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ABSTRACT 

Author: Nazrul Nazeer                                           Type of the work: Master Thesis 

Title: Development of visual-inertial odometry based real time localization system for 

GNSS denied environment 
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including appendices) 
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School: School of Engineering 

Department: Department of Electrical Power Engineering and Mechatronics 

Supervisor(s) of the thesis: Mairo Leier, Phd; Dhanushka Chamara Liyanage, Phd; 

Uljana Reinsalu, Phd 

Abstract:  

GNSS denied localization is an important topic in today’s world. Indoor localization is 

also a topic that is discussed when GNSS denied localization is discussed as in both 

cases the absence of GNSS is the root problem that is being tried to address. The 

complete absence of GNSS signals can prove disastrous in modern connected world. 

Autonomous system that are capable of motion would find themselves in a dead end 

without a constant update on the current location. There exist several systems that 

has been studied in this thesis to address these challenges.  

 

The final implementation by the end of this thesis entails a visual inertial odometry 

method developed to independently estimate the trajectory for up to 400 meters with 

less than an absolute trajectory error of 3 meters. The thesis also proposes a 

hardware for the said method to test the proposed solution. The proposed method is 

tested also on dataset such as KITTI and the performance of the proposed solution is 

then compared to other state of the art systems. In addition, the functioning of the 

proposed solution is tested in simulated random adverse situations. The result from 

all tests shows that the objectives set for the thesis was met and the results were 

satisfactory and adhering to the goals set. 

 

Keywords: Visual odometry, stereo odometry, IMU odometry, sensor fusion, Kalman 

filter, error state extended Kalman filter, GNSS, KITTI, Real-time localization 
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1  INTRODUCTION 

Ever changing rules and dynamics of the world dictates the requirements of different 

technologies to solve trivial problems. With systems such as global positioning system 

(GPS), Galilieo, GLONASS or BeiDou which are a subset of GNSS (Global Navigation 

Satellite System) the era of localizing oneself begun. Being able to know one’s location 

in the world has great impact in civil, military and disaster relief situations and 

applications. However, the use of this technology entailed some restrictions and more 

recently certain counterproductive systems could restrict the use of this technology in 

certain areas or make the application of this technology less reliable. These areas could 

be anywhere from buildings, underground caves, tunnels to war zone. 

 

1.1   Background 

The ability to geo-locate, primarily establishes the ground for autonomous capabilities. 

Modern day self-driving cars for example rely heavily on GNSS systems for navigation 

and autonomous driving. Autonomous driving vehicle has a market that is expected to 

reach 557 billion dollars by the year 2026 [1], demonstrating the need for location aware 

system. Localization systems are not only required by autonomous driving vehicles but 

are also required for aircraft's, ships and all possible types of vehicles. There has been 

a recent growing trend in the application of unmanned aerial vehicle and unmanned 

ground vehicles. Which further only implies the requirement of localization systems as 

an existential criterion.  

 

1.2 Motivation 

It’s imperative to find a solution to autonomize for localization in environment where it’s 

not possible to use GNSS based localization system. Unfortunately adding more GNSS 

satellites is not a solution, given the physical properties of how these systems work this 

is not as straight-forward as one would want. Development of localization solution for 

GNSS denied areas or where GNSS has been affected is therefore an important topic. 

Localization usually describes the ability to track the movement or the location of an 

entity in space. Systems that can perform localization are called positioning systems. 
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Types of positioning systems include radio based and non-radio-based technologies. 

Examples of radio-based technologies that are used for indoor positioning are 

Bluetooth/Wi-Fi RSSI (received signal strength), UWB (ultra-wide band), ToA (Time of 

Arrival) and ToD (Time of Departure). Radio based system has shown limited potential 

when the applicational requirement is considered. Radio based system often require 

infrastructural changes (limits scalability) and require additional hardware to facilitate 

the working of the system and for the improvement of the accuracy of the system. 

Radio-based system is also prone to interference, jamming and noise which makes this 

system vulnerable and not reliable for application in challenging environments. On the 

other hand, non-radio-based technologies which use inertial measurements, visual data, 

or LIDAR data to localize are of relevance because of scalability advantages accuracy 

and cost. Camera and inertial measurement sensors are often not so expensive and 

affordable. Almost every modern-day vehicle in any shape or form has these sensors 

already integrated in them. 

 

1.3 Objective 

In this thesis we will focus on non-radio-based positioning systems. We will specifically 

develop a positioning method based on visual data from sensors and inertial 

measurements to track the location in a GNSS denied area. The requirement that would 

be expected to be achieved by the proposed method are, 

1) The developed method must be capable of estimating its current location based 

on visual features and inertial measurements as the only input.  

2) The proposed method should be able to demonstrate robust tracking for at-least 

a cumulative distance of 400 meters in mostly outdoor setting with an absolute 

trajectory error of less than or equal to 3 meters for the entire displacement of 

400 meters.  

3) Robustness of the proposed method in adverse event such as severe data loss 

will be tested. 

The methods will be developed and proposed solutions will be implemented in the thesis. 

Answering these questions by both reviewing other state of the art approach and by 

implementation of a vision-based inertial positioning system would allow us to 

understand our system better. The key research questions being: 
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1) Comparison by review of literature the accuracy, scalability, and cost-

effectiveness between the vision based indoor localization system and existing 

radio-based positioning technologies like BLE, UWB and WI-FI? 

2) How can the system address challenge such as low texture environment and 

dynamic scene for robust GNSS denied localization? 

3) How accurately and consistently can the implemented positioning system 

determine the position in an GNSS denied environment? 

4) How robust is the proposed method when in adverse events that hinders the 

ability of the system to compute its trajectory. How would the proposed method 

cope for this using other sensors? 

 

We will test our deployed solution with real-life benchmark dataset called KITTI. We will 

test our method also by analyzing the proposed method on custom data collected using 

custom hardware built. In the next Chapter we will review the background of visual 

odometry by understanding the different classification methods and investigate some of 

the existing state of the art methods. We will then discuss in Chapter 3 how the proposed 

method is developed, and the tools used, along with the description of the testing 

environments and details. In Chapter 4 we will present the quantitate results of the 

experiments and analyze and discuss the results in Chapter 5 and 6 respectively. 
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2  LITERATURE REVIEW 

To estimate the trajectory as the agent (a vehicle or an object with the visual-inertial 

odometry system) travers across an unknown or known map is the primary task of a 

visual odometry system and vital task for autonomous application [2]. Visual odometry 

system is so called such a system as it’s based on visual data to infer motion of the 

agent. Visual odometry is also an incremental estimator type. That means that the next 

estimates are added to the previous estimate. A visual inertial odometry system is a 

visual odometry system coupled with an inertial odometry system in a fusion approach. 

Different non GNSS positioning systems such as BLE or UWB based systems are 

developed for indoor application. Considering an indoor situation, we find that using 

radio-based positioning system does not yield beneficial result given the cost of 

deployment and scalability issue of these system. In [3] sub meter level accuracy has 

been shown based on prior works using UWB, Wi-Fi and BLE. The coverage area and 

coverage accuracy of such system largely depends on the number of deployed devices 

[4], partly because radio signals weaken over propagation and line of sight 

requirements. Visual positioning system is not affected by such shortcomings and there 

is no requirement of increasing the number of devices across a given infrastructure to 

achieve a better accuracy. There is also this fundamental difference that visual 

odometry system are placed on the agent itself and other radio-based positioning 

system are placed on infrastructure around the required area and a receiver is placed 

on the agent. Radio based system such as BLE, Wi-Fi, UWB or RFID requires additional 

hardware for improved performance [4] which might entail the requirement of 

infrastructural changes. Inertial measurement only based localization system by itself 

is prone to error. The inertial measurement unit readings of acceleration and angular 

velocity are mainly used in localization by this method. The readings themselves contain 

biases and often are noisy in most cases where a mid-end inertial unit is used. Like the 

visual odometry system, inertial odometry system is also an incremental estimator type 

system. An error in previous estimate will affect all other future estimates. 

 

For BLE and WI-FI based positioning system both accuracy and cost effectiveness of 

the systems are low. Accuracy is impacted by and depends on the number of access 

points, interference, and line of sight conditions, and an increase in the number of 

access points to increase the accuracy increases the cost of the system. UWB or cellular 

based positioning system have high accuracy however their cost effectiveness is lower 

given the requirement of additional hardware and the cost of this hardware. Unlike the 

BLE and WI-FI systems UWB and cellular systems are scalable [4]. IMU only based 

positioning system are low in accuracy and cost, high in scalability. Visual odometry 
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systems accuracy depends on the type and approach of the system which we will discuss 

further. However visual odometry system are highly scalable. Table 2.1 provides a 

qualitative overview of the comparison in a tabular form. The definition of low, high and 

medium are comparison to each other.  

 

Table 2.1 Comparison of different positioning systems based on key metrics. 

 BLE WI-FI UWB IMU Cellular Visual odometry 

Accuracy Low Low High Low High Medium 

Scalability Low Medium Low High High High 

Cost effectiveness Low Low Low High Low High 
 

A visual odometry system can be categorized based on their sensor makeup. That is for 

example if the system consists of a single camera, based on which the motion is 

estimated then the system is called monocular visual odometry system. If the system 

contains two cameras set up in a stereo configuration, then this system is called stereo 

visual odometry system. Stereo visual odometry have inherent benefits compared to 

monocular visual odometry. As the monocular visual odometry lacks the ability to infer 

the scale of the motion given the setup lacks additional sensors that could output a 

sense of scale to the visual odometry system [5].  Visual odometry system can be 

classified also based on the type or the approach taken. These are feature based 

approach, appearance-based approach, and hybrid approach. 

 

Recent development of certain monocular visual odometry approaches has used deep 

learning-based algorithms to overcome to an extent the scale ambiguity issue. However 

stereo visual odometry is superior to monocular visual odometry given it’s set up 

overcomes the problem of scale without any additional complicated algorithms. The 

third type of the system consist of an RGB-D setup. Which is a RGB camera combined 

with depth information from stereo setup or TOF sensor. Both monocular and stereo 

visual odometry setup can be performed on monochrome image, it’s not compulsory for 

a RGB camera setup. A stereo setup could be easily made to work in monocular visual 

odometry method. However, the converse is not possible without certain assumption 

such as assumption that dictates a constant height to a known surface in the frame. 

The below Figure 2.1 illustrates details of classification in visual representation. 
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Figure 2.1 Overview of the types of visual odometry and the associated setup required for the 

type. 

 

Given over 3 decades of work in the field. We can also classify visual odometry systems 

by the different approaches such as geometric approach, machine learning approach 

and hybrid approach, every approach can be categorized into one of three possible 

classes which are feature based method, appearance-based method, and hybrid 

methods. It is important that we distinguish SLAM (simultaneous localization and 

mapping) from Visual odometry at this stage. Visual odometry is a sub system of SLAM 

or a component of SLAM and is only used in estimation of the ego-motion. However, 

SLAM system also focuses on map building. SLAM systems are generally more accurate 

given an event of loop closure. This is an event where the agent onto which the SLAM 

system is setup, crosses its own path during motion, an event in which a further set of 

algorithms such as bundle adjustment and graph optimization can be applied to improve 

the accuracy of the estimates. The trajectory estimates themselves for a SLAM system 

are from the Visual odometry method (or some other method). The primary focus is on 

visual odometry method the inertial method will aid the visual odometry method. 

Therefore, much of the focus on the method proposed is on the visual odometry and so 

is the state-of-the-art analysis. 
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2.1  Geometric based method 

2.1.1 Feature based approach 

Feature based method gained its popularity since the inception of visual odometry. It 

has been used as the fundamental approach in the early stage of research contributing 

to visual odometry. Works of Nister et al [6], Howard [7], Cumani [8], Benseddik et al. 

[9], Naroditsky et al. [10], Jiang et al. [11] and Parra et al. [12] according to [13] all 

contribute and/or describe this approach. Feature based method was the visual 

odometry method used on the mars rover. Both rover curiosity and spirit had onboard 

visual odometry system that computed the 6 DOF pose of the rover [14]. Furthermore 

in [14] its acknowledged that what initially was meant to be an extra feature (visual 

odometry) showed remarkable performance such that it ended up being used as critical 

vehicle system.  

In feature-based approach two consecutive images at time 𝑡 and 𝑡 − 1 are used, salient 

feature in each of the image is detected. These detected features are then matched 

across both the images. The result is a set of corresponding image points on both the 

image which can then be used to estimate the rotation and translation of the system. 

To detect the salient feature a detection algorithm is applied over the image or parts of 

the image. These algorithms are called feature detection algorithm. They are used not 

only in visual odometry application but also in image stitching and various other 

computer vision related applications. Some of the most well-known algorithms are SIFT, 

SURF, ORB, AKAZE, Good feature to track, BREIF etc. These algorithms are notable for 

either their robustness to the environment, the computational efficiency, scaling 

invariance or brightness invariance. Salient features are detected based on their 

uniqueness and robustness. It’s needed that the best algorithms find the most unique 

set of points in an image that can be clearly identified in the corresponding image, with 

consideration for the computational requirements which must be low and invariability 

to rotation and scale changes of the image and strong adaptability to brightness 

changes. This is what characterizes an optimal algorithm for the specific application as 

mentioned in [15]. After the salient points are detected across the two images there 

needs to be a way to describe these points. In other words, we need to be able to 

describe these points so it can be identified in the next consecutive image. Descriptors 

are unique description of a given feature point. They are computed using descriptor 

algorithms such as SIFT, ORB, SURF etc. The idea of descriptor is it can be used to find 

the location of the salient feature in the next image. To match the salient feature 

detected and described matching algorithms such as brute force or FLANN based 
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matcher are employed. These algorithms find the set of image points that are present 

in both the images and are matched. From these points the motion can then be 

estimated. Motion is estimated using motion estimation algorithms (2D to 2D, 3D to 3D 

and 2D to 3D). Tables 2.2, 2.3 and 2.4 describe the working steps of the different 

motion estimation algorithms. F represent the frame from the camera and t represents 

the time. Flt and Frt represents the left and right frame at time t from the camera. 

 

Feature based methods are extremely effective in texture rich environment [13][16]. 

In texture less environment the method struggles or completely fails. If there are not 

enough correspondence matched per the requirement of the motion estimation 

algorithm or are no correspondence that can be matched, then the visual odometry 

system fails. And this is where the appearance-based method is advantageous over the 

feature-based method.  

Table 2.2 2D-2D motion estimation algorithm 

Get frame Ft 

With Ft: 

 Extract and match features from Ft-1 and Ft 

 Compute essential matrix 

 Compute transformation matrix 

 Motion = previous motion * transformation matrix 

 

Table 2.3 3D-3D motion estimation algorithm 

Get frame Flt and Frt 

With Flt and Frt: 

 Extract and match feature of Flt-1 and Flt 

 Compute depth map from Flt-1 and Frt-1 and from Flt and Frt 

 Triangulate the 3D points for Flt-1 and Flt 

 Compute transformation matrix from 3D points 

 

Table 2.4 2D-3D motion estimation algorithm 

Get frame Flt and Frt 

With Flt and Frt: 

 Extract and match feature of Flt-1 and Flt 

 Compute depth map from Flt-1 and Frt-1   

 Triangulate the 3D points for Flt-1 

 Compute cameras pose (PnP) 
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2.1.2 Appearance based approach 

As described in the feature-based method, appearance-based method has an advantage 

over the later. This is because of the way the appearance-based method works. The 

estimation of the motion is done using the optimization of the photometric error in this 

approach [16]. In the feature-based method if the salient feature matched is incorrect 

than the estimation of the motion is affected, and the rectification of the error could be 

computationally expensive [16].  

However, the appearance-based method utilizes the information form the entire image 

to deduce a robust estimate [16]. Region-based matching and optical flow-based 

approaches are the two main categories of appearance-based methods [16]. In 

template-based approach a patch or region of an image from the current frame is 

extracted and attempted to be matched onto the next frame. The displacement and 

rotation of the system is estimated using the matching of this template across the next 

frame. The algorithm initializes by extracting to consecutive images, after which the 

template which is a patch or region of intrest of the first image is extracted and matched 

with the second image at hand through normalized cross correlation. The pixel 

displacement from the template and the maximum correlation point is extracted. From 

these pixels information the motion of the system is estimated using the known intrinsic 

and extrinsic parameters of the camera.  

The optical flow-based method works differently, the OF method computes the 

brightness pattern displacement from one picture frame to the next using the intensity 

values of the adjacent pixels [13]. Those algorithms which estimates the displacement 

for every pixel in the image is known as dense optical flow and conversely if the 

displacement of only selected pixel is computed then it’s referred to as the sparse optical 

flow. In the former the motion is estimated by aggregating all the computed motion 

vector of the individual pixel and employing robust algorithms such as RANSAC for the 

estimation of the motion. In the sparse optical flow however, we track the selected 

feature to the next frame and then employ one of the algorithms such as 2D-2D or 2D-

3D motion estimation algorithms such as in the feature-based approach. One of the 

drawbacks of appearance-based method is that the motion between the two consecutive 

frames cannot be significant or large. This is because of the assumption and reliance of 

this appearance-based approach on pixel intensity and brightness as a matching 

criterion. And significant motion between consecutive frame can have a large difference 

in pixel variation which then cannot be tracked correctly or detected. 
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2.1.3 Hybrid based approach 

Having their own advantages and disadvantages for both features based and 

appearance-based methods. The hybrid approach aims to fuse the best in both 

aforementioned approaches to estimate the motion robustly. Thus, forming a coalition 

that is invariant to any environment. There are a few different ways such an approach 

can be designed. One such design was proposed by [17] [13].  

In this work [17] [13] the appearance-based approach was used to estimate the rotation 

of the system and the feature-based approach was employed to estimate the 

translation. In this way the hybrid-based approach shows more robustness in low 

textured environment and consecutively also when there is significant motion between 

the frames. One other way to design a hybrid-based approach would be to selectively 

employ each of the algorithm given a metric that evaluates the significance of the motion 

such as the velocity of the system and the presence of texture. Sensors such as vehicle 

speed sensor and frame rate of the camera can be also employed as criteria that would 

decide on the application of the appearance-based methods. When the motion between 

the consecutive image is small, identified by lower velocity at a high frame rate the 

appearance-based approach can be employed. Failure in either of the criteria the 

feature-based approach can be employed. By analyzing the number of corners in an 

image, a sub metric on the amount of texture in a frame can be estimated. Which can 

be used to decide the application of the feature-based approach. As mentioned in the 

beginning of the Chapter Visual odometry is of the type incremental estimator. 

Therefore, if an estimate becomes erroneous because of incorrect or noisy feature 

matches or incorrect approximations of the pixel then this error is propagated moving 

forward. 

 

2.2 Machine learning based method 

Modern visual odometry methods are increasingly based on deep learning approach or 

a combined approach given the availability of more computational resources [16]. Deep 

learning-based method negates the requirements of some of the pre required knowledge 

such as for example the intrinsic and extrinsic parameters of the camera or cameras for 

the visual odometry system. While traditional algorithms such as SIFT, SURF and ORB 

etc. may have each their advantages, the deep learning approach can form a better 

alternative which combines the best of all this method [18]. One of the initial works in 

the application of machine learning based visual odometry method is highlighted by the 



 24 

works of Roberts et al [17]. Later, several works such as [2], [19 - 22] highlighted the 

applicability of deep learning methods on visual odometry. One of the drawbacks when 

machine learning based method is compared to geometric based method is the 

computational resource requirement and subsequent hardware requirements. If we 

intend to optimize the models for speed, then there is a requirement for additional 

hardware such as tensor processing unit. However, optimizations have tradeoff in terms 

of accuracy of the system. Machine learning based method also can be classified like 

the geometric based approach in to feature based approach, appearance-based 

approach, and hybrid approaches. The later in this realm could also involve the 

application of geometric based method in conjunction with machine learning based 

method. 

There are number of different ways the deep learning-based method can be designed. 

In both the feature-based approach and appearance-based approach which can be 

grouped together as geometric based approach, the required step to estimate the 

motion is represented by different algorithms at each stage such as feature detectors, 

matchers, dense optical flow estimation or motion estimation algorithms etc.  Deep 

learning models can be employed to either to replace any one of these stages in the 

visual odometry algorithms or multiple different stages or the entire system. For 

example, [23] proposed a technique to learn good feature which are unique salient 

feature from an ego motion estimation task. This method could be replacement for the 

feature detection stage of the geometric based system. Further work such as of Zhaou 

et al [19] suggested to learn single view depth estimation and visual odometry in an 

end-to-end fashion. In this case the shortcoming of the monocular system that was 

described earlier is rectified by replacing the stage with a monocular depth model that 

could best approximate relative depth. Coupled with an end-to-end system this replaces 

a traditional visual odometry system or in other words a geometric based approach. A 

complete replacement of the geometric based method is proposed by Wang et al [20]. 

Where the input is a sequence of images, and the output is the transformation matrix 

[2].  
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2.3 State of the art 

Over the last two decades or so several state-of-the-art systems have been developed 

with competitive and improving results over time. Table 2.5 depicts some of the state 

of the art from the works of several authors. End-to-End network means that every 

stage of the visual odometry system is a machine learning based approach including the 

motion estimation part. 

Table 2.5 A few state-of-the-art systems, their types, and approaches 

Method Mode of operation Type Approach 

VISO2 [24] Stereo Geometric Feature based 

ORB-SLAM [25] Mono/Stereo/RGB-D Geometric Feature based 

DSO [26] Mono/Stereo Geometric Appearance based 

Depth-VO Feat [21] Mono/Stereo ML End-to-end 

SC-SfMLearner [22] Mono/Stereo ML End-to-end 

DF-VO [2] Mono/Stereo ML Hybrid 

 

VISO2 was initially designed for 3D reconstruction of a scene. It has implementation of 

Kalman filter for further refinement of the estimation’s VISO2 is based on a feature-

based approach of visual odometry. ORB-SLAM 2 is a SLAM system. The system 

Contains robust techniques such as key frame insertion, loop detection, bundle 

adjustment etc. It was designed to work in real time. ORB-SLAM system has shown 

great robustness and efficiency amongst all other visual odometry system. However, 

it’s noted in [2] that sometimes ORB-SLAM 2 suffers from tracking failures or 

unsuccessful initialization. ORB-SLAM 2 is a feature-based variant of visual odometry 

like the VISO 2. DSO sparse – direct method, in which sparse features are extracted 

and used to estimate the motion. Depth-VO Feat is a machine learning based visual 

odometry system. The proposed pipeline of the system is shown on Figure 2.2. A 

combination of CNN based pose estimation with depth CNN allowing for a monocular 

approach with scale estimation. The system is a multi-stage system with each stage 

relaying on machine learning models as a replacement to otherwise a geometric 

solution. DF-VO uses combination of optical flow network, single view depth network 

and geometric method for motion estimation and hence can be classified into a hybrid 

approach. Figure 2.3 represents the architecture of the DF-VO system as proposed by 

the authors.  It’s important to understand, for example the state-of-the-art system DF-

VO was trained on the same dataset that it was evaluated. Leading to believe that the 

results of machine learning system can be largely influenced from prior knowledge and 
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unseen or untrained environment can prove a challenge for such system. Which would 

lead to a requirement for continuous model training over new data frequently for better 

performance. This could lead to a drawback for the machine learning based approach. 

The drawback being the in-availability of enough data for training. And subsequently 

may lead to decrease efficiency and performance in compassion to non-machine 

learning based methods such as the geometric based method. 

 

Figure 2.2 Proposed technique for Depth-VO feat visual odometry [21] 
 

 

Figure 2.3 DF-VO system architecture [2] 
 

 
 

Figure 2.4 End-to-end architecture based on CNN proposed by [20] 
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In short, the above Figures 2.2 and 2.3 represent the different type of combination of 

approaches in the case of machine learning based approach for visual odometry can be 

designed. End-to-End approach can also be considered as an appearance-based 

approach in geometric terminology as the model uses all pixel of the image to compute 

the pose estimation. Figure 2.4 depicts an end-to-end machine learning based visual 

odometry approach as proposed by [20]. Where the input to the system is two images 

in a temporal sequence and the output is the pose estimation. Figure 2.5 depicts the 

classification of geometric based and machine learning based state of the art based on 

the primary approach. 

 

Figure 2.5 Visual odometry systems classified by approaches taken based on existing methods 
 

Few systems that are proprietary and implements a visual inertial system are Apple 

ARKit, Google ARCore, Intel RealSense T265 and Stereolabs ZED 2. The systems mainly 

Apple ARKit and Google ARCore require apple operating system and android operating 

system to run respectively. The Intel real sense T265 is a stand-alone off the shelf 

component that can be purchased and integrated, the output of this system is 6 DOF 

position estimates. According to [27] both Apple ARKit and GoogleARCore have 

demonstrated high accuracy and stability in both indoor and outdoor environments. 

However, T265 and ZED2 are only recommended for their compatibility with integrating 

systems. 
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It’s important to note there exist several other systems all of which have not been 

considered. Only those visual odometry system that has been used as a benchmark for 

other works and mainly in [2] has been reviewed. Out of all this system, the ORB-SLAM 

2 system and more recently ORB-SLAM 3 system are considered for benchmarking of 

other visual odometry system given their excellent and efficient performance [2]. 

Considering the discussion above on state-of-the-art systems and based on the 

comparative analysis that we would perform in Chapter 4, It’s a valid question as to 

why when certain systems such as ORB-SLAM 2 or DF-VO is available open source is 

there a need to develop a system from scratch. Not all methods are suitable for all types 

of application. There is serval constraint that may restrict the use of a system for a 

particular application, for example, DF-VO [2] is a machine learning based system that 

requires extensive computation resources compared to the resources available in single 

board computer such as raspberry pi or Nvidia jetson nano. At the same time real time 

system such as ORB SLAM 2 is based on ROS framework. The applicational requirement 

sometimes do not have ROS framework as a part of the software stack. Therefore, the 

direct application of this system is limited. Furthermore, to better understand this field 

of computer vision and to be able to contribute to the field it’s imperative that one learn 

the fundamental of visual odometry. Also, scratch build of the system allows for easier 

integration and upgrading of the system overtime which is difficult to be achieved using 

off the shelf devices such as intel real sense T265 or ZED 2. In some cases, such as ZED 

2, have not made their algorithm public therefore constraining the applicability of this 

solution into custom projects.  

 

2.4 Dataset setup 

In order to verify a proposed solution, it is necessary to evaluate the system on known 

truth. There by enabling us to calculate a quantitative metric to represent the efficiency 

and applicability of the system. KITTI [28] and Oxford Robotcar [29] are two popular 

benchmarking datasets [2]. These datasets contain recorded image through outdoor 

driving situation of various length and complexity. This dataset represents the real-life 

information that is available to visual odometry or SLAM system. The availability of these 

data helps us to perform and test our system without the need for hardware setup that 

would otherwise increase the complexity for the development of visual odometry 

system. These datasets do not only contain sequence of images, but they contain LIDAR 

point cloud data, inertial measurement unit readings and high-quality ground truth. The 

dataset is meant not only for visual odometry or SLAM but are also meant for 
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development in the field of object detection, fusion etc. For our experimentation and 

testing purposes we will work with the KITTI dataset. The KITTI dataset contains several 

splits [28]. The KITTI Odometry split is the one that we will consider. This split contains 

11 driving sequence with ground truth and camera poses. Each sequence is different in 

terms of their speed or distance travelled or even in different situation such as highway, 

urban areas, city etc. Figure 2.6 shows the setup with which the KITTI dataset was 

constructed. The sensors such as camera, LIDAR, GPS and IMU are mounted onto a 

vehicle and the information from this device are recorded as the vehicle moves along 

the road. 

 

Figure 2.6 The car with the sensors that was used to collect data for the KITTI dataset [28] 
 

In order to evaluate the results of the visual odometry system, it’s important to 

understand what the output of the system are. The system is supposed to output a 6 

DOF estimate which are position estimates in X, Y and Z direction and roll, pitch, and 

yaw estimates. In order to evaluate the system, we can compare the system estimates 

to ground truth. Ground truth is the real or true estimate of the system. These are 

usually obtained from high quality GPS receiver or strictly self-computed. There exist 

few metrics across which the evaluation of the system must be made in order to be 

compared against other state of the art system. In [2] the author estimates the following 

metrics, average translational and rotational error per 100 meters in percentage for up 

to 800 meter. Absolute trajectory error which is the root mean squared error between 

the estimation from the visual odometry system and the ground truth. Relative pose 

error, which matches frame to frame error in both translation and rotation. 
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Since we would be using the KITTI dataset for our experiments we would analyze the 

above metrics for the same.  

𝐴𝑇𝐸 = (
1
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The equation 2.1 represents the Absolute Trajectory Error as the square root of the 

average of the squared Euclidean distances between the estimated positions and the 

ground truth positions over all N timestamps or positions in the trajectory. 𝑝"%&' 

represents the estimated trajectory and 𝑝"
(' represents the ground truth. Equation 2.2 

describes the formula for the computation of the average RPE translational. The formula 

is for error in translation over a fixed interval represented by Δ. 𝑃'	𝑎𝑛𝑑	𝑃'10	are pose 

estimates at time 𝑡. 𝑄'	𝑎𝑛𝑑	𝑄'10 are corresponding poses in the ground truth trajectory. 

(𝑃'	𝑎𝑛𝑑	𝑃'10)'234&	𝑎𝑛𝑑	(𝑄'	𝑎𝑛𝑑	𝑄'10)'234&	are the translational component of the estimated 

and ground truth poses respectively. The same formula as in 2.2 can also be used to 

calculate the rotational RPE in which case the rotational component is used instead of 

the translational component. 

The average translational error is given by the ATE when N is 100 is evaluated and N at 

200 is evaluated so on until N is 800 is evaluated. After which the average of the ATE 

average over each sequence is added and divided by the number of sequences, and 

then converted to percent. This gives us the estimate of the average translational error 

in percentage. RPE indicates the local accuracy of the trajectory of a fixed interval, 

whereas the ATE represents the global accuracy of the trajectory. 

In order to compute the metric, we will use the readily available tool proposed and 

developed by the author of [2]. This would allow us to easily compare our results with 

the results from the state-of-the-art approaches on which evaluation was produced 

based on the above metrics. The uses of dataset such as KITTI would be the best way 

to represent out system. However, the current system that is being developed is for 

both outdoor and indoor environments and as such in order to test the systems 

performance when certain advantages such as large baseline between cameras offered 

by the KITTI dataset are not available is crucial. Therefore, an indoor dataset based on 

off the shelf hardware would be collected and system would be evaluated on it. 
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2.5 Conclusion 

So far, we have understood that visual odometry is a process in which the motion of a 

vehicle is incrementally estimated primarily from vision-based sensor such as cameras. 

Visual odometry can be classified either based on the hardware or on the approaches. 

The hardware-based approach classifies the visual odometry into monocular, stereo, 

and RGB-D systems. The visual odometry method can be also classified into geometric 

based approach and machine learning based approach. Both categories can be further 

divided into feature-based approach, appearance-based approach, and hybrid approach. 

Table 2.6 highlights the fundamental problems that differs for each approach. These 

issues are consistent only with the geometric based approach. As a well-trained and 

designed machine learning based approach could learn to be robust against these 

issues. Which is an advantage to using machine learning based approach.  

Table 2.6 Overview of problems in different VO approaches 

Problem 

Scale of the problem (Low, Medium, High) 

Feature based 
Appearance 

based 

Hybrid 

approach 

Computational 

requirements 
Medium High Medium 

Lighting changes Low High Low 

Scale changes Low Medium Low 

Large motion Low High Low 

Low texture scenes High Low Medium 

Real time Medium Medium Medium 

Hardware complexity Medium Medium Medium 

 

Here low represent that the problem in question is easily solvable without any significant 

changes to hardware or software. An example of this would be for example trying out 

different feature detector for feature-based approach. Medium represent the 

requirements of complex algorithms or additional hardware in order to solve the issue. 

Hardware complexity for all cases is ranked medium as to suggest that by default it’s 

possible to have monocular visual odometry system for all approaches, but if scale is in 

question and for a more complete visual odometry system the requirement of a stereo 

system or RGB-D system increases the complexity of the problem. A high rank suggest 

that the approach might fail and needs a significant modification or changes in order for 

the visual odometry system to be robust without failures. Machine learning based VO 
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approaches are computational inefficient then their geometric based counterparts. 

However, all the other problems for machine learning based approach can be describes 

as low given that a machine learning based system is able to learn over time to improve 

the model making it robust to the problem. 

Visual odometry system are only as good as their hardware and approaches. And the 

type of hardware or approach depends on the intended purpose and design. There is no 

one approach for all; however, this is soon to be realized given the progress in machine 

learning based approach for visual odometry system. In the next Chapter we will look 

at the proposed system. Which will be based on feature-based approach combined with 

machine learning approach. 
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3   METHODOLGY 

As we discussed in the previous section that visual odometry can be classified based on 

the hardware composition as monocular, stereo or RGB-D odometry. For our 

implementation we have implemented stereo based visual odometry. To allow us to 

operate in both monocular and stereo setting individually, necessary adjustment and 

incorporation of both 2D-to-2D and 2D-to-3D algorithms have also been implemented. 

However, unless otherwise specified, the method uses stereo visual odometry approach. 

The visual odometry method that is implemented is a feature-based approach of the 

geometric variant with machine learning based add-ons to improve our method, making 

the implemented method a hybrid approach by design. While the state of the art 

considered in the previous section for the machine learning based approach and hybrid 

approaches are vitally different from our implementation, our approach can still be 

classified as a hybrid approach. A feature-based approach was selected for the system 

as it offered robustness against large scale motion between frame compared to 

appearance-based approach. Also, the lighting changes would be of less effect to this 

approach then the appearance-based approach, since we plan to implement our method 

in different environments this is important for us. However, the susceptibility of this 

approach to low texture scenarios is a problem which we plan to address using the 

proposed method. Figure 3.1 below defines the proposed method. The Figure outlines 

the different nodes of the system and forms together a pipeline. Visual odometry 

methods proposed by [30], [31] and [32] implement a method where dynamic objects 

are filtered out with and without using machine learning based methods, our system 

also use a similar approach. The above system implemented by the authors, however, 

do not evaluate the performance of the proposed method on the KITTI dataset. In our 

case we will evaluate the performance of the system on the KITTI dataset and compare 

it with other state of the art systems.  

 

Figure 3.1 Pipeline of the proposed visual odometry method 
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The implemented visual-inertial odometry method comprises of the visual odometry 

pipeline and the fusion pipeline. The fusion pipeline with the visual odometry is show on 

Figure 3.2. Figure 3.2 also represents the entire proposed method. There are two types 

of coupling for a given filter. Either tightly coupled or loosely coupled. The difference 

between the coupling is that in a loosely coupled filter, the filter or fusion is applied to 

the processed positional estimate, which is considered noisy, in the tightly coupled 

variant however the filter is applied on raw values before preprocessing it to final 

estimates. In our implementation the implemented Kalman filter for fusion is loosely 

coupled. Tightly coupled applications have higher accuracy then loosely coupled filter. 

However, the complexity of the implementation of a loosely coupled filter is less 

compared to the other approach. Also, our proposed method uses complementary 

sensors. This is because the error from the sensor in this case would not be correlated. 

And in the event one of the systems fails the other system could continue working. 

The visual-inertial odometry method therefore, in this case is a fusion system where 

estimates from visual odometry and IMU are used to predict the next state. In the event 

there is no predictions from visual odometry system the prediction of next state solely 

relies on estimates from the IMU, and the opposite also remains true. Therefore, it’s 

important to establish the fact that in this case given the current setup of the fusion 

system the estimate from the fusion system cannot be better than the visual odometry 

system. The current application of the fusion system is better described as a 

compensator and act as to smooth the visual odometry estimates primarily. The best 

use case scenario for this system is therefore validated by measuring the robustness of 

the system when there is occasional or large drop in visual odometry estimates. 

 

Figure 3.2 Proposed method for the fusion system 
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3.1 Hardware setup 

For a visual odometry method as was discussed in the previous Chapter, the hardware 

set up determines the type of visual odometry system. In our implementation we set 

up our system to work in both monocular and stereo mode. For this the setup requires 

two cameras and a processing unit. Additionally, an inertial measurement unit is also 

incorporated for the fusion node. Therefore, the implemented visual odometry method 

requires two monochrome cameras in stereo configuration, a computing unit, and an 

inertial measurement unit altogether forming a system. We will test our method on both 

a publicly available, widely used benchmarking dataset KITTI and data collected by a 

DAQ unit that was developed for this thesis. It is necessary to outline each of the setup 

as some assumptions and calculation depend on the placement an orientation of the 

sensors. 

 

3.1.1 KITTI setup 

The KITTI odometry setup was done on a car as shown on Figure 2.7. From [28] we get 

the following Figure 3.3 that outlines the setup. 

 

Figure 3.3 Placement of sensors in the vehicle (agent) used to collect the KITTI dataset [28] 
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While the KITTI setup contains a lot of additional sensors, however for our system we 

require the data from the following mounted sensors. 

1) Cam 1 (gray) 

2) Cam 0 (gray) 

3) GPS/IMU from the OXTS sensor mounted on the rear end as shown on the image. 

Both Cam 1 and Cam 0 are Point Gray Flea2 grayscale cameras (FL2-14S3M-C), 1.4 

Megapixels, 1/2” Sony ICX267 CCD, global shutter. The lenses mounted on this camera 

are of type Edmund Optics lenses, 4 mm, opening angle ~ 90°, vertical opening angle 

of region of interest (ROI) ~ 35°. The distance between the cameras is approximately 

54 cm. An OXTS RT3003 inertial and GPS navigation system was used for GPS and IMU 

data which provides 6 DOF data at 100 Hz. In order to record all information, they have 

used the following computing setup with two six-core Intel XEON X5650 processors and 

a RAID 5 hard disk storage. Additionally, it is also worked out from the information 

provided that the frame rate at which images are captured and stored from the camera 

is at 10 Hz [28]. 

The following coordinate system is noted from the Figure 3 with respect to the car: 

1) Cam 0 and Cam 1: X = right, Y = down and Z = Forward 

2) GPS/IMU: X = forward, Y = left and Z = up 

 

3.1.2 Our setup 

Figure 3.4 outlines the setup in drawing and Figure 3.5 shows the mounting on the 

vehicle for our hardware setup. 

 

Figure 3.4 Hardware setup overview 
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Figure 3.5 Setup mounted on a vehicle 
 
The setup compromises of the following hardware: 

1) OAK – D LR  

2) Jetson Orin Nano 8GB 

3) DC – DC Converter 12v to 5V 

Both Cam 1 and Cam 0 are RGB camera AR0234, 2.3MP, global shutter. The distance 

between the camera is 15cm. The inertial measurement unit is a BNO085 9-axis. The 

sampling of both the IMU and the cameras are synchronized. The computing unit is a 

jetson Orin Nano 8GB. An external solid-state drive is attached to the jetson via the 

PCIe 3.0 slot on the Orin Nano. The computing unit acquires the frame from the camera 

and the IMU data and stores it at approximately 20Hz. There is occasionally a drop in 

approximately 2 to 4 frames bringing down the frame rate to 18 - 16 frames per second 

sometimes.  

Coordinate system with respect to the car: 

1) Cam 0 and Cam 1: X = right, Y = down and Z = Forward 

2) IMU: X = up, Y = left and Z = Forward 
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3.2 Software setup 

The software is written in two parts. The visual odometry pipeline and the fusion 

pipeline. Each pipeline is to be run parallel. If and when there is a location estimate 

available from the visual odometry pipeline, then estimate is fused. Else the fusion 

pipeline predicts the state only based on accelerometer and gyroscope data from the 

IMU. Parallel computation is also necessary as IMU is a high-rate sensor compared to 

visual odometry system. Our fusion system can fuse visual odometry estimates, 

GPS/GNSS estimates and IMU estimates when available. This allows for the proposed 

method to be invariant to sampling rate of the sensor and allows for the fusion of sensor 

sampling at different rates. Each system will be described in detail in the below section. 

This pipeline as shown on Figure 3.1 compromises of several nodes that must be 

individually briefed on. 

 

3.2.1 Preprocessing 

It is not possible to use raw images from the sensor for the proposed visual odometry 

method. This is because every image captured by the camera through a lens have barrel 

distortion. To remove any distortion, we need to post-process the images. In the post 

processing step the intrinsic and distortion parameters of the camera are used for 

undistorting the images. Figure 3.6 shows an example of a raw image captured using 

an imaging sensor on the left and the undistorted image on the right using the 

parameters of the camera. The camera parameters which contain the intrinsic, extrinsic, 

distortion matrixes are computed by the calibration of the camera using an image with 

known shape. Like for example on Figure 3.6, the checkboard in the image was used to 

calibrate the camera for this example. 

 

Figure 3.6 On the left is the distorted image and on the right is undistorted image 
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We can see that without un-distortion the image appears to be curved outwards. This 

would become a problem for the visual odometry system during any of the feature 

identification, matching, stereo or motion estimation processes. A preliminary 

requirement to this node is that the images are rectified. When the images are rectified 

corresponding features in the image lie along the same horizontal plane. This alignment 

is crucial for the stereo node. The parameters that are required to rectify images are 

the intrinsic parameter and extrinsic parameter. Using which a transformation matrix 

can be computed which along with the intrinsic parameters would align both images 

along the same horizontal line in a process that can be referred to as stereo rectification. 

Figure 3.7 and 3.8 shows undistorted images before rectification and after rectification 

respectively. 

 

Figure 3.7 Stereo images before rectification 
 

 
Figure 3.8 Stereo image after rectification 
 
As we can see from the rectification process the size of the image after rectification is 

different (small of rotated) from before the rectification. In our case the KITTI dataset 

provides undistorted rectified images, in which case we would bypass the preprocessing 

node. The OAK camera system used in our own setup also outputs rectified streams. 
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3.2.2 Feature detection 

As discussed in Chapter 2 for the feature-based approach salient features must be 

extracted from the frame. There are several algorithms for this purpose. Geometric 

based algorithm such as SIFT, SURF, ORB, AKAZE, FAST, GFTT etc., machine learning 

based algorithm such as Super point [33] and LIFT are available. For the proposed 

method, we will use the geometric based algorithm for feature detection. The reason 

for this choice is as follows: 

1) All geometric based approaches are computationally more efficient than their 

machine learning counter parts given a resource constrained device without any 

additional hardware such as accelerators or GPU. 

2) Same results under same condition or repeatability is an advantage from the use 

of geometric based detectors. This is because geometric based detector works 

based on mathematical and statistical principals. This is an advantage that allow 

us to test our system with different settings and setup while making sure other 

factor remain the same allowing us to fine tune our system and possibly explain 

the results.  

3) Ease of implementation and integration into the system. 

Given the vast number of choices available in geometric based algorithm, we propose 

to proceed forward with using SIFT as the detector for the visual odometry method. 

SIFT is chosen over SURF due to restriction on the usage of SURF for commercial 

purpose as it is still patented and therefore the unavailability of this detector in an open-

source implementation such as OpenCV without any additional work though which is not 

the recommended approach. SIFT is better than SURF when it comes to scale, however 

SURF is better in both rotation invariance and blur invariance. Also, it is estimated that 

SURF is three times faster than SIFT [35]. It’s understood that alternatives such as ORB 

and FAST demonstrate speed which is unmatched by SIFT. However, from the analysis 

performed by [36] we find that SIFT is the most accurate algorithm and the author 

suggest its application in scenarios where there are less points which are features is 

fundamental for a feature-based approach for visual odometry implementation, as 

feature-based method suffers in situation with low features (low texture). The detector 

extracts the features and description of the feature known as descriptors. The feature 

is extracted only in specified region. A mask with the region to be extracted is computed 

for every frame based on the object detection node.  
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Dynamic object in the scene can also cause a correctly tracked feature point to be an 

erroneous feature point for the visual odometry method. This is because with dynamic 

objects, when the object is moving slower or faster than the agent, the tracked feature 

point will have different location in the tracked image which is not a result from the  

motion of the agent only, but also from the motion of the dynamic object in the scene. 

Results on the effect of dynamic filtering will be discussed in the next Chapter. Filtering 

of matches based on dynamic objects in the scene that are considered capable of motion 

is necessary. As explained earlier it is necessary to remove matches that may have 

travelled not only with respect to our motion but also because of the motion of the 

object on which the feature is tracked. A good example would be a car front of the agent 

and the road on which the agent is travelling. Features from the road that are tracked 

across the frame display translation and rotation in the next frame purely based on the 

motion of the agent and most probably not based on any external factors (an exception 

would be a stone on which a feature was matched but got hurled around by other 

factors). On the other hand, a feature on a car that was matched travelling in front of 

the agent, would have a rotational and translational motion in the next frame based on 

the motion of the agent and the motion of the other car combined. This situation can 

have a profound affect if not filtered out. A basic filtering technique would be to detect 

objects that could move significantly in a scene such as car, bus, trolleys, pedestrians, 

and bicycles and then excluding them, meaning all matches from those objects are not 

considered. For our system we use a yolov4 tiny [37] model to detect these objects. 

The reason we use an outdated model while significantly better version of the model 

such as YOLOv8 or YOLOv9 exist is because of its lightweight requirement and ease of 

integration. A mask is formed based on the bounding box output from the model on the 

classes predicted. Which is then used by the detector to perform matching only in 

unmasked region of the frame. 

 

3.2.3 Feature matching and filtering 

The next stage is to establish correspondence between the images from which the 

features were extracted, through an iterative step of matching and filtering, until enough 

key points are extracted. Feature matching can be done using algorithms such as BF 

(brute force) or FLANN based matcher. There also exist machine learning based matcher 

such as Superglue [38]. For our proposed method we would use the BF based matcher. 

The Brute force matcher works by comparing every descriptor from image A to 

descriptors from Image B to find the best match. The match is found by calculating 

Euclidian distance in this case (Hamming distance is computed instead when binary 
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descriptors are used). This is a computationally expensive task which only further 

increases as the number of features from the detection increases. Additionally, we 

employ KNN based matching coupled to BF. This outputs two closes match that was 

found during matching for each salient feature matched. 

Due to repetitive patterns, occlusion, or noise in the image not all matches by the 

matcher will be correct. These incorrect matches can be considered as outliers and have 

to be filtered out.  Filtering the matches using Lowe’s ratio test is the first filtering stage 

implemented. Lowe’s ratio test was proposed by [39]. The idea is to compare the 

distance between the closest match and the second closet match. The Lowe’s ratio test 

is based on the assumption that the closest match is the best match than the next 

closest match which could be noise. By taking the ratio of the distance of the first match 

to the second match and comparing it to a threshold we can filter the match as a good 

match or an incorrect match. In our system this test is implemented dynamically. Our 

system starts off from the lowest threshold set and increments the threshold by 0.05 

for every iteration the motion estimate fails or there are less matched points than the 

required. We have found empirically that starting with a ratio of 0.4 has yielded better 

results.  

Estimating the homography from the filtered matches allows us to further filter out the 

matches by considering only those features which are on the same plane in both images. 

Homography based filtering is effective from a theoretical point of view in situation 

where there is only purely rotation motion. However, it’s important to note that, 

implementation of this filtering technique is also conditioned on the ability to estimate 

the motion. If the motion is unable to be estimated, then the filtering method is 

neglected. RANSAC is used to compute the homography. The working knowledge of 

RANSAC is important as it is also used in the motion estimation node of our system. 

RANSAC stands for Random Sample Consensus. The assumption on which RANSAC is 

predicated is that an inlier in an observed set of data can be explained by a model and 

outliers are those points that does not fit the model. In order to better understand its 

working, consider this simple example where there is a set of data. Most number of 

points in this data lie along a line, there are also points in the data that randomly lie 

around the line which in this case are the outliers. RANSAC must estimate the best line 

that fits the majority of this points. How RANSAC does this is, RANSAC initially selects 

a subset of the data, in this case only two points are needed to calculate the line based 

on the equation of the line. RANSAC then uses this line and calculates how many points 

fits these lines or are close to this line based on a threshold. The steps are repeated a 

fixed number of iterations, after which the model which fits the highest number of points 
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in the data is considered the best estimation. We can already understand that the quality 

of the data is going to play a crucial role in the determination of the model. A greater 

number of inlier than outlier points will yield a better model than a set containing the 

opposite. In our application it is crucial that the Lowe’s ratio test yield the best filtered 

matches and additional outliers in this case are removed.  

 

3.2.4 Stereo – depth map generation 

There are three processes in this node. Disparity map generation, depth map formation 

and depth map filtering. We discussed in subsection 3.2.1, during preprocessing we 

rectify the images. Rectification of the images are necessary in a stereo configuration 

when the result needed is to estimate the depth of the scene. Estimating the depth of 

the scene is what gives the stereo visual odometry its advantage over monocular visual 

odometry. By rectifying the images, we ensure that features in both images lies in the 

same horizontal plane.  

Disparity map is a representation in visual form of the difference in the coordinates of 

the same feature in two rectified images. In order to calculate the disparity, the 

algorithms for each pixel in the left image, searches a match in the same horizontal row 

in the right image within a window. The shift required for this match to occur is known 

as disparity. All the calculated disparities are compiled into an image called disparity 

map. 

Depth from disparity is calculated using the following equation: 

𝑑𝑒𝑝𝑡ℎ	 = 	𝑓5 	 ∗ 	
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 (3.1) 

Here the units of the depth and baseline are in millimeters and the unit of the focal 

length at x and disparity is in pixels. From this equation it can be deduced that the 

disparity and depth are inversely related. This means changes in the disparity value 

closer to zero changes the depth by a large margin. And the opposite also holds true. 

Also, we can deduce that if either of the baseline or the focal length (distance between 

the camera lens and the image sensor) is increased then it will result in increased depth 

at same disparity. Which suggest that the depth accuracy is dependent on certain 

physical properties of the camera and setup. The depth map is then calculated, which 

essentially is a map that contains an associated depth to each pixel.  
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No matter the best approach in matching there are some presences of outliers or 

inconsistency in the matches leading to a noisy depth. In order to rectify this issue as 

much as possible, our visual odometry system incorporates a median filter (empirical 

experiments found a kernel size of 3 being the best for the given setup). This filter acts 

to smoothen out noises and irregularities. Also, it’s important to note that in scenarios 

without enough texture on the surface the depth map computed is not accurate. An 

example of this would be the sky. Or a large uniform wall. 

 

3.2.5 Motion estimation 

Iterative steps of action solve for the estimation of the camera pose. In our visual 

odometry method our main estimation algorithm is 2D-to-3D based approach. For this 

approach the following is required: 

1) 3D coordinates of the feature extracted and filtered from the previous frame in 

the system. Since depth for every pixel is computed, by indexing the pixel 

location of the feature points on the depth map we can extract the Z coordinate 

from the depth map. The X and Y coordinates in the 3D world is computed using 

the known intrinsic parameter of the camera. The formula for the computation 

of X or Y in 3D world coordinate system is: 

𝑋	 = 	
𝑢	 ∗ 	𝑐5
𝑓5

	 ∗ 	𝑑𝑒𝑝𝑡ℎ (3.2) 

𝑌	 = 	
𝑣	 ∗ 	𝑐6
𝑓6

	 ∗ 	𝑑𝑒𝑝𝑡ℎ (3.3) 

Here u and v are the image coordinate in the image plane. cx and cy are the 

optical center and fx and fy are the focal lengths. All four of these parameters are 

obtained from the camera’s intrinsic parameters.  

2) Next the 2D coordinate from the current frame is required. This are from the 

feature matches with the current frame. 

3) We filter out the matches further based on two conditions. First being the scale 

of the change of the motion. By computing the change in location of the pixel in 

both the frame and comparing it to a threshold, with the condition that if the 

feature has a matched point on the other image that is displaced more than the 

threshold then the point is invalidated. This threshold is increased for every 



 45 

unsuccessful estimation, until there is a successful estimation. Along with this a 

second additional stage of filtering is done using an implementation of a depth 

search-based estimation. In this approach initially the motion is estimated using 

closest points only, failure would cause the depth search window to increase 

causing more points to be considered for the estimate. The depth at closer range 

is generally more accurate than at the very far. Closer to the agent the presence 

of texture on surfaces leads to a better estimate of depth. 

4) Using the perspective n point algorithm coupled with RANSAC for robust estimate 

we compute the rotational and translational matrix that describes the motion of 

the agent. 

The iterative approach in this node and the overall system is expected to have a better 

and robust behavior towards incorrect matching and in scenarios where there are few 

matches like for example in highways or indoor environments. 

 

3.2.6 Fusion setup 

Our filter will estimate the vehicle state which consist of the position and the velocity. 

Each of the vehicle state and the velocity state are 3 dimensional. There for our state 

estimate is represented by a 6-dimensional state vector. The equation are deduced from 

the sources [40] and [41]. 

𝑥" 	= 	 I
𝑝"
𝑣"J 	∈ 	𝑅

7 (3.4) 

Here 𝑥" is the state vector estimated. 𝑝" and 𝑣" are the position and velocity states 

respectively. The input to the motion model node (refer to Figure 2) of the system is a 

3-dimensional vector 𝑢". 𝑓" represents the linear acceleration estimation from the IMU. 

𝑢" 	= 	 [𝑓"] 	 ∈ 	𝑅8 (3.5) 
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The predicted state using the motion model is computed using the following equations 

which represents the motion. 

𝑝" 	= 	𝑝"	/	$ 	+	∆𝑡	. 𝑣"	/	$ 	+	
∆𝑡)

2 	(𝑓"	/	$ 	+ 	𝑔) 
(3.6) 

𝑣" 	= 	 𝑣"	/	$ 	+	∆𝑡	. (𝑓"	/	$ 	+ 	𝑔) 
(3.7) 

Both motion model equation is modelled based on the general model of motion. Here 

𝑝"	/	$ and  𝑣"	/	$ represent the previous position and velocity state respectively. ∆𝑡  

represent the time between the state estimates. 𝑔	is the gravitational constant. 

The error state is modeled as: 

𝛿𝑥" 	= 	 U
𝛿𝑝"
𝛿𝑣"

V 	∈ 	𝑅7 (3.8) 

And the error dynamics is computed by: 

𝛿𝑥" 	= 	𝐹"	/	$𝛿𝑥"	/	$ 	+	𝐿"	/	$𝑛"	/	$	 (3.9) 

Where: 

𝐹"	/	$ 	= 	 Y
1 Δ𝑡 0
0 1 −𝑓"	/	$ ∗ Δ𝑡
0 0 1

[ (3.10) 

𝐿"	/	$ 	= 	 Y
0 0
1 0
0 1

[ (3.11) 

In the above equation 1 stands a 3 x 3 identity matrix. 

Prediction step is affected by noise: 

𝑛"	~	𝒩(0, 𝑄") (3.12) 

𝑄" 	= 	Δ𝑡) _
𝜎3::%;) 0
0 0

a	 (3.13) 
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The observation is affected by noise that is modelled by: 

𝑜"	~	𝒩(0, 𝑅") (3.14) 

𝑅" 	= 	𝛥𝑡) _
𝜎:3<) 0
0 𝜎:3<)

a		 (3.15) 

Based on this, a continuous loop-based architecture is given by the following: 

1) Update the state with the acceleration estimates from the IMU using the motion 

model. 

2) Propagate uncertainty using: 

𝑃d" 	= 	𝐹"	/	$𝑃"	/	$𝐹"	/	$= 	+	𝐿"	/	$𝑄"	/	$𝐿"	/	$=  (3.16) 

3) If visual odometry or GPS measurement is available 

a. Kalman gain is computed: 

 

𝐾" 	= 	𝑃d"𝐻"		= (𝐻"	𝑃d"	𝐻"	= 	+ 	𝑅)/$ (3.17) 

 
b. Estimating the error state: 

𝛿𝑥" =	𝐾"		(𝑦" 	−	 �̌�"), 𝑤ℎ𝑒𝑟𝑒	𝑦"	𝑖𝑠	𝑡ℎ𝑒	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. (3.18) 

c. Correct the predicted state using the error state: 

�̂�" 	= 	 �̌�" 	+	𝛿𝑝" (3.19) 

𝑣j" 	= 	 𝑣k" 	+	𝛿𝑣" (3.20) 
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3.2.7 Sensor transformation 

In order to fuse data from various sensor its necessary to ensure that all data from 

sensor is represented in a single global coordinate frame. Data in a different coordinate 

frame is different from the same data in another coordinate frame. An example of this 

is the orientation of the IMU and camera from the car used in KITTI as seen on Figure 

3.3. In order to map for example a point from the camera frame to the IMU coordinate 

frame we need to convert each data point in the camera coordinate frame to the IMU 

coordinate frame using a rigid body transformation matrix.  

A transformation matrix is a 3 by 4 matrix which comprises of a 3 by 3 rotation matrix 

and a 3 by 1 translation matrix. The rotation matrix describes how a point in a coordinate 

system changes from a coordinate system A to coordinate system B. The translational 

matrix represents the change in the location of this point in the coordinate system after 

the transformation. The transformation matrix can be compared to a mapping matrix. 

Transformation matrices display the following property, if there are three coordinate 

systems A, B and C and there are two transformations matric 𝑇>? and 𝑇>@which describes 

the change of coordinate system from A to B and B to C respectively. The change in 

coordinate system from A to C is given by: 

𝑇>@ 	= 	𝑇>?	𝑥	𝑇>@ (3.21) 

Transformation matrix also adhere to the property which displays the following 

behavior: 

𝑇>@ 	= 	 [𝑇@>]/$ (3.22) 

The inverse of a transformation matrix is valid. And would undo the transformation that 

was done by the transformation. 

For the KITTI dataset we have chosen to convert all data points that are estimated to 

the IMU coordinate frame. In this case we selected the IMU coordinate frame as the 

global coordinate frame.  
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Transformation from IMU coordinate system to the velodyne (LIDAR) coordinate system 

𝑇AB for the KITTI dataset is: 

𝑇AB 	= 	 Y
1 0 0
0 1 0
0 0 1

				
−0.81
0.32
−0.79

[ (3.23) 

We can see from the above matrix that there is no rotation associated. And this is 

evident from Figure 3.3, as both the velodyne and IMU coordinate frame are oriented 

in the same way.  

Transformation matrix from the velodyne coordinate system to the camera (CAM 0) 

coordinate system is given as 𝑇B@_D: 

𝑇B@_D 	= 	 Y
0 −1 0
0 0 −1
1 0 0

				
−0.007
−0.074
−0.334

[ (3.24) 

Since there is a change in the axis orientation between the velodyne and the camera 

the rotation matrix is affected unlike the equation in 3.23. 

So based on the property of the transformation matrix discussed above, the 

transformation matrix from IMU to CAM 0 is given by 𝑇A@_D: 

𝑇A@_D 	= 	𝑇AB		𝑥		𝑇B@_D	 (3.25) 

And based on the second property of inverse we can obtain the transformation matrix 

to convert from camera coordinate system to IMU coordinate system by taking the 

invers of 𝑇A@_D which gives us 𝑇@_DA: 

𝑇@_DA =	Y
0 0 1
−1 0 0
0 −1 0

				
1.14
−0.81
1

[ (3.26) 

Our system considers CAM 0 as the left camera, features are tracked on this cam. And 

consecutively the pose is also estimated with respect to this camera coordinate system. 

Overall logic of the entire system for both the visual odometry system and fusion system 

is represented on Figure 3.9 and Figure 3.10 respectively. 
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Figure 3.9 Pipeline of proposed visual odometry method 
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Figure 3.10 Proposed pipeline of the fusion system 
 

 

3.3 Experiment setup 

The dataset that we would initially use to test our proposed system is the KITTI dataset 

as mentioned earlier. There are totally 11 sequences in the odometry benchmarking 

subset of the KITTI dataset. This dataset contains ground truth information in the format 

of pose estimation. This will allow us to compare our system output directly to the 

provided ground truth without any additional computation or conversions.  

Out of the 11-sequence provided, we will use 4 sequences for our experiments. These 

are Sequence 01, 03, 04 and 09. As we have described in the introduction of this thesis 

that the aim of this thesis is to have a system that is able to track its location in a GNSS 

denied area for up to 400 meters. Three of the sequence selected has a traversed path 

that is longer than 400 meters. The choice of the sequence is for the following reasons: 

1) The selection of sequence represents different environments. For example, 

sequence 01 is from a highway, 04 is on the main street on a city. Both 03 and 

09 are urban environments. The selection range encompasses highway scenario 

for low texture scene, urban areas have higher texture therefore the method is 

expected to demonstrate higher accuracy as depth and features are widely 



 52 

available and are more accurate. The city area represents a combination of both 

these environments. 

2) Sequence 01 is considered a very difficult sequence for state-of-the-art system 

such as ORB-SLAM 2 [2]. The authors also acknowledge that this sequence is a 

difficult sequence since a part of this sequence does not contain trackable 

features that are close to the agent and acknowledged most method fail in this 

sequence. Especially being a low feature scenario and our system being based 

on feature-based approach, we will demonstrate the performance of our method 

in this scenario. 

3) Sequence 04 is a straight traversed path in a city setting. This sequence is 

approximately 400 meter long. 

4) Sequence 03 and 09 contains curves that would prove difficult for a visual 

odometry method. The difficult corners in these sequences would explain the 

robustness of the method. 

5) Sequence 01 and 04 are in dynamic situations. With other dynamically moving 

objects in the scene. Our proposed method must be able to handle this situation 

and show improved performance compared to method without dynamic 

considerations. 

Figure 3.11 and 3.12 shows the traversed path in two dimensions for sequence 01, 03, 

04 and 09 respectively as given. By the KITTI odometry dataset. The plot is based on 

the coordinate system of the camera frame. Conversion of the same to a different 

coordinate system will yield in a different view. 

 

Figure 3.11 Left shows the sequence 01 and right is the trajectory of the sequence 03 
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Figure 3.12 Left shows the sequence 04 and right is the trajectory of the sequence 09 
 
The following experiments are planned to demonstrate and test the systems 

performance. 

1) Experiment 1: Only visual odometry system without the fusion component. 

a. Computation on all sequences in stereo mode with object detection and 

depth filtering functionality. In essence the entire proposed system is 

tested. KITTI metrics will be computed in these settings and compared with 

other state of the art systems. 

b. Without object detection node in order to verify the effect of dynamic 

objects in the scene on the proposed system. Will be tested on sequence 01 

and 03. As sequence 01 has vehicles which are dynamic and sequence 03 

has vehicles which is static mostly. 

c. Without filtering of the depth map to verify the performance of the system 

with better quality depth estimation. Will be tested on sequence 01 and 03. 

Sequence 01 is a low texture scenario and sequence 03 being a high texture 

scenario. 

d. Performance of the system in monocular mode. Using 2D-to-2D motion 

estimation algorithm. Will be tested on sequence 03 and 04.  

2) Experiment 2: Evaluation of the application of the fusion node 

a. Fusion of visual odometry estimates with IMU estimates and comparison with 

our results without fusion and ground truth. 
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b. Fusion of visual odometry estimates with IMU estimates in the scenario where 

25%, 50% and 90% of the visual odometry estimate is randomly dropped. 

This should demonstrate the robustness of the system. 

The fusion will be performed for the sequence 01, 04 and 09. The IMU raw data for 

sequence 03 is not provided in the KITTI dataset.  

The next set of experiment described as experiment 3 will be performed on the dataset 

that that we collected. This is the dataset collected using our setup as described in 

section 3.1.2. We managed to collect data from two scenarios. The first scenario is on 

hallway (as show in the Figure 3.13) that spans approximately 30 meters and the second 

one spans approximately 250 meters in an open parking space. In both cases there 

were not any measure of a ground truth. For the indoor scene in the hallway the setup 

was held by hand for the duration of the experiment as the person walked in a relatively 

straight line. In the other experiment at the parking lot, an initial plan was scaled and 

measured according to google maps and the plan was executed using visual cues 

(landmarks and road markings) to ensure that the collected data could be compared 

with some form of ground truth.  

 

Figure 3.13 Hallway in which the data was collected 
 
The inexistence of a real ground truth does not allow us to have a fair comparison. 

Nevertheless, the experiment would show the applicability of the system in a completely 

different environment. It would even describe the system’s ability when different 

hardware is used other than the one tailored for the system like the KITTI dataset. 

Figure 3.14 shows the google map outline of the path that was traversed for the data 

collected in the parking space. 
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Figure 3.14 Traversed path outlined in google maps for the experiment in the outdoor parking 
space. 
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4   RESULTS 

The proposed system was implemented on Python. All experiments were carried out on 

a MacBook pro M1 pro with 16GB of RAM. We acknowledge that such critical system 

such as visual odometry if based on a language like C++ would have faster execution 

time. In our case Python allows for easier integration with the existing system and faster 

development. A test and debugging tool is implemented on the system, that allowed for 

easier representation of all the major process of the system at a glance. Figure 4.1 

shows an output of this tool. On Figure 4.1 camera view and the object detection is 

shown on the top left part of the image. The top right image displays the initial matching. 

The middle-left image displays the filtered matches followed by bottom left which 

displays the depth information color coded. The bottom left part of the image depicts 

the trajectory. Black represents the ground truth and blue represents the estimated 

trajectory in real-time. 

 

Figure 4.1 Output of the developed tool to debug the proposed method 
 

4.1 Performance of the visual odometry method 

Experiment 1.a: The proposed visual odometry method in its entirety (with all nodes 

and filters) was used to observe the performance of the method. As discussed in the 

Chapter 2 we would use the tool proposed by [2] in order to calculate the error metrics.  

The data to compare other methods is also obtained from the works of [2]. The authors 

in this work have meticulously collected data from some of the other state of the art 

methods through employment of said methods on sequences from the KITTI odometry 

dataset. Our results for all four sequence 01, 03, 04 and 09 is shown below in the Figure 

4.2. The ground truth trajectory is represented as “GT” in black and the trajectory 

estimate from our method is given in green color on the Figure 4.2. 
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Figure 4.2 Top left shows the sequence 01, top right: sequence 03. Bottom left: sequence 04 and 

bottom right: sequence 09.  

 
The results from the sequence are compared with other state of the art systems results 

[2] in the following Tables 4.1, 4.2, 4.3 and 4.4. The Tables compares translational error 

in %, Rotational error in deg/100m, ATE and RPE in meters. 

Table 4.1 Error metrics of different state of the art [2] and our result on sequence 01 

 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

SfM-Learner 22.41 2.79 109.61 0.660 

Depth-VO-Feat 23.78 1.75 203.44 0.547 

SC-SfM-Learner 27.09 1.31 85.90 0.888 

ORB-SLAM2 no LC 107.57 0.89 502.20 2.970 

ORB-SLAM2 LC 109.10 0.45 508.34 3.042 

VISO2 61.36 7.68 494.60 1.413 

DF-VO stereo 40.02 0.47 342.71 0.854 

Ours (delta) 8.77 (0) 1.54 (+1.09) 178.26 
(+92.36) 0.264 (0) 
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For sequence 01 (Table 4.1) our method outperforms in terms of translational error in 

percentage and RPE in meters compared to all other state of the art compared with. In 

terms of translational error our method demonstrates an error percentage of 8.77 

percentage. 15.01 percentage lower than Depth-VO Feat. ORB-SLAM 2 based method 

with and without loop closure demonstrates an error percentage 13 times more than 

our proposed method. ATE metric however demonstrates that our system is 

outperformed by both SfM-Learner and SC-SfM-Learner. SC-SfM-Learner demonstrates 

an ATE in meters 92.36 less than our proposed method. 

Table 4.2 Error metrics of different state of the art [2] and our result on sequence 03 

 

For sequence 03 (Table 4.2) our proposed method outperforms in the metric RPE 

compared to all other state of the arts. ORB-SLAM 2 based method demonstrates lower 

metrics in terms of translational error, rotational error and ATE in meter. The difference 

in translational error in percentage being 0.61 compared to ORB-SLAM 2 with loop 

closure. However, our method demonstrates a translational error in percentage of 0.7 

compared to DF-VO stereo. For ATE both ORB-SLAM 2 and DF-VO demonstrate better 

performance than our method by 2.36 meters and 1.34 meters less than our method 

respectively. 

 

 

 

 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

SfM-Learner 12.56 4.52 8.42 0.077 

Depth-VO-Feat 15.76 10.62 21.34 0.168 

SC-SfMLearner 9.22 4.93 10.21 0.059 

ORB-SLAM2 no LC 0.97 0.19 0.94 0.031 

ORB-SLAM2 LC 0.91 0.19 1.02 0.038 

VISO2 30.21 2.21 52.36 0.226 

DF-VO stereo 2.22 0.30 1.96 0.021 

Ours (delta) 1.52 (+0.61) 0.77 (+0.58) 3.30 
(+2.36) 0.016 (0) 
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Table 4.3 Error metrics for different state of the art [2] and our result on sequence 04 

 
 
Table 4.4 Error metrics for different state of the art [2] and our result on sequence 09 

 

For sequence 04 (Table 4.3) and 09 (Table 4.4) our method demonstrates superior local 

performance given by RPE in meter. Given the global metric ATE our method 

demonstrate 2.50 meter more than the DF-VO method for sequence 04 and 6.17 meter 

more than the DF-VO system for sequence 09. ORB-SLAM 2 with and without loop 

closure also outperforms our method for sequence 04 by an average of 1.76 meters in 

ATE. In terms of translational error in percentage Our method outperforms ORB-SLAM 

2 methods for both sequences. For sequence 04 the translational error in percentage is 

0.21% more than DF-VO stereo method. For sequence 09 our method outperforms all 

other state of the art in terms of translational error in percentage.  

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

SfM-Learner  4.32 3.28 3.10 0.125 

Depth-VO-Feat  3.14 2.02 3.12 0.095 

SC-SfMLearner  4.22 2.01 2.97 0.073 

ORB-SLAM2 no LC  1.30 0.27 1.30 0.078 

ORB-SLAM2 LC  1.56 0.27 1.57 0.081 

VISO2  34.05 1.78 38.33 0.496 

DF-VO stereo  0.74 0.25 0.70 0.026 

Ours (delta) 0.95 (+0.21) 0.87 (+0.62) 3.20 
(+2.50) 0.019 (0) 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

SfM-Learner 11.32 4.07 26.93 0.103 

Depth-VO-Feat 11.86 3.60 52.12 0.164 

SC-SfMLearner 7.64 2.19 15.02 0.095 

ORB-SLAM2 no LC 9.30 0.26 38.77 0.128 

ORB-SLAM2 LC 2.88 0.25 8.39 0.343 

VISO2 18.06 1.25 52.62 0.284 

DF-VO stereo 2.07 0.23 7.59 0.044 

Ours (delta) 1.98 (0) 0.79 (+0.56) 13.76 
(+6.17) 0.019 (0) 
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Experiment 1.b: In this experiment we will set all other nodes of the system function 

active except for the object detection node as explained in Section 3.2.2. to test the 

effect of the dynamic object on the visual odometry system. Key “objdet” on the Figure 

4.3 represents object detection. 

 

Figure 4.3 Left graph and right graph of ground truth and the proposed system on sequence 01 

and 03 respectively.  

 

Table 4.5 Result of with and without dynamic object detection for sequence 01 

 

Table 4.6 Result of with and without dynamic object detection for sequence 03 

 

For sequence 01 (Table 4.5) using object detection node to exclude dynamic object 

shows an improvement of 3 percentage in terms of translational error compared to 

results without object detection, and over 22 meter in terms of ATE. An improved 

metrics of RPE is also noted. Rotational error is also improved for sequence 01. For 

sequence 03 (Table 4.6) there is no improvement in terms of translational error in 

percentage. The improvement in terms of ATE and RPE in meter is 0.3 and 0.001 for 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

Ours w/o object 
detection 11.99 2.21 201.36 0.324 

Ours w/ object 
detection 8.77 1.54 178.26 0.264 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

Ours w/o object 
detection 1.49 0.77 3.33 0.017 

Ours w/ object 
detection 1.52 0.77 3.30 0.016 
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this sequence. This is however negligible and doesn’t show an increased performance 

for this sequence.  

Experiment 1.c: We will also perform evaluation on the effect of the depth filter, in our 

case the median filter that was used. Like the previous evaluation scenario all other 

nodes including the object detection node are active except for the filtering of depth in 

node as mentioned in Section 3.2.4. The result of this experiment is visualized by Figure 

4.4.  

 

Figure 4.4 Left graph and right graph of ground truth and the proposed system on sequence 01 

and 03 respectively. 

 
Table 4.7 Result of with and without depth filter for sequence 01 

 

Table 4.8  Result of with and without depth filter for sequence 03 

 

For both sequence 01 (Table 4.7) and 03 (Table 4.8), the depth filtering node has shown 

to improve performance in terms of translational error in percentage. For sequence 01 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

Ours w/o depth filter 9.34 1.59 186.76 0.272 

Ours w/ depth filter 8.77 1.54 178.26 0.264 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

Ours w/o depth filter 1.53 0.76 3.31 0.016 

Ours w/ depth filter 1.52 0.77 3.30 0.016 
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0.57 percentage for translational error is improved in comparison to metrics when depth 

filtering is not performed. ATE is also improved by 8.5 meter for sequence 01. Increase 

in terms of rotational error and RPE is also noted for sequence 01 by 0.05 and 0.008 

respectively. For sequence 03 translational error in percentage and ATE in meter is 

improved by 0.01 percentage and 0.01 meters respectively. This increase however is 

not as significant as for the sequence 01. 

Experiment 1.d: The performance of our system in monocular mode, that is using the 

2D-to-2D estimation method is evaluated next. The result of thesis experiment is 

visualized by Figure 4.5. 

 

Figure 4.5 Left graph and right graph of ground truth and the proposed system on sequence 03 

and 03 respectively.  

 

Table 4.9 Results for monocular and stereo mode for sequence 03 

 
 

Table 4.10  Results for monocular and stereo mode for sequence 04 

 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

Ours (monocular) 5.21 2.60 36.79 0.032 

Ours (stereo) 1.52 0.77 3.30 0.016 

Method 

Error Metric 

Translational 
error % 

Rotational 
error 

(deg/100m) 
ATE (m) RPE (m) 

Ours (monocular) 0.93 0.80 1.66 0.032 

Ours (stereo) 0.95 0.87 3.20 0.019 
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For sequence 03 (Table 4.9) the stereo mode outperforms the monocular mode across 

all metrics. The significant difference being Translational error and ATE by 3.6 

percentage and 33.46m respectively. For sequence 04 (Table 4.10) however the 

monocular mode demonstrates improved metrics, the difference being not as significant 

as for the sequence 03.  

 

4.2 Performance of the fusion system 

The coordinate system has an effect on ATE. The method of calculating ATE is the 

Euclidian distance between two observations in the same coordinate system. Since we 

have transformed our data from the camera coordinate system to the IMU coordinate 

system for the KITTI dataset, this will have an effect on the ATE computed. If the 

transformation is applied and the transformation is purely translational then the ATE is 

not affected. However, if the transformation also contains rotational then there is a 

change in the geometry of the data compared to the other coordinate system. Hence 

the computed ATE for the next set of experiment may be different and cannot be directly 

compared with the experiment 1. For these purposes ATE for all sequence available for 

this evaluation will be computed. 

Experiment 2.a: fusion of visual odometry and IMU estimates in its entirety. The metric 

absolute trajectory error and relative pose error in meters is computed for estimates 

from the fusion system with respect to the ground truth. Additionally, the metric is also 

compared for visual odometry estimates with respect to the ground truth. ES-EKF 

represents the estimates form the fusion system and VO represents the estimate from 

the proposed method for visual odometry on Figure 4.6. 

 

Figure 4.6 Estimate from the fusion system for sequence 01, 04 and 09 respectively (from left to 

right) 
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The Tables 4.11, 4.12 and 4.13 compares the results of ATE and RPE in meters for 

trajectory estimates from the fusion system with respect to the ground truth and the 

VO trajectory estimate with respect to the ground truth. 

 

Table 4.11 Error metrics for comparison of fusion method on sequence 01 

Trajectory 
Error metric 

ATE (m) RPE (m) 

ES-EKF w.r.t GT 154.792 0.279 

VO w.r.t GT 154.756 0.224 

 

Table 4.12 Error metrics for comparison of fusion method on sequence 04 

Trajectory 
Error metric 

ATE (m) RPE (m) 

ES-EKF w.r.t GT 4.636 0.159 

VO w.r.t GT 2.953 0.014 

 

Table 4.13 Error metrics for comparison of fusion method on sequence 09 

Trajectory 
Error metric 

ATE (m) RPE (m) 

ES-EKF w.r.t GT 15.606 0.068 

VO w.r.t GT 15.323 0.013 

 

ATE for visual odometry estimate with respect to the ground truth is 154.756, 2.953 

and 15.323 meters for sequence 01 (Table 4.11), 04 (Table 4.12) and 09 (Table 4.13) 

respectively. With the fusion system we find a negligible increase in ATE and RPE of 

0.036 and 0.055 meters respectively for the sequence 01. For sequence 04 we find that 

ATE and RPE increased by 1.683 and 0.145 meters. For sequence 09 just as for sequence 

01 the ATE and RPE is shows a slight increase of 0.283 and 0.055 meters respectively.   
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Experiment 2.b: fusion of visual odometry and IMU estimates, with random dropping 

of visual odometry estimates. 

For Sequence 01: 

 

Figure 4.7 Sequence 01 at different dropout rate of 25%, 50% and 90% respectively (from left 

to right) 

 

Table 4.14 Computed metrics for sequence 01 depicting scenarios of dropout 

Dropout % Trajectory 
Error metric 

ATE (m) RPE (m) 

No dropout ES-EKF w.r.t VO 3.255 0.259 

VO w.r.t GT 154.756 0.224 

25 
ES-EKF w.r.t VO 3.721 0.315 

ES-EKF w.r.t GT 154.702 0.334 

50 
ES-EKF w.r.t VO 4.534 0.427 

ES-EKF w.r.t GT 154.518 0.394 

90 
ES-EKF w.r.t VO 17.290 0.912 

ES-EKF w.r.t GT 153.925 0.808 

 

For sequence 01 (Table 4.14) ATE and RPE for fusion system estimate with respect to 

visual odometry increase as the drop out percentage increases. Fusion estimate with 

respect to ground truth in the metric of ATE improves at each drop out level which is 

not consistent with the expected result which is a degradation of the result. However, 

RPE shows an increase in error for fusion estimates compared with the ground truth 

which is consistent with the expected result. The increase in ATE for fusion estimate 

with respect to visual odometry estimate from 25 percentage to 50 percentage is 0.813 

percentage. The increase in ATE of fusion estimate with respect to visual odometry 

system of 50 percentage dropouts compared to a no dropout scenario is 1.279 meters. 

A dropout of 90 percentage is however the results that yields the most erroneous ATE 

and RPE compared to another dropout scenario. 
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For Sequence 04: 

 
Figure 4.8 Sequence 04 at different dropout rate of 25%, 50% and 90% respectively (from left 

to right) 

 
Table 4.15 Computed metrics for sequence 04 depicting scenarios of dropout 

Dropout % Trajectory 
Error metric 

ATE (m) RPE (m) 

No dropout 
ES-EKF w.r.t VO 3.053 0.162 

VO w.r.t GT 2.953 0.014 

25 
ES-EKF w.r.t VO 3.297 0.177 

ES-EKF w.r.t GT 4.792 0.174 

50 
ES-EKF w.r.t VO 4.863 0.262 

ES-EKF w.r.t GT 5.938 0.258 

90 
ES-EKF w.r.t VO 8.549 0.416 

ES-EKF w.r.t GT 9.137 0.412 

 

A similar comparison as for the sequence 01 performed on sequence 04 (Table 4.15) 

indicates the following results. Fusion estimate with respect to visual odometry system 

shows an increase in ATE and RPE all throughout the dropout scenarios. The increase in 

ATE from a dropout of 0 percentage to a dropout of 50 percentage is approximately 1.8 

meters. Whereas the increase in ATE from a 25-percentage dropout to a 50-percentage 

dropout is 1.566 meters. Like for the sequence 01 the increase in error in terms of ATE 

at 90 percentage is approximately 2 times compared to 50 percentage. The relative 

pose error for all dropout scenario for fusion estimate with respect to visual odometry 

and ground truth shows an minor increase. 
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For Sequence 09: 

 

Figure 4.9 Sequence 09 at different dropout rate of 25%, 50% and 90% respectively (from left 

to right) 

 
 
Table 4.16 Computed metrics for sequence 09 depicting scenarios of dropout 

Dropout % Trajectory 
Error metric 

ATE (m) RPE (m) 

No dropout ES-EKF w.r.t VO 1.831 0.065 

VO w.r.t GT 15.323 0.013 

25 
ES-EKF w.r.t VO 2.222 0.116 

ES-EKF w.r.t GT 15.714 0.118 

50 
ES-EKF w.r.t VO 2.767 0.173 

ES-EKF w.r.t GT 15.874 0.175 

90 
ES-EKF w.r.t VO 9.140 0.552 

ES-EKF w.r.t GT 18.689 0.552 

 

For sequence 09 (Table 4.16) we see similar result as for sequence 04. Fusion estimate 

with respect to visual odometry system shows an increase in ATE and RPE all throughout 

the dropout scenarios. The increase in ATE from a dropout of 0 percentage to a dropout 

of 50 percentage is approximately 0.936 meters. Whereas the increase in ATE from a 

25-percentage dropout to a 50-percentage dropout is 0.54 meters. The increase in error 

in terms of ATE at 90% is approximately 3 times compared to 5%. The relative pose 

error for all dropout scenario for fusion estimate with respect to visual odometry and 

ground truth shows a minor increase. 

 



 68 

4.3 Performance of the method on our data 

Figure 4.10 depicts the Experiment 3 scenario 1, indoor hallway scenario. Figure 4.10 

depicts the traversed path in black and the estimated path in red. 

 

Figure 4.10 Ground truth in black and estimated trajectory in red for indoor hallway scenario 
 

Table 4.17 Computed metric for the custom scenario 

Trajectory 
Error Metrics 

ATE (m) RPE (m) 

Ours 1.51 0.08 

 

Experiment 3 scenario 2 was not successful. The explanation to which will be discussed 

in the next Chapter. 
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5 ANALYSIS 

The results presented in above section demonstrates our methods capability. To better 

understand it lets analyze the results.  

 

5.1 Analysis of the visual odometry method 

The results of experiment 1.a, represents the performance of the method. The results 

from this experiment are detailed in Table 4.1, 4.2, 4.3 and 4.4. Sequence 01 is 

considered as a difficult sequence, our method compared to the ORB-SLAM 2 method 

did not require multiple runs to estimate the trajectory [2] for this sequence. This 

sequence is hard because of the low texture environment the sequence was recorded 

in. For sequence 01 on Figure 4.2 we can understand the graphical representation of 

the result might not be acceptable even though the metrics are in favor of the estimates. 

Visual odometry is an incremental type estimator; an erroneous during the estimation 

at the beginning of the trajectory has resulted in the progression of the error throughout 

the next estimate demonstrating the inherent problem of visual odometry method. Even 

though the later estimate could be correct the addition to previous erroneous estimate 

has deviated the estimated trajectory. 

While SC-SfM-Learner shows better performance in terms of ATE, SC-SfM-Learner is a 

machine learning based visual odometry method. The authors have mentioned that the 

pose network and single view depth estimation network used in this method have been 

trained on a part of the KITTI dataset [22]. Specifically, the authors mention that KITTI 

dataset sequence 00 to 08 are used for training of the pose network and 28 sequence 

from the raw KITTI dataset has been used to train the single view depth estimation 

network. Based on which we can safely highlight the fact that our method did not rely 

on any previous knowledge in its estimation like the SC-SfM-Learner or the SfM-Learner. 

Machine learning based visual odometry method when trained, given the inherent ability 

of deep learning models to understand and learn does not allow for a fair comparison in 

our case. As its clearly understood that sequence 01 was used in training of the method. 

If we compare our method against other known non machine learning based techniques 

such as ORB-SLAM 2 with/without loop closure and VISO2 then we find that our 

proposed method demonstrates clear advantage over these methods. ORB-SLAM 2 with 

loop closure which is a SLAM based techniques is even outperformed by our method. 
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For sequence 03 we find that our method outperforms other methods when the metric 

relative pose error in meters is compared. Whereas other methods such as ORB-SLAM 

2 with loop closure and without loop closure demonstrates better performance on the 

metrics of translational error in %, rotational error % and ATE. DF-VO stereo a machine 

learning based visual odometry method also demonstrates its robustness in this 

sequence. Like the SC-SfM-Learner, DF-VO stereo method is also trained using several 

instances of KITTI dataset. Notably sequence 03 was used in training parts of the 

proposed method of DF-VO [2].  

On sequence 04 and 09 our method demonstrates superior local performance measured 

by the metric RPE (m) than all other methods compared with. When comparing the ATE 

for sequence 04 between our method and DF-VO method we find that DF-VO method 

outperforms our method but given that the training sequence used to train this method 

contained the sequence 04, we can argue that our method has demonstrated its 

robustness with no prior knowledge. The performance of ORB-SLAM 2 based method 

has shown to be superior to our method in this sequence which highlights the ability of 

the method to be well suited for these sequences than our method. It is however 

important to note that ORB-SLAM 2 based method uses advanced concept such as 

keyframe insertion which could aid in a better estimation. For sequence 09 the DF-VO 

method shows similar performance to our method. This highlights the ability of the 

machine learning based method in this case DF-VO to perform well in situation with rich 

texture and changing environment’s, demonstrating the advantages of machine learning 

based method, because this sequence was not used to train the DF-VO stereo method. 

However, our method outperforms the DF-VO stereo method in translational error, 

demonstrating that without even complicated approaches such as machine learning 

based method, geometric method can still perform relatively well. 

If we now adhere to the goal set out for this method as described in the Chapter 1 

introduction in which we specify the method must demonstrate robustness for a 

cumulative distance of 400 meters, analyzing the results then for ATE up until 400 

meters gives us the following result. The red line highlights the threshold of 3 meters 

as the goal of ATE. 
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Figure 5.1 ATE for up to 400 meters for sequence 01, 03, 04 and 09 on our method 
 
The definition of robustness of the method lies on its ability to approximate the 

trajectory with the lowest possible error. In this case the ATE. From Figure 5.1 we find 

that our method has demonstrated its robustness in sequence 03 followed by sequence 

04, 09 and 01 respectively. Sequence 01 shows the highest ATE error of 7.5 meters. 

Followed by sequence 09 which shows an error of 3.1 meters and sequence 04 of 2.7 

meters. Sequence 03 has an error of 1.7 meters. Our method can perform robustly in 

different environment’s if the error threshold remains within the range of the above 

results. For example, GPS estimation of position in outdoor environment using off the 

shelf GPS enabled devices demonstrates accuracy within a 4.9 meters radius according 

to [42]. While high end devices can boost centimeter level precision, the high-end 

devices are expensive and does not guarantee its estimation precision in indoor areas 

or GPS denied environment’s. By the standard of the goal set out which is an ATE of 

less than 3 meters we find that our method is well able to achieve these results for 

sequence 03 and 04. In sequence 09 we differ by only 0.1 meters for ATE compared to 

3 meters ATE which is negligible. However, for sequence 01 we do not meet the 

requirement of ATE be less than 3 meters. Without the fusion method we can achieve 

the goals only using the visual odometry method. 

In experiment 1.b we demonstrate the advantage of using dynamic object detection 

functionality of our method. With all metrics for sequence 01 shows an improvement on 

all metrics computed with the objected detection node. However, the improvement is 

not as significant for 03 as for 01. This is explained by understanding the sequence 

itself. While sequence 01 consisted of lot of moving cars sequence 03 on the other hand 

contained fewer moving cars. Our system in its current setup does not differentiate 

between moving and nonmoving dynamic objects in the scene. A stationary dynamic 

object in the scene is valuable to the system because of the additional feature points 

that can be extracted from the object. However, excluding all possible dynamic object 
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does not show added benefits and warrants a different approach. Dynamic moving 

object as explained in section 3.2.2 induces error in our estimate. Figure 5.2 and 5.3 

depicts the system with and without the object detection node for sequence 01 and 03 

respectively. From which we can clearly understand that the amount of feature 

information present in an object such as a car and difference in their context of moving 

and not moving being significant. The red box highlights the features being identified 

and tracked/not tracked on the dynamic objects in the scene. 

 

 

Figure 5.2 Top image shows the system without dynamic object detection node. The bottom image 

demonstrates the system with the dynamic object detection. 

 

 

 

Figure 5.3 Top image shows the system without dynamic object detection node. The bottom image 

demonstrates the system with the dynamic object detection 
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Similarly experiment 1.c demonstrates the effect of depth filter on methods estimates. 

Where using depth filter, we can improve the methods estimations. For sequence 01 

the improved results are because its mostly in a highway with large portion of the frame 

being open sky. There is very less objects in the surrounding and most of the scene has 

a consistent texture, unlike the scene in sequence 03 which is an urban setting with lots 

of trees and rough edges.  

Depth sensing by stereo vision is suspectable to the issue of feature less environments. 

In a feature less environment the estimates of depth are less reliable than the converse. 

By addition of a filter, we smooth out to an extent the depth estimation. Figure 5.4 

shows the depth map computed for an instance in sequence 01 with and without the 

depth filtering node. However, the smoothing effect can have negative effects as well 

specially on the edges as the type of filter used in the system is not an edge preserving 

filter.  

Therefore, if an estimation of depth is accurate and the location of this estimation is on 

an edge, its effected by the filter which changes the estimation based on other nearby 

estimations. The red box on Figure 5.4 demonstrates the improvement in depth 

estimate in localized areas. 

 

 

Figure 5.4 Top image shows the system without depth filtering. The bottom image demonstrates 

depth map with filtering enabled 

 
In experiment 1.d we demonstrate the capability of our system to work in either stereo 

or monocular mode. The monocular mode estimates are better for sequence 04 as 

depicted by Table 4.9, whereas the estimate by the stereo mode is better for sequence 

03 depicted by Table 4.10. The quantitative difference is not as important because, 
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while the system is capable of performing in either mode there is a requirement for 

ground truth of translation between estimation in monocular mode. The inherent issue 

of scale ambiguity in monocular visual odometry technique in this case is bypassed by 

providing the scale explicatively to the system for each estimate from the available 

ground truth. This experiment highlights in this case the difference in accuracy and 

reliability of motion estimation algorithm, 2D to 2D algorithm for monocular mode and 

2D to 3D estimation algorithm for stereo mode as all other parameters of the system 

are kept the same. We find from the results from Table 4.1.8 that stereo visual odometry 

outperforms the monocular visual odometry in our setting for sequence 03. Whereas for 

sequence 04 we see the opposite by a small margin.  

Both experiments 1.b highlights the tradeoff in accuracy and computational efficiency. 

Dynamic object detection is CPU intensive tasks. While the addition of this system has 

reliably decreased error it has however increased the computational time for each pose 

estimation. We have found out that on the test system setup we averaged 9 pose 

estimation per second whereas with the dynamic object detection node we averaged 

4.5 pose per second. Yes, if the dynamic object detection node computation was 

performed on a GPU or TPU would have yielded better results. However, given a system 

with only CPU resources available the tradeoff can be significant. Being able to estimate 

pose at 9 pose per second is significant when considering that the KITTI dataset was 

collected at 10 frames per second. Therefore, ensuring real time capabilities. However, 

the system was tested on a full-fledged computer in this case an M1 MacBook pro. The 

computational time required on edge devices such as jetson or raspberry pi is more 

interesting.  

 

5.2 Analysis of the fusion system 

As explained in Chapter 3 the fusion system is not going to yield a better estimate in 

comparison to the ground truth because of the type of the fusion system developed. 

Rather the system will provide increased stability in certain situation. We will understand 

the results from the experiments and conclude the usefulness of the fusion system in 

our proposed method. 

Experiment 2.a describes the fusion of visual odometry estimate from our visual 

odometry method in stereo mode with inertial measurement estimates provided by the 

KITTI dataset. ES-EKF represent the estimation from the fusion system. From the result 

alone we can conclude that as described the fusion system estimate does not yield in a 
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better estimate than the visual odometry system. For example, in sequence 04 the 

fusion estimate yielded significantly more erroneous result than visual odometry alone. 

With the establishment of results from experiment 2.a we proceeded with experiment 

2.b which better explains the application of this current fusion system.  Table 4.14, 4.15 

and 4.16 explains the results of this experiment for sequence 01, 04 and 09 respectively. 

In this experiment random estimates from the visual odometry system were not 

considered. And the non-consideration of the number of estimates were described in 

percentages. We find that for sequence 01, for all cases of dropout there is a slight 

improvement of the ATE in meters. However, the logic dictates a degradation or an 

increase in the error. The marginal increase can be better understood by looking at the 

Figure 4.7, Because ATE computes the difference in Euclidian distance between the 

estimate and ground truth even though the estimate is wrong, being closer to the 

ground truth improves the ATE metrics. However, the RPE which is a local metric shows 

the steady increase in error corresponding to an increase in dropout percentage.  

We better understand the actual increase in the ATE and RPE if we look at the results 

of the fusion estimate with respect to the visual odometry estimates. As the drop out 

percentage increase the ATE and RPE also increases with respect to the visual odometry 

estimates. Here in this case the application of the fusion system is highlighted. Even in 

a very adverse condition when half of all estimates is discarded the fusion system is still 

able to maintain the trajectory estimate with relatively low error estimates. This yield 

potential benefits in cases when the visual odometry system additionally outputs a 

reliability metric for a given estimate and based on the metric the fusion system can 

better decide how to use the visual odometry estimate.  

For sequence 04 and 09 we see the same trend as for 01, however in these cases ATE 

is significantly increasing at each dropout level. We observe that even at 90% drop out 

the ATE has increased by only 3.366 meters for sequence 09. But we can see that from 

Figure 4.9 that this is not viable as at certain places the error is as high as 20 meters. 

This effect is profoundly visualized by Figure 4.8. Where a drop out of 90% shows how 

much the estimate from fusion system veer off when solely relied on IMU estimates 

only.  

The fusion system in conclusion from this experiment clearly demonstrates the viability 

of the system in adverse events. The utility of this fusion system and its applicability 

context is best explained when there is a situation where a few estimates from the visual 

odometry system is not available. Might be because of the errors in the visual odometry 

system stemming from different reasons such as low feature points to track motion or 

failure in any other subsystem. In such events the fusion system can reliably track 
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motion. This is necessary as mentioned in Chapter 2 both the visual odometry system 

and inertial only odometry system are incremental estimator. In the case of visual 

odometry here, if an estimation failed or is deemed less reliable than the next estimate 

made when added to the previous incorrect estimate yields more erroneous result. In 

such situation the fusion system can be a reliable source of estimate. In conclusion with 

the fusion system the goal can be attained however there is added error when 

considering all the IMU estimates and 100 percentage of visual odometry estimates 

 

5.3 Analysis of the method on our data 

Experiment 3 scenario 1 from Table 4.17 we understand that the method demonstrated 

an ATE of 1.51 meters, in this scenario. However, the cumulative distance is only 32 

meters approximately. The error is too large for such a short distance when compared 

to the results form experiment 1. Analyzing the depth map and the scenario can better 

explain our results. Figure 5.5 shows the depiction of the depth map for an instance 

from the scenario. 

 

 

Figure 5.5 Depth map of an instance of the scenario 1 in our data 
 
From Figure 3.13 we can understand that the environment is relatively texture less as 

both sides are wall. This scenario was collected using the system proposed in 3.1.2. The 

camera used in this scenario is an OAK D pro system with a baseline of 0.07 meters and 

active stereo. We can see that even with active stereo the depth map is inconsistent. A 

lower baseline for the stereo system reduces the range of depth estimation. For 

comparison the stereo baseline used in KITTI dataset is 0.54 meters. Having a larger 

baseline effectively ensures a depth estimation at longer ranges and more accuracy at 

shorter ranges. From the Figure 4.10 we can visually see that the computed trajectory 

is very close to the approximated ground truth. Even though ATE is large the local metric 

RPE is 0.08 meters. With a better stereo setup, we can expect a better result even at 

longer distance.  
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Scenario 2 of experiment 3 as described in Section 3.3, was limited by the baseline of 

the stereo system. Given that the scenario was set up in an outdoor environment in a 

parking space the baseline of the stereo system was too small essentially rendering 

most of the feature identified in the scenario to be discarded because the depth 

estimation yielded incorrect results. Those that were filtered out and satisfied the depth 

criteria were only a few and the proposed method was not able to successfully estimate 

the motion. This also highlights a potential disadvantage of the system in low feature or 

texture less environment. However, having a large baseline distance for the stereo setup 

allowed for more inclusion of feature points. Based on both scenarios we can conclude 

that a larger baseline between the camera in a stereo setup would yield better results, 

as larger baseline would yield in better depth estimation.  
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6   DISCUSSION 

The development of the proposed visual odometry method took into consideration 

several key challenges. The proposed method is dedicated as solution to the issue of 

GNSS denied localization which is almost always an issue mostly present in an indoor 

setting. Outdoor environment with a clear sky allows for GNSS based localization. 

However, GNSS based localization is proving to be a difficult choice given the rise in the 

use of GNSS jamming systems or rise in more city structure such as bridges and subway 

where GNSS does not work as intended. To solve this issue while ensuring minimal 

infrastructural changes and ensuring scalability is the main reason to choose visual 

odometry system. As described in detail in Chapter 2 use of BLE, Wi-Fi, UWB or RFID is 

possible. However, these radio-based methods are greatly affected by several factors 

such as line of sight and the accuracy of these system is influenced by the number of 

deployed supporting system in the area. As a rule of thumb since these technologies 

are effectively meant to be used within tens of meters for range estimation to increase 

the range and also increase the accuracy requires more of this device to be set up. This 

task is tedious as it requires infrastructural changes and is dependent on the 

environment. The scalability of such system is low, and the cost can be modeled using 

a linear relationship to accuracy and range.  

As an alternative visual-inertial odometry system is proposed. The proposed system 

assumes the following: 

1) The availability of a stereo camera setup or a monocular camera setup. For the 

later translational information is also required by the means of other sensor such 

as wheel odometry or using complicated systems and assumption. 

2) Knowledge of the start position. Visual odometry is an incremental type of 

estimator. And the motion between two frames is computed and there is no way 

for the system alone to understand the start location. To acquire the start 

position in certain cases in indoor settings, beacon-based systems can be used.  

The advantages of the proposed system in comparison to beacon based or radio-based 

technology are as follows: 

1) Proposed system is not susceptible radio interference, multi path effect and line 

of sight requirements. 

2) The accuracy of the system depends on the software component and to an extent 

the camera setup. High-definition camera can capture detailed images which 

could allow for better estimation of motion. The scalability is not a problem for 
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visual odometry based system as those agents that are required to track their 

location are only fitted with a camera setup and computing unit. There is no 

requirement of any infrastructural changes required as in the radio-based 

system. 

3) The system is robust against occlusion and invariant to presence of dynamic 

moving objects in the scene. 

4) The estimation is done locally and does not require any server node setup. 

The disadvantage of the proposed system are as follows, 

1) Is affected by environment low in texture. 

2) Inability of the system to work in dark environment. 

3) Requires more computational resource. 

The above-mentioned factors such as scalability and cost impede the ability of radio-

based systems application in different applications. Visual odometry based system 

suffers from the limitation of knowing the start position which in this case must come 

from a radio-based system or other system such as GPS or visual marker setups. This 

indicates that a fully autonomous system for a given environment will most probably 

combine the radio-based system or visual markers with visual odometry system. In 

which case radio-based system are not required in large quantities and a minimum of 

three beacons would suffice for the triangulation and estimation of the start position for 

the visual odometry system. Industry such as maritime industry could greatly benefit 

from this setup. Maritime logistics or logistics in general is a task which can be 

extensively improved with automation. Different equipment’s used to carry goods in a 

logistic environment indoor if tracked would allow for optimization and improving the 

efficiency of the task. 

However, the nature of the system involves the use of cameras to capture visual data 

which could be a problem where privacy is required or enforced. In these cases, visual 

odometry system that are offline like the proposed method can be employed. However, 

for machine learning based visual odometry method, the lack of necessary data for 

training from the specific environment would be an issue. Requirement of authorities in 

the application of visual odometry systems are low and more open. Modern vehicles 

come with camera in any way such as a driving assistant or digital mirror. The use of 

information from these cameras in estimation of motion is therefore only an issue of the 

software and not the issue of regulation mostly.  
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SUMMARY 

 

6.1 Conclusion 

In this thesis a visual-inertial odometry based method was proposed to overcome the 

limitation of localization in GNSS denied areas. Specifically, a geometric feature-based 

hybrid visual odometry method coupled with an error state extended Kalman filter has 

been proposed and implemented. The implemented system clearly demonstrated 

robustness and reliability when tested in various scenarios. The proposed system 

demonstrated superior performance to state of the art system such as ORB SLAM 2 and 

DF-VO in KITTI sequences 01, which known for its challenging environment, with 

translational error in percentage being 98.9% and 31.25% lower than ORB-SLAM 2 

without LC and DF-VO respectively. Additionally, our method demonstrates superior 

results in terms of RPE for all tested Sequence 01, 03, 04 and 09 compared to other 

state of the art systems as depicted in experiment 1.a. The fusion system also 

demonstrated its robustness in scenarios where visual odometry estimates were 

discarded randomly. Even in such adverse conditions the fusion system was able to 

ensure steady estimation of the trajectory although with an increase of ATE in the 

estimation. With a drop out of 25% of the visual odometry estimates, the fusion system 

was able to predict the trajectory with an ATE of 1.839 meters more than the ATE 

without any dropout which is 2.953 meters for sequence 04 as presented in results of 

experiment 2.b. We also demonstrated that for up to 400 meters our proposed method 

can predict the trajectory with an ATE of less than 3 meters for most scenarios tested. 

The proposed method clearly achieved the goals set out by the thesis. We also 

demonstrate that the proposed system can be used with custom hardware setup without 

any additional requirement in changes to the method. 

 

The goal was limited to a small area of 400 meters depicting indoor environment or 

applications such as maritime logistic environment or warehouses. The proposed 

method is a concept that could be improved on. Further improvements must be made 

for the application of the method, this include but is not limited to real time processing 

requirements on edge devices. Integration requirements in existing projects and 

development time consideration are reasons behind the existing implementation of the 

method in language such as Python. Provided good and satisfactory results were 

achieved, the proposed method still can be improved on as discussed in the next 

section. 
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6.2  Future works 

As extensively discussed by analysis of the results the current proposed method can be 

improved in several ways. While the current method in its current setup can 

demonstrate reliable performance, improvements can still be made. As discussed 

currently the method lacks the ability to distinguish between static and dynamic object. 

As a result, all possible dynamic object in each frame is excluded. Static objects in the 

scene are a source of information for the method which can yield in a better estimate. 

To circumvent this issue an object detection and filtering node with optical flow-based 

classification of moving object is proposed to overcome the existing limitation.  

The proposed method uses a geometric based feature detector SIFT. Argument as for 

the inherent benefits such as repeatability, simplicity of application, robustness over 

other geometric system is the primary reason for the use of geometric based detector. 

Machine learning based detector however could prove useful in custom application. In 

a scenario where the visual inertial system is deployed in the same environment, 

machine learning based feature detectors can be trained to yield better accuracy. 

Moving forward as an improvement to the proposed method a dynamic weighted 

estimate setup is proposed, in which the visual odometry estimate is given a score, 

based on which the fusion system decides the variance of the visual odometry estimates 

enabling a dynamic Kalman fusion system. The system can also discard the visual 

odometry estimate and replace it with an estimate computed from the IMU. Such a 

system could prove reliable in several situation and would improve the reliability of the 

system.  

It’s imperative that machine learning based techniques are becoming more prominent. 

However, this thesis demonstrates the robustness of a primarily geometric based 

method. Moving forward a hybrid approach seems the most viable in terms of 

overcoming the disadvantage of both geometric based and machine learning based 

methods. For example, the stereo node uses a geometric based computation for the 

estimation of depth map in the proposed method. This system can be replaced with a 

machine learning based stereo network which could demonstrate better depth 

estimation even in low texture scenarios. Reimplementation of several computation in 

the proposed method to be computed on a GPU would decrease the computation 

requirement and would enable real time applications. The method could be tailored for 

use with hardware such as jetson Orin nano, taking use of the dedicated GPU which 

would allow for the proposed method to run on a edge device in real time. 
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KOKKUVÕTE 

Selles lõputöös pakuti välja visuaal-inertsiaalne odomeetriapõhine süsteem, et ületada 

lokaliseerimise piirangud GNSS-i keelatud piirkondades. Täpsemalt on välja pakutud ja 

rakendatud geomeetriliste tunnustepõhine hübriidne visuaalse odomeetria meetod koos 

veaoleku Extended Kalmani filtriga. Rakendatud süsteem näitas erinevate 

stsenaariumide korral testimisel selgelt robustsust ja töökindlust. Kavandatav süsteem 

näitas KITTI järjestustes 01 paremat jõudlust kui nüüdisaegsed süsteemid, nagu ORB 

SLAM 2 ja DF-VO, mis on tuntud oma keerulise keskkonna poolest, kusjuures 

translatsiooniviga oli 98,9% ja 31,25% madalam kui ORB-SLAM 2 ilma vastavalt LC ja 

DF-VO. Lisaks näitab meie meetod paremaid tulemusi RPE osas kõigi testitud järjestuste 

01, 03, 04 ja 09 puhul võrreldes teiste nüüdisaegsete süsteemidega, nagu on kujutatud 

katses 1.a. Liitmise süsteem näitas oma tugevust ka stsenaariumides, kus visuaalse 

läbisõidu hinnangud jäeti juhuslikult kõrvale. Isegi sellistes ebasoodsates tingimustes 

suutis liitmise süsteem tagada trajektoori püsiva hindamise, kuigi hinnangus ATE 

suurenes. Kui visuaalse läbisõidu hinnangutest 25% langes, suutis liitmise süsteem 

ennustada trajektoori 1,839 meetri võrra suurema ATE-ga kui ATE ilma 

väljalangemiseta, mis on 2,953 meetrit järjestuse 04 puhul, nagu on näidatud katse 2.b 

tulemustes. Samuti näitasime, et kuni 400 meetri ulatuses suudab meie pakutud 

meetod enamiku testitud stsenaariumide puhul ennustada trajektoori ATE-ga alla 3 

meetri. Väljapakutud meetod saavutas selgelt lõputöös püstitatud eesmärgid. Samuti 

näitame, et pakutud süsteemi saab kasutada kohandatud riistvara seadistusega ilma 

meetodi muutmiseks täiendavate nõueteta. 

Eesmärk piirdus väikese 400-meetrise alaga, mis kujutas sisekeskkonda või rakendusi, 

nagu merelogistika keskkond või laod. Kavandatud meetod on kontseptsioon, mida 

saaks täiustada. Meetodi rakendamiseks tuleb teha täiendavaid täiustusi, sealhulgas, 

kuid mitte ainult, servaseadmete reaalajas töötlemise nõuded. Olemasolevate 

projektide integreerimisnõuded ja arendusaja arvestamine on põhjused süsteemi 

olemasoleva juurutamise taga sellistes keeltes nagu Python. 
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