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source or a list of possible attack sources can be determined, which helps when
attempting to mitigate DoS attacks. Additionally carried out the simulations and
the analysis of the results. Finally, wrote the manuscript.

III In Publication III, as the main author, proposed and implemented two DoS attacks
that had not been studied before in the context of NoC-based MPSoCs. Furthermore,
proposed and implemented a mechanism able to mitigate both presented attacks.
Additionally carried out the simulations and the analysis of the results. Finally,
wrote the manuscript.

IV In Publication IV, as the main author, proposed and implemented a router archi-
tecture that enables packets to report the source of traffic that disrupted their
communication the most. Additionally carried out the simulations and the analysis
of the results, showing that the most commonly researched DoS attack is not so
effective when using a fair packet arbitration. Finally, wrote the manuscript.
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V In Publication V, as the main author, proposed and implemented the presented

distributed DoS detection scheme for NoC-based MPSoCs. Additionally proposed
and developed the identification of the router in where malicious traffic disrupts a
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to report the execution location of applications reducing the NoC’s bandwidth
the most. Additionally carried out the simulations and the analysis of the results.
Finally, wrote the manuscript.
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ADAD Active DoS Attack Detection
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1 Introduction
Aiming to tackle more complex problems, achieve higher performance levels, and/or
reduce power consumption, Application-Specific Integrated Circuits (ASICs) have evolved
into Multi-Processor Systems-on-Chip (MPSoCs), incorporating several Processing
Elements (PEs) or Intellectual Property (IP) cores from different providers connected
by a Network-on-chip (NoC), which are able to execute applications from different
concurrent users. Multi-Tenant Computing-as-a-Service (MTCaaS) provides the basis
for integrated cloud/fog systems [7, 8]. Moreover, MPSoCs with a heterogeneous
array of PEs provide programmability and parallelism, yielding flexibility, processing
performance, and power efficiency, which can be leveraged for minimizing the latency
of communication links of the edge cloud [9]. Therefore, from a performance point of
view, the incorporation of MPSoCs is beneficial for MTCaaS, however, from a security
perspective, making MPSoCs available to a large number of diverse users exposes them
to attacks that have not yet been thoroughly researched.

On the one hand, hardware security authors have presented the viability of inserting
hardware trojans into IP cores for attempting Side-channel attacks that discover secret
information of a system [10], as well as mechanisms for detecting such trojans [11].
On the other hand, hardware trojans and attacks originating at the NoC have also
been researched [12]. Sarihi et. al. in [13] classify NoC security threats as attacks to
confidentiality, integrity, and availability, a.k.a., Denial of Service (DoS) attacks. With
the introduction of MPSoCs into MTCaaS, DoS attacks on MPSoCs can now also
be originated by software, where malicious users submit applications that attempt to
overwhelm the shared resources, forcing their service to be denied to tasks being run by
concurrent tenants of the same MPSoC.

1.1 Motivation
In order to provide higher quality and security service levels in Multi-Tenant Computing-
as-a-Service (MTCaaS), the execution of an application submitted by one of its tenants
should not be impacted by the others.

In order to solve this problem when adding NoC-based MPSoCs to MTCaaS, it is
important to identify: i) the DoS attacks that could be implemented by an application
running on one of the MPSoC’s processing elements (PEs) to disrupt the execution of
applications from other tenants; ii) directives that a designer of multi-tenant NoC-based
MPSoCs can follow to avoid, detect, localize, and/or mitigate the identified DoS attacks;
and iii) how those attacks can be generated so that their impact be assessed.

This thesis provides a classification of DoS attacks that target the communication
within MPSoCs, where Bandwidth Reduction DoS attacks were identified as one of the
most common and powerful techniques to attack NoC-based MPSoCs. They aim at
overwhelming the on-chip communication structure so that the execution of concurrent
applications be delayed or stopped. Additionally, this document summarizes all the
approaches taken by other authors to tackle DoS attacks in NoC-based MPSoCs and
presents new proposals that go beyond the state of the art. Finally, based on the
characteristics of the identified attacks, a model for their generation and for testing the
resilience of different MPSoC designs is detailed.
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1.2 Problem formulation
The focus of this Ph.D. thesis has been given to answer the following research questions:
RQ1 In the context of multi-tenant NoC-based MPSoCs, which DoS attacks could be

implemented by an application running on one of its PEs to disrupt the execution
of applications from other tenants?

RQ2 What directives can a designer of multi-tenant NoC-based MPSoCs follow to
avoid, detect, locate, and/or mitigate the identified DoS attacks?

RQ3 How can the identified DoS attacks be generated and their impact on a given
multi-tenant NoC-based MPSoC assessed?

1.3 Contributions of the thesis
The main contributions of the thesis are:

• As an answer to research question RQ1, a taxonomy of DoS attacks in the context
of Multi-tenant NoC-based MPSoCs, is presented in Section 3. Despite related
work focusing only on Flooding DoS attacks in the form of Packet Injection Rate
(PIR)-based DoS attacks and some considering also Packet Payload Length (PPL)-
based DoS attacks, this thesis additionally details two Low-and-slow DoS attacks,
namely Jellyfish and Slowloris, which despite being from computer networks, they
can also be implemented in the context of this thesis.

• As an answer to research question RQ2, four approaches were developed for DoS
attack detection and two for DoS attack avoidance. Former approaches went
beyond the state of the art by not focusing merely on PIR-based DoS attacks and
the latter approaches are able to avoid the four identified Bandwidth Reduction
DoS (BRDoS) attacks. Such approaches are listed below:

– Collision Point Router Detection (CPRD): Based on the communication
performance of the NoC, it identifies the presence of flooding DoS attacks,
as well as the router where malicious traffic disrupts legitimate traffic
(Section 6.1, Publication I, and Publication V).

– Collision Point Direction Detection (CPDD): Extends CPRD, to detect the
exact source of the attack in some cases and for others provides a list of
possible attack suspects (Section 6.2 and Publication II).

– Active DoS Attack Detection (ADAD): Extends CPDD enabling the location
of the exact source of attack for the cases that CPDD cannot (Section 6.3).

– Communication Disruption Tattletaling (CDT): Achieves the detection of the
exact source of attack for PPL-based DoS attacks and relies on Round-robin
arbitration for avoiding PIR-based DoS attacks (Section 6.4, Publication VI,
and Publication IV).

– Low-and-slow Dos Attack Avoidance (LSDAA): Eliminates the vulnerability
of NoC-based MPSoCs to Jellyfish and Slowloris Low-and-slow Dos Attacks
(Section 7.1, Publication III).

– Bandwidth Control Policies Enforcement (BCPE): A first variant enables
the Global Manager (GM) of an NoC-based MPSoC to prevent Bandwidth
Reduction DoS attacks. On top of that, a second variant also reports to the
GM any attempt at policy violation so that a new Service Level Agreement
can be established (Section 7.2).
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• As an answer to research question RQ3:

– An algorithm for generating Bandwidth Reduction DoS attacks is presented.
It is explained how its parameters can be set for generating not only the
attacks found in literature, which are focusing mostly on PIR-based attacks
only, but also PPL-based attacks as well as slow-loris and Jellyfish type
attacks. Additionally, parameters also allow the generation of combined
attacks (Section 9.2).

– A methodology for assessing the impact of DoS attacks on any given NoC-
based MPSoC is presented in Chapter 9.

1.4 Thesis Organization
The rest of the thesis is organized as follows: Chapter 2 provides definitions and
explanations of the terms used throughout this document. Such topics include NoC-
based MPSoC, Network on Chip, Project Bonfire, application workflows, and task
scheduling. Chapter 3 answers research question RQ1, covering DoS attacks in NoC-
based MPSoCs. Chapter 4 presents the targeted threat model, including the attack
scenario, steps for executing the attack, and the attack’s success conditions. Chapter 5
explains the process followed for answering the research questions RQ1 and RQ2. It
summarizes the state of the art regarding Bandwidth Reduction DoS attacks in NoC-
based MPSoCs while classifying related work as DoS attack avoidance or DoS attack
detection. Additionally, it explains how the approaches presented in this thesis go beyond
the state of the art. Chapter 6 and Chapter 7 detail the contributions made during the
Ph.D. for answering the research question RQ2, through DoS attack detection and DoS
attack avoidance, respectively. Chapter 8 describes how the MPSoC’s software and
hardware come together, eliminating the vulnerability to Bandwidth Reduction DoS
attacks. Chapter 9 answers the research question RQ3. Finally, Chapter 10 concludes
the thesis.
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2 Background
2.1 NoC-based MPSoCs
Multi-processors Systems-on-Chip (MPSoCs) are integrated circuits that contain a
complete computational system on a single die. They are composed of two main
structural types of components:

(i) the computational structure, consisting of Processing Elements (PEs) such as
processors, hardware accelerators, memories, peripherals, and other Intellectual
Property (IP) hardware cores to process and store information; and

(ii) the MPSoC internal communication structure, performing data exchange between
PEs. Depending on the design, it is implemented as point-to-point connections,
buses, crossbars, and/or Networks-on-Chip.

Three common diagrams used for representing NoC-based MPSoCs including a NoC
with mesh topology are depicted in Figure 1. In Figure 1a, a cluster of tiles in the
center connected to other IP cores is shown [14,15]. Tiles include a NoC router and
usually one or more processing cores with L1/L2 cache memory, while the other IPs
are peripherals, hardware accelerators, cryptography cores, and memory controllers,
among others. NoC-based MPSoCs are also sometimes depicted as an array on tiles as
shown in Figure 1b [16–22]. As in the previous diagram, tiles contain a NoC router but
now may also include any type of PE. Another option used for representing NoC-based
MPSoCs is as an array of PEs which, by the use of network interfaces (NIs), connect
to the NoC, as illustrated by Figure 1c [23–28]. This last option was selected for this
document because it shows elements separately.

(a) Tiles + Intellectual Property (b) Array of Tiles (c) Connected Processing Elements

Figure 1: MPSoC Diagrams

Furthermore, examples of commercial NoC-based MPSoCs include the knights landing
Intel Xeon Phi processor [29], IBM’s Power9 processor [30], Marvell’s ThunderX2 [31],
and the Rhea exascale processor [32] from the European Processor Initiative (EPI) [33].

2.1.1 Network Interface
In NoC-based MPSoCs, NIs are in charge of encapsulating data into packets at the
source of a transmission, as well as, decapsulating it at its destination. Such packets
are composed of flow control units (Flits), which are the number of packet bits that are
transmitted together on a single clock cycle. This amount is defined at design time, as
well as the packet structure that will be understandable by the routers in the NoC.

19



An illustrative example of the NI’s operation is presented in Figure 2. For example,
PEs are considered to communicate using 32-bit words. One format that can be
implemented for a PE to send data to an NI is depicted in Figure 2a. Data transmission
is requested by providing the address of the desired destination and the payload length of
the data to be transmitted. Subsequent valid flits will then carry the payload. Moreover,
the destination address for each operation would be either provided when the application
task was mapped for execution, or by an operation translation made by the firmware
of the PE. Figure 2b shows a data structure after being encapsulated by the NI into
a packet, a structure that is forwarded through routers until reaching an NI at the
destination. The most significant bits help the identification of the flit type while the
less significant bit enables single error identification. A Header Flit signals the beginning
of a transmission and contains the information used for taking routing decisions. Such
information corresponds at least to the destination address, but can also include other
information relevant to routers or even the NI at the destination. A Packet Info Flit
(a.k.a. the first body flit) contains an ID for reordering packets at the destination, as
well as the packet payload length. One or more Payload Body Flits follow, carrying the
data exchanged between PEs. Finally, a Tail Flit signals the end of the packet. In many
designs, the Tail Flit carries the last part of the payload, however, it may carry any
other required information. A structure for decapsulated data given from an NI to a PE
at the destination is presented in Figure 2c. The first flit contains the source address,
packet ID, and the packet’s payload length. Subsequent flits carry the payload.

(a) Data from a PE to an NI

(b) Data exchanged between the NIs and routers

(c) Data from an NI to a PE

Figure 2: Example of Data Structures
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2.1.2 Global Manager
In MPSoCs a central Global Manager (GM), is a piece of software that can be mapped to
run on one of the PEs. Such a manager provides essential services as task scheduling [34–
39], detailed assessment of the system’s performance, fault detection, and instrument
management as well as maintains health and resource maps [40,41].

2.2 Network-on-Chip
Networks-on-Chip (NoCs) are used as the communication structure of MPSoCs that
integrate a high number of PEs. Moreover, in order to achieve optimized pipelined data
transmission characteristics, a mesh-based NoC topology is typically chosen. An MPSoC
where a 2D mesh-based NoC was selected as its communication structure is illustrated
by Figure 3a. In such an MPSoC, each PE is connected to one of the routers. Moreover,
the 2D mesh-based NoC, which transmits data via routers and communication links,
is depicted in Figure 3b. Furthermore, 2D mesh topologies are composed of a set of
routers with a number of ports normally varying from three to five (Local, North, East,
South, West) as shown in Figure 3c, however, other MPSoC topologies may connect
more than one PE per router, adding more ports.

(a) NoC-based MPSoC (b) NoC (c) Router

Figure 3: From NoC-based MPSoC to Router

2.2.1 Router Components
2.2.1.1 Input Buffers
In many router implementations, buffers store flits at the input ports until they can be
forwarded, i.e. until the required output port becomes available. However, initial flits of
a packet need to wait also while the routing decision is being made. Once the output
port has been allocated and is ready, flits leave the buffer following a first-in-first-out
(FIFO) methodology.

2.2.1.2 Routing Module
Upon the arrival of a Header flit, the routing module determines the output port or ports
through which the packet can be forwarded to continue the path toward its destination.
Such a decision is taken based on a routing table, a preconfigured routing algorithm,
and/or as established by the source in case source routing is being used. Once a routing
decision has been made, a request for the selected output port is sent to the allocator
which will grant access if/when such a port is available.
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2.2.1.3 Allocator
The Allocator is in charge of granting access to output ports. It selects which of the
input ports requesting output access should be allowed to forward its packets through
the requested output port. In cases where an input port requests more than one output,
the allocator will also decide which request to consider.

2.2.1.4 Crossbar
The Crossbar or Xbar is composed of multiplexers, one per output port. Each multiplexer
connects all of the input ports to a single output port and it is controlled by the Allocator.

2.2.2 Routing Algorithms and Turn Models
Routing algorithms establish the output ports through which packets can be forwarded
to reach their destinations. They can be classified as deterministic or adaptive, the
former provided that packets have a single route option from source to destination,
while the latter is otherwise. Turn models as the ones illustrated by Figures 4, 5, 6,
and 7 can be used for describing routing algorithms. In 2D mesh, eight turns can occur;
N2E, N2W, E2N, E2S, W2N, W2S, S2E, and S2W. A turn labeled as N2E is understood
as the one made by a packet going North that turns East. A turn model presents which
of the eight possible turns are allowed or disabled by the described routing algorithm.
In this manuscript, the permitted and prohibited turns are marked as black and gray,
respectively. Nevertheless, in other documents, they might be drawn as solid and dashed
lines. Furthermore, the number of turns allowed by a routing algorithm is proportional
to the adaptiveness degree of routing algorithms as explained in [42]. Moreover, the
models in the subfigures labeled (a) are commonly used and show possible NoC paths
in a way that eventual deadlocks can be identified. However, the compass rose models
in subfigures labeled (b) are useful for taking routing decisions, showing if a packet is
able to reach its destination after being routed through a specific output port. Finally,
given a specific router, the compass rose models in subfigures labeled (c) illustrate the
turns that packets from a specific quadrant can take to reach it.

(a) Common Representation (b) Router to Quadrant (c) Quadrant to Router

Figure 4: Turn Model Representations for XY Routing Algorithm

It is worth mentioning that paths taken by packets going in any direction, when
entering a router, continuing in the same direction are not considered as turns but as
straight. Additionally, straight paths are not restricted by routing algorithms but by
the topology of the NoC. Also, packets requesting to be forwarded through the Local
output port are also not restricted by routing algorithms.

Furthermore, as mentioned in [43], a routing algorithm for mesh NoCs must provide
full connectivity and ensure deadlock freeness. The former means being able to route
packets from any PE to any other PE in the MPSoC, while the latter refers to avoiding
cyclic dependencies between packets that prevent them from reaching their destination.
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(a) Common Representation (b) Router to Quadrant (c) Quadrant to Router

Figure 5: Turn Model Representations for YX Routing Algorithm

(a) Common Representation (b) Router to Quadrant (c) Quadrant to Router

Figure 6: Turn Model Representations for West-first Routing Algorithm

(a) Common Representation (b) Router to Quadrant (c) Quadrant to Router

Figure 7: Turn Model Representations for North-first Routing Algorithm

2.2.3 Logic Based Distributed Routing
Logic-based distributed routing (LBDR) is a mechanism for taking routing decisions
presented in [44]. It relies on a distributed mechanism in which routing decisions are
taken on each hop of the packet’s path. They are based on the coordinates of the current
and destination routers, as well as on two registers, namely Cx and Rxy. Equivalence
between the MPSoC representation and tiles with coordinates is presented in Figure 8,
where a coordinate is composed of the row and column where a tile/PE is located.
Moreover, within a router, register Cx denotes whether its output ports are connected
or not to other routers. Each of its four bits represents an output port according to
Cx : [North East West South], where the North output port is represented by the
most significant bit. On the other hand, Rxy stores the configured routing algorithm
in the form of a turn model. Each of its eight bits denotes if a turn is allowed or not
as follows: Rxy : [N2E N2W E2N E2W W2N W2S S2E S2W ], where N2E is
represented by the most significant bit. The value of Rxy for different routing algorithms
and their turn model in a compass rose representation is illustrated in Figure 9. It is
worth noticing that routing algorithms based on turn models do not restrict straight
paths, However, it can be done by setting register Cx accordingly.
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(a) MPSoC - Elements labeled with IDs (b) MPSoC - Tiles labeled with coordinates (y,x)

Figure 8: MPSoC IDs and Coordinates

(a) XY routing (b) YX routing (c) West-first routing (d) North-first routing

Figure 9: NoC routing algorithms - compass rose representation

Inside each of the NoC routers, routing decisions of packets are taken based on
three sets of logic formulas, listed from (1) to (12). The first set, from (1) to (4), is
for answering the question: "In which direction is the destination located?". For the
2D-mesh topology and aiming to reach the destination with the less possible number
of hops, such a question has three possible answers: i) the packet is already at its
destination, given that non of the equations return a true value; ii) the destination
is straight ahead in the direction with the true value, provided that only one of the
equations is true; and iii) the destination is in one of the quadrants relative to the
current router, which implies that the packet could potentially be forwarded through
two possible output ports if two of the equations return true values.

N ′ = Ydst > Ycur (1)
E′ = Xdst > Xcur (2)

W ′ = Xdst < Xcur (3)
S′ = Ydst < Ycur (4)

For the cases where the destination has been identified to be in a quadrant and two
ports have been selected as possible outputs, the second set of equations, from (5) to
(8), is for answering the question: "If the packet is forwarded through the output ports
determined in the previews step, will the routing algorithm allow it to make the required
turn towards its destination?". If the implemented algorithm assures the connectivity of
all the PEs, at least one of the two ports will still obtain a true value.
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N ′′ = N ′ · E′ · W ′ + N ′ · E′ · Rne + N ′ · W ′ · Rnw (5)
E′′ = E′ · N ′ · S′ + E′ · N ′ · Ren + E′ · S′ · Res (6)
W ′′ = W ′ · N ′ · S′ + W ′ · N ′ · Rwn + W ′ · S′ · Rws (7)
S′′ = S′ · E′ · W ′ + S′ · E′ · Rse + S′ · W ′ · Rsw (8)

As an example of how to use the second equations set, from (5) to (8), suppose
that when attempting to forward a packet, the evaluation of the previous step (i.e.
first equations set) only equations (1) and (2) return true values. In such a case, the
LBDR in the router currently processing the packet must answer two questions: If
the packet is forwarded through the North output port, will it be able to turn East
later? and If the packet is forwarded through the East output port, will it be able to
turn North later?, respectively equations (5) and (6). Furthermore, such answers can
also be found by inspecting the compass rose representation for the adopted routing
algorithm in Figure 9. As explained in Section 2.2.2, for this manuscript the permitted
and prohibited turns are marked as black and gray, respectively.

Finally, the third set of equations, from (9) to (12), is for validating paths in irregular
topologies as the one presented in [44] by answering the question: "Is/are the required
output port(s) connected to a neighbor?".

N = N ′′ ·Cn (9)
E = E′′ ·Ce (10)

W = W ′′ ·Cw (11)
S = S′′ ·Cs (12)

After evaluating the three sets of logic equations requests are sent to the arbiter.
However, two possible outputs may happen to be true. In such a case, the arbiter will
select which request to honor based on some other information such as the one with
the fewer concurrent requests from other input ports.

2.2.4 Project Bonfire
2.2.4.1 Bonfire
Bonfire is an open-source framework for developing dependability mechanisms for NoC-
based Systems-on-Chip (SoCs). The target NoC architecture is a 2D mesh topology.
Each network tile consists of a wormhole switching router equipped with fault tolerance
mechanisms and a NI, which is connected to the local resource. The routers use
credit-based flow control and support any turn-model-based minimal path adaptive
routing algorithm [41,45].

2.2.4.2 Secure Bonfire
The Secure Bonfire is a branch of Project Bonfire that aims to abolish or mitigate
some vulnerabilities of NoCs that could be leveraged by malicious users to disrupt the
performance of the system [46].

Figure 10 shows the packet format used by the Secure Bonfire variant of the Bonfire
framework. This packet format is designed to be compatible with the Open Core
Protocol (OCP) and each body flit carries a payload of 28 bits.
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Figure 10: Packet Structure - Secure Bonfire [46]

Figure 11 shows a block diagram of the router found in Secure Bonfire. This router
contains input buffers and LBDR routing units for each input port, one switch allocator,
and a crossbar switch for each output port. It implements credit-based flow control,
where each upstream router keeps track of empty buffers in the downstream router and
sends the flits with the assumption that the downstream router can receive them. The
FIFO unit utilizes a 4-flit deep circular buffer and is in charge of issuing a credit signal
to the upstream router.

Figure 11: Router Architecture - Secure Bonfire [46]

The routing logic is implemented using the LBDR mechanism (Section 2.2.3) which
is a lightweight distributed routing mechanism that supports any turn model-based
routing algorithm and provides the possibility of an in-system reconfiguration of the
routing algorithm.

The allocator unit utilizes a Round Robin arbitration, where each input direction
can hold access to an output port for the length of a single packet. This arbitration
mechanism has an important impact on the resilience of the network to DoS attacks,
hence it prevents packets from one input port to block the transmission of packets
entering the router through other input ports.
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2.3 Task Scheduling and Mapping
Scheduling is a decision-making process that deals with the allocation of resources to
tasks over a given time period [47]. Furthermore, resources and tasks refer to different
things according to the scenario. Some scenario examples are: i) an airport, where
take-off and landing tasks must be scheduled to runways, in order to reduce waiting
periods; ii) Teaching activities that must be assigned to teachers and classrooms to
reduce gaps in teacher schedules and avoid them in students’ schedules; iii) Package
deliveries assigned to mail carriers, in order to reduce delivery delays and costs; iv)
Workflow tasks mapped to resources in an execution environment typically to reduce
execution time, power consumption, or usage fees.

Several approaches have been proposed for scheduling application workflows in
NoC-based MPSoCs. Consequently, surveys regarding this subject have been published
over the years [39,48–50]. Moreover, some approaches target scheduling of applications
during runtime, where decisions regarding applications are taken when submitted on a
first come first serve basis [34–36,38,51,52].

It is worth mentioning that: i) the execution delay of any task is directly proportional
to its processing cost and inversely proportional to the processing capacity of the PE to
which it was mapped; ii) the makespan of an application is the time taken to execute
all the tasks in its workflow (i.e., the overall execution time of an application); iii) the
execution of a task with dependencies cannot begin until the data from its predecessors
is available; iv) data exchanged between PEs may be divided into packets, which makes
its end-to-end delay dependent on the allowed PIR, the PPL and the end-to-end delay
of each packet, which in turn is proportional to a) encapsulation delay at the source NI;
b) decapsulation delay at the destination NI; c) routing delay in each router in the path
from source to destination; d) delays caused by congestion in each hop; and e) packet
payload length.

Section 2.3.1 describes how application workflows are represented for scheduling.
Section 2.3.4.1 gives an example of how an application workflow is scheduled on a
NoC-Based MPSoC, while Section 2.3.4.2 explains scheduling on multi-tenant execution
environments where applications arrive at different times.

2.3.1 Application Workflows
In order to speed up the execution of applications submitted to high-performance
systems, they are divided into tasks and described by Communication Task Graphs
(CTGs) in the form of Directed Acyclic Graphs (DAGs) [53]. In such types of graphs,
as the one depicted in Figure 12, a workflow without cycles is detailed, where nodes
represent tasks and arcs the dependencies between them. Tasks are considered as
a set of instructions that are executed sequentially, on the same processor, without
preemption [54]. In the context of this document, a processor refers to a PE, which in
turn can be a processing core, a hardware accelerator, a cryptography core, a memory
controller, a peripheral, or any other intellectual property core. Furthermore, values in
nodes represent the execution cost of each task, while the weight of arcs is the amount
of data to be transferred between connecting tasks.

The Embarrassingly Parallel workflow (Figure 12) is the simplest distributable
application found in literature [55]. It contains a single level of tasks that have no
data dependencies between them. Examples of other real-world scientific workflow
applications are presented in Figure 14, which are commonly used for scheduling
research in Cloud Computing [56–58]. The Montage application (Figure 14a) is used
for processing various input images and stitching them together to make a mosaic of
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Figure 12: CTG of an Embarrassingly Parallel Application with 7 Tasks and 10 Dependencies

the sky. The Epigenome workflow (Figure 14b) is executed for mapping the epigenetic
state of human cells. Seismic hazard maps for earthquake detection are generated with
the CyberShake workflow (Figure 14c). The Laser Interferometer Gravitational-Wave
Observatory (LIGO) workflow from Figure 14d is used for the detection of gravitational
waves in the universe [59].

Moreover, CTG = G(T,D) and, in this manuscript, is represented with the following
notation:

• n: number of tasks, where n ∈ N;

• T : set of tasks, where T = {ti | 0 ≤ i < n};

• D: set of dependency arcs, where D = {(i, j) | i < j and there exists an arc from
vertex i to vertex j in the CTG representing a data transmission from task i to
task j};

• Ii: execution cost of the ith task;

• Bi,j : number of data units transmitted between the ith task and the jth task,
where Bi,j ∈ R+;

Furthermore, in order to force a scheduler to map more than one task on a single PE,
the CTG can be modified to cluster tasks as if it were one. In [60], Tian et al. identify
communication-intensive tasks in the CTG of applications and either cluster them or
duplicate their executions on different PEs. Clustered task graphs are also used in [37]
for dependable task deployment on systems with mixed-criticality constraints. One type
of clustered task graph is the Application Characterization Graph (APCG) which similar
to CTGs, is directed but allows cycles [39]. In APCGs, tasks are grouped according
to characteristics that may require their execution on a specific type of PE. Moreover,
depending on the amount cores in the PE and the dependencies of the clustered tasks,
some executions can be in parallel. Figure 13 shows an APCG example of the CTG
presented in Figure 12.

In an APCG = G(C,D), each vertex ci ∈ C represents a cluster or an IP core (clusters
can also contain single tasks), while the arc dependencies depict data transmissions
between clusters, following the same formulation as CTGs.
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Figure 13: APCG of an Embarrassingly Parallel Application with 7 Tasks and 10 Dependencies

2.3.2 Modeling - Mesh NoC-based MPSoC Architecture
Considering a Mesh NoC-based MPSoC as an array of tiles as shown in Figure 8, its
architecture can be modeled by the Architecture Graph AG = G(T ′,L) which in this
manuscript, is represented with the following notation:

• n′: number of rows in the array of tiles, where n′ ∈ N;

• m: number of columns in the array of tiles, where m ∈ N;

• T ′: set of MPSoC tiles, where T ′ = {t′
y,x | 0 ≤ y < n′, 0 ≤ x < m};

• CCy,x: core count of tile ty,x, where CCy,x ∈ N;

• TIy,x: average execution capacity of each core in tile t′
y,x, where TIy,x ∈ R+;

• GMy,x: location of the tile executing the global manager software, where
GMy,x = t′

y,x | t′
y,x ∈ T ′ and the global manager software is running on t′

y,x;

• L: set of directional links connecting neighbor tiles, where L = { (t′
y1,x1, t′

y2,x2) |
tile t′

y1,x1 is linked to tile t′
y2,x2}. Additionally, (t′

y,x, t′
y,x) ∈ L ∀ t′

y,x and
(t′

y1,x1, t′
y2,x2) ∈ L does not imply that (t′

y2,x2, t′
y1,x1) ∈ L;

• TBy1,x1,y2,x2: available bandwidth of the link connecting tile t′
y1,x1 with tile

t′
y2,x2, where TBy1,x1,y2,x2 ∈ R+;

• Py1,x1,yv,xw: set of paths connecting tile t′
y1,x1 with tile t′

yv,xw | py1,x1,yv,xw ∈
Py1,x1,yv,xw, py1,x1,yv,xw = {(y1,x1), (y2,x2), ... (yv,xw)} and each pair of
consecutive elements in py1,x1,yv,xw ∈ L.

2.3.3 Modeling - Mapping of an Application to a NoC-based MPSoC
In the context of this thesis, the mapping process consists of two parts: i) assigning the
execution of tasks to specific Tiles of an MPSoC, namely MAP . This could either be:

• APCG −→ AG

• CTG −→ APCG −→ AG

and ii) Mapping of inter-task communication (edges of task graph) on network links
(edges of an AG), namely MAP ′.
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(a) Montage (b) Epigenomics

(c) CyberShake

(d) LIGO

Figure 14: Real-world Scientific Workflow Applications [59]
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Considering the notation presented in Section 2.3.1 for describing application work-
flows, as well as the one presented in Section 2.3.2 for representing the architecture of
an NoC-based MPSoC:

• MAPi,y,x,c expresses that the execution of task ti was mapped to tile t′
y,x on

core ID c, MAPi,y,x,c ∈ {0,1};

• MAP ′
i,j,y1,x1,y2,x2 expresses that the number of data units Bi,j , transmitted

between the ith task and the jth task, will consume a certain part of the
available bandwidth TBy1,x1,y2,x2 of the link connecting tile t′

y1,x1 with tile
t′
y2,x2, MAP ′

i,j,y1,x1,y2,x2 ∈ {0,1}.

Moreover, such mappings must respect the following mapping constraints:

MC1: ∀ ti ∈ T ∃! MAPi,y,x,c | t′
y,x ∈ T ′, c ∈ N0, 0 ≤ c < CCy,x

All tasks of a workflow must be mapped once and to one of the cores of a tile.

MC2: ∀ (i, j) ∈ D ∃ MAPi,y1,x1,c1 ∧ MAPj,y2,x2,c2 | Py1,x1,y2,x2 ̸= ∅, c1 ∈ N0,
0 ≤ c < CCy1,x1, c2 ∈ N0, 0 ≤ c2 < CCy2,x2
All pairs of tasks that have a dependency are mapped to cores of tiles that have
a communication path between them.

MC3: ∀ (i, j) ∈ D ∃! py1,x1,y2,x2 | ∀ pairs of consecutive elements {(yv,xv), (yw,xw)}
in py1,x1,y2,x2 : MAP ′

i,j,yv,xv,yw,xw is true.
For all pairs of tasks that have a dependency, exists a path in which all its links
are mapped for the transmission of Bi,j .

Furthermore, scheduling must respect the following scheduling constraints at any
given time:

SC1:
∑
ti∈T

CCy,x−1∑
c=0

Mi,y,x,c ≤ CCy,x, ∀ t′
y,x ∈ T ′,Mi,y,x,c ∈ {0,1}

A tile cannot execute simultaneously more tasks than its amount of cores.

SC2:
n∑

i=0

n∑
j=i+1

∆Bi,j ×MAP ′
i,j,y1,x1,y2,x2 ≤ Q ∀ (t′

y1,x1, t′
y2,x2) ∈ L, where Q is a

maximum theoretical value of the amount of data that can flow through any
given network link during a defined time interval.

2.3.4 Illustrative Example - Scheduling
2.3.4.1 Single Application
For a better understanding of the scheduling process on an MPSoC, an illustrative
example of an Embarrassingly Parallel Application is presented in Figure 15. The
application contains seven tasks from which: T 0 is a data distribution task that forwards
data to five parallelizable tasks; T1 to T5 are independent processes; and T6 is a
data aggregation task that generates the overall result of the application. Furthermore,
Figure 16 presents a possible mapping of those tasks to a 4×4 NoC-based MPSoC for
three different times of the schedule. Additionally, for the example, it was assumed that
the Global Manager runs on PE12 and that all PEs have the same processing capacity.
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Figure 15: Embarrassingly Parallel Application Task Graph with 7 Tasks and 10 Edges

(a) Time 0 (b) Time 1 (c) Time 2

Figure 16: Scheduling Example for Multi-tenant NoC-based MPSoCs

2.3.4.2 Multi-tenant Execution Environment
The focus of this work is Multi-tenant Execution Environments in which NoC-based
MPSoCs are part of the shared resources. Moreover, as soon as an MPSoC-powered
device is identified as available, the environment’s scheduler [56] can assign to it, appli-
cations that can leverage its PEs. Such applications may be of different characteristics,
submitted by different users, and arrive at any time. Nevertheless, they must all be
scheduled and executed as soon as possible so that new applications can also be served.
Figure 17 presents an example of different applications arriving at different times (labeled
from A to F). Furthermore, Figure 18 shows one scheduling possibility, where task IDs
are accompanied by the application label.

Figure 17: Applications Arriving at Different Times
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(a) Time 0 (b) Time 1 (c) Time 2

(d) Time 3 (e) Time 4 (f) Time 5

(g) Time 6 (h) Time 7 (i) Time 8

(j) Time 9 (k) Time 10 (l) Time 11

Figure 18: Scheduling Example for Multi-tenant NoC-based MPSoCs

In the schedule illustrated by Figure 18, the processing cost was assumed equal for
all tasks, as was the processing capacity of all PEs for simplicity reasons. Additionally,
applications were mapped to the best available PEs, aiming to reduce the number
of hops required by packets flowing between communicating tasks. In Figure 18d
and Figure 18e, PEs 3, 7, and 15 were reserved for further execution of the Montage
Workflow (application B) since they stored data from its first level tasks that is required
for the execution of tasks in level 5.
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3 DoS Attacks in NoC-based MPSoCs
Denial of Service (DoS) attacks attempt to disrupt the performance of a system. In
Cloud Computing they can be classified as i) Physical disruption, ii) Data corruption,
iii) Resource exhaustion, iv) Connectivity attacks, and v) Bandwidth attacks [61]. Such
classification can also be adapted to NoC-based MPSoCs as follows:

• Physical disruption: it is related to tampering, for which an attacker requires
physical access to the device;

• Data corruption: usually implemented as a man-in-the-middle attack carried out
by a Trojan inside a NoC router. It modifies some bits of data packets, violating
the integrity of data. If bits from a destination address are changed and this is
not detected, it prevents a packet from reaching its intended destination and may
cause congestion in an unexpected segment of the NoC. On the other hand, if
any change to the packet is detected, the packet is dropped and retransmission
may be requested, causing additional traffic to flow through the NoC [13,62, 63];

• Resource exhaustion: consists in consuming all the capacity of a resource. In the
case of a memory IP, it translates to filling up the memory so that no other PE
can use it. On the other hand, if the target is a processing core, the attacker
will try to execute tasks with long makespans keeping the PE busy and unable to
execute tasks from other users [64];

• Connectivity attacks: in systems where a connection needs to be established
before exchanging data, an attacker floods the NoC with excessive requests to a
target until the server is unable to provide services to legitimate users [16];

• Bandwidth attacks: also known as Bandwidth Reduction Denial of Service (BR-
DoS) attacks are those in which an attacker attempts to consume all or most
of the bandwidth. By doing so, legitimate traffic is unable to flow through the
NoC or takes longer than usual from its source to its destination. Such a type of
attack is the focus of this thesis and is detailed in Section 3.1.

As explained in Chapter 4, the focus of this Thesis is on attacks that users of a
Multi-tenant execution environment including NoC-based MPSoCs can attempt by
submitting applications for execution. In this sense, neither physical disruption nor data
corruption is considered for this Thesis since users will not have direct access to the
system, preventing tampering and hardware trojan injection. On the other hand, even
though resource exhaustion and connectivity attacks would be possible, the focus of
this Thesis is on BRDoS attacks since, as stated in [65], they were identified to create
a greater impact.

The remaining of this section is organized as follows: Section 3.1 explains BRDoS
attacks in NoC-based MPSoCs. Section 3.2 presents a causal analysis of variables
affecting the end-to-end delay of packets in a NoC-based MPSoC. Section 3.3 describes
the setup of experiments and explains the obtained results.

3.1 Bandwidth Reduction DoS Attacks in NoC-based MPSoCs
BRDoS attacks create a greater impact to the NoC-based MPSoC since they do not
only affect the destination, but also all other tasks wanting to communicate through any
of the links being used by the attacker [65], and by doing so, increasing their end-to-end
communication delays.
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Figure 19a and Figure 19b illustrate two 4×4 NoC-based MPSoC scenarios imple-
menting different routing algorithms, but in both, PE1 attempts a BRDoS attack by
sending malicious traffic to PE6. Such malicious traffic collides with legitimate traffic
originating at PE8 and heading to the same destination. Furthermore, Figure 19c and
Figure 19d depict the worst-case presented within the collision routers of both scenarios.
In such routers, all traffic streams compete for the same output port (considering even
two additional traffic streams). Once one of them gets granted access to such a port,
others will have to wait until the grant is given to them. Hence, the efficacy of a
BRDoS attack is proportional to the amount of time that the attacking stream is able
to maintain the grant.

(a) Deterministic XY Routing (b) Adaptive Routing

(c) Collision on Router 6 (d) Collision on Router 5

Figure 19: Example of DoS Attack in MPSoCs

Flooding DoS Attacks: A malicious task executing in one of the PEs is said to
attempt a Flooding DoS (FDoS) Attack when it seeks to acquire and maintain the
output grants of routers in a path by injecting a high amount of data [4]. Two types of
FDoS attacks are depicted in Figure 20. The first, namely the PIR-based FDoS attack,
injects data segmented into many consecutive packets [4, 66]. On the other hand, the
second, namely the PPL-based FDoS attack, segments data into long packets which
are not necessarily contiguous [4].

Low-and-slow DoS Attacks: In Low-and-slow DoS (LSDoS) Attacks, a malicious
task injects a low amount of data, but similar to FDoS attacks seeks to acquire and
maintain the output grants of routers in a path [3]. Two types of LSDoS attacks
are depicted in Figure 20. The first, namely the Jellyfish Inter-flit Delay Variance
(JFIDV) LSDoS, injects average-sized packets with unnecessary inter-flit delays. The
second, namely Slowloris or Incomplete Packet Transmission (IPT) LSDoS attack,
injects incomplete packets, lacking at least the Tail Flit.
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(a) Normal Traffic

(b) PIR-based Flooding DoS Attack

(c) PPL-based Flooding DoS Attack

(d) Jellyfish Inter-flit Delay Variance Low-and-slow DoS Attack

(e) Slowloris Low-and-slow DoS Attack

Figure 20: NoC Traffic Patterns

3.2 Causal Analysis of End-to-end Delay in NoC-based MPSoCs

As explained in Section 3.1, BRDoS attacks in NoC-Based MPSoCs are caused when
malicious tasks, running on one of the PEs, inject traffic to the NoC in a manner
to prevent packets from legitimate tasks to flow or increase their end-to-end delay.
Structural Equation Modeling (SEM) [67] was done to measure the covariance of traffic
configurations for monitored and malicious packets that cause the end-to-end delay of
monitored packets to increase. By doing so, a set of relationships between the end-to-end
delay (dependent variable), and traffic generation parameters (independent variables)
can be studied. Independent variables are usually considered as either predictor or
causal variables because they predict or cause the dependent variables (the response or
outcome variables). Table 1 lists the variables considered for the path analysis presented
in this section.

3.2.1 Simulation Setup for Data Collection

BRDoS attacks were simulated within the Secure Bonfire framework (Section 2.2.4.2).
As depicted in Figure 21, the adopted scenarios correspond to 4×4 mesh NoC-based
MPSoC architectures. For all the scenarios, PE3 was set as the destination of the
monitored as well as malicious traffic. Furthermore, as summarized in Table 2, ex-
periments were considered for monitored packets with different payload lengths and
injection rates, generated from different sources: PE12, PE13, PE14, PE15, PE11, and
PE7, which respectively correspond to communication paths of 6, 5, 4, 3, 2, and 1 hops
(see Figure 21). Simulations were executed with and without attack for different packet
payload lengths and packet injection rates. In all scenarios, PE2 was set as the source
of the attack and PE3 as the destination (i.e. attack path: PE2→PE3).
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Table 1: Data variables

Variable Description

Packet Payload Length Number of payload flits in the packets that are being
monitored.

Packet Injection Rate Frequency with which the monitored packets are injected
into the network. The inverse of the number of clock cycles
between the generation of each header flit.

Path Length Number of hops between the source and the destination
of the monitored packets.

Attacker’s Packet Payload Length Number of payload flits in the malicious packets.
Attacker’s Packet Injection Rate Frequency with which the malicious packets are injected into

the network. The inverse of the number of clock cycle between
the generation of each malicious header flit.

Delay at Collision Point Number of clock cycles that a monitored packet waits
inside a router, while other traffic is being transmitted
through the required output port.

Delay End to End Number of clock cycles elapsed since the network injection
(or End-to-End delay) of a header flit of a monitored packet and until such flit

arrives at its destination.

(a) Scenario 1 - 6 hops (b) Scenario 2 - 5 hops (c) Scenario 3 - 4 hops

(d) Scenario 4 - 3 hops (e) Scenario 5 - 2 hops (f) Scenario 6 - 1 hop

Figure 21: Simulation Scenarios for Path Analysis Data Collection
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Table 2: Configuration of Experiments

Variable Adopted Values

Packet Payload Length 10, 20, 30, and 40 flits
Packet Injection Rate 0.01 (one packet each 100 clock cycles),

0.02 (one packet each 50 clock cycles),
0.04 (one packet each 25 clock cycles)

Path Length 6, 5, 4, 3, 2, and 1 hop
Attacker’s Packet Payload Length 0 (scenarios with no attack), 10, 20, 30, and 40 flits
Attacker’s Packet Injection Rate 0 (scenarios with no attack),

0.01 (one packet each 100 clock cycles),
0.02 (one packet each 50 clock cycles),
0.04 (one packet each 25 clock cycles).

3.2.2 Path Analysis
For the path analysis, four models were proposed and analyzed. Such models are
depicted in Figures 22, 23, 24, and 25. As can be seen in the figures, all models
consider 6 predictors for the end-to-end communication delay. However, the last two
regression models include an indirect path. The weight of the arrows from predictors
to the dependent variable (i.e., Delay End to End), known as regression estimate,
represents the degree to which changes in predictor values affect the dependent variable.
Moreover, the value on the top-right of dependent variables represents the Squared
Multiple Correlation (SMC) [67] which is used for showing how much the predictors
explain the variance of the dependent variable. Furthermore, odd-numbered models
consider covariances between the predictors. Such covariances are represented by the
bidirectional arrows on the left of the figures and their weights show the degree to
which the two predictors are linearly associated.

Delay
End to End

Delay
at Collision Point

Attacker's
Packet Injection Rate

Attacker's
Packet Payload Length

Path Length

Packet Injection Rate

Packet Payload Length

total
error

Figure 22: Model 1

Table 3 lists the path analysis results obtained with the four analyzed models,
including their SMC value and all the predictors ordered according to their prediction
strength (i.e. based on the standardized regression estimates). Furthermore, results
show that even though the regression estimates are different for all the models, the
prediction strength order is the same for all of them. It can also be observed that Model
4 achieves the best variance prediction of the NoC end-to-end communication delay
(i.e., a higher SMC value).
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Figure 23: Model 2

Figure 24: Model 3

Figure 25: Model 4
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Table 3: Results of the Path Analysis

Model 1 Model 2 Model 3 Model 4

SMC .63 .55 .63 .65

Delay at Collision Point .36 .40 .36 .35
Attacker’s Packet Length .35 .39 .35 .34
Packet Injection Rate .30 .33 .30 .29
Path Length .06 .06 .06 .05
Attacker’s Packet Injection Rate -.11 -.12 -.11 -.11
Packet Length -.31 -.34 -.31 -.30
Data obtained by simulations (n = 640)

Additionally, it can be noticed from Table 3 that the strongest predictors for the
NoC end-to-end communication delay are: i) Delay at Collision Point, ii) Attacker’s
Packet Payload Length, and iii) Packet Injection Rate. These results can be explained
as follows: i) the end-to-end delay is composed of the sum of delays in each hop,
constant delays for buffering and routing decisions as well as a variable forwarding
time that depends on how long the required output port is being used by other traffic.
Moreover, the variable part is greater within the router identified as the collision point.
ii) Once a malicious packet obtains the grant for the use of an output port, it will have
it until its Tail flit has been forwarded, consequently preventing monitored packets from
using the same output port and increasing their end-to-end delay. iii) Since Secured
Bonfire’s arbitration method (i.e., Round Robin) alternates only one packet from each
competing input, packets from the same stream will remain buffered, hence increasing
their end-to-end delay.

Regarding the validity of the presented models, Table 4 lists values for a more
detailed level of model analysis. According to this analysis, the AMOS software [68]
reported that Model 1 did not fit the data obtained with the communication simulations.
Furthermore, by analyzing the Incremental Fit Measures, we can see that Model 2 does
not meet the 0.90 level requirement either for the Normed Fit Index (NFI) or for the
Comparative Fit Index (CFI). Finally, regarding models 3 and 4, both meet the 0.90
level requirement for NFI and CFI, however, Model 4 achieved a Tucker-Lewis Index
(TLI) closer to 1; Therefore, we can conclude that Model 4 is the most appropriate for
path analysis of end-to-end communication delays in NoC-based MPSoCs.

Table 4: Goodness-of-fit Value Comparison for End-to-End Communication Delay Models

Model 1 Model 2 Model 3 Model 4

Measures of Absolute Fit
X2 0 1099.59 91.64 129.48
df 0 15 3 13
X2/df — 73.30 30.55 9.96
p — > .001 > .001 > .001
RMSEA — .341 .218 .120

90 percent C.I. — — .324 .358 .181 .257 .102 .139
Incremental Fit Measures

NF I — .362 .947 .925
CF I — .363 .948 .932
T LI — .108 .635 .889

Data obtained by simulations (n = 640)

Finally, it can be seen in Model 4 (Figure 25) that the Attacker’s Packet Payload
Length is a predictor not only for the Delay at End to End but also of the Delay at
Collision Point; this because of the achieved 79% SMC by the .89 regression estimate
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between the two predictors. Consequently, it can be concluded that when using a fair
arbitration scheme such as Round Robin, a PPL-based DoS attack (Figure 20c) creates
a greater impact on the NoC end-to-end communication delay than the PIR-based DoS
Attack (Figure 20b). This analysis motivated the development of CDT, presented in
Section 6.4.

3.3 Impact Analysis of PIR- vs PPL-based Attacks
In this Section, two communication parameters are exploited for attempting FDoS
attacks on NoC-based MPSoCs, the PIR (used in most state-of-the-art approaches) and
the packet’s payload length (PPL). This section presents an effectiveness comparison of
both attacks.

3.3.1 Simulation Scenarios
Figure 26a illustrates a scenario in which sensitive packets flow from PE8 to PE6 while
malicious traffic does it from PE0 also to PE6. In such a scenario, both traffic flows
collide inside router R5 and compete for its East output port. Figure 26b depicts a
worst-case scenario in which apart from the two mentioned traffic flows, two additional
flows also enter the competition. Since only one flow is granted access to the output at
a time, it is the goal of the malicious traffic to win the access, making the others wait
for their turn, hence increasing their end-to-end communication delay.

(a) Attacked MPSoC (b) Collision Router

Figure 26: Setup of Simulation Scenarios

Two types of FDoS attacks attempt to gain control of output ports, preventing
legitimate traffic from being forwarded: PPL- and PIR-based DoS attacks. Five NoC
traffic patterns were presented in Section 3.1: the one in Figure 20a, considered normal
traffic, is composed of packets with an expected packet injection rate and within an
acceptable size range. The PIR-based FDoS attack attempts to flood the network by
increasing its packet injection rate, while the PPL-based FDoS attack by increasing
the packet’s payload length. The other two flows represent Low-and-slow DoS attacks,
which are not the focus of the approach introduced in this section.

In order to compare both FDoS attacks, the Secure Bonfire platform (Section 2.2.4.2)
was adapted so that it is compatible with the packet structure depicted in Figure 53.
Subsequently, the scenario illustrated by Figure 26a was implemented. In such a scenario,
PE0 and PE8 send data exclusively to PE6, to ensure that the path of both sources
collides, at least at the destination, regardless of the paths taken. Furthermore, all
the attacks executed in the experiments originated at PE0 and additional traffic was
randomly generated from all the other PEs (i.e. traffic generators included in Secure
Bonfire). Normal traffic was configured with a PPL of 10 flits and a PIR of 0.01 (i.e.
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a rate of one packet every 100 clock cycles). Malicious traffic, on the other hand,
was configured differently for two sets of experiments: i) PIR-based FDoS attack: the
attacker’s PPL was fixed to 10 flits and its PIR varied from 0.01 to full burst transmission
(i.e. 10 flits of payload every 10 clock cycles); and ii) PPL-based FDos Attack: the
attacker’s PIR fixed to 0.01 and its PPL varied from 10 to 100 (i.e. a maximum of 100
flits every 100 clock cycles). Furthermore, the transmission buffer of NIs was extended
so that attacks could completely maximize their parameters.

3.3.2 Effect Comparison of Both Flooding DoS Attacks
The effect of the PIR- and PPL-based FDoS attacks is presented in Figure 27, on
the left and right graphs respectively. Both graphs show the effect caused by a single
colliding path (i.e. PE8 → PE6) as well as the entire NoC. Such an effect is observed
by the increase in the mean end-to-end delay of packets since they are transmitted by
the PE until they reach their destination, while the attack is intensified.
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Figure 27: Comparison of Flooding Dos Attacks

As shown in Figure 27 (left), a PIR-based FDoS attack is ineffective in a NoC
using a fair arbitration mechanism such as Round-robin which segments bursts while
other packets are transmitted, consequently, increasing only the end-to-end delay of the
malicious packets buffered in the NI. In contrast, Figure 27 (right) shows the effective
communication disruption caused by the PPL-based FDoS attack to the NoC and even
more to the colliding path. Hence FDoS attack detection and mitigation efforts should
be focused on this scenario.

3.4 Conclusion
Since BRDoS attacks attempt to increase the end-to-end delays of legitimate traffic,
a causal analysis was done to measure the effect of different traffic configurations on
the end-to-end delay of monitored packets. Results showed that when using a Round
Robin arbitration, the success of BRDoS attacks was related to the payload length of
malicious packets rather than their injection rate. Further experiments were done for
comparing PIR- and PPL-based BRDoS attacks on a network equipped with Round
Robin arbitration and despite the focus of related work presented in Chapter 5 being
mostly given to PIR-based attacks, PPL-based BRDoS attacks showed to cause a
greater disruption to NoC-based MPSoCs.
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4 Threat Model
The use of MPSoCs with a heterogeneous array of PEs can minimize the latency of
communication links of the edge cloud, by providing programmability and parallelism,
yielding flexibility, processing performance, and power efficiency [9]. However, connecting
such devices to a bigger network exposes NoC-based MPSoCs to new security threats,
such as BRDoS attacks (Section 3.1). The characteristics of such a scenario and its
vulnerability to BRDoS attacks will be explained in this section as well as the steps
followed by an attacker to execute a BRDoS attack and its success conditions.

4.1 Attack Scenario
This Ph.D. thesis resolves around heterogeneous multi-tenant execution environments.
Examples of the target environments are Fog Computing and Cloud Computing, or even
a combination of both as depicted in Figure 28. It is important to note that shared
resources will not only include powerful multi-purpose computers but also heterogeneous
NoC-Based MPSoCs. Moreover, such environments are able to accept applications
submitted in parallel by different users. Additionally, based on the requirements of
application tasks, they may be scheduled to a single MPSoC, which will concurrently
execute tasks from different users. However, one or more of these tasks may disrupt the
execution of others by being specifically engineered for such purpose or by incorporating
a programming fault. In the scenario illustrated in Figure 28, users/clients submit
applications for execution; subsequently, a Fog + Cloud scheduler (such as the one
presented in [69]) divides them into tasks and maps their execution to some of the
shared resources which include devices powered by NoC-based MPSoCs. Once an
application or at least one of the tasks reaches the MPSoC, a Global Manager (GM)
maps their execution to PEs according to the requirements of the task as well as the
availability of the PEs (Section 2.3). This is done for all the received applications/tasks,
allowing concurrent executions from different users. Moreover, as soon as the execution
of all the tasks from a given application workflow is finished, the results are gathered
following the Fog + Cloud schedule. Finally, when the entire application execution is
over, results are sent back to the respective user/client.

(a) Hierarchy (b) Shared Resources (c) MPSoC Architecture and Components

Figure 28: The enhanced Fog + Cloud execution environment

4.2 Attack Steps
During a BRDoS attack, an attacker seeks to disrupt the services of a system by
degrading its communication medium’s performance. In the scope of this work, the
system is represented by a Multi-tenant NoC-based MPSoC.
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In order to perform a BRDoS attack in a NoC-based MPSoC, such as the one
illustrated by Figure 28, the attacker, as any other client/user, submits an application
to the execution environment. Such an application contains at least one task that,
according to its characteristics/requirements, will be scheduled to run in one of the
available NoC-based MPSoCs by a Fog + Cloud scheduler (such as the one presented
in [69]).

Once in a NoC-based MPSoC, the execution of the malicious task is mapped to
one of the PEs (as described in Section 2.3). Subsequently, when the execution of the
malicious task starts, it transmits data packets to another PE attempting to reduce or
even cancel the availability of NoC links between the two PEs. In order to maximize the
probability of disruption, malicious tasks should include instructions that the scheduler
or firmware may interpret as a transmission to a common destination, such as a shared
memory, a hardware accelerator, a peripheral, or any other Intellectual Property (IP)
component that will also be required by other applications.

Depending on the restrictions of the system, tasks are free to choose the way they
transmit their data. Transmission characteristics may include Packet Injection Rate
(PIR) or Inter-packet delay (IPD), Packet Payload Length (PPL), Inter-flit delay (IFD),
and even the completeness of the packets (if the transmission of a packet begins before
it is completely available). Such values can be hard coded into the tasks by the malicious
user or can be adjusted by the task during runtime. Furthermore, a cautious attack may
begin with moderate parameter values and will increase/decrease them gradually, as the
malicious process perceives that the network is getting congested. In some cases, this
can be done by monitoring the Effective PIR of the malicious traffic [70]. Finally, when
an appropriate attack configuration is found, packets can continue to be constantly
transmitted with such values or during alternating periods.

4.3 Attack Success Conditions
In order to impact a NoC-based MPSoC with a DoS attack, the following conditions
must be met:

• A malicious task is able to be executed in a PE inside the NoC-based MPSoC;
As any other user, applications with MPSoC execution requirements submitted
by an attacker will be mapped to a PE of an available Multi-tenant NoC-based
MPSoC, unknowingly of the malicious intentions.

• The malicious task transmits data through the NoC following a traffic behavior
not expected by the MPSoC’s Global Manager at the time of scheduling. The
traffic transmission can be triggered by a memory store instruction, an instruction
that requests the use of an IP commonly used in the system, or even a peripheral.
Therefore, not only the service of the destination would be denied to legitimate
tasks (i.e., blocking the output port of the router connected to the destination),
but also disrupting the transmission of other packets attempting to use at least a
segment of the path allocated to the malicious packets.

• The system allows a task to determine the value of parameters such as PIR or
IPD, PPL, IFD, and/or the completeness of the packets.

In this work, specific PEs are selected to be transmitter or receiver nodes of monitored,
malicious or random traffic. The destination of monitored and malicious packets is
usually configured to be the same, forcing them to compete at least for the local output
port of the destination, if not before.
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5 Related Work
In order to answer the proposed research questions (Section 1.2), it is necessary to
understand Networks on Chip (NoCs) and Multiprocessor Systems on Chip (MPSoCs) as
well as how Denial of Service (DoS) attacks affect them. Such concepts are explained in
Chapter 2. Furthermore, this chapter presents how other authors present DoS attacks in
such a context and their proposals for overcoming such a threat. It is worth mentioning
that the literature review presented in this chapter is filtered to target the attack
scenario presented in Chapter 4. Therefore, considering only DoS attacks that could be
implemented by an application running on a PE of a multi-tenant NoC-based MPSoC,
and aiming to disrupt the execution of applications from other tenants.

The literature review was done using four scientific databases i.e., IEEE [71],
ACM [72], SPRINGER [73] and ELSEVIER [74]. Such databases are known to store
the most relevant publications in the targeted field. Additionally, no time constraint
was set so that all the publications related to the targeted subject could be reached.

Table 5 lists the syntax of the search terms used for the literature review as well
as the results obtained for each term in each database. Moreover, search terms were
grouped into filtering phases according to their restriction degree. The first phase was
done without the use of search operators. For the second phase, quotes (" ") were
added to search for an exact phrase. Finally, in the third phase, search terms were joined
by an AND to establish that the results must contain either DoS attacks and NoCs or
DoS attacks in MPSoCs. Such review was done several times during the Ph.D. period
so that the proposals could be up to date. The numbers shown in Table 5 correspond
to search results obtained on January 22nd, 2022. Quotes were not used for NoC nor
MPSoC so that papers presenting approaches with these terms as part of their name
were not filtered out.

Table 5: Literature review - Search terms and results
Search Term IEEE [71] ACM [72] Springer [73] Elsevier [74] Total
1 Denial of Service Attack 5969 238279 48915 18045 311208
2 DoS Attack 3442 483517 27340 19100 533399
3 Network on Chip 41896 312980 130505 115749 601130
4 NoC 6241 3572 27199 19164 56176
5 Multiprocessor System on Chip 5675 561496 7734 5853 580758
6 MPSoC 2208 1449 1178 756 5591P

ha
se

1

Phase Total 65431 1601293 242871 178667 2088262
7 "Denial of Service Attack" 2379 1616 10265 5011 19271
8 "DoS Attack" 1401 1725 8512 4765 16403
9 "Network on Chip" 7183 2343 2800 2207 14533

10 "NoC" 5850 3419 27199 19164 55632
11 "Multiprocessor System on Chip" 856 331 600 386 2173
12 "MPSoC" 2032 1214 1178 756 5180

P
ha

se
2

Phase Total 19701 10648 50554 32289 113192
13 "Denial of Service Attack" AND "Network on Chip" 14 11 57 25 107
14 "Denial of Service Attack" AND NoC 12 15 100 25 152
15 "DoS Attack" AND "Network on Chip" 12 18 62 21 113
16 "DoS Attack" AND NoC 13 20 89 25 147
17 "Denial of Service Attack"

—AND "Multiprocessor System on Chip" 0 1 8 11 20
18 "Denial of Service Attack" AND MPSoC 7 2 22 18 49
19 "DoS Attack"

—AND "Multiprocessor System on Chip" 1 2 8 4 15
20 "DoS Attack" AND MPSoC 6 6 24 8 44

P
ha

se
3

Phase Total 65 75 370 137 647

Table 6 lists the number of search results selected in each of the filtering phases
as well as the number of rejected results and the filtering or rejection criteria. As
explained before, the first three filtering phases were done using search operators so
that results matched the research topic as much as possible. The results from the final
eight search terms and for the four scientific databases were then combined into a single
list. Subsequently, in the fourth phase, duplicated results were eliminated from such
a list. The remaining results were then filtered, in a fifth phase, based on their title.
Finally, the remaining papers were studied and the most relevant selected.
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Table 6: Literature review - Filtering process of search results
Phase Found Rejected Selected Criteria

1 2088262 — 2088262 Search-Based Selection
2 2088262 1975070 113192 Use of Quotes for Search
3 113192 105756 647 Combined Research Terms
4 647 353 294 Rejection per Repetition
5 294 235 59 Rejection per Title
6 59 42 16 Rejection per Content

Based on the papers resulting from the literature review, it was identified that when
aiming to disrupt the execution of applications from other tenants, the best option
for a malicious application running on a PE of a multi-tenant NoC-based MPSoC, is
to implement Bandwidth Reduction DoS (BRDoS) attacks. This answers research
question RQ1. However, it was noticed that most authors mainly target a single type of
BRDoS attack (i.e. PIR-based Flooding DoS attack). BRDoS attacks were explained
in Section 3.1.

Research question RQ2 can be answered by the different approaches presented by
the authors of the reviewed papers aiming either to avoid or detect BRDoS attacks.
Some of them attempted additionally to locate the attack source and even manage to
mitigate the attack or outline directives for their mitigation. However, some space for
improvement was identified, which motivated the design and development of the new
approaches presented in this thesis.

The remainder of this chapter is organized as follows: Section 5.1 presents approaches
aiming to avoid DoS attacks in NoC-based MPSoCs. Section 5.2 presents approaches
aiming to detect DoS attacks in NoC-based MPSoCs. Section 5.3 explains the beyond-
state-of-the-art contributions achieved with the approaches presented in this Thesis.

5.1 DoS Attack Avoidance
Approaches for DoS attack avoidance focus on providing an infrastructure that prevents
vulnerabilities to such types of attacks. In successful cases, an attack attempt done
by a malicious application will not be able to disrupt the performance of the protected
application executions.

Evain et al. in [15] propose a division of the MPSoC resources into two areas, secure
and unsecured. Additionally, the physical links of the NoC forward data through two
separate virtual channels. One of the virtual channels, tagged as secure, transports
traffic exchanges within the secure area while the one tagged as low security, data
originated within the unsecured area. The secure area manages both types of virtual
channels, prioritizing always packets flowing through the high-security virtual channel.
Even though this approach manages to prevent malicious traffic from one area to disrupt
one from the other, it allows disruption caused by other traffic originating in the same
area. Furthermore, the use of virtual channels results in considerable hardware overhead,
thus each router input requires an additional buffer for each virtual channel as well as
control logic to select from which of the buffers the data is forwarded.

In [75], Sepulveda et al. propose an avoidance strategy based on a hybrid switching
routing mechanism. Data tagged as critical is forwarded through the NoC using circuit
switching while non-critical uses packet switching. A small control packet is sent from
a PE willing to initiate the communication of critical data to its required destination.
With such an approach, adding a small area overhead, a control packet reserves a
communication path exclusively for the critical data, which successfully prevents other
traffic from disrupting it. Consequently, data packets transporting critical data are able
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to arrive in the correct order and with predictable latencies. However, if this approach
were to be implemented in the context of multi-tenant NoC-based MPSoC, it would
only be applicable to a few tenants. This is because allocating network links to a
single tenant reduces the number of shareable resources for the others. Hence, the DoS
attack avoidance mechanism would deny communication services to traffic not labeled
as critical.

Later, in [26], Sepulveda et al. attempt to avoid DoS attacks by considering the
dynamic allocation of communication resources in the MPSoC. To this end, NoC routers
implement random arbitration and adaptive routing. With such an approach, data
entering a router through different input ports and competing for the same output
wait for their turn to be randomly granted, thus preventing a single traffic source takes
indefinite control over an output port. Additionally, packets transmitted between a pair
of PEs may have more than a single path available, hence allowing them to avoid some
congested routes. This approach proved to be effective against its targeted BRDoS
attack which is the PIR-based flooding DoS attack, and also requires a small area
overhead. However, it would be useless against the other three BRDoS attacks targeted
by this Thesis.

In [17], Boraten et al. propose non-interference-based adaptive routing to secure NoCs
from side channel and DoS attacks. Following this approach, traffic is spread all over
the NoC within three levels of routing. Such levels forward packets simultaneously along
the NoC implementing a different routing algorithm. Level one considers dimensional
order routing (XY routing); Level two uses orthogonal one turn (O1TURN) routing,
either XY or YX routing; and the third level, reserved for traffic with the highest priority,
uses randomized oblivious minimal multi-phase (ROMM) routing. The latter offers the
highest path diversity by taking a routing decision randomly on each hop. However, the
authors state that in order to prevent deadlocks in XY routing, a single domain requires
at least one virtual channel. For domains that are elevated to O1TURN routing, a
minimum of two virtual channels is required, one for XY and another for YX routes.
Additionally, for ROMM, the virtual-channel requirement is dependent on the number
of routing hops that packets can take before they reach their destination. Given the
mentioned virtual-channel requirements, this approach implies a great area overhead
when introducing the additional buffers needed for each virtual channel.

The evaluation of the related work shows that approaches found in the literature
aiming DoS attack avoidance are not suitable for multi-tenant NoC-based MPSoC.
Approaches presented in [15] and [75] target only a few resources, not being able to
secure all tenants. The approach in [26] is only effective against PIR-based DoS attacks.
Finally, the approach in [17] does protect a NoC-based MPSoC against the four BRDoS
attacks considered for this thesis at the cost of a very high area overhead.

5.2 DoS Attack Detection
Approaches for DoS attack detection attempt to identify the occurrence of such attacks
so that they can subsequently be mitigated.

In [23], Diguet et al. tackle deadlock and livelock DoS attacks in NoCs. They obtain
deadlock-freeness by implementing connection-oriented transactions with end-to-end
flow control in the transport layer as well as source routing in the network layer. This
is complemented with livelock-freeness by placing the number of hops required to
reach the destination in the header of the packets. Such value is decremented on each
hop expecting that it reaches zero on its destination, otherwise, the packet is deleted.
However, source routing does not only increase the complexity of data transmission due
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to the calculation of routes but also the overhead of the packet size by adding routing
instructions for each router in the path. Issues that are overcome with the use of logic-
based distributed routing as explained in Section 2.2.3. Additionally, livelock-freeness
can also be achieved by restricting logic-based distributed routing to use minimal routing.
Finally, the approach proposed by Diguet et al. in [23] is not applicable for Flooding
nor Low-and-slow DoS attacks, which are the focus of this thesis.

In [66], Fiorin et al. present buffer occupancy monitoring at the NI as a way for
detecting PIR-based Flooding DoS attacks. With the use of expected-buffer-occupancy
thresholds defined during design time, deviating behavior is considered anomalous and
reported to a centralized security manager. Such a manager takes care of all the warning
signals coming from the different monitors in the system. However, the authors define
occupancy monitoring as “the number of elements in the buffers" but do not specify
if it refers to communication requests, packets, or flits. Additionally, threshold values
are defined during design time which would not work on a multi-tenant NoC-based
MPSoC since it should be able to execute applications with different traffic generation
footprints. Finally, alerts are sent to a centralized security manager but it is not clear
how it classifies a reported behavior as an actual attack.

Later, in [24], Fiorin et al. propose another monitoring system for detecting security
violations carried out against a NoC-based system. Probes embedded in NIs monitor
traffic when inserted by PEs. Bandwidth is calculated over a time window whose length
can be set not only by the designer at design time but also by a network security
manager at run-time. The Network Security Manager is in charge of collecting security
alerts coming from probes as well as elaborating appropriate countermeasures to attacks
and problems detected, which can be stopped or limited based on the location of the
probes. Since detection relies on the ability of a malicious execution to inject more
traffic than a threshold, it can be canceled by a congested NoC using fair arbitration
such as round robin. This is because the buffer in the NI may overflow due to the
reduced forwarding rate of malicious packets in the route.

In [76], Grammatikakis et al. target distributed DoS attacks via a firewall in control
of configurable access rules in the NI. The security risk is evaluated by the product of
frequency and magnitude of losses (by dropping the packets at the NI). Although such
a firewall does not allow the DoS attack to be effective, it was designed to protect the
destination PE (i.e., the on-chip memory), thus it does not detect the source of the
attack, nor does it kill the attack-related traffic congesting the network.

In [27], Achballah et al. divide MPSoC resources into two zones as Evain et al.
in [15] (i.e. secured and non-secured). However, instead of isolating traffic from both
zones using virtual channels, they place firewalls on the physical network links that
join both zones. Such firewalls, apart from preventing unauthorized access to secured
resources, monitor the occupation time of the physical link where they are located. By
doing so, if the occupation time of the physical link exceeds a maximum threshold
of successive usage, the traffic is halted and the system administrator is informed.
Even though malicious traffic generated at the non-secure zone would be banned from
entering the secured zone, it is not prevented from disrupting traffic within the same
zone. Furthermore, implementing such an approach in the context of multi-tenant
NoC-based MPSoCs becomes impractical because applications are not identified as
malicious before being mapped to a PE, allowing a malicious application to disrupt the
executions of other tenants in the same zone.

In [16], Madden et al. focus on detecting PIR-based attacks in NoCs where
communication between two PEs is started by transmitting a request-to-send (RTS)
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message to the desired destination. They apply a spiking neural network (SNN) for
identifying traffic patterns, aiming to differentiate normal from abnormal amounts of
communication requests. They assume that each NoC router is connected to a core
and state that a specific packet transmission rate can be observed for creating a normal
system profile. Consequently, if there are more RTS signals in a certain time period than
there would normally be, it can signify an attack. Their approach is tested by executing
a video-playing Multi-Media System. The SNN was trained offline for approximately
two hours and then it was able to process a single dataset in five minutes. Even though
they report good results for the adopted test scenario, their approach would not be
applicable in the threat model presented in this thesis in Chapter 4 due to the expected
continuously varying traffic profiles generated by different applications submitted by
different users.

In [18], Charles et al. target PIR-based DoS attacks. Network traffic is analyzed
during design time to create communication patterns. With this, an upper bound of
packet arrival curves (PAC) at each router and destination packet latency curves (DLC)
at each IP are identified. During run-time, traffic monitors included in routers evaluate
if the established communication bounds are exceeded to determine the presence of an
attack. Once an attack has been detected, the IP connected to the detecting router
sends additional packets to the routers in the path of delayed packets attempting to
locate the attack’s source. Such work was later enhanced considering multi-source
scenarios in [19]. Despite the presented effectiveness results, such an approach is also
not applicable to the threat model presented in this thesis in Chapter 4. Similar to the
solution presented by Madden et al. in [16], the establishment of communication bounds
is required. However, the nature of the target multi-tenant execution environment is to
be dynamic, continuously starting and finishing application executions from different
users, hence no long-lasting communication bounds can be established.

In [28], Yao et al. reference [1] and present an approach for detecting Hardware
Trojans (HTs) in third-party PEs of MPSoCs. Such HTs are assumed to execute
PPL-based DoS attacks targeting the communication performance of packets generated
by other PEs. As in [1], their approach also monitors the end-to-end communication
delay of packets and attempts to detect the router where the attack enters the sensitive
communication path. For the detection of such HTs, they use machine learning
techniques based on random forest. Despite their approach presenting a precision
detection range above 79%, as other machine learning approaches, it requires the
identification of a normal traffic profile so that anomalies would be tagged as attacks.
However, such a normal traffic profile is not considered to be present in Multi-tenant
NoC-Based MPSoCs.

In [20], Sinha et al. present a framework called Sniffer. As in this thesis, they
consider that malicious code running on an IP block can attack other on-chip modules
through the shared NoC. In order to mitigate this issue, their framework employs a
machine learning-based approach that tunes multiple network parameters to appropriate
thresholds, attempting not only to attack detection but also accurate localization of
malicious PEs. Three features were considered: i) Buffer Waiting Time (BWT), ii)
Inter-Flit-Interval (IFI), and Virtual Channel Occupancy (VCO). Moreover, they propose
a collective decision-making strategy by considering the neighbors’ opinions at every
intermediate node during the localization process to increase the accuracy of localization.
Despite achieving an average of 96.754% detection accuracy, experiments consider
the execution of a single application which would not be the case for Multi-tenant
NoC-Based MPSoCs.

51



In [21], Pan et al. propose the use of machine learning for detecting PIR-based
DoS attacks. They use hardware performance counters as well as trace buffers and
perform on-chip network traffic analysis. Since the extracted features are in a flit level
instead of a packet level, such as the number of flit arrivals, their approach would also
be applicable for detecting PPL-based DoS attacks. They report good results for the
adopted experiment’s setup. Nevertheless, similar to other published approaches based
on machine learning, it requires a normal behavior to be present for training during
design time. As shown in Chapter 4, this thesis targets environments with constantly
changing traffic profiles due to multi-tenancy.

In [22], Sudusinghe et al. introduce a machine learning-based runtime monitoring
mechanism aiming to detect PIR-based DoS attacks in NoCs. They explore different
machine learning models and evaluate several traffic features of patterns generated
by various application mappings. Machine learning models are trained during design
time. Subsequently, trained models are stored in a dedicated IP denoted as the Security
Engine. Despite considering various application mappings to evaluate their approach,
such mappings were done for a single application. Moreover, the use of machine learning
requires that a normal behavior can be identified and learned. However, this is not
the case for multi-tenant execution environments, the focus of this thesis, due to the
randomness of users and the submitted applications at any given time.

5.3 Beyond State of the Art
Sections 5.1 and 5.2 summarize related work found with the conducted literature
review. Such papers are related to BRDoS attacks in NoCs and/or MPSoCs, an attack
type that was reported as the main attack a malicious user can attempt to disrupt
executions from other tenants while running on a multi-tenant NoC-based MPSoC.
Table 7 lists these papers pointing out their main characteristics: publication year,
intended action, targeted attack type, proposed approach, and an evaluation with pros
and cons. Moreover, actions include Avoidance (A), Detection (D), Localization (L),
and Mitigation (M). Additionally, targeted attacks are numbered as follows:

1. Packet Injection Rate based (PIR-based) Flooding DoS (FDoS);

2. Packet Payload Length based (PPL-based) Flooding DoS (FDoS);

3. Jellyfish Inter-flit Delay Variance Low-and-slow DoS (LSDoS);

4. Slowloris or Incomplete Packet Transmission (IPT) Low-and-slow DoS (LSDoS).

Furthermore, a check mark (✔) symbolizes either that the attempted action could
be achieved in a multi-tenant NoC-based MPSoC or that the attack was successfully
taken care of. On the other hand, a dot (●) states that the attempted action was not
completely achieved or that the attack was not completely covered in the context of
multi-tenant NoC-based MPSoCs.

Based on the format of Table 7, Table 8 lists the characteristics of the approaches
proposed in this thesis for answering research question RQ2 (refer to Section 1.2).

Since the main impact caused by a BRDoS attack on paths in a NoC is to delay its
traffic, the first two proposed approaches were based on communication degradation
monitoring and are explained in Sections 6.1 and 6.2 for Collision Point Router Detection
(CPRD) and Collision Point Direction Detection (CPDD), respectively. Their simplicity
gives them an advantage when compared to the related works. However, most related
works may only be used for detecting PIR-based Flooding DoS attacks, while CPRD and
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Table 7: Related Work Summary
Action* Target Attack**

Ref. Year
A D L M 1 2 3 4

Approach Evaluation

[15] 2005 ● ● ● ● ● Virtual channels
✚ Traffic in the secured zone is not disrupted by external packets

❙ Attacks are not neutralized

❙ Incremented hardware complexity of NoC routers

[23] 2007 ✔
Hops credit at packets’ header (Livelock)
+ Source Routing (Deadlock)

❙ Uses Source Routing

❙ Only targets DoS attack enabled by non-minimal routing

[66] 2007 ✔ ✔ ✔
Monitoring buffer occupancy at the NI
+ centralized security manager

✚ Distributed monitoring

❙ Buffer occupancy thresholds set at design time

[24] 2008 ✔ ✔ ● ✔
Bandwidth monitoring at the NI
+ centralized network security manager

✚ Distributed monitoring
✚ Possibility of mitigating DoS attacks

❙ Fair arbitration at the router affects detection

[75] 2010 ● ● ● ● ●
Path isolation (critical packets use circuit
switching while others packet switching)

✚ Prevents malicious packets from disrupting critical packets

❙ Protects traffic only from a few selected sources

[26] 2015 ✔ ✔ Random arbitration + adaptive routing ✚ Attacks do not disrupt specific paths

❙ Effective only against PIR-based flooding DoS attacks

[76] 2015 ✔ ● ● ● ● Firewall at the NI of traffic initiator nodes ✚ Can block DoS attacks at the source

❙ No detection mechanisim is presented

[27] 2017 ● ● ✔ ✔
Monitoring the occupation time of NoC
links

✚ Neutralization of abnormal transmissions

❙ Created to monitor a few links not all

[17] 2018 ✔ ✔ ✔ ✔ ✔
Virtual channels
+ concurrent routing algorithms

✚ Parallelizes traffic from different sources

❙ Big area overhead due to several virtual channels

[16] 2018 ✔ ✔
Monitoring transmission requests
+ spiking neural networks

✚ Can detect PIR-based DoS attacks when normal behavior is known

❙ Not suitable for Multi-tenant NoC-Based MPSoCs

[18] 2019 ✔ ✔ ✔
Monitoring packet arrival periodicity
+ request information from other routers

✚ Can detect PIR-based DoS attacks when normal behavior is known

❙ Not suitable for Multi-tenant NoC-Based MPSoCs

[19] 2020 ✔ ✔ ✔
Monitoring packet arrival periodicity
+ request information from other routers

✚ Can detect PIR-based DoS attacks when normal behavior is known

❙ Not suitable for Multi-tenant NoC-Based MPSoCs

[28] 2020 ✔ ✔ ✔ ✔
Monitoring communication degradation
+ machine learning (Random Forest)

✚ Can detect DoS attacks when normal behavior is known

❙ Not suitable for Multi-tenant NoC-Based MPSoCs

[20] 2021 ✔ ✔
Virtual channels
+ random forest machine learning

✚ Detects anomalies to known behavior

❙ Works only for the trained traffic profile

[21] 2021 ✔ ✔ ✔
Hardware performance counters
+ embedded trace buffers
+ on-chip network traffic analysis

✚ Detects anomalies to known behavior
❙ Works only for the trained traffic profile

[22] 2021 ✔ ✔
Distributed traffic monitoring
+ centralized machine learning

✚ Detects anomalies to known behavior

❙ Works only for the trained traffic profile
* Action: A-Avoidance, D-Detection, L-Localization, M-Mitigation
** Target Attack: 1-PIR-based DoS, 2-PPL-based DoS, 3-Jellyfish, 4-Slowloris

Table 8: Proposed Work Summary
Action* Target Attack**

Name Year
A D L M 1 2 3 4

Approach Evaluation

CPRD
Section 6.1 2018 ✔ ● ✔ ✔ ✔ Monitoring communication degradation

✚ Lightweight solution
✚ Determines collision point

❙ Does not detect the exact source of attack

CPDD
Section 6.2 2019 ✔ ● ✔ ✔ ✔ Monitoring communication degradation

✚ Lightweight solution
✚ Generates a list of possible attack sources

❙ Does not detect the exact source of attack

LSDAA
Section 7.1 2019 ✔ ✔ ✔ ✔ ✔

Monitoring emptiness of
router FIFO buffers

✚ Detects and mitigates LSDoS attacks
✚ Very lightweight solution

❙ Only against LSDoS attacks

CDT
Section 6.4 2021 ✔ ✔ ✔ ✔ ✔

Round robin arbitration on packet level
+ Reporting communication disruptions

✚ Avoids PIR-based DoS attacks
✚ Detects the exact source of PPL-based DoS attacks

❙ Only effective against Flooding DoS Attacks
ADAD

Section 6.3 2022 ✔ ✔ ✔ ✔ ✔ ✔
Monitoring communication degradation
+ Software-defined NoC

✚ Detects the exact source of attack

❙ Temporarily restricts adaptive routing of NoC zones
BCPE

Section 7.2 2022 ✔ ✔ ✔ ✔ ✔ Enforcing bandwidth control policies ✚ Lightweight solution
✚ Prevents NoC disruption by BRDoS attacks

* Action: A-Avoidance, D-Detection, L-Localization, M-Mitigation
** Target Attack: 1-PIR-based DoS, 2-PPL-based DoS, 3-Jellyfish, 4-Slowloris

CPDD can be used for PIR- and PPL-based Flooding DoS attacks as well as Jellyfish
Low-and-slow DoS attacks. Furthermore, with CPRD, an MPSoC can take a step
forward toward the localization of the attack source for its mitigation. This is because
it helps to determine the router where malicious data disrupted a monitored path. The
CPDD approach goes even one step further than CPRD, by providing information useful
for detecting the exact attack source or at least a list of possible attack sources.

Subsequently, in order to complement CPDD, Active DoS Attack Detection (ADAD)
was proposed. When the information provided by CPDD is not sufficient for detecting
the exact source of the attack, but a list of suspects, this approach makes use of
software-defined NoCs and small communication packets to locate the exact source of
the attack. Details are given in Section 6.3.
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Furthermore, with the experiments executed along the development of approaches
that give a better answer to research question RQ2 regarding flooding DoS attacks, it
was realized that routers implementing a fair arbitration scheme mitigate the effect of
single-source PIR-based DoS attacks. Thus for Flooding DoS attack detection, efforts
should be focused on PPL-based DoS attacks (untouched by most related works).
Therefore, it was determined that an alternative against Flooding DoS attacks was to
implement Round-Robin arbitration to avoid PIR-based DoS attacks in conjunction with
Collision Disruption Tattletaling (CDT), enabling MPSoCs to detect also PPL-based
DoS attacks as well as to locate the attack source for its mitigation.

During a study of DoS attacks done out of the scope of NoC-based MPSoCs, two
attacks were identified as portable to such context. Since related works only focuses on
flooding DoS attacks, they expect that an attack is caused either by a greater-than-
normal transmission of communication requests or data packets. Therefore, MPSoCs
would remain vulnerable to Low-and-Slow DoS attacks which are able to cause the same
or greater disruption with normal or less-than-normal transmission of communication
requests or data packets. In order to tackle this, approaches against flooding DoS
attacks can be complemented with the proposed Low-and-Slow DoS Attack Avoidance
(LSDAA) scheme presented in Section 7.1.

As can be seen in Table 7, DoS attacks in NoC-based MPSoCs gained a greater
relevance starting in 2018. Also, most approaches focus on detection rather than
avoidance. Moreover, half of those approaches propose machine learning for learning a
“normal behavior" of traffic profiles so that anomalies can be later detected. Considering
that in a multi-tenant environment, as the one considered for this thesis, any user is
able to submit any type of application, the traffic flowing through the NoC at a given
time will be any combination created by the current users. Consequently, no permanent
traffic profile could be labeled as normal or malicious. Therefore, machine learning as a
means for DoS attack detection in multi-tenant NoC-based MPSoCs was discarded. As
explained in Section 7.2, bandwidth control policies can be derived from application
scheduling contracts, which when enforced for each transmission, can guarantee the
avoidance of the four targeted BRDoS attacks.
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6 DoS Attack Detection
Approaches presented in this chapter aim to provide better answer to research question
RQ2 than the ones found in related work attempting detection of BRDoS attacks in
NoC-based MPSoCs, summarized in Section 5.2. The first approach, named Collision
Point Router Detection (CPRD), is presented in Section 6.1. An enhancement towards
the localization of an attack source, named Collision Point Direction Detection (CPDD),
is presented in Section 6.2. As a final step in the same direction, an Active DoS Attack
Detection phase is presented in Section 6.3. Also, a different approach seeking the same
objective, named Communication Disruption Tattletaling, is presented in Section 6.4.
A comparison of such approaches with related works is presented in Section 5.3.

6.1 Collision Point Router Detection
This section presents the first approach seeking to answer research question RQ2
(Section 1.2), namely CPRD, which attempts to detect DoS attacks in NoC-based
MPSoCs. CPRD is a distributed DoS detection scheme that is able to measure the
performance degradation of monitored data and detect the router where malicious
packets collide/disrupt the communication path (a.k.a. Collision Router - CR). As
explained in Section 3.1, a Flooding DoS attack is effective in a NoC when the malicious
packets constantly collide with other packets, i.e. when they compete for a router’s
output and the legitimate packets are prevented from being forwarded.

When the CPRD method was designed, only Flooding DoS attacks (i.e. PIR- and
PPL-based DoS attacks) had been identified as BRDoS attacks that could be executed
by a user of a multi-tenant NoC-based MPSoC. However, it was determined later that
CPRD is equally effective for detecting the Jellyfish Inter-flit Delay Variance (Jellyfish)
Low-and-slow DoS attack because of the disruption equivalence of the Jellyfish and the
PPL-based DoS attacks (Sections 3.1 and 7.1.2.2).

The remainder of this section is organized as follows: Section 6.1.1 presents the
proposed architecture for implementing the CPRD scheme. Section 6.1.2 details the
setup of experiments and discusses the obtained results. Section 6.1.3 presents an
overhead evaluation of the proposed mechanism in terms of area, critical-path delay,
and power. Finally, Section 6.1.4 concludes the section.

6.1.1 Proposed Architecture
In order to achieve a scalable NoC Architecture that is not only able to detect a
DoS attack, but also the router where it disrupts the communication of legitimate
packets, this section presents three small modifications to the Secure Bonfire platform
(Section 2.2.4.2). The first two of these modifications are regarding the structure of
the communication packets and the third relates to the architecture of the routers.

As shown in Figure 29, one of the modifications to the structure of the communication
packets refers to the definition of the Last Body Flit, which will now carry a time-stamp
of the packet’s generation time. The time stamp is introduced for enabling the system
to calculate the end-to-end latency of each packet, and based on it, detect if a DoS
attack is taking place. The second modification is related to the Tail Flit which now
carries the address of the router where the packet waited for the most for other packets
to be forwarded through a required output port (i.e. Max Latency Router Address),
and the number of clock cycles elapsed while waiting (i.e. Max Latency Value). This
information is evaluated in every router by a proposed DoS Monitor and updated in
case the waiting time in the current router is longer than the one stored in the packet.
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Figure 29: Packet Structure for CPRD

As mentioned earlier and shown in Figure 30, the third modification is to the router’s
architecture, where a proposed DoS Monitor is added to the beginning of the router’s
data path (i.e. before each of the FIFO buffers). Such a monitor enables the NoC to
distributively accuse the router where malicious traffic disrupts the path of monitored
communication. And by following such a distributed approach, it is easily scalable for
bigger NoC-based MPSoCs. The internal architecture of the proposed DoS Monitor is
depicted in Figure 31.

Figure 30: Router architecture for CPRD

The proposed DoS Monitor, illustrated by Figure 31, starts a 10-bit counter every
time a new Header flit arrives to the input of the FIFO and stops it when the Header flit
leaves the FIFO’s output. The counter is incremented on each clock cycle while other
packets are forwarded through their required output port. This is done by monitoring
the output grants provided by the router’s Allocator circuit filtered by the request sent
by the LDBR circuit. Furthermore, once the tail flit of the packet arrives, the counter
value is compared against the Max Latency Value stored in the tail flit. If the counter
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Figure 31: DoS Monitor Architecture for CPRD

value is smaller or equal, the tail flit will be forwarded as it is, otherwise, the monitor
replaces the stored value with the value of the counter. Additionally, the Max Latency
Router Address is updated with the current router address, and a new parity for the
tail flit is calculated and updated.

Once monitored packets reach their destinations, their end-to-end transmission
latency can be calculated based on the packet’s time stamp. Subsequently, such value
can be compared to that of a maximum expected, and if it is beyond the acceptable
limit, the Max Latency Router Address and the Max Latency Value can also be retrieved
from the packet and analyzed together with previous DoS suspicion reports. Finally, a
Collision Point Report (CPR) can be sent to the MPSoC’s Global Manager (GM) so
that it can decide on further action.

6.1.2 Experimental Work
The DoS Monitor, presented in Section 6.1.1, was implemented in RTL level and inte-
grated into the Secure Bonfire framework. Subsequently, the proposed NoC architecture
with the distributed DoS attack detection system was simulated using Modelsim from
Mentor Graphics [77].

The remainder of this section is organized as follows: Section 6.1.2.1 details the
configuration of the simulation scenarios. Section 6.1.2.2 presents the results obtained
on the experiments evaluating the effect of the attacker’s PIR, while Section 6.1.2.3
discusses the effect of the attacker’s PPL and its location.

6.1.2.1 Simulation Scenarios
In order to evaluate the performance of the proposed Distributed DoS Detection
system, simulations were executed on a 4 × 4 mesh NoC-based MPSoC architecture.
Three monitored paths were considered and disrupted from all possible attack sources.
Figure 32 depicts the three scenarios, one for each path. Traffic generators included
in the Bonfire platform were leveraged for simulating normal traffic and DoS attacks.
Moreover, the network routers (applying an XY-routing algorithm) use a credit base
flow control with fair Round-Robin arbitration (on packet level) and utilize Wormhole
switching with 4-flit deep FIFOs. Furthermore, the PIR, PPL, and location of the
monitored and malicious packets vary according to the purpose of each experiment.
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The adopted PIR values were either 0.003, 0.01 (i.e., one packet every 100 clock cycles),
or 0.03, while the PPL values were 10, 20, 30, or 50 flits. Additionally, random traffic
packets were transmitted with a PIR of 0.01 and a PPL of 10 flits, generated for 20
pseudo-random simulation start seeds.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 32: Simulation Scenarios

Figure 32a shows the first scenario considered for the experiments. The monitored
path is represented by the green arrow, which begins in PE 12 and ends in PE 3, going
sequentially through routers 12, 13, 14, 15, 11, 7, and 3. Figure 32b describes a
scenario where the source and destinations of the monitored path are PE 8 and PE 2,
respectively. Hence, monitored packets go through routers 8, 9, 10, 6, and 2. Finally,
Figure 32c depicts a scenario where monitored packets are sent by PE 4 and received
by PE 1, thus going through routers 4, 5, and 1. It is worth noticing that longer paths
provide more points of disruption.

6.1.2.2 Effect of the Attacker’s PIR
The experiments presented in this section target the analysis of the DoS attack from two
aspects: i) from the point of view of the attacker in order to maximize the effectiveness
of the attack, and ii) from the point of view of network protection, evaluating different
metrics that can be leveraged for detecting an attack and qualifying the effectiveness
of the CPRD mechanism. For the twofold evaluation, the scenario from Figure 32a
was adopted, adding an attacker in PE 15 and the attack path 15→3, as illustrated
by Figure 33. Moreover, the malicious and monitored packets collide within router 15
while attempting to be forwarded to their destinations through the north output port of
the collision router (CR).

Figure 33: Scenario 1 + attack path 15→3, collision in router 15
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Within this analysis targeting the effect of the attacker’s PIR (AP IR), simulations
were done considering monitored packets with a PPL of 10 flits (i.e., MP P L = 10) and
malicious packets with a PPL of 30 flits (i.e., AP P L = 30).

As mentioned in [70], an attacker may be able to identify the success/effectiveness
of the attack by measuring its own throughput when attempting a PIR-based BRDoS
attack. As shown in the first and third column of Table 9, when the intended PIR value
of the attacker (AP IR) is incremented, an increasing gap with the Attacker’s Effective
PIR can be seen. An AP IR value of 0.01 is shown to be over the limit of the network’s
capacity for the adopted configuration since trying to send a packet with a PPL of 30
flits (AP P L) every 100 clock cycles resulted in an effective AP IR of one packet every
140 clock cycles, approximately. Such difference, expressed as a growth percentage
related to the intended AP IR, is presented in the fourth column of Table 9. In this
work, a PIR deviation of 10%, seen by the attacker is considered an effective attack.

Table 9: Attack effectiveness (AS : 15, AP P L: 30, MP P L: 10, RP P L: 10, RP IR: 0.01).

Attacker Monitored Attacker Attacker PIR_A Attack
PIR_A PIR_M Effective PIR_A Deviation (%) Effective

0.003 0.003 0.003 0 ✖
0.003 0.01 0.003 0 ✖
0.003 0.03 0.003 0 ✖
0.01 0.003 0.0071 29 ✔
0.01 0.01 0.0071 29 ✔
0.01 0.03 0.0070 30 ✔
0.03 0.003 0.0086 71.33 ✔
0.03 0.01 0.0085 71.67 ✔
0.03 0.03 0.0086 71.33 ✔

As mentioned in Section 6.1.1, it is proposed that each monitored packet carries
a time-stamp generated when the packet entered the NoC. Such a time stamp can
be used for calculating the end-to-end communication delay upon the packet’s arrival.
The mean end-to-end delay of the monitored packets for the 20 pseudo-random traffic
simulation seeds in a scenario with no attacker is listed in Table 10 for each MP IR

value. This mean value and the sample standard deviation (SSD) are used for detecting
DoS attacks if an end-to-end delay goes above a threshold T , calculated with (13).

T = mean_delay +0.5×SSD (13)

Table 10: End-to-End delay under no attack (MP P L: 10, RP P L: 10, RP IR: 0.01).

Monitored Mean End-to-End Sample Standard Detection Threshold
PIR_M Delay (Clock Cycles) Deviation (Clock Cycles) (Clock Cycles)

0.003 88.9056 17.3167 97.5640
0.01 162.0356 43.6219 183.8466
0.03 915.5529 405.9398 1118.5228

Furthermore, Table 11 lists the results of the experiments from the network pro-
tection’s point of view for the same scenario where the attacker is located at router
15 (Figure 33). Since a DoS attack was present, the end-to-end delay reached values
greater than the threshold T (see Equation (13) and Table 10), enabling the diagnosis
mechanism to detect the attack. However, for an AP IR of 0.01, the collision point was
not determined. This is because the traffic entering from other inputs and requiring
the same output was more or less equal to the one from the attacker. On the other
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hand, for AP IR configurations where the attacker noticed success by monitoring its
own throughput (i.e., AP IR ≥ 0.01), the proposed DoS CPRD mechanism managed
not only to detect the attack but also the point where the malicious traffic intercepted
the monitored path. For the scenarios where the collision point router was found, the
last column of the table lists the detection confidence.

Table 11: Attack detection (AS : 15, AP P L: 30, MP P L: 10, RP P L: 10, RP IR: 0.01).

Attacker Sensitive End-to-End Attack Detected Attack Detected Collision Point
PIR_A PIR_M Delay (Clock cycles) by Attacker with CPRD Detection Confidence

0.003 0.003 181.331 ✖ ✔ ✖
0.003 0.01 765.047 ✖ ✔ ✖
0.003 0.03 2679.22 ✖ ✔ ✖
0.01 0.003 656.859 ✔ ✔ 1
0.01 0.01 3346.42 ✔ ✔ 0.8
0.01 0.03 4336.19 ✔ ✔ 0.7
0.03 0.003 308.823 ✔ ✔ 1
0.03 0.01 2937.8 ✔ ✔ 1
0.03 0.03 4318.1 ✔ ✔ 0.95

6.1.2.3 Effect of the Attacker’s Packet Payload Length and Location
In order to find configurations that would maximize the success of an attack, experiments
were done for the three scenarios presented in Section 6.1.2.1 considering four different
AP P L values (i.e., 10, 20, 30, and 50 flits). For such experiments, MP P L and RP P L

were set to 10 flits and all the PIRs were set to 0.01 (i.e., AP IR = MP IR = RP IR =
0.01). Additionally, while maintaining the source and destination of each scenario, the
attack source was simulated in all other PEs, which as shown in Figure 34 for Scenario
1, translates to different Attack Path Lengths (AP L) and different Collision Routers
(CRs). However, in cases where the attack source is directly in the monitored path, the
attack source and the CR are the same.

Figure 34: Attack path lengths and collision routers for different attack sources - Scenario 1

Figure 35 presents the end-to-end delay simulation results of the monitored packets
for the combination of the considered AP P L and attack sources (AS), for each of the
three selected scenarios. As expected, results show that the end-to-end delay of the
monitored packets is proportional to the AP P L value, achieving the highest mean delay
values for the 50-flit AP P L configurations. This is because a longer packet manages to
retain the grant of a router’s output port longer, preventing other packets from being
forwarded. Regarding the AS , it can be seen that the highest end-to-end transmission
delays for monitored packets were caused as a result of injecting the malicious traffic
into the routers closest to the monitored destination.
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3

Figure 35: End-to-end delay vs attacker’s packet payload length (AP P L) for different attack
sources (AS) using XY Routing

6.1.3 Area and Power Overhead
The proposed architecture was synthesized using the 0.18µm AMS library and Synopsys
design vision at 200 MHz. Area overhead and critical path delay of the proposed
architecture compared to the baseline architecture (Secure Bonfire) are reported in
Table 12. The critical path delay overhead of the proposed method is negligible and
the proposed monitors only add 17% area overhead to the minimalist router area (each
monitor only adds 3.4% overhead to the router’s area). The main contribution to area
overhead is caused by the counter registers of each DoS Monitor.

Table 12: Area and critical path delay overhead.

Area

Sequential Combinational Total Overhead Critical PathRouter
(µm2) (µm2) (µm2) (%) Delay (ns)

Baseline 48378.7 42669.0 91047.8 – 4.82
CPRD 52033.7 55129.9 107163.7 17.7% 4.8

Power analysis of the proposed method has been performed for random uniform
traffic with a packet injection rate of 0.01 for the baseline architecture and the proposed
architecture (without the presence of an attacker, see Figure 32). The results of these
experiments are reported in Table 13. Results show that the proposed approach adds
5% power overhead to each router that includes five monitors.

Table 13: Power overhead.

Switching Internal Leakage Total TotalRouter Power (mW) Power (mW) Power (mW) Power (mW) Overhead (%)

Baseline 0.151 3.663 0.261 3.814 –
CPRD 0.273 3.374 0.327 4.008 5%

6.1.4 Conclusion
This section presented the first approach proposed for detecting DoS attacks in multi-
tenant NoC-based MPSoCs and answer research question RQ2, namely Collision Point
Router Detection (CPRD) [1]. It is a distributed DoS detection scheme that measures the
performance degradation of monitored data transmissions under flooding BRDoS attacks,
which can also be used for detecting the router where the malicious packets disrupted
the monitored path. An exploration of the effect of different attack configurations was
also presented. Such configurations include different packet injection rates, packet
payload lengths, and attack sources. Experimental work showed that malicious packets
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with a longer payload and intercepting the monitored path closer to its destination,
cause a greater communication disruption; additionally, that a combination of two delay
metrics can be leveraged for not only detecting a DoS attack but also identifying its
entry point into the monitored path with high accuracy.

As explained in Section 5.3, the CPRD is able to detect more types of attacks
than most of the approaches presented in related works. Moreover, it is shown in
Section 6.1.3 that small area and power overheads are incurred for its implementation.

As a step forward towards detection and localization of BRDoS attacks in addition
to locating a collision router, Section 6.2 presents an approach able to either find the
exact attack source or generate a list of suspects.

6.2 Collision Point Direction Detection
The approach presented in this section is named Collision Point Direction Detection
(CPDD) which is an improvement of the CPRD scheme detailed in Section 6.1. The
aim of this approach is not only to find the router where malicious traffic disrupts the
monitored communication (i.e., the collision router - CR), but also to determine a list
of Possible Attack Sources (PAS - i.e., the PEs where the attack might be originated).
To this end, the input and output ports of the CR used by the malicious traffic are also
determined. By combining such information, results show that the list of PAS can be
reduced by a maximum of 69%, thus lowering the required effort of an MPSoC’s Global
Manager for locating the source of a BRDoS attack.

This section is organized as follows: Section 6.2.1 presents the proposed architecture
for implementing the CPDD scheme. Section 6.2.2 details the Collision Point Report
(CPR). Section 6.2.3 explains how a list of PAS can be determined based on a CPR,
showing the improvement of CPDD when compared to CPRD. Section 6.2.4 details
the setup of experiments and discusses the obtained results. Section 6.2.5 presents an
evaluation of the overhead of the proposed mechanism in terms of area, critical-path
delay, and power. Finally, Section 6.2.6 concludes the section.

6.2.1 Proposed Architecture
The CPDD architecture is similar to that of the CPRD (Section 6.1.1), but extends it to
report the direction of the malicious traffic through the CR (i.e., the input and output
ports of the CR). As shown in Figure 36, the packet format has been slightly changed
to include the inputs competing to enter the monitored path and the output for which
they competed. The proposed architecture of the router for CPDD remains the same as
CPRD (Figure 30). However, the architecture of the DoS monitor is changed to report
the direction of competing packets, as shown in Figure 37. Now, if the latency value
stored in the packet’s tail flit is less than the value of the local latency counter, the
monitor updates the tail flit not only with the router address and the waiting time but
also with the competitors and the output for which they competed.

For adding the competitors in the Tail Flit of monitored packets, a 5-bit competitors
log was added to the DoS monitor. Such log records all the input ports that acquired a
forwarding grant to the required output while the monitored packet waits its turn.

Once a monitored packet reaches its destination, similar to the CPRD approach,
the firmware of the MPSoC-powered device calculates the end-to-end delay based on
the timestamp contained in the packet. Provided that the calculated value exceeds
the threshold, the collision point is determined. However, for the CPDD approach, the
firmware will also extract the direction information to narrow down a list of PAS, which
can later be used for localizing the compromised PE.
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Figure 36: Packet Structure CPDD

Figure 37: DoS Monitor Architecture CPDD

6.2.2 Collision Point Report
As presented in [2] and also summarized in this section, by introducing communication-
monitoring information into the Tail Flit (see Figure 36) during the transmission of
packets and retrieving it when they are received, it is possible for the destination NI or
firmware to generate a CPR from where a list of PAS can be generated.

A CPR contains: i) the router in which the packet had its worst collision (CR),
determined by: ii) the greatest amount of time the packet waited in the CR while the
required output port was busy (CW); iii) the input ports that won the competition for
the required output port while the packet waited in the CR (IPC); and iv) the output
port for which the traffic flows competed (OPA). Both, IPC and OPA are expressed
as 5-bit binary words following a NEWSL port convention (i.e. North, East, West,
South, Local). Furthermore, the single-packet collision report can be processed by the
destination NI as follows:

A competition or collision degree (CD) can be calculated by identifying the number
of competitors reported at the CR (i.e. the number of ones in IPC). According to
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the load of the NoC, such a degree will obtain values from 0 to 3 (considering that no
U-turns are allowed and that the input of the reporting packet cannot compete with
itself). By comparing the CD and the CW values to the thresholds established by the
GM, the NI can label the evaluated single-packet collision report as an anomaly and
store it for further analysis.

In the second phase of the analysis, when the NI has gathered related anomalies
determined by the GM, the related anomalies are evaluated together to find the input
port reported the most as a competitor, which is considered as the port through which
malicious traffic entered the CR (IPA). Thus, in a successful DoS attack, the packets
of a legitimate source will constantly collide with the malicious traffic flowing through
its path, rather than with other discontinued legitimate bursts of packets.

At this point, the NI has identified the router where the monitored and malicious
traffic collided (aka CR), the input port through which the malicious traffic entered the
CR (aka IPA), and the output for which the two traffic competed (aka OPA). Such
information, from here on after referred to as the Collision Point Report (CPR), can be
processed for generating a list containing the PAS. The process of identifying the PAS
is explained next in Section 6.2.3.

6.2.3 List of Possible Attack Sources
As explained before, when an NI detects recurrent NoC communication anomalies, it
can generate a CPR containing a router labeled as CR as well as the input and output
ports of the CR used by traffic tagged as malicious (i.e. IPA and OPA, respectively).
As presented in [2] and in this Section, based on such information gathered during the
normal communication over the NoC, a list of PAS can be created. An illustrative
example is presented in Section 6.2.3.1. Additionally, formal definitions are presented in
Section 6.2.3.2 where the dimensions of the NoC and the current routing constraints
are also taken into consideration for reducing the PAS.

Figure 38 shows the groups of routers that can be tagged as PAS relative to the CR.
Such groups are labeled according to their location in the NoC as well as the location
of the CR. Labels correspond either to directions (i.e., North, East, West, and South)
or quadrants (i.e., North-East, North-West, South-East, and South-West).

Figure 38: Directions and quadrants of a NoC relative to a collision router
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Furthermore, routers in directions and/or quadrants are labeled as PAS depending
on the path taken by malicious traffic inside the CR. Figure 39 illustrates the PAS if
the path followed by the malicious packets inside the CR corresponds to a turn. On the
other hand, Figure 40 depicts the PAS when the malicious traffic was forwarded to the
Local output port of the CR or if the path corresponds to a straight path.

(a) PAS = (N + NW) or (W + NW) (b) PAS = (N + NE) or (E + NE)

(c) PAS = (W + SW) or (S + SW) (d) PAS = (E + SE) or (S + SE)

Figure 39: List of Possible Attack Sources - turns

(a) PAS = NW + N + NE (b) PAS = NE + E + SE

(c) PAS = NW + W + SW (d) PAS = SW + S + SE

Figure 40: List of Possible Attack Sources - straight path or destination

65



6.2.3.1 Illustrative Examples
This section explains the relation between the CPR and the PAS via simple examples
based on the XY routing algorithm [78]. However, as shown later in this chapter,
experimental results using adaptive routing are also provided. In order to notice the
enhancement done to the CPRD through the CPDD, the illustrative examples adopt
the scenarios presented in Section 6.1.2.1.

Figure 41 shows the first scenario considered for this exercise. The monitored path
is represented by the green arrow, which begins in router 12 and ends in router 3, going
also through routers 13, 14, 15, 11, and 7. For such a case, it is considered that neither
router 12, nor 3 can attack such a path.

Figure 41: Example 1 - Scenario

In case Router 13 is labeled as the CR in the CPR, there would be only one
possible attack source, namely PE 13, since the traffic of no other PE could request
the East output port of Router 13, when implementing XY routing. However, in more
sophisticated cases, the set of candidates can be larger (as listed in Table 14). It
is important to note that the GM excludes the nodes that have a higher chance of
collision in their own router. For example, if the reports label Router 14 as the CR, the
GM (Router 10) will not include PE 13 as a suspect since it has a better chance of
interference on the East output port of Router 13. Additionally, the location of the GM
will also not be considered as a suspect.

Table 14: Possible Attack Suspects for Example 1
Collision
Router

Suspects using
CPRD [1] IPA OPA

Suspects using
CPDD [2]

13 13 L E 13
14 14 L E 14
15 15 L N 15

11 8, 9, 10, 11 W N 8, 9, 10
L N 11

7 4, 5, 6, 7 W N 4, 5, 6
L N 7

3 0, 1, 2 W L 0, 1, 2

Figure 42 describes a scenario where the source and destinations of the monitored
path are nodes 8 and 2, respectively. This example is different from the previous
example in one important aspect: the monitored path can be disrupted from both sides.
This in turn will increase the PAS for a given CR. As can be seen in Table 15, CR 10
is a descriptive example of such a situation. However, knowing the direction of the
interference will further decrease the list of PAS (from 6 PEs to a number of 4 PEs in
the worst case, and in the best case scenario down to a single PE).
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Figure 42: Example 2 - Scenario

Table 15: Possible Attack Suspects for Example 2
Collision
Router

Suspects using
CPRD [1] IPA OPA

Suspects using
CPDD [2]

9 9 L E 9

10 10, 11, 12,
13, 14, 15

E N 11
S N 12, 13, 14, 15
L N 10

6 4, 5, 6, 7
E N 7
W N 4, 5
L N 6

2 0, 1, 3 E L 3
W L 0, 1

The scenario depicted in Figure 43 shows a more extreme case than Scenario 2,
where a CPR stating Router 5 as the CR would lead to a list of 11 possible attack
suspects (refer to Table 16). Further investigation shows that knowing the direction of
interference reduces the number of suspects, in the worst case to 8 PEs and in the best
case to 1 PE (3.6 PEs on average).

Figure 43: Example 3 - Scenario

Table 16: Possible Attack Suspects for Example 3
Collision
Router

Suspects using
CPRD [1] IPA OPA

Suspects using
CPDD [2]

5
5, 6, 7, 8,

9, 10, 11, 12,
13, 14, 15

E N 6, 7

S N 8, 9, 10, 11,
12, 13, 14, 15

L N 5

1 0, 2, 3 E L 2, 3
W L 0
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6.2.3.2 Definition by Intention
Using groups theory, this section defines the concepts of Quadrant, Direction, and List
of PAS for an n×m NoC-based MPSoC. The PAS is derived from the provided CPR
(Section 6.2.2) and the implemented routing algorithm (RA).

• Routing Algorithm (RA): Given that Rxy is an 8-bit word representing the
permitted and prohibited turns by the NoC’s implemented routing algorithm in
the form of Rxy : [N2E N2W E2N E2W W 2N W 2S S2E S2W ], as presented
in Section 2.2.3, the RA is defined as the set of allowed turns as follows:

RA = {x2y | Rxy = 1 for x2y} (14)

• Directions:

DN (CR) = {r | 0 ≤ ry < CRy, rx = CRx} (15)
DE(CR) = {r | ry = CRy, CRx < rx < m} (16)
DW (CR) = {r | ry = CRy, 0 ≤ rx < CRx} (17)
DS(CR) = {r | CRy < ry < n, rx = CRx} (18)

• Quadrants:

QNW (CR) = {r | 0 ≤ ry < CRy, 0 ≤ rx < CRx} (19)
QNE(CR) = {r | 0 ≤ ry < CRy, CRx < rx < m} (20)
QSW (CR) = {r | CRy < ry < n, 0 ≤ rx < CRx} (21)
QSE(CR) = {r | CRy < ry < n, CRx < rx < m} (22)

• PAS if the path followed by malicious packets within the CR corresponds to a
turn:

* IPA = N ∧ OPA = E:

PAS =
{

DN (CR) ∪ QNW (CR) E2S ∈ RA

DN (CR) E2S /∈ RA
(23)

* IPA = W ∧ OPA = S:

PAS =
{

DW (CR) ∪ QNW (CR) S2E ∈ RA

DW (CR) S2E /∈ RA
(24)

* IPA = N ∧ OPA = W :

PAS =
{

DN (CR) ∪ QNE(CR) W2S ∈ RA

DN (CR) W2S /∈ RA
(25)

* IPA = E ∧ OPA = S:

PAS =
{

DE(CR) ∪ QNE(CR) S2W ∈ RA

DE(CR) S2W /∈ RA
(26)
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* IPA = W ∧ OPA = N :

PAS =
{

DW (CR) ∪ QSW (CR) N2E ∈ RA

DW (CR) N2E /∈ RA
(27)

* IPA = S ∧ OPA = E:

PAS =
{

DS(CR) ∪ QSW (CR) E2N ∈ RA

DS(CR) E2N /∈ RA
(28)

* IPA = E ∧ OPA = N :

PAS =
{

DE(CR) ∪ QSE(CR) N2W ∈ RA

DE(CR) N2W /∈ RA
(29)

* IPA = S ∧ OPA = W :

PAS =
{

DS(CR) ∪ QSE(CR) W2N ∈ RA

DS(CR) W2N /∈ RA
(30)

• Possible Attack Suspects if the path followed by malicious packets within the CR
corresponds to a straight path or if they were forwarded to the Local output port
of the CR:

* IPA = N ∧ (OPA = S ∨ OPA = L):

PAS =


DN (CR)∪QNW (CR)∪QNE(CR) E2S ∈ RA ∋ W2S

DN (CR)∪QNW (CR) E2S ∈ RA ̸∋ W2S

DN (CR)∪QNE(CR) E2S ̸∈ RA ∋ W2S

DN (CR) E2S ̸∈ RA ̸∋ W2S

(31)

* IPA = E ∧ (OPA = W ∨ OPA = L):

PAS =


DE(CR)∪QSE(CR)∪QNE(CR) N2W ∈ RA ∋ S2W

DE(CR)∪QSE(CR) N2W ∈ RA ̸∋ S2W

DE(CR)∪QNE(CR) N2W ̸∈ RA ∋ S2W

DE(CR) N2W ̸∈ RA ̸∋ S2W

(32)

* IPA = W ∧ (OPA = E ∨ OPA = L):

PAS =


DW (CR)∪QSW (CR)∪QNW (CR) N2E ∈ RA ∋ S2E

DW (CR)∪QSW (CR) N2E ∈ RA ̸∋ S2E

DW (CR)∪QNW (CR) N2E ̸∈ RA ∋ S2E

DW (CR) N2E ̸∈ RA ̸∋ S2E

(33)

* IPA = S ∧ (OPA = N ∨ OPA = L):

PAS =


DS(CR)∪QSW (CR)∪QSE(CR) E2N ∈ RA ∋ W2N

DS(CR)∪QSW (CR) E2N ∈ RA ̸∋ W2N

DS(CR)∪QSE(CR) E2N ̸∈ RA ∋ W2N

DS(CR) E2N ̸∈ RA ̸∋ W2N

(34)
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• Further reduction of the PAS: Since the PE running the Global Manager will
normally not run user applications, its location can be removed from the PAS:

PAS′ = PAS \{GM} (35)

6.2.3.3 Further Discussion
When applying the same method to different routing algorithms, the gain of the proposed
mechanisms becomes clearer. Figures 44, 45, and 46 depict the minimum, maximum and
average number of PAS for the three examples presented in Section 6.2.3.1, for different
minimal-path turn-model based routing algorithms. In this analysis, the following routing
algorithms have been considered: XY [78], YX [79], West-First [80], East-First [81],
North-First [82], North-Last [80], Negative First [80], and South-First [82]. In this
work, the SocDep2 [37] framework was used for modeling the routing graphs for the
above-mentioned turn models.

Figure 44: Average number of PAS under different routing algorithms (Example 1)

Figure 45: Average number of PAS under different routing algorithms (Example 2)

Figure 46: Average number of PAS under different routing algorithms (Example 3)
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Compared to oblivious search (marked in orange in Figure 44, Figure 45, and
Figure 46, the use of router locations will reduce the PAS in the worst case effort
by 52%, 42%, and 21% for the monitored paths of the three examples presented in
Section 6.2.3.1. Similarly, the use of directions will further reduce the worst-case effort
by 63%, 69%, and 56%. The use of collision direction in locating the attacker source
reduces the maximum effort of the location-based solution by 24%, 48%, and 44%
respectively for the three examples and the average effort by 30.6%, 40%, and 39%.

6.2.4 Experimental Work
To evaluate the proposed CPDD scheme presented in Section 6.2.1, it was implemented
on RTL level and integrated into the Secure Bonfire framework (Section 2.2.4.2), and
compared to the CPRD scheme. Traffic generators included in the Bonfire platform
were leveraged for simulating normal traffic and DoS attacks on 4×4 mesh NoC-based
MPSoC scenarios. Moreover, the network routers (applying either XY or West First
routing algorithm) use a credit base flow control with fair Round-Robin arbitration
(on packet level) and utilize wormhole switching with 4-flit deep FIFOs. Furthermore,
random traffic was transmitted with a PPL of 10 flits and a PIR of 0.01 (i.e., one packet
every 100 clock cycles). The PPL and PIR of the monitored and attacker packets, as
well as their source and destination, vary according to the purpose of each scenario.
The remainder of this section details the scenarios considered for the simulations in
Section 6.2.4.1 and discusses the obtained results in Section 6.2.4.2 and Section 6.2.4.3.

6.2.4.1 Simulation Scenarios
Section 6.2.3 explained the benefit of identifying the port through which malicious
traffic disrupts the monitored path. This section presents the direction detection success
and misses of the CPDD mechanism for the scenarios presented as illustrative examples
in Section 6.2.3.1. Simulations were executed considering a PIR_A value of 0.03 and
PIR_M = PIR_R = 0.01. Each experiment was performed for 20 pseudo-random
simulation seeds to provide uniform results. Additionally, four attacker PPLs were
adopted (i.e., 10, 20, 30, and 50 flits), while the network’s random traffic and the
monitored node’s traffic generated packets with the PPL of 10 (i.e., PPL_R = PPL_S
= 10). Moreover, experiments were executed considering not only a deterministic
routing algorithm but also an adaptive routing algorithm. Results for each routing
algorithm are presented separately in Sections 6.2.4.2 and 6.2.4.3, respectively.

6.2.4.2 Results for XY Routing
Tables 17, 18, and 19 summarize respectively the obtained detection results for scenarios
depicted in Figures 41, 42, and 43 under XY routing. Each row lists the detection
effectiveness of the CPR and the input direction of the malicious packets for every
possible attack source. Also, each pair of columns groups the router and direction
detection results for each of the attacker packet length values.

Results show that CPDD detected the input direction for almost all the scenarios
where the CR was found. Also, once again, due to the wormhole switching, as the PPL
of the attacker was increased, it became easier to detect the collision point router.

6.2.4.3 Results for West-First Routing
A similar analysis to the one shown in the previous section was performed by adopting
the West-First adaptive routing algorithm. Tables 20, 21, and 22 summarize respectively
the obtained detection results for scenarios depicted in Figures 41, 42, and 43 under
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Table 17: XY Routing - Example 1
APL = 10 APL = 20 APL = 30 APL = 50

AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 ✖ – ✖ – ✔ ✔ ✔ ✔
1 ✖ – ✖ – ✔ ✔ ✔ ✔
2 ✖ – ✖ – ✔ ✔ ✔ ✔
3 – – – – – – – –
4 ✖ – ✔ ✔ ✔ ✔ ✔ ✔
5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
11 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
12 – – – – – – – –
13 ✖ – ✖ – ✔ ✔ ✔ ✔
14 ✖ – ✖ – ✔ ✔ ✔ ✔
15 ✖ – ✖ – ✔ ✔ ✔ ✔

Table 18: XY Routing - Example 2
APL = 10 APL = 20 APL = 30 APL = 50

AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 ✖ – ✖ – ✔ ✔ ✔ ✔
1 ✖ – ✖ – ✔ ✔ ✔ ✔
2 – – – – – – – –
3 ✖ – ✖ – ✔ ✔ ✔ ✔
4 ✖ – ✖ – ✔ ✔ ✔ ✔
5 ✖ – ✖ – ✔ ✔ ✔ ✔
6 ✖ – ✖ – ✔ ✔ ✔ ✔
7 ✖ – ✔ ✔ ✔ ✔ ✔ ✔
8 – – – – – – – –
9 ✖ – ✖ – ✖ – ✔ ✔
10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
11 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
12 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
13 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
14 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
15 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 19: XY Routing - Example 3
APL = 10 APL = 20 APL = 30 APL = 50

AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 ✖ – ✖ – ✔ ✔ ✔ ✔
1 – – – – – – – –
2 ✖ – ✖ – ✔ ✔ ✔ ✔
3 ✖ – ✖ – ✔ ✔ ✔ ✔
4 – – – – – – – –
5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖
6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
11 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
12 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
13 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
14 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
15 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

West-First routing. Each row lists the detection effectiveness of the CR and input port
of the malicious packets for every possible attack source. Also, each pair of columns
groups the router and direction detection results for each of the attacker PPL values.
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Table 20: West-First Routing - Example 1
APL = 10 APL = 20 APL = 30 APL = 50

AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
3 – – – – – – – –
4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
6 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔
7 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔
8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
10 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔
11 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
12 – – – – – – – –
13 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
14 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔
15 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔

Table 21: West-First Routing - Example 2
APL = 10 APL = 20 APL = 30 APL = 50

AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
2 – – – – – – – –
3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
8 – – – – – – – –
9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
10 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔
11 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
12 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
13 ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔
14 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
15 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔

Table 22: West-First Routing - Example 3
APL = 10 APL = 20 APL = 30 APL = 50

AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔
1 – – – – – – – –
2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
3 ✔ ✔ ✖ – ✔ ✔ ✔ ✔
4 – – – – – – – –
5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
11 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
12 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
13 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
14 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
15 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

The results for this set of experiments show a better detection efficiency of the
attacker’s location compared to a system using XY routing. However, since traffic
between two routers may have more than one minimal path, the number of PAS is
much larger (refer to Figures 44, 45, and 46).
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6.2.5 Area and Power Overhead
The proposed architectures (CPRD and CPDD Routers) were synthesized using the
0.18 µm AMS library and Synopsys design vision at 200 MHz. Area overhead and critical
path delay of the proposed architectures compared to the baseline architecture are
reported in Table 23. The critical path delay overhead of the CPRD method is negligible
and the proposed CPRD monitors only add 17% area overhead to the minimalist router
area (each CPRD monitor only adds 3.4% overhead to the router’s area). It is important
to note that the main contribution to area overhead is due to the inclusion of the
counter register. The width of the counters can be adjusted based on the application.
The CPDD router applies 23.2% area overhead to the baseline router. In order to put
the area overheads into perspective, we will consider the overheads on a 4 mm2 chip.
For an SoC using a 4×4 mesh NoC, the CPRD and CPDD would impose 0.4% and
0.5% overhead to the system respectively.

Table 23: Area and critical path delay overhead.

Area

Sequential Combinational Total Overhead Critical PathRouter
(µm2) (µm2) (µm2) (%) Delay (ns)

Baseline 48378.7 42669.0 91047.8 – 4.82
CPRD 52033.7 55129.9 107163.7 17.7% 4.8
CPDD 58313.6 53873.9 112187.5 23.2% 4.79

Power analysis: the power consumption of the proposed methods and the baseline
architecture were evaluated for random uniform traffic with a PIR of 0.01 (without the
presence of an attacker). The results of these experiments are reported in Table 24.
The results show that the CPRD approach induces 5% power overhead and the CPDD
approach adds 9.4% to the baseline router.

Table 24: Power overhead.

Switching Internal Leakage Total TotalRouter Power (mW) Power (mW) Power (mW) Power (mW) Overhead (%)

Baseline 0.151 3.663 0.261 3.814 –
CPRD 0.273 3.374 0.327 4.008 5%
CPDD 0.269 3.905 0.346 4.174 9.4%

6.2.6 Conclusion
Network-on-Chip solutions have become the central communication infrastructure of
the modern MPSoCs. However, DoS attacks have been shown as an important threat
to NoC integrity. Hence, it is of utmost importance to detect the occurrence of such
attacks in the system, and also to locate the attacker in order to neutralize its effects.
To this end, this section presented an analysis of the benefit when in addition to finding
the collision router, the path taken by malicious traffic is also determined. Showing that
in some cases the actual attack source can be found. Additionally, a minimalist hardware
architecture was presented, which measures the performance degradation of monitored
data transmissions under BRDoS attacks and detects the collision point as well as the
path taken by malicious packets during communication disruption. Experimental results
show the effectiveness of the proposed approach.

As explained in Section 5.3, the CPDD is able to detect more types of attacks
than most of the approaches presented in related works. Moreover, it is shown in
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Section 6.1.3 that small area and power overheads are incurred for its implementation.
As a final step towards the detection and identifying the location of BRDoS attacks,
Section 6.3 presents a full procedure including the CPDD.

6.3 Active DoS Attack Detection
The proposed DoS attack detection mechanisms, namely CPRD and CPDD (respectively,
Sections 6.1 and 6.2), are from here on referred to as passive DoS attack detection
mechanisms since they aim to detect the attacks during the normal communication
process of the NoC-based MPSoC. Both methods were able to generate a CPR. However,
CPDD included additional information that can be used for generating a reduced list
of PAS, which for some cases could even be the actual attack source. This section
presents a two-action Active DoS attack detection scheme for locating the actual source
of attack when passive DoS attack detection is unable to do so.

This section is organized as follows: Section 6.3.1 summarizes Passive DoS attack
detection classifying it into possible cases.

Section 6.3.2, explains one of the actions taken during the Active DoS Attack
Detection phase where the GM sends network requests to rearrange traffic routes of the
PAS. Section 6.3.3 presents the other action in which communication testing packets
(CTPs) are transmitted aiming to intercept malicious traffic at its source, thus locating
the infected PE.

6.3.1 Passive DoS Attack Detection Cases
As explained in Section 6.2.2, during the normal functioning of the NoC, an NI is able
to detect NoC communication disruptions, and after recurrent disruptions, create and
send a CPR to the GM, Such a report contains a router ID labeled as CR as well as the
input and output ports of the CR used by the traffic flow tagged as malicious (i.e. IPA

and OPA, respectively). Subsequently, as explained in Section 6.2.3, based on such
information, together with the location of the GM, the dimensions of the NoC and the
current routing constraints, a list of possible attack sources can be created. Figure47
depicts four NoC-based MPSoC scenarios in which all of the possible path types that
malicious packets can take inside the CR are illustrated.

Furthermore, when GM receives a CPR, it also considers the NoC size and current
routing constraints (given by the current routing algorithm and possible additional
configured constraints), ending up in one of the following Passive DoS Attack Detection
cases:

• Case 1 : there is a single SA suspect. This is the case when IPA = Local, as
depicted in the scenario of Figure 47a where the collision occurred at the source
of the attack meaning that the attack is originated from the PE locally connected
to the CR. The scenario illustrated by Figure 47b falls into this case as well.
Considering the size of the NoC and the restrictions provided by the XY routing
algorithm, only traffic originating in P11 can access R10 through the West port
and exit through the North port.

• Case 2 : IPA and OPA reflect a turn inside the CR, as illustrated by Scenario- 2
in Figure 47b (It is worth mentioning that Case 1 has priority over Case 2. Thus
Scenario 2 falls into Case 1, but that is not the case of all the scenarios that fit into
Case 2). In this case, SA is usually unknown, but a list of possible attack sources
can be derived. Such a list containing the PEs relatively located in one of the
CR’s quadrants and in the direction the packet entered. Figure 39 illustrates all

75



(a) Scenario 1: IPA = Local

(b) Scenario 2: Malicious Packets Turn Inside the CR

(c) Scenario 3: Malicious Packets Go Straight Inside the CR

(d) Scenario 4: OPA = Local

Figure 47: Examples of possible paths of malicious packets inside a Collision Router
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the viable turns a packet can take inside a router and where SA would be located
if any of the turns were to be reported. This is formalized in Section 6.2.3.2.
Take as an example a collision report informing a turn inside the CR where
malicious packets entered through the West port and exited through the South
port (i.e. IPA = West and OPA = South) as depicted in Figure 39a. Two
possible situations are: i) SA is in the same row as the CR to the West; or ii) SA

is North-West of the CR implying that the malicious packets were traveling South
and turned East before reaching the CR. Even though the west input port of the
CR can also be reached by packets originating South-West of the CR, such a
possibility is excluded due to minimal path routing characteristic of the considered
routing algorithms as a turn returning to the south would not be allowed.

• Case 3 : IPA and OPA are in the opposite directions or OPA = Local, as
illustrated by Scenarios 3 and 4 of Figure47, respectively. In this case, SA

is mostly unknown (unless it falls into Case 1) and the list of possible attack
suspects will show the PEs relatively located to the CR in three of the eight
cardinal directions, comprising 2 quadrants. Figure 40 depicts all the IPA to
OPA combinations considered as straight paths and the corresponding location
region of the SA.
Take for example Figure 40c where the collision report states that the attacker
entered the CR from West to East or West to Local (i.e. IPA = West and OPA

= East or Local). The three possible situations are: i) SA is in the same row
as the CR (to the West); ii) SA is North-West of the CR and malicious packets
traveling South turned East before reaching the CR; or iii) SA is South-West of
the CR and malicious packets traveling North turned East.

In Figure 47, all the scenarios depict a 4 × 4 mesh network implementing the XY
deterministic routing algorithm and monitored traffic originating in PE8 is forwarded
to PE6 (colored green). Table 25 lists the attack suspects for each possible CR in the
path of the monitored flow. The second column is based on the CPRD approach, while
the last column is based on the CPDD approach, which considers IPA and OPA for
creating smaller lists. Even though for some cases of the given example, the CPDD
manages to identify a unique suspect, in some others it identifies up to four suspects.
Moreover, the number of suspects becomes larger once the network utilizes a routing
algorithm with a higher degree of adaptivity (where more turns are allowed). This is
the case of the West-First (WF) routing algorithm which would provide three possible
routes for packets transmitted from PE8 to PE6, each with a different set of attack
suspects as listed in Table 26. Furthermore, if the route taken by the monitored traffic
is unknown which is the case for non-deterministic routing, the list of attack suspects
for a given CR is the sum of suspects in all possible routes which can also be filtered
considering IPA and OPA. However, in some cases, lists of more than one suspect
will be obtained, hence further processing is required for locating the source of the
attack. Section 6.3.2 and Section 6.3.3 describe subsequent steps that can be taken for
detecting the actual attack source which are referred to as Active DoS attack detection.

6.3.2 Traffic Rearrangement
In the context of this dissertation, Traffic Rearrangement is defined as the action of
restricting the NoC’s traffic so that it flows through a deterministic path. By doing so
during a DoS attack, a new CPR can be generated, providing additional information
that can be used for reducing the list of PAS. Such action can be performed by carefully
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Table 25: Attack Suspects for Path 8→6 - XY Routing
Collision
Router

Suspects using
CPRD [1] IPA OPA

Suspects using
CPDD [2]

8 - - - -
9 9 L E 9

10 10, 11, 12,
13, 14, 15

E N 11
S N 12, 13, 14, 15
L N 10

6 0, 1, 2, 3,
4, 5, 7

N L 0, 1, 2, 3
E L 7
W L 4, 5

Table 26: Attack Suspects for Path 8→6 - WF Routing
Collision
Router

Suspects using
CPRD [1] IPA OPA

Suspects using
CPDD [2]

Ro
ut

e
1

8 0, 4, 12 N E 0, 4
S E 12

9 0, 1, 4, 5,
9, 12, 13

N E 0, 1, 4, 5
S E 12, 13
L E 9

10 10, 11, 12,
13, 14, 15

E N 11
S N 12, 13, 14, 15
L N 10

6 0, 1, 2, 3, 4, 5,
7, 9, 12, 13

N L 0, 1, 2, 3
E L 7

W L 0, 1, 4, 5,
9, 12, 13

Ro
ut

e
2

8 9, 10, 11, 12,
13, 14, 15

E N 9, 10, 11
S N 12, 13, 14, 15

4 0, 4 N E 0
L E 4

5 0, 1, 5, 9,
12, 13

N E 0, 1
S E 9, 12, 13
L E 5

6
0, 1, 2, 3, 7,
9, 10, 11, 12,

13, 14, 15

N L 0, 1, 2, 3
E L 7

S L 9, 10, 11, 12,
13, 14, 15

Ro
ut

e
3

8 0, 4, 12 N E 0, 4
S E 12

9 9, 10, 11, 12,
13, 14, 15

E N 10, 11
S N 12, 13, 14, 15
L N 9

5 0, 1, 4, 5, 12
N E 0, 1
W E 0, 4, 12
L E 5

6
0, 1, 2, 3, 7,
9, 10, 11, 12,

13, 14, 15

N L 0, 1, 2, 3
E L 7

S L 9, 10, 11, 12,
13, 14, 15

adding restrictions to the routing algorithm without compromising its functionality. This
can be done by introducing additional routing constraints in the header flit of packets
and modifying the routers so that they can interpret them.

As explained in Section 6.3.1, the GM’s DoS detection process is triggered by the
reception of a CPR and then generates a list of PAS. Furthermore, if such a list fits into
Case 1 of Section 6.3.1, passive DoS attack detection is enough for locating the source
of the attack and no further DoS attack detection mechanism has to be followed. On
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the other hand, if it fits into any of the other two cases, the GM proceeds to check
if the first action of the Active DoS Attack Detection can be executed (aka Traffic
Rearrangement). In order to be able to execute the Traffic Rearrangement, one of the
following two conditions must be met:

• Condition 1 : The CPR fits only into Case 2 of Section 6.3.1 and suspects in
the identified quadrant have two available turns for reaching the CR. In this
situation, the path taken by the malicious traffic inside the CR corresponds to
a turn and based on it, the GM can determine the quadrant where the attack
source is located (Figure 39 and Section 6.2.3.2). Furthermore, regardless of the
current routing constraints, packets originating in a such quadrant can take more
than one type of turn for reaching the CR following minimal routing (refer to
Figure 4c to Figure 7c). When this condition is met, the GM proceeds to restrict
the reported turn from the identified quadrant. However, turns detected inside a
router are expressed following an inner notation (e.g., a packet coming from the
East input port and turning to the North output port), while routing restrictions
are made using an outer notation (e.g., a packet traveling West that turns North).

• Condition 2 : The CPR fits only into Case 3 of Section 6.3.1 and suspects of at
least one of the two detected quadrants have two available turns for reaching
the CR (refer to Figure 4c to Figure 7c). In this situation, the malicious packet
either followed a straight path from IPA to OPA or reached its destination, i.e.
OPA = Local (Figure 40). Therefore, the list of PAS includes two quadrants.
Consequently, for each quadrant with two available turns, the same procedure of
Condition 1 is followed for a reported turn with the same IPA.

If the received CPR meets any of the two conditions, the suspects have some level
of routing adaptivity. Consequently, the GM will be able to impose additional routing
restrictions to them. Otherwise, only the second action of ADAD will be taken (a.k.a.,
Insertion of Communication Testing Packets, explained in Section 6.3.3).

Once a router receives a traffic rearrangement request, it continues the transmission
of the current packet (if any) and subsequently sends the following packets with a
header flit containing a different value of Routing Constraints. Subsequently, each time
a packet with the additional routing constraints reaches a NoC router, it will be routed
not only considering the restrictions imposed by the current routing algorithm, but also
the ones found in the header flit of the packet.

Figure 48 illustrates four examples where only Traffic Rearrangement is used. In such
examples, 16 PEs of an MPSoC are connected by a 4×4 mesh NoC that implements
the West-first adaptive routing [80]. Additionally, monitored traffic flows from PE8 to
PE6 (colored green) with different attack paths in each example (colored red).

In the first example, depicted in Figure 48a, malicious traffic flows from PE9 to PE6
(colored red). Also, a CPR tags R5 as the CR where the malicious traffic collided with
the legitimate traffic, entering through the South input port and competing for the East
output port. Since such report fits Case 2 of Section 6.3.1, the GM knows that the
source of the attack is in the South-west quadrant of the CR or South to it (refer to
Figure 39c). Consequently, the GM generates the list of PAS: {9, 12, 13} and decides
to narrow down such a list further. Apart from the N2E turn, the current routing
constraints also allow the suspects to reach the CR with the E2N turn (Figure 6c),
hence the CPR meets the Condition 1 for Traffic Rearrangement. Therefore, all the
routers connected to suspects are requested to restrict the turn equivalent to the one
detected, i.e. from North to East. Afterward, with the new routing constraints, a CPR
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(a) Example 1: Attack path 9→6

(b) Example 2: Attack path 12→6

(c) Example 3: Attack path 13→6

(d) Example 4: Attack path 1→11

Figure 48: Examples of Traffic Rearrangement
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tags PE9 as the source of the attack, hence the CPR fits into Case 1 since the new
collision in R9 (i.e. CR=R9) and the malicious traffic entering the CR through the
Local input port.

In the second example, illustrated by Figure 48b, the malicious traffic flows from
PE1 to PE6 (colored red) and the CPR tags R6 as the CR with packets entering
through the North input port and competing for the Local output port which fits into
Case 3 of Section 6.3.1. Consequently, the GM generates the list of PAS: {0, 1, 2, 3}.
Furthermore, now the GM knows the source of the attack is north of R6, including
the North-West and North-East quadrants as illustrated by Figure 40a, it checks the
available turns in each of those quadrants (Figure 6c). It then finds that according to
the current routing constraints, the CPR meets Condition 2 for Traffic Rearrangement
since suspects in the North-West quadrant are allowed to take E2S and S2E turns,
while suspects in the North-East quadrant are only allowed to make W2S turns (S2W is
disabled by the WF routing algorithm [80]). Therefore, the GM can rearrange traffic by
requesting only the North-West quadrant to disable East-to-South (E2S) turns. With
the new routing constraints, PE1 is tagged as the source of the attack, hence the report
fits Case 1 of Section 6.3.1, since the new collision occurred in R5 (i.e. CR=R5) and
despite the malicious traffic entering the CR through the North port and not the Local
port, based on the size of the network and the current routing constraints, PE1 is the
only core which is able to generate traffic capable of entering R5 through the North
port and exit through the East port.

In the third example, illustrated by Figure 48c, the malicious traffic flows from PE13
to PE6 (colored red). As in the second example, the CPR tags R6 as the CR. However,
the malicious traffic now entered through the South port and exited through the Local
port. Nevertheless, the collision report also fits into Case 3. So the GM generates the
list of PAS: {9, 11, 12, 13, 14, 15}. It is worth noticing that for this example, PE10
is not considered a suspect because the GM is running on it, thus it does not execute
applications from the users. Furthermore, now that the GM knows that the source of the
attack is south of R6, in order to assess the routing adaptivity allowed to the suspects
for reaching the CR, it classifies them into two quadrants. Subsequently, it realizes that
despite the suspects in the South-East quadrant having only the W2N turn available
according to the current routing constraints, suspects in the South-West quadrant
are allowed two turns: E2N and N2E (Figure 6c), meeting Condition 2 for Traffic
Rearrangement. Consequently, the GM requests the South-West quadrant to disable
turns when going East and turning North (E2N). With the new routing constraints, a
new CPR reaches the GM stating R5 as the CR, and that the malicious traffic entered
through the South and exited through the East. Such a situation fits into Case 2,
establishing that the source of the attack is South of the CR which narrows the list
of PAS to {9, 13}. Since no more routing restrictions can be imposed on the current
suspects, Condition 1 for Traffic Rearrangement is not met, requiring the second action
of Active DoS Attack Detection (a.k.a., Insertion of Communication Testing Packets)
which is explained in Section 6.3.3.

Finally, in the fourth example, illustrated by Figure 48d, the malicious traffic flows
from PE1 to PE11 (colored red). The CPR tags R9 as the CR, where the malicious
traffic entered through the North port and exited through the East port. Since such a
report fits Case 2, the GM knows that the source of the attack is in the North-West
quadrant of the CR or North to it (refer to Figure 39a). Consequently, the GM generates
the list of PAS: {0, 1, 4, 5}. Knowing that traffic generated in the North-West quadrant
has two available turns to reach the reported CR (Figure 6c), the GM decides to narrow
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the list of PAS further. Consequently, routers are reconfigured so that they introduce an
additional routing restriction to their local traffic, disabling turns of packets going South
turning East (S2E). As shown in Figure 48d (right), after applying the additional routing
constraints, it is possible that, if only the traffic rearrangement action is taken, no
further disruption is reported. In such a situation, the GM may be configured to finish
the detection process until another traffic flow generates a new CPR, or execute the
second action of the Active DoS Attack Detection (a.k.a., Insertion of Communication
Testing Packets) which is explained in Section 6.3.3.

6.3.3 Insertion of Communication Testing Packets
As seen in the previous section, traffic rearrangement is not enough for all scenarios. In
order to find the exact Source of the Attack (SA), a second action of the active DoS
attack detection is proposed. In this step, communication testing packets (CTPs) are
transmitted. Such packets sweep specific segments of the network and find the point
where malicious packets enter the NoC. CTPs are small so that they are able to assess
the competition of the output ports in the path without imposing too much delay on the
other packets. However, CTPs are only useful if they flow through a deterministic path,
where only one turn should be available for them to reach their destination. Therefore,
CTPs are only sent if the implemented routing algorithm restricts one of the turns or
together with the traffic rearrangement action. Figure 49 illustrates two examples of
using CTPs to locate the SA.

(a) Example 1: Attack path 13→6

(b) Example 2: Attack path 1→11

Figure 49: Examples of communication testing packets insertion

Figure 49a illustrates an example in which the insertion of CTPs is used for pinpointing
the source of a DoS attack. Such an example follows the action of Traffic Rearrangement
depicted in Figure 48b, which ended with the PAS {9, 13} after restricting the E2N
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turn of the West-First routing algorithm. With this second action of the active DoS
attack detection, the GM commands R13 to send CTPs to the CR, forcing them to
flow through R13 and R9, transporting the required information so that R5 reports R13
as the CR. Additionally, that the malicious traffic entered the CR through the Local
port, identifying it as the SA.

On the other hand, Figure 49b also depicts an example of the insertion of CTPs, but
as the continuation of the example from Figure 48d where the Traffic Rearrangement
action was equally not sufficient for finding the exact source of Attack (SA). The four
suspects are located in two rows and two columns. Additionally, the introduced routing
constraints force the traffic to initially flow horizontally when going from West to East
regardless of the row of their destination. Therefore, the GM chooses R0 and R4 as the
edge routers asked to introduce the CTPs. By doing so, the source of the attack is
discovered by the CTPs generated at R0.

6.3.4 Complete DoS Attack-Source Detection Strategy
This section describes the general strategy for detecting the exact SA. This process
starts when the GM receives a CPR. Such a strategy combines Passive and Active DoS
attack detection as detailed in Algorithm 1.

Once a collision is reported, the GM is able to generate a list of PAS as explained
in Section 6.2.3.2. This is done based mainly on the input (IPA) and output (OPA)
ports used by the malicious packets which the GM uses for identifying if the malicious
packets made a turn or followed a straight path within the CR. Subsequently, if the list
of PAS contains only one element, the search can be terminated.

Provided that the list of PAS contains more than one element, the GM attempts the
first action of Active DoS Attack Detection (ADAD), namely Traffic Rearrangement. It
first needs to identify the number of unrestricted turns the suspects can take to reach
the CR. This is done with the aim of reducing the PAS by forcing the traffic generated
by suspects to flow through deterministic paths.

A turn inside a router is defined as a ninety-degree path, as included in the following
set: { N → E, N → W, E → N, E → S, W → N, W → S, S → E, S → W },
using the notation IPA → OPA. Identifying the quadrant following Figure 39 and the
restricted turns for that quadrant according to Section 2.2.2, the GM will restrict one
of two turns, if two turns are allowed.

On the other hand, if malicious packets were routed following a straight path within
the CR as stated by the set: { N → S, N → L, E → W, E → L, W → E, W → L,
S → N, S → L }, the GM will check separately the restricted turns of each quadrant
that could reach IPA.

Finally, the GM will ask specific edge routers to send CTPs for sweeping the paths
followed by the PAS. These packets will follow all the routing constraints, even the ones
determined for traffic rearrangement, and update the routing constraints for suspects.
Moreover, actions triggered directly by the received CPR end here. However, some of
the requested CTPs will collide with the malicious traffic at its source where a new
CPR will be sent to the GM, enabling it to determine the exact SA.

6.3.5 Proposed Architecture
This section details the proposed architecture for implementing ADAD which is based
on the architecture of the CPDD presented in Section 6.2.1. This section contains all
the packet structures used in ADAD, as well as the proposed router architecture for its
implementation.
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Algorithm 1: Flooding DoS Attack Source Detection
input : // Mandatory general arguments

(n,m): NoC size (number of rows and columns in the NoC)
RA : Disabled turns in the current routing algorithm
// Mandatory arguments, provided with a Collision Point Report
CR : Collision Router (Router where the malicious traffic

collided with the monitored traffic)
IPA : Input Port of the CR used by the malicious traffic
OPA : Output Port of the CR used by the malicious traffic
// Optional arguments on first execution
RC : Set of additional disabled turns (initially RC = ∅)
P AS : Set of Possible Attack Sources (initially P AS = ∅)

output : SA : Source of DoS attack
// NI : Network Interface
// CT P s : Communication Testing Packets
// inv(dir) : Inverse of a direction.
// ∀ dir ∈ {N, E, W, S} ∃ inv(dir) ∈ {N, E, W, S} so that:
// inv(N) = S, inv(S) = N, inv(W ) = E, inv(E) = W

1 T urns←{ N → E, N →W, E→N, E→ S, W →N, W → S, S→ E, S→W };
2 StraightP aths←{ N → S, E→W, W → E, S→N,N → L, E→ L, W → L, S→ L };
3 SA←∅;
4 if IPA ̸= ∅∧OPA ̸= ∅ then

// A collision was reported. A CPR always triggers the algorithm.
5 Generate/update P AS based on n, m, CR, IPA, OPA, and (RA∪RC);
6 if there is only one element in P AS then

// Case 1 of Passive DoS Detection: There is a single suspect
7 SA← PAS(0); Clear all RCs;
8 return SA;

// Active DoS Attack Detection
9 else

// Action 1: Determine new restrictions for traffic rearrangement
10 if {IPA→OPA} ∈ T urns and {OPA→ inv(IPA)} /∈ (RA∪RC) then

// Condition 1 for Traffic Rearrangement: {IPA→OPA}
corresponds to a turn and {OPA→ inv(IPA)} is not disabled

11 Add {inv(IPA)→OPA} to RC;

12 else if {IPA→OPA} ∈ StraightP aths and
(∃ dir : {inv(IPA)→ dir} ∈ T urns ∧
{inv(IPA)→ dir} /∈ (RA∪RC) ̸∋ {dir→ inv(IPA)}) then

// Condition 2 for Traffic Rearrangement: {IPA→OPA}
corresponds to a straight path and at least one turn can be
disabled for suspects

13 forall dir : {inv(IPA)→ dir} ∈ T urns ∧
{inv(IPA)→ dir} /∈ (RA∪RC) ̸∋ {dir→ inv(IPA)}) do

14 Add {inv(IPA)→ dir} to RC;

// Action 2: Request transmission of CTPs with RC
15 Request the appropriate edge routers to insert CTPs that flow through all the

routers in P AS, following and updating restrictions (RA∪RC);
// The Source of the attack has not been found yet, but it will be

when a Collision Point Report is triggered by the CTPs
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The proposed packet structures used for this approach are depicted in Figure 50,
where the three most significant bits of each flit indicate its type. Additionally, the less
significant bit of each flit is a parity bit used for single error detection. As in other
approaches presented in this thesis, the Header Flit of all the packets contains the
destination and source addresses. However, for ADAD the Header Flit also contains
eight bits for additional routing constraints and three bits to indicate the packet type.
One of the packet type bits signals when the packet is related to CTPs, another when
the packet is carrying a CPR, and the other when the packet was sent by the GM (bits
13, 12, and 11, respectively).

Figure 50a shows the structure of data packets where one or more Payload Body Flits
carry the data exchanged between PEs. It is identified by having the three packet-type
bits set to zero. Furthermore, since the destination of this type of packet is a PE, the
first body flit contains other information regarding the packet which is referred to as the
Packet Info Flit. It carries an ID for allowing packet reordering at the destination and
the length of the packet for checking the packet to be complete. Finally, for enabling
communication disruption monitoring, the Tail Flit carries the address of the router
where the packet waited for the most to be forwarded, the number of clock cycles it
waited while its required output was busy, the input ports that competed and won
access to the required output, and the output port for which the competition took
place.

Figure 50b depicts the structure of packets sent by the GM to Local Security
Managers (LSMs) for defining the reports threshold. It does not contain additional
routing restrictions (i.e., only restricted by the routing algorithm) and since it is
transmitted by the GM, the GM bit is set to one while the other packet type bits are
set to zero. Additionally, since it only carries a new threshold, the packet only contains
one Header and one Tail flit.

Figure 50c illustrates the structure of packets sent to the GM with a CPR. It does
not contain additional routing restrictions (i.e., only restricted by the routing algorithm).
The R bit is set to one while the other packet-type bits are set to zero. Since it will be
delivered to the PE executing the GM, it includes the Packet Info Flit. It also contains
one Body and one Tail flit which contain the information of the Header and Tail flits
of the packet that triggered the report.

Figure 50d represents the structure of packets sent by the GM to specific edge
routers when requesting the generation of CTPs. Their routing constraints are only
given by the routing algorithm. Since this type of packet is sent by the GM and is
related to CTPs, the GM and the CTP bits are set to one while the R bit is set to
zero. Its Tail Flit is able to carry the necessary information, thus no Body Flits are
required. It transports the destination where the CTPs should be sent, the routing
constraints that must be followed and updated, and the number of CTPs that need to
be generated.

Finally, Figure 50e presents the structure of CTPs where, from the packet type bits,
only CTP is set to one. Furthermore, since this is a monitored packet, it may also
contain additional routing constraints and a Tail Flit with information regarding the
greatest disruption found in its path. Moreover, since CTPs have only two flits, their
impact to the NoC’s congestion is negligible.

The proposed router architecture for implementing ADAD is depicted in Figure 51.
As with the CPDD approach, input ports are equipped with traffic monitors that count
the number of clock cycles a packet is waiting while its required output port is busy.
Additionally, if the waiting time of a packet is longer than the previously recorded time,
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(a) Structure of Data Packets

(b) Structure of Threshold Configuration Packet Sent by the Global Manager

(c) Structure of Collision Point Report Packet Sent to the Global Manager

(d) Structure of CTP Request Packet Sent by the Global Manager

(e) Structure of CTP Packet

Figure 50: Packet Structures for Active DoS Attack Detection
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it updates the tail flit with the new values. In addition to the CPDD router sub-blocks,
the ADAD introduces a Local Security Manager (LSM). The architecture of this new
sub-block which is in charge of the following operations is illustrated in Figure 52:

• Read the header of arriving packets so that only data packets are forwarded to
the NI (Extraction Filter). It is important that no information from the monitors
reaches the applications run by users to avoid side-channel attacks.

• Interpret other arriving packets and update the reports threshold (Infraction
Reporter). According to the scheduled load to the MPSoC, the GM can change
the end-to-end delay threshold so that irrelevant reports are not transmitted.

• Send CPRs of monitored packets that arrive and had a collision greater than
the threshold (Infraction Reporter). Such information is the basis for detecting
BRDoS attacks.

• Sniff packets not destined to the local output port and update routing constraints
when CTPs pass through (Injection Manager). Apart from patrolling NoC seg-
ments containing attack source suspects, CTPs propagate the additional routing
constraints. Therefore, routers must be aware of changes and adjust new packets
to them.

• Write additional routing restrictions on packets being injected into the NoC
(Injection Manager). To ensure that CTPs collide with malicious packets, traffic
flows generated by attack suspects must follow the specified deterministic path.

If the LSM is in an edge router, it also needs to provide the following features:

• Resolve requests for generating CTPs (CTPs Generator), updating routing con-
straints (Injection Manager);

• Generate CTPs (CTPs Generator).

• Calculate how long a CTP waits while a packet arriving from the local input port
is being transmitted (CTP Traffic Generator).

6.3.6 Conclusion
This Section presented Active DoS Attack Detection (ADAD). Such an approach is the
final step towards DoS attack detection following previous approaches, i.e. Collision
Point Router Detection and Collision Point Direction Detection. With such a mechanism,
the MPSoC’s Global Manager is able to restrict the traffic generated by attack suspects
to flow through deterministic paths in which other collisions are reported and the exact
source of the attack is detected.

6.4 Communication Disruption Tattletaling
The related works address Flooding DoS (FDoS) attacks in NoC-based MPSoCs mainly
considering them as an increase of the packet injection rate (PIR-based FDoS attack)
as summarized in Chapter 5. However, as shown in Section 3.3, such an attack is not
effective when using fair-arbitrated NoCs. In contrast, an FDoS attack by increasing the
packet payload length (PPL-based FDoS attack) represents a real threat to NoC-based
MPSoCs. This is the aim of the distributed scheme of monitors presented in this
section for tracking the communication behavior of users in multi-tenant MPSoCs,
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Figure 51: Router architecture - Active DoS Attack Detection

(a) Non-edge Router

(b) Edge Routers

Figure 52: Architecture of the Local Security Manager

named Communication Disruption Tattletaling (CDT). The CDT enables monitoring
information to piggyback on data packets to be analyzed at the destination, which can
subsequently take direct action or report to the MPSoC’s GM when the presence of an
attack is suspected.

The remaining of this section is organized as follows: Section 6.4.1 details the
proposal for CDT. Section 6.4.2 contains an overhead evaluation of the proposed
mechanism in terms of area and power. Finally, Section 6.4.3 presents conclusions.
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6.4.1 Proposed Architecture
This section details the proposed architecture for implementing CDT. The proposed
packet structure is depicted in Figure 53 where the three most significant bits of each
flit indicate its type. Additionally, the less significant bit of each flit is a parity bit used
for single error detection. The Header Flit contains the destination and source addresses.
The first body flit which contains information regarding the packet is referred to as
the Packet Info Flit. It carries an ID for allowing packet reordering at the destination
and the length of the packet to make sure that the packet is complete. One or more
Payload Body Flits follow, carrying the data exchanged between PEs. Finally, the Tail
Flit is used for DoS attack detection by the CDT approach. It transports the length of
the longest packet encountered in the path as well as its source. Such information is
evaluated in every router of the path and updated if necessary.

Figure 53: Proposed Packet Structure

The architecture of the routers that enable CDT is based on the Baseline router
architecture of the Secure Bonfire platform, as presented in Figure 54. A Packet Size
Monitor at each of the router’s input ports extracts the source address and size of
the last packet transmitted from such port (the less significant bits of the Header
and Packet Info flits, respectively, without considering the parity bit). Furthermore,
each input port is also equipped with a Greatest Competitor Updater which gathers
information from other blocks as follows: i) requests the output ports that can be used
to forward the packet in its monitored port from the LBDR Section 2.2.3) unit; ii) the
grants are given by the Allocator for using the output ports, which by being matched
with the requests, indicate the input ports that won the competition for the required
output ports; and iii) information from the Packet Size Monitors for identifying the
size and source of the packets that prevented the local packet from being forwarded.
Finally, by updating the Tail flit with the information of the greatest competitor, each
packet is able to tattletale on the longest packet found in its path together with its
source. Consequently, the destination router, NI, or PE’s firmware can be compared to
a threshold defined during design or run time. Subsequently, as defined by the system’s
architect, a neutralizing action can be taken against the reported source or a report
sent to the GM to identify if the found behavior was allowed or not.

6.4.2 Area and Power Overhead
This section presents synthesis results of the baseline router and the overhead when
adding the proposed CDT. Synthesis was done with the Genus Synthesis Solution
provided by Cadence [83], using a 40nm commercial CMOS technology and a clock
frequency of 200MHz. Table 27 shows area results and Table 28 power (using a value
change dump), both for the worst-case corner (i.e. slow-slow, 0.99v, and 125◦C).
Furthermore, considering that corner, edge, and middle routers have a different amount
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Figure 54: Proposed Router Architecture

of ports in a NoC following a mesh topology, results for each router type are presented.
It is worth noticing that even though the reported overheads are greater than 30%, the
baseline router is already a minimalist design.

Table 27: Area overhead (40nm, 200MHz, 0.99v, 125◦C)
Area

Router Cell Sequential Combinational Total Overhead
Count (µm2) (µm2) (µm2) (%)

Router with 3 ports (corner router - R15)
Baseline 1104 3636.192 1313.827 4950.019 –
Proposed 1741 4495.848 2065.291 6561.139 32.55%

Router with 4 ports (edge router - R14)
Baseline 1874 4875.696 2102.923 6978.619 –
Proposed 2971 6051.696 3411.106 9462.802 35.60%

Router with 5 ports (middle router - R10)
Baseline 2377 6114.259 3190.724 9304.982 –
Proposed 3913 7613.659 5337.629 12951.228 39.19%

Table 28: Power overhead (40nm, 200MHz, 0.99v, 125◦C)

Router Leakage Internal Switching Total Total
Power (mW ) Power (mW ) Power (mW ) Power (mW ) Overhead (%)

Router with 3 ports (corner router - R15)
Baseline 0.0047 0.3243 0.0280 0.3571 –
Proposed 0.0063 0.4513 0.0735 0.5311 48.73%

Router with 4 ports (edge router - R14)
Baseline 0.0069 0.4478 0.0627 0.5174 –
Proposed 0.0095 0.6453 0.1653 0.8200 58.48%

Router with 5 ports (middle router - R10)
Baseline 0.0094 0.6175 0.1214 0.7482 –
Proposed 0.0134 0.9602 0.3159 1.2896 72.36%
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6.4.3 Conclusion
A novel approach for the detection of BRDoS attacks in NoC-based MPSoCs was
presented in this section. With such a mechanism, routers register the source of arriving
packets as well as their payload length. Additionally, as packets wait to be forwarded,
their tail flit is updated with the information of their greatest competitor (provided that
the competitor’s payload is longer than others found in the path). This allows packets
to “tell on” the packet that disrupted its end-to-end delay the most. Experimental
results presented in Section 3.3 showed that PIR-based BRDoS attacks were avoided
thanks to Round Robin arbitration, thereby, mechanisms such as CDT would be enough
against Flooding DoS attacks, providing detection against PPL-based BRDoS attacks.
The area and power overhead values of the proposed approach were also reported.
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7 DoS Attack Avoidance
Similar to the approaches presented in Chapter 6, the techniques proposed in this
chapter also aim to provide a better answer to research question RQ2 (Section 1.2) than
those found in related works (Section 5.3). However, instead of detection, they attempt
to avoid of BRDoS attacks in NoC-based MPSoCs. The first approach, presented in
Section 7.1.1 and named LSDAA, targets Low-and-Slow BRDoS attacks by monitoring
the local input port of routers. The second approach, presented in Section 7.2 and
named BCPE, targets all the BRDoS attacks presented in Section 3.1. It ports the
LSDAA approach to the NI for avoiding Low-and-Slow BRDoS attacks and includes other
enforcers for Flooding BRDoS attacks. Configuration parameters of the enforcers are
assigned by the Global Manager during the scheduling process and through bandwidth
control policies.

7.1 Low-and-Slow DoS Attack Avoidance
This section proposes the use of hardware monitors at the router’s local port aiming to
avoid Low-and-Slow BRDoS attacks in NoC-based MPSoCs. These types of attacks
include Jellyfish Inter-flit Delay Variance (Jellyfish) and Slowloris DoS attacks (Sec-
tion 3.1). With such monitors, the flit injection rate and packet completeness can be
observed.

The remainder of this section is organized as follows: Section 7.1.1 presents the
architecture modifications done to the Secure Bonfire platform (Section 2.2.4.2) for
implementing the LSDAA scheme. Section 7.1.2 details the setup of experiments and
discusses the obtained results. Section 7.1.3 presents an evaluation of the overhead of
the proposed mechanism in terms of area and critical-path delay. Finally, Section 7.1.4
concludes the section.

7.1.1 Proposed Architecture
Based on the router architecture of the Secure Bonfire open-source framework, a new
architecture that can avoid LSDoS attacks in NoC-based MPSoCs is presented (depicted
in Figure 55). As in the base architecture, the router contains i) input buffers (FIFOs)
that store flits received through each input port until they can be forwarded; ii) routing
units that implement a Logic Based Distributed Routing (LBDR) mechanism [44] which
supports any turn-model based routing algorithm and provide the possibility of an
in-system reconfiguration of the routing algorithm; iii) one switch allocator that arbiters
data transmission from the FIFOs to the required output port; and iv) a crossbar
that provides the connection between the FIFOs and the required output port. In the
proposed architecture, the Low-and-Slow DoS monitor (depicted in Figure 56) sits
between the local FIFO and the subsequent blocks. Such location allows the monitor to
truncate malicious LSDoS packets and drop their remaining flits from the FIFO (if any).

Figure 57 depicts the Finite State Machine (FSM) that describes the functionality of
the LSDoS monitor and Table 29 details the main assignments done during each state.

On reset, the LSDoS monitor goes to Idle, where the counter is set to the maximum
acceptable inter-flit delay (which can be at set any time by the GM), from where it will
transition to the Bypass state as soon as a header flit is outputted by the local FIFO.
During the Bypass state, data will flow as if no LSDoS monitor were present. However,
the counter will be reset every time a new flit is received, or decreased every clock
cycle in which the FIFO remains empty and data is required. If a tail flit is received,
the monitor will go back to the Idle state and wait for a new packet. Otherwise, if
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Figure 55: LSDoS monitor - Router architecture

Figure 56: LSDoS monitor - Black box diagram

Figure 57: LSDoS monitor - Finite State Machine (FSM)

the counter times out, the presence of an LSDoS attack is assumed. Consequently,
the monitor will transmit a predefined tail flit and go back to Idle. Thanks to this tail
flit, incomplete packets generated by the Slowloris DoS attack attempt are terminated
while packets generated by a Jellyfish DoS attack attempt are cropped, releasing the
communication path. Consequently, at the destination, the received packet will be
dropped, since the declared packet size will not match the actual size. Moreover, by
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Table 29: LSDoS monitor - FSM assignments

Idle
counter = MAX_VALUE - 1;
read_en_out = ‘1’;
data_out = 0;
fifo_empty_out = ‘1’;

Bypass

read_en_out = read_enable_in;
data_out = data_in;
fifo_empty_out = fifo_empty_in;

if ( fifo_empty_in = ‘0’ ) then
counter = MAX_VALUE - 1;

elsif ( read_enable_in = ‘1’ ) then
counter = counter - 1;

end if;

Kill
attack

counter = MAX_VALUE-1;
read_en_out = 1;
data_out = “1000 0000 0000 0000 0000 0000 0000 0001";
fifo_empty_out = ‘1’;

returning to Idle, all the remaining flits from the malicious packet, in case of a Jellyfish
DoS attack attempt, will be dropped, thereby neutralizing the attack. This is because
the proposed LSDoS monitor only forwards flits while being at the Bypass state, to
which it will only transition when detecting a header flit.

7.1.2 Experimental Work
In order to validate the impact caused to a NoC-based MPSoC by the introduced
LSDoS attacks and the efficacy of the proposed LSDoS monitor, the implementation of
the attack behavior and the detection mechanism have been done based on a VHDL
RTL description, integrated into the Secure Bonfire NoC platform. Moreover, such an
integration allowed the use of the platform’s traffic generators to create sensitive, normal,
and DoS attack traffic with different PIR values and PPLs. The traffic generators,
however, were modified so that transmission delays could be added between the flits
of the attack packets. Section 7.1.2.1 details the scenario configurations set for the
experiments. Section 7.1.2.2 summarizes the obtained results regarding the comparison
of FDoS and LSDoS attacks. Finally, Section 7.1.2.3 presents the results that prove
the efficacy of the proposed LSDoS monitors.

7.1.2.1 Simulation Scenarios
For the experiments detailed in this section, the same simulation scenarios used for
testing CPRD and CPDD were adopted. Such scenarios are depicted in Figure 58
where in 4×4 mesh NoC-based MPSoCs, routers apply the XY-routing algorithm and
credit-based flow control with fair Round-Robin arbitration (on packet level) as well as
the wormhole switching with 4-flit deep FIFOs.

Moreover, as shown in Figure 58 each scenario has its own distinct source and
destination of monitored traffic. For each scenario, 14 sets of experiments were
performed. Each set of experiments uses a unique attacker location, covering all the
nodes in the network (except for the monitored origin and destinations of the evaluated
scenario). The attacker nodes in all scenarios, send their traffic to the monitored node’s
destination, ensuring a collision with the monitored traffic. It is important to note
that each experiment was performed for 20 pseudo-random traffic simulation seeds to
provide uniform results.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 58: Simulation Scenarios

7.1.2.2 Flooding DoS vs Low-and-Slow DoS attacks

To evaluate the impact of LSDoS attacks on NoC-based MPSoCs, experiments were
done using Scenario 1 (Figure 58a) where the sensitive traffic flows from PE12 to PE3.
In each experiment, all traffic was transmitted with the same PIR value, either 0.003,
0.01 (one packet every 100 clock cycles), or 0.017. For both attacks, FDoS and LSDoS,
the source is PE0 which sends the malicious packets to PE3, as well.

Figure 59 summarizes the results obtained with different configurations of LSDoS
attacks and their equivalent configuration for FDoS as well as configurations where no
attack was present (Horizontal dashed lines). Results are grouped by the inter-flit delay
value of the LSDoS attack together with the equivalent FDoS packet length. Moreover,
each group is composed of three pairs of bars, one for each PIR value, and the bars of
each pair correspond to a different attack type; LSDoS and FDoS respectively from left
to right. Additionally, the Y axis corresponds to the mean end-to-end communication
delay of sensitive packets in clock cycles (transmitted from PE12 to PE3). As shown
in Figure 59, the effect caused by each LSDoS attack has a corresponding FDoS
configuration, regardless of the packet injection rate.

1/25 2/37 3/49 4/61 5/73
0

20

40

60

80

100

26
.2

8

28
.0

2

28
.7

3

32
.5

2

34
.1

26
.3

5

28
.1

7

30
.1

1

32
.5

7

34
.4

5

31
.7 34

.5
5 39

.6
6 46

.6
3 52

.5
7

31
.4

8 36
.1 40

.1
2 46

.3
4 53

.6
7

36
.6

3 44
.9

6

55
.0

2

67
.2

8

87
.5

2

37
.5

6 45
.7

8

56
.0

9

71
.4

3

84
.6

7

Inter-flit Delay (clk cycles) / Equivalent Packet Length (flits)

M
ea

n
En

d-
to

-e
nd

D
el

ay
(c

lk
cy

cl
es

)

Baseline PIR:0.003 Baseline PIR:0.01 Baseline PIR:0.017
L&S (PIR:0.003) Flooding (PIR:0.003) L&S (PIR:0.01) Flooding (PIR:0.01) L&S (PIR:0.017) Flooding (PIR:0.017)

Figure 59: Comparison of mean end-to-end delay of sensitive traffic under flooding and
equivalent LSDoS attacks for different PIR values
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7.1.2.3 Efficacy of the LSDoS monitor
The results of the experiments done to test the LSDoS Monitor for each of the three
scenarios presented in Section 7.1.2.1 are summarized in Figure 60, Figure 61, and
Figure 62, respectively. For all the figures, the X axis corresponds to the number
of clock cycles that the attacking PE waits between the transmission of consecutive
flits of the same packet. On the other hand, the Y axis corresponds to the mean
end-to-end delay values of the monitored packets (also in clock cycles). Additionally,
the blue circular markers identify the results when considering a PIR of 0.003 for all the
packets flowing through the NoC (i.e. monitored, malicious and random). The yellow
square markers correspond to a PIR of 0.01 and the red triangles to a PIR of 0.03.
Furthermore, dotted lines show the proportionality between the inter-flit delay and the
mean end-to-end delay of the monitored packets when the proposed countermeasure
is disabled. In contrast, the solid lines show the impact of the LSDoS attack to the
monitored packets in a NoC where the proposed countermeasure is implemented. As
shown by each pair of lines (i.e. lines with the same color/marker), experiments with
and without countermeasures achieve the same results until an inter-flit delay threshold
is reached. This is due to the fact that the countermeasure is triggered by exceeding
the threshold (for our experiments, we adopted an inter-flit delay threshold of 5 clock
cycles, nevertheless, dynamic configuration of this value can be done by the GM).

AL Detected
0 ✔

1 ✔

2 ✔

3 S. dest
4 ✔

5 ✔

6 ✔

7 ✔

8 ✔

9 ✔

10 ✔

11 ✔

12 S. src
13 ✔

14 ✔

15 ✔

Figure 60: Detection and counter-measure results for Scenario 1

Additionally, the resulting latency after exceeding the adopted inter-flit delay threshold
is smaller than that of normal conditions (without attack) because once the attack is
detected, the proposed countermeasure truncates the malicious packet at the source,
hence, the channel is freed earlier than if a normal-sized packet were to be transmitted.
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Figure 61: Detection and counter-measure results for Scenario 2

Even though experiments were done considering the 14 possible Attack Locations
(ALs) (except for the source and destination of the monitored traffic in each scenario),
figures show results of only two attacker locations for each scenario. Hence, as expected,
all locations presented similar behavior.

7.1.3 Area and Timing
This section presents an overhead evaluation of the proposed mechanism on the router
and the system. The proposed architecture was synthesized using the 0.18 µm AMS
library and Synopsys Design Vision at 200 MHz. Table 30 shows the area overhead of
the proposed mechanism on the baseline router. However, even though the overhead of
the proposed solution is just 2%, it is important to note that the baseline architecture is
very minimalist. To put the results in perspective, for a 4 mm2 chip with 16 cores and
a SoC using a 4×4 mesh network, the area overhead would be around 0,06% which is
completely negligible. Table 30 also shows that the overhead of the proposed monitor
on the critical path delay of the system is negligible.

Table 30: Area comparison of the proposed architecture and the baseline router
Area Timing

Sequential Combinatorial Total Overhead Critical-Path Overhead
(µm2) (µm2) (µm2) (%) Delay (ns) (%)

Baseline 48562.21 48336.42 96898.63 – 4.98 –
Proposed 49411.75 49832.29 99244.05 2.4% 4.97 ≈ 0
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Figure 62: Detection and counter-measure results for Scenario 3

7.1.4 Conclusion
Wormhole routing makes NoC-based MPSoCs prone to LSDoS attacks. A comparative
analysis with Flooding DoS attacks has been carried out, proving that LSDoS attacks
can be as effective as Flooding DoS attacks requiring fewer data to be transmitted.
The mitigation of single-source and multi-source attacks can be effectively handled
at the connection point between the network interface and the local port of the NoC
router with neglectable overhead compared to a minimalist router.

7.2 Bandwidth Control Policies Enforcement
A trend has been seen over the past few years for implementing different machine learning
approaches attempting to learn the normal traffic patterns presented in NoC-based
MPSoCs so that any different behavior can be tagged as a DoS attack [16,20–22]. The
detection algorithm is trained by analyzing traffic features of the NoC executing specific
tasks or benchmarks on designated PEs, with and without the influence of an attack to
learn both behaviors. Subsequently, the algorithm is tested with conditions similar to the
ones experienced during the training phase to be classified as normal behavior or under
attack. Extracted traffic features are normally related to PIR-based DoS attacks where
a malicious source transmits a more-than-normal number of communication requests
or dummy packets. Even though such approaches work in the mentioned specific
configurations, they would not work on a multi-tenant execution environment like the
one which is the focus of this thesis. This is because of the diversity of applications
that can be submitted by the different users where the possible combinations of them
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running simultaneously eliminate the probability of the so-called “normal behavior".
Therefore, instead of trying to learn a “normal" traffic behavior of the entire Multi-tenant
NoC-based MPSoC attempting to detect BRDoS attacks, such attacks could be avoided
by estimating traffic profiles for individual tasks, assigning bandwidth control policies
for each execution and enforcing them.

As will be seen in Section 8, Bandwidth Control Policies (BCPs) can limit packet
injection rate (in the form of a minimum inter-packet delay limit), maximum packet
payload lengths, and maximum inter-flit delays. Therefore, BRDoS attacks that attempt
to disrupt the communication performance of Multi-tenant NoC-based MPSoCs could
be avoided with strategies that enforce the rules established by such BCPs. Such
strategies are listed in Table 31 together with the type of DoS attack that they target.
Additionally, Round-robin arbitration is also considered a strategy against PIR-based
DoS attacks due to the results shown in Section 3.3.

Table 31: BRDoS Attacks and Avoidance Strategies

BRDoS Attack Types

A
vo

id
an

ce
St

ra
te

gi
es PIR-FDoS PPL-FDoS Slowloris Jellyfish

AS1 Enforce a minimum inter-packet delay ✔

AS2 Enforce a maximum packet payload size ✔

AS3 Enforce a maximum inter-flit delay [3] ✔ ✔

AS4 Implement Round-robin arbitration [66] ✔

AS5 AS1 + AS2 + AS3 ✔ ✔ ✔ ✔

AS6 AS2 + AS3 + AS4 ✔ ✔ ✔ ✔

7.2.1 Proposed Architecture
In this section, an architecture for the Bandwidth Control Policies Enforcement (BCPE)
approach with two variants is presented. Both variants allow the MPSoC’s GM to
configure enforcers after establishing the Service Level Agreement (SLA) and determining
the rules of the BCPs. In the first variant, enforcers are configured only once per task
execution, before it starts. By doing so, violation attempts done by attackers are
neutralized without other users experiencing any disruption. The second variant extends
the previous in a way that violation attempts to any rule of a BCP are reported to the
GM so that it can decide if, when, and to which extent BCPs should be modified. This
may also lead to a renegotiation of the SLA, consequently generating an overcharge to
users attempting to use more resources than what they had previously requested/paid
for.

For both variations, data flowing through the MPSoC will follow the basic packet
structures presented in Figure 2. However, as depicted in Figure 63, NIs will now also
utilize one or two bits from the Header flit that were tagged as reserved before. The
GM bit may only get a 1 value from the NI connected to the PE running the GM.
Moreover, the R bit may only be set to 1 by NIs when generating a report. Other
packets, generated by user tasks will be forwarded with these values set to 0 to avoid
spoofing. Therefore, the combination of values from these two bits helps to identify
which type of packet is being forwarded.

Both types of packets, for configuration and infraction reports, in Figure 63 use
almost the same structure. Their Tail flit has 15 bits for minimum inter-packet delay,
10 bits for maximum packet payload length, and 4 bits for the maximum inter-flit delay.
However, the configuration packet uses 3 bits of the Tail flit to define which of the
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(a) Structure of Data Packets

(b) Structure of Configuration Packet Sent by the Global Manager

(c) Structure of Infraction Report Packet Sent to the Global Manager

Figure 63: Packet Structures for Bandwidth Control Policies Enforcement

three limits should be configured while the infraction-report packet those bits are used
to define which of the three limits had a violation attempt.

Furthermore, to avoid network congestion, the avoidance strategies AS1, AS2, and
AS3 listed in Table 31 should be implemented as close as possible to traffic sources,
i.e., inside the NI. Figure 64 shows a proposed Local Security Manager (LSM) at the
input port of the NI, where the PE connects to it. Once again, it is worth noticing that
by implementing a distributed solution, such as this one, it can be scaled to NoC-based
MPSoCs of different sizes.

7.2.2 Conclusion
When targeting BRDoS attacks in NoC-based MPSoC, machine learning approaches
that base their detection on identifying a “normal behavior" of the traffic flowing through
the NoC, become useless when implementing multi-tenancy and not limiting the type
of applications that could be executed. On the other hand, if a traffic profile of each
application task is determined together with the Service Level Agreement, bandwidth
control policies can be established and enforced, enabling the MPSoC’s Global Manager
to achieve the agreed quality of service regardless of DoS attack attempts.
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Figure 64: Proposed Architecture - Network Interface with Local Security Manager
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8 System-level Service Management
In utility computing, application execution services are provided on demand in a pay-as-
you-go manner as other utilities such as water, electricity, gas, and telephony [84]. This
section describes a system-level view of an execution environment for utility computing
where Multi-tenant NoC-Based MPSoCs can be found among the available resources.
On top of that, it explains how the MPSoC’s software and hardware come together,
eliminating the vulnerability to BRDoS attacks, to which systems in multi-tenant
environments are exposed. Figure 65 illustrates the main components of such MPSoCs.

Figure 65: MPSoC Application Execution - System Level

As explained in Section 2.1, MPSoCs are composed of two hardware structures:
i) Computational, which includes any type of Processing Elements (PEs), and ii)
Communication, which in the case of NoC-based MPSoCs include Network Interfaces
(NIs), Routers, and Links. Additionally, MPSoCs incorporate a Global Manager (GM)
for controlling the entire system. Such a manager is usually implemented in software
and during the system boot-up, is set to run on one of the MPSoC’s PEs [34–41].

The following sections of this chapter describe the proposed features that should
be provided by NoC-based MPSoCs when enhancing execution environments for utility
computing (such as Fog and Cloud Computing) in order to tackle BRDoS attacks.

8.1 Cloud Connectivity
As explained in Section 2.3.1, when a user submits an application for its execution, a
workflow profile of the application expressed as a communication tasks graph (including
tasks dependencies as well as an estimation of the execution costs and the amount of
data to be transmitted for each dependency) is provided apart from the executable code.
Such information is given to a Fog + Cloud scheduler which selects the appropriate
resources that should be used for the execution [69] and formats data as required
by the selected resource. In the context of this thesis, such resources correspond to
NoC-based MPSoCs and the format is the application code compiled for the specific
MPSoC together with the Application Characterization Graph (APCG) describing it
(Section 2.3.1). This information is received by the MPSoC’s GM which from here
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on takes care of coordinating the entire execution, and once it is finished, returns the
results to be sent back to the user.

8.2 MPSoC Management
With the aim of using MPSoCs to enhance utility computing, the MPSoC’s Global
Manager (GM) is in charge of controlling the execution of the received applications.
Based on the service deployment life cycle presented in [85], Figure 66 depicts the
Application Execution Life Cycle followed by the GM.

Figure 66: Application Execution Life Cycle

During the Service Discovery phase, the APCG of the application submitted by
the user is used for discovering the best-suited available resources for its execution.
This process is done by the Tasks Scheduler (Section 2.3). However, since the target
execution environment must support multi-tenancy, the scheduler must provide detailed
resource usage guidelines so that users take precautions against disrupting other tenants.
It is proposed in this chapter that such guidelines include how an application should make
use of the NoC bandwidth allocated for its execution. This can be done by extending
the scheduler formulation to define Bandwidth Control Policies (BCPs) including the
following three rules:

• mIPDy,x: Minimum inter-packet delay for tile t′
y,x

(for controlling the Packet Injection Rate)

• MPPLy,x: Maximum Packet Payload Length for tile t′
y,x

• MIFDy,x: Maximum Inter Flit Delay for tile t′
y,x

At the Service Level Agreement Negotiation phase, the SLA Negotiator communicates
the result obtained in the previous phase and together with the Fog/Cloud SLA
Negotiator, forward such information, negotiating the monetary costs of executing the
application and the quality of service (QoS) for the execution.

Once the user and the execution platform reach an agreement, application tasks are
forwarded to their designated PEs. This phase is referred to as Task Deployment.
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In order for an execution environment to make sure that it is honoring an SLA,
it goes into a monitoring phase while an application is being executed. Thus, if the
execution environment were to violate the SLA, it may be liable to monetary penalties
and/or loss of clients. However, users/clients should also be penalized if they violate
the SLA because they would be using resources contracted by other tenants. QoS and
SLA violation attempts monitoring features are explained in Sections 8.3 and 8.4.

Provided that the monitoring phase signals that predefined thresholds have been
reached, the GM may decide to increase or reduce the allocated resources to any given
application execution which is done in the Scale Up and Down phase. Scaling up of
resources is usually done for compensating previous low-performance levels so that
deadlines can still be met. However, scaling down can also be used for limiting task
executions that are using resources beyond what is stipulated by the SLA, or even before
the execution starts to prevent disrupting other tenants.

Finally, during the decommissioning phase, the final processing of executions is done
before erasing data used by an executed application that will not be required by other
tasks. One operation is gathering results from parallel tasks from the same application
so that they can be sent together to the user that requested the execution.

Since values in application profiles are not always exact, but estimated mean values,
service providers may generate SLAs considering some flexibility, thus allowing application
executions to deviate within a tolerable range. However, greater flexibility reduces the
profit obtained by the service provider, while overlapping flexibility allowed to different
users may lead to undesired QoS.

With this in mind, SLAs offered to users shall communicate an established Bandwidth
Control Policy (BCP) for the application’s execution. Furthermore, such policy should
not contain rules with single bandwidth amounts representing a minimum assured value,
a maximum allowed value, and/or an average value. The values should instead be
decomposed into three values: i) the minimum inter-packet delay; ii) the maximum
packet payload length; and iii) the maximum inter-flit delay. Furthermore, such values
can be used not only for improving the scheduling quality but also for configuring BCPEs
that prevent BRDoS attacks on other users of a Multi-tenant MPSoC.

8.3 Quality of Service Monitoring
As mentioned before, an execution environment is liable to penalties if it fails to meet
what is established in the SLA. Therefore, the execution of its applications should be
monitored. Furthermore, by assessing the QoS experienced by one application execution,
the GM may decide to grant it more resources to make up for deviations from the
schedule. However, such action may harm another execution, which by also being
monitored, will help the GM to take another decision before the problem is beyond repair.
To enable QoS monitoring, a NoC-based MPSoC can include CPRD from Section 6.1
or CPDD from Section 6.2, which enable each packet to report the worst disruption
found in its path. Even better, ADAD from Section 6.3 or CDT from Section 6.4 for in
addition to reporting the disruption point, the source that caused the disruption should
also be identified.

8.4 SLA Violation Attempts Monitoring
It has been proposed in Section 8.2 that a task scheduler should provide BCPs so that
users have the required information for trying not to disrupt the execution of other
tenants with their own. However, given the existence of malicious users who may
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attempt to execute DoS attacks, an execution environment cannot expect that all users
follow its utilization guidelines. Therefore, BCPs should not only be followed by the
execution environment but also enforced for application executions. BCP enforcers are
presented in Section 7.2 together with SLA violation attempts monitors. Such monitors
are able to report to the GM if any of the scheduled tasks attempt to usufruct resources
beyond the SLA. Consequently, with such information, the GM can decide if a new SLA
should be negotiated, increasing the execution costs to SLA-violating users.

8.5 Conclusion
With the System-level Service Management presented in this chapter, together with
the Bandwidth Control Policies Enforcers from Section 7.2, DoS detection becomes
unnecessary in Multi-tenant NoC-based MPSoCs. This is due to the fact that regardless
of the malicious attempts of attackers to implement BRDoS attacks, they will only be
able to make use of the communication structure as established in the Service Level
Agreement (SLA) trough Bandwidth Control Policies (BCPs).

Additionally, considering that in utility computing, application execution services are
provided on demand in a pay-as-you-go manner, if an application attempts to use more
resources than what was granted in the SLA, the user who submitted the application will
receive a more expensive offer for upgrading their SLA, provided that more resources are
available. Furthermore, if the user refuses the new SLA, their application will continue
to be forced to honor the initial SLA without disrupting others. On the other hand, if
the user agrees to pay more, the enforcement will be relaxed according to the new SLA,
still without disrupting others since the granted resources were available for demand.
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9 BRDoS Attack Impact Assessment
In order to guarantee that a NoC-based MPSoC design is not vulnerable to Bandwidth
Reduction DoS (BRDoS) attacks, the performance of the communication structure must
be observed based on traffic expectations resulting from the task scheduling and then
compared to the performance when malicious traffic is present. To this end, test benches
should be implemented recreating scenarios like the ones depicted in Figure 19a and
Figure 19b where malicious packets attempt to disrupt legitimate packets. Furthermore,
the performance of the MPSoC’s communication structure should be assessed for the
traffic patterns presented in Figure 20.

Towards answering research question RQ3 (Section 1.2), Section 9.1 details a
proposed BRDoS attack impact assessment model for NoC-based MPSoCs. Section 9.2
explains a simple way to generate traffic within the proposed model, mimicking either
legitimate or malicious traffic.

9.1 Model
Figure 67 depicts a proposed DoS attack impact assessment model for NoC-based
MPSoCs. It includes bandwidth-test modules that can be configured as i) source: to
generate traffic or ii) destination: to calculate the end-to-end delay of received packets.

Figure 67: Bandwidth Reduction DoS Attack - Impact Assessment Model

By introducing a timestamp into the transmitted packets (Figure 68) and subtracting
its value from the current system time upon arrival, the end-to-end communication
delay can be calculated. Subsequently, the communication degradation of monitored
packets can be assessed for different traffic configurations.

9.2 Simple Traffic Generation
Traffic can be generated following Algorithm 2. Once the normal parameters have been
set for the application targeted by the MPSoC design, the BRDoS Attacks presented in
Section 3.1 can be implemented as follows: i) PIR-based FDoS attacks by adjusting high
Packet Injection Rates (PIR); ii) PPL-based FDoS attacks by configuring large packet
payload lengths (PPL); iii) Jellyfish Inter-flit Delay Variance (JFID) LDoS attack by
providing high inter-flit delays (IFD); and iv) Slowloris LDoS attacks by setting the
Packet Missing Flits (PMF ) parameter to a value greater than zero.

Since only the communication structure of the NoC-based MPSoC needs to be
evaluated, the PEs can be replaced by either: i) Processors executing Algorithm 2 for
generating packets and a procedure for calculating the end-to-end delay of monitored
packets upon their arrival; or ii) Bandwidth Test Modules as the one illustrated in
Figure 67, also capable of generating the described traffic patterns, as well as calculating
the end-to-end delay of packets, but which incorporate a counter for generating and
evaluating timestamps. The counters of all Bandwidth Test Modules must be connected
to the same clock tree and started on system boot-up.

107



(a) Data From the Traffic Generator to the NIs - with Timestamp

(b) Data Exchanged Between the NIs and Routers - with Timestamp

(c) Data From the NIs to the End-to-end Delay Calculator

Figure 68: Data Structures for End-to-end Delay Calculation
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Algorithm 2: Simple traffic generation method
input :

DST : Destination Address
P IR : Packet Injection Rate // Packets per clock cycles

P P L : Packet Payload Length // Number of Flits ( > 0 )

IF D : Inter-flit Delay // Number of clock cycles

P MF : Packet Missing Flits // Condition: (PPL-PMF) > 0

// ipd: Inter-packet delay in clock cycles

// get_time(): Retrieves system time value

// send_data(data): Sends data to the NI

// sleep(n): Halts the transmission n clock cycles

1 ipd← ⌈1/P IR⌉− (P P L + 1)−P P L∗ IF D

2 if P IR > 0 and P P L > 0 and ipd≥ 0 then

3 generation_enabled←True
4 while generation_enabled do

5 if P MF > 0 and P P L−P MF > 0 then
6 payload_counter← P P L−P MF
7 generation_enabled← False
8 else
9 payload_counter← P P L

10 header_timestamp← get_time()
11 send_data([DST P P L])

12 sleep(IF D)
13 send_data(header_timestamp)

14 while payload_counter > 1 do
15 sleep(IF D)
16 send_data(0)
17 payload_counter← payload_counter−1

18 sleep(ipd)
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10 Conclusion
Adding new devices to current execution environments exposes each of them to the
security vulnerabilities of the other. Such is the case when introducing NoC-based
MPSoCs to Cloud/Fog Computing. This thesis presented four types of Denial of
Service (DoS) attacks that users from a Fog/Cloud execution environment can use for
Multi-tenant NoC-based MPSoCs. The aim of the four presented attacks is to impact
the NoC’s performance and by doing so, prevent packets generated by other tenants
to use the MPSoC’s communication structure. The first approach which is referred
to as PIR-based, floods the network with a higher-than-normal packet injection rate
aiming to clog the network. Such a type of attack is the most common approach in the
state-of-the-art. However, it has been shown in this thesis that by implementing a fair
arbitration scheme such as Round-robin, this type of attack can be avoided.

The second type of attack, namely the PPL-based DoS attack, has been considered
by a few authors. It floods the network by sending lots of information encapsulated
into packets with a long payload length. The third and fourth attack types are
called low-and-slow DoS (LSDoS) attacks, namely Jellyfish and Slowloris. These
two attacks had never before been studied in the context of NoC-based MPSoCs,
nor can they be detected/avoided by the approaches presented in the related work.
Detection mechanisms found in the literature usually count the number of packets
being transmitted, the transmission requests, or consumed bandwidth in an NoC link.
However, as detailed in this thesis, LSDoS attacks are capable of causing the same
impact as FDoS attacks with the transmission of less data.

Apart from explaining the above four attacks, this thesis also introduced four
approaches for their detection, two others techniques for their avoidance, and a system-
level description of how they can be leveraged in a Multi-tenant NoC-based MPSoC
to tackle the studied attacks. Furthermore, an algorithm for the generation of all the
targeted attacks and a model for assessing the impact they cause on any given NoC
was also introduced.

Moreover, it was observed that some authors are lately focusing on the detection of
DoS attacks in NoC-based MPSoCs by using machine learning. However, no normal
traffic profile can be learned from a vastly dynamic environment such as a multi-tenant
execution system with many users. Since this type of environment follows a pay-per-use
model, it was proposed in this thesis that from the, currently used, System Level
Agreements (SLAs) be derived Bandwidth Control Policies. Additionally, those policies
should be enforced to prevent an application execution from disrupting others, and
violation attempts monitored for allowing resource-demanding applications to use more
resources than those stipulated in the SLA, provided that such resources are indeed
available and that an increment to the payment is accepted along with a new SLA.

With the research done during the development of this project, and as explained
in this thesis, it was found that despite efforts being made against DoS attacks in
NoC-based MPSoCs, some possible DoS attack variations are still being neglected.
Additionally, although machine learning approaches for DoS attack detection in NoC-
based MPSoCs have been gaining ground, they require the existence of a normal
traffic profile to be learned which is not the case for dynamic multi-tenant execution
environments. Therefore, it is concluded that for multi-tenant execution environments
containing NoC-based MPSoCs following a pay-per-use model, attempts for DoS attack
detection become irrelevant. As an alternative, it is proposed that the established SLAs
be enforced and violation attempts be monitored. With such an approach, executions
requiring more resources will trigger a new SLA negotiation, allowing the user to pay for
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more resources, provided that they have not been allocated to other executions, thus
shielding NoC-based MPSoCs against DoS attacks which are intrinsic to multi-tenant
execution environments.
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Abstract
Bandwidth Reduction DoS Attacks in Multi-Tenant NoC-
based MPSoCs: Detection and Avoidance Strategies
Security is one of the main concerns when developing systems that can be accessible
to many users. Such matter needs to be revisited when combining systems that
independently had been considered secure so that the combination is also secure.
Moreover, Denial of Service (DoS) attacks are one of the intrinsic vulnerabilities of
multi-tenant systems such as Cloud computing since one malicious user can attempt to
affect the quality of service experienced by others. Such attacks do not only disrupt
the execution time of legitimate applications by extending them but may also force
the service providers to pay fines for not being able to honor established service-level
agreements.

Furthermore, with the constant performance increase of Multi-processor Systems on
Chip (MPSoCs) and their ability to enhance the performance of execution environments,
efforts towards tackling DoS attacks in such systems have also seen an increase during
the last few years. This thesis summarizes all the concepts required for understanding
the addressed topic and its context along with a detailed representation of the targeted
threat model. The contribution of this thesis is composed of the answers given to three
research questions, namely RQ1, RQ2, and RQ3.

Research question RQ1 focuses on the identification of DoS attacks that can
be implemented by malicious users targeting MPSoCs of a multi-tenant execution
environment. This thesis details the characteristics of the two types of attacks found in
the literature as well as those of two other attacks that have gone unnoticed by other
authors.

Research question RQ2 addresses directives that can be adopted in the system
for avoiding, detecting, localizing, and/or mitigating the identified DoS attacks. A
summary of the approaches introduced by other authors, including their limitations, is
presented. Additionally, three complementing and one independent detection mechanism
were proposed, to overcome such limitations. Moreover, two DoS attack avoidance
approaches were also proposed as well as a system-level description of how service
providers can guarantee that established service-level agreements will always be honored
while penalizing the malicious users.

Research question RQ3 looks for a way to assess the impact of DoS attacks on any
NoC-based MPSoC design. For the first time, an algorithm capable of generating the
four identified DoS attacks is presented. Additionally, a complete assessment model is
also proposed.

After the development of the project presented in this thesis, it was concluded that
despite several authors targeting DoS attacks in NoC-based MPSoCs, there are still
some DoS attacks to be studied. Additionally, a trend toward the use of machine
learning for DoS attack detection was identified. However, such approaches are not
suitable for dynamic multi-tenant execution environments. Finally, it is explained that
DoS attack detection becomes irrelevant if service level agreements are enforced, while
attempts to exceed established limits generate an overcharge following a pay-per-use
model.
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Kokkuvõte
Ribalaiuse vähendamise DoS-rünnakud mitme rentnikuga
NoC-põhiste MPSoC-de puhul: tuvastamise ja vältimise
strateegiad
Mitme kasutajaga süsteemide arendamisel on üks peamisi probleeme turvalisus. Eriti
oluline on tuvalisust silmas pidada olemasolevate komponentide integreerimisel, sest
nende kombineerimisel loodav süsteem ei pruugi olla turvaline, isegi kui komponendid
ise seda on. Lisaks on mitme rentnikuga süsteemid (multi-tenant systems), nagu näiteks
pilvepõhiseid teenuseid pakkuvad süsteemid, haavatavad teenusetõkesusrünnakute (DoS-
rünnakute) poolt, sest üks pahatahtlik kasutaja saab mõjutada teenuse kvaliteeti paljude
teiste kasutajate jaoks. Sellised rünnakud mitte ainult ei häiri süsteemi toimimist ja ei
pikenda aega, mis kulub legitiimsete rakenduste jooksutamiseks, vaid võivad põhjustada
teenusepakkujale ka reaalset rahalist kahju. Seda näiteks seepärast, et rünnakute tõttu
ei suuda teenusepakkuja tagada lepingujärgseid kokkuleppeid teenuse kvaliteedi osas.

Kuna mitmeprotsessoriliste kiipsüsteemide jõudlus on pidevalt kasvanud, on viimastel
aastatel samuti suurenenud DoS-rünnakute arv selliste süsteemide vastu. See doktoritöö
annab ülevaate kõigist kontseptsioonidest, mis on vajalikud selle teema ja konteksti
mõistmiseks. Samuti antakse detailne ülevaade töös kasutatud ohumudelist. Selle väite-
kirja panus tugineb vastustest kolmele uurimisküsimusele, mida tähistatakse lühenditega
RQ1, RQ2 ja RQ3.

Uurimisküsimus RQ1 keskendub mitme rentnikuga MPSoC-des pahatahtlike kasu-
tajate poolt sooritatud DoS rünnakute tuvastamisele. Selles väitekirjas kirjeldatakse
detailselt nii kaht eelnevalt teiste poolt erialases kirjanduses avaldatud rünnakutüüpi,
kui ka kaht täiesti uut rünnakut, mis on teistel autoritel märkamata jäänud.

Uurimisküsimus RQ2 käsitleb direktiive, mida saab süsteemis DoS rünnakute välti-
miseks, tuvastamiseks, lokaliseerimiseks ja / või leevendamiseks vastu võtta. Esitatakse
kokkuvõte teiste autorite poolt välja pakutud lahendustest ning samuti nende puudus-
test. Samuti pakutakse välja kolm rünnakute tuvastamise mehhanismi, mis täiendavaid
olemasolevaid meetodeid ning lisaks üks täiesti iseseisev DoS rünnakute tuvastamise
mehhanism. Lisaks pakutakse välja kaks lahendust DoS rünnakute ärahoidmiseks. Sa-
muti käiakse välja süsteemitaseme kirjeldus selle kohta kuidas teenusepakkujad saaks
teenustasemeleppeid täita ka rünnakute korral, samas pahatahtlike kasutajaid karistades.

Uurimisküsimus RQ3 otsib viise, mis võimaldaks hinnata DoS rünnakute mõju
igasuguse arhitektuuriga kiipvõrgupõhistel MPSoC-idel. Ühtlasi kirjeldab selles väitekirjas
esimsest korda algoritmi, mis suudab genereerida nelja identifitseeritud DoS rünnakut.
Samuti tuuakse välja täielik hindamismudel rünnakute analüüsimiseks.

Pärast käesolevas doktoritöös esitletud projekti arendamist jõuti järeldusele, et
vaatamata sellele, et DoS rünnakuid kiipvõrgupõhistes MPSoC-des on palju uuritud,
eksisteerib endiselt ka uudseid, läbiuurimata, DoS rünnakuid. Ühtlasi tuvastati trend
masinõppe kasutamiseks DoS rünnakute avastamisel. Selliselt lahendused ei ole aga
siiski kasutatavad mitme rentnikuga süsteemides. Lõpetuseks selgitatakse, et DoS-
rünnak muutub ebaeffektiivseks kui jõustatakse teenusetaseme lepinguid, sest seatud
kasutuslimiitide ületamine DoS rünnakute käigus tekitab pahataktlikele kasutajatele
lisatasu.
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Abstract—The increasing threat of Denial of Service (DoS) at-
tacks targeting Networks-on-Chip (NoC) based Multi-processors
System-on-Chip (MPSoCs) imposes unprecedented challenges in
terms of communication availability, especially for identifying the
source of an attack in the NoC. Previous works show the possi-
bility of executing DoS attacks on NoCs and propose mitigation
methods that are deployed in all the NoC routers. However, this
protection countermeasures usually impact the communication
heavily. In order to achieve a better DoS protection, the point
of attack should be identified. Towards this direction, in this
paper, we propose a novel distributed DoS detection scheme being
able to measure the performance degradation of sensitive flows
and to detect the router where the attack enters the sensitive
communication path. We perform an exploration regarding the
effect of different types of attackers, where experimental work
shows the best attack configuration parameters, and that a
combination of two latency metrics can be leveraged not only
for detecting a DoS attack, but also its interference point.

Index Terms—NoC, MPSoC, DoS attack, Distributed monitor-
ing.

I. INTRODUCTION

The comprehensive use of Internet-of-Things (IoT) will be
the driver of digitization in all domains, e.g. industry automa-
tion, automotive, avionics, and health-care. IoT is a powerful
technology that captured the attention of researchers, industry
and governments. Since by distributing computation and in-
creasing the hyper-connectivity of devices through machine-
to-machine communication, tasks can be deployed into a
sea of devices, reducing their execution time and enabling
smart behaviors. Three characteristics turn IoT relevant: i)
Number of connected devices: being estimated that by 2021
an amount of 28 billion of devices will be part of the IoT
[1]; ii) Economical impact: by introducing automated and
smart processes, the IoT is foreseen to achieve the mark of
11 trillion US Dollars by 2025 [2]; and iii) Integration into
a broad spectrum of markets, including different industry and
service markets. Increasingly complex and powerful Systems-
on-Chips (SoCs) connected through a 5G network, form the
basis of the IoT, where Multi-Processors System-on-Chip
(MPSoCs) are considered the key enabler technology for IoT.
They are composed of two main structures: 1) the computation
structure, composed by Processing Elements (PEs) such as:
processors, hardware accelerators, memories, peripherals and
other Intellectual Property (IP) hardware cores to process and
store information, and 2) the communication structure, which

perform data exchange among the IP cores. Network-on-Chips
(NoCs) are the communication structure choice for MPSoCs
that integrate a large amount of IP cores. NoCs integrate
routers and links to exchange information wrapped as packets.

A major requirement for all IoT domains is the security. The
hyper-connectivity of devices also represents a risk. MPSoCs
are not isolated anymore, being able to download pieces of
software code used for executing tasks and updating firmware.
However, this software may be malicious. Currently MPSoCs
are now target of attacks whose goal is to retrieve the secret
information (secret keys and intellectual property), modify the
system operation (sabotage) or deny the system operation.

Denial of Service (DoS) attacks target to degrade the
MPSoC operation by turning unavailable or obstructing the
efficient computation or communication services. The goal of
the attacker is to avoid the completion of a sensitive task (e.g.
data encryption, trigger of an alarm), so that users decide to
turn off the encryption or to migrate tasks to an alternative
infected neighbor device (when tasks are deployed in the IoT
infrastructure).

The shared and main role of the NoC in the MPSoC
operation has turned NoCs into target of DoS. This kind of
attacks are typically executed through infected IP cores, which
execute malicious software. The goal of the attacker is to
inject traffic such that it degrades the sensitive communication,
thus avoiding that sensitive communication flows inside the
MPSoC meet the communication time-line constraints. There
are three types of DoS attacks on NoCs: i) volumetric, whose
goal is to cause congestion into a single point to overwhelm
the NoC bandwidth; ii) state-exhaustion, which attempts to
use up all the NoC available connections; and iii) connection-
based, which exploits the priority-based NoCs to monopolize
the NoC communication. All these attacks result in an increase
of the latency of the sensitive flows. Previous works show
the possibility of executing NoC DoS attacks and propose
new router architectures to mitigate these attacks. However,
usually this protection countermeasures impact heavily the
communication. In order to allow a dynamic and customized
DoS protection, the attack point should be identified.

In this work we provide a novel lightweight path-based
method for the detection and localization of DoS attacks in
NoCs. The presented approach provides

• a NoC architecture able to detect DoS attacks, via end-978-1-5386-7656-1/18/$31.00 ©2018 IEEE
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to-end latency calculation for packets
• identification of attacker location on the MPSoC, using

per-hop latency calculation
• an environment for the exploration of attack scenarios

using different attack patterns, attacker’s packet size, and
different network traffic scenarios

To the best of our knowledge, we are presenting the first
mechanism to identify the location of the attacker on the
MPSoC when a DoS is performed.

This paper is organized as follows: Section II gives an
overview on related work in the field of DoS avoidance and
detection in NoC-based platforms. After providing a threat
model in Section III, in Section IV a minimalist NoC router
and NoC packet structure modification is presented, providing
necessary information for the identification of attack points.
Section V describe extensive simulation-based experiments
with different traffic and packet size scenarios, which approve
the feasibility of the concept. In the final conclusions, the
presented approach is summarized and open points for future
work are outlined.

II. RELATED WORKS

Denial-of-Service (DoS) has been widely explored in the
context of extra-chip networks. However, DoS attacks in NoCs
have just been recently addressed. The works of [3], [4] intro-
duce for the first time the concept of DoS in the NoC context.
Mitigation strategies for NoC DoS attacks have been proposed
in [3]–[14]. Moreover, these works can be categorized in
two main classes: DoS Avoidance and DoS detection and
recovery. The first focuses on providing infrastructure to avoid
such attacks all together (see section II-A). On the other hand,
the second tries to identify the occurrence of such attacks and
disabling them (see section II-B). The latter can be divided
into two sub groups: works which focus on techniques for
detecting the occurrence of the attack, but can not detect the
location of the node which runs malicious code, and works
that can also identify the location of the attacker.

A. DoS Attack Avoidance

In [4] a mitigation strategy based on the hybrid switching
routing mechanism is proposed. Circuit switching is used for
sensitive traffic and packet switching is used otherwise. As a
result, predictable latency for sensitive traffic is guaranteed.
The works of [5], [6], and [7] mitigate the DoS and timing
attacks through the generation of security zones. Their pro-
posal ensures that only the secure nodes can communicate
into a virtual and physical space, respectively. Security zones
are built through dynamic routing. In [8] non-sensitive traffic
is deeply inspected in order to access to security zones. The
works of [6] and [7] reroute the traffic outside from the
security zone. On the other hand, the authors of [9] propose
the use of separate virtual channels for secure and non-secure
packets as a counter measure for bandwidth denial attacks
in NoCs. However, this approach suffers from the hardware
overhead of additional buffers used for virtual channels.

B. DoS Attack Detection and Recovery
In [10], authors consider that DoS attacks are executed

by a rogue third-party NoC architecture. When a suspicious
communication delay is detected between two nodes, the
firmware tries to identify if the attack is taking place at the
source or at the destination, this by time-stamping the packets
and dividing into two communication paths.

In [11], Fiorin et al. provide an overview of the attacks
in network on chips. The authors propose the use of buffer
occupancy monitors to detect traffic anomaly in the network
but provide no details on the technique. Later, in [3], Fiorin
et al. proposed the implementation of denial of service probes
in the Network Interface. This approach only covers the DoS
attacks from the Processing Elements connected to the network
interface by detecting deviations from the average bandwidth
usage expected at the design time. This approach does not
actively monitor the latency of the sensitive packets in the
network.

In [12], Diguet et al. tackle DoS attacks by monitoring
live-lock occurrence in the network. However, this approach
utilizes source-routing, which imposes considerable overhead
to the packet size.

In [13], Grammatikakis et al. target distributed DoS attacks
via a firewall in control of configurable access rules in the
network interface. The security risk is evaluated by product of
frequency and magnitude of losses (by dropping the packets
at the Network Interface). Although such firewall does not
allow the DoS attack to be effective, it was designed to protect
the destination PE (i.e. the on-chip memory), thus it does not
detect the source of the attach, nor does it kill the attack related
traffic congesting the network.

In [14], Achballah et al. target computation of occupation
time of the physical links in number of clock cycles. The oc-
cupation time of the physical link is compared to an expected
value. In case of the link occupation exceeding this value, the
transaction would be stopped and a notification would be sent
to system’s manager. Here the decision is made locally in the
router, which may lead to undesirable packet dropping.

The evaluation of the related works show that the DoS attack
avoidance approaches require significant additional hardware
effort in the routers and the system. Since scalable NoCs need
an overall dependability management ( [15]), the router size
should be as minimalist as possible (e.g. no virtual channels).
The works focusing on detection and recovery, cannot be
effective without identification of location of the attacker. The
works that can successfully detect and identify the location of
the attacker, do not provide lightweight routers.

In this work we propose a scalable distributed solution
for monitoring the traffic over the network, having minimal
hardware overhead and allowing to transport router-internal
DoS attack relevant information to the endpoint of the com-
munication. This enables the detection and localization of DoS
attacks on sensitive routing paths.

III. THREAT MODEL

MPSoCs with a heterogeneous array of PEs provide pro-
grammability and parallelism, yielding flexibility, processing
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Fig. 1: MPSoC-powered IoT Execution Environment

performance and power efficiency, which can be leveraged for
minimizing the latency of communication links of the edge
cloud [16]. An example of such scenario is depicted in Fig. 1,
where IoT devices, equipped with NoC-based MPSoCs, im-
prove the performance of general-purpose computers-exclusive
execution environments by adding application specific circuits.
However, this junction brings new security vulnerabilities to
the NoC-based MPSoC world, such as susceptibility to DoS
attacks, as will be explained in this section.

Attack Scenario: During a DoS attack, an attacker seeks
to degrade the performance of a processing/communication
environment, which in the scope of this work is represented
by a NoC-based MPSoCs. In an environment, such as the
one illustrated in Fig. 1, a task scheduler in the firmware
of the IoT device maps user applications to the PEs of the
incorporated MPSoC. However, one of those users can be
an attacker with the intention of performing a DoS attack to
the NoC. Moreover, the most common DoS attack method
is network flooding, which a malicious application running
on any PE of the MPSoC is able to do by sending packets
to another PE in the NoC. These additional packets compete
for crossbars output resources of the routers in their path,
and while successful, they increment the forwarding delays of
other packets that share at least one segment of the malicious
traffic path, resulting in an overall additional communication
delay that will be unacceptable for time sensitive applications.

Attack Steps: In order to perform a DoS attack in a NoC-
based MPSoC, the following two steps have to be carried out:

1) Infect an MPSoC processor; this can be done by any
attacker with normal user privileges.

2) Take possession of the crossbar of some NoC routers;
This can be done by continuously sending packets to
other destinations within the NoC.

Attack Success Conditions: In order to impact a NoC-based
MPSoC with a DoS attack, the following conditions must be
met:

• The malicious packets compete for the use of the crossbar
of a router with the sensitive packets (a.k.a attempt to be
forward through a same output port); Assuming that the
attacker has no knowledge of the network segments being
used by the sensitive traffic, setting long paths for the
malicious traffic will increase the probability of colliding
with the sensitive traffic.

• The attacker can decide the insertion rate of the malicious
packets into the NoC; By modifying its insertion rate and
monitoring decreases in its own throughput, an attacker
can assure that his packets are colliding with other
traffic [17]. Additionally, depending on the router arbiter
implementation, a burst of packets can secure a crossbar
grant, causing the starvation of other packets.

• The attacker can decide the length of the malicious
packets; The usage grant of the crossbars of some routers
is done in a per packets basis, thus, longer packets occupy
the crossbar longer and consequently generate a longer
inter-router forwarding delay to sensitive packets.

This work targets the analysis of flooding DoS attacks
from the attacker point of view, and also propose a detection
mechanism that does not only detect the flooding DoS attacks,
but that also identifies the collision point of malicious packets
with the secure traffic. Such information can subsequently be
used by the system resource and deployment manager in order
to stop the execution of the malicious code.

IV. SECURE ARCHITECTURE

In order to achieve a scalable NoC Architecture that is
not only able to detect a DoS attack, but also its source, we
propose three small modifications to the Bonfire NoC project
[15]. The first two of these modifications are regarding the
structure of the communication packets and the third relates
to the architecture of the routers.

As shown in Fig. 2, one of the modifications to the structure
of the communication packets refers to the definition of the
Last Body Flit, which will carry a time-stamp of the packet’s
generation time. The time-stamp is introduced to enable the

Fig. 2: Packet structure Fig. 3: Proposed router architecture Fig. 4: Dos monitor architecture
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Fig. 5: Experiment Scenarios

system to calculate end-to-end latency of each packet, and
based on it, detect if a DoS attack is taking place. The second
modification is related to the Tail Flit, which now carries the
address of the router where the packet waited while its required
output port was being used by other packets (i.e. Max Latency
Router Address), and the amount of clock cycles it waited (i.e.
Max Router Latency Value). This information is evaluated on
every router by a proposed DoS Monitor, and updated in case
the waiting time in the current router is longer than the one
stored in the packet.

As said before, and shown in Fig. 3, the third modification is
to the router’s architecture, where the proposed DoS Monitor
is added to the beginning of the router’s data path (i.e. before
each of the five FIFOs). Such a monitor enables the NoC
to distributively accuse the router where the DoS attempting
traffic enters the sensitive communication path. The internal
architecture of the proposed DoS Monitor is depicted in
Fig. 4. This monitor starts a 10-bit counter every time a new
Header flit arrives to the input of the FIFO, and stops it
when the Header flit leaves the FIFO’s output. The counter
is incremented on each clock cycle while other packets are
being forwarded through its required output port. This is
done by monitoring the output grants provided by the router’s
Allocator circuit filtered by the request sent by the LDBR
circuit. Furthermore, once the tail flit of the packet arrives,
the counter value is compared against the Max Router Latency
Value stored in the tail flit. If the counter value is smaller or
equal, the tail flit will be forwarded as it is, otherwise, the
monitor replaces the stored value with the value of the counter.
Additionally, the Max Latency Router Address is updated with
the current router address, and a new parity for the tail flit is
calculated and updated.

Once packets reach their destinations, the firmware of
the MPSoC-powered IoT device can calculate their end-to-
end transmission latency based on the packet’s time-stamp.
Subsequently that value is compared to that of a maximum
expected, and if it is out of the acceptable limit, the Max
Latency Router Address and the Max Router Latency Value
are also retrieved from the packet and analyzed together with
previous DoS suspicion reports. Finally, when decided that
a DoS attack is taking place, the firmware can reset the PE
identified as the sourced attack, thus eliminating its malicious
traffic generation.

V. EXPERIMENTAL WORK

The DoS Monitor, presented in Section IV, has been imple-
mented on RTL level and integrated to the Bonfire framework

[15]; subsequently, the proposed NoC architecture with the
distributed DoS detection system has been simulated using
Modelsim from Mentor Graphics [18]. The Bonfire framework
provides an environment for dependability research in NoC-
based Systems-on-Chip (SoC), hence it is not only modular
and easy to scale, but also integrates traffic generators, which
can be leveraged for simulating normal traffic and DoS attacks.
The considered NoC scenarios are detailed in Subsection V-A,
the simulation results are presented and discussed in Subsec-
tion V-B, and an evaluation of the overhead of the proposed
mechanism in terms of area, critical-path delay, and power is
presented in Subsection V-C.

A. Simulation Scenarios

In order to evaluate the performance of the proposed
Distributed DoS Detection system, simulations have been
executed on a 4 × 4 mesh NoC-based MPSoC architecture,
as the one depicted in each of the scenarios in Fig. 5. The
network routers (applying an xy-routing algorithm) use a credit
base flow control with fair round robin switch matrix output
arbitration (on packet level) and utilize wormhole switching
with 4-flit deep FIFOs.

The numbered elements in Fig. 5 represent the routers of the
NoC. Router 12 (blue) is the source of the sensitive traffic and
router 3 (green) its destination; furthermore the blue arrow,
connecting these two routers, represents the sensitive path.
Additionally, each scenario considers a different attack source
(router connected to the infected PE), symbolized with the
red router (specified in the label of each sub-figure). The
malicious traffic runs from the scenario specific source to
the same destination as the sensitive traffic (router 3); the
arrow connecting these two routers represents such a path
and a circle indicates the collision point, where DoS traffic is
being inserted into the path of the sensitive traffic. Finally, as
depicted in Fig. 6, depending on the selected attack source, the
malicious path length and the collision point to the sensitive
path vary, as being presented subsequently in this section. In
the cases where the attack source is directly in the sensitive
path, the source and collision point routers are the same.

Fig. 6: Attack path lengths and collision points
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B. Results
The experiments presented in this section target the analysis

of the DoS attack from two sides: 1) from the point of view
of the attacker in order to maximize the effectiveness of the
attack, and 2) from the point of view of network protec-
tion, testing metrics that can be leveraged for detecting an
attack and qualifying the effectiveness of the detection mech-
anism. Within this analysis, simulations were done considering
different packet injection rates (PIR) for sensitive packets
(PIR S), attack packets (PIR A), and random traffic (PIR R)
(simulation data generated for 20 pseudo-random simulation
start seeds). Also, a packet length of 10 flits was adopted
for the sensitive (PL S) and random traffic (PL R) while
in the scenarios where an attack attempt was present, three
different packet lengths were considered for the attacker’s
packets (PL A) (i.e. 10, 30, and 50).

Considering router 15 as the attack source (S A)(scenario
d of Fig. 5), packet lengths for attacker, secure, and random
traffic of 30, 10, and 10, respectively, and a random traffic
PIR of 0.01 (one packet every 100 clock cycles), Table I
details results from the attacker’s point of view, while Table III
from the attack detection point of view, both for different PIR
configurations for the sensitive and attacking traffic.

As mentioned in Section III, an attacker can identify the
success/effectiveness of the attack by measuring its own
throughput [17]. As it can be seen in the first and third column
of Table I, as the intended PIR value is incremented, the gap
with the Attacker’s Effective PIR also increases. Where the
0.01 attacker’s PIR A value showed to be over the limit of
the network’s capacity for the adopted configuration, since
trying to send one 30-flit-length packet every 100 clock cycles
resulted in an insertion rate of one packet every 140 clock
cycles, approximately. Such difference, expressed as a growth
percentage related to the intended PIR, is presented in the
fourth column. For the purpose of this work, we considered
an attacker’s PIR A variation of 10% to be considered as an
actual attack.

TABLE I: Attack assurance (S A: 15, PL A: 30, PL S: 10,
PL R: 10, PIR R: 0.01)

Attacker Sensitive Attacker Attacker PIR A Attack
PIR A PIR S Effective PIR A deviation (%) effective
0.003 0.003 0.003 0 False
0.003 0.01 0.003 0 False
0.003 0.03 0.003 0 False
0.01 0.003 0.0071 29 True
0.01 0.01 0.0071 29 True
0.01 0.03 0.0070 30 True
0.03 0.003 0.0086 71.33 True
0.03 0.01 0.0085 71.67 True
0.03 0.03 0.0086 71.33 True

As mentioned in Section IV, each packet carries a time-
stamp generated when the packet entered the NoC. Subse-
quently, that time-stamp is used for calculating the End-to-
End communication delay upon arrival. Table II lists the
End-to-End delay values of the sensitive packets for different
PIR S values in a scenario with no attackers. This mean
value and the sample standard deviation (SSD) are used for

detecting the DoS attacks setting a threshold T calculated by
T = mean delay + 0.5× SSD.

TABLE II: End-to-End delay under no attack (PL S: 10,
PL R: 10, PIR R: 0.01)

Sensitive Mean End-to-End Sample Standard Detection Threshold
PIR S delay (clock cycles) deviation (clock cycles) (clock cycles)
0.003 88.9056 17.3167 97.5640
0.01 162.0356 43.6219 183.8466
0.03 915.5529 405.9398 1118.5228

Furthermore, Table III lists the obtained End-to-End delays
of the secure packets in the scenario under attack (scenario d of
Fig. 5). In some situations, where an attacker started to attempt
an attack, but in where from his/her point of view it has not
yet been successful (in this case for a 0.003 PIR A value), the
transmission delay starts to grow ultra-passing the threshold,
consequently, an under attack signal is triggered, however, the
collision point may not yet be determined. On the other hand,
for PIR A configurations, where the attacker noticed success,
the proposed DoS detection mechanism managed not only to
detect the attack, but also the point where the malicious traffic
intercepted the sensitive traffic.

TABLE III: Attack detection (S A: 15, PL A: 30, PL S: 10,
PL R: 10, PIR R: 0.01)

Attacker Sensitive End-to-End Attack Collision point
PIR A PIR S delay (Clock cycles) detected detection confidence
0.003 0.003 181.331 True 0.35
0.003 0.01 765.047 True 0
0.003 0.03 2679.22 True 0
0.01 0.003 656.859 True 1
0.01 0.01 3346.42 True 0.8
0.01 0.03 4336.19 True 0.7
0.03 0.003 308.823 True 1
0.03 0.01 2937.8 True 1
0.03 0.03 4318.1 True 0.95

In order to find configurations that would maximize the
success of an attack, experiments were done for three different
PL A values (i.e. 10, 30, and 50), as well as, placing the attack
source in different routers of the NoC. For such experiments,
PL S and PL R were set to 10 flits, and all the PIRs were
set to 0.01 (i.e. PIR A = PIR S = PIR R = 0.01). End-to-
End mean delay values of the sensitive packets for each of
those scenarios are listed in Table IV. As expected, results
show that the End-to-End delay of the sensitive packets is
proportional to the PL A value, achieving the highest mean
delay values for the 50-flit PL A configurations. This because
a longer packet manages to retain the grant of a router output
longer, preventing other packets of being forwarded.

Regarding the location of the attacker, as shown in the
last row of table Table IV, the highest sensitive End-to-End
transmission delays were caused when injecting the malicious
traffic into the routers closest to the sensitive destination.

C. Overhead Evaluation
The proposed architecture was synthesized using the

0.18µm AMS library and Synopsys design vision at 200
MHz. Area overhead and critical path delay of the proposed
architecture compared to the baseline architecture are reported

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 20,2021 at 18:31:59 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: End-to-End latency vs attacker’s packet length and
attack source

Attacker’s Packet Length
10 30 50 MAX lat. at

A
tt

ac
k

So
ur

ce

5 472.66 2756.88 5106.99 50
6 520.70 4286.14 6205.65 50
7 925.57 5759.36 7276.82 50
9 453.37 2244.05 4656.09 50

11 1170.40 5602.28 6865.34 50
13 314.93 2070.89 3252.36 50
14 830.55 3039.49 3039.49 50
15 658.71 3346.42 6276.82 50

MAX lat. at 11 7 7

in Table V. The critical path delay overhead of the proposed
method is negligible and the proposed monitors only add 17%
area overhead to the minimalist router area (each monitor
only adds 3.4% overhead to the router’s area). The main
contribution to area overhead is from the inclusion of the
counter registers in the FIFOs.

Power analysis of the proposed method has been performed
for random uniform traffic with a packet injection rate of
0.01 for the baseline architecture and the proposed architecture
(without presence of attacker, see Fig. 5e). The results of these
experiments are reported in Table VI. The results show that
the proposed approach adds 5% power overhead which is for
five monitors in the system.

TABLE V: Area and critical path delay overhead

Router
Area

Sequential Combinational Total overhead Critical Path
( µm2 ) ( µm2 ) ( µm2 ) (%) Delay (ns)

Baseline 48378.7 42669.0 91047.8 – 4.82
Proposed 52033.7 55129.9 107163.7 17.7% 4.8

TABLE VI: Power overhead

Router Switching Internal Leakage Total Total
Power (mW ) Power (mW ) Power (mW ) Power (mW ) overhead (%)

Baseline 0.151 3.663 0.261 3.814 –
Proposed 0.273 3.374 0.327 4.008 5%

VI. CONCLUSIONS

This paper proposes a distributed DoS detection scheme
for measuring the performance degradation of sensitive data
transmissions under denial of service attacks and for detecting
the injection point of the DoS packets into the sensitive path.
We perform an exploration of the effect of different attack
configurations targeting the sensitive traffic. Such configura-
tions include different packet lengths, packet injection rates,
and attack sources. Our experimental work shows that longer
attacker packets, intercepting the sensitive path closer to its
destination, cause a better effect of the attack, and that a
combination of two delay metrics can be leveraged for not
only detecting a DoS attack, but also identifying its entry point
into the sensitive path with high accuracy. Future work will
include the localization of the source of DoS attack (i.e. the
infected PE), which may be injecting malicious data directly
into the sensitive path or from a certain distance to it, affecting

the sensitive traffic by congesting some router crossbars in the
sensitive path.
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[8] J. Sepúlveda, D. Flórez, and G. Gogniat, “Reconfigurable security
architecture for disrupted protection zones in noc-based mpsocs,” in
2015 10th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), June 2015, pp. 1–8.

[9] S. Evain and J. P. Diguet, “From noc security analysis to design
solutions,” in IEEE Workshop on Signal Processing Systems Design and
Implementation, 2005., Nov 2005, pp. 166–171.

[10] R. JS, D. M. Ancajas, K. Chakraborty, and S. Roy, “Runtime detection
of a bandwidth denial attack from a rogue network-on-chip,” in Proceed-
ings of the 9th International Symposium on Networks-on-Chip. ACM,
2015, p. 8.

[11] L. Fiorin, C. Silvano, and M. Sami, “Security aspects in networks-on-
chips: Overview and proposals for secure implementations,” in Digital
System Design Architectures, Methods and Tools, 2007. DSD 2007. 10th
Euromicro Conference on. IEEE, 2007, pp. 539–542.

[12] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “Noc-centric
security of reconfigurable soc,” in Proceedings of the First International
Symposium on Networks-on-Chip, ser. NOCS ’07, 2007, pp. 223–232.

[13] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigoriou,
G. Kornaros, I. Christoforakis, O. Tomoutzoglou, G. Tsamis, and
M. Coppola, “Security in mpsocs: A noc firewall and an evaluation
framework,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 34, no. 8, pp. 1344–1357, Aug 2015.

[14] A. B. Achballah, S. B. Othman, and S. B. Saoud, “Toward on hardware
firewalling of networks-on-chip based systems,” in 2017 International
Conference on Advanced Systems and Electric Technologies (IC ASET),
Jan 2017, pp. 7–13.

[15] S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran,
T. Putkaradze, A. Kaur, J. Raik, G. Jervan, R. Ubar, and T. Hollstein,
“From online fault detection to fault management in network-on-chips:
A ground-up approach,” in 2017 IEEE 20th International Symposium on
Design and Diagnostics of Electronic Circuits Systems (DDECS), April
2017, pp. 48–53.

[16] G. P. Fettweis, “5g and the future of iot,” in ESSCIRC Conference 2016:
42nd European Solid-State Circuits Conference, Sept 2016, pp. 21–24.

[17] J. Sepulveda, D. Aboul-Hassan, G. Sigl, B. Becker, and M. Sauer,
“Towards the formal verification of security properties of a network-
on-chip router,” 2018, pp. 1–6.

[18] “ModelSim ASIC and FPGA Design,”
https://www.mentor.com/products/fv/modelsim/, accessed: 2018-09-26.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 20,2021 at 18:31:59 UTC from IEEE Xplore.  Restrictions apply. 



Appendix 2

V
Cesar G. Chaves, Siavoosh P. Azad, Thomas Hollstein, and Johanna
Sepúlveda, “Diagnosing DoS Attacks in NoC-based MPSoCs,” in Test-
methoden und Zuverlässigkeit von Schaltungen und Systemen (TuZ 2019),
February 2019

135





Diagnosing DoS Attacks in NoC-based MPSoCs
Cesar G. Chaves∗†, Siavoosh Payandeh Azad†, Thomas Hollstein∗†, Johanna Sepúlveda‡
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Abstract—Communication availability in Networks-on-Chip
(NoC) based Multi-processors System-on-Chip (MPSoCs) is being
threatened by Denial of Service (DoS) attacks. We propose a
novel distributed DoS diagnosis scheme which detects DoS attacks
based on the performance degradation of sensitive flows. We
explore the configuration parameters that assure a successful
attack and demonstrate that a combination of two latency metrics
can be leveraged not only for detecting a DoS attack, but also,
aiming to locate the attack source, it identifies the router where
the malicious traffic enters the sensitive communication path.

I. INTRODUCTION

5G communication technologies allow the connection of a
vast amount of devices, enabling the creation of a massive In-
ternet of Things (IoT). Moreover, devices equipped with Multi-
Processor Systems-on-Chip (MPSoCs) with a heterogeneous
array of Processing Elements (PEs) provide programmability
and parallelism, yielding flexibility, processing performance
and power efficiency, which can be leveraged for minimizing
the latency of communication links of the edge cloud [1].
However, when downloading pieces of software code for
executing tasks, malicious tasks can also be downloaded.

MPSoCs are composed of two main structures: 1) PEs such
as: processors, hardware accelerators, memories, peripherals
and other Intellectual Property hardware cores; and 2) the
communication structure, such as: Networks-on-Chip (NoCs),
composed of routers and links that exchange information
among PEs wrapped as packets (Fig. 1). In NoC-based MP-
SoCs, DoS attacks are typically executed through infected PEs,
which execute malicious software that inject traffic into the
NoC, preventing sensitive packets from meeting communica-
tion time-line constraints by increasing their latency (Fig. 2).

Previous works regarding NoC DoS attacks propose new
router architectures to mitigate these attacks, however, the
presented protection countermeasures usually impact the com-
munication heavily [2]–[4]. In this work we present a novel
lightweight path-based approach that provides: 1) a NoC
architecture able to detect single-source DoS attacks based on

Fig. 1: NoC-Based MPSoC Fig. 2: DoS Attack Scenario

the end-to-end latency calculation of packets; 2) the identifi-
cation of the DoS attack collision point, using per-hop latency
calculation; and 3) an exploration of attack scenarios using
different attack patterns, packet sizes, and network traffic.

The remainder of the paper is organized as follows: Sec-
tion II presents a minimalist NoC router and a NoC com-
munication packet structure, providing necessary information
for the detection of DoS attacks and the identification of
the router where the malicious and sensitive traffic collide.
Section III describes the different traffic and packet size
scenarios considered for the experiments, which approve the
feasibility of the concept. Finally, Section IV outlines the
conclusions of the paper and open points for future work.

II. DIAGNOSIS METHOD

In order to diagnose a single-source DoS attack and to
provide information for detecting its source in a NoC-based
MPSoC, we propose three small modifications to the Bonfire
NoC project [5]:
1) The Last Body Flit now carries a time-stamp of the packet’s
generation time (Fig. 3). Such time-stamp enables the system
to calculate the end-to-end latency of each packet, and based
on it, determine if a DoS attack is taking place.
2) The Tail Flit now carries the address of the router where
the packet waited the longest while other packets were being
forwarded, and the amount of clock cycles it waited (Fig. 3).
3) The router’s architecture (Fig. 4), by adding the proposed
DoS Monitor to the beginning of the router’s data path (i.e.
before each of the five FIFOs). The monitors enable the NoC
to distributively report the router where the DoS attempting
traffic enters the sensitive communication path. The internal
architecture of the proposed DoS Monitor is depicted in Fig. 5.

For the diagnosis, DoS monitors have 10-bit counters that
measure the local forwarding delay of each received packet.
Such counters are reset every time a new header flit enters the
FIFO and stopped when the header flit is forwarded or when
they reach their maximum value. The counters are incremented
on each clock cycle while other packets are being forwarded
through their required output port. This is done by monitoring
the output grants provided by the router’s allocator circuit
filtered by the request sent by the Logic-Based Distributed
Routing (LBDR) circuit. Furthermore, once the tail flit of the
packet arrives, the counter value is compared against the one
stored in the tail flit (i.e. Max Router Latency Value); If the
counter value is greater, the DoS monitor updates the tail flit
with the values of the current router and calculates a new
parity bit.



Fig. 3: Packet structure Fig. 4: Proposed router architecture Fig. 5: Dos monitor architecture

Once packets reach their destinations, the system manager
of the MPSoC calculates their end-to-end transmission latency
based on their time-stamp. Then the latency value is compared
to the maximum expected to diagnose the DoS attack. If the
latency value exceeds the threshold, the Max Latency Router
Address and the Max Router Latency Value are also retrieved.
Such values are analyzed with previous DoS suspicion reports
to determine if a DoS attack is taking place and the router
where the malicious packets enter the sensitive path (a.k.a.
the router that reported the greatest forwarding delay). Finally,
when a DoS attack has been diagnosed and the location of the
collision point has been identified, the system manager can
send control packets from other sources that pass through the
collision point to narrow down the source of the attack and
issue a reset command, thus eliminating the malicious traffic
generation.

III. EXPERIMENTAL WORK

The DoS Monitor, presented in Section II, was implemented
on RTL level and integrated to the Bonfire framework [5].
Subsequently, the modified NoC architecture was simulated
using Modelsim from Mentor Graphics [6]. The following
Subsections detail the simulation scenarios and the experimen-
tal results, III-A and III-B, respectively.

A. Simulation Scenarios

Simulations were executed adopting a 4×4 mesh NoC-based
MPSoC architecture (Fig. 2). The network routers (applying
an xy-routing algorithm) use a credit-base flow control with
fair Round Robin switch matrix output arbitration (on packet
level) and utilize wormhole switching with 4-flit deep FIFOs.

In all scenarios, PE3 was the destination of all traffic,
PE12 the source of the sensitive traffic (i.e. sensitive path:
PE12→PE3), and for each scenario, malicious traffic was
generated from a different PE, thus, depending on the selected
attack source, the malicious path length and the router where
paths intersect vary. In the case of the scenario depicted in
Fig. 2, the malicious path is represented by: PE9→PE3, its
length is 4 hops and the intersection router is R11. In the
cases where the attack source is directly in the sensitive path,
the source and collision point routers are the same.

Simulations were done considering different packet injec-
tion rates (PIR) for sensitive packets (PIR S), attack packets
(PIR A), while the random traffic (PIR R) was set to 0.01
(one packet every 100 clock cycles), and data generated for
20 pseudo-random seeds. Also, a packet length of 10 flits

was adopted for the sensitive (PL S) and random traffic
(PL R) while in the scenarios where an attack attempt was
present, three different packet lengths were considered for the
attacker’s packets (PL A) (i.e. 10, 30, and 50).

B. Experimental Results

The experiments targeted the analysis of the DoS attack
from two points of view: 1) attacker side: in order to maximize
the effectiveness of the attack, and 2) network protection side:
testing metrics that can be leveraged for detecting an attack
and qualifying the effectiveness of the detection mechanism.

Since an attacker can identify the success/effectiveness of
the attack by measuring its own throughput [7], we measured
the effective PIR A by considering the configurations listed
in Section III-A, and setting PE15 as the attack source (S A),
attacking with 30-flit-length packets. Results showed that
as the PIR A value increments, the deviation regarding the
Attacker’s Effective PIR also increases. A PIR A value of
0.01 showed to be over the limit of the network’s capacity for
the adopted configuration (i.e. the attack was successful). For
the purpose of this work, we considered an attack effective
when the PIR A deviation percentage was over 10%.

As mentioned in Section II, the End-to-End communication
delay of each packet is calculated using its time-stamp, which
is generated when the packet enters the NoC. End-to-End
delay values of the sensitive packets for different PIR S values
were calculated in a scenario with no attackers, subsequently,
their mean values and the sample standard deviations (SSD)
were used for detecting the DoS attacks, setting a threshold T
calculated by T = mean delay + 0.5× SSD.

Table I lists the reported end-to-end delays of the secure
packets. In configurations where the attacker was unable to
identify the attack’s effectiveness, delay values exceeded the
threshold, signaling the attack, but the collision point was
not determined. On the other hand, for PIR A configurations,
where the attacker noticed success (i.e. when PIR A = 0.01
or PIR A = 0.03), the proposed DoS detection mechanism
managed not only to detect the attack, but also the point where
the malicious traffic intercepted the sensitive path.

In order to find configurations that would maximize the
success of an attack, experiments were done for three different
PL A values (i.e. 10, 30, and 50), as well as, placing the attack
source in different routers of the NoC. For such experiments,
PL S and PL R were set to 10 flits, and all the PIRs were set
to 0.01 (i.e. PIR A = PIR S = PIR R = 0.01). As expected,



TABLE I: Attack detection (S A: 15, PL A: 30, PL S: 10,
PL R: 10, PIR R: 0.01)

Attacker Sensitive End-to-End Attack Collision point
PIR A PIR S delay (Clock cycles) detected detection confidence
0.003 0.003 181.331 3 7
0.003 0.01 765.047 3 7
0.003 0.03 2679.22 3 7
0.01 0.003 656.859 3 1
0.01 0.01 3346.42 3 0.8
0.01 0.03 4336.19 3 0.7
0.03 0.003 308.823 3 1
0.03 0.01 2937.8 3 1
0.03 0.03 4318.1 3 0.95

results show that the End-to-End delay of the sensitive packets
is proportional to the PL A value, achieving the highest mean
delay values for the 50-flit PL A configurations. This because
a longer packet manages to retain the grant of a router output
longer, preventing other packets from being forwarded.

Results also showed that the highest sensitive end-to-end
transmission delays were achieved when injecting the mali-
cious traffic into the routers closest to the sensitive destination.

C. Overhead Evaluation

The proposed architecture was synthesized using the
0.18µm AMS library and Synopsys design vision at 200
MHz. Area overhead and critical path delay of the proposed
architecture compared to the baseline architecture are reported
in Table II. The critical path delay overhead of the proposed
method is negligible and the proposed monitors only add 17%
area overhead to the minimalist router area (each monitor
only adds 3.4% overhead to the router’s area). The main
contribution to area overhead is from the inclusion of the
counter registers in the FIFOs.

Power analysis of the proposed method has been performed
for random uniform traffic with a packet injection rate of 0.01
for the baseline architecture and the proposed architecture
(without the presence of an attacker). The results of these
experiments are reported in Table III. The results show that
the proposed approach adds 5% power overhead which is for
five monitors in the system.

TABLE II: Area and critical path delay overhead

Router
Area

Sequential Combinational Total overhead Critical Path
( µm2 ) ( µm2 ) ( µm2 ) (%) Delay (ns)

Baseline 48378.7 42669.0 91047.8 – 4.82
Proposed 52033.7 55129.9 107163.7 17.7% 4.8

TABLE III: Power overhead

Router Switching Internal Leakage Total Total
Power (mW ) Power (mW ) Power (mW ) Power (mW ) overhead (%)

Baseline 0.151 3.663 0.261 3.814 –
Proposed 0.273 3.374 0.327 4.008 5%

IV. CONCLUSIONS

This paper proposes a distributed monitoring scheme that,
by measuring the performance degradation of sensitive data
transmissions, is able to diagnose denial of service attacks in

NoC-based MPSoCs and to identify the injection point of the
DoS packets into the sensitive path. We perform an exploration
of the effect of different attack configurations targeting the
sensitive traffic. Such configurations include different packet
lengths, packet injection rates, and attack sources. Our exper-
imental work shows that longer attacker packets, intercepting
the sensitive path closer to its destination, cause a better effect
of the attack, and that a combination of two delay metrics can
be leveraged for not only detecting a DoS attack, but also
identifying its entry point into the sensitive path with high
accuracy.

Future work will aim to enhance the efficiency of the
diagnosis method, this by filtering the DoS attack source
suspects when detecting the collision point, hence reducing
the amount of control packets to be sent, and consequently, the
source detection time. Also, multi-source DoS attack detection
and localization will be addressed.
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Abstract: Denial of Service (DoS) attacks are an increasing threat for Multiprocessor System-on-Chip
(MPSoC) architectures. By exploiting the shared resources on the chip, an attacker is able to prevent
completion or degrade the performance of a task. This is extremely dangerous for MPSoCs used in
critical applications. The Network-on-Chip (NoC), as a central MPSoC infrastructure, is exposed
to this attack. In order to maintain communication availability, NoCs should be enhanced with
an effective and precise attack detection mechanism that allows the triggering of effective attack
mitigation mechanisms. Previous research works demonstrate DoS attacks on NoCs and propose
detection methods being implemented in NoC routers. These countermeasures typically led to a
significantly increased router complexity and to a high degradation of the MPSoC’s performance.
To this end, we present two contributions. First, we provide an analysis of information that helps
to narrow down the location of the attacker in the MPSoC, achieving up to a 69% search space
reduction for locating the attacker. Second, we propose a low cost mechanism for detecting the
location and direction of the interference, by enhancing the communication packet structure and
placing communication degradation monitors in the NoC routers. Our experiments show that our
NoC router architecture detects single-source DoS attacks and determines, with high precision, the
location and direction of the collision, while incurring a low area and power overhead.

Keywords: denial of service attacks; network-on-chip; distributed online monitoring; multi-processor
system-on-chip; security

1. Introduction

The extensive use of Internet-of-Things (IoT) will be the driver of the ongoing digitization in
many application domains, as in smart living and working environments, smart cities, health care
industry automation, automotive, and avionics. IoT is a pervasive technology that increasingly
captures the attention of researchers, industry, and governments. Computational tasks are mapped
on a larger number of distributed IoT nodes, having increased connectivity through device-to-device
communication. Operations can be deployed into a sea of devices, their execution time can be reduced
and smart behaviors can be established in such distributed systems. Three characteristics turn the IoT
paradigm relevant in modern systems:

(i) Number of connected devices: it is estimated that by 2021, 28 billion devices will be part of
IoT [1];

J. Low Power Electron. Appl. 2019, 9, 7; doi:10.3390/jlpea9010007 www.mdpi.com/journal/jlpea
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(ii) Economical impact: by introducing automated and smart processes, the IoT is foreseen to achieve
the mark of 11 trillion US Dollars by 2025 [2]; and

(iii) Integration: IoT devices will integrate into a broad spectrum of markets, including different
industry and service markets.

Increasingly complex and powerful Systems-on-Chips (SoCs), connected via wireless communication
technologies as WLAN, WPAN, Bluetooth, or 5G networks, form the basis of the IoT. Multi-Processors
System-on-Chips (MPSoCs) are considered as an increasingly important key enabler technology for
the implementation of IoT nodes. They are composed of two main structural types of components:

(i) the computation structure, composed of Processing Elements (PEs) such as: processors, hardware
accelerators, memories, peripherals, and other Intellectual Property (IP) hardware cores to process
and store information; and

(ii) the MPSoC internal communication infrastructure, which performs the data exchange among the
IP cores.

Networks-on-Chip (NoCs) are the communication structure choice for MPSoCs that integrate a
large amount of IP cores. NoCs integrate routers and links to exchange information being wrapped
as packets.

NoC-based SoCs allow a very flexible task deployment onto the MPSoC’s computational nodes.
This flexibility also enables enhanced dependability concepts [3,4], providing fault-tolerance and,
with this, a high-level of reliability in case of wear-out of some of the chip’s nano-scaled structures.
In order to detect deviations in the system health state, critical resources (as routers) have to be
equipped with local health monitoring technology (hardware fault checkers). Since these put a certain
linear overhead on the hardware size, the routers should be designed as minimalist as possible. This
goes well along with the requirement of energy-efficient and sustainable operation of the MPSoC-based
IoT component.

Security is a major requirement for all IoT domains. The configurability and hyper-connectivity
of these devices represent a risk to the system. Since these systems are connected to the internet, it is
more convenient for the developers to enable them to download software code and firmware updates
remotely. However, the downloaded software may be malicious. This can lead to retrieving secret
information (secret keys and intellectual property), modifying the system’s operation or disrupting
its services. One of the approaches for disrupting the services in NoC-based MPSoCs is by means of
Denial of Service (DoS) attacks. Since the NoC is a shared communication medium, any disruption of
or obstruction to the efficient computation or communication services will affect other system services.
The goal of the attacker is to prevent the completion of a sensitive task (e.g., data encryption, trigger of
an alarm), so that users decide to turn off the encryption or to migrate tasks to an alternative infected
neighbor device (when tasks are deployed in the IoT infrastructure).

In NoC-based MPSoCs, Denial of Service (DoS) attacks typically originate from infected IP cores,
which execute malicious software. The goal of the attacks is to interfere with and degrade the sensitive
data communication by injection of malicious traffic, thus communication time-line constraints are
missed. The Worldwide Infrastructure Security Report classifies DoS attacks into three categories [5]:

(i) Volumetric: the objective is to cause congestion at a single injection point in order to overwhelm
the NoC’s bandwidth;

(ii) State-exhaustion: the goal is to try to use up all available NoC connections; and
(iii) Connection-based (Application-Layer Attacks): exploitation of priority-based NoCs in order to

monopolize the NoC communication.

These three classes can be directly applied in NoC infrastructures, which result in an increase in
the end-to-end communication latency of the sensitive packet flows [6]. Previous published research
outlines the possibility of executing DoS attacks in NoCs and propose new router architectures to
mitigate them. However, this protection countermeasures usually have a heavy impact on network
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communication and/or router complexity. Moreover, in order to create effective countermeasures
that neutralize threats, as well as to enable dynamic and customized DoS protection methods, the
attacker’s location needs to be identified. However, identifying the attacker’s location is a complex
task, especially when considering minimalist hardware requirements for NoC routers design.

In this work we analyze the size of the attack suspect search space (i.e., the number of nodes to be
checked based on the detection information) using the information about the collision location and the
direction of the attacker packets. We show that by knowing not only the collision location, but also the
input direction of the malicious packets, the search space can be reduced a maximum of 69%. Later
we propose two online monitoring mechanisms able to provide the above mentioned information to
the NoC’s system manager. Subsequently, we present an analysis of different attack configurations,
showing their effectiveness. The experimental results show the proposed approaches’ efficacy and
efficiency to detect the DoS attacks, identify the collision point of malicious and sensitive data, and
find the direction from which the malicious packets enter the sensitive path.

The rest of this paper is organized as follows: Section 2 describes the state of the art in defense
against DoS attacks in NoCs. Sections 3 and 4 describe the baseline framework used for analysis and the
threat model considered for this work. Section 5 analyses the benefits of acquiring detailed information
about the point of collision during a DoS attack. Section 6 presents the proposed approaches to acquire
such information. Section 7 presents the experimental results and finally Section 8 concludes the paper.

2. Literature Review

The concept of DoS in the NoC context was introduced in [7]. Subsequently, approaches with
different mitigation strategies for these kinds of attacks have been proposed [7–18]. Such approaches
can be categorized in two main classes: DoS Avoidance and DoS detection and recovery. The first focuses
on providing an infrastructure to avoid such attacks altogether (see Section 2.1). On the other hand, the
second tries to identify the occurrence of such attacks and disabling them (see Section 2.2). The latter
can be divided into two sub groups: works which focus on techniques for detecting the occurrence of
the attack, but cannot detect the location of the node which runs malicious code, and works that can
also identify the location of the attacker.

2.1. DoS Attack Avoidance

In [8] a mitigation strategy based on the hybrid switching routing mechanism is proposed. Circuit
switching is used for sensitive traffic and packet switching is used otherwise. As a result, predictable
latency for sensitive traffic is guaranteed. The works of [9,11,12] mitigate DoS and timing attacks by
generation of security zones. Their proposal ensures that only the secure nodes can communicate into
a virtual and physical space, respectively. Security zones are built through dynamic routing. In [13]
non-sensitive traffic is deeply inspected in order to access to security zones. The works of [11,12]
reroute the traffic outside from the security zone. On the other hand, the authors of [7] propose the use
of separate virtual channels for secure and non-secure packets as a countermeasure for bandwidth
denial attacks in NoCs. However, this approach suffers from the hardware overhead of additional
buffers used for virtual channels.

2.2. DoS Attack Detection and Recovery

In [14], authors consider that DoS attacks are executed by a rogue third-party NoC architecture.
When a suspicious communication delay is detected between two nodes, the firmware tries to identify
if the attack is taking place at the source or at the destination by time-stamping the packets and
dividing into two communication paths. In [15], Fiorin et al. provide an overview of the attacks in
network on chips. The authors propose the use of buffer occupancy monitors to detect traffic anomaly
in the network but provide no details on the technique. Later, in [10], Fiorin et al. proposed the
implementation of denial of service probes in the Network Interface. This approach only covers the
DoS attacks from the Processing Elements connected to the network interface by detecting deviations



J. Low Power Electron. Appl. 2019, 9, 7 4 of 20

from the average bandwidth usage expected at the design time. This approach does not actively
monitor the latency of the sensitive packets in the network. In [16], Diguet et al. tackle DoS attacks by
monitoring live-lock occurrence in the network. However, this approach utilizes source-routing, which
imposes considerable overhead to the packet size. In [17], Grammatikakis et al. target distributed
DoS attacks via a firewall in control of configurable access rules in the network interface. The security
risk is evaluated by the product of frequency and magnitude of losses (by dropping the packets at
the Network Interface). Although such a firewall does not allow the DoS attack to be effective, it was
designed to protect the destination PE (i.e., the on-chip memory), thus it does not detect the source of
the attach, nor does it kill the attack-related traffic congesting the network. In [18], Achballah et al.
target computation of occupation time of the physical links in number of clock cycles. The occupation
time of the physical link is compared to an expected value. In case of the link occupation exceeding
this value, the transaction will be stopped and a notification will be sent to the system’s manager. Here
the decision is made locally in the router, which may lead to undesirable packet dropping.

The evaluation of the related works shows that the DoS attack avoidance approaches require
significant additional hardware effort in the routers and the system. Since scalable NoCs need an
overall dependability management [19], the router size should be as minimal as possible (e.g., no virtual
channels).

Our proposed approaches can be classified under DoS Attack Detection and Recovery, since they
analyze communication degradation in order to detect DoS attacks. Additionally, once an attack is
detected, they proceed to reduce the attack suspects so that the attacker can be located and neutralized.

Even though the works listed in Section 2.2 seek the same objective as our approaches, they either
are limited to parameters defined at design time or to the source routing algorithm. In contrast, the
decision parameters of our approaches are controlled by the system manager, and, as explained along
the paper, our proposed diagnosis mechanisms can be of use for different routing algorithms, making
them more flexible when compared to the other approaches.

Furthermore, we propose an architecture of scalable distributed monitoring solutions for NoC
traffic, in order to diagnose DoS attacks and identify attack characteristics, that help to find the source
of the attack. These monitors transmit relevant performance information that is analyzed at the
endpoint of the communication. We considered two diagnosis mechanisms based on the approaches
for search space reduction mentioned above. The first, called Collision Point Router Detection (CPRD),
identifies the router where the attacker’s malicious packets collide with the sensitive packets. The
second approach, called Collision Point Direction Detection (CPDD), extends the CPRD by not only
identifying the point of collision, but also the input port through which the attacker’s flow intercepted
the sensitive path. The importance of such an extension is explained in Section 5, where the two
approaches are compared.

3. Router Architecture

Bonfire is an open-source framework for developing dependability mechanisms for NoC-based
Systems-on-Chip (SoCs). The target NoC architecture is a 2D mesh topology. Each network tile
consists of a wormhole switching router equipped with fault tolerance mechanisms and a Network
Interface (NI), which is connected to the local resource. The routers use credit-based flow-control and
support any turn-model-based minimal path adaptive routing algorithm [19,20]. Figure 1a shows a
block diagram of the credit-based router used in this work. This router contains input buffers and
routing units for each input port, one switch allocator that provides support for any turn-model based
adaptive, a minimal path routing algorithm, and a crossbar switch for each output port. In credit-based
flow-control, each upstream router keeps track of empty buffers in the downstream router and sends
the flits with the assumption that the downstream router can receive them. The FIFO unit utilizes a
4-flit deep circular buffer and is in charge of issuing a credit signal to the upstream router. The routing
logic is implemented using a Logic Based Distributed Routing (LBDR) mechanism [21], which is a
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lightweight distributed routing mechanism that supports any turn-model based routing algorithm
and provides the possibility of an in-system reconfiguration of the routing algorithm.

(a) (b)

Figure 1. Bonfire baseline frameworks: (a) router architecture and (b) packet structure [20].

The allocator unit utilizes a Round Robin arbitration, where each input direction can hold access
to an output port for the length of a single packet. This arbitration mechanism has an important impact
on the resilience of the network to DoS attacks, since it prevents the starvation of packets entering the
router through other input ports.

Figure 1b shows the packet format used by the Secure Bonfire variant of the Bonfire framework.
This packet format is designed to be compatible with the Open Core Protocol (OCP) and each body flit
carries a payload of 28 bits.

4. Threat Model

MPSoCs with a heterogeneous array of PEs provide programmability and parallelism, yielding
flexibility, processing performance and power efficiency, which can be leveraged for minimizing the
latency of communication links of the edge cloud [22]. An example of such a scenario is depicted
in Figure 2, where IoT devices, equipped with NoC-based MPSoCs, improve the performance of
conventional general-purpose computer execution environments by adding application specific circuits.
However, this junction brings new security vulnerabilities to the NoC-based MPSoC world, such as
susceptibility to DoS attacks, as will be explained in this section.

Figure 2. Multiprocessor System-on-Chip (MPSoC)-powered Internet-of-Things (IoT)
execution environment.

Attack Scenario: During a DoS attack, an attacker seeks to degrade the performance of a
processing/communication environment, which in the scope of this work is represented by a
NoC-based MPSoC. In an environment, such as the one illustrated in Figure 2, users submit their
applications for execution on MPSoC-powered IoT devices. Subsequently, a task scheduler in the
firmware of the IoT device, during its normal operation, maps the applications to the PEs of the
incorporated MPSoC. However, one or more of those applications could have been submitted by a
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user with the intention of performing a DoS attack to the NoC. Moreover, the most common DoS attack
method is network flooding, where a malicious application running on any PE of the MPSoC is able to
do by sending packets to another PE in the NoC. These additional packets compete for the crossbars
of the routers in their path, and, while successful, block the transmission of other packets. Blocked
packets experience an increment of their forwarding delays, which results in an overall additional
communication delay that will be unacceptable by time sensitive applications.

Attack Steps: A malicious user (a.k.a. an attacker), submits his/her application to the execution
platform as any other user. Subsequently, a task scheduler maps the application to the PEs of the
MPSoC in order to start its execution. A basic procedure being followed by a simple malicious
application, whose goal is to attempt a flooding DoS attack on a NoC, is depicted in Figure 3. First,
the malicious application sets its Packet Injection Rate (PIR) to an initial value. Then, packets are
transmitted to another PE in the NoC at the defined PIR. As the packets are transmitted, the application
calculates the Effective PIR (EPIR) in order to assess the congestion of the NoC, which reflects the
effectiveness of the attack [23]. If the NoC is still not congested (i.e., PIR = EPIR), the application
continues to send packets increasing the PIR value. Finally, once the application establishes that its
attack is being effective, it continues to send packets maintaining the current PIR until the end of
the attack.

Figure 3. Basic procedure of a malicious application.

Attack Success Conditions: For a successful attack to be launched on a NoC-based MPSoC,
the following conditions must be met:

• The attacker packets should be able to interfere with the flow of sensitive packets in at least one
location. This means that both traffic flows should compete for at least a single router output.
Assuming that the attacker might not have prior knowledge of the network segments used by
the sensitive traffic, setting long paths for the malicious traffic will increase the probability of
colliding with the sensitive traffic.

• The attacker can control its own packet injection rate into the network. The attacker then can
increase the injection rate and monitor its own throughput. Based on its throughput information,
an attacker can infer if its traffic has interfered with other traffic in the network [23]. Additionally,
depending on the router’s arbitration, a burst of packets can hold a crossbar grant, causing the
starvation of other packets.

• The attacker node should be able to control the length of the packets that it injects into the
network. In practice, a single input direction cannot hold an output longer than the duration
of a single packet (e.g., Bonfire that uses wormhole switching with round robin arbitration in a
per packet basis). Thus, longer packets occupy the crossbar longer and consequently generate a
longer inter-router forwarding delay to sensitive packets, which is reflected in the end-to-end
communication delay.

5. Analysis of Attack Suspects

In order to mitigate the DoS attacks, it is important that the system manager identifies the physical
location of the attacker. However, there is no straightforward approach for acquiring such information.
The system manager can only collect indirect or partial information regarding the incident in order
to infer the location of the attacker. Without any additional information, excluding the source and
destination of the sensitive traffic, the system will have N-2 suspects, where N is the number of
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nodes in the network. In this section, we assume that the location of the collision and direction of the
incoming attacking flow can be recovered during the transmission of a packet. Later we analyze how
this information, combined with details of the routing algorithm, can be leveraged towards narrowing
down the search space for finding the source of the attack.

This part of the analysis is performed by the use of Routing Graphs [3]. A Routing Graph,
RG(V, E), is a directed acyclic graph where V is the set of vertices that represent all network ports
(input and output ports of the routers including the local ports) and E is the set of all edges which
represent connections between the input and output ports. The connections in the set E in RG can be
of two types: (i) internal; inside a router, between the input and output ports (including turns and
other paths inside the router) and (ii) external; the physical link between neighbor routers. By setting
the internal connections, it is possible to model any turn-model-based routing algorithm. Moreover,
using routing graphs enables the tool to use graph algorithms for finding paths between any source
and destination.

Algorithm 1 provides python pseudo code for the steps required for finding all possible attacker
suspect nodes, by only considering the location of the router where the malicious and sensitive packets
collide. The main idea is to find all the output ports on every path between source and destination,
and subsequently to find out how many nodes can send packets to these output ports under minimal
path routing.

Algorithm 1: Attack suspects considering collision location.

# Dictionary of all attackers
1 all_attackers = { };
2 for all paths P in {all minimal paths between Ss and Sd in RG} do

# list of all output ports on the path
3 O = [ ];

# for each path find all unchecked output ports
4 for all outports in P do
5 if outport not in all_attackers.keys() then
6 O.append(outport);

# for each outport find all attacker candidates
7 if len(O) != 0 then
8 for all outports in O do
9 A = [ ];

10 for local node L in RG do
11 if L has minimal path to outport in RG then
12 A.append(L);

13 all_attackers[outport] = A;

14 return all_attackers

Algorithm 2 provides python pseudo code for the steps required to find all possible attacker
suspect nodes by considering the collision router location and the input direction of the malicious
packets. The main idea is to find all the output ports on every minimal route path from the source to
destination. Subsequently, for each output port, all the possible input ports that can forward packets
to this port are checked. Finally, all the local nodes that can send packets to that port via minimal path
routing are found, under the current routing algorithm.

In the next subsection, we will describe the process via three examples using the XY routing
algorithm for the sake of simplicity. Later we will show the results for adaptive routing as well.
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Algorithm 2: Attack suspects considering collision location and input direction of interference.

# Dictionary of all attackers
1 all_attackers = { };
2 for all paths P in {all minimal paths between Ss and Sd in RG} do

# list of all input that can reach output ports on the path
3 I = [ ];

# list of all nodes that can reach output ports on the path
4 A = [ ];
5 for all outports in P do

# for each outport find all attacker candidates and all connected inports
6 I = RG.predecessors(outport);
7 for all local nodes L in RG do
8 if L has minimal path to outport in RG then
9 A.append(L);

# Checking if the nodes in A can reach inports
10 if len(I) != 0 then
11 for all inports in I do
12 for all local nodes L in A do
13 if (L has minimal path to inport in RG) and (L not in all_attackers[inport]) then
14 all_attackers[inport].append(L);

15 return all_attackers

5.1. Example Using XY Routing Algorithm

In this section we explore a simple example based on the XY routing algorithm [24]. This example
is taken due to the simplicity of the routing algorithm. In the next section adaptive routing algorithms
will be considered as well.

Figure 4 shows the first scenario considered for this exercise. The sensitive path is represented
by the green arrow, which begins in router 12 and ends in router 3, going through routers 13, 14,
15, 11, and 7. In case the system manager labels node 13 as the collision point, it has only a single
candidate for the attacker, namely node 13, since no other node’s traffic (excluding node 12 as the
sensitive source) can request node 13’s east output. However, in more sophisticated cases, the set
of candidates is enlarged (as listed in Table 1). It is important to note that the manager excludes the
nodes that have higher chance of collision in their own tile. For example, if the reports label node 14 as
the collision point, the manager will not include node 13 as a suspect since it has a better chance of
interference on node 13’s east output. This assumption might not hold for coordinated distributed
denial of service attacks.

Figure 4. Sensitive path 1.
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Table 1. Attack suspects for Sensitive path 1.

Collision Suspects with Collision Detected Suspects with Collision
Point Point Router Detection Direction Point Direction Detection

13 13 L 13

14 14 L 14

15 15 L 15

11 8, 9, 10, 11 W 8, 9, 10
L 11

7 4, 5, 6, 7 W 4, 5, 6
L 7

3 0, 1, 2 W 0, 1, 2

Figure 5 describes a scenario where the source and destinations of the sensitive path are nodes 8
and 2, respectively. This example is different from the previous example in one important aspect: the
sensitive path can be interfered with from both sides. This in turn will increase the search space for the
possible suspects dramatically. As it can be seen in Table 2, node 10 is a descriptive example of such a
situation. However, knowing the direction of the interference will further decrease the search space
(from 6 nodes to worst case number of 4 nodes, and in best case scenario down to a single node).

Figure 5. Sensitive path 2.

Table 2. Attack suspects for Sensitive path 2.

Collision Suspects with Collision Detected Suspects with Collision
Point Point Router Detection Direction Point Direction Detection

9 9 L 9

10 10, 11, 12,
13, 14, 15

E 11
S 12, 13, 14, 15
L 10

6 4, 5, 6, 7
E 7
W 4, 5
L 6

2 0, 1, 3 E 3
W 0, 1

The scenario depicted in Figure 6 shows a more extreme case than Scenario 2, where a single node
(node 5) has a search space of 11 suspect nodes (refer to Table 3). Further investigation shows that
knowing the direction of interference reduces the number of suspects, in the worst case to 8 nodes and
in the best case to 1 node (3.6 nodes on average).
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Figure 6. Sensitive path 3.

Table 3. Attack suspects for Sensitive path 3.

Collision Suspects with Collision Detected Suspects with Collision
Point Point Router Detection Direction Point Direction Detection

5
5, 6, 7 , 8,

9, 10, 11, 12,
13, 14, 15

E 6, 7

S
8, 9, 10, 11,

12, 13, 14, 15
L 5

1 0, 2, 3 E 2, 3
W 0

5.2. Discussion

When applying the same method on different routing algorithms, the gain of the proposed
mechanisms becomes more clear. Figures 7–9 depict the minimum, maximum and average number of
attack source suspects to be checked for the three scenarios (i.e., Sensitive paths 1 to 3), for different
minimal-path turn-model based routing algorithms. In this analysis the following routing algorithms
have been considered: XY [24], YX [25], West-First [26], East-First [27], North-First [28], North-Last [26],
Negative First [26], and South-First [28]. In this work, the SocDep2 [3] framework has been used for
modeling the routing graphs for the above mentioned turn models and for evaluating the presented
Algorithms 1 and 2 for different scenarios.

Figure 7. Average number of nodes to be checked under different routing algorithms (Sensitive path 1).

Figure 8. Average number of nodes to be checked under different routing algorithms (Sensitive path 2).
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Figure 9. Average number of nodes to be checked under different routing algorithms (Sensitive path 3).

Compared to oblivious search (marked in orange in Figures 7–9), the use of router locations will
reduce the search space in the worst case effort by 52%, 42%, and 21% for the previously illustrated
sensitive paths 1, 2, and 3. Similarly the use of directions will further reduce the worst case effort by
63%, 69%, and 56%. The use of collision direction in locating the attacker source reduces the maximum
effort of the location based solution by 24%, 48%, and 44% for paths 1, 2, and 3 respectively and the
average effort by 30.6%, 40%, and 39%.

6. Proposed Router Architecture

As explained in the previous section, knowing the location of the router where the malicious
packets collide with the sensitive packets and the direction from where they entered the sensitive
path drastically narrows down the attacker’s source search space. In this section we introduce
the two proposed approaches: One that targets the detection of the collision point router, and
another which also targets the detection of the direction from which the colliding packets enter
the sensitive path. Furthermore, both approaches are compatible with the same router architecture.
The proposed architecture extends the original (presented in Project Bonfire, Figure 1a), by the addition
of DoS monitors between the input ports and their corresponding FIFOs, as depicted in Figure 10.
Apart from the packets, the DoS monitors also receive information regarding all the output requests
and grants, which they process according to the chosen approach. The details of these methods are
explained in the following subsections.

Figure 10. Proposed router architecture with Denial of Service (DoS) detection.

6.1. Collision Point Router Detection (CPRD) Architecture

The goal of this approach is not only to detect a DoS attack, but also the router where the attacker’s
packets collide with the sensitive traffic. Hence, this architecture is called Collision Point Router
Detection (CPRD) (The code is available for download at [29]). We propose two main modifications to
the Bonfire NoC project [19]: (i) addition of the local and end-to-end delay and router information to
the packet’s tail, and (ii) introduction of the monitors in the routers.



J. Low Power Electron. Appl. 2019, 9, 7 12 of 20

As shown in Figure 11a (in comparison to Figure 1b), the structure of the communication packets
has been modified by adding the packet generation time stamp to the Last Body Flit. This time-stamp
is introduced to enable the system to calculate end-to-end latency of each packet, in order to detect
the existence of a DoS attack. Additionally, the last flit of the packet (i.e., the Tail Flit) now carries the
address of the router where the packet waited the most, while its required output was busy (i.e., Max
Latency Router Address), and the amount of clock cycles it waited (i.e., Max Router Latency Value). This
information is evaluated on every router by a proposed DoS Monitor, and updated in case the waiting
time in the current router is longer than the one stored in the packet.

(a) CPRD packet structure (b) CPRD DoS monitor architecture

Figure 11. DoS detection using Collision Point Router Detection (CPRD).

Figure 10 depicts the addition of the proposed CPRD DoS Monitor to the router’s data path.
By adding the CPRD DoS monitor before each of the five FIFOs of each router, a NoC is able to
distributively monitor DoS attacks and to locate the router where the attacker’s traffic enters the
sensitive communication path. Figure 11b depicts the internal architecture of the proposed CPRD DoS
Monitor. Once a new Header flit arrives at the input of the FIFO, the CPRD monitor starts a 10-bit
counter, which is stopped when the Header flit leaves the FIFO’s output. The counter is incremented
on each clock cycle while a packet is waiting to be forwarded, however, only while other packets are
being forwarded through its required output port. This is achieved by monitoring the grants issued by
the router’s allocator circuit and filtered by the request sent by the LBDR circuit. Furthermore, once
the tail flit of the packet arrives, the counter value is compared against the Max Router Latency Value
stored in the tail flit. If the counter’s value is larger than the packet’s Max Router Latency Value, the
monitor replaces Max Router Latency Value and Max Latency Router Address with the new values and
updates the parity bit for the tail flit.

The firmware of the MPSoC-powered IoT device will calculate the packets’ end-to-end latency
upon their arrival using the packets’ generation time-stamp. Later, this value is compared with the
maximum expected network latency. If the calculated packet latency is out of the acceptable latency
range, the Max Latency Router Address and the Max Router Latency Value are also retrieved from the
packet and analyzed together with previous DoS suspicion reports. Finally, when decided that a DoS
attack is taking place, the firmware can localize and reset the PE identified as the source of the attack,
thus eliminating its malicious traffic generation.

6.2. Collision Point Direction Detection (CPDD) Architecture

The second monitoring architecture works similar to the CPRD monitor, but also extends it to
report the input direction of the malicious traffic through which it enters the collision point router. The
packet format has been slightly changed in order to include the inputs competing to enter the sensitive
path and the output for which they competed (see Figure 12a). Figure 12b shows the internal structure
of the CPDD DoS monitor. The router uses the same structure as the one shown in Figure 10. The
most important task is to filter the requests sent to the Arbiter based on the issued requests from the
input routing logic, once the requests from the other ports are identified. In case the latency value
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stored in the packet’s tail flit is less than the value of the local latency counter, the monitor updates
the tail flit not only with the router address and the waiting time, but also the competitors and the
output for which they compete. With the purpose of registering grants, given for the required output,
while a packet is waiting to be forward, the CPDD monitor is equipped with a 5-bit register (a.k.a. the
Competitors log).

(a) CPDD packet structure
(b) CPDD DoS monitor architecture

Figure 12. DoS detection using Collision Point Direction Detection (CPDD).

Once a sensitive packet reaches its destination, equal to the CPRD approach, the firmware of the
MPSoC-powered IoT device calculates the end-to-end delay based on the timestamp contained in the
packet. Provided that the calculated value exceeds the threshold, the collision point is determined.
However, for the CPDD approach, the firmware will also extract the direction information to narrow
down the suspects list and localize the compromised PE.

7. Experimental Results

In order to evaluate the performance of the proposed Distributed DoS Detection systems presented
in Section 6 (i.e., CPRD and CPDD), they have been implemented on the RTL level and integrated to
the Bonfire framework [19]. Traffic generators included in the Bonfire platform were leveraged for
simulating normal traffic and DoS attacks on 4 × 4 mesh NoC-based MPSoC scenarios. Moreover,
the network routers (applying either XY- or WestFisrt-routing algorithm) use a credit base flow control
with fair Round-Robin arbitration (on packet level) and utilize Wormhole switching with 4-flit deep
FIFOs. Furthermore, random traffic packets were transmitted with a length of 10 flits and a PIR of
0.01 (i.e., one packet every 100 clock cycles). The length and PIR of the sensitive and attacker packets,
as well as their source and destination, vary according to the purpose of each scenario. Details of the
scenario setup of the experiments and the results of simulations for CPRD are provided in Section 7.1
and for CPDD in Section 7.2. Additionally, an evaluation of the overhead of the proposed mechanisms
in terms of area, critical-path delay, and power is presented in Section 7.3.

7.1. Collision Point Router Detection (CPRD)

The experiments presented in this section target the analysis of the DoS attack from two sides:
(i) from the point of view of the attacker in order to maximize the effectiveness of the attack, and
(ii) from the point of view of the network protection, evaluating different metrics that can be leveraged
for detecting an attack and qualifying the effectiveness of the CPRD mechanism. Section 7.1.1 presents
both sides of the DoS attack, considering a scenario that combines different PIR values for the attacker
as well as for the sensitive traffic. Section 7.1.2 goes further and evaluates the effects caused by attacks
with different packet lengths and from different locations within the NoC.
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7.1.1. Effect of the Attacker’s PIR

In order to evaluate the effect of the attacker’s PIR value on the effectiveness of DoS attacks,
the scenario described in Figure 13 has been adopted. The sensitive packets go from router 12 (marked
in blue) to the router 3 (marked in green) directed by the XY routing algorithm. This flow is marked
with the blue arrow in the figure. The attacker, located on router 15 (marked in red), attempts to send
packets to the same destination (router 3). The attacker’s packets’ flow has been marked by a red
arrow on the figure. Moreover, the attacker’s and sensitive packets collide in router 15 (marked with
an orange circle), while attempting to be forwarded to their destinations through the north port of
the router.

Figure 13. Experiment scenario for attacker’s Packet Injection Rates (PIR) efficiency.

Within this analysis, simulations were done considering different packet injection rates (PIR) for
sensitive packets (PIR_S) and attack packets (PIR_A). The network’s random traffic was generated
with a PIR_R of 0.01 (one packet every 100 clock cycles). Each experiment was performed for
20 pseudo-random simulation seeds to provide uniform results. The network’s random traffic and the
sensitive node’s traffic have been generated with a packet length of 10 flits (named (PL_R) and PL_S
respectively). In the scenarios where an attack attempt was present, three different packet lengths were
considered for the attacker’s packets (PL_A): 10, 30, and 50 flits.

As mentioned in Section 4, an attacker can identify the success/effectiveness of the attack by
measuring its own throughput [23]. Table 4 lists results for different combinations of PIR_S and PIR_A
from the attacker’s point of view. The first and third column of Table 4, show the attacker’s intended
and effective PIR, respectively. It can be seen that as the attacker’s intended PIR value is increased, the
gap between the attacker’s intended and Effective PIRs widens. For example, in the case where the
attacker’s intended PIR is 0.01, the attacker is trying to send a 30-flit-length packet every 100 clock
cycles. However, the effective PIR shows an insertion rate of approximately one packet every 140 clock
cycles. The deviation of the attacker’s effective PIR from the intended value is expressed as a growth
percentage in the fourth column of Table 4. For the purpose of this work, we established that an
attacker’s PIR_A variation (fourth column of Table 4) of 10% is needed to consider the attack effective.

Table 4. Attack effectiveness (S_A: 15, PL_A: 30, PL_S: 10, PL_R: 10, PIR_R: 0.01).

Attacker Sensitive Attacker Attacker PIR_A Attack
PIR_A PIR_S Effective PIR_A Deviation (%) Effective

0.003 0.003 0.003 0 7

0.003 0.01 0.003 0 7

0.003 0.03 0.003 0 7

0.01 0.003 0.0071 29 3

0.01 0.01 0.0071 29 3

0.01 0.03 0.0070 30 3

0.03 0.003 0.0086 71.33 3

0.03 0.01 0.0085 71.67 3

0.03 0.03 0.0086 71.33 3

As mentioned in Section 6, each packet carries (in the last body flit) a time-stamp of the instant
when the packet is generated. This time-stamp is used for calculating the End-to-End communication
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latency upon arrival to the destination node. Table 5 lists the mean End-to-End delay values of the
sensitive packets for different PIR_S values in absence of an attacker. This mean value and the sample
standard deviation (SSD) are used for calculating a threshold T as shown in (1), and such a threshold
for diagnosing DoS attacks.

T = mean_delay + 0.5 × SSD (1)

Table 5. End-to-End delay under no attack (PL_S: 10, PL_R: 10, PIR_R: 0.01).

Sensitive Mean End-to-End Sample Standard Detection Threshold
PIR_S Delay (Clock Cycles) Deviation (Clock Cycles) (Clock Cycles)

0.003 88.9056 17.3167 97.5640
0.01 162.0356 43.6219 183.8466
0.03 915.5529 405.9398 1118.5228

Furthermore, Table 6 lists the results of the experiments from the network protection’s point of
view for the same scenario where the attacker is located at router 15 (Figure 13). Since a DoS attack was
present, the end-to-end delay reached values greater than the threshold T (see Equation (1) and Table 5),
enabling the diagnosis mechanism to detect the attack. However, for a PIR_A of 0.01, the collision point
was not determined. This because the traffic entering from other inputs and requiring the same output
was more or less equal to the one from the attacker. On the other hand, for PIR_A configurations, where
the attacker noticed success by monitoring its own throughput (i.e., PIR_A ≥ 0.01), the proposed DoS
CPRD mechanism managed not only to detect the attack, but also the point where the malicious traffic
intercepted the sensitive path. For the scenarios where the collision point router was found, the last
column of the table lists the detection confidence. In some cases the confidence is not complete due to
the randomness of the additional traffic.

Table 6. Attack detection (S_A: 15, PL_A: 30, PL_S: 10, PL_R: 10, PIR_R: 0.01).

Attacker Sensitive End-to-End Attack Detected by Attack Detected Collision Point
PIR_A PIR_S Delay (Clock cycles) System Manager by Attacker Detection Confidence

0.003 0.003 181.331 3 7 7

0.003 0.01 765.047 3 7 7

0.003 0.03 2679.22 3 7 7

0.01 0.003 656.859 3 3 1
0.01 0.01 3346.42 3 3 0.8
0.01 0.03 4336.19 3 3 0.7
0.03 0.003 308.823 3 3 1
0.03 0.01 2937.8 3 3 1
0.03 0.03 4318.1 3 3 0.95

7.1.2. Effect of the Attacker’s Packet Length and the Location

In order to find configurations that would maximize the success of an attack, experiments were
done for four different PL_A values (i.e., 10, 20, 30, and 50 flits), as well as placing the attack source in
different routers of the NoC (router connected to the infected PE) and for the three scenarios presented
in Section 5.1; Figure 14a–d shows some of the scenarios with different sources of attacks (symbolized
with the red router, and specified in the label of each sub-figure). The malicious traffic runs from the
scenario specific source to the same destination as the sensitive traffic (router 3); as in the scenario
from the previous section, the red arrow connecting these two routers represents such a path and the
orange circle indicates the collision point, where DoS traffic collides with the path of the sensitive
traffic. Finally, as depicted in Figure 14e, depending on the selected attack source, the malicious path
length and the collision point to the sensitive path vary. In the cases where the attack source is directly
in the sensitive path, the source and collision point routers are the same. For such experiments, PL_S
and PL_R were set to 10 flits, and all the PIRs were set to 0.01 (i.e., PIR_A = PIR_S = PIR_R = 0.01).
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(a)
AL: 13

(b)
AL: 15

(c)
AL: 9

(d)
AL: 7

(e)

Figure 14. Experimental examples (a–d) for attack scenario 1 and (e) illustration of different malicious
path length and the collision point based on the location of the attacker.

End-to-End mean delay values of the sensitive packets for each of the scenarios are depicted
in Figure 14 and more, are presented in Figure 15. As expected, the results show that the trend of
End-to-End delay of the sensitive packets rises proportionally to the PL_A value, achieving in most
cases the highest mean delay values for the 50-flit PL_A configurations. This is due to the fact that
longer packets manage to retain the grant of a router output longer, preventing other packets of
being forwarded. Regarding the location of the attacker, as shown in Figure 15, the highest sensitive
End-to-End transmission delays were caused when injecting the malicious traffic into the routers
closest to the sensitive destination. This is due to the propagation of arbitration fairness of each
router. Consider that the attacker can block 50% of the traffic on the point of insertion (in case its
only competing with one other input direction). If this point of insertion is close to the source of the
sensitive data, the attacker can successfully block 50% of the sensitive packets. However, if the attacker
is close to the destination node, it can block 50% of the destination stream where the sensitive data
flow is a part of it. Hence, the effect of the attack gets amplified by the distance of the attacker from
the source.
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Figure 15. End-to-End latency vs attacker’s packet length for different attack sources (XY Routing) for
(a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

7.2. Collision Point Direction Detection (CPDD)

Section 5 explained the benefit of identifying the port through which malicious traffic intercepts
the sensitive path. This section presents the direction detection success and misses of the CPDD
mechanism for the scenarios described in Section 5.1. Simulations were executed considering a PIR_A
value of 0.03 and PIR_S = PIR_R = 0.01. Each experiment was performed for 20 pseudo-random
simulation seeds to provide uniform results. Additionally, four attacker packet lengths were adopted
(i.e., 10, 20, 30, and 50 flits), while the network’s random traffic and the sensitive node’s traffic
generated packets with the length of 10 (i.e., PL_R = PL_S = 10). Moreover, experiments were executed
considering not only a deterministic routing algorithm, but also an adaptive routing algorithm. Results
for each routing algorithm are presented separately in Sections 7.2.1 and 7.2.2, respectively.
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7.2.1. Analysis of the Proposed Method under Deterministic Routing

Figure 16 summarizes the obtained detection results for scenarios depicted in Figures 4–6 under
XY routing. Each row lists the detection effectiveness of the collision point router and input direction
of the malicious packets for every possible attack source. Also, each pair of columns group the router
and direction detection results for each of the attacker packet length values.
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AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 7 – 7 – 3 3 3 3

1 7 – 7 – 3 3 3 3

2 7 – 7 – 3 3 3 3
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4 7 – 3 3 3 3 3 3
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6 3 3 3 3 3 3 3 3

7 3 3 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3

10 3 3 3 3 3 3 3 3

11 3 3 3 3 3 3 3 3

12 – – – – – – – –
13 7 – 7 – 3 3 3 3

14 7 – 7 – 3 3 3 3

15 7 – 7 – 3 3 3 3
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Figure 16. Effectiveness of the proposed architecture in establishing the attacker search space for XY
routing of (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

Results showed that the CPDD managed to detect the input direction for almost all the scenarios
where the collision point router was found. Also, once again, due to the wormhole switching, that as
the packet length of the attacker was increased, it became easier to detect the collision point router.

7.2.2. Analysis of the Proposed Method under Adaptive Routing

A similar analysis to the one shown in the previous section has been performed on the system
adopting the West-First adaptive routing algorithm. Figure 17 summarizes the obtained detection
results when adopting the West-First routing in the scenarios depicted in Figures 4–6. Each row lists
the detection effectiveness of the collision point router and input direction of the malicious packets
for every possible attack source. Also, each pair of columns group the router and direction detection
results for each of the attacker packet length values.
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Figure 17. Effectiveness of the proposed architecture in establishing the attacker search space for
West-First routing of (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

The results for this set of experiments show a better detection efficiency of the attacker’s location
compared to a system using XY routing, however, since traffic between two routers may have more
than one minimal path, the size of the search space for the attacker is much larger (please refer
to Figures 7–9).
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7.3. Overhead Evaluation

The proposed architectures (CPRD and CPDD Routers) were synthesized using the 0.18 µm AMS
library and Synopsys design vision at 200 MHz. Area overhead and critical path delay of the proposed
architecture compared to the baseline architecture are reported in Table 7. The critical path delay
overhead of the CPRD method is negligible and the proposed CPRD monitors only add 17% area
overhead to the minimalist router area (each CPRD monitor only adds 3.4% overhead to the router’s
area). Its important to note that the main contribution to area overhead is from the inclusion of the
counter register. The width of the counters can be adjusted based on the application. The CPDD router
applies 23.2% area overhead to the baseline router. In order to put the area overheads into perspective,
we will consider the overheads on a 4 mm2 chip. For an SoC using a 4 × 4 mesh NoC, the CPRD and
CPDD would impose 0.4% and 0.5% overhead to the system respectively.

Table 7. Area and critical path delay overhead.

Area

Sequential Combinational Total Overhead Critical PathRouter
(µm2) (µm2) (µm2) (%) Delay (ns)

Baseline 48378.7 42669.0 91047.8 – 4.82
CPRD Router 52033.7 55129.9 107163.7 17.7% 4.8
CPDD Router 58313.6 53873.9 112187.5 23.2% 4.79

Power analysis: the power consumption of the proposed methods (CPRD and CPDD routers) and
the baseline architecture have been evaluated for random uniform traffic with a packet injection rate
of 0.01 (without presence of attacker). The results of these experiments are reported in Table 8. The
results show that the CPRD approach induces 5% power overhead and the CPDD approach adds 9.4%
to the baseline router.

Table 8. Power overhead.

Switching Internal Leakage Total TotalRouter Power (mW) Power (mW) Power (mW) Power (mW) Overhead (%)

Baseline 0.151 3.663 0.261 3.814 –
CPRD Router 0.273 3.374 0.327 4.008 5%
CPDD Router 0.269 3.905 0.346 4.174 9.4%

8. Conclusions

Network-on-Chip solutions have become the central communication infrastructure of the modern
MPSoCs. However, Denial of Service (DoS) attacks have been shown as an important threat to NoC
integrity. Hence, it is of utmost importance to detect the occurrence of such attacks in the system,
and also to localize the attacker in order to neutralize its effects. To this end, this paper provides two
main contributions. First we analyze the effect of obtaining additional information about the collision
location and the incoming direction of the attacker’s flow in the collision point with the sensitive data
on localizing the attacker. Second we propose two distributed DoS detection schemes for measuring
the performance degradation of sensitive data transmissions under Denial of Service attacks and for
detecting the collision point and direction of the collision of the DoS packets into the sensitive path.
We perform an exploration of the effect of different attack configurations targeting the sensitive traffic
including different packet lengths, packet injection rates, and attack sources. Our experimental results
show that longer attacker packets, intercepting the sensitive path closer to its destination, cause a
greater effect of the attack. We have also shown that we can almost in all cases identify the direction of
incoming attack flows.
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Abstract—As Multi-Processor Systems-on-Chip (MPSoCs) per-
meate the Internet by powering IoT devices, they are exposed to
new threats. One major threat is Denial-of-Service (DoS) attacks,
which make communication services slow or even unavailable.
While mainly studied on desktop and server systems, some DoS
attacks on mobile devices and Network-on-Chip (NoC) platforms
have also been considered. In the context of NoC-based MPSoC
architectures, previous works have explored flooding DoS attacks
and their countermeasures, however, these protection techniques
are ineffective to mitigate new DoS attacks. Recently, a shift of
the network attack paradigm from flooding DoS to Low-and-Slow
DoS has been observed. To this end, we present two contributions.
First, we demonstrate, for the first time, the impact of Low-
and-Slow DoS attacks in NoC environments. Second, we propose
a lightweight online monitor able to detect and mitigate these
attacks. Results show that our countermeasure is feasible and
that it effectively mitigates this new attack. Moreover, since the
monitors are placed at the entry points of the network, both,
single- and multi-source attacks can be neutralized.

Index Terms—Network on Chip (NoC), Muti-Processor System
on Chip (MPSoC), Denial of Service (DoS) attack, Low-and-Slow
DoS attack, Distributed monitoring

I. INTRODUCTION

The ever growing use of MPSoCs by introducing them into
the IoT edge cloud and fog computational nodes, increment the
security threats targeting these type of architectures. Networks-
on-Chip (NoCs) have shown to be a scalable communication
infrastructure for the growing number of connected Processing
Elements (PEs) in an MPSoC. Such communication structure
transports data encapsulated in packets which in turn are
divided in to flits (flow control units).

In order for a NoC to be scalable, the incorporated routers
must meet special requirements such as: limited hardware
resources and high throughput/low latency communications.
To this end, designers focus on: i) area optimization by
reducing the buffer size of routers and ii) to use of control
flow schemes that attempt to forward the packets as soon
as they are received. The Wormhole switching mechanism,
being widely used in NoCs, addresses both above mentioned
objectives. With Wormhole switching, small buffers are used
in each router, hence, at a given time, a packet in the network
can occupy multiple router buffers.

A whole class of attacks, named Denial of Service (DoS)
attacks, attempt to diminish the quality of service of on-
chip network communications. Classical attacks target network
traffic either: i) directly, where rouge NoCs increase the for-
warding delay of packets; or ii) indirectly, where applications

This work was partially funded by the German Academic Exchange Service
(DAAD) and by the German Federal Ministry of Education and Research
(BMBF), grant number 01IS160253 (ARAMiS II) and also supported partly
by the ETAG IUT19-1 grant.

running on compromised PEs exploit Wormhole switching by
generating traffic that occupies the NoC, preventing legitimate
traffic to flow through the network or to forcing it to take
longer to reach its destination.

When focusing on the development of a secure network
infrastructure, direct DoS attacks to the network traffic be-
come irrelevant, whereas indirect DoS attacks become one
of the major concerns. Attacks that flood the network with
a large amount of small packets (high packet injection rate) or
with packets of larger-than-normal size, called Flooding DoS
(FDoS) attacks, have been investigated in NoCs. As shown
in Section II-B, countermeasures to such attacks have been
proposed, targeting either attack prevention, or attack detection
and source localization.

However, NoCs using wormhole switching are also vulner-
able to a specific type of attacks referred as Low-rate DoS,
Slow DoS, or Low-and-Slow DoS (LSDoS) attacks. Since
the minimalist wormhole switching allocates a path for the
transmission of a packet until its last flit is transmitted, and
typically does not allow interleaving of flits from different
packets (unless specific interleaving techniques are employed,
as in [1]), this type of attacks can effectively degrade the
network performance by injecting short packets with a low
flit injection rate or just by the injecting packet fragments. As
shown in this paper, the effectiveness on LSDoS attacks is
as high as that of FDoS attacks. In this paper we will also
provide a novel method for mitigation of LSDoS attacks in
NoCs. To the best of our knowledge this is the first analysis
of this attack method in the context of NoCs.

Moreover, MPSoCs in the silicon nano-scale era are facing
an ongoing wear-out of structures during life-time, therefore,
dependable and mission-critical systems must be designed
adopting a fault management architecture [2]. Such an archi-
tecture includes additional hardware like monitors, sensors,
and checkers that allow a detailed assessment of the system’s
performance. A central system manager (SM), running on
one processor core of the MPSoC, provides essential services
such as Task Scheduling and Distribution, a system health
management service (SHM), and a Security Surveillance and
Management (SSM) service. The SHM gathers information
and mitigates the effects of faults. The communication be-
tween the SHM and the distributed hardware elements is
done in accordance to standard 1687 of the Institute of
Electrical and Electronics Engineers (IEEE), also known as
IJTAG. Related to security, the SSM collects information about
unexpected anomalous behaviour in the network, analyses the
situation and decides to employ security countermeasures.

The contributions of this work are as follows: In Section II
the state-of-the art for DoS attacks in MPSoCs and Low-
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and-Slow attacks in normal computer networks will be out-
lined, followed by a definition and detailed description of
the adopted DoS threat model (Section III). An illustration
of the practicality of LSDoS attacks in wormhole switching
NoCs is outlined in Section IV, including a comparison of
FDoS and LSDoS attacks. In Section V an exploration of
possible countermeasures is performed combined with the
proposal of a novel online monitoring mechanism for detection
and mitigation of such type of attacks. The proposed LSDoS
countermeasure is deployed at the entry points of the network,
dealing with each attack attempt separately at its origin,
hence, it can equally mitigate single and multiple source
LSDoS attacks. An experimental evaluation of the impact
of the proposed LSDoS attacks compared to FDoS attacks,
as well as the effectiveness of the proposed countermeasure
and its synthesis results are presented in Section V. The
experimental results show that LSDoS attacks can cause the
same impact of long-size-packet FDoS attacks and that the
proposed countermeasure can neutralize these new type of
NoC attack with a small area overhead.

II. RELATED WORK

DoS attacks have been widely researched in computer net-
works and somewhat in MPSoCs, however, most publications
related to MPSoCs focus on rouge NoCs and Flooding DoS
(FDoS) attacks. Low-and-Slow DoS (LSDoS) attacks, on the
other hand, have been only researched, until now, in the
context of computer networks. Section II-B summarizes some
FDoS in NoC, and Section II-C LSDoS attacks in computer
networks.

A. DoS attacks caused by rouge NoCs
The authors of [3] consider DoS attacks being executed by

a rogue third-party NoC architecture. On detection of a suspi-
cious communication delay between two nodes, the firmware
tries to identify if the attack is taking place at the source or at
the destination by time-stamping the packets and dividing them
into two communication paths. A NoC containing a hardware
trojan (HT) that compromises data integrity is presented in
[4]. Upon arrival to their destination, packets that do not
pass an error detection mechanism are drooped and there
retransmission requested, flooding the network on demand.
The proposed countermeasure is obfuscating the packet data
so that it is not recognizable by the HTs, thus not triggering
it.

B. Flooding DoS attacks in NoCs
Approaches against Flooding DoS (FDoS) attacks in NoCs

can be divided into two categories: 1) DoS attack avoidance,
and 2) DoS Attack Detection and Recovery.

1) DoS attack avoidance: The authors of [5] propose a
mitigation strategy based on a hybrid switching routing mech-
anism. Here for sensitive packets circuit switching is used and
packet switching is used otherwise. This approach guarantees
predictable latency for sensitive traffic. In [6] DoS and timing
attacks are mitigated by the creation of security zones. This
proposal ensures that only secure nodes can communicate into
a virtual and physical space, re-routed other traffic outside
of security zones. An alternative approach is followed by the
authors of [7], who propose the use of separate virtual channels
for secure and non-secure packets as a countermeasure for
bandwidth denial attacks in NoCs. However, this approach

suffers from the hardware overhead of additional buffers used
for virtual channels.

2) DoS Attack Detection and Recovery: Fiorin et al. [8],
present an overview of different attacks in Networks-on-Chip.
The authors propose the use of buffer occupancy monitors for
detection of traffic anomalies in the network without providing
details of the technique. In a subsequent publication [9], Fiorin
et al. propose the implementation of denial of service probes
in the network Interfaces. This approach detects DoS attacks
outgoing from a processing elements being connected to a
network interface by monitoring deviations of the average
bandwidth from expected values determined during design
time. This method does not actively monitor the latency of
the sensitive packets in the network. In [10], Diguet et al.
cope with DoS attacks by monitoring live-lock occurrence in
the network. This approach is based on source-routing, which
imposes considerable overhead to the packet size and doesn’t
allow adaptive routing with respect to current traffic volume.
Grammatikakis et al. [11] tackle distributed DoS attacks by ap-
plication of a firewall enforcing configurable access rules in the
network interface. The security risk is defined by the product
of frequency and magnitude of losses (by dropping the packets
at the Network Interface). Although such a firewall prevents
the DoS attack from being effective since it has been designed
to protect the destination PE (i.e., the on-chip memory), it does
neither detect the source of the attack nor does it kill the attack-
related traffic congesting the network. In [12], Achballah et al.
focus on the computation of occupation time of physical links
in terms of clock cycles. The occupancy of the physical link is
compared to an expected value. In case of the link occupation
time exceeding this expectation, the transaction will be flushed
and a notification will be sent to the system manager. In this
approach the decision is made locally in the router, which
may lead to undesirable packet dropping. The authors in [13]
study a DoS attack caused by an infected processing element
that floods the network with useless packets at a greater than
normal packet injection rate. Distributed monitors detect the
attack by comparing the amount of received packets through
each router input port in a given time interval. Once the attack
has been detected, additional packets are sent for localizing
the source of the attack. The authors of [14] propose DoS
Attack Detection and Recovery approaches, which analyze
communication degradation in order to reveal DoS attacks.
After detection of an attack, the described scalable distributed
monitoring architectures identify attack suspects such that
attackers can be located and countermeasures can be applied.

C. Low-and-slow DoS attacks in computer networks
As mentioned before, LSDoS attacks (also called Low-

rate DoS and Slow DoS attacks) had not been studied in the
context of NoC until now, however, they have been analyzed
in different stages of computer networks. In [15], the authors
present Slow DoS attacks that target HTTP servers, e.g. the
Slowloris and the Slow Read DoS attacks. A Slowloris attack
is implemented by sending legitimate but incomplete HTTP
requests to the server. Once a connection has been established,
it will be locked until a server timeout is triggered. After
the connection has been released, the attacker will repeat the
attack. Additionally, since this attack requires little bandwidth,
a same attacker can execute many simultaneous Slowloris
attacks. In contrast, when attempting a Slow Read DoS attack,
the attacker sends a complete legitimate HTTP requests, but
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specifies a small client side reception buffer, forcing the server
to respond in a low-rate manner, thus locking the connection
longer.

The Jellyfish delay variance (JFDV) attack is presented in
[16]. It adds a random delay between packets, which leads
to a longer allocation time of resources and subsequently,
it can be confused as the normal behavior of a congested
network. In such scheme, the transmission and reception time
of each packet are used for calculating its end-to-end delay,
which is compared to a normal behavior time threshold to
identify JFDV attacks. At the same time, the congestion of
the network is monitored so that a JFDV attack detection may
only be signaled when the end-to-end delay is greater then the
threshold in a non-congested network situation.

III. THREAT MODEL

MPSoCs with a heterogeneous array of Processing Elements
(PEs) provide programmability and parallelism, yielding flex-
ibility, processing performance and power efficiency, which
can be leveraged for minimizing the latency of communication
links of the edge cloud [17]. Fig. 1 illustrates such scenario,
in which the performance of Cloud computing is enhanced
by attaching IoT devices that are powered by NoC-based
MPSoCs.

As depicted in Fig. 1, MPSoCs are composed of two main
structural types of components:
(i) the computational structure, consisting of Processing El-
ements (PEs) such as: processors, hardware accelerators,
memories, peripherals, and other Intellectual Property (IP)
hardware cores to process and store information; and

(ii) the MPSoC internal communication structure, performing
data exchange between PEs. NoCs are used as communication
structure of MPSoCs, integrating a high number of PEs. A
NoC transmits data via routers and communication links. In
order to achieve an optimized pipelined data transmission char-
acteristics, typically applied routing topologies are mesh-based
NoCs (as shown in Fig. 1) or FAT tree-based architectures.
Mesh topologies are composed by a set of five-port routers
(Local, North, East, South, West).

Computational components are attached to the MPSoC
communication architecture via Network Interfaces (NIs). In a
typical mesh-based NoC, NIs are connected to the fifth router
port being called local. Data is transmitted via the NoC in the
form of data packets. At the packet injection locations, NIs
receive data coming from the PEs, encapsulate it as packets
and send it to the router (source router). Subsequently, the
router hands it over to one of its neighbor routers according
to the defined routing algorithm. All routers will forward the
packet applying this routing scheme until the packet reaches

Fig. 1: MPSoC-powered IoT Execution Environment

its destination. The last router (destination router) directs it
to the local port, thus ejecting the packet from the NoC.
NIs depacketize the data and forward the information to the
connected destination PE.

Even though the attachment of NoC-based MPSoCs to the
cloud can be beneficial for the system’s overall performance,
it exposes them to new security threats, such as DoS attacks.

The characteristics of such a scenario and its vulnerability
to DoS attacks will be analyzed in this section, as well as the
steps followed by an attacker during execution of a DoS attack
and related success conditions.

A. Attack Scenario
The attack scenario depicted in Fig. 1 was used in [18]

and [14] for evaluating FDoS attacks in NoCs. In this paper
it is used for comparing FDoS and LSDoS attacks. Such
scenario corresponds to a typical IoT environment is shown,
where gateways (fog-level concentrators) connect a network of
MPSoC-powered IoT devices (edge devices) to the cloud in
order to create an enhanced execution environment. In tradi-
tional cloud computing execution environments, a user/client
submits an application to a cloud service; subsequently, it is
executed by a server of the shared infrastructure; finally, the
results are sent back to the user. In the proposed scenario,
a cloud scheduler or a local domain-internal scheduler can
delegate the execution of specific tasks to MPSoC-powered
IoT devices. Such tasks will subsequently be locally mapped
by an MPSoC task scheduler firmware to a specific PE.
However, ungovernable by the schedulers, the execution of
one or more of the tasks can impact the NoC throughput,
either intentionally (a DoS attack) or unintentionally (a faulty
task).

Fig. 2a depicts a DoS attack scenario on a NoC in which
sensitive traffic is being transmitted from PE12 to PE3 (a.k.a.
the sensitive path, composed by the set of routers and links
used to forward the sensitive traffic, which is represented
by a green arrow). Additionally, a compromised PE, i.e.
PE0, attempts a DoS attack either by transmitting incomplete
packets to PE3 or by using a low flit rate (a.k.a. malicious
traffic, which is represented by a red arrow). Both traffic flows,
sensitive and malicious, meet in Router 3 and compete for
the same output port (i.e. the local output). Fig. 2b depicts
the arising competition situation at the crossbar of the local
output of R3. While the use of a required output is granted
to one of its competitors, a sensitive packet will experience a
forwarding delay longer than normal, resulting in an overall
additional communication delay which is not acceptable for
time sensitive applications. It is worth to notice that even

(a) Sensitive path 12→3, attack
path 0→3

(b) Local crossbar router 3

Fig. 2: Attack scenario example considering XY routing

84
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 20,2021 at 18:32:01 UTC from IEEE Xplore.  Restrictions apply. 



though in the given example in Fig. 2a, the sensitive traffic
has only one potential competitor for the local output (i.e.
malicious traffic entering via the west input), in other situations
it can have at most three competitors (no u-turns are allowed
within the router).

B. Attack Steps
During a DoS attack, an attacker seeks to disrupt the

services of a system by degrading a distinct communication
channel’s performance. In this work we focus on DoS attack
methods which are new to the context of NoCs. In low-
and-slow DoS attacks, a malicious application, running on
any processing element of the MPSoC, tries to disrupt the
communication of other system components by sending com-
plete packets slowly or incomplete packets to another PE in
the NoC, blocking the transmission of other packets on the
occupied communication resources.

In order to perform a Low-and-Slow DoS (LSDoS) attack
on a a NoC-based MPSoC, such as the one illustrated by
Fig. 1, the attacker, as any other client/user, submits an
application to the execution environment. Such an injected
application contains at least one task that, according to its
characteristics/requirements, will be scheduled to run in a
NoC-based MPSoC.

Once the malicious task starts to be executed in a PE, it se-
lects a destination PE to which its packets will be sent (in many
cases a memory IP). At this point, the actual attack starts.
The application running in the infected PE would classically
execute here a FDoS attack, but for this paper, it will execute
any of the newly proposed attacks: i) the Incomplete packet
transmission (IPT) DoS, in which the PE sends information
used for generating the header and packet info flits (see
Fig. 3), but provides less flits than specified, thus, blocking the
acquired path indefinitely; or ii) the Jellyfish Inter-flit Delay
Variance (JFIDV) DoS, in which the PE provides all the flits
of the packet, however, adding unnecessary delays between
the transmission of each flit.

C. Attack Success Conditions:
In order to impact a NoC-based MPSoC with a DoS attack,

the following conditions must be met:
• A malicious process is able to be executed in a PE inside

the MPSoC; As any other user, applications with MPSoC
execution requirements submitted by an attacker will be
mapped to a PE of an available MPSoC.

• Malicious packets compete with sensitive packets for one
and the same output of the crossbar of a router. Assuming
that the attacker has no knowledge of the network segments
being used by the sensitive traffic, setting long paths for the
malicious traffic will increase the probability of colliding
with the sensitive traffic.
In this work, we describe a specific exemplary scenario

with distinct PEs acting as transmitter or receiver nodes of
sensitive, malicious or random traffic. This assures that the
malicious traffic will flow in at least one NoC link required
by the sensitive communication, thus, forcing a competition
for a router crossbar output between the two traffic flows.

IV. LOW-AND-SLOW DOS ATTACKS IN NOCS

In general terms, the objective of any DoS attack is to pre-
vent legitimate users from using normally available resources,

or to obstruct such resources in order to degrade the perfor-
mance of the system [19] (i.e. increasing processing and/or
communication times). In the context of NoCs, disregarding
physical tampering, a DoS attack is commonly performed
by transmitting malicious packets that take possession of
dedicated input to output paths in one or more routers for
extended periods of time [14]. Flooding DoS (FDoS) attacks in
NoCs and their countermeasures have been analyzed in recent
research (as detailed in Section II-B).

In order to perform a FDoS attack in a NoC-based MPSoC,
an infected PE should either: i) send a greater than normal
amount of packets (high packet injection rate (PIR)) [13]; or ii)
send abnormally long packets in order to generate congestion
on a longer path in the network [20]. The former FDoS attack
class can be detected by monitoring the amount of packets sent
by a single PE [13], or even being attenuated by implementing
a fair Round-Robin arbitration on a packet level, which avoids
a PE from monopolizing a router’s cross-bar [21].

Even though such countermeasures prove to be effective
against the former FDoS type, they are circumvented by long-
packet FDoS attacks. Long-packet FDoS can be executed with
a smaller amount of packets that block a router’s crossbar
connection longer than packets sent from legitimate sources.
However, the Long-packet FDoS type can be detected if each
router compares the size of the packets arriving through their
local interface to the size of other packets.

In this work we present for the first time in the NoC
context a DoS attack that is immune to the aforementioned
FDoS countermeasures. Such an attack, called low-and-slow
DoS (LSDoS) attack, takes advantage of the switching method
(virtual cut-through or wormhole) used by the NoC, and is
capable of achieving the same impact as a long-packet FDoS
attack, with packet sizes equal or even smaller than those sent
by legitimate PEs.

Generally, the switching methods used in NoCs can be
divided into 2 classes: i) approaches that forward packets
only after all their flits have been collected (namely store-
and-forward switching), and ii) approaches where packets are
forwarded as soon as they are received (e.g. virtual-cut-through
and wormhole switching) [21]. The store-and-forward switch-
ing method ensures that no incomplete packets are forwarded,
however, depending on the maximum packet length allowed
in the NoC, its implementation will require a large memory
area for storage and handling of whole packets (Virtual-cut-
through requires memory as well). Another drawback of store-
and-forward switching is that it produces a greater end-to-end
communication latency, thus packets have to arrive completely
to one router before being forwarded to the next router, making
the delay proportional to the amount of hops required to
reach the destination. In contrast, the wormhole switching
method requires less buffer area. Here only a couple of flits are
stored while the routing decision is made. However, since a
path is exclusively allocated to a single packet, it will only
be available to other sources again, when the tail flit has
passed. Thus, an attacker can send an incomplete packet (i.e.
without a tail flit), performing an IPT DoS attack or stretch the
transmission time of small packets by intentionally introducing
delays between the transmission of their flits, performing a
JFIDV DoS attack.

For a better understanding of the proposed JFIDV LSDoS
attack, we adopted the simple packet structure depicted in
Fig. 3. The NI implements the protocol, by wrapping the
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information generated by the PE into packets, which are then
injected to the NoC routers. However, it is the application
running in the PE that decides the rate at which the information
is sent from the PE to the NI. Therefore, as shown in Fig. 4,
with the addition of inter-flit delays (Dif ), the transmission
of a normal-sized packet of length PL2 can be stretched to
take control of the router cross-bars along a path in the same
way as a longer packet of length PL1 would do. Moreover,
any of the three variables can be calculated based on the other
two following one of the equations (1), (2), or (3). Finally, the
equivalence between the FDoS and the JFIDV LSDoS attack is
proven by the experimental results presented in Section VI-B.

Fig. 3: Packet structure

Fig. 4: Transmission equivalence among DoS attacks

PL1 = PL2 + (PL2 − 1)×Dif (1)

PL2 =
PL1 +Dif

1 +Dif
(2)

Dif =
PL1 − PL2

PL2 − 1
(3)

V. ARCHITECTURE OF THE PROPOSED LSDOS MONITOR

Aiming to achieve LSDoS robustness in NoCs, to IPT
and JFIDV DoS attacks, we propose the use of specialized
hardware monitors. The proposed functionality can be im-
plemented in the network interfaces, between the network
interfaces and the routers, or at the router’s local port. Since the
NI is traditionally made as an in-house IP while the Network
is bought from a 3rd party, we opted for the last option.
However, our choice of monitor location has no effect on the
functionality and efficacy of the approach.

Based on the router architecture of the Bonfire open-source
framework, found in [22], we present a new architecture that
can avoid LSDoS attacks in NoCs (depicted in Fig. 5). As
in the base architecture, the router contains: i) input buffers
(FIFOs) that store flits received through each input port until
they can be forwarded; ii) routing units that implement a
Logic Based Distributed Routing (LBDR) mechanism [23],
which supports any turn-model based routing algorithm and
provide the possibility of an in-system reconfiguration of the
routing algorithm; iii) one switch allocator that arbiters data
transmission from the FIFOS to the required output port; and
iv) a crossbar that provides the connection between the FIFOS
and the required output port. In the proposed architecture, the
Low-and-Slow DoS monitor (depicted in Fig. 6) sits between
the local FIFO and the subsequent blocks. Such location

Fig. 5: LSDoS monitor - Router architecture

Fig. 6: LSDoS monitor - Black box diagram

Fig. 7: LSDoS monitor - Finite State Machine (FSM)

TABLE I: LSDoS monitor - FSM assignments

Idle

counter = MAX VALUE - 1;
read en out = ‘1’;
data out = 0;
fifo empty out = ‘1’;

Bypass

read en out = read enable in;
data out = data in;
fifo empty out = fifo empty in;

if ( fifo empty in = ‘0’ ) then
counter = MAX VALUE - 1;

elsif ( read enable in = ‘1’ ) then
counter = counter - 1;

end if;

Kill
attack

counter = MAX VALUE-1;
read en out = 1;
data out = “1000 0000 0000 0000 0000 0000 0000 0001”;
fifo empty out = ‘1’;

allows the monitor to truncate malicious LSDoS packets and
drop their remaining flits from the FIFO (if any).
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Fig. 7 depicts the Finite State Machine (FSM) that describes
the functionality of the LSDoS monitor and Table I details the
main assignments done during each state.

On reset, the LSDoS monitor goes to Idle, where the counter
is set to the maximum acceptable inter-flit delay (which can be
set any time by the SSM), from where it will transition to the
Bypass state as soon as a header flit is outputted by the local
FIFO. During the Bypass state, data will flow as if no LSDoS
monitor were present. However, the counter will be reset every
time a new flit is received, or decreased every clock cycle in
which the FIFO remains empty and data is being required. If
a tail flit is received, the monitor will go back to the Idle state
and wait for a new packet. Otherwise, if the counter times out,
the presence of an LSDoS attack is assumed. Consequently,
the monitor will transmit a predefined tail flit and go back to
Idle. Thanks to this tail flit, incomplete packets generated by an
IPT DoS attack attempt are terminated while packets generated
by a JFIDV DoS attack attempt are cropped, releasing the
communication path. Consequently, at the destination, the
received packet will be dropped, since the declared packet size
will not match the actual size. Moreover, by returning to Idle,
all the remaining flits from the malicious packet, in case of a
JFIDV DoS attack attempt, will be dropped, thus neutralizing
the attack. This because the proposed LSDoS monitor only
forwards flits while being at the Bypass state, to which it will
only transition when detecting a header flit.

VI. EXPERIMENTAL WORK

In order to validate the impact to a NoC caused by the
introduced Low-and-slow DoS attack and the efficacy of the
proposed LSDoS monitor, the implementation of the attack
behaviour and the detection mechanism has been done based
on a VHDL RTL description, integrated into the Bonfire NoC
platform [22]. Moreover, such an integration allowed the use
of the platform’s traffic generators to create sensitive, normal
and DoS attack traffic with different PIR values and packet
lengths. The traffic generators, however, were modified so that
transmission delays could be added between the flits of the
attack packets. Section VI-A details the scenario configura-
tions set for the experiments. Section VI-B summarizes the
obtained results regarding the comparison of FDoS and LSDoS
attacks. Finally, Section VI-C presents the results that prove
the efficacy of the proposed LSDoS monitors.

A. Simulation Scenarios
For the experiments detailed in this paper, we adopted the

simulation scenarios used for FDoS attacks in [14]. Such
scenarios are depicted in Fig. 8, where, in 4 × 4 mesh
NoC-based MPSoCs, network routers apply the XY-routing
algorithm and a credit-based flow control with fair Round-
Robin arbitration (on packet level), as well as the Wormhole
switching with 4-flit deep FIFOs.

Moreover, as shown in Figure 8, each scenario has its own
distinct source and destination of sensitive communication. For
each scenario, 14 sets of experiments were performed. Each
set of experiments uses a unique attacker location, covering
all the nodes in the network (except the sensitive origin and
destinations of the evaluated scenario). The attacker nodes,
in all the scenarios, send their traffic to the sensitive nodes
destination, ensuring a collision with the sensitive traffic. It
is important to note that each experiment was performed for
20 pseudo-random traffic simulation seeds to provide uniform
results.

B. Flooding DoS vs Low-and-Slow DoS attacks
To evaluate the impact of low-and-slow DoS (LSDoS)

attacks in NoCs, experiments were done using Scenario 1
(Fig. 8a), where the sensitive traffic flows from PE12 to PE3.
In each experiment, all traffic was transmitted with the same
PIR value, either 0.003, 0.01 (one packet every 100 clock
cycles), or 0.017. For both attacks, FDoS and LSDoS, the
source is PE0, which sends the malicious packets also to PE3,
as shown in Fig. 2a.

Fig. 9 summarizes the results obtained with different con-
figurations of LSDoS attacks and an their equivalent config-
uration for FDoS, as well as configurations where no attack
was present (Horizontal dashed lines). Results are grouped by
the inter-flit delay value of the LSDoS attack, together with
its equivalent FDoS packet length. Moreover, each group is
composed of three pairs of bars, one for each PIR value, and
the bars of each pair correspond to a different attack type,
LSDoS and FDoS, respectively from left to right. Additionally,
the Y axis corresponds to the mean end-to-end communication
delay of sensitive packets in clock cycles (transmitted from
PE12 to PE3). As shown in Fig. 9, the effect caused by
each LSDoS attack has a correspondent FDoS configuration,
regardless of the packet injection rate.

C. Efficacy of the LSDoS monitor
The results of the experiments done to test the LSDoS Mon-

itor for each of the three scenarios presented in Section VI-A,

(a) Scenario 1: Sensitive path 12→3 (b) Scenario 2: Sensitive path 8→2 (c) Scenario 3: Sensitive path 4→1

Fig. 8: Scenarios considering XY routing
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Fig. 9: Comparison of mean end-to-end latency of sensitive traffic under flooding and equivalent low-and-slow DoS attacks
for different PIR values
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Fig. 10: Detection and counter-measure results for Scenario 1

are summarized in Fig. 10, Fig. 11, and Fig. 12, respectively.
For all the figures, the X axis corresponds to the amount of
clock cycles that the attacking PE (or NI) waits between the
transmission of consecutive flits of a same packet. On the
other hand, the Y axis corresponds to the mean end-to-end
delay values of the sensitive packets (also in clock cycles).
Additionally, the blue circular markers identify the results
when considering a PIR of 0.003 for all the packets flowing
through the NoC (i.e. sensitive, malicious and random). The
yellow square markers correspond to a PIR of 0.01 and the
red triangles to a PIR of 0.03. Furthermore, dotted lines show
the proportionality between the inter-flit delay and the mean
end-to-end latency of the sensitive packets when the proposed
countermeasure is disabled. In contrast, the continuous lines
show the impact of the Low-and-slow DoS attack to the
sensitive packets in a NoC where the proposed countermeasure
is implemented. As shown by each pair of lines (i.e. lines
with the same color/marker), experiments with and without
countermeasure achieve the same results until an inter-flit
delay threshold is reached, this because the countermeasure
is triggered by exceeding the threshold. (for our experiments,
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Fig. 11: Detection and counter-measure results for Scenario 2

we adopted an inter-flit delay threshold of 5 clock cycles,
nevertheless, dynamic configuration of this value can be done
by the SSM).

Additionally, the resulting latency after exceeding the
adopted inter-flit delay threshold is smaller than that of normal
conditions (when no attack had happened) because, once the
attack is detected, the proposed countermeasure truncates the
malicious packet at the source, hence, the channel is freed
earlier than if a normal-sized packet were transmitted.

Even though experiments were done considering the attack
from each of the 14 available locations (every PE, except the
source and destination of the sensitive traffic in each scenario),
figures show results of only two attacker locations for each
scenario, hence, as expected, all locations presented similar
behavior.

D. Overhead Evaluation

In this section we will evaluate the overheads of the
proposed mechanism on the router and the system. The
proposed architecture were synthesized using the 0.18 µm
AMS library and Synopsys Design Vision at 200 MHz. Table
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Fig. 12: Detection and counter-measure results for Scenario 3

II shows the area overhead of the proposed mechanism on
the baseline router. However, even though the overhead of the
proposed solution is just 2%, it is important to note that the
baseline architecture is very minimalist. To put the results in
perspective, for a 4 mm2 chip with 16 cores For an SoC using
a 4×4 mesh network, the area overhead would be around 0,06
% which is completely negligible. Table II also shows that the
overhead of the proposed monitor on the critical path delay of
the system is negligible.

TABLE II: Area comparison of the proposed architecture and
the baseline router

Area Timing
Sequential Combinatorial Total Overhead Critical-Path Overhead

(µm2) (µm2) (µm2) (%) Delay (ns) (%)
Baseline 48562.21 48336.42 96898.63 – 4.98 –
Proposed 49411.75 49832.29 99244.05 2.4% 4.97 ≈ 0

VII. CONCLUSION

In this paper the first analysis of Low-and-Slow DoS attacks
on NoC platforms and an effective mitigation concept have
been presented. Wormhole routing makes NoCs prone to
LSDoS attacks. A comparative analysis with Flooding DoS
attacks has been carried out, proving that LSDoS attacks can
be as effective as Flooding DoS attacks at a fraction of attacker
effort. The mitigation of single source and multi-source attacks
can be effectively handled at the connection point between the
network interface and the local port of the NoC router with
neglectable overhead compared to a minimalist router.
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Abstract—The use of Multiprocessor Systems-on-Chip
(MPSoCs) within scalable fog and cloud computing systems
is continuously increasing, facing the challenge of potential
attacks from malicious tasks executing on such multi-tenant
systems. Flooding Denial-of-Service (FDoS) attacks are one of
the most common and powerful threats for Network-on-Chip
(NoC)-based MPSoCs. By overwhelming the NoC, the system is
unable to respond to normal traffic. However, the effectiveness
of the FDoS attack depends on the NoC configuration. In
addition, designing a secure MPSoC capable of detecting such
attacks while avoiding excessive power/energy and area costs is
challenging. To this end, we present two contributions. First,
we demonstrate two FDoS attacks based on: packet injection
rate (PIR-based FDoS) and packet’s payload length (PPL-based
FDoS), showing that fair round-robin NoCs are intrinsically
protected against PIR-based FDoS while the PPL-based FDoS
represents a real threat to MPSoCs. Second, we propose a novel
lightweight monitoring method for detecting communication
disruptions. Simulation and synthesis results show the feasibility
and efficiency of our approach.

I. INTRODUCTION

Multi-Tenant Computation-as-a-Service (MTCaaS) provides
the basis for integrated cloud/fog systems with a high po-
tential of flexibility, performance and efficiency [1]. Multi-
processor Systems-on-Chip (MPSoCs) are increasingly used
as computational nodes for these scalable platforms. They
are composed of an array of Processing Elements (PEs)
(processors, memories, ASIC cores), which are connected
through a communication structure, such as a mesh Network-
on-chip (NoC). In such structure, Network interfaces (NIs)
encapsulate data into packets which are forwarded by routers.
Fig. 1 depicts an MPSoC that connects 16 PEs through a 4×4
mesh-base NoC, including a central Global Manager (GM)
mapped to run on one of the PEs for providing functions such
as task scheduling and fault detection, as well as, for main-
taining health and resource maps [2]. However, introducing
MPSoCs to bigger and open execution environments exposes
them to malicious users. One common technique for attacking
MPSoCs is through Flooding DoS attacks (FDoS) targeting
the NoC, where packets are sent aiming to clog router output
ports, increasing the end-to-end delay of other packets.

Previous works have addressed FDoS attacks mainly con-
sidering them as an increase of the packet injection rate (PIR-
based FDoS attack). Some of them manage to avoid the
attack, however adding a significant hardware overhead and/or
affecting legitimate traffic not marked as sensitive [3]. Others

This work was funded by the German Academic Exchange Service
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Fig. 1: Components of a NoC-based MPSoC

focus on detecting the attack and even try to locate the source
of the attack [4], [5]. However, as shown in this paper, this
attack is not effective when using fairly arbitrated NoCs. In
contrast a FDoS attack by increasing the packet payload length
(PPL-based FDoS attack) represents a real threat to NoC-
based MPSoCs. Therefore, we present a distributed scheme of
lightweight monitors for tracking communication behavior of
users in multi-tenant MPSoCs, which we called Communica-
tion Disruption Tattletaling (CDT). Such mechanism enables
monitoring information to piggyback on data packets to be
analyzed at the destination, and reported to the GM in the
suspicion of an attack.

II. THREAT MODEL

In a large-scale MTCaaS scenario, as the Fog/Cloud ex-
ecution environments, a high-level scheduler maps tasks to
shared resources, which will include MPSoCs. Within the
MPSoC, the GM maps the tasks on the PEs according to their
requirements and constraints, taking into account the internal
availability and characteristics of the PEs.

In order to perform a FDoS attack in a NoC-based MPSoC,
the attacker, as any other client/user, submits a malicious
application to the execution environment. Such application
contains at least one task that, according to its characteris-
tics/requirements, will suggest a Fog/Cloud scheduler to map
its execution in an MPSoC-powered device. Such tasks will
then be locally mapped by the GM of the MPSoC to a specific
PE. However, without either of the schedulers knowing, one or
more of the mapped tasks may attempt to flood the NoC; either
intentionally (a FDoS attack) or unintentionally (a faulty task).
Once a malicious task begins its execution in the PE, it starts
sending data to other PEs inside the MPSoC (e.g., memory,
a hardware accelerator, a peripheral, or other Intellectual
Property component). Such communications may even try to
mimic legitimate operations to avoid their detection.



III. PROPOSED ARCHITECTURE

The proposed packet structure for this work is depicted
in Fig. 2. In it, the Tail Flit is used for enabling FDoS
attack detection. By embedding the length of the longest
packet found in the path, as well as its source, communication
behavior can be monitored regardless of the NoC’s topology.
Such information is evaluated in every router of the path and
updated if necessary. At the destination of each packet, the
packet length value within the tail flit is evaluated. Suspicious
data is reported to the GM, which, based on reports from the
entire NoC, may decide to reset the identified attack source.

Fig. 2: Proposed Packet Structure

Based on the Baseline router architecture of the Bonfire
platform [6], we propose the architecture presented in Fig. 3,
where Packet Size Monitors register the source address and
size of the last packet transmitted from each input port.
Greatest Competitor Updater blocks evaluate/update the tail
flits to ensure that the longest packets in paths are reported.

Fig. 3: Proposed Router Architecture

IV. EXPERIMENTAL WORK

A. Simulation Scenarios

We adjusted the Bonfire platform [6] to be compatible
with the packet structure depicted in Fig. 2. Subsequently,
the scenario illustrated by Fig. 1 was implemented. In such
scenario, PE0 and PE8 send data exclusively to PE6, ensuring
the communication collision of both flows. Furthermore, all
the attacks executed in the experiments were originated at
PE0. To create a more realistic scenario, additional traffic
was randomly generated from all the other PEs (through the
traffic generators). Normal traffic was configured with a PPL
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Fig. 4: Comparison of Flooding Dos Attacks

of 10 flits and a PIR of 0.01 (i.e., a rate of one packet every
100 clock cycles). Malicious traffic, on the other hand, was
configured differently for the two sets of experiments: i) for
the PIR-based FDoS attack, the attacker’s PPL was fixed to
10 flits and its PIR varied from 0.01 to full burst transmission
(i.e., 10 flits of payload every 10 clock cycles); and ii) for the
PPL-based FDos attack, the attacker’s PIR was fixed to 0.01
and its PPL varied from 10 to 100 (i.e., maximum of 100
flits every 100 clock cycles). Furthermore, the transmission
buffer of NIs was extended so that attacks could completely
maximize their parameters.

B. Effect Comparison of Both Flooding DoS Attacks
As shown in Fig. 4 (left), where only the mean end-to-

end delay of the attacker showed a significant increase, a
PIR-based FDoS attack is ineffective in a NoC using a fair
arbitration mechanism such as Round-robin, which forces
malicious packets to remain buffered in the NI. In contrast,
Fig. 4 (right) shows the effective communication disruption
caused by the PPL-based FDoS attack. This since the mean
end-to-end delay of packets colliding with the malicious flow
increased during the attack. Additionally, an overall impact
to the entire NoC was also reported. Therefore, FDoS attack
detection and mitigation efforts should be focused to this
scenario.

C. Overhead Evaluation
Synthesis results were obtained through the Cadence’s

Genus Synthesis Solution, for 40nm CMOS technology and
a clock frequency of 200MHz. Table I shows results related
to area and power, both for the worst case corner (i.e., slow-
slow, 0.99v, and 125◦C). Note that corner, edge and middle
NoC mesh routers have different amount of ports. Results
are presented for the 5-port router (R10). Despite the area
overheads are considerable (greater than 30%), the baseline
router is minimalist (i.e., worst-case overhead). Baseline router
does not offer any service (e.g., Quality of communication,
priority, fault-resilience) which in practice will incur in a
bigger baseline router.

TABLE I: Overhead (40nm, 200MHz, 0.99v, 125◦C)
Area

Router (R10) Cell Sequential Combinational Total Overhead
Count (µm2) (µm2) (µm2) (%)

Baseline 2377 6114.259 3190.724 9304.982 –
Proposed 3913 7613.659 5337.629 12951.228 39.19%

Power

Router (R10) Leakage Internal Switching Total Total
Power (mW ) Power (mW ) Power (mW ) Power (mW ) Overhead (%)

Baseline 0.0094 0.6175 0.1214 0.7482 –
Proposed 0.0134 0.9602 0.3159 1.2896 72.36%



V. CONCLUSION AND FUTURE WORK

It was proven in this paper that, in contrast to what has been
said in related papers, the efficiency of FDoS attacks is related
to the payload length of packets rather than the injection rate.
This because fair arbitration mechanisms control the NoC’s
injection rate depending on the amount of traffic generated
by other sources, forcing packets to be buffered in the NIs.
Additionally, a novel lightweight mechanism for detecting the
real FDoS attack threat targeting NoC-based MPSoCs was
introduced. Future work will be focused on processing the
aggregation of the generated information within a general
manager on system-level, allowing the recognition of high-
level attack patterns and efficient mitigation of the attacks.
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Abstract—The increasing use of Multiprocessor Systems-on-
Chip (MPSoCs) within scalable multi-tenant systems, such as
fog/cloud computing, faces the challenge of potential attacks
originated by the execution of malicious tasks. Flooding Denial-
of-Service (FDoS) attacks are one of the most common and
powerful threats for Network-on-Chip (NoC)-based MPSoCs.
Since, by overwhelming the NoC, the system is unable to forward
legitimate traffic. However, the effectiveness of FDoS attacks
depend on the NoC configuration. Moreover, designing a secure
MPSoC capable of detecting such attacks while avoiding excessive
power/energy and area costs is challenging. To this end, we
present two contributions. First, we demonstrate two types of
FDoS attacks: based on the packet injection rate (PIR-based
FDoS) and based on the packet’s payload length (PPL-based
FDoS). We show that fair round-robin NoCs are intrinsically
protected against PIR-based FDoS. Instead, PPL-based FDoS
attacks represent a real threat to MPSoCs. Second, we propose
a novel lightweight monitoring method for detecting commu-
nication disruptions. Simulation and synthesis results show the
feasibility and efficiency of the presented approach.

I. INTRODUCTION

Multi-Tenant Computation-as-a-Service (MTCaaS) provides
the basis for integrated cloud/fog systems [1], [2] with a
high potential of flexibility, performance and efficiency [3].
Multi-processor Systems-on-Chip (MPSoCs) are increasingly
used as computational nodes for these scalable platforms.
However, introducing MPSoCs to bigger and open execution
environments exposes them to malicious users. Those who
might attempt to disrupt the execution of processes being run
by concurrent tenants. One common technique for attacking
MPSoCs is through Flooding DoS attacks (FDoS) targeting
the NoC, where malicious packets overwhelm a targeted com-
munication path, compromising the operation of the system.

Previous works have addressed FDoS attacks mainly con-
sidering them as an increase of the packet injection rate (PIR-
based FDoS attack). Some of them manage to avoid the
attack, however adding a significant hardware overhead and/or
affecting legitimate traffic not marked as sensitive [4]–[8].
Others focus on detecting the attack and even try to locate
its source [9]–[14]. However, as shown in this paper, this
attack is not effective when using fair-arbitrated NoCs. In
contrast a FDoS attack by increasing the packet payload length
(PPL-based FDoS attack) represents a real threat to NoC-
based MPSoCs. Therefore, we present a distributed scheme of
lightweight monitors for tracking communication behavior of

This work was funded by the German Academic Exchange Service
(DAAD), Research Grants - Doctoral Programmes in Germany, 2018/19.

users in multi-tenant MPSoCs, which we called Communica-
tion Disruption Tattletaling (CDT). Such mechanism enables
monitoring information to piggyback on data packets to be
analyzed at the destination, and reported to the MPSoC’s
Global Manager (GM) in the suspicion of an attack.

In summary, the contributions of this work are: i) Demon-
stration of two FDoS attacks (PIR- and PPL-based DoS)
targeting communication disruption of NoC-based MPSoCs,
ii) A novel lightweight monitoring scheme for FDoS attack
detection, iii) Evaluation of area and power overhead figures
based on synthesis results using 40nm node technology.

The remainder of the paper is organized as follows: Sec-
tion II defines important concepts for better understanding the
paper; Section III summarizes related work and the motivation
for our proposal; Based on a thread-model definition (Sec-
tion IV), Section V explains the proposed method; Section VI
presents the setup of the executed experiments and discuses
the obtained results; and finally, Section VII concludes the
paper and outlines future work.

II. BACKGROUND

A. NoC-based MPSoCs
NoC-based MPSoCs are composed of an array of Processing

Elements (PEs) (processors, memories, ASIC cores), which
are connected to NoC routers via Network interfaces (NIs)
within a mesh-based NoC architecture, realizing best-effort
packet-based communication. Fig. 1 shows an MPSoC that
integrates 16 PEs through a 4 × 4 mesh-base NoC. The NIs
provide packetization of data to be sent over the NoC and
depacketization upon arrival at the destination.

MPSoCs used in dependable and mission-critical systems
must be designed adopting a fault management architec-
ture [15]. Such an architecture includes additional hardware
like monitors, sensors, and checkers that allow a detailed as-
sessment of the system’s performance. Usually such a structure

Fig. 1: Components of a NoC-based MPSoC
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(a) Attacked MPSoC (b) Collision Router

Fig. 2: Example of DoS Attack in MPSoCs

is controlled by a central Global Manager (GM), which is
mapped to run on one of the MPSoC’s PEs (Fig. 2a) [16]. Such
manager provides essential services as task scheduling [17],
fault detection and instrument management, as well as, main-
tains health and resource maps (as established in [15], [16]).

B. Flooding DoS Attacks in NoCs

In Flooding DoS (FDoS) Attacks, a malicious application
running on any PE of the MPSoC tries to disrupt the commu-
nication of other system components. By sending packets to
another PE in the NoC, the attacker creates additional com-
munication delays to other packets that wish to be forwarded
through at least one segment of the path being congested by the
attack. Fig. 2a illustrates a scenario in which sensitive packets
flow from PE8 to PE6 while malicious traffic from PE0 also to
PE6. In such scenario, both traffic flows collide inside router
R5 and compete for its East output port. Fig. 2b depicts a
worst case scenario in which, apart from the two mentioned
traffic flows, two additional flows also enter the competition.
Since only one flow is granted access to the output at a time,
it is the goal of the malicious traffic that it will be it, making
the others wait for their turn, hence increasing their end-to-end
communication delay.

Two types of FDoS attacks attempt to gain control of output
ports, preventing legitimate traffic from being forwarded.
Fig. 3 shows three types of traffic flows: the upper one,
considered as normal traffic, is composed of packets with
an expected packet injection rate and within an acceptable
size range. The first attack (middle flow) attempts to flood
the network by increasing its packet injection rate (PIR-based
FDoS Attack), while the other by increasing the packet’s
payload length (PPL-based FDoS Attack).

Fig. 3: Flooding DoS Attacks

C. Wormhole Flow Control

An adopted flow control establishes how the allocation of
resources to packets is done as they go along their route [18].
Wormhole flow control is used for targeting two major scal-
ability concerns of NoC designers: i) low latency intra-chip
communication, by taking routing decisions upon the reception
of only the packet’s header, hence reducing the amount of
clock cycles needed for forwarding a packet to its destination;
and ii) low area routers, by using smaller buffers to store
data while the routing decision is being made. However, once
an output port of a small-area router is assigned for the
transmission of a packet, it will not serve other packets until
this transmission is finished, making NoCs vulnerable to PPL-
based FDoS attacks.

D. Fair Round-Robin (RR) Arbitration

Attempting to prevent the disruption of packet transmissions
by bursts of packets coming from other inputs, arbitration
techniques such as the Fair Round-Robin have been proposed
[19] [20]. With this technique, output access is sequentially
granted to a single packet from each competing input. As
proved in Section VI, fair Round-Robin NoCs reduce the
effectiveness of PIR-based FDoS. We also show that PPL-
based FDoS attacks are feasible and are still successful with
the fair Round-robin arbitration NoCs.

III. RELATED WORK

A. DoS attack avoidance

Some of the previous works attempt to avoid DoS attacks
in NoC-Based MPSoCs [4]–[8]. The work of [4] implements
virtual channels in the NoC to isolate sensitive traffic, resulting
in the undesirable effect of significantly increasing area and
power consumption.

In [5], circuit switching is used for transmitting sensitive
traffic and packet switching for other type of packets. Further
approaches presented in [6]–[8] define secure zones. Despite
these solutions effectively isolating sensitive traffic from at-
tackers, they might affect the performance of legitimate traffic
not labeled as sensitive.

B. DoS Attack Detection

Additional works have focused on developing techniques
for the detection of DoS attacks on NoC-based MPSoCs.
However, most of the approaches target PIR-based FDoS [9]–
[14]. In [9], the authors propose the implementation of probes
in the NI for detecting deviations from expected bandwidth
usage at design time. In [10], multi-source attacks are consid-
ered with a mitigation concept based on firewalls in the NIs.
Authors in [11] propose firewalls between routers, monitoring
occupation time of links. The approach presented in [12]
applies a spiking neural network for detecting an abnormal
amount of communication requests. The work in [13] uses
distributed monitors that threshold the amount of received
packets in NIs. Once the attack has been detected, additional
packets are sent to attempt the localization of the attack’s
source. Such work was later enhanced considering multi-
source scenarios in [14].

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on November 20,2021 at 18:32:02 UTC from IEEE Xplore.  Restrictions apply. 



Our previews work targeted both types of FDoS attacks
(PIR- and PPL-based) by monitoring communication degra-
dation based on end-to-end communication and inter-router
forwarding delays [21], [22]. Even though both approaches
provide an idea of the attack source, they do not identify the
exact attack source location.

Furthermore, as explained in Section II-D and proven in
Section VI-B, PIR-based FDoS attacks can be avoided by the
use of a fair forwarding arbitration technique. Therefore, our
current approach targets PPL-based attacks by implementing
a tattletale scheme in which each packet directly informs the
source of the packet that disrupted its transmission the most.
In that way, FDoS attacks can be detected with no additional
packet transmission for locating the source of the attack.

IV. THREAT MODEL

Adding MPSoC-powered devices to execution environ-
ments, such as Fog and Cloud, can exceed the performance
of conventional general-purpose computer execution environ-
ments, thus it adds application specific circuits to distributed
context-related processing nodes. The characteristics of such
scenario and its vulnerability to DoS attacks will be explained
in this section, as well as, the steps followed by an attacker
to execute a FDoS attack.

In a large-scale MTCaaS scenario, as Fog/Cloud execution
environments, a high-level scheduler maps tasks to shared re-
sources [23], which will include MPSoCs. Within the MPSoC,
the GM maps tasks to PEs according to their requirements
and constraints, taking into account the availability and char-
acteristics of the PEs. Moreover, as soon as the execution of
the tasks mapped to the MPSoC is finished, the results are
returned following the Fog + Cloud schedule. Finally, when
the execution of the entire application is over, results are sent
back to the user.

In order to perform a FDoS attack in a NoC-based MPSoC,
an attacker submits a malicious application to the execution
environment, as any other client/user will do with a legitimate
application. Such application contains at least one task that,
according to its characteristics/requirements, will suggest a
Fog/Cloud scheduler mapping its execution to an MPSoC-
powered device. Such tasks will then be locally mapped by the
GM of the MPSoC to a specific PE. However, without either of
the schedulers knowing, one or more of the mapped tasks may
attempt to flood the NoC; either intentionally (a FDoS attack)
or unintentionally (a faulty task). Finally, once a malicious task
begins its execution in a PE, it starts sending data to other PEs
within the MPSoC that will also be required by legitimate
tasks (e.g. memories, hardware accelerators, peripherals, or
other Intellectual Property components).

V. PROPOSED ARCHITECTURE

NIs are in charge of encapsulating data into packets at the
source of a transmission, as well as, of decapsulating it at the
destination. Such packets are composed of flow control units
(Flits) following a structure understandable by the routers in
the NoC. The proposed structure for this work is depicted
in Fig. 4, in which the three most significant bits of each flit

Fig. 4: Proposed Packet Structure

inform its type, while the less significant bit is a parity bit used
for single error detection. A Header Flit signals the beginning
of a transmission and contains the information used for taking
routing decisions. The Packet Info Flit contains information
regarding the packet, i.e. an ID for allowing packet reordering
at the destination and the length of the packet for checking
its completeness. One or more Payload Body Flits follow,
carrying the data exchanged between PEs. Subsequently, a
Tail Flit signals the end of the packet, and when transmitted
through a router’s output port, the port is released for the
transmission of a new packet. In many designs, the Tail Flit
carries the last part of the payload, however, for the purpose
of our work, all the payload is carried by Payload Body Flits
while the Tail Flit is used for DoS attack detection. This by
transporting the length of the longest packet found in the path,
as well as its source. Such information is evaluated in every
router of the path and updated if necessary.

Based on the Baseline router architecture of the Bonfire
platform [24], we propose the architecture presented in Fig. 5,
where a Packet Size Monitor at each of the router’s input
ports extracts the source address and size of the last packet
transmitted from such port (respectively the less significant bits
of the Header and Packet Info flits, without considering the
parity bit). Furthermore, each input port is also equipped with a
Greatest Competitor Updater, which gathers information from
other blocks as follows: i) requests from the LBDR (Logic
Based Distributed Routing) unit for knowing the output ports
that can be used to forward the packet in its monitored port;
ii) the grants given by the Allocator for using the output ports,
which by being matched with the requests, tell the input ports
that won the competition for the require output ports; and iii)

Fig. 5: Proposed Router Architecture
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information from the Packet Size Monitors for identifying the
size and source of the packets that prevented the local packet
from being forwarded. Finally, by updating the Tail flit with the
information of the greatest competitor, each packet is able to
tattle tale on the longest packet found in its path, together with
its source. Consequently, the destination NI, using a predefined
threshold, can decide if a report should be sent to the Global
Manager for deciding if the found behavior was allowed.

VI. EXPERIMENTAL WORK

In this work two communication parameters are exploited
for attempting Flooding DoS (FDoS) attacks on NoC-based
MPSoCs, the packet injection rate (PIR) (used in most state-
of-the-art approaches) and the packet’s payload length (PPL)
(being used in the presented approach). In this section we
present an effectiveness comparison of both attacks, as well
as synthesis results of the proposed monitoring scheme.

A. Simulation Scenarios

In order to compare both FDoS attacks, we adjusted the
Bonfire platform [25] so that it be compatible with the packet
structure depicted in Fig. 4. Subsequently, we implemented the
scenario illustrated by Fig. 2a. In such scenario, PE0 and PE8
send data exclusively to PE6, this for ensuring that the path of
both sources collide. Furthermore, all the attacks executed in
the experiments were originated at PE0 and additional traffic
was randomly generated from all the other PEs (i.e. traffic
generators included in Bonfire). Normal traffic was configured
with a PPL of 10 flits and a PIR of 0.01 (i.e. a rate of one
packet every 100 clock cycles). Malicious traffic, on the other
hand, was configured differently for two sets of experiments:
i) PIR-based FDoS attack: the attacker’s PPL was fixed to
10 flits and its PIR varied from 0.01 to full burst transmission
(i.e. 10 flits of payload every 10 clock cycles); and ii) PPL-
based FDos Attack: the attacker’s PIR fixed to 0.01 and its
PPL varied from 10 to 100 (i.e. a maximum of 100 flits every
100 clock cycles). Furthermore, the transmission buffer of NIs
was extended so that attacks could completely maximize their
parameters.

B. Effect Comparison of Both Flooding DoS Attacks

The effect of the PIR- and PPL-based FDoS attacks is
presented in Fig. 6, on the left and right graphs respectively.
Both graphs show the effect caused to a single colliding path
(i.e. PE8 → PE6), as well as, to the entire NoC. Such effect
is observed by the increase in the mean end-to-end delay of
packets, since they are transmitted by the PE and until they
reach their destination, while the attack is intensified.
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Fig. 6: Comparison of Flooding Dos Attacks

As shown in Fig. 6 (left), a PIR-based FDoS attack is
ineffective in a NoC using a fair arbitration mechanism such
as Round-robin, which segments bursts while other packets
are transmitted, consequently, increasing only the end-to-end
delay of the malicious packets buffered in the NI. In contrast,
Fig. 6 (right) shows the effective communication disruption
caused by the PPL-based FDoS attack to the NoC and even
more to the colliding path. Hence FDoS attack detection and
mitigation efforts should be focused to this scenario.

C. Overhead Evaluation
This section presents synthesis results of the baseline router

and the overhead when adding the proposed Communication
Disruption Tattletale. Synthesis was done with the Genus
Synthesis Solution provided by Cadence [26], using a 40nm
commercial CMOS technology and a clock frequency of
200MHz. Table I shows results related to area and Table II
those related to power (using a value change dump), both
for the worst case corner (i.e. slow-slow, 0.99v, and 125◦C).
Furthermore, considering that corner, edge and middle routers
have different amount of ports in a NoC following a mesh
topology, results for each router type are presented. It is worth
noticing that even though the reported overheads are greater
than 30%, the baseline router is already a minimalist design.

VII. CONCLUSION AND FUTURE WORK

In this contribution, a novel DoS detection approach for
NoC-based MPSoCs has been presented. In contrast to the
state-of-the-art, as shown by simulation results, an attacker’s
efficiency is rather related to the attack packet length than
the packet injection rate. A lightweight mechanism for the
monitoring of communication behaviour and related anomalies
has been introduced, such mechanism can be used for the
detection of anomalies such as DoS attacks, as well as, for
the evaluation of the appropriateness of an actual system
task schedule. Future work will be focused on processing
the aggregation of the generated information within a general
manager on system-level, allowing the recognition of high-
level attack patterns and efficient mitigation of the attacks.

TABLE I: Area overhead (40nm, 200MHz, 0.99v, 125◦C)
Area

Router Cell Sequential Combinational Total Overhead
Count (µm2) (µm2) (µm2) (%)

Router with 3 ports (corner router - R15)
Baseline 1104 3636.192 1313.827 4950.019 –
Proposed 1741 4495.848 2065.291 6561.139 32.55%

Router with 4 ports (edge router - R14)
Baseline 1874 4875.696 2102.923 6978.619 –
Proposed 2971 6051.696 3411.106 9462.802 35.60%

Router with 5 ports (middle router - R10)
Baseline 2377 6114.259 3190.724 9304.982 –
Proposed 3913 7613.659 5337.629 12951.228 39.19%

TABLE II: Power overhead (40nm, 200MHz, 0.99v, 125◦C)

Router Leakage Internal Switching Total Total
Power (mW ) Power (mW ) Power (mW ) Power (mW ) Overhead (%)

Router with 3 ports (corner router - R15)
Baseline 0.0047 0.3243 0.0280 0.3571 –
Proposed 0.0063 0.4513 0.0735 0.5311 48.73%

Router with 4 ports (edge router - R14)
Baseline 0.0069 0.4478 0.0627 0.5174 –
Proposed 0.0095 0.6453 0.1653 0.8200 58.48%

Router with 5 ports (middle router - R10)
Baseline 0.0094 0.6175 0.1214 0.7482 –
Proposed 0.0134 0.9602 0.3159 1.2896 72.36%
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