
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Chair of Network Software

Event Management and active defense framework for
small companies

Master's thesis

ITI70LT

Author: Markus Kont

Student code: 121785IVCMM

Supervisor: Risto Vaarandi, Ph.D

Tallinn 2014

Declaration
I hereby declare that I am the sole author of this thesis. The work is original and has not

been submitted for any degree or diploma at any other University. I further declare that the

material obtained from other sources has been duly acknowledged in the thesis.

...

(date) (signature)

1

List of Acronyms and Abbreviations

IT Information Technology

IS Information Systems

OS Operating system

SEC Simple Event Correlator

SIEM Security Information and Event Management

CPU Central Processing Unit

RAM Random Access Memory

SQL Structured Query Language

DBMS Database Management System

IDS Intrusion Detection System

IPS Intrusion Prevention System

OWASP Open Web Application Security Project

NIDS Network IDS

HIDS Host IDS

HIPS Host IPS

OSI Open Systems Interconnection

DoS Denial of Service

ISP Internet Service Provider

OSSIM Open Source Security Information Management

SEM Security Event Management

SIM Security Information Management

RFC Request For Comments

UDP User Datagram Protocol

2

IP Internet Protocol

MitM Man-in-the-Middle

IETF Internet Engineering Task Force

TLS Transport Layer Security

TCP Transmission Control Protocol

ELSA Enterprise Log Search and Archive

GNU Gnu's Not Unix

GPL General Public License

GSS-API Generic Security Service Application Program Interface

ACL Access Control List

CSV Comma Separated Values

JSON JavaScript Object Notation

XML Extensible Markup Language

STOMP Simple Text Oriented Message Protocol

SMTP Simple Mail Transfer Protocol

GELF Graylog Extended Log Format

ERE Extended Regular Expressions

PCRE Perl Compatible Regular Expression

LTS Long Term Support

HTTPS Hypertext Transfer Protocol Secure

SSH Secure Shell

PHP PHP: Hypertext Preprocessor

NTP Network Time Protocol

DNS Domain Name System

SLD Second-level domain

TLD Top-level domain

POP Post Office Protocol

LAMP Linux Apache MySQL PHP

SSH Secure Shell

SNMP Simple Network Management Protocol

NIC Network Interface Card

3

RAID Redundant Array of Independent Disks

CA Certificate Authority

CN Common Name

FQDN Fully Qualified Domain Name

ARP Address Resolution Protocol

VPN Virtual Private Network

VM Virtual Machine

4

Abstract

This thesis focuses on building an event monitoring and active defense framework for a

small company, which could automate security incident handling. One of the main

contributions of this thesis is an analytical and performance comparison of existing log

collection and event correlation tools. Analysis of log collection tools includes three syslog

message collection solutions – Rsyslog, Syslog-ng and NXLog. A number of tests were

conducted by the author, in order to evaluate the performance of these solutions for

different event collection scenarios. Apart from the tests, the thesis also provides a detailed

assessment of event correlation capabilities of SEC and NXLog.

Another contribution of this thesis is the description of event monitoring and active

defense framework for a small company environment. Based on conducted tests and

comparisons, Syslog-ng and SEC were selected for building the framework. The proof-of-

concept of the proposed framework has been implemented in Spin TEK AS by the author.

Apart from describing the architecture of the implementation, the thesis also provides a

publicly available repository of SEC rules, infrastructure configuration guidelines and

control scripts. The content of the repository is maintained by the author, and helps the

reader to set up a similar system for real-time event monitoring and active defense.

5

Table of content

Declaration...1
List of Acronyms and Abbreviations..2
Abstract..5
Table of content..6
List of Diagrams...8
List of Tables..9
1. Introduction..10

1.1. Problem statement and contribution of the thesis...12
1.2. Outline..13
1.3. Acknowledgments...14

2. Overview of existing solutions and related work...15
2.1. The roles of IDS and IPS in evolving IT landscape...15
2.2. SIEM systems...18
2.3. Syslog protocol...19
2.4. Log collection software..21
2.5. Event Correlation..22

3. Comparative analysis of open-source log collection and correlation tools......................24
3.1. Log Collection tools...25

3.1.1. Functionality...26
3.1.2. Configuration..31
3.1.3. Performance..35

3.2. Comparison of SEC and NXLog..40
3.2.1. Functionality...40
3.2.2. Configuration..43

3.3. Solutions selected for the monitoring system...44
4. Implementation...46

4.1. Infrastructure overview...46
4.2. Centralized logging and event correlation infrastructure...48

4.2.1. Certificate authority..48
4.2.2. Syslog server...49
4.2.3. Syslog client..50
4.2.4. Application specific log collection..51
4.2.5. Event Correlation framework...52

4.3. Log pattern analysis and event generation..54
4.3.1. Authentication failures..54

6

4.3.2. Web application injections..57
4.3.3. DNS server events...58
4.3.4. Attack events...60

5. Summary..61
Sündmuste haldamise ning aktiivse kaitse raamistik väikeettevõttele.................................62
List of References...63
Appendices...68

Appendix 1. Syslog daemon compilation options...68
Appendix 2. Unfiltered TCP syslog server configurations..70

Appendix 2.1. NXLog...70
Appendix 2.2. Rsyslog 5.8..71
Appendix 2.3. Rsyslog 7.6..71
Appendix 2.4. Rsyslog 8.1..71
Appendix 2.5. Syslog-ng 3.3...72
Appendix 2.6. Syslog-ng 3.5...73

Appendix 3. Filtered TCP syslog server configurations..74
Appendix 3.4. NXLog...74
Appendix 3.2. Rsyslog 5.8..75
Appendix 3.3. Rsyslog 7.6..76
Appendix 3.4. Rsyslog 8.1..76
Appendix 3.5. Syslog-ng 3.3...77
Appendix 3.6. Syslog-ng 3.5...78

Appendix 4. Test termination rule...79

7

List of Diagrams

Diagram 1. BSD syslog format..20
Diagram 2. SEC configuration flow...43
Diagram 3. NXLog pm_evcorr configuration flow..44
Diagram 4. Event generation flow...52
Diagram 5. SEC ruleset framework...53

8

List of Tables

Table 1. Syslog daemon feature comparison..29
Table 2. BSD message processing with 8 CPU cores..37
Table 3. Filtered BSD message processing with 8 CPU cores...37
Table 4. BSD message processing with 2 CPU cores..38
Table 5. Filtered BSD message processing with 2 CPU cores...39

9

1. Introduction

Over the course of last decade, the world has seen a massive rise in the consumption of and

dependence on various electronic services. Services like simple web pages, electronic mail,

e-commerce applications and complex information exchange pathways. They have become

both tools of trade and integral part of everyday lives for large part of modern population

who are often referred to by information technology professionals as end-users.

The complexity of actual solutions used to create and maintain those services is often

visible only to the professionals who are tasked with managing them. Combination of high

demand for novel IT solutions and the trend of workforce consolidation [1] often results in

overburdening of said professionals who are forced to prioritize the incidents that have to

be resolved at any given time. Network connectivity can often be compared to a double-

edged sword – services have to be visible over network to provide functionality to end-

users but the same channel exposes them to increasing amounts of threats from cyber

criminals [2].

Conducting attacks, both automated and manual, can require very little effort [3]. On the

other hand doing that in a way that leaves no footprint is difficult. The functionality to

store entries of system events in log files is an integral part of operating systems (OS) and

programs, which the author shall refer to from hereon as daemons, [4] used to maintain

services. Some attacks manifest themselves through one specific event and are thus easy to

recognize. However, other attacks might produce more complex patterns of multiple events

which span over time, making them harder to detect and requiring event correlation tools.

In research literature, event correlation is defined as an interpretation procedure where a

new meaning is assigned to a group of events in a predefined time window.

10

Event correlation is a feature of several Security Information and Event Management

(SIEM) systems which can be licensed from market leaders such as IBM/Q1 Labs, HP-

ArcSight, McAfee/Nitro, Splunk, LogRhythm or RSA [5]. While clearly beneficial for

compliance reasons, SIEM systems can also be criticized for heavy resource requirements,

both from hardware and manpower, and highly commercialized nature [6]. Implementation

of fully fledged SIEM system would require additional investment in the terms of

administrator working hours – management of any new system introduced into existing

infrastructure would have to be delegated to someone. Also, resources used to maintain

logging infrastructure may be limited by the amount of CPU cores, RAM and disk space to

be allocated or simply by the age of hardware. Since commercial SIEM systems are not

affordable to many small to medium sized organizations, several open-source log

management solutions, such as Logstash, Graylog2 and Kibana, have emerged recently.

The thesis is written from a small business perspective where the operational aspects of

complex IS infrastructure are often delegated to small crews of few individuals who must

be able to utilize and optimize the tools, and knowledge, they have at their disposal to

develop pragmatic security solutions. This must be done without compromising the ability

to carry out day-to-day tasks. Since the deployment of a commercial SIEM system is too

costly for small IT organizations, the author shall not use these solutions. Instead, the

author shall focus on lightweight (low resource requirements, already present in OS

deployments or focused on providing specific functionality) open-source tools.

System administrators have a simple principle – any action that has to be carried out more

than once on a routine basis should be automated. If the attacks can be carried out in an

automated manner, why not automate the defense as well? The knowledge to identify

attack patterns from log files already exists for many system administrators. Even visual

confirmation of certain log entries can be used for that purpose. The caveat lies within two

aspects:

11

• Logs are often only collected on local server with no centralized logging

infrastructure in place;

• Incident handling via log verification is done manually, especially in smaller

companies which lack automated incident handling and response tools.

Manual verification means that events are often discovered too late, the damage could

already be done. Even if the relevant entries are clearly distinguished within log file, the

distributed nature of modern IT services can cause too much information fragmentation for

administrator to handle.

Open-source log management solutions often focus on log visualization and long term

storage aspects which is the reason why they commonly utilize database back-end

(Elasticsearch, MongoDB or some SQL-based DBMS) [7]. Automated defense based on

event messages, on the other hand, requires real-time event correlation which is not

directly related to storage aspects of log management. Even when utilized, event

correlation within existing solutions mainly serves as a tool for generating notifications

while response process is left to the system operator.

In the following subsections, the author will define the scope of the thesis, describe its

main contributions, and set the outline for the thesis.

1.1. Problem statement and contribution of the thesis

The problem addressed within the thesis is the lack of infrastructure solutions which could

automate attack pattern identification and responsive actions. While several IDS and IPS

tools exist, they mainly focus on packet inspection on the network level, and lack ability to

cross-correlate multiple attack patterns. Log management solutions serve mainly as a

visualization and storage tools that can be used for data mining or alert generation. With

this in mind, contributions of this thesis are the following:

12

• Implementation of centralized logging infrastructure for Linux based servers within

small company environment;

• Comparative analysis of widely used log collection daemons that utilize syslog

protocol;

• Comparative analysis of event correlation solutions;

• Development of event correlation rules for attack patterns within log files, with the

purpose to defend commonly used infrastructure daemons;

• Implementation of real-time active defense against common malicious patterns;

Also, another major contribution of the thesis are publicly available configuration files of

solutions within the presented scope, implementation instructions, helper scripts and event

correlation rules.

1.2. Outline

Chapter 1. provides information on problem background while also identifying specific

issues that are to be addressed in the upcoming chapters.

Chapter 2. presents an overview of existing infrastructure defense solutions and previous

scientific research.

In Chapter 3. the author will test and compare log collection and event correlation

solutions which are described briefly in Chapter 2.

Chapter 4. describes the implementation logic of centralized monitoring and correlation

system which is based on components chosen as a result of Chapter 3 comparative

analysis.

Results with possible improvements will be summarized in Chapter 5. Technical

configuration files and test output data of Chapter 3. comparison shall be presented in the

13

Appendices section. Implementation guidelines, scripts and event correlation rules are

publicized and maintained by author in [54].

1.3. Acknowledgments

The author would at this point like to expand his gratitude to those who supported him. To

board members of Spin TEK AS, who provided the opportunity to tackle such problem. To

his friends Anti Räis and Tanel Liiv, who were pressing the buttons that generated his log

data. Anti in particular, for authoring the VividSEC plug-in for Sublime text editor, and all

the constructive conversations while consuming countless gallons of alcoholic beverages

with the author. Last but by no means least to Risto Vaarandi, for creating SEC event

correlation tool and mentoring the thesis.

14

2. Overview of existing solutions and related work

This chapter reviews existing work on intrusion prevention and security monitoring

solutions. Important aspect to keep in mind is the fact that fast development of cyber

security field can render previous works incomplete or ineffective. Therefore, this chapter

does not attempt to cover all academic work and industrial solutions of the last 15-20

years, but will rather focus on recent and most influential work.

2.1. The roles of IDS and IPS in evolving IT landscape

The automated threat detection and incident handling is usually carried out by dedicated

Intrusion Prevention Systems (IPS) that differ from passive Intrusion Detection Systems

(IDS). IDS is a software solution that detects attacks on information system, usually with

the intent to generate alerts, and notify the persons who are responsible. IPS is a solution

that, in addition to detecting abnormal traffic, has the ability to take automatic action

against the possible attack. Human element might fail to notice monitoring alerts from IDS

or simply not be able to respond in time, thus giving the attacker significant advantage.

As discussed in the SANS institute white-paper written by Doug Brown [9], active

response versus passive notification is not the only aspect that differentiates IPS from IDS.

IPS systems must also employ lower tolerance for false positives, as the repercussions are

far more severe in those cases. Therefore IPS cannot simply be described as an “IDS that

blocks traffic”. On technical level, both solutions generally rely on network packet

inspection and incorporate aspects of one another. For example, IPS should feed events

back into the system in order to allow debugging of signature accuracy. While the article

15

focuses mainly on HP TippingPoint IPS, it also makes a convincing argument to separate

the two solutions [9].

IPS duties are often delegated to application aware firewalls, but their ability to understand

traffic can be circumvented by knowable attacker, or even IT professionals who are

responsible for implementation. As presented within the white-paper by Justin Crist,

systems deployed in haste can often cause confusion within IDS or IPS systems [10]. This

confusion manifests itself within false positives that can occur because application

developer was not aware of particular RFC standard. IPS systems can automatically block

traffic that does not correctly adhere to particular standards. Another example would be

configuring well-known services on non standard network ports. IPS might flag traffic

destined to such ports as malicious, which could result in self-inflicted Denial of Service

(DoS). Also, many firewalls employed by small companies often rely on simple open-

source Linux netfilter-based access control, rather than deep packet inspection. The latter is

an exclusive feature of commercial firewalls from Cisco, Juniper, HP and other vendors.

Another interesting aspect of the research paper [10] is the focus on web applications,

importance of which can be summarized with the statement “All organizations which

maintain a web presence are at risk of being attacked”. OWASP community maintains

overview of most common vulnerabilities within web applications [36] to raise awareness

among application developers. A weakness within web application can result in significant

business impact if a successful attack were to be carried out against it.

According to Gartner [38], the leading IPS vendors in 2013 were SourceFire (acquired by

Cisco), McAfee and HP. Cisco and IBM were listed as main challengers while Stonesoft

(acquired by McAfee) and Radwere were listed as visionaries. HP is the maintainer of

TippingPoint IPS product, which is described in [9]. McAfee produces the Network

Security Platform with models that range from 100 Mbps to 40 Gbps of throughput [38].

SourceFire is also the commercial manager of Snort, the most widely used open-source

Network IDS (NIDS) in the world, which can also function as an inline IPS when properly

configured. “Proper configuration” means that sensor software must have access to raw

16

stream of network packets [39]. Comparison between Snort and Suricata, two competing

open-source IDS solutions, was carried out by White, Fitzimmons and Matthews [40].

Comparison was based on performance, which resulted in Suricata out-performing Snort.

This was due to the fact that Snort was not able to utilize multiple CPU cores.

Any monitoring system that relies on network packet analysis has several drawbacks with

most severe being inability to analyze encrypted traffic. Web applications are commonly

secured with TLS/SSL to enable end-to-end transport encryption between server and client.

NIDS systems need to have access to private key used for encryption, or be placed before

the encryption endpoint. Yamada, Miyake, Takermori, Studer and Perrig proposed a

method to analyze encrypted traffic by measuring the transferred data size and timing. [41]

They conclude that the method can be used to “detect several types of web attacks”, but

“conditions are much harder than conventional anomaly detection”. They also point out

that those conventional methods must “archive thousands of Web pages beforehand and

compare captured packets” [41]. Overall, the application of proposed methods would be

justified only for internet service providers or governmental institutions. Snort manual

suggests analysis of encrypted traffic to be disabled, since it unnecessarily consumes

resources, and can only generate false positives [42]. Another caveat to consider is the fact

that data-center management is often outsourced to internet service providers (ISP).

Implementation of any networking equipment, for example application aware firewalls and

switches with port mirroring capability, might not be technically possible.

Since attack footprints can be found within log files, Linux system administrators often use

a tool called Fail2ban. It functions as a host IPS (HIPS) by monitoring local log files for

repeated access failures from distinct remote IP address, and setting up a Iptables DROP

statement for that distinct IP once failure threshold has been reached. While highly useful,

it must be configured on each host separately, and lacks the ability to detect complex attack

patterns. Therefore it would not be sufficient deterrence against advanced targeted attacks.

Another similar tool is DenyHosts, which only thwarts brute-force attacks against SSH

servers.

17

2.2. SIEM systems

A general overview of Security Information and Event Management (SIEM) systems can

be found within the SANS Institute white-paper by ISACA work-group, [11] which

explains the nature of the system as combination of two technologies: Security Event

Management (SEM) and Security Information Management (SIM). The respective purpose

of those technologies are real-time and historical analysis of monitoring data, for

identification of security incidents. The detailed reports provided by SIEM systems also

provide information needed to demonstrate compliance during audits [11].

White-paper [11] proceeds to present general overview, business benefits and potential

risks involving SIEM systems, which exemplifies their primary focus – data collection,

aggregation, analysis and reporting. While SIEM systems provide several benefits, the

drawbacks also have to be taken into account. A survey conducted in 2013 by alQnetworks

[6] revealed that “managing the complexity of the product is considered the biggest

headache when using SIEM, followed by lack of trained personnel to manage the product

and lack of integration with other products”. The facts are clear – of the responder pool

nearly 31 percent would prefer to replace their existing SIEM solution for better cost

savings; 25 percent have invested more than month in professional services since the

implementation of their current SIEM solution; and 52 percent require two or more full-

time employees to manage the chosen solution [6].

Today there are number of commercial SIEM solutions in the market, such as ArcSight,

Juniper, STRM, Envision; etc [5]. However due to their cost many smaller companies are

using open-source SIEM or log management systems. One such is OSSIM which is

available in the form of virtual appliance.

In the case of OSSIM, event data can be collected via dedicated agent or directly from log

daemons on client side. Primary method of intrusion detection is carried out by Snort IDS

while the proactive value is the output of event alerts that can used by developers to harden

web applications against specific risks [10]. Therefore, it can be assumed that open-source

18

SIEM systems share the deficiencies of conventional IDS solutions, because they mainly

focus on presenting IDS alerts on central dashboard.

The same functionality can be achieved by outputting IDS alerts as event messages, and

presenting them with any open-source log management and parsing solution. Enterprise

log search and archive (ELSA) is a centralized framework built on Syslog-ng, MySQL and

Sphinx full-text search [43]. Graylog2 is a Java-based log management server that collects

remote log messages via input listeners, and stores them within Elasticsearch indexing

engine. Log messages can then be searched and analyzed via web interface [44]. Kibana is

a Java-based web interface that presents log messages that are stored within Elasticsearch.

Log messages can be forwarded to back-end database by collector parsing engine, such as

Logstash, that formats messages by field [45]. Other, more simplistic, solutions are web

applications written in PHP, for example php-syslog-ng and LogAnalyzer. Such solutions

present log data that is stored within SQL server. In depth analysis of log management

tools was carried out within the 2013 Master's thesis of Artyom Churilin [53]. The work

compares Graylog2, Kibana and ELSA, and illustrates implementation of such

technologies.

2.3. Syslog protocol

When an event, which can be explained as a change in the system state, occurs, a relevant

component within that system can output an event message. Event logging is a procedure

of writing that event message to a local or remote data storage, referred to also as event

log. Event log messages on UNIX-like platforms commonly adhere to BSD syslog

protocol which was developed by Eric Allman during the 1980s for the sendmail program,

and is considered to be de facto protocol for event logging [12].

19

RFC3164 defines the standards and implementation best practices for BSD syslog protocol

[13], which are outlined in the following list:

• Any process on any device might generate an event message;

• As a general rule, many devices can send messages to relatively few collectors;

• Syslog uses UDP as underlying transport layer mechanism;

• UDP port 514 has been assigned to syslog, with recommendation to use UDP port

514 as sender source;

• Syslog message is composed of PRI, HEADER and MSG parts;

• PRI (priority) is a combination of Facility (assigned numerical value to operating

system daemons and local channels) and Severity;

• HEADER contains time-stamp and indication of sender host name or IP address;

• MSG contains information regarding the process that generated the message.

Diagram 1 illustrates the syslog message format and priority calculation formula. Header

part is a combination of time-stamp and host name while message content is arbitrary text.

Diagram 1. BSD syslog format

The protocol is also covered in depth within “The Ins and Outs of System Logging Using

Syslog”, which provides a detailed overview of syslog protocol, and emphasizes

shortcomings in message transmission [14]. Messages are sent to remote hosts via stateless

UDP protocol which provides neither confidentiality, authentication nor integrity support,

leaving BSD syslog protocol susceptible to Man-in-the-Middle (MitM) attacks. As a

consequence, messages transferred via RFC3164 are not valid forensic evidence because

message integrity cannot be proven.

20

For this reason RFC3164 was rendered obsolete by RFC5424, commonly referred to as

“the IETF syslog protocol”, which specifies the standard to “separate message content

from message transport while enabling easy extensibility for each layer” [15]. Primary

additions include extensions for presentation of vendor specific values, and description of

minimum requirements for message transport. All implementations must support TLS

based transport (as described in RFC5425 [16]) while also maintaining support for legacy

UDP (as described in RFC5426 [17]). TLS, specified to use port 6514/tcp, is considered to

be recommended choice to ensure message confidentiality, integrity and peer authenticity.

[15] The use of TCP protocol is described in RFC6587, published in 2012, which aims

retroactively standardize various TCP implementations. While the document outlines the

fact that functional TCP implementation have been used for several years despite the lack

of standardization, RFC5425 remains as the recommended guideline to follow when

presented with a choice of transport layer protocol [18].

2.4. Log collection software

UNIX syslogd has been the daemon of choice for collecting syslog messages in BSD

format that, in addition to reading local file system socket and storing messages in text

files, can send and receive messages using UDP port 514 [20]. In order to address the

deficiencies in of syslogd, two competing open-source syslog daemon solutions have

emerged – Syslog-ng and Rsyslog. Both solutions provide support for standards described

by RFC5424-5426, and advanced functionality (for example storing messages in database

systems). NXLog is another open-source syslog implementation that has emerged in recent

years.

An overview of popular syslog daemons and log management tools was written by

Vaarandi and Nizinski. [7] The paper presents performance tests of syslog collection

daemons Rsyslog, Syslog-ng and NXLog. Rsyslog, which evidenced superior performance

to other daemons, was also compared with Logstash in a similar test [7]. It should also be

taken into account that a blog post by Zoltán Pallagi, a senior member of Syslog-ng team,

21

attempted to disprove the performance results presented within the research paper. In the

post he claims that “using the Syslog-ng basic configuration, as was done in this study, can

produce misleading results“; [19].

Another work that focused on log infrastructure performance was written by David Lang,

which documents the choices taken and lessons learned within Digital Insight (currently

acquired by Intuit) [21]. Rsyslog was the chosen solution over commercial logging

products due to financial and compatibility reasons, and Splunk was used for log indexing.

David Lang has also published a presentation paper which covers extensively the

configuration syntax and filtering options present in Rsyslog [46].

2.5. Event Correlation

Event Correlation can be defined as relating any number of events via patterns [37], and

illustrated with quote “By aggregating a set of events, one new event may be created

containing a better information quality. This reduces the effort for (human) analysts.”;

written by Zirkel and Wirtz in the context of problem management [24]. Another article

was written by Christopher Crowell, illustrating the use of event correlation for root cause

analysis in problem solving [25]. General event correlation concepts can easily be adopted

to log data monitoring.

Different techniques of intrusion detection, response options and complex event correlation

were written by Mustafa Toprak within his Master's thesis [22]. Practical importance of log

correlation is covered in 2003 paper by Abad, Taylor, Sengul, Yurcik, Zhou and Rowe, in

which a list of UNIX vulnerabilities is analyzed to find potential intrusions [23]. A SANS

Institute white-paper provides an overview about creating custom SIEM applications.

Event correlation was presented as one of the key components with Simple Event

Correlator (SEC) being the event correlation solution which was directly referenced [26].

22

SEC is a lightweight open-source event correlation engine written in Perl, which is able to

read input from files, and generate events from predefined rules by utilizing Perl regular

expression engine. An overview of motivations for creation, event correlation concepts,

and adoption within industry, is presented within the PhD thesis of Risto Vaarandi, the

author of SEC [27]. However, a large part of thesis is composed of now outdated

functionality description. The most up to date version can be found on SEC manual pages

[28]. The paper by Vaarandi and Grimaila [29] highlights the capability of this tool to

identify information security related events within real world environments. Several

technical examples are presented to illustrate this point. A research paper written in 2011

by Myers, Grimaila and Mills [30] utilized this tool for the following reasons:

• Easy configuration thanks to standard format and available documentation;

• SEC is used in many organizations, giving credence to its effectiveness.

Research is concluded with the statement that, while security value is proven, there is a lot

of untapped potential in log analysis as it is done currently (due to inadequate

implementation techniques) [30]. Similar subject was covered within 2010 Master's thesis

of Justin Myers that analyzed the use of SEC, in distributed manner, as an alternative to

centralized SIEM solutions to identify malicious insider threats [31]. Event messages from

different platforms can be read cross-correlated. Also, the use of SEC for the detection of

security incidents within Windows workstations was outlined in a research paper that was

published by SANS institute in 2013. Practical value of the paper is enhanced by the fact

that it also contains rules for real time detection of several abnormal events [32].

23

3. Comparative analysis of open-source log collection
and correlation tools

In this thesis, the author proposes the implementation of a centralized logging

infrastructure with event correlation functionality, in order to create a real-time monitoring

system with automated response capability. Based on literature review in Chapter 2, the

critical components of such system would be syslog collector daemons and SEC.

In order to select the best software for the monitoring system, the author has conducted

performance tests and made analytical comparisons between syslog daemons and

correlation solutions. Previous comparisons of open-source log collection tools have been

evidently made on ad-hoc basis with the most recent comparison, presented in Chapter 2

[7], being limited by scale and is somewhat outdated. In previous works by other

researchers, functionality was briefly described, and configuration syntax was presented

mainly as illustration for performance tests, the latter being subject to criticism. Please note

that functionality and configuration nuances are critical factors for administrators who are

tasked with continuous system maintenance. Therefore, the current chapter aims to provide

an up-to-date and expanded comparison, which also takes into account small company

background and event correlation context.

Based on performance tests and analytical comparisons from this chapter, components are

selected for implementing the centralized logging and event correlation solution. The

practical implementation and SEC ruleset development aspects of this overarching solution

will be presented in Chapter 4.

24

3.1. Log Collection tools

As presented in Chapter 2, two competing syslog daemons on Linux and other UNIX-like

platforms are Rsyslog and Syslog-ng. NXLog, while not as widely adopted as other

solutions, is another highly capable log collection daemon that should be taken into

account. Several different versions of Rsyslog and Syslog-ng have been compared since

these syslog servers are widely used, and as of April 2014, selected versions are most

commonly used. Following software is chosen for comparison:

• Rsyslog 5.8 [47];

• Rsyslog 7.6 [48];

• Rsyslog 8.1 [49];

• Syslog-ng 3.3.4 [50];

• Syslog-ng 3.5.4.1 [51];

• NXLog 2.7 [52].

Open-source log parsing tools are outside the scope of thesis. Logstash, for example, is a

Java based log parser that can gather its data from existing syslog daemons, or via custom

Logstash agent. Such software would effectively only add to the complexity of

implemented solution, since they do not provide any benefits over using only syslog

daemon.

The operating system used for implementation is Ubuntu Server 12.04 LTS (14.04 release

date is within the time-frame of writing but will not be implemented yet) which maintains

backward-compatible versions of Rsyslog 5.8 and Syslog-ng 3.3 within its official software

repository (support ends in year 2017). System administrators often prefer to use older

stable software versions with guaranteed Long Term Support (LTS) over newer versions,

which would provide better functionality. As such, those older stable versions will also be

included to comparison. Rsyslog also provides development version 8.1 that promises

performance improvements over previous iterations, therefore this version is also included

into performance tests. NXLog binary package is not maintained by Ubuntu developers (it

cannot be installed via package manager), and only latest version is provided as binary

25

installer by NXLog developers. Therefore only latest NXLog version is included.

3.1.1. Functionality

Table 1 presents a detailed feature comparison of commonly used releases of Rsyslog,

Syslog-ng and NXLog. This table is partly based on comparison between Rsyslog and

Syslog-ng that was originally created in 2008 by Rainer Gerhards and was updated in 2012

to reflect changes in Rsyslog [33]. The article is licensed under GNU GPL version 2. Apart

from the info from [33], the author has included detailed feature comparison data for

Syslog-ng and NXLog in Table 1. Some functionality, such as Enterprise Features, are

omitted from Table 1 to reflect the thesis background (open-source centric small business).

Some other fields have been expanded to reflect new technology support and features

unique to Syslog-ng or NXLog. Since several Rsyslog 8.1 intended modules are not

operational, this development version is not included within the functionality analysis.

Feature
(community/ open-

source version)

Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

Input Sources
(Native)

Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

UNIX domain
socket

+ + + + +

UDP + + + + +

TCP + + + + +

RELP + + - - -

RFC3195/BEEP
[34]

+1 +2 - - -

Kernel log + + + + +

File + + + + +

Message generator +3 + + + -

Windows Event Log - - - - +

1 Only present in IPv4 version
2 Only present in IPv4 version
3 Available since version 5.5

26

Network Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

TCP + + + + +

GSS-API + + - - -

ACL + + + + -

UDP + + + + +

RELP + + - - -

Compression4 + + - - -

RFC3195 +5 +6 - - -

TLS + + + + +

RFC5424-5426 + + + + +

IPv6 + + + + +

Send SNMP traps + + - - -

Preserve original
host-name

+ + + + +

Filtering Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

Facility and priority + + + + +

Host-name + + + + +

Application name + + + + +

Message contents + + + + +

Sender IP + + + + +

Sub-string filtering + + + + +

Boolean algebra in
filters

+ + + + +

Reusable filters - - + + +

String expressions + + + + +

POSIX Regular
Expressions

+ + + + +

Perl Compatible
Regular Expressions

- - + + +

Discard messages + + + + +

Event Correlation - - + + +

4 Compression of messages during transport
5 Only present in IPv4 version
6 Only present in IPv4 version

27

Output Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

MySQL + + + + +

PostgreSQL + + + + +

Oracle + + + + +

SQLite + + + + +

Microsoft SQL + + + + +

Sybase (Open TDS) - + - - +

Firebird/Interbase + + - - +

Ingres + + - - -

mSQL + + - - -

MongoDB - + + + +

Elasticsearch - + - - -

CSV - + + + +

XML - + - - +

JSON - + + + +

STOMP - - - + -

SMTP + + - + -

GELF - - - - +

Platform support
(native)

Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

Linux (Generic) + + + + +

Windows - - - - +

Configuration Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

Include from file + + + + +

Include from
directory

+ + + + +

Extensibility Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

Module support + + + + +

Third-party input
plug-ins

+ + + + +

Third-party output
plug-ins

+ + + + +

28

Other Rsyslog 5 Rsyslog 7 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

Dynamic output file
naming

+ + + + +

Control over log
output format

+ + + + +

RFC3339 [35]
support

+ + + + +

Log files larger that
2GB

+ + + + +

Log rotation + + + + +

Script triggering + + + + +

Pipe messages to
continuously

running program

+ + + + +

Multi-threading + + + + +

Limit repetition + + + + +

Multiple actions per
filter

+ + + + +

Web interface7 - - - - -

Flow-control +8 + + + +

DNS cache - + + + -
Table 1. Syslog daemon feature comparison

All subjects of comparison provide quite similar feature set, with clear advances per

version update. Table 1 may contain some inaccuracies, for example use of RFC3195 has

been depreciated in favor of RFC5424. Software may still support it but documentation is

limited (Rsyslog documentation points out that the use of RFC3195 transmission protocol

is only supported over IPv4 due to lack of demand for IPv6 support). In the case of

database back-ends, generic drivers could be used to connect to SQL servers which were

not listed in official documentation. If functional support exists but is not represented in

documentation, then author did not include it within Table 1.

7 While not a built-in feature, several log management solutions provide this functionality
8 Available since version 5.7

29

Rsyslog 7 is the only solution that allows log messages to be saved directly in

Elasticsearch indexing back-end. This would provide significant advantage if, additionally

to real-time monitoring, the solution would later be expanded to provide long term log

storage functionality. Some improvements of Rsyslog version 7 over version 5 include

support for additional log parsing options (including XML, CSV and JSON) and support

for MongoDB back-end. All included versions of Rsyslog can also transport event

messages via custom Reliable Event Logging Protocol (RELP), but danger of vendor lock-

in when support for universal RFC5424 exists in every compared syslog daemon would be

a deterrent against using it. Syslog-ng and NXLog allow reusable filters to be written,

which is an advantage over Rsyslog. Syslog-ng 3.5 also provides support for STOMP

protocol which would be beneficial if custom log applications were to be written for

centralized log monitoring and correlation solution. This is outside the scope of current

thesis.

The most beneficial features of NXLog are existence of native binary package for

Microsoft Windows operating systems, support for Windows EventLog format and event

correlation module. Log collection from Windows platform is outside the scope of this

thesis, but since such servers exist within the infrastructure of Spin TEK, the feature cannot

be ignored. NXLog also supports Graylog Extended Log Format (GELF) message output

which could be useful if Graylog2 log management solution would later be incorporated to

the monitoring system. Use of universal syslog protocol would still be preferable in that

scenario, as it is supported by Graylog2. Syslog-ng supports event correlation but, unlike

SEC and NXLog, does not contain different rule types (one or more patterns within

configured time window can be identified, which would result in generation of event

message). Therefore correlation functionality is too limited when compared to SEC.

Every compared solution supports RFC5424 standard. Because sender and receiver only

have to understand common message format and transportation mechanism, it can be

concluded that monitoring solution is not limited to only one syslog daemon across

multiple infrastructure devices.

30

3.1.2. Configuration

This chapter provides an overview of Rsyslog, Syslog-ng and NXLog configuration

syntax. Two sample scenarios were chosen by author – simple and complex. Simple

scenario illustrates basic message forwarding functionality. Complex scenario reflects the

need of Spin TEK AS to manage web server logs. In simple filtering scenario, all messages

must be forwarded to port 6514/tcp on remote host while messages with mail syslog

facility value are also stored within text file on local device. In complex filtering scenario,

Apache2 web server access and error logs must be stored within separate text files.

Rsyslog was written to be a descendant of legacy syslogd, which means that configuration

follows the same principles. Selectors filter the log messages by facility and priority while

Action specifies where the message should be sent to or displayed at. This includes local

file storage, “pipelines”, terminals, users or remote hosts. Simple filtering with Rsyslog is

visually clean.

$ModLoad imuxsock
$ModLoad imklog
mail.* /var/log/mail
. @@192.168.0.180:6514

Additional functionality in Rsyslog includes numerical and textual keywords for syslog

protocol elements, for example facility, message and severity. Complex filters can be

created by combining these keywords with evaluation operators like contains, startswith

and endswith. The following Rsyslog example illustrates the complex filtering scenario.

$ModLoad imuxsock
$ModLoad imklog
if $syslogtag contains 'apache' \

and $syslogpriority == 3 then /var/log/apache2/syslog-error.log
if $syslogtag contains 'apache' \

and $syslogpriority != 3 then /var/log/apache2/syslog-access.log

Rsyslog does not support reusable filters – syslogtag evaluation is combined with priority

evaluation, but former has to be redefined for every filter. A better way to achieve this

would be the use of if-else statements.

31

if $syslogtag contains 'apache' then {
if $syslogpriority == 3 then

action(type=”omfile” file=”/var/log/apache2/syslog-
error.log”)

else
action(type=”omfile” file=”/var/log/apache2/syslog-

access.log”)
}

Even when documented, long configuration files containing such filters can be difficult to

manage. Rsyslog introduces incremental extensions to configuration options per version

update, which can be illustrated by the fact that multiple distinct syntax versions are

supported in parallel (“old” and “new” versions, as described in [46]). Common practice is

to utilize file inclusion to maintain manageability of large configuration sets. Files with

“.conf” suffix, placed in /etc/rsyslog.d/ folder, are extensions of main configuration file.

Syslog-ng uses a custom configuration syntax that divides directives into logical blocks.

The following configuration directives realize the simple filtering scenario.

source s_src {system(); internal();};
filter mail_all {facility(2);};
destination d_remote {tcp(“192.168.0.180” port(6514););};
destination d_file {file(“/var/log/mail”);};
log {source(s_src); destination{d_remote};};
log {source(s_src); filter(mail_all); destination(d_file);};

When compared to Rsyslog, simple filtering directives are more complex. This is due to

the fact that Syslog-ng configuration blocks are designed to be invoked at will. Both log

directives in the example use the same source and only small modifications are needed

within second log directive (addition of filter and change of destination). Following

Syslog-ng configuration realizes the complex filtering scenario.

source s_src {system(); internal();};
filter apache {program(“apache”);};
filter error {level(3);};
filter access {not filter(error);};
destination d_file_error {file(“/var/log/apache2/syslog-error.log”);};
destination d_file_access {file(“/var/log/apache2/syslog-access.log”);};
log {source(s_src); filter(apache); filter(error);

destination(d_file_error);};
log {source(s_src); filter(apache); filter(access);

destination(d_file_access);};

32

The overall level of complexity stays nearly the same when compared to simple Syslog-ng

example. Each filter is created once and invoked when needed, which is similar to

functions in programming languages. The benefits of procedural approach is universally

accepted by IT specialists – the ability to trace configuration flow, especially by someone

who has not written the original directives, outweighs the initial learning curve. Syslog-ng

configuration blocks can be written in one line or separated by newlines and white-spaces.

NXLog uses Apache-style configuration syntax that contains one directive per line

(“newline” is evaluated as delimiter) while directives are grouped into configuration

blocks. Anyone who has configured Apache web server or XML documents should have

little trouble adjusting to log directives. The following code is equal to previous simple

examples.

<Input unix>
Module im_uds
uds /dev/log
Exec to_syslog_ietf();

</Input>
<Input kern>

Module im_kernel
Exec to_syslog_ietf();

</Input>
<Output tcpout>

Module om_tcp
Host 192.168.0.180
Port 6514

</Output>
<Output mail_file>

Module om_file
Exec if $SyslogFacilityValue != 2 drop();
File “/var/log/mail”

</Output>
<Route 1>
 Path unix,kern => tcpout,mail_file
</Route>

Syntax is clear and flexible, but basic filtering example requires a large amount of

configuration when compared to Rsyslog. It must also be stated by author that clear

overview of simple filtering by syslog facility was surprisingly difficult to find in official

documentation. NXLog configuration block invocation approach is similar to Syslog-ng,

33

but the latter provides better documentation of variables supported within modules. The

following NXLog directives are functionally analogous to complex filtering examples.

<Output apache_error>
 Module om_file
 Exec if $SourceName != "apache" drop();
 Exec if $SyslogSeverityValue != 3 drop();
 File "/var/log/apache2/syslog-access.log"
</Output>
<Output apache_access>
 Module om_file
 Exec if $SourceName != "apache" drop();
 Exec if $SyslogSeverityValue == 3 drop();
 File "/var/log/apache2/syslog-access.log"
</Output>

Author has omitted input and route definitions in this example. Inverse drop() filters are

used because they provide performance benefits over deprecated pm_filter processor

module. Any message that matches conditions in Exec directive will be not be processed.

NXLog allows Exec directive to be used in any configuration block; Input, Processor or

Output. To reduce redundancy, the SourceName directive could be moved to separate

Processor which would also mean that separate Route has to be created.

Overall, the benefits of Rsyslog are the most apparent when presented with simple

configuration scenarios. When configured with high number of complex filters, proper

documentation and configuration file version management procedures should be in place to

ensure manageability of monitoring system. Syntax is flexible, but fragmented in recent

software release versions. Anyone who does not have extensive experience with Rsyslog

would experience difficulties in ensuring continuous monitoring system maintenance.

On the other hand, Syslog-ng provides a structured approach as the only option. The initial

learning curve is more difficult when compared with Rsyslog, but configuration logic is

easier to trace. Syslog-ng learning curve also becomes less intensive after basic concepts

have been introduced to system administrator.

NXLog provides structured approach that is nearly as good as Syslog-ng. Anyone familiar

with Apache configuration or XML will have little trouble with initial understanding of

34

syntax. Initial understanding can be easier to attain when compared to Syslog-ng, but latter

does provide better documentation. This does not imply that NXLog documentation is bad,

it simply requires more manual search than Syslog-ng.

3.1.3. Performance

In this section, the author presents the results of performance tests that were conducted on

selected syslog daemons. Most modern CPU-s provide enough computational throughput

to process a large amount of log messages, but resources for practical implementation are

limited. A finite number of logical CPU cores can be allocated to virtual machines.

Processing efficiency is an important factor, since physical CPU cores are shared between

multiple virtual machines.

Log monitoring and event correlation solution do not require memory intensive indexing

solutions. Event messages are stored in text files that can easily be compressed during

process known as “log rotation”. Therefore memory and disk space are not included as

comparison criteria.

The tests that are presented in this section measure the usage of CPU time (in seconds),

elapsed wall-clock time (in seconds) and CPU utilization (in percentage). Measurements

are designed to reflect the resource consumption and throughput of the tested syslog server

(for example, if the server is able to handle 1 million messages in 5 seconds, it's throughput

is 200,000 messages per second). Following central testing method is used to reflect

realistic environment with maximum accuracy:

1. Central server node receives log messages from 5 remote host nodes;

2. 2 CPU cores are allocated to remote host nodes;

3. Syslog daemons are compiled with configuration options that are presented in

Appendix 1;

4. Log generation script (presented in [54]) is deployed on each host;

5. 4 parallel script executions are carried out on each host;

6. Each script generates 300 000 messages;

35

7. Syslog daemon is executed with Linux time utility to measure the throughput for

processing 6 000 000 messages from 20 parallel generators.

The time utility also measures CPU time when syslog daemon is activated but no messages

are yet received. Therefore syslog daemon initialization, log generation on remote hosts

and syslog termination must be synchronized.

1. Clocks of each node are synchronized from private NTP server using ntpdate

command;

2. Linux crontab is used for parallel initialization of syslog daemon with time

command, and log generator scripts on remote hosts;

3. Last log message sent from generator scripts contain string “DONE”;

4. A syslog daemon filters messages containing that string to separate log file;

5. After 20 occurrences of that string have been detected, a syslog daemon is

terminated with pkill command;

6. Measurements from time command are appended to text files once syslog daemon

is terminated.

Parallel execution via crontab avoids the “Firing squad synchronization problem”, as

alternative method of using SSH to sequentially initiate log generation would introduce

delay between each script execution. Table 1 presents the results of first benchmark in

which no complex filtering is configured and 8 CPU cores are allocated to central server.

Note that CPU time is calculated across multiple threads, allowing it to exceed wall-clock

time of benchmark duration. Utilization percentage, presented by GNU version of time

utility, is calculated by dividing CPU time with wall-clock time. Arithmetic average values

of 3 test iterations are presented in Tables 2-5. Comprehensive output data of each test is

uploaded to [54]. Daemon configuration directives are presented in Appendix 2.

36

Average Rsyslog 5 Rsyslog 7 Rsyslog 8 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

CPU time
(seconds)

25,56 20,97 20,25 61,86 58,3 428,34

Wall-clock
time

(seconds)

23,05 7,95 9,7 13,21 12,3 168,5

CPU
utilization

(percentage)

111 264 215 486 472 254

Table 2. BSD message processing with 8 CPU cores

Rsyslog 7 is the most efficient syslog for unfiltered log message processing. Version 7 also

displays ability to use multiple threads while maintaining CPU efficiency. Version 8 is

under development, so lower utilization percentage may be due to software instability. All

Syslog-ng versions are less efficient than Rsyslog, but former display higher utilization of

multiple CPU cores. Syslog-ng version 3.5 displays highest CPU utilization with resulting

throughput that is slightly weaker than Rsyslog version 7 and 8. NXLog performance is the

weakest. Table 3 presents second benchmark which is conducted with complex filters.

Each priority level is stored to different file that is configured using dynamic log file

naming, essentially forcing the server to sort messages into 192 different log files. Daemon

configuration directives are presented in Appendix 3.

Average Rsyslog 5 Rsyslog 7 Rsyslog 8 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

CPU time
(seconds)

86,75 105,97 86,15 112,65 107,09 1021,21

Wall-clock
time

(seconds)

85,55 82,47 76,55 21,65 20,75 366

CPU
utilization

(percentage)

101 128 112 520 516 278

Table 3. Filtered BSD message processing with 8 CPU cores

37

Surprisingly, Rsyslog seems to lose multithreading ability when filtering messages to

different files. Version 7 is also less efficient compared to version 5. Both versions of

Syslog-ng, on the other hand, are able to effectively use CPU time of 5 cores to process

messages slightly faster than in tests displayed in Table 2. Rise in utilized CPU time is also

smaller compared to Rsyslog, which seems to be four times less efficient than without

filtering. NXLog filtering seems to be extremely inefficient. Table 4 presents benchmark

results with 2 allocated CPU cores and no complex filtering. Daemon configuration

directives are presented in Appendix 2.

Average Rsyslog 5 Rsyslog 7 Rsyslog 8 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

CPU time
(seconds)

22,09 12,46 12,82 42,92 37,82 218,55

Wall-clock
time

(seconds)

20,38 9,12 9,17 29 26,89 140,92

CPU
utilization

(percentage)

108 136 139 147 140 155

Table 4. BSD message processing with 2 CPU cores

Results are analogous to first test with execution times that are nearly identical for all

syslog daemons. Rsyslog 7 is the most efficient syslog daemon. Syslog-ng exhibits higher

utilization on multiple threads, while all Rsyslog versions are more efficient in terms of

CPU usage. and Table 5 presents the results of benchmark with 2 allocated CPU cores and

complex filtering configuration. Daemon configuration directives are presented in

Appendix 3.

38

Average Rsyslog 5 Rsyslog 7 Rsyslog 8 Syslog-ng
3.3

Syslog-ng
3.5

NXLog 2.7

CPU time
(seconds)

85,49 94,77 80,67 69,92 62,91 585,91

Wall-clock
time

(seconds)

87,03 89,72 77,11 45,03 41,3 318,86

CPU
utilization

(percentage)

98 105 104 155 152 183

Table 5. Filtered BSD message processing with 2 CPU cores

Compared to 8 CPU core results displayed in Table 3, Rsyslog all versions maintained

similar performance while Syslog-ng both versions suffered throughput drop of nearly 2

times. Syslog-ng still processed messages faster than other daemons and exhibited most

efficient CPU usage. NXLog completed filtered tests with 2 CPU cores faster than with 8

CPU tests. This appears to be an anomaly with only possible explanation being higher CPU

utilization per CPU core – average 183 percent from maximum 200 were used against

previous 278 percent from maximum 800. As such, utilization of multiple threads seems to

cause anomalies in message processing time for NXLog.

Preliminary TLS tests were conducted. However, Rsyslog versions 7 and 8 caused network

stream interruption, which terminated message generation before test was complete.

Addition of encryption does not cause noticeable increase in CPU load. This is due to the

fact that daemons use external TLS libraries to create encrypted tunnel while message

processing logic remains unaltered. For that reason, the author did not include average

results of those tests in this section.

Overall, Rsyslog 7 proved to be most efficient when no complex filtering is in place while

Syslog-ng 3.5 provides better performance reliability and scalability with multiple CPU

cores.

39

3.2. Comparison of SEC and NXLog

Functionality analysis revealed the fact that NXLog provides pm_evcorr processor module

that is directly inspired from SEC. Please keep in mind that NXLog is a fully-fledged log

daemon while SEC is designed to be a monitoring tool that can be integrated into existing

logging environments. Performance benchmarks revealed NXLog to be the most inefficient

of selected syslog daemons. If the event correlation module were to provide competitive

feature set to SEC, then NXLog could still be considered as viable option for central syslog

server. SEC could then be omitted from overarching log monitoring and correlation

solution, which would provide clear benefits in terms of configuration management and

performance (NXLog is written in low-level C programming language while SEC is

written in Perl). The following sub-section will present analytical comparison of

functionality and configuration options between these event correlation tools.

3.2.1. Functionality

The most popular open-source event correlation tool is Simple Event Correlator [28]. It is a

Perl script that processes input messages according to defined rules, generates event on

positive match and carries out actions after event has occurred. Event messages are

matched by patterns based on strings or Perl regular expressions. Rules are defined within

configuration files that are passed to SEC on program initialization with --conf parameter.

The latest version, 2.7.5, supports following rule types:

• Single;

• SingleWithScript;

• SingleWithSuppress;

• Pair;

• PairWithWindow;

• SingleWithThreshold;

• SingleWith2Threshholds;

• EventGroup;

40

• Suppress;

• Calendar;

• Jump;

• Options.

Single rule matches event according to defined regular expression and executes action.

WithScript variation forks a process to execute external program while existing contexts are

written to standard input of that program. SingleWithSuppress variation filters repeated

events in specified time window, which avoids overloading system with excessive amount

of events and actions. SingleWithThreshold does not take action until certain number of

matches have occurred in set amount of seconds (specified as integer in Window directive)

while SingleWith2Threshholds executes a second pattern matching after first action has

been taken. For example, a rule could be written to block offending IP if password brute-

force attack is detected (5 log-in attempts in 1 second, obviously not a human error) and

remove that IP from blocked hosts if second threshold is met (0 attempts in 60 seconds). If

threshold is not reached by the end of time-frame, the time window is pushed forward

without extending it. Occurrences of positive pattern matches which are older than window

are dropped from match count. This is referred to as “sliding window”.

PairWithWindow rule matches two events. If event B does not occur after positive match of

event A, the first action is taken. If event B occurs, a second action is taken instead. Two

events must occur within defined Window which is optional attribute of Pair rule and

mandatory attribute of PairWithWindow rule. Pair rule logic is similar, but first action is

taken immediately after first event has occurred. EventGroup rule functions similar to Pair,

but multiple events can occur within defined time window in any sequence. Rule matches

repeated occurrences of patterns P(1),...P(n) to identify events E(1),...E(n). If N event

matches occur within T seconds, an action is taken. Sliding window is taken into account.

Final set of rules provide configuration flexibility. Suppress rule matches events without

executing any action, and prevents them from being matched by later rules in the same

configuration file. This allows exceptions to be made to certain occurrences of later rules,

41

for example HTTP POST queries from company internal network would not be matched.

Same pattern from remote IP address would generate an event which could be used to

block that IP. Calendar rule executes action when defined time matches system clock,

providing analogous functionality to UNIX cron daemon. The practical value of such

functionality would be periodic processing of information collected by other rules. Instead

of forwarding that information into external buffer which could then be accessed by scripts

executed by crontab, the same operation can be carried within single configuration set.

This would reduce complexity within SEC integration. Jump rule matches patterns and

delegates processing of those patterns to files defined within configuration set. Options

rule defines the configuration set into which the configuration file is added. Thus it would

be possible to create hierarchically structured configuration.

NXLog version 2.7 provides module pm_evcorr that is inspired by SEC [52]. Events are

processed by processor and forwarded to NXLog output module. As of April 2014, the

following rule types are supported:

• Simple;

• Suppressed;

• Pair;

• Absence;

• Thresholded;

• Stop.

Simple is equal to NXLog Exec statement that matches a pattern from syslog variable.

Suppressed matches first occurrence of pattern and ignores consecutive iterations within

configured Interval similar to SingleWithSuppress SEC rule. Pair rule requires

TriggerCondition and RequiredCondition to be evaluated TRUE within set Interval for

Exec statements to be executed. Unlike SEC version of Pair rule, NXLog does not carry

out action when only first condition is met. Absence rule only executes action if

RequiredCondition is not evaluated as TRUE. Therefore two rules have to be written to

achieve the same functionality as SEC. Thresholded is analogous to SingleWithThreshold

rule while Stop is analogous to Suppress. All rules except Simple and Stop support the use

42

of contexts similar to SEC. NXLog, unlike SEC, allows TimeField to be specified,

allowing offline log analysis to be conducted. Several complex options like multiple

thresholds or matching of asynchronous events are not present in NXLog. Offline event

generation could also be conducted with SEC by using UNIX “pipe” to read lines from log

file. This is because syslog time-stamp value is irrelevant in the event correlation logic (the

time of receiving the message according to system clock is used).

While pm_evcorr module does provide some functionality that is already present in SEC,

the overall feature set is weak. Therefore NXLog 2.7 cannot compete with SEC 2.7.5 in

event correlation functionality.

3.2.2. Configuration

This section provides an overview of SEC [28] and NXLog pm_evcorr [52] module

configuration syntax. SEC can be configured to read log messages from external source,

match events by regular expression and take actions upon positive match.

Diagram 2. SEC configuration flow

As illustrated in Diagram 2, SEC makes it trivial to define correlation rule and multiple

actions that should be taken upon match. NXLog pm_evcorr module must be defined as

processor directive. Diagram 3 illustrates configuration flow on NXLog modules.

43

Diagram 3. NXLog pm_evcorr configuration flow

NXLog event correlation rule configuration complexity is higher because SEC is designed

to read input from existing syslog infrastructure while NXLog consolidates log collection

and event correlation.

As evidenced by Diagram 2 and Diagram 3, utilization of single solution would not reduce

configuration complexity. This is due to the fact that log collection and event correlation

remain different functional entities. On the contrary, consolidation of two functions into

single daemon could have adverse effect on manageability. Changes in one can directly

cause problems in second.

The author shall now proceed by concluding the performance tests and analytical

comparison, and choosing monitoring solution elements.

3.3. Solutions selected for the monitoring system

The following subsection will conclude the performance tests and analytical comparison,

and present the components which were selected for the monitoring solution. Every syslog

daemon can be utilized within heterogeneous network environment. Rsyslog version 7

would be the best choice when no complex configuration or message filtering is required,

while version 5 could also adequately handle the task. For example, on syslog clients or

44

relay servers. This is due to the fact that the best course of action when implementing

centralized logging environment is to collect all log data from local device and forward

that data to central server. Complex filters would be configured on that server. Any

compared version of Syslog-ng would be an excellent choice for that task. Processing time

reliability, scalability across multiple CPU cores, dynamic filtering efficiency and good

configuration syntax makes it the best choice for central log collector. The only downside

when compared to Rsyslog and NXLog is lack of support for Elasticsearch and GELF

protocol which would make future addition of log analysis tool more difficult.

NXLog, while providing excellent feature set, proved to be underwhelming in

performance. Configuration syntax is structured better than Rsyslog but is outclassed by

Syslog-ng. At the time of writing, the feature set of NXLog pm_evcorr module is lacking

compared to SEC. If more rule types would be introduced, then NXLog could become

viable alternative to Syslog-ng solution. NXLog message processing would have to be

optimized in this case because main benefit of choosing pm_evcorr would be performance

benefits from utilization of multiple CPU threads, and the fact that NXLog is written in C

while SEC is written in Perl. Replacing Rsyslog or Syslog-ng central server with NXLog at

current time would mean severe performance drop in message processing. Despite not

being chosen as element of log monitoring solution, NXLog could still be utilized as log

collector from Windows hosts once they are integrated into the monitoring system.

45

4. Implementation

This chapter describes the implementation of centralized logging infrastructure with real

time event correlation functionality that is capable of automating defensive actions against

common attack patterns. Firstly the author shall give an overview of services within the

infrastructure, then the chapter will proceed to describe the actions needed to interface

existing Linux daemons with syslog infrastructure, and finally an analysis of log trails from

common attacks along with possible countermeasures will be conducted.

4.1. Infrastructure overview

This thesis is written from a perspective of small company that provides variety of IT

services. More specifically, the two currently employed administrators are directly

responsible for the continuous operation of following customer facing systems:

• Domain Name System;

• E-mail;

• Web hosting;

• Hosting of internally developed web services.

Spin TEK AS is an authorized second level domain (SLD) registrar of Estonian top level

domain (TLD) with “dot EE” suffix. Other SLD-s are also registered via external service

providers. On technical level those zones are published via primary and secondary BIND9

DNS servers. Due to legacy reasons those servers are at current time configured to allow

unrestricted recursive name resolution which exposes them to DNS amplification and

“cache poisoning” attacks [55]. This configuration, commonly referred to as “Open

46

resolver”, is currently accepted risk by management.

Company provides electronic mail service on two mailbox servers. Both are based on

Linux Postfix mail daemon with web interface, and allow e-mails to be downloaded via

Dovecot POP3 daemon. First is legacy server with Openwebmail interface that has proven

to be difficult to deprecate due to large number of client mailboxes and mailing lists. An

intrusion into arbitrary device within trusted network could be escalated to send a flood of

mass emails from that server [56]. Second server is configurable via ISPConfig3 interface

– customers are provided an administrative account which allows them to manage user

mailboxes for their organization. E-mails can be read with Roundcube web interface, or

downloaded via Dovecot daemon which also provides IMAP support.

Four servers are used to host client web sites on LAMP (Linux, Apache, MySQL, PHP)

stack. Three of them are in the process of deprecation, but continue to provide services due

to legacy reasons. Clients can upload code via PureFTP or Vsftp daemon and manage their

databases with PhpMyAdmin interface. Web application security risk is high due to the fact

that provided PHP version is deprecated but functionality of applications depends on it.

Internally developed web services are hosted on separate servers from standard web

hosting, but are also written in PHP scripting language. Back-end is stored within

PostgreSQL databases.

In addition to external services, the administrators are also responsible for the management

of Windows domain controller, Terminal servers, VmWare ESXi virtual machine hosts and

Samba file server. Every Linux server is also configured with SSH and SNMP daemons for

management purpose. To consolidate resources, several small companies employ

outsourcing business model which can be abstractly divided into three categories:

• Physical devices are hosted in server rooms where networking aspects are not

controlled by device owner;

• Virtual servers are acquired from cloud providers;

• Combination of two with virtualized server infrastructure on physical devices that

are hosted within service provider compound.

47

The employer of author currently uses the third option for the hosting of their production

infrastructure. Servers are physically located at server rooms of a major ISP. Central

firewall in this case is simple Linux server on legacy hardware that is used as default

gateway and traffic filter for Linux based virtual machines. Network switches belong to the

Spin TEK, and are separated from other ISP infrastructure by central firewall, but lack

advanced port mirroring capability that would allow for network traffic monitoring.

A common approach to managing security risks and legacy systems within production

environments is “Defense-in-depth”, which dictates a layered security mechanism. If one

security layer fails then others can still protect the system [57]. The ability to collect

information from multiple hosts and utilize real-time event filtering would serve as another

layer within existing defense strategy. IDS systems, like Snort, have the ability to output

alerts to syslog, allowing them to be later interfaced with existing logging infrastructure.

Author will now proceed to describe the centralized log monitoring infrastructure.

4.2. Centralized logging and event correlation infrastructure

This chapter describes the implementation of centralized logging infrastructure with real-

time event correlation functionality. Remote hosts will be configured to forward everything

to central server, any message filtering will be configured there. This is to reduce the

management overhead of syslog daemon configurations.

4.2.1. Certificate authority

In order to assure the confidentiality and integrity of transmitted event messages, both

syslog server and client must be configured to use authenticated TLS transport

functionality in accordance with RFC5424-5425 [15][16]. A common caveat in syslog TLS

configuration is the lack of mandatory authentication which leaves messages vulnerable to

MitM attacks, and can allow unauthorized devices to send event messages to central server.

48

An example MitM attack scenario would be “ARP poisoning” where all traffic destined to

syslog server is sent to malicious server within the network instead. That server could

intercept the messages and forward them to actual syslog server, potentially in modified

form. This can be mitigated by using peer-verify directive for Syslog-ng or

$ActionSendStreamDriverAuthMode for Rsyslog. The latter also allows common name

(CN) field within certificate to be checked with x509/name directive. CN field of peer

certificate must match Fully Qualified Domain Name (FQDN) within configuration file in

addition to certificate being signed by trusted party, otherwise the connection will be

rejected.

Internal CA with self-signed certificates is used since chain of trust between peers has

already been established. Server and clients are part of common infrastructure and

managed by same administrators. Key and certificate are generated on central server and

then distributed between nodes. OpenSSL utility was used because certificate generation

scripts were already available from previous project. Alternatively, GnuTLS provides

certtool utility that consolidates actions needed to configure internal CA, but it proved to

be more complex to use for batch certificate generation than OpenSSL. CA creation

technical documentation is provided in [54].

4.2.2. Syslog server

Syslog-ng 3.3 was chosen as syslog daemon for central log server, since as argued in

Chapter 3, its configuration language is powerful and flexible, allowing for the creation of

complex configurations which are easy to read and maintain. Furthermore, although

Rsyslog is the most efficient syslog server in terms of consumed CPU time, Syslog-ng

provides adequate performance and scales well to multiple CPU cores. Finally, the author

plans to use dynamic logfile names extensively in configurations, and Syslog-ng provided

the best performance in terms of wall-clock time for this particular scenario (in other

words, Syslog-ng offered the best message throughput). Following filtering logic is used:

49

• All log files are stored under single directory “/var/log/server/”;

• Log file name format is “$facility_name.$severity_name.log”;

• Daemon and Local channels are used for any program that does not have a

dedicated syslog facility, therefore those logs are stored within sub folder named

“/var/log/server/$facility_name”;

• Daemon and Local log file naming format is “$application_name.

$severity_name.log”.

Although Syslog-ng 3.5 is an improvement over version 3.3, it is not included within

Ubuntu Server 12.04 LTS repositories, so the author decided to use standard Syslog-ng 3.3

that is provided with Ubuntu 12.04. Upgrade to server version 14.04 with Syslog-ng

version 3.5 would be trivial since, aside from event correlation toolset, no custom software

will be installed on the syslog virtual machine. Ubuntu provides do-release-upgrade

command that automates distribution upgrade process. Syslog-ng server technical

documentation is provided in [54].

4.2.3. Syslog client

Every syslog daemon discussed in Chapter 3. is RFC5424-5425 compatible which means

that any of these daemons can be used on the client side. No complex configuration is

required, since client is tasked with establishing authenticated TLS encryption tunnel to

central server, and forwarding all messages from local syslog channels there. Rsyslog

version 5 is already packaged to most servers that are to be interfaced with logging

infrastructure while performance tests proved that version to be adequate for the task at

hand. Legacy syntax is used to facilitate the use of single configuration template across

multiple Rsyslog versions. Syslog-ng was used on clients where Rsyslog installation

proved to be problematic (technical difficulties in attaining operational status, most likely a

fault in OS deployment). Syslog client deployment guide is provided in [54].

50

Implementation process revealed that some legacy devices are unable to utilize RFC5425

TLS standard. Syslog daemons are capable of creating network listeners on multiple ports

allowing parallel collection of encrypted and unencrypted message streams. To ensure

message confidentiality and integrity, a private management network should be used. If the

device can be configured with encrypted VPN tunneling, such as OpenVPN or Stunnel,

then BSD syslog traffic could be forwarded through that channel instead. An example

OpenVPN configuration that enables the use of point-to-point encrypted tunnel between 2

hosts is provided in [54].

4.2.4. Application specific log collection

Most daemons log event messages via syslog, but some write messages directly into

custom text file. Others might require additional configuration to ensure that relevant event

messages are generated for audit purposes. In accordance with infrastructure overview

within Chapter 4.1. the following application logs must be collected:

• BIND9;

• Postfix;

• Dovecot;

• Roundcube;

• ISPConfig3;

• Apache2;

• MySQL;

• PostgreSQL;

• Samba;

• SSH;

• Net-SNMP;

• Pure-FTP;

• Vsftp.

BIND9 query and zone transfer logs, which can be configured via logging clause, provide

51

the most information regarding possible attacks. Roundcube and ISPConfig3 log user

authentication to files that can be collected using Rsyslog or Syslog-ng file input module.

Apache2 can be configured to forward error logs to syslog but that functionality is missing

from version 2.2 access logs. Log files are usually configured separately for each virtual

host on server. Collection with file input module can be prone to configuration errors since

each log file collection must be configured separately, but virtual host directives allow log

messages to be “pipelined” to Linux logger utility. Samba file server allows audit logs to

be generated that store information regarding file access and modification. Postfix,

Dovecot, SSH and Net-SNMP utilize syslog by default. Pure-FTP logs entries by default to

syslog while this functionality must be enabled for Vsftp. Vsftp authentication can also be

audited via authpriv facility. SQL servers are currenlty left outside the scope of this thesis

due to the fact that they can only be accessed externally via Apache web server. Technical

documentation regarding log collection from listed daemons presented in [54].

4.2.5. Event Correlation framework

SEC 2.7.5 [28] was chosen as event correlation engine for its wide acceptance in industrial

and academic communities. Diagram 4 depicts a centralized logging infrastructure with

event correlation engine that processes input from log files on central server.

Diagram 4. Event generation flow

52

As illustrated in Diagram 4, every event match is fed back to the system via syslog to

provide audit trail, and forwarded to control script that can be used to automate defensive

actions. This allows SEC to combine passive IDS and active IPS functionality, while the

use of external script allows for error handling and functionality additions without

complicating rule configuration (OS commands could alternatively be written in SEC

rules). This would allow better control over active defense components. Since logs are

sorted by syslog facility and priority, any log file that is known to contain no interesting

event messages can be ignored to avoid redundant event processing. If log management

solution such as Graylog2 or Kibana were later to be added into the system, then SEC

alerts could be presented on central dashboard. Diagram 5 depicts SEC configuration logic.

Diagram 5. SEC ruleset framework

As displayed in Diagram 5, combination of SEC Jump and Options rules will be used. The

solution is designed to provide real-time log monitoring on per-daemon basis – each Jump

rule matches one particular daemon name in incoming log messages, and directs matching

messages to relevant SEC rules for that specific daemon name. This hierarchical rule

arrangement allows for saving substantial amount of CPU time, since the matching of

irrelevant rules for other daemons is never attempted. Furthermore the same hierarchical

53

arrangement can be used to match event types that are described in Chapter 4.3. The data

fields that are extracted from event message are passed as arguments to script that takes

corrective actions on affected host or central firewall via SSH channel. An optional

notification script can also be used as redundant alert channel. The logic behind SEC rules

shall be covered within the next section.

4.3. Log pattern analysis and event generation

In this chapter, the author shall analyze attack footprints within log data to create SEC rules

for filtering of common attacks against daemons described within Chapter 4.1. During the

following discussion, the author uses log data of Spin TEK AS where a session of

penetration tests was conducted against selected web applications. These tests generated

event messages which would then be used by author to test regular expressions in SEC

rules.

Due to the scope of thesis and time limitations, a selection of attack vectors was made by

author for creation of initial SEC rules. This includes handling of authentication attack,

web application injection and DNS server events. Up to date set of rules and control scripts

are maintained by author in [54].

4.3.1. Authentication failures

A common forensic trail within log files are exhaustive searches for valid credentials. In

those cases an attacker attempts to gain access to system by trying different user name and

password combinations. Whether this is conducted by random generation (“brute force”

attack) or by existing word-list (dictionary attack) is irrelevant from the log view – take the

following Pure-ftp log record as an example:

Apr 17 03:17:50 <hostname> pure-ftpd: (?@<REMOTE_IP>) [WARNING]
Authentication failed for user [<user>]

54

Any system daemon with authentication functionality can produce log records of these

events. One could create correlation rules for each system daemon or, to keep SEC

configuration files at manageable levels, convert all different authentication failure events

into a single canonical format, and write more complex event correlation rules for this

format since peculiarities of each individual message are irrelevant once the same

processing scheme is applied for all messages. In SEC, this functionality can be achieved

by matching events of interest, and generating synthetic events in a canonical format. The

following example rule generates a synthetic event for pure-ftpd authentication failure:

type=Single
ptype=RegExp
pattern=(?<server>\w+) pure-ftpd: \(\?@(?<remote_IP>\S+)\)\s+\[WARNING\]
Authentication failed for user \[(?<username>\S*)\]
desc=$+{server} | $+{remote_IP} | FTP authentication failure
action=logonly; event FTP_AUTH_FAILURE_$+{server}_$+{remote_IP}_$+
{username}

Synthetic events are processed by SEC similar to input event messages, allowing pattern

matching to be applied on processed synthetic event rather than arbitrary log message.

FTP_AUTH_FAILURE event can be generated by analogous rule for Vsftp failure

messages, with relevant information encoded in the event text in easily extractable form. In

the case of the above example, relevant information includes the name of the affected

server, the IP address of the remote host, and the user name that was involved in the

attempt. Additionally, logonly directive is used to generate log record of the matching event

for debugging purposes. The simplest correlation rule to be applied to generated synthetic

event would be SingleWithThreshold configured for small time window which might

identify primitive brute-force attacks, but fails to detect botnet nodes with systematic

approach – attacker can evade simple filters by limiting the attempt rate to smaller value

than what is configured within the rule. Essentially, the attacker is most likely an

automated botnet node that is not concerned whether goal is achieved in one minute or one

year. The following rule identifies single IP address that fails to log in with five distinct

user names within 900 seconds.

55

type=EventGroup
init=create USER_COUNTING_$+{remote_IP}_$+{server}
end=delete USER_COUNTING_$+{remote_IP}_$+{server}
ptype=RegExp
pattern=\S*AUTH_FAILURE_(?<server>[\w-]+)_(?<remote_IP>\S+)_(?
<username>\w+)
continue=TakeNext
context=!COUNTED_$+{remote_IP}_$+{server}_$+{username}
count=alias USER_COUNTING_$+{remote_IP}_$+{server} COUNTED_$+
{remote_IP}_$+{server}_$+{username}
desc=$+{remote_IP} | $+{server} | Authentication failures from single IP
with 5 distinct usernames
action=logonly; event ATTACK_FROM_$+{remote_IP}
window=900
thresh=5

Please note that for matching the daemon name, the regular expression in pattern field

matches it with \S* as any non white-space string. This allows common events across

multiple services, like Dovecot, SSH, Roundcube, ISPConfig3 or FTP daemons, to be

handled by single rule. SEC context is created for every unique combination of remote IP,

affected server and user name. Even a small number of such events can be interpreted as

malicious activity. The above rule generates ATTACK_FROM synthetic event for a

malicious remote host which can then be matched with consecutive rule that blocks the

remote host. Continue parameter with this event handling logic must be set to TakeNext,

otherwise SEC would stop processing the matching event once the current rule has handled

it. The fact that rule has matched an event does not necessarily mean that ATTACK_FROM

output event is eventually generated, since the correlation operation might not observe

enough events for fulfilling the threshold condition in 15 minutes. For example, an attacker

might attempt to use single user name against multiple system daemons. Another rule

could be written for that case, which identifies remote hosts that fail to authenticate against

several distinct daemons. Long term systematic attacks could alternatively be identified by

creating MULTIPLE_AUTH_ATTEMPTS event from correlation of multiple failures over

long (for example, one week to one year) time period. Each level of correlation reduces the

chance of encountering a false positive, which is especially important in the context of

automated incident handling.

56

4.3.2. Web application injections

Another group of services integrated into centralized logging and event correlation system

are commonly known as web applications, which were chosen due to their popularity as a

target for cyber criminals. The large amount of elements used in web application

development makes identification of malicious queries difficult – technical aspects of these

threats are, in large part, not standardized, and are constantly evolving. OWASP maintains

a list of 10 most critical vulnerabilities in web applications with “injections” being the

highest rated in the 2013 version of the document. Injection occurs when untrusted data is

sent to the interpreter as part of command or query [36] which can then cause unexpected

behavior in application. Malicious user can gain a certain amount of control over the web

application or server. Identification and exploitation of such vulnerabilities are usually

conducted using trial-and-error methodology by sending known application-breaking

injections and observing the results. Several automated tools [58], such as Burp Suite,

Nessus or SQLMap, can be used to speed up that process for the attacker, while specialists

of this field usually prefer manual testing or use of custom tools. Both approaches can

generate log trail with visible injected parameters. As such, injection attempts, successful

or not, can be used on first level of correlation similar to failed authentication attempts in

Chapter 4.3.1. The following SEC rule snippet identifies OS command injection commonly

known as “directory traversal”:

ptype=RegExp
pattern=(?<server>[\w-]+) apache:\s?(?<vhost>\S+)? (?
<remote_IP>(?:\d{1,3}\.){3}\d{1,3}).+(?:(?i:\.|\%2e){2,}(?:(?i:/|\\|\%2f|
%c0%af)+))+

Regular expression matches sequential occurrence of two or more dot symbols that is

immediately followed by one or more slash or backslash, while taking into account some

forms of encoding that might be used to evade filters. Upon positive match of such pattern,

a synthetic event OSCOMMAND_INJECTION_WEBAPP_ is generated with affected

server, remote IP and targeted Apache2 virtual host attached as unique suffix. Injection

events can then be correlated by subsequent rules. In the case of automated web application

scan, the occurrence of such patterns in relatively small time-frame, no more that 10

57

seconds, is generally large enough to be handled by SingleWithThreshold rule. Attacker

could reduce the number of event matches by utilizing filter evading techniques such as

encoding the payload. In the process of exploitation, a small number of alerts can still be

triggered that can then be cross-correlated with various information sources. The following

SEC rule cross-correlates injection events with authentication failures from common

remote IP address:

type=EventGroup2
continue=TakeNext
ptype=RegExp
pattern=\S*INJECTION_WEBAPP_(?<server>[\w-]+)_(?<remote_IP>\S+)_\S*
thresh=15
ptype2=RegExp
pattern2=\S*AUTH_FAILURE_(?<server>[\w-]+)_(?<remote_IP>\S+)_\w
thresh2=5
desc=$+{remote_IP} | $+{server} | Combined authentication and web
application attacks
action=logonly; event ATTACK_FROM_$+{remote_IP}
window=60

EventGroup rule is used since events can occur at any order within common time window,

the exact injection type is considered to be irrelevant in the context of this rule. Offender

can attempt to gain access to system via different attack vectors, if even a small number of

alerts from multiple vectors are detected then probable cause has been established to

interpret these messages as malicious activity directed against server. Extracted data in the

form of remote IP address can then be used to block access to all systems. Other methods

can include counting of distinct injection types that are detected from single IP address or,

if alerts from NIDS device were to be added into log monitoring system, cross-correlation

of detected injections with Snort alerts from common remote IP. The purpose would be to

reduce false positives and pinpoint malicious events from general background noise.

Cross-correlation with IDS alerts is outside the scope of this thesis.

4.3.3. DNS server events

Rules were developed to mitigate risks caused by hosting a public DNS server. For

example, consider the following DNS query log message entry from BIND9 authoritative

58

server with split-view configuration.

Apr 22 06:50:34 ns3 named[20543]: queries: info: client
<REMOTE_IP>#11578: view authoritative: query: <FQDN> IN ANY +E
(<LOCAL_IP>)

The DNS view is named “authoritative”, which means that remote IP address is using the

server to conduct recursive queries. Remote IP address represents the victim of the attack.

Due to the nature of stateless UDP protocol (which the DNS queries are built upon), the

actual source of malicious query can not be identified. Malicious party can forge DNS

request packet with falsified source address and server responds to victim IP with answer

that is several times larger than request. In large volumes this attack vector can be used to

overload victims network connection with UDP packets. The purpose of reflected DNS

amplification attack is to generate response that is larger than query, which is the reason

why ANY record type is requested – all relevant records to the domain name are sent to

victim. Under normal circumstances, a recursive query would only be conducted against

specific record type, for example A, MX or NS. If large amount of ANY queries within the

time-frame of 5 seconds are identified, an event will be created. Another common footprint

is zone transfer attempt.

Apr 22 11:07:06 ns3 named[29809]: security: error: client
<REMOTE_IP>#43836: view authoritative: zone transfer '<DNS_ZONE>/AXFR/IN'
denied

The zone file transfer feature has been limited by system administrators, which is common

practice within DNS server configuration. Any attempt from unauthorized IP address will

produce an error message. These messages, while of little use on their own, can be cross-

correlated with other security related log messages by using the extracted IP address. DNS

zone transfer is a method for reconnaissance that is used by attackers and penetration

testers. If such event were to occur within common time window with web application

injections or authentication failures from common IP address, then the only logical

conclusion would be malicious activity. An EventGroup rule similar to one shown in

Chapter 4.3.2. can be used for that purpose.

59

4.3.4. Attack events

Once an attack has been correlated from real-time log data, the next logical step would be

to take action against offending IP address. The following SEC rule matches correlated

malicious events.

type=SingleWith2Thresholds
ptype=RegExp
continue=TakeNext
pattern=ATTACK_FROM_(?<remote_IP>(?:\d{1,3}\.){3}\d{1,3})
desc=$+{remote_IP} | Generic attack: IP added to ban list
action=logonly; event IP_BLOCKED_$+{remote_IP}; shellcmd
/opt/scripts/iptables.sh $+{remote_IP}
window=60
thresh=1
desc2=$+{remote_IP} | Generic attack: IP removed from ban list
action2=logonly; shellcmd /opt/scripts/iptables_remove.sh $+{remote_IP}
window2=60
thresh2=0

Malicious IP address will be forwarded to Bash script that will be executed via SSH

channel on central firewall. Rule then expects second threshold to be reached. Since

threshold is 0, it will always evaluate as TRUE after 60 second time period. Blocked IP

address will then be removed from list of banned hosts. Synthetic event IP_BLOCKED_

with address as suffix will also be created which allows repeat offenders to be permanently

blocked by subsequent rule. SEC SingleWithThreshold rule was created by author for that

purpose that matches 10 such events in the time period of one week. Known trusted IP

addresses can be excluded from any potential actions with Suppress rule.

This concludes the analysis of elements in preliminary implementation. The author will

now proceed to summarize the thesis.

60

5. Summary

As a result of this thesis, the author implemented a centralized event management and

active defense framework as event message monitoring system, and created an open-source

repository for distribution of Simple Event Correlator rules. Such system, which combines

features from SIEM and IPS, does not require a dedicated appliance. Open-source tools

like Rsyslog, Syslog-ng, NXLog and SEC are sufficient for that purpose. It is the Authors

opinion that every Linux system administrator should be familiar with these tools.

Analysis of tools revealed that Syslog-ng provides the best configuration syntax and

scalability with multiple CPU cores, which resulted in author selecting this software for

central syslog server. Rsyslog is also very good log collection tool, and the most efficient

in resource usage, but hampered by configuration syntax. NXLog is not yet ready to

replace Rsyslog or Syslog-ng on Linux platform, but could become a viable competitor in

the subsequent years. NXLog and Syslog-ng provide event correlation feature, but are not

yet functionally ready to replace SEC.

While pilot installation of monitoring system is in use within Spin TEK AS, a large amount

of work can still be conducted. More rules can be written to identify different attack

vectors, and author hopes that other contributors will join the rule-set development project.

Identification of malicious patterns could also benefit from application of data mining

algorithms. Existing monitoring system could be expanded with NIDS event messages, and

log management tool for event message storage and visualization. The overarching event

management system could then provide competitive functionality to commercial SIEM

solutions.

61

Sündmuste haldamise ning aktiivse kaitse raamistik
väikeettevõttele

Magistritöö kood ITI70LT

Tudeng: Markus Kont

Matrikkli number: 121785IVCMM

Juhendaja: Risto Vaarandi, Ph.D

Resümee

Käesolev magistritöö keskendub enimlevinud logisõnumite kogumise ja korrelatsiooni

tööriistade võrdlusele. Eesmärgiks on juurutada sündmuste haldamise ja aktiivse kaitse

raamistik väikeettevõttele, mida oleks võimalik rakendada turbe intsidentidele reageerimise

automatiseerimiseks.

Autor viis läbi kirjanduse ülevaate, analüütilise võrdluse ning jõudluse testid. Tööriistade

võrdlusesse kuulusid kolm syslog formaadis sõnumite kogumise tarkvara – Rsyslog,

Syslog-ng ja NXLog. Syslog-ng on parima konfiguratsiooni süntaksiga ning suudab

efektiivselt filtreerida miljoneid logisõnumeid. Rsyslog on väga hea tööriist, ning kõige

tõhusama sõnumite läbilaske võimega. NXLog on esile kerkiv alternatiiv eelnimetatud

syslog deemonitele, mille funktsionaalsuse hulka kuulub ka sündmuste korrelatsiooni

moodul, mis on otseselt inspireeritud SEC nimelisest tarkvarast. SEC on maailma kõige

populaarsem sündmuste korrelatsiooni tööriist.

Töö tulemusena on Spin TEK AS nimelises asutuses võetud kasutusele kirjeldatud

lahenduse pilootinstallatsioon. Autor haldab kirjutatud SEC reegleid, õpetusi lahenduse

seadistamiseks ning kontroll skripte avalikus repositooriumis.

62

List of References

[1] Ghia, A. “Capturing value through IT consolidation and shared services”, McKinsel

& Company, 2014,

[http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Public

%20Sector/PDFS/McK%20on%20Govt/IT%20Challenge%20and

%20opportunity/MOG7_Consolidation.ashx]

[2] “Security Threat Report”, Sophos, 2011, [http://www.sophos.com/en-

us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf]

[3] TechNet, “What is a botnet”, Microsoft, Web. May 2014,

[http://www.microsoft.com/security/resources/botnet-whatis.aspx]

[4] Kerrisk, M. “DAEMON”, Linux Programmer's Manual, Web. May 2014,

[http://man7.org/linux/man-pages/man3/daemon.3.html]

[5] Burnham, J. “Gartner Publishes 2013 Magic Quadrant for Security Information and

Event Management (SIEM)”, Security Intelligence, Web. June 11 2013,

[http://securityintelligence.com/gartner-publishes-2013-magic-quadrant-for-siem/]

[6] “elQnetworks Survey Reveals Organizations Are Suffering from SIEM

Deployments”, elQnetworks, Web. March 6 2013,

[http://www.eiqnetworks.com/news-events/press-releases?pr=eiqnetworks-survey-

reveals-organizations-are-suffering-from-siem-deployments]

[7] Vaarandi, R. Nizinski, P. “Comparative Analysis of Open-Source Log Management

Solutions for Security Monitoring and Network Forensics”, CCDCOE, 2013,

[http://ristov.users.sourceforge.net/publications/eciw13-logman.pdf]

[8] TechNet, “Security Threats”, Microsoft, 2013, [http://technet.microsoft.com/en-

us/library/cc723507.aspx]

63

http://technet.microsoft.com/en-us/library/cc723507.aspx
http://technet.microsoft.com/en-us/library/cc723507.aspx
http://ristov.users.sourceforge.net/publications/eciw13-logman.pdf
http://www.eiqnetworks.com/news-events/press-releases?pr=eiqnetworks-survey-reveals-organizations-are-suffering-from-siem-deployments
http://www.eiqnetworks.com/news-events/press-releases?pr=eiqnetworks-survey-reveals-organizations-are-suffering-from-siem-deployments
http://securityintelligence.com/gartner-publishes-2013-magic-quadrant-for-siem/
http://man7.org/linux/man-pages/man3/daemon.3.html
http://www.microsoft.com/security/resources/botnet-whatis.aspx
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Public%20Sector/PDFS/McK%20on%20Govt/IT%20Challenge%20and%20opportunity/MOG7_Consolidation.ashx
http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Public%20Sector/PDFS/McK%20on%20Govt/IT%20Challenge%20and%20opportunity/MOG7_Consolidation.ashx
http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Public%20Sector/PDFS/McK%20on%20Govt/IT%20Challenge%20and%20opportunity/MOG7_Consolidation.ashx

[9] Brown, D. “Active security or: How I learned to stop worrying and use IPS with

incident handling”, SANS Institute, 2013, [https://www.sans.org/reading-

room/whitepapers/incident/active-security-or-learned-stop-worrying-ips-incident-

handling-34465]

[10] Crist, J. “Web Based Attacks”, SANS Institute, 2007,

[https://www.sans.org/reading-room/whitepapers/application/web-based-attacks-

2053]

[11] Hernandes, J. “Security information and Event Management: Business

Benefits and Security, Governance and Assurance Perspectives”, ISACA, 2010,

[https://www.academia.edu/attachments/4903624/download_file]

[12] “Syslog”, Web. March 2014, [http://en.wikipedia.org/wiki/Syslog]

[13] Lonvick, C. “The BSD syslog Protocol”, IETF, 2001,

[http://tools.ietf.org/html/rfc3164]

[14] Eaton, I. “The Ins and Outs of System Logging Using Syslog”, SANS

Institute, 2003 [http://www.sans.org/reading-room/whitepapers/logging/ins-outs-

system-logging-syslog-1168]

[15] Gerhards, R. “The Syslog Protocol”, IETF, 2009,

[http://tools.ietf.org/html/rfc5424]

[16] Miao, F. Ma, Y. Salowey, J. “Transport Layer Security (TLS) Transport

Mapping for Syslog”, IETF, 2009, [http://tools.ietf.org/html/rfc5425]

[17] Okmianski, A. “Transmission of Syslog Messages over UDP”, IETF, 2009,

[http://tools.ietf.org/html/rfc5426]

[18] Gerhards, R. Lonvick, C. “Transmission of Syslog messages over TCP”,

IETF, 2012, [https://tools.ietf.org/html/rfc6587]

[19] Pallagi, Z. “Measuring log collection performance”, Balabit, Web. January

2014, [https://pzolee.blogs.balabit.com/tag/syslog-ng/]

[20] Cristias, P. “Linux System Administration, SYSLOGD”, 1998, Web. March

2014, [http://unixhelp.ed.ac.uk/CGI/man-cgi?syslogd+8]

[21] Lang, D. “Building a 100K log/sec logging infrastructure”, LISA12, 2012,

[https://www.usenix.org/system/files/conference/lisa12/lisa12-final-34.pdf]

[22] Toprak, M. “Intrusion Detection System Alert Correlation with Operating

64

https://www.usenix.org/system/files/conference/lisa12/lisa12-final-34.pdf
http://unixhelp.ed.ac.uk/CGI/man-cgi?syslogd+8
https://pzolee.blogs.balabit.com/tag/syslog-ng/
https://tools.ietf.org/html/rfc6587
http://tools.ietf.org/html/rfc5426
http://tools.ietf.org/html/rfc5425
http://tools.ietf.org/html/rfc5424
http://www.sans.org/reading-room/whitepapers/logging/ins-outs-system-logging-syslog-1168
http://www.sans.org/reading-room/whitepapers/logging/ins-outs-system-logging-syslog-1168
http://tools.ietf.org/html/rfc3164
https://www.academia.edu/attachments/4903624/download_file
https://www.sans.org/reading-room/whitepapers/application/web-based-attacks-2053
https://www.sans.org/reading-room/whitepapers/application/web-based-attacks-2053
https://www.sans.org/reading-room/whitepapers/incident/active-security-or-learned-stop-worrying-ips-incident-handling-34465
https://www.sans.org/reading-room/whitepapers/incident/active-security-or-learned-stop-worrying-ips-incident-handling-34465
https://www.sans.org/reading-room/whitepapers/incident/active-security-or-learned-stop-worrying-ips-incident-handling-34465

System Level Logs”, MSc thesis, 2009,

[http://library.iyte.edu.tr/tezler/master/bilgisayaryazilimi/T000204.pdf]

[23] Abad, C. Taylor, J. Sengul, C. William, Y., Zhou, Y. Rowe, K. “Log

Correlation for Intrusion Detection: A Proof of Concept”, IEEE, 2003,

[http://speech.mty.itesm.mx/~jnolazco/cursoSeguridad/IDS_logCorr.pdf]

[24] Zirkel, W. Wirtz, G. “Proactive Problem Management and Event

Correlation” [http://www.ksi.edu/seke/Proceedings/seke11/10_Werner_Zirkel.pdf]

[25] Crowell, C. “Event Correlation and Root Cause Analysis”, CA, 2004,

[http://www.genesiscom.info/de/2/products/downloads/event_correlation_and_root

_cause_analysis.pdf]

[26] Sweeny, J. “Creating Your Own SIEM and Incident Response Toolkit Using

Open Source Tools”, SANS Institute, 2011, [https://www.sans.org/reading-

room/whitepapers/incident/creating-siem-incident-response-toolkit-open-source-

tools-33689]

[27] Vaarandi, R. “Tools and Techniques for Event Log Analysis”, PhD thesis,

2005, [http://ristov.users.sourceforge.net/publications/thesis.pdf]

[28] Vaarandi, R “sec”, Manual pages, Web. January 2014 [http://simple-

evcorr.sourceforge.net/man.html#lbAY]

[29] Vaarandi, R. Grimaila, M.R. “Security Event Processing with Simple Event

Correlator”, ISSA Journal, 2012,

[http://ristov.users.sourceforge.net/publications/sec-issa2012.pdf]

[30] Myers, J. Grimaila, M.R. Mills, R.F. “Log-Based Distributed Event

Detection Using Simple Event Correlator”, Proceedings of the 44th Hawaii

International Conference on System Sciences, 2011,

[http://www.computer.org/csdl/proceedings/hicss/2011/4282/00/02-02-10.pdf]

[31] Myers, J. “A Dynamically Configurable Log-Based Distributed Security

Event Detection Methodology using Simple Event Correlator”, MSc thesis, 2010,

[http://www.dtic.mil/dtic/tr/fulltext/u2/a523531.pdf]

[32] Anthony, R. “Detecting Security Incidents Using Windows Event Logs”,

SANS Institute, 2013, [https://www.sans.org/reading-

room/whitepapers/logging/detecting-security-incidents-windows-workstation-

65

https://www.sans.org/reading-room/whitepapers/logging/detecting-security-incidents-windows-workstation-event-logs-34262
https://www.sans.org/reading-room/whitepapers/logging/detecting-security-incidents-windows-workstation-event-logs-34262
http://www.dtic.mil/dtic/tr/fulltext/u2/a523531.pdf
http://www.computer.org/csdl/proceedings/hicss/2011/4282/00/02-02-10.pdf
http://ristov.users.sourceforge.net/publications/sec-issa2012.pdf
http://simple-evcorr.sourceforge.net/man.html#lbAY
http://simple-evcorr.sourceforge.net/man.html#lbAY
http://ristov.users.sourceforge.net/publications/thesis.pdf
https://www.sans.org/reading-room/whitepapers/incident/creating-siem-incident-response-toolkit-open-source-tools-33689
https://www.sans.org/reading-room/whitepapers/incident/creating-siem-incident-response-toolkit-open-source-tools-33689
https://www.sans.org/reading-room/whitepapers/incident/creating-siem-incident-response-toolkit-open-source-tools-33689
http://www.genesiscom.info/de/2/products/downloads/event_correlation_and_root_cause_analysis.pdf
http://www.genesiscom.info/de/2/products/downloads/event_correlation_and_root_cause_analysis.pdf
http://www.ksi.edu/seke/Proceedings/seke11/10_Werner_Zirkel.pdf
http://speech.mty.itesm.mx/~jnolazco/cursoSeguridad/IDS_logCorr.pdf
http://library.iyte.edu.tr/tezler/master/bilgisayaryazilimi/T000204.pdf

event-logs-34262]

[33] Gerhards, R. “rsyslog vs. syslog-ng”, 2012, Web. April 2014,

[http://www.rsyslog.com/doc/rsyslog_ng_comparison.html]

[34] New, D. Rose, M “Reliable Delivey for syslog”, IETF, 2001,

[https://www.ietf.org/rfc/rfc3195.txt]

[35] Klyne, G. Newman, C. “Date and Time on the Internet: Timestamps”, IETF,

2002, [http://www.ietf.org/rfc/rfc3339.txt]

[36] “OWASP Top 10 – 2013 The Ten Most Critical Web Application Security

Risks”, OWASP, 2013, [http://owasptop10.googlecode.com/files/OWASP%20Top

%2010%20-%202013.pdf]

[37] Doshi, N. “Event Correlation”, 2010, Web. March 2014,

[http://blogs.splunk.com/2010/09/01/event-correlation/]

[38] Hills, A. Young, G. D'Hoinne, J. “Magic Quadrant for Intrusion Prevention

Systems”, Gartner, 2013, [http://www.gartner.com/technology/reprints.do?id=1-

1OAVJS3&ct=131217&st=sb]

[39] Brennan, M.P. “Using Snort For a Distributed Intrusion Detection System”,

SANS Institute, 2002, [http://www.sans.org/reading-

room/whitepapers/detection/snort-distributed-intrusion-detection-system-352]

[40] White, J. S. Fitzsimmons, T. T. Matthews, J. N. “Quantitative Analysis of

Intrusion Detection Systems: Snort and Suricata”, 2013,

[http://people.clarkson.edu/~jmatthew/publications/SPIE_SnortSuricata_201 3.pdf]

[41] Yamada, A. Miyake, Y. Takemori, K. Studer, A. Perrig, A. “Intrusion

Detection for Encrypted Web Access”, 2007,

[http://www.researchgate.net/publication/4250251_Intrusion_Detection_for_Encry

pted_Web_Accesses/file/60b7d51841f19c6505.pdf]

[42] Esler, J. “SSL/TLS”, Snort manual, 2012, Web. March 2014,

[http://manual.snort.org/node147.html]

[43] “enterprise-log-search-and-archive”, Web. March 2014,

[https://code.google.com/p/enterprise-log-search-and-archive/]

[44] Knowlage Base, Graylog2, Web. March 2014,

[http://support.torch.sh/help/kb]

66

http://support.torch.sh/help/kb
https://code.google.com/p/enterprise-log-search-and-archive/
http://manual.snort.org/node147.html
http://www.researchgate.net/publication/4250251_Intrusion_Detection_for_Encrypted_Web_Accesses/file/60b7d51841f19c6505.pdf
http://www.researchgate.net/publication/4250251_Intrusion_Detection_for_Encrypted_Web_Accesses/file/60b7d51841f19c6505.pdf
http://people.clarkson.edu/~jmatthew/publications/SPIE_SnortSuricata_2013.pdf
http://people.clarkson.edu/~jmatthew/publications/SPIE_SnortSuricata_2013.pdf
http://www.sans.org/reading-room/whitepapers/detection/snort-distributed-intrusion-detection-system-352
http://www.sans.org/reading-room/whitepapers/detection/snort-distributed-intrusion-detection-system-352
http://www.gartner.com/technology/reprints.do?id=1-1OAVJS3&ct=131217&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1OAVJS3&ct=131217&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1OAVJS3&ct=131217&st=sb
http://blogs.splunk.com/2010/09/01/event-correlation/
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3195.txt
http://www.rsyslog.com/doc/rsyslog_ng_comparison.html
https://www.sans.org/reading-room/whitepapers/logging/detecting-security-incidents-windows-workstation-event-logs-34262
https://www.sans.org/reading-room/whitepapers/logging/detecting-security-incidents-windows-workstation-event-logs-34262

[45] Kibana, Web. March 2014, [http://rashidkpc.github.io/Kibana/]

[46] Lang, D. “Log Filtering with Rsyslog”, 2013,

[http://www.sclug.org/sites/www.sclug.org/files/presentations/rsyslog_filtering.pdf]

[47] “Rsyslog v5-stable documentation”, Web. May 2014,

[http://www.rsyslog.com/doc/v5-stable/]

[48] “Rsyslog v7-stable documentation”, Web. May 2014,

[http://www.rsyslog.com/doc/v7-stable/]

[49] “Rsyslog 8 documentation”, Web. May 2014,

[http://www.rsyslog.com/doc/master/]

[50] “The Syslog-ng Open Source Edition 3.3 Administrator Guide”, BalaBit,

2014, Web. May 2014,

[http://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.3-

guides/en/syslog-ng-ose-v3.3-guide-admin-en/html-single/index.html]

[51] “The Syslog-ng Open Source Edition 3.5 Administrator Guide”, BalaBit,

2014, Web. May 2014,

[https://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.5-

guides/en/syslog-ng-ose-v3.5-guide-admin/html-single/index.html]

[52] Botyabzky, B. “NXLOG Community Edition Reference Manual for

v2.7.1189”, Web. May 2014, [http://nxlog.org/nxlog-docs/en/nxlog-reference-

manual.html]

[53] Churilin, A. “Choosing an Open-Source Log Management System for Small

Business”, MSc thesis, 2013, [http://lab.cs.ttu.ee/dl135]

[54] Kont, M. “SagittariuSEC”, [https://github.com/markuskont/SagittariuSEC]

[55] Kak, A. “DNS and the DNS Cache Poisoning Attack”, 2014,

[https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture17.pdf]

[56] Tschabitscher, H. “Spam”, Web. May 2014,

[http://email.about.com/library/weekly/aa100697.htm]

[57] “Defense in depth”, OWASP, Web May 2014,

[https://www.owasp.org/index.php/Defense_in_depth]

[58] Lydon, G. “SecTools.Org: Top 125 Network Security Tools”, Web. May

2014, [http://sectools.org/]

67

https://www.owasp.org/index.php/Defense_in_depth
http://email.about.com/library/weekly/aa100697.htm
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture17.pdf
https://github.com/markuskont/SagittariuSEC
http://lab.cs.ttu.ee/dl135
http://nxlog.org/nxlog-docs/en/nxlog-reference-manual.html
http://nxlog.org/nxlog-docs/en/nxlog-reference-manual.html
https://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.5-guides/en/syslog-ng-ose-v3.5-guide-admin/html-single/index.html
https://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.5-guides/en/syslog-ng-ose-v3.5-guide-admin/html-single/index.html
http://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.3-guides/en/syslog-ng-ose-v3.3-guide-admin-en/html-single/index.html
http://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.3-guides/en/syslog-ng-ose-v3.3-guide-admin-en/html-single/index.html
http://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.3-guides/en/syslog-ng-ose-v3.3-guide-admin-en/html-single/index.html
http://www.rsyslog.com/doc/master/
http://www.rsyslog.com/doc/v7-stable/
http://www.rsyslog.com/doc/v5-stable/
http://www.sclug.org/sites/www.sclug.org/files/presentations/rsyslog_filtering.pdf
http://rashidkpc.github.io/Kibana/

Appendices

Appendix 1. Syslog daemon compilation options

Rsyslog 5.8

./configure \

--prefix=/opt/rsyslog5 \

--enable-extended-tests=yes \

--enable-imptcp \

--enable-imttcp \

--enable-impstats \

--enable-omstdout \

--enable-imfile \

--enable-mmsequence \

--enable-kmsg \

--enable-gnutls

Rsyslog 7,6

./configure \

--prefix=/opt/rsyslog7 \

--enable-extended-tests=yes \

--enable-imptcp \

--enable-imttcp \

--enable-impstats \

--enable-omstdout \

--enable-imfile \

68

--enable-mmsequence \

--enable-kmsg \

--enable-gnutls

#Rsyslog 8.1

./configure \

--prefix=/opt/rsyslog8 \

--enable-extended-tests=yes \

--enable-imptcp \

--enable-imttcp \

--enable-impstats \

--enable-omstdout \

--enable-imfile \

--enable-mmsequence \

--enable-kmsg \

--enable-gnutls

#Syslog-ng 3.3.4

./configure \

--prefix=/opt/syslog-ng_3.3.4 \

--enable-ssl=yes

#Syslog-ng 3.5.4.1

./configure \

--prefix=/opt/syslog-ng_3.5.4.1 \

--enable-ssl=yes

#NXLog 2.7

/configure \

--prefix=/opt/NXLog2.7

69

Appendix 2. Unfiltered TCP syslog server configurations

Appendix 2.1. NXLog

LogFile /var/log/nxlog.log

LogLevel INFO

<Extension _syslog>

Module xm_syslog

</Extension>

<Input in>

Module im_tcp

Host 0.0.0.0

Port 514

</Input>

<Output out_done>

Module om_file

Exec if $raw_event =~ /^(?:(?!DONE).)*$/ drop();

File "/var/log/done.log"

</Output>

<Output out>

Module om_file

File "/var/log/test.nxlog27.log"

</Output>

<Route route1>

Path in => out,out_done

</Route>

70

Appendix 2.2. Rsyslog 5.8

$ModLoad imuxsock # provides support for local system logging

$ModLoad imklog # provides kernel logging support (previously done by rklogd)

$ModLoad imtcp

$InputTCPServerRun 514

$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

$RepeatedMsgReduction off

. /var/log/test.rsyslog5.log

if $msg contains 'DONE' then /var/log/done.log

Appendix 2.3. Rsyslog 7.6

$ModLoad imuxsock # provides support for local system logging

$ModLoad imklog # provides kernel logging support (previously done by rklogd)

$ModLoad imtcp

$InputTCPServerRun 514

$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

$RepeatedMsgReduction off

. /var/log/test.rsyslog7.log

if $msg contains 'DONE' then /var/log/done.log

Appendix 2.4. Rsyslog 8.1

$ModLoad imuxsock # provides support for local system logging

$ModLoad imklog # provides kernel logging support (previously done by rklogd)

$ModLoad imtcp

$InputTCPServerRun 514

$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

$RepeatedMsgReduction off

71

. /var/log/test.rsyslog8.log

if $msg contains 'DONE' then /var/log/done.log

Appendix 2.5. Syslog-ng 3.3

@version: 3.3

@include "scl.conf"

options {threaded(yes) ; log_fifo_size(1000);};

source s_local {

 system();

 internal();

};

source s_syslog { tcp(ip(192.168.0.75) port(514) max-connections(25) log_iw_size(2500)

log_fetch_limit(2500));};

destination d_local {

 file("/var/log/test.syslogng3.3.log");

};

destination d_local_done {

 file("/var/log/done.log");

};

filter f_done {

 message("DONE");

};

log {

 source(s_syslog);

 source(s_local);

 destination(d_local);

};

log {

 source(s_syslog);

 filter(f_done);

72

 destination(d_local_done);

};

Appendix 2.6. Syslog-ng 3.5

@version: 3.5

@include "scl.conf"

options {threaded(yes) ; log_fifo_size(1000);};

source s_local {

 system();

 internal();

};

source s_syslog { tcp(ip(192.168.0.75) port(514) max-connections(25) log_iw_size(2500)

log_fetch_limit(2500));};

destination d_local {

 file("/var/log/test.syslogng3.5.log");

};

destination d_local_done {

 file("/var/log/done.log");

};

filter f_done {

 message("DONE");

};

log {

 source(s_syslog);

 source(s_local);

 destination(d_local);

};

log {

 source(s_syslog);

 filter(f_done);

73

 destination(d_local_done);

};

Appendix 3. Filtered TCP syslog server configurations

Appendix 3.4. NXLog

LogFile /var/log/nxlog.log

LogLevel INFO

<Extension _syslog>

 Module xm_syslog

</Extension>

<Input in>

 Module im_tcp

 Host 0.0.0.0

 Port 514

 Exec parse_syslog_bsd();

</Input>

<Input unix>

 Module im_uds

 uds /dev/log

</Input>

<Processor filter>

 Module pm_filter

 Condition $raw_event =~ /DONE/

</Processor>

<Output out_sev0>

 Module om_file

 Exec if $SyslogSeverityValue > 0 drop();

 File "/var/log/test.nxlog27.$SyslogSeverityValue.log"

74

</Output>

<Output out_done>

 Module om_file

 Exec if $raw_event =~ /^(?:(?!DONE).)*$/ drop();

 File "/var/log/done.log"

</Output>

<Output out>

 Module om_file

 File "/var/log/test.nxlog27" + ".facility" + $SyslogFacilityValue + ".severity" +

$SyslogSeverityValue + ".log"

</Output>

<Route route1>

 Path in => out,out_done

</Route>

Appendix 3.2. Rsyslog 5.8

$ModLoad imuxsock # provides support for local system logging

$ModLoad imklog # provides kernel logging support (previously done by rklogd)

$ModLoad imtcp

$InputTCPServerRun 514

$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

$RepeatedMsgReduction off

if $msg contains 'DONE' then /var/log/done.log

$template DynaFile,"/var/log/test.rsyslog5.facility.%syslogfacility%.severity.

%syslogseverity%.log"

. -?DynaFile

75

Appendix 3.3. Rsyslog 7.6

$ModLoad imuxsock # provides support for local system logging

$ModLoad imklog # provides kernel logging support (previously done by rklogd)

$ModLoad imtcp

$InputTCPServerRun 514

$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

$RepeatedMsgReduction on

$template DynaFile,"/var/log/test.rsyslog7.facility.%syslogfacility%.severity.

%syslogseverity%.log"

. -?DynaFile

if $msg contains 'DONE' then /var/log/done.log

Appendix 3.4. Rsyslog 8.1

$ModLoad imuxsock # provides support for local system logging

$ModLoad imklog # provides kernel logging support (previously done by rklogd)

$ModLoad imtcp

$InputTCPServerRun 514

$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

$RepeatedMsgReduction off

$template DynaFile,"/var/log/test.rsyslog8.facility.%syslogfacility%.severity.

%syslogseverity%.log"

. -?DynaFile

if $msg contains 'DONE' then /var/log/done.log

76

Appendix 3.5. Syslog-ng 3.3

@version: 3.3

@include "scl.conf"

options {threaded(yes) ; log_fifo_size(1000);};

source s_local {

 system();

 internal();

};

source s_syslog { tcp(ip(192.168.0.75) port(514) max-connections(100) log_iw_size(2500)

log_fetch_limit(2500));};

destination d_local {

 file("/var/log/test.syslogng3.3.facility.$FACILITY_NUM.severity.

$LEVEL_NUM.log");

};

destination d_local_done {

 file("/var/log/done.log");

};

filter f_done {

 message("DONE");

};

log {

 source(s_syslog);

 source(s_local);

 destination(d_local);

};

log {

 source(s_syslog);

 filter(f_done);

 destination(d_local_done);

};

77

Appendix 3.6. Syslog-ng 3.5

@version: 3.5

@include "scl.conf"

options {threaded(yes) ; log_fifo_size(1000);};

source s_local {

 system();

 internal();

};

source s_syslog { tcp(ip(192.168.0.75) port(514) max-connections(100) log_iw_size(2500)

log_fetch_limit(2500));};

destination d_local {

 file("/var/log/test.syslogng3.3.facility.$FACILITY_NUM.severity.

$LEVEL_NUM.log");

};

destination d_local_done {

 file("/var/log/done.log");

};

filter f_done {

 message("DONE");

};

log {

 source(s_syslog);

 source(s_local);

 destination(d_local);

};

log {

 source(s_syslog);

 filter(f_done);

 destination(d_local_done);

78

};

Appendix 4. Test termination rule

#Usage:

#sec --detach --conf=/opt/sec-2.7.5/conf.sec --input=/var/log/done.log

type=SingleWithThreshold

ptype=RegExp

pattern=DONE

desc=Test done

action=shellcmd (pkill "rsyslog|syslog-ng|nxlog" && sleep 1 && rm /var/log/test.*)

thresh=20

window=60

79

	Declaration
	List of Acronyms and Abbreviations
	Abstract
	Table of content
	List of Diagrams
	List of Tables
	1. Introduction
	1.1. Problem statement and contribution of the thesis
	1.2. Outline
	1.3. Acknowledgments

	2. Overview of existing solutions and related work
	2.1. The roles of IDS and IPS in evolving IT landscape
	2.2. SIEM systems
	2.3. Syslog protocol
	2.4. Log collection software
	2.5. Event Correlation

	3. Comparative analysis of open-source log collection and correlation tools
	3.1. Log Collection tools
	3.1.1. Functionality
	3.1.2. Configuration
	3.1.3. Performance

	3.2. Comparison of SEC and NXLog
	3.2.1. Functionality
	3.2.2. Configuration

	3.3. Solutions selected for the monitoring system

	4. Implementation
	4.1. Infrastructure overview
	4.2. Centralized logging and event correlation infrastructure
	4.2.1. Certificate authority
	4.2.2. Syslog server
	4.2.3. Syslog client
	4.2.4. Application specific log collection
	4.2.5. Event Correlation framework

	4.3. Log pattern analysis and event generation
	4.3.1. Authentication failures
	4.3.2. Web application injections
	4.3.3. DNS server events
	4.3.4. Attack events

	5. Summary
	Sündmuste haldamise ning aktiivse kaitse raamistik väikeettevõttele
	List of References
	Appendices
	Appendix 1. Syslog daemon compilation options
	Appendix 2. Unfiltered TCP syslog server configurations
	Appendix 2.1. NXLog
	Appendix 2.2. Rsyslog 5.8
	Appendix 2.3. Rsyslog 7.6
	Appendix 2.4. Rsyslog 8.1
	Appendix 2.5. Syslog-ng 3.3
	Appendix 2.6. Syslog-ng 3.5

	Appendix 3. Filtered TCP syslog server configurations
	Appendix 3.4. NXLog
	Appendix 3.2. Rsyslog 5.8
	Appendix 3.3. Rsyslog 7.6
	Appendix 3.4. Rsyslog 8.1
	Appendix 3.5. Syslog-ng 3.3
	Appendix 3.6. Syslog-ng 3.5

	Appendix 4. Test termination rule

