
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

IT System Development

Aleksandr Zahharjan 171913IADB

DEVELOPING AN OPEN-SOURCE
ENVIRONMENT FOR TWO-FACTOR

AUTHENTICATION

Bachelor's thesis

Juhendaja: Kaido Kikkas

PhD.

Tallinn 2022

Author’s declaration of originality

I hereby declare that I have compiled the thesis independently, and all works, important

standpoints, and data by other authors have been properly referenced, and the same paper has

not been previously presented for grading.

Aleksandr Zahharjan

……………………………………………

(signature, date)

Student code: 171913IADB

Student e-mail address: zahharjan@gmail.com

Supervisor: Kaido Kikkas, Ph.D.:

The paper conforms to requirements in force

……………………………………………

(signature, date)

Chairman of the Defence Committee:

Permitted to the defense

…………………………………………………………..

(name, signature, date)

1

Abstract
In this thesis at hand, the author develops a virtual environment for automation of the

Two-Factor Authentication process. The goal of the thesis is to provide an Open-Source

Plug-and-Play solution that will decrease time spent on manual data input and keep users

from unneeded distractions during authentication checks.

The scope of the practical part is limited to devices running the Android operating system and

any desktop machines that could have Python installed. The main goal of the project is to

build a core framework, which could be used as a stepping stone for future open-source

development.

The final result consists of three parts: the Android app, the Python server component, and

browser extension. Those services are supposed to communicate with each other and share

data to provide a secure channel for Time-Based One-Time-Passwords sharing and import it

to the user's clipboard.

2

Annotatsioon
Dünaamiline avatud lähtekoodiga rakendus kaheastmeliseks autentimiseks

Käesolevas lõputöös arendab autor virtuaalset keskkonda kahefaktorilise autentimise

protsessi automatiseerimiseks. Lõputöö eesmärk on pakkuda avatud lähtekoodiga lahendust,

mis vähendab käsitsi andmete sisestamisele kuluvat aega ja hoiab kasutajaid autentimise

kontrollimise ajal tarbetute segajate eest.

Praktilise osa ulatus on piiratud Androidi operatsioonisüsteemi töötavate seadmetega ja mis

tahes lauaarvutitega, millele võib olla installitud Python. Projekti põhieesmärk on ehitada

tuumikraamistik, mida saaks kasutada tulevase avatud lähtekoodiga arenduse hüppelauana.

Lõpptulemus koosneb kolmest osast: Androidi rakendusest, Pythoni serverikomponendist ja

brauserilaiendist. Need teenused peaksid omavahel suhtlema ja andmeid jagama, et pakkuda

turvalise kanali ajapõhiste ühekordsete paroolide jagamiseks ja importida need kasutaja

lõikelauale.

3

List of abbreviations and terms
2FA Two-Factor Authentication

ADB Android Debug Bridge

API Application Programming Interface

DAO Data Access Object

DB Database

GUI Graphical User Interface

HMAC Hash-based Message Authentication Code

MVP Minimal Viable Product

NFC Near Field Communication

OTP One-Time-Password

QR-code Quick Response code

SDK Software Development Kit

SHA Secure Hash Algorithm

TOTP Time-Based One-Time-Password

U2F Universal Two-Factor authentication

USB Universal Serial Bus

UX User experience

4

Table of Contents

Author’s declaration of originality 1

Abstract 2

Annotatsioon 3

List of abbreviations and terms 4

Table of Contents 5

List of Figures 7

List of Tables 8

1. Introduction 9
1.1 Problem and aim 9
1.2 Relevance 10
1.3 Methodology 11

2. Two-Factor Authentication 12
2.1 Comparison scope 12
2.2 Variants of 2FA 12

2.2.1 USB key 12
2.2.2 SMS 13
2.2.3 2FA Application 14
2.2.4 Biometric 2FA 14
2.2.5 Email 15

2.3 2FA rating 15

3. Time-Based One-Time Passwords 17
3.1 Flow 17
3.2 HMAC 18
3.3 HOTP algorithm 19
3.4 TOTP algorithm 20

4. Minimal prototype requirements and technology tool selection 21
4.1 Prototype requirements 21
4.2 Technology stack 22

4.2.1 Phone platform 22
4.2.2 Desktop solution 23
4.2.3 Browser extension 23

5. Data tunnel 25
5.1 API on Local network 25
5.2 API on public Network 25

5

5.3 Bluetooth to PC 26
5.4 Bluetooth to browser extension 26
5.5 USB tethering / Hotspot 27
5.6 Android Debug Bridge 27
5.7 USB / Bluetooth file modification 28

6. Architecture 29

7. Android application development 30
7.1 Design 30
7.2 Database implementation 31
7.3 OTP generation 32
7.4 Recycler View adapter 32
7.5 QR code scanner 33
7.6 API 33
7.7 Permissions 34
7.8 Security analysis 34

8. Python API development 35

9. Browser extension development 36

10. Application performance analysis 37

11. Possible improvements and future steps 38

12. Summary 39

Bibliography 40

Appendix 1 - Non-exclusive license for reproduction and publication of a graduation
thesis 42

Appendix 2 - Database implementation code 43

Appendix 3 - Python API code 46

6

List of Figures

Figure 1 One-Time Password authentication diagram 18

Figure 2 Mobile operating system market share 22

Figure 3 Browser market share 24

Figure 4 Project infrastructure schema 29

Figure 5 Android application design created in UxPin service 30

Figure 6 Android application design created in Android Studio 31

Figure 7 Recycler View row design 32

Figure 8 Android application required permissions 34

Figure 9 Browser extension popup 36

Figure 10 Browser extension error message 36

Figure 11 Android application. “Accounts” entity code 43

Figure 12 Android application database class implementation code 44

Figure 13 Android application DAO class code 45

Figure 14 Python API entry point code 46

Figure 15 Python API GET and POST requests code 47

Figure 16 Python API PUT request code 48

7

List of Tables
Table 1 2FA 1 to 10 rating 14

8

1. Introduction

"It has been my observation that most people get ahead during the time that others waste." -

Henry Ford [1]

In the twenty-first century, data about us has become our property and a product in need of

privacy. And if in real life this principle can be more or less observed, then in the virtual

space, quite often, there is an attempt to steal information about us. Unfortunately, gone are

the days when people could only protect themselves with a strong password. With passwords

algorithm progress goes the progress of the methods intruders and cybercriminals are using.

The modern approach of stealing identity is picking up login and password from databases

leaked to the network. Several big IT companies, such as GitHub, AdGuard, and Apple

iCloud have already become victims[2]. And this is why providing a way to check the

integrity of information transmitted over or stored in an unreliable medium is a prime

necessity in the world of open computing and communications [3].

One of the most known methods of prooving and protecting user identity is a Two-Factor

authentication check. The prime idea behind the second factor is to validate not only the

password-login pair but also confirm if the user physically owns something, that was

provided to him as an additional factor. It may be temporary generated codes, specific flash

devices or even user’s biometry.

1.1 Problem and aim

The modern IT industry has generated several protocols of 2FA with different factors,

security levels, and requirements for users. Unfortunately, they usually have some problems

either from the user experience side of view, security, or the fact that users need to purchase

some additional hardware.

This thesis aims to create a prototype of a 2FA application which would have a decent user

experience as well as the complete functionality of existing analogues. The keystone in this

project will be keeping the same level of security as 2FA APPs are providing. The author's

role in this project is to perform an analysis of current methods and solutions, finding

approaches with the biggest potential using their experience for creating an application with

modifications which will fix the weakest sides of realization.

9

1.2 Relevance

According to secplicity.org , over 1 million passwords are stolen each week [4]. Combining it
with information from webtribunal.net [5] which claims, that 67% of people are using the
same password for all their accounts leads to the understanding of the huge threat of identity
being stolen.

Nowadays cybercriminals are using multiple different ways of getting access to personal
data. The most common of them are:

Keyloggers
Keyloggers are software programs that give cybercriminals access to personal data by
recording all the keyboard keystrokes. The passwords and credit card numbers user types, the
web pages user visits – all by logging keystrokes.

Social Engineering
This approach comes in a number of styles, all of which are rooted in the idea of deceiving or
manipulating people into divulging their information or taking a certain action. Common
social engineering methods used to steal passwords include phishing and using a trojan horse
attack. A less common approach is shoulder surfing, in which the attacker simply watches a
user type in his or her password.

Dictionary Attack
Cybercriminals try to guess a password by typing in a common list of words from a password
“dictionary.” More advanced password dictionaries include lists of the most commonly used
words in passwords. This is a relatively simple method, but one that is effective in guessing
less-complex passwords. In the other words, if the user used real words in any of his
passwords, his credentials are at risk.

Brute Force Attack
While not as efficient as a dictionary attack, a brute force attack is more effective in
eventually guessing a password. With this method, attackers use tools to repeatedly try every
possible password combination of letters, numbers, and symbols until the password is
cracked. A similar approach is a reverse brute force attack, in which an intruder tries one
password against many usernames.

Credential Stuffing Attack
Since so many people use the same passwords or variations of passwords across accounts,
cybercriminals found a way to automatically run database lists of breached
username/password combinations against a target website login. According to Shape Security
[6], 90% of login attempts at online retailers are from this type of attack and this method is
effective for cybercriminals about 3% of the time.[4]

10

Concluding cyber attacks methods, the most common of them could be prevented if the user

would have a 2FA set. As it is usually a physical factor, it cannot be leaked to the network or

stolen via fishing as passwords are temporary and updated periodically. However, existing

2FA solutions usually have drawbacks in user experience and may be not-wanted because of

the inconveniences they affect. Creating a solution that will cause less discomfort, maybe a

crucial factor to convince more people to use 2FA.

1.3 Methodology

In the theoretical part of the thesis author is defining the scope and compares existing 2FA

methods and their realisation. Doing the analysis of current implementation and highlighting

their weak sides are to be resolved in the practical part.

The author is doing an analysis of suitable technologies that could be used during the

practical part and comparing platforms and available software to be used.

The thesis provides information about common cyber threats and gives an overview of how

2FA is able to save users from them. Algorithms used for 2FA checks and OTP generation are

provided and explained.

Finally, in the practical part author implements an environment involving 3 parts - Android

APP, Python local server and browser extension. A description of each part is provided and

the source code is attached in the appendix.

After the practical part author is providing an analysis of possible improvements and thesis

results.

11

2. Two-Factor Authentication

Two-factor authentication or 2FA is a method of identifying a user in a service (usually on the

Internet) by requesting two different types of authentication data, which provides a two-layer,

and, therefore, more effective account protection against unauthorized entry. In practice, it

usually looks like this: the first frontier is a login and password, and the second is a unique

code that comes from a specific application or SMS. Less commonly, the second "layer" of

protection requests a unique USB key or user's biometric data. In general, the essence of the

approach is very simple: to get somewhere, the user needs to double confirm the fact that he

is he and with the help of two different keys stored in different places. One of which is the

static password known by the user and the second is generated temporal “second factor”.

2.1 Comparison scope

The comparison of 2FA methods is going in 2 rounds. First - description of each approach,

highlighting its weak and strong points. And the second step includes a rating from 1 to 10

different 2FA kinds in the following criteria:

● Security - how safe is the method and how hard to hack it

● Accessibility - how complicated to start using the method

● UX - user experience

2.2 Variants of 2FA

2.2.1 USB key
Physically, a USB security key (also called a U2F key) is a type of hardware security that

resembles a USB drive and plugs into one of the computer’s USB ports. In practice, a

security key is a physical security device with a totally unique identity. It houses a small chip

with all of the security protocols and code that allows it to connect with servers and verify the

user's identity. It’s used to ensure that owner of the U2F is the person actually accessing a site

or service. It can be considered as a key for the house - keep it safe and never share it with

anyone.

Some security keys even have NFC and/or Bluetooth built-in, making them perfect for use

with newer Android and iOS smartphones. The keys work with browsers like Google

12

Chrome, along with web services like Gmail, Facebook, Dropbox, 1Password, Twitter,

GitHub, Microsoft, and many others.[7]

Examples:

● YubiKey

● Fido

Strong sides:

● No manual data input.

● High level of security.

Drawbacks:

● Price - Hardware costs in the range of 25-90 EUR.

● If the key or user’s phone does not have an NFC module, 2FA on mobile devices

becomes impossible.

● Hard to recover in case of key lost.

2.2.2 SMS

One of the variants of 2FA verification is the code that the web service is sending to the

phone via the SMS system. For doing so, the server generates a unique combination of

symbols and applies it to the internet-telecom service, which is supposed to convert it into

SMS and send it to the user's phone.

Strong sides:

● No additional hardware or software is needed

● Free to use

Drawbacks:

● Depending on the service used to send an SMS, it might be slow

● Manual data input

● SIM swap scam method can get access to users messages

● Expiring time is quite long

13

2.2.3 2FA Application

Authenticator mobile apps are generating a one-time code that can be used to confirm that it's

legit person is logging in to a website or service. When a user set up an authenticator

application with a website, that site generates a secret key - a random collection of numbers

and symbols - which the user then save to the app. The site usually shows that key in the form

of a QR code. When a user scans that with the app, the key is then saved to his phone. [8]

After this step, the application starts to generate a unique OTP every 30 seconds. Then the

user needs to login into the 2FA-secured page he takes the valid code from the application

and put it in the required field.

Strong sides:

● No additional hardware needed

● High level of security.

● Free to use

Drawbacks:

● Manual data input

2.2.4 Biometric 2FA
Biometric authentication is a method of verifying a user’s identity using personal user’s data

such as their fingerprint, facial features, hand shape, iris structure, voice, or typing behaviour

(such as how strongly a user depresses keys on their keyboard).

These factors contain a large number of unique data points that require sophisticated

technology to replicate, which most bad actors don’t have access to.]

It is worth mentioning, that simple systems such as face scanning are not providing a suitable

level of security. However, more complicated solutions which are more sensible and validate

data from multiple factors have the right to be called the most secure solutions in the 2FA

market.

Strong sides:

● Great user experience

● With proper implementation and tools provide high-level security

14

Drawbacks:

● May require additional hardware

● Price to use and develop

● Cheap or even free variants usually have poor security

2.2.5 Email
The idea behind email verification is similar to the SMS approach, the only difference, that

instead of SMS-services serer is using emailing services to send a code to the mailbox.

Despite public opinion, this method cannot be considered a second factor. As provided

statistics show, users have a bad habit of reusing their credentials access to the email isn't

“something user has” it is “something user knows”. Hence leaked passwords or password

dictionaries may have keys to both email and external accounts

Strong sides:

● No additional hardware or software is needed

● Free to use

Drawbacks:

● Depending on emailing service used, might be slow

● Not secure / Not a second factor

2.3 2FA rating

Table 1: 2FA 1 to 10 rating

2FA kind Security Accessibility User experience

USB key 10 4 (Not free) 9 (Need to keep the
device with

yourself)

SMS 8 10 8 (Manual data
input)

2FA APPS 9 9 8 (Manual data
input)

Biometric 2FA 4-10 (depends on
type)

1-9 (depends on
type)

10

15

Email 6 10 9 (Need to open the
email and
copy-paste
password)

The ratings above are subjectical and represents author’s opinion based on research done.

16

3. Time-Based One-Time Passwords

Time-Based One-Time Passwords or TOTP is an algorithm for generating one-time

passwords for secure authentication, which is an improvement on HOTP (HMAC-Based

One-Time Password Algorithm). It is a one-way authentication algorithm - which means, that

only one side is doing verification of the seconds. Usually, the server verifies the identity of

the client.

3.1 Flow

For a better explanation of how Time-Based Passwords works and how it is applied to 2FA

APPs, here is the user-story example:

1) A user wants to log into a TOTP 2FA-protected application or website. For the OTP

authentication to run, the user and the server must initially share a static parameter (a

secret key).

2) When the client logs into the protected website, they have to confirm they possess the

secret key. So their TOTP application merges the seed and the current timestamp and

generates a HASH value by running a predetermined HASH function. This value

essentially is the OTP code the user sees on the screen.

3) Since the secret key, the HASH function, and the timestep are the same for both

parties, the server makes the exact computation as the user’s OTP generator.

4) The user enters the OTP, and if it is identical to the server’s value, the access is

granted. If the results of the calculations aren’t identical, the access is, naturally,

denied.

17

Figure 1: One-Time Password authentication diagram[9]

To clarify the above example, note that the seed mentioned is a string of random characters,

typically 16-32 characters long. "Sharing" a key usually involves scanning a QR code that

contains a server-generated seed.

The time step is calculated using UNIX time, which is the number of seconds passed since

January 1, 1970, UTC. The time steps must be 30 or 60 seconds, so the time value used for

TOTP is the number of seconds since 00:00 on January 1, 1970, divided by 30 or 60. Finally,

the mentioned HASH function is a cryptographic mathematical function. which generates the

same result for the same input, if any input arguments differ (secret key or current timestamp)

result will be different. The result is usually 6-8 characters long.[9]

3.2 HMAC

Mechanisms that provide integrity checks based on a secret key are usually called "message

authentication codes" (MAC). Typically, message authentication codes are used between two

parties that share a secret key in order to validate information transmitted between these

parties. MAC mechanisms based on the HASH functions are called HMAC or Hash-based

18

Message Authentication Code. HMAC can be used in combination with any iterated

cryptographic hash function. MD5 and SHA-1 are examples of such hash functions. HMAC

also uses a secret key for the calculation and verification of the message authentication

values. The main goals behind this construction are:

● To use, without modifications, available hash functions. In particular, hash that

performs well in software, and for which code is freely and widely available.

● To preserve the original performance of the hash function without incurring a

significant degradation.

● To use and handle keys in a simple way.

● To have a well understood cryptographic analysis of the strength of the authentication

mechanism based on reasonable assumptions on the underlying hash function.

● To allow for easy replaceability of the underlying hash function in case faster or

more secure hash functions are found or required.[3]

3.3 HOTP algorithm

HMAC-Based One-Time Password Algorithm or HOTP is an algorithm for generating

one-time passwords based on HMAC(SHA-1) technology. The main idea is to create unique

passwords with every algorithm iteration. The algorithm is event-based. System running

authentification checks with HOTP technology is keeping an internal counter of algorithm

iterations and uses it as one of the parameters during OTP generation. [10]

The formula presentation of the HOTP algorithm will look like that:

𝐻𝑂𝑇𝑃(𝐾, 𝐶) = 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝐻𝑀𝐴𝐶 − 𝑆𝐻𝐴 − 1(𝐾, 𝐶))

where

K - Secret key shared between user and server

C - Current value of the 8-bit counter

19

3.4 TOTP algorithm

TOTP algorithm is another way of generating One-Time Passwords. Follows the same

algorithm of using the HASH function on a secret key. This variant of the HOTP algorithm

specifies the calculation of a one-time password value, based on a representation of the

counter as a time factor.[11]

The TOTP algorithm can be defined with the following formula:

𝑇𝑂𝑇𝑃 = 𝐻𝑂𝑇𝑃(𝐾, 𝑇)

where T is an integer and represents the number of time steps between the initial counter time

T0 and the current Unix time. More specifically:

𝑇 = (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝑛𝑖𝑥 𝑡𝑖𝑚𝑒 − 𝑇0) / 𝑋

where

X - represents the time step in seconds (default value X =30 seconds) and is a system

parameter.

T0 - the Unix time to start counting time steps (default value is 0, i.e., the Unix epoch) and is

also a system parameter.

The computation is requiring the default floor function to be used. For example, with T0 = 0

and Time Step X = 30, T = 1 if the current Unix time is 59 seconds, and T = 2 if the current

Unix time is 60 seconds.

20

4. Minimal prototype requirements and technology

tool selection

The first thing to be done is to define the minimal requirements of the project. Knowing what

expected functionality is, will lead to the understanding of what technologies and solutions

should be used during implementation.

4.1 Prototype requirements

The thesis practical part should be able to provide users with the same service as other 2FA

mobile APPs.

Apart from basics, it is supposed to keep users from touching the phone during the

authentication process and completely solve manual data input issue.

In the most probable scenario, a user is using multiple services which require 2FA. Hence

application should be able to identify which one of the passwords should be given to the user

and when. To get this data, there should be a browser extension that collects information

about the current webpage and use it as an identificator. Also, it would be a perfect point to

trigger the whole process.

Concluding this scope, the following functionality should be implemented

● Scan QR codes, parse them, and convert into salt for Time-Based Password

generation

● Securely keep salts in phone memory

● Every 30 seconds generate TOTP for each salt record

● Delete, modify records

● Not dependent on the Network. Works offline

● A tunnel between mobile and PC to pass TOTPs

● The user is able to request a TOTP via the browser extension

21

● The Browser extension collects information about users' opened web page and passes

it as a password identity.

4.2 Technology stack

The modern IT sector is offering lots and lots of different types of approaches, solutions and

technologies. Every single problem could have several solutions, and each would be relevant.

In projects like this thesis, where infrastructure consists of multiple parts, the proper planning

could be crucial. The developer should consider each part's efficiency and their ability to be

integrated with each other.

4.2.1 Phone platform

According to the web portal “gs.statcounter.com”, the most spread mobile platforms are

Android and IOS. In May 2022, their combined share is about 99.3% of the mobile market.

where Android has 71.7% and IOS 27.57% [12]

Figure 2: Mobile operating system market share [12]

It would be logical to use any Cross-Platform languages such as Flutter or Xamarin, to cover

both most popular OS. However, running any code on IOS requires an "Apple Developer"

22

certificate which costs money and takes months to obtain. so it was decided to stick to

Android only.

When it comes to Android development, there are multiple options of supported languages

such are Java, Kotlin, C#, Lua, and Basic. Java has the biggest community, and it is the most

widely spread solution for Android development. Kotlin, on the other hand, took all the best

from Java[13] and became its inheritor. As a result, it has more syntactic sugar, functional

programming support, and full compatibility with Java, which allows the use of Java

libraries.

The fundamental factor why Kotlin was selected for this project is the fact that Kotlin has a

feature called “Coroutines”. It is similar to the Java “Threads”, but it is more flexible and

efficient. Moreover, it runs concurrently, which means it will never block other processes

running on the system. As it was claimed before, the application is supposed to generate a

TOTP every 30 seconds, and this is why it is critical to use an efficient multi-processing

architecture.

4.2.2 Desktop solution

As one of the critical points of this project is making the environment easy to install,

cross-platform languages will be perfectly suitable. The choice was made into Python

because it has a vast community, which means there are several open-source libraries that can

be easily added to the project with Python’s package manager called PIP. Also, Python has

integration with Operating Systems and can approach its functions from scripts. And last but

not least, Python allows developer to run Bash commands and manage their result.

Apart from excellent developer experience, Python provides a powerful compiler that can

build the Python part of the project into lightweight files.

4.2.3 Browser extension

There are not so many ways to build browser extensions nowadays. The only decision that

developers should make is either use manifest.json v2 or v3. The second version is quite

old already, and some browsers such as Google Chrome are going to deprecate it in the future

totally. On the other hand, the third version has the complete functionality of the previous

23

standard and a list of improvements on board. The only drawbacks are a small number of

educational materials and possible compatibility issues with browsers like Microsoft Edge.

According to “gs.statcounter.com”, the most popular browsers at the current moment are

Google Chrome and Safari [14], which both have the full support of the latest manifest

version, so it was decided to use manifest.json v3 to avoid deprecations in the near

future.

Figure 3: Browser market share [14]

24

5. Data tunnel

Defining how to transfer data from phone to browser extension is one of the most complex

parts of this research. There are multiple parameters that should be taken into consideration

and may affect productivity and user experience. Solutions that are too complex to set up will

not suit most users. The same goes for the design that uses too many computer or phone

resources.

The crucial factors of this decision are the following:

● As lightweight as possible

● Do not require any maintenances on daily bases

● Do not block or affect any other processes going in the systems

● Initial installation should be easy for the user

5.1 API on Local network

Keeping data track on the local networks is probably one of the most obvious solutions, but it

has a lot of drawbacks. Unfortunately, just keeping API running on the local machine does

not provide other devices access to it, so the android phone will simply not “see” an API.

There is a possibility of running it on a router if the device allows it. However, it is extra

complicated for regular users, plus it probably will not be an option in the office

environment. Another way to do so is to rent a separate IP address from the Internet provider

and run your own server. [15] It also would work, but it is an “overkill” and is too complex

for the initial setup.

5.2 API on public Network

Looking back on research done, it could be said, that this approach has one of the most

considerable potentials. However, it requires the most complicated solution running on a

remote server.

25

It has to have an authorization system by itself, to separate one user from another. And some

kind of security level to be a proper second factor, because just transferring passwords to the

browser is ruining the whole idea of 2FA,

Other drawbacks of such an approach would be - the complicity of development and the fact

that it needs the host and server to run, which aren’t free, and it also means that it could not

be open-source as opened code will show all the weak points to everyone. Hence such a

system will probably be insecure. However, this infrastructure may be used by some

commercial companies to solve the same issues that this thesis is trying to solve.

5.3 Bluetooth to PC
Using Bluetooth is one of the possible solutions. However, it requires having a Bluetooth

adapter on the PC and being able to identify the phone and connect to it. Unfortunately,

Windows machines have a specification on how they are supposed to work with

Bluetooth-connected mobile devices. And this specification is not working in a way where

the phone can set a raw data stream to the computer. Nevertheless, it is still possible to set up

a specific COM port for a data stream with programs like PuTTY, and then the stream must

be unencrypted in a readable way.

Because of the extremely high complexity of the setup, this approach was declined. However,

this limitation exists only on Windows and only for Android phones. Furthermore, research

has shown that any microcontrollers such as Arduino may send data streams to

Windows-driven machines without any workarounds with pots.

5.4 Bluetooth to browser extension
A relatively new technology[16] that allows to access Bluetooth devices straight from the

browser extension. The Windows-based machine has the same issues.

It was not tested during this research, but potentially approaching this technology to Linux

and IOS machines will allow skipping one step of infrastructure as data will be passed

directly between phone and computer.

26

5.5 USB tethering / Hotspot

Both HotSpot and USB tethering are solutions to deliver the Internet connection to the

computer from the phone. The difference is that hotspot simulates a WI-Fi network, and USB

tethering creates a wired connection via a USB port.

Both approaches may be used to share localhost between devices and use a local API server

as a data tunnel. The problem is that this connection isn’t consistent and requires extra

interactions. To be more specific, every time when this network is created IP addresses may

be changed, so the user will have to check the current computer IP address and put it into the

phone every time he disconnects the cable or turns the hotspot off.

Apart from mentioned issues, this way maybe not be suitable for people working in the office

environment as it often has its own Wi-Fi network, which may be needed for work routine. It

also wastes the user’s internet traffic and may affect internet speed as USB tethering has a

speed limitation of 1 Mb/s.

5.6 Android Debug Bridge

Android Debug Bridge or ADB is a command-line utility included with Google’s Android

SDK. ADB can control mobile devices over USB from a computer, copy files back and forth,

install and uninstall apps, run shell commands, and more[17].

Using ADB, users are able to access localhost services running on the PC, as the phone and

computer are in a single space. This is why having a simple API on the computer seems to be

a solution, as browser extensions also may easily access it to request the current password

value.

It works perfectly fine on paper, as does on a phone emulator, but going this way reviled

some inconveniences. To use ADB, the user should have android SDK installed on his

machine. Moreover, the phone should have developer mode enabled. Thanks to Google, it

may be done in a couple of clicks. And last but not least, the port in use for running the server

on the localhost should be opened for ADB.

27

5.7 USB / Bluetooth file modification
During the planning stage, this approach was declined because modifying a text file on the

computer seemed to be a workaround. However, after several hours spent on ADB

implementation and polishing the user experience of setting it up, it may be said that file

modification could be the best solution for the data transfer problem.

It is super easy to set up because it does not require any interaction from the user side to

make his phone able to modify files. It works “from the box”.

The implementation would be similar to the ADB way, but instead of sending passwords

from phone to PC via HTTP request, the phone would write passwords and timestamps to a

txt file in a specific location. Then local server just needs to parse it and save passwords in

memory. Then, when it will be needed, the browser will request this data and check the

timestamp to know if passwords are fresh. The last step is vital because after the USB cable

would be plugged out, data saved in a text file will remain the same, which may bring

false-positive results.

28

6. Architecture

The practical part of this thesis is built on Android Debug Bridge basis. The ADB provides

functionality to access localhost-running services on the specific ports that can be opened or

closed per device.

The computer has a simple Python HTTP server running on the specific port. This port is

exposed to the Android device, so the Android application is able to send REST requests to

the localhost, and the computer will receive them.

As the user needs to receive his passwords while he is using the Internet, the entry point

should be the browser. The extension will take the domain name of the website user has

opened and send it as a parameter in the HTTP request to the Python API. A domain name is

used to identify which password the user is expecting to receive, but unfortunately, it isn’t

possible to send a request from PC to Android. Only vice versa. So the following solution

was taken: every 30 seconds, when passwords are updating Android Application sends a PUT

request with a complete list of current passwords and their domains to the server. The server

saves it to its memory and keeps it until the next update or when it receives a POST request

with a domain name from the browser. When a request is received server checks if the

password for the provided domain is in place. If a value is found, it responds with a valid

password value.

Figure 4: Project infrastructure schema

29

7. Android application development

7.1 Design

Before making an actual APP, it was decided to build a maquette first. For that purpose, the

web service called UxPin was used. The archetypal design was inspired by Google

Authenticator APP. It contained all the same details and a similar colour scheme. As the

initial plan was to use Bluetooth to connect devices, it has a Bluetooth icon on the corner,

which was supposed to work as a button to set up the connection.

Figure 5: Android application design created in UxPin service

After finishing the maquette, it was used to recreate the same layout into the Android Studio

program using the internal constructor with some XML modifications. The main structure

consists of three main parts. Appbar with the application name and “Network” button,

Recycler View which is used to render password records, and “Plus” button which turns

on the camera to scan QR code and add a new record to the database.

30

Figure 6: Android application design created in Android Studio

7.2 Database implementation

According to official Android documentation, the best practice for implementing databases is

using a “Room” dependency inside the project. Room is a library that is working as an

abstractor between the code and SQLite database running on the phone.

“Room” consists of three major components:

● The database class that holds the database and serves as the main access point for the

underlying connection to APP's persisted data.

● Data entities that represent tables in the APP's database.

● Data access objects (DAOs) provide methods that applications can use to query,

update, insert, and delete data in the database [18].

All three components have to be realised in code to start using Rooms functionality and

maintain data in the database.

31

This project does not require any complicated DB schemas. The only table called “Accounts”

represents records of the secret key and domain name to which it belongs.

Data classes implementation can be found in Appendix 2

7.3 OTP generation
When “Accounts” are received from the database, they can be turned into OTPs. For doing

that and for faster development, a library called “Kotlin-onetimepasswords” was added to the

project. The library itself is pretty powerful and contains several different ways of OTP

generation. As a result, the developer saves a lot of time, as he only needs to convert the

secret key into a byte array, take the current time, and pass parameters to the function.

7.4 Recycler View adapter

As was claimed before, one of the parts of the main layout is a recycler view which contains

as many lines as mush password the user is keeping in the application.

Figure 7: Recycler View row design

The primary purpose of the Recycler View adapter is to bind data and XML objects. Every

time a new record is added, the adapter is supposed to make an XML injection and render a

new line in the recycler view. Moreover, every 30 seconds, when passwords are expired, the

adapter changes all values to relevant ones.

Also, each line in the Recycler View has its own Progress Bar, which shows how much

time the user has until the password expires. The progression is counted with the following

formula:

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 = 𝑐𝑒𝑖𝑙(𝑇 * 100 / 𝑋)

where

T - time left before password expiration

32

X - interval presenting how long the password is valid

7.5 QR code scanner

The library called “Zbar” was added to the project dependencies to have the functionality of

QR code scanning. The library by itself is able to parse almost any QR code and does not

have any limitations of usage.

The format basic format of OTP data kept in QR code is following [19]:

otpauth://totp/some_label?secret=secret_code&issuer=TalTech&algorith

m=SHA1&digits=6&period=30

Mandatory parameters are:

● Secret - the salt

● Issuer - who provides this code. Usually domain name

Optional parameters:

● algorithm - shows what HASH function should be used to get OTP

● digits - how many symbols are expected in the OTP

● period - password expiring time

The application parses provided sting into a set of parameters. From the mentioned list, it

takes “issuer” and “secret” to save them as an “Account” entity in the database. After that, the

valid value of the password will be immediately counted and displayed on Recycler View.

7.6 API

For the proper setup of ADB-based API, the port used for running a local server has to be

opened for mobile devices [20]. This procedure requires a specific console command to be

executed in the terminal. After that step, physical devices will be able to send HTTP requests

to http://localhost:port. However, for the application running on the emulator

destination should be changed to https://10.0.2.2:port.

33

The current implementation of API is sending PUT requests with a complete list of valid

passwords and their domains. The Content-Type is application/JSON, and the format of data

is an array of “TOTP” entity records converted to JSON.

For performing HTTP requests, the application uses the "Retrofit" library and object mapping

the "GsonConverterFactory" module from the same space.

It is worth mentioning that Android has strict limitations regarding any networking - it has to

be separated from the main thread to another parallel process, so the startup application is

creating a “Job” which executes every 30 seconds to perform API requests in the Courutine

scope.

7.7 Permissions

To properly run its processes, the application will ask the user for permissions to some system

functions, such as access to the camera and access to the Internet and the Internet state. All

required permissions are written down in the “AndroidManifest.xml” file - the root of the

project source set [21].

Figure 8: Android application required permissions

7.8 Security analysis

The architecture of the application is built in a way, that it will avoid the majority of possible

abuses. As it was claimed before, the port with localhost should be opened to the phone and it

happens per device basis. Before the application will start sending OTPs user have to unlock

the phone and allow it. SQLite database is secured and only can be accessed if the attacker

gets root access on the phone. However, if this happens, all the data and applications will be

compromised. Concluding these points, it can be said that security at least on the regular 2FA

application level.

34

8. Python API development

Using Python as a language for the desktop side was one of the most excellent decisions. The

Python part of the project is elementary to install, as all used libraries can be downloaded via

the PIP file manager. Implementation of the server that can serve three different types of

requests and keep data in memory took less than 100 lines of code. Despite being that simple,

the webserver works perfectly fine and does its job - keeping track of password updates and

providing them by request.

Modules that are used in this part of the project are:

● HTTP.server - starts the server, handles requests and responses

● JSON- parses JSON objects from requests to python data formats (Arrays or

dictionaries)

● BytesIO from IO module - used to convert strings into byte arrays and then send them

as a response.

The server can be started only on HTTP space. HTTPS will not be working. However, one of

the adjustments users can be made is to select the port to run the server. It may be beneficial

if the user already has something running on his machine.

The code of the Python API implementation can be found in Appendix - 2

35

9. Browser extension development

The initial idea was to run the extension in the background and insert a button into

textfield for OTP input. However, after fast research, it turned out that there is no

specific format for how people on different sites would mark such textfields. Hence the idea

was changed to create a button for the extension, which will show a popup with its status.

When a user clicks on the button to open this popup, the extension sends a POST request to

the local server providing the hostname of the current page as an argument.

Figure 9: Browser extension popup

In case of success, a popup will disappear, and the password will be saved into the user's

clipboard. However, if something goes wrong, it will show the error message.

Figure 10: Browser extension error message

36

10. Application performance analysis

Using the common authenticator application takes 8 seconds on average to unlock the phone,

open the application, find the password, and put it into the web form. It is also worth

mentioning that mobile authenticator applications make users turn their focus away from the

screen and distract them from the task they are performing. Unfortunately, there was no way

to measure this distraction, but it is clearly seen that this factor has to be completely removed.

The application created during this thesis only takes 1-2 seconds to fill the password, so it is 6

seconds average profit. However, the new solution takes more time to set up, so it would be

more profitable for people using 2fa regularly. It may be said that in the long perspective,

users not only get a better experience, but he also saves his time spent on unneeded manual

process.

37

11. Possible improvements and future steps

As was mentioned before, the practical part of this thesis is just an MVP or proof of concept,

so there are many possible features that can be added to the final versions. For example,

support of TOTP with an expiration time different from 30 seconds. The code is pretty

structural, so it will not be a problem adding more functionality and polishing existing,

especially because the code base is going to be public.

The level of security can be improved even more. It is possible to make data secure even if

intruders received root access. For example, encrypt the database using SQLite Cipher and

ask the user for the pin input on the application startup and use this pin to decrypt it back.

From the browser perspective - UI may be revisited to provide a better user experience. The

current version seems to be too raw.

The most significant change that may be taken into consideration is a switch from ADB to

fail modification flow. As it will make the initial setup extremely less complicated, and the

program won't depend on Android SDK anymore, which also makes the weight of the

environment less.

The future steps that are already decided are to make the code public and prepare the first

version of the build, including all necessary files and scripts for opening ports, downloading

Python and its dependencies, adding a Python server component into startup programs, etc.

38

12. Summary

The bachelor thesis aimed to create the prototype of a next-level environment for Two-factor

authentication verification. Analysis of the existing platform shows the weak sides of current

solutions and their possible modifications. As a result, the automated way of passing 2FA was

invented. The manual data input factor was completely removed as well as needed to be

distracted from the desktop during the verification. However, Security was kept on the same

level as existing analogues. In the theoretical part of this paper, different approaches and

technologies were compared and systemised that giving a lot of valuable data for future

development of this product. MVP was reached, and functionality is the same as declared at

the thesis's beginning. However final solution hardly can be used by the masses. Currently, it

isn’t simply to install. Future steps are described as well as the pattern of solving the most

significant issue of this project - complexity.

In conclusion, it may be said that the concept is proven and the prerequisites for the further

development of the project have been created.

39

Bibliography

[1] Henry Ford, ”Today and Tomorrow” 1926

[2] gimpanews.com, “Two-factor authentication can save you from hackers”. 08
February 2019 [Online].
Available:
https://app.gimpanews.com/two-factor-authentication-can-save-you-from-hackers-er
icitguy/ [Accessed 14 April 2022].

[3] Internet Engineering Task Force, “ HMAC: Keyed-Hashing for Message
Authentication”. February 1997 [Online]
Available: https://datatracker.ietf.org/doc/html/rfc2104 [Accessed 12 April 2022]

[4] Sam Manjarres, “2021 World Password Day: How Many Will Be Stolen This
Year?” 4 May 2021 [Online]
Available:
https://www.secplicity.org/2021/05/04/2021-world-password-day-how-many-will-be
-stolen-this-year/ [Accessed 14 April 2022]

[5] Branko Klark, “Impressive Password Statistics to Know in 2022” 6 April 2022
[Online]
Available: https://webtribunal.net/blog/password-stats/ [Accessed 23 March 2022]

[6] Shape Security, “Credential Stuffing Attacks” 6 July 2015 [Online]
Available: https://www.f5.com/solutions/credential-stuffing [Accessed 1 April 2022]

[7] Suzanne Humphries, “What is a USB Security Key, and Should You Use One?” 8
December 2022[Online]
Available:
https://www.reviewgeek.com/63448/what-is-a-usb-security-key-and-should-you-use
-one/ [Accesed 19 April 2022]

[8] computing.which.co.uk, “How to set up an authenticator app for two-factor
authentication” 31 October 2018 [Online]
Available:
https://computing.which.co.uk/hc/en-gb/articles/360006153539-How-to-set-up-an-a
uthenticator-app-for-two-factor-authentication [Accesed 20 April 2022]

[9] Maxim Oliynyk, “TOTP algorithm explained”. 24 June 2020 [Online].
Available: https://www.protectimus.com/blog/totp-algorithm-explained/ [Accessed
14 April 2022]

[10] Internet Engineering Task Force, “HOTP: An HMAC-Based One-Time Password
Algorithm”. December 2005 [Online]
Available: https://datatracker.ietf.org/doc/html/rfc4226 [Accessed 14 April 2022]

40

https://app.gimpanews.com/two-factor-authentication-can-save-you-from-hackers-ericitguy/
https://app.gimpanews.com/two-factor-authentication-can-save-you-from-hackers-ericitguy/
https://datatracker.ietf.org/doc/html/rfc2104
https://www.secplicity.org/2021/05/04/2021-world-password-day-how-many-will-be-stolen-this-year/
https://www.secplicity.org/2021/05/04/2021-world-password-day-how-many-will-be-stolen-this-year/
https://webtribunal.net/blog/password-stats/
https://www.f5.com/solutions/credential-stuffing
https://www.reviewgeek.com/63448/what-is-a-usb-security-key-and-should-you-use-one/
https://www.reviewgeek.com/63448/what-is-a-usb-security-key-and-should-you-use-one/
https://computing.which.co.uk/hc/en-gb/articles/360006153539-How-to-set-up-an-authenticator-app-for-two-factor-authentication
https://computing.which.co.uk/hc/en-gb/articles/360006153539-How-to-set-up-an-authenticator-app-for-two-factor-authentication
https://www.protectimus.com/blog/totp-algorithm-explained/

[11] Internet Engineering Task Force, “TOTP: Time-Based One-Time Password
Algorithm”. May 2011 [Online]
Available: https://datatracker.ietf.org/doc/html/rfc6238#section-4 [Accessed 14
April 2022]

[12] gs.statcounter.com, “Mobile Operating System Market Share Worldwide”. March
2022 [Online]
Available: https://gs.statcounter.com/os-market-share/mobile/worldwide [Accessed
15 April 2022]

[13] kotlin.org, “Frequently asked questions”. 11 January 2022 [Online].
Available: https://kotlinlang.org/docs/faq.html [Accessed 15 April 2022]

[14] gs.statcounter.com, “Browser Market Share Worldwide”. March 2022 [Online]
Available: https://gs.statcounter.com/browser-market-share [Accessed 15 April
2022]

[15] itstillworks.com, “How to Set Up a Private Network”. 21 July 2017 [Online]
Available:
https://computing.which.co.uk/hc/en-gb/articles/360006153539-How-to-set-up-an-a
uthenticator-app-for-two-factor-authentication [Accessed 21 April 2022]

[16] François Beaufort, “Communicating with Bluetooth devices over JavaScript”. 1
October 2021 [Online]
Available: https://web.dev/i18n/en/bluetooth/ [Accessed 16 April 2022]

[17] Chris Hoffman, “How to Install and Use ADB, the Android Debug Bridge Utility”.
28 October 2021 [Online]
Available:
https://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-
bridge-utility/ [Accessed 16 April 2022]

[18] developer.android.com, “Save data in a local database using Room” 27 October
2021 [Online]
Available: https://developer.android.com/training/data-storage/room [Accessed 5
April 2022]

[19] Thomas Habets, Google LLC, “Google-authenticator Key Uri Format” 26
November 2016 [Online]
Available: https://github.com/google/google-authenticator/wiki/Key-Uri-Format
[Accessed 11 April 2022]

[20] developer.android.com, “Android Debug Bridge (ADB)” 30 March 2022 [Online]
Available: https://developer.android.com/studio/command-line/adb [Accessed 5
April prill 2022]

[21] developer.android.com, “App Manifest Overview” 7 April 2022 [Online]
Available: https://developer.android.com/guide/topics/manifest/manifest-intro
[Accessed 14 April 2022]

41

https://datatracker.ietf.org/doc/html/rfc6238#section-4
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://kotlinlang.org/docs/faq.html
https://computing.which.co.uk/hc/en-gb/articles/360006153539-How-to-set-up-an-authenticator-app-for-two-factor-authentication
https://computing.which.co.uk/hc/en-gb/articles/360006153539-How-to-set-up-an-authenticator-app-for-two-factor-authentication
https://web.dev/i18n/en/bluetooth/
https://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-bridge-utility/
https://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-bridge-utility/
https://developer.android.com/training/data-storage/room
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://developer.android.com/studio/command-line/adb

Appendix 1 - Non-exclusive license for reproduction
and publication of a graduation thesis1

I Aleksandr Zahharjan

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis
“Developing an Open-Source Environment for Two-Factor Authentication” supervised by
Kaido Kikkas

1.1 to be reproduced for the purposes of preservation and electronic publication of the
graduation thesis, incl. to be entered in the digital collection of the library of Tallinn
University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be entered in the
digital collection of the library of Tallinn University of Technology until expiry of the term of
copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-exclusive
licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'
intellectual property rights, the rights arising from the Personal Data Protection Act or rights
arising from other legislation.

16 May 2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean, except in
case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is
based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set
deadline, the student defending his/her graduation thesis consent to reproduce and publish the graduation thesis
in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid
for the period.

42

Appendix 2 - Database implementation code

Figure 11: Android application. “Accounts” entity code

43

Figure 12: Android application database class implementation code

44

Figure 13: Android application DAO class code

45

Appendix 3 - Python API code

Figure 14: Python API entry point code

46

Figure 15: Python API GET and POST requests code

47

Figure 16: Python API PUT request code

48

