
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Nikita Birjukovs 193953 IAIB

Aleksandr Rudoi 193564 IAIB

Dmitri Voronoi 202032 IAIB

USABILITY IMPROVEMENTS OF THESES
MANAGEMENT SYSTEM PROTSESSOR

Bachelor’s thesis

Supervisors: Ago Luberg

PhD

Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

Infotehnoloogia teaduskond

Nikita Birjukovs 193953 IAIB

Aleksandr Rudoi 193564 IAIB

Dmitri Voronoi 202032 IAIB

LÕPUTÖÖDE KESKKONNA PROTSESSOR
KASUTATAVUSE TÄIENDUSED

Bakalaurusetöö

Juhendaja: Ago Luberg

PhD

Tallinn 2023

Author’s Declaration of Originality

We hereby certify that We are the sole authors of this thesis. All the used materials,
references to the literature and the work of others have been referred to. This thesis has not
been presented for examination anywhere else.

Authors: Nikita Birjukovs, Aleksandr Rudoi, Dmitri Voronoi

01.06.2023

1

Abstract

The purpose of this thesis is to address current design issues present in the Protsessor

application, to then further develop existing and new features like an overview of study
plans for users along with changes to user rights. Our goals would include working on
the implementation and visualization of statistics for users as well as working on the
addition of a summary of projects assigned to students and teachers, along with attempting
to provide them with notifications on the application. Adding to that, we would need to
analyze the necessity of Camunda in the project, to then decide if it needs to be replaced,
or built upon. In case we decide to keep using Camunda, we will need to transfer statistics
from the Camunda admin interface to our Protsessor app backend for the opportunity of
further implementing and visualizing the statistics in the frontend. Then, we would also
need to finish the development of some of the most prominent features like the creation of
student topics by students themselves.

The thesis is written in English and is 41 pages long, including 10 chapters and 6 figures.

2

Annotatsioon
Lõputööde keskkonna Protsessor kasutatavuse täiendused

Lõputöö eesmärk on edasi arendada lõputööde teemade rakendust Protsessor. Lõputöö
käigus loodi uus õigustepõhine rollisüsteem, mis võimaldab administraatoril mugavamalt
määrata erinevaid õigusi erinevatele projektidele. Süsteemi kasutajaliides kirjutati suuresti
ümber, et see vastaks TalTechi stiilinõuetele ning seeläbi sai see ka vastavaks juurdepääse-
tavuse standardile WCAG 2. Protsessi käigus täiendati statistikat tudengite ja juhendajate
kohta ning lisati parem teavituste süsteem. Lõputöö käigus on parandatud ka evituse
protsessi, eriti on rõhku pööratud andmebaasi varundamise ja muudatuste jälgimisega.
Olemasolev rakendus kasutab Camunda töövoo automatiseerimise tööriista, mis lisab
päris palju keerukust rakenduse arendamise etapis. Lõputöö käigus analüüsisid autorid,
kas Camunda kasutamine on õigustatud ning kas selle kasutamist peaks jätkama. Antud
analüüs sai tehtud päris töö alguses. Analüüsi tulemusena otsustati Camundaga jätkata.

Autorid on töös välja toonud erinevad teemad, mida peaks edasi uurima või arendama, et
rakendus paremini toimima saada. Kogu lõputöö vältel on parandatud dokumentatsiooni ja
parandatud koodibaasi, mis peaks järgmistel arendajatel töö alustamise lihtsamaks tegema.

Töö on kirjutatud inglise keeles, selles on 41 lehekülge, 10 peatükki ja 6 joonist.

3

List of Abbreviations and Terms

AD (Azure) Active Directory
API Application Programming Interface
CI/CD Continuous Integration/Continuous Development
CSS Cascading Style Sheets
DevOps Development and operations
DMN Decision Model and Notation
dockerized Application that is packed, deployed, and ran with the use

of Docker containers
HTML HyperText Markup Language
I18n Internationalization
IT Information Technology
JAAS Java Authentication and Authorization Service
JSON JavaScript Object Notation
OACC Object Access Control
ORDBMS Object-Relational Database Management System
RDBMS Relational Database Management System
SMTP Simple Mail Transfer Protocol
SPA Single-Page Application
SSH Secure Shell
SQL Structured Query Language
UI User Interface
UX User Experience
WCAG Web Content Accessibility Guidelines
XML Extensible Markup Language

4

Table of Contents

1 Introduction . 8

2 Task Proposal . 9

3 Project Description . 10
3.1 Workflow . 10
3.2 Communication Channels . 11

3.2.1 Team Communication . 11
3.2.2 Supervisor Communication . 12
3.2.3 Client Communication . 12

3.3 Work Distribution . 12

4 Project Design . 14
4.1 Project Architecture . 14
4.2 Backend . 14

4.2.1 Gradle . 14
4.2.2 Camunda . 15
4.2.3 Spring Data JPA . 15
4.2.4 JDBC Template . 15
4.2.5 Spring Security . 16
4.2.6 Project Lombok . 16
4.2.7 Mockito . 16
4.2.8 Azure Active Directory . 17
4.2.9 Spring Boot Starter Mail . 17

4.3 Frontend . 17
4.3.1 Vue.js . 17
4.3.2 OpenAPI . 17
4.3.3 I18n . 18
4.3.4 Bootstrap . 18
4.3.5 Element Plus . 18

4.4 Database . 18
4.4.1 H2 . 19
4.4.2 PostgreSQL . 19
4.4.3 Liquibase . 19

4.5 DevOps . 20

5

4.5.1 Continuous Integration and Continuous Development 20
4.5.2 Docker . 20

5 Work Results and Analysis . 21
5.1 Backend . 21

5.1.1 Role implementation . 21
5.1.2 JDBC Template . 24

5.2 Frontend . 24
5.2.1 User Interface and User Experience 25
5.2.2 Element Plus to Bootstrap . 29

5.3 Statistics . 29
5.4 Documentation . 30
5.5 Database . 32

5.5.1 Liquibase . 32
5.5.2 Database Backups . 34

5.6 Analysis of Camunda . 35
5.7 Bug Fixing . 37

6 Validation . 39

7 Work Accomplishments . 40
7.1 What Was Done . 40
7.2 Task proposal . 42

8 Comments . 43
8.1 Liquibase Drawbacks . 43
8.2 JDBC Template Drawbacks . 43
8.3 Bootstrap Drawbacks . 44
8.4 What Could Have Been Done Differently 44

9 Next Steps in Development . 45
9.1 Health Improvement . 45
9.2 Securing the Project . 46
9.3 Split the Application Into Microservices 46
9.4 Tests Overhaul . 47

10 Conclusion . 48

6

List of Figures

1 New database tables. 23
2 Contrast comparison of different designs. 26
3 Pages with duplicate information. 27
4 Page without duplicate information. 28
5 "Add project" button visibility for admin user. 38
6 "Add project" button still visible after log out. 38

7

1. Introduction

In many different universities, theses topic selection process is accompanied by a lot of
stress and struggles, due to its importance of it. Not only is this a struggle for the students,
but also teachers, who do not know if the topic they are suggesting presents any interest to
others, or if a chosen student was a proper choice for this topic. That was the case because
there was no easy way to go in-depth about many different theses topics to make a proper
decision.

Until recently, in TalTech, there existed no such system that would have allowed students
and teachers to manage theses topic selections in an easy and concise way. Although such
a system has been implemented, it currently only is utilized by the IT department. The
currently existing solution is a web application Protsessor, however, due to it being a new
and in-development feature made by TalTech students, it requires improvement work to be
done, before it would become a more useful and superior method of theses topic selection,
than the method that existed before.

Our goal is to improve upon the existing project and hopefully make it superior to the
pre-established old methods of theses topic selection. We hope to provide Protsessor with a
better visual design, that would be better understood by students, as well as simplify some
aspects for teachers. In addition to that, we would work on adding and improving features
that would let users add and apply to different theses topics easier. Beyond that, we are
hoping to improve Protsessor in a way that would make the changes and implementations
of future developers come with fewer issues.

8

2. Task Proposal

The task of the given thesis is to develop further the existing system for managing theses
and projects, called Protsessor. Currently, the Protsessor is only used by teachers and
students of the IT department of TalTech. This thesis aims to overhaul important aspects
of Protsessor, such as user interface (UI) with user experience (UX), as well as add new
features and rework older implementations of roles and permissions.

One of the main priorities was the redesign of the UI which needed to be in compliance
with the TalTech style guide [1, 2]. The current implementation of the UI had noticeable
color combination issues that did not meet the AA level of WCAG 2.0 standards [3], which
made it harder to navigate through Protsessor for visually impaired people. In addition to
UI changes, in order to scale the usability of Protsessor, we needed to rework the existing
permission system, which did not allow the creation of custom global permissions for
users, along with missing permissions for certain user types. Due to those issues being
present in the permission system, students were not capable of proposing their own topics,
along with teachers not being capable of creating topics for other students, without the
admin having to grant each permission to each group of people manually.

Another big part of this thesis was related to an open workflow and decision automation
platform Camunda which was used as a base for process management, addition and/or
removal of certain process changes, and gathering of statistics regarding the related pro-
cesses. Our goal was to determine whether or not, there was merit in using Camunda for
the future development of Protsessor. In case we would have decided to keep Camunda

in the project, we would have had to learn how to work and build new features around it,
otherwise, it would have been required to find a way to efficiently remove and replace it.

After the changes are implemented, the finished product is given to the client. Then, the
client tests the product to see whether it is in need of additional changes. These suggestions
are therefore forwarded to the authors of this thesis.

9

3. Project Description

Protsessor is a theses management information system that was initially developed by
the students of the IT department. Protsessor application allows students to participate
in projects by applying or potentially proposing topics, with most of them being theses
for Bachelor’s or Masters’s degrees. Teachers on the other hand could create topics and
manage which students to accept in those topics, while also having an overview of statistics
if the teacher is given access to those.

The necessity of the development of an application like Protsessor comes from the fact
of how the currently implemented thesis selection process works in TalTech. Although
usage of things like Excel provides you with a working solution, improving the process
of thesis selection is crucial, to allow for more efficient time management of students
and teachers, while also providing more information to students to make better and more
informed decisions on what thesis topic to select.

The steps that our team has decided to take in order to improve the project are as follows:

■ UI improvements
■ Overhaul of existing permission system implementation
■ Implementation of roles
■ Implementation of Liquibase to track, manage and apply database schema changes
■ Implementation of smaller features
■ Changes to the project technology stack
■ Analysis of Camunda

■ Gathering of feedback
■ Bug fixes

3.1 Workflow

Due to the fact that our initial plans related to the timeframe that we would be working
on this project had to undergo changes, our workflow has undergone some changes as
well. Initially, we were planning on finishing the project in a single semester, with that in
mind in our first semester, we had established and went through a lot of communication
between the team members as well as our client and supervisor to ensure the productive
work of each member of the team as well as a clear goal of what needed to be achieved

10

in the project. In order to manage what work should have been done, our team chose
Agile software development methodology, or to be more precise, Scrum methodology,
which relies on simultaneous and incremental work of all team members, and is divided
into two-week sprints. Most of the existing sprint issues were documented in milestones.
During the sprints, team members could take any unfinished issues and work on them, or
add new ones to an existing list of issues that needed to be worked on. The decision-making
process of which issues had to take priority was based on how important was the issue
(if it was a very needed feature or a bug), how hard was it to implement or fix it, and
how knowledgeable the specific team member was in regards to the specific issue. In
our second semester of work, the amount of client and supervisor communication was
significantly lower, due to us having done a major portion of the discussed features and
changes. Along with the decrease in client and supervisor communication we as a team
changed our approach to work priority. The foreground of our work this semester was bug
fixing with the addition of small changes based on provided feedback, with only a few
major features being developed only after fixing some of the core problems.

3.2 Communication Channels

One of the most important aspects of successful teamwork is communication, which
provides an understanding of the current state of things in the project. Based on our
previous experiences in other projects, as well as the work experience of some of the team
members, we knew that we needed to establish proper team communication channels, as
well as client and supervisor communication.

3.2.1 Team Communication

For team-related communication, our team has decided to use Discord as a communication
platform, due to the familiarity with it and the ease of use that it provided, as well as
the fact that it was free. While going through different stages of the project, the way we
handled our team communication definitely went through some changes. Initially, we had
team meetings that were essentially lacking in clarity and were missing sets of goals and
objectives, however with time we managed to resolve those issues. One of the first changes
in communication was related to the removal of an excessive amount of team meetings. In
addition to that, with time, we managed to establish different areas of expertise in regard
to the project, which then lead to much more efficient communication, due to each one of
our team members knowing who he should communicate with within our team in case he
is having a problem in the certain part of the project instead of attempting to resolve the
issue yourself, leading to inefficient time waste.

11

3.2.2 Supervisor Communication

Our supervisor meetings were done in Microsoft Teams because it was one of the default
communication platforms that was used by teachers in TalTech. The goal of the meetings
with our supervisor was to establish the main direction of our Bachelor’s thesis, as well
as discuss changes, their implementation, and other important things such as gaining
knowledge of the project based on the information that was known to our supervisor from
the work that was done by the previous development team.

3.2.3 Client Communication

Along with our supervisor meetings, our client meetings were also done in Microsoft
Teams. Among all of the meetings, the most important meetings were with our client. In
those meetings, we were establishing potential goals and major features that our application
was in need of, while also discussing if that is achievable in the time frame of our work
and why it is or is not.

3.3 Work Distribution

Initially, even though it is recommended to distribute different parts of work to different
people, we decided not to, due to the fact that before trying to specialize our team members
in different areas of the project we needed to broaden our fundamental understanding of
the project. At first, we encountered many issues that required the full attention of every
team member. Those initial struggles were related to poorly made documentation that
did not clearly state how to set up a locally running project environment. Most of the
setup issues in the documentation were related to it not having any descriptive examples
of how certain things needed to be set up in Microsoft Azure AD for this specific project.
In addition to that, there were no proper examples showing us how an unknown platform
like Camunda is integrated with the existing project database. After overcoming the initial
struggles that our team encountered with the project while familiarizing ourselves with
it, we attempted to divide different work responsibilities among each team member, the
general distribution of responsibilities was as follows:

■ Aleksandr Rudoi was our team leader, being responsible for the management of
certain project-related aspects, along with him being the main architect of the project,
in regards to the implementation and realization of most of the new backend and
database-related features, while also working on some DevOps aspects such as
CI/CD.

12

■ Nikita Birjukovs was doing the work of a full stack developer, working on imple-
menting changes and adding new features both in the backend and frontend, while
also working on redesigning the frontend.

■ Dmitri Voronoi was mostly working on frontend, developing new pages and integrat-
ing new functionalities from the backend to frontend, while also doing the work of a
QA engineer, in regards to finding and resolving existing bugs.

Despite the distribution of work in our team, there were no strict rules in place that would
discourage our team members from taking tasks outside the scope of their responsibilities
inside the project. Due to such factors, in case of need, we were always ready to help
our team members with an issue of any kind that might occur or work on implementing a
feature that we personally might have found to have a better understanding of, than other
team members. Further down the line, such decisions were of great benefit to us, because
not only did they make us improve in most of the aspects of the project such as project
architecture understanding, but also improve our future problem-solving.

13

4. Project Design

Protsessor project consists of three major parts: backend application which is built using
Spring Boot and Camunda, frontend part which is made using Vue.js with the addition of
Bootstrap and Element Plus for styling, and the DevOps part which includes PostgreSQL

database management system, Docker and CI/CD. Communication between the frontend
and backend happens with the help of the OpenAPI interface. Most of the architectural
and technological decisions were made by the previous team, however, it also includes
some of the choices made by our team during further development.

4.1 Project Architecture

This project has three environments - production environment, development environment,
and local environment. All of these environments consist of three docker containers - one
container runs the frontend application, the second container runs the backend application,
and the third container is running the database. These containers communicate with
each other via the docker network bridge. Production and development environments are
running on a single server, the local environment can be set up on the developer’s local
machine. Despite the fact that production and development environments are located on the
same server, they act independently from each other. The endpoints of these environments
can be reached only via the cs.ttu.ee proxy or via the SSH connection to this server. The
purpose of the local environment is to further develop the application, it has some different
settings in order to simplify the process of developing and validating made changes. The
purpose of the development environment is to validate that the newly introduced changes
are working in the environment that is close to production. The production environment is
being served to the customers [4].

4.2 Backend

The backend is a part of the application where most of the data and operating syntax are
stored. The backend part is not meant to be accessed by the user.

4.2.1 Gradle

Gradle is an open-source tool that is used for software build automation. With the help
of the build script in the form of a file with predefined tasks, dependencies, plugins, and

14

other configurations Gradle is capable of building almost any project [5]. This tool was
introduced to the project by the previous team. The alternative for Gradle is Maven. It is
very hard to determine, which tool as each has its pros and cons. However, Gradle is a
more customizable and powerful tool than Maven, and thus our team is positive that this
tool is a better choice for the project.

4.2.2 Camunda

Camunda - the universal process orchestrator is an open-source platform that uses a
workflow engine and decision engine to automate business processes. Organizations can
use it to automate workflow and decision processes, freeing up time for employees to focus
on more thoughtful projects [6]. This tool was introduced to the project by the previous
team and its analysis will be addressed further in the document.

4.2.3 Spring Data JPA

JPA provides a way to match entries from the database against the object-oriented model.
It can not be used alone and requires an implementation like Hibernate. Spring Data JPA

is a level of abstraction that simplifies the usage of the JPA implementations [7]. This tool
was introduced to the project by the previous team. There are two alternatives - Spring

Data JDBC also known as JDBC Template and Spring Data R2DBC. Spring Data R2DBC

is very promising but is still under development with lots of features missing so it is not
a good alternative yet. JDBC Template on the other hand has more control over the SQL

queries and is more flexible overall. It is considered a common practice to have both JDBC

Template and Spring Data JPA for usages where required. Our team is positive about the
previous team’s choice of using the Spring Data JPA, however, we also introduced the
JDBC Template.

4.2.4 JDBC Template

JDBC is an interface that defines the way of connecting to the database as well as provides
means to query and update entries from the database. JDBC Template is the central class
in JDBC API which simplifies its usage [8]. This tool was introduced to the project by our
team and the reasoning will be addressed further in the document.

15

4.2.5 Spring Security

Spring Security is a highly customizable authentication and access-control framework. It
is considered to be the standard for securing Spring-based applications. Its main focus is
on providing authorization and authentication to Java applications [9]. This framework
was introduced by the previous team. There are multiple alternatives, among which are
Apache Shiro, JAAS, and OACC. OACC is overall not that popular and seems to be not
supported anymore as the last commit was made in 2018. JAAS can be well integrated with
the Spring Security, however, it is more complex and does not have that massive support,
so our team does not see it as a good replacement. Apache Shiro is the closest alternative
to the Spring Security being easier to understand and configure. Both Apache Shiro and
Spring Security is considered great choice by our team while favoring the Spring Security

a little bit more because it has a bigger community and is considered to be a standard.

4.2.6 Project Lombok

Lombok is a Java library that provides means to reduce the amount of boilerplate code by
using its annotations. It offers various annotations that would automatically generate code
that is tedious to write keeping the code clean and simple while also allowing to focus on
the main functionality. This library was introduced by the previous team. Two alternatives
exist - AutoValue and Immutables with their own advantages and disadvantages, however,
the base difference is that Lombok has a lot more support than other libraries. Our team is
positive about the decision of choosing Lombok over the others.

4.2.7 Mockito

Mockito is a mocking library, that is used for testing Java applications. To make testing
simpler, Mockito allows the creation of mocked interfaces with dummy functionality to
reduce the amount of complexity required to test some parts of the application. This allows
focusing on testing the required parts of the application without the need to set up the
complex infrastructure before and after the testing part. This library was introduced by
the previous team. There are two alternatives for the Mockito - EasyMock and JMockit.
EasyMock has less verbose error messages than Mockito which makes debugging overcom-
plicated. Other than that, all three libraries have their own advantages and disadvantages,
thus making it hard to determine whether one is better than another. Due to the fact, that
Mockito is a lot more popular than the alternatives, our team agrees on the decision to use
this library for testing purposes, however, JMockit is a very good alternative.

16

4.2.8 Azure Active Directory

Azure Active Directory (Azure AD) is a cloud-based identity and access management
service. It allows one to access multiple apps, websites, etc. belonging to an organization
by using a single set of login credentials [10]. This service was introduced by a previous
team and there is no point in addressing the alternatives because TalTech already has the
integration with Azure AD thus using any other services is costly and impractical. This
project uses Microsoft Azure AD login credentials for authentication of users in the web
application, while also providing them with a set of necessary permissions.

4.2.9 Spring Boot Starter Mail

Spring Boot Starter Mail is a dependency, that contains the JavaMail library. This library
allows sending emails through the SMTP straight from the Spring Boot application’s Java

code [11]. This tool was introduced to the project by the previous team. Our team knows
no analogs to this tool in Sping.

4.3 Frontend

Frontend serves as a layer between the user and backend. Its purpose is to serve the data in
a user-friendly way.

4.3.1 Vue.js

Vue.js also known as Vue is a JavaScript framework that is used to build modern UIs that
follow the SPA principle. The best feature of Vue is its directives which are the HTML

attributes that make it possible to extend HTML [12]. This framework was used by the
previous team and there is a huge amount of analogs to it. The most standing out ones
are Angular and React. All of the mentioned technologies have their own advantages and
disadvantages and it is very hard to objectively decide which one is better to use as there is
a lot of space to interpret the facts differently. Overall, our team sees no problem with the
selected framework.

4.3.2 OpenAPI

The OpenAPI Specification defines a standard, language-agnostic interface to RESTful

APIs which allows both humans and computers to discover and understand the capabilities
of the service without access to source code, documentation, or through network traffic

17

inspection. When properly defined, a consumer can understand and interact with the
remote service with a minimal amount of implementation logic. This tool was introduced
by the previous team and is used by the Camunda, thus making it required for the project.

4.3.3 I18n

Internationalization or i18n for short, is the process of making the product delivered with
multilanguage support. This project uses Vue’s version of the i18n library which provides
these means by creating a JSON file that has to be manually populated with text versions
in different languages and is available for use throughout the project via the global variable.
This tool was introduced by the previous team and has some analogs - FormatJS and
Polyglot, although i18n stands out due to its massive collection of plugins, where one
probably will find a plugin suited for his needs. Our team is positive about the decision to
use i18n for introducing the multilanguage support.

4.3.4 Bootstrap

Bootstrap is a very powerful and extensible frontend development toolkit. It contains a
huge amount of predefined HTML and CSS patterns as well as JavaScript extensions out
of the box which allows one to use not only complex elements without the need to develop
them from scratch but also utilize predefined grid and styling. This toolkit was introduced
by our team and its analysis will be addressed further in the document.

4.3.5 Element Plus

Element Plus is quite a new frontend development toolkit like Bootstrap. It contains many
different styled elements out of the box without the need to implement them from scratch.
This toolkit was introduced to the project by the previous team and our team does not
consider it a good decision. The analysis of Element Plus and the reasons why our team
came to this conclusion will be addressed further in the document.

4.4 Database

The database is an organized collection of data with provided means to manipulate it easily.

18

4.4.1 H2

H2 is written in Java language in-memory database management system. One of its main
features is that it is very fast, lightweight, open-source, and comes with a built-in browser-
based console. In this project, H2 database management system is used for testing purposes
as a testing database management system to separate testing data from the actual, used in
the development and live servers. A tremendous amount of other database management
systems with their respective pros and cons exist which makes our team believe that usage
of the H2 database management system was a bad decision made by the previous team
which led to some issues addressed further in the document. Protsessor project could use
a more modern and powerful database management system for testing purposes and the
best decision for that would be to use PostgreSQL due to it being used as a main database
management system on the development and live servers in order to have consistency and
make sure that during the execution of the tests, the application will work the same way as
in any other environment on the database connectivity level which will exclude the issues
that might possibly occur due to that difference.

4.4.2 PostgreSQL

PostgreSQL is a very powerful open-source ORDBMS that is regarded for its reliability,
scalability, stability, and security. One of the best features of PostgreSQL is that it doesn’t
limit itself to the boundaries of the traditional RDBMS - in addition to the RDBMS

functionality, it follows the object-related model. This allows PostgreSQL to have objects,
classes, and inheritance in its schemas and queries [13]. This feature is not being used in the
database yet, however, if such a necessity occurs, there will be no need to migrate to another
database management system. This database management system was introduced by the
previous team. There are a tremendous amount of other database management system
alternatives present with their own pros and cons, however, PostgreSQL is a very powerful
database management system with a huge support community, active development, free
of charge, and many more advantages. Since a relational database fits well for the needs
of this project, our team is positive about using PostgreSQL as the database management
system.

4.4.3 Liquibase

Liquibase is a very handy tool in terms of dealing with databases. It allows the deployment
of changes to the database, tracks those changes, informs when the database version doesn’t
match the supposed version, and provides means to easily roll back the changes to the

19

database in case anything goes wrong. The main purpose of using this tool is to ensure
that the application is released with the matching database. This tool was introduced by
our team and its analysis will be addressed further in the document.

4.5 DevOps

DevOps combines development and operations to increase the efficiency, speed, and
security of software development and delivery compared to traditional processes [14].

4.5.1 Continuous Integration and Continuous Development

Continuous Integration and Continuous Development or CI/CD for short, is a method to
easily and frequently deliver new versions of the applications to customers by automating
the stages of the application development process. The main concepts of the CI/CD are
continuous integration, continuous deployment, and continuous delivery. The automated
stages of the app development along with continuous monitoring throughout the lifecycle
of applications from integration and testing phases to delivery and deployment are usually
referred to as "CI/CD pipelines" [15]. For this project, the Gitlab CI is used as a CI/CD

tool. The decision to use the Gitlab CI tool was made by the previous team. There are a
tremendous amount of different tools and clouds for the CI/CD management, which would
require the same amount of time to evaluate each of them and make a decision on which
one is better. Overall, Gitlab CI is an excellent decision due to it being part of the TalTech

version of Gitlab thus staying in the scope of the university.

4.5.2 Docker

Docker is a software platform that allows one to build, test and deploy applications. It
packages applications into standardized units named containers which contain everything
the application requires to run while keeping it minimal. This makes Docker containers
lightweight and secure. The best feature of Docker is that it guarantees that the application
will run in any environment on any operating system [16]. This tool was introduced to
the project by the previous team. Despite the fact, that Docker has a tremendous amount
of alternatives each of which has something done better, than in the Docker itself, our
team still thinks, that this was a good decision to use Docker due to the reason that
Docker is more than enough for this project while being very popular with a huge support
community.

20

5. Work Results and Analysis

In the process of development of Protsessor, our team went through multiple stages of
changes in different parts of the project, that occurred in both the backend and frontend,
as well as touched upon some important miscellaneous things like project documentation,
analysis of Camunda Platform along with some changes in the structure of CI/CD.

5.1 Backend

There were some challenges that our team had to overcome and some decisions to make
during the work on the backend. The changes we made include the addition of the new
functionality, the addition of the new endpoints to every new feature, and changes to some
of the already existing endpoints as well as the addition of the new technology.

5.1.1 Role implementation

The first challenge that our team faced during the addition of the role system was to
look through the current implementation of the permissions in order to decide whether
the current solution can be expanded to work with the roles or a new solution has to be
introduced. Even though the current implementation was able to expand into a role system,
it was still decided by our team to implement our own solution due to the current one being
not as flexible as it should be. Previous permissions were hardcoded and assigned to a user
from the code. Due to that decision, it would be almost impossible to create new roles on
demand and assign new permissions to them as it would require making changes to the
existing codebase. Keeping that in mind, our team decided to implement new database
tables that would allow us to create and delete permissions and roles on demand, assign
them to certain groups either globally or in terms of a certain project, dynamically change
them if needed, etc.

Our team implemented the next tables:

■ permissions table - stores the name of the permissions along with the automati-
cally assigned id to it. It is getting automatically filled with all currently existing
permissions with the help of the Liquibase.

■ roles table - stores the name of the roles along with the automatically assigned id
to it. It is automatically getting filled with these roles: ADMIN which has all the

21

existing permissions, TEACHER which has some permissions related to teachers,
and STUDENT which has no permissions.

■ role_to_permission - serves as the middle table to implement the many-to-many
relation between roles and permissions tables which means that there can be many
roles with the same permission list and many permissions assigned to the same role.

■ group_to_role table - maps the roles with the groups in a many-to-many relation
way which means that there can be one group with multiple roles as well as a role
that is assigned to many groups.

■ local_access table - required in order to distinguish the local role from the global
role. This table stores the combination of role, group, and project id which means
that the specific role was assigned to a specific group in the specific project.

For example, suppose, we have two groups SUPERVISOR and IAIB_SUPERVISOR. As
the names suggest, members of these groups should be able to supervise topics, which can
be achieved by giving them the VIEW and SUBMIT, however, IAIB_SUPERVISOR group
should be able to do that only for one specific project. To make this happen, an admin
should create the role, e.g. SUPERVISE with the previously mentioned permissions. Since
the permissions are already added to the database with the help of the Liquibase, they will
be already available to be used from the permissions table. Once, the admin will create
that role, the backend will create a new entry in the role table with the newly generated id
and SUPERVISE in the name column. After that, the new role will be mapped with the
corresponding permissions via the role_to_permission database table which will contain a
combination of the role and permission ids on each row. The next step is for the admin to
assign this role to the groups. When the admin will assign the newly created role to the
SUPERVISOR group globally, it will add a new entry in the group_to_role table mapping
the id of the group to the id of the role. On the other hand, when the admin will assign this
role to the IAIB_SUPERVISOR group to a specific project, it will create a new entry in the
local_access table, which will include ids of the role, group, and project. Figure 1 shows
newly added tables along with the established connections between them.

22

Figure 1. New database tables.

The second challenge occurred due to our decision to rework the current realization of
the permissions. Because of the new database tables being added, our team faced a need
of implementing new backend endpoints in order to be able to use the new functionality.
Some of the functionality could have been inserted into the currently existing controller,
however, it was still required to create an additional controller with its own endpoints and
business flow. While implementing the endpoints, our team kept in mind all the required
actions that could be performed with the newly introduced functionality in order to create
everything that is required while not adding the actions that would be obsolete and thus
never used by the client and users.

The solutions our team came up with have their own upsides and downsides which we
were aware of while making our decisions. The biggest downside of our solution is the
fact, that the created pool of roles can be applied globally and locally to many groups, but
making any change to a role will affect local and global usages altogether. Due to this
fact, admins should be extra cautious when modifying the existing roles as it may lead
to unexpected behavior. As one of the possible solutions to that, role names can have
global or local prepended to their names which will allow admins to know whether they
will affect any other groups while modifying the role or not. However, the advantage of
this solution is the smaller amount of tables added, because the database itself is very big
due to the Camunda tables which makes it particularly hard to understand and make any
changes to it. In addition, it avoids duplicated logic, as in that case there should be two
tables with identical information for storing the different types of roles.

23

5.1.2 JDBC Template

One of the decisions our team made is to introduce JDBC usage via the JDBC Template as
a means to query the data from the database. Currently, the only means to query the data
from the database was the Spring Data JPA. Although both of these technologies offer
the same functionality, there are some differences between them and our team decided to
introduce the JDBC Template for a couple of reasons.

Spring Data JPA is a high level of abstraction that allows querying data from the database
via the usage of annotations and JpaRepository which keeps the code clean, elegant, and
easy to understand. However, being a high level of abstraction is also one of the downsides
of the Spring Data JPA because it becomes quite hard to achieve something harder than
the standard ways of its usage. JDBC Template, on the other hand, is a lower level of
abstraction and as such, it requires a bigger setup and more code in order to achieve the
same goals, but despite that, it gives you all the required flexibility and, in addition, is a
very efficient tool. These two technologies do not conflict with each other and, as a result,
may be used together depending on the situation and requirements.

One of the main reasons for introducing the JDBC Template for our team was the fact that
one of the main features of the Spring Data JPA is database schema creation. Currently,
this project has too many technologies that include the functionality of making changes to
the database schemas: Spring Data JPA, Camunda, and Liquibase. Additionally, due to the
poor decisions made during the creation of the tests, they became dependent on Camunda’s

and Spring Data JPA’s creation of the database schema and, as a result, any attempt to
query the data from one of the Camunda tables using Spring Data JPA will require, to
annotate it with the Entity annotation which will in its turn, tell the Spring Data JPA to
create that table in the database. As a result, due to the tests being dependent on Camunda’s

and Spring Data JPA’s creation of the database schema, it will produce the exceptions,
because Spring Data JPA and Camunda will both attempt to create the same table. On the
other hand, JDBC Template is able to query complex data from multiple tables without
any attempts to create those tables which was exactly what our team required.

5.2 Frontend

While working on frontend, even though the challenges our team has been met with were
not as severe as in backend, we still had to go through many problems. A few of the
major issues that we have gone through, existed due to poor implementation of some of the
core features made by the previous team, in addition to that the frameworks selected for

24

this project also had some very noticeable problems. One of the main goals of our work
on frontend was to achieve a fully functional website redesign, that would also comply
with certain standards such as TalTech style guide and "Contrast Ratio" regulations of
Web Content Accessibility Guidelines (WCAG) [3]. In addition to the redesign, we also
worked on adding new functionality to both old and new pages of the website, while also
reworking and improving crucial features most websites need like a system of roles and
permissions.

5.2.1 User Interface and User Experience

Based on the personal experience of using the web application before taking over as its
developers, as well as comments of previous developers stating that Protsessor needs
design overhaul and/or improvements we have concluded that UI and UX of the web
application needs to be changed and modernized. A modern UI and UX design is a design
that is meant to conform to the existing perspective of the user base of the application on
how the visual experience should feel and look, which arose in response to the complexity
and clutter of past designs styles, with the goal of making the user experience more intuitive
and efficient. [17] There are many ways to achieve such design, with the main one being
based on user feedback, however, that is subsequently one of the most expensive ways,
because of the need of having the finances, time, analysts, and developers, that would be
capable of going through the user feedback and deciphering how it should be implemented,
due to users not always having the capability of providing feedback in a way that would
make sense to the development team.

After reviewing what we had to work with, we arrived at the conclusion that the previous UI

did not follow the TalTech style guide, in addition to not complying with WCAG. Improving
on those aspects meant that we needed to look through guidelines of TalTech style guide as
well as read through WCAG documentation so that we could properly address issues on
existing pages and avoid said issues on future new pages, in order to improve the navigation
process for normal or visually-impaired users that could be using Protsessor. One of the
biggest issues was related to the color choices and contrast ratios of the older design. By
definition, the colors are in contrast when you can observe the difference between the
brightness of two colors. As an example, we will be using 2 sets of color combinations
which are shown in Figure 2. Figure 2 (a) shows the contrast ratio of a supervisor’s name
on some of the pages, while Figure 2 (b) shows the colors of a text with a background
color that is used in the newly remade version of accordion elements. In this case, the
ratio of 2.64:1 shown in Figure 2 (a) is not allowed, because it is lower than the minimum
acceptance criteria for WCAG, with the minimum value of 4.5:1, which every TalTech web
page has to comply with, while the new color combination of Figure 2 (b) has a value of

25

8.95:1.

a) Contrast coefficient before. b) Contrast coefficient after.

Figure 2. Contrast comparison of different designs.

Before working on implementing any of the changes in the existing design, we had to work
on making a cohesive design for most if not all pages of the application. By deciding to
make most of our initial designs with the use of Figma, we managed to massively increase
our development efficiency, by avoiding the risks of having to redo a design that was
already implemented in code, because a big portion of those designs was thought out and
made by us in advance before implementing them.

One of the first improvements in our design was the minimization and removal of repetitive
information that was very obviously present in the web application before. Previously
there existed different pages that served the same purposes in two or more places, with the
only difference being slight design changes, which could lead, and personally lead us to
confusion back when we were normal users and not the developers of the application. The
solution to this was to merge pages with repetitive information into one, in addition to that,
in places where merging pages or some features was not possible, modal windows were
used in order to improve the UX. As shown in Figure 3, Figure 3 (a) and Figure 3 (b) show
2 different pages, that have identical information, that is barely any different from one
another, meanwhile, Figure 4 shows our vision of both of these pages combined, which
leads to better UX, due to the removal of unnecessary pages.

26

(a) Page with duplicate information 1.

(b) Page with duplicate information 2.

Figure 3. Pages with duplicate information.

27

Figure 4. Page without duplicate information.

Besides mentioned changes to the user profile page, there were other pages that went
through drastic changes in design, which are:

■ Project selection page
■ Project page
■ Topic page
■ Statistics page

Secondly, we improved some of the existing navigation elements while also adding new
ones, so that users could have access to certain features easier and faster, without needing
to go through too many pages to access those said features. Currently, when going through
the project selection page, if the user only has permission to apply to topics within the
project, he will not need to go through a page that would otherwise provide him with only
a single button that would send him to the topic page. Additionally, users with sufficient
permissions can propose topics without having to go to a specific project page and click the
button there. Along with these UI and UX changes, we added multiple new pages to the
application. A new group page that allows the user to have an overview of all groups that
he is a part of, as well as accept or decline group invites in a better way. Global statistics
page where users with certain permissions can view applications of the students divided
by their curriculum across all projects. Manage page, which allows users with admin
privileges to create new roles or delete existing ones, manage what permissions those roles

28

have, as well as add or delete groups of people that have those roles. Realization of said
feature, lead to major improvements for admin users, who previously had to manually
add every single permission to each separate group of users, but currently need to only
add roles, which can be added multiple at a time, which subsequently improves the speed
and amount of admin work that needs to be done to maintain the projects of Protsessor

application.

5.2.2 Element Plus to Bootstrap

During the time that we have been working on this project, there were goals that needed to
be achieved. While working on improving and reworking the UI and UX of the project, we
encountered issues in changing the design and style of most of the previously implemented
buttons, tables, colors, etc due to them being a part of the Element Plus. As it currently
stands, Element Plus is a relatively new framework, that is not yet refined properly, which
leads to it having some problems in addition to lacking functionality that is present in
bigger frameworks like Bootstrap. Initially, after finding out that the project was running
on an early beta version of a framework, it was decided that updating to a newer version
would be better, due to potentially many major improvements that could have happened
from version "1.1.0-beta.12" to version "2.2.21". In addition, most of the documentation
for the earlier version of the framework was not accessible anymore through the web page
of the framework and had to be manually downloaded from other places. After migrating
the versions, we found out that the changes in the libraries of the newer version were not
compatible with the older one, that issue lead to most of the styling being broken on the
application. Most of the issues that have occurred to the web application were related to,
the footer and navigation bar losing all of the stylings they previously had, along with the
appearance of some visual "artifacts" or in other words glitches, additionally, text font,
text size, element positioning and stylizing of tables was lost. In addition, most of the help
on forums that we could find was in the Chinese language which further added difficulty
level to using this framework. Following the fact that there were so many problems with
Element Plus and our attempts at resolving them were unsuccessful, it was decided that we
would be switching from Element Plus to Bootstrap. This decision made us take a step
back and make us start removing and replacing the framework, due to our inability to work
with it further.

5.3 Statistics

In the course of our work, one of the major aspects was improving statistics that are
present in the web application. Initially, the project only had project-specific statistics.

29

These statistics could provide users that had sufficient permissions with information about
supervisors and their topics as well as the status of students in the project. However, based
on the perception of our team as well as feedback provided by the client and mentor,
it needed changes, improvements, and multiple additions in terms of functionality and
information that it provided.

At first, our team worked on improving the UI and UX design of the project statistics. After
successfully implementing new web page designs, our focus shifted towards changing the
existing information that is shown to the users. In the original version, users could not see
in-depth information about supervisors in the supervisors tab, due to it only containing
numerical information like the number of submitted or supervised topics. The only way to
see that information was to go through the member’s tab that contained information about
both the students and supervisors, which subsequently limited the amount of information
that could have been shown, about one or the other, due to the need for them to have
identical information fields being present. In our solution, we have added an extra tab
that shows what permissions users have in this specific project, renamed the existing
tabs, as well as added information so that those tabs provided different and independent
information about supervisors and their topics, as well as the status of students in the
project and what topics they have applied to. Additionally, we added sorting and filtering
functionality, and search functionality by curriculum and user permissions.

Afterward, it was deemed that improvements made in project statistics were not sufficient
enough for users, thus why we also worked on designing and adding global statistics.
Global statistics provide users with permissions with an informative overview of all
students of a specific curriculum that are present in the web application. Information
contained about each student of the curriculum contains things such as the statuses of
students in all existing projects, in addition to providing information about what topic was
selected for those specific projects.

5.4 Documentation

Another huge challenge that our team faced during this project was documentation. Al-
though the project had existing documentation, after further review of the contents in
the documentation, it has been established that the documentation is not sufficient and
is missing very important aspects, due to which it would not be possible to work on the
project without resolving the initial problems with the documentation. For a project of
such scale, in a perfect scenario, there would be a need of having everything documented.
However, that is a very unlikely task, that is often neglected even by some big businesses.
Documentation for this project should provide all the necessary information about the

30

database and its tables, some of the less popular technologies and how they are used
in the project, as well as all the required steps in setting up the environments for local
development.

As it was initially established by the existing bits and pieces of information in the docu-
mentation, all we needed was to make a basic Microsoft Azure AD account and also create
a basic project in it to make everything work. However, soon after creating the account
and going through the necessary setup, it has been found out that this was not enough. By
following the provided steps, we could not initially run the backend application, due to
there being no notice of needing to add additional things like "environmental variables" in
the project run configurations, additionally, there were issues with receiving information
from Microsoft Azure AD to the database, due to the lack of documentation about the
database and its tables. This caused a lot of issues that could have been avoided through the
necessary documentation, the issues include things such as the need to manually add some
data from Azure AD to the database tables. Moreover, there were problems with versions of
frameworks being automatically updated, and there is no documentation about the versions
which were initially used, causing many issues and visual problems in frontend and its
development.

In the end, after researching and resolving the issues with the initial local work environment
setup, existing documentation underwent thorough changes, so that future development
would not be halted for dozens of work hours, due to missing crucial information. Changes
in the documentation include things such as:

■ Addition of required SQL statements for local setup
■ Addition of some code examples
■ Addition of a Microsoft Azure AD account creation and setup guide, due to requiring

non-default settings in there
■ Documentation of database tables that were created by the previous team, as well as

our team
■ Moving all the existing documentation from different web applications to GitLab

In order to improve and keep on improving the project’s health, our team highly recom-
mends for future developers to keep updating the existing documentation that is present
in GitLab, in order to keep all the crucial project-related information in the same place,
instead of spreading it out across multiple different web applications. Furthermore, it is
recommended to turn more focus towards documenting Camunda related project imple-
mentations, due to how difficult it was for our team, and what issues there may be if more
functionality would be added.

31

An updated version of the documentation can be found on the GitLab wiki page of the
project, which has all of the changes mentioned, along with other smaller changes that
have not been brought up here. [18]

5.5 Database

As was already mentioned before, we had to make a lot of changes to the existing database
in order to implement the client’s requirements. The database is growing bigger for this
project and it becomes harder to maintain it, understand and make any changes to it.
Overall, there currently are 74 tables in total out of which 47[19] are made and used by
Camunda Platform, 2 are being created by the Liquibase for its needs, 1 is generated by
Spring Data JPA and 24 were made by the developers[20]. Out of these 24 tables, 5 were
made by our team and 19 tables were introduced by the previous team. Due to that reason,
our team had to take advantage of several technologies and tools as well as make a few
decisions.

5.5.1 Liquibase

The usage of the Liquibase allows raising the database schema from scratch and validating
the current database schema to make sure it is intact with the expected one. The previous
team has already mentioned the requirement for Liquibase usage in their document before.
Our team considered other technologies that could be used for the same purposes, like
Flyway, but decided to use Liquibase for two main reasons: Liquibase dependency was
already introduced into the project by the previous team and Liquibase allows the use of
scripts in XML format for schema creation. XML-type scripts are able to be executed for
any database management system which makes them particularly good in case the client
would feel the requirement of migrating to any other database management system. Also,
there are many more advantages that Liquibase has over the Flyway, but they are not as
important for the current project. While implementing the Liquibase and making it work
with the current database our team faced quite some challenges.

The first challenge that our team immediately faced was due to the already existing database
schema with a lot of valuable data inside. Liquibase is a very easy-to-use tool when it is
being used from the very beginning of the project, however, later on, it gets a lot harder to
introduce the Liquibase into the project with some database setup. The main cause of this
is that there is no SQL or any other types of scripts that could be utilized in the Liquibase

changelog. However, during the research of the Liquibase capabilities, our team found one
of the functions that allow making a copy of the existing database in the desired format in

32

order to be used for the Liquibase changelog. This allowed us to generate over 3000 lines
of code for database creation which then was optimized and reduced to a little over 2300
lines by hand. Even though it took some time to rework the generated file, this saved a lot
of time that would have been required to manually write down a script that would create
tables including those that are being created by the Camunda.

The second challenge that our team had to solve was in the Spring Data JPA. The problem
is that Liquibase assumes that the tables it is required to create are definitely not present in
the database schema and thus results in exceptions when those tables are already created by
any other means. In order to solve that, we had to change the configuration for the Spring

Data JPA, so that it would not create the database, but validate the schema instead. At this
point, it was unknown to our team that this was possible to achieve using the preconditions
which our team will introduce later in the project. In addition, due to that decision, our
team also had to change the configuration file for the tests, because tests rely on database
creation, but Liquibase is not suitable to be used there due to the H2 database management
system specifics. The H2 database management system is an in-memory database due to
which it forgets the schema Liquibase creates for it as soon, as its finishes.

The third and hardest challenge that our team faced was introducing the changes to the
development and production servers. Due to the fact that they already have created schemas
along with valuable information that should not be lost, it became a tough and tedious
challenge to overcome. Due to the information in the table, our team couldn’t just drop the
schema and recreate it from scratch using the Liquibase, and due to the already existing
schema, Liquibase would not execute successfully. In order to migrate the database with
the usage of the Liquibase, our team had to go through several trials and errors until we
reached the final solution. The first and most logical solution that we came up with was to
back up the stored data in the database, then drop the schema with all the tables, recreate
them using the Liquibase, and then restore the data saved from the previous step. However,
it appeared to be not possible due to the table restrictions that Camunda automatically
creates. After generating the data backup, the backup file contained warnings about some
of the Camunda tables stating that they have some circular dependencies which may lead
to errors. This appeared to be the case and as a result, any attempt to restore data from that
file not only caused some errors and missing data in the database but also was breaking the
Camunda causing it to stop working and produce exceptions about the missing resources.
After some more attempts, it became clear that this is not possible to achieve without huge
investments into fixing the backup script with over 50000 lines. After some research, our
team found out that Liquibase documentation contains multiple ways how to introduce it
to the already existing schema [21]. Taking that in mind, our team chose the so-called "We
are going to use Liquibase starting...NOW!" approach which essentially means that we left

33

only the code that would introduce changes in addition to the existing database schema.

The advantage of our decisions about the way of introducing the Liquibase into the project
is that this way is easier and cheaper in terms of spent time. However, it also comes with a
disadvantage. In case the database schema will be lost or becomes malformed and will
require a redeployment, it will be first required to restore the database at the point before
the Liquibase introduction, and only after that should be completed with the help of the
Liquibase, which is achieved by running the backend application. This is due to the fact,
that part of the schema existed before and thus could not be used during the usage of the
Liquibase as any attempt to create schema parts that already exist would result in errors.
Keeping that issue in mind, our team decided to address it by enhancing the Liquibase with
the preconditions. Preconditions are a set of checks that could be defined by the developer.
They are very useful to further validate that database contains necessary entries, tables,
restrictions, etc but the best part about these preconditions is that developers can decide
how Liquibase should act in the case, these checks fail or there will occur an exception
during the execution. Using those preconditions along with the ability to control Liquibase

behavior on different results allows to mitigate the previously mentioned issues by marking
the code as executed in case part of the schema already exists while the other part of the
schema is still missing.

5.5.2 Database Backups

It quickly became clear that our team will have to do many manipulations with the database
and introduce some changes that were capable of causing harm to the existing database
and data stored inside. Any mistake could cause the loss of valuable data which is not
acceptable. The knowledge of our team about database backups was quite limited. After
some research, it appeared, that in order to introduce an automated database backup system,
it is required to have knowledge about the operating system in order to schedule the running
of the database backup scripts in a certain interval of time. Due to our limited knowledge
of Linux-based operating systems and the fact that for a long time, we had no access to the
server that was hosting the Protsessor, we had to come up with another solution. During
further research, our team found one dockerized library whose purpose is in backing up
the dockerized PostgreSQL database management systems [22]. This solution is very
convenient because it works independently from the database, it is dockerized and thus
is able to run in any environment on any operating system and it is easily customizable
without any need to have access to the server.

34

5.6 Analysis of Camunda

As one of the important aspects of our work, we had to analyze the open workflow and
decision automation platform Camunda. We had to learn the pros and cons of it, how
beneficial it would be in our project, determine our use of it in regards to this project as
well as understand how it is currently implemented.

Based on the conducted research of the Camunda Platform and the wishes of our client
and supervisor as well as the information that we managed to gather about this project, it
was determined in the early stages of our work, that Camunda as a platform indeed brings
a lot of value to this project. As we have learned in our research, Camunda, is best used in
large-scale enterprise-level business projects [23]. Of all the many different possibilities
that it provides, we could divide these features into 3 large categories:

■ Design and Connect
■ Automate and Monitor
■ Improve and Optimize

Design and Connection could provide developers with ways of modeling your business
process diagrams with the use of BPMN and DMN, giving developers access to integration
frameworks, that would provide them with easier integration of communication with
enterprise applications and protocols. Automation and Monitoring would give access to
features like workflow and decision engines, which allows for faster, easier, and better
performance when automating processes on big scales, while also providing a visual
framework with necessary tools to make or manage changes in those processes. All of this
comes with some other things like task lists, that provide even more control over tasks
that require some sort of human control or verification. Improvement and Optimization
give us information and the ability to gauge the health of certain business processes, with
things like data diagrams, while also allowing to work on continuously improving those
said processes by keeping track of version changes in processes that are made throughout
the lifetime of a project [24].

However, as we went deeper into the existing implementation of Camunda, we have
been met with multiple problems, that were not initially visible without having immense
familiarity with all parts of the project. Most of those issues were related to misuse and
improper implementation of core aspects of Camunda in the project, due to the lack of
knowledge and experience in working and using such a big framework. From what is
known to us, Camunda was supposed to be used as a task automation platform to satisfy the
wishes of the client and supervisor to automate some tasks and processes. Unfortunately, it

35

was not done well and brought more issues and difficulties to future project development,
than if the project would have been developed without Camunda in the project.

Regarding the issues in the current implementation of Camunda in our project, currently
understanding the basic code connections between classes that use any Camunda features
is too hard, with the reason behind it being that it makes it so there does not need to be any
connection between classes for it to work and use functions and methods of those different
classes. This lack of connection between classes leads to the existence of hard-to-trace
bugs, which persisted through very long periods of time, due to the lack of clarity on
how to test and fix such things. Moreover, the processes that were made with the help of
Camunda were made incorrectly. Camunda is meant to allow developers to track changes
on each and every step of multiple big multi-step processes, however, most of the currently
implemented processes are one-step processes that automatically start and finish at the
same time, which defeats the purpose of using Camunda in the first place. Along with that,
some of the older existing features of the application use the same multi-step process, even
though there should be different multi-step processes done for those features. Additionally,
the current implementation of the database together with Azure AD and Camunda has
future scaling issues. Developers or people with access to the production server of the web
application would need to manually access the database and add information to some of
the Camunda related database tables, otherwise, students from different departments and
curriculums would not be able to access our web application.

With all of the information about Camunda being available to us, even though there
are many issues that came with it, our team concluded that Camunda needs to stay in
the project. The reasoning behind this decision was based on multiple factors, first of
all, our analysis concluded that Camunda was necessary for the future of the project
and the development of some of its future features, secondly, even though the current
implementation of it had a lot of issues, we believed that we can make better use of our
work time by working on improving other aspects of the project, instead of starting the
project from scratch without Camunda.

In conclusion, after the full analysis of Camunda as well as its state in our project, our
team still agrees that Camunda needs to stay, due to the future benefits of being able to
scale the project in the future. However, our team wants to highlight an immense need for
knowledge and skill in developing architecturally stable applications as well as the need for
knowledge in regards to Camunda that will very likely be required for future developers
who would wish to tackle on the currently existing implementation problems of Camunda.

36

5.7 Bug Fixing

When most of our core features were implemented, our final degree of work went towards
implementing smaller features that were missing from the initial version of the application
for no apparent reason. Even though those features were not as hard to implement as
others, they meant a lot to the users of the Protsessor web application, due to resolving
commonly existing issues users had to go through when using the application. Adding an
improved notification tab in the navigation bar, added the ability to delete students from
topics, making it possible for additional supervisors and not just the initial one to accept
or decline applications to their topic, remade the task proposal page, existing topics can
now be deleted, users with certain permissions can now view archived projects, added
a new client field on the topic page that shows who is the client of the topic. Moreover,
there was a multitude of bug fixes that ranged from simple spelling errors, leading up to
potential security and data leaks that were previously present in the application. Regarding
the common fixes, on the project page we changed the names of accordions to be more
reflective of what information is stored in them, we fixed an issue that stopped users from
seeing all topics that were made or supervised by them, or they were a part of, fixed
users being able to see the information of other users profile pages, fixed users being
capable of applying to the same topic multiple times, while still awaiting to be accepted or
declined, or while already being accepted and many more bugs. Finally, we fixed one of
the biggest potential security threats that were previously present in the web application.
In the past, after the user has logged out, most if not all of the user’s permissions and
other data that is normally stored in the web browser were still present, issue of this kind
could lead to making changes in projects or topics or deleting or removing users from
said projects or topics by unauthorized users while also allowing them to receive some of
the potentially sensitive data that belongs to the original user. In order to fix that issue,
we had to change the original logic of information storing on all pages and components
of our frontend application that previously existed. Figure 5 shows us a logged-in user
with certain permissions that allows him to add a project in Protsessor, however as shown
in Figure 6 when the user is logged out, if the browser is not closed and reopened, a
logged-out user could still click on a "Add project" button and successfully add a project.

37

Figure 5. "Add project" button visibility for admin user.

Figure 6. "Add project" button still visible after log out.

38

6. Validation

During this project, our team had several ways of acquiring feedback and thus validating
our work. Initially, when we managed to set up the project and make ourselves familiar
with it the first source of feedback that we took a look into was the feedback in Teams that
our mentor made visible to us. It consists of two forms: one for the students and one for
the teachers with questions about their overall user experience regarding the usage of the
Protsessor web application. Among these questions, respondents had an opportunity to
express their complaints as well as the features that in their opinion would be beneficial
for the web application. Our team addressed some of the responses and one particular
response shaped the goals that we have set for this thesis - the complaint about the UI

that needed to be reworked in order to become more understandable and easier to follow.
Another example of a complaint from that source that was addressed is that the status of
the project was not clear enough which ultimately led to a missing opportunity to find the
candidate for the topic due to it being in a "hidden" state which made it not visible for the
students.

The next source of the feedback was our mentor and client to whom we presented our
work. Not only did we have constant meetings to present what was done and receive
further instructions and feedback on the current progress, but we also would communicate
between those meetings in case something was unclear to the team or there already was
something done that could be tested in order to receive the feedback as soon as possible.

Additionally, we received feedback from Erki Eessaar during one of the Demo days.
After the Demo day, we contacted him and asked for further clarification which he kindly
provided to our team. His feedback not only contained information regarding some of the
bugs that we did not manage to find ourselves before due to having different goals that we
worked towards but also challenged some of the use case scenarios that the previous team
implemented. Our team summarized the feedback that Erki Eessaar provided to us and
split it based on the issue’s severity and the difficulty keeping in mind that we were limited
by the time. One of the examples would be the lack of the possibility for the topic creator
to remove the already assigned person from the topic which would cause a necessity to
create a duplicate of that topic. Our team managed to address and fix the most severe issues
which should drastically improve the user experience on the Protsessor web application.

39

7. Work Accomplishments

During the further development of the Protsessor web application, our team had to over-
come many challenges and make some very important decisions along the way. In the
scope of this Bachelor’s thesis, our team not only managed to accomplish most of the
tasks from our task proposal but even went beyond that scope to make the Protsessor web
application a lot more valuable and helpful for its users in the upcoming years. Our work
touches different aspects of the web application varying from the user interface making it
drastically more pleasant and easy to follow to different bug fixes that potentially caused
huge frustration and additional work required to find a way around it. Our team managed
to come up with the initial setup documentation guide for future teams that would work
on this web application which will make their first steps drastically easier and, as such,
will make future development much more pleasant and faster when compared to dozens of
hours and many work days that have been spent by us while struggling through and trying
to make the project work locally.

7.1 What Was Done

The following list will provide insight into what tasks were achieved during our work on
the Protsessor web application:

■ Redesign of the UI in order to make it comply with the TalTech style guide which
in turn makes the style of the web application more uniform and in line with the
other web applications that belong to the university. Additionally, our team followed
the WCAG 2.0 recommendations which based on the background and font color
combination produce a constant that describes how hard it is for visually impaired
users to distinguish the text on the specified background. TalTech style guide also
references the WCAG 2.0 guidelines setting a minimum required bar for the constant
it produces which all university websites should follow.

■ UX improvement which includes repositioning the web elements like buttons to a
different place for the users to find them more easily, as well as reducing the number
of clicks that user has to make in order to achieve some goals on the web application
making that experience more smooth and pleasant.

■ Implementation of the role system which reduces the number of actions that admin-
istrators of the web application have to do in order to change the set of permissions
of certain users and groups. Those changes should reduce the burden administrators

40

have to go through during their administrative routine.
■ Division of the roles to global and local making it possible to give any type of

permission to a user that would apply to all existing projects and the further ones to
come.

■ Full analysis of the Camunda framework which includes such topics as what is
Camunda, how it should be used, how it is being used currently in the project,
whether should it be removed or built upon, etc.

■ Addition of the local and global statistics divided by the student’s curriculum for the
teachers to have a better insight into how their group is doing. This statistic includes
the number of applications, the current state of each application, the mentor and
topic’s name, the date when the user applied to this topic, etc.

■ Addition of the initial installation guide including prerequisites and required steps
to set up the local environment correctly so the project could be run locally which
would definitely save a lot of time for the next team at the beginning of the project.

■ Possibility to add clients to the topics.
■ Possibility to archive topics.
■ Renaming some of the elements on the web application for a clearer understanding

of what they are about.
■ Removed the possibility for the user to be able to view data and execute some

actions on the web application in a logged-out state which could have led to potential
security breaches.

■ Multitude of bug fixes which include: inability to remove students from the topics,
ability to see personal information of another user from a profile page, ability to
apply multiple times to the same topic, limitation on the amount of the visible topics
on the project page, inability to see archived projects under the "My projects" tab,
etc.

■ Introduction of the new technologies that our team felt to be required in this project:
Liquibase and JDBC Template.

■ Replacement of Element Plus to Bootstrap technology.
■ Decreased technical debt of the project, in regards to documentation, DevOps, and

in addition to that removed some of the existing code smells.
■ Successfully integrated usage of curriculum information from TalTech provided by

Microsoft Azure AD. This functionality is considered to be new, due to being initially
added for usage for the previous development team of the project. This integration
can serve as a proof of concept, by showing that curriculum information is usable
and could provide a far greater integration level with the TalTech infrastructure to
other TalTech applications that are yet to use this feature.

41

7.2 Task proposal

The following list will provide you with tasks accomplished within our Task proposal:

■ UI improvements and/or redesign on all pages in compliance with the TalTelch style
guide

■ UX improvements, with the rework of user flow on most pages
■ Implementation of role functionality
■ Addition of global permissions in addition to existing local permissions
■ Simplification of the amount of work that an admin is required to do
■ Overall analysis of Camunda, with all of the underlying positive and negative

possibilities it provides, along with the current implementation of it in the project.
■ Improvement of the shown information on the statistics page for projects

42

8. Comments

Not everything could go perfectly during this process of development - some solutions
have drawbacks, and sometimes reaching perfection is possible, but not considered a good
decision due to the huge amount of time/effort/resources that are required to be invested
while the final result is not worth it and a minor solution is more preferable. The same
could be said about the work that was done by our team.

8.1 Liquibase Drawbacks

As was already mentioned previously - Liquibase is one of the technologies that our team
had introduced to this project based on our personal feeling of necessity to make this action
as well as the previous team’s thoughts. One of the major drawbacks of this solution is
that Liquibase is now bound to set up the database schema and due to its nature and the
solutions that SpringBoot offers to work with it - Liquibase is also required to set up the
Camundas database even though Camunda also manages this on its own. The reason for
this is that Liquibase is being executed during the runtime before any other technology
that manipulates the database and, as a result, will run into errors trying to create tables,
that are dependent on the Camundas tables which are not yet existing. Our team at this
point is not yet fully aware of what Camunda does in that case, but at least it is working
without any errors.

8.2 JDBC Template Drawbacks

The introduction of the JDBC Template also has some drawbacks that we had to consider
when introducing it. The main problem with this decision is that technology with similar
functionality already exists - Spring Data JPA. Additionally, the introduction of this
technology leaves the future of Spring Data JPA in an undecided state as the introduction
of the Liquibase took away a good portion of the JPA functionality - database schema
creation and now JDBC Template takes away a database manipulation functionality from it.
A good decision would be to remove Spring Data JPA in the future to lessen the amount
of the technologies used by the project as well as due to other technologies overtaking its
functionality. That, however, will require a good portion of work and effort to make it
happen as well as will require changing the database management system used for testing
purposes as the in-memory H2 database schema is currently being raised by the Spring

Data JPA and it cannot be achieved by the Liquibase.

43

8.3 Bootstrap Drawbacks

Bootstrap is a very great technology that helps to save a lot of time by introducing lots of
premade components so developers will not need to create them themselves, thus the major
drawbacks of using it are not in Bootstrap itself, but, rather, in the situation of the project
it was introduced to. Due to the necessity of removing the previous technology used for
the same purpose - Element Plus, we had to spend quite some time looking for each place
where it is used and replacing it with Bootstraps alternatives for a work which is hardly
distinguished before and after it is done. In addition to that, we did not manage to fully get
rid of Element Plus due to it having some of the very complex components that Bootstrap

had no alternatives for and which were crucial for the web application. An example of such
components would be the filtering implementation which Element Plus handles perfectly
while Bootstrap would require implementing it from scratch. Furthermore, since the project
has grown quite big, it is a very likely outcome, that there are still some places where
Element Plus remained due to team members simply missing it while going through the
code. Only the removal of the Element Plus as a dependency and traversal through the web
pages of the Protsessor web application to find broken style and functionality at this point
would guarantee the complete removal of it.

8.4 What Could Have Been Done Differently

Despite our team being positive about the made changes and finding them valuable and
necessary, one of the major things we would change is the end goals that were set up at
the beginning of the project. There are multiple issues with the currently selected goals
which make it drastically harder to achieve a good result in the process of a Bachelor’s
thesis defense. The first reason for that is the fact that a good portion of the work that was
done as a part of this thesis is very technical which makes it particularly hard to present
those changes and to understand them as they can not be simply put into the picture for
the visualization purposes or easily described without going through the code. One of
the biggest concerns our team has is that all the complexity and hardship we had to go
through will not be embraced to the full extent. Secondly, the problem with the goals is
that in the end, we can not simply describe the work that was done with a simple compact
sentence that would immediately make it clear what was done in the scope of this work
and why those changes are important. Our team had to make a lot of small and medium
changes in different areas and aspects of the project, however just naming them "Further
development" would have been too broad of a concept, which would only make it harder
to see the bigger picture.

44

9. Next Steps in Development

Despite the fact that our team managed to do a big work on the Protsessor web application
it is not nearly ready and is still far from perfection. During the work on it, our team came
up with a few ideas for future development that could potentially bring Protsessor web
application to a whole new level making it very easy and pleasant to work on. Even though,
there is still some core functionality missing, our team believes, that the next steps should
be taken towards improving the technical health of the project to ensure that the project
will not become overcomplicated and too expensive in terms of time to work on.

9.1 Health Improvement

There are several reasons why our team thinks that the current project is in a very poor
health state even though we have already made some steps towards improving it. The first
and major reason for this is that the project’s backend contains many places where outdated
ways are used like using autowired annotation instead of the constructor injections, some
duplicated and unused code, imports, so-called code smells, commented-out code, TODOs,
etc. All of this results in a way more confusing code and makes it a lot more expensive in
terms of time for the new developers to live into the project and make any further changes
as well as make the whole application work slower while also making it harder to spot any
additional bugs. One of the things that also makes a huge contribution to the previously
mentioned problem is functions that contain too many code lines. Functions have to have
a descriptive name and have a single responsibility. If the amount of code grows too big
inside a single function, it probably means that this function is responsible for multiple
things at the same time which makes code over complicated and hard to understand. In
addition, there are a lot of places that retrieve information from the database by making
too many requests when the same result can be achieved with a lower amount. Additional
requests make the application work drastically slower and make it harder to understand the
code for the new developers. All previously mentioned problems make it particularly hard
for the new teams to introduce any changes as they would require a lot more than just time
to make themselves familiar with the project.

One of the possible solutions to the occurred project health issues that our team sees as
a meaningful step is to dedicate one of the topics to overhauling the whole project in
order to remove all the duplicated logic, and code smells, address the hanging TODOs,
etc. In addition, to the mentioned steps, it might be wise to analyze the necessity as well

45

as determine the suitable tool whose purpose is to improve code quality to be used in this
project. One such tool is the SonarQube - a tool which can be integrated into the CI/CD

[25]. If configured properly, it can send a report for each pull request that contains an
analysis of the number of code smells, percent of tests code coverage, potential bugs, etc.
This will not only allow to determine most of the technical debt issues but also enforce
a certain level of code quality among the other teams that will be further developing the
Protsessor application at any time.

9.2 Securing the Project

Another huge issue in this project that should be addressed as quickly as possible is the
security issue. This project is poorly designed in terms of security which in turn may lead
to potential data loss, unexpected data modification, privilege escalation, etc. Currently, the
only thing that prevents users from accessing the functionality that is restricted according
to their permissions, is Vue’s conditional rendering system. Additionally, only some of
the backend rest API endpoints are protected by Spring Security. Also, frontend is using
some of Vue’s attributes that are considered not secure like the "HTML" attribute which
can be used to inject malicious HTML code. In our opinion, one of the good topics for the
next thesis would be to further investigate the current state of security measures in order to
address the possible security breach vectors and make the Protsessor application as secure
as possible.

9.3 Split the Application Into Microservices

Another huge topic that can be part of further development is splitting the currently mono-
lithic application into separate smaller services - microservices. A monolithic approach is
very convenient in the early stages of the application development as it provides a complete
overview of the whole project in the same environment, it is a lot easier to deploy, and
understand as well as is more efficient in terms of performance. However, as the project
keeps growing and becomes huge, the previous pros quickly turn into cons. It is a lot
harder to understand a huge project and thus more time is required to make any changes to
it. Even the slightest change to the project will require redeploying the whole monolith.
Furthermore, if any part of the application will have an error, it might affect the whole
application, in general, [26]. As a result, our team thinks that this change can lead to the
better overall health of the project, as well as make it more realistic for the next teams to
introduce any changes, as carefully and well-planned topics might require to make changes
to only one or few microservices which in turn might drastically lower the amount of the
boilerplate that the students will have to go through as well as might decrease the amount

46

of the technologies that they would need to know in order to make any meaningful changes.

However, it is very important to note that splitting the monolith into microservices can
turn out to be a very hard, time-consuming, and tedious task. If such a decision would be
made, it shouldn’t be taken lightly and is required to properly plan each step as well as
each microservice’s responsibility and purpose. Probably it would be impossible to fully
migrate to the microservice architecture type as part of a single Bachelor’s thesis topic.

9.4 Tests Overhaul

One of the issues that the Protsessor web application currently has is an improper way
of testing which leads to certain problems. Currently, all tests include the actual flow of
the application, as an integration test should have. However, even though the integration
tests are quite handy and are widely used, this type of test is not well suited for every
component that has to be tested in the Spring Boot application [27]. Due to current methods
of testing, it can become very expensive and tedious to make any changes to the currently
implemented business logic. As such, test methods should be overhauled to test most of
the components by using the unit type of tests with the proper use of a Mockito framework
while leaving the integration tests mostly for testing controllers and repositories.

47

10. Conclusion

Our team is very positive about this project and feels the necessity for such web application
to exist as it can drastically improve the way of going through the thesis experience as
well as make this process a lot easier and more pleasant. However, in our opinion, there
are several steps that should be taken in order to make this project more appealing and
subsequently in bigger demand by the students and teachers, as well as make it a lot easier
for future teams to make any further changes.

Regarding some of the project issues, in the scope of our work, we had pointed out some
major flaws of the implementation by the previous developers, however, it was not done in
an attempt to undermine the work that was done by them or to elevate our accomplishments.
The goal was to bring attention to the fact that, such systems with this many requirements
need proper project structure and architecture, which most of the students would not be
capable of achieving, without majorly halting the progress of future teams, due to core
project issues that can not be avoided by junior/undergraduate developers.

Overall, while inefficient in many places due to errors and personal lack of knowledge, this
project provided us with a lot of experience, due to requiring us to learn proper ways of
solving certain issues, which then lead us to an existing solution that we feel quite pleased
with. Our team believes that we managed to make Protsessor web application drastically
closer to the end goal of becoming an ultimate thesis management web platform for the
students.

48

References

[1] Taltech styleguide. [Accessed: 24-12-2022]. Tallinna Tehnika Ülikool. URL: https:
//www.figma.com/proto/Nngd7mhoajdGO3Nesz58E4/Taltech-

styleguide.

[2] Taltech styleguide. [Accessed: 24-12-2022]. Tallinna Tehnika Ülikool. URL: https:
//portal-dev.ttu.ee/styleguide.

[3] Web Content Accessibility Guidelines 2.0. [Accessed: 24-12-2022]. W3C. URL:
https://www.w3.org/TR/WCAG20/.

[4] Sedrik Suurmets, Mikk Järvis, and Kaspar Ustav. “Lõputööde ja projektide hal-
damise infosüsteem Protsessor”. Tallinna Tehnika Ülikool, 2022.

[5] What is Gradle? [Accessed: 24-12-2022]. URL: https://docs.gradle.org/
current/userguide/what_is_gradle.html.

[6] What is Camunda, Features and Use Cases? [Accessed: 24-12-2022]. URL: https:
//www.adservio.fr/post/what-is-camunda-features-and-

use-cases.

[7] Spring Boot JPA. [Accessed: 24-12-2022]. URL: https://www.javatpoint.
com/spring-boot-jpa.

[8] Spring – JDBC Template. [Accessed: 24-12-2022]. URL: https : / / www .
geeksforgeeks.org/spring-jdbc-template.

[9] Spring Security. [Accessed: 24-12-2022]. URL: https : / / spring . io /
projects/spring-security.

[10] What is Azure Active Directory? [Accessed: 24-12-2022]. URL: https : / /
learn . microsoft . com / en - us / azure / active - directory /

fundamentals/active-directory-whatis.

[11] Spring Boot – Sending Email via SMTP. [Accessed: 24-12-2022]. URL: https:
//www.geeksforgeeks.org/spring-boot-sending-email-via-

smtp.

[12] What Is Vue.js? The Pros and Cons of Vue.js in 2022. [Accessed: 24-12-2022]. URL:
https://www.trio.dev/blog/why-use-vue-js.

[13] The benefits of PostgreSQL. [Accessed: 24-12-2022]. URL: https://www.
prisma.io/dataguide/postgresql/benefits-of-postgresql.

49

https://www.figma.com/proto/Nngd7mhoajdGO3Nesz58E4/Taltech-styleguide
https://www.figma.com/proto/Nngd7mhoajdGO3Nesz58E4/Taltech-styleguide
https://www.figma.com/proto/Nngd7mhoajdGO3Nesz58E4/Taltech-styleguide
https://portal-dev.ttu.ee/styleguide
https://portal-dev.ttu.ee/styleguide
https://www.w3.org/TR/WCAG20/
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://www.adservio.fr/post/what-is-camunda-features-and-use-cases
https://www.adservio.fr/post/what-is-camunda-features-and-use-cases
https://www.adservio.fr/post/what-is-camunda-features-and-use-cases
https://www.javatpoint.com/spring-boot-jpa
https://www.javatpoint.com/spring-boot-jpa
https://www.geeksforgeeks.org/spring-jdbc-template
https://www.geeksforgeeks.org/spring-jdbc-template
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://www.geeksforgeeks.org/spring-boot-sending-email-via-smtp
https://www.geeksforgeeks.org/spring-boot-sending-email-via-smtp
https://www.geeksforgeeks.org/spring-boot-sending-email-via-smtp
https://www.trio.dev/blog/why-use-vue-js
https://www.prisma.io/dataguide/postgresql/benefits-of-postgresql
https://www.prisma.io/dataguide/postgresql/benefits-of-postgresql

[14] What is DevOps? [Accessed: 01-01-2023]. URL: https://about.gitlab.
com/topics/devops.

[15] What is CI/CD? [Accessed: 24-12-2022]. URL: https://www.redhat.com/
en/topics/devops/what-is-ci-cd.

[16] What is Docker? [Accessed: 24-12-2022]. URL: https://aws.amazon.com/
docker.

[17] What is a modern UI design. [Accessed: 19-05-2023]. URL: https://mockitt.
wondershare.com/ui-ux-design/modern-ui.html.

[18] Project documentation. [Accessed: 19-05-2023]. URL: https://gitlab.cs.
ttu . ee / services / graduation / protsessor - wiki/ - /wikis /

Introduction.

[19] Camunda’s Database Schema Documentation. [Accessed: 19-05-2023]. URL:
https : / / docs . camunda . org / manual / 7 . 19 / user - guide /

process-engine/database/database-schema/.

[20] Protsessor database documentation. [Accesed: 21-05-2023]. URL: https://
gitlab.cs.ttu.ee/services/graduation/protsessor-wiki/-

/wikis/Database.

[21] Adding Liquibase to an Existing Project. [Accessed: 24-12-2022]. URL: https://
www.liquibase.com/blog/adding-liquibase-on-an-existing-

project.

[22] Github Repository: docker-postgres-backup-local. [Accessed: 24-12-2022]. URL:
https : / / github . com / prodrigestivill / docker - postgres -

backup-local.

[23] Introduction to Camunda Platform 8. [Accessed: 24-12-2022]. URL: https://
docs.camunda.io/docs/guides.

[24] Camunda Platform: Reinventing Process Automation for the Digital Enterprise.
[Accessed: 24-12-2022]. URL: https://f.hubspotusercontent10.net/
hubfs/4513465/Camunda%5C%20Platform%5C%20Datasheet%5C%

20EN-1.pdf.

[25] clean code for teams and enterprises with SonarQube. [Accessed: 24-12-2022].
URL: https://www.sonarsource.com/products/sonarqube.

[26] Microservices vs. monolithic architecture. [Accessed: 25-12-2022]. URL: https:
//www.atlassian.com/microservices/microservices-architecture/

microservices-vs-monolith.

50

https://about.gitlab.com/topics/devops
https://about.gitlab.com/topics/devops
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://aws.amazon.com/docker
https://aws.amazon.com/docker
https://mockitt.wondershare.com/ui-ux-design/modern-ui.html
https://mockitt.wondershare.com/ui-ux-design/modern-ui.html
https://gitlab.cs.ttu.ee/services/graduation/protsessor-wiki/-/wikis/Introduction
https://gitlab.cs.ttu.ee/services/graduation/protsessor-wiki/-/wikis/Introduction
https://gitlab.cs.ttu.ee/services/graduation/protsessor-wiki/-/wikis/Introduction
https://docs.camunda.org/manual/7.19/user-guide/process-engine/database/database-schema/
https://docs.camunda.org/manual/7.19/user-guide/process-engine/database/database-schema/
https://gitlab.cs.ttu.ee/services/graduation/protsessor-wiki/-/wikis/Database
https://gitlab.cs.ttu.ee/services/graduation/protsessor-wiki/-/wikis/Database
https://gitlab.cs.ttu.ee/services/graduation/protsessor-wiki/-/wikis/Database
https://www.liquibase.com/blog/adding-liquibase-on-an-existing-project
https://www.liquibase.com/blog/adding-liquibase-on-an-existing-project
https://www.liquibase.com/blog/adding-liquibase-on-an-existing-project
https://github.com/prodrigestivill/docker-postgres-backup-local
https://github.com/prodrigestivill/docker-postgres-backup-local
https://docs.camunda.io/docs/guides
https://docs.camunda.io/docs/guides
https://f.hubspotusercontent10.net/hubfs/4513465/Camunda%5C%20Platform%5C%20Datasheet%5C%20EN-1.pdf
https://f.hubspotusercontent10.net/hubfs/4513465/Camunda%5C%20Platform%5C%20Datasheet%5C%20EN-1.pdf
https://f.hubspotusercontent10.net/hubfs/4513465/Camunda%5C%20Platform%5C%20Datasheet%5C%20EN-1.pdf
https://www.sonarsource.com/products/sonarqube
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith

[27] Unit Test Vs Integration Test. [Accessed: 25-12-2022]. URL: https://www.
practitest.com/qa-learningcenter/resources/unit-test-

vs-integration-test.

51

https://www.practitest.com/qa-learningcenter/resources/unit-test-vs-integration-test
https://www.practitest.com/qa-learningcenter/resources/unit-test-vs-integration-test
https://www.practitest.com/qa-learningcenter/resources/unit-test-vs-integration-test

	Introduction
	Task Proposal
	Project Description
	Workflow
	Communication Channels
	Team Communication
	Supervisor Communication
	Client Communication

	Work Distribution

	Project Design
	Project Architecture
	Backend
	Gradle
	Camunda
	Spring Data JPA
	JDBC Template
	Spring Security
	Project Lombok
	Mockito
	Azure Active Directory
	Spring Boot Starter Mail

	Frontend
	Vue.js
	OpenAPI
	I18n
	Bootstrap
	Element Plus

	Database
	H2
	PostgreSQL
	Liquibase

	DevOps
	Continuous Integration and Continuous Development
	Docker

	Work Results and Analysis
	Backend
	Role implementation
	JDBC Template

	Frontend
	User Interface and User Experience
	Element Plus to Bootstrap

	Statistics
	Documentation
	Database
	Liquibase
	Database Backups

	Analysis of Camunda
	Bug Fixing

	Validation
	Work Accomplishments
	What Was Done
	Task proposal

	Comments
	Liquibase Drawbacks
	JDBC Template Drawbacks
	Bootstrap Drawbacks
	What Could Have Been Done Differently

	Next Steps in Development
	Health Improvement
	Securing the Project
	Split the Application Into Microservices
	Tests Overhaul

	Conclusion

