
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Martin Välbe 182500IVCM

BENCHMARKING OF ANDROID
APPLICATIONS' SYSTEM CALLS
BEHAVIOR: IMPLICATIONS FOR

MALWARE DETECTION

Master's thesis

Supervisor: Alejandro Guerra
Manzanares
MSc

Co-supervisor: Tarmo Oja
MSc

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Martin Välbe 182500IVCM

ANDROIDI RAKENDUSTE
SÜSTEEMIKUTSETE KÄITUMISE

VÕRDLUSUURING: MÕJUD KAHJURVARA
TUVASTAMISELE

Magistritöö

Juhendaja: Alejandro Guerra
Manzanares
MSc

Kaasjuhendaja: Tarmo Oja
MSc

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Martin Välbe

30.07.2021

3

Abstract

Android OS has been a market leader for mobile operating systems for nearly a decade

now, thus being a long-time primary target for malicious actors. From year to year,

various statistics display the merciless growth of mobile malware specifically developed

against Android platforms. Meanwhile, the efforts among academic and professional

researchers to counter malware are increasing as well, comprising various methods and

approaches to detect and neutralize malicious software. These efforts include a wide

range of dynamic features able to function as threat indicators. Among those features

are system calls – programmatic routines that allow user applications to request

privileged services from kernel. Within academic community, an imposing number of

research concentrating on at least partial implementation of system calls in dynamic

malware detection methods has been published. However, the studies seem to have been

concentrating their effort on perfecting the malware detection models and algorithm

trainings, while turning a blind eye to the multitude of platforms that the malware is

targeting. Results of rigorous work based on a single Android device or emulation

environment seem to be generalized to all Android devices without evaluation. The

purpose of this thesis was to examine and analyze existing differences between system

calls of malicious and benign applications on different Android platforms, including

both emulators and real devices, in a cross-comparison. For that, the testing setup

comprising of different platforms were utilized and limited sets of both malicious and

benign applications were employed for extracting system calls data for comparative

analysis. The results based on system call summaries indicated significant differences

between real devices and emulators in terms of system call invocations. The differences

between the real devices were less extensive, but in general still unexpectedly

significant, suggesting that the studies employing system calls must consider with

platform-specific differences in terms of general reliability.

This thesis is written in English and is 72 pages long, including 6 chapters, 11 figures

and 14 tables.

4

Annotatsioon

Androidi rakenduste süsteemikutsete käitumise võrdlusuuring: mõjud

kahjurvara tuvastamisele

Pikaajalise turuliidrina on Androidi operatioonisüsteem kujunenud kahjurvara

arendajate ja kuritahtlike rühmituste üheks peamiseks sihtmärgiks. Samaaegselt on

akadeemiliste ja kutseliste uurimisrühmade pingutused kahjurvara vastu võitlemisel

pidevalt suurenenud. Kahjurvara tuvastamisel rakendatavad meetodid kasutavad

ohuindikaatoritena erinevaid dünaamilisi karakteristikuid. Nende karakteristikute hulka

kuuluvad ka süsteemikutsed ehk kindlad programmilised mehhanismid, mis

võimaldavad rakendustel pöörduda operatsioonisüsteemi tuuma poole, käivitamaks

erinevaid piiratud teenuseid. Viimastel aastatel on ilmunud hulk uuringuid, mis

keskenduvad süsteemikutsete vähemalt osalisele rakendamisele dünaamilistes

tuvastusmeetodites. Samas on taolised uuringud keskendunud tuvastusalgoritmidele ja

mudelitreeningute täiustamisele, pöörates sealjuures vähe tähelepanu baasplatvormide

omadustele. Reeglina üldistatakse üheainsa Androidi seadme või emulatsiooni põhjal

tehtud töö tulemused täiendava valideerimiseta kogu laiale Androidi seadmete spektrile.

Käesoleva magistritöö eesmärk oli uurida ja analüüsida erinevusi mobiilkahjurvara ja

healoomuliste rakenduste süsteemikutsete vahel erinevatel Androidi platvormidel

(reaalsed seadmed ja emulaatorid). Selleks rajatud testimiskeskkonnas käivitati valitud

hulka pahatahtlikke ja healoomulisi rakendusi eesmärgiga koguda nende poolt teostatud

süsteemikutseid, mille logiandmete summeerimise tulemusena viidi läbi võrdlev

analüüs. Tulemused viitasid olulistele erinevustele süsteemikutsete rakendamisel

reaalsete seadmete ja emulaatorite vahel. Reaalsete seadmete omavahelised erinevused

olid küll väiksema ulatusega, kuid üldiselt siiski üle ootuste märkimisväärsed. Sellest

järeldub, et süsteemikutseid käsitlevad uuringud peaksid laialdasema usaldusväärsuse

saavutamiseks arvestama platvormispetsiifiliste erinevustega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 72 leheküljel, 6 peatükki, 11

joonist, 14 tabelit.

5

List of abbreviations and terms

ABI Application Binary Interface

ADB Android Debug Bridge

AOT Ahead-of-Time

API Application Programming Interface

APK Android Package

APT Advanced Persistent Threat

ART Android Runtime

AV Anti-Virus

AVD Android Virtual Device

CPU Central Processing Unit

DL Deep Learning

ENISA European Union Agency for Cybersecurity

IPC Inter-Process Communication

ISA Instruction Set Architecture

JNI Java Native Interface

MIPS Microprocessor without Interlocked Pipelined Stages

ML Machine Learning

NDK Native Development Kit

OS Operating System

PID Process Identifier

ROM Read-only Memory

SDK Software Development Kit

SoC System on a Chip

VM Virtual Machine

6

Table of Contents

1 Introduction...11

2 Theoretical background...15

2.1 Android OS – from application to kernel...15

2.1.1 Android application fundamentals...15

2.1.2 Basic structure of Android OS...18

2.1.3 Kernel and system calls...20

2.2 Hardware implementation and emulators...21

2.3 Android malware..22

2.3.1 Taxonomy and installation methods..22

2.3.2 Malware system calls as potential threat indicators......................................24

2.4 Malware detection and system calls...25

2.4.1 Conventional malware detection methods involving system calls................25

2.5 Related works and previous research..26

2.5.1 Related works..27

2.5.2 Previous research...30

3 Methodology..31

3.1 Goal setting...31

3.2 Selection of testing samples..32

3.2.1 Malware...32

3.2.2 Benign applications...35

3.3 Selection of implementation platforms...36

3.3.1 Implementation platform specifications..37

3.3.2 Implementation platform settings..39

3.4 Data collection procedure...39

3.4.1 Android Debug Bridge..39

3.4.2 Application Exerciser Monkey..40

3.4.3 Strace tool..40

3.4.4 Collection process..41

7

4 Results...46

4.1 Initial examination of raw data...46

4.2 Determining the comparison sets..49

4.3 Data structuring and comparison..50

4.4 Outlining the comparison results..53

5 Discussion..56

5.1 Outlier cases..56

5.2 Causes and implications..59

5.3 Limitations and future research..62

5.3.1 Threats to validity..62

5.3.2 Suggestions for future research...63

5.4 Conclusion..64

6 Summary..66

 References..67

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis..73

 Appendix 2 – Detailed comparison results...74

 Appendix 3 – Log summaries...86

8

List of Figures

Figure 1. Typical internal structure of an APK archive..16

Figure 2. Android architecture...18

Figure 3. Android 10 legacy apps’ permission check (MW6 example)..........................43

Figure 4. Example of a system call log (fragment)...47

Figure 5. Example of a single strace log summary...47

Figure 6. Comparison sets and conditions...49

Figure 7. Malware system call summaries – subgroup A (execution only)....................51

Figure 8. Benign apps' system call summaries – subgroup A (execution only)..............51

Figure 9. General overview of comparison results..54

Figure 10. Top 10 system calls from MW6 summaries (Subgroup A)...........................58

Figure 11. Example of flickering on application's main page (MW8 on PH3)...............59

9

List of Tables

Table 1. Properties of malware APK files (type, family, package name, target ABI)....33

Table 2. Properties of malware APK files (dataset, hash, first appearances, size)..........33

Table 3. Properties of benign APK files (package name, target ABI)............................36

Table 4. Properties of benign APK files (dataset, hash, first appearances, size).............36

Table 5. Smartphone hardware and OS specifications..37

Table 6. Android Studio emulation hardware and OS specifications..............................38

Table 7. Genymotion emulation hardware and OS specifications..................................38

Table 8. Modes of application execution...41

Table 9. Collection matrix...44

Table 10. Extraction results – general overview (execution only)..................................48

Table 11. Extraction results – general overview (50 events injected).............................48

Table 12. Similarity comparison – subgroup A (execution only)...................................53

Table 13. Outliers among the results (execution only)..57

Table 14. Outliers among the results (50 events injected)..57

10

1 Introduction

The mobile device market is ever-growing and large numbers of applications and other

software are constantly being developed and remodelled for mobile platforms.

According to Statista [1], as of June 2021 there were roughly 6.4 billion existing

smartphone subscriptions in the world. The most popular operating system (OS) for

mobile platforms is Android, with an estimated worldwide market share of nearly 73%

[2].

The advancement and widespread availability of smartphones has undoubtedly

improved the communication possibilities. Yet alongside the numerous benefits, there

are also several negative impacts, both social and technological. On the technological

side, as many services that were once only reserved for personal computers have found

their way into mobile platforms, malicious actors have also turned their eyes and

mindset to that specific field, trying to find ways to exploit the potential weaknesses of

mobile systems. There has been a massive influx of malicious software

specifically targeting mobile devices during the last decade. The first

reported malware designed for Android OS is known to be an SMS trojan named

Trojan-SMS.AndroidOS.FakePlayer.a and it was discovered by Kaspersky Lab in

August 2010 [3]. The following year of 2011 saw explosive growth of malicious

programs for mobile platforms, driven by the surge in the number of threats exclusively

targeting Android [4]. According to an assessment by AV-TEST, a prominent security

software evaluation institute, there were more than 19 million different Android

malware samples in existence worldwide as of April 2017, with almost half a million

new samples discovered in that particular month alone [5]. The European Union

Agency for Cybersecurity (ENISA) states in its recent threat report covering the years

2019 and 2020 [6] that malware has been ranked as #1 threat in the digital landscape of

Europe as of 2020, maintaining the same position from 2018. This report also points out

roughly 400 000 detections of pre-installed spyware and adware on mobile devices,

indicating the increase of supply-chain types of attacks as well.

11

Detection of mobile malware through different means has thus become an important

subject for many researchers trying to disrupt the spread of such malicious software.

Because of several (physical) restrictions the mobile devices present, both development

and research are more often than not done using different mobile operating system

emulators on PC-s, that are by design duplicating both software and hardware aspects of

the original device (the mobile phone hardware and its operating system). Emulators are

considered to be a great testing platform due to being inexpensive, fairly fast, accessible

and debugging-friendly.

There is however one aspect concerning both emulators as well as various original

devices – the architectures of the mobile devices and the computers hosting the

emulator are different. For example, the devices using the most popular mobile

platform, Android, are very largely based on ARM architecture (although Android

currently supports Intel and used to support MIPS architectures as well) [7]. At the same

time, there is currently no true ARM-based emulation platform available and the

emulators are through software means emulating an ARM processor on host computer

which usually has an x86 or x64 processor. This could lead to certain runtime

inconsistencies that distort the state of the original device in the emulation environment.

In addition, it is probable that there might be an unknown number of inconsistencies

that exist between different ARM-based devices as well.

A 2019 study [8] conducted in Tallinn University of Technology about machine

learning-based mobile malware detection showed that the system calls triggered by the

same malware on Android emulator and real phone are different. Those behavioral

differences could possibly mean that the learning model created by emulator data may

not be appropriate for detecting the malware obtained from real device. The exact

reasons behind those system call differences triggered by malware as well as their

extent on different platforms must be studied to bring awareness and clarity to the

matter of how these differences could affect malware analysis processes. In addition to

the evasion techniques employed for data extraction, the behavioral differences obtained

from emulators and real devices might be an additional factor that weakens the practical

advantage of using dynamic features over static ones on ML models [8].

12

The main research problem of this thesis consists of the fact that there is yet no solid

research about the true extent of the system call differences on different platforms and

the possible nature behind those differences. The purpose of this thesis is to examine

and analyze existing differences between system calls of malicious and benign

applications on different Android platforms, including both emulators and real devices

in a cross-comparison. The results and conclusions of this research are meant to lead the

way to examine the potential effects of system call differences on different platforms to

malware detection development.

Research questions:

RQ1: How significant are the potential differences of system calls invoked by a

single application between different types of platforms?

RQ2: What are the possible causes behind system call differences on different

platforms?

RQ3: How could the existing differences affect malware analysis and what are

the possibilities to overcome this problem?

The novelty of this thesis constitutes in a fact that there are no known previous cross-

platform comparative researches concerning the potential differences in system calls

triggered by the same malware samples. Understanding and mapping the existence of

those potential differences can hopefully assist the future researches in the field of

mobile malware detection.

The object of this thesis would be to use both malware and benign applications for

testing the potential system call differences on Android platforms. The selection of the

testing platforms would include different popular models of Android phones and their

emulated counterparts in two different popular emulation platforms. The scope of the

thesis would be limited to compare the system call log summaries and not the call

sequence alignments or patterns. The research would consist an experimental method,

as the process would need to measure the impacts of independent variables (applications

and different operational platforms) on dependent ones (system calls invoked by the

malware and benign application sets). The final validation of the gathered data would be

13

conducted in a form of a comparative analysis.

This document is structured as follows: Chapter 2 introduces the theoretical background

and explains the main concepts behind the purpose of this thesis. Chapter 3 describes

the selection of testing samples, setup of the collection platforms and the data collection

procedure. Chapter 4 outlines the collected data, prepares and eventually undertakes the

comparative analysis. Chapter 5 discusses and summarizes the main issues discovered,

points out the threats to validity of this thesis and provides suggestions for future work.

14

2 Theoretical background

This chapter describes the relevant aspects of the Android mobile operating system and

gives a short overview of the evolution of its malware and counter-malware measures.

It also brings out the previous research examples bound to the modern approaches of

system call-based dynamic malware detection (such as employing machine learning)

and points to the certain practical issues that such modern detection techniques must

consider with. The final part of this chapter also describes the particular issues

addressed by this thesis and leads on to the practical part of the thesis.

2.1 Android OS – from application to kernel

Android is a mobile operating system based on a Linux kernel, which has been modified

in order to efficiently perform on energy-constrained devices. It has been developed

mainly for touchscreen mobile devices. Android OS has evolved significantly since its

inaugural release in 2008 with version 1.0 [9, p. 168]. The latest stable release version

available is Android 11, which was launched on September 8, 2020. However,

according to [10], as of May 2021, the most popular release versions worldwide were

still the two previous ones – Android 9 with 17.34% and Android 10 with 36.99%.

2.1.1 Android application fundamentals

The contents of an Android device that the user sees and is able to interact with

(contacts, mail, camera, games, settings, etc.) comes in the form of applications, which

form the topmost layer of the Android system. The majority of the Android applications

available are written in programming languages such as Java or (more increasingly)

Kotlin. One of the more common development suites available for this purpose is

Android Studio Development Kit (SDK). The development tools compile the code

along with any data and resource files into an Android Package (APK), which is an

archive file with an .apk suffix. The typical structure and contents of an APK file are

15

shown in Figure 1 below. One such APK file contains all the contents of an Android

app and is the source that Android-powered devices use to install the app. However,

using the Android Native Development Kit (NDK), modules of an application could

also be written in C and C++ code, which would be compiled into a native library and

packaged with the APK during the build [11], [12]. Such approach can be useful to

achieve extra performance for running computationally intensive applications, such as

games, or to reuse already existing C or C++ code libraries [13]. Most of the

applications written in native code are either games or graphic simulations, because

native code improves the performance of CPU intensive applications. Java code runs on

specific runtime environment called Android Runtime (ART), while the native code

runs outside the virtual machine (VM). Runtime environment is further explained in

subsection 2.1.2.

The APK archive contains several subcomponents. Some of the common ones are

described as follows:

• The AndroidManifest.xml file stores the basic information of Android

applications, including package information like the package name, app ID,

requested permissions, app components like activities, services, broadcast

16

Figure 1. Typical internal structure of an APK archive

receivers, content providers, etc., and different hardware and software features

[14].

• The classes.dex file contains the compiled bytecode composed of all Android

classes which is compiled into single .dex file format. For the (now deprecated)

Dalvik VM, the bytecode was optimised into an .odex file (which is pre-

processed version of .dex) on first launch of the app [15]. The .odex files have

been replaced by ELF files in more recent Android versions.

• The lib/ folder holds compiled native code in its subfolders that are specific to

the central processor unit (CPU) architecture (e.g. armeabi-v7a stores compiled

code of all 32-bit ARM-based CPUs). The APK without such a folder is written

entirely in Java or Kotlin and is able to run on each CPU architecture;

• The resources.arsc is an application resource table containing information of

precompiled resources included in the application, such as their ID’s, names and

properties.

• The res/ folder holds the application’s resources, such as the image files,

layouts, strings, sound files, styles etc.

• META-INF: This folder contains information about the application’s signature

and signed checksums for all the other files in the package [9, p. 304].

By default, every app runs in its own Linux process. The Android system starts the

process when any of the app's components need to be executed, and then shuts down the

process when it's no longer needed or when the system must recover memory for other

apps. The Android system implements the principle of least privilege. That is, each app,

by default, has access only to the components that it requires to do its work and no

more. An app can request permission to access device data such as the device's location,

camera, and Bluetooth connection. The user has to explicitly grant these permissions

[11].

17

2.1.2 Basic structure of Android OS

Although there are several overlapping approaches for representing the system

architecture of the Android OS, the overall structure incorporates different components

that fall into several layers and sections, beginning from the topmost applications layer,

descending to the application framework layer, libraries and runtime, finally reaching to

the lowermost layer – the Linux-based kernel. Figure 2 depicts one perspective to

visualize the concept of those layers as a software stack.

The topmost applications layer allows the user to interact directly with the device. It

consists of both preinstalled and third-party apps. Data exchanges between apps and

different system processes are handled by inter-process communication (IPC)

mechanism, which is often misused by different Android malwares for communicating

18

Figure 2. Android architecture

with system resources, as described in [16]. User-installed third-party apps can be

downloaded from different digital distribution services (Google Play, Amazon App

store etc.) or other repositories [9, p. 174].

Application framework is the layer responsible for handling the basic functioning of a

phone, such as resource management, handling calls, and so on. This is the block

through which the applications installed on the device directly talk to it [9, p. 174]. This

framework layer includes the collection of application programming interfaces (API)

written in Java. APIs are a set of coherent methods for apps to interact with device [15].

These APIs form the building blocks that developers need to create Android apps by

simplifying the reuse of core, modular system components and a selection of services

[17].

The next layer includes a set of native libraries in C/C++, used in various components

of Android. Much of the low-level functionality relied upon by higher-level classes in

the Android Framework is implemented by shared libraries and accessed via Java

Native Interface (JNI), which allows both calling from Java code into native code and

vice versa [18]. They are compiled in a native code processor and help devices to handle

different kinds of data. Many of these libraries use open code projects and some of the

examples of those libraries are Media Framework (supports recording of many video,

audio and images formats), WebKit (web browser support), Surface Manager (manages

graphical rendering of 2D and 3D representation), SQLite (a lightweight relational

database engine), SSL (encryption services provider), and others [19, pp. 134-135].

In the same layer as libraries there is also ART, a distinctive section responsible for

running applications on Android devices. ART is a runtime environment for each

application providing the translation of application bytecode into native machine code

instructions using a hybrid version of ahead-of-time (AOT) compilation. AOT

compilation increases the device performance efficiency significantly by compiling

entire applications into machine code upon their installation and not during their

runtime. ART has replaced its less efficient predecessor – Dalvik VM – since the

release of Android version 5.0 [9, pp. 172-174].

The lowermost layer of Android OS consists of a modified Linux-based kernel, which is

described in the next subsection of this chapter.

19

2.1.3 Kernel and system calls

The kernel is a program that constitutes the central core of a computer operating system.

It has complete control over everything that occurs in the system [20]. The Android OS

is built on top of the Linux kernel, with some architectural changes made by Google.

The primary reason for choosing the Linux kernel is the fact that it is a portable

platform that can be compiled easily on different hardware. The kernel acts as an

abstraction layer between the software and hardware present on the device [9, p. 171].

The Linux kernel contains code for all the different chip architectures and hardware

drivers it supports [21].

The kernel is responsible for managing the core functionality of Android, such as

process management, memory management, security and networking. Each version of

Android has a different version of the underlying Linux kernel. Android 9 (Pie) version

is known to use Linux Kernel 4.4, 4.9, or 4.14, whereas Android 10 targets Linux kernel

4.9, 4.14, or 4.19. The actual kernel depends on the individual device [9, p. 171]. The

Android-specific kernel enhancement includes power management, shared memory

drivers, alarm drivers, binders, kernel debugger and logger and low memory killers [22].

The android application takes the services of the kernel through the system calls.

Whenever a user requests for services like call a phone in user mode through the phone

call application, the request is forwarded to the Telephone Manager Service in the

application framework. The Android runtime transforms the user request passed by the

Telephone Manager Service to library calls, which results in multiple system calls to

Android Kernel. While executing the system call, there is a switch from user mode to

kernel mode to perform the sensitive operations. When the execution of operations

requested by the system call is completed, the control is returned to the user mode [22].

In the Linux kernel, each machine architecture (i.e. x86-64 or ARMv8-A) can augment

the standard system calls with its own. Consequently, the system calls available on one

architecture may differ from those available on another. Nonetheless, a very large subset

of system calls — more than 90 percent — is implemented by all architectures [23, p.

3]. Those architectures are described in the next section. Apparently, the number of

Linux system calls available is not only dependent on machine architecture, but they

seem to vary by kernel versions as well. For example, during this research, 335 different

20

http://www.linfo.org/operating_systems_list.html

syscalls were identified for Linux kernel version 5.4 and 333 system calls for Linux

kernel version 4.14 on x86_64 architecture. Those numbers were 277 and 276 for arm64

platform, respectively.

2.2 Hardware implementation and emulators

Different Android devices use different CPUs, which in turn support different

instruction set architectures (ISA), which is the set of instructions that are written in

machine code by each of the processor families. Each combination of CPU and ISA has

its own Application Binary Interface (ABI) [7]. An ABI defines the binary interface

between two or more pieces of software on a particular architecture. It defines how an

application interacts with itself, how an application interacts with the kernel, and how

an application interacts with libraries. ABIs are concerned with issues such as calling

conventions, byte ordering, register use, system call invocation, linking, library

behavior, and the binary object format. The calling convention, for example, defines

how functions are invoked, how arguments are passed to functions, which registers are

preserved and which are mangled, and how the caller retrieves the return value [23, p.

6]. Currently, the ABIs supported by Android are:

• armeabi-v7a – this ABI is for 32-bit ARM-based CPUs supporting armeabi

instruction set;

• arm64-v8a – this ABI is for ARMv8-A based CPUs, which support the 64-bit

AArch64 architecture;

• x86 – this ABI is for 32-bit CPUs supporting the instruction set commonly

known as x86 or i386;

• x86_64 – this ABI is for CPUs supporting the instruction set commonly referred

to as x86-64 [7].

Android applications written in pure Java or Kotlin language have generic support by all

of those ABIs. However, if the app is containing C/C++ code, then it must be compiled

into a native library for each specific CPU architecture in order to be supported by

21

targeted platform. The compiled architecture-specific native code is then packaged and

stored in APK's lib folder, as described above in subsection 2.1.1.

In the near past, Android was also compatible with ISA called ‘Microprocessor without

Interlocked Pipelined Stages’ (MIPS), but the competition is presently narrowed down

to both 32-bit and 64-bit ARM and x86 technologies. It can also be concluded that

ARM has prevailed as the primary CPU architecture used by all modern smartphones

due to its optimal efficiency that is best suitable for mobile platforms. Despite that,

Android apps are still sought-after for several x86_64 platforms such as Google’s

Chromebooks [24]. Besides that, there is also another large technological segment,

where Android continuously embraces the x86 architectures – the emulators.

An emulator is a software that mimics the hardware and software of the target device on

a computer. They do this by translating the ISA of the target device to the one used by

the computer to conduct testing using binary translation, thus mimicking the way how

the target device works [25]. Although many people use emulators to play Android

games on PC, the main purpose of the concept is intended for different developers and

testers to aid and simplify their work. Emulators have also been widely used by

malware analysts and researchers as a cheap, agile and adjustable platform – a

convenient alternative to real mobile devices.

2.3 Android malware

This section recounts the general specifications and classification types of malicious

applications targeting the Android OS. In addition, the latter part of the section briefly

describes the employment of system calls as potential threat indicators in various

malware detection methods available.

2.3.1 Taxonomy and installation methods

Throughout its evolution, malware has been labelled into different groups and

subgroups according to their nature, function and origin. Such practice of classification,

called taxonomy, is conducted mostly by different anti-virus (AV) vendors and cyber

22

security companies. The following pages describe the relevant malware classification

types while presenting several common examples.

Malware Categories. This embodies an overall categorization of malicious software

based on the intentions and behaviours of the specimen. Well-known categories include

[14]:

• Ransomware: Ransomware is a malware that locks the user’s device to prevent

the victim from accessing the data by using private key encryption until the

victim pays a ransom.

• Spyware: A type of malware that covertly monitors user’s personal information

or activities and sends the collected information to the remote server without the

user’s awareness.

• Trojan: A type of malware that masquerades as a benign application but

actually performs harmful activities.

• Adware: Adware presents unwanted advertisements to users.

• Backdoor: A type of malware that sets grounds for other malicious software by

providing a backdoor in victimized devices.

• Worm: Worm is a piece of code that could be replicated and spread to other

devices by the network [14].

• Scareware: Scareware is a malware that manipulates users into believing they

need to download or buy malicious, sometimes useless, software [26].

• SMS malware: These Trojans use the text messaging services of a mobile

device to send and intercept messages, which results in unexpected charges for

users [27].

Malware Families. A malware family is a group of malware that shares common

characteristics and behavioral traits. Adopting an attack or malicious behavior by

inserting a payload (or more than one payload) might require using the same package

names used for the attack. By frequent use of package names or other common

23

characteristics, this becomes one identity (signature) of a group of malware (family)

[28]. Family can be considered as a subcategory for malware types described above. A

selection of families represented by the malware samples used for this research (Mobok,

WannaLocker, Plankton, etc.) are briefly described in subsection 3.2.1.

Installation Methods. Android malware families can also be categorized by their

installation method on victim’s device (i.e. by different infiltration techniques).

Following techniques are some of the more common examples of installation methods:

• Repacking: Repacking is the method of modifying and repackaging the APK

file of registered benign application from Android application market and

redistributing it. The modified APK contains code for stealing personal or

financial information and causing damage to the device [22].

• Update attack: Instead of embedding the entire malware code, this technique

includes just an update component in itself, which allows the entire malicious

code to be downloaded and installed on the host device at the run time [22].

• Drive-By-Download attack: This approach refers to downloads that are

launched automatically when a user is on a malicious website. The creators use

spam or malvertising to bring users to the landing page that automatically

launches a fake download [29].

2.3.2 Malware system calls as potential threat indicators

At the lowest level of the operating system, an application’s functionality boils down to

the tasks and services it requests the kernel to perform, through system calls [30]. All

requests from the applications will pass through the System Call Interface before its

execution through the hardware – a behavior which can give information about the

intentions of the application [22]. Unless the malware itself is installed in the kernel of

the operating system, the malware will have to use system calls to function. With this in

mind, it is possible to trace system calls and analyze them for any discernible patterns

[31].

Different methods and approaches have been established in order to determine the

maliciousness of an application at least partially through its system calls. In a paper [31]

24

for example, the authors separate malicious classification approaches (signature-based

detection, probabilistic detection, sequential detection) and anomaly detection

approaches (specification-based detection and learning-based detection) as well as

countermeasures which the malware developers apply to bypass detections.

Despite the prevalent opinion that system calls alone are not sufficient enough to

effectively detect the malicious behavior, as proposed in [30] and [32], they have a

proven and eminent position in different detection approaches. The next section of this

chapter describes the methods, where system calls have been utilized as features for

malware detection.

2.4 Malware detection and system calls

Researching and countering malware is a decades old field of study for which the aspect

of mobile malware has become just another, rapidly growing branch. Malware targeting

Android OS is actually not as old as Android OS itself, since it took some time for the

operating system to become popular and for malicious actors to adjust to it. Since the

introduction of malware on Android OS, the effort to counter this threat has been forced

to increase, and many academic and professional researchers are trying to keep the pace

with malicious actors by developing new means and methods to detect and neutralize

mobile malware threats.

The idea of using system call auditing as a means of malicious intrusion detection

emerged in studies long before the rise and proliferation of personal mobile devices

[33], [34]. Having become a common part of software behavioral studies, system call

monitoring has also been carried over to research focusing on the detection of mobile

malware during the last decade.

2.4.1 Conventional malware detection methods involving system calls

Traditionally, three different malware analysis methods are distinguished depending on

the extraction and consideration of the features – static analysis, dynamic analysis and

hybrid analysis. Static analysis researches properties of software that can be

investigated by the inspection of the application’s code to detect malicious intention

25

without executing it (the latter rules out the use of pure static analysis for auditing the

system calls, which are captured during the application’s runtime).

In contrast to static analysis, dynamic analysis technique scrutinizes the behavior of the

Android application during its execution by extracting and analyzing the dynamic

features like process lists, system call traces, symbol table, a list of open files and

network traffic [35]. In case of Android, when applied simplistically, it might provide

limited coverage, which can be improved with stimulation by manually or automatically

injecting events to trigger behaviors [15].

While the static analysis can be countered by code obfuscation, dynamic analysis could

be circumvented by the methods of runtime sandbox detection. The hybrid analysis

combines static and dynamic methods and analyzes the application to extract static and

dynamic features, thereby improving recognition accuracy. However, the disadvantages

are that the analysis and detection time is long, it takes up many system resources, and

the calculation overhead is enormous [32]. System call traces are among the popular

dynamic features for reasons described in subsection 2.3.2, and therefore used in studies

including both dynamic and hybrid analysis methods.

2.5 Related works and previous research

The survey of literature described here involves system calls as features for malware

detection-oriented research on Android OS. Most of the literature also reveals the

collection platforms and methods used to gather system call data during the application

runtime, although many of the studies remain rather vague in terms of their setup

description. In regards of collection platforms, both real mobile devices and emulators

have been used by researchers in the near past, but seldom in unison and typically not

employing different real device models or different OS versions during a single study.

Thus, the data gathered from a single source platform is largely generalized as

accountable for all Android systems.

26

2.5.1 Related works

A research described in [36] proposed a malware detection system based on system

calls performed during the boot process of the installed applications by monitoring and

analyzing the sequences of system calls, using the methods based on Needleman–

Wunsch global alignment approach and the Wilcoxon signed-rank test. It proved limited

satisfactory results on the set of malware specimen that trigger its infection vector when

the application is first started. The experiment used system call traces gathered from

various unspecified real Android devices using different unspecified OS versions.

In the study [37], the authors present DroidRevealer – a real-time analysis system

running on real devices using system call monitoring to detect malicious behavior.

Although the experiments and evaluation of the tool were conducted on an unspecified

emulator platform using Android version 4.4.2 and Linux kernel 3.4.0, the authors

claimed that the tool performed equivalently on real devices with acceptable overhead.

In [38], the authors proposed an anomaly-based malware detection approach which

analyzed relevant system calls in a unified manner, using a database of predetermined

normal behavior for comparison. The study used Samsung Galaxy S real device and

Android version 2.3 with Linux kernel 2.6.

In [39], the author proposed an approach to map system level behavior and Android

APIs, based on the observation that system level behaviors cannot be avoided but

sensitive Android APIs could be evaded. The mapping between system calls and

Android APIs was intended to be used to detect malicious applications which try to

evade Android APIs to conduct malicious actions. The study used Intel Xeon CPU host

running Fedora 28, and an emulator (seemingly Android SDK) of Samsung S9 with

Android 8.0.

A research described in [22] explored the behavior of malware samples from 10

prominent Android malware families based on system call patterns in comparison with

benign applications. The study did not elaborate the specifications of the setup, besides

the fact that an unspecified emulator was used.

In the paper [30], authors used an open-source ML software Weka with manually

annotated behavior classes and system call features to analyze application behavior.

27

They reached to the conclusion that system calls were not sufficient features for mobile

application behavior classification. Setup was well-described, as they used an Android

SDK emulating Nexus 6, running Android 6.0.1 on a host PC with Intel Core-i7 CPU

running Ubuntu 14.04.

In [40], the authors utilized the ML techniques on system calls accompanied by

dynamic analysis to distinguish between malware and benign behaviors, showed the

significance of system calls-based scanners in comparison to other attributes and

concluded that carefully created adversarial samples are able to evade detection. The

experiment was thoroughly described and it used both automated and manual event

injections. Setup was also well-described (Android SDK emulator on Ubuntu 14.04

with Intel Core i7-4510U CPU) except for the details of the emulated platform itself.

In [41], three traditional feature-vector-based representations were implemented for

Android system calls in order to propose a novel graph-based representation. The

experiment concluded that the graph-based representations are able to improve the

malware classification accuracy over the corresponding feature-vector-based

representations from the same input. The study used Genymotion emulator on Ubuntu

14.04 desktop (AMD Opteron 6386 CPU) with no further specifications given about

emulated platform.

In the study [42], using supervised ML on a system calls as features, a non-signature-

based malware detector was proposed, that would not be vulnerable to mimicry attack

typically used to defeat system-call based detectors. The experimental setup used

emulator and was overall well-described (host with Ubuntu 14.04 with Intel Core i7

emulating Android virtual device, an armeabi-v7a image of Nexus 4 running Android

4.1.2).

In [43], the authors propose MALINE, a tool that uses frequency and dependency

techniques based on system call tracking to perform automatic malware classification

while applications are executed in a sandbox environment. The study used a set of host

machines running Ubuntu 12.04 and employing Android SDK emulator using multiple

x86 CPU/ABI images of unspecified Android device emulations. The authors admitted

that the architectural differences between emulators and real Android devices might act

as a potential threat to validity of the experiment.

28

In a research described in [44], a novel two-step feature selection approach based on

highly relevant system calls is proposed to extract refined calls, which could

discriminate malware from benign apps. To address the problem of higher dimensional

attribute set, the authors derived suboptimal system call space by applying the proposed

feature selection method to maximize the separability between malware and benign

samples. The overall description of the experiment was very detailed apart from the

experimental setup description, which only mentioned that an x86-based Android

emulator was used for feature (system call) extraction.

In [45], the authors use two different feature models, the frequency vector and the co-

occurrence matrix, to extract features from the system call sequence followed by

appliance of different machine learning algorithms to identify Android malware and to

measure the effectiveness of those distinct appliances. For the feature extraction, an

unspecified real device running Android version 4.0.4 was used.

In the paper [16], the authors model the system call sequence generated by a malware

application as a stationary first-order ergodic Markov chain and prove the existence of

typical patterns which contain the malicious system call code of the application. They

succeeded in finding the occurrence of common malicious system call codes in the

system call sequence of several malware families. The only mention of the setup

specification was the fact that an emulator having ARMv8 architecture was used for

collecting the system call sequences.

In [46], the authors extracted features from malware and benign applications by

sequencing the system calls and proposed a novel way of feature reduction using

Gaussian dissimilarity to detect malware samples. The platform used for feature

extraction was an unspecified real Android device with OS version 5.1.

In [47], the authors proposed a new feature selection mechanism that was named

‘selection of relevant attributes for improving locally extracted features using classical

feature selectors’, or SAILS, which specifies at discovering prominent system calls from

applications. They conducted an extensive analysis of ML and deep learning (DL)

algorithms under diverse classifier parameters. SAILS resulted in improved values for

evaluation metrics, compared to the conventional feature selection algorithms. The

experiments were conducted on Ubuntu 18.04 platform with Intel Core i5-8250U CPU

29

and an Android SDK emulator with an unspecified emulated platform, that was used for

feature extraction.

2.5.2 Previous research

A study [8] conducted in Tallinn University of Technology in 2019 explored whether

the selection of data source for the system calls may have an impact on the performance

of the machine learning models. This study provided a comparative analysis of the data

sets obtained from both an emulator-based and real device-based sources, as well as a

demonstration of the impact of data source selection on detection models’ performance.

At that time, the study showed that the system calls of 110 benign and 110 malware

applications extracted from an emulator (Genymotion emulation of Samsung Galaxy S8

with Android 8.0) generated more distinguishable data in comparison with real device

(Samsung Galaxy A6 with Android 8.0) and concluded that designers of detection

models would have to pay attention to the data sources utilized in the various steps of

the machine learning workflow.

This thesis research concentrates on the issue raised in the aforementioned study and

tries to address the potential research gap in this field of study, as the possible impact of

collection platforms on the applications’ behavior seems to be insufficiently researched.

In order to examine the extent of possible differences induced by different data sources

in more detail, a wider selection of Android platforms has been introduced, while

bringing the size of the dataset of benign and malicious applications down to a relatively

limited scale (described in detail in chapter 3). The following chapter explains and

describes the selection of application dataset, implemented platforms and the system

call extraction procedure, while chapters 4 and 5 outline and discuss the extent of the

results and their potential causes and effects.

30

3 Methodology

This chapter brings forth the data collection methodology and specifies the selection of

the APK files, setup of the utilized devices and emulators (collection platforms) and the

established criteria for different system settings. The latter part of the chapter expands

upon the description of the implemented data collection procedure.

3.1 Goal setting

The related works examples described in chapter 2 were primarily focused on malware

detection using ML, therefore they were distinguished by a great number of APK files

(both benign and malicious) and mostly one (or in some cases several) Android OS-

based testing platforms. This is quite understandable, as the main concern of those

studies has been on ML models and on presenting the possibilities of training the ML

model to detect malware on certain testing environment, whereas on most cases real

Android device has not been the best choice for such large-scale research due to its

limited functional resources.

In this study, the amount of both benign and malicious APK samples has been

drastically reduced and the number of different testing platforms has been increased in

order to approach the research questions in an optimal manner.

The general purpose was to put together a testing environment which includes widely

used devices running modern and widespread Android versions, all which would also be

emulated in more popular emulation platforms in order to collect the system calls of

smaller set of various APK files (both malicious and benign, legacy and latest) for later

comparison and analysis.

31

3.2 Selection of testing samples

For the task, 8 malicious and 8 benign APK files were used. The characteristics of the

APK had to include:

• Each of the selected APK-s would be able to install and execute as an

application on each testing platform;

• Both malicious and benign APK sets would also include natively compiled

libraries compiled for different ABI-s;

• Malicious samples would represent both widely spread families and less known

or custom-made specimen;

• Malicious samples would represent both legacy and recent specimen.

Malware APK samples were chosen from two different datasets that are publicly

available for research purposes. Four samples of the most recent1 malware specimen

were collected from the AndroidMalware_2020 dataset available in public GitHub

repository [48]. The other four samples of somewhat older2 malware samples were

acquired from CICAndMal2017 dataset made available by University of New

Brunswick’s Canadian Institute of Cybersecurity. CICAndMal2017 dataset was

originally established for Android malware research published in [49].

3.2.1 Malware

The selection of malware APK files from datasets was based on the four requirements

described above. Samples were picked randomly and tested for the requirements. If any

of the randomly chosen samples did not meet the requirements (i.e. was unable to install

or execute on all the platforms) then it was discarded and other sample was chosen for

testing. All final samples are representing different malware families, i.e. a subgroup of

malware labelled and named by its malicious characteristics. Such labelling and naming

of malware is mostly done by various AV vendors, who specialize in malware research

and taxonomy. However, there are still numerous inconsistencies and ambiguities found

in classification policies [50] which means those samples might also have different

1 Samples discovered as malware after January 2020
2 Samples discovered as malware between 2013 and 2017

32

names or labels given by different AV vendors or threat intelligence organizations. Here

we are using the classification of the malware type and family name that has been used

in respective datasets. Tables 1 and 2 show the main properties of used malware

samples with short descriptions of each sample following after.

Table 1. Properties of malware APK files (type, family, package name, target ABI)

Code Type Family Package name Supported ABI

MW1 Backdoor “Mobok” com.awesome.fantasywallpaper armeabi, armeabi-v7a, arm64-v8a,
x86, x86_64

MW2 Spyware “XploitSpy” com.dotgears.flappybird armeabi, armeabi-v7a, x86

MW3 Adware “Hiddad” com.CORONAVIRUS.OUTBREAK all

MW4 Spyware “Bahamut” com.r.voiceofislam all

MW5 Adware “MobiDash” fi.app4.fap armeabi, armeabi-v7a, arm64-v8a,
x86, x86_64, mips, mips64

MW6 Scareware “Android.Spy.277” com.os7.launcher.theme armeabi, armeabi-v7a, x86, mips

MW7 Ransomware “WannaLocker” com.android.tencent.zdevs.bah all

MW8 SMS malware “Plankton” com.badguys.japansound all

Table 2. Properties of malware APK files (dataset, hash, first appearances, size)

Code Dataset MD5 hash Upload to VT1 Upload to Koodous2 APK Size

MW1 AndroidMalware_2020 83763edd2d2e5d380df5c777cc9cdc24 2020-02-14 2020-02-15 5.26 MB

MW2 AndroidMalware_2020 117e1331306fec02b1ffe6b68d148cc9 2020-05-06 2020-05-06 1.34 MB

MW3 AndroidMalware_2020 ec2b4ad861c0dbef1404713d9eac48a4 2020-03-13 2020-03-13 11.27 MB

MW4 AndroidMalware_2020 9368dd657e410f8a9ba2b71c95cc0777 2020-08-26 2020-08-26 10.48 MB

MW5 CICAndMal2017 08d05f01671f788e9c17a9ffca0547b0 2016-02-09 2016-02-09 4.20 MB

MW6 CICAndMal2017 2c5f158e2be5b0a67fe7378d6cff0d2d 2015-12-10 2015-12-11 4.51 MB

MW7 CICAndMal2017 762138e933a681628ceab29d8e5a96a2 2017-07-25 2017-07-26 11.68 MB

MW8 CICAndMal2017 0378f0cf4e7241a4c0f5a0722e601638 2013-08-07 2019-07-15 17.27 MB

MW1 (Backdoor “Mobok”): The first variants of this malware were discovered in

2019. Its different versions have been masked as photo or image editing apps which

have also known to have been available in Google Play market due to malware’s

evasive characteristics. Besides giving the attacker a potentially full control over the

victim’s device, this malware also steals user’s personal data and uses it to unknowingly

sign them up to paid subscription services [51]. This gives the exploiter a financial gain

1 Date of first submission to VirusTotal.com
2 Date of first submission to Koodous.com

33

in expense of the victim. Mobok was ranked as top 13th mobile malware by

Kaspersky’s Securelist in 2020 [52].

MW2 (Spyware “XploitSpy”): This new malware is basically a very capable Android

monitoring kit which is available as an open-source downloadable toolset. It has a built-

in APK builder which auto-builds the malicious APK file that could be apparently

repackaged and modified to be disguised as a random benign-looking application. If

successfully installed on a victim’s device, it gives the exploiter the access to victim’s

logs, files, microphone and other features [53].

MW3 (Adware “Hiddad”): Hiddad is one of the many variants of adware out in the

wild and it has been detected since 2016 [54]. Adware is usually not directly malicious

but rather annoying and unethical due to its hidden and undeclared essence. The

unwanted ad-code is embedded into a regular applications and distribution service

providers could often remain oblivious to their existence for long periods of time.

Different versions of Hiddad have resided in Google Play for several consecutive

periods [55]. There seem to exist also other versions of malware named Hiddad which

have been identified having features of a backdoor malware [56].

MW4 (Spyware “Bahamut”): Bahamut, which also gives name to this malware

sample, is actually a threat actor or advanced persistent threat (APT) that has been

labelled by researches as a sophisticated hack-for-hire group targeting individuals and

organisations mainly in Middle-East and South Asia [57]. This particular malware APK

sample was discovered in late 2020 and it contained a number of spyware components

which aimed at extracting sensitive user related information (call logs, contacts, device

info, media files etc.) and sending it back to the attackers’ server [58].

MW5 (Adware “MobiDash”): This malware is another example of aggressive adware

where ad-code is repackaged into some legitimate APK. It displays pop-up

advertisements every time the user of the device unlocks the screen. To distract users

and evade different dynamic analysis, this malware would wait days or even weeks after

installation before executing its malicious ad-code [59], [60].

MW6 (Scareware “Android.Spy.277”): This malware trojan has been classified as

scareware due to its features that besides stealing the victim’s data as a regular spyware,

34

it would also display advertisements or fake warnings (for example about an

overpowered battery or malware infection etc.) and offers the victim to download the

next (malware) application as a “solution”. Already by the time of its discovery back in

2016 it was embedded into more than 100 different applications – a number that has

been likely grown since then [61].

MW7 (Ransomware “WannaLocker”): First appearing in 2017, this file-encrypting

malware reminds the famous Windows ransomware WannaCry made available for

Android OS. Targeting Chinese users and originally spreading in Chinese forums, this

malware changes the background wallpaper and actually encrypts small-sized (up to 10

KB) files stored on different locations on device’s storage. The home page of the

application then demands a small amount of money from the victim for the decryption

keys [62].

MW8 (SMS malware “Plankton”): The CICAndMal2017 dataset and some previous

research [63] classify Plankton as SMS-malware, while its properties and behaviour

would suggest it to be actually a spyware. Plankton is an older example of a malware

family repackaged in legitimate apps that would steal information and attempt to open a

backdoor on Android devices. When executed, it would try to collect the device ID and

permissions and send them to a remote server. This server would then push a backdoor

payload onto the device, which would use the host application’s permissions to collect

additional information and send it back to the server [19, p. 17], [64].

3.2.2 Benign applications

All of the benign APK files were collected from CICAndMal2017 dataset and were

tested in VirusTotal to confirm their non-malicious nature. Those files were picked in a

random manner with only prerequisites that they would be able to correctly install and

execute on each testing platform and half of them would include native libraries

similarly to their malware counterparts. Their properties are described in Table 3 and

Table 4.

35

Table 3. Properties of benign APK files (package name, target ABI)

Code Category Package name Supported ABI

BN1 Audiobook player ak.alizandro.smartaudiobookplayer armeabi, armeabi-v7a, x86

BN2 Timesheet organizer com.aadhk.time armeabi, armeabi-v7a, x86, mips

BN3 Graphic design tool cover.designer.maker.scopic armeabi, armeabi-v7a, arm64-v8a, x86, x86_64, mips, mips64

BN4 PDF converter pdfConversion.Droid armeabi, armeabi-v7a, x86

BN5 QR code scanner app.qrcode all

BN6 Camping database au.com.angryrobot.wikicamps all

BN7 Diary com.adpog.diary all

BN8 Alarm Clock com.alarmclock.xtreme.free all

Table 4. Properties of benign APK files (dataset, hash, first appearances, size)

Code Dataset MD5 hash Upload to VT1 Upload to Koodous2 APK Size

BN1 CICAndMal2017 ea30d7cc4c1dd7ad31bc32156fd2025b 2017-02-16 2017-02-17 4.65 MB

BN2 CICAndMal2017 0ea05f7634ac6b1003a774d3d7f22103 2016-09-07 2016-09-07 7.39 MB

BN3 CICAndMal2017 33b2fcb832c67a6c69a5cc05b0a44e3f 2017-02-07 2017-05-05 24.11 MB

BN4 CICAndMal2017 de76fdefa4a223d38162c8d349752720 2016-12-12 2016-12-12 23.84 MB

BN5 CICAndMal2017 90c81f6acc471d922fee136880eda641 2017-02-13 2017-02-13 3.02 MB

BN6 CICAndMal2017 1607aef3d413ddd619c0248b07dd0087 2016-12-17 2016-12-17 9.42 MB

BN7 CICAndMal2017 944761948baeddf0e503325bf5e41ca4 2016-07-19 2016-07-21 2.24 MB

BN8 CICAndMal2017 d93520ceee3ce2a3ff29a38cd7f6428c 2015-04-02 2015-08-08 7.61 MB

3.3 Selection of implementation platforms

To measure the possible differences of system calls on different platforms, three mobile

phones running two different Android OS versions (9 and 10) were selected as

benchmarks for this research. Those phones were also emulated as accurately as

possible in both Android Studio 4.1.2 Android Virtual Device (AVD) Manager and

Genymotion Desktop 3.2.0 emulator. All real devices were rooted with Magisk

Manager, while emulated devices had root available through system images. All

smartphones were using 4G connection (one SIM-card for each platform) and had 16

GB microSD card inserted as an additional internal storage unit.

1 Date of first submission to VirusTotal.com
2 Date of first submission to Koodous.com

36

3.3.1 Implementation platform specifications

The host platform for all the emulations was a PC with Intel Core i7-8665U x86_64

CPU and 32 GB RAM running Ubuntu 20.04 LTS with 5.4.0-70-generic kernel version.

For internet connection during emulation testing, a 4G USB-modem was used. This

section provides the overview about the parameters of given testing platforms, including

the details of their central processing unit (CPU), system on a chip (SoC) model and

kernel version. Most of this information was gathered by examining build.prop system

file and using AIDA64 system information application.

Table 5, Table 6 and Table 7 reflect the specifications of used smartphones and their

emulations. Since PH1 and PH2 are running a 32-bit OS on a 64-bit CPU, system

images with x86 ABI were chosen for EA1 and EA2 emulations in AVD manager to

better match the kernel architecture, while PH3 running 64-bit OS was emulated as EA3

with x86_64 system image1. Such distinction was not possible with Genymotion, which

offered only 32-bit x86 system images.

Table 5. Smartphone hardware and OS specifications

Code Device System CPU Operating System

PH1 Samsung
Galaxy A20e

Model:
SM-A202F
RAM:
3 GB
Storage:
32 GB
Display:
720 x 1560 5.8″ (296 dpi)

SoC model:
Samsung Exynos 7 Octa
(7885)
Instruction set:
64-bit ARMv8-A
Supported ABIs:
arm64-v8a, armeabi-v7a,
armeabi

Android version:
9 (Pie)
API level:
28
Kernel architecture:
armv8l (32-bit)
Kernel version:
4.4.111-17594784

PH2 Samsung
Galaxy A40

Model:
SM-A405FN
RAM:
4 GB
Storage:
64 GB
Display:
1080 x 2340 5.9″ (437 dpi)

SoC model:
Samsung Exynos 7
Octa (7904)
Instruction set:
64-bit ARMv8-A
Supported ABIs:
arm64-v8a, armeabi-v7a,
armeabi

Android version:
10
API level:
29
Kernel architecture:
armv8l (32-bit)
Kernel version:
4.4.177-20196810

PH3 Xiaomi Redmi
Note 8 Pro

Model:
Note 8 Pro
RAM:
6 GB
Storage:
64 GB
Display:
1080 x 23406.53″ (395 dpi)

SoC model:
MediaTek Helio G90T
(MT6785T)
Instruction set:
64-bit ARMv8-A
Supported ABIs:
arm64-v8a, armeabi-v7a,
armeabi

Android version:
10
API level:
29
Kernel architecture:
aarch64 (64-bit)
Kernel version:
4.14.141-g30b7a06

1 At the time of conducting this research, Android SDK did not offer ARM system images for Android
9 and Android 10. Android 7 version of ARM image was tested, but it failed to properly function on a
x86_64 host PC.

37

Table 6. Android Studio emulation hardware and OS specifications

Code Emulation System CPU Operating System

EA1 Android Virtual Device
Samsung Galaxy A20e

Model:
AOSP on IA emulator
RAM:
3 GB
Storage:
32 GB
Display:
720 x 1560 5.8″ (320 dpi)

SoC model:
Android virtual
processor
Instruction set:
32-bit x86
Supported ABIs:
x86, armeabi-v7a,
armeabi

Android version:
9 (Pie)
API level:
28
Kernel architecture:
i686 (32-bit)
Kernel version:
4.4.124+

EA2 Android Virtual Device
Samsung Galaxy A40

Model:
Android SDK built for x86
RAM:
4 GB
Storage:
64 GB
Display:
1080 x 2340 5.9″ (480 dpi)

SoC model:
Android virtual
processor
Instruction set:
32-bit x86
Supported ABIs:
x86

Android version:
10
API level:
29
Kernel architecture:
i686 (32-bit)
Kernel version:
4.14.175-g6f3fc9538452

EA3 Android Virtual Device
Xiaomi Redmi Note 8 Pro

Model:
Android SDK built
for x86_64
RAM:
6 GB
Storage:
64 GB
Display:
1080 x 2340 6.53″ (320 dpi)

SoC model:
Android virtual
processor
Instruction set:
64-bit x86
Supported ABIs:
x86_64, x86

Android version:
10
API level:
29
Kernel architecture:
x86_64 (64-bit)
Kernel version:
4.14.175-g6f3fc9538452

Table 7. Genymotion emulation hardware and OS specifications

Code Emulation System CPU Operating System

EG1 Genymotion emulator
Samsung Galaxy A20e

Model:
Emulated A20e
RAM:
3 GB
Storage:
32 GB
Display:
720 x 1560 5.8″ (300 dpi)

SoC model:
Intel Core
i7-8665U CPU @
1.90 GHz (host)
Instruction set:
32-bit x86
Supported ABIs:
x86

Android version:
9 (Pie)
API level:
28
Kernel architecture:
i686 (32-bit)
Kernel version:
4.4.157-genymotion-
gbca5a41

EG2 Genymotion emulator
Samsung Galaxy A40

Model:
Emulated A40
RAM:
4 GB
Storage:
32 GB
Display:
1080 x 2340 5.9″ (440 dpi)

SoC model:
Intel Core
i7-8665U CPU @
1.90 GHz (host)
Instruction set:
32-bit x86
Supported ABIs:
x86

Android version:
10
API level:
29
Kernel architecture:
i686 (32-bit)
Kernel version:
4.4.157-genymotion-
gbca5a41

EG3 Genymotion emulator
Xiaomi Redmi Note 8 Pro

Model:
Emulated Note
8 Pro
RAM:
6 GB
Storage:
32 GB
Display:
1080 x 2340 6.53″ (400 dpi)

SoC model:
Intel Core
i7-8665U CPU @
1.90 GHz (host)
Instruction set:
32-bit x86
Supported ABIs:
x86

Android version:
10
API level:
29
Kernel architecture:
i686 (32-bit)
Kernel version:
4.4.157-genymotion-
gbca5a41

38

3.3.2 Implementation platform settings

Emulations were created to imitate the real smartphone devices as accurately as possible

using the setup mechanisms made available by the emulation programs. This means that

all emulated specifications (like the OS image, number of CPU cores, RAM size,

display resolutions and dpi, storage and SD card size etc.) were all selected according to

the real devices’ specifications, if applicable. Some minor deviations remained,

however, since some features like storage size (in Genymotion) or display dpi sizes

were offered in a fixed configurations. In such fixed cases, if selectable, the nearest

possible value to the real specification was used.

Within operating system, each testing platforms were also given as similar settings as

possible to create a setting similar to ‘average’ user. This means that consent was given

to provide diagnostics and usage data, location services were enabled, WiFi was enabled

(although only 4G connection was used), Google Play Services were enabled and

logged in to with a Google account. The exceptions here were Android Studio

emulations, as the system images only permitted Google APIs but not Google Play

Services, while Genymotion allowed to use Google Play through Open Gapps widget.

On every platform, Play Protect was disabled to allow untampered installation and

execution of malware applications.

3.4 Data collection procedure

The purpose of the data collection in this thesis research was to trace and log system

calls for each installed and executed application from each Android platform under the

same conditions for further analysis. For this task the ADB (Android debug bridge) tool

was used in concert with the Monkey and strace tools. The details of the collection

process are described below.

3.4.1 Android Debug Bridge

Android Debug Bridge or ADB is a versatile command-line tool that lets the user to

communicate with a device. The adb command facilitates a variety of device actions,

such as installing and debugging apps, and it provides access to a Unix shell to run a

39

variety of commands on a device. It is included in the Android SDK Platform-Tools

package [65]. All interactions with testing platforms during the data collection process

were conducted using this tool. This required enabling the ‘developer options’ mode on

each device’s settings.

3.4.2 Application Exerciser Monkey

The Monkey tool was used to execute the chosen application packages through ADB.

This program runs on the emulator or device and generates pseudo-random streams of

user events such as clicks, touches, or gestures, as well as a number of system-level

events. This tool is specifically used by developers to stress-test applications in a

random yet repeatable manner [66]. The exact usage of the Monkey tool in this research

is demonstrated in subsection 3.4.4.

3.4.3 Strace tool

Being a potent tool, strace is a diagnostic, debugging and instructional userspace utility

for Linux. It is used to monitor and tamper with interactions between processes and the

Linux kernel, which include system calls, signal deliveries, and changes of process state

[67]. In essence, strace helps the user to trace the interactions between user process and

system kernel. Its usefulness in malware detection lies in the fact that unless the

malware itself is installed in the kernel of the operating system, it needs to use system

calls to function, which in turn can be tracked (and logged) with strace [31]. The exact

usage of strace jointly with Monkey tool in this research is demonstrated in subsection

3.4.4.

There was no strace tool originally available on the real devices’ system binaries. After

rooting, it became possible to add strace to their /system/bin folders. This required the

system to be temporarily mounted as ‘writable’ and after successful installation of

strace to be re-mounted again as ‘read-only’. An strace binary precompiled for ARM

platforms was implemented by adding it into the /system/bin folder.

40

3.4.4 Collection process

After implementing the predetermined OS settings on a specific device or emulation,

the platform was ready to be used for system call data collection. It must be noted that

after each collection of malware sample’s system calls, the read-only memory (ROM)

on the real device was re-flashed with clean system image. For benign samples, system

factory reset was implemented after each collection round. The devices were re-rooted

and the predetermined OS settings were then again applied. This policy ensured that the

original unvaried system state was restored before each collection, but made the overall

collection process exceedingly time-consuming. In case of emulators, snapshots

(Android Studio) and cloning (Genymotion) were implemented.

Table 8. Modes of application execution

Code Mode of execution Description

1E Execution only Plain execution of application. No interaction added to ongoing
process.

50E 50 events injected Execution of an application with 50 additional pseudo-random
events injected through Monkey tool.

The purpose of the collection was to install the testing APK, execute the application

with the Monkey tool while attaching the strace to the launched application process, let

the application run for 5 minutes while collecting and saving the system call logs into an

output file and finally detach the strace, close the application and pull the output file to

host computer. Such procedure was employed twice for each sample – first time with

only application execution and secondly with 50 pseudo-random events generated by

Monkey tool during the collection process (explained in Table 8). For both installation

and collection procedures, two simple bash scripts with necessary commands were

generated, which are presented below.

41

Installation:

#!/bin/bash

Command: ./scriptname.sh apkname.apk

Install the given application to connected device.

adb install $1

Print the application’s package name.

aapt dump badging $1 | awk -v FS="'" '/package: name=/{print $2}'

The last line was used to print the application package name on command line interface

which would then be used in conjunction with the following collection script.

Execution and collection1:

#!/bin/bash

Command: ./scriptname.sh app.package.name

Create log collection folder.

adb shell su -c mkdir -m 777 /sdcard/Download/stracelog

Launch app (event 1) for 300 sec & log the syscalls.

adb shell su -c monkey -p $1 1 && adb shell su -c timeout 300 strace -o
/sdcard/Download/stracelog/syscall-$1.txt -Cittr -p $(adb shell ps -A | grep
$1 | awk '{print $2}')

sleep 3

Pull the log to host.

adb pull /sdcard/Download/stracelog/syscall-$1.txt /destination/path/

Close & clear user data.

adb shell su -c pm clear $1

The collection script created the log collection folder, executed the application with the

Monkey tool including the given pseudo-random events (1 shown in this example) and

attached strace for 5 minutes onto that application’s parent process identifier (PID)

while saving the collected log to a given file with the corresponding package name.

When strace was detached after 5 minutes, the script waited for 3 seconds and pulled

1 Using the ADB shell, the ‘su -c command’ was required when interacting with real devices, while the
emulations required ‘su 0 command’.

42

the saved log file to host PC, closed the application and deleted its user data, but kept

the application. The process was then repeated for the second time with the script that

had 50 pseudo-random events injected by Monkey. Any other manipulation with the

device or emulator was not implemented during the collection process. There were rare

occurrences when the application crashed or was closed by a random Monkey event

during the collection process. On those cases, the whole procedure was repeated

according to the predefined criteria.

However, there was one forced deviation from this policy – prior to executing several

tested applications in any Android 10 platform, a non-skippable permissions screen had

to be passed by tapping/clicking the ‘Continue’ button (see Figure 3 for an example).

The reason for this factor was one of the several privacy improvements added to

Android 10 compared to Android 9. As described in [68], if the particular application

targets Android 5.1 (API level 22) or lower, users would see a permissions screen when

using that app on a device that runs Android 10 or higher for the first time.

43

Figure 3. Android 10 legacy apps’ permission check (MW6 example)

In order to collect the syscall data from legacy applications, the ‘Continue’ button was

pressed with no other manipulations. The legacy applications affected on Android 10

platforms by this feature were MW2, MW5, MW6, MW7, MW8, BN2, BN6, BN7 and

BN8. The possible impact of this provision is discussed in chapter 5.

As mentioned, due to the policy of ROM re-flashing (in case of malware samples) or

system resetting (in case of benign samples) and readjusting the OS settings according

to the predefined criteria, the system calls extraction from the real devices was an

exceedingly time-consuming endeavor compared to the snapshot restoring or cloning

possibilities available for emulated platforms. The result of the extraction process was a

collection of system call logs of each malicious and benign application from each

platform with both 1 event (execution only) and 50 events (pseudo-random injections

by monkey tool). Table 9 shown below depicts the collection matrix in a simplified way

with both types of collected logs1 included for each extraction combination.

After the collection process, there were 144 logs from malicious applications and 144

from benign applications gathered from both plain execution and 50 pseudo-random

1 1E = system calls log with plain execution; 50E = system calls log with 50 pseudo-random events

44

Table 9. Collection matrix

event injection collections. In the following phase, all collected logs were examined and

analyzed. The gathered data, analysis process and the results of the analysis are

described in chapter 4.

45

4 Results

The gathered 288 log files resulted altogether in a large amount of raw data, with a

variety of options to examine and analyse it. The results indicated differences in varying

proportions in their length of sequences and the amount of different system calls

initiated by application during the 5-minute period. In general, this was predictable, as

different applications perform in different manners. However, as the purpose of the

study was to discover and report possible behavioral differences between different

Android platforms, the data originating from malicious and benign applications was to

be compared in relation to each real device and their emulated counterparts. Due to the

extensive amount of data, it was not feasible to compare the differences in the level of

individual unique system calls. In order to limit the scope of the study, the gathered data

was examined from the perspective of call summaries, while also considering the

amounts of unique system calls initiated on different platforms. Other possible methods,

such as comparing the sequence alignments of various system calls, were not applied.

4.1 Initial examination of raw data

The typical output sample of the log files is shown as a fragment from a larger output in

Figure 4 below. This example originates from MW3 application collected on PH1

platform (timestamps have been removed from the example).

46

The strace tool gives the user an option to display a summary of system calls at the end

of the log output using the -C flag as part of the command (or -c for summary only). An

example of the summary of the same extracted log as above is shown in Figure 5.

47

Figure 4. Example of a system call log (fragment)

Figure 5. Example of a single strace log summary

These summaries include, among other data, the list of recorded unique system calls, the

amount of each unique calls initiated, and also the total sum of all recorded system calls

during the tracing process. These total sums and the number of unique system calls from

each application were used as primary data for further analysis. The total sums and data

was extracted from each of the logs and arranged into separate matrices. Those figures,

representing each application recorded on each platform, are shown for both 1 event and

50 event collections in Table 10 and Table 11, respectively1.

1 Total = total sum of different system calls; n = number of unique system calls

48

Table 10. Extraction results – general overview (execution only)

Table 11. Extraction results – general overview (50 events injected)

4.2 Determining the comparison sets

As there were 16 distinct applications involved (8 malicious and 8 benign), there were

obviously also 16 distinct behaviors expected on a single platform, since every

application differs from another by its nature. The purpose of this study was to examine

and report dissimilarities of system calls between different Android platforms, which

implied it was necessary to compare the data extracted from each application across the

platforms.

To establish comprehensible scope for that purpose, all 3 real phones were employed as

the basis for 4 separate platform comparison subgroups. Such division provided

distinctive sets of data for comparison. Subgroup A concentrates exclusively on

differences between the real devices, while subgroups B, C and D examine the

differences between each real device and its corresponding emulation platforms.

Since the extraction of the system call logs was carried out on each platform with two

limited sets of applications (malicious and benign) in two modes of execution (the first

approach being solely a plain application execution and the second approach having 50

pseudo-random event injections) implied that there were eventually 4 different

perspectives for examining potential contrasts within each subgroup. The four

subgroups and the concept of conditions based on application types and modes of

execution are presented in Figure 6. The next section of this chapter outlines the

implementation of data analysis through an example of one of those perspectives, while

section 4.4 describes the results gained from all given combinations described above.

49

Figure 6. Comparison sets and conditions

4.3 Data structuring and comparison

This section describes the data processing through visualization, set comparison and

scoring. To adequately evaluate the principal differences or similarities within the data

gathered from strace log summaries (presented above in Table 10 and Table 11) in

regards to the selected comparison sets and conditions (shown in Figure 6), an

experimental approach was implemented. Products regarding the subgroup A (real

device comparison) under two of four conditions (both malware samples and benign

samples with application execution only) are introduced in this section as descriptive

examples. All resulting content obtained from this approach is fully presented in

Appendix 2.

To achieve a more clarified overview of the log summaries’ output, the data was

visualized into multiple graphs, each representing 1 subgroup under 1 condition. As

there were occasional anomalies present within the data (which will be discussed below

in chapter 5.1), the figures tended to vary substantially at times. The total sum of system

calls from each application was limited to optimal amount of 20000 in primary vertical

axis of the graphical representation (the unfitting figures have been presented in charts’

data tables). The maximum amount of unique system calls from logs never exceeded 60,

which is the uppermost limit in secondary vertical axis. Figure 7 below visualizes the

results extracted from real devices while running malware without additional

interactions (execution only), while Figure 8 shows the same for benign applications.

50

Figure 7. Malware system call summaries – subgroup A (execution only)

Figure 8. Benign apps' system call summaries – subgroup A (execution only)

Each of the 4 subgroups incorporated 3 platforms, ready to be compared to each other

under 4 distinct conditions in relation to 2 selected attributes – total sum of all recorded

system calls and the amount of unique systems calls. In order to convert the outcomes of

51

the attributes’ comparison into a unified evaluation method to score similarities, the

differences of those attributes were treated as follows:

• For total sums, simply a ratio of increase between two sets of sums was

calculated (i.e. when comparing the sums 1500 and 1000, the ratio would be 1,5

showing a 50% increase);

• For amounts of unique system calls, which might hold substantially different

unique values among them, each set of contents were juxtaposed to find the

intersecting unique system calls and calculate their Jaccard coefficient

(indicated as a value ranging between 0 and 1). The Jaccard coefficient (or

Jaccard index) is a measure of similarity between sample sets defined as the size

of the intersection divided by the size of the union:

J (S1 , S2)=
|S1∩S2|

|S1∪S2|
=

|S1∩S2|

|S1|+|S2|−|S1∩S2|
.

Applying those measures in the comparison process resulted in a two-part comparison

indexes, with both portions representing a percentage of difference. In order to consider

the comparisons of system call summaries originating from the execution of the same

application on two different platforms as similar, a similarity threshold of 0,75 was

applied for both attributes. This meant that the comparison results were regarded as

similar, if both the total sum ratios did not exceed 1,25 and the unique system calls’

coefficient did not fall below 0,75. The example results for the similarity thresholds are

shown in Table 12, applied on the same data as displayed in Figure 7 and Figure 8

above.

52

The result tables also include the number of intersecting unique system calls on both

compared platforms (with the total number of unique system calls from both platforms

shown in parentheses, respectively). Additionally, the comparisons where the sets

displayed remarkable similarity (maximum ratio of total sums between 1,0 and 1,10

plus Jaccard index greater than 0,90), have been distinguished. All resulting content

obtained from this implementation is also fully presented in Appendix 2.

4.4 Outlining the comparison results

The general overview of the results covering the full spectrum of comparison sets and

conditions has been displayed in Figure 9.

Real devices compared to each other. From the overall viewpoint of the real device

platforms comparison, it becomes evident that although the similarities within this

subgroup were the most prevalent, they were present only under certain conditions.

Firmly consistent similar results were present between PH1 and PH2 with malware

samples, both with execution only and event injection categories. However, those

similarities have largely diminished if the aforementioned devices are compared with

53

Table 12. Similarity comparison – subgroup A (execution only)

PH3, with only a few malware samples continuing to display firm consistency (such as

MW4, MW5 and MW7). In addition, it was also evident that the malware samples

displayed slightly stronger similarities across platforms, when interaction with the

application was mimicked through 50 event injections.

The benign samples did not display such abundance of similar activity. Only 1

application out of 8 reached the threshold on every comparison with plain execution

only. There were no significant general similarities existent between platforms as it was

with malware. A minor exception was present in comparison between PH2 and PH3

only with plain execution condition, where BN4 and BN7 fit into the 0,90 (great

similarity) threshold. The same condition had also a noticeable ‘semi-similarity’ present

in the category of unique system calls.

Real devices compared to their emulations. The measurement results between real

devices and emulators showed mostly chaotic results. Although there were some

54

Figure 9. General overview of comparison results

solitary matches, no significant similarity patterns were present in overwhelming

majority of comparison sets and conditions. The only remarkable exception was present

in subgroup D where PH3 and its SDK emulation (EA3) reached both similarity

thresholds with 4 benign samples in execution only condition. Even so, it must be

emphasized that between those two comparison platforms, all 8 benign applications

displayed remarkable similarities in the unique system call category, reaching well

above the minimal similarity thresholds. Those levels of similarities were however

mostly fallen off under condition with 50 injected events.

This chapter described the raw results, formulation of the comparison subgroups and the

data structuring. The latter part described the comparative analysis and outlined the

general overview of the comparison results. Chapter 5 will further discuss the more

relevant issues and finally concludes the main discoveries.

55

5 Discussion

This chapter discusses the several anomalous results and makes an effort to explain the

causes and implications of the general findings. The final parts of this chapter focus on

possible threats to validity, points out the possible directions for future research and

summarizes the main findings of this thesis.

5.1 Outlier cases

Before addressing and contemplating the potential causes of the similarities and

differences in system calls’ summaries discovered in previous chapter, it is necessary to

examine the certain anomalies that were present among those findings. As shown in the

previous chapter, the similarities in system call summaries between different platforms

were mostly a rarity, and more present only under certain conditions. The majority of

comparisons indicated rather significant differences in both total sum of system calls

and amounts of unique system calls. As it can be seen above in Table 10 and Table 11,

the total amounts of system calls originating from the single source application varied

significantly on different testing platforms. Certain levels of variances, differing several

or occasionally even dozens of times in comparison, were occurring in the cases of

every application sample and therefore can be considered normality. However, there

were applications, which showed inconsistencies of total system call sums in levels that

differed even hundreds of times on different testing platforms (as shown in Table 13

and Table 14). In the context of present study, such levels of differences can be

considered as outliers but were still purposely added to comparison, as they represent

the real behavior of the real samples on the real platforms. This section presents those

anomalies and contemplates over the possible causes of such behavior.

56

There was a one-time occasion, where an application (MW6) which consistently never

stopped invoking system calls on during the collection time frame, drastically slowed

down its regular behavior on a single platform (shown in Figure 10). This remarkable

difference occurred only on PH3 under both 1 event and 50 event conditions. On other

real devices and every emulation (including the emulations of PH3 itself – namely EA3

57

Table 13. Outliers among the results (execution only)

Table 14. Outliers among the results (50 events injected)

and EG3), the iterations (albeit mostly dissimilar according to established comparison

standards) never stopped.

All other outlier cases had the opposite nature – on limited occasions, some applications

that previously had shown consistent activities after usual boot sequences or injected

input events, and eventually stopping with system call epoll_pwait() to wait for inputs,

began to instrument unstoppable sequences of system calls on certain platform(s). Such

anomalous occurrences were present in cases of two malware samples (MW3, MW8)

and two benign application samples (BN3, BN4). Most of the outlier cases produced

extreme amounts of clock_gettime() calls, with reasons likely related to CPU context

switches or interruptions related to graphics processing, while logging the issues. If the

model training would happen to be implemented on such an exaggerated behavior, the

results might lead to model deviations and eventually to inaccuracies in malware

detection.

The issue related to large differences in MW8 system call summaries seemed to be

directly related to graphics incompatibilities on certain platforms (on PH3 and

especially Genymotion emulations), as the main screen tended to flicker for certain

period of time after application execution (displayed as a screenshot in Figure 11). In

order to confirm this flicker as the issue behind excessive amounts of system calls,

several re-runs with MW8 were made on those platforms, that confirmed the relation

58

Figure 10. Top 10 system calls from MW6 summaries (Subgroup A)

between the length of the flickering and the total sum of syscalls made. In comparison

described in chapter 4, only the results from the first runs from each platform were used.

Based on the case description above, it would be feasible to generalize the software-

related graphical incompatibility issues to other outlier cases, however the validation of

such a theory would need additional research.

5.2 Causes and implications

Despite the existence of several outliers, the majority of results did not display such

extreme levels of system call iterations. Still, the differences between the testing

platforms were evident, as shown in chapter 4. This section contemplates these

differences by observing the data and known specifications, while section 5.3 points out

the possible limitations of the approach and gives suggestions for future research.

59

Figure 11. Example of flickering on application's main page (MW8 on PH3)

Real devices compared to their emulations. When comparing the summaries between

the real devices and their emulations (both Android Studio and Genymotion) it is

evident that the use and distribution of the system calls diverge significantly. The

system call differences with real devices are more prevalent in their Genymotion

emulations, where only 2,08% (2 out of 96) total comparisons fitted within the applied

minimum similarity threshold (both originating from sample BN4). It must be noted that

Genymotion only allowed the usage of 32-bit x86 system images, which might have

seriously affected the comparison of EG3 to its reference model PH3 with 64-bit OS.

Android SDK emulations fared slightly better with 14,58% (14 out of 96) comparisons

fitting into 0,75 similarity threshold and showing even a certain consistency with only

benign applications, when comparing PH3 with its emulation EA3.

The reasons behind these divergences are probably multifaceted with their roots in both

hardware and software-related aspects. All emulations in this study were based on Intel

architecture (as described in Table 6 and Table 7) while most of the real devices in

today’s market (including the phones used in this research) implement ARM

technology. Although system calls in Linux are mostly universal for userspace

processes on different Linux devices, their numbers and availability in separate

architectures differ from one another [69], as do the calling conventions in x86 and

ARM platforms [70]. These principal differences are also reflecting in the tracing logs,

which in turn means that while the emulators are fast and convenient platforms for

feature extraction and model training, the acquired malware detection abilities might not

perform accurately in the real-life situation on actual Android devices. In order to prove

or disapprove this statement, the data from the extracted logs gathered by this research

would need to be validated by trained detection algorithms in the future research. On the

other hand, the latest versions of Android SDK indicate that Google seems to be

bringing back ARM-based system images to SDK emulator with the latest Android 12,

which might bring new levels of architectural compatibility for emulator-based

researchers.

The architectural differences in system call handling are however not the only potential

reason between the overall differences between real devices and their emulations. The

modern malware tends to implement anti-emulation and sandbox detection techniques

in various levels of efficiency, which is a rather well-explored area in different forensic

60

studies [71], [72]. Even a well-prepared emulation setup could never mimic a real

device with uncanny accuracy, which means that the more sophisticated malware might

never reveal its true nature in an emulated environment.

Similarities and differences between real devices. This thesis study employed three

Android phone models (specifications are described in Table 5). While the comparison

of system calls’ summaries in this subgroup showed the most consistent results, the

similarities were still only present under certain conditions. Most of the malware

samples displayed fundamentally similar results on PH1 and PH2 with both modes of

execution (similarities with the condition of 50 injected events were the closest).

However, such similarities in malware system calls were much less present when PH3

was added to comparison. Additionally, the benign applications (except for BN6 and

BN7) did not manifest fully consistent cross-platform similarities, although the unique

calls category between PH2 and PH3 displayed good parity when executed without

event injection.

The platforms with the most number of similarities – PH1 and PH2 – were running

different Android versions (9 and 10), but were sharing the same kernel architecture

(armv8l – a 32-bit version of ARMv8), which was their main difference with PH3

having Aarch64 architecture and slightly newer version of kernel. In short, although

sharing the same ARM technology, PH1 and PH2 were both employing 32-bit operating

systems on a 64-bit chipset, while PH3 had a privilege of running a 64-bit OS, due to

having a higher amount of RAM. The noticeable differences in system call summaries

indicate that due to its improved instruction sets, PH3 implements different calling

conventions for most of the applications than less capable PH1 and PH2. The future

research to compare the possible system call patterns and sequence alignments within

extracted logs originating from Aarch32 and Aarch64 platforms might find some

similarities, where implementing the direct comparison of summaries was not enough.

On the other hand, the near future of Android seems to be 64-bit only, as ARM has

already declared to terminate the support for 32-bit operations from 2023 onwards [73].

61

5.3 Limitations and future research

There were a number of limitations present in this study, that may impose negative

effects to the validity of the outcome of the thesis. The following subsections describe

the possible threats to validity and make an attempt to offer suggestions for future

researchers to further expand and improve the topic in order to better understand the

causes and effects of malware system calls on different mobile platforms.

5.3.1 Threats to validity

Missing initial boot sequences. Hooking strace to a newly started application’s process

through ADB shell in the manner implemented in this study involves a delay, during

which a varying amount of initial system call sequences will be not traced. The length

of this delay seemed to vary from several dozens of milliseconds up to a 1000 or even

more milliseconds (those lengths were not measured or taken into account in this

thesis). During such timespan, hundreds of initial system calls would remain

unrecorded, and the variations of strace connection delay might therefore distort the

final result amounts gathered from different platforms.

In addition to this limitation, there was also an issue regarding the legacy applications in

Android 10 described at the end of chapter 3.4.4. A security permissions screen was

needed to be bypassed, before Android 10 would execute the legacy application as a

process on the first time on that particular device. In order to keep the policy of

extracting the system calls only from the initial execution of the application, the

collection script was temporarily modified for legacy applications on Android 10 by

adding 1 second sleep delay between monkey and strace commands in order to

manually press the ‘Continue’ button on screen, which would execute the app for the

first time. Such diversion added at least several hundred milliseconds to the already

existing delay. The legacy applications affected on Android 10 platforms by this feature

were MW2, MW5, MW6, MW7, MW8, BN2, BN6, BN7 and BN8.

Unweighted unique system call values. In the similarity assessment phase, each

registered unique system calls on each platform were given the same value. Since the

amount of their appearances in the sequences differed, an introduction of the weighing

62

or ranking system of unique system calls would likely make the similarity assessment

more accurate.

Possible emulation detection. As noted in the previous subsection, some of the

malware might be able to detect the emulation environment and hide their main

activities. During this study, the applications were not reverse-engineered in order to

examine their potential abilities of this kind. This leaves at least a theoretical possibility,

that some of the malware could have expressed different behavior in real device and

emulation platforms.

5.3.2 Suggestions for future research

Although the limitations described above might impose certain distorting effects on the

results, it is unlikely that those effects would significantly threaten the final outcomes of

similarity comparison. For the future researches incorporating the methods used in this

thesis, it would nevertheless be advisable to implement measures to negate the effects of

those limitations in order to achieve better accuracy.

In order to fully validate the outcomes of this study and estimate the potential effects of

platform-related system call differences on malware detection models, the strace logs

extracted during the collection process in this study should be tested with an existing

detection algorithms trained on either real device and emulation environments. It must

be noted that some of the malware samples used in this thesis were quite recent and

unique – a trait which might render them immune to the detection models trained on

older datasets (the families and overall characteristics of used samples are described in

chapter 3.2.1).

Although the effects of the acquired results remain to be validated by detection models

trained on emulated environments, it would likely be advisable to prefer real device

platforms to emulated ones for decisive research results, in order to achieve outcomes

accordingly to the malware behaviors on real-life production environments. However,

such comparative study should be repeated with a true ARM emulation platform,

incorporating an ARM-based system image and a host with ARM-based CPU. If not

already possible, the establishment of such setup combinations should be available in a

very near future.

63

Additionally, in order to acquire more detailed information about the causes and

possible relations of system call differences on various real devices, a subsequent

research on larger collection of real devices (with 64-bit operation systems) should be

implemented. Such study should consist of both sequence alignment and summary

comparison and could also involve custom-made malware. Furthermore, in order to

examine possible statistical deviations, a larger amount of applications should be tested

with several repetitions for each execution.

5.4 Conclusion

This thesis compared certain aspects concerning the behavior of malicious and benign

applications, derived from summaries of applications’ system call recordings, on a

selection of different platforms. The scope of the thesis was limited to a summational

approach to system call implementations, which provided good basis for comparative

analysis, but restricted the reasoning over technical causes to a level of observational

interpretation.

Answers to the research questions:

RQ1: How significant are the potential differences of system calls invoked by a single

application between different types of platforms? – The results based on system call

summaries indicated significant differences between real devices and emulators in terms

of system call invocations. On both emulation environments, 96 separate system call

extractions were conducted (total 192 from emulators). Each sample’s summaries were

compared for similarity with corresponding sample summaries from respective real

devices. As a result, only 2,08% of the system call logs extracted from Genymotion

emulator and 14,58% from Android SDK emulator were found to be within the

similarity limits with their counterparts collected from real devices.

The differences between the real devices were less extensive, but in general still

unexpectedly significant. The only consistency in similarity comparison was between

two devices sharing the same version of 32-bit kernel architecture, and even for those

two, the consistency was strong only with malware samples and yet disappointingly

weak with benign applications. Their separate comparisons with the device possessing

64

different kernel architecture was largely inconsistent but also controversial, with few

applications exhibiting unusual consistencies.

RQ2: What are the possible causes behind system call differences on different

platforms? – The reasoning based on observational analysis would conclude that the

main reason behind the differences comes from contrasting instruction sets and kernel

architectures of compared platforms. Despite that being the potential main factor, the

issue of system call differences is most likely tied not only to a single aspect, but is

more a cluster of different causes, including hardware performance, memory

availability, connectivity issues, etc.

RQ3: How could the existing differences affect malware analysis and what are the

possibilities to overcome this problem? – Although the comparison results must yet be

validated on an existing detection models, it is likely the emulator platforms are not the

appropriate means for feature extraction and model training if the main purpose is the

effective countering of malware in real-life environments. The results gathered in this

study also indicated less significant but notable differences between real devices

employing different extensions of ARM architecture. To fully evaluate and overcome

the potential effects of those differences on malware detection models, additional

research is needed.

65

6 Summary

The objective of this thesis was to examine and analyze existing differences between

system calls of malicious and benign applications on different android platforms,

including both emulators and real devices in a cross-comparison.

In order to achieve that purpose, a testing setup comprising of different platforms was

employed and documented. For raw data acquisition, strict criteria describing the

settings, conditions and restrictions was implemented. Limited sets of both malicious

and benign applications were installed and executed on testing environment according

to the predefined criteria for extracting system calls data to be evaluated in a

comparative analysis.

From the gathered raw data files, summaries representing both total amounts of system

calls and individual unique system calls were selected and categorized into a

comparison sets and subgroups according to respective testing platform and modus of

execution. The categorized sets were compared within subgroups and evaluated

according to the experimental approach described in thesis.

The results indicated significant differences between real devices and emulators in

terms of system call invocations. The differences between the real devices were less

extensive, but in general still unexpectedly significant. Although the results displayed in

this thesis would need additional validation by trained detection algorithms, the current

findings are suggesting that the studies employing system calls must consider with

platform-specific differences in terms of general reliability.

66

References

[1] “Smartphone users 2021,” Statista. https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/ (accessed Jun. 28, 2021).

[2] “Mobile Operating System Market Share Worldwide,” StatCounter Global Stats. https://
gs.statcounter.com/os-market-share/mobile/worldwide/ (accessed Jun. 28, 2021).

[3] “First SMS Trojan for Android,” Securelist, Aug. 10, 2010. https://securelist.com/first-sms-
trojan-for-android/29731/ (accessed May 22, 2021).

[4] “Mobile Malware Evolution, Part 5,” Securelist, Feb. 28, 2012. https://securelist.com/mo-
bile-malware-evolution-part-5/36485/ (accessed May 25, 2021).

[5] “AV-TEST: Security Report 2016/2017.” Accessed: Jun. 29, 2021. [Online]. Available:
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-
2017.pdf

[6] “ENISA Threat Landscape 2020: Cyber Attacks Becoming More Sophisticated, Targeted,
Widespread and Undetected.” https://www.enisa.europa.eu/news/enisa-news/enisa-threat-
landscape-2020 (accessed Jul. 12, 2021).

[7] “Android ABIs | Android NDK,” Android Developers. https://developer.android.com/ndk/
guides/abis (accessed Apr. 24, 2021).

[8] A. Guerra-Manzanares, H. Bahsi, and S. Nomm, “Differences in Android Behavior
Between Real Device and Emulator: A Malware Detection Perspective,” in 2019 Sixth In-
ternational Conference on Internet of Things: Systems, Management and Security
(IOTSMS), Granada, Spain, Oct. 2019, pp. 399–404. doi: 10.1109/
IOTSMS48152.2019.8939268.

[9] R. Tamma, O. Skulkin, H. Mahalik, and S. Bommisetty, Practical Mobile Forensics -
Fourth Edition. Packt Publishing, 2020. Accessed: Jun. 29, 2021. [Online]. Available:
https://go.oreilly.com/university-college-london/library/view/-/9781838647520/

[10]“Mobile & Tablet Android Version Market Share Worldwide,” StatCounter Global Stats.
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide (accessed
Jun. 12, 2021).

[11]“Application Fundamentals,” Android Developers. https://developer.android.com/guide/
components/fundamentals (accessed Apr. 17, 2021).

67

https://go.oreilly.com/university-college-london/library/view/-/9781838647520/
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf

[12]“Add C and C++ code to your project,” Android Developers. https://
developer.android.com/studio/projects/add-native-code (accessed Apr. 17, 2021).

[13]“Get started with the NDK | Android NDK,” Android Developers. https://developer.an-
droid.com/ndk/guides (accessed Apr. 17, 2021).

[14]Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep Learning for Android Malware De-
fenses: a Systematic Literature Review,” arXiv:2103.05292 [cs], Mar. 2021, Accessed: Jun.
15, 2021. [Online]. Available: http://arxiv.org/abs/2103.05292

[15]K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The Evolution of Android
Malware and Android Analysis Techniques,” ACM Comput. Surv., vol. 49, no. 4, pp. 1–41,
Feb. 2017, doi: 10.1145/3017427.

[16]R. Surendran, T. Thomas, and S. Emmanuel, “On Existence of Common Malicious System
Call Codes in Android Malware Families,” IEEE Trans. Rel., vol. 70, no. 1, pp. 248–260,
Mar. 2021, doi: 10.1109/TR.2020.2982537.

[17]“Platform Architecture,” Android Developers. https://developer.android.com/guide/plat-
form (accessed May 18, 2021).

[18]J. J. Drake, Android hacker’s handbook. Indianapolis, IN: John Wiley & Sons, 2014.

[19]K. Dunham, S. Hartman, J. A. Morales, M. Quintans, and T. Strazzere, Android malware
and analysis. Boca Raton: CRC Press, Taylor & Francis Group, 2014.

[20]“Kernel Definition,” The Linux Information Project. http://www.linfo.org/kernel.html (ac-
cessed Jun. 12, 2021).

[21]“Kernel,” Android Open Source Project. https://source.android.com/devices/architecture/
kernel (accessed Jun. 12, 2021).

[22]S. Malik and K. Khatter, “System Call Analysis of Android Malware Families,” Indian
Journal of Science and Technology, vol. 9, no. 21, Jun. 2016, doi: 10.17485/ijst/2016/
v9i21/90273.

[23]R. Love, Linux system programming, Second edition. Beijing: O’Reilly Media, 2013.

[24]“Arm vs x86: Instruction sets, architecture, and more differences explained,” Android Au-
thority, Jun. 05, 2021. https://www.androidauthority.com/arm-vs-x86-key-differences-ex-
plained-568718/ (accessed Jun. 07, 2021).

[25]“Emulators vs Simulators vs Real Device for Testing,” BrowserStack. https://
www.browserstack.com/guide/testing-on-emulators-simulators-real-devices-comparison
(accessed Jun. 06, 2021).

68

http://arxiv.org/abs/2103.05292

[26]“What is Scareware?,” Forcepoint, Apr. 01, 2019. https://www.forcepoint.com/cyber-edu/
scareware (accessed Jun. 18, 2021).

[27]“SMS Trojan,” Malwarebytes Labs. https://blog.malwarebytes.com/threats/sms-trojan/ (ac-
cessed Jun. 15, 2021).

[28]F. Alswaina and K. Elleithy, “Android Malware Family Classification and Analysis: Cur-
rent Status and Future Directions,” Electronics, vol. 9, no. 6, p. 942, Jun. 2020, doi:
10.3390/electronics9060942.

[29]F. Tchakounté and P. Dayang, “System Calls Analysis of Malwares on Android,” Maejo
International Journal of Science and Technology, vol. 2, no. 9, pp. 669–674, Sep. 2013.

[30]P. K. Das, A. Joshi, and T. Finin, “App behavioral analysis using system calls,” in 2017
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), At-
lanta, GA, May 2017, pp. 487–492. doi: 10.1109/INFCOMW.2017.8116425.

[31]K. Denney, C. Kaygusuz, and J. Zuluaga, “A Survey of Malware Detection Using System
Call Tracing Techniques,” 2018.

[32]Z. Wang, Q. Liu, and Y. Chi, “Review of Android Malware Detection Based on Deep
Learning,” IEEE Access, vol. 8, pp. 181102–181126, 2020, doi: 10.1109/
ACCESS.2020.3028370.

[33]S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for Unix pro-
cesses,” in Proceedings 1996 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, 1996, pp. 120–128. doi: 10.1109/SECPRI.1996.502675.

[34]A. P. Kosoresow and S. A. Hofmeyer, “Intrusion detection via system call traces,” IEEE
Softw., vol. 14, no. 5, pp. 35–42, Oct. 1997, doi: 10.1109/52.605929.

[35]S. Malik, “Anomaly based Intrusion Detection in Android Mobiles: A Review,” Interna-
tional Journal of Engineering Research, vol. 8, no. 10, pp. 698–710, Oct. 2019.

[36]J. M. Vidal, M. A. S. Monge, and L. J. G. Villalba, “A novel pattern recognition system for
detecting Android malware by analyzing suspicious boot sequences,” Knowledge-Based
Systems, vol. 150, pp. 198–217, Jun. 2018, doi: 10.1016/j.knosys.2018.03.018.

[37]H. Ruan, X. Fu, X. Liu, X. Du, and B. Luo, “Analyzing Android Application in Real-Time
at Kernel Level,” in 2017 26th International Conference on Computer Communication and
Networks (ICCCN), Vancouver, BC, Canada, Jul. 2017, pp. 1–9. doi: 10.1109/
ICCCN.2017.8038362.

[38]A. Amamra, J.-M. Robert, and C. Talhi, “Enhancing malware detection for Android sys-
tems using a system call filtering and abstraction process: Security and communication net-
works,” Security Comm. Networks, vol. 8, no. 7, pp. 1179–1192, May 2015, doi: 10.1002/
sec.1073.

69

[39]B. Zhao, “Mapping System Level Behaviors with Android APIs via System Call Depend-
ence Graphs,” in Computer Science & Information Technology (CS & IT), May 2019, pp.
139–152. doi: 10.5121/csit.2019.90612.

[40]V. P., A. Zemmari, and M. Conti, “A machine learning based approach to detect malicious
android apps using discriminant system calls,” Future Generation Computer Systems, vol.
94, pp. 333–350, May 2019, doi: 10.1016/j.future.2018.11.021.

[41]L. Xu, D. Zhang, M. A. Alvarez, J. A. Morales, X. Ma, and J. Cavazos, “Dynamic Android
Malware Classification Using Graph-Based Representations,” in 2016 IEEE 3rd Interna-
tional Conference on Cyber Security and Cloud Computing (CSCloud), Beijing, China, Jun.
2016, pp. 220–231. doi: 10.1109/CSCloud.2016.27.

[42]P. Vinod and P. Viswalakshmi, “Empirical Evaluation of a System Call-Based Android
Malware Detector,” Arab J Sci Eng, vol. 43, no. 12, pp. 6751–6770, Dec. 2018, doi:
10.1007/s13369-017-2828-0.

[43]M. Dimjašević, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of Android Malware
Detection Based on System Calls,” in Proceedings of the 2016 ACM on International
Workshop on Security And Privacy Analytics, New Orleans Louisiana USA, Mar. 2016, pp.
1–8. doi: 10.1145/2875475.2875487.

[44]K. Deepa, G. Radhamani, P. Vinod, M. Shojafar, N. Kumar, and M. Conti, “Identification
of Android malware using refined system calls,” Concurrency Computat Pract Exper, vol.
31, no. 20, Oct. 2019, doi: 10.1002/cpe.5311.

[45]X. Xiao, X. Xiao, Y. Jiang, X. Liu, and R. Ye, “Identifying Android malware with system
call co-occurrence matrices,” Trans. Emerging Tel. Tech., vol. 27, no. 5, pp. 675–684, May
2016, doi: 10.1002/ett.3016.

[46]A. S. M. Ahsan-Ul-Haque, Md. S. Hossain, and M. Atiquzzaman, “Sequencing System
Calls for Effective Malware Detection in Android,” in 2018 IEEE Global Communications
Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–7. doi:
10.1109/GLOCOM.2018.8647967.

[47]A. Ananya, A. Aswathy, T. R. Amal, P. G. Swathy, P. Vinod, and S. Mohammad, “Sys-
Droid: a dynamic ML-based android malware analyzer using system call traces,” Cluster
Comput, vol. 23, no. 4, pp. 2789–2808, Dec. 2020, doi: 10.1007/s10586-019-03045-6.

[48]Sk3ptre, “Popular Android malware seen in 2020.” https://github.com/sk3ptre/AndroidMal-
ware_2020 (accessed Mar. 09, 2021).

[49]A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward Developing a Sys-
tematic Approach to Generate Benchmark Android Malware Datasets and Classification,”
in 2018 International Carnahan Conference on Security Technology (ICCST), Montreal,
QC, Oct. 2018, pp. 1–7. doi: 10.1109/CCST.2018.8585560.

70

[50]M. Hurier et al., “Euphony: Harmonious Unification of Cacophonous Anti-Virus Vendor
Labels for Android Malware,” in 2017 IEEE/ACM 14th International Conference on Min-
ing Software Repositories (MSR), Buenos Aires, Argentina, May 2017, pp. 425–435. doi:
10.1109/MSR.2017.57.

[51]“MobOk Malware Hides in Photo Editors on Google Play, Siphons Cash.” https://threat-
post.com/mobok-malware-google-photo-editor/145932/ (accessed Apr. 03, 2021).

[52]“Mobile malware evolution 2020.” https://securelist.com/mobile-malware-evolution-
2020/101029/ (accessed Apr. 03, 2021).

[53]R. Chauhan, “How To Hack Android Mobile With XploitSPY From Android And Com-
puter,” DarkHunts, Apr. 23, 2020. http://darkhunts.com/hack-android-using-xploitspy/ (ac-
cessed Apr. 03, 2021).

[54]“Adware/Hiddad!Android,” FortiGuard. https://fortiguard.com/encyclopedia/virus/
7079783 (accessed Apr. 03, 2021).

[55]P. Kohli, “Icon-hiding Android adware returns to the Play Market,” Sophos News, Oct. 08,
2019. https://news.sophos.com/en-us/2019/10/08/icon-hiding-android-adware-returns-to-
the-play-market/ (accessed Apr. 03, 2021).

[56]“Android/Hiddad.AKH!tr,” FortiGuard. https://fortiguard.com/encyclopedia/virus/8211482
(accessed Apr. 03, 2021).

[57]G. Belding, “BlackBerry exposes threat actor group BAHAMUT: Cyberespionage, phish-
ing and other APTs,” Infosec Resources, Mar. 09, 2021. https://resources.infosecinstitute.-
com/topic/blackberry-exposes-threat-actor-group-bahamut-cyberespionage-phishing-and-
other-apts/ (accessed Apr. 03, 2021).

[58]Sonicwall News, “Android spyware Bahamut spreads disguised as Voice of Islam app,”
Nov. 20, 2020. https://securitynews.sonicwall.com/xmlpost/android-spyware-bahamut-
spreads-disguised-as-voice-of-islam-app/ (accessed Apr. 03, 2021).

[59]“Android/Adware.MobiDash,” Malwarebytes Labs. https://blog.malwarebytes.com/detec-
tions/android-adware-mobidash/ (accessed Apr. 03, 2021).

[60]“Family MobiDash,” Kharon Project - Studying Android malware behaviors, Jan. 2015.
http://kharon.gforge.inria.fr/dataset/malware_MobiDash.html (accessed Apr. 03, 2021).

[61]“More than 100 Google Play apps found to contain advertising spyware,” Dr.Web, Mar. 31,
2016. https://news.drweb.com/show?i=9902&c=5&lng=en (accessed Apr. 03, 2021).

[62]“WannaCry WannaBe targeting Android smartphones,” Avast Blog, Jun. 07, 2017. https://
blog.avast.com/wannacry-wannabe-targeting-android-smartphones (accessed Apr. 04,
2021).

71

[63]A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, “Understanding Android Financial
Malware Attacks: Taxonomy, Characterization, and Challenges,” JCSM, vol. 7, no. 3, pp.
1–52, 2018, doi: 10.13052/jcsm2245-1439.732.

[64]X. Jiang, “Security Alert: New Stealthy Android Spyware -- Plankton -- Found in Official
Android Market,” Jun. 09, 2011. https://www.csc2.ncsu.edu/faculty/xjiang4/Plankton/ (ac-
cessed Apr. 04, 2021).

[65]“Android Debug Bridge (adb),” Android Developers. https://developer.android.com/
studio/command-line/adb (accessed Apr. 07, 2021).

[66]“UI/Application Exerciser Monkey,” Android Developers. https://developer.android.com/
studio/test/monkey (accessed Apr. 07, 2021).

[67]“Strace - Linux Syscall Tracer,” Strace. https://strace.io/ (accessed Apr. 07, 2021).

[68]“Privacy changes in Android 10,” Android Developers. https://developer.android.com/
about/versions/10/privacy/changes (accessed Apr. 08, 2021).

[69]“Linux kernel system calls table,” Marcin Juszkiewicz. https://marcin.juszkiewicz.com.pl/
download/tables/syscalls.html (accessed Jul. 28, 2021).

[70]“How System Call is works in ARM/x86 and System Call Implementation in ARM/x86.”
http://vivenembedded.blogspot.com/2013/08/how-system-call-is-works-in-armx86-an-
d.html (accessed Jul. 28, 2021).

[71]T. Vidas and N. Christin, “Evading android runtime analysis via sandbox detection,” in
Proceedings of the 9th ACM symposium on Information, computer and communications se-
curity, Kyoto Japan, Jun. 2014, pp. 447–458. doi: 10.1145/2590296.2590325.

[72]T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis, “Rage
against the virtual machine: hindering dynamic analysis of Android malware,” in Proceed-
ings of the Seventh European Workshop on System Security - EuroSec ’14 , Amsterdam, The
Netherlands, 2014, pp. 1–6. doi: 10.1145/2592791.2592796.

[73]D. Whaley, Director, S. S. Solutions, and Arm, “Why Arm Is Making All Cortex-A Mobile
Cores 64-bit Only,” Arm Blueprint, May 25, 2021. https://www.arm.com/blogs/blueprint/
64-bit (accessed Jul. 28, 2021).

72

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I, Martin Välbe

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Benchmarking of Android Applications' System Calls Behavior: Implica-

tions for Malware Detection”, supervised by Alejandro Guerra Manzanares, MSc

and co-supervised by Tarmo Oja, MSc

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Techno-

logy until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-ex-

clusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' in-

tellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

30.07.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

73

Appendix 2 – Detailed comparison results

Figure A2-1. Malware system call summaries – subgroup A (execution only)

Figure A2-2. Benign apps' system call summaries – subgroup A (execution only)

74

Figure A2-3. Malware system call summaries – subgroup B (execution only)

75

Table A2-1. Similarity comparison – subgroup A (execution only)

Figure A2-4. Benign apps' system call summaries – subgroup B (execution only)

76

Table A2-2. Similarity comparison – subgroup B (execution only)

Figure A2-5. Malware system call summaries – subgroup C (execution only)

Figure A2-6. Benign apps' system call summaries – subgroup C (execution only)

77

Figure A2-7. Malware system call summaries – subgroup D (execution only)

78

Table A2-3. Similarity comparison – subgroup C (execution only)

Figure A2-8. Benign apps' system call summaries – subgroup D (execution only)

79

Table A2-4. Similarity comparison – subgroup D (execution only)

Figure A2-9. Malware system call summaries – subgroup A (50 events injected)

Figure A2-10. Benign apps' system call summaries – subgroup A (50 events injected)

80

Figure A2-11. Malware system call summaries – subgroup B (50 events injected)

81

Table A2-5. Similarity comparison – subgroup A (50 events injected)

Figure A2-12. Benign apps' system call summaries – subgroup B (50 events injected)

82

Table A2-6. Similarity comparison – subgroup B (50 events injected)

Figure A2-13. Malware system call summaries – subgroup C (50 events injected)

Figure A2-14. Benign apps' system call summaries – subgroup C (50 events injected)

83

Figure A2-15. Malware system call summaries – subgroup D (50 events injected)

84

Table A2-7. Similarity comparison – subgroup C (50 events injected)

Figure A2-16. Benign apps' system call summaries – subgroup D (50 events injected)

85

Table A2-8. Similarity comparison – subgroup D (50 events injected)

Appendix 3 – Log summaries

Figure A3-1. BN1 system call summaries (execution only)

Figure A3-2. BN1 system call summaries (50 events injected)

86

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

1105clock_gettime 1621clock_gettime 3449gettimeofday 2394clock_gettime 5877clock_gettime 3298clock_gettime 234pread64 226pread64 182 ioctl
239fstat64 216getuid32 3388clock_gettime 164 ioctl 228 pread64 179 ioctl 201 ioctl 192 ioctl 162pread64
211 ioctl 139 ioctl 303pread64 116pread64 196 ioctl 152 pread64 173rt_sigprocmask 186rt_sigprocmask 151getuid32
186getuid32 116pread64 269getuid32 114getuid32 184 rt_sigprocmask 141 getuid32 166mmap2 152getuid32 107mmap2
114pread64 102rt_sigprocmask 268 ioctl 89fstatat64 141 getuid32 119 fstatat64 135munmap 142mmap2 101rt_sigprocmask
80rt_sigprocmask 84epoll_pwait 203rt_sigprocmask 83mmap2 137 mmap2 97rt_sigprocmask 116getuid32 118munmap 92epoll_pwait
73mmap2 80mmap2 196mmap2 83rt_sigprocmask 131 fstatat64 93mmap2 74 futex 106madvise 86munmap
61munmap 69fstatat64 166munmap 77epoll_pwait 118 munmap 90epoll_pwait 73epoll_pwait 95epoll_pwait 72 fstatat64
57futex 63munmap 146madvise 62munmap 81epoll_pwait 80munmap 65write 74 fstatat64 61madvise
46epoll_pwait 56writev 145writev 53write 72 futex 56write 62 fstatat64 57write 60write
39writev 55futex 140fstatat64 44futex 49write 52madvise 42mprotect 45 futex 47 futex
33write 52madvise 81epoll_pwait 44faccessat 47 faccessat 50 futex 40prctl 41mprotect 38 faccessat
28fstatat64 43write 71futex 35recvfrom 43mprotect 44 faccessat 38 faccessat 38 faccessat 36recvfrom
22faccessat 35faccessat 64mprotect 28mprotect 42madvise 36recvfrom 38close 36recvfrom 31mprotect
20recvfrom 30recvfrom 49faccessat 26writev 29recvfrom 29mprotect 36openat 27clock_gettime 24clock_gettime
19close 23mprotect 47write 26fstat64 27close 21close 36recvfrom 24close 24close
18openat 19fstat64 31close 25openat 24 fstat64 20writev 35 fstat64 21writev 21 fstat64
12mprotect 18gettimeofday 28fstat64 24close 20writev 19 fstat64 30madvise 21 fstat64 21writev
11prctl 16close 27prctl 21prctl 18openat 17openat 24clock_gettime 19openat 19openat
8madvise 15openat 26openat 13read 13gettimeofday 12read 19writev 16prctl 13prctl
8 read 13prctl 25recvfrom 11mkdirat 12mkdirat 11mkdirat 12read 13read 11read
5gettimeofday 7clone 10mkdirat 7clone 10prctl 8 getsockopt 10clone 10getsockopt 10getsockopt
4getdents64 6getsockopt 10clone 7madvise 9dup 8 dup 10getsockopt 9clone 9clone
4getsockopt 6read 10getsockopt 7getsockopt 8clone 7 clone 9dup 8dup 8dup
3clone 5mkdirat 9dup 5dup 8getsockopt 7 prctl 8mkdirat 8mkdirat 8mkdirat
2_llseek 4getdents64 9fcntl64 3epoll_ctl 8 read 5 fcntl64 5epoll_ctl 5 fcntl64 5fcntl64
2epoll_ctl 4 fchmodat 6 fchmodat 3 fchmodat 8 fcntl64 4 epoll_ctl 5 fchmodat 5 fchmodat 5 fchmodat
2mkdirat 3 fcntl64 6read 2_llseek 4fchmodat 3 fchmodat 2 lseek 4 lseek 4 lseek
2fchmodat 2 fsync 4epoll_ctl 2 fcntl64 4epoll_ctl 2 _llseek 2fsync 4epoll_ctl 4epoll_ctl
1dup 2_llseek 2fsync 1pwrite64 2 lseek 2 lseek 2_llseek 2fsync 2fsync
1pwrite64 2epoll_ctl 2_llseek --------- ---------------- 2_llseek 1 sched_yield 2 fcntl64 2_llseek 2_llseek
1fcntl64 2unlinkat 2 lseek 3569total 1pwrite64 1 pwrite64 2unlinkat 2unlinkat 2unlinkat

--------- ---------------- 1 renameat 2unlinkat --------- ---------------- --------- ---------------- 1pwrite64 1pwrite64 1pwrite64
2417total 1dup 1readlinkat 7553total 4664total 1renameat 1renameat 1renameat

1sched_yield 1pwrite64 1eventfd2 --------- ---------------- --------- ----------------
1pwrite64 1fstatfs64 1epoll_create1 1710total 1420total

--------- ---------------- 1sysinfo --------- ----------------
2912total 1renameat 1710total

--------- ----------------
9199total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

1205clock_gettime 11clock_gettime 278clock_gettime 2166clock_gettime 3471clock_gettime 2184clock_gettime 120ioctl 110pread64 45recvfrom
231fstat64 7epoll_pwait 36 gettimeofday 108 pread64 110pread64 108 pread64 116pread64 107getuid32 44epoll_pwait
215 ioctl 4getuid32 32 epoll_pwait 99getuid32 97 ioctl 95ioctl 90rt_sigprocmask 104 ioctl 42 ioctl
190getuid32 3 ioctl 27 recvfrom 95 ioctl 93getuid32 90getuid32 83getuid32 94epoll_pwait 42write
118pread64 1mprotect 24 getuid32 75rt_sigprocmask 84write 79rt_sigprocmask 81recvfrom 81rt_sigprocmask 35getuid32
90 rt_sigprocmask--------- ---------------- 22 write 65mmap2 79epoll_pwait 77write 79write 70recvfrom 27madvise
77 mmap2 26total 14 ioctl 62epoll_pwait 79rt_sigprocmask 74epoll_pwait 78mmap2 65mmap2 18futex
68 munmap 8read 58munmap 75recvfrom 63recvfrom 75epoll_pwait 59munmap 13read
66 futex 3 futex 55write 62mmap2 61mmap2 70munmap 53madvise 5close
59 epoll_pwait 2writev 51recvfrom 59munmap 58munmap 50futex 47write 3munmap
51 write 1mprotect 38writev 51futex 52futex 24read 33futex 3writev
47 recvfrom 1epoll_ctl 27 fstatat64 51fstatat64 51fstatat64 23fstat64 29fstatat64 2epoll_ctl
39 writev 1close 26futex 24madvise 41madvise 21fstatat64 25read --------- ----------------
28 fstatat64 --------- ---------------- 22 fstat64 21read 20faccessat 19 faccessat 19faccessat 279 total
22 faccessat 449total 20 faccessat 20 faccessat 18read 18close 17fstat64
19 close 16close 17fstat64 17fstat64 16openat 14mprotect
18 openat 16mprotect 15mprotect 16mprotect 15prctl 14writev
15 read 15openat 13writev 13writev 13mprotect 12close
13 mprotect 15read 12close 13close 13madvise 9clock_gettime
13 prctl 10madvise 9openat 9openat 11writev 9openat
10 madvise 6prctl 5gettimeofday 4epoll_ctl 6clock_gettime 5prctl
5gettimeofday 4getsockopt 4getsockopt 4getsockopt 4epoll_ctl 4getsockopt
4getdents64 3epoll_ctl 3prctl 3prctl 4getsockopt 3clone
4getsockopt 2clone 3fcntl64 3fcntl64 3clone 3 fcntl64
3clone 2_llseek 3epoll_ctl 2clone 2_llseek 3epoll_ctl
3epoll_ctl 2mkdirat 2clone 2fchmodat 2mkdirat 2_llseek
2mkdirat 2 fchmodat 2fchmodat 2_llseek 2fchmodat 2mkdirat
2_llseek 2sendto 2_llseek 2mkdirat 1dup 2 fchmodat
2 fchmodat 1dup 2mkdirat 1pwrite64 1pwrite64 1dup
1dup 1pwrite64 1dup 1dup 1fcntl64 1pwrite64
1pwrite64 1 fcntl64 1pwrite64 --------- ---------------- --------- ---------------- 1sendto
1 fcntl64 --------- ---------------- --------- ---------------- 3163total 1041total --------- ----------------

--------- ---------------- 3065 total 4470 total 998 total
2622 total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-3. BN2 system call summaries (execution only)

Figure A3-4. BN2 system call summaries (50 events injected)

87

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

351clock_gettime 894clock_gettime 2182clock_gettime 1568 clock_gettime 304clock_gettime 69recvfrom 615mprotect 402prctl 52write
60recvfrom 76write 494epoll_pwait 567 mprotect 46 recvfrom 38futex 433prctl 293 futex 43epoll_pwait
50futex 68futex 462getuid32 265 ioctl 32epoll_pwait 37write 375 futex 269 ioctl 42getuid32
44write 65epoll_pwait 396gettimeofday 256 futex 32write 33epoll_pwait 331 ioctl 205rt_sigprocmask 41recvfrom
30epoll_pwait 65recvfrom 318ioctl 227 prctl 27 futex 23ioctl 217mmap2 184mmap2 38 futex
22ioctl 63getuid32 178read 211 mmap2 17 ioctl 19getuid32 198write 181write 35 ioctl
21read 59ioctl 80recvfrom 195 write 16getuid32 14sendto 163pread64 166pread64 32rt_sigprocmask
17getuid32 42read 72write 147 rt_sigprocmask 15read 12read 157rt_sigprocmask 158fstatat64 22read
12sendto 34rt_sigprocmask 64futex 146 pread64 10sendto 4clock_gettime 131read 142madvise 22pread64
5timerfd_settime 22pread64 16sendto 131 getuid32 4timerfd_settime 3mprotect 129 fstatat64 131getuid32 19sendto
3prctl 20sendto 6timerfd_settime 114 read 3mprotect 3timerfd_settime 128getuid32 125mprotect 13mmap2
3mmap2 18madvise 4mprotect 99 fstatat64 2rt_sigprocmask 2rt_sigprocmask 114munmap 120read 12madvise
2mprotect 14mmap2 2mmap2 93munmap 2mmap2 2mmap2 113fstat64 98munmap 11munmap
2madvise 11munmap 2rt_sigprocmask 85epoll_pwait 2madvise 2madvise 87madvise 60epoll_pwait 10prctl
1gettimeofday 10timerfd_settime 1clone 71recvfrom 1gettimeofday 1clone 73epoll_pwait 55fstat64 5 timerfd_settime
1clone 6openat 1prctl 71 fstat64 1clone 1prctl 71openat 52close 2writev
1fstat64 5mprotect --------- ---------------- 68openat 1prctl --------- ---------------- 69close 49recvfrom 1clone
1openat 4gettimeofday 4278total 66close --------- ---------------- 263total 66recvfrom 41openat 1mprotect
1close 4writev 29clone 515total 35clock_gettime 38clock_gettime --------- ----------------

--------- ---------------- 4prctl 25sendto 28faccessat 35fcntl64 401total
627total 4close 24writev 26sendto 28faccessat

3fstat64 19 faccessat 24fcntl64 25sendto
3fstatat64 11dup 24clone 24clone
2clone 11rt_sigaction 15pwrite64 16writev
1 lseek 10 fcntl64 14writev 15pwrite64

--------- ---------------- 7 _llseek 11dup 12dup
1497total 7getsockopt 8getsockopt 10fdatasync

6epoll_ctl 8mkdirat 8_llseek
6 readlinkat 7_llseek 8mkdirat
6 timerfd_settime 7unlinkat 8readlinkat
5mkdirat 6readlinkat 8getsockopt
4getdents64 6epoll_ctl 6 lseek
4unlinkat 6timerfd_settime 6epoll_ctl
3 lseek 5fchmodat 6timerfd_settime
3 fsync 4fsync 5fchmodat
3ugetrlimit 4getdents64 4fsync
3 fchmodat 3ugetrlimit 4getdents64
3getrandom 3getrandom 4unlinkat
2getpriority 3 lseek 3fstatfs64
2mremap 2getpriority 3getrandom
2fstatfs64 2fdatasync 2mremap
2renameat 2sched_yield 2getpriority
2eventfd2 2mremap 2rt_sigaction
1setrlimit 2 fstatfs64 2ugetrlimit
1sysinfo 2renameat 2ftruncate64
1sigaltstack 2eventfd2 2renameat
1 timerfd_create 2socketpair 2eventfd2
1epoll_create1 1setrlimit 2socketpair
1socketpair 1sysinfo 1sysinfo

--------- ---------------- 1uname 1uname
4585 total 1rt_sigaction 1sched_yield

1ftruncate64 1geteuid32
1timerfd_create 1timerfd_create
1epoll_create1 1epoll_create1
1setsockopt 1setsockopt
1sendmsg 1sendmsg

--------- ---------------- --------- ----------------
3742total 3031total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

592clock_gettime 96clock_gettime 15clock_gettime 85recvfrom 1162 clock_gettime 15epoll_pwait 37futex 82epoll_pwait 60 recvfrom
116recvfrom 16epoll_pwait 12futex 63 futex 52 epoll_pwait 10read 20recvfrom 65recvfrom 37write
113write 16 futex 3 ioctl 60write 52 write 9 ioctl 19epoll_pwait 59write 27epoll_pwait
71epoll_pwait 12 read 2epoll_pwait 53epoll_pwait 46 getuid32 8futex 17write 51 futex 25 futex
64futex 8 ioctl 2mmap2 31 ioctl 44 recvfrom 4write 14read 49getuid32 20getuid32
41read 8timerfd_settime 2mprotect 27 read 43 futex 4timerfd_settime 9ioctl 45 read 18 ioctl
39 ioctl 3getuid32 2rt_sigprocmask 25getuid32 39 ioctl 4clock_gettime 7getuid32 40 ioctl 17 read
34getuid32 2write 2gettimeofday 17sendto 32 rt_sigprocmask 3getuid32 4mprotect 32 rt_sigprocmask 3mprotect
16sendto 2rt_sigprocmask 1getuid32 8clock_gettime 22 pread64 2mprotect 4timerfd_settime 22pread64 2rt_sigprocmask
6timerfd_settime 2mmap2 1clone 7madvise 22 read 2rt_sigprocmask 4sendto 22sendto 2mmap2
3prctl 2madvise 1read 4prctl 19 sendto 2mmap2 3prctl 13mmap2 2madvise
3mmap2 1gettimeofday 1prctl 3mmap2 13 mmap2 2madvise 3mmap2 13madvise 1clone
2mprotect 1clone --------- ---------------- 3 timerfd_settime 13 prctl 1clone 2madvise 11munmap 1prctl
2madvise 1mprotect 44total 2mprotect 11 munmap 1prctl 1close 10prctl --------- ----------------
1close 1prctl 1close 5timerfd_settime--------- ---------------- 1clone 5timerfd_settime 215total
1gettimeofday --------- ---------------- 1clone 3madvise 67total 1sched_yield 2mprotect
1clone 171total 1 fstat64 2mprotect 1 fstat64 1close
1fstat64 1openat 2gettimeofday 1openat 1dup
1openat --------- ---------------- 1clone --------- ---------------- 1clone

--------- ---------------- 392 total --------- ---------------- 148total 1writev
1107total 1583 total 1 fstat64

1sendmsg
--------- ----------------

527total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-5. BN3 system call summaries (execution only)

Figure A3-6. BN3 system call summaries (50 events injected)

88

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

102 ioctl 596newfstatat 1014futex 1701clock_gettime 6610clock_gettime 2396clock_gettime 1506futex 770futex 746futex
89 futex 502futex 851getuid 1201mprotect 728fstatat64 725newfstatat 1112mprotect 555fstatat64 553fstatat64
71getuid 351mprotect 767 ioctl 462 fstatat64 452prctl 457prctl 476prctl 429prctl 428prctl
70 fstat 338 ioctl 724newfstatat 390 futex 343 ioctl 353 ioctl 474 fstatat64 386 ioctl 363 ioctl
34epoll_pwait 305mmap 704epoll_pwait 363 ioctl 321 futex 323futex 408 ioctl 273mmap2 269mmap2
27mmap 283prctl 444prctl 330mmap2 298mprotect 313mprotect 306mmap2 271mprotect 265mprotect
26write 240getuid 412read 296prctl 285mmap2 290mmap 240getuid32 269clock_gettime 263clock_gettime
24pread64 232read 393mprotect 228getuid32 223pread64 221pread64 227write 257getuid32 249getuid32
15writev 229write 335mmap 215write 198write 198getuid 206read 205pread64 207write
13munmap 222pread64 254pread64 175pread64 195getuid32 184read 205epoll_pwait 198write 203pread64
12prctl 151munmap 249clock_gettime 170epoll_pwait 159read 168write 140openat 185epoll_pwait 197epoll_pwait
12 recvfrom 119epoll_pwait 227write 163read 140munmap 166epoll_pwait 134fstat64 178read 185read
11read 93close 158rt_sigprocmask 133munmap 134epoll_pwait 141munmap 132pread64 170madvise 170madvise
11mprotect 92openat 145munmap 131openat 125madvise 120rt_sigprocmask 131close 146rt_sigprocmask 144rt_sigprocmask
10close 86rt_sigprocmask 95close 125close 118rt_sigprocmask 84close 126madvise 116munmap 115munmap
5openat 70clock_gettime 93writev 93fstat64 79openat 79openat 105munmap 73close 69close
5newfstatat 69 fstat 92openat 71recvfrom 76close 62 fstat 78clock_gettime 66 fstat64 62openat
4clone 59 faccessat 82fstat 62writev 57fstat64 41 faccessat 42writev 62openat 62fstat64
3dup 43writev 79 lseek 46rt_sigprocmask 40faccessat 41 fcntl 40recvfrom 44 faccessat 43faccessat
2 fcntl 43madvise 73faccessat 36faccessat 38fcntl64 37madvise 40faccessat 42writev 40writev
2timerfd_settime 40 fcntl 60sched_yield 32clone 34writev 37 lseek 36clone 40 fcntl64 37clone
2clock_gettime 39 lseek 51madvise 24fcntl64 32recvfrom 35writev 26fcntl64 38clone 37fcntl64
2getrandom 32recvfrom 45fcntl 16_llseek 32readlinkat 32 readlinkat 16_llseek 32 recvfrom 32recvfrom
1epoll_ctl 30sendto 44clone 15dup 24clone 32recvfrom 15rt_sigprocmask 26sendto 18_llseek

--------- ---------------- 27clone 32recvfrom 13readlinkat 22_llseek 25clone 14dup 18_llseek 17readlinkat
553total 20 readlinkat 25sendto 13sendto 17gettimeofday 13 fstatfs 14sendto 17 readlinkat 14 lseek

14 timerfd_settime 19readlinkat 10 lseek 13fstatfs64 12sendto 11lseek 16sched_yield 13sendto
11dup 12mkdirat 10rt_sigaction 12sendto 12dup 11readlinkat 14 lseek 11dup
11 fstatfs 12dup 9mkdirat 12 lseek 11mkdirat 11timerfd_settime 12dup 11mkdirat
11getrandom 10fstatfs 8getrandom 11mkdirat 11sched_yield 10getrandom 11mkdirat 11getrandom
10mkdirat 10getsockopt 7mremap 11dup 8getrandom 9mkdirat 11getrandom 10timerfd_settime
8getsockopt 10getrandom 7fstatfs64 8getrandom 7mremap 8getdents64 10 timerfd_settime 9fstatfs64
7rt_sigaction 9timerfd_settime 7timerfd_settime 7timerfd_settime 7timerfd_settime 6mremap 9fstatfs64 8getdents64
6mremap 7rt_sigaction 6unlinkat 7mremap 5epoll_ctl 6epoll_ctl 8getdents64 6getsockopt
5epoll_ctl 6epoll_ctl 6epoll_ctl 5getsockopt 5getsockopt 6 fstatfs64 6epoll_ctl 5mremap
5uname 6mremap 5getsockopt 5epoll_ctl 4getdents64 6unlinkat 6getsockopt 5epoll_ctl
4getdents64 5uname 4getdents64 4getdents64 2socketpair 6getsockopt 5mremap 2getpriority
4sched_yield 4getdents64 3ugetrlimit 2socketpair 2getrlimit 2getpriority 2getpriority 2ugetrlimit
2getpriority 2socketpair 2getpriority 2getpriority 2getpriority 2sched_yield 2ugetrlimit 2socketpair
2socketpair 2sysinfo 2eventfd2 2ugetrlimit 1 fchmodat 2ugetrlimit 2eventfd2 1setpriority
1eventfd2 2eventfd2 1setrlimit 1sched_yield 1uname 2eventfd2 2socketpair 1sysinfo
1 ftruncate 2getpriority 1sysinfo 1 fchmodat 1sysinfo 2socketpair 1setpriority 1uname
1fchmodat 1sendmsg 1sched_yield 1setpriority 1 timerfd_create 1setpriority 1sysinfo 1sched_yield
1timerfd_create 1epoll_create1 1sigaltstack 1sysinfo 1eventfd2 1sysinfo 1uname 1fchmodat
1setpriority 1 fchmodat 1fchmodat 1uname 1setsockopt 1uname 1fchmodat 1timerfd_create
1getrlimit 1 timerfd_create 1timerfd_create 1timerfd_create --------- ---------------- 1 fchmodat 1timerfd_create 1eventfd2
1sysinfo 1getrlimit 1epoll_create1 1eventfd2 6667 total 1 timerfd_create 1epoll_create1 1setsockopt
1setsockopt 1socket 1socketpair 1setsockopt 1epoll_create1 1setsockopt 1sendmsg
1sendmsg 1connect --------- ---------------- --------- ---------------- 1setsockopt --------- ---------------- --------- ----------------

--------- ---------------- 1setsockopt 6598 total 10889total 1sendmsg 4989 total 4892total
4420 total 1 ftruncate --------- ----------------

--------- ---------------- 6357total
7575total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

1769 futex 154epoll_pwait 1463write 1407 recvfrom 4270clock_gettime 56257recvfrom 507futex 948futex 1056recvfrom
260getuid 98getuid 1428recvfrom 1299clock_gettime 584futex 45191epoll_pwait 233epoll_pwait 406clock_gettime 760write
215 ioctl 77 recvfrom 1019epoll_pwait 1294write 224epoll_pwait 27447write 137getuid32 215getuid32 463epoll_pwait
143 fstat 73 futex 711futex 1076 futex 178getuid32 25078read 135write 188epoll_pwait 435 futex
127epoll_pwait 71write 647getuid 812epoll_pwait 175 ioctl 22867sendto 129 ioctl 166 ioctl 336getuid32
71writev 66 ioctl 566 ioctl 454getuid32 154write 22760 ioctl 121recvfrom 87write 298 ioctl
54clock_gettime 61read 439read 442 ioctl 114recvfrom 20220futex 86read 65rt_sigprocmask 297read
47write 58pread64 116clock_gettime 376read 78read 19833getuid 50mmap2 65mmap2 79clock_gettime
41mmap 32rt_sigprocmask 82pread64 42pread64 76mmap2 14778clock_gettime 42pread64 58pread64 72pread64
40pread64 31mmap 64rt_sigprocmask 41mmap2 73rt_sigprocmask 398madvise 36clock_gettime 47read 48rt_sigprocmask
30read 23clock_gettime 63mmap 24writev 68pread64 140prctl 35prctl 37writev 42mmap2
24recvfrom 19munmap 57writev 23munmap 40madvise 136mmap 29fstat64 37recvfrom 21munmap
21prctl 18writev 40newfstatat 21fstat64 38sched_yield 112mprotect 25munmap 35madvise 12prctl
19munmap 9timerfd_settime 27munmap 18prctl 35writev 96newfstatat 22mprotect 28prctl 9madvise
17mprotect 7openat 23mprotect 15close 30mprotect 77writev 19madvise 28sched_yield 7writev
13close 7close 22prctl 15mprotect 29prctl 64 rt_sigprocmask 19close 25 fstat64 7fstat64
9getrandom 4newfstatat 9 fstat 9openat 26munmap 58pread64 13openat 21mprotect 6 faccessat
7openat 4 fstat 8clone 7fstatat64 25fstatat64 50sched_yield 11writev 20munmap 6timerfd_settime
7clone 2epoll_ctl 7 timerfd_settime 5clone 20clone 48 timerfd_settime 8clone 16clone 5close
6rt_sigprocmask 2dup 7sendto 4dup 18gettimeofday 37close 8timerfd_settime 11 fstatat64 3fsync
5timerfd_settime 2fcntl 7close 4sendto 11getrandom 35munmap 4dup 11getrandom 3openat
4dup 2sendto 4 faccessat 3rt_sigprocmask 10close 27 fstat 4getdents64 10close 3 fstatat64
4fcntl 2mprotect 4 fcntl 3madvise 8timerfd_settime 19 fcntl 4 fstatat64 5fcntl64 3unlinkat
4sched_yield 1unlinkat 3dup 3timerfd_settime 7sendto 17clone 4sendto 5timerfd_settime 3fchmodat
3epoll_ctl 1 faccessat 3getrandom 3getrandom 6fcntl64 17 faccessat 3 fcntl64 4dup 3sendto
2sendto 1 fchmodat 3epoll_ctl 2fcntl64 4 fstat64 14getrandom 3epoll_ctl 4sendto 3getsockopt

--------- ---------------- 1 lseek 1 fsync 2epoll_ctl 4dup 3dup 3getrandom 2getdents64 2dup
2942 total 1 fsync 1renameat 1fsync 4epoll_ctl 3epoll_ctl 2 faccessat 2epoll_ctl 2 fcntl64

1prctl 1openat 1unlinkat --------- ---------------- 1openat 1sched_yield 2openat 2epoll_ctl
1getsockopt 1unlinkat 1fchmodat 6309total 1 fsync 1getsockopt 2 faccessat 2renameat
1clone 1fchmodat 1faccessat 1unlinkat --------- ---------------- 1getsockopt 2getrandom

--------- ---------------- 1getsockopt 1getsockopt 1renameat 1694total --------- ---------------- 1mprotect
830total --------- ---------------- --------- ---------------- 1 fchmodat 2551 total 1sched_yield

6828total 7409 total 1getsockopt --------- ----------------
--------- ---------------- 3992total
255788 total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-7. BN4 system call summaries (execution only)

Figure A3-8. BN4 system call summaries (50 events injected)

89

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

827futex 161629gettimeofday 175901gettimeofday 14297mprotect 172932gettimeofday 2491clock_gettime 12115mprotect 842read 980futex
624clock_gettime 29381cacheflush 22934cacheflush 1739clock_gettime 6980clock_gettime 864read 1576 futex 619_llseek 856read
232gettimeofday 7935clock_gettime 15519clock_gettime 831read 1501mprotect 722fstatat64 836read 581mprotect 619_llseek
118epoll_pwait 866read 1064futex 737futex 877prctl 720futex 781prctl 576prctl 614mprotect
100ioctl 845futex 1019read 657prctl 824read 620_llseek 637_llseek 564futex 591prctl
84getuid32 624_llseek 991mprotect 637_llseek 734fstatat64 576prctl 494openat 547fstatat64 547fstatat64
61write 603fstatat64 837getuid32 517openat 686futex 477mprotect 486fstatat64 339 ioctl 385 ioctl
53recvfrom 475mprotect 717fstatat64 512mmap2 642_llseek 429 ioctl 461mmap2 321mmap2 342mmap2
51read 463ioctl 698ioctl 470 ioctl 556mmap2 362mmap2 448 ioctl 258write 274getuid32
23fstat64 449madvise 680prctl 451fstatat64 468madvise 285getuid32 262getuid32 228madvise 266madvise
22prctl 390getuid32 646epoll_pwait 345getuid32 440 ioctl 250epoll_pwait 234madvise 217getuid32 257clock_gettime
21mmap2 379mmap2 635_llseek 244munmap 415openat 222write 233write 188epoll_pwait 244write
15mprotect 350prctl 475mmap2 243write 362munmap 222madvise 211munmap 173pread64 235epoll_pwait
14madvise 260write 275write 233epoll_pwait 293getuid32 189pread64 205pread64 168munmap 173pread64
8writev 244pread64 273openat 212close 253write 169munmap 194close 161openat 171munmap
7openat 173munmap 272pread64 205pread64 237pread64 139openat 184epoll_pwait 110clock_gettime 162openat
7clone 165epoll_pwait 271munmap 134writev 204epoll_pwait 114rt_sigprocmask 154fstat64 91recvfrom 108rt_sigprocmask
7close 133openat 120close 131fstat64 142close 103close 86recvfrom 90close 102recvfrom
6timerfd_settime 125rt_sigprocmask 118rt_sigprocmask 89recvfrom 112rt_sigprocmask 92recvfrom 74clock_gettime 88rt_sigprocmask 87close
5getrandom 113close 116writev 49clone 92recvfrom 68writev 48 faccessat 63fstat64 71fstat64
2sendto 86writev 96madvise 39 faccessat 70writev 66 fstat64 45writev 47faccessat 47faccessat

--------- ---------------- 82 fstat64 87recvfrom 27getcwd 66fstat64 44clone 40clone 39fcntl64 41clone
2287 total 71recvfrom 81fstat64 26rt_sigprocmask 44fcntl64 44 fcntl64 28sendto 33writev 41writev

69 faccessat 77faccessat 24 fcntl64 44faccessat 44 faccessat 26rt_sigprocmask 31clone 39fcntl64
47clone 46clone 19dup 43clone 33readlinkat 26 fcntl64 18readlinkat 27sendto
46 fcntl64 44fcntl64 14readlinkat 33readlinkat 17 lseek 25getcwd 14sendto 18readlinkat
26sendto 21sendto 12getrandom 24getcwd 14sendto 14dup 14lseek 12timerfd_settime
20readlinkat 20readlinkat 12sendto 15sendto 13 fstatfs64 13readlinkat 11dup 11dup
14 lseek 14lseek 10 lseek 13fstatfs64 12getrandom 11 lseek 11timerfd_settime 11getrandom
12getdents64 12getcwd 10rt_sigaction 12lseek 11dup 10getrandom 9fstatfs64 10lseek
12getrandom 11dup 9timerfd_settime 12getrandom 8timerfd_settime 9timerfd_settime 8getdents64 10sched_yield
11dup 10getsockopt 7mremap 11dup 7mremap 8getdents64 7mkdirat 9fstatfs64
11 fstatfs64 10fstatfs64 7 fstatfs64 7mkdirat 7mkdirat 7mremap 7getrandom 8getdents64
11timerfd_settime 10getrandom 6geteuid32 7mremap 6geteuid32 7 fstatfs64 6getcwd 7mkdirat
8getsockopt 9sched_yield 6getegid32 6timerfd_settime 6getegid32 7mkdirat 6geteuid32 6getcwd
8mkdirat 8timerfd_settime 6unlinkat 6geteuid32 5getsockopt 7unlinkat 6getegid32 6geteuid32
7rt_sigaction 8mkdirat 5epoll_ctl 6getegid32 5epoll_ctl 6geteuid32 6getsockopt 6getegid32
6geteuid32 7rt_sigaction 5mkdirat 5epoll_ctl 4getdents64 6getegid32 5mremap 6getsockopt
6getegid32 6getdents64 5getsockopt 5getsockopt 3getcwd 6getsockopt 5epoll_ctl 5mremap
5uname 6getegid32 4getdents64 4getdents64 2socketpair 5epoll_ctl 2getpriority 5epoll_ctl
5epoll_ctl 6geteuid32 3ugetrlimit 2socketpair 2eventfd2 4sched_yield 2ugetrlimit 2socketpair
2getpriority 5epoll_ctl 2getpriority 2 fchmodat 2 fchmodat 2getpriority 2fchmodat 2getpriority
2sched_yield 5uname 2madvise 2eventfd2 2getpriority 2ugetrlimit 2eventfd2 2ugetrlimit
2getcwd 3connect 2 fchmodat 2ugetrlimit 2ugetrlimit 2 fchmodat 2socketpair 2fchmodat
2socketpair 3socket 2eventfd2 2getpriority 1 timerfd_create 2eventfd2 1sysinfo 2eventfd2
2 fchmodat 2fchmodat 1setrlimit 1sendmsg 1sysinfo 2socketpair 1uname 1sysinfo
2eventfd2 2sysinfo 1sysinfo 1epoll_create1 1uname 1sysinfo 1timerfd_create 1uname
1sysinfo 2eventfd2 1sched_yield 1sysinfo 1epoll_create1 1uname 1epoll_create1 1timerfd_create
1ugetrlimit 2getpriority 1sigaltstack 1setsockopt 1setsockopt 1 timerfd_create 1setsockopt 1epoll_create1
1 ftruncate64 2socketpair 1 timerfd_create 1 timerfd_create --------- ---------------- 1epoll_create1 1sendmsg 1setsockopt
1setsockopt 1sendmsg 1epoll_create1 1uname 9478total 1setsockopt --------- ---------------- --------- ----------------
1sendmsg 1timerfd_create 1socketpair 1sched_yield --------- ---------------- 6523total 7424total
1 timerfd_create 1ugetrlimit --------- ---------------- --------- ---------------- 20044total
1epoll_create1 1epoll_create1 23004total 189200total

--------- ---------------- 1 ftruncate64
206184total 1setsockopt

--------- ----------------
224182total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

763futex 657clock_gettime 1399clock_gettime 1133 futex 1165clock_gettime 283futex 946futex 450futex 372futex
535clock_gettime 423futex 393futex 318clock_gettime 228futex 252clock_gettime 206epoll_pwait 220epoll_pwait 209epoll_pwait
231gettimeofday 109epoll_pwait 246gettimeofday 230epoll_pwait 209gettimeofday 182epoll_pwait 133getuid32 170clock_gettime 171clock_gettime
118epoll_pwait 92 ioctl 157recvfrom 188getuid32 185epoll_pwait 98write 125write 155getuid32 127getuid32
103ioctl 86getuid32 153epoll_pwait 180 ioctl 118recvfrom 95getuid32 115 ioctl 100 ioctl 108write
84getuid32 54madvise 153write 155write 107 ioctl 92 ioctl 107recvfrom 91write 94ioctl
74write 51write 114getuid32 110recvfrom 106getuid32 77recvfrom 92read 91recvfrom 91read
66recvfrom 48recvfrom 112ioctl 100read 103write 74read 34clock_gettime 90read 71recvfrom
40read 46read 45read 49prctl 77madvise 28madvise 27prctl 26madvise 21prctl
23 fstat64 13sched_yield 29sched_yield 32mmap2 64read 28mmap2 22fstat64 26rt_sigprocmask 18rt_sigprocmask
21prctl 12writev 18rt_sigprocmask 31 fstat64 32mmap2 28rt_sigprocmask 19sched_yield 26mmap2 18mmap2
21mmap2 12rt_sigprocmask 18mmap2 28writev 32rt_sigprocmask 20prctl 18mmap2 25prctl 18madvise
15mprotect 11mmap2 12writev 23mprotect 19prctl 15mprotect 14mprotect 15mprotect 14writev
14madvise 11 fstat64 10mprotect 14close 16clone 14writev 13writev 13clone 11mprotect
8writev 9 timerfd_settime 9prctl 12openat 16mprotect 14clone 12madvise 13writev 11timerfd_settime
7clone 7mprotect 9clone 11sendto 13writev 7 timerfd_settime 9timerfd_settime 11timerfd_settime 9clone
7openat 6clone 8fstat64 10clone 5getrandom 5getrandom 6openat 9sched_yield 9sendto
7close 6openat 4getrandom 7timerfd_settime 3sched_yield 4sendto 6clone 9sendto 8fstat64
5 timerfd_settime 5prctl --------- ---------------- 5getrandom 3timerfd_settime 2sched_yield 6sendto 8fstat64 5sched_yield
4getrandom 4gettimeofday 2889total 2dup 1epoll_ctl --------- ---------------- 6close 5getrandom 5getrandom

--------- ---------------- 4getrandom 1munmap 1close 1318total 5getrandom --------- ---------------- --------- ----------------
2146 total 4close 1epoll_ctl --------- ---------------- --------- ---------------- 1553total 1390total

3 fstatat64 --------- ---------------- 2503 total 1921 total
2sendto 2640 total
1 lseek

--------- ----------------
1676 total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-9. BN5 system call summaries (execution only)

Figure A3-10. BN5 system call summaries (50 events injected)

90

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

20futex 608 newfstatat 906getuid 2013clock_gettime 8135clock_gettime 2459clock_gettime 1285 mprotect 563 fstatat64 564fstatat64
17epoll_pwait 489 futex 828ioctl 1212mprotect 759 fstatat64 742newfstatat 541futex 444prctl 444prctl
7read 363 ioctl 748newfstatat 484ioctl 489prctl 481prctl 531fstatat64 422 ioctl 422 ioctl
7getuid 362 mprotect 696epoll_pwait 483futex 443 ioctl 385 ioctl 504prctl 372 futex 398futex
6 ioctl 319 mmap 567futex 464fstatat64 401futex 330futex 502ioctl 306mmap2 304mmap2
2timerfd_settime 287 prctl 435prctl 399mmap2 367mmap2 328mmap 400mmap2 275mprotect 272mprotect
1write 274 getuid 397mprotect 320prctl 337mprotect 324mprotect 253getuid32 259getuid32 263getuid32
1clock_gettime 238 pread64 393read 307getuid32 278getuid32 249pread64 234pread64 245pread64 245pread64

--------- ---------------- 216 read 345mmap 233pread64 268rt_sigprocmask 246getuid 206write 242rt_sigprocmask 238rt_sigprocmask
61total 210 write 302pread64 185write 263pread64 216rt_sigprocmask 197read 204madvise 211write

166 munmap 246rt_sigprocmask 171read 204write 194read 178munmap 170write 208madvise
140 rt_sigprocmask 220write 170openat 202madvise 177epoll_pwait 168openat 162clock_gettime 180read
115 epoll_pwait 184munmap 167epoll_pwait 170munmap 174write 166rt_sigprocmask 148munmap 162clock_gettime
110 clock_gettime 154clock_gettime 166rt_sigprocmask 166read 165munmap 164epoll_pwait 147read 155epoll_pwait
94openat 122madvise 158close 142epoll_pwait 87openat 153close 113epoll_pwait 147munmap
90close 101writev 155munmap 88openat 82close 146fstat64 74close 75close
71 fstat 96 openat 133fstat64 82close 68 fstat 141madvise 69openat 70openat
64 faccessat 94 close 106writev 69fstat64 52 faccessat 131clock_gettime 67fstat64 68fstat64
49writev 82 faccessat 52faccessat 67gettimeofday 50sched_yield 55writev 58faccessat 59faccessat
41madvise 82 fstat 42clone 62writev 43writev 49 faccessat 53writev 52writev
41 lseek 81 lseek 27fcntl64 51clone 40 lseek 36clone 39fcntl64 39fcntl64
39 fcntl 44 fcntl 21recvfrom 49faccessat 37 fcntl 29 fcntl64 38clone 36clone
32clone 40 clone 17_llseek 39fcntl64 32readlinkat 21recvfrom 28sendto 22sendto
28sendto 40 sched_yield 16unlinkat 32readlinkat 30clone 18_llseek 19_llseek 21recvfrom
20readlinkat 25 sendto 14readlinkat 23_llseek 21recvfrom 16sendto 17readlinkat 19_llseek
19recvfrom 19 readlinkat 13getsockopt 21recvfrom 15sendto 13readlinkat 16 lseek 17readlinkat
13 timerfd_settime 16 getsockopt 12lseek 15sendto 13getsockopt 13unlinkat 15recvfrom 16lseek
12getsockopt 15 recvfrom 12dup 14lseek 13madvise 13 lseek 13getsockopt 14getsockopt
11 fstatfs 10 fstatfs 12sendto 13fstatfs64 13 fstatfs 12dup 10dup 11timerfd_settime
10dup 10 dup 10rt_sigaction 11getsockopt 10dup 12timerfd_settime 9fstatfs64 10dup
8getdents64 9timerfd_settime 9timerfd_settime 10dup 8 fsync 10getsockopt 8fsync 9fsync
7rt_sigaction 8fsync 8fsync 9getrandom 8unlinkat 8mremap 8unlinkat 9fstatfs64
6mkdirat 8unlinkat 8fchmodat 8getdents64 8 fchmodat 8fstatfs64 8fchmodat 9unlinkat
6mremap 8fchmodat 7mremap 7mremap 7mremap 6getdents64 8timerfd_settime 9fchmodat
5uname 7rt_sigaction 7fstatfs64 6timerfd_settime 7 timerfd_settime 5fchmodat 6getdents64 7renameat
5getrandom 6mkdirat 6renameat 5unlinkat 6 renameat 5fsync 6renameat 6getdents64
4sched_yield 6renameat 5epoll_ctl 5 fsync 5mkdirat 5epoll_ctl 5mremap 5mremap
4fsync 6mremap 5getrandom 5fchmodat 5getrandom 5mkdirat 5epoll_ctl 5epoll_ctl
4epoll_ctl 5epoll_ctl 4getdents64 5mkdirat 4epoll_ctl 4getrandom 5mkdirat 5mkdirat
4unlinkat 5uname 3ugetrlimit 5epoll_ctl 4getdents64 3renameat 5getrandom 5getrandom
4fchmodat 4getdents64 3mkdirat 3renameat 2getrlimit 2getpriority 2socketpair 2eventfd2
3renameat 4getrandom 2getpriority 2socketpair 2getpriority 2sched_yield 2getpriority 2getpriority
2getpriority 2socketpair 2eventfd2 2eventfd2 2socketpair 2ugetrlimit 2ugetrlimit 2sched_yield
2socketpair 2eventfd2 1setrlimit 2ugetrlimit 1sendmsg 2eventfd2 2eventfd2 2ugetrlimit
1 ftruncate 2getpriority 1sysinfo 2getpriority 1uname 2socketpair 1sysinfo 2socketpair
1timerfd_create 1timerfd_create 1sched_yield 1sendmsg 1sysinfo 1restart_syscall 1uname 1sysinfo
1getrlimit 1sysinfo 1sigaltstack 1sysinfo 1 timerfd_create 1sysinfo 1sched_yield 1uname
1sysinfo 1epoll_create1 1timerfd_create 1setsockopt 1eventfd2 1uname 1timerfd_create 1timerfd_create
1setsockopt 1getrlimit 1epoll_create1 1epoll_create1 1setsockopt 1timerfd_create 1epoll_create1 1epoll_create1
1sendmsg 1ftruncate 1socketpair 1uname --------- ---------------- 1epoll_create1 1setsockopt 1setsockopt
1eventfd2 1sendmsg --------- ---------------- 1 timerfd_create 7150total 1setsockopt 1sendmsg 1sendmsg

--------- ---------------- 1setsockopt 7650total --------- ---------------- 1sendmsg --------- ---------------- --------- ----------------
4602 total --------- ---------------- 13342total --------- ---------------- 4676total 4827total

7387total 6263 total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

43futex 48 futex 235epoll_pwait 131epoll_pwait 1171clock_gettime 151epoll_pwait 127epoll_pwait 122epoll_pwait 141epoll_pwait
27epoll_pwait 46epoll_pwait 212getuid 74futex 136epoll_pwait 120sched_yield 95 futex 54getuid32 96getuid32
12getuid 38read 141ioctl 67read 103write 93write 70read 54read 94write
11ioctl 26madvise 84 read 50getuid32 76futex 74read 59getuid32 29futex 79read
9read 19getuid 34 futex 47write 73recvfrom 73recvfrom 57write 27write 73recvfrom
2timerfd_settime 12write 8write 21clock_gettime 67read 61getuid 22 ioctl 26madvise 59futex
1write 11 ioctl 6 timerfd_settime 17ioctl 61getuid32 50 futex 15recvfrom 21ioctl 28 ioctl
1clock_gettime 11openat 4writev 9recvfrom 32ioctl 30 ioctl 14prctl 9prctl 28writev

--------- ---------------- 11 timerfd_settime 1mprotect 7timerfd_settime 14gettimeofday 17clock_gettime 9sendto 9recvfrom 11timerfd_settime
106total 8close --------- ---------------- 6writev 13madvise 12madvise 8timerfd_settime 7timerfd_settime 9prctl

6newfstatat 725total 5sendto 11prctl 9prctl 3munmap 6mmap2 8madvise
6fstat 4prctl 6 timerfd_settime 7 timerfd_settime 3writev 6clock_gettime 7clock_gettime
4sendto 1mprotect 6sendto 6sendto 3mmap2 6rt_sigprocmask 6sendto
2 lseek 1getrandom 4sched_yield 3writev 3clock_gettime 4mprotect 1mprotect
2writev --------- ---------------- 3writev 1mprotect 2mprotect 3clone 1getrandom
2rt_sigprocmask 440total 2mprotect 1getrandom 2madvise 3writev --------- ----------------
1clock_gettime 2mmap2 --------- ---------------- 1 fstat64 3sendto 641total
1clone 1fsync 708total 1openat 2faccessat
1mmap 1openat 1getrandom 1getrandom
1mprotect 1 faccessat 1close --------- ----------------

--------- ---------------- 1 fchmodat --------- ---------------- 392total
256 total 1unlinkat 496total

1 fstat64
1getsockopt
1fstatat64
1close
1getrandom

--------- ----------------
1790total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-11. BN6 system call summaries (execution only)

Figure A3-12. BN6 system call summaries (50 events injected)

91

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

645recvfrom 533recvfrom 352recvfrom 586clock_gettime 2973clock_gettime 384recvfrom 611fstatat64 284recvfrom 380recvfrom
644write 346write 265write 381recvfrom 600recvfrom 308write 492recvfrom 177write 224write
340epoll_pwait 203getuid 168epoll_pwait 365write 557write 215epoll_pwait 443write 126getuid32 145getuid32
274futex 191epoll_pwait 157getuid 318fcntl64 300epoll_pwait 214clock_gettime 318fcntl64 119epoll_pwait 138epoll_pwait
256getuid 166ioctl 138 ioctl 228epoll_pwait 197getuid32 142getuid 266epoll_pwait 108 ioctl 123 ioctl
219 ioctl 159futex 104 futex 183pwrite64 177futex 134futex 213ioctl 91 futex 117 futex
162read 131read 88read 178ioctl 177 ioctl 122ioctl 213faccessat 74read 86read
33fstat 32madvise 70madvise 177getuid32 148read 96read 189getuid32 37madvise 33madvise
31writev 22newfstatat 36newfstatat 142futex 26madvise 26madvise 184futex 15rt_sigprocmask 15rt_sigprocmask
16pread64 20writev 26writev 120fstat64 18fstatat64 20rt_sigprocmask 183pwrite64 12pread64 12pread64
15mmap 16pread64 15rt_sigprocmask 100read 15rt_sigprocmask 18newfstatat 123fstat64 9mprotect 10writev
15mprotect 15rt_sigprocmask 14pread64 75pread64 12pread64 14pread64 122read 9writev 9mprotect
11rt_sigprocmask 12mmap 11mmap 67fstatat64 9mmap2 10mmap 75pread64 9mmap2 9mmap2
10close 9munmap 8mprotect 57close 9writev 9writev 73mkdirat 7munmap 6munmap
8munmap 9mprotect 7munmap 48fdatasync 8mprotect 8mprotect 61close 6 fstatat64 6fstatat64
6prctl 4fstat 4 fstat 47openat 6munmap 7munmap 53openat 4 fstat64 4 fstat64
5madvise 4close 3clock_gettime 37mmap2 4fstat64 4fstat 48fdatasync 2clone 2clone
4openat 4getdents64 2close 34writev 2clone 2clone 40mmap2 2epoll_ctl 2epoll_ctl
4getdents64 2epoll_ctl 2epoll_ctl 27 faccessat 2gettimeofday 2close 40unlinkat 2close 2close
3dup 2openat 2clone 23munmap 2epoll_ctl 2epoll_ctl 29madvise 1dup 1dup
3fcntl 2prctl 2prctl 21unlinkat 2close 1fcntl 26munmap 1prctl 1prctl
2epoll_ctl 2clone 1 faccessat 18geteuid32 1prctl 1dup 19mprotect 1 fcntl64 1 fcntl64
2clone 1dup 1fcntl 17prctl 1 fcntl64 1prctl 18prctl --------- ---------------- --------- ----------------
1newfstatat 1fcntl 1dup 16mprotect 1dup --------- ---------------- 18geteuid32 1096total 1326total

--------- ---------------- --------- ---------------- --------- ---------------- 16rt_sigprocmask--------- ---------------- 1740total 17writev
2709total 1886total 1477total 12 ftruncate64 5247total 16rt_sigprocmask

8dup 12ftruncate64
5epoll_ctl 8dup
4clone 8readlinkat
4 fchmodat 5epoll_ctl
3mkdirat 4clone
3getsockopt 4getdents64
2 lseek 4fchmodat
1statfs64 3statfs64
1eventfd2 3getsockopt
1epoll_create1 2lseek

--------- ---------------- 1fsync
3325total 1renameat

1eventfd2
1epoll_create1

--------- ----------------
3947total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

587write 313recvfrom 327write 551write 3030clock_gettime 260recvfrom 458recvfrom 184recvfrom 383recvfrom
585recvfrom 288write 316recvfrom 545recvfrom 608recvfrom 233write 355write 140write 346write
306epoll_pwait 162epoll_pwait 182epoll_pwait 295epoll_pwait 599write 216clock_gettime 242epoll_pwait 97epoll_pwait 198epoll_pwait
263futex 145getuid 144getuid 261futex 321epoll_pwait 152epoll_pwait 157getuid32 93getuid32 152getuid32
241getuid 113futex 125 ioctl 244clock_gettime 200getuid32 112getuid 151 ioctl 74 ioctl 129 futex
202ioctl 110ioctl 100 futex 181getuid32 180ioctl 94 futex 146futex 61futex 127 ioctl
146read 78read 79read 166ioctl 175futex 92 ioctl 113read 42read 92read
31writev 51madvise 60madvise 137read 150read 65read 13mmap2 38madvise 36madvise
30fstat 22newfstatat 36newfstatat 31rt_sigprocmask 24madvise 36madvise 10pread64 15rt_sigprocmask 15rt_sigprocmask
26rt_sigprocmask 19writev 26writev 24pread64 18fstatat64 21sched_yield 8munmap 12pread64 12pread64
22pread64 16pread64 15rt_sigprocmask 18mmap2 15rt_sigprocmask 20rt_sigprocmask 8writev 9writev 10writev
17mmap 15rt_sigprocmask 14pread64 16madvise 12pread64 18newfstatat 8prctl 9mmap2 9mmap2
13mprotect 11mmap 11mmap 14writev 9mmap2 14pread64 7mprotect 8mprotect 8mprotect
12madvise 8munmap 8mprotect 12munmap 9writev 10mmap 7close 7munmap 7munmap
11munmap 8mprotect 7munmap 9mprotect 7mprotect 9writev 6rt_sigprocmask 6 fstatat64 6fstatat64
8close 4close 4 fstat 6prctl 6munmap 8mprotect 6fstat64 4 fstat64 4 fstat64
6prctl 4getdents64 3clock_gettime 6fstat64 4 fstat64 7munmap 6madvise 2close 2epoll_ctl
4openat 4fstat 2clone 6close 2clone 4fstat 4epoll_ctl 2clone 2clone
4getdents64 2epoll_ctl 2prctl 3epoll_ctl 2gettimeofday 2clone 2dup 2epoll_ctl 2close
3epoll_ctl 2openat 2close 2dup 2close 2close 2clone 1dup 1dup
2dup 2clone 2epoll_ctl 2clone 2epoll_ctl 2epoll_ctl 2fcntl64 1prctl 1prctl
2fcntl 1dup 1faccessat 2 fcntl64 1prctl 1prctl 2openat 1 fcntl64 1 fcntl64
2clone 1fcntl 1dup 2openat 1dup 1dup --------- ---------------- --------- ---------------- --------- ----------------
1newfstatat 1prctl 1 fcntl --------- ---------------- 1 fcntl64 1fcntl 1713total 808total 1543total

--------- ---------------- --------- ---------------- --------- ---------------- 2533total --------- ---------------- --------- ----------------
2524total 1380total 1468total 5378total 1380total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-13. BN7 system call summaries (execution only)

Figure A3-14. BN7 system call summaries (50 events injected)

92

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

332fstat 260write 278write 1856clock_gettime 2973clock_gettime 1894clock_gettime 261recvfrom 211recvfrom 216recvfrom
273ioctl 247recvfrom 262recvfrom 275write 600recvfrom 246recvfrom 255write 166write 180write
256write 156epoll_pwait 249getuid 264recvfrom 557write 214write 203 ioctl 144 ioctl 131 ioctl
249recvfrom 147ioctl 174 ioctl 181epoll_pwait 300epoll_pwait 138epoll_pwait 175epoll_pwait 137epoll_pwait 118epoll_pwait
241getuid 145getuid 167epoll_pwait 162 ioctl 197getuid32 138ioctl 156futex 125getuid32 116pread64
149epoll_pwait 143pread64 137writev 132getuid32 177futex 118getuid 136getuid32 125rt_sigprocmask 115rt_sigprocmask
143pread64 120rt_sigprocmask 124pread64 126futex 177ioctl 116pread64 121rt_sigprocmask 119futex 112getuid32
118futex 116fcntl 115 rt_sigprocmask 113fcntl64 148read 115rt_sigprocmask 115pread64 116pread64 87fcntl64
115fcntl 108madvise 95madvise 110rt_sigprocmask 26madvise 88futex 113fcntl64 87fcntl64 81futex
114rt_sigprocmask 93futex 92futex 109pread64 18fstatat64 87fcntl 90mmap2 86madvise 72madvise
72newfstatat 93newfstatat 87fcntl 73read 15rt_sigprocmask 78madvise 80fstat64 66read 56mmap2
69read 77fstat 85newfstatat 70fstat64 12pread64 67newfstatat 71read 66mmap2 55read
63mmap 64read 69read 62mmap2 9mmap2 63read 55munmap 55fstatat64 55fstatat64
55munmap 58mmap 58mmap 52pwrite64 9writev 55mmap 52pwrite64 48munmap 49munmap
40close 52munmap 52munmap 50munmap 8mprotect 49munmap 45close 39fstat64 39fstat64
39writev 39close 39fstat 30close 6munmap 39fstat 35openat 28pwrite64 28pwrite64
34openat 28openat 28pwrite64 24fstatat64 4fstat64 28pwrite64 30prctl 22close 22close
19pwrite64 21writev 19close 23openat 2clone 22close 29mprotect 19mprotect 17mprotect
19geteuid 19pwrite64 14mprotect 19mprotect 2gettimeofday 15fdatasync 26fstatat64 15fdatasync 15fdatasync
16mprotect 19geteuid 12fdatasync 14writev 2epoll_ctl 13mprotect 22madvise 11openat 11openat
11prctl 13mprotect 9 faccessat 9prctl 2close 11openat 13faccessat 10writev 9writev
9fdatasync 9fdatasync 8openat 8 fdatasync 1prctl 9writev 11writev 10prctl 8 faccessat
8faccessat 8faccessat 5 fchmodat 8unlinkat 1 fcntl64 8faccessat 10unlinkat 8clone 5prctl
6clock_gettime 6clock_gettime 4dup 8faccessat 1dup 5fchmodat 8fdatasync 8 faccessat 5 fchmodat
5fchmodat 5fchmodat 3clone 7geteuid32 --------- ---------------- 4dup 8clone 5fchmodat 4dup
4getdents64 4dup 3ftruncate 5 fchmodat 5247total 4prctl 8dup 4dup 3clone
3dup 4getdents64 3prctl 4dup 3clone 8fchmodat 3 ftruncate64 3ftruncate64
3clone 3prctl 3geteuid 4 fchmod 3ftruncate 7geteuid32 3geteuid32 3geteuid32
3madvise 3clone 3clock_gettime 4ftruncate64 3geteuid 5epoll_ctl 2epoll_ctl 2epoll_ctl
2epoll_ctl 2epoll_ctl 2epoll_ctl 3clone 2epoll_ctl 4fchmod 1fchmod 1fchmod
1mkdirat 1mkdirat 1mkdirat 3epoll_ctl 1mkdirat 4ftruncate64 1fsync 1 fsync
1unlinkat 1unlinkat 1unlinkat 2madvise 1fchmod 4getsockopt 1statfs64 1statfs64
1renameat 1renameat 1statfs 1 fsync 1statfs 3fsync 1mkdirat 1mkdirat
1statfs 1statfs 1getsockopt 1statfs64 1getsockopt 2lseek 1unlinkat 1unlinkat
1fchmod 1fchmod 1fchmod 1mkdirat 1fsync 2mkdirat 1 renameat 1renameat
1fsync 1fsync 1 fsync 1renameat 1unlinkat 2renameat 1getsockopt 1getsockopt
1getsockopt 1getsockopt 1renameat 1getsockopt 1renameat 1sched_yield --------- ---------------- --------- ----------------

--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- 1statfs64 1745total 1624total
2477total 2069total 2206total 3815total 3642total 1eventfd2

1epoll_create1
--------- ----------------

2173total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

332fstat 255write 200write 1808clock_gettime 3030clock_gettime 1896clock_gettime 261recvfrom 191recvfrom 178recvfrom
272ioctl 246recvfrom 197recvfrom 300write 608recvfrom 264write 233write 177 ioctl 146write
255write 157epoll_pwait 120epoll_pwait 266recvfrom 599write 261recvfrom 153epoll_pwait 167write 121 ioctl
242recvfrom 146ioctl 80 ioctl 172epoll_pwait 321epoll_pwait 167epoll_pwait 151 ioctl 140rt_sigprocmask 116pread64
239getuid 146getuid 71getuid 156 ioctl 200getuid32 145ioctl 132futex 134pread64 115rt_sigprocmask
150epoll_pwait 143pread64 64futex 127getuid32 180ioctl 123getuid 117getuid32 129getuid32 104getuid32
143pread64 120rt_sigprocmask 52read 117futex 175futex 116pread64 113pread64 122epoll_pwait 103epoll_pwait
134futex 116fcntl 21 fcntl 112fcntl64 150read 115rt_sigprocmask 112fcntl64 97madvise 87fcntl64
115fcntl 101madvise 13newfstatat 95pread64 24madvise 98futex 109rt_sigprocmask 92fcntl64 70futex
114rt_sigprocmask 93futex 9 fstat 79rt_sigprocmask 18fstatat64 87fcntl 71mmap2 88futex 70madvise
72newfstatat 93newfstatat 8pread64 71read 15rt_sigprocmask 76madvise 70fstat64 82mmap2 55fstatat64
66read 77fstat 7madvise 70fstat64 12pread64 68read 67read 59fstatat64 55mmap2
63mmap 67read 5mmap 55mmap2 9mmap2 67newfstatat 58munmap 56munmap 49munmap
55munmap 58mmap 5close 52pwrite64 9writev 55mmap 52pwrite64 53read 45read
40close 52munmap 4writev 43munmap 7mprotect 48munmap 29close 47fstat64 39fstat64
39writev 39close 4rt_sigprocmask 30close 6munmap 39fstat 24fstatat64 36close 28pwrite64
34openat 28openat 3mprotect 24fstatat64 4fstat64 28pwrite64 23openat 28pwrite64 22close
19pwrite64 21writev 2clone 23openat 2clone 22close 16mprotect 25mprotect 15fdatasync
19geteuid 19pwrite64 2faccessat 19mprotect 2gettimeofday 15fdatasync 16prctl 15 fdatasync 13mprotect
17mprotect 19geteuid 2prctl 16writev 2close 13mprotect 15madvise 15prctl 11openat
11prctl 13mprotect 1epoll_ctl 9prctl 2epoll_ctl 11openat 8fdatasync 15openat 9writev
9fdatasync 9fdatasync 1openat 8 fdatasync 1prctl 9writev 8unlinkat 14writev 8 faccessat
8faccessat 8faccessat 1 fchmodat 8unlinkat 1dup 8faccessat 8faccessat 14faccessat 5 fchmodat
7madvise 6clock_gettime 1munmap 8faccessat 1 fcntl64 5fchmodat 7writev 9dup 4dup
6clock_gettime 5fchmodat 1dup 7geteuid32 --------- ---------------- 4dup 7geteuid32 8fchmodat 4prctl
5fchmodat 4dup --------- ---------------- 5 fchmodat 5378total 4prctl 5fchmodat 7clone 3clone
4getdents64 4getdents64 874 total 4 fchmod 3clone 4fchmod 4 lseek 3 ftruncate64
3epoll_ctl 3prctl 4 ftruncate64 3ftruncate 4ftruncate64 4epoll_ctl 3geteuid32
3dup 3clone 4epoll_ctl 3geteuid 3dup 4getsockopt 2epoll_ctl
3clone 2epoll_ctl 3dup 2epoll_ctl 3clone 3 fsync 1 fchmod
1mkdirat 1mkdirat 3clone 1fsync 3epoll_ctl 3 ftruncate64 1fsync
1unlinkat 1unlinkat 3madvise 1renameat 3clock_gettime 3geteuid32 1statfs64
1renameat 1renameat 1 fsync 1unlinkat 1fsync 3unlinkat 1mkdirat
1statfs 1statfs 1statfs64 1getsockopt 1statfs64 2mkdirat 1unlinkat
1fchmod 1fchmod 1mkdirat 1fchmod 1mkdirat 2 renameat 1renameat
1fsync 1fsync 1renameat 1statfs 1renameat 1 fchmod 1getsockopt
1getsockopt 1getsockopt 1getsockopt 1mkdirat 1getsockopt 1statfs64 --------- ----------------

--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- 1490total
2486total 2060total 3706total 3762total 1890total 1850total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-15. BN8 system call summaries (execution only)

Figure A3-16. BN8 system call summaries (50 events injected)

93

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

31futex 147 ioctl 41 epoll_pwait 3693clock_gettime 232clock_gettime 79clock_gettime 612mprotect 59getuid32 119 ioctl
25 ioctl 110 pread64 38 ioctl 578mprotect 28 ioctl 27 futex 396ioctl 50epoll_pwait 100pread64
23epoll_pwait 98getuid 31 futex 409ioctl 26futex 27 ioctl 346prctl 49 ioctl 68madvise
18getuid 85madvise 28 newfstatat 296mmap2 24epoll_pwait 25epoll_pwait 320futex 40futex 66getuid32
9read 83 futex 28 getuid 291futex 24write 19write 269pread64 34write 61rt_sigprocmask
9fstat 68 rt_sigprocmask 25 write 269pread64 18getuid32 18getuid 267mmap2 27rt_sigprocmask 56mmap2
9clock_gettime 67epoll_pwait 21 read 216prctl 9read 10read 218rt_sigprocmask 20pread64 53munmap
5write 58mmap 9clock_gettime 198rt_sigprocmask 8gettimeofday 8newfstatat 164munmap 16madvise 46epoll_pwait
4recvfrom 55munmap 7prctl 172getuid32 8fstatat64 7prctl 150getuid32 13mmap2 42write
3timerfd_settime 46write 4timerfd_settime 155munmap 7prctl 4 recvfrom 140fstatat64 12recvfrom 41futex
3prctl 43 read 4recvfrom 147fstat64 4fstat64 4 fstat 138fstat64 10munmap 30fcntl64
3mmap 42newfstatat 4 fstat 130write 4recvfrom 2rt_sigprocmask 131write 9clock_gettime 20fstat64
2mprotect 38 fstat 2mmap 122fstatat64 2mmap2 2mmap 99read 9read 18fstatat64
1openat 36 fcntl 2rt_sigprocmask 101openat 2madvise 2mprotect 86openat 8prctl 18close
1close 32close 2mprotect 95close 2rt_sigprocmask 1madvise 77close 6fstatat64 12recvfrom
1clone 30clock_gettime 1writev 89read 2mprotect 1clone 75madvise 4fstat64 9mprotect

--------- ---------------- 17openat 1clone 84epoll_pwait 1clone 1 timerfd_settime 74 fcntl64 3mprotect 9clock_gettime
147total 12writev --------- ---------------- 75fcntl64 1timerfd_settime--------- ---------------- 67epoll_pwait 1timerfd_settime 9read

12recvfrom 248total 32clone --------- ---------------- 237total 58clock_gettime 1clone 8prctl
12mprotect 30pwrite64 402total 30pwrite64 1writev 6dup
8timerfd_settime 26writev 25 faccessat 1sched_yield 2writev
6dup 26faccessat 22clone --------- ---------------- 1clone
6geteuid 19recvfrom 19recvfrom 373total 1 faccessat
5prctl 12getsockopt 15writev 1timerfd_settime
2lseek 11rt_sigaction 10getsockopt --------- ----------------
2clone 10dup 9dup 796total
1 faccessat 10unlinkat 8unlinkat

--------- ---------------- 10fchmodat 8fchmodat
1121 total 9_llseek 7_llseek

8fsync 6fsync
6fdatasync 6fdatasync
6epoll_ctl 6epoll_ctl
5 renameat 6mkdirat
5readlinkat 5renameat
4getdents64 5readlinkat
4mkdirat 4getdents64
3ugetrlimit 3geteuid32
3geteuid32 3getrandom
3timerfd_settime 2getpriority
3getrandom 2sched_yield
2getpriority 2mremap
2mremap 2ugetrlimit
2 fstatfs64 2fstatfs64
2eventfd2 2timerfd_settime
1lseek 2eventfd2
1setrlimit 1 lseek
1sysinfo 1sysinfo
1sched_yield 1uname
1sigaltstack 1rt_sigaction
1ftruncate64 1ftruncate64
1statfs64 1statfs64
1timerfd_create 1timerfd_create
1epoll_create1 1epoll_create1

--------- ---------------- 1socketpair
7382total 1setsockopt

--------- ----------------
3908 total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

41futex 77getuid 31 epoll_pwait 37clock_gettime 237clock_gettime 79clock_gettime 42 futex 28futex 33futex
23madvise 67 ioctl 27 ioctl 23epoll_pwait 40futex 28 ioctl 19epoll_pwait 25epoll_pwait 24write
19ioctl 63epoll_pwait 25 futex 22ioctl 27 ioctl 24epoll_pwait 15 ioctl 25write 21ioctl
18epoll_pwait 62 futex 23 getuid 18getuid32 23epoll_pwait 24write 13write 22ioctl 20epoll_pwait
18write 36write 17 write 15futex 18getuid32 22 futex 13getuid32 22getuid32 17getuid32
13getuid 35madvise 15 read 8read 18write 18getuid 9prctl 10read 9clock_gettime
10read 31read 9clock_gettime 4prctl 8read 9 read 9clock_gettime 9clock_gettime 8read
9clock_gettime 30clock_gettime 7prctl 3mmap2 8fstatat64 8newfstatat 8read 7prctl 7prctl
3 timerfd_settime 29rt_sigprocmask 4timerfd_settime 2write 8gettimeofday 7prctl 3mprotect 4 fstat64 4fstat64
3prctl 21newfstatat 2mprotect 2mprotect 7prctl 4 fstat 3mmap2 3fstatat64 4recvfrom
3mmap 20pread64 2rt_sigprocmask 2writev 4fstat64 4 recvfrom 3madvise 2mprotect 3 fstatat64
3mprotect 13mmap 2mmap 1close 4recvfrom 2mprotect 1close 2rt_sigprocmask 2mprotect
2writev 12recvfrom 2madvise 1clone 2mmap2 2mmap 1clone 2mmap2 2rt_sigprocmask
1openat 10munmap 1sched_yield 1fstat64 2madvise 2 rt_sigprocmask 1writev 2madvise 2mmap2
1close 7fstat 1clone 1openat 2mprotect 1sched_yield 1fstat64 1clone 2madvise
1fstat 6openat --------- ---------------- 1 timerfd_settime 2rt_sigprocmask 1 timerfd_settime 1openat 1writev 1clone
1clone 6timerfd_settime 168total --------- ---------------- 1 timerfd_settime 1clone 1timerfd_settime 1timerfd_settime 1timerfd_settime

--------- ---------------- 5writev 141total 1clone --------- ---------------- --------- ---------------- 4recvfrom --------- ----------------
169total 5prctl --------- ---------------- 236total 143total --------- ---------------- 160total

5mprotect 412total 170total
4close
2clone
1 lseek

--------- ----------------
547 total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-17. MW1 system call summaries (execution only)

Figure A3-18. MW1 system call summaries (50 events injected)

94

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

515recvfrom 828madvise 1591madvise 1134recvfrom 4195clock_gettime 3711clock_gettime 774recvfrom 1057madvise 1142madvise
385write 239recvfrom 435recvfrom 938write 2216madvise 1840madvise 534write 274recvfrom 306recvfrom
192futex 198futex 337write 445epoll_pwait 618recvfrom 510recvfrom 397futex 216write 239write
134ioctl 132write 288 futex 442futex 474write 393write 266 ioctl 199futex 233 futex
131epoll_pwait 108getuid 171 ioctl 357ioctl 349 futex 303futex 258epoll_pwait 114getuid32 123getuid32
131getuid 96 ioctl 163getuid 329getuid32 200 ioctl 173ioctl 227getuid32 113ioctl 121 ioctl
129read 76epoll_pwait 126epoll_pwait 284read 199getuid32 172getuid 192read 86epoll_pwait 94epoll_pwait

7fstat 24mprotect 104read 158clock_gettime 172epoll_pwait 145epoll_pwait 44mmap2 64read 71read
2close 13writev 74mprotect 60fstatat64 152read 123read 37fstatat64 37fstatat64 39mprotect
2mprotect 12prctl 39mmap 33mmap2 60fstatat64 60newfstatat 35madvise 32mprotect 37fstatat64
1dup 11close 37newfstatat 28prctl 52mprotect 52mprotect 34prctl 29mmap2 34mmap2
1fcntl 11rt_sigprocmask 30prctl 27close 26mmap2 25mmap 27close 25prctl 25prctl
1mmap 11mmap 23rt_sigprocmask 26fstat64 24faccessat 24faccessat 26fstat64 20rt_sigprocmask 20rt_sigprocmask

--------- ---------------- 8 fstat 21writev 24writev 24prctl 23prctl 23mprotect 17faccessat 17faccessat
1631total 8getrandom 19faccessat 24faccessat 15rt_sigprocmask 15rt_sigprocmask 22openat 14writev 16pread64

5openat 15munmap 22openat 13writev 13writev 18munmap 14close 15writev
4dup 15close 21mprotect 13close 13close 17faccessat 10fstat64 14close
4fcntl 14openat 15madvise 10fstat64 10fstat 14writev 8openat 10fstat64
4faccessat 12fstat 7mkdirat 8openat 8openat 13pread64 6pread64 8openat
4getsockopt 9clone 6dup 7mkdirat 7mkdirat 10rt_sigprocmask 5clone 7munmap
3unlinkat 6clock_gettime 6clone 6gettimeofday 6gettimeofday 6dup 5getrandom 5clone
3fchmodat 5mkdirat 5munmap 5clone 5getsockopt 6clone 5getsockopt 5getrandom
3newfstatat 5getrandom 5rt_sigprocmask 5getrandom 5getrandom 5getrandom 4lseek 5getsockopt
3 fsync 5pread64 5getrandom 5getsockopt 5clone 5getsockopt 4dup 4 lseek
3clone 5getsockopt 5getsockopt 4unlinkat 4dup 4mkdirat 4 fcntl64 4dup
2epoll_ctl 5 fcntl 4pread64 4fcntl64 4unlinkat 4unlinkat 4mkdirat 4 fcntl64
2 lseek 4unlinkat 4unlinkat 4pread64 4fcntl 3 fsync 4unlinkat 4mkdirat
2pread64 4dup 3fsync 4dup 4pread64 3epoll_ctl 3 fsync 4unlinkat
1renameat 3 fsync 3epoll_ctl 3 fsync 3fsync 3fchmodat 3 fchmodat 3 fsync
1read 3fchmodat 3 fchmodat 3 fchmodat 3 fchmodat 2 lseek 2munmap 3fchmodat

--------- ---------------- 2 renameat 2 lseek 2getdents64 2epoll_ctl 2getdents64 2getdents64 2getdents64
1819total 2getdents64 2getdents64 2renameat 2renameat 2 fcntl64 2epoll_ctl 2epoll_ctl

2epoll_ctl 2 fcntl64 2munmap 2 lseek 2renameat 2renameat 2renameat
2 lseek 2renameat 2 lseek 2munmap 1statfs64 1statfs64 1statfs64
1statfs 1statfs64 2epoll_ctl 2getdents64 1eventfd2 --------- ---------------- --------- ----------------
1 readlinkat 1eventfd2 1statfs64 1statfs 1epoll_create1 2385total 2619total
1mremap 1epoll_create1 --------- ---------------- --------- ---------------- --------- ----------------
1 fstatfs --------- ---------------- 8881total 7674total 3018total

--------- ---------------- 4434total
3580total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

1462recvfrom 862madvise 1407madvise 1972recvfrom 5746clock_gettime 2801clock_gettime 1543recvfrom 1555recvfrom 737recvfrom
978epoll_pwait 238recvfrom 1286recvfrom 1381write 1201recvfrom 1828madvise 803write 1173madvise 632madvise
527getuid 197futex 756write 803epoll_pwait 1196madvise 494recvfrom 730epoll_pwait 929epoll_pwait 401epoll_pwait
492ioctl 137write 665epoll_pwait 552futex 656write 381write 511getuid32 655write 349write
491write 126getuid 428getuid 546ioctl 616epoll_pwait 302futex 488 ioctl 549getuid32 224getuid32
484read 101ioctl 419 ioctl 545getuid32 350getuid32 166ioctl 436read 527ioctl 223 ioctl
18futex 81epoll_pwait 365read 501read 350 ioctl 166getuid 395 futex 487read 218read
16writev 31mprotect 310 futex 246clock_gettime 345read 141epoll_pwait 40writev 171futex 168 futex
3clock_gettime 19writev 38newfstatat 39rt_sigprocmask 237 futex 120read 23mmap2 20pread64 11mprotect
3process_vm_readv 14prctl 33mprotect 30pread64 17mprotect 50mprotect 20madvise 18mmap2 2fstat64
2epoll_ctl 14mmap 25writev 24mmap2 2fstat64 22mmap 19rt_sigprocmask 17writev 1writev
2close 13rt_sigprocmask 21rt_sigprocmask 18fstat64 --------- ---------------- 21prctl 19fstat64 15mprotect --------- ----------------
1rt_sigprocmask 11close 20pread64 16writev 10716total 15rt_sigprocmask 18pread64 14rt_sigprocmask 2966total
1rt_sigreturn 11getrandom 11mmap 15munmap 14faccessat 15prctl 10fstat64
1mprotect 10fstat 10munmap 13close 13close 14close 9munmap

--------- ---------------- 5openat 8 fstat 10prctl 12writev 12munmap 8fstatat64
4481total 4clone 7prctl 10openat 10fstat 12sendto 8faccessat

4dup 5faccessat 8madvise 9newfstatat 11openat 6prctl
4 fcntl 5close 5mprotect 8openat 6mprotect 5close
4faccessat 4getrandom 5getrandom 6gettimeofday 5getrandom 4openat
4getsockopt 3clock_gettime 4faccessat 5getsockopt 4 faccessat 3getsockopt
3unlinkat 2openat 3 fsync 5clone 3fsync 2fsync
3fchmodat 2 fsync 3fstatat64 5getrandom 3fstatat64 2clone
3newfstatat 2unlinkat 3unlinkat 4unlinkat 3unlinkat 2epoll_ctl
3 fsync 2fchmodat 3 fchmodat 4dup 3fchmodat 2unlinkat
2epoll_ctl 2 renameat 3getsockopt 4 fcntl 3getsockopt 2renameat
2 lseek 2getsockopt 2dup 3fsync 2dup 2fchmodat
2pread64 2fcntl 2 fcntl64 3mkdirat 2clone 2getrandom
1renameat 2dup 2epoll_ctl 3 fchmodat 2 fcntl64 1dup
1read 2epoll_ctl 1clone 2renameat 2epoll_ctl 1 fcntl64

--------- ---------------- 1clone 1renameat 2pread64 1renameat --------- ----------------
1910total --------- ---------------- --------- ---------------- 2getdents64 --------- ---------------- 6199total

5845total 6766total 2epoll_ctl 5148total
2 lseek
1statfs

--------- ----------------
6626total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-19. MW2 system call summaries (execution only)

Figure A3-20. MW2 system call summaries (50 events injected)

95

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

3249clock_gettime 3153clock_gettime 7795clock_gettime 1012 clock_gettime 3001clock_gettime 1058clock_gettime 694mprotect 348prctl 348prctl
984mprotect 437 futex 1036getuid32 652mprotect 369prctl 367prctl 360prctl 255futex 250futex
567ioctl 355 ioctl 1004gettimeofday 276 ioctl 278fstatat64 272 fstatat64 292ioctl 223ioctl 220ioctl
451futex 275write 994epoll_pwait 209prctl 248futex 256 futex 261futex 154write 151fstatat64
326getuid32 242read 957ioctl 182 futex 230ioctl 230 ioctl 160mmap2 151fstatat64 145write
294write 240 fstatat64 591futex 169mmap2 162mprotect 162mprotect 140write 132read 130mmap2
285read 233getuid32 535read 130getuid32 160mmap2 159mmap2 125getuid32 130mmap2 130read
230epoll_pwait 190prctl 364prctl 113write 128write 132read 124fstatat64 126mprotect 128mprotect
216prctl 186mprotect 296fstatat64 96 fstatat64 124read 120write 111read 116getuid32 112getuid32
181gettimeofday 182mmap2 295write 96 read 107getuid32 107getuid32 81madvise 75madvise 76 madvise
170mmap2 147madvise 187mprotect 68 fstat64 93madvise 92madvise 76fstat64 60clock_gettime 60 clock_gettime
119fstat64 130epoll_pwait 173mmap2 64openat 76pread64 78pread64 63clock_gettime 59pread64 59 pread64
103fstatat64 92pread64 92pread64 61close 68munmap 68munmap 63openat 55munmap 55 munmap
93madvise 84munmap 83madvise 55pread64 54rt_sigprocmask 57openat 58close 50rt_sigprocmask 50 rt_sigprocmask
73openat 80gettimeofday 79munmap 51epoll_pwait 50openat 54rt_sigprocmask 53pread64 40epoll_pwait 35 epoll_pwait
64close 65rt_sigprocmask 60rt_sigprocmask 46munmap 38close 42close 50munmap 36fstat64 34 openat
59writev 65openat 58openat 34writev 36 fstat64 36fstat64 48epoll_pwait 34openat 34 fstat64
59pread64 60fstat64 57 fstat64 31clone 26epoll_pwait 26clone 26clone 32close 32 close
55munmap 58sendto 53writev 23 recvfrom 26clone 26epoll_pwait 23writev 24clone 24 clone
41sendto 57close 51close 14 faccessat 21writev 21writev 23recvfrom 20writev 20 writev
32 faccessat 46faccessat 49sendto 11 rt_sigaction 19 faccessat 19faccessat 18faccessat 18faccessat 18 faccessat
27clone 42writev 48 faccessat 8dup 15gettimeofday 14fcntl64 10dup 14fcntl64 14 fcntl64
22 recvfrom 29clone 32recvfrom 8fcntl64 14 fcntl64 13readlinkat 8fcntl64 9readlinkat 9 readlinkat
9fcntl64 22recvfrom 29clone 7_llseek 13 readlinkat 12_llseek 7mkdirat 9recvfrom 9recvfrom
9timerfd_settime 15_llseek 17 fcntl64 6 readlinkat 12_llseek 7mkdirat 7_llseek 8_llseek 8_llseek
8getdents64 15fcntl64 15_llseek 5mkdirat 7mkdirat 7 lseek 6epoll_ctl 7dup 7dup
7dup 14timerfd_settime 12readlinkat 5getsockopt 6dup 6dup 6readlinkat 7mkdirat 7mkdirat
7_llseek 12readlinkat 10 timerfd_settime 4getdents64 6fstatfs64 6fstatfs64 5getsockopt 4getdents64 4getdents64
7rt_sigprocmask 9dup 9dup 4epoll_ctl 5recvfrom 5recvfrom 4getdents64 4fstatfs64 4 fstatfs64
7mkdirat 9rt_sigaction 9rt_sigaction 3mremap 4getsockopt 4getsockopt 3 lseek 4getsockopt 4getsockopt
7readlinkat 8getdents64 8mkdirat 3ugetrlimit 4getdents64 4mremap 3mremap 3sched_yield 3sched_yield
4epoll_ctl 8mkdirat 7getsockopt 3 fstatfs64 4mremap 4getdents64 3fstatfs64 3mremap 3mremap
4getsockopt 7getsockopt 6fstatfs64 2getpriority 3epoll_ctl 3epoll_ctl 2getpriority 3epoll_ctl 3epoll_ctl
3 fstatfs64 6fstatfs64 5uname 2 fchmodat 2socketpair 2socketpair 2ugetrlimit 2 lseek 2 lseek
2getpriority 5uname 4getdents64 2 timerfd_settime 2rt_sigaction 2fchmodat 2fchmodat 2getpriority 2getpriority
2ugetrlimit 4 lseek 4epoll_ctl 2getrandom 2fchmodat 2ugetrlimit 2eventfd2 2rt_sigaction 2 rt_sigaction
2socketpair 4epoll_ctl 3 lseek 1 lseek 2 lseek 2getpriority 2getrandom 2ugetrlimit 2ugetrlimit
2 fchmodat 2getpriority 2fchmodat 1setrlimit 2getpriority 2rt_sigaction 1sysinfo 2fchmodat 2 fchmodat
2getrandom 2socketpair 2getpriority 1sysinfo 2ugetrlimit 2getrandom 1uname 2getrandom 2getrandom
1lseek 2fchmodat 2socketpair 1sigaltstack 2getrandom 1timerfd_settime 1sched_yield 2socketpair 2socketpair
1sysinfo 2getrandom 2getrandom 1unlinkat 1timerfd_settime 1eventfd2 1rt_sigaction 2sendto 1sysinfo
1uname 1sysinfo 1eventfd2 1 timerfd_create 1eventfd2 1sysinfo 1unlinkat 1sysinfo 1uname
1rt_sigaction 1sched_yield 1sysinfo 1eventfd2 1sysinfo 1timerfd_create 1timerfd_create 1uname 1timerfd_create
1socket 1ugetrlimit 1socket --------- ---------------- 1 timerfd_create 1setsockopt 1timerfd_settime 1timerfd_create 1 timerfd_settime
1connect 1ftruncate64 1connect 3464 total 1uname 1uname 1epoll_create1 1timerfd_settime 1eventfd2
1setsockopt 1socket 1sched_yield 1setsockopt --------- ---------------- 1socketpair 1eventfd2 1setsockopt
1sendmsg 1connect 1timerfd_create --------- ---------------- 3485total 1setsockopt 1setsockopt --------- ----------------
1unlinkat 1setsockopt 1ugetrlimit 5427total --------- ---------------- --------- ---------------- 2206total
1timerfd_create 1sendmsg 1ftruncate64 2931total 2235total
1eventfd2 1timerfd_create 1setsockopt

--------- ---------------- 1eventfd2 --------- ----------------
7793total --------- ---------------- 15044total

6604total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

3365clock_gettime 3412clock_gettime 3522clock_gettime 831clock_gettime 3986clock_gettime 1362clock_gettime 689mprotect 362prctl 359prctl
986mprotect 488 futex 581epoll_pwait 654mprotect 386prctl 381prctl 387prctl 302futex 301futex
600ioctl 342 ioctl 541gettimeofday 299 ioctl 300futex 287 ioctl 316ioctl 266ioctl 266ioctl
435futex 284write 495getuid32 258 futex 287ioctl 272 futex 306futex 204write 192write
338getuid32 267read 449ioctl 224prctl 278fstatat64 272 fstatat64 187write 155getuid32 156getuid32
302write 249 fstatat64 261read 193getuid32 188write 180write 159mmap2 151fstatat64 151fstatat64
295read 226getuid32 85write 176write 165mprotect 165mprotect 151read 145read 146read
251epoll_pwait 190prctl 84futex 173mmap2 164mmap2 164read 142getuid32 137mmap2 134mmap2
220prctl 186mprotect 40madvise 126read 161getuid32 163mmap2 124fstatat64 130mprotect 129mprotect
207gettimeofday 182mmap2 37sendto 96 fstatat64 144read 160getuid32 90fstat64 83madvise 81madvise
172mmap2 170madvise 22recvfrom 76 fstat64 104madvise 105madvise 81madvise 64epoll_pwait 61epoll_pwait
117fstat64 133epoll_pwait 12prctl 75epoll_pwait 76 pread64 79epoll_pwait 70epoll_pwait 60clock_gettime 60clock_gettime
103fstatat64 92pread64 12timerfd_settime 68writev 68 munmap 78pread64 62openat 59pread64 59pread64
92madvise 84munmap 9writev 66openat 64 epoll_pwait 68munmap 60clock_gettime 55munmap 56munmap
74openat 80openat 4faccessat 56close 58 rt_sigprocmask 58rt_sigprocmask 53pread64 54rt_sigprocmask 54rt_sigprocmask
63close 70gettimeofday 4mprotect 55pread64 50 openat 57openat 50munmap 42fstat64 42 fstat64
59pread64 69close 2close 46munmap 45 fstat64 45fstat64 50close 34openat 34openat
58writev 69fstat64 1fstat64 33clone 38 close 42close 27writev 32close 33close
55munmap 65sendto 1mmap2 24recvfrom 30 writev 30writev 26clone 29writev 30writev
45sendto 65rt_sigprocmask 1munmap 14 faccessat 28 clone 28clone 18recvfrom 26clone 26clone
32 faccessat 46faccessat 1epoll_ctl 12sendto 22 gettimeofday 20recvfrom 18faccessat 20recvfrom 20recvfrom
28clone 40writev --------- ---------------- 11 rt_sigaction 19 faccessat 19faccessat 8fcntl64 18faccessat 18 faccessat
21 recvfrom 29clone 6164total 7 readlinkat 17 recvfrom 14fcntl64 7mkdirat 14fcntl64 14 fcntl64
9timerfd_settime 21recvfrom 7_llseek 14 fcntl64 13readlinkat 7_llseek 9readlinkat 14sendto
8getdents64 18timerfd_settime 7 fcntl64 13 readlinkat 12_llseek 7readlinkat 9sendto 9 readlinkat
8fcntl64 15_llseek 5mkdirat 12 _llseek 9sendto 5dup 8_llseek 8_llseek
7_llseek 15fcntl64 4dup 9sendto 7mkdirat 5sendto 7mkdirat 7dup
7rt_sigprocmask 12readlinkat 4getdents64 7mkdirat 7dup 4getsockopt 7dup 7mkdirat
7mkdirat 9dup 4getsockopt 7dup 7 lseek 4getdents64 4getdents64 4getdents64
7readlinkat 9rt_sigaction 3mremap 6fstatfs64 6fstatfs64 3mremap 4fstatfs64 4 fstatfs64
6dup 8getdents64 3ugetrlimit 4mremap 4mremap 3epoll_ctl 4getsockopt 4getsockopt
5epoll_ctl 8mkdirat 3epoll_ctl 4getsockopt 4getdents64 3fstatfs64 3timerfd_settime 3mremap
4getsockopt 7 lseek 3 fstatfs64 4getdents64 4getsockopt 2getpriority 3mremap 3epoll_ctl
3 fstatfs64 7getsockopt 3 timerfd_settime 3timerfd_settime 3timerfd_settime 2rt_sigprocmask 3epoll_ctl 3 timerfd_settime
2socketpair 6 fstatfs64 2getpriority 3epoll_ctl 3epoll_ctl 2ugetrlimit 2 lseek 2 lseek
2getpriority 5uname 2rt_sigprocmask 2socketpair 2ugetrlimit 2 fchmodat 2getpriority 2getpriority
2ugetrlimit 4epoll_ctl 2 fchmodat 2rt_sigaction 2rt_sigaction 2timerfd_settime 2rt_sigaction 2 rt_sigaction
2fchmodat 3sched_yield 2getrandom 2fchmodat 2fchmodat 2getrandom 2ugetrlimit 2ugetrlimit
2getrandom 2getpriority 1 lseek 2 lseek 2getrandom 2socketpair 2 fchmodat 2 fchmodat
1 lseek 2socketpair 1setrlimit 2getpriority 2getpriority 1 lseek 2getrandom 2getrandom
1sysinfo 2fchmodat 1sysinfo 2ugetrlimit 2socketpair 1sysinfo 2socketpair 2socketpair
1uname 2getrandom 1sigaltstack 2getrandom 1eventfd2 1uname 1sysinfo 1sysinfo
1rt_sigaction 1sysinfo 1unlinkat 1sysinfo 1timerfd_create 1rt_sigaction 1uname 1uname
1socket 1ugetrlimit 1 timerfd_create 1setsockopt 1uname 1unlinkat 1sched_yield 1 timerfd_create
1connect 1ftruncate64 1eventfd2 1uname 1sysinfo 1timerfd_create 1timerfd_create 1eventfd2
1setsockopt 1socket 1socketpair 1timerfd_create 1setsockopt 1eventfd2 1eventfd2 1setsockopt
1sendmsg 1connect --------- ---------------- 1eventfd2 --------- ---------------- 1setsockopt 1setsockopt 1sendmsg
1unlinkat 1setsockopt 3635 total --------- ---------------- 4145total --------- ---------------- --------- ---------------- --------- ----------------
1 timerfd_create 1sendmsg 6783total 3144total 2523total 2508total
1eventfd2 1timerfd_create

--------- ---------------- 1eventfd2
8010total --------- ----------------

7002total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-21. MW3 system call summaries (execution only)

Figure A3-22. MW3 system call summaries (50 events injected)

96

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

807epoll_pwait 884prctl 2995epoll_pwait 1309epoll_pwait 563722clock_gettime 2120epoll_pwait 1659epoll_pwait 1766epoll_pwait 1695epoll_pwait
537 ioctl 857epoll_pwait 2153read 1262clock_gettime 325679futex 1913clock_gettime 1193recvfrom 1251recvfrom 1255recvfrom
484read 759 ioctl 1828write 923 write 116063epoll_pwait 1277read 1102prctl 1069prctl 1070prctl
447write 572futex 1602getuid 883 futex 114975getuid32 1170write 983 ioctl 964 ioctl 976 ioctl
392getuid 551getuid 1500 ioctl 803 read 26646recvfrom 991 futex 975futex 942 futex 952 futex
332recvfrom 473read 1148recvfrom 795 ioctl 18569sendto 958 recvfrom 876read 912 read 902 read
292futex 448write 1129prctl 734 prctl 13210read 905 ioctl 790write 807 getuid32 882 write
177sendto 336recvfrom 1089futex 705 recvfrom 12954write 735 prctl 777getuid32 799 write 810 getuid32
16 mmap 139sendto 617sendto 666 getuid32 7421 ioctl 706 getuid 768mprotect 618 sendto 635 sendto
14 prctl 109madvise 503madvise 430 sendto 2230madvise 504 sendto 578sendto 200 madvise 193 madvise
11 timerfd_settime 104mprotect 298newfstatat 220 mprotect 1101prctl 128 mprotect 170mmap2 153 fstatat64 157 fstatat64
10 mprotect 101mmap 225mprotect 98writev 300fstatat64 117 madvise 128madvise 130 mprotect 141 mmap2
8 fstat 77newfstatat 201mmap 96mmap2 203mprotect 110 newfstatat 124fstatat64 130 mmap2 139 mprotect
8munmap 64pread64 146pread64 45fstat64 177mmap2 104 mmap 96pread64 84pread64 102 pread64
4close 55rt_sigprocmask 110munmap 38pread64 123pread64 59pread64 83munmap 62munmap 71munmap
3openat 54munmap 74openat 34close 122sched_yield 49writev 78fstat64 47writev 48writev
3clone 43close 72close 32munmap 85munmap 48munmap 54openat 47rt_sigprocmask 47rt_sigprocmask
3madvise 39 fstat 65fstat 30openat 59writev 47rt_sigprocmask 51writev 39close 45close
1writev 38clock_gettime 59rt_sigprocmask 21clone 59rt_sigprocmask 37close 48close 37fstat64 41 fstat64

--------- ---------------- 33openat 58lseek 10dup 53openat 35openat 36clock_gettime 36clock_gettime 36clock_gettime
3549 total 32 faccessat 52writev 10rt_sigaction 51close 34fstat 21clone 36openat 36openat

31writev 35faccessat 9 fstatat64 45fstat64 20clone 11dup 20clone 20clone
24clone 29clock_gettime 7rt_sigprocmask 29gettimeofday 13fcntl 10fcntl64 17fcntl64 20 fcntl64
13timerfd_settime 26clone 7 fcntl64 26clone 11lseek 10faccessat 10dup 11dup
13fcntl 23sched_yield 6 timerfd_settime 20fcntl64 10dup 7_llseek 10faccessat 11 faccessat
10dup 21fcntl 5epoll_ctl 12readlinkat 9faccessat 7 rt_sigprocmask 8_llseek 8_llseek
8 lseek 12timerfd_settime 4madvise 12_llseek 7timerfd_settime 7timerfd_settime 8readlinkat 8 readlinkat
7 rt_sigaction 12readlinkat 3ugetrlimit 12faccessat 5readlinkat 6 readlinkat 6 timerfd_settime 6timerfd_settime
7getsockopt 10dup 3getsockopt 11dup 5mkdirat 5epoll_ctl 6 lseek 6 lseek
6mkdirat 7getsockopt 2 lseek 8timerfd_settime 4getdents64 5mkdirat 5mkdirat 5mkdirat
5uname 7rt_sigaction 2getpriority 5mkdirat 4epoll_ctl 4getdents64 4getdents64 4getdents64
4getdents64 6mkdirat 2getdents64 5fstatfs64 4getsockopt 4getsockopt 4epoll_ctl 4epoll_ctl
4 readlinkat 6fstatfs 2mkdirat 5epoll_ctl 3getrandom 3ugetrlimit 4getsockopt 4getsockopt
4epoll_ctl 5uname 2eventfd2 4lseek 2socketpair 3 lseek 3sched_yield 3 fstatfs64
2getpriority 4getdents64 2getrandom 4getsockopt 2getrlimit 2getpriority 3 fstatfs64 2getpriority
2socketpair 4mremap 1setrlimit 4getdents64 2getpriority 2mremap 2getpriority 2mremap
1 ftruncate 4epoll_ctl 1sysinfo 3mremap 1sysinfo 2 fstatfs64 2mremap 2ugetrlimit
1 timerfd_create 2socketpair 1sigaltstack 2socketpair 1fstatfs 2eventfd2 2ugetrlimit 2getrandom
1getrlimit 2getpriority 1 readlinkat 2eventfd2 1eventfd2 2getrandom 2getrandom 2socketpair
1sysinfo 2getrandom 1faccessat 2getpriority 1mremap 2socketpair 2socketpair 1sysinfo
1setsockopt 1sysinfo 1 timerfd_create 2ugetrlimit 1timerfd_create 1setrlimit 1sysinfo 1uname
1mremap 1ftruncate 1epoll_create1 2getrandom 1uname 1sysinfo 1uname 1timerfd_create
1getrandom 1setsockopt 1socketpair 1sysinfo 1setsockopt 1uname 1timerfd_create 1eventfd2
1eventfd2 1timerfd_create --------- ---------------- 1epoll_create1 --------- ---------------- 1unlinkat 1eventfd2 1socket

--------- ---------------- 1getrlimit 9208total 1setsockopt 12155total 1 timerfd_create 1socket 1connect
5916 total 1eventfd2 1uname 1epoll_create1 1connect 1setsockopt

--------- ---------------- 1timerfd_create 1socket 1setsockopt 1sendmsg
16147total --------- ---------------- 1connect --------- ---------------- --------- ----------------

1204022total 1setsockopt 10254total 10361total
--------- ----------------
10693total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

684epoll_pwait 600epoll_pwait 1498epoll_pwait 31109recvfrom 8320clock_gettime 2078epoll_pwait 1646epoll_pwait 1312epoll_pwait 1046epoll_pwait
489 ioctl 458 ioctl 887getuid 23338 futex 895epoll_pwait 1048write 1127recvfrom 775 recvfrom 436 read
405read 325getuid 866read 22411epoll_pwait 462read 1032read 814read 641 ioctl 434 ioctl
367write 200read 802 ioctl 19493sendto 433 ioctl 952 recvfrom 752write 627 write 383 getuid32
344getuid 170write 505write 16461write 378getuid32 689 ioctl 751 ioctl 619 read 249 write
212futex 157futex 249futex 16338read 273futex 662 futex 681getuid32 586 getuid32 139 futex
187recvfrom 138madvise 100sendto 16045getuid32 231write 604 getuid 582futex 434 futex 72sendto
131sendto 102recvfrom 84madvise 8455 ioctl 67sendto 478 sendto 524sendto 405 sendto 65madvise
27 madvise 65sendto 42recvfrom 454 clock_gettime 63madvise 460 clock_gettime 42madvise 110 madvise 47recvfrom
15 mmap 33newfstatat 35prctl 72writev 40writev 123 madvise 40prctl 37writev 36writev
12 timerfd_settime 19timerfd_settime 14newfstatat 21mprotect 32fstatat64 35writev 35writev 30sched_yield 36prctl
12 prctl 11openat 11timerfd_settime 21prctl 25prctl 24newfstatat 17mmap2 27prctl 13sched_yield
10 mprotect 9mmap 9mprotect 17madvise 14mprotect 24prctl 13mprotect 10rt_sigprocmask 13mmap2
9 fstat 9close 7mmap 15mmap2 13gettimeofday 21sched_yield 9 fstat64 9mprotect 13 fstatat64
5close 8 fstat 7writev 8sched_yield 10mmap2 10rt_sigprocmask 5 timerfd_settime 9mmap2 12rt_sigprocmask
5munmap 8rt_sigprocmask 6faccessat 5 timerfd_settime 10rt_sigprocmask 9mprotect 5close 9 fstatat64 11mprotect
4openat 8mprotect 6fstat 5close 9timerfd_settime 9mmap 4munmap 5timerfd_settime 7 faccessat
3clone 5prctl 6close 4pread64 7recvfrom 6timerfd_settime 4openat 4clone 5close
1writev 4clone 4rt_sigprocmask 4clone 5clone 4clone 4clone 4 fstat64 5clone

--------- ---------------- 2 lseek 3fcntl 4 fstat64 3faccessat 4fstat 2sched_yield 4close 5 fstat64
2922 total 2munmap 3munmap 4openat 2fcntl64 3close 2rt_sigprocmask 3 fcntl64 5 timerfd_settime

1writev 2sched_yield 3munmap 2close 3fcntl 2 fcntl64 2dup 3 fcntl64
--------- ---------------- 2dup 2rt_sigprocmask 2fstat64 2dup 1dup 1munmap 2dup

2334 total 2uname 2fcntl64 1munmap 1socketpair 1 readlinkat 1 readlinkat 1munmap
1clone 1dup 1epoll_ctl 1readlinkat 1socketpair 1socketpair 1 fsync
1socketpair 1 readlinkat 1dup 1munmap 1sendmsg 1sendmsg 1epoll_ctl
1epoll_ctl 1socketpair --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- 1openat
1sendmsg --------- ---------------- 11299total 8283total 7065total 5666 total 1unlinkat
1readlinkat 154294total 1 renameat

--------- ---------------- 1 readlinkat
5155total 1 fchmodat

1socketpair
1getsockopt

--------- ----------------
3047total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-23. MW4 system call summaries (execution only)

Figure A3-24. MW4 system call summaries (50 events injected)

97

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

124getuid 146getuid 163getuid 1091clock_gettime 2265clock_gettime 1025clock_gettime 114ioctl 134getuid32 136getuid32
99ioctl 68 ioctl 136 ioctl 123write 135getuid32 120getuid 101getuid32 119 ioctl 122 ioctl
65fstat 58epoll_pwait 91madvise 123getuid32 131 ioctl 107epoll_pwait 94recvfrom 98recvfrom 106write
46pread64 56madvise 72newfstatat 114 ioctl 115write 105recvfrom 87write 93write 106recvfrom
40rt_sigprocmask 46pread64 69writev 110recvfrom 110epoll_pwait 105write 76epoll_pwait 91epoll_pwait 104epoll_pwait
35epoll_pwait 44rt_sigprocmask 69pread64 102epoll_pwait 110recvfrom 91 ioctl 66pread64 64pread64 64pread64
32write 43write 64epoll_pwait 79 futex 66pread64 46pread64 50futex 49rt_sigprocmask 49rt_sigprocmask
32writev 39writev 62mmap 46pread64 49rt_sigprocmask 44rt_sigprocmask 48mmap2 40mmap2 43futex
32mmap 36newfstatat 57 rt_sigprocmask 40rt_sigprocmask 44 futex 43 futex 46rt_sigprocmask 39madvise 42madvise
23munmap 26recvfrom 51write 35mmap2 42 fstatat64 36newfstatat 39munmap 38futex 40mmap2
19recvfrom 26mmap 46 futex 32read 39mmap2 33read 27read 34munmap 33munmap
16futex 23munmap 44munmap 27munmap 33munmap 31madvise 16mprotect 28read 33read
9close 21futex 39mprotect 24writev 32read 29mmap 15prctl 15writev 16writev
8prctl 10read 27recvfrom 14mprotect 22madvise 23munmap 14madvise 14mprotect 14fstatat64
7read 5close 18prctl 12prctl 15writev 11writev 12writev 14fstatat64 13mprotect
5mprotect 4getdents64 15clock_gettime 11close 14mprotect 5process_vm_readv 11close 10close 10close
4openat 4fstat 13 read 6dup 13gettimeofday 4mprotect 10process_vm_readv 6fstat64 6fstat64
4getdents64 4mprotect 11close 6fstat64 9close 4prctl 10 fstat64 5dup 5dup
3clock_gettime 3process_vm_readv 8openat 5epoll_ctl 8 fstat64 4fstat 6dup 5process_vm_readv 5process_vm_readv
3process_vm_readv 2epoll_ctl 8 fstat 5process_vm_readv 5dup 3close 5epoll_ctl 4 lseek 4 lseek
2epoll_ctl 2openat 6clone 4openat 5process_vm_readv 2epoll_ctl 4openat 4prctl 4prctl
2dup 2clone 5dup 3clone 4epoll_ctl 2clone 3clone 4epoll_ctl 4epoll_ctl
2 fcntl 1dup 4epoll_ctl 2 lseek 3fcntl64 1dup 3clock_gettime 3fcntl64 3fcntl64
2clone 1fcntl 4 fcntl 2 fcntl64 3prctl 1 fcntl 2 lseek 3clock_gettime 3clock_gettime
1newfstatat 1rt_sigreturn 3process_vm_readv 1rt_sigreturn 2clone 1rt_sigreturn 2rt_sigreturn 2clone 2clone
1rt_sigreturn 1prctl 2 lseek 1eventfd2 2openat --------- ---------------- 2 fcntl64 2openat 2openat
1madvise --------- ---------------- 1 faccessat 1epoll_create1 2 lseek 1876total 1eventfd2 1rt_sigreturn 1rt_sigreturn

--------- ---------------- 672total 1rt_sigreturn 1getsockopt 1rt_sigreturn 1epoll_create1 1getsockopt 1getsockopt
617total 1getsockopt --------- ---------------- 1getsockopt 1getsockopt --------- ---------------- --------- ----------------

1 fstatfs 2020total --------- ---------------- --------- ---------------- 920total 971total
1readlinkat 3280total 866total
1sysinfo
1mremap

--------- ----------------
1094total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

99getuid 114getuid 101getuid 1005clock_gettime 1720clock_gettime 1007clock_gettime 46ioctl 101getuid32 103getuid32
95 ioctl 64 ioctl 70 ioctl 115getuid32 107getuid32 107getuid 46pread64 79 ioctl 81 ioctl
62 fstat 50madvise 60newfstatat 112write 94write 105write 43getuid32 70recvfrom 77recvfrom
46pread64 46epoll_pwait 50pread64 105recvfrom 94recvfrom 96recvfrom 40rt_sigprocmask 64epoll_pwait 69epoll_pwait
40 rt_sigprocmask 46pread64 46writev 87 ioctl 87epoll_pwait 89epoll_pwait 30mmap2 59write 66write
32epoll_pwait 44rt_sigprocmask 42epoll_pwait 83epoll_pwait 85 ioctl 86 ioctl 29munmap 46pread64 46pread64
32write 39write 42rt_sigprocmask 73 futex 46pread64 46pread64 26epoll_pwait 44 rt_sigprocmask 44rt_sigprocmask
31mmap 36newfstatat 38write 46pread64 44rt_sigprocmask 44rt_sigprocmask 25write 29 futex 32madvise
25 futex 28writev 34recvfrom 40rt_sigprocmask 39futex 42 futex 15recvfrom 29madvise 29 futex
23munmap 27mmap 29mmap 34writev 36fstatat64 36newfstatat 14futex 27mmap2 27mmap2
21writev 26recvfrom 28munmap 32mmap2 27mmap2 30madvise 7prctl 24munmap 23munmap
19recvfrom 24munmap 20futex 28read 26read 29mmap 7madvise 18read 21read
8prctl 17futex 20madvise 26munmap 23munmap 26read 5mprotect 12 fstatat64 12 fstatat64
7close 10read 12read 9mprotect 21madvise 23munmap 5writev 11writev 11writev
7read 5close 4fstat 9prctl 11writev 11writev 5fstat64 5process_vm_readv 5process_vm_readv
6mprotect 4getdents64 3mprotect 6 fstat64 11gettimeofday 5process_vm_readv 5process_vm_readv 4mprotect 4mprotect
4openat 4 fstat 3process_vm_readv 5close 5process_vm_readv 4mprotect 5read 4fstat64 4fstat64
4getdents64 4mprotect 3clock_gettime 5process_vm_readv 4fstat64 4prctl 2close 3close 3epoll_ctl
3epoll_ctl 3epoll_ctl 3prctl 3epoll_ctl 4mprotect 4 fstat 1dup 3epoll_ctl 3clock_gettime
3clock_gettime 3process_vm_readv 1clone 2clone 3close 3close 1clone 3clock_gettime 3close
3process_vm_readv 2openat 1 faccessat 2madvise 3epoll_ctl 3epoll_ctl 1 rt_sigreturn 2clone 2clone
2clone 2prctl 1 rt_sigreturn 2openat 2clone 2clone 1fcntl64 2prctl 2prctl
1dup 2clone 1dup 2sendto 2prctl 1 rt_sigreturn 1epoll_ctl 1dup 1dup
1fcntl 1dup 1fcntl 1dup 1dup 1sendto 1openat 1rt_sigreturn 1rt_sigreturn
1newfstatat 1 fcntl 1close 1rt_sigreturn 1fcntl64 1fcntl --------- ---------------- 1 fcntl64 1fcntl64
1rt_sigreturn 1rt_sigreturn 1epoll_ctl 1 fcntl64 1rt_sigreturn 1dup 361total --------- ---------------- --------- ----------------

--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- 642total 670total
576total 603total 615total 1834total 2497total 1806total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-25. MW5 system call summaries (execution only)

Figure A3-26. MW5 system call summaries (50 events injected)

98

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

910clock_gettime 1100clock_gettime 905clock_gettime 1810clock_gettime 465clock_gettime 67recvfrom 1518 ioctl 906clock_gettime 896clock_gettime
667epoll_pwait 720epoll_pwait 667epoll_pwait 302mprotect 74epoll_pwait 65epoll_pwait 1031 fstat64 726epoll_pwait 687epoll_pwait
634 faccessat 634faccessat 635faccessat 278futex 64recvfrom 58write 1012openat 716madvise 648madvise
383write 467getuid 411write 270 ioctl 60write 40getuid 998close 671mmap2 637mmap2
362getuid 414write 341getuid 192mmap2 54getuid32 27 ioctl 909clock_gettime 634 faccessat 630faccessat
319close 319openat 315close 159write 42ioctl 22read 838mmap2 634prctl 627prctl
317openat 319close 313openat 157getuid32 26futex 20 futex 694epoll_pwait 419getuid32 385write
317 fstat 316fstat 313fsync 156prctl 26read 10clock_gettime 678mprotect 418write 380getuid32
313 fsync 316newfstatat 313unlinkat 150epoll_pwait 6 fcntl64 1timerfd_settime 651faccessat 332close 315close
313unlinkat 313unlinkat 313fchmodat 118pread64 5gettimeofday 1close 564futex 323 fstat64 313fstatat64
313 fchmodat 313fsync 313fstat 117recvfrom 5pread64 1mprotect 477fstatat64 319 fstatat64 313fstat64
313getsockopt 313fchmodat 313newfstatat 116fcntl64 4close 1epoll_ctl 459write 315openat 311fsync
313newfstatat 313getsockopt 313getsockopt 93 fstat64 3mmap2 --------- ---------------- 428getuid32 315getsockopt 311openat
312 renameat 312renameat 312renameat 89munmap 2fstat64 313total 314getsockopt 313 fsync 311unlinkat
167 futex 196ioctl 79recvfrom 79rt_sigprocmask 2epoll_ctl 313unlinkat 313unlinkat 311fchmodat
71 mprotect 181futex 65 futex 79read 2dup 313fchmodat 313 fchmodat 311getsockopt
70 ioctl 90recvfrom 62mprotect 72openat 2fstatat64 310fsync 312 renameat 310renameat
63 recvfrom 73mprotect 56 ioctl 68close 2munmap 308renameat 120 ioctl 103futex
31 read 49read 32read 56pwrite64 1timerfd_settime 240prctl 118 futex 91recvfrom
12 prctl 15rt_sigprocmask 8mmap 39fstatat64 1mprotect 136pread64 111recvfrom 65mprotect
12 mmap 12mmap 8rt_sigprocmask 33clone --------- ---------------- 118fcntl64 78mprotect 56 ioctl
8madvise 7writev 5madvise 16writev 846total 107madvise 73rt_sigprocmask 29read
7writev 6pread64 4clone 12fdatasync 96munmap 53pread64 13rt_sigprocmask
6 timerfd_settime 6prctl 4prctl 10rt_sigaction 82recvfrom 37read 11pread64
4clone 5clone 4writev 8dup 79rt_sigprocmask 27munmap 6fcntl64
2epoll_ctl 3 timerfd_settime 3timerfd_settime 8faccessat 72read 19fcntl64 5munmap
1dup 3munmap 2epoll_ctl 7epoll_ctl 56pwrite64 8dup 4clone
1 fcntl 2epoll_ctl 2getrandom 6geteuid32 32clone 7clone 2dup
1uname 2sched_yield 1dup 4getdents64 15writev 4writev 2writev
1getrandom 2madvise 1fcntl 4getsockopt 12 fdatasync 4epoll_ctl 2epoll_ctl

--------- ---------------- 1dup --------- ---------------- 3madvise 9mkdirat 4 lseek 2getrandom
6243 total 1 fcntl 6113total 3mkdirat 8dup 2 timerfd_settime 1timerfd_settime

1lseek 2 lseek 8readlinkat 2getrandom --------- ----------------
1getrandom 2getpriority 7epoll_ctl --------- ---------------- 8088total

--------- ---------------- 2_llseek 6_llseek 8646total
6825total 2ugetrlimit 6geteuid32

2ftruncate64 4sched_yield
2unlinkat 4getdents64
2readlinkat 3 lseek
2fchmodat 2getpriority
2eventfd2 2mremap
1sysinfo 2ugetrlimit
1sched_yield 2ftruncate64
1mremap 2fstatfs64
1sigaltstack 2timerfd_settime
1timerfd_create 2eventfd2
1timerfd_settime 2getrandom
1epoll_create1 1sysinfo

--------- ---------------- 1uname
4539total 1timerfd_create

1epoll_create1
1socketpair
1setsockopt

--------- ----------------
12937total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

908clock_gettime 911clock_gettime 867clock_gettime 69write 186clock_gettime 81epoll_pwait 1296ioctl 900clock_gettime 891clock_gettime
649epoll_pwait 672epoll_pwait 598epoll_pwait 67 recvfrom 31epoll_pwait 76write 931close 737madvise 601epoll_pwait
634faccessat 632faccessat 578 faccessat 65epoll_pwait 31 recvfrom 67clock_gettime 928openat 713epoll_pwait 595madvise
366write 392write 300write 42getuid32 27write 67recvfrom 928fstat64 700mmap2 594faccessat
339getuid 352getuid 296getuid 33 futex 26 futex 48ioctl 887clock_gettime 638prctl 594mmap2
317openat 324openat 290close 29 ioctl 22getuid32 45getuid 712epoll_pwait 630faccessat 594prctl
317close 322close 289fsync 21read 18 ioctl 32read 628mmap2 416getuid32 302write
317fstat 319fstat 289openat 14clock_gettime 12read 28futex 624faccessat 407write 300getuid32
313unlinkat 319newfstatat 289unlinkat 1close 1epoll_ctl 5 timerfd_settime 423write 335close 298close
313fsync 313fsync 289renameat 1epoll_ctl 1close 3close 391getuid32 328fstat64 297fsync
313fchmodat 313unlinkat 289 fchmodat --------- ---------------- 1mprotect 1mprotect 308 fsync 322fstatat64 297openat
313newfstatat 313fchmodat 289newfstatat 342 total 1timerfd_settime 1uname 308fstatat64 313openat 297unlinkat
313getsockopt 313getsockopt 289 fstat --------- ---------------- 1epoll_ctl 308unlinkat 313getsockopt 297renameat
312renameat 312renameat 289getsockopt 357total 1mmap 308fchmodat 311fsync 297getsockopt
168futex 143futex 84futex 1munmap 308getsockopt 311unlinkat 297 fstatat64
73mprotect 71recvfrom 28mprotect 1 fcntl 307renameat 311fchmodat 297 fchmodat
56recvfrom 45read 14read --------- ---------------- 245 futex 310renameat 297 fstat64
42 ioctl 42 ioctl 11 ioctl 458total 161recvfrom 191futex 58 futex
18read 37mprotect 3timerfd_settime 78mprotect 139ioctl 8mprotect
12prctl 10rt_sigprocmask 3recvfrom 43read 103recvfrom 5 ioctl
12mmap 9mmap 1writev 14madvise 101rt_sigprocmask 4 read
7madvise 7timerfd_settime 1epoll_ctl 12prctl 93mprotect 3 recvfrom
4clone 5clone --------- ---------------- 4clone 92pread64 1epoll_ctl
2 timerfd_settime 4prctl 5386total 2sched_yield 47munmap 1timerfd_settime
1getrandom 2lseek 2getrandom 35read --------- ----------------

--------- ---------------- 2writev 1dup 26fcntl64 7225 total
6119total 1epoll_ctl 1writev 11clone

1sched_yield 1fcntl64 9dup
1madvise 1epoll_ctl 4writev
1getrandom 1timerfd_settime 4epoll_ctl

--------- ---------------- --------- ---------------- 4 lseek
6188total 10161total 2timerfd_settime

2getrandom
1sched_yield

--------- ----------------
8859total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-27. MW6 system call summaries (execution only)

Figure A3-28. MW6 system call summaries (50 events injected)

99

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------
305793clock_gettime 263671clock_gettime 2367clock_gettime 68092recvfrom 306794clock_gettime 69436recvfrom 50108recvfrom 54884recvfrom 48044recvfrom
68061recvfrom 57239recvfrom 521gettimeofday 55670write 64580recvfrom 49895write 36502write 37029write 34168write
66651write 48156write 291recvfrom 50915epoll_pwait 63709write 49072epoll_pwait 31131epoll_pwait 34296epoll_pwait 27317epoll_pwait
49861epoll_pwait 33966epoll_pwait 289write 34110getuid32 47677epoll_pwait 34748getuid32 25169getuid32 27495getuid32 24075getuid32
34195getuid32 28779getuid32 230 ioctl 21046futex 32318getuid32 17676futex 17024futex 13834futex 12194futex
17566futex 14806futex 222epoll_pwait 17172 ioctl 17284futex 17389 ioctl 12685 ioctl 13750 ioctl 12040 ioctl
17379 ioctl 14648 ioctl 137getuid32 17031read 16175ioctl 17364read 12528read 13720read 12012read
17015read 14303read 93futex 1045 clock_gettime 16147read 554clock_gettime 131mprotect 2167 mprotect 1900mprotect
17014gettimeofday 14303gettimeofday 87read 144mprotect 16096gettimeofday 463mprotect 100rt_sigprocmask 88madvise 70madvise

69 fstat64 198mprotect 37rt_sigprocmask 97rt_sigprocmask 207mprotect 63madvise 89 mmap2 38rt_sigprocmask 38rt_sigprocmask
68 mprotect 81madvise 16close 70mmap2 41madvise 44sched_yield 68 writev 27writev 26writev
55 close 56rt_sigprocmask 8fcntl64 39pread64 38rt_sigprocmask 39rt_sigprocmask 58 fcntl64 14mmap2 14mmap2
50 rt_sigprocmask 37mmap2 8munmap 36 fstat64 15mmap2 14mmap2 56 fstat64 9prctl 9prctl
49 mmap2 32close 8mmap2 33munmap 14 fstatat64 14 fstatat64 54 madvise 6fstatat64 6fstatat64
42 madvise 24fstatat64 6mprotect 33close 10prctl 9prctl 48 pread64 6faccessat 6faccessat
25 openat 18munmap 4writev 32prctl 6 faccessat 6faccessat 48 prctl 4clone 4clone
22 prctl 16prctl 2setpriority 29openat 4clone 4clone 42 pwrite64 4fstat64 4fstat64
20 munmap 15fcntl64 2getpriority 21madvise 4 fstat64 4fstat64 40 munmap 2getpriority 2getpriority
20 fcntl64 12fstat64 2madvise 14writev 2pread64 2openat 40 close 2setpriority 2setpriority
16 pwrite64 10pread64 --------- ---------------- 7clone 2unlinkat 2unlinkat 38 openat 2fsync 2fsync
15 dup 7writev 4330total 7 faccessat 2writev 2fsync 14 fstatat64 2pread64 2pread64
13 fstatat64 6faccessat 5dup 2 fchmodat 2writev 12 clock_gettime 2openat 2openat
11 pread64 4clone 5getsockopt 2setpriority 2getpriority 11 faccessat 2unlinkat 2unlinkat
10 writev 3openat 3 fsync 2getsockopt 2fchmodat 9clone 2fchmodat 2fchmodat
7clone 2getpriority 3 fcntl64 2close 2close 6fdatasync 2getsockopt 2getsockopt
6faccessat 2setpriority 3epoll_ctl 2getpriority 2pread64 6fchmodat 2close 2close
4fdatasync 2fsync 3 fstatat64 2 fsync 2setpriority 6getsockopt 1munmap 1munmap
4geteuid32 2getsockopt 3unlinkat 2openat 2getsockopt 5dup 1sched_yield 1renameat
2getpriority 2unlinkat 3 fchmodat 1munmap 1renameat 5sched_yield 1renameat --------- ----------------
2setpriority 2fchmodat 2 lseek 1 renameat 1munmap 5unlinkat --------- ---------------- 171947total
2 fsync 1_llseek 2getpriority --------- ---------------- --------- ---------------- 3 fsync 197392total
2getsockopt 1renameat 2setpriority 581141total 256816total 3geteuid32
2unlinkat --------- ---------------- 1mremap 3epoll_ctl
2 fchmodat 490404total 1 fstatfs64 2 lseek
1sched_yield 1 renameat 2getpriority
1renameat 1 readlinkat 2setpriority

--------- ---------------- 1eventfd2 1mremap
594055total 1epoll_create1 1ftruncate64

--------- ---------------- 1statfs64
265683total 1 fstatfs64

1mkdirat
1renameat
1readlinkat
1eventfd2
1epoll_create1

--------- ----------------
186062 total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------
308217clock_gettime 269900clock_gettime 801clock_gettime 68596recvfrom 308780clock_gettime 33668recvfrom 51710recvfrom 56424recvfrom 47483recvfrom
68572recvfrom 58488recvfrom 165gettimeofday 52265write 65003recvfrom 26521write 38371write 42941write 34201write
67425write 49628write 99write 51480epoll_pwait 64109write 25286epoll_pwait 32274epoll_pwait 37886epoll_pwait 27169epoll_pwait
50516epoll_pwait 35140epoll_pwait 99recvfrom 34334getuid32 47979epoll_pwait 16865getuid32 25926getuid32 28283getuid32 23794getuid32
34412getuid32 29407getuid32 81epoll_pwait 17383futex 32530getuid32 8932futex 17948futex 14238futex 12042futex
17654futex 15094futex 75ioctl 17197 ioctl 16600futex 8455 ioctl 12975 ioctl 14135 ioctl 11899 ioctl
17359 ioctl 14990 ioctl 47getuid32 17157read 16280ioctl 8422read 12925read 14106read 11870read
17151read 14645gettimeofday 33read 516clock_gettime 16253read 266mprotect 48 madvise 2120 mprotect 1875mprotect
17139gettimeofday 14618read 32futex 52mprotect 16201gettimeofday 260clock_gettime 44 writev 77madvise 85madvise

61 mprotect 229mprotect 3mprotect 36 rt_sigprocmask 207mprotect 47madvise 40 mprotect 44writev 38rt_sigprocmask
45 rt_sigprocmask 167madvise 1getpriority 23mmap2 60madvise 26rt_sigprocmask 33 rt_sigprocmask 38rt_sigprocmask 28writev
40 madvise 96pread64 1setpriority 20madvise 38rt_sigprocmask 2writev 18 mmap2 14mmap2 14mmap2
32 fstat64 89fcntl64 --------- ---------------- 17prctl 15mmap2 2getpriority 15 fstat64 9prctl 9prctl
30 mmap2 71fstatat64 1437total 15 fstat64 14 fstatat64 2setpriority 12 prctl 6 fstatat64 6fstatat64
27 sched_yield 68mmap2 11openat 10prctl --------- ---------------- 11 openat 6faccessat 6faccessat
22 prctl 63rt_sigprocmask 11close 6 faccessat 128754total 11 close 4clone 4clone
20 fcntl64 56close 6 faccessat 4clone 6faccessat 4fstat64 4fstat64
18 openat 46fstat64 4munmap 4 fstat64 4clone 2getsockopt 2getpriority
18 close 28openat 4clone 2setpriority 2fstatat64 2getpriority 2setpriority
16 pwrite64 22munmap 4writev 2pread64 2getpriority 2setpriority 2fsync
14 munmap 16prctl 2getpriority 2writev 2setpriority 2fsync 2pread64
13 fstatat64 14_llseek 2setpriority 2getpriority 2fsync 2pread64 2openat
9pread64 12faccessat 2 fsync 2openat 2pread64 2openat 2unlinkat
6faccessat 9geteuid32 2pread64 2 fsync 2unlinkat 2unlinkat 2fchmodat
4clone 8pwrite64 2 fstatat64 2 fchmodat 2fchmodat 2fchmodat 2getsockopt
4fdatasync 5fsync 2unlinkat 2unlinkat 2getsockopt 2close 2close
4geteuid32 5clone 2 fchmodat 2getsockopt 1munmap 1munmap 1munmap
2fsync 5getsockopt 2getsockopt 2close 1sched_yield 1sched_yield 1renameat
2getpriority 5unlinkat 1 renameat 1munmap 1renameat 1renameat --------- ----------------
2setpriority 5fchmodat --------- ---------------- 1 renameat --------- ---------------- --------- ---------------- 170547total
2writev 4dup 259148total --------- ---------------- 192390 total 210356total
2getsockopt 4fdatasync 584115total
2unlinkat 4renameat
2fchmodat 3writev
1renameat 2getpriority

--------- ---------------- 2setpriority
598843total --------- ----------------

502948total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-29. MW7 system call summaries (execution only)

Figure A3-30. MW7 system call summaries (50 events injected)

100

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

3885clock_gettime 3711clock_gettime 4550clock_gettime 4993clock_gettime 20592clock_gettime 3027epoll_pwait 3037epoll_pwait 3371clock_gettime 2846epoll_pwait
2850epoll_pwait 2957epoll_pwait 3182epoll_pwait 3820epoll_pwait 3616epoll_pwait 2336write 2391recvfrom 2982epoll_pwait 2329recvfrom
2429recvfrom 2421write 2471recvfrom 2569getuid32 2545getuid32 2316recvfrom 2267write 2382write 2144write
2281write 2417recvfrom 2458write 2461write 2440recvfrom 2059clock_gettime 1890getuid32 2323recvfrom 1881getuid32
2166getuid 2044getuid 1997getuid 2407recvfrom 2311write 1891getuid 1788clock_gettime 1902getuid32 1855clock_gettime
1567futex 1385 futex 1283 futex 1516 futex 1321 futex 1455 futex 1621 futex 1251 futex 1236futex
969 ioctl 748 ioctl 716 read 739read 697 read 679read 695read 662read 661read
698read 699read 676 ioctl 641 ioctl 642 ioctl 609 ioctl 601 ioctl 641 ioctl 607 ioctl
487 fstat 113madvise 84madvise 20 madvise 51madvise 16madvise 3mprotect 55madvise 29madvise
68pread64 60pread64 52writev 18 pread64 31rt_sigprocmask 11sched_yield 3madvise 48pread64 10mprotect
57writev 60fstat 35mprotect 18 mmap2 24gettimeofday 10mprotect 1epoll_ctl 43mmap2 10rt_sigprocmask
55mmap 44writev 25mmap 14 mprotect 16mprotect 8rt_sigprocmask 1close 35rt_sigprocmask 8writev
38rt_sigprocmask 44mmap 21rt_sigprocmask 10 close 16mmap2 7writev --------- ---------------- 24munmap 8mmap2
33munmap 40rt_sigprocmask 16munmap 10 writev 16pread64 6mmap 14298total 18mprotect 7close
23close 26munmap 15pread64 9munmap 8close 4close 13close 5prctl
22mprotect 25newfstatat 14prctl 9prctl 7munmap 4prctl 12prctl 3connect
21prctl 18close 12newfstatat 8 rt_sigprocmask 7writev 3epoll_ctl 12 fstat64 3clone
14madvise 18mprotect 6close 8 fstat64 6connect 3fstat 11writev 3 fstat64
13openat 8 fcntl 5openat 4connect 6socket 2clone 8fstatat64 3epoll_ctl
6clone 7prctl 4connect 4socket 5prctl 2faccessat 6clone 3socket
6 faccessat 6 faccessat 4socket 3clone 5getsockopt 1dup 6fcntl64 3getsockopt
4epoll_ctl 6openat 3 fstat 3 fcntl64 4sendmsg 1getsockopt 6 faccessat 2 faccessat
4dup 6clone 2clone 3openat 3clone 1fcntl 5getsockopt 2sendmsg
4fcntl 5getsockopt 2epoll_ctl 2dup 3fstat64 1fsync 4epoll_ctl 1dup
4getdents64 4connect 2 fcntl 2epoll_ctl 2sendto 1openat 4socket 1 fsync
4socket 4epoll_ctl 2getsockopt 2sendmsg 2epoll_ctl 1newfstatat 4connect 1 fcntl64
4connect 4getdents64 2sendmsg 1getsockname 2faccessat 1unlinkat 2dup 1openat
3newfstatat 4socket 1mremap 1sendto 2getsockname 1renameat 2 fsync 1 fstatat64
3getsockopt 2dup 1fstatfs 1setsockopt 1openat 1fchmodat 2openat 1unlinkat
2unlinkat 2unlinkat 1readlinkat 1getsockopt 1 fsync --------- ---------------- 2unlinkat 1renameat
2renameat 2renameat 1getsockname --------- ---------------- 1unlinkat 14457total 2 renameat 1 fchmodat
2 fchmodat 2 fchmodat 1sendto 19297total 1 renameat 2 fchmodat 1getsockname
2fsync 2 fsync 1getrandom 1fchmodat 2sendmsg 1sendto
2sendmsg 2sendmsg 1dup 1fstatat64 1getsockname --------- ----------------
1 lseek 1 lseek --------- ---------------- 1dup 1sendto 13668total
1getsockname 1getsockname 17646total 1 fcntl64 1setsockopt
1sendto 1sendto --------- ---------------- --------- ----------------
1setsockopt 1setsockopt 34388total 15845total

--------- ---------------- --------- ----------------
17732total 16900total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

3577clock_gettime 3343clock_gettime 2523epoll_pwait 3105epoll_pwait 15773clock_gettime 3168epoll_pwait 2966epoll_pwait 2971epoll_pwait 2774epoll_pwait
2853epoll_pwait 2943epoll_pwait 2468recvfrom 3036clock_gettime 3074epoll_pwait 2472recvfrom 2332recvfrom 2292recvfrom 2319recvfrom
2413recvfrom 2429recvfrom 2445write 2469write 2464recvfrom 2467write 2223write 2236write 2127write
2277write 2312write 1964clock_gettime 2442recvfrom 2410write 2033clock_gettime 1856getuid32 1875getuid32 1852getuid32
2099getuid 2023getuid 1366getuid 1950getuid32 1959getuid32 1957getuid 1779clock_gettime 1873clock_gettime 1782clock_gettime
1523futex 1351 futex 1262 futex 1628 futex 1411 futex 1427 futex 1617 futex 1274 futex 1181futex
837 ioctl 710 ioctl 717 read 709read 722 read 717read 671read 661read 671read
701read 701read 672 ioctl 669 ioctl 644 ioctl 641 ioctl 583 ioctl 596 ioctl 584 ioctl
294 fstat 97madvise 79madvise 34 mmap2 33madvise 16rt_sigprocmask 10madvise 28madvise 10madvise
66pread64 53fstat 30mprotect 22 pread64 14gettimeofday 14madvise 3mprotect 9mprotect 3mprotect
54writev 34writev 20mmap 20 mprotect 11mprotect 9mprotect 1writev 8rt_sigprocmask 1epoll_ctl
52mmap 30pread64 19writev 19 close 10rt_sigprocmask 5writev --------- ---------------- 6writev 1close
42madvise 26mmap 14prctl 18 prctl 8mmap2 4mmap 14041total 6mmap2 --------- ----------------
38rt_sigprocmask 25rt_sigprocmask 12munmap 17 fstat64 7writev 4close 4prctl 13305total
29munmap 14munmap 8rt_sigprocmask 15 rt_sigprocmask 7close 3prctl 4close
22close 13mprotect 6close 14 writev 5prctl 3fstat 3epoll_ctl
22mprotect 10close 6openat 12 openat 3clone 2dup 3fstat64
20prctl 5prctl 5pread64 10 munmap 3socket 2getsockopt 2clone
12openat 5clone 4fstat 8madvise 3 fstat64 2fcntl 2 faccessat
6 faccessat 4socket 3epoll_ctl 6clone 3epoll_ctl 2faccessat 1dup
6clone 4fcntl 2clone 4connect 3connect 1clone 1fsync
5epoll_ctl 4connect 2 faccessat 4socket 3getsockopt 1epoll_ctl 1 fcntl64
4dup 4getsockopt 2 fcntl 3epoll_ctl 2sendmsg 1fsync 1openat
4 fcntl 3epoll_ctl 1 fsync 2 fcntl64 2 faccessat 1openat 1 fstatat64
4getdents64 2faccessat 1readlinkat 2 faccessat 1dup 1newfstatat 1unlinkat
4socket 2sendmsg 1unlinkat 2getsockopt 1 fcntl64 1unlinkat 1renameat
4connect 1sendto 1 fchmodat 2sendmsg 1fsync 1renameat 1 fchmodat
3newfstatat 1dup 1newfstatat 1dup 1openat 1fchmodat 1getsockopt
3getsockopt 1unlinkat 1 fstatfs 1 fsync 1 fstatat64 --------- ---------------- --------- ----------------
2unlinkat 1renameat 1mremap 1sched_yield 1unlinkat 14956total 13862total
2 renameat 1 fchmodat 1getsockopt 1 fstatat64 1renameat
2 fchmodat 1openat 1getrandom 1unlinkat 1 fchmodat
2 fsync 1newfstatat 1 renameat 1renameat 1getsockname
2sendmsg 1fsync 1socket 1 fchmodat 1sendto
1 lseek 1getsockname 1connect 1getsockname --------- ----------------
1getsockname 1setsockopt 1dup 1sendto 28584total
1sendto --------- ---------------- --------- ---------------- 1setsockopt
1setsockopt 16157total 13642total --------- ----------------

--------- ---------------- 16232total
16988total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

Figure A3-31. MW8 system call summaries (execution only)

Figure A3-32. MW8 system call summaries (50 events injected)

101

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

1146write 1103write 1349epoll_pwait 1693clock_gettime 35380clock_gettime 2469write 926write 24226write 190458clock_gettime
964recvfrom 836recvfrom 1141write 1126write 3821write 1986recvfrom 810recvfrom 19051sendto 18618write
650read 607read 992getuid 1063recvfrom 2263 futex 1261sendto 666epoll_pwait 15019 recvfrom 11269sendto
642epoll_pwait 578epoll_pwait 936recvfrom 856epoll_pwait 2251recvfrom 1098epoll_pwait 615mprotect 11045 futex 10110recvfrom
542 futex 498futex 885read 697 futex 1568sendto 1081futex 588 futex 4049getuid32 7651futex
371getuid 446getuid 737ioctl 637 ioctl 1212epoll_pwait 800read 564 ioctl 4026 read 2667read
306 ioctl 386ioctl 482futex 581mprotect 1012read 624getuid 535read 4023 ioctl 2666epoll_pwait
206sendto 175sendto 184sendto 573getuid32 700getuid32 547ioctl 492prctl 3999epoll_pwait 2651getuid32
33 fstat 89madvise 84madvise 571read 612ioctl 155clock_gettime 480getuid32 851madvise 2566ioctl
28prctl 42 fstat 73prctl 254prctl 70madvise 94madvise 235mmap2 403prctl 219madvise
20timerfd_settime 40rt_sigprocmask 19timerfd_settime 227mmap2 70prctl 70prctl 182 rt_sigprocmask 155 fstatat64 73prctl
17mmap 35prctl 19fstat 197rt_sigprocmask 50sched_yield 16timerfd_settime 132sendto 129mmap2 11gettimeofday
7clock_gettime 33clock_gettime 13mmap 158sendto 31rt_sigprocmask 7fstat 132pread64 112rt_sigprocmask 10timerfd_settime
7rt_sigprocmask 26mmap 8close 150pread64 14timerfd_settime 6rt_sigprocmask 132madvise 107mprotect 7fstat64
6munmap 25timerfd_settime 7clock_gettime 98 fstatat64 12pread64 5mmap 126 fstatat64 94pread64 6rt_sigprocmask
5openat 22close 7writev 95munmap 11gettimeofday 5mprotect 123munmap 82clock_gettime 5mmap2
5mprotect 16pread64 6munmap 91 fstat64 10mmap2 3fcntl 99 fstat64 64munmap 3mprotect
4close 14writev 6dup 68openat 7 fstat64 2clone 82clock_gettime 58writev 3fcntl64
4pread64 13munmap 5mprotect 66close 6munmap 2pread64 64openat 47fstat64 2pread64
4madvise 13newfstatat 5fcntl 51sched_yield 5mprotect 2close 57close 34close 2dup
3dup 10 fcntl 4pread64 38writev 3 fcntl64 2dup 28clone 33openat 2clone
3writev 10mprotect 4rt_sigprocmask 36clone 2clone 1socketpair 23writev 20clone 2writev
2 fcntl 9dup 2uname 15timerfd_settime 2close 1readlinkat 19 faccessat 16fcntl64 2close
2clone 7openat 1socketpair 15 faccessat 2dup 1munmap 15timerfd_settime 14faccessat 1munmap
1readlinkat 4clone 1clone 11dup 1socketpair --------- ---------------- 10dup 14timerfd_settime 1readlinkat
1getrlimit 2uname 1readlinkat 11rt_sigaction 1readlinkat 10238total 9 fcntl64 8_llseek 1socketpair
1setrlimit 2getsockopt --------- ---------------- 10 fcntl64 --------- ---------------- 7_llseek 8readlinkat --------- ----------------
1socketpair 1 fsync 6971total 7_llseek 49116 total 7mkdirat 7dup 249006total

--------- ---------------- 1epoll_ctl 6epoll_ctl 6epoll_ctl 6mkdirat
4981 total 1unlinkat 6 readlinkat 6 readlinkat 4getdents64

1 faccessat 6getsockopt 6getsockopt 4getsockopt
1 fchmodat 5madvise 4getdents64 3epoll_ctl
1 lseek 5mkdirat 4 fchmodat 3 fstatfs64
1readlinkat 4getdents64 3ugetrlimit 3getrandom
1socketpair 4 fchmodat 3unlinkat 2 lseek

--------- ---------------- 3 lseek 3getrandom 2getpriority
5049total 3ugetrlimit 3 lseek 2mremap

3unlinkat 2 fsync 2rt_sigaction
3getrandom 2getpriority 2ugetrlimit
2getpriority 2mremap 2fchmodat
2 fsync 2 fstatfs64 2socketpair
2mremap 2eventfd2 1sysinfo
2 fstatfs64 2socketpair 1 fsync
2eventfd2 1setrlimit 1uname
1setrlimit 1sysinfo 1sched_yield
1sysinfo 1uname 1unlinkat
1sigaltstack 1sched_yield 1 timerfd_create
1 timerfd_create 1rt_sigaction 1eventfd2
1epoll_create1 1timerfd_create 1setsockopt
1socketpair 1epoll_create1 1sendmsg

--------- ---------------- 1setsockopt --------- ----------------
9459total 1sendmsg 87740 total

--------- ----------------
7217total

PH1 PH2 PH3 EA1 EA2 EA3 EG1 EG2 EG3

 calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall calls syscall
--------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ---------------- --------- ----------------

1084write 1011write 18110write 956write 304034clock_gettime 11688write 29095write 22476write 189375 clock_gettime
842recvfrom 844recvfrom 10591sendto 906 recvfrom 35469write 8685recvfrom 23022sendto 14942sendto 18432 write
552epoll_pwait 533epoll_pwait 9880 ioctl 676epoll_pwait 16410recvfrom 8112sendto 18122recvfrom 13766recvfrom 11207 sendto
551read 524 read 9001epoll_pwait 438 futex 15780sendto 4762futex 13188futex 8440futex 10055 recvfrom
506futex 429 futex 8941 read 429 read 7254 futex 3231epoll_pwait 4752getuid32 3773getuid32 7681futex
336getuid 320getuid 8214 recvfrom 364getuid32 6244 epoll_pwait 2669read 4707epoll_pwait 3725read 2667read
274 ioctl 247 ioctl 4977 futex 289 ioctl 6078 read 2297getuid 4700read 3713 ioctl 2662epoll_pwait
178sendto 172sendto 2514getuid 233clock_gettime 4224 getuid32 2202 ioctl 4571 ioctl 3670epoll_pwait 2631getuid32
41fstat 79madvise 321madvise 185sendto 4148 ioctl 374madvise 104writev 870madvise 2552ioctl
32rt_sigprocmask 29timerfd_settime 16prctl 31prctl 290madvise 221clock_gettime 88prctl 404prctl 232madvise
30prctl 18 fstat 15 timerfd_settime 27 rt_sigprocmask 70prctl 35prctl 57madvise 157rt_sigprocmask 73prctl
24mmap 16openat 9 fstat 16pread64 50sched_yield 29rt_sigprocmask 27rt_sigprocmask 155fstatat64 11gettimeofday
19timerfd_settime 16prctl 7mmap 16mmap2 14 timerfd_settime 11timerfd_settime 25clock_gettime 139mmap2 7 fstat64
18pread64 15close 6mprotect 13 timerfd_settime 11gettimeofday 10pread64 21mmap2 112pread64 7timerfd_settime
13munmap 9mmap 4writev 10 fstat64 7 fstat64 10writev 16pread64 107mprotect 6 rt_sigprocmask
7clock_gettime 9newfstatat 3close 8munmap 6rt_sigprocmask 9mmap 15fstat64 96writev 5mmap2
7mprotect 4clock_gettime 2clock_gettime 7mprotect 5mmap2 6fstat 14timerfd_settime 82clock_gettime 4mprotect
5openat 4 rt_sigprocmask 2rt_sigprocmask 7madvise 5mprotect 5munmap 10mprotect 74munmap 3writev
5close 3 lseek 2dup 3clone 3 fcntl64 4close 9munmap 47fstat64 3 fcntl64
4madvise 3mprotect 2munmap 2 fcntl64 2close 2clone 3clone 34close 3close
3dup 2dup 1clone 2openat 2clone 2mprotect 3openat 33openat 2dup
3writev 2writev 1 fcntl 2close 2pread64 2dup 3close 20clone 2clone
2fcntl 2munmap --------- ---------------- 1dup 2dup 2fcntl 2 fcntl64 16fcntl64 2pread64
2clone 2clone 72619total 1 readlinkat 1 readlinkat --------- ---------------- 1dup 15timerfd_settime 1munmap
1readlinkat 1 fcntl 1socketpair 1socketpair 44368total 1setrlimit 14faccessat 1 readlinkat
1getrlimit 1uname --------- ---------------- 1munmap 1ugetrlimit 8_llseek 1socketpair
1setrlimit --------- ---------------- 4623total --------- ---------------- 1readlinkat 8readlinkat 1sendmsg
1socketpair 4295 total 400113total 1socketpair 7dup --------- ----------------
1sendmsg 1sendmsg 6mkdirat 247626 total

--------- ---------------- --------- ---------------- 4getdents64
4543total 102560total 4getsockopt

3epoll_ctl
3 fstatfs64
3getrandom
2getpriority
2mremap
2rt_sigaction
2ugetrlimit
2 fchmodat
2socketpair
2 lseek
1eventfd2
1sysinfo
1fsync
1uname
1sched_yield
1unlinkat
1timerfd_create
1setsockopt
1sendmsg

--------- ----------------
76949total

EA3 EG1PH1 PH2 PH3 EA1 EA2 EG2 EG3

	1 Introduction 11
	2 Theoretical background 15
	2.1 Android OS – from application to kernel 15
	2.2 Hardware implementation and emulators 21
	2.3 Android malware 22
	2.4 Malware detection and system calls 25
	2.5 Related works and previous research 26

	3 Methodology 31
	3.1 Goal setting 31
	3.2 Selection of testing samples 32
	3.3 Selection of implementation platforms 36
	3.4 Data collection procedure 39

	4 Results 46
	4.1 Initial examination of raw data 46
	4.2 Determining the comparison sets 49
	4.3 Data structuring and comparison 50
	4.4 Outlining the comparison results 53

	5 Discussion 56
	5.1 Outlier cases 56
	5.2 Causes and implications 59
	5.3 Limitations and future research 62
	5.4 Conclusion 64

	6 Summary 66
	References 67
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 73
	Appendix 2 – Detailed comparison results 74
	Appendix 3 – Log summaries 86
	1 Introduction
	2 Theoretical background
	2.1 Android OS – from application to kernel
	2.1.1 Android application fundamentals
	2.1.2 Basic structure of Android OS
	2.1.3 Kernel and system calls

	2.2 Hardware implementation and emulators
	2.3 Android malware
	2.3.1 Taxonomy and installation methods
	2.3.2 Malware system calls as potential threat indicators

	2.4 Malware detection and system calls
	2.4.1 Conventional malware detection methods involving system calls

	2.5 Related works and previous research
	2.5.1 Related works
	2.5.2 Previous research

	3 Methodology
	3.1 Goal setting
	3.2 Selection of testing samples
	3.2.1 Malware
	3.2.2 Benign applications

	3.3 Selection of implementation platforms
	3.3.1 Implementation platform specifications
	3.3.2 Implementation platform settings

	3.4 Data collection procedure
	3.4.1 Android Debug Bridge
	3.4.2 Application Exerciser Monkey
	3.4.3 Strace tool
	3.4.4 Collection process

	4 Results
	4.1 Initial examination of raw data
	4.2 Determining the comparison sets
	4.3 Data structuring and comparison
	4.4 Outlining the comparison results

	5 Discussion
	5.1 Outlier cases
	5.2 Causes and implications
	5.3 Limitations and future research
	5.3.1 Threats to validity
	5.3.2 Suggestions for future research

	5.4 Conclusion

	6 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Detailed comparison results
	Appendix 3 – Log summaries

