

Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Nikolai Ogonkov 206486IABB

Charon Moodle plugin end-to-end test

automation

Bachelor's thesis

Supervisor: Bahdan Yanovich

 BSc

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Nikolai Ogonkov 206486IABB

Charon Moodle pistikprogrammi läbivtestimise

automatiseerimine

Bakalaureusetöö

Juhendaja: Bahdan Yanovich

 BSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Nikolai Ogonkov

20.05.2024

4

 Abstract

“Moodle is a Learning Management System (LMS) designed to provide educators,

administrators and learners with a single robust, secure and integrated system to create

personalised learning environments” [1]. Moodle has built-in support for custom plugins,

which allows for the integration of supplementary features to meet the requirements of

the end user.

Testing is crucial for ensuring service continuity and quality in a production environment,

it is one of the most important phases of the product release cycle. Test automation

facilitates seamless handling of the testing stage of the product release cycle by not

requiring a human presence to test and report on failed and passed tests.

The goal of this paper is to explain how end-to-end (E2E) testing and test automation for

the Charon Moodle plugin were conducted. This paper also goes into detail why certain

techniques, tools were used and describes the procedures employed for mitigating test

flakiness.

This thesis is written in English and is 37 pages long, including five chapters, 13 figures.

5

Annotatsioon

Charon Moodle pistikprogrammi läbivtestimise automatiseerimine

“Moodle on õpihaldussüsteem, mis on loodud selleks, et pakkuda haridustöötajatele,

administraatoritele ja õppijatele ühte kindlat, turvalist ja integreeritud süsteemi

personaalsete õpikeskkondade loomiseks” [1]. Moodle'il on sisseehitatud tugi

kohandatud lisandmoodulitele, mis võimaldab integreerida täiendavaid funktsioone, et

vastata lõppkasutaja vajadustele.

Testimine on oluline, et tagada teenuse järjepidevus ja kvaliteet tootmiskeskkonnas, see

on üks tähtsamaid etappe toote väljalasketsüklis. Testi automatiseerimine hõlbustab toote

väljalasketsükli testimise etapi tõrgeteta käsitlemist, kuna ei nõua inimese kohalolekut

testimiseks ja ebaõnnestunud ja läbitud testide kohta aruannete koostamiseks.

Läbivtestimise eesmärk on jäljendada inimese suhtlemist tarkvaralahendusega, mis

võimaldab testimist lõppkasutaja vaatenurgast. Lisaks aitab läbivtestimine saavutada

suuremat testide katvust, võimaldades testida tarkvara funktsioone, mille puhul ei ole

ühik- ja integratsioonitestide loomine võimalik.

Käesoleva töö eesmärk on selgitada, kuidas Charon Moodle'i pistikprogrammi

läbivtestimine ja testide automatiseerimine viidi läbi. Selles dokumendis käsitletakse ka

üksikasjalikult, miks kasutati teatavaid tehnikaid ja vahendeid ning kirjeldatakse

menetlusi, mida kasutati flaky testide vältimiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 37 leheküljel, viis peatükki, 13

joonist.

6

List of abbreviations and terms

E2E End-to-end.

CI/CD Continuous integration and continuous delivery or deployment.

TalTech Tallinn University of Technology.

E2E testing

environment

An environment in which E2E tests may be executed.

7

Table of contents

1 Introduction ... 10

1.1 Problem description .. 10

1.2 Proposed solution ... 11

1.3 Goals and expected results ... 11

1.4 Thesis structure ... 12

2 Methodology .. 13

2.1 Background ... 13

2.1.1 Moodle ... 13

2.1.2 Charon Moodle plugin ... 13

2.1.3 Moodle Docker implementation .. 14

2.1.4 GitLab CI/CD .. 14

2.1.5 GitLab runners ... 14

2.1.6 Docker images, containers, and networks ... 14

2.2 Object description ... 15

2.3 Framework and language selection .. 16

2.3.1 Playwright .. 16

2.3.2 TypeScript ... 16

2.4 Repositories .. 17

2.5 Development process description ... 17

2.6 Test flakiness mitigation strategy ... 17

3 Solution .. 19

3.1 Solution requirements ... 19

3.2 Test case selection .. 20

3.3 E2E testing project architecture and test creation .. 21

3.3.1 MariaDB API ... 21

3.3.2 GitLab API .. 22

3.3.3 Global variables, enums, interfaces and functions .. 23

3.3.4 Test implementation .. 24

8

3.3.5 Test example .. 24

3.3.6 Playwright configuration and environment variables 26

3.4 Deployment of E2E tests .. 30

3.5 E2E testing environment for development tests ... 31

3.5.1 Creation of custom docker-compose files ... 31

3.5.2 Script for assembling the E2E testing environment for development tests ... 33

3.5.3 Script for disposing previously generated Docker elements 37

3.5.4 “charon-initialization.sh” script execution as part of the CI/CD pipeline 37

3.6 E2E test execution .. 38

3.6.1 Script for executing E2E tests ... 38

3.6.2 “test-initialization.sh” script execution and result collection 39

4 Analysis of the solution ... 41

4.1 Compliance with the solution requirements ... 41

4.2 Summary of the final solution .. 42

4.2.1 E2E testing project .. 42

4.2.2 Integration of the E2E testing project into the CI/CD pipeline 43

4.3 Solution testing ... 44

4.4 Encountered problems .. 45

4.5 Areas of potential improvement ... 45

5 Summary .. 47

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 49

Appendix 2 – E2E testing project structure .. 50

Appendix 3 – “niogon/E2E-tests” CI/CD pipeline’s “build_image” job 51

Appendix 4 – “ained/charon” CI/CD pipeline’s “build_moodle”, “test_moodle” jobs . 52

Appendix 5 – “ained/charon” CI/CD pipeline’s “test_prod _moodle” job 54

9

List of figures

Figure 1. "Tester settings functionality" test. ... 26

Figure 2. playwright.config.js file. ... 28

Figure 3. .env file. ... 29

Figure 4. "build_image" job of the "niogon/E2E-tests" CI/CD pipeline. 30

Figure 5. Dockerfile for building the "niogon/e2e-tests" image. 30

Figure 6. Initial docker-compose file. .. 32

Figure 7. First part of the "charon-initialization.sh" script. .. 34

Figure 8. Second part of the "charon-initialization.sh" script. 36

Figure 9. "build_moodle" job of the "ained/charon" CI/CD pipeline. 38

Figure 10. "test-initialization.sh" script. ... 39

Figure 11. "test_moodle" job of the "ained/charon" CI/CD pipeline. 40

Figure 12. Results for development environment testing within the CI/CD pipeline. ... 44

Figure 13. Results for production environment testing on local machine. 44

10

1 Introduction

This chapter provides an overview of the problem at hand, the proposed solution, the

goals and expected results, and the structure of this thesis.

1.1 Problem description

Charon, a Moodle plugin developed by Tallinn University of Technology’s (TalTech’s)

Department of Software Science, builds on existing Moodle features and plugins,

allowing teachers to create a more engaging learning environment for students.

As Charon has evolved, an increasing array of features has been integrated, significantly

expanding the scope of website functionalities requiring testing prior to release. Testing

plays a crucial role in product delivery, as it contributes to ensuring end user satisfaction.

A prevalent practice among many software development teams is to write unit and

integration tests for newly developed code.

Given the extensive functionalities provided by the Charon plugin, writing unit and

integration tests for plugin features or components has become exceptionally challenging.

Frequently, website components are tightly interconnected, making it difficult to

decouple them for testing purposes, as one component may rely heavily on another to

function properly. Decoupling the components would necessitate a significant allocation

of resources to refactor a large portion of the Charon plugin codebase, making it

impractical to pursue. Consequently, developers are compelled to manually test certain

website components before deploying new versions by interacting directly with the

website.

The Charon development team lacks a defined set of rules and best practices for manually

testing the solution in the staging environment. This absence increases the likelihood of

bugs appearing in the production environment, particularly as certain critical website

components may remain untested before deployment. The issue is further exacerbated by

11

the fact that the Charon plugin is largely developed by students, leading to constant

changes in the development team. This dynamic environment can result in business-

critical functionality being underemphasized during the transfer of knowledge.

Bugs in the production environment typically have a significant impact on the end user

experience, as a separate team is responsible for solution deployment and production

version control. Consequently, even if the Charon development team implements a fix in

a timely manner, a discovered bug may remain unaddressed for extended periods of time.

Certain Charon plugin features require testing in the production environment due to

technical constraints. Consequently, some tests must be executed promptly after

deploying a new version, typically during off-peak hours, such as at night. During these

times, human testers are more likely to be fatigued, increasing the risk of errors.

1.2 Proposed solution

Developing E2E tests for critical website functionalities that cannot be tested through unit

or integration testing will enhance the overall test coverage of the application.

Automating Charon plugin E2E testing is a great way to alleviate developers from the

burden of manually setting up a testing environment and initiating test execution for their

software solution. Test automation is a widespread practice adopted by many companies

and small teams as an integral component of their CI/CD pipeline.

Writing E2E tests and automating test execution demands significant time and

commitment, but its maintenance thereafter is straightforward and cost-effective, thereby

allowing developers to dedicate more time to developing new features and enhancing the

existing codebase.

1.3 Goals and expected results

The goals of this thesis were to create an E2E testing project and to configure CI/CD

pipelines in a manner that enables E2E test execution and subsequent result reporting in

GitLab.

The expected outcomes of this work were an E2E testing project and modified CI/CD

pipelines. The E2E testing project needed to encompass a variety of tests that cover the

12

primary functionalities provided by the Charon plugin. It also had to include a framework

of tools to streamline test creation and offer multiple configuration capabilities. In

contrast, the modified CI/CD pipelines had to enable remote, automatic test execution

and test result reporting.

1.4 Thesis structure

The thesis consists of three parts:

1) Methodology

This chapter provides a comprehensive explanation of essential concepts and details the

planned development process, including procedures for reducing test flakiness.

Furthermore, it outlines the establishment of solution requirements. Additionally, within

this chapter, the author presents the rationale behind the selection of specific tools and

frameworks to achieve the established objectives.

2) Solution

This chapter includes an overview of selected test cases. It also delineates the essential

strategies and coding techniques employed in crafting the final solution, offering a

thorough examination of its components.

3) Analysis of the solution

This chapter provides a comprehensive overview of the accomplishments achieved during

the writing of this thesis and the structure of the E2E testing solution. Additionally, it

presents the establishment of solution compliance with the specified requirements. At the

conclusion of this chapter, the results from solution testing are provided, along with a

detailed account of the challenges encountered by the author during the thesis writing

process and areas identified for potential improvement.

13

2 Methodology

This chapter provides an overview of Moodle and the Charon Moodle plugin, along with

details about the tools, frameworks, and languages utilized in creating the E2E testing

project. Additionally, it outlines the development process and strategies implemented to

mitigate E2E test flakiness.

2.1 Background

This section presents a detailed overview of Moodle and the Charon Moodle plugin, for

which E2E tests and test automation were conducted. This section also provides detailed

descriptions of the key tools, frameworks, and technologies utilized by the Charon

development team, which facilitated the implementation of the E2E testing solution.

2.1.1 Moodle

Moodle, an open-source learning management system, stands as a favoured solution

among many educational institutions and learning platforms [2]. “Moodle provides

educators, administrators, and learners with a single robust, secure, and integrated system

to create personalised learning environments” [1]. Key features of Moodle include

progress tracking, peer and self-assessment, competency-based marking, advanced

grading, multimedia integration, and numerous others. These features offer considerable

utility in establishing a fully customized learning environment; however, they may not be

suitable for all user requirements.

Plugins further the customization capacity of Moodle applications. Users may integrate

plugins installed from the Moodle directory or create custom in-house plugins.

2.1.2 Charon Moodle plugin

Charon is a plugin developed by TalTech’s Department of Software Science. Charon

incorporates many features developed over the years by students and teachers alike. These

features are primarily written using PHP for backend logic, and JavaScript along with the

Vue.js framework for frontend logic.

The Charon plugin serves as a crucial component of TalTech’s Moodle implementation,

offering key features that enhance functionality. These include providing more detailed

14

performance overviews for course participants, enabling the submission of solutions to

coding problems, facilitating the registration of labs, and various other critical features.

2.1.3 Moodle Docker implementation

A Moodle program can be launched as a multi-container Docker application, utilizing the

Bitnami Docker images accessible via the Docker hub. The Dockerized version of

Moodle consists of two containers: MariaDB and Moodle. The MariaDB container serves

as a relational database for storing Moodle-specific data, while the Moodle container

hosts web components and plugins required for launching the Moodle website [3].

Additionally, Charon development team utilizes the Adminer container alongside these

base containers for database administration tasks.

2.1.4 GitLab CI/CD

CI/CD is an abbreviation for continuous integration and continuous deployment. At its

core, CI/CD involves using a range of tools and methods to test code changes for bugs in

the CI phase and then deploying those changes across different environments in the CD

phase. In GitLab, CI/CD is facilitated via pipelines, which are composed of user-defined

stages. Each stage comprises a series of customized jobs, executed by the GitLab runner

to accomplish the tasks (building, testing, deploying, etc.) assigned to that stage [4].

2.1.5 GitLab runners

GitLab runners are applications used for executing GitLab jobs. GitLab runners have the

capability to utilize multiple executors, each serving as distinct environments for the

execution of jobs. GitLab offers developers the option to utilize GitLab-hosted runners,

providing a convenient means of configuring a CI/CD pipeline. Additionally, there is the

alternative of deploying self-hosted GitLab runners. Generally, self-hosted runners afford

enhanced security, are more cost-effective compared to GitLab-hosted runners, and offer

greater customization capabilities [5].

2.1.6 Docker images, containers, and networks

A Docker image can be viewed as an executable package of software that includes

everything needed to run an application: code, runtime, system tools, system libraries and

settings [6]. An image can encapsulate a software component such as a database or

statistics API, backend or frontend program layers or even whole programs. Docker

15

images can be generated using Dockerfiles, which are essentially text documents

containing a series of instructions. Once a Docker image has been created, it can be

instantiated.

Docker containers are instances of Docker images and share similarities with virtual

machines. However, unlike virtual machines, Docker containers leverage the host

machine’s operating system kernel, making them more lightweight. Another distinctive

characteristic of Docker containers is their ability to run on various operating systems,

differing from that of the host machine. This versatility is facilitated by Docker engine's

utilization of hypervisor technology, which serves as an intermediary for communication

between the host machine's kernel and the Docker container [7].

Docker networks provide the ability to isolate Docker containers. Networks can be

created through the Docker client, and Docker containers can subsequently be

incorporated into these networks. When added to a Docker network, each Docker

container is assigned an IP address. Docker containers within the same Docker network

can communicate with each other using container IP addresses, names, or even exposed

ports [8].

2.2 Object description

In the framework of this thesis, the author has developed an E2E testing solution

consisting of two principal components: the E2E testing project and its integration into

the Charon GitLab repository's CI/CD pipeline.

The E2E testing project was predominantly built using the TypeScript programming

language and the Playwright framework for E2E test development. Its design emphasizes

scalability, maintainability, and configurability, as evidenced by the organizational

structure featuring distinct files for tools, configurations, and tests. Separate test suites

were created for both production and development environments.

Integration of the E2E testing project into the Charon GitLab repository's CI/CD pipeline

was achieved through the utilization of custom shell scripts, Dockerfiles, docker-compose

files, and modifications to the .gitlab-ci.yml files within both the Charon plugin's and E2E

testing project's repositories.

16

2.3 Framework and language selection

The selection of suitable tools, languages, and frameworks is paramount for ensuring

project maintainability and scalability. While highly subjective, the author had attempted

to maintain objectivity throughout the decision-making process, striving to minimize the

influence of personal experience on the outcome.

2.3.1 Playwright

Playwright is a framework for web testing and test automation that supports languages

like C#, JavaScript, Python and Java. The framework is developed by Microsoft and its

source code is openly available on GitHub, offering transparency and collaboration

opportunities to its users.

The Playwright framework is a great choice for writing E2E tests because it works out of

the box and has a lot of useful features that many of its competitors do not have. Some of

Playwright’s exceptional features, such as built-in mobile device emulation, support for

testing Firefox, Chromium and Webkit-based browsers, auto-waiting implementation for

many functions, distinguish it from similar frameworks like Cypress and Selenium [9].

2.3.2 TypeScript

TypeScript is a superset of JavaScript, which provides users the ability to write type safe

JavaScript code. Type safety is vital for improving codebase maintainability and

scalability.

Explicit typing provides important information pertaining to what kind of data is being

altered and stored or returned by functions. This information can be utilized by the

developer to better understand the overall code structure. TypeScript additionally

performs type error checks both during compile-time and runtime, significantly

enhancing the debugging process [10].

TypeScript and JavaScript combined have a large and active community of users. Both

languages are well-documented and are used by many teams for client-side scripting,

making these languages a popular choice among Playwright developers [11].

17

2.4 Repositories

The author utilized the niogon/E2E-tests and ained/charon GitLab repositories in the

writing of this thesis. The niogon/E2E-tests repository served as the storage and

maintenance platform for the E2E testing project.

All modifications necessary to integrate the E2E testing project into the ained/charon

repository’s CI/CD pipeline have been implemented in the e2e-test-automation-2

branch. At the time of writing, development of the Charon plugin was ongoing, with

continuous additions of new features. To focus the scope of this paper, the author had

chosen to develop E2E tests specifically for version 1.8.5 of the plugin. The commit made

on 23.01.2024, marking the release of version 1.8.5, served as the parent commit for the

e2e-test-automation-2 branch.

2.5 Development process description

The workflow primarily involved the writing of code, complemented by research,

analysis, and miscellaneous tasks such as defining requirements and solution testing.

The author and supervisor reached a mutual agreement to hold weekly meetings aimed at

reviewing the author's progress and outlining tasks for the ensuing week(s). This iterative

and incremental approach facilitated the tailoring of the solution to align with the

requirements of the Charon development team. Moreover, the feedback provided by the

supervisor proved invaluable in identifying and rectifying issues pertaining to code style

and logic. These scheduled sessions were conducted via Microsoft Teams and typically

lasted for an hour.

2.6 Test flakiness mitigation strategy

Test flakiness can be defined as a characteristic of returning inconsistent and incorrect

test results. Flaky tests can lead to false-positives or false-negatives arising within the

testing cycle, potentially misreporting the state of the application. It is in the developer’s

best interests to avoid writing flaky tests and to mitigate their impact on the overall

outcome of the testing cycle.

There are numerous factors that can contribute to E2E test flakiness:

18

• Popups or other notifications hindering click actions

• Faulty webpage element locators (selectors)

• Neglecting to ensure the complete loading of page elements

• Issues with testing logic [12]

Testing for flakiness is a good practice for determining whether testing logic requires to

be altered and should always precede test deployment. At times, it may be prohibitively

expensive or even technically unfeasible to rewrite tests to fully eliminate flakiness,

particularly due to API or framework-related issues. In such cases, executing multiple

iterations of the same test can substantially mitigate the effects of flakiness.

E2E testing frameworks utilize locators and locator abstractions for interacting with

webpage elements. Locators can be defined as strategies for locating HTML elements.

Locator complexity can span from specifying the unique value of the element’s id

attribute to describing the entire path of a tag in an HTML document tree. To mitigate

flakiness when writing E2E tests, it is important to choose optimal strategies for selecting

HTML elements. Short and precise strategies are preferable, with id attribute values

providing the utmost precision in selecting webpage elements. It is important to avoid

writing long and imprecise strategies. Imprecision can lead to multiple page elements

getting selected, while long strategies are particularly susceptible to changes, leading to

frequent failures and increased maintenance overhead [13].

The Playwright framework incorporates auto-waiting functionality within many of its

functions designed for interacting with webpage elements. When attempting to interact

with a webpage element, Playwright executes a series of checks to ensure consistent

behaviour during test execution. Developers can specify a timeout period during which

these checks are conducted. If the HTML element successfully passes all checks before

the timeout expires, test execution continues. However, if any check fails, an error is

triggered. The specific checks performed depend on the type of interaction being

executed. While this framework feature is effective in reducing flakiness, it may not

always suffice. To further minimize flakiness, developers can implement a custom

timeout function to ensure consistent test results.

19

3 Solution

In the “Solution” chapter, the solution requirements are established, the overall

development process of the E2E testing solution is described, and an overview of its key

components is presented. This chapter also includes an example illustrating the process

of E2E test creation.

3.1 Solution requirements

Solution requirements play a pivotal role in setting goals, ensuring that the development

process remains focused and purposeful. Moreover, they provide the author with clear

guidelines regarding code style and structure. Furthermore, these requirements can serve

as reference points for analysing results, facilitating the assessment of the solution's

success.

Before beginning the development process of the E2E testing solution, the author outlined

the following solution requirements:

• The E2E testing solution needs to be versatile and configurable, necessitating the

establishment of a foundation with scalability and future changes in mind. The

E2E testing project will serve as this foundation, housing tests and tools/modules

for test execution.

• To automate the testing process effectively, integrating the E2E testing solution

into the Charon repository’s CI/CD pipeline is essential. This integration will

ensure that E2E tests can be conducted against the most recent updates in the

repository. Additionally, the E2E testing solution must have the capability to

accommodate testing across multiple environments.

• The work presented in this paper must strictly adhere to clean code principles,

thereby enabling future developers to efficiently expand upon the author's solution

and maintain the codebase. Adhering to principles such as Don't Repeat Yourself

(DRY) and Keep It Simple, Stupid (KISS) should help minimize logical

interdependence.

20

• Additionally, test creation must conform to specific guidelines to ensure test

maintainability and decrease flakiness. The procedures outlined in the “Test

flakiness mitigation strategy” (see section 2.6) section of this paper effectively

details the approach the author must employ in creating E2E tests.

• E2E tests must be organized into distinct groups, each associated with a specific

testing environment. This will ensure that tests belonging to different

environments are not executed concurrently.

3.2 Test case selection

The potential for writing thousands of E2E tests to cover every conceivable Moodle and

Charon feature across various scenarios and environments exists. However, the time

investment required for test creation rendered achieving comprehensive test coverage

within the scope of this paper impractical due to time limitations. Consequently, careful

test case selection became crucial to ensure that the most impactful areas of the website

would receive sufficient coverage through E2E testing.

Upon thorough examination of the Charon plugin, the author and supervisor jointly

determined that tests for both development and production environments need to be

created. Specifically, the following functionalities were identified for testing across

WebKit, Firefox, and Chromium browsers: login/logout, course creation, course settings,

student overview, teacher overview, Charon settings, tester settings, solution submission

via the built-in website editor, and solution submission via GitLab.

While login/logout and course creation functionalities are not exclusive to Charon, they

play integral roles and enable the testing of other Charon features. Hence, they were

included in the selection for testing.

It is important to highlight the significant differences between production and

development environments, which greatly influence how testing is conducted.

In the production environment, strict security measures prevent the E2E testing project

from accessing the Moodle database. This means that setting up E2E testing environments

either requires manual intervention or must be integrated into the testing process.

21

Consequently, any test failures in a production E2E testing environment may necessitate

manual intervention for resolution.

In contrast, in the development environment, the Moodle application lacks access to the

submission tester. Therefore, scenarios involving solution submission via the built-in

website editor and solution submission via GitLab can only be addressed within the

production environment.

3.3 E2E testing project architecture and test creation

To facilitate the execution of JavaScript applications and the utilization of Node Package

Manager (npm) for acquiring frameworks and tools, the author installed the Node.js

runtime environment on their machine. Having the Node.js runtime environment is also

a system requirement for running Playwright applications.

The TypeScript and Playwright packages were installed using the newly installed Node

Package Manager. During the Playwright installation, the author was prompted to select

the programming language, and TypeScript was chosen. Once the Playwright

configuration was completed, a TypeScript-based Playwright demo application was

generated, providing the foundation for the E2E testing project.

To achieve enhanced code readability, decoupling, reusability, and scalability, multiple

application modules were defined. Modules are sets of related classes, functions, and

variables that provide logical boundaries for the codebase [14].

3.3.1 MariaDB API

In an E2E testing environment, a container containing the Moodle database is created.

This container can be communicated with by using the MariaDB client for Node.js, which

can be installed as a code package via Node Package Manager (npm). Once installed, the

MariaDB module allows for the creation of a connection pool, which acts as storage for

multiple connections. These connections can then be retrieved from the pool and used to

execute calls to the MariaDB database. After a process finishes using a connection, it is

returned to the pool, ready for reuse [15]. This approach minimizes the performance

overhead associated with frequent disconnections and reconnections to the database.

22

Communication with the MariaDB database is facilitated through SQL queries, which are

specified as strings and passed to a connection from the connection pool. Upon execution

of SQL queries, connections return Promise objects, which can be parsed into data and

utilized across various sections of the project.

Harnessing the MariaDB client in the creation of E2E tests provided several benefits,

including the randomization of test data, the minimization of flaky tests' impact on test

results, enhanced debugging capabilities, and comprehensive testing coverage.

The dbContext.ts file was developed to streamline communication with the MariaDB

database. It includes over 20 exported and reusable SQL queries in the form of functions,

such as getRandomTesterType, getTesterTypeCount, getRandomUniqueDBString,

getRandomCourseId, and getRandomEnrolledCourseParticipantId, among others,

along with the implementation of database communication logic. This module is

extensively utilized in a variety of development environment tests.

For instance, the getRandomUniqueDBString function ensures the generation of a

random string that does not match any fields within the data entries of tables passed as

arguments. This functionality effectively prevents test failures caused by non-unique

random strings. Conversely, the getRandomCourseId function enables the selection of a

random course id for testing purposes, ensuring that test outcomes are not reliant on

specific input data.

3.3.2 GitLab API

The gitbeaker/rest code package facilitates the usage of the GitLab REST API. An

instance of the GitLab class can be instantiated using the @gitbeaker/rest module by

providing the host URL and a GitLab account access token. The GitLab class

encompasses various functions for interacting with GitLab, including creating and

pushing commits, fetching repositories, managing issues, modifying repository members,

and more [16].

In the context of writing E2E tests for the Charon plugin, the GitLab API serves as a tool

for simulating and testing answer submissions for various programming assignments. In

many instances, the grading process is automated. The code committed via GitLab is

retrieved from the student’s repository and executed against multiple tests to assess

23

compliance with solution requirements. Upon completion of the tests, the student's

solution is evaluated, and points are allocated accordingly.

The gitContext.ts file was developed to encapsulate logic related to communication

with GitLab. The functions defined within this file facilitate the submission of various

solutions for distinct programming assignments. By specifying both the programming

assignment and the points allocation for a solution, the suitable solution, stored as a text

file, is retrieved using the assignmentPointsMapping.json file and subsequently

pushed to the GitLab repository. This module's functionality is utilized in production

tests, where the solution submission tester is configured and operational.

3.3.3 Global variables, enums, interfaces and functions

To enhance code reusability and maintainability, several variables, enums, interfaces, and

functions were relocated to a dedicated helpers folder. Within this folder, the

globalFunctions.ts, globalInterfacesEnums.ts, and globalVariables.ts files

were established to store specific entities as indicated by their respective file names.

Within the globalVariables.ts module, twenty variables have been encapsulated

within a read-only object named globalConstants, which can be imported in other parts

of the project. These variables encompass table names, month abbreviations, various

versions of the Moodle URL, and environment-specific values.

Enums and interfaces from the globalInterfacesEnums.ts file are exported

individually, fulfilling crucial roles despite their limited quantity. Interface

implementation enables TypeScript to detect compile-time errors in the codebase and

enhances code readability. Meanwhile, enums facilitate the encapsulation of variables

related to specific categories.

A total of 15 functions have been created to perform various tasks, such as generating

random, unique strings and interacting with webpage elements like sliders. Each function

is defined and exported separately to maintain clarity and manageability, as consolidating

them into larger entities would result in excessively long sections of code.

The modules stored within the helpers folder are employed across the codebase. Some

functionality is shared among these modules and even utilized within the Playwright

configuration file.

24

3.3.4 Test implementation

In the tests folder, projects such as auth.setup.spec.ts, dev.tests.spec.ts, and

prod.tests.spec.ts were established. Furthermore, the reusableTestFunctions

subfolder was created to contain the devFunctions.ts and prodFunctions.ts| files.

These files serve to store functions that can be reused in development and production

tests, thereby minimizing duplicate code and enhancing test readability.

The auth.setup.spec.ts setup project is executed initially, preceding the

dev.test.spec.ts or prod.tests.spec.ts testing projects, depending on the

configuration. This project is tasked with logging into the Moodle website, closing any

necessary popups, and storing the session cookies for subsequent E2E tests. Running the

setup project before the testing project is essential to prevent tests from being conducted

with expired session cookies and to ensure that unaddressed popups do not hinder the

execution of clicks.

3.3.5 Test example

The process of writing E2E tests adheres to a set of fundamental principles. Initially, the

test function from the @playwright/test module is invoked. Following this, the test

name and body are provided as function arguments. Within the test body, interactions

with the Moodle website are facilitated using the page instance alongside locators.

Subsequently, upon executing various actions within the test, the expect function is

employed to assess the state of the webpage, webpage elements, or the Moodle database.

If an assertion proves false or an interaction with the Moodle website fails to initiate,

Playwright notifies the user of the test failure and indicates the line of code responsible

for the test's termination.

To enhance comprehension of the test body structure, an example of a basic test designed

for testing tester settings functionality is presented below.

Testers serve as containers for automated evaluations aimed at assessing student-

submitted solutions for coding assignments. Upon evaluation completion, points are

allocated to the student based on their solution, contributing to their overall course grade.

A specific tester type is assigned to each course assignment to ensure appropriate testing

for the corresponding programming language.

25

The primary objective of the “Tester settings functionality” test is to verify the capability

of creating and deleting tester types through the Moodle website.

Firstly, a random course id is retrieved from the Moodle database, and a URL is generated

to access the “charonSettings” endpoint. Upon accessing the webpage via the URL and

accessing the tester settings functionality, a new tester type is generated using a random

string not found in other tester type entries within the Moodle database. Following the

creation of the new tester type, a sleep command is executed to allow time for the

database to update the existing entry list. The argument “5000 milliseconds” represents

an arbitrary timeout duration and can be adjusted as needed.

After confirming the increase in the number of database entries, the newly created tester

type is deleted through a button-click action on the website interface. Subsequently, the

database is given five seconds to update before verifying whether the deletion process

was successful.

26

test('Tester settings functionality', async ({ page }) => {

 const courseId : number = await db.getRandomCourseId();

 const charonEditUrl : string =
`${globalConstants.url}/mod/charon/courses/${courseId}/popup#/charonSe
ttings`;

 const initialTesterCount : number = await db.getTesterTypeCount();

 await page.goto(charonEditUrl);

 const testerName : string = await
db.getRandomUniqueDBString(globalConstants.testerTypeTable);

 await page.getByLabel('Tester type').fill(testerName);

 await page.getByRole('button', { name: 'Add' }).click();

 await sleep(5000);

 const newTesterCount : number = await db.getTesterTypeCount();

 expect(initialTesterCount == newTesterCount).toBe(false);

 await
page.getByText(testerName).locator('..').getByRole('button').click();

 await sleep(5000);

 expect(await db.getTesterTypeCount() ==
initialTesterCount).toBe(true);

});

Figure 1. "Tester settings functionality" test.

3.3.6 Playwright configuration and environment variables

The auto-generated Playwright playwright.config.js file provides numerous

configuration options for executing E2E tests, collecting test results, and defining

projects. The author has customized the Playwright application's configuration to align

with the project requirements and the implementation of the solution.

In the custom Playwright configuration, parallelization has been disabled by setting the

workers option to 1. While parallelization can enhance test performance, its use may also

introduce potential race conditions and test flakiness, and it requires more RAM to be

utilized effectively.

For debugging purposes, the author has configured a test report to be generated upon test

completion. Additionally, videos of test execution and traces of actions performed during

27

test execution are saved on the first retry after a test failure. The generated report, videos,

and traces are stored in the playwright-report and test-results folders.

A total of 4 projects have been defined in the Playwright configuration. The setup project

is tasked with logging into the Moodle website and saving session cookies, which are

subsequently utilized by other testing projects through the specification of the cookie-

containing file in the storageState option. The chromium, firefox, and webkit

projects are responsible for executing the same set of E2E tests across different browsers

to identify browser-specific issues.

28

const { defineConfig, devices } = require('@playwright/test');

import { globalConstants } from './helpers/globalVariables';

module.exports = defineConfig({

 timeout : 220_000,

 testDir: './tests',

 fullyParallel: false,

 forbidOnly: !!globalConstants.isProduction,

 retries: 3,

 workers: 1,

 reporter: [['html', { open: 'never', outputFolder: 'playwright-
report' }]],

 use: {

 trace: 'on-first-retry',

 video: 'on-first-retry',

 baseURL: globalConstants.url,

 },

 projects: [

 { name: 'setup', testMatch: /.*\.setup\.ts/ },

 {

 name: 'chromium',

 use: { ...devices['Desktop Chrome'],

 permissions: ['clipboard-read', 'clipboard-write'],

 storageState: 'states/userState.json' },

 dependencies: ['setup'],

 },

 {

 name: 'firefox',

 use: { ...devices['Desktop Firefox'],

 storageState: 'states/userState.json' },

 dependencies: ['setup'],

 },

 {

 name: 'webkit',

 use: { ...devices['Desktop Safari'],

 storageState: 'states/userState.json' },

 dependencies: ['setup'],

 },

],

});

Figure 2. playwright.config.js file.

29

To configure non-Playwright-specific elements of the solution, the author chose to create

a .env file for storing user-configured environment variables.

The IS_PRODUCTION variable may have the values 0 or 1, indicating whether tests for the

development or production environment should be executed.

The MOODLE_URL, MOODLE_PORT, and MOODLE_PROTOCOL variables are combined to create

an endpoint for accessing the Moodle website.

The MOODLE_USERNAME and MOODLE_PASSWORD variables serve as login credentials used

to authenticate and log into the Moodle website. These credentials enable the execution

of E2E tests from the perspective of a logged-in user.

The HOST, DB_USERNAME, DB_PASSWORD, DATABASE, and CONNECTION_LIMIT

environment variables are utilized for creating connection pools, which are then used to

establish connections with the Moodle database.

The GITLAB_ACCESS_TOKEN, GITLAB_PROJECT_ID, and GITLAB_URL variables are

necessary for interacting with the GitLab API.

Changes the tests that will be run (in production we can't alter
database)

IS_PRODUCTION=0

Moodle socket address configuration

MOODLE_URL="localhost"

MOODLE_PORT="80"

MOODLE_PROTOCOL="http"

Moodle developer login configuration

MOODLE_USERNAME="dev"

MOODLE_PASSWORD="dev"

Database configuration

HOST="localhost"

DB_USERNAME="root"

DB_PASSWORD="root"

DATABASE="bitnami_moodle"

CONNECTION_LIMIT=5

Git configuration

GITLAB_ACCESS_TOKEN=""

GITLAB_PROJECT_ID=""

GITLAB_URL="https://gitlab.cs.ttu.ee/"

Figure 3. .env file.

30

3.4 Deployment of E2E tests

Establishing one-way resource sharing from niogon/E2E-tests to the ained/charon

repository was crucial for executing E2E tests against the ained/charon implementation

of Moodle. For resource sharing purposes, the decision was made to utilize the GitLab

container registry, largely due to the necessity of testing against a multi-container

application.

stages:

 - build

build_image:

 stage: build

 image: docker:latest

 script:

 - docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD
$CI_REGISTRY

 - docker build -t gitlab.cs.taltech.ee:5050/niogon/e2e-tests .

 - docker push gitlab.cs.taltech.ee:5050/niogon/e2e-tests

Figure 4. "build_image" job of the "niogon/E2E-tests" CI/CD pipeline.

CI/CD pipeline for niogon/E2E-tests was configured using the auto-generated

.gitlab-ci.yml file. In this file, the build stage and build_image job within the build

stage were defined. As part of the build_image job, a script for building and pushing the

niogon/e2e-tests container image, containing the niogon/E2E-tests repository’s

code, to the GitLab container registry was outlined.

FROM mcr.microsoft.com/playwright:v1.43.0-jammy

COPY . /

RUN npm ci

Figure 5. Dockerfile for building the "niogon/e2e-tests" image.

A Dockerfile was utilized to specify the instructions for building the niogon/e2e-tests

image. The official Microsoft Playwright image was chosen as the base image for the

niogon/e2e-tests container image, primarily because it contains all the necessary

libraries and dependencies required to run Playwright applications. At the conclusion of

the Dockerfile, the command RUN npm ci was employed to retrieve all specified versions

of frameworks and tools outlined in the package.json file of the application.

31

The TalTech runner with the Docker executor was used to fulfill the build_image job.

Within the Docker executor, a Docker container with Docker runtime is created as

specified in the .gitlab-ci.yml file. This setup facilitates the use of the Docker client

for building and pushing the container image to the GitLab container registry.

3.5 E2E testing environment for development tests

Assembling and automating the creation of the testing environment within the

ained/charon repository’s CI/CD pipeline is crucial for executing E2E development

tests pulled from the GitLab container registry.

The ained/charon repository leverages a private, self-hosted runner named

AinedRunner, which is utilized for executing CI/CD pipeline jobs. The runner was

previously equipped only with a shell executor, which impeded the author's ability to

assemble the E2E testing environment. The runner also lacked any defined tags, meaning

pipeline jobs could not be configured to run solely on AinedRunner. This limitation could

have resulted in jobs running on other public runners with unknown configurations,

leading to unexpected failures. The Charon development team addressed these issues at

the author's request by installing a Docker executor and adding the docker, dind, and

ained tags to AinedRunner.

3.5.1 Creation of custom docker-compose files

The Charon development team employed a custom docker-compose.yml file for the

instantiation of Moodle. Initially, the Moodle website was created using the docker-

compose.yml file without the Charon plugin, in accordance with Moodle's technical

specifications. Subsequently, after the instantiation of Moodle, the docker-compose.yml

file was manually modified to include a volume for loading the Charon plugin into the

charon-moodle container. Following the modification of the docker-compose.yml file,

the website was rebuilt with the Charon plugin installed.

This approach to instantiating a Moodle website with the Charon plugin within the CI/CD

pipeline was unsuitable in the context of E2E test automation. The adminer container had

no function in the instantiation of Moodle or the execution of E2E tests, as it is exclusively

utilized for database administration. Moreover, the process of manually editing the

docker-compose.yml file cannot be replicated within the CI/CD pipeline. The author

32

also encountered challenges with utilizing the ./..:/bitnami/moodle/mod/charon

volume due to the technical file sharing restrictions within the CI/CD pipeline.

version: '2'

services:

 adminer:

 container_name: adminer

 image: adminer

 ports:

 - "8190:8080"

 mariadb:

 image: 'bitnami/mariadb:10.6'

 container_name: charon-db

 environment:

 ## environment variables

 volumes:

 - 'mariadb_data:/bitnami/mariadb'

 ports:

 - "3306:3306"

 moodle:

 build:

 context: .

 container_name: charon-moodle

 environment:

 ## environment variables

 ports:

 - '80:80'

 - '9717:443'

 volumes:

 - 'moodle_data:/bitnami/moodle'

 - 'moodledata_data:/bitnami/moodledata'

 - './..:/bitnami/moodle/mod/charon' ## Keep this line
commented out during initial Moodle install!

 depends_on:

 - mariadb

volumes:

 mariadb_data:

 driver: local

 moodle_data:

 driver: local

 moodledata_data:

 driver: local

Figure 6. Initial docker-compose file.

To address the aforementioned issues, the author decided to split the initial docker-

compose.yml file into adminer-docker-compose.yml, modded-docker-compose.yml,

33

and unmodded-docker-compose.yml files. This solution eliminated the need for the

adminer container to be utilized for instantiating the Moodle website, removed the

necessity of manually altering the docker-compose.yml file, and allowed for the

avoidance of utilizing the ./..:/bitnami/moodle/mod/charon volume for the Charon

plugin installation.

3.5.2 Script for assembling the E2E testing environment for development tests

Because of the technical constraints of YML type files, the author opted to create a

separate shell script, distinct from the .gitlab-ci.yml file, to accurately define the

steps required for Moodle instantiation and Charon plugin installation.

At the beginning of the shell script, the HOSTNAME and ADMINER_NEEDED environment

variables have been defined. Users can alter the default values of the environment

variables by specifying new values in the command-line script execution query. To

establish an E2E testing environment, the ADMINER_NEEDED variable is set to “false”.

The first step to establishing an E2E testing environment within the CI/CD pipeline is the

creation of an unmodded instance of Moodle using the unmodded-docker-compose.yml

file. Following the instantiation of the charon-db and charon-moodle containers within

the docs_default Docker network, the runner container with the exposed 2375 and 2376

TCP ports and dynamically generated name is added to the docs_default network. The

runner container is tasked with executing steps defined in the job descriptions. By default,

the runner container lacks access to the containers within the docs_default network

since it is not part of it. Consequently, without access to the charon-moodle container,

there is no ability to reach the Moodle website.

34

#!/bin/sh

ADMINER_NEEDED="${ADMINER_NEEDED:=true}"

HOSTNAME="$(docker ps --format "{{.Names}}" --filter expose=2375-
2376/tcp)"

UpdateStatus () {

 docker network inspect docs_default

 docker ps -a

 if ["$ADMINER_NEEDED" = true]; then

 RESPONSE="$(curl -Is http://localhost:80 | head -n 1)"

 else

 RESPONSE="$(curl -Is http://charon-moodle:80 | head -n 1)"

 fi

 echo "$RESPONSE"

 RESPONSE_PART=${RESPONSE#*HTTP}

 STATUS=$(echo "$RESPONSE_PART" | cut -d' ' -f2)

}

BuildUnmoddedMoodle () {

 if ["$ADMINER_NEEDED" = true]; then

 docker-compose -f unmodded-docker-compose.yml -f adminer-docker-
compose.yml up -d

 else

 docker-compose -f unmodded-docker-compose.yml up -d

 fi

}

BuildModdedMoodle () {

 if ["$ADMINER_NEEDED" = true]; then

 docker-compose -f unmodded-docker-compose.yml -f modded-docker-
compose.yml -f adminer-docker-compose.yml up -d

 else

 docker cp ./.. charon-moodle:/bitnami/moodle/mod/charon

 docker restart charon-moodle

 docker exec charon-moodle sh -c "cd /bitnami/moodle/mod/charon &&
ls"

 fi

}

BuildUnmoddedMoodle

if ["$ADMINER_NEEDED" != true]; then

docker network connect docs_default "$HOSTNAME"

fi

Figure 7. First part of the "charon-initialization.sh" script.

After instantiating the containers required to launch the Moodle website, it is crucial to

ensure that the containers have finished building before proceeding with the installation

of the Charon plugin. The state of the containers can be determined by pinging the

“charon-moodle:80” socket address and checking the returned status code. A status code

35

of 200 indicates that the processes responsible for launching the Moodle website have

been completed.

The Charon plugin is installed by copying all files from the ained/charon repository

inside the runner container to the /bitnami/moodle/mod/charon directory within the

charon-moodle container, followed by restarting the charon-moodle container. Once

the “charon-moodle:80” socket address returns a status code of 200, confirming the

successful installation of the Charon plugin, the Moodle database is populated with

database entries using database seeding. Additionally, adjustments are made to the file

permissions of the charon-moodle container to enable the utilization of specific website

functionalities.

If any of the aforementioned steps in creating an E2E testing environment are not

completed, exit code 7 is thrown, causing the job responsible for executing the script to

fail.

36

CheckModdedMoodle() {

 ATTEMPTS=0

 UpdateStatus

 while ["$STATUS" != "200"] && [$ATTEMPTS != 10]

 do

 ATTEMPTS=$((ATTEMPTS+1))

seconds

 sleep 0.5m

 UpdateStatus

 done

 if ["$STATUS" = "200"]; then

 docker exec charon-moodle sh -c "cd /bitnami/moodle/mod/charon &&
sh dev-setup.sh && php artisan db:seed --class=DevEnvDataSeeder"

 docker exec charon-moodle sh -c "cd /bitnami/moodle && chmod -R
777 ."

 docker exec charon-moodle sh -c "cd /bitnami/moodledata && chmod -
R 777 ."

 else

 exit 7

 fi

}

UpdateStatus

ATTEMPTS=0

while ["$STATUS" != "200"] && [$ATTEMPTS != 10]

do

 ATTEMPTS=$((ATTEMPTS+1))

 sleep 1m

 UpdateStatus

done

if ["$STATUS" = "200"]; then

 docker exec charon-moodle sh -c "cd /bitnami/moodle && chmod -R 777
."

 BuildModdedMoodle

 sleep 10s

 UpdateStatus

 if ["$STATUS" != "200"]; then

 BuildModdedMoodle

 docker exec charon-moodle sh -c "cd /bitnami/moodle && chmod -R
777 ."

 docker exec charon-moodle sh -c "cd /bitnami/moodledata && chmod -
R 777 ."

 fi

 CheckModdedMoodle

 else

 exit 7

fi

Figure 8. Second part of the "charon-initialization.sh" script.

37

3.5.3 Script for disposing previously generated Docker elements

By default, images, containers, volumes, and networks generated as part of the E2E

testing environment and during the execution of other jobs remain persistent after

completion of the CI/CD pipeline. If left unmanaged, this persistence could lead to

failures in future pipeline jobs.

The author opted to create a separate script for deleting all Docker-generated elements.

This script is executed prior to assembling an E2E testing environment, ensuring that

previously generated Docker images, containers, volumes, and networks do not affect

future testing cycles.

3.5.4 “charon-initialization.sh” script execution as part of the CI/CD pipeline

In the .gitlab-ci.yml file, the build_moodle job was defined as part of the E2E

testing stage. The official Docker image uses the Alpine Linux operating system. To

enable the charon-initialization.sh script to function properly, Client URL (cURL)

needs to be installed via the Alpine Linux package manager (APK) in the before_script

section of the job. Within the runner container, navigation to the DOCKER_CONTEXT_PATH,

where the clean-docker.sh and charon-initialization.sh scripts are located, is

performed. Subsequently, file permissions for the scripts are adjusted to allow for their

execution. Firstly, the clean-docker.sh script is executed to prepare the foundation for

generating an E2E testing environment, followed by the execution of the charon-

initialization.sh script.

After successfully generating the E2E testing environment, instances of the charon-

moodle and charon-db containers are saved and pushed to the GitLab container registry

for future debugging purposes.

38

variables:

 DOCKER_CONTEXT_PATH: docs

 DOCKER_TEST_RESULTS_PATH: test-results

 DOCKER_PLAYWRIGHT_REPORT_PATH: playwright-report

stages:

 - E2E testing

build_moodle:

 stage: E2E testing

 image: docker

 tags:

 - docker

 - dind

 - ained

 before_script:

 - apk add --update curl && rm -rf /var/cache/apk/*

 script:

 - cd $DOCKER_CONTEXT_PATH

 - chmod 777 ./clean-docker.sh

 - chmod 777 ./charon-initialization.sh

 - ./clean-docker.sh

 - ADMINER_NEEDED=FALSE ./charon-initialization.sh

 - echo "$CI_REGISTRY_PASSWORD" | docker login "$CI_REGISTRY" -u
"$CI_REGISTRY_USER" --password-stdin

 - docker commit charon-moodle
gitlab.cs.taltech.ee:5050/ained/charon/charon-moodle

 - docker image push gitlab.cs.taltech.ee:5050/ained/charon/charon-
moodle

 - docker commit charon-db
gitlab.cs.taltech.ee:5050/ained/charon/charon-db

 - docker image push gitlab.cs.taltech.ee:5050/ained/charon/charon-
db

Figure 9. "build_moodle" job of the "ained/charon" CI/CD pipeline.

3.6 E2E test execution

The niogon/e2e-tests container image and the E2E testing environment, created

during the build_moodle job, facilitate the execution of E2E tests defined in the

niogon/E2E-tests repository against Moodle with the Charon plugin, as part of the

ained/charon repository’s CI/CD pipeline.

3.6.1 Script for executing E2E tests

To execute all necessary steps for running E2E tests, the author created the test-

initialization.sh shell script. Initially, the niogon/e2e-tests container image is

39

pulled from the GitLab container registry. Subsequently, the playwright-tests

container is instantiated using the obtained image and incorporated into the

docs_default network to gain access to the “charon-moodle:80” socket address.

Following the addition of the playwright-tests container to the network, E2E tests are

executed within it using the specified environment variables and command options.

#!/bin/sh

IS_DEV="${IS_DEV:=true}"

echo "$CI_REGISTRY_PASSWORD" | docker login "$CI_REGISTRY" -u
"$CI_REGISTRY_USER" --password-stdin

docker container stop playwright-tests

docker rm playwright-tests

docker pull $CI_REGISTRY/niogon/e2e-tests:latest

docker run --name playwright-tests -t -d $CI_REGISTRY/niogon/e2e-
tests:latest

docker network connect docs_default playwright-tests

PLAYWRIGHT_COMMAND="npx cross-env "\

command variables

"npx playwright test tests/auth.setup.spec.ts tests/dev.tests.spec.ts
--repeat-each=5 --retries=2 --workers 1"

if ["$IS_DEV" != true]; then

PLAYWRIGHT_COMMAND="npx cross-env "\

command variables

"npx playwright test tests/prod.tests.spec.ts --repeat-each=1 --
retries=1 --workers 1"

fi

docker exec playwright-tests sh -c "$PLAYWRIGHT_COMMAND"

Figure 10. "test-initialization.sh" script.

3.6.2 “test-initialization.sh” script execution and result collection

After the completion of the build_moodle job in the ained/charon repository’s CI/CD

pipeline, the test_moodle job is initiated. As part of this job, the permissions of the

test-initialization.sh script are adjusted to enable its execution. Subsequently, the

script is executed to run E2E tests inside the playwright-tests container. Upon

completion of the E2E tests, the test-results and playwright-report folders,

containing the generated reports, traces, and videos, are copied from the playwright-

tests container to the developer-defined file directory DOCKER_CONTEXT_PATH. These

files are then copied from the runner container's DOCKER_CONTEXT_PATH directory and

stored as artifacts. Compressed artifacts can later be downloaded from GitLab for

debugging purposes.

40

test_moodle:

 stage: E2E testing

 image: docker

 tags:

 - docker

 - dind

 - ained

 needs: ["build_moodle"]

 variables:

 IS_DEV: "true"

 artifacts:

 when: always

 paths:

 - $DOCKER_CONTEXT_PATH/$DOCKER_TEST_RESULTS_PATH

 - $DOCKER_CONTEXT_PATH/$DOCKER_PLAYWRIGHT_REPORT_PATH

 script:

 - cd $DOCKER_CONTEXT_PATH

 - chmod 777 ./test-initialization.sh

 - ./test-initialization.sh

 after_script:

 - docker cp playwright-tests:/$DOCKER_TEST_RESULTS_PATH
$DOCKER_CONTEXT_PATH

 - docker cp playwright-tests:/$DOCKER_PLAYWRIGHT_REPORT_PATH
$DOCKER_CONTEXT_PATH

Figure 11. "test_moodle" job of the "ained/charon" CI/CD pipeline.

The script execution process within the prod_test_moodle job, created by the author,

closely resembles that of the test_moodle job. However, notable distinctions exist

between these jobs. Specifically, the prod_test_moodle job does not require the

establishment of an E2E testing environment within the pipeline. Additionally,

differences arise in the command variables passed during the execution of the script.

41

4 Analysis of the solution

In this chapter, a comprehensive analysis of the E2E testing solution is presented. The

author establishes compliance with the solution requirements, provides an extensive

overview of the work done in the scope of this paper, presents a detailed report on the

testing of the solution, describes the problems encountered, and identifies areas for

potential improvement.

4.1 Compliance with the solution requirements

Throughout the writing process, the author made numerous adjustments to the solution

across two repositories, resulting in significant differences between the initial and final

versions of the E2E testing solution. Adhering to the solution requirements allowed the

author to remain focused on addressing the most critical issues and to maintain a

consistent code style and testing logic implementation.

During the development of the E2E testing project, significant effort was dedicated to

writing clear and purposeful code aimed at enhancing readability and minimizing code

complexity. To achieve this, the author organized code into separate modules, prioritizing

logic decoupling and enabling code reuse. The avoidance of class utilization and a module

design pattern were adopted due to JavaScript's dynamic nature and limitations in class-

based design features, such as the absence of language-level accessibility modifiers,

having no namespace functionality for class grouping, and having weak class inheritance

capabilities.

While JavaScript lacks certain object-oriented programming (OOP) functionalities found

in languages like C# and Java, the use of prototypes and other workarounds can emulate

key OOP language features. In hindsight, employing classes and a more object-oriented

approach might have been a preferable design choice for better code abstraction.

To streamline the creation of selector strategies for website components, the author

leveraged the built-in browser selector utility and the Playwright Codegen tool. The

generated selector strategies were then refined using XPath, CSS selectors, and

Playwright selector abstractions to minimize flakiness and exposure to changes. The

modified strategies proved robust during testing, demonstrating high reliability.

42

Prior to strategy utilization, certain actions are performed to ensure that webpage loading

speed or popups do not hinder strategy execution, in alignment with the procedures

outlined in the "Test flakiness mitigation strategy" section of this paper (see section 2.6,

page 17).

The efforts outlined in the “Solution” chapter of this paper (see chapter 3, page 19)

culminated in the development of a comprehensive and highly configurable automated

E2E testing solution. Leveraging resource sharing through the GitLab container registry,

the author successfully integrated the E2E testing project into the CI/CD pipeline of the

Charon plugin project repository. Notably, these projects can be maintained separately

and are located in distinct GitLab repositories.

The E2E tests were structured in alignment with the solution requirements, with distinct

projects outlined for both production and development environment testing.

The preceding details delineating the workflow for constructing the E2E testing solution

are intended to showcase the author's complete adherence to the solution requirements

established prior to the initiation of the solution development process.

4.2 Summary of the final solution

In this section, the final solution is presented through two distinct components: firstly, the

E2E testing project itself; and secondly, the integration of this project into the Charon

repository’s CI/CD pipeline.

4.2.1 E2E testing project

The E2E testing project incorporates nine tests for development and two for production

environments. Additionally, it includes seven modules that act as abstractions of complex

and reusable code segments. The project boasts high configurability, facilitated by the

auto-generated playwright.config.js and the custom-made .env files. The .env file

accommodates fourteen environment variables, added by the author to align with solution

requirements (see appendix 2).

The tests defined within the testing projects emulate user interactions with both the

Moodle website and the features of the Charon plugin. To simulate interactions for both

guests and logged-in users, cookies stored within two JSON files are employed.

43

Specifically, an empty guestState.json file serves to represent guest cookies, while the

userState.json file encapsulates cookies for logged-in users, which are updated by the

setup project prior to test execution.

Furthermore, alongside the JSON files storing cookies, another JSON file was introduced

to map solutions to various coding assignments. The solutions themselves were stored as

text files and utilized within tests conducted in the production environment.

The E2E testing project also includes a Dockerfile, which serves as a set of instructions

within the niogon/E2E-tests repository’s CI/CD pipeline. These instructions are

utilized to build the E2E testing project image, after which it is pushed to the GitLab

container registry by the runner container for future utilization (see appendix 3).

4.2.2 Integration of the E2E testing project into the CI/CD pipeline

The creation of the E2E testing environment within the CI/CD pipeline, followed by

subsequent testing, was accomplished using custom shell scripts and docker-compose

files. A total of three new shell scripts and three new docker-compose files were added

for this purpose. Additionally, modifications were made to the .gitlab-ci.yml file of

the ained/charon repository. These modifications were made to provide the GitLab

runner with instructions on how the aforementioned tasks should be executed.

As part of the CI/CD pipeline, an E2E testing environment is created. Subsequently, the

E2E testing project image is pulled from the GitLab container registry. With the E2E

testing project image, a container is constructed and used for executing E2E tests designed

for the development environment. Upon completion of the tests, the results, along with

videos and traces of the test execution, are saved as artifacts (see appendix 4).

Developers are also provided with the option of manually executing E2E tests for the

production environment. Within the scope of the test_prod_moodle job, an E2E testing

environment is not required. Instead, the only prerequisite for running tests for the

production environment is to appropriately configure the E2E testing project. However,

the process of storing test results, videos, and traces remains the same as for the

test_moodle job (see appendix 5).

44

4.3 Solution testing

To validate the adequacy of the solution presented by the author, each development

environment test was executed five times across WebKit, Chromium, and Firefox

browsers. These executions were conducted within the ained/charon repository’s

CI/CD pipeline. Out of a total of 135 executions for the development environment tests,

only one test failed. Specifically, the logout test for the Firefox browser encountered a

failure in executing a click action on the “Log out” button. However, upon retrying the

same test, it successfully passed. Consequently, a total of 136 test executions occurred,

exceeding the initially planned 135 executions.

Figure 12. Results for development environment testing within the CI/CD pipeline.

It is noteworthy, that despite not all tests succeeding, the failure of individual tests did not

result in the failure of the job responsible for test execution. This is attributed to the test

execution configuration, which permits a test to fail and be retried.

Production environment tests were executed locally as the author lacked the necessary

Moodle login credentials for execution within the Charon plugin repository's CI/CD

pipeline. Two tests were repeated five times across WebKit, Chromium, and Firefox

browsers. It is worth noting that code submission via the editor was omitted for the

WebKit browser due to technical constraints, resulting in a total of 25 fully completed

tests. No tests exhibited signs of flakiness, meaning that each test was successfully

completed on the first attempt.

Figure 13. Results for production environment testing on local machine.

45

4.4 Encountered problems

During the thesis-writing process, the author faced numerous challenges and encountered

a variety of issues.

Bureaucratic procedures significantly slowed down progress and hindered the author's

ability to steer the development process. Simple requests, such as changing the runner's

executor and adding runner tags, took weeks to complete. Even after a month of waiting,

requests for login credentials for the Moodle website for an account without two-factor

authentication enabled were still unresolved, preventing the testing of production

environment tests in the CI/CD pipeline.

The lack of access to the runner machine substantially delayed the debugging process

when making modifications to the CI/CD pipeline. Throughout the configuration process,

the author had to meticulously log information related to pipeline job execution to

understand the root causes of certain issues. This process, along with subsequent log

analysis, proved to be challenging and time-consuming, as determining the impact of

changes made to the CI/CD pipeline required the completion of multiple-step jobs by the

runner.

Additionally, the author encountered browser-specific issues during test creation. For

instance, the author was unable to emulate clipboard functionality for WebKit browsers,

rendering it impossible to execute tests that required copying and pasting emulation.

Furthermore, the Firefox browser exhibited behavioural inconsistencies regarding click

actions on buttons. Occasionally, instead of pressing the button, it would be highlighted

with a blue border, leading to noticeable flakiness in the “Log out functionality” test.

4.5 Areas of potential improvement

While the author's solution is robust and has shown effectiveness during rigorous testing,

there remains room for improvement.

Firstly, there is an opportunity to enhance test coverage. The tests created by the author

could serve as a guide for future developers on how to create tests for other website

components. Increasing test coverage would improve the ability to detect various bugs,

thereby enhancing the end-user experience.

46

Additionally, while the E2E testing solution has undergone comprehensive testing, there

is potential to test modules used for certain tests in isolation. Integration and unit tests

could be developed specifically for the dbContext.ts and gitContext.ts modules.

Implementing these tests would help to further reduce test flakiness and could be

integrated into the CI/CD pipeline of the E2E testing project and executed before

deployment to the GitLab container registry.

Addressing test flakiness is another area for improvement. Currently, one out of eleven

E2E tests has shown significant signs of flakiness. It is crucial to conduct a thorough

analysis and research into the root causes of test flakiness. Taking a proactive approach

will help prevent significant levels of flakiness in future tests.

At the time of writing, the implementation of production environment tests differs from

that of the development environment. This discrepancy arises because bypassing

Moodle's two-factor authentication (2FA) during test execution using the author's Moodle

account is not possible. It requires human intervention to input a one-time password

(OTP) generated by the authenticator application. Once it becomes possible to utilize an

account without 2FA enabled during test execution, the logic responsible for logging into

Moodle in the production environment could be modified. This adjustment would

facilitate test initialization without human intervention, enabling production environment

tests to run alongside development environment tests in the Charon repository’s CI/CD

pipeline.

The author encountered difficulty in replicating clipboard command emulation for

WebKit browsers, hindering the execution of production environment tests reliant on this

functionality. An extensive investigation is warranted to explore potential solutions to

this challenge, enabling cross-browser test coverage for cases dependent on clipboard

emulation.

47

5 Summary

Moodle plugins serve as valuable tools for enhancing the Moodle Learning Management

System (LMS), offering users numerous customization opportunities. However, custom

Moodle plugins are often susceptible to containing numerous bugs and demand

substantial testing, especially as plugin functionality expands. Charon plugin is no

exception, given its extensive range of functionalities. Consequently, the author of this

thesis took on the responsibility of automating the testing process for the Charon plugin.

E2E tests were selected to be written and executed as part of the Charon plugin

repository’s CI/CD pipeline to replicate manual human testing. For test creation, the

author opted to employ the Playwright framework, a modern tool developed by Microsoft

for testing websites.

The author successfully established and automated the creation of an E2E testing

environment within the Charon plugin GitLab repository. This environment is

subsequently leveraged within a separate pipeline job to execute development

environment tests. Additionally, developers are provided with the option to execute

production environment tests through a separate job within the CI/CD pipeline, though

manual initiation is required.

The E2E testing project was developed with a focus on maintainability and scalability.

The author aimed to minimize the use of hard-coded values and provide end users with

the ability to configure various aspects of test execution. Additionally, numerous modules

were defined to effectively organize the codebase and facilitate code reuse and

abstraction. These practices lay the foundation for future improvements to the E2E testing

project, including the addition of more tests to expand current test coverage.

48

References

[1] Moodle, “About Moodle,” [Online]. Available:

https://docs.moodle.org/403/en/About_Moodle. [Accessed 4 May 2024].

[2] Moodle, “Statistics,” [Online]. Available: https://stats.moodle.org/. [Accessed 4

May 2024].

[3] Bitrock Inc., “Bitnami LMS powered by Moodle™ LMS,” [Online]. Available:

https://bitnami.com/stack/moodle. [Accessed 4 May 2024].

[4] GitLab Inc., “Get started with GitLab CI/CD,” [Online]. Available:

https://docs.gitlab.com/ee/ci/. [Accessed 4 May 2024].

[5] GitLab Inc., “GitLab Runner,” [Online]. Available:

https://docs.gitlab.com/runner/. [Accessed 4 May 2024].

[6] Docker Inc., “Use containers to Build, Share and Run your applications,”

[Online]. Available: https://www.docker.com/resources/what-container/.

[Accessed 4 May 2024].

[7] D. Adetunji, “How Docker Containers Work – Explained for Beginners,” 23

October 2023. [Online]. Available: https://www.freecodecamp.org/news/how-

docker-containers-work/. [Accessed 4 May 2024].

[8] Docker Inc., “Networking overview,” [Online]. Available:

https://docs.docker.com/network/. [Accessed 4 May 2024].

[9] Microsoft, “Playwright enables reliable end-to-end testing for modern web apps.,”

[Online]. Available: https://playwright.dev/. [Accessed 4 May 2024].

[10] J. Lennon, “Type Checking In TypeScript: A Beginners Guide,” [Online].

Available: https://zerotomastery.io/blog/typescript-type-checking/. [Accessed 4

May 2024].

[11] Microsoft, “Playwright,” [Online]. Available:

https://www.npmjs.com/package/playwright. [Accessed 4 May 2024].

[12] A. Romano, Z. Song, S. Grandhi, W. Yang and W. Wang, “An Empirical Analysis

of UI-based Flaky Tests,” in 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE), vol. 43, Madrid, Institute of Electrical and

Electronics Engineers, 2021, pp. 1585-1590.

[13] Software Freedom Conservancy, “Tips on working with locators,” 10 February

2022. [Online]. Available:

https://www.selenium.dev/documentation/test_practices/encouraged/locators/.

[Accessed 4 May 2024].

[14] Mozilla Corporation, “JavaScript modules,” [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules.

[Accessed 4 May 2024].

[15] MariaDB, “Using Connection Pools with MariaDB Connector/Python,” [Online].

Available: https://mariadb.com/docs/server/connect/programming-

languages/python/connection-pools/. [Accessed 4 May 2024].

[16] J. Dalrymple, “@gitbeaker/rest,” [Online]. Available:

https://www.npmjs.com/package/@gitbeaker/rest. [Accessed 4 May 2024].

49

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Nikolai Ogonkov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Charon Moodle plugin end-to-end test automation”, supervised by Bahdan

Yanovich

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

20.05.2024

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

50

Appendix 2 – E2E testing project structure

51

Appendix 3 – “niogon/E2E-tests” CI/CD pipeline’s

“build_image” job

52

Appendix 4 – “ained/charon” CI/CD pipeline’s

“build_moodle”, “test_moodle” jobs

53

54

Appendix 5 – “ained/charon” CI/CD pipeline’s “test_prod

_moodle” job

