemsets without the need for candidate generation and multiple
database scans. FP-Growth uses a tree-like structure, referred to as FP-tree, to store
compressed information about frequent patterns within the dataset. This method improves
the performance, especially in large and sparse datasets, by eliminating the repeated dataset

scans required by Apriori [17].

FP-Growth is comprised of two primary steps [17]:

1. Building the FP-tree:
(a) The dataset is scanned to count the frequency of each item.
(b) Items are sorted in decreasing order of frequency to form a list.
(c) Transactions are sorted based on this list and the FP-tree is constructed by
inserting sorted transactions into the tree.
2. Mining the FP-tree:
(a) Frequent itemsets are extracted through a depth-first traversal of the FP-tree.
(b) For each item in the tree, a conditional FP-tree is constructed, representing a

smaller dataset that includes only transactions containing that item.
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(c) The conditional FP-tree is then mined recursively to extract frequent itemsets.

Pseudocode for the FP-Growth Algorithm [18]

Algorithm 2 FP-Growth

Inputs:

D: Dataset of transactions;

min_support: Minimum support threshold;

Outputs:

F: List of all frequent itemsets;

Procedure:

Scan D to find the support count of 1-itemsets;

Sort D and initialize the FP-tree with a root labeled "null";

for each transaction ¢ in D do > Building the FP-tree
Order items in ¢ by descending support count;
Insert ordered ¢ into the FP-tree, incrementing counts for existing nodes;

: end for

. Initialize F'; > Mining the FP-tree

: for each item 7 do

Extract paths leading to ¢ in FP-tree;

Construct conditional FP-tree for ¢;

Recursively mine the conditional FP-tree;

Collect all frequent itemsets involving ¢ into F';

: end for

: Return F.

R A A R o

DD = = = = e e e e e e
SNl AN A R e

Algorithm 2 presents the details of the FP-Growth algorithm. In this algorithm, D denotes
the dataset of transactions, each transaction being a set of items, and min_support is
the minimum support threshold, that determines which itemsets are considered frequent
enough for further analysis. In line 7, the dataset D is scanned to find the support count
of 1-itemsets. In lines 8 to 12, the dataset D is sorted based on the frequency of items,
for the efficient construction of the FP-tree. The root of the FP-tree is created and labeled
as "null," serving as the starting point for all transactions. Each transaction ¢ from the
sorted dataset is inserted into the FP-tree. Transactions are broken down by items and
each item is inserted into the tree according to the frequency order. If an item already
exists in the current path, its count is incremented. Otherwise, a new node is created.
This step iteratively builds the tree by adding all transactions. In lines 13 to 18, an empty
list £ is initialized to hold all frequent itemsets discovered during the mining process.
For each item 7 in the FP-tree, paths leading to ¢ are extracted to form a conditional
pattern base. This pattern base represents a collection of paths in the FP-tree that end
with the item ¢ and include all the items that appear before 7 in those paths. A conditional
FP-tree is then constructed from this pattern base by counting the itemsets in the paths

that meet the min_support. The algorithm recursively mines these conditional FP-trees,

15



continually breaking the problem into smaller sub-problems. Frequent itemsets involving
1 are collected into the list /'. After all items have been processed and their sub-trees

explored, the complete list of frequent itemsets £’ is returned.

FP-Growth outperforms Apriori in terms of performance and scalability by eliminating
candidate generation and multiple database scans, which is particularly advantageous
for large datasets. Although FP-Growth requires more memory to store the FP-tree data
structure, the overall advantages greatly outweigh this limitation. The compact structure
of the FP-tree improves scalability and reduces the computational load. Furthermore, FP-
Growth divides the mining process into smaller tasks using conditional FP-trees, enabling
parallel processing that further improves its performance [17].

2.1.3 ECLAT

ECLAT (Equivalence Class Clustering and bottom-up Lattice Traversal) offers a distinct
approach to ARM by using a vertical data structure. This method differs from the horizontal
approach of the Apriori and FP-Growth algorithms, focusing instead on transaction ID
intersections to find frequent itemsets. ECLAT transforms the dataset into a vertical format
where each item is associated with a list of transaction IDs in which it appears. This
structure allows ECLAT to efficiently calculate itemset supports through set intersection
operations, which can be significantly faster than the repeated data scans used in other
methods [17].

ECLAT is comprised of four primary steps [17]:

1. Inmitialization: Converting the dataset into a vertical format, where each item is
associated with a list of transaction IDs that contain it.

2. Candidate Generation: Generating candidate itemsets for each item by intersecting
transaction ID lists and calculating their support.

3. Recursive Mining: Expanding itemsets recursively by intersecting transaction IDs
of combined items and checking if the resulting set meets the minimum support
threshold.

4. Termination: Ending the process when no further itemsets can be generated that

meet the required support level.

Algorithm 3 presents the details of the ECLAT algorithm. In this algorithm, D denotes
the dataset of transactions, each transaction being a set of items, and min_support is
the minimum support threshold that determines which itemsets are considered frequent

enough for further analysis. In line 7, the initial step involves transforming the horizontal

16



transaction dataset into a vertical format. This means instead of listing transactions by
items, each item is associated with a list of transaction IDs where it appears, referred to
as the TID set. The vertical format is needed for quick set intersections in later steps. In
line 8, items that do not meet the minimum support threshold are filtered out. An empty
list E is initialized in line 9 to store all frequent itemsets discovered. In lines 10 to 16, for
each item ¢, candidate itemsets are generated by considering pairs of items ¢ and j. The
support for each candidate pair {i, j} is calculated by intersecting their TID sets. If the
support meets the minimum support threshold, the itemset {7, j} is added to the list F.
This process is recursively applied to generate larger itemsets from {i, j}, continuing until
no further itemsets meet the required support threshold. Finally, the algorithm returns the

list £ containing all the frequent itemsets discovered.

Pseudocode for the ECLAT Algorithm [19]

Algorithm 3 ECLAT

Inputs:
D: Dataset of transactions;
min_support: Minimum support threshold;
Outputs:
E': List of frequent itemsets;
Procedure:
Convert D into a vertical data format; > Initialization
Filter items with support > min_support;
Initialize £ as an empty list to store frequent itemsets;
for each item 7 in D do
Generate candidate itemsets starting with ¢; > Candidate Generation
for each item j occurring with ¢ do
Compute support for {7, j} by intersecting their TID sets;
if support of {4, j} meets min_support then
Add {i,j} to E,;
Recursively generate larger itemsets from {i, j}; > Recursive mining
end if
end for
: end for
: Return £

R A A S e

DN = = = = e e e = =
S Y XN E RN 2O

However, while ECLAT offers notable advantages in terms of efficiency and memory
usage, it also has its limitations. One notable drawback is its performance degradation
with increasing dataset sparsity. As ECLAT relies on vertical data representation, where
transactions are stored as lists of items, sparse datasets may lead to longer transaction ID
lists and subsequently slower intersection operations, reducing its efficiency compared to

Apriori and FP-Growth in such scenarios [17].
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2.2 Machine Learning

Machine Learning (ML) offers a range of methods and techniques with the potential
to improve the security of IoT systems. At its core, ML involves the use of intelligent
algorithms to optimize performance based on historical data or examples. Unlike traditional
programming paradigms, where rules are explicitly programmed, ML systems learn from
data and iteratively improve their performance over time. The ability to learn and adapt

makes ML a powerful tool in the context of IoT security [20].

One of the primary applications of ML in IoT security is anomaly detection. By applying
ML algorithms, 10T devices can learn to recognize normal behavior patterns and identify
deviations in data that may indicate suspicious or malicious activity [21]. The integration
of ML into IoT security offers a significant benefit by allowing the processing and analysis
of large volumes of data produced by IoT devices. Traditional security mechanisms often
struggle to cope with the large volume and variety of data [7]. Conversely, ML algorithms
are capable of processing and analyzing this data to identify abnormal patterns indicative
of cyber attacks or breaches. Additionally, ML models can continuously evolve and self-
improve over time as they are given new data, making them highly suitable for dynamically

changing [oT environments [20].

However, ML is not without its limitations. One of the primary shortcomings is the inherent
complexity of ML algorithms, which can cause computational and memory challenges
in IoT devices with limited resources. Additionally, ML algorithms often require large
amounts of labeled data for training, which may not always be available. Finally, the
complexity of data management and analytics in IoT network traffic poses challenges
for some ML algorithms. The data generated within IoT networks has a wide variety of
characteristics, with different data types, formats, and semantics. Having a lot of such
variations may pose challenges in terms of efficient and unified generalization, specifically

in case of big data and various datasets with many diverse attributes [20], [22].

Evaluation Metrics

The performance of ML models is usually evaluated using the evaluation metrics: accuracy,
precision, recall, and F1-score. These metrics are based on the outcomes classified as True

Positives, True Negatives, False Positives, and False Negatives [23]:
m True Positive (TP): Instances where the model correctly predicts the positive class.

For example, 10T traffic labeled as DDoS and correctly identified by the model as
DDoS.

18



m True Negative (TN): Instances where the model correctly predicts the negative class.
For example, IoT traffic that is not DDoS and is accurately identified by the model
as non-DDoS.

m False Positive (FP): Instances where the model incorrectly predicts the positive class.
For example, benign traffic that is mistakenly identified as DDoS.

m False Negative (FN): Instances where the model incorrectly predicts the negative

class. For example, DDoS traffic that is wrongly classified as benign.

Accuracy measures the overall correctness of the model. It is the ratio of correctly

predicted observations to the total observations, calculated by the following formula [24]:

TP + TN
Total Observations

3)

Accuracy =

Precision indicates the reliability of the positive predictions. It is the ratio of correctly
predicted positive observations to the total predicted positives, calculated by the following
formula [24]:

TP

Precision = —— @)
TP + FP

Recall measures the ability of the model to detect all relevant instances. It is the ratio of
correctly predicted positive observations to all observations in the actual class, calculated

by the following formula [24]:

TP
Recall = —— (5)
TP + FN

F1-score evaluates the accuracy of a model by considering both its precision and recall. The
score helps in understanding how well the model performs in terms of not just identifying
true positives, but also in minimizing false positives and negatives. The Fl1-score is
calculated by the following formula [24]:

Precision x Recall

Fl-score = 2 x — (6)
Precision + Recall

Machine Learning Types

There are four types of ML algorithms: supervised, unsupervised, semi-supervised, and

reinforcement learning [20].

Supervised learning involves training models with labeled data to predict targets based
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on input features. The goal is to identify patterns within data to classify elements into pre-
defined classes. Common examples include classification and regression tasks. Regression
techniques such as Support Vector Regression (SVR), linear regression, and polynomial
regression are used for continuous outputs, while classification algorithms like K-Nearest
Neighbor, logistic regression, and Support Vector Machine (SVM) handle discrete outputs.

Neural networks can handle both classification and regression tasks [20].

Unsupervised learning, on the other hand, does not require labeled data and focuses
on finding similarities among unlabeled data to classify them into different groups. This
approach is used when outputs are not well-defined and there is a need to discover the
structure within the raw data. Clustering techniques, such as K-means clustering, are

commonly used to group data based on specified similarity criteria [20].

Semi-supervised learning falls between supervised and unsupervised learning, as it
requires the labeling of only a part of the data. This scenario occurs, when labeling data
is costly or impractical for the entire data but rather for only a subset. Semi-supervised
algorithms use both labeled and unlabeled data for building the models, making them

suitable for situations with limited labeled data [20].

Reinforcement learning differs from the previous methods as it does not rely on predefined
outcomes. Agents interact with the environment, receive feedback in the form of rewards
or penalties, and learn optimal strategies to maximize long-term rewards. Reinforcement
learning is usually used in dynamic environments, where systems adapt and learn to

accomplish tasks without explicit programming [20].

In the following sections, some of the most commonly used ML algorithms are presented

and explained.

2.2.1 Decision Tree

Decision Tree (DT) is a supervised learning algorithm, used for both classification and
regression problems. It operates by partitioning the feature space into a tree-like structure

consisting of decision nodes and leaf nodes [25].

The construction of a DT involves two main phases [25]:

1. Induction Phase:
(a) Recursively selects the most informative features that split the dataset effec-

tively.
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(b) Creates a tree where each decision node corresponds to a feature that best
separates the data into subsets, optimizing the class separation or prediction.
2. Inference Phase:
(a) Classifies new instances by traversing the tree based on their features.
(b) The path followed depends on the feature values of the instance, leading to a

prediction that matches the label of the leaf node.

Pseudocode for the Decision Tree Algorithm [26]

Algorithm 4 Decision Tree

1: Inputs:

2: D: Training dataset;
3. F': Feature set;

4: Outputs:

5: Decision tree model
6: Procedure:

7: Initialize with dataset D as the root node;

8: while stopping criteria not met do

9 Check stopping criteria (purity, max depth, min information gain);
10: if stopping criterion is met then

11: Return node as a leaf node;

12: else

13: Calculate information gain for all features in [

14: Select the feature with the highest information gain;

15: Split D into subsets based on the selected feature;

16: for each subset do

17: Create a new node;

18: Recur with the subset and remaining features;

19: end for

20: end if

21: end while

22: Return the Decision Tree model

Algorithm 4 presents the details of the Decision Tree algorithm. In this algorithm, D
denotes the training dataset, where each instance is composed of a set of features and class
labels or target value. The [ is a list of features used to split the data. The algorithm
starts from line 7, where the initialization involves setting the entire dataset as the root
node, from which all decisions will branch out. In line 8, the algorithm enters a loop that
continues until a stopping criterion is met. The stopping criteria include node purity, when
all instances at a node belong to the same class, reaching a predefined maximum depth of
the tree, or achieving a minimum information gain, where information gain from splitting
a node is below a threshold. In lines 10 to 11, if a stopping criterion is met, the node is

marked as a leaf node and the algorithm stops further splitting at this node. If no stopping
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criterion is met, lines 12 to 14 involve calculating the information gain for all features at
the current node. The feature with the highest information gain is selected for splitting the
dataset. In line 15, the dataset is divided into subsets based on the values of the selected
feature. Each subset corresponds to a new branch in the tree, leading to the creation of new
nodes. From lines 16 to 18, the algorithm recursively applies the same process to each
new node created after the split. This involves repeating the steps of checking stopping
criteria, calculating information gain, and splitting the dataset until all nodes either become
leaf nodes or meet a stopping criterion. The algorithm terminates when all nodes meet a

stopping criterion, and returns the constructed model.

One of the key advantages of Decision Trees is that they can handle both categorical and
numerical data, eliminating the need for extensive preprocessing steps such as normaliza-
tion or encoding. Additionally, Decision Trees are highly interpretable, allowing users to

easily understand and visualize the decision-making process [25].

Despite the advantages, Decision Trees are prone to overfitting, especially when the tree
depth grows too large or when dealing with noisy data. Overfitting can lead to poor
generalization performance, where the model performs well on the training data but fails to
accurately classify unseen instances. Techniques such as pruning, which involves removing

nodes or subtrees, can help simplify the tree and therefore prevent this issue [25].

2.2.2 Random Forest

Random Forest (RF) is a supervised learning algorithm used for both classification and
regression tasks. It is an extension of the Decision Tree algorithm, belonging to the
category of ensemble learning methods, which involve combining multiple individual

models to improve predictive performance [27].

The RF uses three main techniques [27]:

m Ensemble of Decision Trees: Multiple decision trees are trained independently and
then their results are combined to make a final prediction.

m Bootstrapping: Each decision tree is trained independently using a subset of the
original dataset.

m Feature Randomness: At each node of the decision tree, only a random subset of
features is considered for splitting. This random selection helps to make the trees

less correlated and prevent overfitting on the training data.
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Pseudocode for the Random Forest Algorithm [28]
Algorithm 5 Random Forest

Inputs:
D: Training dataset;
N: Number of trees to grow;
k: Percentage of features to consider for the best split;
Outputs:
Random Forest model
Procedure:
Initialize the forest as an empty list;
fori: =1to N do
Randomly sample D with replacement to create D;;
Create a root node /NV; containing D;;
Call BUILDTREE(;);
Add the tree to the forest;
: end for
: Use majority voting or averaging to combine tree predictions;
: Return the Random Forest model;
: function BUILDTREE(N)
if N contains instances of only one class then
return
20: else
21: Randomly select £% of the features;
22: Select the feature F' with the highest information gain;
23: Create child nodes Vi, ..., Ny based on I
24: for each child node N; do
25: Set [V, to instances in N matching Fj;
26: Call BUILDTREE(;);
27: end for
28: end if
29: end function
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Algorithm 5 presents the details of the Random Forest algorithm. In this algorithm, D
denotes the training dataset, where each instance is composed of a set of features and
class labels or target values. N is the number of trees to grow in the forest, and £ is the
percentage of features to consider for the best split at each node in a tree. The algorithm
begins in line 8, by initializing the forest as an empty list. In lines 9 to 14, for each
of the NV trees, bootstrap sampling is performed on D to create a new dataset [;. This
is done by randomly selecting samples from the original dataset DD with replacement,
ensuring each tree gets a different sample of the data, making the overall model more
robust and less prone to overfitting. Each tree is constructed independently using its
respective bootstrapped dataset D;. At every decision node, instead of considering all
features, the algorithm randomly selects £% of them. From these selected features, the

one with the highest information gain is chosen to make the split. This randomness in
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feature selection ensures that the trees are less correlated with each other, improving the
generalization capability. The trees are grown to their maximum depth or until a minimum
node size is reached, without any pruning, allowing them to capture more complex patterns
in the data. The function BUILDTREE is used recursively to construct each tree. Finally, in
line 15, the individual predictions of each tree are combined to form the final prediction
for the model. For classification tasks, majority voting is used, where the most common
prediction among all trees is chosen as the final result. For regression tasks, the model

calculates the average of all tree predictions to get a continuous output.

However, it is important to note that the performance of RF may vary depending on
the dataset characteristics, hyperparameter tuning, and the specific problem. While RF
generally offers robust predictions, it can be computationally intensive and slower in
comparison to some other algorithms, as the parallel construction of multiple decision

trees can impact processing resources [27].

Although these factors should be considered, RF remains a versatile and powerful tool in
both classification and regression tasks. Its robustness, scalability, and accurate predictions
are useful across a wide range of applications, including the detection of malicious network

traffic and anomalies in IoT networks [27].

2.2.3 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric supervised learning algorithm mostly

used for classification, but also suitable for regression tasks [29].
The main KNN components [29]:

1. Number of Neighbors: Select k, the number of nearest neighbors to consult, when
predicting the label of a new sample.

2. Distance Metrics: The distance metric measures the closeness or similarity between
data points. Common metrics are [30]:

(a) Euclidean Distance: Defined as the length of a segment between two points.

(b) Manhattan Distance: Calculates the sum of the absolute differences between
points across all dimensions.

(c¢) Minkowski Distance: Generalized metric that includes both Euclidean and
Manhattan distances as special cases. It introduces a parameter p, by changing
the p, different distance measures can be calculated.

3. Majority Voting or Averaging:

(a) For classification, majority voting among the k nearest neighbors is used to
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determine the predicted class. The class that appears the most among the
neighbors is assigned to the new instance.
(b) For regression, the value of the target variable is calculated based on an average,

maximum or minimum aggregation of its nearest neighbor’s values.

Pseudocode for the K-Nearest Neighbors Algorithm [31]
Algorithm 6 K-Nearest Neighbors

Inputs:
D: Training dataset;
k: Number of neighbors;
A distance metric;
Outputs:
A predicted class label for new samples;
Procedure:
Load the training dataset D;
Initialize & to the chosen number of neighbors;
for each new sample x do
for each example d; in D do
Compute the distance between x and d;;
Add distance and index to an ordered collection;
end for
Sort the collection by distance;
Select the top k nearest neighbors;
Get the labels of the selected k entries;
Return the most common of the k& labels;
: end for
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Algorithm 7 presents the details of the K-Nearest Neighbors algorithm for our classification
task. The dataset D contains features and corresponding class labels. The number &
specifies how many neighbors to consider when making a prediction. The distance metric,
often Euclidean, Manhattan, or Minkowski, determines how the distance between data
points is calculated. The algorithm starts from line 8, where the entire dataset D is stored
in memory. In lines 9 to 14, for each new sample x, the algorithm calculates the distance
from z to every sample in D and stores these distances along with their indices. In lines
15 to 19, it then sorts these distances from nearest to farthest and selects the top & nearest
neighbors. The class of x is the most frequent class label among the selected & neighbors.

After processing all new samples, the algorithm returns their predicted class labels.

KNN is simple to understand and implement, making it useful for various applications, such
as pattern recognition, anomaly, and intrusion detection [32]. However, its performance
can be sensitive to the choice of distance metric and the number of neighbors. It may also

suffer from computational inefficiency with large datasets [22], [29].
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Nonetheless, with appropriate parameter tuning and preprocessing techniques, KNN can

be a powerful tool for various classification and regression tasks.
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3. Related Work

The following subsections provide an overview of the related work on association rule
mining and machine learning applications in 10T security, summarizing key studies and

their findings.

3.1 ARM Applications in IoT Security

Despite ARM’s ability to extract valuable insights from large amounts of data, it has not
been widely studied within the context of IoT security. This gap suggests an area for

potential development and studies of ARM-based security improvements in [oT systems.

In the study presented in [33], ARM is applied to darknet sensor data to detect IoT malware,
focusing on identifying attack patterns of Mirai malware. Through TCP-SYN packets
analysis before and after the release of Mirai’s source code, the research validated the
effectiveness of ARM in early malware detection and provided insights into evolving attack

methodologies.

Similarly, the study [34] revealed the effectiveness of ARM in identifying behavioral
patterns associated with the Satori botnet, evolving from the Mirai botnet source code. By
analyzing darknet traffic data, specifically TCP-SYN packets, the study found key patterns
indicative of Satori’s activity, such as destination ports, TCP window size, and Types of
Service (ToS). While the study’s primary focus was on Satori, it also made comparisons
with Hajime, another IoT malware. This comparison showed the potential of ARM not just
for detecting a single type of malware, but for distinguishing between different malware

based on their unique behavioral patterns.

However, as both studies are limited to only darknet data, using data from other sources
across different networks, such as real IoT network traffic, could improve these analyses

and help validate the findings.

The study in [35], proposed a hybrid intrusion detection method that uses ARM, specifically
the Apriori algorithm, to extract features from network data. These features then serve
as input for a classification model that combines Artificial Neural Networks (ANN) and
the AdaBoost algorithm. This approach aimed to enhance the accuracy and efficiency of

anomaly detection in communication networks. When tested on the KDDCUP99 dataset,
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the model outperformed existing techniques like classification tree methods and regression
models, showing improvements in the accuracy of intrusion detection. Given that the study
was conducted on communication network data, additional research on the relevance of
the findings to IoT traffic data is needed.

3.2 ML Applications in IoT Security

With the rapid expansion of IoT deployments, traditional security approaches are no longer
sufficient to defend against growing cyber threats [36]. As a result, ML has become a key
tool for improving the security of IoT systems. By continuously analyzing large volume of
data from IoT devices, ML algorithms can detect and respond to anomalous behavior.

The study presented in [37], focused on detecting IoT network attacks by applying different
ML techniques on the Bot-IoT dataset, used for training models to detect botnet attacks
in IoT networks. The CICFlowMeter was employed to extract 84 network traffic features
defining network flows from raw traffic logs. The Random Forest Regressor algorithm was
used to determine feature importance weights. Two different approaches were employed:
one calculated weights separately for each attack type and the other determined weights
for a group of attacks to identify common key properties. Then, seven ML algorithms were
applied to the dataset. The results showed varying performance among algorithms, with
Random Forest, ID3, and AdaBoost showing the highest effectiveness. The study suggests
further research into the performance of unsupervised algorithms and the integration of

diverse ML models to enhance detection capabilities.

The [38] study highlighted the effectiveness of Random Forest in mitigating cyberattacks
on IoT networks, particularly its precision in predicting attack types. The dataset used
contains 13 features, with 347,935 samples classified as normal and 10,017 samples
classified as anomalous. The dataset contains eight distinct classes. Hence, additional
research is needed to determine the scalability of the algorithms to big data, resilience to

unforeseen challenges, and effectiveness under diverse circumstances.

The study in [39], conducted a comparative analysis of various ML algorithms, evaluating
their performance on both weighted and non-weighted Bot-IoT dataset. The study found
Random Forest as being particularly effective in accuracy and precision on the non-
weighted dataset, while Artificial Neural Networks (ANN) showed higher accuracy for
binary classification on the weighted dataset. In multi-class scenarios, KNN and ANN

demonstrated high accuracy on weighted and non-weighted datasets, respectively.

The paper [40] introduced three ML based Intrusion Detection Systems (IDS) for detecting
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wormhole attacks in IoT networks: K-means clustering based, a Decision Tree based,
and a hybrid approach combining both methods. The K-means based IDS achieved a
detection rate between 70%-93% across different IoT network sizes. The Decision Tree
based IDS had a detection rate of 71%-80%, while the hybrid approach had a detection
rate of 71%-75%. Although the hybrid IDS had a slightly lower detection rate, it reduced

the number of false positives compared to the other two methods.

The paper [41] explored both ML and Deep Learning (DL) methods for anomaly detection
on the [0T-23 dataset. They tested models like Support Vector Machine (SVM), Decision
Tree, Naive Bayes, and Convolutional Neural Networks (CNN). The Decision Trees model
provided the best performance in terms of accuracy and computational efficiency. The
research noted the computational demand of DL models, making them less suitable for
real-time applications without significant hardware resources. The study faced challenges
with the imbalance in the dataset, leading to potential overfitting towards more frequent
attack types, suggesting the need for improved sampling techniques or cost-sensitive

learning approaches.

Similarly, the study presented in [42], explored the efficiency of various ML algorithms,
including Decision Tree, SVM, Naive Bayes, and CNNss, for detecting IoT botnets using
the [oT-23 dataset. The Decision Tree outperformed other models, achieving the highest
accuracy of 73% among the tested algorithms. The study indicates the potential of using
Decision Trees for effective anomaly detection in IoT networks. However, the need to
reduce feature dimensions due to computational challenges, suggests a need for more
efficient data handling strategies, improving model performance without compromising

the detection capabilities.

The study in [43], conducted a comparative study using multiple ML and DL techniques
to detect anomalies in the 10T-23 dataset. The study used algorithms such as Decision
Tree, Random Forest, Naive Bayes, and Bagging classifiers, with Decision Tree achieving
the best accuracy of 95.6% and F-Measure of 76%. However, the minority classes were
removed from the data, which could have improved the accuracy by simplifying the
classification problem and reducing noise from less representative classes, but might limit

the generalizability of the models.

The study in [44], employed various ML algorithms to detect anomalies within IoT
network traffic, using the [0T-23 dataset. The study also implemented algorithms like
Random Forest, Naive Bayes, Multi-Layer Perceptron, SVM, and AdaBoost. Among these,
Random Forest achieved the highest accuracy of 99.5% and precision of 88%. However,

the dataset had to be split into smaller parts and encoded to have less categories, to manage
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computational issues. This processing potentially oversimplified the data, which might
limit the generalizability of the model to more complex real-world data. Hence, further

research is needed to address the scalability challenges.

These studies show a trend towards using tree-based models for their efficiency in handling
IoT data. However, common limitations occur, such as the need for extensive data pre-
processing, potential overfitting, and the lack of generalization to more diverse real-world
scenarios. These gaps suggest the need for more research on data mining and machine

learning, addressing these common challenges.
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4. Methodology

Figure 1 illustrates the general flow of the proposed methodology for the analysis of
traffic behavior and prediction of vulnerabilities in IoT devices, utilizing ARM and ML
techniques. The approach is divided into two main phases. The first involves using ARM
to analyze the IoT network traffic behavior, to find underlying patterns and associations

indicative of benign or various malware activities.

The second phase uses ML for the prediction of IoT network traffic types, distinguishing
between benign and potentially malware traffic of different types. The success of this phase
is measured by the model’s ability to accurately classify traffic types, thereby enhancing

the security framework for IoT devices.
After these two phases have been completed, a comparison of the results is made. The

comparison evaluates the effectiveness and performance of the proposed methods in

identifying associations, patterns, and classifying the [oT network traffic data.

.
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Figure 1. Proposed Methodology

4.1 Dataset Description

The dataset used for both ARM and ML is the [oT-23 dataset [45], developed by the Avast
AIC laboratory with the Czech Technical University in Prague and released in January
2020. It consists of a collection of network traffic data that includes both malicious and

benign activities within various IoT devices.

The dataset is expansive, containing over 325 million captures, with a majority, approxi-
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mately 294 million, classified as malicious. The dataset splits into 23 scenarios, with 20 of
them from IoT devices infected with malware. These scenarios show the behavior of the
devices under attack. The other 3 scenarios are from devices, like a Philips HUE smart
lamp, an Amazon Echo, and a Somfy smart door lock, providing a baseline of normal
network behavior. These devices were not simulated but operated in a controlled network

environment, representing realistic usage patterns and IoT network traffic.

The dataset is available in two formats: the original network captures .pcap files for
direct analysis and conn.log.labeled files, derived by processing the .pcap files through the
network analyzer Zeek. The conn.log.labeled files contain detailed network connection
flows and labels which were assigned to them based on manual analysis and predefined
rules. These files include 23 columns of metadata, from basic information like timestamps
and IP addresses to advanced details such as connection states and specific malware
activities. For practical reasons, this thesis focuses on the conn.log.labeled files, which are
more accessible for analysis without the need for specialized software required to parse

.pcap files.

Table 1 describes the main IoT traffic activities captured in the IoT-23 dataset. The
dataset also contains combinations of these activity types, for example the label ’C&C-
FileDownload’ indicates that C&C file was downloaded, or *C&C-Mirai’ indicates that
the attack was performed by the Mirai botnet.

Table 1. IoT Traffic Activities Captured in The Dataset

Activity Type | Description

Attack Indicates an attempt to attack a vulnerable service, such as
brute-forcing telnet logins or command injections in GET

requests.

Benign Marks connections with no detected suspicious or malicious

activities, representing normal network traffic.

C&C Indicates that an infected device is communicating with a
control server, either regularly for downloading malware or

for command exchange.

DDoS Applied to network flows involved in a DDoS attack, over-

loading a target with excessive traffic.

FileDownload | Used for connections where the infected device downloads a

file, often from a known malicious server.

HeartBeat Indicates small, periodic packets sent to keep track of the
infected host by the C&C server.

Continues...
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Table 1 — Continues...

Activity Type | Description

Mirai, Okiru, | Indicate connections with characteristics of respective botnet

Torii families, determined by similarities to known attack patterns.
PartOfAHori-

zontalPortScan | Indicates connections involved in scanning multiple IP ad-

dresses across the same port to gather information for future

attacks.

Table 2 lists the traffic features included in the dataset. Each feature provides a specific
type of data about the network flows, helping to distinguish between normal behaviors and

potential security risks or attacks.

Table 2. Description of Dataset Traffic Features

Feature Description

ts Flow start time

uid Unique ID

id.orig_h Source IP address

id.orig_p Source port

id.resp_h Destination IP address

id.resp_p Destination port

proto Transaction protocol

service Network service type

duration Record duration

orig_bytes Bytes sent from source to destination
resp_bytes Bytes sent from destination to source
conn_state Connection state

local_orig Indicates if source is a local address
local_resp Indicates if destination is a local address

missed_bytes Missing bytes during transaction

history

History of source packets

orig_pkts

Total original packets sent from source

orig_ip_bytes

Total IP bytes sent from source

resp_pkts

Total packets received from destination

resp_ip_bytes

Total IP bytes received from destination

label

Type of traffic or attack
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4.2 Association Rule Mining Methodology

Figure 2 presents the ARM methodology employed to analyze IoT network traffic data and
detect different traffic activities or potential attacks on IoT devices. This process begins
with the I0T-23 dataset, which undergoes preprocessing steps. These steps include data
cleaning, feature selection, reduction, binning, and encoding, ensuring that the data is
suitable for ARM algorithms.

The preprocessed data is analyzed using three different ARM algorithms: Apriori, FP-
Growth, and ECLAT. The selection of these algorithms is based on their unique strengths.
The Apriori algorithm is a fundamental and widely used method in data mining, making it a
reliable baseline. The FP-Growth was chosen for its scalability and efficiency in processing
large datasets. ECLAT’s vertical data format provides a different perspective compared to
horizontal approaches of Apriori and FP-Growth. The algorithms are employed to identify
underlying patterns in the data that indicate various traffic activities or attacks, capturing

these detections in form of association rules for further analysis.

The final step involves performance comparison among the algorithms to evaluate their
effectiveness in identifying different IoT traffic activities and attacks. This compara-
tive analysis can help to determine which algorithm performs best with IoT traffic data,

highlighting their strengths and limitations.
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Figure 2. Association Rule Mining Methodology

In the following sections, each phase of the ARM methodology is elaborated.
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4.2.1 Preprocessing

Data Collection and Cleaning

The initial step of preprocessing for ARM involved loading the network connection logs,
the aggregation of logs from specified folder paths, ensuring the collection of data across

multiple files.

The next step was the standardization of traffic labels. The dataset initially contained
synonymous labels for traffic types, that essentially described the same network behavior.
A mapping strategy was employed, that involved creating a standardized dictionary where
each variant of a label was mapped to a single, unified representative label. This ensured
that all synonymous labels were treated as one, thereby maintaining consistency across the
dataset. For example, labels like ’- Benign -’, ’- benign -’, and ’(empty) Benign -’ were all

standardized to label ’Benign’.

Feature Selection and Reduction

In the feature selection and reduction, specific columns were removed from the dataset to
improve the data quality for more effective ARM analysis. The timestamp (zs) and unique
identifier (uid) columns were removed due to their unique values for each record, which
do not contribute to pattern recognition. Similarly, the source and destination IP addresses
(id.orig_h, id.resp_h) were removed as ARM searches for generalizable patterns rather
than instance specific details. The port numbers (id.orig_p, id.resp_p), were removed due
to their high variance, which could result in a high number of rules with little significance.
Lastly, local origin and response flags (local_orig, local_resp) and the connection history
(history) were removed, as they are not very useful in detecting the kind of recurring

associations that ARM searches for.

Binning and Feature Encoding

Feature engineering was crucial to make data suitable for ARM, particularly through the
binning of continuous variables into categorical ones, which are more manageable for
ARM analysis. Bins were chosen based on the distribution and characteristics of the dataset.
For instance, the ’duration’ variable was binned into *very_short’, ’short’, ’medium’, and
"long’ categories to capture both typical short-term connections and longer ones, indicative
of sustained data transfers or potential attacks. Similarly, *orig_bytes’, ’resp_bytes’, ’orig_-
ip_bytes’, and resp_ip_bytes’ were binned into 'very_small’, ’small’,’medium’, ’large’,
and ’very_large’ to distinguish between routine small packets and larger data transfers,

which could involve file downloads or unauthorized data transfer. Converting continuous
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variables into these discrete categories helps to identify broader patterns in the data, thereby
improving the interpretability and performance of the further analysis. The bin thresholds

were set to ensure distinctions and balanced distributions within each category.

Following binning, one-hot encoding was applied to the categorical variables, including
those created during the binning process. One-hot encoding converts categorical data into
a binary format. This step is crucial for ARM, as it relies on binary or discrete data to
identify patterns and associations. This encoding creates a binary column for each category,
marking the presence or absence of the category with a 1 or 0, respectively. The resulting
dataset significantly expands the set of attributes, as each attribute represents a unique

category or bin.

4.2.2 Apriori Implementation

The Apriori algorithm was applied to the preprocessed dataset using Python’s mixtend
library. The algorithm was executed at support thresholds of 0.7, 0.8, and 0.9. This was
done to discover patterns and compare performance at varying levels of item frequency.
The experiments were not limited to the full dataset, subsets of half and a quarter of the
data were also analyzed, to evaluate the impact of data volume on rule discovery and
algorithm’s performance. For each label in the dataset, association rules were generated
based on the frequent itemsets extracted by Apriori. The rules were filtered to include only

those with the traffic activities or attacks as their consequent.

4.2.3 FP-Growth Implementation

Similar to Apriori, FP-Growth was applied to the preprocessed dataset with support
thresholds of 0.7, 0.8, and 0.9. The algorithm was evaluated using the entire dataset and its
half and quarter subsets, and implementation utilized the mixtend library. Association rules
were extracted using the generated frequent itemsets and again filtered to include only
those with the traffic activity of interest in their consequents. The tree-based approach of
FP-Growth was expected to offer computational advantages, particularly when processing
the full and half datasets, which was confirmed during the execution. The FP-Growth
application confirmed the results obtained from the Apriori application, while also assessing

the scalability of ARM techniques when applied to large-scale data.
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4.2.4 ECLAT Implementation

The ECLAT algorithm, although known for its efficient depth-first search mechanism, en-
countered performance issues when applied to the whole and half of the dataset. As the milx-
tend library does not support ECLAT, alternative methods, including a self-implementation
and older libraries, were assessed. However, these approaches were too computationally
intensive and impractical for the full and half dataset sizes. As the goal of this work was
not to implement the algorithms, but to compare and evaluate their performance and ability
to find patterns in IoT traffic data, the ECLAT analysis was limited to a quarter of the
dataset and implemented with a pyECLAT package. This solution enabled the execution of

the algorithm within a reasonable time frame.

The performance issues with ECLAT were mainly due to its complexity and the intensive
computational resources required, which were not feasible for the full extent of the dataset
in our environment. Despite these challenges, the quarter-dataset analysis was completed
and provided insights into the potential and constraints of using ECLAT in large-scale

ARM applications.

4.3 Machine Learning Methodology

Figure 3 illustrates the ML methodology applied to predict and classify network traffic
types using the IoT-23 dataset. The initial phase is data preprocessing, which involves data

cleaning and encoding to prepare the dataset for ML applications.

Following the preprocessing, three different ML models are employed: Decision Tree,
Random Forest, and K-Nearest Neighbors. The algorithms were selected as they offer
versatile approaches. Decision Trees can handle both numerical and categorical data,
making them suitable for varied data generated by IoT devices. Random Forests, with
their ensemble approach, improve prediction reliability and handle large datasets with high
dimensionality effectively. KNN was chosen for its distinct instance-based approach, it
can adapt to new data points without needing to retrain the entire model, useful in IoT

environments where data is continuously generated.

Each model is further optimized to address the class imbalances and potential overfitting
risks. Then, each optimized model processes the preprocessed data to classify and pre-
dict traffic types. Following prediction, the models are evaluated using various metrics,

including accuracy, precision, recall, and F1-score.
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The final phase involves a performance comparison among the models based on the
evaluation metrics to determine which model performs best in predicting and classifying
network traffic. The models are also compared based on training and prediction times.
The results of these comparisons are detailed in a report, highlighting the strengths and

potential improvements for each model in the context of IoT network security.
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Figure 3. Machine Learning Methodology

In the following sections, each phase of the ML methodology is elaborated.

4.3.1 Preprocessing

Data Collection and Cleaning

The initial step of preprocessing was the same as in the ARM preprocessing, loading the
network connection logs and ensuring the collection of data across multiple files. The
process iterates through the dataset’s directory, reads the conn.log.labeled files, containing
labeled network traffic data. These files are then parsed into a pandas DataFrame, for easier

data manipulation and further analysis.

Then label normalization process was also applied, where various labels that essentially
described the same network behavior were unified under a single representative label, to

ensure consistency across the dataset.
Additionally, the challenge of missing or undefined values represented by dashes was

addressed, as these placeholders are unsuitable for numerical analysis and ML model

training. Therefore, these dashes were replaced with zeroes in relevant columns.
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Feature Encoding

The next step of preprocessing the dataset for ML involved converting categorical variables
into a format that ML algorithms can efficiently process. The one-hot encoding was applied
to categorical columns proto, service, and conn_state, transforming each category within

these columns into separate binary column.

4.3.2 Decision Tree Implementation

The Decision Tree model was applied to the preprocessed dataset. The Python library
pandas was used to load and process the dataset, while the imblearn package’s Rando-
mOverSampler was employed to optimize the model and address class imbalances by
oversampling the minority classes. The Decision Tree classifier from sklearn library was
chosen for the model and its hyperparameters were optimized using GridSearchCV from
sklearn library. This method ensured the selection of parameters combination (max_-
depth, min_samples_split, min_samples_leaf ), that optimized the model’s accuracy. Here
max_depth determines the maximum depth of the tree, min_samples_split parameter de-
fines the minimum number of samples a node must have before it can be split, and the
min_samples_leaf parameter sets the minimum number of samples that a leaf node must

have.

The validation process included 5-fold cross-validation, which involves partitioning the
original dataset into five equal segments, referred to as folds. Then, the model is trained
on four of these folds, while the fifth is used as the test set to evaluate performance. This
process is repeated five times, with each of the five folds used exactly once as the test set.
The results from the five iterations are then averaged to produce a single estimation. The

accuracy and classification report were derived from testing the optimized model.

4.3.3 Random Forest Implementation

The implementation of the Random Forest model followed a similar preprocessing ap-
proach, using the pandas library for data loading and addressing class imbalances by
randomly oversampling the minority classes. The Random Forest classifier from sklearn
library was selected to construct the ensemble model. Hyperparameter tuning to improve
the model’s accuracy was also done with GridSearchCV from sklearn, focusing on param-
eter n_estimators, which specifies the number of trees in the forest, and also on parameters
max_depth, min_samples_split and min_samples_leaf. The method also included 5-fold
cross-validation, evaluating the model’s performance across various data subsets, thus

preventing overfitting and ensuring the model’s generalizability. After the testing of the
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optimized model, accuracy and classification report were presented.

4.3.4 K-Nearest Neighbors Implementation

The KNN algorithm’s implementation starts with standard preprocessing steps, including
data loading and addressing class imbalances by randomly oversampling the minority
classes. The KNN classifier from sklearn library was applied and optimized through
GridSearchCV, focusing on parameters n_neighbors, weights, and metric. Where n_-
neighbors is the number of neighbors to consider when making a prediction, the weights
parameter determines the weight that is given to each point in computing the prediction,
and the metric defines the distance metric used to measure the closeness between points.
Validation incorporated 5-fold cross-validation, evaluating the model’s performance. The
performance of the KNN model was also presented by the accuracy score and classification

report.
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5. Experimental Results

This section provides an overview of the experiments conducted for association rule mining
and machine learning. The experiments were repeated multiple times to ensure their results
were consistent and reliable. In the following subsections, the results for each method are

presented.
5.1 Association Rule Mining Results

5.1.1 Association Rules

The application of the Apriori, FP-Growth, and ECLAT algorithms to the preprocessed
dataset generated a series of association rules that provide insights into various types of
network traffic activities. For each traffic activity, the most common and generalizable rule

was selected based on the following criteria:

1. Coverage: The rule that captures a wide range of traffic characteristics specific to
each traffic activity was chosen, ensuring that the traffic patterns are comprehensive.

2. Minimal Redundancy: To avoid redundancy and overlap, unique rules or those that
are not closely correlated with other rules were preferred, focusing on more distinct
patterns for each traffic activity.

3. High Support and Confidence: High values of confidence and support for these

rules ensured that they are common and reliable patterns associated with each activity

type.

Below, the key association rules organized by traffic activity type are presented:

Table 3. Association Rules for Vulnerability Analysis

Traffic Activity | Rule Support
C&C- service_http & resp_bytes_very_large & resp_ip_-| 1.000
FileDownload bytes_very_large & proto_tcp & conn_state_SF =

label C&C-FileDownload

Continues...
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Table 3 — Continues...

Traffic Activity

Rule

Support

Attack

resp_ip_bytes_medium & proto_tcp & conn_state_SF
& orig_pkts_moderate & orig_bytes_small & resp_-
pkts_moderate & resp_bytes_medium & orig_ip_-
bytes_medium & service_ssh & missed_bytes_none
= label_Attack

0.910

C&C

resp_pkts_very_few & orig_bytes_very_small &
resp_ip_bytes_very_small & conn_state_SO & proto_-
tcp & service_none & missed_bytes_none & resp_-
bytes_very_small = label_C&C

0.889

Benign

conn_state_S0 & missed_bytes_none & resp_pkts_-
very_few & orig_bytes_very_small & service_none &
resp_ip_bytes_very_small & resp_bytes_very_small
= label_Benign

0.893

C&C-HeartBeat

missed_bytes_none & service_none & resp_pkts_-
very_few & resp_bytes_very_small & orig_bytes_-
very_small & resp_ip_bytes_very_small & proto_tcp
= label_C&C-HeartBeat

0.857

C&C-HeartBeat-
FileDownload

proto_tcp & missed_bytes_none & orig_pkts_very_-
many & orig_bytes_small & resp_pkts_very_many
& resp_ip_bytes_very_large & conn_state_SF & ser-
vice_http & resp_bytes_very_large = label C&C-
HeartBeat-FileDownload

1.000

C&C-Mirai

conn_state_RSTO & proto_tcp & orig_pkts_moderate
& orig_ip_bytes_medium & orig_bytes_very_small &
service_none & resp_bytes_very_small & resp_pkts_-
moderate & missed_bytes_none & resp_ip_bytes_-
small & duration_very_short = label _C&C-Mirai

1.000

C&C-Torii

orig_bytes_very_small & resp_pkts_very_few &
proto_tcp & service_none & resp_bytes_very_small &
missed_bytes_none & resp_ip_bytes_very_small =
label_C&C-Torii

0.800

DDoS

resp_pkts_very_few & missed_bytes_none & resp_-
bytes_very_small & duration_very_short & proto_tcp
& orig_bytes_very_small & orig_pkts_very_few &
service_none & orig_ip_bytes_very_small & resp_ip_-

bytes_very_small = label_DDoS

1.000

Continues...

42




Table 3 — Continues...

Traffic Activity | Rule Support

FileDownload resp_bytes_very_large & orig_pkts_very_many & | 0.846
conn_state_SF & resp_ip_bytes_very_large & proto_-
tcp & duration_short & service_http = label_File-
Download

Okiru missed_bytes_none & orig_pkts_very_few & resp_- | 0.999
bytes_very_small & duration_very_short & orig_-
bytes_very_small & service_none & conn_state_S0 &
resp_pkts_very_few & resp_ip_bytes_very_small &
orig_ip_bytes_very_small & proto_tcp = label_Okiru

PartOfAHorizon- | resp_pkts_very_few & resp_bytes_very_small & ser- | 0.998
talPortScan vice_none & proto_tcp & conn_state_S0O & orig_-
bytes_very_small & missed_bytes_none = label_-
PartOfAHorizontalPortScan

Table 3 provides details on the key association rules discovered in the application of the
Apriori, FP-Growth, and ECLAT algorithms on the preprocessed 10T-23 dataset. The key
association rules derived were consistent for all three algorithms. Below is the explanation

of each rule:

C&C-FileDownload

This rule indicates a direct correlation between the use of HTTP service and the transfer
of very large files over TCP protocol, a common characteristic of C&C file download
activities. The 100% support suggests that whenever these conditions are met, a C&C file

download activity is always present.

Attack

The combination of medium-sized responses and moderate packet volumes over SSH
services, TCP protocol usage, and a stable connection, is indicative of an attack attempt.

The support of 0.91 indicates a significant pattern in the attack related data.

C&C

This rule shows the nature of C&C communication attempts, featuring very minimal traffic
characteristics and the initial connection state (S0). With a support of 0.889, it indicates a
significant pattern of low-volume data exchanges designed to establish or maintain control

over compromised devices.
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Benign

Benign activities are characterized by minimal traffic and the absence of data loss, indicat-
ing safe network interactions. The support of 0.893 suggests a significant traffic pattern
across benign activities, serving as a baseline against which anomalous activities might be
detected.

C&C-HeartBeat

C&C-HeartBeat traffic is characterized by minimal or low network traffic over TCP
protocol, indicating periodic communication with a control server. The 0.857 support level
indicates a significant frequency of such patterns, highlighting the need for constant alert

for these small indications of security issues.

C&C-HeartBeat-FileDownload

This rule shows the scenario where malware not only indicates its presence through
heartbeats but also actively downloads files. With a 100% support in the data across all
C&C-HeartBeat-FileDownload interactions, the presence of very large IP response bytes

and the use of HTTP service are particularly indicative.

C&C-Mirai

This rule, with 100% support, identifies the traffic pattern of the Mirai botnet, combin-
ing moderate traffic volume with specific TCP protocols and connection resets (RST0),

showing the distinctive characteristics of the Mirai botnet attack.

C&C-Torii

With a support of 0.8, this rule represents the Torii botnet’s communication pattern, using
minimal traffic and communication over TCP protocol. It shows the botnet’s hidden

operational strategies, making it a challenging malware to detect.

DDoS

This rule defines the basic but effective strategy behind DDoS attacks, characterized by
very few packets and bytes transferred, over a very short period of time. The 100% support
confirms the rule’s universality in detecting DDoS activities.

FileDownload

This rule corresponds to file downloads, involving large volume data transfers, particularly

through HTTP service, and suggests the potential for unauthorized or malicious file
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transfers. The support of 0.846 suggests the significant pattern of such traffic characteristics

in download interactions.

Okiru

With nearly perfect support, the rule shows the Okiru traffic patterns, including minimal
packets, very short durations, and TCP protocol found together. The high support level

indicates the common occurrence of such patterns in Okiru related interactions.

PartOfAHorizontalPortScan

This rule indicates extensive port scanning activities, which often are an initial step to
more targeted attacks. The antecedents capture a pattern where minimal or no data is
exchanged, but connection attempts across ports are frequent. The very high support of

this rule, suggests a major pattern across related interactions.

5.1.2 Algorithm Comparison

Table 4 provides the performance comparison of Apriori and FP-Growth application on
the full preprocessed dataset. FP-Growth consistently outperformed Apriori in terms
of execution time across all support thresholds. For example, at a support level of 0.9,
Apriori takes about 61 seconds, whereas FP-Growth only requires 19 seconds. This trend
is evident at lower support levels as well, where the time difference becomes even more
significant, particularly at a support level of 0.7, where Apriori takes about 9 minutes,
whereas FP-Growth only takes around 26 seconds. However, FP-Growth tends to use
slightly more memory than Apriori. At the highest support level, the difference is maximal,
about 133.7 MB more for FP-Growth. Both algorithms generate the same number of rules
at each support level, suggesting that the rule generation capability is consistent between

the algorithms, regardless of the execution time and memory usage differences.

Table 4. Performance of Algorithms on Full Dataset

Support | Algorithm Number of Rules | Execution Time | Max Memory
0.9 Apriori 7096 61.4 seconds 1560.2 MB
FP-Growth 7096 19.2 seconds 1693.9 MB
0.8 Apriori 11172 3 min 36 seconds | 1584.0 MB
FP-Growth 11172 23 seconds 1689.4 MB
07 Apriori 13980 9 min 6 seconds | 1665.0 MB
FP-Growth 13980 26.2 seconds 1776.5 MB
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Table 5 provides the performance comparison of Apriori and FP-Growth application
on half of the preprocessed dataset. The trend of FP-Growth outperforming Apriori in
execution time continues even when the dataset size is halved. At each support level,
Apriori’s execution time is almost twice that of FP-Growth. In terms of maximum memory
usage, both algorithms show almost identical memory usage patterns for all support levels.
Similarly, both algorithms generate the same number of rules across different support
levels, suggesting that the reduction in dataset size does not benefit one algorithm over the

other in terms of rule generation.

Table 5. Performance of Algorithms on Half of the Dataset

Support | Algorithm Number of Rules | Execution Time | Max Memory
0.9 Apriori 7156 20.9 seconds 1145.1 MB
FP-Growth 7156 12.4 seconds 1145.1 MB
0.8 Apriori 11908 33.2 seconds 1192.7 MB
FP-Growth 11908 16.3 seconds 1193.0 MB
07 Apriori 14004 48.7 seconds 1249.2 MB
FP-Growth 14004 18.7 seconds 1250.2 MB

Table 6 provides the performance comparison of Apriori, FP-Growth, and ECLAT applica-
tion on a quarter of the preprocessed dataset. The execution time advantage of FP-Growth
over Apriori is consistent even with a quarter of the dataset. The inclusion of the ECLAT
algorithm at this dataset size shows it to be significantly slower than both Apriori and
FP-Growth, at all support levels. The ECLAT algorithm was not tested on the full and
half-sized datasets due to its intensive computational demands. Other approaches proved
too computationally intensive for practical execution within our environment. Thus, to
maintain the focus on algorithm comparison rather than implementation, ECLAT’s analysis
was limited to a quarter of the dataset. In terms of maximum memory usage, ECLAT uses
substantially more memory compared to Apriori and FP-Growth, likely due to its different
approach to ARM. ECLAT generates significantly more rules than Apriori and FP-Growth,
which could explain its longer execution times and higher memory usage. However, this

could also indicate that ECLAT analyzes the itemsets with more depth.

Table 6. Performance of Algorithms on Quarter of the Dataset

Support | Algorithm Number of Rules | Execution Time | Max Memory
Apriori 6211 16.6 seconds 844.5 MB
0.9 FP-Growth 6211 9.1 seconds 844.9 MB
ECLAT 24708 8 min 8 seconds | 8449.8 MB
Continues...
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Table 6 — Continues...

Support | Algorithm Number of Rules | Execution Time | Max Memory
Usage

Apriori 6399 17.1 seconds 844.5 MB

0.8 FP-Growth 6399 8.9 seconds 844.3 MB
ECLAT 25448 8 min 14 seconds | 8465.8 MB
Apriori 8567 42.6 seconds 844.6 MB

0.7 FP-Growth 8567 10.7 seconds 844.4 MB
ECLAT 34102 13 min 2 seconds | 8345.8 MB

This comparison suggests that FP-Growth is an optimal choice among the tested ARM
algorithms for IoT data analyses, as it showed the best efficiency, consistently demonstrat-
ing shorter execution times and comparable memory usage to Apriori, across all tested
support levels and dataset sizes. ECLAT, while capable of generating more rules, required
substantially more time and showed considerably higher resource consumption, suggesting

that it might be less suitable for large and memory-constrained IoT environments.

5.2 Machine Learning Results

5.2.1 Classification Reports

Table 7 presents the performance comparison for the ML classifiers applied. Here, the
macro average metric computes the performance metric independently for each class and
then takes the average, treating all classes equally. On the other hand, the weighted average
takes into account the class imbalance by weighting the performance score of each class by
its occurrences in the data. The results indicate that all three classifiers perform comparably
in terms of precision, each achieving scores around 0.90. In terms of recall, the scores
are slightly lower, approximately 0.86 for Decision Tree and Random Forest, and 0.85
for KNN. The F1-scores, mirror these results, also averaging around 0.86, indicating a
balanced performance between precision and recall. The overall accuracy is also similar,
with Decision Tree and Random Forest at 0.86, and KNN slightly lower at 0.85. The
metrics show the effectiveness of each model in accurately classifying different network

behaviors, with slight variations in their performance.
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Table 7. Overall Performance of Classifiers

Decision Tree

Random Forest

K-Nearest Neighbors

Metrics
Weighted | Macro | Weighted | Macro | Weighted | Macro
Precision 0.90 0.90 0.90 0.90 0.89 0.89
Recall 0.86 0.86 0.86 0.86 0.85 0.85
F-1 Score 0.86 0.86 0.86 0.86 0.85 0.85
Accuracy 0.86 0.86 0.85

Decision Tree Model

Table 8 provides details on the performance of the Decision Tree model in detecting
various loT traffic activity types. The model showed high precision across most activities,
particularly in identifying malicious behavior. However, its recall varies significantly, espe-
cially for the ’Benign’ and *C&C-Torii’ classes, indicating some difficulty in consistently
identifying these behaviors. This suggests that they share characteristics with other classes
or lack distinctive features, making accurate classification difficult. The F1-score for
"C&C’ of 0.68, despite a high recall of 0.99, suggests the model’s tendency to overpredict

this class, affecting its precision negatively.

Table 8. Classification of Traffic Behavior for the Decision Tree Model

Label Precision | Recall | F1-Score
Attack 1.00 1.00 1.00
Benign 0.99 0.60 0.75
C&C 0.52 0.99 0.68
C&C-FileDownload 1.00 1.00 1.00
C&C-HeartBeat 1.00 0.89 0.94
C&C-HeartBeat-FileDownload 1.00 1.00 1.00
C&C-Mirai 1.00 1.00 1.00
C&C-Torii 1.00 0.54 0.70
DDoS 0.99 0.87 0.93
FileDownload 1.00 1.00 1.00
Okiru 0.63 0.91 0.74
PartOfAHorizontalPortScan 0.69 0.50 0.58

Random Forest Model
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various [oT traffic activity types. The model performed with similar high precision on most




classes, challenges were again evident in the *Benign’ and *C&C-Torii’ behaviors, with
recall scores of 0.61 and 0.54. Additionally, the model’s precision for ’C&C” at 0.52, with
a recall of 0.99, indicates overclassification in this category, similar to the Decision Tree
model’s performance. While both models showed similar metrics, the Random Forest is
generally considered more robust due to its ensemble approach. This characteristic might

not be evident in the overall accuracy, but can be crucial in more complex applications.

Table 9. Classification of Traffic Behavior for the Random Forest Model

Label Precision | Recall | F1-Score
Attack 1.00 1.00 1.00
Benign 0.98 0.61 0.75
C&C 0.52 0.99 0.68
C&C-FileDownload 1.00 1.00 1.00
C&C-HeartBeat 1.00 0.89 0.94
C&C-HeartBeat-FileDownload | 1.00 1.00 1.00
C&C-Mirai 1.00 1.00 1.00
C&C-Torii 1.00 0.54 0.70
DDoS 0.99 0.87 0.93
FileDownload 1.00 1.00 1.00
Okiru 0.63 0.91 0.74
PartOfAHorizontalPortScan 0.69 0.50 0.58

K-Nearest Neighbors Model

Table 10 provides details on the performance of the KNN model in detecting various IoT
traffic activity types. The model demonstrated strong precision in identifying distinct
malicious activities, similar to the other models. However, there was some variability
in the recall, particularly for the ’Benign’ and *C&C-Torii’ behaviors, where it similarly
to the other models struggled to consistently identify instances correctly. The *C&C’
class, with a precision of 0.50 and a high recall of 0.95, also indicated a tendency towards

overclassification, but to a smaller extent than the tree-based models.

Table 10. Classification of Traffic Behavior for the KNN Model

Label Precision | Recall | F1-Score
Attack 1.00 1.00 1.00
Benign 0.92 0.58 0.71
C&C 0.50 0.95 0.66
Continues...
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Table 10 — Continues...

Label Precision | Recall | F1-Score
C&C-FileDownload 1.00 1.00 1.00
C&C-HeartBeat 1.00 0.89 0.94
C&C-HeartBeat-FileDownload | 1.00 1.00 1.00
C&C-Mirai 1.00 1.00 1.00
C&C-Torii 1.00 0.54 0.70
DDoS 0.96 0.87 0.91
FileDownload 1.00 1.00 1.00
Okiru 0.63 0.91 0.74
PartOfAHorizontalPortScan 0.68 0.47 0.56

Table 11 compares the performance of the ML models from the Related Work chapter’s
studies, which also used the IoT-23 dataset, alongside the results from the current work.
Previous studies [41] and [42] employed Support Vector Machine (SVM), Naive Bayes
(NB), and Decision Tree (DT) algorithms, achieving an accuracy of 0.73 and precision of
0.63 for DT. The study [44] evaluated SVM, Random Forest, Naive Bayes, and AdaBoost
algorithms. The best performance was achieved by the Random Forest model with an
accuracy of 1.0 and precision of 0.88. However, the dataset had to be split into smaller
parts and encoded to have less categories, to manage computational issues. The study
[43] evaluated the Decision Tree, Random Forest, Naive Bayes, and Bagging classifiers,
with the Decision Tree achieving an accuracy of 0.96 and F-Measure of 0.76. However,
this study removed the minority classes, which could have improved the accuracy by

simplifying the classification problem and reducing noise from less representative classes.

In contrast, our work maintains the complexity of the original dataset, employing De-
cision Tree and Random Forest models to achieve an accuracy of 0.86 and a precision
of 0.90, without extensive data modification. This approach ensures a more robust and
generalizable model performance, suggesting predictive capabilities across all activities
and attack classes. Additionally, the inclusion of the KNN algorithm broadens the scope of

comparison.
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Table 11. Comparison of Performance with Related Studies

Study ML Algorithms | Best | Performance Notes
Used

[41], SVM, NB, DT DT Accuracy = 0.73, | -

[42] Precision = 0.63

[44] SVM, RF, NB, | RF Accuracy = 1.0, | Data split and re-
AdaBoost Precision = 0.88 | encoded.

[43] DT, RF, NB, Bag- | DT Accuracy = 0.96, | Removed minor-
ging F-Measure = 0.76 | ity classes.

Present | DT, RF, KNN DT, Accuracy = 0.86, | -

Work RF Precision = 0.90

Although our accuracy metrics may appear a bit lower in comparison to some studies, it
is important to emphasize that our approach focuses on maintaining the complexity and
diversity of the dataset. This ensures, that our models are tested against more realistic data,
reflecting practical scenarios more accurately than those studies that modified the dataset
extensively. Such alterations can potentially oversimplify the real-world applicability of

the results.

5.2.2 Training and Prediction Times

Table 12 presents the average training and prediction times for the ML classifiers applied.
These metrics are important as they reflect the applicability of models in real-time scenarios,

where efficiency and speed are critical.

The Decision Tree model shows to be highly efficient, with a training time of 14.7 seconds
and a prediction time of 0.16 seconds. This indicates that once trained, the Decision Tree
model can make quick decisions. The Random Forest model requires more time to train,
approximately 4 minutes and 24 seconds. However, its prediction time is moderately quick
at 8.7 seconds. This indicates that while the model takes longer to train due to its ensemble
nature, it can still make predictions relatively fast. The KNN model shows the fastest
training time of 4.5 seconds, as this algorithm primarily involves storing training data
rather than explicit model training. However, the prediction time is significantly longer,
taking about 17 minutes. This is due to the need to compute the distance between a new
point and all training points, which becomes computationally expensive as the dataset size

increases.
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Table 12. Training and Prediction Times for Classifiers

Model Training Time | Prediction Time
Decision Tree 14.7 seconds 0.16 seconds
Random Forest 4 min 24 seconds 8.7 seconds

K-Nearest Neighbors 4.5 seconds 17 min 1 second

Overall, the Decision Tree and Random Forest models, with their reasonable prediction
times, provide an efficient option for IoT environments, where fast processing is crucial.
In contrast, the KNN model, despite its advantages in maintaining training simplicity, may

not be as useful for real-time predictions due to its long prediction time.

5.3 ARM and ML Comparison

The ARM results provided easily understandable rules, identifying underlying patterns
and associations within the dataset, and linking particular feature combinations with
specific types of network activities. On the other hand, the ML models provided a
predictive capability, handling complex patterns and allowing for the automated detection

and classification of traffic types based on learned patterns.

While both approaches offer valuable insights, there are notable differences in their focus
and application. ARM clarity is beneficial for straightforward pattern recognition, finding
system vulnerabilities, and making model’s decisions more understandable for humans,
but it may struggle with capturing complex relationships and might not generalize well to
unseen data. ML models demonstrated high predictive accuracy and the ability to capture

more complex patterns, but their interpretability is rather limited compared to ARM.

The distinct capabilities of ARM and ML suggest that a combined approach could benefit
from the strengths of both. Association rules and features derived from ARM can then
be included as input features in ML models, potentially increasing their accuracy and
reliability. Additionally, the predictive power of ML could validate and refine the findings
from ARM, creating a more dynamic and effective tool for monitoring and securing [oT

networks.

The comparative analysis shows that both ARM and ML techniques provide useful insights
into behavior analysis and vulnerability prediction in IoT devices. Future work could
explore the benefit of implementing a hybrid approach, combining ARM’s interpretability

and ML’s predictive capability to build a more dynamic, precise, and scalable framework
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for proactive and more effective security in IoT environments.
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6. Summary

This work focused on analyzing and predicting the vulnerabilities and behavior patterns
of 10T devices using ARM and ML techniques. The main goal was to identify patterns
and traffic characteristics indicative of various IoT traffic activity types and predict these

potential security threats, allowing for proactive security measures.

In the first part of the work, ARM techniques were employed to analyze IoT network
traffic data. Beginning with preprocessing the 10T-23 dataset to improve data quality
and consistency for analysis. The ARM was executed using three algorithms: Apriori,
FP-Growth, and ECLAT. Each algorithm was evaluated across various thresholds to assess
their effectiveness in discovering meaningful association rules. The algorithms were
applied to the entire dataset, as well as subsets to explore their performance under different
data volumes. The process successfully generated a set of association rules, finding distinct
traffic patterns for multiple types of IoT traffic activities. The comparative analysis of the
algorithms revealed differences in execution time and memory usage, with FP-Growth

generally outperforming other algorithms in efficiency, especially with larger datasets.

The second part of the work focused on the prediction of IoT network traffic types,
classifying traffic as either benign or indicative of various malware activities. To ensure the
consistency across both parts, the IoT-23 dataset was also used here. Data preprocessing
included the normalization of traffic labels and transformation of categorical variables into
binary columns through one-hot encoding. Three ML models were implemented: Decision
Tree, Random Forest, and K-Nearest Neighbors. For each model, hyperparameter tuning
and validation through cross-validation were performed to optimize performance and
prevent overfitting. Each model was evaluated based on its accuracy, classification reports,
as well as on training and prediction time. Both the Decision Tree and Random Forest
models achieved an accuracy of 86%, but the Decision Tree was faster in both training and
prediction phases. These models showed high precision in identifying malicious activities,
but faced some challenges in consistently classifying the ’Benign’ and *C&C-Torii’ traffic
types, which appeared to have overlapping characteristics with other classes, affecting
their recall and precision negatively. K-Nearest Neighbors model achieved slightly lower
accuracy of 85% and was slower in the prediction phase. However, the model was still

comparable in its ability to identify distinct malicious activities.

While both ARM and ML showed effectiveness in their respective areas, future work could
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consider a hybrid approach combining both methods to provide a more comprehensive
solution. Future work could explore the integration of ARM derived rules as features in
ML models to enhance accuracy and reliability, as well as develop methods to improve

model interpretability and generalizability in IoT security.
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