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Introduction 
Multiple tools and techniques are used to sense and measure water flow and its 
associated hydrodynamic parameters (e.g., pressure, velocity, turbulence, etc.). 
However, although it is possible to use technologies which can measure in a high 
sampling rate and therefore correctly characterize the underwater environments under 
laboratory conditions, field-oriented technologies are usually associated with low 
sampling rates (e.g., field ADVs, propellers, rotors, etc.) [1]. In addition, field devices need 
to overcome the influence of obstacles, suspended particles or gas bubbles [2], [3], 
complex calibration processes [4], or the inefficiency involved in the measurement of low 
velocity flows (< 0.05 m/s) [5].  

As a result of their adaptation to water habitats, fish have solved these problems with 
a unique sensing solution: the lateral line. The lateral lines are an array of tiny, distributed 
sensing organs made up of hair cells that are stimulated by the flow over the fish’s body 
[9], allowing fish to act and react according to what they sense. Lateral lines contribute 
to the performance of different fish behaviors, such as rheotaxis, schooling, predator and 
obstacle avoidance, prey localization, as well as stationary obstacle detection to reduce 
energy consumption [6], [7]. The range of these natural hydrodynamic receptors can be 
around 200 Hz [8], which lies outside the sampling frequency of the majority of available 
field measuring devices. 

Inspired by these natural organs, researchers have developed artificial lateral lines 
(ALLs). Like biological lateral lines, ALLs are usually designed as a discrete set of sensing 
units (sensors) placed over a body, where they record the local interaction of the fluid 
media with the body. There are different types of individual sensing units, and ALLs can 
be classified according to their sensor type [7], [9]–[13]. For instance, it is possible to find 
sensors with high biological similarity such as artificial hair cells that offer high 
sensitivities [10], [14]–[16], MEMS pressure sensors with very small dimensions [17], [18] 
or novel alternatives such as optical sensors [11], hot wire anemometers [19], [20] or 
ionic polymer–metal composites [21], [22]. However, most of the sensors listed have two 
major drawbacks: (1) they are too fragile to use outside laboratory conditions or (2) they 
are experimental sensors and, thus, not mature enough for their real application. 
Therefore, commodity pressure sensors are the most extended alternatives when it 
comes to studying the applications of ALLs, e.g., [23]–[30] among others (Section 1.1.2). 
Despite the lower sensitivity and the bigger sizes of pressure sensors, they allow finding 
supplies easily and trying different sensor alternatives according to the requirements, 
and their robustness is tested and validated according to standards before their 
commercialization.  

The study of pressure sensor-based ALLs under laboratory conditions has displayed 
that they can approximate some of the sensing abilities of biological lateral lines such as 
hydrodynamic mapping [9], [13], object detection [13], flow classification [31], [32], 
rheotaxis [13], [33], flow-velocity estimation [13], [24] or prey detection [30], [34]. 
However, these devices have demonstrated satisfactory performance mainly under ideal 
hydrodynamic conditions [9], [13], [30], subject to intense calibration procedures [9], 
[27], [34] and, less frequently, their performance has depended on case specific 
laboratory prototypes and formulations that would be difficult to apply in real-world1 

                                                                 
1 We define real-world as a not idealized condition, subject to disturbances and a large spectrum of 
hydrodynamic conditions, which can be compared with field-like conditions.  
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applications. Real-world applications, in most cases, are conducted in not idealized 
environments (e.g., rivers or open oceans) subject to disturbances (e.g., obstacles or 
waves) and large spectrum of hydrodynamic conditions (e.g., different velocities or 
turbulence levels). Under these conditions, calibration procedures are difficult to 
conduct (Section 2.3.1), and the relations established in the laboratory may not work.  

To-date the use of ALLs is limited in real-word applications. Studies like [31], [35] show 
the potentiality of ALLs in real-world conditions by successfully discriminating between 
different target objects and locations with different hydrodynamic conditions. However, 
due to the listed limitations, these studies make use of a-priori feature learning process 
of the scenario with the ALL, making the application case specific and difficult to use in 
unknown environments.  

Therefore, the main objective of this dissertation is to conduct a research on pressure 
sensor-based ALLs to provide field ready solutions, making possible their use in  
real-world conditions independently of the case, as well as, show the accomplishment of 
this objective by presenting its use in real-world applications. This is achieved by 
providing (1) sensor calibration independent solutions and (2) new technological 
alternatives to improve the overall performance of pressure sensor-based ALLs and  
(3) demonstrating their use in real-world applications. 

Motivation 
The target applications presented in the dissertation mainly fall into two categories: 
velocity calculation for underwater robotics and fish preference studies (Figure 0.1).  
This is the consequence of the two main projects funding this dissertation that proposed 
the initial idea of applying ALLs to real-world applications: BONUS Fishview project 
(www.bonusportal.org/fishview) and FP7 European Academy for Marine and 
Underwater Robotics (Robocademy project) (www.robocademy-project.eu). 
Nevertheless, the achievement of the thesis objective would have immediate 
repercussions for other applications.   

ALLs have demonstrated their utility multiple times to estimate variables describing 
water flow (specially flow velocity) under laboratory conditions [13], [22], [26]. 
Furthermore, for instance in [13], [23] using pressure sensor-based ALLs vortex 
structures were successfully identified and tracked. This suggests that by using similar 
principles, a real-world ready ALL could be used to estimate other statistical variables 

 

Figure 0.1. Framework of the thesis and the research conducted. FP7 Robocademy and BONUS 
Fishview are the projects that have funded the thesis. 
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that further characterize not only the velocity but also the turbulence or vorticity of the 
fluid medium.  

The application of ALLs in aquatic organism habitats and preference studies could be 
also immediate. Nowadays, aquatic organism habitats and preference studies make use 
of widely used hydrodynamic variables, such as velocity, Reynold stresses, turbulent 
kinetic energy, or turbulent intensity [36], and physical variables defining the 
environment, such as vegetation, bed composition, or water depth [37]. Considering the 
possibilities that could offer an ALL for hydrodynamic variable estimation [13], [22], [23], 
[26] as well as the identification of underwater objects and structures [31], a real-world 
ready ALL could offer an all in one tool for environmental monitoring, which lies outside 
the scope of the state-of-the-art measuring tools. 

Underwater robotic sensing relies mainly on cameras and sonars [38]. Both sensing 
modalities might be of limited utility in certain underwater environments such as 
homogeneous or turbid ones. In this sense, flow sensing with ALLs could be used as a 
complement to perform basic underwater robotic tasks: localization by providing new 
exploitable features [35], [39], obstacle detection by measuring the interaction of 
obstacles with the flow [25], or adaptation to a specific hydrodynamic environment to 
optimize the drag [40], [41] and the energy expenditure [24], [42].  

In the same way, velocity estimation in underwater vehicles to date relies mainly in a 
single technological solution, the Doppler Velocity Log (DVL). DVLs have demonstrated a 
good and reliable performance in many applications, e.g., [43], [44]. However, these 
devices are expensive, have a large size and high-energy consumption (as they consist of 
active sensors). This makes them unsuitable for small vehicles [45], [46] or situations 
requiring low-energy consumption [47]. In contrast, pressure sensors are passive, which 
reduces their power consumption, and smaller, which has already allowed the 
installation of pressure sensor-based ALLs in small laboratory robotic platforms [25], [48]. 
Consequently, an ALL ready to be used in different field cases and able to provide  
real-time measurements could cover the technological gaps described above and, 
consequently, stimulate the development of small vehicles or increase the reliability and 
precision of vehicles oriented toward prolonged missions.   

Problem statement and methodological approach 
Consequently, the general problem statement of this dissertation is as follows: 

Our aim is to use pressure sensor-based ALLs in laboratory and real-world 
applications, specifically in underwater robotics and underwater environment 
studies. 

However, so far pressure sensor-based ALLs have only demonstrated satisfactory 
performance under ideal hydrodynamic conditions. Their use is limited in real-world 
applications due to the calibration procedures and the large spectrum of possible 
hydrodynamic conditions, and, frequently, their performance has been 
demonstrated using laboratory designs difficult to apply in real-world conditions. 

To achieve our aim, we will use an experimental approach to study possible 
alternatives for hydrodynamic variable estimation independent of calibration 
procedures and under different spectra of hydrodynamic conditions. This will allow 
us to propose solutions as well as to drive conclusions of the applicability and 
limitations of the state-of-the-art pressure sensor-based ALLs (absolute pressure 
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sensor-based ALLs). Considering the encountered limitations, we will develop a new 
method to use differential pressure sensors in ALLs, which will increase their 
sensitivity, effective sampling frequency,2 and applicability in real-world conditions. 
This will be demonstrated using the proposed solution under real-world 
applications.   

Figure 0.2 illustrates the general 3-step path conducted to fulfill the aim of the 
dissertation as well as its organization. The path followed has been a result of the findings 
in each of the researching steps, therefore it follows an incremental development. 
However, each specific step has followed an iterative process. 

First, the research was focused on the evaluation of the performance and usefulness 
of the current state-of-the-art absolute pressure sensor-based ALLs (Figure 0.3). For this 
a prototype that gathers all the advances made in the Centre for Biorobotics, Tallinn 
University of Technology (Estonia) in ALLs [24], [25] was used (Figure 0.4). This prototype 
was subject to experimental setups with a wide spectrum of hydrodynamic conditions. 
As a result of the research, in contrast to previous studies, e.g., [13], [22], [26], novel 
algorithms and relations to estimate hydrodynamic variables (not only velocity but also 
turbulence), in diverse hydrodynamic conditions, independent of sensor calibration 
procedures and angular distortions were developed. The methods applied are derived 
from statistical approaches, exploring different flow pressure features, to neural network 
approaches that exploit the distributed sensing capabilities of the ALL (cf. Chapter 2). 

                                                                 
2 Sampling frequency at what ALLs can provide valuable data. 

 

Figure 0.2. Path followed in the dissertation, organization of the dissertation and article relation. 
Numbers in the hexagons refer to the papers. 
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Figure 0.3. Summary of first step (Chapter 2) of the present dissertation. 

 

Figure 0.4. Some of the studied scenarios with the absolute pressure sensor-based ALL. a) Open 
flume. b) Fishway. c) Keila river (Estonia). 
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In addition, using the developed relations and as an example of their applicability,  
a new method to use simulated hydrodynamic maps for map-based localization is 
proposed. This approach, advance in the algorithms proposed in [35] by providing an 
alternative to perform localization using flow features without the need of scenario 
learning or feature pre-calibration procedures.  

Despite the advances made in the absolute pressure sensor-based ALLs, the main 
conclusions driven from their research in the first step show that for most applications 
these devices will need to be subject to intensive feature learning and training 
procedures to derive quality results and that their application for real-time applications 
is very limited (Results, Figure 0.3).  

Therefore, once the limitations were identified, an alternative research and analysis 
was conducted to try to solve them. As a result, a novel method for using air differential 
pressure sensors in ALLs was developed (cf. Chapter 3) (Figure 0.5). This method can 
bypass the technological limitations and constraints offered by commodity absolute 
pressure sensors (e.g., calibration, depth dependent sensitivity, or atmospheric 
influence) as well as available wet-to-wet differential pressure sensors (e.g., form factor, 
cost, or sensitivity). In addition, a new general relation capable of providing accurate 
instantaneous estimates of velocity independent of the angle of attack was determined. 
By doing so the main drawbacks identified in the previous absolute-pressure sensor ALLs, 
e.g., [31], [49]–[51], were solved.  

 

 

Figure 0.5. Summary of second step (Chapter 3) of the present dissertation. 
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To demonstrate the utility of the new technology developed under real-world 
application, two test cases were considered: velocity estimation for underwater 
applications and fish preference studies. Accordingly, two tools were developed: 
Differential Pressure Speedometry System (DPSS), an artificial lateral line designed for 
velocity estimation in torpedo-shaped underwater robots, and iRon, the first differential 
pressure sensor-based ALL for environmental monitoring (Figure 0.7).  

 

Figure 0.6. Some results from the experimental study conducted in the second step. a) Part of the 
simulations. b) First prototype developed. c) Relation between velocity and differential pressure.  
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The tests conducted with the DPSS and iRon (Figure 0.8) were compared with their 
respective ground truth datasets (Figure 0.7) to show their performance and applicability 
and to confirm that differential pressure sensor-based ALLs could overcome the 
limitations of absolute pressure sensor-based ALLs. 

 
 

 

Figure 0.7. Summary of third step (Chapter 4) of the present dissertation. 

 

Figure 0.8. Illustration of the applications studied in third step. a) iRon subject to turbulent bubbly 
flow in a fishway. b) Dimension comparison of the DPSS and the first prototype developed. c) DPSS 
in the tow tank. 
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Specific contributions of the thesis  
This thesis contributes to the development of artificial lateral lines and its real-world 
applications by: 
• Experimentally determining novel algorithms and relations to estimate 

hydrodynamic variables (velocity and turbulence) from absolute pressure  
sensor-based artificial lateral lines independent of calibration procedures and 
angular distortions. 

• Developing a new method to use simulated hydrodynamic maps for map-based 
localization with artificial lateral lines. 

• Showing that the limitations of absolute pressure sensor-based lateral lines made 
them unpractical for some real-world applications (e.g., real time applications or 
intense testing procedures).  

• Proposing and developing a novel method for using air differential pressure sensors 
in artificial lateral lines.  

• Experimentally determining a general relation between differential pressure  
sensor-based artificial lateral lines output and velocity, capable of providing accurate 
instantaneous estimates of velocity independently of the angle of attack of the body 
where the lateral line is installed on. 

• Designing and building artificial lateral line platforms for velocity estimation in 
underwater robots and for environmental monitoring.  

• Demonstrating that differential pressure sensor-based artificial lateral lines 
overcome the main limitations detected in absolute pressure sensor-based artificial 
lateral lines, which makes possible their use in the target real-world applications  
(i.e. underwater velocity estimation and fish preference studies). 
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Outline of the thesis  
The results of the dissertation are divided into four chapters: 

Chapter 1 provides general background, an overview of ALLs research, defines the main 
concepts used along the thesis. By doing so the scientific context of the thesis is 
defined. 
Chapter 2 summarizes the conducted research using state-of-the-art absolute pressure 
sensor-based ALL. Classical approaches are analyzed as well as new methods are 
proposed to deal with real-world conditions and to perform time-averaged flow 
velocity and turbulence variable estimation. As an application example, one of the 
proposed new methods is used to solve a map-based localization problem using 
simulated hydrodynamic maps. The chapter concludes that the limitations 
encountered in absolute pressure sensor-based ALLs may limit their application in 
many real-world applications. Articles: 1, 2, 3, 4, 6, 7. 
Chapter 3 attempts to overcome the limitations of absolute pressure sensor-based 
ALLs by proposing a novel engineering method to employ air differential pressure 
sensors in the design of ALLs. A new prototype is developed, and its performance is 
studied, modeled and validated. By the study of the prototype, a simple empirical 
relation able to provide accurate real-time velocity is defined. Articles: 5, 8. 
Chapter 4 deals with the real-world applications tested with deferential pressure 
sensor-based ALLs. Particularly, it is shown that using the results from the previous 
steps of the dissertation, the developed technological results can be applied in 
underwater robotics to estimate the velocity and in environmental monitoring 
applications for fish preference studies. Article: 8 and results submitted for publication. 
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1. General background 
The aim of this thesis is to make feasible the use of artificial lateral lines (ALLs) in 
environmental studies as well as underwater robotics, under laboratory and real-world 
applications. Consequently, it is a multidisciplinary work (Figure 0.1) at the frontier of 
robotics, bioinspired flow sensing, ecology and hydraulics. Therefore, it is necessary to 
describe a general background to familiarize readers from different areas to the main 
topic, artificial lateral lines, and to define the scientific context of the thesis. 

To achieve this, the following chapter provides an overview of ALLs. The main 
concepts used along the thesis are defined and previous and ongoing research is 
summarized and classified. To place the thesis in the ALLs research context and give a 
recent overview of the research performed so far, publications from the thesis have also 
been included in this review. 

1.1. Artificial lateral lines  
Aquatic vertebrates have evolved in water and due to this reason many can sense the 
water’s hydrodynamic characteristics. One of the most important adaptations in sensing 
is the lateral line (Figure 1.1).  

The lateral line is partially responsible for various common behaviors in fish, such as 
prey and predator detection [52], [53], obstacle avoidance [54], rheotaxis [55] or 
schooling [56], among others.  

This sensing organ consists of an array of mechanoreceptors, neuromasts, each 
capable of sensing local mechanical changes in water [52], [57] (Figure 1.1). These 
neuromasts consist of a group of hair cells covered by a jelly-like substance. Together, 
these hair cell bundles form a cupula, providing fish a linkage with the environment [57]. 
The movement of the cupula causes the deflection of the hair cells, and this is translated 
into a stimulus. Depending on the neuromast distribution, in an array within a canal or 
alone in the surface (Figure 1.1.b), their structure and perceptions differ slightly. The 
former are more sensitive to pressure gradients, while the latter are directly affected by 
near-body accelerations and velocity gradients [58]. 

The efficiency and utility of this organ under different complex environmental 
conditions, such as turbulent flow, turbidity or darkness, has inspired human beings to 
develop their artificial analogous: the artificial lateral line [7], [9], [11], [12], [20], [59]. 

 

Figure 1.1. Lateral line system [1]. a) Distribution of neuromasts. b) Superficial and canal 
neuromasts. 
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The potential functionalities of ALLs would have immediate applications in diverse 
underwater fields. 

For instance, in underwater robotics ALLs could offer a new sensing alternative for 
performing basic tasks such as localization [35], [39], obstacle and wall detection [25], 
[60], [61], vehicle velocity estimation [62] or more advance tasks such as energy 
expenditure and drag reduction [40], [63].  

Similarly, it would also provide an excellent opportunity for ecological studies, as due 
to its distributed sensing capability, in contrast to other field hydrodynamic measuring 
devices, ALLs have the potential to evaluate biologically relevant data with a higher 
dimensionality [32], [64]. 
1.1.1. Types of ALLs  
All the ALLs developed by different researcher groups are based on the same design 
principle. The simplest unit, the neuromast, is substituted by an artificial sensing unit that 
can measure the local interaction of the fluid with the body (e.g., artificial hair cells [10], 
hot wire elements [19], pressure sensors [13], [65], ionic polymer-metal composites [21] 
or optical sensors [11]) (Table 1.1 and Figure 1.2).  
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Type Year1 Ref.2 Applications and observations 

Artificial 
hair cells 

 
2002 [59] 

• Only tested in idealized laboratory conditions 
• High sensitivity 
• Small dimension 
• Customizable 
• Fragile, limited durability 
• Hardly accessible 
• Few types 

Hot wire 
elements 

 
2006 [20] 

• Only tested in idealized laboratory conditions 
• High sensitivity 
• Small dimension 
• Customizable 
• Fragile 
• Hardly accessible 
• Few types 

Ionic 
polymer-

metal 
composites 

2011 [21] 

• Only tested in idealized laboratory conditions 
• High sensitivity 
• Medium/big dimensions 
• Customizable 
• Fragile, limited durability 
• Fairly accessible but challenging implementation 
• Few types 

Optical 
sensors 2011 [11] 

• Only tested in idealized laboratory conditions 
• High sensitivity 
• Medium/big dimension 
• Partly customizable 
• Fragile 
• Easily accessible sensor unit but challenging 
implementation 
• Multiple types 

Commercial 
pressure 
sensors 

2011 [23], [26] 

• Tested in multiple laboratory conditions and field 
applications3  
• Low sensitivity 
• Medium/big dimension 
• Not customizable 
• Robust 
• Easy implementation 
• Easily accessible 
• Multiple types 

1Year of the 1st reference. 
2First reference proposing the target sensing unit for its use in ALLs to the best of the 
knowledge of the author of the thesis. 
3The present thesis has contributed to achieve this.  

 

Table 1.1. Sensing units used to elaborate artificial lateral lines. 
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Table 1.1 summarizes the different sensor types that have been proposed and used 
to elaborate ALLs as well as their principal characteristics and limitations. Despite the 
extensive research on ALLs, satisfactory performance has mainly been obtained under 
idealized conditions [7], [9], [13], [19], [20], that is to say conditions without disturbances 
(laboratory) and controlled hydrodynamic variables (controlled velocity, turbulence level 
and fixed depths) (Table 1.1). In the same way, frequently the studied prototypes have 
not been mature enough to translate into real-world or field applications, e.g., [12], [14], 
[19], [59].  

The most extended sensor alternative to elaborate ALLs are pressure sensors (Section 
1.1.2). The main drawback of pressure sensors are their bigger dimensions and lower 
customization and sensitivities when compared with some experimental alternatives 
such as artificial hair cells or hot wire elements (Table 1.1). However, due to their use in 
industrial applications they are accessible, it is easy to find supplies and their robustness 
is tested according to standards. These characteristics make them ideal candidates to 
elaborate field-oriented prototypes as a field prototype should be reliable and robust to 
provide replicable data over time.  

1.1.2. Absolute and gauge pressure sensor-based ALLs 
Pressure sensor-based ALLs record the interaction of the fluid with the body in terms of 
pressure (or current), mimicking the performance of biological lateral lines in a simplified 
manner [67]. They are extensively used due to: (1) the facility of finding supplies and 
switching between different sensors according to the requirements of a particular setup, 
(2) their reliability, (3) their short development-testing cycle, (4) the direct relation of 
pressure with flow properties (Section 1.2.1), (5) their tested performance in other 
underwater applications (e.g., depth measuring), and (6) their cost. 

 

Figure 1.2. Examples of sensing units used to elaborate artificial lateral lines. a) Artificial hair cells 
(modified from [59]). b) Hot wire elements (modified from [20], © 2006 National Academy of 
Sciences). c) Absolute pressure sensor MS5540C [66]. d) Ionic polymer-metal composites (modified 
from [21], © 2011 IEEE). e) Sensing unit based in optical sensors (modified from [11]). 
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Presently, the most popular commercial sensing unit used to build ALLs are piezo 
resistive transducers or pressure sensors. Specifically, absolute pressure sensors or 
gauge pressure sensors (Table 1.2). 

Ref. Year1 Sensor 
Max 

Pressure 
Type Applications and observations 

[23], 
[28] 2011 

Honeywell 
19C015PG4K 

104 kPa Gauge 

• Fixed platform for the detection 
of a moving cylinder in laboratory 
conditions  
• Vortex tracking in a laboratory 
setup 

Honeywell 
242PC15M 

104 kPa Gauge 
• Fixed platform to detect the 
shape of a moving cylinder in 
laboratory conditions 

[9], 
[13], 
[26], 
[31], 
[33], 
[63] 

2011 
Measurement 
Specialties 
MS5407-AM 

700 kPa Abs. 

• Tail beat selection according to 
flow velocity in a fixed fish robotic 
platform in a laboratory setup 
• Braitenberg controller for a fish 
robot in laboratory conditions  
• Kármán vortex street detection 
fixed platform in a laboratory 
setup 
• Flow-relative and flow-aided 
navigation of a biomimetic 
underwater vehicle in laboratory 
conditions 
• Flow feature extractions for 
localization in field environments  

[38] 2012 
Freescale 
MPXV7007 

7 kPa Gauge 
• Yaw control in a fixed platform in 
a laboratory setup 

[9], 
[29], 
[65] 

2013 
Measurement 
Specialties 
MS5401-AM 

100 kPa Abs. 
• Study of self-motion effect in 
hydrodynamic signals in a fixed 
laboratory robotic platform 

[27], 
[30], 
[48] 

2015 
Consensic 
CPS131 

120KPa Abs. 

• Velocity estimation for a robotic 
fish under laboratory conditions  
• Detection of the beating 
frequency and distance of a 
neighbor-fixed robotic laboratory 
platform  
• Evaluation of velocity estimation 
in a freely swimming robotic 
platform in laboratory conditions   

 

  

Table 1.2. Summary of existing ALL with absolute or gauge pressure sensors, ordered with regard 
to prototype and researching groups. 
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Ref. Year1 Sensor 
Max 

Pressure 
Type Applications and observations 

[1], 
[32], 
[35], 
[39], 
[49]–
[51], 
[64], 
[68], 
[69] 

2015 

Silicon 
Microstructures 
SM5420C-030-
A-P-S 

207kPa Abs. 

• One of the prototypes used in 
this thesis 
• Various methods for flow 
velocity and turbulence estimation 
under different hydrodynamic 
scenarios 
• Map-based localization methods 
offline using flow 
• Hydrodynamic signature 
classification under field conditions   

[34] 2017 
Measurement 
Specialties 
MS5803-01BA 

100 kPa Abs. 
• Kármán vortex street detection 
with a fixed robotic platform in a 
laboratory setup 

[70] 2017 
Measurement 
Specialties 
MS5803-02BA 

200 kPa Abs. 

• Velocity estimation for a robotic 
fish under laboratory conditions 
• Robot orientation under 
constant flow velocity in 
laboratory 

[71], 
[72] 

2017 
Freescale 
MPXV5004GC6
U 

3.92 kPa Gauge 
• Dipole source localization in 
laboratory conditions 

[73] 2018 
Measurement 
Specialties 
MS5803-07BA 

700kPa Abs. 
• Flow velocity estimation under 
laboratory conditions 

1Year of the 1st reference 
 

Absolute pressure sensors (Figure 1.3.a) measure pressure in reference to a space 
with zero pressure (vacuum); therefore, they can measure pressures from zero (i.e., 
lower than atmospheric pressure). While, gauge pressure sensors (Figure 1.3.b) measure 
the pressure relative to the value of the ambient atmospheric pressure (or a reference 
pressure if they are not directly connected to the ambient atmosphere). 

When these sensors are used for underwater applications, it is necessary to consider 
that the water column above the sensor will generate a pressure source that will also be 

Table 1.3. (cont.) Summary of existing ALL with absolute or gauge pressure sensors, ordered with 
regard to prototype and researching groups. 

 

Figure 1.3. Difference between (a) absolute and (b) gauge (modified from [74]). 
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measured by the sensor. The deeper the application, the higher will be the pressure 
ranges to be used. This will have a direct impact on the sensitivity.  

Once the pressure sensor type is selected, sensors are distributed in an array over the 
target body/prototype to create the ALL (Figure 1.4). Due to the diversity of possible body 
shapes, there is no general design principle to select the sensors’ positions. However it 
may be selected from the preliminary study of the interaction of the specific shape with 
the fluid media [62], [73]. Considering the specialized references, it is a common design 
principle to situate one of the sensors in the front part (point facing directly the flow, 
stagnation point) and the others uniformly distributed (in most of the cases in the middle 
line of the body). 

1.1.3. Differential pressure sensor-based ALLs  
One of the contributions of this thesis is to propose and use differential pressure sensors 
to develop ALLs (Figure 1.5.a) in order to overcome many of the drawbacks associated 
with absolute and gauge pressure sensor-based ALLs (Chapter 2). Differential pressure 
sensors have been widely used in many engineering fields [75], [76], to measure the 
relative velocity (Figure 1.5.b), angle of attack, yaw rate or altitude of aircrafts [77]–[80], 
estimate the flow in pipes, for physical modeling studies, wind or flow tunnels, among 
others. 

 

Figure 1.4.Examples of prototypes with absolute and gauge pressure-sensors based ALLs installed 
(position of sensor in red). a) [23]. b) [24]. c) [25]. d) [9]. e) [48], © 2015 IEEE. f) The absolute 
pressure sensor-based ALL studied in the present dissertation. 
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Differential pressure sensors operate in a manner similar to gauge pressure sensors 
(Section 1.1.2), but instead of using ambient atmospheric pressure for reference, they 
employ another point of the medium under study. This conceptual change seems 
insignificant; however, by doing so in underwater applications it is possible to 
compensate the pressure due to the water column above the sensor between ports.  
This means that it is possible to increase the sensitivity exponentially, measuring only the 
dynamic component of the pressure (i.e., change of pressure due to the interaction of 
the body with the flow) and be independent of the application depth.  

Considering the previous examples (Table 1.2) and comparing them with one of the 
differential pressure sensors used in this thesis (Table 1.4), we could shift from a pressure 
range of 207 kPa (Silicon Microstructures SM5420C-030-A-P-S) to 2 kPa (NXP 
Semiconductors MPXV7002), i.e., a sensitivity increment of 10000%. Additionally, the 
need of lower pressure ranges implies lower noise ratios as well as better stability in 
comparison to error sources such as temperature.     

To the best of our knowledge, they are only two research groups working on 
differential pressure sensor-based ALLs (Table 1.4): the research group in Thermal 
Sciences and Fluid Dynamics of University of Florida and Centre for Biorobotics of Tallinn 
University of Technology.  

 

 

 

 

 

 

 

 

Figure 1.5. a) Working principle of differential pressure sensors (modified from [74]). b) aircraft 
Pitot tube [81]. 
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Ref. Year1 Sensor Max Pressure Applications and observations 

[62], 
[82]–
[87] 

2016 

Honeywell 
SSCDRRN005ND2A5 

± 1244 Pa 

• Prototypes developed in the 
framework of this thesis (B-
Box 2015)  
• Proof of the concept of 
differential pressure based ALL 
for flow velocity estimation  
• Tested under laboratory 
conditions 

NXP Semiconductors 
MPXV5004 

0-3920 Pa 

• Prototypes developed in the 
framework of this thesis (D-Box 
2016) 
• Prototype developed for 
turbulence estimation in 
hydropower plants 
• Tested under field conditions 

NXP Semiconductors 
MPXV7002 

± 2000 Pa 

• Prototypes developed in the 
framework of this thesis (DPSS 
2017) 
• Developed for instantaneous 
flow velocity estimation in 
underwater vehicles,  
• Tested under field and 
laboratory conditions 

NXP Semiconductors 
MPXV7002 

± 2000 Pa 

• Prototypes developed in the 
framework of this thesis (iRon 
2016) 
• Analysis of fish preferences 
and behaviors 
• Tested under field and 
laboratory conditions 

[60], 
[61], 
[88] 

2016 
NXP Semiconductors 

MPXV7002 
± 2000 Pa 

• Force estimation and wall 
detection 
• Tested under laboratory 
conditions 

1Year of the 1st reference 
 

Table 1.4. Summary of differential pressure sensor-based ALLs with differential pressure sensors, 
ordered by researching group and sensor type. 
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1.2. Applications of ALLs  
The summary tables presented in the previous sections (Table 1.2 and Table 1.4) list the 
applications conducted with pressure sensor-based ALLs. These applications mainly 
focus on sensing and characterizing underwater media and, less frequently, in the use of 
this information to perform more advanced tasks such as the control of underwater 
vehicles or environmental studies. 

Sensing applications can be classified into two different categories: (1) hydrodynamic 
mapping and (2) hydrodynamic sensing. In hydrodynamic mapping applications, 
applications that aim to determine spatial information from ALL output can be included, 
such as dipole source localization [7], [11], [14], [17], [19]–[21], [89] (Figure 1.7.a), which 
consists of situating a stimuli source in space, the characterization of a Kármán vortex 
street generated behind an obstacle [9], [11], [14], [20], [29], [30] (Figure 1.7.b) or the 
identification of object velocities and shapes passing over the ALL [23]. These tasks,  
in the majority of the cases, have been conducted with static ALLs and evaluated using 
ideal laboratory setups, i.e., environments with the absence or flow hydrodynamic 
disturbances.  

 

Figure 1.6. Evolution of the ALL technology in the Centre for Biorobotics; From final results of the 
EU project FILOSE (231495) to the progress made during this thesis (in red). 
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Under the hydrodynamic sensing category, it is possible to include any task with the 
aim to characterize flow properties or its hydrodynamic characteristics (e.g., flow 
velocity, turbulence, vorticity, etc.). Multiple studies have proposed approaches to infer 
flow velocity from ALLs readings [13], [26], [27], [49]–[51], [65], [82], [91] as well as 
turbulence [49], [50].  

Both sensing applications can be directly used in the control of underwater vehicles 
or in the characterization of fluid media for environmental studies; however, few 
researching works have achieved these types of applications. 

The first advances in control and navigation of underwater vehicles with ALLs were 
accomplished by the FP7 FILOSE European project. In this project, the team successfully 
imitated rheotaxis, station-holding behaviors, and flow direction detection using a 
robotic fish [13], [33]. Later, members of the Intelligent Control Laboratory of Peking 
University also demonstrated the possibility of velocity estimation with a freely 
swimming robotic fish in steady conditions [48], [92]. Nevertheless, all these cases were 
performed under controlled conditions using laboratory prototypes with absolute 
pressure sensor-based ALLs. 

 

Figure 1.7. Examples of hydrodynamic mapping using ALLs. a) Mapping of vortex signatures using 
hot wire element based ALL (modified from [20], © 2006 National Academy of Sciences). b) 3D 
localization of a dipole source using artificial hair cells based ALL (modified from [90]). 

 

Figure 1.8. Two examples of robotic fish with artificial lateral lines. a) Filose robot (Author: Jaan 
Rebane). b) Robotic fish developed by Intelligent Control Laboratory of Peking University (modified 
from [48], © 2015 IEEE). 
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Regarding environmental monitoring or characterization, only one international 
project has attempted to use ALLs for this purpose: the BONUS Fishview project  
(2014–2017). This project motivated part of the results and developments of the present 
thesis. The notion behind the use of ALLs for environmental monitoring is that their 
sensing capabilities are closer to the fish’s perspective as compared with common 
techniques used for the measurement flow hydrodynamic characteristics (e.g., ADV, 
propellers, etc.). Therefore, the features obtained with these devices could represent the 
fish’s preferences better. Today, the exploration of ALLs for environmental monitoring 
continues under the FIThydro H2020 project (2016–2020). 

Despite the potential usage of ALLs, their application have been mainly laboratory 
oriented, and it was not until 2015 when the first results under field applications were 
reported [31], [32]. To the best of our knowledge, the Centre for Biorobotics has been 
the only research group taking this step. 

One of the main problems of using absolute pressure sensor-based ALLs under field 
applications is the need of pressure sensor calibration prior to and subsequent to each 
use [9], [27], [34]. This is motivated by their reduced sensitivity, their working principle 
and design characteristics, which increase their sensitivity to environmental disturbances 
(e.g., temperature and water level changes or atmospheric pressure oscillations) 
(discussed more deeply in Chapter 2). This thesis overcomes these limitations by 
proposing techniques which can support high environmental disturbance levels and 
eliminate the pressure sensor calibration before each experiment from the workflow 
(Chapter 2). This allows the measurement of hydrodynamic variables with ALLs under 
different environmental conditions.  

In the same way, a novel method to use differential pressure sensors to design ALLs is 
proposed (Chapter 3). By using differential pressure sensors to design ALLs, it is possible 
to overcome many of the limitations encountered in the use of absolute pressure  
sensor-based ALLs. For instance, contrary to the proposed techniques with absolute 
pressure sensor-based ALLs, they allow real time water velocity estimation. This allowed 
us to extend the applicability of ALLs in field and real-world conditions (Chapter 4). 

1.2.1. Hydrodynamic variable estimation using pressure sensing  
Considering the applications listed in Table 1.2, flow velocity estimation is one of the 
most extended benchmark tests of pressure sensor-based ALLs [13], [24], [26], [27], [48], 
[73]. This is due to the importance of velocity for underwater vehicle control (which is a 
common target application of ALLs research) [26], [48], [93], the relation of 
hydrodynamic variables with ecological and biological processes [36], [85], and the direct 
relation of pressure with flow velocity [16], [17]. 

Bernoulli’s law [94] describes the fundamental relation between pressure (P) and fluid 
flow velocity (U) for an inviscid, incompressible flow: 

 ρ+ =21
constant

2
P U   (1) 

where P is the fluid’s hydrostatic pressure (Pa), ρ is the density (kg/m3), and U is the 
fluid flow velocity (m/s). The law states that between two points along the same 
streamline, the relation between U and P remains constant. 

A direct application of this principle, assuming irrotational and steady flow, is the 
velocity estimation achieved through the measurement of the pressure difference across 
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two points of a submerged body [75], [95], [96]. Considering Eq. (1) and ideally a point in 
the stagnation position (P1), the point with maximal pressure and a velocity equal to zero, 
and a second point subject to the freestream velocity (P2), the following equation is given 
(Pitot relation): 

 
β

ρ ρ
ρ

⋅ ⋅∆
= + →∆ = − = → = 1,22 2

1 2 1,2 1 2

21 1
2 2

U P
P P U P P P U U   (2) 

where ΔP1,2 is the difference in pressure between the point 1 and the point 2 (Pa).  
This comprises the most commonly employed method to estimate velocity in pressure 
sensor based ALL studies [13], [24], [26], [27], [65]; however, despite the fact that it is 
easy to identify the stagnation point (i.e., the point facing the flow), in practice, the point 
whose velocity is equal to the freestream velocity will move according to the body shape. 
To resolve this issue, for instance, [13] introduces a semi-empirical correction factor that 
multiplies ΔP1,2 (βU) in the Eq. (2). This factor will depend on the pressure sensor position 
used to measure P2 as well as the geometry of the body. 

If U is estimated fast, later it is possible to decompose it into two components by 
means of Reynolds decomposition into a time-averaged component ( U ) and its 
fluctuations (u’). Fluctuations could be used to further characterize the flow through the 
calculation of the turbulence metrics. 

The relation between flow velocity and pressure is the conventional way to estimate 
flow velocity or the vehicle velocity, either using empirical relations [13], [26], [70] or Eq. 
(2) [13], [24], [26], [27], [65]. Although this relation has demonstrated accurate estimates 
under controlled environments, absolute and gauge pressure sensor-based ALL 
limitations will make it difficult to apply it in real-world applications (Chapter 2). 

1.3. Summary and conclusions 
From this chapter it can be concluded that the complexity of real-world conditions has 
limited the applicability of absolute pressure sensor-based ALLs to laboratory setups and 
ideal hydrodynamic conditions. However, the main motivation of this research has 
always been to use ALLs in real-world applications. The methodological approaches and 
technologies developed for the laboratory are substantially different that the ones 
developed for field or real-world applications. Real-world conditions are characterized 
by their hardness and dynamism. Therefore, the proposed solutions must consider these 
constrains. This thesis has contributed to the application of ALLs in the real-world by 
proposing new methods to use the classical absolute pressure sensor-based ALLs 
(Chapter 2), improving the pressure-based ALLs by making possible the use of differential 
pressure sensors (Chapter 3), and demonstrating their possible application (Chapter 4).   
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2. Flow sensing with absolute pressure sensor-based ALLs 
In this chapter, we study the performance of absolute pressure sensor-based ALLs 
focusing on the estimation of flow hydrodynamic parameters (flow velocity and 
turbulence metrics). First, the classical approach based on Bernoulli’s principle is applied 
and evaluated to identify the main factors which limit its applicability under real-world 
conditions. Next, new approaches capable of being used in real-world conditions are 
proposed; these approaches are (1) independent of sensor calibration procedures before 
every new use and (2) able to handle a wide spectrum of hydrodynamic conditions. 

1. Classical approach (article: 1): solution based on Bernoulli’s principle (Section 
2.3.1). 

2. Mixed approach (article: 1): solution that combines a 2-step procedure including 
a statistical approach with Bernoulli’s principle (Section 2.3.2). 

3. Statistical approach (articles: 2 and 6): purely statistical approaches not related 
to Bernoulli’s principle (Section 2.3.3).   

4. Neural network approach (article: 4): makes use of a neural network together 
with the cross-correlation between sensors (Section 2.3.4). 

To study and test the different approaches, an absolute pressure sensor-based ALL is 
used (Section 2.1) and 4 different scenarios with different hydrodynamic characteristics 
are studied (Section 2.2).   

The chapter ends with an application of the proposed approaches in a map-based 
localization problem, which illustrates one possible application of the findings (Section 2.4).  

2.1. The studied prototype 
The absolute pressure sensor-based ALL used for this study is a prototype that gathers 
all the advances made in the Centre for Biorobotics, Tallinn University of Technology 
(Estonia) in this area during the last few years [24], [25]. This ALL has been installed in an 
acrylonitrile butadiene styrene (ABS) plastic cover of 0.45 m length in the shape of an 
adult, farm-raised, rainbow trout (Oncorhynchus mykiss). The ALL consists of 16 pressure 
sensors with full sensitivity in a 0–207 kPa range (SM5420C-030-A-P-S) and two 3-axis 
accelerometers (ADXL325BCPZ) (Figure 2.1). 

 

Figure 2.1. Distribution of the pressure sensors in the prototype used in the present study; ps0 is the 
nose sensor, and ps1 to ps15 are the lateral sensors [50]. 
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The pressure sensors’ signals are amplified, first, with an instrumentation amplifier 
(AD8421ARMZ), and afterward, with an operational amplifier (AD8656ARMZ), obtaining 
a 0.46 Pa/LSB resolution. The signal is then digitalized with a 16-bit analog to digital 
converter (AD7682BSPZ). Similarly, the current consumption of the pressure sensors is 
measured by a shunt resistor to estimate the temperature drift. 

All signals are transmitted at 2.50 kHz to a microcontroller (AT32UC3C1512).  
The microcontroller performs 10x oversampling, and the averaged results are 
transmitted over a serial connection at a maximum sample rate of 250 Hz. 

2.2. Studied scenarios 
To obtain accurate and case independent estimations of the hydrodynamic parameters, 
it is necessary to compile the data obtained from different scenarios. This is because the 
same time-average velocity can comprise different turbulence structures and levels.  
To achieve this, four scenarios have been studied: a close flume (Figure 2.2.a), an open 
channel (Figure 2.2.b), a vertical slot fishway (Figure 2.2.c) and four locations in the Keila 
River, Estonia (Table 2.1 and Figure 2.3). All scenarios present different performances 
and have different configurations. They offer a wide diversity of hydrodynamic 
conditions in the range of real-world applications (Table 2.1).  

Name Velocity range 
(m/s) 

Reynolds number 
range 

Ground 
truth data Articles 

Close flume 0 – 0.5 2.25·104 – 2.25·105 
Calibrated 

average 
velocity 

1, 2, 4 

Open 
channel 
flume 

0.1 – 1.4 4.5·104 – 6.3·105 
Field ADV 

(Flow 
tracker, 1 Hz) 

3, 4 

Vertical slot 
fishway 0.05 – 1.5 2.25·104 – 6.75·105 

Laboratory 
ADV 

(Vectrino, 25 
Hz) and LDA 

(1 Hz) 

1, 3, 4, 6 

Keila River 0.61 – 1.2 2.75·105 –5.4·105 

Propeller 
current 
meter 

(average 
velocity) 

2 

 

Figure 2.2. Top view of studied scenarios [1]. a) Closed laboratory flume. b) Open channel flume. c) 
1:1.6 scale vertical slot fish passage. 

Table 2.1. Overview of the studied scenarios and article relation (modified from [1]). 
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Due to the different configurations of each scenario, different experimental 
procedures have been employed for each one. The closed flume (Figure 2.2.a) consists of 
a rectangular flume with a closed working area of 0.5 m x 0.5 m x 1.5 m. It has a motor 
that induces the recirculation of the water, and the discharge is redistributed over the 
tunnel cross section before entering the working area by means of two collimators.  
The flume can generate flow velocities ranging from 0.05 to 0.5 m/s with an accuracy of 
0.04 m/s. This scenario was assumed to be the most controlled and experimentally 
repeatable. In each of the studied replicates (see appendices 1, 2 and 4 for more 
information), pressure readings were recorded at velocity intervals of 0.05 m/s. 

The open channel (Figure 2.2.b) comprises a free surface rectangular canal with an 
adaptable slope that can reach different regimens through the modification of the 
discharge and the slope. In normal operation ranges, a velocity range from 0.1 m/s to  
1.5 m/s can be obtained. A complete description of the experimental setup can be found 
in appendices 3 and 4. The measurements were conducted from 0.1 m/s to 1.4 m/s in 
steps of 0.1 m/s. 

The vertical slot fishway (VSF) (Figure 2.2.c) offers the most challenging conditions. 
Fishways are artificial structures designed to allow the passage of fish through 
transversal obstacles to the river (e.g., dams, weirs, and others). VSFs are characterized 
by a wide spectrum and contrast of turbulence intensities, such as environments 
expected in the field, and they present a possible target scenario for the use of ALLs as 
environmental monitoring devices. A complete description of this structure and the 
complete experimental plan and data treatment can be found in appendices 1 and 6, and 
in [97]. For this setup, two different discharges were measured (0.130 m3/s and 0.170 m3/s) 
at three different depths (20%, 40% and 60% of the mean water level) according to the 
point distribution depicted in Figure 2.2.c. The measured velocities ranged from 0.1 to 
1.4 m/s. 

In addition to these scenarios, in appendix 2 a supplementary validation test was 
conducted. This consisted in four locations with different turbulence levels of Keila river 
(Estonia) (Figure 2.3). The measured velocities ranged from 0.61 to 1.2 m/s. 

 

Figure 2.3. Different locations measured in Keila River, Estonia. The turbulence level increases from 
a to d. 
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2.3. Hydrodynamic variable estimation approaches 
The main objective followed in this first step of ALL research was to make hydrodynamic 
variable estimation with absolute pressure sensor-based ALLs in real-world conditions 
possible. Previous studies on absolute pressure sensor-based ALLs used Bernoulli’s 
principle to calculate the flow velocity [13], [24], [26], [27], [65]. Therefore, the first 
classical approaches were tested using the closed flume setup. However, limitations that 
would made this approach difficult to use under real-world conditions were detected. 
Thus, alternative approaches were designed to extend the applicability of absolute 
pressure sensor-based ALLs: mixed approach, statistical approaches and neural network 
approach. 

2.3.1. Classical approach and its limitations 
The interaction of the flow over a rigid body will generate different pressure distributions 
around the body, according to the body’s shape and orientation, it’s surface properties, 
the flow velocity, and fluid properties. Considering this effect and the presence of a 
constant component of the pressure related to the depth (assuming quasi-hydrostatic 
conditions), the pressure difference between two given points on the body surface will 
be the same for each flow velocity (assuming inviscid, incompressible, irrotational and 
steady flows) (Figure 2.4.a). Considering this physical effect, which is also described by 
Eq. (2), a relation between pressure and velocity is established (Figure 2.4.b). 

For the studied prototype (and in general National Advisory Committee for 
Aeronautics (NACA) shapes), the front part will sense the maximum pressure (stagnation 
pressure), and progressively, the pressure will be reduced when the sides are 
approached (Appendix 1). Considering this and through the application of Bernoulli’s 
principle, the accurate estimation of velocity appears to be possible. However, during 
the application of the studied prototype using the classical approach, some limitations 
were identified for the use of absolute pressure sensor-based ALLs: 

1. Depth-sensitivity relation. The sensor sensitivity is inversely proportional to the 
maximum measurable pressure. Therefore, considering that small sensitivities 
are required to sense small velocities (Figure 2.4.b), the minimum estimable 
velocity will be defined by the maximum measurable pressure by the pressure 
sensors.  

2. Hydrostatic pressure differences. Considering the pressure caused due to the 
water column (hydrostatic pressure, P = g·h·ρ, where g stands for gravity, h for 

 

Figure 2.4. Results of the application of the classical approach using the ALL under study [50]. a) 
Mean pressure relative to the nose sensor (ps0, Figure 2.1) during the first replication of the close 
flume experiment. b) Mean pressure differences for the two combinations of pressure sensors and 
another body shape versus flow velocity. 
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water column, and ρ for the density), small water level column differences 
between sensors have the potential to generate small pressure deviations.  

3. Turbulence. In many natural conditions, the movement of fluids does not form 
a streamlined, orderly flow. Therefore, an instantaneous measurement will be 
far from the pressure distribution profiles represented in Figure 2.4.a. These 
profiles will be achieved by averaging a certain number of measurements that 
will depend on the freestream flow properties (velocity and turbulence) and the 
sampling frequency as well as the sensitivity of the measuring device. 

4. Temperature. Pressure sensors and analog to digital converters, like any other 
measurement devices, are subject to errors caused by changes in temperature. 
These variations may be controlled if the temperature of individual sensors is 
monitored. However, the heating caused due to electronic hardware, the 
cooling effect caused due to the flow influence, together with the 
environmental temperature will provoke non-linear processes over the ALL 
body. These processes will be difficult to model without precisely controlling the 
environment and will be more important for sensors with large measuring 
ranges. The density of the fluid is also temperature dependent and thus, 
assuming a constant density neglects changes caused by the water 
temperature. 

5. Noise-pressure range relation. In general, the absolute level of the expected 
noise (e.g., electronics, temperature, etc.) will be higher for sensors designed 
for measuring higher pressures. Therefore, the expected errors in 
hydrodynamic variable estimations due to the noise will be higher for pressure 
sensors with higher pressure ranges.   

Similar limitations have also been reported in other specialized publications, e.g., [9], 
[27], [34], and they provoke the need of calibration prior to their use and from test to 
test. For instance, [34] reported a calibration procedure every 3 minutes. In all the cases 
reported, the calibration procedure consisted in still water measurements to determine 
offsets between sensors. This calibration plan is possible to apply under controllable 
environments where still conditions can be induced; however, it is difficult under  
real-world applications. Therefore, alternatives to the physical approach are necessary 
for hydrodynamic variable estimation under real-world applications. In the following 
sections, we summarize the three approaches tested to solve some of the detected 
limitations (mixed approach, statistical approaches and neural network approach). 

2.3.2. Mixed approach  
The first approach tested to solve some of the detected problems was the mixed 
approach [50] (Appendix 1). This approach entails the application of a two-step 
procedure: a statistical approach to estimate the mean value of the target variable and 
a physical approach to recover the value of the variable in relation to the original 
sampling rate (Figure 2.5).   
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Considering that the time-averaged value of the pressure is altered by the limitations 
defined in the previous section, it will be necessary to determine a feature that can 
override those limitations. One of these features is the pressure fluctuation (p’).  

It was observed that the increase in velocity and turbulence tends to produce higher 
pressure signal fluctuations and for the considered data was leading to an average 
increase in the pressure signal’s amplitude. Similarly, in contrast to absolute pressure, 
their rapid nature makes them resistant to most of the problems listed in the previous 
sections.  

Considering this principle, it is possible to employ this feature as an estimator of 
hydrodynamic variables. The amplitude of fluctuations can be obtained by translating it 
into the frequency domain through the fast Fourier transform (FFT) and the subsequent 
application of a band-pass filter (BPF) to separate the target hydrodynamic variable from 
other possible influences. In the case of velocity, the relation with the signal amplitude 
can be modeled by a linear regression (Figure 2.6).  

To apply the method, two parameters must be determined: the total signal duration 
and the filter cutoff frequencies. Both parameters should be determined using the 
velocity data obtained from different experimental conditions. 

 

Figure 2.5. Signal processing and resampling process flowchart [50]. a) Mean velocity calculation. 
b) Resampling process. 

 

Figure 2.6. Graphical representation of the signal processing pipeline. a) Raw pressure data; b) 
Fluctuation extraction. c) Translation to frequency domain [fast Fourier transform (FFT)] and 
filtering [band-pass filter (BPF)]. d) Representation of the mean amplitude and velocity fit. 
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The algorithm will deliver a mean velocity estimation over a long sampling time. 
Consequently, to estimate the dynamic properties of the flow (such as turbulence 
intensity), it will be necessary to resample this velocity into the original sampling rate. 
This can be achieved by taking advantage of the physical approach as illustrated in  
Figure 2.7. 

In [50] (Appendix 1), this approach was tested using the close flume and the fishway 
experimental setups. The validation consisted in testing its performance using 
independent fishway datasets. Figure 2.8 shows as example the contour plots estimated 
with the artificial lateral line in comparison with the obtained with a laboratory ADV.   

 

Figure 2.7. Example of the resampling process. a) Raw pressure signal at two different pressure port 
locations, P1 and P2. b) Subtracting the time-average to obtain the zero mean fluctuations.  

c) Calculation of ∆ 12P  considering U (with Pitot relation) and adding it to p1’. ∆P12 signal will be equal 

to + −∆ 12 21 ' 'pP p . d) Velocity signal calculation with Pitot equation after ∆P12 signal calculation. 

 

Figure 2.8. Validation of the approach [50]. a) Comparison between the profiles estimated by the 
ADV and ALL in 0.17 m3/s. b) Scatter plot of the measured velocities for approach parameter 
calculation (ALL vs DVL) and for validation (ALL vs ADV, R2=0.837). 
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2.3.3. Statistical approaches 
The applicability of the statistical approaches can be further extended by using them to 
estimate both velocity and turbulence metrics, leaving aside the classical approach. 
Figure 2.9 summarizes the proposed workflows for the hydrodynamic variable 
calculation. A detailed algorithmic description for the calculation of velocity can be found 
in [49], [51] (Appendices 2 and 6) and for turbulence metrics in [49] (Appendix 6).  

Both statistical methods (Figure 2.9) utilize the standard deviation of the signal as 
main feature. Standard deviation of the signal shows a strong correlation with pressure 
fluctuations defined before. Similarly, the second method (Figure 2.9.b), also utilizes the 
average pressure and frequency domain features (defined as X in Figure 2.9.b) which 
seems to increase the predictability of the method, even if the contribution of these 
variables is rather small.  

The validation of the approaches, in both cases, were performed by means of 
independent tests (Appendix 2 and 6), comparing the estimated result with observed 
ones. First approach (Figure 2.9.a), provided errors lower than 0.1 m/s for velocity 
estimates and, moreover, it demonstrated the ability to correctly estimate the velocities 
in a natural river (Keila river (Estonia)) (Figure 2.3). The second approach increased the 
performance of the previous one by offering a mean absolute error for all the estimated 
variables between 8.5 % and 15.3 %.   

In addition, both approaches are compatible with the resampling process defined for 
velocity in the mixed approach. That is to say, after the calculation of the mean velocity, 
the workflow defined in Figure 2.7 could be applied.  

2.3.4. Neural network approach 
Previous methods suffer from higher errors when estimating low velocities (Section 1.5). 
This is due to the requirement of high sensor sensitivities to estimate low velocities, as 
well as, the pressure distortion levels of the studied environments. Therefore, large 
sampling intervals are required to improve the accuracy of the estimates.  

However, the exploitation of the distributed and synchronous sensing capacities of 
the studied prototype seems to improve the estimations in the lower ranges. To achieve 
this, in appendix 4 the product-moment correlation coefficient between sensor pairs are 
proposed as features. After theses feature are used to train an artificial neural network 
(ANN) for current velocity estimation (Figure 2.10). 

Figure 2.9. Statistical workflows for hydrodynamic variable’s calculation. a) Preliminary workflow 
for velocity estimation [49]. b) Extended workflow, X represents other possible features [51]. 
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The combination of all the pairs of sensors used [11, the ones situated in the middle 
plane of the sensor body (Figure 2.1)] yields a 55-dimension feature vector as an 
independent variable. First, the structure of the ANN is analyzed to optimize the number 
of layers, transfer function, and the number of neurons (Appendix 4). This is achieved 
through comparisons of the performance of different neuron combinations and the 
evaluation of their improvement using Student’s t-test and random trials (60% training, 
20% validation, and 20% test, for all cases). For variable reduction, after the ANN 
structure is defined, a stepwise method adapted to ANN was designed. This method 
progressively reduces variables with regard to the significance of the model post their 
elimination. Using this method, the feature vector is reduced from 55 to 11 
cross-correlations (Figure 2.11), without a significant loss of the model’s predictive 
power. A similar approach is used also to estimate the relevance of each of the final 
sensor pairs used.  

The approach was applied to close flume, open channel flume and fishway data, 
showing a high correlation with the measured data (R2 = 0.911, using 11 correlations 
coefficients) and a mean absolute error of 0.066 m/s.  

2.4. Method Comparison 
Mixed and statistical approaches share some commonalities: (1) mean pressure 
fluctuations are correlated with the standard deviations of the velocity signals and 
(2) the sensor signals, contrary to the neural network approach, are treated individually. 
Therefore, similar performances are expected.   

Figure 2.12 depicts results from the open channel experimental setup for mixed and 
statistical (kernel ridge regression) approaches (a) (Appendix 3) as well as for all the 
studied scenarios with regard to the neural network approach (b) (Appendix 4).  

Figure 2.10. Proposed neural network approach for current velocity estimation. 

Figure 2.11. Final 11 correlations used in the model. The classification in terms of significance can 
be found in [1]. 
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The mixed and statistical approaches tested had a tendency to overestimate low 
velocities. This can be explained by the sensitivity and the range of the sensors used 
(sensitivity is inversely proportional to the range), the quadratic relation between flow 
velocity and pressure (lower velocities will require higher sensitivities) or because they 
assume a single model. In this sense, longer measuring times will be required for low 
velocities as pressure signals will be closer to the sensitivity of the sensor. However, the 
combination of sensor pairs together with the neural network learning algorithm appears 
to overcome this limitation to some extent, as can be observed from the results of the 
neural network approach. 

The dependency on the number of samples for the average velocity’s estimation will 
also make the error time dependent. Figure 2.13 shows the evolution of error for the 
mixed approach [50] and the neural network approach [1] as well as the optimal solution 
for the statistical approach (partial least-square regression [49]). From the figure, it can 
be noted that the overall performance of the approaches is very similar. The need of 
large signal durations is one of the major drawbacks of all the approaches proposed. 
In the same way, the data can be highly non-stationary, and thus, it is very unlikely that 
performance will significantly improve with progressively longer sampling durations.  

Figure 2.12. Velocity fit plots for the different estimation approaches. a) Mixed (R2 = 0.959) and 
statistical (Kernel ridge regression) (R2 = 0.920) approaches in the open channel experimental setup 
[68]. b) The neural network approach using all experimental setups [1]. 
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Regarding turbulence, the statistical approach described in appendix 6 (Figure.2.5.b) 
directly estimates the possible variables of interest (e.g., turbulence kinetic energy, 
Reynold stresses, turbulence intensity, among others). The original article is referred to 
examine the different performances (Table 8 and 9 in Appendix 6). The mixed approach 
offers certain limitations regarding turbulence. It only allows the recovery of the original 
velocity fluctuations and thus only the turbulence intensity can be calculated. Figure 2.14 
presents the comparison of velocity distribution of an ADV against the ALL for the test 
conducted in the open channel flume. The observed distribution seems in the same 
range, increasing towards the higher velocities; however, it should be noted that the 
sampling rate of both the technologies is different (for this case, the ADV was a Sontek 
Flowtracker with a sampling rate of 1 Hz, whereas the ALL sampling rate was 250 Hz).  

Considering the limitations of each method, if we are interested in measuring all the 
common turbulence variables, it will be necessary to employ the statistical approach. 
Regardless, if the velocity distribution over time is to be examined, for a frequency 
analysis or a specific analysis of short time events, or simply to calculate the turbulence 
intensity, the mixed approach serves the purpose (Figure 2.15). The estimation of 
turbulence metrics considering the neural network approach still needs to be explored.   

Figure 2.13. Error evolution with the proposed methods. It should be noted that in the original 
article of the statistical approach a 10 s signal was used to calculate a 30 s average velocity, thus 
the model performance of this reference was non-ideal. 

Figure 2.14. Comparison of the (a) ADV measurements and (b) ALL velocity estimates using the 
mixed approach. The sample sizes for the ADV measurements (0.1, 0.2, 0.3, 0.4, 0.5) m/s were 
(2100, 2100, 2160, 1560, 1320) and 56251 for each ALL velocity estimate [68]. 
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2.5. Map based localization using hydrodynamic variables 
The proposed approaches have direct application in the characterization of underwater 
environments as they allow the estimation of the hydrodynamic properties of the fluid 
media. Later, by exploiting these properties, we can solve more complex real-world 
applications. To show this, in [39] a conceptual method to solve underwater localization 
problems using hydrodynamic variables sensed with an ALL and simulated hydrodynamic 
maps as a priori information is proposed (Appendix 7). 

Localization is one of the basic problems of any autonomous robot [98], as the robot 
needs to know its location to perform more complex tasks. Underwater localization can 
be achieved in many ways: dead-reckoning [99], through the use of a priori available 
maps (map-based localization) [100], or through simultaneous mapping a priori unknown 
environment and keeping track of one’s location on it (i.e., SLAM) [101].  

Map-based localization is an interesting alternative when maps for the environment 
to be explored are available; for anthropogenic environments such as harbors, sewers, 
or other types of drowned structures, or natural environments such as caves [102].  

The most common sensing modalities used to perform underwater localization are 
vision and sonar. Both sensing modalities might be of limited utility in some 
environments, such as homogeneous or turbid ones. Therefore, the combination of 

Figure 2.15. Velocity fluctuations (u’) measured with ADV (25 Hz) and LLP (125 Hz) for the third 
experimental configuration (vertical slot fishway with a discharge of 0.130 m3/s at water level of 
0.6·h). The signals have the same duration and location, but they were not measured 
simultaneously. a) and b) Slot. c) and d) Jet region. e and f) Recirculation region. 



48 

different sensing modalities can constitute the most interesting alternative to perform 
successful localizations. In this regard, flow sensing can provide an interesting alternative 
or complement to achieve effective localization. For instance, in [13] and [22], 
1D localizations were performed using the velocity change generated through the 
interaction of flow with a specific obstacle.  

The method here proposed is a generalization of the one proposed in [35], which uses 
the studied prototype (Section 1.3) and the third scenario for localization (fishway, Figure 
2.2.c). In the method proposed in [35], two main problems were detected: 
(1) the features used from the prototype had an abstract nature, making it impossible to 
use in other environments without a pre-calibration of features and (2) the method 
required, previous to the localization and for each possible hydrodynamic scenario, 
a priori scan to construct the map of the features for localization. Here these limitations 
are solved by replacing the abstract feature with velocity estimates using mixed 
approach (Section 1.4.2.) and by using simulated maps as a priori information of the 
environment (Figure 2.16).  

The localization problem is solved offline using particle-filtering (see a complete 
description in [35], [39]) (Figure 2.17). In the beginning (t = 0), a set of m particles Xt are 
randomly scattered through the available simulated map (Figure 2.16). Each particle i has 
an associated weight (wt,i), which is the probability of being the current position of the 
robot. Until the first observation (Ut, sensed flow velocity), weights are equally 
distributed. After a motion step (dt) and an observation, weights are updated, and 
particles resampled accordingly (i.e., the probability of a particle being sampled will be 
proportional to its weight). Therefore, at any given time, the mean value of the 
resampled particles will represent the estimated position of the robot. The update in 
weights is made in relation to comparisons with the value of velocity according to particle 
position in the simulated map with the observation of the robot.  

Figure 2.16. Simulated maps used for the two studied discharges, at 40% water-column height 
[39]. Both have been calculated using RANS technique (k-epsilon model, grid size = 0.05 m). 
a) Discharge rate of 0.17 m3/s. b) Discharge rate of 0.13 m3/s. 

Figure 2.17. Particle-filter algorithm used in this study. Ut represents the set of estimated speeds 
until t, and Umap the set of velocities in the simulated map [39]. 



49 

Figure 2.18 shows an example of the algorithm’s performance; the real position of the 
robot is represented in green, while the trajectory based on control inputs is depicted in 
blue. In the first state, the particles are distributed randomly throughout the maps 
(Figure 2.18.a). After, with each new measurement and motion, the position is updated 
(Figure 2.18.b-c). Figure 2.18.d depicts the evolution of the absolute localization error 
over different states.  

The algorithm performance is validated using different hydrodynamic scenarios in the 
fishway, introducing normally distributed random errors in the motion steps and 
measurements as well as different particle densities (Appendix 7).  

The values appear to be independent of the number of particles used, and the error 
increases, logically, whenever the artificially introduced motion and measurement errors 
increase (Table 1, Appendix 7). All studied cases demonstrate convergence at the real 
location of the prototype, and this is accelerated when the flow field’s heterogeneity 
increases. Therefore, the results not only indicate the possible use of flow sensing for 
localization in hydrodynamically diverse structured environments but also demonstrate 
the potential of flow sensing for incorporation into underwater navigation in conjunction 
with other sensing modalities such as sonar, vision, or DVLs.  

However, it is worth mentioning that the flow velocity estimation approach used 
(as well as, the rest of the proposed approaches) required a certain amount of time to 
provide accurate velocity estimates. This highlights one of the biggest problems that is 
necessary to overcome in order to apply ALLs in underwater robotics: real-time 
availability of estimates.  

Figure 2.18. Simulated map-based localization in 2D; σ = 0.20, 500 particles, 0.40h0, and 0.17 m3/s 
[39]. a) Initial state. b) 6th and 9th states. c) 16th and 25th states. d) Evolution of the localization 
error. 
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2.6. Summary and conclusions 
In this chapter, an absolute pressure sensor-based ALL that gathers the latest advances 
in pressure sensor-based ALLs is studied for hydrodynamic variable estimation.  
The analysis of classical relations to estimate flow velocity using pressure showed 
limitations for their use under real-world conditions. Therefore, to overcome these 
limitations new hydrodynamic variable estimation approaches were defined.  
The proposed approaches demonstrate accurate performance for the time-average 
velocity estimation as well as turbulence metrics. Concluding that by selecting correct 
features it is possible to find alternatives for hydrodynamic variable estimation when 
pressure sensor calibration procedures before each test are impossible and under a wide 
spectrum of hydrodynamic conditions. 

However, all the approaches defined need long signals (10 to 30 s) to estimate average 
hydrodynamic variables or their time series. The need of long signal for variable 
estimation limits the use of these approaches in applications such as the localization 
method proposed in Section 1.6. Additionally, these approaches have a significant 
empirical component and to apply them to other body shapes or sensor combinations, 
they will be required to run again for different test cases. 

Depth-dependency relation seems one of the major drawbacks of absolute pressure 
sensor-based ALLs. The contribution of the water column pressure in the sensor is usually 
more important than the velocity contribution that drives to low sensitivities when high 
depths are expected. This will limit the measurement of low velocities and increase the 
recording times to estimate them. In addition, the possible distortions from other 
factors, such as temperature, will be higher in sensors designed for higher pressure 
ranges.       

Considering the limitations encountered, the following chapter is focused on the 
design of a new ALL generation capable of surpassing the problems and limitations of 
previous designs through: (1) the increment of sensitivity using differential pressure 
sensors, (2) the reduction in the temperature exchange through the selection of a specific 
sensor, (3) the development of a differential pressure-velocity relation able to provide 
real-time velocity estimates, and (4) the selection of well-known body shapes that will 
allow an easier extrapolation of the findings and relations to other ALLs. 
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3. Development of differential pressure sensor-based ALLs 
In the previous chapter, it was concluded that absolute pressure sensor-based ALLs suffer 
from some drawbacks that could limit their usability in some applications and 
environments. For instance, in contrast to differential pressure sensors, absolute 
pressure sensors also measure pressure due to the water column height; therefore, 
applications in high depths may suffer from a sensitivity limitation. In the same way,  
it was found that, with the proposed approaches, real time estimation of variables was a 
difficult task (only available in some idealized conditions).  

This chapter shows how these limitations are partially overcome by designing a new 
ALL based on differential pressure sensors. For this, a novel approach that uses high 
sensitivity air differential pressure sensors was developed and tested. Moreover,  
a general relation between differential pressure sensor-based ALLs output and velocity 
was developed. This relation can provide accurate instantaneous estimates of velocity 
independently of the angle of attack of the body where the lateral line is applied. 

During the alternative analysis and design, basic engineering principles were 
considered to provide a solution that is easily adaptable to different target applications. 
This is demonstrated by applying the differential pressure sensor-based ALL to several 
prototypes (Appendix 5 and 8). 

3.1. Prototype development 
The development of the lateral line was distributed into two main steps: (1) shape 
selection and (2) sensor selection. 

3.1.1. Shape 
A common feature across most absolute pressure sensor-based ALLs listed in the 
introduction section is the absence of rules for shape selection. This makes it difficult for 
them to adapt to other possible devices and makes running new tests to model their 
performance necessary.  

For instance, the shape of the ALL used in the previous chapter (Chapter 2) was 
obtained from a 3D scan of a farm-raised rainbow trout (Onchorynchus mykiss). At first 
glance, this can be perceived as a good idea, as one of the motivations of the device was 
to evaluate the preferences of fish fauna. However, its biomechanics are completely 
different from that of a real fish [103]. Therefore, despite sharing a similar appearance, 
the interactions of the ALL with the fluid media remain different. Regardless of this,  
the main properties of interest were still preserved: (1) distributed sensing,  
(2) measurement of fluid-body interactions, and (3) high sampling frequency.  

In view of this, similar goals could be achieved using shapes that achieve a bigger grade 
of standardization. The use of well-known shapes would allow the translation of 
collected knowledge into new prototypes more easily. In this regard, two main target 
shapes were considered for the new design: NACA and circular shapes. Finally,  
the circular shape was considered for the preliminary tests because (1) they are one of 
the most studied shapes in fluid mechanics (Figure 3.1), (2) their geometrical 
characteristics provide an easier way to develop them, and (3) this shape is used in many 
target underwater applications (e.g. underwater robotics). 
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The fluid motion over circular shapes has been widely studied [104] as well as 
previously used for flow velocity estimation in aeronautics [75], [79] and in Fechheimer 
probes [105]. This provides a theoretical framework to develop our prototype and 
models. For instance, with the knowledge about the expected pressure distribution over 
the circular shape (Figure 3.1), we can select a priori the optimal positioning of the 
pressure sensors and know the effects of alternative positionings.  

3.1.2. Sensors and electronics 
As previously discussed, differential pressure sensors were selected due to the multiple 
advantages offered in contrast with absolute pressure sensors. However, one of the 
limitations of measuring pressure in water is the stiffness of the membranes used to 
ensure sensors’ water tightness. This stiffness creates difficulties for measurements in 
low-pressure ranges; thus, sensors with the following required characteristics are not 
commercially available: (1) differential, (2) small dimension, (3) small pressure range  
(<± 2000 Pa), (4) temperature compensated, and (5) water resistance.  

That being the case, to overcome these limitations, air pressure sensors capable of 
supporting high humidity concentrations, including a rigid vertical tubing system to 
ensure correct phase separation (i.e., water air separation), were proposed. 

The tube for phase separation opens the opportunity to use a wide range of 
differential pressure sensors. Table 3.1 shows electronic configurations tested and 
recommended for applications that aim to measure velocities up to 1.5–2 m/s. For these 
electronic combinations, no significant difference was observed [82]. In view of this, 

 

Figure 3.1. Pressure coefficient (Cp = 1–(v/vmax)2) distribution over a circular cylinder under laminar 
and turbulent air flows according to the angle (ϴ) from stagnation point (modified from [104]) [82]. 

 

Figure 3.2. Sketch of the solution used for phase separation. 
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analog sensors were selected as the final optimal alternative for our future prototypes as 
(1) they allow control of the amplification and sampling rate more easily, (2) the black-box 
effect of digital sensors is eliminated, (4) they are cheaper, and (3) their pressure range 
is optimal. 

Component Analog  Digital 
Microcontroller board Arduino Micro 
Pressure sensors MPXV7002 SSCDRRN005ND2A5 
Range ± 2000 Pa ± 1244 Pa 
Maximum pressure (PA > PB) 75000 Pa 4903.325 Pa 
Temperature sensor ADT7301 (13 bits) On-board 
Multiplexer - TCA9548A 
Analog to digital converter 16 bits–LTC1867 14 bits–on-board 
Resolution 0.0695 Pa 0.03 Pa 
Tested sampling frequency 200 Hz 100 Hz 
Maximum sampling 
frequency 

> 400 Hz 200 Hz 

 

3.1.3. First physical prototype 
Considering the above information, a first prototype was developed to probe the concept 
and to test the applicability of the proposed design and methods (Figure 3.3).  
This prototype consisted of a 3D-printed “bullet-shape” cover with an underwater box 
wherein the electronics as well as sensor ports were allocated. In this prototype, the 
sensor ports were connected to the front part of the bullet shape cover through silicon 
tubing. This design was conceptualized as modular to study the different pressure 
sensors and pressure port separations.  

The electronics tested in this design correspond to the digital alternative defined in 
Table 3.1. They were selected as the first testing alternative due to their higher 
sensitivity. Two sensors were used for this design. Each sensor’s first port was connected 

Table 3.1. Different electronics configurations recommended to develop prototypes [82]. 

 

Figure 3.3. The prototype used in the experiments (B-Box). The top cover has been removed to 
display the internal components. 
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to the nose plug through a T-connector (4, Figure 3.3). The second ports were tested 
under different angles in side ports, with one sensor on each side.  

A more detailed description of this first prototype can be found in [62] (Appendix 5). 

3.2. Performance evaluation  
The prototype was evaluated using the first scenario defined in Section 2.2 over a range 
of velocities from 0 to 0.5 m/s and 4 different angles of attack (0°, 15°, 30°, and 40°). 
Figure 3.4.a–b summarized the results of the first test. When the prototype faced the 
flow, the signal of both sensors (ΔP1 and ΔP2) was found to be equal; however, they 
changed accordingly when the angle of attack was modified. Considering the distribution 
of pressure in relation to the velocity during different angle configurations, the 
distribution can be defined by the conic function Eq. (3). 

 ( )= ∆ + ∆2 24
1 2U a P P   (3) 

where a is a coefficient that depends on the pressure sensor plug distribution. Ideally, 
when the second sensor plugs are subject to the freestream velocity (for cylinders 30°, 
Cp = 0, Figure 3.1), a will be equal to (2/ρ)2. Similarly, the pitot equation is apparent in 
the relation (for an angle of attack of 0°, ΔP1 = ΔP2, then Eq. (3) becomes Eq. (2)). 
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In Figure 3.4.c, the relationship between the estimated and observed velocity is 
presented, where test 1 was used to calibrate the model while test 2 was considered a 
replicate to validate the model (each velocity is subject to 4 angles of attack). Contrary 
to the observations from some of the approaches defined for the absolute pressure 
sensor (Figure 2.11), the low velocities have been correctly estimated. One of the reasons 
of the improvement of low velocities estimation is the increment of the system’s 
sensitivity. In the same way, it is possible to maintain at any depth this sensitivity due to 
the differential pressure. 

Similarly, due to the sensitivity and reduction of the noise sources, a smaller number 
of samples are required to reach a stable mean value of the velocity (Figure 3.4.d).  
The effective sampling rate for the mean velocity is > 10 Hz, a value that is far from that 
obtained in previously studied approaches (Figure 2.12) and opens the door for online 
applications of this technology. 

Additionally, only two pressure sensors and two variables were used to estimate the 
velocity and its fluctuations over time. With this reduction of hardware, the resources 
required to perform the same task, i.e., energy and computation power, are reduced. 
Similarly, the defined model gains a physical basis, and it will be possible to apply it to 
other prototypes. This has been confirmed in the multiple prototypes designed after the 
first one (Chapter 4).  

 

Figure 3.4. Summary of the experimental results [62]. a) Example of pressure distribution for each 
velocity (different steps of each graph) and for different angles of attack (only 1 second of the signal 
is shown). b) The result of all studied scenarios in the first run of experiments (second plugs 
connected at ± 60°, in Eq. (3) a = 1.32·10–6, R2 = 0.9641); c) Observed velocity against predicted 
velocity for all tests. d) Evolution of the mean absolute error as a function of increasing signal 
sampling duration. 



56 

Regarding the design, it is worth mentioning that the deployment of the system due 
to the interphase separation (air-water separation) will generate an offset that should be 
considered to obtain more accurate velocity estimations. For application in 
environmental monitoring, this offset has been dismissed, which has resulted in good 
results (Section 4.2), and for underwater vehicle applications (Section 4.1),  
the initialization protocols can be developed to calculate the offset before a mission.  

3.3. Developed ALLs prototypes  
After the first conceptual design, multiple prototypes were developed for their use in 
field applications. All the developed devices have been deployed successfully in field and 
have produced valuable data for different applications (e.g. turbulence estimation, fish 
habitat studies or underwater velocity estimation). 

3.3.1. D-Box 
D-Box is a compact field-ready flow measuring device that is not only able to sense the 
pressure differences on its body but also record them simultaneously. Its main field of 
application has been the turbulence calculation in hydropower intakes [83], [106].  
In order to achieve this, the prototype is equipped with 2 differential pressure sensors 
(0-4000 Pa MPXV5004) and one gauge pressure sensor (0 to 10000 Pa MPX5100GP) 
connected to an Arduino Uno with a datalogging shield (real time clock and SD card) and 
a battery that powers the device (Figure 3.5). 

3.3.2. iRon 
iRon is an ALL probe developed for environmental monitoring. The aim behind this idea 
is that ALL mimics, up to some extent, the sensory system used by fish; therefore, it could 
be a way to measure the flow characteristics from the fish’s perspective. iRon was scaled 
to the size of a barbel, a 0.22 m long NACA025 streamlined body. It can measure a 
stream-wise pressure gradient simultaneously using six differential pressure sensors 
(±2000 Pa MPXV7002) that are amplified by a 16-bits A/D converter (LTC1867). 
Additionally, the water depth is measured by the probe using a gauge pressure sensor  
(0 to 10000 Pa – MPX5010GP) (Figure 3.6). The device can measure up to 400 Hz. 

 

Figure 3.5. a) Electronical components of D-Box. b) Field deployment of D-Box. 
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3.3.3. DPSS 
The first generation of “Differential Pressure Sensor Speedometers” (DPSS) was designed 
to be used in torpedo-shaped AUVs with interchangeable heads (Figure 3.7). The device’s 
aim is to serve as an alternative for velocity measurement in AUVs. The hardware used 
inside the prototype consists of two differential pressure sensors (±2000 Pa MPXV7002) 
that are amplified by a 16-bits A/D converter (LTC1867) and 9 degrees of freedom inertial 
measurement unit (BNO055). Despite the apparent large dimensions of the device, due 
to the small size of the pressure sensors, the design and dimensions can easily be adapted 
to cover an expanded range of vehicle sizes and sensor head geometries. 

 

Figure 3.6. Lateral line probe (LLP) used to measure body-oriented pressure gradients. The NACA025 
body shape is outfitted with six differential pressure sensors (1 – 6) and one absolute (7) pressure 
sensor. a) Probe ready for its field use. b) Sketch of iRon. 

 

Figure 3.7. First version of the DPSS [82]. a) CAD design of the prototype. b) Side view of the real 
prototype. c) Comparison of the current platform against the static lab platform used for the 
preliminary results. d) Sensor box with pressure holes in red. 
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3.4. Summary and conclusions 
The new design concept developed, contrary to the absolute pressure sensor-based ALLs, 
seems to provide accurate estimations with a high sampling rate, allowing its application 
in real-time tasks. Similarly, due to the principles of differential pressure sensing,  
the same sensor can be used for different target depths. 

We have also encountered some limitations; for instance, the offset that is generated 
when the sensor is deployed in water. This issue must be considered differently in each 
application. 

The result of this first laboratory prototype (B-Box) has stimulated the development 
of other field prototypes. The research area is still open and is mainly focused on the field 
applicability of the technology. In Chapter 4, the field applicability is analyzed and 
discussed by means of concrete examples. For these, two main prototypes are used: iRon 
(the NACA shape prototype shown in Figure 3.6) and DPSS (the torpedo shape prototype 
in Figure 3.7). Both prototypes are part of ongoing projects at the Centre for Biorobotics. 
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4. Applications of differential pressure sensor-based ALLs  
The main goal of this research work was to provide methodologies and tools to allow the 
use of ALLs in diverse real-work applications. For this, it was concluded that classical 
absolute pressure sensor-based ALLs may suffer from some limitations. Therefore, 
differential pressure sensor-based artificial lateral lines were developed.  

The different prototypes developed (Chapter 3) have been successfully applied in 
field-oriented research works and have answered questions in fish behavioral studies as 
well as cover technological gaps in underwater robotic science.  

The following chapter summarizes the most relevant works performed with this 
technology. These works have been distributed in two groups according to their target 
application as well as the funding projects: 4.1) Underwater speedometry (Robocademy) 
and 4.2) Fish preferences (BONUS Fishview).  

4.1. Underwater velocity estimation 
The exploitation of the sensing capabilities of ALLs to perform localization of underwater 
vehicles can constitute an interesting alternative under structured environments 
(Section 2.5); regardless, this is subject to the availability of a priori maps [35], [39], [107] 
(Appendix 7). However, a more interesting alternative is presented by the exploitation of 
hydrodynamic sensing to collect information about the current state of the robot, for 
instance, to design obstacle avoidance protocols [61] or for velocity estimation to 
perform navigation [62], [82] (Appendix 8). 

The application of a differential pressure sensor-based ALL to estimate the velocity of 
an underwater vehicle would offer certain advantages in comparison to currently 
available technology (i.e. DVL [108]–[110] and acoustic Doppler profilers (ADCP) [111]). 
For instance, hydroacoustic-based systems are expensive, possess a large form factor, 
and have high energy consumption. For these reasons, they may not be suitable for use 
in small vehicles [45] or the developing market of low-cost vehicles [46].  

Considering this technological gap and our previous laboratory results [62] (Appendix 
5), a field-ready platform was developed to validate differential pressure sensor velocity 
estimation as a viable full-scale technology in autonomous underwater vehicles (AUV).  
A complete description of the development of the prototype can be found in [82] 
(Appendix 8). Figure 4.1 shows the differential pressure sensor speedometer (DPSS) 
developed for use in torpedo-shaped underwater vehicles (e.g. Sparus II [112]).  

 

Figure 4.1. DPSS for torpedo-shaped underwater vehicles. 
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The prototype was tested using two different electronic configurations (Table 3.1) and 
validated using a marine tow tank at the Small Craft Competence Centre in Kuressaare 
(Saaremaa, Estonia) under variable velocity (0–2 m/s) and acceleration conditions  
(0–2 m/s2) before its real field test (Table 4.1). The first velocity replicate was used for 
test and calibration while the other velocity replicate and both acceleration replicates 
were used for validation. 

Variables Replicates Tow tank carriage settings Number of experiments 

v (m/s) 2 
[0.01, 0.05] every 0.01 m/s 
[0.10, 0.50] every 0.10 m/s 
[0.75, 1.00] every 0.25 m/s 

64 

a (m/s2) 2 

[0.01, 0.05] every 0.01 m/s2 
[0.075] 
[0.10, 0.50] every 0.10 m/s2 
[0.75, 1.00] every 0.25 m/s2 

68 

 
Figure 4.2 shows the result of the tested acceleration conditions after the 

independent calibration process. The results demonstrate DPSS’s capability to correctly 
estimate the variable velocities of the carriage with an effective sampling rate higher 
than 10 Hz.  
 

Table 4.1. Conducted experiments. In each test, the target variable (velocity or acceleration) was 
held constant. 
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The major limitations of the DPSS are as follows:  
1. The need to calculate the constant offset (Chapter 3) after each deployment in 

water for a more accurate estimation of the velocity. 

2. The estimation of one-dimensional velocity (in contrast to the three-dimensional 
vector provided by the DVL or ADCP). 

3. In contrast to the DVL to-date, it is not possible to differentiate AUV velocity 
from water current velocity (as with ADCP). 

However, (1) the offset calculation can be implemented in the AUV before the mission 
starts; (2) further implementation of the prototype may lead to a higher dimensional 
velocity estimation; and (3) in contrast to DVL, there is no need for bottom tracking for 

 

Figure 4.2. Time series analysis of the velocity estimation in three scenarios for two electronic 
configurations studied (Table 3.1) [82]. Analog sensor: a) Acceleration of 0.02 m/s2, deceleration 
of 0.5 m/s2, and detail of the correction algorithm performance, b) Acceleration of 0.20 m/s2 and 
detail of velocity oscillation tracking, c) Acceleration of 2.00 m/s2. Digital sensor: d) Acceleration of 
0.02 m/s2, deceleration of 0.3 m/s2, and detail of velocity oscillation tracking, e) Acceleration of 
0.20 m/s2 and detail of the correction algorithm performance, f) Acceleration of 2.00 m/s2. 
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velocity estimation. Therefore, the technology presents high interest for applications 
when the use of hydroacoustic devices is not possible (applications limited by size and 
cost) and is complementary to other technologies (e.g. redundancy or current 
estimation).  

The final objective of the DPSS was its use in a real AUV; the tests were performed 
during the spring of 2017 (Figure 4.3). These results validated the use of DPSS in  
real-world robotic application; these results are submitted for publication and will not be 
covered in this thesis.  

4.2. Fish preferences 
Sometimes, mimicking animal and biological processes may facilitate an understanding 
of their functioning. Therefore, the bioinspired nature of ALLs can be useful to analyze 
fish’s behavior, sensing capabilities, and preferences. The first ALL that attempted to 
exploit this principle (Chapter 2) was developed in the BONUS Fishview project.  
The results using this device were promising but limited due to the drawback of absolute 
pressure sensors. This motivated the design of iRon, the first differential pressure  
sensor-based artificial lateral line probe (Figure 3.6).  

Now, several open works try to correlate iRon’s sensor measurements with fish 
behavior and hydraulic preferences. In this section, we will cover as example the ongoing 
research on the spatial preferences of Iberian barbel (Luciobarbus bocagey) in fishways 
[85]. 

The study and analysis of fish habitat preferences is usually based on the point 
measurements of the physical environment (e.g. time averaged velocity, water depth, 
substrate type, and underwater vegetation presence). This discretization may lead to an 
oversimplification of the hydrodynamic characteristics of the aquatic environment, 
mainly because these metrics (1) ignore the physical interactions between variables and 
(2) lack the temporal rate and the spatial scale at which fish experience the 
hydrodynamic stimuli.  

The artificial lateral lines sensing capabilities seem to be closer to the fish’s 
perspective when compared to the common techniques used for the measurement of 
flow hydrodynamic characteristics (e.g. ADV, propellers, etc.). ALLs perform as an  
all-in-one tool able to (1) perform simultaneous measurement distributed in space,  
(2) consider the interaction of the fluid with the body of the ALL (spatially distributed 
sensing) and the surrounding underwater environment (e.g. rocks, plants, walls, etc.), 
and (3) measure in a sampling rate higher than other field tools and in the same range of 

 

Figure 4.3. DPSS installed in Sparus II [112]; Preparation to perform final experiments. 
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the fish lateral line system. This may explain why ALLs have been successfully used to 
estimate hydrodynamic variables [13], [22], [23], [26] as well as to identify underwater 
objects and structures [31].  

To test our hypothesis that ALLs could characterize better the variability of the fish 
spatial selection, the distribution of the barbel in a fishway pool under different 
hydrodynamic scenarios was monitored. Afterwards, the observed fish positions were 
modeled using hydrodynamic variables from the LLP as well as variables from a ADV for 
comparison. 

Fishways are structures installed in river obstacles (e.g. dams or weirs) that connect 
the upstream headwater and downstream tailwater portions of rivers (Figure 4.4).  
They consist of a sloped channel divided by cross-walls into a series of pools that divide 
the overall drop into several smaller drops, making the fish passage possible. 

Under different headwater and tailwater conditions, fishways will present different 
hydrodynamics (i.e. different flow structure, velocities or turbulence levels) inside them, 
in turn, affecting the conditions that fish need to face and, therefore, potentially 
modifying their behavior and spatial selection. 

An indoor vertical slot fishway was selected to perform the experiments. Figure 4.5 
and Figure 4.6 illustrate the three scenarios considered as well as the target pool studied. 
The reader is referred to [85], [113] for more details of the experimental facility and 
setup. 

 

 

Figure 4.4. Example of a fishway. La Flecha, Spain. 

 

Figure 4.5. a) Cross section of the studied fishway and the three different water depth profiles 
studied [113]: (1) uniform profile (U), (2) non-uniform backwater profile (M1) and, non-uniform 
drawdown profile (M2). ΔZ is the slope different between two cross-walls, ΔH is water drop in  
cross-walls, h1 is the mean water depth upstream, and h2 is the mean water depth downstream.  
b) Pool dimensions. 



64 

In the past, fish’s spatial preferences in fishways were evaluated through widely used 
hydrodynamic variables, such as velocity, Reynold stress (τxy), turbulent kinetic energy 
(TKE), or turbulent intensity (TI) [36], [114]–[116]. These approaches have demonstrated 
a correlation with fish distribution and preferences; thus, they are generally used for 
environmental monitoring and assessment. The predictability of these variables was 
considered as a benchmark, and they were measured with a Vectrino 3D ADV  
(Nortek AS) (25 Hz). 

ALL raw pressure readings were combined to generate different meaningful variables, 
i.e., correlated with fish presence and interpretable. Table 4.2 summarizes the final 
variables selected. Frequency domain variables were left out of this study.  

 

Figure 4.6. Example of differences in flow structure measured with ADV between different 
hydrodynamic scenarios in the second pool starting from downstream of the structure represented 
in Figure 4.5 (modified from [85]). 
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The relevance of these variables has also been tested for another species, apart from 
the Iberian barbel, with different ecological traits, e.g. the Japanese eight-barbel loach 
(Lefua echigonia). In both cases, results demonstrated a good agreement of the ALL data 
with fish distribution or preference.  

Five fish were tracked in each scenario (15 fish in total). Their behavior within the pool 
was monitored continuously through two GoPro cameras on the side and on top of the 

Table 4.2. Pressure-based variables from LLP measurements. Where i is the sensor number, j the 
position of one value in the data string recorded with the LLP, and N the number of values in the 
signal string. All pressure (p) units in Pascals. 
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pool (Figure 4.5b). The synchronized side-top videos were used to situate the fish inside 
a 3D-structured grid obtaining a data stream of fish positions referenced to the 3D grid. 
The fish spatial usage was summed up per prism in the grid to obtain the fish counts of 
each one. In the same way, the ADV and ALL variables were averaged to the same 3D 
structured grid. Reader is referred to [85] for a deeper explanation of the methodology.  

To test the significance of the hydraulic variables in the fish spatial selection, 
generalized linear models (GLM) were used. The spatial distribution of fish inside the 
pool was found to follow an over-dispersed Poisson distribution, and so, a zero inflated 
Poisson model was applied.  

Model selection was performed through a two-step procedure. First, the highly 
correlated variables were eliminated to reduce multicollinearity. For this, a Spearman 
correlation threshold of > 0.75 was used. Next, the model selection was made only 
considering significant variables (p-value < 0.05). In addition to the hydrodynamic 
variables, two more variables were added to the analysis: the number of walls associated 
with each 3D volumes (Wall: 0, 1, 2 or 3) and tested scenarios (Case: U, M1 or M2, Figure 
4.5) as categorical variables. Table 4.3 summarizes the final models obtained for the ADV 
and the ALL data. 

Model  R2 MSE AIC 

ALL 

Poisson (Y≥1): Log(Y) = 1 + Wall* −1 6p  +  

+ Wall* −1 6'p  + Wall*Case + 12p *Case 
0.817 304.994 4550.94 

Binomial (Y<1): Log(Y) = 1 + −1 6p  + −1 6'p  +  
+ Wall + Case 

ADV 

Poisson (Y≥1): Log(Y) = 1 + TKE + Wall* τxy + 
+ u * τxy + Wall*Case 0.585 687.500 4838.47 

Binomial (Y<1): Log(Y) = TKE + Wall + Case + u  
Y: Number of observed fish in a certain position; Wall: number of walls in a certain position; 
Case: variable defining the hydraulic conditions. 

 
It is possible to see that the model generated by the ALL outperforms the ADV model. 

This might have happened not only because of the higher spatial dimensionality of the 
ALL (point vs body) but also because of the differences in temporal resolution (25 Hz vs 
200 Hz). iRon’s distributed sensing capability and its sampling rate make it possible to 
detect the complex spatial structures found in large-scale turbulent flows as well as  
wall-body gradients, which are difficult to detect using other point measuring devices. 
However, further studies are necessary to confirm these results and to establish more 
direct relations between body fluid pressure interaction and fish preferences. 

Table 4.3. Zero-inflated model using ALL and ADV [85].  
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4.3. Summary and conclusions 
The different problem-solving examples presented demonstrate the different 
possibilities offered by ALL technology as well as the performance of the technology and 
algorithms developed in Chapter 3.  

The lateral lines can be used to perform complex tasks; nevertheless, each task will 
require slightly different ALL configurations. While we only needed a couple of sensors 
facing the flow to estimate velocity, the presence of more sensors will allow better 
discrimination and characterization of the environment. This is useful to perform more 
complex tasks, such as localization or preference studies. 

Regarding underwater speedometry, we can conclude that the speedometry using 
differential pressure sensors is practical. The performed tests have provided results that 
validate this technology. However, it is possible to further develop it by increasing the 
number of sensors to estimate the velocity components and to exploit the distributed 
sensing capabilities as well as to design an all-in-one navigation system. 

In the case of fish preference results, these seem promising. However, more study 
cases are necessary as the current methodologies for fish preference and habitat 
modelling are well established in the ecohydraulics community. Thus, despite the results, 
in order to generate the same amount of data available with the classical approaches will 
require a tremendous effort. In this regard, the first step should be to validate the 
variables proposed for the different species and advance in their physical explanation.  
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Conclusions and future outlook 
The aim of this thesis has been to make possible the use of pressure sensor-based ALLs 
in laboratory and real-world applications, specifically in underwater robotics and 
underwater environmental studies. The structure of this research has been incremental 
and multidisciplinary, and the results and conclusions of each chapter have successively 
defined the following chapter. 

First, a detailed study of the current state-of-the-art of ALLs was performed, which 
resulted in the finding that gauge and absolute pressure sensors have been the most 
popular sensors used in ALLs. Furthermore, it was found that their usage is motivated by 
(1) the accessibility of pressure sensors, (2) their reliability, (3) their low cost, (4) their 
tested performance in other underwater application, and (5) the direct relations of 
pressure with some flow properties. These characteristics allow the rapid development 
of new prototypes in comparison with bespoke sensors. However, the review also 
revealed that the application of gauge and absolute pressure sensor-based ALLs have 
been limited to laboratory setups, considering ideal hydrodynamic conditions. 

After identifying the state of the art and key gaps in ALL implementation, the second 
step of this work consisted of a study of the classical approaches using this technology. 
This study revealed that absolute pressure sensor-based ALLs suffer from some 
limitations that made their application in the real world challenging [50]. Therefore, new 
methods were proposed for hydrodynamic variable estimation, considering diverse 
scenarios. These are: (1) a mixed approach [50], (2) statistical approaches [49], [51], and 
(3) neural network approach [1]. Each of the methods attempt to bypass the limitations 
using alternative features and they successfully demonstrate their performance under 
independent validation tests. Using the new features and methods, it is possible to 
obtain an accurate estimate of velocity and turbulence (R2 from 0.837 to 0.911 absolute 
errors from 0.07 to 0.11 m/s for velocity estimates). In the same way, the mixed approach 
has been successfully applied to define a conceptual application of ALLs in map-based 
localization problems for AUVs [39].  

However, all the alternative features defined required long sampling durations  
(10–30 s) for their calculation. Despite the fact that recovering the original sampling rate 
offline is possible [50], this invalidates the absolute pressure sensor-based ALLs in  
real-time applications. For this reason, differential pressure sensor-based ALLs are 
proposed as an alternative. A novel method was proposed, tested and validated for their 
design and creation [62]. This new class of ALL shows that it is possible to achieve the 
flow velocity estimation in real time (10 Hz). In the same way, the higher sensitivities 
improved the estimation of low flow velocities and made possible the detection of 
smaller flow events. Likewise, the higher replicability of the design principles (in shape, 
sensors, and methods), when compared to previous technologies, has enabled designing 
different prototypes using the same working principles (B-Box [62], D-Box [83], [106], 
iRon [85], [87] or DPSS[82]).  

This new technology has been successfully applied in two very different disciplines: 
underwater robotics and fish ecohydraulics preference studies.  

In underwater robotics, the sensor was used for speedometry [62], [82]. Testing in 
both laboratory and field conditions validated this technology for velocity estimation.  
It was found to provide a potentially new and cost-effective alternative for devices where 
it is not possible to use other classical velocity estimation approaches (e.g. DVL) due to 
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their size or cost or a complement for redundancy or flow current estimation in devices 
with other velocity estimation technologies. 

The results from fish preference analyses also provided encouraging results [85], [87]. 
The bioinspired nature of the ALLs seems to have the potential to characterize fish 
preferences better than conventional technologies [85]. However, the current 
technology used for fish preference assessments has been the benchmark for decades, 
and, thus, all the gathered information is comparable using those technologies and 
methods. Therefore, to make the application of ALL beneficial as well as to demonstrate 
its improved performance, it is necessary to offer case studies that can be used as 
reference points. 

Future outlook  
The evolution of artificial lateral lines has only just begun. By demonstrating their 
applicability in real-world case studies, further research and development is expected. 
However, some challenges remain:  

• Offset. The new generation of ALLs developed during Chapter 3 can increase the 
sensitivity as a result of the use of air pressure sensors. However, to use these 
sensors, it is necessary to use a tubing system for phase separation. This tubing is 
open and filled with air; thus, whenever it is deployed into the water, the amount of 
air inside may change, causing a different offset in the sensors each time. This offset 
is small, and even though it is not relevant in some applications, for others, such 
estimation of low velocities is essential.  

• The elimination of this offset will be possible using wet/wet sensors that can be 
directly exposed to the fluid. However, wet/wet sensors with the required sensitivity 
are currently not commercially available or not available with a suitable housing or 
design. The best and most interesting alternative is DP86 [117], but this is not as 
sensitive as the alternative proposed in the thesis (0 to 6894.76 Pa); they are bulky, 
expensive (224.44€ against 10.67€, eu.mouser.com) and have a shape that is difficult 
to adapt into our applications. Nevertheless, the technology used in this sensor may 
give some clues about possible advances in sensors that can be used to develop a 
new generation of high sensitivity wet/wet sensors.  

• Data fusion. All the developed prototypes are subject to disturbances not directly 
related to pressure, such as body fluctuations or sensor body orientations that may 
generate unwanted pressure fluctuations. Considering these disturbances, the 
combination of an inertial measurement unit in conjunction with the pressure 
signals may facilitate the development of a filter algorithm or models that can 
further improve the performance of the developed ALLs. To develop this, filter tests 
under controlled environment must be done – first, considering experiment with our 
disturbances, and, later, under controlled disturbances. 

• Spatial distribution. To estimate the velocity in Chapter 3, we proposed an optimal 
distribution of pressure sensors in the front part of the spherical shapes. However, 
this technology can perform other sensing tasks, such as the detection of walls 
proposed in [61]. Moreover, with a correct distribution, it may have the potential to 
estimate all the components of the velocity vector. To achieve this, further research 
of the sensor distribution over the body is necessary – first, by approaching with 
simulated models, and later, through controlled experiments. 
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• Physics. To better understand the measurements that we perform with the new 
differential pressure sensor-based ALLs, it is necessary to develop a controlled 
experiment as the ones conducted with absolute pressure sensors in past years.  
This would facilitate our understanding of the variables defined in Table 4.2 or help 
developing more significant ones for all the possible applications of the differential 
pressure sensor-based ALLs. 

• Sensitivity. Even if we increase the sensitivity, the estimation of low velocities will 
present problems. Natural underwater environments have many pressure sources 
that are detected by the pressure sensors. Thus, even if we can make measurements 
with a high level of sensitivity, low velocities will produce very small pressures that 
will be masked by those noise sources. This is one of the limitations of pressure 
sensors that we will need to accommodate.  

• Interdisciplinary collaboration. As has been observed in the studies conducted, the 
ALLs applications cover different scientific fields. Therefore, to produce conclusive 
results, collaboration with other disciplines is necessary. This will allow a better 
understanding of the technology, allowing for further performance improvements.  



71 

References 
[1] J. A. Tuhtan, J. F. Fuentes-Pérez, G. Toming, and M. Kruusmaa, “Flow velocity 

estimation using a fish-shaped lateral line probe with product-moment 
correlation features and a neural network,” Flow Meas. Instrum., vol. 54,  
pp. 1–8, Apr. 2017. 

[2] D. E. Dombroski and J. P. Crimaldi, “The accuracy of acoustic Doppler velocimetry 
measurements in turbulent boundary layer flows over a smooth bedclose,” 
Limnol. Oceanogr. Methods, vol. 5, no. 1, pp. 23–33, 2007. 

[3] N. Mori, T. Suzuki, and S. Kakuno, “Noise of acoustic Doppler velocimeter data in 
bubbly flows,” J. Eng. Mech., vol. 133, no. 1, pp. 122–125, 2007. 

[4] B. J. MacVicar, E. Beaulieu, V. Champagne, and A. G. Roy, “Measuring water 
velocity in highly turbulent flows: field tests of an electromagnetic current meter 
(ECM) and an acoustic Doppler velocimeter (ADV),” Earth Surf. Process. 
Landforms, vol. 32, no. 9, pp. 1412–1432, 2007. 

[5] T. M. Hammond, C. B. Pattiaratchi, M. J. Osborne, and M. Collins, “Field and flume 
comparisons of the modified and standard (Savonius-rotor) Aanderaa self-recording 
current meters,” Dtsch. Hydrogr. Zeitschrift, vol. 39, no. 2, pp. 41–63, 1986. 

[6] C. L. Cook and D. J. Coughlin, “Rainbow trout Oncorhynchus mykiss consume  
less energy when swimming near obstructions,” J. Fish Biol., vol. 77, no. 7,  
pp. 1716–1723, 2010. 

[7] Y. Yang et al., “Artificial lateral line with biomimetic neuromasts to emulate fish 
sensing,” Bioinspir. Biomim., vol. 5, no. 1, p. 16001, 2010. 

[8] S. M. van Netten and M. J. McHenry, “The biophysics of the fish lateral line,” in 
The Lateral Line System, Springer, 2013, pp. 99–119. 

[9] R. Venturelli et al., “Hydrodynamic pressure sensing with an artificial lateral line 
in steady and unsteady flows,” Bioinspir. Biomim., vol. 7, no. 3, p. 36004, 2012. 

[10] N. Chen, J. Chen, J. Engel, S. Pandya, C. Tucker, and C. Liu, “Development and 
characterization of high sensitivity bioinspired artificial haircell sensor,” Proc. 
Solid-State Sensors, Actuators, Microsystems Work., 2006. 

[11] A. Klein and H. Bleckmann, “Determination of object position, vortex shedding 
frequency and flow velocity using artificial lateral line canals,” Beilstein J. 
Nanotechnol., vol. 2, no. 1, pp. 276–283, 2011. 

[12] A. T. Abdulsadda and X. Tan, “An artificial lateral line system using IPMC sensor 
arrays,” Int. J. Smart Nano Mater., vol. 3, no. 3, pp. 226–242, 2012. 

[13] T. Salumäe and M. Kruusmaa, “Flow-relative control of an underwater robot,” 
Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 469, no. 2153, p. 20120671, 2013. 

[14] Y. Yang, N. Chen, C. Tucker, J. Engel, S. Pandya, and C. Liu, “From artificial hair 
cell sensor to artificial lateral line system: development and application,” in IEEE 
20th International Conference on Micro Electro Mechanical Systems, MEMS 
2007, 2007, pp. 577–580. 

[15] J. J. Van Baar, M. Dijkstra, R. J. Wiegerink, T. S. J. Lammerink, and G. J. M. Krijnen, 
“Fabrication of arrays of artificial hairs for complex flow pattern recognition,” in 
Sensors, 2003. Proceedings of IEEE, 2003, vol. 1, pp. 332–336. 

[16] A. M. K. Dagamseh, C. M. Bruinink, H. Droogendijk, R. J. Wiegerink, T. S. J. 
Lammerink, and G. J. M. Krijnen, “Engineering of biomimetic hair-flow sensor 
arrays dedicated to high-resolution flow field measurements,” in Sensors, 2010 
IEEE, 2010, pp. 2251–2254. 



72 

[17] A. G. P. Kottapalli, M. Asadnia, J. M. Miao, G. Barbastathis, and M. S. 
Triantafyllou, “A flexible liquid crystal polymer MEMS pressure sensor array for 
fish-like underwater sensing,” Smart Mater. Struct., vol. 21, no. 11, p. 115030, 
2012. 

[18] V. I. Fernandez, S. M. Hou, F. S. Hover, J. H. Lang, and M. S. Triantafyllou, 
“Development and application of distributed MEMS pressure sensor array for 
AUV object avoidance,” Massachusetts Institute of Technology. Sea Grant 
College Program, 2009. 

[19] J. Chen, J. Engel, N. Chen, S. Pandya, S. Coombs, and C. Liu, “Artificial lateral line 
and hydrodynamic object tracking,” in 19th IEEE International Conference on 
Micro Electro Mechanical Systems, MEMS 2006, 2006, pp. 694–697. 

[20] Y. Yang et al., “Distant touch hydrodynamic imaging with an artificial lateral line,” 
Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 50, pp. 18891–18895, 2006. 

[21] A. T. Abdulsadda and X. Tan, “Underwater source localization using an IPMC-
based artificial lateral line,” in IEEE International Conference on Robotics and 
Automation, ICRA 2011, 2011, pp. 2719–2724. 

[22] L. DeVries, F. D. Lagor, H. Lei, X. Tan, and D. A. Paley, “Distributed flow estimation 
and closed-loop control of an underwater vehicle with a multi-modal artificial 
lateral line,” Bioinspir. Biomim., vol. 10, no. 2, p. 25002, 2015. 

[23] V. I. Fernandez, “Performance analysis for lateral-line-inspired sensor arrays,” 
DTIC Document, 2011. 

[24] J. Ježov, Pressure sensitive lateral line for underwater robot. Tallinn: TUT Press, 
2013. 

[25] T. Salumäe, Flow-sensitive Robotic Fish: From Concept to Experiments. Tallinn: 
TUT Press, 2015. 

[26] M. Kruusmaa, G. Toming, T. Salumae, J. Jezov, and A. Ernits, “Swimming speed 
control and on-board flow sensing of an artificial trout,” in IEEE International 
Conference on Robotics and Automation, ICRA 2011, 2011, pp. 1791–1796. 

[27] W. Wang, Y. Li, X. Zhang, C. Wang, S. Chen, and G. Xie, “Speed Evaluation of a 
Freely Swimming Robotic Fish with an Artificial Lateral Line,” in IEEE International 
Conference on Robotics and Automation, ICRA 2016, 2016, pp. 1–6. 

[28] V. I. Fernandez, A. Maertens, F. M. Yaul, J. Dahl, J. H. Lang, and M. S. Triantafyllou, 
“Lateral-line-inspired sensor arrays for navigation and object identification,” 
Mar. Technol. Soc. J., vol. 45, no. 4, pp. 130–146, 2011. 

[29] L. D. Chambers et al., “A fish perspective: detecting flow features while moving 
using an artificial lateral line in steady and unsteady flow,” J. R. Soc. Interface, 
vol. 11, no. 99, p. 20140467, 2014. 

[30] W. Wang, X. Zhang, J. Zhao, and G. Xie, “Sensing the neighboring robot  
by the artificial lateral line of a bio-inspired robotic fish,” in Intelligent  
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, 2015,  
pp. 1565–1570. 

[31] N. Muhammad, N. Strokina, G. Toming, J. Tuhtan, J. K. Kämäräinen, and  
M. Kruusmaa, “Flow feature extraction for underwater robot localization: 
preliminary results.,” in IEEE International Conference on Robotics and 
Automation, ICRA 2015, 2015, pp. 1125–1130. 

[32] J. Tuhtan, N. Strokina, G. Toming, N. Muhammad, M. Kruusmaa, and  
J.-K. Kämäräinen, “Hydrodynamic classification of natural flows using an artificial 
lateral line and frequency domain feature.,” in IAHR World Congress, 2015. 



73 

[33] T. Salumäe, I. Ranó, O. Akanyeti, and M. Kruusmaa, “Against the flow: A 
Braitenberg controller for a fish robot,” in IEEE International Conference on 
Robotics and Automation, ICRA 2012, 2012, pp. 4210–4215. 

[34] X. Zheng, C. Wang, R. Fan, and G. Xie, “Artificial lateral line based local sensing 
between two adjacent robotic fish,” Bioinspir. Biomim., vol. 13, no. 1, p. 16002, 
2017. 

[35] N. Muhammad, G. Toming, J. A. Tuhtan, M. Musall, and M. Kruusmaa, 
“Underwater map-based localization using flow features,” Auton. Robots, vol. 41, 
no. 2, pp. 417–436, 2017. 

[36] A. T. Silva, J. M. Santos, M. T. Ferreira, A. N. Pinheiro, and C. Katopodis, “Effects 
of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus 
bocagei, Steindachner 1864) in an experimental pool-type fishway,” River Res. 
Appl., vol. 27, pp. 360–373, 2011. 

[37] N. Lamouroux, H. Capra, M. Pouilly, and Y. Souchon, “Fish habitat preferences in 
large streams of southern France,” Freshw. Biol., vol. 42, no. 4, pp. 673–687, 
1999. 

[38] A. Gao and M. Triantafyllou, Bio-inspired pressure sensing for active yaw control 
of underwater vehicles. IEEE, 2012. 

[39] J. F. Fuentes-Pérez et al., “Map-based localization in structured underwater 
environment using simulated hydrodynamic maps,” in IEEE ROBIO 2017, 2017. 

[40] K. Streitlien, G. S. Triantafyllou, and M. S. Triantafyllou, “Efficient foil propulsion 
through vortex control,” Aiaa J., vol. 34, no. 11, pp. 2315–2319, 1996. 

[41] D. S. Barrett, M. S. Triantafyllou, D. K. P. Yue, M. A. Grosenbaugh, and M. J. 
Wolfgang, “Drag reduction in fish-like locomotion,” J. Fluid Mech., vol. 392,  
pp. 183–212, 1999. 

[42] M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, “Review of fish swimming modes 
for aquatic locomotion,” IEEE J. Ocean. Eng., vol. 24, no. 2, pp. 237–252, 1999. 

[43] Ø. Hegrenæs and E. Berglund, “Doppler Water-Track Aided Inertial Navigation 
for Autonomous Underwater Vehicle,” in OCEANS 2009 - EUROPE, 2009,  
pp. 1–10. 

[44] R. McEwen, H. Thomas, D. Weber, and F. Psota, “Performance of an AUV 
navigation system at arctic latitudes,” IEEE J. Ocean. Eng., vol. 30, no. 2,  
pp. 443–454, 2005. 

[45] T. Salumäe et al., “Design principle of a biomimetic underwater robot U-CAT,” 
2014, pp. 1–5. 

[46] O. A. Viquez, E. M. Fischell, N. R. Rypkema, and H. Schmidt, “Design of a General 
Autonomy Payload for Low-Cost AUV R & D,” in IEEE/OES AUV, 2016,  
pp. 151–155. 

[47] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, 
“Underwater gliders for ocean research,” Mar. Technol. Soc. J., vol. 38, no. 2,  
pp. 73–84, 2004. 

[48] C. Wang, W. Wang, and G. Xie, “Speed estimation for robotic fish using onboard 
artificial lateral line and inertial measurement unit,” in 2015 IEEE ROBIO, 2015, 
pp. 285–290. 

[49] K. Chen et al., “Estimation of flow turbulence metrics with a lateral line probe 
and regression,” IEEE Trans. Instrum. Meas., vol. 66, no. 4, pp. 651–660, 2017. 

[50] J. F. Fuentes-Pérez et al., “Current velocity estimation using a lateral line probe,” 
Ecol. Eng., vol. 85, pp. 296–300, 2015. 



74 

[51] N. Strokina, J.-K. Kamarainen, J. A. Tuhtan, J. F. Fuentes-Pérez, and M. Kruusmaa, 
“Joint Estimation of Bulk Flow Velocity and Angle Using a Lateral Line Probe,” 
Instrum. Meas. IEEE Trans., vol. 65, no. 3, 2016. 

[52] S. Coomb, P. Görner, and H. Munz, Mechanosensory Lateral Line System. Springer 
Science & Business Media, 2012. 

[53] S. Coombs, C. B. Braun, and B. Donovan, “The orienting response of Lake 
Michigan mottled sculpin is mediated by canal neuromasts,” J. Exp. Biol., vol. 204, 
no. Pt 2, pp. 337–348, 2001. 

[54] E.-S. Hassan, H. Abdel-Latif, and R. Biebricher, “Studies on the effects of Ca2 and 
Co on the swimming behavior of the blind Mexican cave fish,” J. Comp. Physiol. 
A, vol. 171, no. 3, pp. 413–419, 1992. 

[55] J. C. Montgomery, C. F. Baker, and A. G. Carton, “The lateral line can mediate 
rheotaxis in fish,” Nature, vol. 389, no. 6654, pp. 960–963, 1997. 

[56] T. J. Pitcher, B. L. Partridge, and C. S. Wardle, “A blind fish can school,” Science, 
vol. 194, no. 4268, pp. 963–965, 1976. 

[57] S. Dijkgraaf, “The functioning and significance of the lateral-line organs,” Biol. 
Rev., vol. 38, no. 1, pp. 51–105, 1963. 

[58] S. P. Windsor and M. J. McHenry, “The influence of viscous hydrodynamics on 
the fish lateral-line system,” Integr. Comp. Biol., vol. 49, no. 6, pp. 691–701, 2009. 

[59] Z. Fan, J. Chen, J. Zou, D. Bullen, C. Liu, and F. Delcomyn, “Design and fabrication 
of artificial lateral line flow sensors,” J. Micromechanics Microengineering, vol. 
12, no. 5, p. 655, 2002. 

[60] K. Nelson and K. Mohseni, “An artificial fish lateral line sensory system composed 
of modular pressure sensor blocks,” in Robotics and Automation (ICRA), 2017 
IEEE International Conference on, 2017, pp. 4914–4919. 

[61] Y. Xu and K. Mohseni, “A Pressure Sensory System Inspired by the Fish Lateral 
Line: Hydrodynamic Force Estimation and Wall Detection,” IEEE J. Ocean. Eng., 
2016. 

[62] J. F. Fuentes-Pérez, K. Kalev, J. A. Tuhtan, and M. Kruusmaa, “Underwater vehicle 
speedometry using differential pressure sensors: Preliminary results,” in 
IEEE/OES AUV, 2016, p. 6. 

[63] J. Ježov, O. Akanyeti, L. D. Chambers, and M. Kruusmaa, “Sensing oscillations in 
unsteady flow for better robotic swimming efficiency,” in Systems, Man, and 
Cybernetics (SMC), 2012 IEEE International Conference on, 2012, pp. 91–96. 

[64] J. A. Tuhtan et al., “Man-made flows from a fish’s perspective: autonomous 
classification of turbulent fishway flows with field data collected using an 
artificial lateral line,” Bioinspir. Biomim., 2018. 

[65] O. Akanyeti et al., “Self-motion effects on hydrodynamic pressure sensing: part 
I. Forward–backward motion,” Bioinspir. Biomim., vol. 8, no. 2, p. 26001, 2013. 

[66] Tradesparq, “MS5540C Pressure Sensor Miniature Barometer Module,” 2018. 
[Online]. Available: http://www.tradesparq.com/products/2299461/MS5540C-
Pressure-Sensor-Miniature-Barometer-Module-manufacturers. 

[67] E. J. Denton and J. A. B. Gray, “Mechanical factors in the excitation of the lateral 
lines of fishes,” in Sensory biology of aquatic animals, Springer, 1988,  
pp. 595–617. 

[68] J. A. Tuhtan et al., “Design and application of a fish-shaped lateral line probe for 
flow measurement,” Rev. Sci. Instrum., vol. 045110, no. 4, pp. 1–8, 2016. 

 



75 

[69] J. A. Tuhtan, J. F. Fuentes-Pérez, G. Toming, M. Schneider, and M. Schletterer, “A 
fish is not a point: Analyses of innatura hydrodynamic signatures in fish migration 
facilities, using a fish-shaped lateral line probe,” WasserWirtschaft, vol. 108, no. 
2–3, pp. 48–53, 2018. 

[70] D. Xu, H. Zeng, J. Liu, and J. Wang, “Hydrodynamic analysis with an artificial 
lateral line of robotic fish,” in Industrial Electronics and Applications (ICIEA), 2017 
12th IEEE Conference on, 2017, pp. 1380–1385. 

[71] M. Ji, Y. Zhang, X. Zheng, G. Liu, and J. Qiu, “A fish-shaped minimal prototype of 
lateral line system based on pressure sensing,” in Mechatronics and Automation 
(ICMA), 2017 IEEE International Conference on, 2017, pp. 596–601. 

[72] X. Zheng et al., “Underwater Positioning Based on an Artificial Lateral Line  
and a Generalized Regression Neural Network,” J. Bionic Eng., vol. 15, no. 5,  
pp. 883–893, 2018. 

[73] G. Liu et al., “Research on Flow Field Perception Based on Artificial Lateral Line 
Sensor System,” Sensors, vol. 18, no. 3, p. 838, 2018. 

[74] FistSensor, “Understanding the difference between absolute, gage and 
differential pressure,” 2017. [Online]. Available: https://www.first-
sensor.com/en/products/pressure-sensors/pressure-sensors-and-
transmitters/pressure-types.html. 

[75] E. Ower and R. C. Pankhurst, The measurement of air flow. Elsevier, 2014. 
[76] A. H. Glaser, “The pitot cylinder as a static pressure probe in turbulent flow,”  

J. Sci. Instrum., vol. 29, no. 7, p. 219, 1952. 
[77] K. H. Beij, “Aircraft Speed Instruments,” 1933. 
[78] E. N. Brown, C. A. Friehe, and D. H. Lenschow, “The use of pressure fluctuations 

on the nose of an aircraft for measuring air motion,” J. Clim. Appl. Meteorol.,  
vol. 22, no. 1, pp. 171–180, 1983. 

[79] J. Hacker and T. Crawford, “The BAT-probe: The ultimate tool to measure 
turbulence from any kind of aircraft (or sailplane),” Tech. Soar., vol. 23, no. 2,  
pp. 43–46, 1999. 

[80] K. E. Garman et al., “An Airborne and Wind Tunnel Evaluation of a Wind 
Turbulence Measurement System for Aircraft-Based Flux Measurements*,”  
J. Atmos. Ocean. Technol., vol. 23, no. 12, pp. 1696–1708, 2006. 

[81] A. Al Makky, “http://cfd2012.com/pitot-tube.html,” 2012. [Online]. Available: 
http://cfd2012.com/pitot-tube.html. 

[82] J. F. Fuentes-Pérez et al., “Differential Pressure Sensors for Underwater 
Speedometry in Variable Velocity and Acceleration Conditions,” IEEE J. Ocean. 
Eng., 2018. 

[83] M. Schletterer, H. Götsch, J. A. Tuhtan, J. F. Fuentes-Pérez, and M. Kruusmaaa, 
“More than depth: developing pressure sensing systems for aquatic 
environments. More than depth: developing pressure sensing systems for 
aquatic environments,” in HydroSenSoft, International Symposium and Exhibition 
on Hydro-Environment Sensors and Software., 2017. 

[84] M. J. Costa, J. F. Fuentes-Pérez, I. Boavida, J. A. Tuhtan, and A. N. Pinheiro, “Fish 
under pressure: examining behavioural responses of Iberian barbel under 
simulated hydropeaking with instream structures,” PloS one (Under Rev., 2018. 

[85] J. F. Fuentes-Pérez, M. Eckert, J. A. Tuhtan, M. T. Ferreira, M. Kruusmaa, and  
P. Branco, “Spatial preferences of Iberian barbel in a vertical slot fishway under 
variable hydrodynamic scenarios,” Ecol. Eng., vol. 125, pp. 131–142, Dec. 2018. 



76 

[86] J. F. Fuentes-Pérez, J. A. Tuhtan, P. Branco, M. Eckert, M. T. Ferreira, and  
M. Kruusmaa, “A 3D data-driven approach to study the hydrodynamic 
preferences of fish in fishways,” in International Symposium of Ecohydraulics 
2018, 2018. 

[87] M. J. Costa, J. F. Fuentes-Pérez, I. Boavida, J. A. Tuhtan, and A. N. Pinheiro, 
“Behaviour responses of Iberian barbel to simulated hydropeaking event: effects 
of instream structures and fluid body interactions,” in International Symposium 
of Ecohydraulics 2018, 2018. 

[88] K. Nelson and K. Mohseni, “Design of a 3-D Printed, Modular Lateral Line Sensory 
System for Hydrodynamic Force Estimation,” Mar. Technol. Soc. J., vol. 51, no. 5, 
pp. 103–115, 2017. 

[89] S. Pandya, Y. Yang, D. L. Jones, J. Engel, and C. Liu, “Multisensor processing 
algorithms for underwater dipole localization and tracking using MEMS artificial 
lateral-line sensors,” EURASIP J. Adv. Signal Process., vol. 2006, 2006. 

[90] N. Nguyen, D. L. Jones, Y. Yang, and C. Liu, “Flow vision for autonomous 
underwater vehicles via an artificial lateral line,” EURASIP J. Adv. Signal Process., 
vol. 2011, p. 9, 2011. 

[91] Q. Zhu, K. Zhong, and G. Xie, “Speed estimation for robotic fish based on pressure 
sensor,” in Control and Decision Conference (2014 CCDC), The 26th Chinese, 2014, 
pp. 2714–2718. 

[92] W. Wang, D. Gu, and G. Xie, “Autonomous Optimization of Swimming Gait in a 
Fish Robot With Multiple Onboard Sensors,” IEEE Trans. Syst. Man, Cybern. Syst., 
2017. 

[93] L. Paull, S. S. Saeedi, M. Seto, and H. H. H. Li, “AUV navigation and localization:  
A review,” Ocean. Eng. IEEE J., vol. 39, no. 1, pp. 131–149, 2014. 

[94] D. Bernoulli, Hydrodynamica: sive de viribus et motibus fluidorum commentarii. 
1738. 

[95] M. Kabaciński and J. Pospolita, “Numerical and experimental research on new 
cross-sections of averaging Pitot tubes,” Flow Meas. Instrum., vol. 19, no. 1,  
pp. 17–27, 2008. 

[96] A. B. Dubois, G. A. Cavagna, and R. S. Fox, “Pressure distribution on the body 
surface of swimming fish,” J.Exp.Biol, vol. 60, pp. 581–591, 1974. 

[97] J. F. Fuentes-Pérez et al., “3D modelling of non-uniform and turbulent flow in 
vertical slot fishways,” Environ. Model. Softw., vol. 99, 2018. 

[98] J. Wolf, W. Burgard, and H. Burkhardt, “Robust vision-based localization by 
combining an image-retrieval system with Monte Carlo localization,” Robot. IEEE 
Trans., vol. 21, no. 2, pp. 208–216, 2005. 

[99] A. Huster, S. D. Fleischer, and S. Rock, “Demonstration of a vision-based dead-
reckoning system for navigation of an underwater vehicle,” in Autonomous 
Underwater Vehicles, 1998. AUV’98. Proceedings of the 1998 Workshop on, 1998, 
pp. 185–189. 

[100] M. Carreras, P. Ridao, R. García, and T. Nicosevici, “Vision-based localization of 
an underwater robot in a structured environment,” in IEEE International 
Conference on Robotics and Automation, ICRA 2003, 2003, vol. 1, pp. 971–976. 

[101] D. Forouher, J. Hartmann, M. Litza, and E. Maehle, “Sonar-based fastslam in an 
underwater environment using walls as features,” in Advanced Robotics (ICAR), 
2011 15th International Conference on, 2011, pp. 588–593. 

 



77 

[102] A. Mallios, P. Ridao, D. Ribas, M. Carreras, and R. Camilli, “Toward autonomous 
exploration in confined underwater environments,” J. F. Robot., vol. 33, no. 7, 
pp. 994–1012, 2016. 

[103] O. Akanyeti, P. J. M. Thornycroft, G. V Lauder, Y. R. Yanagitsuru, A. N. Peterson, 
and J. C. Liao, “Fish optimize sensing and respiration during undulatory 
swimming,” Nat. Commun., vol. 7, 2016. 

[104] J. D. Anderson Jr, Fundamentals of aerodynamics. Tata McGraw-Hill Education, 
2010. 

[105] A. K. Gupta, A. K. Gupta, and D. G. Lilley, Flowfield modeling and diagnostics, vol. 
4. Taylor & Francis, 1985. 

[106] M. Schmidt, J. Tuhtan, and M. Schletterer, “Hydroacoustic and Pressure 
Turbulence Analysis for the Assessment of Fish Presence and Behavior Upstream 
of a Vertical Trash Rack at a Run-of-River Hydropower Plant,” Appl. Sci., vol. 8, 
no. 10, p. 1723, 2018. 

[107] N. Muhammad, J. F. Fuentes-Pérez, J. A. Tuhtan, G. Toming, M. Musall, and  
M. Kruusmaa, “Map-based localization and loop-closure detection from a moving 
underwater platform using flow features,” Auton. Robots, pp. 1–16, 2018. 

[108] G. Grenon, P. E. An, S. M. Smith, and A. J. Healey, “Enhancement of the inertial 
navigation system for the Morpheus autonomous underwater vehicles,” IEEE J. 
Ocean. Eng., vol. 26, no. 4, pp. 548–560, 2001. 

[109] L. Whitcomb and D. Yoerger, “Towards Precision Robotic Maneuvering , Survey , 
and Manipulation in Unstructured Undersea Environments 1 Introduction,” 
Dana, vol. 8, pp. 45–54, 1998. 

[110] B. Jalving, K. Gade, K. Svartveit, A. Willumsen, and R. Sørhagen, “DVL Velocity 
Aiding in the HUGIN 1000 Integrated Inertial Navigation System,” Model. Identif. 
Control, vol. 25, no. 4, pp. 223–235, 2004. 

[111] D. A. Fong and N. L. Jones, “Evaluation of AUV-based ADCP measurements,” 
Limnol. Oceanogr. methods, vol. 4, no. 3, pp. 58–67, 2006. 

[112] M. Carreras et al., “Sparus II, design of a lightweight hovering AUV,” in 
International Workshop on Marine Technology, 2013. 

[113] J. F. Fuentes-Pérez et al., “Hydraulics of vertical slot fishways: Non-uniform 
profiles,” J. Hydraul. Eng., 2019. 

[114] C. M. Alexandre et al., “Use of electromyogram telemetry to assess the behavior 
of the Iberian barbel (Luciobarbus bocagei Steindachnert, 1864) in a pool-type 
fishway,” Ecol. Eng., vol. 51, pp. 191–202, 2013. 

[115] F. Romão et al., “Passage performance of two cyprinids with different ecological 
traits in a fishway with distinct vertical slot configurations,” Ecol. Eng., vol. 105, 
pp. 180–188, 2017. 

[116] J. M. Santos et al., “Ecohydraulics of pool-type fishways: getting past the 
barriers,” Ecol. Eng., vol. 48, pp. 38–50, 2012. 

[117] J. N. Moum, “Ocean speed and turbulence measurements using pitot-static tubes 
on moorings,” J. Atmos. Ocean. Technol., vol. 32, no. 7, pp. 1400–1413, 2015. 

 



78 

Acknowledgements 
I would like to express my sincere gratitude to my supervisors Professor Maarja 
Kruusmaa and Dr. Eng. Jeffrey A. Tuhtan. They have given me this opportunity and 
without their guidance, ideas, support, critical feedback, knowledge and trust this work 
would not have been possible. Thank you. 

I would like to thank all the partners and collaborators involved in this research and 
especially my colleagues at the Centre for Biorobotics, not only because of everything 
they have taught me but also because they made the cold and dark winters of Estonia 
warm and shiny. 

The research presented in this thesis was funded by: 
• The ROBOCADEMY training and research network (608096) funded by the 

European Union’s Seventh Programme,  
• The FISHVIEW project funded from BONUS, the joint Baltic Sea Research and 

Development Programme (Art 185), funded jointly by the European Union’s 
Seventh Programme for research, technological development and 
demonstration, and by the Academy of Finland (under the grant 280715), the 
German Federal Ministry for Education and Research (BMBF FKZ:03F0687A) and 
the Estonian Environmental Investment Centre (KIK P.7254 C.3255)  

• IUT (IUT33-9) institutional research funding of the Estonian Ministry of 
Education and Research. 

• FIThydro project funded by European Union’s H2020 research and innovation 
program under grant agreement No. 727830. 

• “Bioinspired flow sensing” Estonian Research Council grant (PUT1690) 
• “Octavo” Estonian base financing grant (No. B53).  
• The Archimedes Foundation. 
Finally, I want to thank my family and friends for always being there for me. 

  



79 

Abstract 
Flow Sensing with Pressure Sensor-Based Artificial Lateral 
Lines: from the Laboratory to the Field 
Natural water flows range from the massive ocean currents driven by changes in global 
winds and temperature to the tiny vortices formed by pebbles in a stream. Accordingly, 
aquatic organisms have adapted to natural flows by developing an impressive array of 
underwater sensing techniques. Among the best understood of these advanced 
biological flow sensing organs is the fish’s octavolaterais afferent system, commonly 
referred to as the “lateral line” because it runs along the sides of the fish’s body.  
The biological lateral line contributes to many different fish behaviors including 
rheotaxis, schooling, predator and obstacle avoidance and prey localization. Its efficiency 
and utility under the broad range and complexity of natural flows has inspired 
researchers to develop the artificial lateral line (ALL). Large-scale implementation of ALLs 
can provide new ways of measuring and classifying natural water flows, provide insights 
into the physical characteristics of aquatic habitats and improve the sensing abilities of 
underwater robots. However, the current applications of ALLs have been limited to 
laboratory conditions.  

The aim of this thesis is to free the ALL from the laboratory, creating a new type of 
field-ready ALL which can be used in environmental studies and in underwater robotics. 
Consequently, this thesis is a highly multidisciplinary work at the frontier of robotics, 
bioinspired flow sensing, ecology and hydraulics. The aim has been achieved in three 
steps, following an incremental development. 

In the first step (Chapter 2), a state-of-the-art absolute pressure sensor based ALL was 
studied. The evaluation of ALL performance revealed critical limitations for its use in  
real-world conditions. To overcome these limitations, new algorithms and semi-empirical 
relations to estimate water flow variables (water velocity and turbulence) were 
experimentally determined. These new methods, in contrast to existing ALL approaches, 
provide accurate estimations of the variables independently of calibration procedures, 
including angular deviations of the ALL. The newly developed algorithms and relations 
enable the ALL to function under a broader spectrum of hydrodynamic conditions, 
including field measurements. However, a major drawback of the achievements of the 
first research step is the requirement that the data be evaluated in post-processing, 
prohibiting the use of ALL under real-time conditions.  

Real-time state estimation is crucial for ALL applications in underwater robotics, 
where decisions must be taken in response to a fast-changing environment. Therefore, 
the second step (Chapter 3) was the development of a new generation of real-time ALLs 
using a novel method based on high sensitivity air differential pressure sensors.  
This method overcomes the previous technological constraints suffered by absolute 
pressure sensors. The differential ALL includes auto-calibration, an improvement in 
depth-dependent sensitivity as well as the removal of diurnal barometric pressure 
changes. The output of the second development step was the creation of a real-time, 
differential ALL. Furthermore, through testing and validation of this new ALL,  
a generalized empirical relation was produced, capable of providing accurate 
instantaneous estimates of velocity independent of the angle of attack. A major finding 
of the second step was that differential, air-based ALLs allow for an improvement in 
sensitivity of 10,000% over the state-of-the-art total pressure devices used in step 1. 
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The development of the differential ALL solved the major drawbacks identified in step 
one using absolute pressure sensors. Therefore, the final step (Chapter 4) consists of  
real-world applications including calibration, testing and validation. Specifically, two 
applications were considered (1) real-time velocity estimation for underwater robots and 
(2) characterization of hydraulic fish preferences in a vertical slot fishway. In both cases, 
the performance of the proposed ALLs with ground truth datasets was assessed to show 
their performance and to demonstrate the improvements over the state-of-the-art. 

The results of this work provide four major contributions to the field of ALL research:  
1. Design and implementation of new methods to use absolute pressure  

sensor-based ALLs able to function under a broader spectrum of hydrodynamic 
conditions, including field measurements. 

2. Development of a novel method for using high sensitivity air differential 
pressure sensors in artificial lateral lines. 

3. Enabling real-time ALL velocity estimations (> 10 Hz) suitable for use in 
underwater robots in addition to improve several ALL functional characteristics, 
including sensitivity, reduction of atmospheric noise and power consumption  
(< 10 mW) as well as the overall payload size and mass. 

4. Creation of a field-ready flow measurement tool capable of better hydraulic fish 
preference estimates (R2 = 0.817) than a standard acoustic Doppler velocimeter 
(R2 = 0.585). This may be explained by the distributed sensing capabilities and 
the higher sampling rate of the ALLs (25 Hz vs 200 Hz). However, further studies 
are necessary to confirm these results and establish direct relations. 
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Lühikokkuvõte 
Veevoolu tajumine rõhusensoritel baseeruvate 
küljejooneanduritega: laborist välikatseteni 
Looduslik vee liikumine varieerub globaalsetest temperatuuri- ning tuulemõjust 
põhjustatud hoovustest kuni väikeste jõevoolus kividelt eralduvate keeristeni. Vastavalt 
on ka vees elavatel liikidel looduslike veevooludega adapteerumiseks arenenud 
märkimisväärne ampluaa erinevaid veevoolu tajumise tehnikaid. Üheks enim uuritud 
bioloogiliseks veevoolu tajuvaks organiks on kalade octavolaterais afferent system, 
nimetatakse tihti ka „küljejooneorganiks“ kuna paikneb piki kala külgi. Küljejooneorgani 
abil saavad kalad teostada erinevaid käitumismustreid nagu vastuvoolu ujumine, parves 
liikumine, röövlooma ning takistuse vältimine ning saaklooma tuvastamine. Selle 
meetodid efektiivsus ning kasu erineva keerukusega veevooludes on inspireerinud 
teadlasi arendama kunstlikku küljejooneandurit (KKA). KKA-i laialdasema rakendamine 
võimaldaks uudselt teostada naturaalsete veevoolude mõõtmisi ning klassifitseerimist, 
võimaldaks uurida veeliikide elukeskkondi ning parandada veealuste robotite 
tajumisvõimet. Paraku KKA rakendused piirnenud seni laborikatsetega. 

Antud väitekirja eesmärgiks on vabastada KKA-d laboritingimustest, luues selleks 
keskkonnauuringute ning veealuse robootika tarvis välitingimustesse sobiva KKA. Andud 
väitekiri on seetõttu ka tugevalt interdistsiplinaarne, ühendades omavahel robootika, 
bioloogiast inspireeritud sensoorika, ökoloogia ning hüdrodünaamika. Töö eesmärkideni 
jõuti kolme sammuga, järgides inkrementaalse arenduse põhimõtet. 

Esimese sammuna (2. peatükk) uuriti absoluutrõhusensoritel baseeruvaid state-of-art 
KKA tööd. Esmane KKA evaluatsioon tõi välja kriitilised piirangud praktiliste rakenduse 
teostamiseks. Antud piirangute ületamiseks töötati välja uued algoritmid ning leiti 
katseliselt, pool-empiiriliselt seosed veevoolu suuruste (kiiruse ja turbulentsuse) 
hindamiseks. Antud uued meetodid, võrreldes olemasolevate KKA meetoditega, 
võimaldavad veevoolu täpselt määrata sõltumata kalibreerimisprotseduurist ning 
veevoolu suuna kõrvalekalletest. Pakutud uued algoritmid ning meetodid laiendavad 
KKA-te rakendusvaldkondi hüdrodünaamikas, kaasa arvatud katsetel välitingimustes. 
Esimese lähenduse suurimaks puuduseks oli andmete järeltöötluse vajadus, mis ei 
võimaldanud KKA-st lugemeid saada mõõtmiste tegemisel hetkel. 

Reaalajas andmete saamine on oluline KKA veealuse robootika rakendustes, kus 
otsuseid tuleb vastu võtta vastavalt muutuvale keskkonnale. Seetõttu sai teiseks 
uurimissammuks antud töös (3. peatükk) tundlikel  ning kiiretel õhudiferentsiaal-
rõhusensoritel baseeruvate uudsete reaalaja KKA-te arendamine. Antud arendus 
eemaldas ka puudused ning piirangud, mis tulenesid esimeses lähenduses kasutatud 
absoluutrõhusensoritest. Diferentsiaal KKA omab automaatset kalibratsiooni, 
parendatud sügavusest ning välisrõhu muutusest sõltumatut tundlikust. Teise 
arendusetapi tulemusena valmis reaalajas toimiv diferentsiaal-KKA. Lisaks sellele, 
testimise ning valideerimise tulemusena saadi empiiriline mudel, mis annab täpseid 
hetkkiiruse lugemeid sõltumata voolusuunanurga kõrvalekalletest. Üheks suurimaks 
saavutuseks teises arendusfaasis võib pidada asjaolu, et õhudiferentsiaal-sensoritel 
baseeruva KKA-ga tõsteti tundlikkust 10000% võrreldes esimeses arendusetapis 
kasutatud absoluutrõhusensoritel baseeruva lahendusega. 

Diferentsiaal-KKA-ga lahendati probleemid, mis ilmnesid esimeses lähenduses 
kasutatud absoluutrõhuanduritega. Seega viimase sammuna (4. peatükis) antud töös 
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keskendutakse rakendusetele koos kalibreerimise, testimise ning valideerimisega. 
Täpsemalt toodi välja kaks rakendusvaldkonda, (1) reaalajas veealuste robotite kiiruse 
hindamine ning (2) kalade hüdrauliliste eelistuste iseloomustamine vertikaalsete 
piludega kalapääsudes. Mõlema valdkonna puhul võrreldi KKA sooritust etalonandmete 
vastu ning näidati pakutud lahenduse edasiarenduse ulatust võrreldes olemasolevate 
meetoditega. 

Antud töö tulemused annavad neli suuremat panust KKA teadustöösse; 
1. Absoluutrõhusensoritel baseeruvate KKA-te uudsete metoodikate arendus ning 

kasutuselevõtt laiendamaks nende rakendusvaldkondi hüdrodünaamikas ning 
välitingimustes. 

2. Uudse kõrge tundlikkusega õhu-diferentsiaalrõhusensoritel baseeruva kunstliku 
kala-küljejooneanduri väljatöötamine. 

3. KKA-ga reaalajas veevoolu kiiruse mõõtmismetoodika teostus (>10 Hz), mis on 
rakendatav allveerobootikas. Lisaks mitme KKA funktsionaalse aspekti 
parendamine, sealhulgas tundlikkuse tõstmine, atmosfäärist tingitud müra ning 
energia tarbimise (< 10mW) vähendamine, seadme suuruse ning kaalu 
alandamine. 

4. Välitingimustesse sobiliku veevoolu mõõtmisvahendi loomine, mis võimaldab 
hinnata kalade hüdraulilisi eelistusi (R2 = 0.817) paremini kui standardina 
kasutatav akustiline Doppleri kiirusmõõtja (R2 = 0.585). Antud asjaolu on 
seletatav KKA hajutatud mõõtmismeetodi ning kõrgema 
diskreetimissagedusega (25 Hz vs 200 Hz). Antud väite kinnitamiseks ning 
otseste seoste loomiseks on siiski vaja läbi viia täiendavaid uuringuid. 
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