
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Ilja Gužovski 152999IAPM

WEB-BASED LOCATION TRACKING

PLATFORM ANALYSIS AND

IMPLEMENTATION ON THE EXAMPLE OF

CONSTRUCTION COMPANY

Master’s thesis

Supervisor: Jekaterina Tšukrejeva

 MSc

Co-supervisor: Jaak Henno

 Phd

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Ilja Gužovski 152999IAPM

VEEBIPÕHISE ASUKOHA JÄLGIMISE

PLATFORMI ANALÜÜS JA ARENDUS

EHITUSFIRMA NÄITEL

Magistritöö

Juhendaja: Jekaterina Tšukrejeva

 MSc

Kaasjuhendaja: Jaak Henno

 Phd

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Ilja Gužovski

09.12.2019

4

Abstract

The goal of following Master’s thesis is to perform an analysis and implementation of a

location tracking platform and as a result develop an in-browser tracking application for

a medium-sized construction company which is privacy concerned, safe, easy to update

and does not rely on Google Play Store or Apple App Store – since all tracking

functionality will be represented on an ordinary web page.

Various activity and location tracking solutions have become a significant part of

different business infrastructures in recent years. Currently, there are many solutions on

the market, quality and properties of each can vary greatly. One of the construction

companies offered to integrate such infrastructure into their business processes.

However, it appeared that there are no existing activity trackers that could completely

comply with company internal privacy policies and given functional and non-functional

requirements.

The thesis will propose a solution that attempts to create a platform different from

existing tracking solutions because it runs in an end-user mobile phone browser and

does not require installing an app.

In the first part of the work, the focus will be on gathering requirements from the host

construction company. After that work proceeds with researching tracking systems,

comparing, analyzing as well as selecting needed frameworks, libraries and

architectures needed for implementation.

In the second part of the work, the main focus will be on documenting the

implementation and testing process. Finally, all testing results will be evaluated,

analyzed and a conclusion will be given.

As a result of this Master’s thesis, the MVP of a mobile tracking platform will be

developed, the MVP will be tested and comparison with existing tracking systems will

be created.

5

This thesis is written in English and is 104 pages long, including 8 chapters, 41 figures

and 17 tables.

6

Annotatsioon

Veebipõhise asukoha jälgimise platformi arendus ja analüüs

Käesoleva töö eesmärk on analüüsida ja luua askoha jälgimise platform, mis töötab

veebipõhiste tehnoloogiate toel. Töö lõppeesmärk on luua brauserisisene GPS

jälgimisrakendus, mis on privaatne, lihtsasti uuendatav, ohutu ja ei sõltu Google ega

Apple App poest – kuna ise rakendus on tavaline veebilehekülg, mis töötab otse

veebilehitsejas. Rakendus luuakse keskmist suurusjärku ehitusfirma jaoks.

Mitmesugused aktiivsuse ja asukoha jälgimise lahendused on viimastel aastatel

muutunud erinevate äride tähtsaks osaks. Turul on mitmeid erinevaid

jälgimisrakenduste lahendusi, mis on erinevate omaduste, hinna ja kvaliteediga. Antud

ettevõte esitas soovi integreerida sellist süsteemi oma äri protsessi. Ilmnes, et pole

ühtegi olemasolevat jälgimissüsteemi, mis vastaks täielikult ettevõttesisestele

privaatsusnõuetele ning funktsionaalsetele ja mittefunktsionaalsetele nõuetele.

Töö käigus valmib lahendus, mis on erinev olemasolevatest jälgimislahendustest, kuna

see töötab kasutaja mobiiltelefoni brauseris ja ei vaja rakenduse installimist.

Töö esimeses osas keskendutakse rakenduse nõuete kogumisele. Tööd jätkatakse

jälgimissüsteemide uurimisega, raamistike, teekide ja arhitektuuride võrdlemise,

analüüsimise ning valimisega.

Töö teises osas keskendutakse põhiliselt arendus- ja testimisprotsessi

dokumenteerimisele. Lõpuks hinnatakse ja analüüsitakse kõiki testimistulemusi ja

tehakse järeldus.

Töö tulemusena töötatakse välja mobiilne jälgimisplatvorm MVP, testitakse seda ja

luuakse võrdlus olemasolevate jälgimissüsteemidega.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 104 leheküljel, 8 peatükki, 41

joonist, 17 tabelit.

7

List of abbreviations and terms

AMD Asynchronous Module Definition

API Application programming interface

CJS CommonJS

DOM Document Object Model

ES6 ECMAScript 6

Employee An individual who works under a contract for client company

GPS Global Positioning System

HP (a company) Hewlett-Packard

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JS JavaScript

JSON JavaScript Object Notation

Loader (used in vehicle context) Type of tractor

MDN Mozilla Developer Network

MIT licence

Permissive free software license originating at the Massachusetts

Institute of Technology

MVP Minimum Viable Product

8

R&D Research and development

REST Representational State Transfer

SDK Software Development Kit

SPA Single page application

Sensor (used in context as) HTML5 Mobile device sensor

State variable storage. In our case those are browser JavaScript variables.

TDD Test-driven development

UMD Universal Module Definition

W3C World Wide Web Consortium

Webpage
A document which can be displayed in a web browser. In our context

webpage supports JS and HTML5 Sensor API

Websockets Communications protocol, providing full-duplex communication

9

Table of contents

Author’s declaration of originality .. 3

Abstract .. 4

Annotatsioon ... 6

List of abbreviations and terms ... 7

Table of contents ... 9

List of figures.. 12

List of tables ... 14

1 Introduction ... 15

1.1 Background and motivation ... 15

1.2 Problem statement ... 15

1.3 Goals ... 17

2 Background and analysis of a problem ... 18

2.1 Problem background and explanation .. 18

2.2 Functional requirements .. 25

2.3 Non-functional requirements ... 29

3 Evaluation and analysis of existing solutions .. 31

3.1 Spyzie ... 32

3.2 SpyFone .. 34

3.3 Traccar .. 35

3.4 Google maps ... 37

3.5 mSpy ... 39

3.6 FollowMee .. 41

3.7 Comparison of existing solutions ... 43

4 Analysis of implementations and architectures ... 48

4.1 Analysis of different implementations for mobile app development 48

4.2 Analysis of needed sensors and their API-s ... 52

4.2.1 Environmental Sensor API-s: .. 52

4.2.2 Useful but not mandatory API-s that could be used: 53

4.2.3 Data storing API-s .. 54

10

4.3 Analysis of sensors compatibility for different browsers 54

4.4 Analysis of possible implementation problems and limitations 57

4.5 Analysis of web mobile development performance .. 58

4.6 Conclusion: web mobile development ... 58

4.7 Analysis of different architectures ... 59

4.8 Conclusion .. 61

5 Implementation .. 62

5.1 Databases .. 62

5.1.1 CouchDB and PouchDB ... 63

5.1.2 CouchDB .. 63

5.1.3 PouchDB .. 65

5.1.4 Postgres .. 66

5.2 Backend platform and framework .. 66

5.2.1 NodeJS ... 67

5.2.2 FeathersJS .. 67

5.3 Frontend framework .. 70

5.3.1 React .. 70

5.4 Component integration and communication ... 73

5.5 Use cases ... 74

5.5.1 User signup .. 74

5.5.2 User login ... 75

5.5.3 User location/sensor tracking (FR-1, FR-2, FR-3, FR-4, FR-6) 77

5.5.4 User location monitoring by admin (FR-7) ... 79

5.5.5 Set starting point and destination of user (FR-8) ... 80

5.5.6 Admin sees long term navigating history (FR-9) ... 82

5.5.7 Admin creates group of users (FR-10) .. 83

5.5.8 Admin sees group members on the map (FR-11) .. 86

5.5.9 Removing user data (FR-5) ... 88

6 Application testing ... 89

6.1 Functional requirements testing ... 89

6.2 Non-functional requirements testing .. 94

6.3 Testing results: conclusion .. 96

7 Conclusion ... 98

8 Summary ... 100

11

9 References ... 101

Appendix 1 – Platform source code ... 104

12

List of figures

Figure 1 Example of current problematic situation (1) ... 21

Figure 2 Example of current problematic situation (2) ... 22

Figure 3 How IT system could solve above mentioned business problem (1)............... 23

Figure 4 How IT system could solve above mentioned business problem (2)............... 24

Figure 5 Spyzie screenshot .. 32

Figure 6 SpyFone screenshot... 34

Figure 7 Traccar screenshot .. 35

Figure 8 Google Maps screenshot ... 37

Figure 9 mSpy screenshot ... 39

Figure 10 FollowMee screenshot... 41

Figure 11 Browser usage chart (Source: StatCounter Global Stats for October 2018) .. 55

Figure 12 New CouchDB database creation code snippet .. 63

Figure 13 New CouchDB user creation code snippet ... 64

Figure 14 Granting access of particular database to user - code snippet 64

Figure 15 CouchDB admin UI screenshot ... 65

Figure 16 Creating new PouchDB instance code snippet ... 66

Figure 17 Inserting into record into PouchDB code snippet .. 66

Figure 18 User service implementation code snippet ... 68

Figure 19 Interaction with backend through FeathersJS client library – code snippet ... 69

Figure 20 Tracking page source code .. 72

Figure 21 Deployment diagram ... 73

Figure 22 User signup sequence diagram .. 74

Figure 23 Signup page UI ... 75

Figure 24 User login sequence diagram ... 76

Figure 25 Login page UI ... 76

Figure 26 User location tracking sequence diagram ... 77

Figure 27 Monitoring page UI ... 78

Figure 28 Monitoring page UI – monitoring/sync successful (2) 78

Figure 29 User location monitoring sequence diagram .. 79

Figure 30 Monitoring page UI (Users marked as markers) .. 80

Figure 32 Send notification modal UI.. 81

file:///C:/Users/vikto/Desktop/ilja09122019%20.docx%23_Toc28089240
file:///C:/Users/vikto/Desktop/ilja09122019%20.docx%23_Toc28089241
file:///C:/Users/vikto/Desktop/ilja09122019%20.docx%23_Toc28089242
file:///C:/Users/vikto/Desktop/ilja09122019%20.docx%23_Toc28089243
file:///C:/Users/vikto/Desktop/ilja09122019%20.docx%23_Toc28089250

13

Figure 31 Set starting point and destination of user sequence diagram 81

Figure 33 Admin sees long term navigating history sequence diagram 82

Figure 34 User history monitoring UI.. 83

Figure 35 Admin creates group of users .. 84

Figure 36 Create group page UI .. 85

Figure 37 Admin sees group members on the map .. 86

Figure 38 Show user group members page UI (group users are marked with markers) 87

Figure 39 Removing user data sequence diagram .. 88

Figure 40 Delete user data (Revoke rights button) ... 88

Figure 41 Code coverage report .. 96

file:///C:/Users/vikto/Desktop/ilja09122019%20.docx%23_Toc28089271

14

List of tables

Table 1 Requirement FR-1 .. 25

Table 2 Requirement FR-2 .. 26

Table 3 Requirement FR-3 .. 26

Table 4 Requirement FR-4 .. 26

Table 5 Requirement FR-5 .. 27

Table 6 Requirement FR-6 .. 27

Table 7 Requirement FR-7 .. 27

Table 8 Requirement FR-8 .. 28

Table 9 Requirement FR-9 .. 28

Table 10 Requirement FR-10 .. 28

Table 11 Requirement FR-11 .. 29

Table 12 Features comparison between Spyzie, Spyfone, traccar, Google Maps, mSpy,

FollowMee.. 45

Table 13 Comparison between various mobile application development approaches ... 49

Table 14 Comparison between mobile web approach and business requirements 50

Table 15 Availability of sensors for different browsers ... 56

Table 16 Functional requirements testing results ... 93

Table 17 Non-functional requirements testing results .. 96

15

1 Introduction

The main goal of the thesis is to perform an analysis and implementation of a location

tracking platform that will be powered by web-technologies. As a result, an MVP of an

in-browser tracker for a construction company will be created, which could be used as a

basis for further development. The developed tracker will have a set of unique

properties, which are not present in other solutions: it does not depend on Google or

Apple stores, it is easy to install and update, and it respects the privacy of the users.

To achieve this goal, the analysis of requirements, goals, as well as analysis of different

solutions, architectures, implementations, tools, and libraries will be performed.

Gathered knowledge should provide an optimal solution for fulfilling the goal.

1.1 Background and motivation

Tracking user location is an increasingly popular tool in modern logistics, construction,

and service providing business. Companies such as Uber, Taxify, Lyft, Gett, Wings, and

others use GPS and activity tracking in their apps to meet customer and service

providers [1]. The dominant part of those solutions is based on the idea of separate apps

for Android and iOS [2] [3]. However, the approach of separate iOS and Android apps

has its drawbacks: the high cost of maintaining two nearly identical apps [4], issues with

updating, versioning and installing of those apps, privacy concerns, and total

dependence on Google Play Store and Apple store. Some parts of those problems could

be addressed with the use of the safe in-browser environment, which is mostly

independent, safe [4], easy to update, install and use.

1.2 Problem statement

Construction company needs a vehicle coordinating solution for its call center. The

problem in the current situation is that most of the time there is no information about

when and where the loaders, drivers and their trucks are. Each delay of the truck or

16

employee and failure in coordination/communication leads to time and money loss. To

prevent communication failures, the company wants to analyze the existing problem,

gather requirements and develop a simple application which should tell where the

construction truck or employee is.

Current work will analyze and explore existing solutions and approaches for solving

current problematic situation happening in the host construction company: Analysis of

existing readymade solutions, constraints and approaches used in the software

development for creating a GPS and activity tracker, as well as all the needed steps to

implement this kind of software: analysis of functional and non-functional

requirements, comparison of different implementations, documentation of

implementation and implementation itself.

Web-technology based tracker has some great advantages, compared to building native

Android and iOS applications:

At first, building separate native apps is considered to be less cost-effective than one

unified app that suits all operating systems [4].

Secondly, it is far easier and cheaper to maintain everything on the same stack of

technologies (mainly ordinary web technologies - HTML, JavaScript, SQL, Java, etc).

Thirdly, there are more web developers available on the market than Android or iOS

developers. Those reasons were taken into account in the company, for whom I am

implementing the solution. The сompany did not want to spend money on a separate

Swift, Android or React Native developers, and decided to experiment with a web-based

approach.

As a result, an MVP solution for tracking the user location and activity will be

implemented. Solution will be secure, privacy concerned, independent from Apple and

Google stores, scalable and highly configurable. Created MVP could be adapted and

used as a basis for other projects and companies coming from other or similar business

domains: such as peer-to-peer ridesharing, taxi cab hailing, food delivery, bicycle-

sharing systems, logistics and many others.

17

1.3 Goals

Before starting the development the current business situation will be analyzed,

exploration of the problem will be performed and all functional and non-functional

requirements will be gathered.

After acquiring the requirements, the analysis of existing solutions on the market will be

created. And a decision, if there is a need to create a dedicated application specifically

for analyzed requirements, will be given.

Work proceeds with an analysis of architecture and different approaches on how such

applications could be developed and analyze all needed dependencies and components

for implementing the platform.

During the implementation phase, the Agile-based methodology elements will be used:

Test Driven Development, timeboxing and early delivery of valuable software.

However, comprehensive documentation of the development and testing process will be

created as well.

As a result of a development process, an MVP solution for a construction company will

be created. The MVP will solve company problems with the call center and will

optimize loader and truck working flow. For testing the prototype, a suite of unit,

functional and manual tests will be created and executed.

Finally, a conclusion how well application complies with all functional and non-

functional requirements will be given and described with most important features that

do the browser-specific tracking has, compared to ordinary native app-based solution.

18

2 Background and analysis of a problem

2.1 Problem background and explanation

The client for whom this solution is developed is a road construction company located

in Tartu. The turnover of this company is over 10+ million euros. The company is

engaged in the provision of services in the construction of roads. The company consists

of departments each connected to counties and brigades and each brigade connected to

the department and construction project. The company has many subcontractors. The

company strategy is to expand in the southern part of Estonia and to optimize its costs.

Due to the growing and competitive nature of the company it became important to

optimize logistic and transferring of construction assets, such as construction materials,

vehicles, tools, and human resources. For managing and coordination was formed a

“call center” - a small department, that is responsible for renting of construction

vehicles, transferring them to place on time, transferring of building materials and

solving problems between vehicle renting companies, subcontractor companies, and

customer. Most of the call center job is done via phone, SMS, email, excel and open-

source ERP system Odoo.

The problem in the current situation is that most of the time there is no information

about when and where the loaders, drivers and their trucks are. Tracking and asking of

the truck loaders is time-consuming and inefficient for the call center, but the location

of each worker and construction vehicle is important.

Moreover, each delay of the vehicle or employee and failure in

coordination/communication leads to time and money loss. To prevent communication

failures, the company wants to develop a simple application that will tell where the

construction truck or employee is.

At the moment, the customer company is willing to improve its IT infrastructure and

reduce the number of things stored in excel and papers. At first it was proposed to use

19

some SaaS service as Vismo or Spyzie, however, it was decided that it is important not

to store worker’s location data in third party services. After that, it was offered to create

simple Android and iOS apps, which will ask for a location.

However, the client did not want to pay for the maintenance of the nearly identical

versions of the same app. Solutions which could produce applications for both Android

and iOS at once from the same code base (such as Cordova and React native) were

discussed as well, however, were questioned because of updating and installing issues -

it was clearly stated that application needs to be easy to use, install and update on any

phone. This requirement was brought in by previous experience - most of the employees

had experienced problems with installing/updating or even opening of apps (such as

Google maps, for instance) on their smartphones.

In general, the company needed a solution that should be easy to use, support and train.

After a long discussion with the technical director of the company, it was agreed that the

product could be a simple HTML5 page that will poll position and other needed sensor

data from the employee phones and send it to the server for further analysis. To ensure

the correct working of application it will be installed on mobile devices given by the

company and usage of this application will be not mandatory for employees. The

application will not track user activity outside of the range of working hours and could

be closed employee just by closing the page.

Looking from the technical side ordinary HTML page satisfies all given requirements: It

is very easy to update (just by refreshing the page), it can query all needed sensors for

our purposes, I do not need to develop separate applications for iOS and Android, end-

users do not have to download anything from the Apple or Google Play Store and

majority of people know how to use the smartphone for accessing the web page, so the

ease of use, learning curve and user interaction with an app is kept to minimal. In

addition to that, other sensors could be added and a larger scale of developers could

improve and maintain the application: at present, there are far more web developers,

who know JavaScript than Swift or Java developers with good knowledge of Android.

[5] On the backend sensor data will be processed and analyzed to give the current

location and activity of the employee.

20

The problem with the interaction of call center and client/subcontractor/host company

official is the following: Usually truck driver knows where to go and where to transmit

the construction material but it happens quite often that there is nobody on the

construction site to accept the materials: either it is some official from subcontractor

firm or another brigade from other company or official of client. So instead of efficient

use of construction vehicle, the truck driver waits for an unknown amount of time. It is a

very common situation that authorized person is missing or forgot about the upcoming

construction vehicle or assets. Without his signature vehicle cannot be unloaded or used.

Daily this puts stress on a business: rented construction vehicles are waiting,

construction materials are not transmitted, working hours of a construction vehicle are

used inadequately, call center cannot forecast how much assets could be transmitted,

which results in an inadequate billing of the rented vehicles and puts high stress on a

call center: usually at peak hours people are calling when they have problems with

paperwork and “nothing is moving”.

Below I have created diagrams which illustrate one particular problematic situation in

the call center that happens almost daily:

21

Figure 1 Example of current problematic situation (1)

22

The graph above illustrates failure in communication – the client forgets about the

upcoming truck, so instead of being accurate on time in the correct place, he is

somewhere else. This results in the idle standing of the truck and truck driver. The truck

is rented on an hourly basis and the truck driver receives a salary. Obviously this

situation results in a money loss, which is not good for the business. This routine

situation (which happens many times during the day) results in 5 minutes of work done

by call center (steps which took additional time are marked by red color), 22 minutes of

work done by truck driver (marked with orange), and 22 minutes of work done by client

(marked with blue).

As a result, the host company and client are losing time and money. All colored steps

could be eliminated and as a result, we will see a much simpler and less time-consuming

business process. Note that truck vehicle is also standing, which result in additional

renting and amortization costs.

Figure 2 Example of current problematic situation (2)

23

Figure 3 How IT system could solve above mentioned business problem (1)

24

The proposed solution takes care of work done by the call center. Ideally, it is possible

to remove all problematic steps from this business process. If you compare Figure 1

with Figure 3 and Figure 2 with Figure 4 you will notice that “waiting” steps were

eliminated by introducing a broker called “System”. Basically system sends the email to

the client before truck arrives. The time when the email is sent is based on the location

of the truck and average moving speed of the truck; let’s say for the past hour. This

results in less work for the call center, no waiting of the truck driver and happier client,

who does not need to hurry.

Reduction of communication failures leads to a significant increase in work

productivity, releasing the call center from stressful peak hours which usually happen

between 11 and 15 o'clock, and reducing idle standing of the vehicles and employees.

Client satisfaction with company services is expected to increase because he is notified

on time and would not lose time because of his or her company organization failures.

To solve such problems it was agreed to create a system, that should gather the position

of the user and forecast his activity – is user driving or standing, or waiting in the traffic

jam. The application will be self-hosted on some private VPN server, so and will

Figure 4 How IT system could solve above mentioned business problem (2)

25

comply with European Union GDPR law. The application should be cross-platform –

this means that it must work on the most popular mobile operating systems – Android

and iOS. The application should be easily closed and should respect user privacy. For

the testing reasons, it should support admin and user roles. The end goal is to locate the

position of the user by showing a marker on a map.

There were other requirements as well, but to sum up, there were following major

functional and non-functional requirements to fulfill:

2.2 Functional requirements

ID FR-1

Requirement Application should gather as much available sensors data as possible.

Geolocation , devicemotion, deviceorientation sensor data is

mandatory.

Users System end user

Precondition Authorized end user

Result User sensors data should be queried and saved to database

Use case User logins to page where he accepts permissions about using his

geolocation and other sensors. After that system should send user

geolocation , devicemotion, deviceorientation and possible other

sensor data to server and save it to database. Gathering and sending

of the data should be done with 1 second interval.

Table 1 Requirement FR-1

ID FR-2

Requirement Application should continue sending sensor data in case it is in

minimized or in idle state.

Users System end user

Precondition Authorized end user who accepted geo-tracking permissions (as in

functional requirement ID 1)

26

Result User sensors data should be queried and saved to database

Use case User locks his phone or minimizes or minimizes browser with

application tab.

Table 2 Requirement FR-2

ID FR-3

Requirement Each sensor write request should include a timestamp

Users System end user

Precondition Authorized end user who accepted geo-tracking permissions (as in

functional requirement ID 1)

Result User sensors data should be queried and saved to database with a

timestamp field

Use case When application generates sensor data it also appends creation date,

after that the whole request is sent to backend and saved to database.

Table 3 Requirement FR-3

ID FR-4

Requirement Application could be reopened if it had crashed or was closed.

Users System end user

Precondition Authorized end user who accepted geo-tracking permissions (as in

functional requirement ID 1)

Result Application could be reopened and restored to the same state as

before being closed

Use case User accidentally closes the application browser tab, opens the

browser, types application page URL, browser should open

application in the same state as before close.

Table 4 Requirement FR-4

27

ID FR-5

Requirement Application could remove all user data if prompted

Users System administrator

Precondition Authorized administrator

Result Application should not contain any user sensor data

Use case End user prompts admin to remove all user data, administrator

removes all data from database.

Table 5 Requirement FR-5

ID FR-6

Requirement User could update application without prompts with one click

Users System end user

Precondition Authorized end user

Result Application got updated

Use case End user refreshes the application page, if application has got any

updates then it gets updated automatically by the browser

Table 6 Requirement FR-6

ID FR-7

Requirement Admin could see user position on the map

Users System administrator

Precondition Authorized admin

Result Admin knows position of user

Use case Admin logs in and sees a map with a position of user.

Table 7 Requirement FR-7

28

ID FR-8

Requirement Admin could set starting point and destination for user

Users System administrator

Precondition Authorized admin

Result Both admin and user could see starting point and destination point of

the route.

Use case Admin sets starting point and destination for a truck driver. Truck

driver could see destination on web page. Admin could see route of a

truck driver on a map.

Table 8 Requirement FR-8

ID FR-9

Requirement Admin could see long term routing history of user

Users System administrator

Precondition Authorized admin

Result Admin could see a route of the user in chosen date time interval (1

month ago and more)

Use case Admin chooses driver and date time interval and sees a route of the

user on a map.

Table 9 Requirement FR-9

ID FR-10

Requirement Admin could group users into groups

Users System administrator

Precondition Authorized admin

Result Users could grouped

Use case Admin creates a group and registers each user to group.

Table 10 Requirement FR-10

29

ID FR-11

Requirement Admin could see group members on the map

Users System administrator

Precondition Authorized admin, users are added to group.

Result Admin could see a routes and locations of users in a group on the

map

Use case Admin chooses a group. Markers of members appear on the map..

Table 11 Requirement FR-11

2.3 Non-functional requirements

1. Technical requirements:

1.1. Application should work on phones with OSes: iOS 9+ and Android 4.4+

1.2. Application should work on the most popular cross-platform browsers such as

Firefox or Chrome.

1.3. Admin could access the admin dashboard from a browser.

1.4. Admin dashboard should be simple to use: no actions should take more than 4

clicks

2. Privacy requirements:

2.1. Application could be turned off for user privacy.

2.2. User-specific data could be deleted.

2.3. Data of the users should be stored by the company and not by any 3
rd

 party.

3. Maintenance and business cost requirements:

3.1. Application is itself is MVP (Minimum viable product), with minimum

functionality to fulfill the business goal.

30

3.2. Application should be developed as quickly as possible with the minimum

usage of human resources.

3.3. There should be a large pool of software developers who qualify to enhance the

given MVP.

4. Application performance requirements:

4.1. Each interaction with the application user interface should not take longer than

5 seconds

31

3 Evaluation and analysis of existing solutions

Before I begin with the implementation part, I have to compare how do existing

solutions that comply with functional and non-functional requirements. I evaluate a 6

most popular/complete/similar solutions found on the internet:

 Spyzie

 SpyFone

 Traccar

 Google Maps

 mSpy

 FollowMee

Each of these solutions provides its own advantages and disadvantages. Those

applications could be divided into two main groups:

 Parental tracking apps – despite being a parental spying app, some companies

claim that they could be used for business purposes as well. Usually, those

applications have modern UI, larger client base and more possibilities to track

user activity.

 Employee tracking apps – those apps are intended for businesses. Some of

them appear to suit our business goals quite well. But as you can see later there

are some bigger problems, the biggest concern is an inability to control and own

the data: most of the solutions store the data on their servers and do not provide

any API or customization layer. In addition to that, the user interface of some

applications looks quite outdated.

Further I will evaluate each solution in detail:

32

3.1 Spyzie

Figure 5 Spyzie screenshot

Spyzie is a monitoring tool to track cell phone activities such as GPS, SMS, calls,

photos, browsing history, videos, WhatsApp, etc. [6] Spyzie is one of the most complete

phone tracking solution found, functionally covers almost all needs, except it does not

have a self-hosted instance, data is stored on the 3rd party server. Runs via separate iOS

or Android application.

The main problem is that it does too much “spying” to be suitable for enterprise use:

keyboard tracking, messenger, clipboard and screenshot capturing make it look more

like a parental app / spying solution / spyware. It is impossible to turn off or turn on

unneeded features or customize this behavior. Because of that, I may conclude that

Spyzie would not respect the privacy of employees.

33

It is worth mentioning, that Spyzie is intended to track a limited number of mobile

phones – there is no dashboard to track multiple devices, for instance, you cannot see all

devices on the same map at once. In my opinion, Spyzie belongs to the parental

tracking apps group. This kind of software will be hard to integrate into the existing

infrastructure: it will track privacy-sensitive information, which should not be tracked,

in addition to that, it is impossible to turn the app off during work off-hours. However,

Spyzie has the following advantages, which competitors do not have: Easy to use

modern-looking user interface, good UX, large userbase, and support.

To sum up, Spyzie has the following advantages and disadvantages compared to other

competitors:

1. Advantages:

a. Modern looking user interface

b. Probably larger community (ranked first in Google)

c. Large possibilities to track phone information: call logs, social networks,

GPS, SMS etc.

2. Disadvantages:

a. No possibility to control what things to track and what do not – either

you track everything (GPS, Call logs, Browser history) or do not use the

app.

b. No external API

c. No possibility to self host the instance of Spyzie, everything is stored on

Spyzie servers.

d. Lack of possibility to see devices on the same map at once.

e. Impossible to turn off during work off-hours

f. Price is ~100$ year per device.

34

3.2 SpyFone

Figure 6 SpyFone screenshot

SpyFone is one of the most popular solutions for monitoring internet activity on mobile

phones according to the SpyFone website [7]. Claimed to be used by large newspaper

companies: The Times, The Sun and The Guardian. Suffers the same problems as

Spyzie: no possibility to store the data on your server, too much control over the phone:

reading of email, Facebook messenger, etc. Purely for a tracking app used by

businesses, this app does track too much user sensitive information (exactly like Spyzie

does).

However, they still advertise their solution to businesses: SpyFone web site states that

SpyFone is a parental and employee monitoring tool. In my opinion, the SpyFone app is

more parental oriented than business-oriented. It is a question of how ethical it is to

monitor every call, text message and email of an employee – in my opinion, you should

not track everything on employee phone. It is impossible to customize and tune this

behavior – even the base package does track too much user sensitive information.

Currently, I cannot imagine how and why Spyfone is used by such large companies – it

does not provide anything unique compared to Spyzie. In my opinion, SpyFone belongs

to parental tracking apps group more than to business tracking apps group.

35

SpyFone has following advantages and disadvantages compared to other competitors:

1. Advantages:

a. Modern looking user interface

b. Probably large community of users and clients

c. Used by large businesses (The Times, The Sun and The Guardian)

d. Large possibilities to track phone information: call logs, social networks,

GPS, SMS etc.

e. Claimed to be solution 1 worldwide.

2. Disadvantages:

a. Does not offer anything very special compared to Spyzie

b. Higher price than Spyzie – 200$ to 300$ per year per device

c. No external API

d. No possibility to self host the instance of SpyFone, everything is stored

on SpyFone servers.

e. Lack of possibility to see devices on the same map at once.

f. Impossible to turn off during work off-hours

3.3 Traccar

Figure 7 Traccar screenshot

36

Traccar is a GPS tracking software created for vehicle and personal tracking that could

either be cloud-based or self-hosted. Traccar offers real-time view, reports, and

notifications. [8]

Currently, Traccar is one of the most serious and complete solutions with the least

amount of cons and the most amount of pros: it is open-source, provides both server and

client, so the data could be stored on your personal server. It does not position itself as a

spy app like the others and does not look like a parental app that has grown into a

platform for doing everything related to tracking. It also seems that it is uses GPS only.

Basically, because traccar is an open-source sofware, it can be extended in several ways.

However, there are a lot of issues reported related to the functioning of traccar, that

could be found on their Github page [9]. Traccar is the closest suitable solution for our

purposes.

However, there is some functionality missing in the traccar, that is essential for

fulfilling functional requirements given by the customer: you cannot store routes for a

long time, it is impossible to use traccar directly from web page: you have to download

an Android or an iOS app. I have downloaded a traccar Android app and, indeed, it

respected user privacy – it never hid tracking notification from phone status bar.

However, I have found that it will be quite hard to extend the application, because

currently it is quite hard to use and setup, mainly due to fact that there are too many

options in admin UI, which cannot be turned off or on, and it is also impossible to turn

tracking off for particular hours. Despite that, among the competitors traccar is the most

suitable employee tracking app for our goals.

Summing up:

1. Advantages:

a. Open source

b. Free to use

c. Most complete employee tracking solution

d. Business oriented

e. Privacy concerned

f. Supports not only mobile phones but special GPS tracking devices

g. Large community

37

h. Possibility to self host the instance of an app, web interface and database

2. Disadvantages:

a. Outdated UI, which needs refreshing

b. Hard to setup and use admin interface

c. Hard to extend

d. No possibility to track user location directly via web interface

e. High amount of open issues

f. Impossible to see history of routes

g. Impossible to set starting point and destination

h. Impossible to turn off during work off-hours

3.4 Google maps

Figure 8 Google Maps screenshot

Google Maps is a mapping service developed by Google. Google maps offers street

maps, 360 degree views of streets, as well as real-time traffic conditions, route planning

for travelling by foot, car, bicycle or public transport [10].

Google maps could be used as a GPS tracking app if the user agrees to share his

location. There are some inconveniences of course: for instance, you cannot group your

38

employees conveniently; there is no API to track user location. Still, Google maps offer

the most sophisticated permissions control for the user, you can either use Google maps

app or use Google maps via web page, high accuracy of tracking, probably great

security. You still send a lot of third party data to Google, but at least it is well secured.

The biggest problem is that Google maps are not intended for such use and you still do

not own the data of the employees.

Moreover, Google maps do not have a sufficient amount of needed features – you

cannot turn app tracking off during work off-hours, there is no dashboard for tracking

multiple users. Despite that, maps and navigation are excellent, and you can use map

and navigation at once – none of the competitors offer map navigation and routing at

once. Purely for enterprise GPS tracking, Google Maps offer more functionality and

control than Spyzie and SpyFone but less than Traccar and FollowMee.

Google maps advantages and disadvantages:

1. Advantages:

a. Modern looking user interface

b. High accuracy of GPS tracking

c. High security standards

d. Used by millions of people

e. Backed by big corporation

f. Best control of permissions among the competitors

2. Disadvantages:

a. Not intended to be used as a tracking tool: it is impossible to group or

watch multiple employee location at once.

b. Data is stored on Google servers.

c. No external API for getting a location of user. You can see routes only in

the Google maps app or Google maps webpage.

d. Lack of possibility to see devices on the same map at once.

39

3.5 mSpy

Figure 9 mSpy screenshot

mSpy is a parental control app for smartphones that allows parents to monitor text

messages, calls, current GPS location, messengers and social network. [11]

mSpy looks very similar to SpyFone and Spyzie: a parental tracking app with the same

options as SpyFone and Spyzie – tracking of location, messengers, mails, calls. Claims

to be an “a leading parental control app for smartphones that allows parents to monitor

text messages, calls, current GPS location, Snapchat, WhatsApp and much more” [11].

However, no statistics or popularity source is provided.

40

Application suffers from the same drawbacks as Spyzie and SpyFone: it is not intended

for enterprise GPS tracking, but for parental control. Among the competitors, it provides

most possibilities to track social networking and messaging. For instance, mSpy can

keylog following applications: WhatsApp, Viber, Instagram, Facebook, Tinder,

Telegram, Skype etc. The main disadvantage, in my opinion, is outdated UI and higher

price than Spyzie, mSpy for which mSpy does not provide anything specific compared

to competitors.

To sum up, mSpy is not that much different from Spyzie or SpyFone, it is a parental

app with the following advantages and disadvantages:

1. Advantages:

a. Large possibilities to track phone information: call logs, social networks,

GPS, SMS etc with focus on messaging and social networking.

2. Disadvantages:

a. Does not offer anything unique compared to Spyzie or SpyFone

b. No possibility to control what things to track and what do not – either

you track everything (GPS, Call logs, Browser history) or do not use the

app.

c. No external API

d. No possibility to selfhost the instance.

e. Lack of possibility to see devices on the same map at once.

f. A little bit outdate UI

g. Price is ~160$ year per device.

41

3.6 FollowMee

Figure 10 FollowMee screenshot

FollowMee is a GPS tracking solution that does not need an app for working, supports

tracking directly from HTML page, has web-based and has a set of convenient features:

grouping of tracked users, on-demand updates, legends. In addition to web-page you

can directly install an app to following operating systems: Android, iOS, Windows. [12]

Some features are quite unique and are missing in Traccar and other competitors – for

instance, archivation of tracking history for weeks, months or years. The main

disadvantage of the app is that there is no possibility to self-host the server: all data

should be sent directly to FollowMee server, you cannot install or self-host the server.

Another minor problem is outdated UI and lack of external API – FollowMee cannot be

extended easily. FollowMee clearly belongs to the employee tracking apps category.

FollowMee has following cons and pros:

1. Advantages:

a. Possibility to track GPS without app, only with browser.

b. You can see every tracked device on map at once.

c. You can download GPS reports

d. UI is simple to use

e. It is possible to store GPS reports for 3 years for an additional price.

2. Disadvantages:

42

a. No possibility to selfhost the instance.

b. Outdated UI

c. ~50$ per device per year for all features

d. No external API

43

3.7 Comparison of existing solutions

To compare different solutions and ensure that they are suitable for the problem I will

compare solutions on different factors – privacy concerns, possibility to extend,

completeness of functional and non-functional features.

To evaluate are those solutions suitable or not for solving the functional and non-

functional requirements, I have created a table with a chosen list of most vital functional

and non-functional requirements:

Non-functional:

1. Has self-hosted instance – it means that only the host company can control,

store and see the data of their employees. Basically it means that the data could

not be stored in the cloud and only on a private server (Non-functional

requirement 2.3)

2. Respects user privacy – can track GPS and available sensors only – some

solutions found on the internet do too much, track phone calls, messages, etc.

Client needs purely a location tracker, not spyware or parental solutions (Non-

functional requirement 2.1) That kind of software will not be accepted by the

workers. In other words, it means that tracker should be not a parental app

tracker, but an employee tracking app.

3. It can be used via mobile phone – does not require any special device – It was

agreed that phones are used and not any other devices, which are usually not that

cheap. (Non-functional requirement 2.1). Tracking information could be sent

either via iOS or Android app. Or via web app – which is much more preferable,

privacy concerned and secure and also complies with Non-functional

requirement 1.3.

4. Application has web-based admin dashboard (Non-functional requirement

1.3) – it is totally impossible to use an application without this feature, call

center needs to track down where the employees are, this is an essential feature,

without which the whole program does not make any sense.

5. Could be extended / has an API – Application has an API, so it can be

extended easily. Open-source applications also belong to this group, because

they can be easily extended as well. API is needed for various reasons: one is

44

that it could be used for implementing the delivery of email when the employee

is approaching the client.

Functional:

6. Admin could see user position on the map (FR-7) – this is the most basic and

important feature for call center, complies with Non-functional requirement

1.3

7. Admin could set a starting point and destination for user (FR-8) – This

feature is needed for measuring the distance to the client by the logistic center. If

the employee is approaching the client then the call center can call the client or

issue and email. If the program could be extended I could automate this

behavior.

8. Admin could see long term routing history of user (FR-9) – It is important to

store the data for more than one month, this data is required for further analysis

by the call center.

9. Admin could group users into groups (FR-10) – Groups are needed for

various reasons, like splitting employees into projects, departments, etc. For

instance, if a few trucks belong only to one big project it is reasonable to group

them to only one project to see the location of the group on the map at once.

10. Admin could see group members on the map (FR-11)

Product name /

Requirements

Spyzie Spyfone traccar Google

Maps

mSpy FollowMee

Has self hosted

instance

No No Yes No No No

Respects user

privacy – can track

GPS and available

sensors only

No No Yes Yes No Yes

Can be used via

mobile phone – does

not require any

Yes Yes Yes Yes Yes Yes

45

special device

Has web based

admin panel

Yes Yes Yes Yes Yes Yes

Could be extended /

has an API

No No Yes No No No

Admin could see

user position on the

map (FR-7)

Yes Yes Yes Yes Yes Yes

Admin could set

starting point and

destination of user

(FR-8)

No No No No No Yes

Admin could see

long term routing

history of user – 1

month and more

(FR-9)

No No No Yes No Yes

Admin could group

users into groups

(FR-10)

No No No No No Yes

Admin could see

group members on

the map (FR-11)

No No No No No Yes

Final decision (All

requirements must

apply)

No No No No No No

Table 12 Features comparison between Spyzie, Spyfone, traccar, Google Maps, mSpy, FollowMee

46

To make a final conclusion we must take into consideration how well analyzed products

comply with the list of requirements I have provided. According to the analysis, it

appeared that none of the existing solutions completely complies with non-functional

and functional requirements.

The biggest problem is that the most of the solutions do not provide any capabilities to

store the data on your own server – only open-source solution traccar complies with this

requirement.

The second biggest problem is that most of the solutions are “Parental apps” that do not

respect user privacy – from all solutions, only FollowMee and traccar were intended for

businesses use.

The third biggest problem is lack of an API and inability to extend and modify source

code of provided solutions: from all solutions only traccar could be extended, traccar

has REST API and you could probably roll your own endpoints if you wish (note:

traccar is open-source solution).

Solutions like SpyFone, Spyzie, and mSpy are parental apps that track everything –

GPS, social networking, emails. Clearly the idea of spying personal information of

employees is not the goal of the business. In addition to that, data is stored in the cloud

– you do not own or control the data. But for business is important not to share the data

with 3
rd

 party services.

From all solutions mentioned above traccar appeared to be the most suitable solution,

but without member grouping support, quite high amount of issues found on Github,

possibility to set starting point and destination, long term tracking and routing history –

traccar just cannot be considered to be an appropriate solution for our requirements.

From the contenders, FollowMee addresses a big part of lacking functionality of traccar,

but cannot be self-hosted, because every piece of data is sent to FollowMee servers.

The analysis revealed that all solutions have their own cons and pros and most of the

solutions cannot be changed or modified, from the all above only traccar could be

extended, but this requires a great amount of work and the codebase of traccar is rather

large and complicated. Codebase of traccar is possible to extend, but it would not be

47

easy – it is better to create your own MVP that does not address any problems or flaws

of the analyzed solutions.

As a result, because none of the above complied with non-functional requirements it

was decided to roll out our own solution, which will be tailored exactly for the business

needs.

48

4 Analysis of implementations and architectures

4.1 Analysis of different implementations for mobile app development

As was described in chapter 3.1 it was decided to create a solution that is exactly

tailored for business needs. Nowadays, there are numerous possibilities to create a web

info system. In this chapter, the analysis of how it could be done and what options are

available will be created.

To create a high-quality mobile application that will be used by employees it is

important to fulfill given functional and non-functional requirements. It is very

important to choose the most appropriate mobile application development strategy. To

do so the analysis of each mobile application development approach will be produced.

After a brief analysis, it appeared that the landscape of different mobile platforms and

development strategies has seen significant changes in recent times. Each development

approach may significantly boost or slower development of application and strongly

affects performance, UI and development cost of application. [13]

And currently there are 4 main popular and well known approaches [14] [13] in the

mobile application development:

• Native application development approach – “developers implement an

application for one specific target platform using its software development kit (SDK)

and frameworks. The app is tied to that specific environment.” [14]

• Cross-platform application development approaches – ”cross-platform

approaches allow developers to implement an app as a single code base that can be

executed on more than one platform.” [14]. Notable example of framework supporting

this approach is React Native.

• Hybrid application development approaches – “hybrid approaches emerged

as a combination of Web technologies and native functionality. Their runtime

environment largely consists of a Web rendering engine, wrapped in a native engine.

The source code of hybrid apps uses similar technology like Web apps but additionally

49

has access to an API for platform-specific features.” [14] Currently there are two most

popular frameworks supporting this approach: PhoneGap and Apache Cordova.

• Mobile Web application development approach - “Mobile Web application

implemented with HTML, CSS, and JavaScript use the browser as their runtime

environment and thereby capitalize on the good browser support of mobile platforms.

When using this approach, developers implement their application as one Web site

optimized for mobile devices, which the Web browser then interprets” [14]

Each of those approaches provides its own drawbacks and advantages. Mostly there is a

trade-off between the time of development and performance of application – Native

applications are usually faster and more performant than Web applications, however,

they are much slower in implementation. [14]

For fulfilling our non-functional requirement “Application should be developed as

quickly as possible with the minimum usage of human resources.” I need to evaluate the

advantages and disadvantages of each development approach. I compiled a table from

various sources ([13] [14]) which could be used for quickly evaluating various

properties of each development approach. This table could be used for making a

decision on which approach could suit business goals better.

Decision criterion Native

approach

Cross-platform

approach

Hybrid

approach

Mobile Web

approach

Quality of UX Excellent Not as good as

native apps

Excellent Not as good as

native apps

App development

cost

High Not as high as

native

Not as high as

native

Low

Ease of updating Complex Medium Medium Simple

Time to market High Medium Medium Short

Developer

availability

Medium ? ? High

Table 13 Comparison between various mobile application development approaches

As you can see from the table above, to fulfill the business requirement “Application

should be developed as quickly as possible with the minimum usage of human

resources.” I will evaluate a mobile web application approach at first. Compared to the

other approaches ease of development of mobile web application is higher than for the

50

native approaches and at the same time, the cost of development is lower. The main

reasons for that are well-established JavaScript, CSS, HTML community and high

quality of documentation. [14]

In combination with the other requirements from chapter 2.1 and especially with the

requirement “Application should work both on Android and iOS” it appears that for

fulfilling our business goals with minimum time and resources it is reasonable to begin

development by using the “Mobile Web application development” approach.

To compare the properties of Mobile Web development with business goals provided by

the client I created a table, which clearly shows how each decision criterion of the

Mobile Web development approach fulfills business requirements:

Decision criterion Mobile Web approach Requirements coming from business side

App development

cost

Low Application should be developed as

quickly as possible with the minimum

usage of human resources.

Ease of updating Simple Application should be updated without

prompts with one click.

Time to market Short Application should be developed as

quickly as possible with the minimum

usage of human resources.

Developer

availability

High There should be large pool of software

developers who could enhance the given

MVP.

Table 14 Comparison between mobile web approach and business requirements

Summing up, Mobile Web approach has one unmentioned advantage: Because codebase

is HTML, JavaScript and CSS it is possible to switch from Mobile Web approach to

Cross-platform approach (which also uses HTML, JS, and CSS) without rewriting all

51

existing code. Mobile Web approach has more agility in terms of app development costs

and does not require any specific knowledge about iOS and Android.

As a consequence, if a development of employee tracker proceeds with the use of web

mobile development approach it is important to analyze what kind of sensors does

browser APIs offer, what technologies could be used, analyze possible implementation

problems, analyze sensor compatibility across various browsers as well as possible

performance implications of this approach.

52

4.2 Analysis of needed sensors and their API-s

To determine sensors needed for analyzing the activity of a user or vehicle I referred the

article “Using Mobile Phone Sensors to Detect Driving Behavior” [15] That article

explains that sensors such as accelerometers, GPS, and microphone could be used for

determining driving behaviour on the roads of India. The article confirms that it is

possible to analyze the turning of a car and braking only by using an accelerometer.

Activities such as using a car honking are possible to collect via microphone.

Combining all sensors and their data it is possible to give a conclusion and measure

where the traffic jams occur. Similar article “TrafficSense: Rich Monitoring of Road

and Traffic Conditions using Mobile Smartphones” [16], explains how we may combine

sensor data altogether and mix it up, to reason about some condition, such as braking, or

even save battery power by turning some sensors off, when some sensors are redundant

in some particular reasoning situation.

Above mentioned articles use accelerometer, microphone, GSM radio, and/or GPS

sensors for monitoring. However, since those articles were written some years ago

(most of them in the period of 2011-2014), but nowadays smartphones received even

more sensors. In our case, we need a similar solution, but we could use more sensors

and more appropriate sensor APIs for each situation. To determine which sensors could

be used we need to analyze the list of all available sensors.

Mainly the most respectable source of information regarding all available sensors for

mobile web application is World Wide Web Consortium (W3C) and MDN. Here is the

list of sensor and storing APIs I found which could be used for our solution:

4.2.1 Environmental Sensor API-s:

 Geolocation API [17] - This API enables the user to ask the location of a mobile

device. What is important that it already has watch method, can use GPS sensor (if

GPS is turned on). Most important that it can be enabled only on HTTPS sites due to

security reasons. It also requires user to accept the tracking permissions.

 DeviceOrientationEvent [18] - The deviceorientation event is fired when fresh data

is available from an orientation sensor about the current orientation of the device as

compared to the Earth coordinate frame. This data is gathered from a magnetometer

inside the device.

53

 DeviceMotionEvent [18] - provides web developers with information about the

speed of changes for the device's position and orientation.

 Devicelight API [19] - It appears that mobile devices can detect change in ambient

luminosity. This api may be suitable to detect environmental changes - like going

from the street into the room and vice versa.

 Proximity API [20] - With proximity sensor you can detect how far your phone is

from some object. For instance, it could detect do you hold your phone in the hands

or near your ear.

 Humidity API [21] - this API is experimental. You can get a humidity percent of a

device. It is unclear how many phones support this feature.

 Navigator interface [22] - represents the state and the identity of the user agent. It

allows scripts to query it and to register themselves to carry on some activities.

4.2.2 Useful but not mandatory API-s that could be used:

 Battery Status API [23] - You can gather the battery/power consumption statistics,

current battery level etc. It might be useful for measuring of a efficiency of a

polling. This API does not require permissions from users.

 Webworkers API [24] - This API enables the javascript to execute code in multiple

threads. It also could help with making the polling work even if the user locks the

phone. Also it may be required for running various polling scripts in the background

 and also take advantage of multicore phones.

 Page Visibility API [25] - By using this interface we could tell If browser tab is idle

or not. When the app becomes idle, we could wake it up by sending appropriate

signals or notifications. This API does not require any special permissions from the

user permissions.

 Websockets API [26] - Connection between the client and server should be energy

efficient. Maybe it would be much better to constantly keep connection between

them instead of sending and receiving separate requests.

54

4.2.3 Data storing API-s

 IndexedDB API [27] - is an object store that can save and retrieve data through

JSON objects [28]. Probably this is one of the best options for my application

because some sensor data might highly unstructured (due to failure/disabled state of

sensors). Because app should work offline, the data should be stored somewhere. I

suppose if there will be a decent amount of sensors enabled, then we will could out

of 5MB of localstorage quite quickly. However MDN states that: “IndexedDB API

is powerful, but may seem too complicated for simple cases. If you'd prefer a simple

API, try libraries such as localForage, dexie.js, ZangoDB and JsStore that make

IndexedDB more progrmmer-friendly”

 Application cache - actually, this maybe a very useful option if application stays

offline, it provides possibility to cache resources and to control which fallbacks

could be used if there is no internet connection.

 Web storage (localstorage) - it is a key value store for storing JS primitives

(supports only strings and numbers). Limited to 5MB of data.

 Web SQL database - abandoned and not maintained [28] .

 File system - abandoned and not maintained [28].

4.3 Analysis of sensors compatibility for different browsers

From the previous chapter, it became clear that browser offers more than enough

sensors and APIs to locate and determine the activity of the user.

However, there are many browser implementations and not all of them support those

APIs in the same way. Before starting any kind of development we need to analyze how

currently most popular browsers support those APIs.

To evaluate this risk we need to find and compare how different browsers support their

sensor APIs. Currently it was required to target 2 cross-platform browsers. Client

Company agreed that we could choose Chrome and Firefox:

 Chrome: because it is most popular cross-platform mobile browser worldwide

55

 Firefox: not because of its popularity, but because of well established

organization, supporting of standards, and open source license – in our situation

Firefox is used as a fall-back browser, mostly if something is wrong with end-

user mobile Chrome, then the user could install Firefox and continue working.

Both of those browsers could be installed on all needed (for our purposes) and most

popular mobile operating systems: Android and iOS.

However, this does not mean that the other browsers (like Safari or Opera) are not

supported; their sensors will be accepted and used as well if they implement W3C

sensor standards and expose sensors APIs – supporting every possible browser is not a

main focus for the beginning, but a good goal for the further development.

The bigger problem is the fact that there are differences in sensor availability for each

browser.

Table below provides information on each browser sensor availability for Mobile

Chrome 70.0.3538 and Firefox 63 compiled from MDN and W3C:

Web API / Browser Mobile Chrome 70 Mobile Firefox 63

Geolocation [17] Yes Yes

Figure 11 Browser usage chart (Source: StatCounter Global Stats for October 2018)

56

Battery [23] Yes No (Old specification?)

Deviceproximity [20] No Yes

Deviceorientation [18] Yes Yes

Humidity [21] Not supported yet Not supported yet

Devicemotion [18] Yes Yes

Devicelight [19] No Yes

DeviceLightEvent [19] No Yes

Web workers [26] Yes Yes

Page Visibility API [25] Yes Yes

Navigator [22] Yes Yes

Table 15 Availability of sensors for different browsers

From the table above we can see what output we could expect from each browser –

Firefox and Chrome will act differently in the same execution environment: Firefox

supports more sensors such as Deviceproximity, Devicelight, and DeviceLightEvent,

but does not support new Battery Sensor API standards.

This information is valuable for testing our solution – we will not expect output from a

browser which does not have support for a particular sensor.

Nonetheless, most important sensors from the business point of view are Geolocation,

Battery, deviceproximity, deviceorientation, devicemotion, and navigator – are

supported by both Chrome and Firefox and we will target them in a first place. This

means that there is no considerable risk in choosing a mobile development approach

over native.

However, because availability of sensors is different across browsers the response of the

APIs will be different for each browser – in the long term, it makes things more

complicated if we will support more and more browsers.

57

4.4 Analysis of possible implementation problems and limitations

Sensor availability analysis revealed that there are hidden risks for a web mobile

development approach – difference across browsers in terms of sensor API support.

Let’s analyze other risks as well:

The biggest problem I can see is the lack of the mechanism to query all sensors at once

as stated in the Generic Sensor W3C document [29]. The second biggest problem is the

conflicting support of all the sensors and APIs across different browsers [30].

The third problem comes when the phone becomes idle, locked or browser is not used

actively. Even then phone should send at least some amount of sensor data. This means

that I should find some way to keep the browser awake even in those scenarios. Possibly

wakening of the browser could be achieved with push notifications. Problems with the

phone becoming idle probably could be solved with Webworkers API, by keeping the

process in a separate thread, which will be never suspended.

The fourth problem is the synchronization of data between server and client – the client

must have support for offline mode – synchronizing the aggregated data with server

could be a complicated task. However, there are solutions tailored for those kinds of

problems. One of them in to use PouchDB [31] and CouchDB. PouchDB is javascript

browser in-memory database that can sync with CouchDB and vice versa. This

technology solves the main problem with the fact that the app could lose internet

connection but has to re-establish it when it gets online and resend/sync the data with

the server.

There are many more issues addressed in article “Software Engineering Issues for

Mobile Application Development” [32] such as:

1. “Do mobile web applications behave differently when connected using the

telephone network (3G, 4G) than when using an 802.11 (WiFi) or 802.16 (WiMax)

connection? Are there differences in security? Is there a significant difference in

responsiveness? Are traditional fallback and exception-handling techniques adequate, or

does the higher likelihood of a dropped connection (or intermittent connectivity) require

additional mechanisms?” [32]

58

2. “Are there new techniques needed for assuring data integrity, or will the

synchronization techniques from traditional client-server computing suffice? Does

potential loss of connectivity or battery power represent a risk to program and/or data

integrity if such an event occurs during a transaction or system update?” [32]

3. “Should applications be designed differently depending on the speed of the

network on which they are being used? In Asia, some countries offer rates of 50Mb or

higher, while typical speeds in the US, even with 3G networks, are below 1 Mb.” [32]

4. “How does a developer create applications that will maximize battery life and

resource usage?” [32]

To sum up, all those questions will be taken into account during development phase to

provide stable and reliable piece of software.

4.5 Analysis of web mobile development performance

Clearly the performance of the browser is lesser than of native code [33]. However, it is

not clear how much performance differs between Chrome and Firefox on different

platforms such as Android and iOS.

According to the article “Mobile application development: web vs. native” [4], I have to

take into account is the fact that generally there could be a huge performance difference

between IOS and Android devices. For instance, in the article [4] iOS performed better

in Sunspider JS benchmark and Android device in V8 benchmark [4]. This means that

profiling the code may be a quite complex and obvious task.

In my personal opinion, the performance of solution relies mostly on optimization done

by a programmer who does the app. For our purposes, it is important to create a solution

that does not drain the battery too quickly and provides adequate performance.

4.6 Conclusion: web mobile development

After analysis of all risks, it appeared that web mobile development approach is a

perfect candidate for our MVP solution: from both business and software development

side, it addressed all the possible issues quite well.

59

It is not only my personal point of view, big corporations and academic papers share my

opinion as well: for instance, in the article “Mobile Application Development: Web vs.

Native ” [4] you could get the idea why web platform is the major platform for future

applications: At first, even big corporations, such as Google cannot support all possible

platforms [4] due to economic reasons. This is because of the fact that web applications

are more cross-platform by default [4] - you do not have to write a separate program for

each SDK, however, compared to native approach, UI may look alien and not that pretty

compared to native app development [4].

Regarding of the future of web first development approach it could be assumed that it

will continue to improve further: number of sensors is growing and it appears that

various companies and organizations in the past, such as Nokia, Google, Mozilla, and

IEEE are experimenting with implementing even more sensor functions, for instance,

detection of walking or using of a vehicle, detection of current noise [34]. Or even

determining what is going on in the front of the camera by using the computer vision

and OpenCV library [34].

Because for further development web mobile development approach was chosen,

solution could be adjusted and extended with those following new technologies and

approaches just by implementing and incorporating new sensor APIs into the client-

side.

In conclusion: web mobile development approach makes our solution easy to develop,

support and enhance with minimal price and effort, this makes mobile web development

a perfect candidate for further development.

4.7 Analysis of different architectures

In general bigger part of modern web application architectures could be classified as:

 More monolithic / less service-oriented – application could be deployed and

scaled only as one big service. The downside of this architecture is inability to

scale particular service parts of an application. Only whole application could be

scaled to the maximum extent of any possible request – you will have to scale

the whole application if there is a bottleneck in any particular case. However,

60

there are many advantages of such architecture: ease of deployment, overall

stability due to independence from other services and networking. [35]

 More (Micro) service oriented / less monolithic – application parts could be

deployed and scaled independently; also this approach follows carefully one of

the most important SOLID principles: SRP (Single Responsibility Principle).

There are numerous downsides of this approach as well: more complex

deployment model, less stability in case of network outages, more complex

monitoring and logging. [35]

In my opinion, for the MVP more monolithic architecture is a better option (at least in

the beginning). What is more important to apply Modern Web Architecture patterns:

 Single Page Application – takes advantage that nearly every browser runs

JavaScript, we could decouple View Layer from backend and scale backend

independently from the view layer. It also allows much more responsive and

intuitive application designs than the dynamic page approach [35]

 Near Cache - use a Near Cache located within the client implementation. Cache

the results of calling the Backend for Frontend services so as to reduce

unnecessary round trips to the server [35]. It is also possible to cache the whole

frontend for offline use.

From point of perspective of architecture patterns there are a couple of choices: [36]:

 Layered architecture pattern – Provides good separation of concerns for each

layer and in tackles complexity.

 Event-driven architecture pattern – Event-queue based architecture, mostly

suitable for micro services. Provides good performance and scalability of

services.

 Microkernel architecture pattern – Mostly good for desktop systems, might be

overly complex and unusual for web applications.

 Space-based architecture pattern – Provides good performance for relational

databases but is costly to implement [36]:

In general, it is considered good to start from layered architecture pattern because “it

good general-purpose architecture and a good starting point for most systems” [36]

In our particular case, architectures and patterns should be chosen for ease of

development rather than for scalability or performance. Those architectures and patterns

will let develop and deploy MVP with higher velocity.

61

4.8 Conclusion

During the following chapter in-depth analysis of most important aspects of application

was performed: analysis of existing solutions, analysis of various ways, problems, APIs

and architectures for our application. With all those topics covered we will proceed to

the most practical part of the thesis – implementation.

62

5 Implementation

In this chapter, the comparison and choice of databases, platforms, and frameworks will

be performed. The choice will be conducted according to the analysis.

5.1 Databases

It is important to use the correct database for a particular problem. In our case those

problems and requirements are:

 Support for offline mode in case of client internet connection outage

 Synchronization of a client with the database in case of client internet

connection recovery

 Support of storing highly unstructured sensor data

 Strong and stable write performance of unstructured data (sensor information)

 Consistency in case of important business data – user management, metadata

etc

To solve those problems, we will use 3 separate databases, each of will serve its own

specific purpose:

 CouchDB and PouchDB – document-oriented NoSQL databases with eventual

consistency and near-real-time client to server replication. By using them it is

relatively easy to achieve replication to the server with almost “real-time”

websocket speeds. Those databases are an excellent choice for storing and

retrieving unstructured sensor data. Both of those databases could power an

admin dashboard, where you will see user position movement almost in real-

time.

 Postgres – relational SQL database that will be used for everything where

consistency is important and guaranteed: user management, authorization,

storing of meta information, etc. Great for ensuring the integrity of relational

data.

63

5.1.1 CouchDB and PouchDB

In order to make solution offline ready it is important to store GPS data locally in case

of a network outage and send missing data back to the server when the network appears.

One of the easiest and most complete solutions found is to use local (embedded into

browser) database called PouchDB and its server-side twin brother called CouchDB.

The most important feature of those databases is a seamless synchronization/replication

support [37], which assists in a development of offline real-time reactivity – there will

be no need to write code or implement complex synchronization logic between client

and server and vice versa when network appears or disappears. Data is populated on the

client and then is replicated to the server database automatically. However, let’s analyze

each database in isolation:

5.1.2 CouchDB

Apache CouchDB is an open-source database that focuses on ease of use, availability

and partition tolerance. CouchDB is a NoSQL document-oriented database that

uses JSON to store data, JavaScript as its query language, and HTTP calls for an API.

The Apache CouchDB was chosen for storing sensor data because of easy client-server

sync-replication. Apache CouchDB is a scalable and mature technology both in terms of

performance and support. For instance, core technology powers NPM (Node packet

manager) – one of the largest software package registries. The most important features

are: Multi-version concurrency control, eventual consistency, map reduce and multi

master-replication.

For solution implementation, CouchDB offers a large number of convenient features.

One of those features is easy user and database management. For instance, each user in

our system has its own CouchDB database instance (which stores his locations). Let’s

create a database, user and assign a user to the database, making database private and

readable only by the user. To create a database I simply call:

await nano.db.create(“somedatabase”);

Figure 12 New CouchDB database creation code snippet

To create a new CouchDB user I call the code:

64

await nano.use("_users").insert({

 "_id": "org.couchdb.user:" + ”someuser”,

 name: “someuser”,

 type: "user",

 roles: [],

 password: “somepass”

 });

Figure 13 New CouchDB user creation code snippet

Assigning CouchDB user is also not complex (each database has security meta

database):

await nano.use("somedatabase/_security").insert({

 "admins": {
 "names": [“someuser”],
 "roles": []
 },

 "members": {
 "names": [“someuser”],
 "roles": []
 }

});

Figure 14 Granting access of particular database to user - code snippet

Another convenient feature of CouchDB is build-in admin dashboard:

65

5.1.3 PouchDB

PouchDB is an API-compliant implementation of CouchDB that can work in a browser

environment. It uses Indexed DB API, localstorage and other fallback technologies (like

cookies) to store data in a browser. The main reason it exists is easy replication with

CouchDB: you do not have to worry about restoring the connection or sending updates

in a batch: everything is done for you automatically. This is great for the following

scenarios: Client has sent the sensor data to the server, but lost internet connection,

when internet reconnects, PouchDB automatically knows what missing pieces of data it

should resend to the backend.

PouchDB shares similar and compatible API with CouchDB and is very easy to

replicate with CouchDB:

Figure 15 CouchDB admin UI screenshot

66

const db = new
PouchDB(`https://someuser:somepass@localhost:5984/somedatabase`);

Figure 16 Creating new PouchDB instance code snippet

To insert a record PouchDB shares same API with PouchDB:

db.put({

 _id: app.get("user")+ new Date().toString(),

 ...sensor.serialize(state),

 user: app.get("user"),

 dateTime: new Date()

 });

Figure 17 Inserting into record into PouchDB code snippet

Synchronization between PouchDB and CouchDB is done automatically.

5.1.4 Postgres

Postgres is a well known open-source relational database. Postgres will be used for

storing everything except sensor information, where real-time synchronization support

is crucial. For instance: user management, sessions, authorization, metadata,

destinations, etc.

Postgres was chosen because of zero cost, good support and great amount of tutorials,

tools, admin dashboards, good support and integration with almost any backend,

platform, language, and technology.

5.2 Backend platform and framework

When choosing the backend framework we must take into account following important

properties:

 The platform must have a large pool of developers

 The platform must have support for real-time interactions

 The platform must have strong support of NoSQL (CouchDB) and SQL

databases (Postgres)

 The backend framework must simplify and enhance development velocity

67

 The more functionality framework (Authorization and authentication, validating

of JWT tokens, etc) provides the better it is.

 The platform must have TypeScript support

5.2.1 NodeJS

Node.js is a JavaScript run-time environment that executes JavaScript code outside of a

browser. The NodeJS will be used mainly because of its great support of real-time

applications and websockets, good integration with CouchDB and the fact that you do

not need to learn an additional programming language: both backend and frontend could

be created with JavaScript. This particular feature is convenient for some developers

and brings benefits to IT support – the same workforce/developers could be used for

creating frontend and backend simultaneously.

5.2.2 FeathersJS

FeathersJS is a web framework for NodeJS that emphasizes real-time support,

RESTful resources, sockets and flexible plug-ins. FeathersJS leverages all benefits

given by NodeJS: easy creation of RESTful resources transmitted via HTTP or

Websockets. One of the key benefits is easy integration with almost any database:

CouchDB, Postgres, Mongo, Oracle, etc. The framework also provides easy

authentication and authorization, validating of JWT tokens with the numerous amount

of plugins, good support of RESTful resources, command line code generator and front-

end client.

Most important is that FeathersJS is well suited for rapid application development. Each

service created with FeathersJS creates a RESTful resource. The logic of the services

could be customized as well. For instance, the following code:

68

class Users extends Service {

 constructor(options: Partial<KnexServiceOptions>, app: Application) {

 super({

 ...options,

 name: "users"

 });

 }

 async create(data: any, params: Params) {

 const presentUsers = await this.find({ query: { email: data.email } });

 if (presentUsers.total > 0) {

 throw new Error("This e-mail is already taken");

 }

 const user = await super.create(data, params);

 const account = await app

 .service("accounts")

 .create({}, { transaction: params!.transaction });

 await app

 .service("memberships")

 .create(

 { userId: user.id, accountId: account.id },

 { transaction: params!.transaction }

);

 return user;

 }

 async remove(id: number){

 throw new Error("Not supported");

 }

}

export default function (app: Application) {

 const Model = app.get('knexClient');

 const paginate = app.get('paginate');

 const options = {

 Model,

 paginate

 };

 // Initialize our service with any options it requires

 app.use('/users', new Users(options, app));

}

Figure 18 User service implementation code snippet

will produce a customized RESTful resource with 7 endpoints:

69

Service method
HTTP
method

Path

service.find({ query: {} }) GET /users

service.find({ query: { activated:
true } })

GET /messages?activated=true

service.get(1) GET /users/1

service.create(body) POST /users

service.update(1, body) PUT /users/1

service.patch(1, body) PATCH /users/1

service.remove(1) DELETE /users/1

The service could be consumed with ordinary HTTP calls or with a higher level

FeathersJS frontend client:

app

 .service("users")

 .create({ email, password, fullname })

 .then(

 () => {

 this.props.history.push("/actions");

 },

 (error: { message: string }) => {

 this.setState({ ...this.state, error: error.message });

 }

);

Figure 19 Interaction with backend through FeathersJS client library – code snippet

Summing up, chosen framework makes creating of web services easy fast and simple by

reducing the amount of boilerplate code.

70

5.3 Frontend framework

Frontend Framework must comply with following terms:

 Great amount of already premade plugins, components – for rapid application

development

 Integration with PouchDB

 Good real time support

 Typescript and JavaScript support

5.3.1 React

ReactJS is a JavaScript library developed by Facebook intended for creating single

page applications. React was chosen because of good community support and

significant amount of prebuilt components and UI libraries.

React integrates well with PouchDB and basically with anything JavaScript related.

Whole Admin UI will be built with React because there will be a lot of real-time

interaction with the map and users. Client UI will also be built with React because, how

it was mentioned before, React integrates quite well with PouchDB and FeathersJS.

In addition to above-mentioned, React offers a splendid ecosystem of different libraries,

a decent amount of tutorials and community support. In my particular case, I will use

Ant Design framework to bootstrap a user interface.

Below you could observe the implementation of a user GPS location tracking page. The

page receives credentials of CouchDB, replicates them to PouchDB and sends all

mobile phone sensor data to backend every 5 seconds:

71

// @ts-ignore

import allsensors from "allsensorsjs";

import React, { useState, useEffect } from "react";

import { DefaultLayout } from "../components/defaultLayout";

import { pouch } from "../shared/pouch-client";

import { authenticatedApp } from "../shared/auto-auth-client";

import { CardForm } from "../components/cardForm";

import axios from "axios";

const Log = ({ match }: { match: { params: any } }) => {

 const [sensorState, setSensorState] = useState("");

 const [address, setAddress] = useState("");

 useEffect(() => {

 let sensor: any;

 authenticatedApp().then(async app => {

 const roomMetaData = await app

 .service("log-room")

 .get(match.params.roomId);

 sensor = new allsensors.GlobalSensor({ queryPeriod: 5000 });

 sensor.listen((state: any) => {

 pouch(roomMetaData.account.couchUser, roomMetaData.account.couchPass,
roomMetaData.roomConnection.couchDbName).put({

 _id: new Date().getTime().toString(),

 ...sensor.serialize(state),

 user: app.get("user"),

 dateTime: new Date()

 });

 axios

 .get(

`https://nominatim.openstreetmap.org/reverse?format=json&lat=${state.geo.coor
ds.latitude}&lon=${state.geo.coords.longitude}`

)

 .then(response => {

 setAddress(response.data.display_name);

 });

 setSensorState(JSON.stringify(sensor.serialize(state), null, 4));

 });

 });

 return function cleanup() {

 if (sensor) {

 sensor.listeners = [];

 }

 };

 }, []);

 return (

 <DefaultLayout showSidebar={false}>

 <CardForm title=”Monitoring page”>

 Your location: { address }

 </CardForm>

72

 </DefaultLayout>

);

};

export default Log;

Figure 20 Tracking page source code

73

5.4 Component integration and communication

In the analysis above, architecture, frameworks, and components for the proposed

solution were chosen. The deployment diagram below shows the relations and

communication protocols of those subjects.

The browser will send whole information via 2 channels:

 Via JSON over REST to backend, where the backend will process the data and

save it to Postgres.

 With PouchDB via CouchDB Sync protocol for real time sensor information

Figure 21 Deployment diagram

74

Both Databases will be connected to backend service. This model will ensure that our

development velocity will be optimal and performance will be excellent, since we use

appropriate databases for appropriate data models.

5.5 Use cases

5.5.1 User signup

To signup, user must enter his email, full name, and password. The user must confirm

his email and admin must validate user identity and email manually. After sign up, user

is automatically redirected to the login page. On the login, user sees information about

how to confirm his email and identity. This process is similar across all competing

solutions.

User signup process is illustrated below.

Figure 22 User signup sequence diagram

75

5.5.2 User login

To login, user must enter his email and password. If the login was successful then the

user is redirected to the monitoring page. The user login process is illustrated below.

This process is similar across all observed solutions and between all web applications in

general.

Figure 23 Signup page UI

76

Figure 24 User login sequence diagram

Figure 25 Login page UI

77

5.5.3 User location/sensor tracking (FR-1, FR-2, FR-3, FR-4, FR-6)

To share location and all other related sensor data (such as proximity, device

orientation, device motion, etc) user must be logged in and proceed to a special

monitoring page. On the monitoring page user must manually turn on monitoring by

pressing the button “Start monitoring”, browser may prompt if he agrees to share his

location, the user must agree to proceed. Sensor tracking process is illustrated below.

This process is different from other competing solutions (like traccar or Spyzie etc)

because it happens in the browser and does not require a native app. PouchDB ensures

that location data could be written even if user is offline or if user internet connection is

poor. PouchDB directly syncs to CouchDB and could restore connection if it was

interrupted. Each user who is monitored has its own CouchDB database – in this case

deleting user location data will be as simple as possible. Postgres, in this case, is used as

metainformation storage – it stores location URL of CouchDB database that is linked to

the user.

Figure 26 User location tracking sequence diagram

78

Figure 27 Monitoring page UI

Figure 28 Monitoring page UI – monitoring/sync successful (2)

79

5.5.4 User location monitoring by admin (FR-7)

To monitor user location admin must be logged in and navigated to a dashboard page.

On the dashboard page, admin will see a map with various coloured markers. Each

marker represents a user located at a specific point. The a dmin monitoring process is

illustrated below. The point here is to ask each CouchDB database for the latest user

location and combine the results. Traccar and FollowMee implement this functionality

in a similar way: you could open a map and see markers – each marker is related to

some user.

Figure 29 User location monitoring sequence diagram

80

5.5.5 Set starting point and destination of user (FR-8)

Admin could set destination for user: this could be done directly from the map or from

the user management page. The end result is that the user will receive notification to his

mobile phone, which will tell the user where to follow. Most of the analyzed solutions

(Spyzie, mSpyand other parental solutions) do not implement this functionality. In our

case, the notification will be sent with the use of Web Notification and Web Push

Notification API. The whole process is illustrated below. Note that for this particular

case we do not need to interact neither with CouchDB or PouchDB. All trip

metainformation that cannot be modified by the user is stored in Postgres.

Figure 30 Monitoring page UI (Users marked as markers)

81

Figure 32 Send notification modal UI

Figure 31 Set starting point and destination of user sequence diagram

82

5.5.6 Admin sees long term navigating history (FR-9)

Admin chooses a date and time period on the map and sees a routing of the user within

given time span. Process is illustrated below. This is done in similar manner as in

traccar or FollowMee. Note that each request in CouchDB is marked with timestamp, so

it is relatively easy to filter this data.

Figure 33 Admin sees long term navigating history sequence diagram

83

5.5.7 Admin creates group of users (FR-10)

Admin opens a map page, presses “create group button”, fills name of a group and adds

members with autocomplete input box. When the user presses the “create” button, the

whole information is transmitted to a backend where it is written to Postgres. Other

solutions (except FollowMee) do not support appropriate grouping of users. The process

of a group creation is illustrated below. When the group is created admin is navigated to

a page where he can see all group members on a map.

Figure 34 User history monitoring UI

84

Figure 35 Admin creates group of users

85

Figure 36 Create group page UI

86

5.5.8 Admin sees group members on the map (FR-11)

Admin could select a group directly on a map page. When the group is selected then

only group members and their markers appear on the map. Technically it is most

expensive operation because for each member we will ask the latest location. However,

it should not be the case if the amount of group members does not exceed hundreds of

members. It is also important to note that users could belong to multiple groups at once.

Process of is illustrated below:

Figure 37 Admin sees group members on the map

87

Figure 38 Show user group members page UI (group users are marked with markers)

88

5.5.9 Removing user data (FR-5)

Admin can remove the user and wipe out all his location data. This feature is unique and

does not present in any observed solutions. Since we store user location only in users

own dedicated database it is relatively easy to remove that data – by erasing it.

Removing personal user data is illustrated below.

Figure 39 Removing user data sequence diagram

Figure 40 Delete user data (Revoke rights button)

89

6 Application testing

Application testing is divided into two sections: testing of functional requirements and

testing of non-functional requirements. If both types of requirements comply and pass,

then we may conclude that the application successfully conforms to given business

requirements and goals.

6.1 Functional requirements testing

Functional requirements were tested with the use of Test Driven Development

methodology – I have written most of the tests in advance to source code. Test suites

consist mostly from unit tests, integration, and end to end tests. In addition to fully

automated test process, some studies show that utilizing Test Driven Development may

lead to better software quality in overall [38].

Both backend as well frontend were written in TypeScript which prevented some

amount of defects: amount of defects and saved time was hard to measure, but

subjectively it was substantial during the refactoring phase.

Backend and frontend unit tests are executed with the use of testing framework Jest.

End to End tests are executed with the use of testing framework Jest and Puppeteer.

Puppeteer is a high-level API to control Chrome browser, it could be used in the same

manner as Selenium web driver. Here is a small example of code that tests creating of

user and admin, the recording location of the user via browser, as monitoring of location

by admin:

90

const timestamp = new Date().getTime();

describe("Create and log user test", () => {

 beforeAll(async () => {

 await page.goto("http://localhost:3000/");

 jest.setTimeout(120 * 1000);

 });

 fit("should register user and admin, log user location, and show user
location on admin map", async () => {

 const roomName = "TestRoom+" + timestamp;

 const admin = "ilja.guzovski+admin" + timestamp + "@gmail.com";

 const user = "ilja.guzovski+user" + timestamp + "@gmail.com";

 const password = "123456";

 console.log("/////////////////////");

 console.log(timestamp, user, admin, password);

 console.log("/////////////////////");

 await registerAndLogin(admin, password);

 await click("#create-room");

 await createRoom(roomName);

 await registerAndLogin(user, password);

 await type("#search-room-input", roomName);

 await click("#search-room-input+span button");

 await context.overridePermissions("http://localhost:3000/", [

 "geolocation"

]);

 await page.evaluate(() => {

 mockGeolocation();

 });

 await page.waitFor(10000);

 const text = await page.evaluate(() => document.body.textContent);

 await expect(text).toContain("Guangzhou");

 await login(admin, password);

 await click(".room-link");

 await assertThatMapIsPresent();

 });

});

async function assertThatMapIsPresent() {

 await page.waitFor(".leaflet-container");

}

function mockGeolocation() {

 navigator.geolocation.watchPosition = function (cb) {

 setTimeout(() => {

 cb({

 coords: {

 accuracy: 21,

 altitude: null,

 altitudeAccuracy: null,

 heading: null,

 latitude: 23.129163,

91

 longitude: 113.264435,

 speed: null

 }

 });

 }, 1000);

 };

}

async function registerAndLogin(email, password) {

 await register(email, email, password);

 await login(email, password);

}

async function register(email, fullname, password) {

 await page.goto("http://localhost:3000/register");

 await type("#normal_login_email", email);

 await type("#normal_login_fullname", fullname);

 await type("#normal_login_password", password);

 await type("#normal_login_confirmPassword", password);

 await click("button[type=submit]");

}

async function login(username, password) {

 await page.goto("http://localhost:3000/login");

 await type("#normal_login_email", username);

 await type("#normal_login_password", password);

 await click("button[type=submit]");

}

async function createRoom(roomName) {

 await type("#room_name", roomName);

 await click("#create-room-button");

}

async function pause() {

 await jestPuppeteer.debug();

}

async function type(selector, text) {

 await page.waitFor(selector);

 await page.type(selector, text);

}

async function click(selector) {

 await page.waitFor(selector);

 await page.click(selector);

}

92

As a result some small bugs were revealed and fixed during testing phase. Below I have

provided complete list of functional requirements that I have tested:

Test Result Comment

FR-1: Application should gather

as much available sensors data

as possible. Geolocation,

devicemotion, deviceorientation

sensor data is mandatory.

Pass This requirement was tested with use of

manual testing as well as end-to-end and

unit tests. In addition to mandatory

sensors, app also recorded battery

information and navigator information.

FR-2: Application should

continue sending sensor data in

case it is in minimized or in idle

state.

Pass This requirement was tested manually. I

have found that result substantially

depends on mobile phone power saving

mode: if it is enabled then no data is sent

from browser. Probably because

background data sending of browser is

blocked

FR-3: Each sensor write request

should include a timestamp

Pass This requirement was tested with unit

test as well as with end-to-end tests.

FR-4: Application could be

reopened if it had crashed or

was closed.

Pass This requirement was tested manually. If

webpage crashes or was closed, it could

be reopened without login. Sending of

sensor data continued after reopening the

page seamlessly.

FR-5: Application could remove

all user data if prompted

Pass This requirement is covered by special

script that was tested manually. All

location data and user specific setting

(user PouchDB database and Postgres

database rows) could be wiped out from

the system entirely.

93

FR-6: User could update

application without prompts

with one click

Pass This requirement was tested just by

refreshing the page. However may vary

depending on a browser and how

aggressively it will cache an application.

FR-7: Admin could see user

position on the map

Pass This case was covered by end-to-end

test. No problems revealed during

multiple runs.

FR-8: Admin could set starting

point and destination for user

Pass This case was covered by end-to-end

test. No problems revealed during

multiple test runs.

FR-9: Admin could see long

term routing history of user

Pass? This case was tested manually. In this

particular case long term history (like

day or week) is impossible to create

within given small duration of end-to-

end test. Some days of monitoring were

correctly displayed on a map. However

some locations were incorrect, during the

test I never been there: this probably

happened due to lack of GPS accuracy.

FR-10: Admin could group

users into groups

Pass This case was covered by end-to-end

test. No problems revealed during

multiple test runs.

FR-11: Admin could see group

members on the map

Pass This case was covered by end-to-end

test. No problems revealed during

multiple test runs.

Table 16 Functional requirements testing results

94

6.2 Non-functional requirements testing

Non-functional requirements were tested mostly manually. App fulfilled all non-

functional requirements. Some requirements were fuzzy and impossible to test and

measure objectively. Here is a complete list of non-functional requirement, requirement

testing methods, results, and explanation:

Test id Testing

method

Result Comment

1.1: Application should

work on phones with

OSes: iOS 9+ and

Android 4.4+

Manual Pass This non-functional requirement was

tested manually: no defects were found.

Newer browser versions are still

supported on older mobile OSes.

Running Chrome 78 on Android or iOS

did not reveal any particular differences

between browser implementations for

different OSes.

1.2: Application should

work on most popular

cross-platform browsers.

Manual Pass I have tested an app on Firefox 44 on

Android phone, Chrome 78 on Android

phone. Firefox sent lesser sensor

information than Chrome. Most

significant and mandatory sensor data

gathering (Geolocation, devicemotion,

deviceorientation) worked well on all

tested browsers.

1.3 Admin could access

admin dashboard from

browser such as Firefox or

Chrome.

E2E

test

Pass Chrome was tested via end-to-end tests.

Firefox was tested manually. No

significant difference between two

browsers was found.

1.4: Admin dashboard

should be simple to use:

no actions should take

Manual Pass? This requirement was badly formed. It

is hard to tell what “action” is. Most of

complex tasks: like creating a group of

95

more than 4 clicks. users does not take more than 4 clicks.

2.1: Application could be

turned off for user privacy

Manual Pass Browser does not send data if it was

closed or tab was closed.

2.2: User specific data

could be deleted.

Manual Pass I have found that this non-functional

requirement overlaps with functional

requirement FR-5. All user data could

be deleted with script if prompted.

2.3: Data of the users

should be stored by the

company and not by any

3
rd

 party.

Manual Pass This requirement is fulfilled by the

nature of the app itself: we user only

internal databases and do not expose

user location data to anyone else.

3.1: Application is itself is

MVP (Minimum viable

product), with minimum

functionality to fulfill the

business goal.

Manual Pass Nothing useless was implemented for

the app and all functional and non-

functional requirements were fulfilled.

User experience and user interface

could be improved though.

3.2: Application should be

developed as quickly as

possible with the

minimum usage of human

resources.

Manual Pass This requirement is hard to test: I have

performed substantial analysis on

frameworks and platforms – and picked

most popular, productive (based on

other people feedback) and suitable for

business goals. Possibly there could be

other better options for rapid application

development (of which I am not aware

for instance).

3.3: There should be large

pool of software

developers who qualify to

enhance the given MVP.

Manual Pass JavaScript, NodeJS and TypeScript are

one of the most popular and fast

evolving technologies nowadays.

Amount of developers for those

technologies is substantial and

96

increasing.

4.1: Each interaction with

application user interface

should not take longer

than 5 seconds

E2E

Test

Pass This particular test was tested with unit

and end-to-end tests. Yet no

performance problems were revealed.

Table 17 Non-functional requirements testing results

6.3 Testing results: conclusion

During the testing phase, no significant defects were found: the application successfully

complies with given functional and non-functional requirements. However, not all parts

of the application were fully automated with unit, integration or end-to-end tests.

Namely, the currently reported code coverage covers about 89% lines of code.

Increasing the code coverage and enhancing the quality of tests could become a goal for

further improvement.

The application testing also revealed that end-to-end tests provided most value in our

particular case – due to the fact that application interacted a lot with a browser, browser

sensor APIs, in-memory database PouchDB, and backend. The integration and unit tests

were not used that much – due to the fact that it was much easier to cover the whole

application with end-to-end tests than to mock every service. Most of the services

performed only more or less complex interaction with databases (Postgres, CouchDB)

and did not compute anything particular.

However, testing brought to light the fact that it is hard and time-consuming to test

different browser versions on different operating systems (iOS and Android) – the

amount of testing work is tremendous. Compatibility between platforms and browsers is

Figure 41 Part of code coverage report

97

also lacking – Firefox and Chrome behavior is different on different operating systems

and devices. For instance, iOS handles idle web-applications differently than Android,

and because of that, it is far more important to keep the browser page open on iOS than

on Android.

Summing up, the MVP testing phase proved that the proposed solution could work as

intended on given browsers and operating systems and provide same business value as

separate Android and iOS native apps.

98

7 Conclusion

The created solution could be used as a basis for creating parental, tracking, and ride-

hailing applications. The worked out solution could save a lot of development time and

money because there is no need to create and support separate Android and iOS

applications – in case of a web application approach it is unnecessary. One advantage of

such approach is independence from Google or Apple app stores: the published

application could not be blocked or taken down by Google or Apple due to violations of

Google or Apple store rules.

The current solution was taken and used in the host company: each employee was given

a phone and instructions on how to use the app. The testing by the customer proved that

the system could be used in a required way. Unfortunately, further fate of a solution

remains unclear – the MVP is used, but no further active development is planned,

probably to the fact that developing of app proved to be more expensive than expected.

The current solution, however, proved that call center actions could be automated – it

was reported that tracking of employees in real-time and sending automatic emails on

arrival helps and saves time.

The code provided in the appendix is not exactly the same code done for the client.

Obligations cannot give me the right to publish source code that I do not own. However,

the code provided in the appendix fullfils all the functional requirements of the

described tracking system. The code of system provided in the appendix uses the same

technologies and databases, but a different UI design and a multi-tenant domain model

and does not contain any hardcoded logic.

The code of this platform could be adapted and used as a platform for creating map-

based applications:

 Car, bus, bicycle, electric scooter renting and ride-hailing applications

 Parental and tracking applications

 Delivery applications: Wolt, Bolt food

99

 Job searching apps of any kind: construction and repair works, home arriving

hair dresser, home repair works and interior improvement, cleaning services,

moving services etc.

The location of source code of application could be found in Appendix 1. To execute

the code you need to have Node 8+ and NPM installed. The code is divided into two

separate git repositories:

 Frontend repository – contains UI client part, based on React and Ant design UI

library. To start the project locally it is sufficient to execute command “npm

start” in the root dir of repository.

 Backend repository – server side part, based on NodeJS and FeathersJS. If you

do not want to pull dependencies (like Postgres and CouchDB) manually, you

can install docker and simply execute command “docker-compose up” to pull

and execute the dependencies. To start the project locally in the root dir execute

command: “npm start”

Note that both frontend and backend should be running at once to see a final working

result.

As a result, the developed solution and ideas could be used as a basis for web map-

based offline application architecture and implementation.

100

8 Summary

During this work, an analysis and implementation of a web-based location tracking

platform were performed. As a result, a tracking application MVP that could gather

sensor data from a mobile device via a browser was developed. The produced

application could be used in different browsers such as Firefox or Chrome, working in

different devices, such as tablets, smartphones and even on ordinary laptops and desktop

workstations. Tracking application supports different operating systems such as iOS and

Android.

The produced platform was analyzed and compared with other similar platforms and

applications. During the analysis phase, it became clear that there is a lack of good

enterprise monitoring solutions on the market. Most of the competitors like Spyfone,

Spyzie, mSpy do not respect the privacy of the user and behave more like spyware than

a monitoring solution suitable for use in the enterprise. Other competitors (such as

Google Maps, Traccar, FollowMee) were not fulfilling the business or privacy

requirements.

Created application is privacy concerned, does not depend nor on Google or Apple

store, is easy to install, update and remove. User can easily stop monitoring process just

by closing the page or remove all related monitoring data by sending delete request to

admin.

The current thesis, application, and architecture could be used as one of the sources of

information or inspiration for creating similar applications.

In overall, all given functional and non-functional requirements were fulfilled. As a

result, the tracking solution surpasses it's free and paid analogs in given functional and

non-functional requirements. The MVP still needs to be developed to become a proper

end-system that could support more functionality and features. This could become the

goal for further developments.

101

9 References

[1] S. S. N. C. D. D. R. C. Lisa Rayle, “App-Based, On-Demand Ride Services:

Comparing Taxi and Ridesourcing Trips and User Characteristics in San

Francisco,” University of California, Berkeley, August 2014. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.662.707&rep=rep1&ty

pe=pdf.

[2] “Uber in play store,” [Online]. Available:

https://play.google.com/store/apps/details?id=com.ubercab&hl=en.

[3] “Uber on app store,” [Online]. Available:

https://itunes.apple.com/ee/app/uber/id368677368?mt=8.

[4] B. L. Andre Charland, “Mobile application development: web vs. native,”

[Online]. Available: http://dl.acm.org/citation.cfm?id=1941504.

[5] “PYPL PopularitY of Programming Language,” 18 11 2019. [Online]. Available:

http://pypl.github.io/PYPL.html.

[6] “Spyzie hopmepage,” [Online]. Available: https://www.spyzie.com/. [Accessed 4

12 2019].

[7] “SpyFone homepage,” [Online]. Available: https://spyfone.com/. [Accessed 4 12

2019].

[8] “Traccar homepage,” [Online]. Available: https://www.traccar.org/. [Accessed 4

12 2019].

[9] “Traccar github issues,” [Online]. Available:

https://github.com/traccar/traccar/issues. [Accessed 4 12 2019].

[10] “Google Maps,” Wikipedia, 4 12 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Google_Maps.

[11] “mSpy homepage,” [Online]. Available: https://www.mspy.com/. [Accessed 4 12

2019].

[12] “FollowMee Homepage,” [Online]. Available: https://www.followmee.com/.

[Accessed 4 12 2019].

[13] “Survey, Comparison and Evaluation of Cross Platform Mobile Application

Development Tools,” [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.849.9061&rep=rep1&t

ype=pdf.

[14] “Evaluating Cross-Platform Development Approaches for Mobile Applications,”

Henning Heitkötter, Sebastian Hanschke, Tim A. Majchrzak, [Online]. Available:

https://pdfs.semanticscholar.org/b79d/91011b1986745374cc271991d24bd87e117

5.pdf.

[15] N. J. S. K. Pushpendra Singh, “Using Mobile Phone Sensors to Detect Driving

Behavior,” [Online]. Available: http://dev3.acmdev.org/posters/dev13posters-

final4.pdf.

[16] V. N. P. a. R. R. Prashanth Mohan, “TrafficSense: Rich Monitoring of Road and

Traffic Conditions using Mobile Smartphones,” April 2008. [Online]. Available:

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2008-

59.pdf.

102

[17] G. I. Andrei Popescu, “Geolocation API Specification 2nd Edition,” 8 November

2016. [Online]. Available: https://www.w3.org/TR/geolocation-API/.

[18] D. a. S. W. Group, “DeviceOrientation Event Specification,” 16 April 2019.

[Online]. Available: https://www.w3.org/TR/orientation-event/.

[19] A. K. (. Corporation), “Ambient Light Sensor,” 7 March 2019. [Online].

Available: https://www.w3.org/TR/ambient-light/.

[20] R. B. (. C. Anssi Kostiainen (Intel Corporation), “Proximity Sensor,” 5 March

2019. [Online]. Available: https://www.w3.org/TR/proximity/.

[21] https://dvcs.w3.org/hg/dap/raw-file/tip/humidity/Overview.html, “Ambient

Humidity Events,” 11 January 2017 January 2017. [Online]. Available:

https://dvcs.w3.org/hg/dap/raw-file/tip/humidity/Overview.html.

[22] “Navigator interface,” 28 June 2019. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Navigator.

[23] M. L. Anssi Kostiainen, “Battery Status API,” 7 July 2016. [Online]. Available:

https://www.w3.org/TR/battery-status/.

[24] G. I. Ian Hickson, “Web Workers,” 25 September 2015. [Online]. Available:

https://www.w3.org/TR/workers/.

[25] A. J. J. M. Ilya Grigorik, “https://www.w3.org/TR/page-visibility-2/,” 17 October

2017. [Online]. Available: https://www.w3.org/TR/page-visibility-2/.

[26] “Web sockets,” 18 July 2019. [Online]. Available:

https://html.spec.whatwg.org/multipage/web-sockets.html#network.

[27] J. B. (. I. Ali Alabbas (Microsoft Corp.), “Indexed Database API 2.0,” 30 January

2018. [Online]. Available: https://www.w3.org/TR/IndexedDB-2/.

[28] A. Wharry, “HTML5 Offline Technologies,” [Online]. Available:

http://andreawharry.com/assets/img/portfolio/WharryAndreaFinalPaper.pdf.

[29] “Generic Sensor API,” 7 March 2019. [Online]. Available:

https://www.w3.org/TR/generic-sensor/.

[30] [Online]. Available: \http://mobilehtml5.org/.

[31] [Online]. Available: https://pouchdb.com/.

[32] A. I. Wasserman, “Software Engineering Issues for Mobile Application

Development,” [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.3806&rep=rep1&t

ype=pdf.

[33] A. S. G. S. Luis Corral, “Mobile multiplatform development: An experiment for

performance analysis,” [Online]. Available:

https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050912X00048/1-s2.0-

S1877050912004516/main.pdf?X-Amz-Security-

Token=AgoJb3JpZ2luX2VjEJ3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2Fw

EaCXVzLWVhc3QtMSJGMEQCIHpmFxZ2SvADFTLu8RCwIT8L88cx%2FYJ

uNSIceFtwiBp1AiAx38kftjYHvl.

[34] M. S.-S. Dmitry Namiot, “On Physical Web Browser,” [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1603/1603.04031.pdf.

[35] B. W. Kyle Brown, “Implementation Patterns for Microservices Architectures,”

[Online]. Available:

https://hillside.net/plop/2016/papers/proceedings/papers/brown.pdf.

[36] M. Richards, “Software Architecture Patterns,” [Online]. Available:

103

http://sddconf.com/brands/sdd/library/Architecture_Patterns.pdf.

[37] “PouchDB Replication,” 2 12 2019. [Online]. Available:

https://pouchdb.com/guides/replication.html.

[38] N. N. Thirumalesh Bhat, “Evaluating the efficacy of test-driven development:

industrial case studies,” Center for Software Excellence, Redmond, WA, 2006.

[Online]. Available: https://dl.acm.org/citation.cfm?id=1159787.

[39] “mSpy Homepage,” [Online]. Available: https://www.mspy.com/. [Accessed 4 12

2019].

104

Appendix 1 – Platform source code

The source code of a developed platform is available at the address

https://gitlab.com/twiretech/monitoring/monitoring-frontend (front-end git

repository) and https://gitlab.com/twiretech/monitoring/monitoring-backend (back-

end git repository). Frontend e2e tests are available under monitoring-frontend

repository integration folder.

https://gitlab.com/twiretech/monitoring/monitoring-frontend
https://gitlab.com/twiretech/monitoring/monitoring-backend

