
Network-Based Hardware Accelerators for
Parallel Data Processing

ARTJOM RJABOV

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C126

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

This dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and Systems Engineering on July 31, 2017.

Supervisors: Dr. Aleksander Sudnitsõn
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia
Prof. Valery Sklyarov,
Dr. Iouliia Skliarova
University of Aveiro
Aveiro, Portugal

Opponents: Prof. Dr. Radomir Stankovic
University of Niš, Serbia

Dr. Johnny Öberg
KTH Royal Institute of Technology, Sweden

Defence of the thesis: [August 31, 2017, Tallinn]

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

/Artjom Rjabov/

Copyright: Artjom Rjabov, 2017
ISSN 1406-4731
ISBN 978-9949-83-132-6 (publication)
ISBN 978-9949-83-133-3 (PDF)

INFORMAATIKA JA S TEHNIKA C126ÜSTEEMI

Võrgupõhised riistvarakiirendid
paralleelseks andmetöötluseks

ARTJOM RJABOV

5

TABLE OF CONTENTS

LIST OF PUBLICATIONS ... 7

AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS 8

OTHER RELATED PUBLICATIONS ...9

Abbreviations ... 10

1. Introduction .. 12

1.1. Motivation ... 12

1.2. Problem formulation.. 13

1.3. Contributions ... 14

1.4. Thesis Organization ... 15

2. Related works ...16

2.1. Sorting ... 16

2.2. Partial sorting .. 20

2.3. Frequent items encountering ... 21

2.4. Search problems .. 21

2.5. Hamming weight ... 22

2.6. Hamming distance ... 23

2.7. Practical applications ... 24

2.8. Summary ... 26

3. Network-based solutions for parallel data and vector processing 27

3.1. Data sorting ... 27

3.2. Partial sorting and minimum/maximum subset extraction 36

3.3. Hamming Weight .. 47

3.4. Matrix covering ... 48

3.5. Summary ... 52

4. HardwARE/SOFTWARE CO-DESIGN ... 53

4.1. PS/PL system ... 53

4.2. FPGA-based system with host PC ... 61

4.3. Three-level system .. 63

4.4. Summary ... 65

5. Experiments ... 66

6

5.1. Data sorting ... 66

5.2. Partial sorting .. 75

5.3. Hamming weight and matrix covering .. 81

5.4. Summary ... 83

6. Conclusions .. 84

6.1. Future Work .. 86

References .. 87

ACKNOWLEDGEMENTS ... 100

ABSTRACT .. 101

KOKKUVÕTTE .. 102

APPENDIX A: Implementation of Parallel Operations over Streams in
Extensible Processing Platforms. ..103

APPENDIX B: Fast Matrix Covering in All Programmable Systems-on-Chip
 ...109

APPENDIX C: Processing Sorted Subsets in a Multi-level Reconfigurable
Computing System ..115

APPENDIX D: Zynq-based System for Extracting Sorted Subsets from Large
Data Sets ...121

APPENDIX E: Hardware-based systems for partial sorting of streaming data
 ...135

APPENDIX F: High-performance Information Processing in Distributed
Computing Systems ..141

APPENDIX G: Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems165
APPENDIX H: RAM-based mergers for data sort and frequent item
computation ..183
APPENDIX I: Fast Iterative Circuits and RAM-based Mergers to Accelerate
Data Sort in Software/Hardware Systems ...191
CURRICULUM VITAE .. 206

ELULOOKIRJELDUS .. 207

7

LIST OF PUBLICATIONS
The work of this thesis is based on the following publications:

A Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2017). Fast
Iterative Circuits and RAM-based Mergers to Accelerate Data Sort in
Software/Hardware Systems, Proceedings of the Estonian Academy of
Sciences, 66 (3), 323-335.

B Rjabov, A.; Sklyarov, V.; Skliarova, I.; Sudnitson, A. (2017). RAM-
based mergers for data sort and frequent item computation. Conforence
on Information and Communication Technology, Electronics and
Microelectronics (MIPRO2017), Opatija, Croatia, May 22-26, 2017,
IEEE.

C Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2016).
Computing Sorted Subsets for Data Processing in Communicating
Software/Hardware Control Systems. International Journal of
Computers Communications & Control, 11 (1), 126−141,
10.15837/ijccc.2016.1.

D Sklyarov, V.; Rjabov, A.; Skliarova, I.; Sudnitson, A. (2016). High-
performance Information Processing in Distributed Computing
Systems. International Journal of Innovative Computing, Information
and Control, 12 (1), 139−160.

E Artjom Rjabov (2016). Hardware-based systems for partial sorting of
streaming data. 15th Biennial Baltic Electronics Conference
(BEC2016), Tallinn, Estonia, October 3-5, 2016. IEEE, 59−62.

F Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2015). Zynq-
based System for Extracting Sorted Subsets from Large Data Sets.
Journal of Microelectronics, Electronic Components and Materials, 45,
142−152.

G Rjabov, A.; Sklyarov, V.; Skliarova, I.; Sudnitson, A. (2015).
Processing Sorted Subsets in a Multi-level Reconfigurable Computing
System. Elektronika ir Elektrotechnika, 21 (2), 30−33,
10.5755/j01.eee.21.2.11509.

H Skliarova, I.; Sklyarov, V.; Rjabov, A.; Sudnitson, A. (2014). Fast
Matrix Covering in All Programmable Systems-on-Chip. Elektronika ir
Elektrotechnika, 20 (5), 150−153.

I Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2013).
Implementation of Parallel Operations over Streams in Extensible
Processing Platforms. The 56th IEEE International Midwest
Symposium on Circuits and Systems (IEEE MWSCAS 2013),
Columbus, Ohio, USA, August 4-7, 2013. IEEE, 852−855.

8

AUTHOR’S CONTRIBUTION TO THE
PUBLICATIONS

Contribution to the papers in this thesis are:

A The author participated in the decision-making process. The author
implemented all hardware and software components of the prototype
and conducted experiments. The author prepared the paper for
publication.

B The author developed the concept, implemented all software and
hardware components and conducted experiments. The author wrote
the paper and presented it at the conference

C The author developed the concept through numerous discussions with
the supervisors. The author executed necessary experiments. The
author prepared the paper for publication.

D The author participated in the decision-making process. The author
implemented proposed the system and ran experiments. The author
prepared the paper for publication.

E The author developed the concept, implemented, proposed and
investigated the system. The author executed the experiments. The
author prepared the paper for publication and presented it at the
conference.

F The author participated in the decision-making process. The author
implemented hardware and software parts of the proposed system. The
author executed the experiments. The author took part in the
preparation of the paper for publication.

G The author developed the concept. The author implemented hardware
and software components of the system. The author executed the
experiments. The author prepared the paper for publication.

H The author participated in the decision-making process. The author
implemented all hardware and software components of the prototype
and conducted experiments. The author took part in the preparation of
the paper for publication.

I The author participated in the decision-making process. The author
implemented the prototype. The author took part in the preparation of
the paper for publication.

9

OTHER RELATED PUBLICATIONS

 Rjabov, A.; Sudnitson, A.; Sklyarov, V.; Skliarova, I. (2016). Interactions
of Zynq-7000 devices with general purpose computers through PCI-
express: A case study. 18th Mediterranean Electrotechnical Conference
(MELECON), Lemesos, Cyprus, 18-20 April 2016. IEEE, 1−4.

 Sklyarov, V.; Skliarova, I.; Silva, J.; Sudnitson, A.; Rjabov, A. (2015).
Hardware Accelerators for Information Retrieval and Data Mining. 2015
International Conference on Information and Communication Technology
Research (ICTRC), Abu Dhabi, United Arab Emirates, May 17-19, 2015.
IEEE, 202−205.

 Sklyarov, V.; Skliarova, I.; Silva, J.; Rjabov, A.; Sudnitson, A.; Cardoso, C.
(2014). Hardware/Software Co-design for Programmable Systems-on-Chip.
TUT Press.

 Sklyarov, V.; Skliarova, I.; Silva, J.; Rjabov, A.; Sudnitson, A. (2014).
Application of Extensible Processing Platforms for Experiments with
FPGA-based Circuits. 2014 17th IEEE Mediterranean Electrotechnical
Conference (MELECON 2014), Beirut, Lebanon, Apr. 13-16, 2014. IEEE,
467−471.

 Skliarova, I.; Sklyarov, V.; Rjabov, A.; Sudnitson, A. (2014).
Hardware/Software Co-design in Extensible Processing Platforms for
Combinatorial Search Algorithms. 2014 17th IEEE Mediterranean
Electrotechnical Conference (MELECON 2014), Beirut, Lebanon, Apr. 13-
16, 2014. IEEE, 462−466.

 Mihhailov, D.; Rjabov, A.; Sklyarov, V.; Skliarova, I.; Sudnitson, A.
(2013). Optimization of Address-based Data Sorting Unit with External
Memory Support. International Conference on Computer Systems and
Technologies (CompSysTech 2013): International Conference on Computer
Systems and Technologies (CompSysTech 2013), Ruse Bulgaria, June 28-
29, 2013. ACM, 83−90. (ACM International Conference Proceeding Series;
767).

10

ABBREVIATIONS
AKS – a sorting algorithm. Named after its discoverers Ajtai, Komlós, and
Szemerédi

APSoC – All Programmable System on Chip

ASIC – Application-specific integrated circuit

AXI – Advanced eXtensible Interface

BCP – Boolean Constraint Propagation

BM – Bitonic Merge

BRAM – Block RAM

CAE – Compare and Exchange (C/S)

CDMA – Central DMA

CGA – Cellular Genetic Algorithm

C/S – Comparaton/Swapper, Comparator/Switch

CPU – Central Processing Unit

CU – Control Unit

CUDA – Compute Unified Device Architecture

DDR – Double Data Rate,

DMA – Direct Memory Access

DPLL – Algorithm for solving the boolean satisfiability problem, named after
its discoverers Davis–Putnam–Logemann–Loveland

EDA – Electronic Design Automation

FPGA – Field-Programmable Gate Array

FR – Feedback Register

FSM – Finite State Machine

GPC – General Purpose PC

GPU – Graphics Processing Unit

NP – Nondeterministic, Polynomial time

OCM – On-Chip Memory

OEM – Odd-Even merge algorithm

OETS – Odd-Even transposition sorter, Odd-Even transition sorter

PCI – Peripheral Component Interconnect

11

PCIe – PCI Express

PL – Programmable Logic

PS – Processing System

PUF – Physically Unclonable Functions

RAM – Random Access Memory

SAT – Boolean SATisfiability Problem

SIMD – Single Instruction, Multiple Data

SN – Sorting Network

VLSI – Very-large-scale integration

12

1. INTRODUCTION
The thesis explores methods of creating hardware accelerators for
computationally intensive and resource consuming problems. It also addresses
hardware/software co-design approaches for solving these tasks and studies
different reconfigurable platforms.

The introductory chapter presents the motivation behind the thesis, followed by
the problem formulation and the outline of main contributions. The last section
of this chapter is an overview of the thesis structure.

1.1. Motivation

Fast information processing is in very high demand in electronic,
environmental, medical, and biological applications. They frequently need to
process data streams produced by sensors and calculate certain parameters [1].
Signals from sensors may need to be filtered and analyzed to prevent error
conditions. To provide a more precise and reliable conclusion, combinations of
different values need to be extracted, ordered, and analyzed.

Many methods that are used to solve such problems possess the need for
parallel processing of data streams and high repetition of operations. Network-
based hardware accelerators for such systems allow to process very high
volumes of data simultaneously. The reconfigurable hardware platforms are
very appropriate for implementation of such systems because of their low cost,
flexibility, availability and many other advantages [2].

The use of reconfigurable technologies may help to overcome challenges that
the area of hardware design faces nowadays. By reconfigurable technologies we
commonly mean field-programmable gate arrays (FPGA) and programmable
systems on chip (PSoC). Those platforms allow the productivity to be increased
and time-to-market to be shortened, because of their relatively low cost and fast
development methodology. They may be used effectively for both production of
final products and design prototyping. New FPGAs constantly appearing on the
market permit to design faster and more complex systems. Recently released
multiprocessing systems, such as all-programmable ultra-scale PSoC, combine
multicore processors, graphical processors (GPU), real-time processors and
programmable logic providing us with the possibility to design embedded
systems with computational power comparable with that of general purpose
computers and lower power consumption [3].

13

1.2. Problem formulation

The current thesis is focused on network-based hardware accelerators for
parallel data processing in the areas or combinatorial search (e.g. Boolean
satisfiability and set/matrix covering) and data processing (e.g. sort, search and
frequent item computations).

Sorting and searching procedures are needed in numerous computing systems
[4]. They can be used efficiently for data extraction and ordering in information
processing. Some common problems that they apply to are (see also Figure 1.1):

1. Extracting sorted maximum/minimum subsets from a given set.
2. Filtering data, i.e. extracting subsets with values that fall within given

limits.
3. Dividing data items into subsets and finding the

minimum/maximum/average values in each subset, or sorting each subset.
4. Finding the value that is repeated most often, or finding the set of n values

that are repeated most often.
5. Removing all duplicated items from a given set.
6. Computing medians.
7. Solving the problems indicated in points 1-6 above for matrices (for

rows/columns of the matrices).

Figure 1.1 Common problems that are frequently solved in information processing
systems [5]

We target our results towards reconfigurable platforms because these devices
are regarded more and more as a universal platform that enables computational
algorithms to be significantly accelerated. The following known architectures

The maximum
sorted subset

The minimum
sorted subset

Sorted subset
between the given
maximum and
minimum values

The given set of data

Removing
repeated
items

Finding the
most repeated

item

Statistical data
manipulation

Data sort

Dividing into intervals and
finding the minimum/maximum/
average values in each interval

Interval 0 Interval V‐1

Filtering

14

are analyzed, compared, and explored in this work: 1) advanced FPGAs
incorporating embedded blocks (DSP slices, embedded cores, etc.) and
supported by existing soft cores; 2) programmable systems on chip (PSoC) that
enable on-chip interactions between an embedded processing multi-core system
and a reconfigurable logic with embedded blocks. The main idea is to select
problems from the areas listed above and evaluate effectiveness of different
architectures assuming also their potential combination in a new (proposed
architecture) that might be the most efficient.

1.3. Contributions

In this thesis, we present novel methods and hardware/software architectures for
acceleration of data sorting and merging, filtering and subset extraction, parallel
covering of matrices/sets, Hamming weight computation. The results are
presented in numerous recent publications. The proposed solutions
outperformed many known alternatives (and many of them by a significant
margin). Comparisons have been done with software only systems and other
known FPGA-based systems known from publications.

The main contributions of this thesis are summarized as follows:

 Hardware/software architectures for fast extraction of minimum and
maximum sorted subsets from large data sets and three methods of such
extractions based on highly parallel and easily scalable sorting networks.

o Three methods of subsets extraction.

o Filtering and very large subsets extraction

 Hardware/software architectures for data sorting that involve sorting and
merging operations.

o The solution based on hardware sorting with subsequent software
merging of sorted subsets using embedded processor of PSoC and
general purpose PC.

o The solution based on hardware sorting with subsequent hardware
merge of small sorted subsets with software merge of larger
subsets.

 Hamming weight/distance counters/comparators based on FPGA lookup
tables (LUTs).

 A novel technique for implementation of matrix/set covering algorithms in
hardware and software of recent all programmable systems-on-chip.

15

1.4. Thesis Organization

The remaining part of the thesis contains 5 chapters. Chapter 2 provides
background information on hardware parallel processing and network-based
design and makes a review of state-of-the-art in this area. It also contains a
survey of related works of the topics.

Chapter 3 contains descriptions of all proposed methods of data sorting and
merging, minimal and maximal subset extraction, Hamming weight calculation
and matrix covering.

Chapter 4 presents architectures of hardware/software co-design based on
FPGA, PSoC and general purpose PC. It also describes implementations of the
proposed methods using these approaches.

Chapter 5 provides experimental results of the proposed methods using
proposed hardware/software co-design approaches and contains comparison
with known alternatives.

Chapter 6 concludes the thesis and discusses the directions for the further
research.

16

2. RELATED WORKS
Highly parallel networks for sorting and searching enable numerous operations
to be executed simultaneously. They have been extensively studied in VLSI
area [6] [7]. These methods are very appropriate for devices which provide
massive parallelism like GPU [8] or FPGAs [9] and PSoCs. All these platforms
have their advantages and disadvantages. FPGA work on a relatively low speed,
but provide flexibility which makes it possible to develop optimized application
specific solutions. GPU usually work on much faster clock rates, but have fixed
architecture. Additional advantage of FPGA is much better energy efficiency.
GPU offer shorter development time, but recent high-level synthesis tools and
emerging of hybrid PSoC platforms reduced development time for FGPA as
well. Choosing the right platform is always a tradeoff between all these factors
[10] [11] [12] [13].

2.1. Sorting

Parallel algorithms for data sorting have been studied in computer science for
decades. There are many different parallel sorting algorithms [6]. Most notable
of them are Parallel QuickSort [14], Parallel Radix Sort [15], Sample Sort [16]
[17], Histogram Sort [18] and a family of algorithmic methods known as sorting
networks [19]. The latter present a great interest for hardware acceleration. A
sorting network is a set of vertical lines composed of comparators that can swap
data to change their positions in the input multi-item vector. The data propagate
through the lines from left to right to produce the sorted multi-item vector on
the outputs of the rightmost vertical line.

Compator/
Swapper

A

B

max(A,B)

min(A,B)

A

B

max(A,B)

min(A,B)

(a) (b)

Figure 2.1 (a) A comparator/swapper block. (b) A comparator/swapper block in Knuth
notation.

17

Sorting networks are composed solely from circuits known as
comparators/swappers (C/S) or “compare and exchange blocks” (CAE). Single
C/S unit is depicted in Figure 2.1(a). For inputs A and B the top output of C/S
gives us the result of the function max(A,B), and the bottom output gives
min(A,B). Figure 2.1(b) shows the most common way to represent sorting
networks – Knuth notation or Knuth diagram. This notation is used in the rest of
this work.

The problem of finding the optimal sorting network is a very well-known
problem in computer science and remains a subject of extensive research [20]
[21]. One of the most famous results on the sorting network depth was obtained
by Ajtai et al. in their AKS network [22]. However, further research showed
that more common merge sorting networks require less comparator layers than
this proposed network. AKS network is faster only for very large number of
inputs and it is impossible to implement a network of that size with modern
technology [6] [23].

(b)(a)

(c) (d)

Figure 2.2 Different sorting networks with 8 inputs: (a) “Butterfly network” version
of Bitonic sorting network. (b) Bitonic sorting network without reversal. (c) Odd-
even merge sorting network. (d) Odd-even transposition sorting network.

18

The majority of modern hardware sorting network implementations use more
practical even-odd and bitonic mergers invented by Kenneth E. Batcher [24]
[19]. Bitonic sorting network is based on sorting of bitonic sequence. It is a
sequence which monotonically increases and then monotonically decreases or
can be modified by circular shifting to become monotonically increasing and
decreasing. Original Batcher’s design of Bitonic network is shown in Figure
2.2(a). It utilizes “butterfly network” concept where C/S blocks swap data in
different direction. More common and intuitive representation of Bitonic
network is shown in Figure 2.2(b). In this version of sorter all comparators point
in the same direction. The rewiring was done based on the rule that every
sequence of two sorted sets can become Bitonic by reversing one of them.
Another Batcher’s sorting algorithm is Even-Odd Merge sort. It is based on
parallel merging of odd and even elements of two monotonic sequences with
subsequent applying the column of parallel comparators. Sorting network based
on Batcher’s Odd-Even Merge algorithm is shown in Figure 2.2(c).

Other types are rarer (see for example the comb sort [25] in [26], the bubble and
insertion sort in [27] [9]). Research efforts are concentrated mainly on networks
with a minimal depth or number of comparators and on co-design, rationally
splitting the problem between software and hardware. The regularity of the
circuits and interconnections are studied in [28] [29] [30] where networks with
iteratively reusable components were proposed.

A notable concept of sorting network design is a periodic network. The term has
been proposed by Schröder in [31]. This type of network consists of identical
sequences of comparators. The simplest and one of the most well-known
examples is Odd-Even Transition (also known as Odd-Even Transposition or
OETS) network depicted in Figure 2.2(d). It was proposed by Grasseli [32] and
Kautz [33] and proved by Knuth in [4]. Traditional implementation of OETS is
less efficient than Batcher’s networks, but it is more reliable and simpler.
Salloum and Wang proved that OETS has good fault-tolerant properties [34].

Hematian et al. proposed an optimized OETS network in [35]. They modified
the network by connecting the first and the last items together and thus making
the network in a ring shape. This approach reduces the total number of
comparisons. It is shown in [36] that very regular odd-even transition networks
with two sequentially reusable vertical lines of comparators are more practical
because they operate at a higher clock frequency and provide sufficient
throughput. These proposed improvements were developed with focus on
FPGA implementation.

Two of the most frequently investigated parallel sorters on FPGAs are based on
sorting [27] and linear [37] networks. Three types of sorting networks have
been studied: pure combinational (e.g. [27] [9] [29]), pipelined (e.g. [27] [9]
[29]), and combined (partially combinational and partially sequential) (e.g. [28]
[30]). The linear networks, which are often referred to as linear sorters [37],
take a sorted list and insert new incoming items in the proper positions. The
method is the same as the insertion sort [4] that compares a new item with all

19

the items in parallel, then inserts the new item at the appropriate position and
shifts the existing elements in the entire multi-item vector. Additional
capabilities of parallelization are demonstrated in the interleaved linear sorter
system proposed in [37]. The main problem with this is that it is applicable only
for small data sets (see, for example, the designs discussed in [37], which
accommodate only tens of items).

Sorting is a very computationally expensive and time consuming operation
which requires a lot of hardware resources. There are different approaches
proposed to overcome these limitations. Utilizing iterative networks with
reusable comparators permits to process significantly larger data sets. Another
two possibilities to get rid of these problems are utilization of a relatively small
parallel sorter along with a merging circuit or implementation a partial sorting.

Different approaches of hardware sorting units were studied by Marcelino et al.
in [38]. They implemented a hardware/software hybrid sorter with a sorting unit
based on insertion sorting algorithm and unbalanced merging unit. They also
utilized Batcher’s Even-Odd sorting network for software implementation and
experimented with different combinations of software (QuickSort, Even-Odd
network) and hardware (Insertion sorting, unbalanced merge). They also
discussed possibilities of using pipelined sorting networks and balanced
merging units.

Another hardware merger based on a partial Bitonic mergers form [39] was
proposed by Song et al. in [40]. They implemented a parallel pipelined merge
tree based on this concept which can merge simultaneously up to 32 sorted data
sets. Partial Bitonic sorters were used in their architecture instead of C/S blocks.
This approach significantly speeds up the merge operation, but also requires
more FPGA LUTs for the comparisons. Another advantage of their design in
comparison to other merge-tree implementations is that it eliminates the
intensive memory usage.

Chen and Prasanna in [41] proposed a hardware/software hybrid solution for
accelerating database operations using FPGA and CPU. Their sorting algorithm
is based on merge-sort algorithm where first few sorting stages are implemented
in FPGA as folded bitonic sorting networks. The rest of the algorithm is
implemented in CPU. The complete system was implemented in Xilinx Zynq
ZC7020 PSoC device. Their hardware/software algorithm achieved 3.1x faster
performance than software only (on the same CPU) performance.

GPU are also used for implementation of specific parallel algorithms such as
sorting networks [42]. Buck and Purcell showed how to implement bitonic
merge sort on GPU efficiently [43]. Kipfer and Westermann in [44]
demonstrated implementation of Even-Odd Merge sort and improved efficiency
of sorting by using full resources of GPU.

Greb and Zachmann in [45] presented a parallel sorting algorithm based on
bitonic sort for GPU implementation. They reported slightly better results than
previously published ones. Segupta et al. implemented radix-sort and quicksort

20

[46] [8]. Sintorn et al. also proposed implementation of QuickSort for GPU
[47]. Radix-sort by Segupta showed 50% faster performance than plain bitonic
sort. Quicksort implementation performed worse than sorting networks. Sintorn
and Assarsson developed a sorter for GPU based on merge sort with
introduction of partial quicksort and bucketsort sorting on the later stages of
merge network to over merge sort disadvantages. They report that their system
is 10% faster than GPU-based radix sort [48]. Satish et al. continued work on
radix-sort and reported that their results were the best for GPU at that time [49].
Their algorithm is included in NVIDIA CUDA SDK since version 2.2.
Leischner et al. proposed a comparison based GPU Sample sort which showed
better results in some cases [50]. Another combination of bitonic sort and
merging was proposed by Ye et al. in [51]. Their sorter performed faster than
previous comparison-based techniques, but slower than radix-sort. All these
solutions were developed for single GPU systems. Tanasic et al. proposed
merge-sort based sorter for multi-GPU systems [52].

2.2. Partial sorting

Parallel sorters are very efficient, but their implementation is always limited by
available resources. One of the possible solutions is to implement reduced
sorters for partial sorting, because in many practical cases only partial sorting is
needed. One of these cases is a maximum and minimum subsets finding.

The problem of finding subsets of minimum and maximum values is known, but
very low number of solutions exist. The majority of works in this area are
focused on finding 1 or 2 maximal or minimal values in data sets [53] [54] [55],
but only few works are focused on subsets.

Frarmahini-Farahani et al. investigated the problem of partial sorting and max-
set-selection in [39]. They proposed a modular design of a partial sorting system
based on Batcher’s Odd-Even and Bitonic sorting networks. Their system is
built on sorting blocks constructed from Batcher’s Odd-Even Merge (OEM) and
Bitonic sorting networks (BM), where bitonic sorters are reduced in order to get
sorted maximal (or minimal) subset. They also proposed an approach to select
unsorted maximal subset by replacing bitonic sorters with maximum selection
units. Their proposed system takes N=2n data items and extracts minimal or
maximal sorted subset of M=2m items, where n and m are whole numbers and
1≤M<N. In theory this technique is extendable to 2n-to-2m size. Also they
proposed an architecture for iterative max selection units that can potentially
work with data streams. Another solution of this problem was developed by
Biroli and Wang in [56]. Their approach is not based on sorting networks, but
still uses parallel comparators. They applied fast circuit topologies for single
max/min value search by Goren et al. [54] to find a subset of the largest or
smallest values. In contradiction to Frarmahini-Farahani they didn’t use
Batcher’s networks. Both works focused on finding relatively small subsets.

21

The work by Frarmahini-Farahani is more suitable to deal with large subsets,
but its expansion will lead to large area consumption.

Another example of partial sorting application is a classification problem [57]
[58] (sometimes it is called simply „partial sorting“ [59] [60]). Bertrossi et al.
proposed a classifying network in [61]. They developed two algorithms based
on Leighton’s Columnsort algorithm [23] which is based on sorting networks.
The comparators in their designs were replaced by the classifying circuits [62].
They proved the efficiency of Columnsort algorithm for the classification
problem solving. The classifying network based solutions showed better results
than the traditional columnsort with comparator-based sorting networks.

2.3. Frequent items encountering

The majority of frequent item encountering techniques are software-based.
Different algorithms and techniques were studied and compared in [63] by
Cormode et al.

Teubner et al. suggested to use FPGAs in [64] and [65]. They proposed three
different hardware designs with various trade-offs for the frequent item search.
The first proposed solution is an almost straightforward hardware
implementation of software Space-Saving algorithm with min-heap data
structure in RAM blocks for data storage. The second solution is also based on
the same algorithm, but instead of BRAMs with min-heap structure they used
two search trees implemented in lookup tables in order to get rid of min-heap
sorting. This approach showed significantly better results for relatively small
amounts of data, but execution performance dropped with growing sizes of the
circuit. In order to overcome the drawbacks of the second solution they decided
to reduce the number of connections by using an array for the data storage,
where each data is only connected to its two neighbors. The pipelined circuit of
their third solution choses the best results in terms of performance and
scalability. They achieved throughput four times higher than the best published
result.

Shi et al. in [66] implemented a hardware accelerator for frequent item intersect
algorithm Eclat. They designed a comparator network for two data vectors
comparison. This circuit acts as a fragment of the algorithm merge part.
According to their experimental result this approach showed from 6x to 26.7x
speedup of the algorithm to the best software implementation existed.

2.4. Search problems

Examples of combinatorial search are matrix/set covering, the Boolean
satisfiability (SAT), graph coloring and others. Many tasks are NP-complete
and, thus, they are time consuming [67].

22

Given the broad applicability of SAT solvers, there has been much effort
devoted to exploring efficient search strategies [68] [69] [70]. The majority of
SAT solvers are based on the classic sequential Davis-Putham-Logemann-
Loveland (DPLL) algorithm and its derivations. In recent years many parallel
SAT solvers emerged [71]. Moreover, given the ease of parallelization of some
parts of proposed algorithms, there has been much interest in the hardware
implementation of SAT solvers. Large study of available hardware solvers was
done by Skliarova and Ferrari in [72]. They also proposed their own novel
hardware solver that utilizes matrix representation of Boolean functions.

Since then a few new approaches were suggested. Kanazawa and Maruyama
developed a parallel hardware solver based on WSAT search algorithm. The
circuit can be described as a network of buffers and clause elevators. The
algorithm runs as many independent tries as possible and evaluates only clauses
that are possibly unsatisfied by a flipping of a variable [73] [74].

Gulati et al. proposed a hardware SAT solver with the problem partitioning for
ASIC in [75] and FPGA in [76]. Their FSM-based circuit performs the traversal
of the implication graph and the conflict clause generation in parallel.

Haller and Sigh proposed another FPGA-based SAT solver which uses off-chip
DRAM memory in order to overcome the on-chip memory limitation [77].
Davis et al. developed a hardware/software SAT solver, where only Boolean
constraint propagation (BCP) is accelerated by hardware [68]. Suzuki and
Maruyama implemented in [78] a partial hardware acceleration of SatElite
algorithm in order to minimize DRAM delay.

Matrix representation of SAT problem also fits SIMD GPU approach. Luo and
Liu implemented solvers based on greedy local search GSAT algorithm and
genetic CGA algorithms in GPU. Their CGA implementation performed faster
than the CPU [79]. Another GSAT-based GPU SAT solver was proposed by
Deleau et al. in [80]. It showed poor results compared to CPU WalkSAT
implementation. Meyer et al. proposed a CUDA SAT solver framework based
of massive process parallelism [81].

 Beckers et al. adapted a hybrid approach to GPU [82]. In their system the CPU
executes MiniSAT algorithm while GPU runs parallel local search (Tabu Walk)
and provides the Tabu list. Fujii and Fujimoto explored GPU-based acceleration
of Boolean constraint propagation for SAT problem [83].

2.5. Hamming weight

The Hamming weight for a general vector (not obligatory binary) is defined as
the number of its non-zero elements. Although many modern general purpose
processors form Intel [84] and ARM [85] can calculate Hamming weight
natively, it still presents an interest for hardware implementation because of its
wide applicability.

23

King et al. in [86] proposed a fully combinational architecture for hardware
digital Hamming weight comparator for artificial weightless neural network.

A Hamming weight comparator based on a bit sorter was proposed by Pedroni
in [87]. It is a triangular matrix or a network of simple logic blocks made from
trivial gates AND+OR. This circuit sorts ’0’ and ’1’ in a word and returns the
sorted sequence. The HW comparison circuit is a reduced bit sorter. The
unnecessary layers are removed.

Piestrak in [88] proposed another Hamming weight comparator circuit based on
Knuth’s optimal sorting network. He developed two different comparison
circuits. One that compares Hamming weight of a vector with some pre-defined
threshold and another which compares Hamming weights of two vectors. This
method showed significantly better results than Pedroni curcuit or other
methods.

Parhami in [89] designed another Hamming height comparator based on
Hamming weight counters that consists of a tree of ripple-carry adders. His
circuit is capable of counting Hamming weight, comparing it with a fixed
threshold as well as comparing two vectors. The reported experimental results
showed an improvement over Piestrak’s results.

2.6. Hamming distance

Hamming weight is closely related to Hamming distance calculation. Many
practical applications use Hamming weight calculators as a part of Hamming
distance comparing units. In hardware implementations the Hamming distance
is usually calculated by applying XOR operation to two vectors and subsequent
Hamming weight calculation.

Although efficient Hamming weight calculators mentioned above can be used
for computing Hamming distance, in many practical applications other, not very
efficient solutions, were used. Appiah et al. [90] used a multiplexer network to
calculate Hamming distance. Jin et al. in [91] developed a Hamming distance
module for high-speed optical flow estimation. Their solution compares two
120-bit vectors which are divided into a pair of 15 contiguous 8-bit substrings.
Basically their Hamming distance comparator is composed from Hamming
weight calculators based on adder trees with additional buffers. Kovačević et al.
in [92] used a network of adders for Hamming distance calculation in their
Hamming neural network implementation.

24

2.7. Practical applications

Sorting and searching procedures are needed in numerous computing systems.
They can be used efficiently for data extraction and ordering in information
processing. Some common problems that they apply to are: extracting sorted
maximum/minimum subsets from a given set; filtering data, i.e. extracting
subsets with values that fall within given limits; dividing data items into subsets
and finding the minimum/maximum/average values in each subset, or sorting
each subset; finding the value that is repeated most often, or finding the set of n
values that are repeated most often; removing all duplicated items from a given
set; computing medians; solving the problems indicated above for matrices (for
rows/columns of matrices).

Parallel sorters are in high demand in high-performance computing, including
cosmological simulations [93]. Parallel sorting is also used in benchmarks for
testing supercomputers [94]. Sorters based on sorting networks are suitable for
hardware-based median filters which are commonly used in image processing
[95]. The hardware median filter is a circuit that receives an array of data and
returns the median value [96] [97] [98].

Many applications do not require all inputs to be sorted. Some of them involve
selecting only maximal and minimal values. Many electronic, environmental,
medical, and biological applications need to process data streams produced by
sensors and measure external parameters within given upper and lower bounds
(thresholds) [1]. Let us consider some examples. Applying the technique [99]
in real-time applications requires knowledge acquisition obtained from
controlled systems (e.g. plant). For example, signals from sensors may be
filtered and analyzed to prevent error conditions (see [99] for additional details).
To provide more exact and reliable conclusion a combination of different values
need to be extracted, ordered, and analyzed. Similar tasks appear in monitoring
thermal radiation from volcanic products [100], filtering and integration of
information from a variety of different sources in medical applications [101]
and so on. Since many systems are hard real-time, performance is important and
hardware accelerators may provide significant assistance for software products.
Similar problems appear in so-called straight selection sorting (in such
applications where we need to find a task with the shortest deadline in
scheduling algorithms [102]) and high-energy physics (where only the most
energetic particles need to be analyzed [103]).

Maximum and minimum subsets extraction is required in searching, statistical
data manipulation and data mining (e.g. [104] [105] [106] [107]). To describe
one of the problems from data mining informally let us consider an example
[104] with analogy to a shopping card. A basket is the set of items purchased at
one time. A frequent item is an item that often occurs in a database. A frequent
set of items often occur together in the same basket. A researcher can request a
particular support value and find the items which occur together in a basket
either a maximum or a minimum number of times within the database [104].

25

Similar problems appear to determine frequent inquiries at the Internet,
customer transactions, credit card purchases, etc. requiring processing very
large volumes of data in the span of a day [104]. Fast extracting the most
frequent or the less frequent items from large sets permits data mining
algorithms to be simplified and accelerated. Sorting of subsets may be involved
in many known methods from this area.

Full and reduced sorting networks are being studied in the area of correction
problem, where sorting of almost sorted data set is required. The most recent
works on this topic were done by Kik et al. [108] [109], Piotrów [110] and
Stachowiak [111] [112].

In the scope of parallel vector processing we discuss practical application of
Hamming weight and Hamming distance. Many analysis and filtering problems
can be solved through Hamming weight counting for the vectors and
comparison of the results.

Hamming weight and Hamming distance calculators and comparators are
widely in use in variety of different applications. Hamming weight is a key part
of many combinatorial search related tasks like Boolean satisfability and matrix
covering. Hamming distance calculation is an essential operation in image
recognition [90] [113] [114], and is used in many other areas like optical flow
estimation [91] and more recently for physically unclonable functions (PUFs)
[115] [116].

Hamming distance calculators are the essential part of Hamming neural
networks [117]. It is a network which implements the optimum minimum error
classifier, a unit that calculates Hamming distances of input data, compares
them with pattern in memory and selects the data with the minimum distance,
which becomes the first layer pattern that represents the most similar object.
Lippman in [117] showed that this type of network has many advantages over
the earlier Hoping network.

Combinatorial search algorithms are frequently involved to solve optimization
problems. Matrix/set covering is one of the problems in optimization. It belongs
to partitioning problems arising in such practical applications as scheduling
aircrafts, location emergency stations in urban areas, fault testing of electronic
circuits, resource distribution in multi-core systems, and many others [67].
Boolean satisfability problem solvers have many applications in EDA
(Electronic Design Automation) fields, such as logic minimization, test pattern
generation, routing in field-programmable devices [69].

26

2.8. Summary

This chapter contains a brief survey of related works. The purpose of this
chapter is to inform a reader about the current state of the art in the researched
area and to provide necessary information needed to understand subjects studied
in this work.

This describes different hardware-based methods of parallel sorting, subset
extraction and combinatorial search. Additionally it introduces the basic
principles of network-based design. This survey showed us that although this
area is very well researched, some topics covered in our works, like, for
example subset extraction, are underdeveloped and very few publications about
them exist. Also this chapter describes related works in a scope of Hamming
weight and Hamming distance calculating. The last section of the chapter
presents a survey of practical applications of our research subjects, which shows
us that solving problems discussed in this thesis is in very high demand.

The most common drawbacks of the techniques and their implementations
mentioned in this chapter are intensive resource usage and small volumes of
data items that can be processed with them. Many sorting methods are not
suitable for processing of high-speed data streams. Very few solutions exist in
the area of partial data sorting and subsets extraction, as well as combined
solutions of these operations, which are in a high demand in many practical
applications. The techniques proposed in this thesis, which are based on highly
parallel networks were developed in order to overcome these disadvantages.

27

3. NETWORK-BASED SOLUTIONS FOR
PARALLEL DATA AND VECTOR PROCESSING
In this chapter the proposed methods of parallel data and vector processing are
presented. We explore various highly parallel network-based algorithms for
acceleration of solving different computationally intensive and resource
consuming problems. Section 3.1 describes the proposed method for data
sorting based on sorting network and merging [118] [5] [119]. Section 3.2
presents methods of solving the minimum and maximum subset extraction
problem [120] [121] [122]. Section 3.3 discusses a solution for Hamming
weight calculation [123]. Section 3.4 describes a practical application of the
methods proposed in this chapter for fast matrix covering [124].

3.1. Data sorting

Sorting networks are widely used in data [9] and vector [88] processing and
they enable comparison and swapping operations over multiple data items to be
executed in parallel. A review of recent results in this area can be found in [36]
where it is shown that many researchers and engineers consider such technique
as very beneficial for data and vector processing in FPGAs and PSoCs.
Although the methods [24] [19] enable the fastest theoretical throughput, the
actual performance is limited by interfacing circuits supplying initial data and
transmitting the results and the communication overheads do not allow
theoretical results to be achieved in practical designs.

In our approach we use a periodical pipelined Odd-Even Transposition sorting
network, which requires a significantly smaller number of
comparators/swappers (C/S) than the most widely used Batcher’s networks
from [24] [19]. In this approach many C/S are active in parallel and reused in
different iterations. The proposed circuit (see Figure 3.1) contains N M-bit
registers Rg0,…,RgN-1. Unsorted input data are loaded to the circuit through N
M-bit lines d0,d1,…,dN-1. For the fragment on the left-hand side of Figure 3.1, the
number N of data items is even, but it may also be odd. Each C/S is shown in
Knuth notation (:) [4] and it compares items in the upper and lower registers
and transfers the item with the larger value to the upper register and the item
with the smaller value to the lower register (see the upper right-hand corner of
Figure 3.1). Such operations are applied simultaneously to all the registers
linked to even C/S in one clock cycle (indicated by the letter α) and to all the
registers linked to odd C/S in a subsequent clock cycle (indicated by the letter
β). This implementation may be unrolled to an even-odd transposition network
[44], but vertical lines of C/S in Figure 3.1 are activated sequentially and the
number of C/S is reduced compared to [44] by a factor of N=2. For example, if
the number N is even then the circuit from [44] requires N × (N − 1)/2 C/S and
the circuit in Figure 3.1 – only N − 1 C/S. The circuit in [44] is combinational
and the circuit in Figure 3.1 may require up to N iterations. The number N of

28

iterations can be reduced very similarly to [29]. Indeed, if beginning from the
second iteration, there is no data exchange in either even or odd C/S, then all
data items are sorted. If there is no data swapping for even C/S in the first
iteration, data swaps for odd C/S may still take place. Note that the network
[44] possesses a long combinational delay from inputs to outputs. The circuit in
Figure 3.1 can operate at a high clock frequency because it involves a delay of
just one C/S per iteration (i.e., in each rising/falling edge of the clock).

37
22
11
38
24
9
0
24
11
11
17

37
22
38
11
24
9
24
0
11
11
17

37
38
22
24
11
24
9
11
0
17
11

38
37
24
22
24
11
11
9
17
0
11

38
37
24
24
22
11
11
17
9
11
0

38
37
24
24
22
11
17
11
11
9
0

38
37
24
24
22
17
11
11
11
9
0 A

s
so
o
n
as
 t
h
er
e
is
"n
o
 s
w
ap

p
in
g"

th
e
so
rt
in
g
is
 c
o
m
p
le
te
d

unsorted data sorted data
clock cycles (iterations)

1 2 3 4 5 6

ev
en

ev
en

ev
en

o
d
d

o
d
d

o
d
d

Rg0

Rg1

Rg2

Rg3

Rg4

Rg5

Rg6

Rg7

RgN‐1

d0

d1

d2

d3

d4

d5

d6

d7

dN‐1

d0

d1

d2

d3

d4

d5

d6

d7

dN‐1

 

    

The same comparators are reused

The same comparators are reused

N
 M

‐b
it
 u
n
so
rt
ed

 it
em

s
d
0,
 d

1,
 …
 ,
d
N
‐1

N
 M

‐b
it
 s
o
rt
ed

 it
em

s
d
0,
 d

1,
 …
 ,
d
N
‐1

di

dj

max(di,dj)

min(di,dj)

Figure 3.1 Pipelined Odd-Even Transposition network [118]

Let us look at the example shown in Figure 3.1 (N = 11, M = 6). Initially,
unsorted data d0, d1,…,d10 are copied to Rg0;…;Rg10. Each iteration (6 iterations
in total) is forced by an edge (either rising or falling) of a clock. The signal α
activates the C/S between the registers (Rg0,Rg1),(Rg2,Rg3),…,(Rg8,Rg9). The
signal β activates the C/S between the registers
(Rg1,Rg2),(Rg3,Rg4),…,(Rg9,Rg10). There are 10 C/S in total. Rounded
rectangles in Figure 3.1 indicate elements that are compared at iterations 1-6.
Data are sorted in 6 clock cycles and 6 < N = 11. Unrolled circuits from [44]
would require 50 C/S with the total delay equal to the delay of N sequentially
connected C/S.

Although the proposed approach requires less C/S blocks than the most
practically used Batcher’s networks and allows to sort significantly larger
amounts of data, resources still restrict from sorting very large amounts of data
in parallel. In order to overcome this obstacle we propose different approaches
of sorting network combinations with software and hardware merging of sorted
data subsets.

29

R
eg
is
te
r
(R
)

Iterative data sorter

In
p
u
t
re
gi
st
er
 R

i

O
u
tp
u
t
re
gi
st
er
 R

o

P
ar
al
le
l c
o
p
yi
n
g

o
f
u
n
so
rt
ed

 d
at
a

P
ar
al
le
l c
o
p
yi
n
g

o
f
so
rt
ed

 d
at
a

Se
q
u
en

ti
al
 d
at
a
ac
q
u
is
it
io
n

fr
o
m
 P
C
I e
xp
re
ss
 b
u
s

C
o
p
yi
n
g
d
at
a
to
 R
A
M
 f
o
r

su
b
se
q
u
en

t
m
er
gi
n
g

Figure 3.2 The circuit for sorting blocks [118]

Figure 3.2 depicts the used iterative network, the core of the hardware
architecture. There are also two additional registers Ri and Ro. The register Ri
sequentially receives N data items from the inputs. It was explained above that
such N items compose one block that can be entirely sorted in the network. In
practice, four items are packed and thus, parallel writing to the register Ri of
four 32-bit items is actually done. As soon as the first block is received, all data
items from this block are sorted in the iterative network, and the maximum
number of clock cycles is N/2. At the same time, data items from the next block
are received. As soon as data items from the first block are sorted, they are
copied in parallel to the output register Ro. After that the second block is copied
to the register R and sorted (see Figure 3.2) and the third block is being received
from the inputs. At the same time, the first sorted block is copied to the
embedded block-RAM for subsequent data merging. Hence, the first sorted
block will be copied to RAM after acquisition of two blocks from the inputs.
Then data acquisition from the inputs, data sorting, and copying data to the
merger will be done in parallel. We can see from Figure 3.2 that there are just
two sequential levels of C/S in the iterative data sorter. Thus, the delay is very
small and we can apply high synchronization frequency. Additional
improvements are done to adjust the speed of data acquisition and sorting.
Indeed, one block of N data items is received in N/4 clock cycles and the sorting
time is up to N/2 clock cycles, i.e. it is almost two times longer.

Figure 3.3 demonstrates how to adjust the speed. There are now two iterative
data sorters running in parallel. The first sorter processes data from the first half
of the register Ri and the second sorter processes data from the second half of
the register Ri. At the beginning, two blocks with 2×N items are copied to the Ri
and it involves 2×N/4 = N/2 clock cycles. Then two blocks are sorted in
parallel, which also involves up to N/2 clock cycles. Finally, two sorted blocks

30

are copied to two dual-port embedded block-RAMs. The respective write port is
configured for data width 64. Thus, pairs of data items are copied in each clock
cycle and it involves totally also N/2 clock cycles for both blocks. Therefore,
everything is completely adjusted.

In
p
u
t
re
gi
st
er
 R

i

O
u
tp
u
t
re
gi
st
er
 R

o

P
ar
al
le
l c
o
p
yi
n
g

o
f
u
n
so
rt
ed

 d
at
a

P
ar
al
le
l c
o
p
yi
n
g

o
f
so
rt
ed

 d
at
a

Se
q
u
en

ti
al
 d
at
a
ac
q
u
is
it
io
n

fr
o
m
 P
C
I e
xp
re
ss
 b
u
s

C
o
p
yi
n
g
d
at
a
to
 R
A
M
 f
o
r

su
b
se
q
u
en

t
m
er
gi
n
g

Fo
u
r
32

‐b
it
 (
tw

o
 6
4‐
b
it
)
it
e
m
s
ar
e
co
p
ie
d
 in

 p
ar
al
le
l

Figure 3.3 Adjusting the number of clock cycles required in different blocks [118]

3.1.1. Data sorting with subsequent software merge

Although using iterative periodic sorting networks permits sorting significantly
larger data sets, than with other sorting networks, resource availability still puts
us into certain boundaries. The limitation of the input data size might be
unacceptable for many practical applications and the sorter must be designed
with the capability of sorting the unlimited data sets.

Data sorting can be combined with the data merge in order to overcome this
problem. Using hardware network-based sorter together with a general purpose
processor allows us to implement the merge operation completely or partially
software.

The first approach is a hardware/software system which sorts blocks in
hardware with subsequent merging in software. This method requires use of a
general purpose CPU which works in cooperation with hardware modules. We

31

have developed two variations of this method. The first uses a system with
programmable logic and embedded CPU on the same chip such as PSoC. The
second requires external CPU which communicates with the hardware through
some interface like very high speed PCI express.

The proposed system sorts relatively small subsets of larger sets in hardware
and then merges the subsets in software of a higher level system (see Figure
3.4). The initial set of data that is to be sorted is divided into L subsets of N
items. Each subset is sorted in hardware using the referenced networks.
Merging is executed as shown in Figure 3.4, in a host system/processor that
interacts with the hardware. Each horizontal level of merging permits the size of
blocks to be doubled. Thus, if N = 210 = 1,024 and K = 220 = 1,048,576 items
are to be sorted, then 10 levels of mergers are required (see Figure 3.4). Clearly,
the larger are the blocks sorted in FPGAs the fewer merging are needed. Thus,
we have to sort in hardware as many data items as possible with such
throughput that is similar to throughput of sorting networks.

This algorithm is identical for all the proposed implementations and can be
described as follows. The sorter receives blocks composed of N M-bit data
items and stored in memories (such as external DDR and OCM). The sorter
executes iterative operations over multiple parallel data and is controlled by a
dedicated finite state machine (FSM) called Sorter Control Unit. The ports are
also controlled by a dedicated FSM. The results of sorting are copied back to
memory and then the software merges incoming blocks of sorted data.

N‐item sorted set 1 N‐item sorted set 2 N‐item sorted set LN‐item sorted set L‐1

Merge Merge

Merge Merge

Merge

Hardware

Sorted set

Horizontal levels

Higher level system

Figure 3.4 Hardware/software system for data sorting and merging [118]

The hardware part informs the general purpose processor through interrupt
signals when the sorting operation over data blocks is completed. After
receiving the interrupts signal the software merge operation triggers. The
software and hardware parts access the data in memory independently. The
software is in idle state while waiting for the data to become available. The
sorting in hardware and merging in software can be done in parallel if
necessary. The size of the data blocks depends only on resource availability of
the chosen device.

32

3.1.2. Data sorting with subsequent hardware merge

The second method is similar to the previous one, but it is capable of supplying
larger blocks of sorted data for subsequent data merge in software. The main
idea behind this method is to implement the merge system in hardware
alongside the sorting network. This method significantly increases amount of
data that can be sorted in hardware. Although the sorting network works much
faster than the merge algorithm, the latter requires much less resources. The
combination of the sorting network with the merging tree significantly enhances
the sorting for very large data sets. Figure 3.5 demonstrates this architecture.

In
pu

t
re
gi
st
er

O
u
tp
u
t
re
gi
st
er

Iterative OETSN

Sorting system

A
rb
it
e
r

Fi
na

l l
e
ve
l

Merge system

R
A
M
 b
lo
ck
s
(0
L)

sorting
completed

sorted
data

selector

transfer
completed

AXI
Slave

AXI
Slave

Control signals

Merge complete
(Interrupt signal)

Figure 3.5 Hardware architecture of sorter/merger

The hardware implementation of this method consists of two major components
– sorting system and merge system. The sorting system is identical to the one
described in the previous method, but all its outputs are connected now to the
merging system. The merge component performs the merge algorithm using a
tree-like structure, which is done on the basis of embedded block-RAM. Figure
3.6 shows one level of merging. Input data come from two embedded block-
RAMs, merged, and copied to a new embedded block RAM. There are two
address counters for each input RAM. At the beginning they are set to 0. Two
data items are read and compared. If the item is selected from the first RAM
then the address counter of the first RAM is incremented, otherwise the address
counter of the second RAM is incremented. Two N-item blocks are merged in
2×N clock cycles. Different types of parallel merging have been verified and
compared. We found that the best result (i.e. the fastest and the less resource
consuming) is produced in a simple RAM-based circuit depicted in Figure 3.6.

33

First block‐RAM

Second block‐RAM

64

64

W
ri
te
 p
o
rt
s 32

32
Read ports

M
er
gi
n
g Copying

the result
Block‐RAM

Figure 3.6 Simple merging two sorted blocks [118]

There are G levels to merge L sorted blocks and 2G-1 < L ≤ 2G. The first level is
composed of L embedded block-RAMs. The second level is composed of L/2
embedded block-RAMs, and the last level is composed of one embedded block-
RAM. The size of each RAM for the first level is N 32-bit words for reading
and N/2 64-bit words for writing. The size of each subsequent level is doubled.
Initially, L embedded block-RAMs of the first level are filled in with sorted
blocks. Then these blocks are merged at the second level. Afterwards the blocks
of the second level are being merged at the third level and at the same time the
block-RAMs of the first level are being filled in with a new subset of L sorted
blocks. Thus, many subsets of L blocks will be processed in parallel and this is
a special type of pipeline organized based on embedded block-RAMs (see
Figure 3.7).

L
b
lo
ck
‐R
A
M
s
o
f
le
ve
l 1

L
×
N
/2

cl
o
ck

cy
cl
es

L/
2
 b
lo
ck
‐R
A
M
s
o
f
le
ve
l 2

M
er
gi
n
g

M
er
gi
n
g

Th
e
si
ze
 o
f

o
n
e
so
rt
ed

b
lo
ck
 is
 N

D
at
a
it
em

s
fr
o
m
 R

o

Th
e
si
ze
 o
f

o
n
e
so
rt
ed

b
lo
ck
 is
 2
×N

L/
2
×N

×2
/2

=
L
×
N
/2

cl
o
ck
 c
yc
le
s

L/
4
 b
lo
ck
‐R
A
M
s
o
f
le
ve
l 3

M
er
gi
n
g

Th
e
si
ze
 o
f

o
n
e
so
rt
ed

b
lo
ck
 is
 4
×N

L/
4
 ×
N
×4

/2

=
L
×
N
/2

cl
o
ck
 c
yc
le
s

M
er
gi
n
g

O
n
e
b
lo
ck
‐R
A
M
 o
f
le
ve
l G

Th
e
si
ze
 o
f

o
n
e
so
rt
ed

b
lo
ck
 is

2
G
‐1
×N

L
×
N
/2

cl
o
ck

cy
cl
es

Pipeline

L×
N
 s
o
rt
ed

 it
em

s

Figure 3.7 Pipelined merging with embedded block-RAM [118]

Architecture in Figure 3.7 permits many sets with L blocks (each block contains
N M-bit data items) to be sorted in pipeline in a way that is shown in Figure 3.8.
Equal numbers enclosed in circles indicate steps executed in parallel. It was
shown above that the first time the level 1 block-RAM will be filled in with

34

sorted data from the first block is after 3×N/2 clock cycles. After that it is
updated with the new block in N/2 clock cycles. So, an additional delay appears
just from the beginning and it is avoided in the subsequent steps. As soon as
data are copied to the first level RAM, merging is started and the sorted data are
copied from the first level to the second level RAM. This process involves
L×N/2 clock cycles. During this period of time the first-level RAM is used for
merging and new data items cannot be copied to this RAM. In fact it is possible
to merge and to sort data at the same time. However, we found that such merger
requires a complex arbitration which significantly increases hardware resources
leading to reducing the size N of blocks. Finally, such more complicated circuits
do not give any advantage. This means that the resulting throughput cannot be
increased. As soon as merging is completed, all data are copied to the second-
level RAM and the first-level RAM may be refilled with new L sorted blocks.

So
rt
in
g

R
A
M
 (
le
ve
l 1
)

M
e
rg
e
an

d
 R
A
M

(l
ev
e
l 2
)

M
e
rg
e
an

d
 R
A
M

(l
e
ve
l 3
)

M
e
rg
e
an

d
 R
A
M

(l
e
ve
l 4
)

M
e
rg
e
 a
n
d
 R
A
M

(l
ev
el
 5
)

M
e
rg
e
an

d
 R
A
M

(l
e
ve
l 6
)

M
e
rg
e
an

d
 R
A
M

(l
e
ve
l 7
)

1 2 3 4 5 6 7

3

3×N/2 + L×N/2

4 5 6 7

5 6 7

Fr
o
m
 P
C
I‐
ex
p
re
ss

To
 P
C
I e
xp
re
ss

L
×
N
/2

cl
o
ck

cy
cl
es

L
×
N
/2

cl
o
ck

cy
cl
es

L
×
N
/2

cl
o
ck

cy
cl
es

L
×
N
/2

cl
o
ck

cy
cl
es

L
×
N
/2

cl
o
ck

cy
cl
es

L
×
N
/2

cl
o
ck

cy
cl
es

7

Figure 3.8 Parallel operations in the proposed architecture [118]

Figure 3.8 explicitly indicates parallel operations. For example, number 7
enclosed in circle indicates operations executed in parallel, which are merging
at levels 3, 5, 7 and data sorting. This method can be applied to data sorting of
very large sets (tens and hundreds of millions of data items). In this case, the
GPC divides a very large set into subsets composed of L×N data items. The
subsets are sorted in the pipelined structure shown in Figure 3.8 and then
merged in software of GPC. Section 5.1.2. demonstrates that the implemented
in Virtex-7 FPGA data sorter allows to sort data in hardware for L=128 and
N=512. Thus, 512×128 = 65,536 32-bit data items (or 256 KB) are sorted and
then 256 KB blocks can be merged in software. It will be shown in the section
5.1.2. that sorting in hardware (including data exchange with GPC) is faster that
similar sorting in software. Merging larger blocks permits the time of sorting in
software to be considerably reduced.

35

3.1.3. Sorting and merging with parallel data item counting

We propose a method of data sorting algorithm based on parallel sorting
network with subsequent merge and data counting for the sorting acceleration
and frequent item computation. The functionality of the merge units from the
system described in the previous section is expanded by adding the operation of
compressing the data by counting of the repeated data.

The circuit compares all the items in two sorted subsets of N data items and
merges them into one sorted subsets. The maximal size of the final data set is
2×N items as in the system proposed in section 3.2.1. This worst case scenario
can occur if no repeated items were found in both input subsets.

Although the maximal number of clock cycles for merging N-item blocks is
2×N, our system with compression and item counting requires less clock cycles
for the data sets with repeated items. Every subsequent level of merging
requires less clock cycles than the previous one, because the compression and
counting was partially done in the previous level.

Modyfied fragment from Figure 3.6. is depicted on Figure 3.9 (a). The
compression and the counting of the items is done in “compare and add” block
shown in Figure 3.9(b). The system stores the data item which was written after
the previous comparison and compares it with both inputs. If the item part of the
item/count pair previously written to the RAM block is not equal to both of
them, then the merger writes the item/count pair with larger item value to the
output RAM block and increments both write address counter and read address
counter for the input with the largest value. Otherwise, the merger does not
increment the write address of the block and writes the new count number to the
count part of the item/count pair. The new count number is the sum of the count
parts of the previously written data item and the count of one of the inputs,
which has an item part equal to the previously written one. During the first level
of merging every pair has ‘1’ as its count value. All zeros in the count part mean
that the total number of repetitions exceeded the capabilities of the RAM block.

The RAM blocks of every item of the merging system are capable of storing all
data from the inputs, but if the sorted set supplied to the merger contains
repeated items, the system does not fill the RAM blocks completely. The
merger reads the value from the write address register of the mergers from the
previous level. It informs the merger about how many item pairs were actually
written during the previous merge operation.

36

Item1

Item2

ItemK-1

Count1

Count2

CountK-1

+

+

=

=

BRAM1 Item
Count

BRAM2 Item
Count

OutputK-1
Item
Count

Compare

Compare
& add

Eq
u
al

O
ut
p
ut

Addr
Counter

OutputK
Item
Count

A B

Figure 3.9 “Merge and count” architecture: A) General architecture of the merger B)
Compare and add operation [119]

3.2. Partial sorting and minimum/maximum subset extraction

The network-based sorting circuit described above can be used efficiently for
solving numerous supplementary tasks. One of these tasks is the extraction of
the maximum and/or minimum subsets from the sorted sets. Also solving these
tasks requires much less resources and therefore can use hardware more
efficiently.

Let set S containing N M-bit data items be given. The maximum subset contains
Lmax largest items in S, and the minimum subset contains Lmin smallest items in
S (Lmax ≤ N and Lmin ≤ N). We mainly consider such tasks for which Lmax << N
and Lmin << N, which are more common for practical applications. Since N may
be very large (millions of items), the set cannot be completely processed in
hardware because the resources required are not available.

We propose three different methods for finding minimum/maximum subsets.
All these methods are based on sorting networks described in the previous
chapter and perform partial sorting. At first we describe how to use these
methods for simultaneous calculation of maximum and minimum subsets. After
that other tasks and additional functionality will be discussed. Figure 3.10
depicts generalized architecture for all methods.

37

Sorting
network

Lmax M‐bit data items
for maximum subset

Lmin M‐bit data items
for minimum subset

In
p
u
t
d
at
a

(K
 M

‐b
it

d
at
a
it
em

s)

M

M

M

M

M

M

Maximum
subset

Minimum
subset

Lmax M‐bit data items (from K M‐bit data items) for initialization at the beginning

Lmin M‐bit data items (from K M‐bit data items) for initialization at the beginning

Lmax×M

Lmin×M

Feedback copying

Figure 3.10 Computing the maximum and the minimum sorted subsets [121]

All methods are based on pipelined OETS network described above and
designed for streaming data. The sorting unit receives the incoming data and
outputs current minimum and maximum subsets every iteration. Data are
incrementally received in blocks containing exactly K items and then processed
by parallel networks described below. The last block may contain less than K
items. If so, it will be extended up to K items (we will talk about such extension
a bit later). Part of sorted items with maximum values will be used to form the
maximum subset and part of sorted items with minimum values will be used to
form the minimum subset. As soon as all Q blocks have been handled the
maximum and/or minimum subsets will be ready for subsequent processing.
The following steps describe how the system works with streaming data
identical to all proposed methods:

1. The first block containing K M-bit data items is copied to input registers and
becomes available at the inputs of sorting unit.

2. The block is sorted in parallel in the sorting unit with one of proposed
methods.

3. Lmax sorted items with maximum values become available on the outputs of
the upper half of the sorting unit. Lmin sorted items with minimum values
become available on the outputs of the bottom half of the sorting unit.

4. A new block is copied to the input register and becomes available at the
inputs of the main SN. Such operations are repeated until all Q-1 blocks are
handled.

38

5. The last block may contain less than K items and it is processed slightly
differently. As soon as all Q blocks have been transferred from the system block
RAM and Q-1 blocks have been handled in the sorting unit, the last block (if it
is incomplete) is extended to K items by copying the largest item from the
created minimum sorted subset. Thus, the last block becomes complete. Clearly,
the largest item from the created minimum sorted subset cannot be moved again
to the minimum subset and the last block is handled similarly to the previous
blocks.

3.2.1. Method based on three sorting networks

The first method involves three sorting networks: one main sorting network
(SN) and two additional sorting networss (SNmin and SNmax).

SNmax input register

Loading the minimum
possible value only at
initialization step

SNmin input register

Loading the maximum
possible value only at
initialization step

M
axim

u
m
 valu

es

Main sorting
network (SN)

M
in
im

u
m
 valu

es

Blocks of data

The maximum subsetThe minimum subset

SNmin SNmax

LmaxLmin

Lmax Lmax

Lmax

LminLmin

Lmin

L m
ax
 M

‐b
it
it
em

s
fo
r
th
e

ri
gh

tm
o
st
 s
eg
m
en

t

L m
in
M
‐b
it
it
em

s
fo
r
th
e

le
ft
m
o
st
 s
eg
m
en

t

fe
ed

b
ac
k

fe
ed

b
ac
k

loading loading

Figure 3.11 The first method of extracting the maximum and minimum sorted subsets
[120]

Sorting networks SNmin and SNmax have input registers. The minimum and
maximum sorted subsets will be built incrementally in halves of registers
indicated at the bottom part of Figure 3.11. At initialization step, these parts are
pre-loaded with possible maximum and minimum values which data from the
source set may have. Then the following steps are executed:

1. The first block containing K M-bit data items is copied from block RAM and
becomes available at the inputs of the main SN.

2. The block is sorted in parallel in the main SN which can be done in
combinational networks from [19] (such as even-odd merger) or in sequential
iterative networks from [36] (such as iterative OETS). In the last case additional
control is provided.

3. Lmax sorted items with maximum values are loaded in a half of the SNmax

input register as it is shown in Figure 3.11. Lmin sorted items with minimum

39

values are loaded in a half of the SNmin input register as it is shown in Figure
3.11. All the items are resorted by the relevant sorting networks SNmax and
SNmin.

4. A new block is copied from block RAM and becomes available at the inputs
of the main SN. Such operations are repeated until all Q blocks are handled.

0
0
0
0
U
U
U
U

U
U
U
U
99
99
99
99

35
70
12
29
58
71
99
92
36
11

99
92
71
70
58
36
35
29
12
11

0
0
0
0
99
92
71
70

35
29
12
11
99
99
99
99

Init Load Sort Load Sort Load Sort

Init Load Sort Load Sort Load Sort

Load Sort Load Sort Load Sort

SNmax

SNmin

M
ai
n
 s
o
rt
in
g
n
et
w
o
rk
 (
SN

)

80
0
98
14
19
18
69
71
47
47

99
92
71
70
0
0
0
0

99
99
99
99
35
29
12
11

98
80
71
69
47
47
19
18
14
0

99
92
71
70
98
80
71
69

19
18
14
0
35
29
12
11

11
12
13
14
15
16
17
18
19
20

99
98
92
80
71
71
70
69

35
29
19
18
14
12
11
0

20
19
18
17
16
15
14
13
12
11

99
98
92
80
20
19
18
17

14
13
12
11
14
12
11
0

99
98
92
80
20
19
18
17

14
14
13
12
12
11
11
0

Th
e
m
ax
im

u
m
 s
u
b
se
t

Th
e
m
in
im

u
m
 s
u
b
se
t

Symbol U
indicates
undefined

value

a b c d e f g

Figure 3.12 Example of extracting sorted subsets using the first method [120]

Figure 3.12 shows an example, assuming that the minimum possible value of
data items is 0 and the maximum possible value is 99 (clearly, other values may
also be chosen). At the first step (a), shown in left-hand part of Figure 3.12,
input registers for SNmax and SNmin are initialized, and the first block of data
becomes available for the main SN. U indicates undefined values. At the next
step (b) input registers are updated as it is shown by dashed fragments in Figure
3.12 At step (c) a new block of data becomes available. Note that loading the
register for the main SN can be done in parallel with copying Lmax/Lmin to
SNmax/SNmin. Items in SNmax and SNmin are sorted as soon as the relevant input
registers are updated. After executing steps (a) - (g) the maximum and

40

minimum sorted subsets are ready (see the right-hand part of Figure 3.12) for
the items shown in grey in the main SN. Clearly, this method enables the
maximum and minimum sorted subsets to be incrementally constructed for very
large sets.

3.2.2. Method based on swapping networks

In the second method we use the circuits introduced in [57]. They are also
composed of comparators/swappers explained in [4]. Any comparator converts
a two-item input to the two-item output in such a way that the upper value is
greater than or equal to the lower value. Let us call circuits from [57] a
swapping network. If they are applied to two sorted subsets with equal sizes
then it is guaranteed that the upper half outputs of the network contain the
largest values from the two sorted subsets and the lower half outputs of the
network contain the smallest values from the two sorted subsets. Additionally,
the outputs of this circuits form two Bitonic sequences. The swapping network
depicted in Figure 3.13 transforms sorted sequences A and B to Bitonic
sequences A and B, where all elements of Bitonic sequence A are larger than all
elements in Bitonic sequence B.

Sorted
sequence

B

Sorted
sequence

A

Bitonic
sequence

A

Bitonic
sequence

B

Figure 3.13 Swapping network

The idea of the second method is illustrated in Figure 3.14 on the same example
from Figure 3.12.

41

0
0
0
0

99
99
99
99

35
70
12
29
58
71
99
92
36
11

0
0
0
0
58
36
99
99
99
99

70
71
92
99

11
12
29
35

Init Swap Sort Swap Sort Swap Sort

Init Swap Sort Swap Sort Swap Sort

Load Sort Load Sort Load Sort

SNmax

SNmin

M
ai
n
 s
o
rt
in
g
n
et
w
o
rk
 (
SN

)

80
0
98
14
19
18
69
71
47
47

70
71
71
69
47
47
19
18
29
35

99
92
80
98

0
14
12
11

11
12
13
14
15
16
17
18
19
20

99
98
92
80

14
12
11
0

20
19
18
17
16
15
14
13
12
14

99
98
92
80

11
12
11
0

99
98
92
80

12
11
11
0

Th
e
m
ax
im

u
m
 s
u
b
se
t

Th
e
m
in
im

u
m
 s
u
b
se
t

99
92
71
70

35
29
12
11

swapping
networks

a b c d e f

Figure 3.14 Example of extracting sorted subsets using the second method [120]

Now the size of the networks SNmax and SNmin was reduced twice (there are now
just 4 M-bit inputs instead of 8 in Figure 3.12). Much like Figure 3.12 both
these networks have input registers (4 M-bit registers for our example). At
initialization step SNmax and SNmin are filled in with the minimum and
maximum values which are assumed as before to be 0 and 99. There are two
additional fragments in Figure 3.14 which contain swapping networks described
above. If we resort separately the upper and the lower parts then two sorted
subsets will form a single sorted set. Let us analyse the upper swapping network
in Figure 3.14 At step (a) inputs of the network are sorted subsets {0,0,0,0} and
{99,92,71,70}. Thus, two new subsets {70,71,92,99} and {0,0,0,0} are created.
Sorting them enables the maximum sorted subset {99,92,71,70} with four items
to be found on outputs of SNmax. At step (c) inputs of the swapping network are
sorted subsets {99,92,71,70} and {98,80,71,69} and two new subsets
{99,92,80,98} and {70,71,71,69} are created. Sorting them enables the
maximum sorted subset {99,98,92,80} to be built. At step (e) inputs of the
swapping network are sorted subsets {99,98,92,80} and {20,19,18,17} and no
swapping is done. Hence, the maximum sorted subset is {99,98,92,80} and it is
the same as in Figure 3.12 The lower swapping network in Figure 3.14
functions similarly.

42

The second method involves an additional delay on the comparators of
swapping networks but eliminates copying from the main SN to SNmax and
SNmin. Besides, the sizes of SNmax and SNmin are reduced twice.

Also in some practical applications receiving sorted maximal and minimal
subsets is not required and only unsorted ones are needed. In that case we can
turn the second sorting network off during the last iteration of the algorithm.

3.2.3. Method based on single sorting network

The third method is similar to the first one, but instead of three independent
sorting networks, it has only one network and is based on breaking links
between comparators.

0

7

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Fe
ed

b
ac
k
re
gi
st
er
 (
FR

)

8

15

9
10
11
12
13
14

L m
ax

L m
in

K

Load Sort Copy Load Sort Load Sort

U
U
U
U
26
37
11
19
3
7
99
56
U
U
U
U

A

U
U
U
U
99
56
37
26
19
11
7
3
U
U
U
U

99
56
37
26
99
56
37
26
19
11
7
3
19
11
7
3

99
56
37
26
29
37
22
99
1
55
39
47
19
11
7
3

B

99
99
56
55
47
39
37
37
29
26
22
19
11
7
3
1

‐
co
m
p
ar
at
o
r
is
 d
is
ab

le
d
 (
i.e
. i
t
is
 b
ro
ke
n
)

Comparator may be
either enabled or disabled

99
99
56
55
12
45
83
5
18
11
11
11
11
7
3
1

C

99
99
83
56
55
45
18
12
11
11
11
11
7
5
3
1

‐
in
co
m
p
le
te

Th
e
m
ax
im

u
m
 v
al
u
e

M
ax
im

u
m
 s
u
b
se
t

M
in
im

u
m
 s
u
b
se
t

Step 1 Step 2 Step 3Iterative sorting network

Figure 3.15 An example of sorting using the method based on single sorting network.
[121]

At the first step, the first K M-bit data items are sorted in the network [36]
which processes Lmax+K+Lmin data items but comparators linking the upper part
(handling Lmax M-bit data items) and the lower part (handling Lmin M-bit data
items) are deactivated (i.e. the links with the upper and bottom parts are
broken). So, sorting is done only in the middle part handling K M-bit items. As
soon as the sorting is completed, the maximum subset is copied to the upper
part of the network and the minimum subset is copied to the lower part of the
network.

From the second step, all the comparators are properly linked, i.e. the network
from [29] handles Lmax+K+Lmin items, but the feedback copying (see the first

43

step and Figure 3.15) is disabled. Now for each new K M-bit items the
maximum and the minimum sorted subsets are appropriately corrected, i.e. new
items may be appended.

Let us look at the example shown in Figure 3.15 for which: N = 21, K = 8, Lmax
= Lmin =4, and S = 26,37,11,19,3,7,99,56,29,37,22,99,1,55,39,47,12,45,83,5,18.
The set S is divided into the following three subsets: A = 26,37,11,19,3,7,99,56,
B = 29,37,22,99,1,55,39,47, and C = 12,45,83,5,18.

Note that the last subset C contains only 5 elements and is incomplete. Symbol
U in Figure 3.15 indicates undefined value. The iterative sorting network is
exactly the same as in [36]. There are 3 steps in Figure 3.15. At the first step, K
(K=8) items are sorted and copied to the maximum and minimum subsets.

Two comparators are disabled in accordance with the explanations given above
(breaking links of the middle section in the sorted network with the upper and
the lower sections). At the second step, all the network comparators are enabled
and Lmax+K+Lmin items are sorted by the iterative network with feedback
register (FR). All necessary details can be found in [36]. It is easy to show that
the maximum number of iterations is (max(Lmax,Lmin)+K)/2 and much like the
previous case this number is almost always smaller [36]. At the last (third) step,
the incomplete subset C is extended to K items by copying the maximum value
(11) from the minimum subset 11,7,3,1 to the positions of missing data (see
Figure 3.15). After sorting Lmax+K+Lmin items at the step 3 the final result is
produced.

3.2.4. Separate maximum and minimum extraction

Some practical applications don’t require maximal and minimal subsets
simultaneously. For this purpose a reduced partial sorter that contains one main
and one additional sorting network was proposed.

This task can be solved by removing the networks SNmin (for finding only the
maximum subset) or SNmax (for finding only the minimum subset) of methods
described above. Figure 3.16 depicts first two methods reduced only for
maximum extraction.

44

Fe
e
d
b
ac
k
re
gi
st
e
r

Fe
e
d
b
ac
k
re
gi
st
e
r

O
u
tp
ut

R
e
gi
st
e
r

AXI
Slave
CU

sorting completed

A
X
I S
la
ve
 C
U

FB
 r
e
gi
st
er

A
X
I S
la
ve
 C
U

Output register

AXI Slave CU

sorting completed

A)

B)

FB
 r
eg
is
te
r

Figure 3.16 Sorters for extraction of maximal subsets [122]

Method A in Figure 3.16 is a reduced version of the method based of three
sorting networks. This version of the partial sorter utilizes two sorting networks
of the same size. The first sorting network receives blocks of data and sorts
them. After the sorting is completed, the maximal (or minimal) half loads into
the second sorting network along with maximal (or minimal) half of outputs of
the second network. For maximal set selection, in the initial step the second
network is loaded with zeros. For minimal set selection, it is loaded with
maximal possible value. After all the data is transmitted, the system waits for
the completion of sorting in both sorting networks. The maximal (or minimal)
half of the outputs of the second network is loaded in the output register and
waits for read request.

Method B in Figure 3.16 is a reduced version of the method based on
swapping networks. This method doesn’t require sorting minimal or maximal
subset of the current iteration with results of the previous iteration. That is why
sorting networks can be reduced twice. Both networks are connected here with a
swapping network. All outputs of the first sorting network are connected to the
swapping network along with all outputs of the second sorting network. On the
outputs of the second network we receive unsorted maximal and minimum

45

subsets of the input data, where all items of the upper half of the network are
larger than all items of the lower half.

The second method obviously requires less hardware results than the first
method and can be combined with partial Bitonic sorter because of utilizing the
swapping network. Although both methods are more or less equivalent for
extracting both minimal and maximal subsets at the same time, the second
method should be more suitable for separate extracting.

3.2.5. Very large scale subsets extraction

For some practical applications the maximum and minimum subsets may be
large and the available hardware resources become insufficient to implement
sorting networks. The arising problem can be solved using the following
technique.

Let lmax and lmin be constraints for the upper (SNmax) and bottom (SNmin) parts of
the sorting network, i.e. circuits with larger values (than lmax and lmin) cannot be
implemented due to the lack of hardware resources or because of some other
reasons. Let the parameters for the maximum and minimum subsets be greater
than lmax and lmin, i.e. Lmax > lmax and Lmin > lmin. In such case the maximum and
minimum subsets can be computed iteratively as follows:

1. At the first iteration, the maximum subset containing lmax items and the
minimum subset containing lmin items are computed. The subsets are transferred
to the CPU. The software part removes the minimum value from the maximum
subset and the maximum value from the minimum subset. Such correction
avoids loss of repeated items at subsequent steps. Indeed, the minimum value
from the maximum subset (the maximum value from the minimum subset) can
appear for subsets to be subsequently constructed in point 3 below and they will
be lost because of filtering (see point 3).

2. The minimum value from the corrected in software maximum subset is
assigned to Bu. The maximum value from the corrected in software minimum
subset is assigned to Bl. The values Bu and Bl are supplied to hardware.

3. The same data items (from memory), as in point 1 above, are preliminary
filtered in the PL in such a way that only items that are less or equal than Bu and
greater or equal than Bl are allowed to be transferred to block RAM, i.e.
computing sorted subsets is done only for the filtered data items. Thus, the
second part of the maximum and the minimum subsets will be computed and
appended (in software) to the previously computed subsets (such as subsets
from point 1).

4. The points 2 and 3 above are repeated until the maximum subset with Lmax

items and the minimum subset with Lmin items are computed.

Note, that if the number of repeated items is greater than or equal to lmax/lmin,
then the method above may generate infinite loops. This situation can easily be

46

recognized. Indeed, if any new subset contains the same value repeated K times
then an infinite loop will be created. In such case we can use another method
based on software/hardware sorters from [125]. In Chapter 5 we will present the
results of experiments for such sorters.

3.2.6. Filtering

Input data may optionally be filtered allowing only items that fall within pre-
given constraints to be processed. Let Bu and Bl be predefined upper (Bu) and
lower (Bl) bounds for the given set S. We would like to use one of the circuits
described above only for such data items D that fall within the bounds Bu and
Bl, i.e. Bl ≤ D ≤ Bu (or, possibly, Bl < D < Bu). Figure 3.17 depicts the proposed
architecture that enables data items to be filtered at run-time (i.e. during the data
exchange between hardware and software). There is an additional block on the
upper input of the MUX, which takes a data item Ik and executes the operation
indicated on the right-hand part of Figure 3.17. If the counter is incremented,
then a new register is chosen to store data item Ik. Otherwise, the signal WE
(write enable) is passive and a new item with a value that is out of the bounds
Bu and Bl is not recorded in the registers.

(count = count+1, WE) when
Bl  Ik  Bu else null;

If input value Ik is within the
constraints Bu and Bl then
increment the address counter
and allow writing data
(activate the signal WE – write
enable). Otherwise deactivate
the signal WE and do not
increment the address counter.

Address
counter
(count)

in
cr
em

en
t

Register address

K
 M

‐b
it
 In

p
u
t

re
gi
st
er
s

R0

RK‐1

K
 M

‐b
it
 d
at
a
it
em

s
to
 s
o
rt
in
g
n
et
w
o
rk

The maximum
item from the

minimum subset

M
U
X

Bu and/or Bl

IkIk

WE

up to the last

after the last

Figure 3.17 Digital filter [121]

Let us look at the same example in Figure 3.15 for which we choose Bu = 90
and Bl = 10. At the first step incoming data items have preliminary been
filtered, the values 99, 7, and 3 have been removed (because they are either
greater than Bu = 90 or less than Bl = 10), and the subset A with 8 items is built
from 11 first elements of the set S. At the second (last) step, the values 99, 1,
and 5 have been removed, and the subset B = 55,39,47,12,45,83,18 is built from
the remaining allowed elements of the set S. Since there are 7 items in B and K
= 8, this subset is incomplete.

47

3.3. Hamming Weight

We propose Hamming Weight counting circuit based on network of FPGA
lookup tables (LUTs). An FPGA LUT(n,m) can be used to directly
implement arbitrary Boolean functions f0,...,fm-1 of n variables x0,...,xn-1.
Clearly, h LUTs(n,m) can be configured to calculate the Hamming weight
w(A) of a vector A={a0,...,an-1}, where h= (log2(n+1))/m . The idea is
to build a network from LUTs(n,m) that can find the Hamming weight
w(A) for an arbitrary vector A of size N and then to compare this
weight with either a fixed threshold κ or with the weight of another binary
vector B assuming that the Hamming weight of B has been found
similarly. Since Hamming distance d(A,B) = w(A XOR B) we can find d(A,B)
as Hamming weights of "XORed" arguments A and B.

Figure 3.18 Hamming weight counters for N=8 (a) and N=36 (b) [123]

An analysis of practical applications shows that the majority of
them require the Hamming weight/distance count/comparison for such
values of N that are divisible by 8, 32, or 36. We suggest two optimized LUT-
based designs permitting the Hamming weight to be found for N=8 (Figure
3.18(a)) and N=36 (Figure 3.18(b)). For N=32 either four bits in Figure
3.18(b) are assigned to 0 or the results of Figure 3.18(a) are incrementally
added in a tree-based structure much similar to [89] composed of the design in
Figure 3.18(a) and adders. The circuit in Figure 3.18(b) without two right
adders Σ has (log2(n+1))/m ×(N/n + (N/2)/n) LUTs(n,m). Even for m=1
(the worst case) we need only 27 LUTs for Zynq xc7z020 containing
totally 53200 LUTs.

The Hamming weight for N>36 can be found in a similar tree-based structure.
There are two layers in Figure 3.18(a) with LUTs(6,3) and LUTs(5,4). The

48

first layer counts w(ai
0,...,ai

5) and the second layer takes the results of the
first layer and finally determines the 4-bit weight w(ai

0,...,ai
7). The delay

from the inputs to the outputs is equal to just 2 LUT delays. There are
also two layers in Figure 3.18(b) with LUTs(6,3) and two combinational
adders. The first layer is composed of 6 LUTs(6,3) and it outputs six
Hamming weights w1,...,w6 for six sub-vectors A1,...,A6 of the input vector.
The second layer contains 3 LUTs(6,3) and it outputs Hamming
weights α1α2α3, β1β2β3, χ1χ2χ3 of the most significant bits (MSB) in
w1,...,w6 (α1α2α3), the middle bits in w1,...,w6 (β1β2β3) and the less
significant bits (LSB) in w1,...,w6 (χ1χ2χ3). The final result is computed by two
combinational adders as it is shown in Figure 3.18(b). We found that any
layer with index greater than lognN is not cost-effective because either the
size of output weights will be increased compared to the previous layers or
LUTs will be used not-efficiently. All LUTs in Figure 3.18(b) are
configured identically.

3.4. Matrix covering

We have studied combinatorial search problems that utilize Hamming weight
calculating and sorting and one of them is matrix covering problem.

The covering problem can identically be formulated on either sets [67], [126] or
matrices [67]. Let A = (aij) be a 0-1 incidence matrix. The sub-set Ai = {j | aij =
1} contains all columns covered by row i (i.e. the row i has value 1 in all
columns of the sub-set Ai). The minimal row cover is composed of the minimal
number of the sub-sets Ai that cover all the matrix columns. Clearly, for such
sub-sets there is at least one value 1 in each column of the matrix. Let us
consider an example from [2] of a set S and sub-sets S1,…,S6 (Figure 3.19),
which can be represented in the form of the following matrix A:

1 2 3 4 5 6 7 8 9 10 11 12
S1: 1 1 0 0 1 1 0 0 1 1 0 0
S2: 0 0 0 0 0 1 1 0 0 1 1 0
S3: 1 1 1 1 0 0 0 0 0 0 0 0
S4: 0 0 1 0 1 1 1 1 0 0 0 0
S5: 0 0 0 0 0 0 0 0 1 1 1 1
S6: 0 0 0 1 0 0 0 1 0 0 0 0

49

Figure 3.19 An example of a set S with sub-sets S1,...,S6 from [124]

We consider below a slightly modified method from [127] that is applied to
binary matrices exemplified above and the matrix from Figure 3.19 [126] will
be used to illustrate the steps of the chosen method that are the following:

1. Finding the column Cmin with the minimum Hamming weight (HW) that
is the number of ones. If there are many columns with the same
(minimum) HW, selecting such one for which the maximum row is larger,
where the maximum row contains 1 in the considered column and the
maximum number of ones;

2. If HW = 0 then the desired covering does not exist, otherwise from the set
of rows containing ones in the column Cmin finding and including in the
covering the row Rmax with the maximum HW;

3. Removing the row Rmax and all the columns from the matrix that contain
ones in the row Rmax. If there are no columns then the covering is found
otherwise go to the step 1.

Let us apply the step 1–3 to the matrix A above:

1. The column 12 is chosen;

2. The row S5 is included in the covering;

3. The row S5 and the columns 9, 10, 11, 12 are removed from the matrix.

1. The remaining columns contain the following number of ones: 2, 2, 2, 2, 2,
3, 2, 2. The column 3 is chosen because for this column the row S4 has the
maximum HW equal to 5;

2. The row S4 is chosen and included in the covering;

3. The row S4 and the columns 3, 5, 6, 7, 8 are removed from the matrix.

1. The remaining matrix contains rows S1, S2, S3, S6 and columns 1, 2, 4 with
the following HWs: 2, 2, 2. The column 1 is chosen;

2. The row S3 is chosen and included in the covering;

1

2

3

4

6

7

8

9

10

11

12

S1

S2

S3

5

S4 S5

S6

S1 = {1,2,5,6,9,10};
S2 = {6,7,10,11};
S3 = {1,2,3,4};
S4 = {3,5,6,7,8};
S5 = {9,10,11,12};
S6 = {4,8}.

50

3. After removing the row S3 the covering is found and it includes the rows S3,
S4, S5 shown in italic font in the matrix above. The minimum covering is the
same as in [126] that was found with a different algorithm.

We suggest the given matrix to be unrolled in such a way that all its rows and
columns are saved in hardware (in programmable logic of FPGA of PSoC)
registers. Note that more than a hundred of thousands of such registers are
available in the recent low-cost FPGAs. This technique permits all rows and
columns to be accessed and processed in parallel.

Figure 3.20 demonstrates the unrolled matrix A shown above (and repeated in
Figure 3.20 for convenience). HW counters compute HW for all the
rows/columns in parallel using combinational circuits, such as that are proposed
in [36].

Figure 3.20 Architecture of the proposed hardware accelerator on an example of
unrolled matrix [124]

The MIN column and MAX row circuits permit to find out the minimal column
Cmin and the maximum row Rmax. It is shown in [128] that these circuits can be
built as MAX-MIN fully combinational networks producing the results faster
than in 20 ns. Since all the circuits (computing HW and the maximum/minimum
values) are functioning in parallel, the steps 1 and 2 may be completed faster
than in 20 + 20 = 40 ns even in low-cost FPGAs. So, a very significant
acceleration can be expected.

51

 Figure 3.21(a) presents such a circuit for a matrix 32 × 32 for which the
number of bits in any HW is 6 (because the maximum number of ones in a 32-
bit vector is 32 that can be represented by a 6-bit code). A particular
(simplified) example for only 6 input items 3, 14, 21, 11, 14, 27 is given in
Figure 3.21(b). The maximum value (27) is found in a combinational circuit
with only 3 gate level delays. Clearly, there is 5 gate level delay for matrices 32
× 32 and 6 gate level delay for matrices 64 × 64.

3
14
21
11
14
27

14
3
21
11
27
14

27
3
14
11
21
14

6
in
p
u
t
d
at
a
it
em

s The
maximum
value

21
3
14
11
27
14

Max

Min

Comparator‐
swapper

3 gate level delay

32 input HWs with 6 bits each

Th
e m

a
xim

u
m
 valu

e

b)

a)

Figure 3.21 MAX circuit from [8] for 32  32 matrix (a); an example (b). [124]

 Since all the circuits (computing HW and the maximum/minimum values) are
functioning in parallel, the steps 1 and 2 may be completed faster than in 20 +
20 = 40 ns even in low-cost FPGAs. So, a very significant acceleration can be
expected.

In accordance with the proposals, the matrix is unrolled only once and any
reduced matrix is formed by masking previously selected rows and columns.
One select register and two mask registers (one for rows and another one for
columns) shown in Figure 3.20 are additionally allocated in the PL. The select
register is zero-filled at the beginning of the step 1 and after the step 1 it
indicates by values 1 those rows that have to be chosen by the selected column
(i.e. such rows have values 1 in the selected column). The mask registers are
filled in with zeroes at the beginning of the algorithm and they mask (by the
values 1) those rows and columns that have been removed from the matrix in
each iteration. For example, the select register contains the value 000010 after
the first step in the example matrix A. The mask registers after the first iteration
in the example are set to 000000001111 for the columns and 000010 for the
rows. After the second iteration they are updated as 001011111111 for the
columns and 000110 for the rows.

52

3.5. Summary

This chapter describes methods proposed in this research. It presents the
pipelined periodic sorting network – which serves as a basis of our data sorting
solutions. The advantage over other sorting networks were discussed and
possible drawbacks were stated.

We proposed two approaches of full data sorters with different combination of
sorting networks and merging of sorted subsets. The first proposed method of
data sorting involves parallel sorting of data fragments in hardware with
subsequent merging of those fragments in software. The second method also
suggest a combination of hardware and software components, but hardware in
this case performs both network-based sorting and merge operation based on a
tree-like structure of block RAM-based mergers. The second method relies on
sorting smaller data fragments than the first method, but hardware merging
allows larger sorted data fragments supplying for subsequent data merging.

Partial sorting methods for maximal and minimal subset extraction were also
described in this chapter. We proposed three different methods for this problem
solving and discussed advantages of each of them. The first method is based on
main and additional sorting networks with copying data between them. The
second method is based on swapping network, which permits avoiding
additional data copying and reducing the size of additional sorting networks.
The third method is based on switchable C/S block which permits using a single
sorting network and less C/S blocks. The possibility of filtering and extracting
very large scale subsets, which allow to go beyond hardware limitation, was
also discussed.

The architecture of FPGA LUT-based circuit for Hamming weight calculation
was presented. The hardware system for matrix covering also described in this
chapter utilizes this circuit along with a combinational network composed of
C/S blocks for maximal and minimal item extraction.

Also we proposed hardware-based system for matrix covering, which utilizes
LUT-based Hamming weight calculators and comparator networks.

53

4. HARDWARE/SOFTWARE CO-DESIGN
The known results [129] [130] [131] have shown that software/hardware
solutions may be significantly faster than software only solutions. Hardware
only solutions are the fastest, but they are not suitable for the majority of
practical application, because of the resource limitation. We explored different
platforms for hardware/software co-design.

In this chapter three different approaches are explained: processing system and
programmable logic combination on PSoC [120] [121], FPGA/PC combination
and a three-level system which combines programmable logic and processing
system of PSoC with a host PC [5] [118] [119]. Also we describe hardware
architectures based on these approaches for methods proposed in the previous
chapter.

4.1. PS/PL system

This chapter describes our approach of hardware software co-design for PSoC
architecture from the Zynq-7000 family. It is an architecture that combines the
dual-core ARM CortexTM MPCoreTM-based processing system and Xilinx
programmable logic on the same microchip. There are similar solution from
other FPGA manufacturers [132] [133] [134], but we focus on Xilinx platforms.

Figure 4.1 illustrates interactions between the basic functional components of
the Zynq-7000 PSoC [135] that contains two major top-level blocks: the
processing system (PS) and the programmable logic (PL). Communications
with external devices are provided through multiplexed input/outputs (MIO)
with potential extension from the PL through extended MIO (EMIO). Zynq
PSoCs offer numerous communication mechanisms from simpler general-
purpose input to more advanced data exchange through AXI interfaces allowing
access to external DDR memory, to on-chip memory (OCM) and to level 2
cache of PS.

Software and hardware can be designed autonomously and linked in a
hardware/software system. To increase performance, the most time-consuming
parts of software might be redesigned and implemented in hardware.

54

Application Processor Unit (dual‐core
ARM)

PL to memory interconnect

High‐performance ports

Central
Interconnect

General‐purpose ports

Clocks Reset

I/O
M
em

o
ry

in
te
rf
ac
es

M
u
lt
ip
le
xe
d
 In

p
u
t/
O
u
tp
u
t
(M

IO
)

Ex
te
n
d
ed

 M
IO
 (
EM

IO
)

In
te
rr
u
p
ts

D
M
A

Interrupts

PS

PL A
cc
el
er
at
o
r
co
h
er
en

cy
 p
o
rt
 (
A
C
P
)

Arrow lines show port
control from master

to slave

Configurable logic cells

Block RAM

DSP slices

12‐bit analog to digital
converters (XADC)

Data can flow in both
directions through

the ports

DMA

OCM

Cache

Memory
interfaces

O
C
M

B

A

C

Figure 4.1 Interactions between the basic functional components of the Zynq-7000
PSoC [125]

Let us look at Figure 4.2. Clearly, software/hardware system is faster if: Ts > Tsch
≤ Tsh + Th + Tc, where Ts, Tsch, Tsh, Tc, Th are time intervals required for different
modules. In highly parallel implementations software, hardware and interactions
between hardware and software can run concurrently. For example, software
may run in parallel with hardware; operations in hardware over previously
received data may be done at the same time when new data are being
transferred. Thus, Tsch ≤ Tsh + Th + Tc. For instance we would like communication
and application-specific operations to be overlapped in hardware as much as
possible (see Figure 4.2). Note that while hardware only designs may be the
fastest, the complexity of such designs is often limited by the available
resources in the PL.

55

Software
only (Ts)

Software (Tsh)

Hardware (Th)

Communication
overhead (Tc)

Software/hardware

A
P
So

C

PS

PL

Tsch ≤ Tsh + Tc + Th

As much in
parallel as
possible

Figure 4.2 Software only and software/hardware systems [125]

Fig. 4.3 presents the proposed software/hardware architecture for the problems
discussed in Chapter 3. All hardware acceleration is done in an application-
specific processing block (ASP) which is entirely implemented in the PL. There
is another block in the PL called communication-specific processing (CSP)
which interacts with the PS, i.e. it receives a large set of data items step by step
in blocks and transfers the extracted sorted subsets. Besides, CSP is responsible
for exchange of control signals between the PS and PL.

The PS is responsible for solving the following tasks:

1. Acquiring data and saving them in either on-chip memory (OCM) or
external memory that is DDR.

2. Forming requests to the PL which is done through a set of control
signals.

3. Collecting data and performing tasks in software.
4. Verifying the results.
5. Solving exactly the same problem in software. This point is required

just for experiments and comparison.
6. Computing the consumed time.

The PL is responsible for solving the following tasks:

1. Processing control signals received from the PS which are: a request
(start) to begin data processing; source address in memory of input
data (i.e. the address of the set that has to be handled); destination
address in memory of output data (i.e. the address to copy the
extracted subsets); the number of blocks Q of input data transferred
from the PS to PL; and the number of items in the last block. The PL
also forms two signals that are sent to the PS which are: an interrupt
generated as soon as the job is completed (i.e. the subsets have been
extracted and copied to memory) and the number of clock cycles
consumed in the PL which is needed for experiments and
comparisons.

2. Performing computations on requests from the PS in highly-parallel
ASP.

56

3. Counting clock cycles consumed in the PL from receiving the
request up to generating the interrupt.

Application‐specific processing –
ASP (extracting subsets)

start
Source
address

Q

Communication‐specific
processing – CSP

PL

PS

These operations are controlled by software
Data transfer from/to
selected memories

(DDR, OCM, or cache)

GPP

AXI HP ports

Burst mode

MemoryThe PS software

HP

Interrupt from
hardware

Using software only to solve exactly the same
problem without hardware circuits

Count
clock
cycles

Destination
address

GP

Configured for the chosen
generic values K, M, Lmax, Lmin

....

Verification in software

Running in parallel

Klast

GP – general purpose
HP – high performance

Figure 4.3 The proposed software/hardware architecture for data sorting [125]

Selection of proper AXI ports is very important. Experiments in [136] have
shown that for transferring a small number of data items (from 16 to 64 bytes)
general-purpose input/output ports (GPP) are always the best. In Zynq PSoC
there are four available 32-bit GPP, two of which are masters and the other two
are slaves from the side of the PS. They are optimized for access from the PL to
the PS peripherals and from the PS to the PL registers/memories [137]. Since
the latter feature is what we need, a master GPP was chosen for transferring
control signals shown in Figure 4.3. AXI ACP allows cache memory of
application processing unit (APU) in the PS to be involved for data transfers
and there exists an opportunity to provide either cacheable or non-cacheable
data from/to the indicated above memories (i.e. OCM or DDR) [136]. Mapping
of memories may be done in computer-aided design software. Experiments in
[136] [131] have shown that for transferring large volumes of data items AXI
ACP is very appropriate. Thus, this port was chosen to receive the source set
from memory (OCM or DDR) in the PL and to copy extracted subsets from the
PL to memory.

Figure 4.4 gives more details about the chosen software/hardware interactions
where: solid arrows () indicate who is the master (the beginning) and who is
the slave (the end); double compound lines show control flow; and dashed lines
indicate directions of data flow (i.e. one direction -  or both directions - ).
Control (and possibly a small number of additional auxiliary) signals are
transferred through GPP. An initial (source) set and extracted subsets are copied

57

through AXI ACP. The used memory (OCM or DDR) is indicated by the
respective mapping both in hardware and in software.

The snoop controller [135] in Figure 4.4 provides cacheable and non-cacheable
access to memories (OCM or DDR). Cache area can be either disabled or
enabled in software. In particular, data received from/copied to memories may
be pre-cached, i.e. they can be first saved into faster cache and then transferred
with the main goal to increase performance of communications. Note that for
standalone programs cache memory is entirely available. For programs running
under an operating system (such as Linux) some area in cache memory may be
used by programs of the operating system and the size of available cache
memory is reduced. Many additional details can be found in [131].

Communication‐specific processing

AXI ACP

Burst mode

Snoop controller

512 KB cache and controller

OCM (256 KB) Memory
interfaces

Application
Processing
Unit – APU

Ex
te
rn
al
 t
o
 A
P
So

C
D
D
R
 m

em
o
ry

Slave

Slave (64‐bit data)
Sl
a
ve
 (
32

‐b
it
 d
at
a)

Master

Master

Software modules running in processing
cores

Master
Slave
Control signals

GPP

Central interconnect

Embedded
dual‐port RAM

Control Unit

Master

Output register Input register

Data flow

D
a
ta

fl
o
w

ASP

Control flow

Control
flow

On‐chip components

PL

PS

Figure 4.4 Hardware/software interactions [120]

4.1.1. Hardware/software co-design for subset extraction

This section presents the hardware architecture for methods of subsets
extractors from section 3.2 based on proposed hardware/software approach.

Initial (source) data set and extracted subsets are accommodated in memory as it
is shown in Figure 4.5. All necessary details about particular locations and sizes
are supplied from the PS to PL through GPP (see Figure 4.4).

58

To extract the maximum and/or minimum sorted subsets the following sequence
of operations is executed:

1. The PS prepares source data in memory, calculates the number of
blocks Q = N/K (the value K is predefined), the number of items
in the last block (which can be less than K), and indicates the source
and destination addresses. Here, N is the total number of data items
that have to be processed.

2. The PS sets the start signal that is permanently tested in the PL.

3. As soon as the signal start is set, the PL transfers blocks of data in
burst mode and saves them in a dedicated dual-port embedded block
RAM (one port is assigned for transferring data from the PS to PL
and another port for copying data from the block RAM to PL
registers considered in the next section).

4. As soon as the first block is completely transferred to the block
RAM through the first port, it is copied through the second port to
PL registers that are used as inputs of sorting networks for extracting
subsets in ASP.

5. The maximum and minimum subsets are incrementally constructed
using methods from the previous chapter and subsequent blocks of
source data are transferred from memory to the block RAM in
parallel.

6. The block RAM is organized as a circular buffer as it is shown in
Figure 4.6. If it becomes full data transfer is suspended until space
for subsequent block is freed.

7. As soon as all Q blocks are processed the maximum and minimum
subsets are ready (the details are given in section 3.2).

8. The maximum and minimum subsets are copied from the PL to
memory (see Figure 4.5).

9. As soon as the previous point is completed, the PL generates a
hardware interrupt to the PS indicating that the job has been
finished.

10. Optionally, the PL may count the number of clock cycles for solving
the problem in hardware that it supplied to the PS through GPP.

11. PS may solve other problems in parallel with the PL. However, as
soon as an interrupt is generated it is handled by the PS. Hence, the
extracted subsets may immediately be used, for example, as data
needed for projects of higher hierarchical levels.

59

Memory

source address

Th
e
n
u
m
b
er
 N
 o
f
d
at
a

it
em

s
in
 t
h
e
gi
ve
n
 s
et

Q blocks of data,
each of which is
handled in the PL in
parallel: Q = N/K

K items

Klast items

To the PL

From the PL

destination
address Maximum

subset

Minimum
subset

Lmax items

Lmin items

M
Klast ≤ K

M bits may be
accommodated in
one or more
words of memory

Figure 4.5. Accommodation of the initial data set and the extracted subsets in memory
[120]

The circular buffer in Figure 4.6 is managed by the PL control unit that is a
finite state machine. The buffer is built in the PL block RAM which is written
through the first port (used for transfer data from the PS) and read through the
second port (used to copy data from the block RAM to PL registers). As soon as
the buffer is full, data transfer from the PS to PL is suspended. As soon as some
area of the buffer is released (because data have already been read), data
transfer is renewed.

60

Write address for the first port

Writing data to block RAM
from memory

Reading data
from block RAM

Read address for
the second port

Figure 4.6 Block RAM organized as a circular buffer [120]

4.1.2. Hardware/software system for search problems

Figure 4.7 presents the proposed partitioning in software and hardware modules
(assuming implementation in Zynq PSoC) of the considered algorithm that
enables the minimal covering to be found.

PS
Transferring the
matrix to the PL
through the DDR

PL

External DDR

Getting Cmin and
setting the select

register

Cmin

Select register
Interrupt of type a

Getting Rmax and
updating the mask

registers

Rmax

Mask registers
Interrupt of type b

Finding out the
covering or indicating
that the covering
does not exists

AXI interface

General‐purpose
ports and interrupts

Hardware
accelerator from

Figure 3.20APSoC

Figure 4.7. Partitioning of the algorithm in software and hardware modules [124]

61

Software in the PS is responsible for the following steps:

1. Getting from a host computer or generating the matrix, unrolling it, and
saving in external DDR memory as a set of rows and a set of columns;
2. As soon as Cmin is found, the PL generates an interrupt of type a. The PS
receives the Cmin and sets the select register in the PL through general-purpose
ports;
3. As soon as Rmax is found, the PL generates an interrupt of type b. The PS
receives the Rmax and sets the mask registers in the PL through general-purpose
ports [135];
4. At any iteration it is checked if the solution is found or if it does not exist. If
the solution is found it is indicated by the PS or transmitted to the host computer
and the algorithm is completed.
Hardware in the PL implements the architecture in Figure 3.20 and is
responsible for the following steps:
1. Getting the unrolled matrix from external DDR through high-performance
AXI Interface and saving the rows and columns in slice registers as it is shown
in Fig. 3.20.
2. Getting from the PS select/mask vectors and setting/updating the select and
the mask registers.
3. Finding out the value Cmin at each iteration and as soon as the value of Cmin is
ready, generating an interrupt of type a.
4. Finding out the value Rmax at any iteration and as soon as the value of Rmax is
ready, generating an interrupt of type b.

4.2. FPGA-based system with host PC

Another platform that have been studied is a two-level system that combines
general purpose PC for software part and FPGA for hardware acceleration. The
data transfer between hardware and software levels is organized through PCI-
express. The architecture of hardware accelerator part of this two-level
architecture is shown in Figure 4.8. On-board DDR memory is used for
preliminarily data collection by FPGA and storage. The DDR is controlled by a
memory interface generator.

Figure 4.8 Architecture of a two-level FPGA-based system for data sorting [5]

62

Data transfer in the host PC is organized through direct memory access (DMA)
module that was developed for PC and FPGA integration of the two-level
system. The hardware uses the Intellectual Property (IP) core of the central
direct memory access (CDMA) module [138] to copy data through AXI PCI
express (AXI-PCIE) [139]. The project is similar to [140] and links CDMA and
AXI-PCIE modules based on a simple data mover (i.e. the mode "scatter gather"
is not used). A master port (M-AXI) of the AXI-PCIE operates similarly to GP
ports in [136] and supplies control instructions from the PC to customize data
transfers. The instructions indicate the physical address of data for PC memory,
the size of transferred data, etc.

Software in the host PC runs the 32-bit Linux operating system (kernel 3.16)
and executes programs (written in the C language) that take results from PCI-
express (from the accelerator) for further processing. To support the data
exchange between two parts of the system, a driver (kernel module) for general
purpose PC was developed. The driver creates in the directory /dev a character
device file that can be accessed through read and write functions, for example
write(file, data_array, data_size). Up to 5 base address registers (BAR) can be
allocated but we used just one.

The PC BIOS assigns a number (an address) to the selected BAR and a
corresponding interrupt number that will be later used to indicate the
completion of a data transfer. As soon as the driver is loaded, a special
operation (probe) is activated and the availability of the device with the given
identification number (ID) is verified (the ID is chosen during the customization
of the AXI-PCIE). Then a sequence of additional steps is performed (see [141]
for necessary details). A number of file operations are executed in addition to
the probe function. In our particular case, access to the file is done through
read/write operations. Figure 4.9 demonstrates the interaction of a user
application with the driver (kernel module) and some additional operations that
may be executed.

Open
Device file

Write/Read

Copy data from
the user space

(copy_from_user)
Write operation

Get physical
address

(pci_map_single)

Enable CDMA
interrupts
(writel)

Write address to
translation
registers

of AXI‐PCIE IP
core

(writel)

Write source and
destination
addresses to

CDMA registers
(writel)

Write number of
bytes to CDMA

register
(writel)

User application Kernel module

Wait for
interrupt

Copy data to the
user space

(copy_to_user)

Read Operation

Figure 4.9 Kernel module [5]

As soon as a user program calls the read function, the read(file, data_array,
data_size) function gets the address in the user memory space and the number of

63

bytes that need to be transferred. Initially, the data are copied to a buffer and
then the physical address of the buffer is obtained. Now the data are ready to be
transferred from PSoC/FPGA. Then the data are copied and the driver is waiting
for an interrupt indicating that the data transmission is complete. The necessary
operations for generating the interrupt are given in [138]. Additional details can
be found in [141].

For the methods in sections 3.1-3.2 the proposed networks can be used as
follows. The sorter receives blocks composed of N M-bit data items that are
collected from inputs initially and stored in DDR memory. Interactions with
memory are done through the memory interface block (see Figure 4.8). The
sorter executes iterative operations over multiple parallel data and is controlled
by a dedicated finite state machine (FSM) called Sorter Control Unit (see Figure
4.8). The ports are also controlled by a dedicated FSM (see HP/ACP Control
Unit in Figure 4.8). The results of sorting are copied back to memory and then
transmitted to the host PC through the PCI-express bus. Specially developed
dedicated circuits are responsible for data collection and organization that is
done in accordance with the established requirements. Finally, the dedicated
circuits prepare data in memory so that these data can be processed in the FPGA
and the results of the processing (stored in memory) are ready to be transmitted
to the host PC. The blocks CDMA with control units (PCI Control Unit and
Interrupt Control Unit in Figure 4.8) are responsible for transmitting data.

4.3. Three-level system

The third approach can be described as a combination of both system discussed
previously: PS/PL system and a system with a host PC.

Certain Zynq devices (for example, Xilinx zc706) with support of PCI-Express
interface allow us to build a three-level architecture which combines PS and PL
of PSoC with general purpose PC. Figure 4.10 shows the basic architecture for
data transfer between a host PC and an PSoC through PCI-express.

64

PC Zynq APSoC
PS

PL

P
C
I‐
ex
p
re
ss

AXI GP ports
AXI HP ports

AXI ACP

Memory
interconnects
and controller

Ex
te
rn
al
 D
D
R
 m

e
m
o
ry

Software running
under Linux

Master

Slave

Cache memory
and controllers

O
C
M

Hardware accelerators

Memory

Software running
in host PC under
Linux operating

system

Device
driver

Figure 4.10 Basic architecture for data transfer between a host PC and a PSoC through
PCI-express [5]

Figure 4.11 presents the architecture of hardware accelerator part of the three-
level system for the example of distributed data sort. The architecture is based
on the hardware accelerator from the previous section, but includes PS part of
the PSoC. We assume that the data collected in the PSoC are preprocessed in
the PSoC by applying various highly parallel circuits, and the results are
transferred to the host PC through the PCI-express bus. The device driver for
general purpose PC is similar to the one described in section 4.2. The CDMA
module can be connected to either AXI HP or AXI ACP interfaces in PSoC and
transmits data from either on-chip memory (OCM) or external DDR. After
supplying the addresses, the number of data bytes (that need to be transferred) is
indicated and the data transmission is started. As soon as data transmission is
completed, the CDMA module triggers an interrupt that has to be properly
handled (the interrupt number is determined by the BIOS of the host PC). The
following customization is done for 1) AXI-PCIE: legacy interrupts, 128 bits
data width, and 2) CDMA: 256 bytes burst size, 128 bits data width. Note that
the architecture in Figure 4.11 allows data transfers in both directions, i.e. data
from the PC may also be received.

65

Figure 4.11 Architecture of a three-level PSoC-based system for data sorting [5]

The proposed architecture is similar to the architecture described in section 4.2.
The main difference that in addition to two levels – PL (FPGA) and host PC
system, there is another level – PS of the PSoC system. Interaction between the
PL and PS are implemented as in PS/PL system described in section 4.1. but
with inclusion of Zynq PS as in PS/PL system, The data processing logic (for
example, sorter) receives blocks composed of N M-bit data items that are
collected from inputs initially and stored in memories (such as external DDR
and OCM). In case of a three-level system, transactions with memory are done
through AXI HP/ACP ports of PS (see Figure 4.11) and not through the
memory interface block (see Figure 4.8). Other steps of the method are also
similar to the two-level system with host PC, but PSoC PS, instead of specially
developed dedicated circuits, is responsible for data collection and organization
that is done in accordance with the established requirements. The PS prepares
the data so it can be processed in the PL and transmitted to the host PC.

4.4. Summary

This chapter proposes and describes different approaches of hardware/software co-
design for reconfigurable FPGA and PSoC devices. The first approach involves
usage of PS and PL of PSoC device with communication between them through
AXI interface ports.

Also this chapter presents two-level and three-level approaches using a general
purpose computer (host PC) and communication through high-speed PCI express
interface. The first level of the two-level system is programmable logic (FPGA) and
the second is host PC running Linux operating system. The three-level system was
designed for PSoC devices and has an additional level which is PS of the PSoC
device. Linux Kernel module was written for integration of both architectures.

This chapter covers all aspects of hardware/software implementations of methods
proposed in the previous chapter. The proposed techniques and methods are
suitable for processing large volumes of items and designed to work with
streaming data. The architectures presented in this research can be easily
utilized for different hardware accelerators.

66

5. EXPERIMENTS
This chapter describes experimental results of systems discussed in Chapter 3.
All experimental setups are based on approaches presented in Chapter 4. The
platforms and techniques were chosen according to requirements and features of
the systems.

Experiments were done with different prototyping boards. The platforms for
hardware/software systems that involve PL and PS of PSoC device were Xilinx
ZC702 [142] and ZedBoard [143]. For the systems that involved data transfer
between PC and accelerators, we used two boards. The first is the Xilinx ZC706
[144] evaluation board containing the Zynq-7000 XC7Z045 PSoC device with
PCI express endpoint connectivity "Gen1 4-lane (x4)". The PS is the dual-core
ARM Cortex-A9 and the PL is a Kintex-7 FPGA from the Xilinx 7th series. The
second board is VC707 and it contains the Virtex-7 XC7VX485T FPGA from
the Xilinx 7th series with PCI express endpoint connectivity "Gen2 8-lane (x8)"
[145]. All designs were done for: 1) hardware in the PL of PSoC/FPGA
synthesized from specifications in VHDL that describe circuits interacting with
Xilinx IP cores (Xilinx Vivado Design Suite 2016.2); 2) software in the PS of
PSoC developed in C language (Xilinx Software Development Kit – SDK
2015.1); 3) user programs developed in C running under the Linux operating
system in the host PC. The PL clock frequency is 125 MHz. The PS frequency
is 666 MHz. Data were transferred from the ZC706/VC707 to the host PC
through PCI-express. The PCI-express bus frequency is 100 MHz. The host PC
contains Intel core i7 3820 3.60 GHz.

5.1. Data sorting

We have implemented different hardware/software systems based on methods
described in Chapter 3. All the proposed approaches were implemented and
tested on FPGA and PSoC platforms. Experiments were conducted for hardware
sorting with subsequent software merge and for hardware sorting and merging
with subsequent software merging for very large subsets.

5.1.1. Hardware sorting of data subsets and software merging

Hardware/software system based on hardware sorting network-based sorters
with subsequent software merge was implemented using two different
approaches: GPP+FPGA and three-level system described in sections 4.2 and
4.3. Figure 5.1 demonstrates organization of experiments with data sorters for
the three-level system.

67

ZC706

Sorting in
software of

the PC

D

Merging the
sorted blocks
in software of

the PC

CPC PL PS

Sorting blocks
in the PL with

OETS
network

A
Merging

sorted blocks
in software of

the PS

B

PCI‐express
DDR

memory

Figure 5.1 Organization of experiments with data sorters (the size of one block is 1024
32-bit data items) [5]

We assume that data are collected by the ZC706/VC707 board and stored in
DDR memory (in the experiments, data are produced as described in point 1
below). Subsequently, different components (A, B, C, D) may be involved in
data processing:

1. Data are randomly generated and sorted using only networks in hardware
(component A), indicated below as Sorting blocks;

2. Data are generated and sorted in the PC, indicated below as PC sort.

3. Data are transferred from the ZC706/VC707 to the PC through PCI-express
and sorted by software in the PC (component D), indicated below as PC
sort+data transfer;

4. Data are completely sorted in the PSoC (the set of data items is decomposed
into blocks, blocks are sorted in the PL by the networks described in section
3.1 , the sorted blocks are merged in the PS to produce the final result) and
the sorted data are transferred to the PC through PCI-express (components
A and B), indicated below as Sorting+PS merge;

5. Data are completely sorted in PSoC/FPGA and in the PC in such a way that:
a) blocks of data are sorted in the PL of PSoC or in FPGA; b) the sorted
blocks are transferred to the PC through PCI-express; and c) the blocks are
merged by software in the PC (components A and C). This case is indicated
below as Sorting+PC merge.

Sorting in hardware only (see point 1 above) permits the circuits that process
the maximum possible number of data items and can be entirely implemented in
the programmable logic without any support from software to be evaluated. We
also present the results of evaluation of the circuits including threshold values
that are potential limitations of the methods proposed.

Evaluation of the proposed circuits has been done through a set of experiments
with the network described in section 3.1 (depicted in Figure 3.1), selecting four
data sets sizes of 512, 1024, 2048, and 4096 items (32 bits). The results are
shown in Figure 5.2.

68

We counted only the percentage of look-up tables (LUTs), which are the
primary PL/FPGA resources that are used for the network. The percentage of
other resources is lower, for example, the percentage of flip-flops for the FPGA
does not exceed 23% and for the PL – 31% for all data set sizes (from 512 to
4096). From Figure 5.2 we can see that the available resources permit only
iterative networks of up to 2048 32-bit data items to be implemented. Thus
2048 is the threshold for hardware only implementations based on the
microchips indicated above. A preliminary evaluation shows that 8192 items is
the maximum threshold value for hardware-only implementations of the circuit
from section 3.1 in the most advanced FPGAs/PSoCs currently available on the
market.

0

20

40

60

80

100

120

140

160

512 1024 2048 4096

ZC706 (utilization % LUTs)
VC707 (utilization % LUTs)

The maximum available hardware resources

Number of 32‐bit data items

Percentage of used LUTs

Figure 5.2 The results of sorting in hardware only using iterative networks described in
section 3.1 [5]

The results obtained for the five measurements indicated above are reported in
Figure 5.3 (the two curves PC sort and PC sort + data transfer show the same
results without and with data transfers). The result for each type of experiment
is an average of 64 runs.

The following conclusions can be drawn from Figure 5.3:

 The fastest results were obtained for the components A and C, i.e. pre-
sort in the PL with a subsequent merge in the PC (see point 4 above).
Note that the fastest (the lowest) curve in Figure 5.3– is built for sorting
individual subsets only. Thus, the complete data set has not been sorted
and the relevant results cannot be used for comparisons.

69

 The slowest result is shared between the remaining two cases (see points
2, 3 above).

 Note that for almost all data sizes, sorting and merging in PSoC is faster
than sorting in PC software. Thus, cheaper (than PC) PSoCs are more
advantageous and may be used efficiently for embedded applications.

 Sorting blocks in the PL network (see Figure 3.1) is significantly faster
than subsequent merging. All communication and protocol overheads
were taken into account.

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

2 4 8 16 32 64 128 256 512 1024

Sorting blocks (μs)
Sorting + PS merge (μs)
Sorting + PC merge (μs)
PC sort (μs)
PC sort + data transfer (μs)

The size of data in KB

Time in s

Curves for the cases PC sort and
PC sort+data transfer are almost overlapped

Figure 5.3 The results of experiments with the three-level system sorting data (the size
of one block is 1024 32-bit data items) [5]

Similar experiments were done with the VC707 prototyping board, but with
blocks of data containing 2048 32-bit data items (i.e. the blocks sorted in the
hardware network are two times larger). The results are shown in Figure 5.4.

70

0

20 000

40 000

60 000

80 000

100 000

120 000

2 4 8 16 32 64 128 256 512 1024

Sorting blocks (μs)

Sorting + PC merge (μs)

PC sort + data transfer (μs)

Sorting + PC merge (μs)

The size of data in KB

Time in s

Figure 5.4 The results of experiments with the two-level system sorting data (the size of
one block is 2048 32-bit data items) [5]

From analyzing these results we can conclude that:

 Using an FPGA from the Virtex-7 family, sorting in hardware networks is
slightly faster, but the difference is negligible.

 Using larger blocks (2048 vs. 1024) allows sorting in point 4 (see the
beginning of this section) to be faster by a factor ranging from 1.2 to 1.8.
This is because the depth of software merges is reduced by one level.

Comparisons with the best known alternatives can be done by analyzing the
fastest known networks. For data sorting, the latency and the cost of the most
widely discussed networks are shown in Table 5.1. The formulae for the table
are taken from [4] [27] [9] [36] [44]. For example, if N = 1024 then the latency
is equal to D(1024)=55 for the fastest known even-odd merge and bitonic merge
networks [24] [19], which is smaller than the number of iterations for the
proposed network. However, C(1024) for the less resource consuming even-odd
merge network is 24,063 C/S and for the proposed network C(1024) = 1023
C/S. Thus, the difference is a factor of about 24. It means that with the same
hardware resources, the proposed networks can process blocks of data with
significantly larger number N of data items. Indeed, the resources C(1024) =
24,063 of the known even-odd merge network are the same as for 24 proposed
networks each of which sorts the same number of data items, i.e. 1024. This

71

means that the proposed network occupies less than 5% of the resources of the
known network and the number of sorted items is exactly the same.

TABLE 5.1. Cost С(N) and latency D(N) of the most widely discussed networks

Type of the network C(N) D(N)

Bubble and insertion sort N×(N-1)/2 2×N-3

Even-odd transposition N×(N-1)/2 N

Even-odd merge (p2-p+4)×2p-2-1,
N=2p

p×(p+1)/2, N=2p

Bitonic merge (p2+p)×2p-2, N=2p p×(p+1)/2, N=2p

The proposed network (see
Figure 3.1)

N-1 ≤N

The experiments done for the board Xilinx vc707 [146] have shown that for the
networks [24] [19] N≤128, while for the proposed networks N ≤ 2048. Thus, the
proposed networks may handle about 16 times larger blocks. The blocks created
in hardware are further merged in software, thus the number of levels in
software will be increased in the known networks by a factor of log216=4
(comparing to the proposed network). The following experiments were done:

1. Blocks with two sizes (that are 128 and 2048 32-bit words) have been
sorted in software using the known (for the size 128) and the proposed (for
the size 2048) networks. The measured times are T128 and T2048.

2. Since the known networks cannot be used for N=2048, the same results
have been obtained through a subsequent merge in software of blocks with
N=128 to get blocks with N=2048. The measured time is T128 + Tmerge.

3. Finally we measured the value (T128 + Tmerge) / T2048. The fastest method was
used i.e. pre-sort in the PL with subsequent merge in the PC. The result that
was an average of 64 runs exceeds 5. Note that additional delays appeared
also in data transmission through PCI-express of smaller blocks of data
items.

For subsequent merging required for larger data sets all the conditions for the
proposed and known methods are the same. Thus, the proposed methods are
always faster because merging in software begins with significantly larger pre-
sorted blocks. Clearly, threshold values for maximum sizes of sorted sets are the
same as for general-purpose software running in a PC.

72

5.1.2. Hardware merging of sorted subsets

The system with network-based sorter with subsequent merge in hardware for
smaller data fragments and software merge for larger fragments described in
section 3.1.2 was also implemented. It was compared with both software sorting
and hardware sorting with PC merge. Figure 5.5 demonstrates organization of
experiments with data sorters for the three-level system.

1) Preparing initial
(unsorted) blocks
and sending the
blocks to FPGA;

2) Receiving sorted
blocks from FPGA;

3) Processing sorted
blocks

GPC FPGA

Sorting blocks
by an iterative

network

A
Merging the
sorted blocks
in a RAM‐

based circuit

B

PCI‐express

Figure 5.5 Organization of experiments with data sorters (the size of the input data is
256KB of 32-bit data items) [118]

The system for data transfers between a host PC and an FPGA has been
designed, implemented, and tested. Experiments were done in the VC707
prototyping board that contains Virtex-7 XC7VX485T FPGA from the Xilinx
7th series with PCI express endpoint connectivity "Gen1 8-lane (x8)". All
circuits were synthesized from the specification in VHDL and implemented in
the Xilinx Vivado 2016.2 design suite. Software programs in the host PC run
under Linux operating system and they were developed in C language. Data
were transferred from the host PC to the VC707 and back through PCI express.
The host PC is based on Intel core i7 3820 3.60 GHz.

Experiments have been done in accordance with Figure 5.5. The maximum size
of data that are entirely sorted in FPGA is 256 KB. For larger size of data
additional merging is done in the host PC. The results and comparison with
sorting in the host PC are presented in Figure 5.6. It is clearly seen that sorting
throughput for the proposed systems is significantly better than in the host PC.
For example, 1,024 KB data can be sorted in the proposed system in 0.016 s and
in the host PC in 0.11 s. Comparing the time of sorting reported in the
referenced papers and the results of Figure 5.6 clearly demonstrate that the
proposed solutions are faster.

73

Figure 5.6 Comparison with software sorting

Figure 5.7 Comparison with hardware sorting with PC merge.

The comparison with software merge solution with larger sorting network
proposed above is presented in Figure 5.7. The results demonstrate that the
proposed sorting with subsequent data merge in hardware is faster than sorting
with PC merge, but both solutions perform better than the software sorting. In
hardware merge-based solution we have utilized twice smaller sorting network,
because of resource limitations of the VC707 device. Both solutions perform

0

20

40

60

80

100

120

8 32 128 512

Ti
m
e
in
 m

s

The size of data in KB

Sorting time in the host PC

Sorting + PC merge (μs)

0

5

10

15

20

25

30

8 32 128 512

Ti
m
e
in
 m

s

The size of data in KB

Sorting time in the proposed
system
Sorting + PC merge (μs)

74

almost identically with small data sets, but the hardware merge performs better
starting with 64KB date set and peaks with 256KB set, which is maximal
possible set to be sorted solely in hardware. After 256KB threshold the system
starts using software merge similar to the software merge-based solution, but it
merges data blocks of 256KB instead of 8KB. 1,024 KB data can be sorted in
the hardware merge-based system in 0.016 s and in the software merge-based in
0.027 s. Also it is important to mention that hardware-merge based solution
utilized more than 70% of the device RAM blocks, while software merge
solution doesn’t necessitate the usage of RAM blocks.

Figure 5.8. Experimental results of sorting data sets with simultaneous item counting
for different item sizes [119]

Merging with item counting was performed for 32-, 16- and 8-bit items. The 36-
bit size of the word for 32-bit items in the BRAM was chosen. It means that the
item count part of the word is 4-bit and capable of counting up to 15 repetitions,
which is enough for experiments with randomly generated data. The system was
configured to work with 32-bit words with 16-bit size of both the item and the
count parts for counting and merging of 16- and 8-bit data.

The experiments were conducted with randomly generated numbers. The
merging with counting 32-bit items didn’t show any noticeable speedup over
simple merging, since 216 of randomly generated numbers do not have
significant number of repetitions. The merging with counting of the same
number of 16-bit data items is 1,45 times faster than the simple merge and
merge of 8-bit items is 27,28 times faster.

We experimented with different volumes of 8-, 16- and 32-bit data items and
compared them with software sorting. The host PC was used for merging the
data sets larger than volume of data that can be processed with the FPGA. In

0

2

4

6

8

10

12

14

Ti
m
e
in
 m

s

211 212 213 214 215 216 217 218

Number of items

32‐bit 16‐bit 8‐bit

75

addition to data sorting and merging, PCI express throughput and operating
system overhead were also taken into account.

Figure 5.8 depicts comparison of sorting data sets in the proposed system with
8-, 16-, and 32-bit item sizes.

5.2. Partial sorting

We have implemented all the proposed in section 3.2 methods of partial sorters
for minimal and maximal subset extractors using all platforms discussed in
Chapter 4. Initially all these solutions were designed for PS/PL PSoC
implementation, but we have conducted experiments for 2- and 3-level
architectures involving host PC for exploration of additional features and
comparison with known hardware alternatives.

5.2.1. Hardware/software implementation of simultaneous min/max
extractors

The hardware/software systems for min/max subset extraction were designed as
it was proposed in section 4.1.1. Xilinx PSoC Zynq-7000 was chosen as a
platform for this implementation.

Figure 5.9 shows the organization of experiments. Initial (source) data are either
generated randomly in software of the PS with the aid of C language rand
function (see number 1 in Figure 5.9) or prepared in the host PC (see number 2
in Figure 5.9). In the last case data may be generated by some functions or
copied from available benchmarks. Computing subsets in software/hardware
systems is done completely in Zynq PSoC xc7z020-1clg484c housed on
ZedBoard [143] with the aid the software/hardware architecture described in
section 4.1. Computing subsets in software only sorters is completely done in
the PS calling C language qsort function which sorts data and after that the
maximum and minimum subsets are extracted from the sorted data. The results
are verified in software running either in the PS (see number 3 in Figure 5.9) or
in the host PC (see number 4 in Figure 5.9). Functions for verification of the
results are given in [131]. Verification time is not taken into account in the
measurements below.

Synthesis and implementation of hardware modules were done in Xilinx Vivado
2016.2 design environment from specifications in VHDL. Standalone software
applications have been created in C language and uploaded to the PS memory
from Xilinx SDK (version 2016.2) using methods described in [131].
Interactions with PSoC are done through the SDK console window.

76

Host PC

Output files

Input files

Processing in
software of
the host PC

Software,
developed
in SDK

Hardware,
developed
in VivadoIn

te
rf
ac
e
s

Generating data
using C language
function rand

2

1

Getting data
from the host PC

3
Verifying the results in
software of the PS

4

Verifying the
results in the

host PC
Measuring the time required in software
only and in hardware/software systems

Evaluation of communication overheads

Generating data and verification of
the results

Zynq APSoC

PS PL

Displaying the results

Figure 5.9 Experimental setup [120]

For all the experiments 64-bit AXI ACP port was used for transferring blocks
between the PL and memories. More details about this port can be found in
[131] [136] [137]. The size of each block for burst mode is chosen to be 128 of
64-bit items (two 32-bit items are sent/received in one 64-bit word). Two
memories were tested: the OCM and external (on-board) DDR. The OCM is
faster because it provides 64-bit data transfers [135], but the size of this memory
is limited to 256 KB. The available on ZedBoard 4 Gb DDR provides 32-bit
data transfers.

The measurements were based on time units (returned by the function
XTime_GetTime [34]) for Lmax = Lmin = 64, M=32, and K = 200. Each unit
returned by this function corresponds to 2 clock cycles of the PS [35]. The PS
clock frequency is 666 MHz. Thus, any unit corresponds to approximately 3 ns.
The PL clock frequency was set to 100 MHz. Figure 5.10 shows the time
consumed for computing the maximum and minimum subsets for data sets with
different sizes in KB (from 2 to 128). Since M=32 the number of processed
words (N) is equal to the indicated size divided by 4. Figure 5.11 shows the
acceleration of software/hardware systems comparing to the software only
sorting in the PS. Note that Figures 5.10, 5.11 present diagrams for OCM. If
DDR memory is used then communication overheads are slightly increased but
acceleration in the software/hardware systems comparing to software only
system is again significant. For M=64 speed-up is increased in almost 2 times.

77

1

10

100

1 000

10 000

100 000

2 4 8 16 32 64 128

Software only

Hardware (method 1)

Hardware (method 2)

Hardware (method 3)

Time in s

Size of data in KB

The results for methods
1 and 2 are almost

identical and that is why
the respective lines

overlap

Figure 5.10 Computing time in software only and software/hardware systems. Method 1
– three sorting networks (section 3.2.1), method 2 – swapping networks (section 3.2.2),
method 3 – switchable comparators (section 3.2.3) [120]

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128

Acceleration of
software/hardware
systems comparing to
software only system

Acceleration

Size of data in KB

Example: this point
indicates acceleration
by a factor of 70.7 of

the proposed software/
hardware solutions
comparing to the

software only solution

70.7

Figure 5.11 Acceleration of software/hardware systems comparing to software only
system [120]

If the size of the requested subsets is increased in such a way that all data need
to be read from memory several times (see section 3.2.5.) then acceleration is
decreased. Table 5.2 presents the results for extracting larger subsets
(containing from 127 to 505 32-bit data items) from 128 KB set.

78

Table 5.2. The results for extracting larger subsets from 128 KB set

N 127 190 253 316 379 442 505

Time
in s

926.4 1,393.7 1,856.7 2,320.5 2,780.4 3,245.5 3,708.9

For very large subsets acceleration may even be less than 1, i.e. software only
system becomes faster. In such cases software/hardware sorters can be used
directly and they provide acceleration for all potential cases even for Lmax = N or
Lmin = N. Such acceleration is not as high as in Figure 5.11 and it is equal to 6
for N = 512, K = 256 (now K is the size of blocks sorted in hardware and
further merged in software) and 1.4 for N = 33,554,432, K = 256. These results
were taken from experiments with data sorters from [131] (in all experiments
M=32). We found that for small and moderate subsets the proposed here
methods provide significantly better acceleration.

5.2.2. Three-level system for min/max extractors

The next experiments were done extracting the maximum and the minimum
sorted subsets using the system described in section 4.3, which involves usage
of general purpose PC and PCI express communication. We found that the
acceleration is better than for complete data sorters described in section 5.1,
which use the same approach. This is because the number of data transferred
through PCI express is significantly decreased and almost all operations are
done in the PSoC/FPGA. We implemented and tested the iterative circuit
presented in section 3.1 (Figure 3.1) in the PL of PSoC, which takes data from
the DDR memory and extracts the maximum and minimum subsets with
Lmax/Lmin data items, where Lmax/Lmin varies from 128 to 1024 (as before M =
32, L varies from 2 KB to 1024 KB). Table 5.3 presents the results for Lmax/Lmin
= 128.

TABLE 5.3. The results of experiments extracting the maximum/minimum subsets

Data (KB) Time (μs) Data (KB) Time (μs)

2 70 64 254

4 75 128 425

8 89 256 916

16 112 512 1543

32 157 1024 3535

79

Table 5.3 presents the results for larger numbers of data items in extracted
subsets (from 128 to 1024) for L = 256 KB.

For very large subset extraction the approach described in section 3.2.5 was
used. Table 5.4 represents experimental results for very large scale extraction
based on 3-level for subsets up to 512 data items.

TABLE 5.4.: The results of experiments with extracting subsets with different number of
data items

Data Time (μs) Data Time (μs)

128+128 916 640+640 4481

256+256 1808 768+768 5372

384+384 2698 896+896 6261

512+512 3589 1024+1024 7152

5.2.3. Separate min/max extractors and comparison with known
hardware alternatives

If only the maximum or only the minimum subsets have to be computed the
acceleration is almost the same as with maximal and minimal extraction, but the
occupied hardware resources are reduced.

We implemented only minimum or only maximum subsets extractors with an
aim to compare it with known alternatives. For this implementation Xilinx
Virtex-7 FPGA was chosen and the two level-based architecture from section
4.2 was used. We compared it with software sorting and a hardware solution
from [39] (OEM/BM). Software solution is the most obvious and the most
widely used quicksort implementation from C++ language (sort function). With
this approach a whole data set is being sorted with subsequent extraction of the
maximal (or minimal) subset. For comparison in hardware area, the system
from [39] was implemented. After some experiments we found the optimal
configuration for implementation for Virtex-7 device which extracts 128-item
data sets. Any implementation for extracting 256-item data sets utilizes more
than 100% resources of the device. We used suggested in the section 3.2.4
concept of iterative max-set-selection units. The basis of this system is
constructed from the two following blocks: 256-to-128 odd-even merge max-
selection units and reduced bitonic 256-to-128 unit which starts with core max-
selection unit. Inputs for core max selection units are outputs of OEM 256-to-
128 and outputs of BM sorter (which contains results from the previous
iteration).

80

For our methods we implemented two different systems. One for finding 128-
item data subset in order to compare with OEM/BM method, and another for
finding 1024-item data sets which is the maximal possible circuit that fits in the
chosen Virtex-7 device. Post-implementation resource usage is shown in Table
5.5. Methods A and B in this table refer to the methods described in section
3.2.4 and depicted in Figure 3.15. Method A is a method based on two sorting
networks and Method B is a method based on swapping networks.

Table 5.5. Resource utilization for methods A and B from Figure 3.15

Method
Resources

FF LUT

Method A 128 9% 22%

Method B 128 8% 19%

Method A 1024
(max)

38% 94%

Method B 1024
(max)

22% 70%

OEM/BM 128
(max)

52% 78%

Figure 5.12 Experimental results. Hardware subset extraction based on swapping
network compared to software solution [122].

0,01

0,1

1

10

100

8 16 32 64 128 256 512 1024

Ti
m
e
in
 m

s

The size of data in KB

Method B 1024 PC sorting

81

Lookup table (LUT) usage for the method A is 3,5 times smaller and for the
method B is 4 times smaller than OEM/BM based solution. The method A
requires 5,7 times fewer amount of flip-flop (FF) than OEM/BM and the
method B requires 6,5 times fewer FFs. Also it is necessary to mention that all
modules required for PCIe DMA system utilize about 15% of LUTs. By
subtracting these resources we see that pure min/max system for the method A
requires 9 times fewer LUTs and the method B requires 15,7 times fewer LUTs.

Available resources of Virtex-7 device allow us to expand our circuits for
extracting larger maximum or minimum subsets. Both proposed architectures
were expanded to extract subsets of 1024 items which is 10 times more than
with OEM/BM approach. Although for simultaneous extracting of maximum
and minimum subsets both proposed methods are identical in terms of resource
usage and performance, the method B is better for extraction of maximum or
minimum subset alone.

Fig. 5.12 shows experimental results. With Virtex-7 and the proposed PCI
express transfer system all hardware implementations showed approximately
identical results. With architectures that allow faster data transfer OEM/BM
approach may show better results, because for the proposed methods A and B
the worst case performance is K/2 clock cycles for K inputs and OEM/BM
performance is dependent on the number of pipeline stages. But because of
significant economy of resources with the proposed methods (especially the
method B) it is possible to speed up sorting by placing two or more instances of
the sorting circuit that will sort parts of the whole data simultaneously.

Comparison of the proposed methods for extracting the maximum and
minimum sorted subsets with the results in [39] demonstrates that the proposed
method permits significantly larger subsets to be constructed. Indeed, the
maximum size of extracted subsets in [39] is smaller and the maximum size of
initial set is only 256 items. This is because the methods [39] are based on even-
odd merge and bitonic merge networks for which the complexity of the circuits,
i.e. the value of C(N), is limited. In our case, the maximum size of extracted
subsets is 1024 (which exceeds the size of initial data sets in [39]) and the size
of initial set is up to 1024 KB. The size of each item is 32 bits. The conclusion
is the following: 1) the proposed methods enable data sets with significantly
larger numbers of items to be processed; 2) the size of the extracted (minimum,
maximum, or both) subsets may be increased in the proposed networks; 3) the
performance (throughput) for processing large subsets in the proposed methods
is better because complex tasks cannot be entirely solved in hardware using the
methods [39] and the necessary software introduces large additional delays.

5.3. Hamming weight and matrix covering

The charts in Figure 5.13(a) permit to compare the suggested architectures with
the best known alternatives, such as [89], [88], [87]. All the circuits were

82

synthesized, implemented in the Xilinx Zynq xc7z020 microchip, and tested in
two prototyping boards: 1) Xilinx Zynq-7000 EPP ZC702; and 2) ZedBoard.

The first chart (Figure 5.13(a)) shows the maximum combinational path delay
and the second chart indicates the number of FPGA slices for different designs.
The total number of available slices in the microchip xc7z020 is 13 300. For our
circuits we also considered pipelined implementations which include additional
registers between layers (see PLR in Figure 3.18). We found that the maximum
delay between the registers can be as little as 1.253 ns. Thus, potential
throughput can be less than 2 ns per weight.

Implementation of matrix covering circuit which includes HW counters
described in section 3.3 was done in the Xilinx Zynq-7000 PSoC ZC702
evaluation kit. Software for the ARM was developed in C language and
hardware for the PL was synthesized from specification in VHDL. Experiments
were done with two types of matrices 32 × 32 and 64 × 64. Thus, either 32 + 32
= 64 or 64 + 64 = 128 HW counters have been implemented in the PL section
and all these circuits can run in parallel. Since Cmin and Rmax are found at
different steps of the algorithm, only half of the HW counters work in parallel
enabling either the minimal column Cmin or the maximal row Rmax to be found.

Figure 5.13 Latency (a) and cost (b) comparison with comptitive solutions by Piestrak
[88], Parhami [89] amd Perdroni [87]. [123]

83

We compared three different implementations in which the covering algorithm
is either:

1. Described in C language program running in PC with Intel i7 2.66 GHz
processor;
2. Described in C language program running in ARM Cortex-A9;
3. Implemented in the PS and in the PL of Zynq-7000 PSoC.

Initial matrices have been generated randomly using the C rand function and
identically for all the described above implementations. The number of
instances (examples) was chosen to be 100,000.

In the last case (see the point 3 above) that is the original contribution of the
thesis the following results have been obtained:

1. Generating in the PS and transmitting the matrices from the PS to the PL
requires about 31 µs for 32 rows and 32 columns and about 34 µs for 64 rows
and 64 columns. Only one AXI 32-bit (for the matrices 32 × 32) or 64-bit (for
the matrices 64 × 64) port from the 4 available ports has been used. Clearly,
additional ports permit the indicated time to be reduced;
2. Each iteration in the PL is executed in about 28 ns for the matrices 64 × 64
and about 24 ns for the matrices 32 × 32;
3. Communications between the PS and the PL (through interrupts and general-
purpose ports) at any iteration of the algorithm require negligible time
comparing to other operations.

The covering is found significantly faster than in software. The acceleration
comparing with the PS only (see point 2 above) is from 30 to 50 times and
comparing with the PC (see point 1 above) is from 5 to 10 times. This is
because operations of the covering algorithm in software require many cycles
and frequent transmission of data between processors and memories. For
example, if we consider 64 × 64 matrices then a single matrix transfer from the
PS to the DDR takes 33,300 ns on average and this is the most time consuming
operation. Data transfer from the DDR to the PL is done in 284 ns on average.
Once the PL receives the matrix data, no more interaction with the DDR is
required for further processing.

5.4. Summary

In this chapter experimental results are presented. We conducted experiments
for methods presented in Chapter 3 and implemented using approaches
described in Chapter 4.

The experiments were done with an advanced prototyping systems of Xilinx 7th
series FPGA and PSoC devices, allowing data processing in complex
hardware/software systems.

We implemented, verified and tested methods proposed in this work and
compared them with software running on general purpose computer and
hardware solutions known from publications.

84

6. CONCLUSIONS
This thesis explored different methods of network-based accelerators for
parallel data processing in several subjects. This chapter summarizes the main
thesis contributions and outlines the directions for the future work.

The accelerators for solutions of the problems proposed in this thesis are in very
high demand in many areas and especially in those where time and resource
consumption is critical. Fast sorting of high volumes of incoming streaming
data with simultaneous subsets extraction and processing are vital tasks in many
real-time systems where the information must be quickly analyzed.

The architectures for building such accelerators in multi-level
hardware/software systems were also proposed. These approaches can be
modified for large variety of different data processing tasks which require fast
analysis of the streaming data.

The main contributions of the presented work are summarized below.

 Hardware/software architectures for fast extraction of minimum and
maximum sorted subsets from large data sets and three methods of such
extractions based on highly parallel and easily scalable sorting networks.

The basic idea of the methods is incremental construction of the subsets that is
done concurrently with transfer of initial data (source sets) through advanced
high-performance interfaces in burst mode. The extracted subsets may be
filtered and this feature is useful for control applications. The proposed
solutions are highly parallel permitting capabilities of programmable logic to be
used very efficiently. All the suggested methods were implemented in
commercial microchips, tested, evaluated, and compared with alternatives. The
results of experiments have shown significant speed-up of the proposed
software/hardware systems comparing to software only systems and to
competitive hardware/software implementations. The advantages of the
proposed techniques over competitive hardware/software techniques include the
ability to sort significantly larger data fragments and significantly more efficient
resource utilization. The proposed techniques require from 9 to 15 times less
FPGA LUTs than known alternatives for extracting subsets of the same sizes.
The acceleration over GPP-only solutions is significant.

 Hardware/software architectures for data sorting that involve sorting and
merging operations.

The distinctive feature of these architectures is parallelization at several stages
with the adjusted time. The first stage is data sorting in hardware using periodic
pipelined sorting networks and it is done in such a way that data acquisition,
sorting and transferring the sorted data are carried out at the same time. The last
stage is merging of hardware sorted subsets in software. The first architecture
consists of these two stages, while the second architecture has the middle stage,
which is a hardware pipelined RAM-based merger that enables merging at

85

different levels to be done in parallel and it can also be combined with the first
stage. Such type of processing is efficient for sorting large sets (tens and
hundreds millions of data items). The experiments were done with an advanced
prototyping system (allowing data processing in a general-purpose computer
and in recent FPGA from the Virtex-7 and PSoC Zynq-7000 of Xilinx). The
results of experiments demonstrate significant acceleration comparing to
general-purpose software and the results reported in publications. In comparison
with other sorting networks the proposed sorters occupy significantly less
hardware resources and therefore can sort larger amounts of data. The proposed
network occupies less than 5% of the resources of the known network and the
number of sorted items is exactly the same. Therefore the proposed system with
subsequent merging is always faster than the alternatives because the merging
starts with significantly larger sorted data subsets. Additionally the solution
which involves simultaneous data sorting and item counting was proposed. This
approach demonstrates even better performance with data sets with high number
of repeated items and requires approximately the same amount of the hardware
resources. It provides both fully sorted data set and a list of repeated data items.

 Hamming weight/distance counters/comparators based on FPGA LUTs.

The results of experiments confirm correctness and effectiveness of the
proposed technique. The proposed approach showed better results in both
performance and resource utilization in comparison with other known
alternatives.

 A novel technique for implementation of matrix/set covering algorithms in
hardware and software of recent all programmable systems-on-chip.

A new method that permits the known approximate algorithm to be executed
over suggested unrolled matrices is discussed and the relevant hardware
accelerator is developed. It is shown that the covering algorithm can efficiently
be partitioned in software and hardware modules that finally have been
completely implemented and tested in Xilinx Zynq microchips. The results of
experiments and comparisons with two different software implementations
demonstrate significant speedup which is very important for various practical
applications that are also mentioned in the paper. The comparison with PS only
implementation showed the acceleration from 30 to 50 times and with PC – 5 to
10 times.

86

6.1. Future Work

This section outlines tasks and directions that need further investigation in the
scope the studied topic.

The investigation of different properties of network-based algorithms should be
continued in order to increase hardware acceleration even further. The ability of
swapping networks to generate bitonic sequences was higlighted and their
properties can be integrated in the merge-tree structure for merging sorted data
sets. Different methods proposed in this thesis could be also integrated for
acceleration of more complex practical applications. One of those possible
applications is integration of data sorting with simultaneous item counting and
subsets extraction for solving the most frequent item computation.

The new generation of PSoC devices which combine FPGA, CPU, real-time
CPU and GPU on the same microchip should be analyzed and utilized for the
applications discussed in this research. The distributed methods proposed in this
thesis will definitely benefit from these newly emerged platforms.

87

REFERENCES

[1] V. Sklyarov, I. Skliarova, "Digital Hamming Weight and Distance
Analyzers for Binary," International Journal of Innovative, vol. 9, no.
12, pp. 4825-4849, 2013.

[2] R. Mueller, J. Teubner, G. Alonso, "Data processing on FPGAs,"
Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 910-921, 2009.

[3] G. Steiner, B. Philofsky, "Managing Power and Performance with the
Zynq UltraScale+ MPSoC," October 2016. [Online]. Available:
https://www.xilinx.com/support/documentation/white_papers/wp482-zu-
pwr-perf.pdf. [Accessed June 2017].

[4] D. E. Knuth, The Art of Computer Programming, Sorting and Searching,
vol. III, Addison-Wesley, 2011.

[5] V. Sklyarov,A. Rjabov, I. Skliarova, A. Sudnitson, "High-performance
Information Processing in Distributed Computing Systems,"
International Journal of Innovative Computing, Information and Control,
vol. 12, no. 1, pp. 139-160, 2016.

[6] L. V. Kalé, E. Solomonik, "Sorting," in Encyclopedia of Parallel
Computing, Springer Science+Business Media, 2011, pp. 1855-1862.

[7] G. Bilardi, F. P. Preparata, "Area-time lower-bound techniques with
applications to sorting," Algorithmica, vol. 1, no. 1-4, pp. 65-91, 1986.

[8] S. Sengupta et al., "Scan primitives for GPU computing," Graphics
hardware, pp. 97-106, 2007.

[9] R. Mueller, Data Stream Processing on Embedded Devices, Ph.D. thesis.,
Zurich: ETH, 2010.

[10] S. Kestur, J. D. Davis, O, Williams, "Blas comparison on fpga, cpu and
gpu," EEE computer society annual symposium on VLSI (ISVLSI),
2010.

[11] B. da Silva, A. Braeken, E. H. D'Hollander, A. Touhafi, J. G. Cornelis, J.
Lemeire, "Comparing and combining GPU and FPGA accelerators in an
image processing context," in International Conference on Field
Programmable Logic and Applications (FPL), 2013.

[12] S. Asano, T. Maruyama, Y. Yamaguchi, "Performance comparison of
FPGA, GPU and CPU in image processing," in International Conference
on Field Programmable Logic and Applications, 2009.

88

[13] V. Venugopal, D. M. Shila, "High throughput implementations of
cryptography algorithms on GPU and FPGA," in IEEE International
Instrumentation and Measurement Technology Conference (I2MTC),
2013.

[14] P. Sanders, T. Hansch, "Efficient massively parallel quicksort," in
Solving Irregularly Structured Problems in Parallel, vol. 4, Springer
Berlin Heidelberg, 1997, pp. 13-24.

[15] M. Zagha, G. E. Blelloch, "Radix sort for vector multiprocessors," in
ACM/IEEE conference on Supercomputing, New York, 1991.

[16] J. S. Huang, Y. C. Chow, "Parallel sorting and data partitioning by
sampling," in International Computer Software and Application
Conference, 1983.

[17] D. R. Helman, D. A. Bader, J. JáJá, "A randomized parallel sorting
algorithm with an experimental study," journal of parallel and
distributed computing, vol. 52, no. 1, pp. 1-23, 1998.

[18] L. V. Kale, S. Krishnan, "A comparison based parallel sorting
algorithm," in International Conference on Parallel Processing, 1993.

[19] S. W. A. Baddar, K.E. Batcher, Designing Sorting Networks. A New
Paradigm., Springer, 2011.

[20] M. Codish, L. Cruz-Filipe, P. Schneider-Kamp, "The Quest for Optimal
Sorting Networks: Efficient Generation of Two-Layer Prefixes," in 16th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), 2014.

[21] D. Bundala, J. Závodný, "Optimal sorting networks," Language and
Automata Theory and Applications, pp. 236-247, 2014.

[22] M. Ajtai, J. Komlós, E. Szemerédi, "An 0 (n log n) sorting network," in
ACM symposium on Theory of computing, 1983.

[23] F. T. Leighton, "Tight Bounds on the Complexity of Parallel," IEEE
Trans. Computers, vol. 34, pp. 344-354, 1985.

[24] K. E. Batcher, "Sorting networks and their applications," in AFIPS
Spring Joint Computer Conference, 1968.

[25] S. Lacey, R. Box, "Box, A Fast, Easy Sort: A novel enhancement makes
a bubble sort into one of the fastest sorting routines," Byte, vol. 16, no. 4,
pp. 315-320, 1991.

[26] R. D. Chamberlain, N. Ganesan, "Sorting on Architecturally Diverse

89

Computer Systems," 2009.

[27] R. Mueller, J. Teubner, G. Alonso, "Sorting networks on FPGAs," The
International Journal on Very Large Data Bases, pp. 1-21, 2012.

[28] M. Zuluada, P. Milder, M. Puschel, "Computer Generation of Streaming
Sorting Networks," in Proc. 49th Design Automation Conference, 2012.

[29] V. Sklyarov, I. Skliarova, "High-performance implementation of regular
and easily scalable sorting," Microprocessors and Microsystems, vol. 38,
no. 5, pp. 470-484, 2014.

[30] M. Zuluaga, P. Milder, M. Püschel, "Streaming Sorting Networks," ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 21, no. 4, pp. 55:1-55:30, 2016.

[31] H. Schröder, "Partition sorts for VLSI," in 13th GI-Jahrestagung, 1983.

[32] A. Grasselli, "Control units for sequencing complex asynchronous
operations," IEEE Transactions on Electronic Computers, vol. 4, no. EC-
11, pp. 483-498, 1962.

[33] W. H. Kautz, K. N. Levitt, A. Waksman, "Cellular interconnection
arrays.," IEEE Transactions on Computers, vol. 100, no. 5, pp. 443-451,
1968.

[34] S. N. Salloum, D. H. Wang, "Fault tolerance analysis of odd-even
transposition sorting networks with single pass and multiple passes," in
IEEE Pacific Rim Conference on Communications, Computers and
signal Processing, 2003.

[35] A. Hematian, S. Chuprat, A. A. Manaf, N. Parsazadeh, "Zero-Delay
FPGA-Based Odd-Even Sorting Network," in IEEE Symposium on
Computers & Informatics, 2013.

[36] V. Sklyarov and I. Skliarova,, "High-performance implementation of
regular and easily scalable sorting networks on an FPGA,"
Microprocessors and Microsystems, vol. 38, no. 5, pp. 470-484, 2014.

[37] J. Ortiz, J, D. Andrews, D, "A configurable high-throughput linear sorter
system," in Workshops and Phd Forum In Parallel & Distributed
Processing, 2010.

[38] R. Marcelino, H. C. Neto, J. M. P. Cardoso, "A comparison of three
representative hardware sorting units," in 35th Annual Conference of
Industrial Electronics, 2009.

[39] A. Farmahini-Farahani, H. J. Duwe, M. J. Schulte, K. Compton,

90

"Modular design of high-throughput, low-latency sorting units.," IEEE
Transactions on Computers, vol. 62, no. 7, pp. 1389-1402, 2013.

[40] W. Song, D. Koch, M. Luján, J. Garside, "Parallel Hardware Merge
Sorter," in Field-Programmable Custom Computing Machines (FCCM),
2016 IEEE 24th Annual International Symposium on, Washington DC,
USA, 2016.

[41] R. Chen, V. Prasanna, "Accelerating Equi-Join on a CPU-FPGA," Ming
Hsieh Department of Electrical Engineering – Systems, University of
Southern California, Los Angeles, California, 2016.

[42] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C.
Phillips, "GPU computing," Proceedings of the IEEE, vol. 96, no. 5, pp.
879-899, 2008.

[43] I. Buck, T. Purcell, "A toolkit for computation on GPUs," GPU Gems,
vol. 1, p. 621–636, 2004.

[44] P. Kipfer, R. Westermann, "Improved GPU sorting," GPU gems, vol. 2,
pp. 733-746, 2005.

[45] A. Greb, G. Zachmann, "GPU-ABiSort: Optimal parallel sorting on
stream architectures," in 20th International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[46] M. Harris, S. Sengupta, J. D. Owens, "Parallel prefix sum (scan) with
CUDA," GPU gems, vol. 3, no. 39, pp. 851-876, 2007.

[47] E. Sintorn, U. Assarsson, "Real-time approximate sorting for self
shadowing and transparency in hair rendering," in Proceedings of the
2008 symposium on Interactive 3D graphics and games, 2008.

[48] E. Sintorn, U. Assarsson, "Fast parallel GPU-sorting using a hybrid
algorithm," Journal of Parallel and Distributed Computing, vol. 68, no.
10, pp. 1381-1388, 2008.

[49] N. Satish, M. Harris, M. Garland, "Designing efficient sorting algorithms
for manycore GPUs," in IEEE International Symposium Parallel &
Distributed Processing, 2009.

[50] N. Leischner, V. Osipov, P. Sanders, "GPU sample sort," in International
Symposium on Parallel & Distributed Processing (IPDPS), 2010.

[51] X. Ye, D. Fan, W. Lin, N. Yuan, P. Ienne, "High performance
comparison-based sorting algorithm on many-core GPUs," in
International Symposium on Parallel & Distributed Processing (IPDPS),
2010.

91

[52] I. Tanasic, L. Vilanova, M. Jordà, J. Cabezas, I. Gelado, N. Navarro, W.
M. Hwu, "Comparison based sorting for systems with multiple GPUs," in
6th Workshop on General Purpose Processor Using Graphics
Processing Units, 2013.

[53] S. Zezza, S. Nooshabadi, M. Martina, G. Masera, "Efficient
implementation techniques for maximum likelihood-based error
correction for jpeg2000," IEEE Transactions on Circuits and Systems for
Video Technology, vol. 19, no. 4, p. 591–596, 2009.

[54] S. Goren, G. Dundar, B. Yuce, H. F. Ugurdag, "A fast circuit topology
for finding the maximum of N k-bit numbers," in Symp. on Computer
Arithmetic, 2013.

[55] C. Wey, M. Shieh, S. Lin, "Algorithms of finding the first two minimum
values and their hardware implementation," IEEE Trans. Circuits and
Systems I, vol. 55, no. 11, p. 3430–3437, 2008.

[56] A. D. G. Biroli, J. C. Wang, "A fast architecture for finding maximum
(or minimum) values in a set. In Acoustics,," in 2014 IEEE International
Conference on Speech and Signal Processing (ICASSP).

[57] V. E. Alekseyev, "Sorting Algorithms with Minimum Memory,"
Kibernetica, vol. 5, pp. 99-103, 1969.

[58] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, R. E. Tarjan, "Time
Bounds for Selection," Computer and System Sciences, vol. 7, pp. 448-
461, 1973.

[59] J. M. Chambers, "Algorithm 410: Partial sorting," Commun. ACM, vol.
14, no. 5, pp. 357-358, 1971.

[60] D. Wang, A. Mazumdar, G. W. Wornell, "Compression in the Space of
Permutations," IEEE Transactions on Information Theory, pp. 6417 -
6431, 2015.

[61] A. Bertossi, S. Olariu, M. C. Pinotti, S. Q. Zheng, "Classifying matrices
separating rows and columns," IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 7, pp. 654-665, 2004.

[62] S. Olariu, M. C. Pinotti, S. Q. Zheng, "An optimal hardware-algorithm
for selection using a fixed-size parallel classifier device," In High
Performance Computing–HiPC, pp. 284-288, 1999.

[63] G. Cormode, M. Hadjieleftheriou, "Finding Frequent Items in Data
Streams," VLDB Endowment, vol. 1, no. 2, pp. 1530-1541, 2008.

[64] J. Teubner, R. Mueller, G. Alonso, "FPGA Acceleration for the Frequent

92

Item Problem," Proc. 26th Int',l Conf. Data Eng, 2010.

[65] J. Teubner, R. Muller, G. Alonso, "Frequent item computation on a
chip," IEEE Trans. Knowl. Data Eng, vol. 238, pp. 1169-1181, 2011.

[66] S. Shaobo, Y. Qi; Q. Wang, "FPGA Acceleration for Intersection
Computation in Frequent Itemset Mining," in International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2013.

[67] K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, D. R. Shier,
Handbook of Discrete and Combinatorial Mathematics, Boca Raton:
CRC Press, 2000.

[68] J. D. Davis, Z. Tan, F. Yu, L. Zhang, "A practical reconfigurable
hardware accelerator for Boolean satisfiability solvers," in Proc. 45th
ACM/IEEE Design Automation Conference – DAC’2008, Anaheim,
California, USA, June, 2008.

[69] J. P. Marques-Silva, K. A. Sakallah, "Boolean Satisfiability in electronic
design automation," in Proceedings of DAC, USA, Los, 2000.

[70] "The International SAT competitions web page," [Online]. Available:
http://www.satcompetition.org.

[71] Y. Hamadi, S. Jabbour, "ManySAT: A parallel SAT solver," Journal on
Satisfiability, Boolean Modelling and, vol. 6, pp. 245-262, 2009.

[72] I. Skliarova, A.B. Ferrari, "Reconfigurable Hardware SAT Solvers: A
Survey of Systems," IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1449-1461, 2004.

[73] K. Kanazawa, T. Maruyama, "An Approach for Solving Large SAT
Problems on FPGA," ACM Transactions on Reconfigurable Technology
and Systems, vol. 4, no. 1, p. 10, 2010.

[74] K. Kanazawa, T. Maruyama, "An FPGA Solver for SAT-Encoded
Formal Verification Problems.," in International Conference on Field
Programmable Logic and Applications, 2011.

[75] K. Gulati, M. Waghmode, S. P. Khatr, W. Shi, "Efficient, scalable
hardware engine for Boolean satisfiability and unsatisfiable core
extraction," Computers & Digital Techniques, vol. 2, no. 3, pp. 214-229,
2008.

[76] K. Gulati, S. Paul, S. P. Khatri, S. Patil, A. Jas, "FPGA-based Hardware
Accelerator for Boolean Satisfiability," ACM Transactions on Design
Automation of Electronic Systems, vol. 14, no. 2, 2009.

93

[77] L. Haller, S. Singh, "Relieving capacity limits on FPGA-based SAT-
solvers," Formal Methods in Computer-Aided Design, pp. 217-220,
2010.

[78] M. Suzuki, T. Maruyama, "Variable and clause elimination in SAT
problems using an FPGA," in International Conference on Field-
Programmable Technology, 2011.

[79] Z. Luo, H. Liu, "Cellular genetic algorithms and local search for 3-SAT
problem on graphic hardware," in IEEE Congress on Evolutionary
Computation, 2006.

[80] H. Deleau, C. Jaillet, M. Krajecki, "GPU4SAT: solving the SAT problem
on GPU," in PARA 2008 9th International Workshop on State–of–the–
Art in Scientific and Parallel Computing, Trondheim, Norway, 2008.

[81] Q. Meyer, F. Schönfeld, M. Stamminger, R. Wanka, "3-SAT on CUDA:
Towards a massively parallel SAT solver," in International Conference
on High Performance Computing and Simulation (HPCS), 2010.

[82] S. Beckers, G. De Samblanx, F. De Smedt, T. Goedemé, L. Struyf, J.
Vennekens, "Parallel SAT-solving with OpenCL," in Proceedings of the
IADIS International Conference on Applied Computing, 2011.

[83] H. Fujii, N. Fujimoto, "GPU acceleration of BCP procedure for SAT
algorithms," in International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), 2012.

[84] "Intel® SSE4 Programming Reference," Intel, July 2007. [Online].
Available:
https://software.intel.com/sites/default/files/m/d/4/1/d/8/d9156103.pdf.

[85] "NEON Programmer’s Guide," ARM Limited, 2013. [Online].
Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0018a/i
ndex.html.

[86] D. B. S. King, R. J. Simpson, C. Moore, I. P. MacDiarmid, "Digital n-
tuple Hamming comparator for weightless systems," Electronics Letters,
vol. 34, no. 22, pp. 2103-2104, 1998.

[87] V. Pedroni, "Compact Hamming-comparator-based rank order filter for
digital VLSI and FPGA implementatio," in IEEE International
Symposium on Circuits and Systems (ISCAS), 2004.

[88] S. J. Piestrak, "Efficient Hamming weight comparators of binary,"
Electronics Letters, vol. 39, no. 11, pp. 661-612, 2007.

94

[89] B. Parhami, "Efficient Hamming Weight Comparators for Binary
Vectors Based on Accumulative and Up/Down Parallel Counters," IEEE
Trans. on Circuits and Systems—II: Express Briefs, vol. 56, no. 2, pp.
167-171, 2009.

[90] K. Appiah, A. Hunter, P. Dickinson, H. Meng, "Binary object
recognition system on FPGA with bSOM," in SOC Conference (SOCC),
2010 IEEE International, 2010.

[91] S. Jin, D. Kim, D. D. Nguyen, J. W. Jeon, "Pipelined Hardware
Architecture for High-Speed Optical Flow Estimation using FPGA," in
Annual International Symposium on Field-Programmable Custom
Computing Machines, 2010.

[92] V. B. Kovačević, A. M. Gavrovska, M. P. Paskaš, "High-speed
implementation of Hamming neural network," in Symposium on Neural
Network Applications in Electrical Engineering (NEUREL), 2010 10th,
2010.

[93] F. Gioachin, A. Sharma, S. Chakravorty, C. L. Mendes, L. V. Kale, T.
Quinn, "Scalable cosmological simulations on parallel machines," in
High Performance Computing for Computational Science-VECPAR,
Springer Berlin Heidelberg, 2006, pp. 476-489.

[94] D. Baily, E. Barscz, J. Barton, D. Browning, R. Carter, L. Dagum, R.
Fatoohi, D. Fineberg, P. Frederickson, S. Weeratunga, "The NAS
Parallel Benchmarks," NASA Ames Research Center, Moffett Field, CA,
1994.

[95] C. Chakrabarti, S. Dhanani, "Median filter architecture based on sorting
networks," in IEEE International Symposium on Circuits and Systems,
1992.

[96] K. Vasanth, S. N. Raj, S. Karthik, P. P. Mol, "Fpga implementation of
optimized sorting network algorithm for median filters," in International
Conference on Emerging Trends in Robotics and Communication
Technologies, 2010.

[97] S. M. Meena, K. Linganagouda, "Rank based merge sorting network
architecture for 2D median and morphological filters.," IEEE
International Advance Computing Conference, pp. 473-479, 2009.

[98] J. Scott, M. Pusateri, M. U. Mushtaq, "Comparison of 2D median filter
hardware implementations for real-time stereo video.," in Applied
Imagery Pattern Recognition Workshop, 2008.

[99] D. Zmaranda, H. Silaghi, G. Gabor, C. Vancea, "Issues on Applying
Knowledge-Based Techniques in Real-Time Control Systems,"

95

International Journal of Computers, Communications and Control, vol.
8, no. 1, pp. 166-175, 2013.

[100] L. Field, T. Barnie, J. Blundy, R. A. Brooker, D. Keir, E. Lewi, K.
Saunders, "Integrated field, satellite and petrological observations of the
November 2010 eruption of Erta Ale," Bulletin of Volcanology, vol. 74,
no. 10, p. 2251–2271, 2010.

[101] W. Zhang, K. Thurow, R. Stoll, "A Knowledge-based Telemonitoring
Platform for Application in Remote Healthcare," International Journal of
Computers, Communications and Control, vol. 9, no. 5, pp. 644-654,
2014.

[102] D. Verber, "Hardware implementation of an earliest deadline first task
scheduling algorithm.," Informacije MIDEM, vol. 41, no. 4, pp. 257-263,
2011.

[103] A. Gregerson, M. Schulte, K. Compton,, "High-Energy physics,"
Handbook of Signal Processing Systems, pp. 179-211, 2010.

[104] Z. K. Baker, V. Prasanna, "An Architecture for Efficient Hardware Data
Mining using Reconfigurable Computing Systems," in Annual IEEE
Symposium on Field-Programmable Custom Computing Machines,
Napa, USA, 2006.

[105] S. Sun, Analysis and acceleration of data mining algorithms on high
performance reconfigurable computing platforms. Ph.D. thesis, Iowa:
Iowa State University., 2011.

[106] X. Wu, V. Kumar, J. R. Quinlan, "Top 10 algorithms in data mining,"
Knowledge and Information Systems, vol. 14, no. 1, pp. 1-37, 2014.

[107] M. F. M. Firdhous, "Automating Legal Research through Data Mining,"
International Journal of Advanced Computer Science and Applications,
vol. 1, no. 6, pp. 9-16, 2010.

[108] M. Kik, M. Kutylowski, M. Piotrów, "Correction networks," in
International Conference on Parallel Processing, 1999.

[109] M. Kik, "Periodic correction networks.," Parallel Processing, pp. 471-
478, 2000.

[110] M. Piotrów, "Periodic, random-fault-tolerant correction networks," in
ACM symposium on Parallel algorithms and architectures.

[111] G. Stachowiak, "Fibonacci correction networks," In Algorithm Theory-
SWAT, pp. 535-548, 2000.

96

[112] G. Stachowiak, "Fast periodic correction networks. Theoretical computer
science," Theoretical computer science, vol. 3, no. 354, pp. 354-366,
2006.

[113] H. Heo, J. Lee, C. Lee, "FPGA based Implementation of FAST and
BRIEF algorithm for object Recognition," in IEEE Region 10
Conference TENCON, 2013.

[114] R. Hentati, M. Abid, B. Dorizzi, "Software implementation of the
OSIRIS iris recognition algorithm in FPGA," in International
Conference on Microelectronics (ICM), 2011.

[115] C. Gu, M. O'Neill, "Ultra-compact and robust FPGA-based PUF
identification generator," in International Symposium on Circuits and
Systems (ISCAS), 2015.

[116] S. Gehrer, G. Sigl, "Using the reconfigurability of modern FPGAs for
highly efficient PUF-based key generation," in International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
2015.

[117] R. P. Lippmann, "An introduction to computing with neural nets," ASSP
Magazine, vol. 4, no. 2, pp. 4-22, 1987.

[118] V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson, "Fast Iterative
Circuits and RAM-based Mergers to Accelerate Data Sort in
Software/Hardware Systems," Proceedings of the Estonian Academy of
Sciences, vol. 66, no. 4, 2017.

[119] A. Rjabov, V. Sklyarov, I. Skliarova, A. Sudnitson, "RAM-based
mergers for data sort and frequent item computation," in Conforence on
Information and Communication Technology, Electronics and
Microelectronics, Opatija, Croatia, 2017.

[120] V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson, "Zynq-based System
for Extracting Sorted Subsets from Large Data Sets," Journal of
Microelectronics, Electronic Components and Materials, vol. 45, no. 2,
pp. 142-152, 2015.

[121] V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson, "Computing Sorted
Subsets for Data Processing in Communicating Software/Hardware
Control Systems," International Journal of Computers Communications
& Control, vol. 11, no. 1, pp. 126-141, 2016.

[122] A. Rjabov, "Hardware-based systems for partial sorting of streaming
data," in 15th Biennial Baltic Electronics Conference, Tallinn, 2016.

97

[123] V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson, "Implementation of
Parallel Operations over Streams in Extensible Processing Platforms," in
The 56th IEEE International Midwest Symposium on Circuits and
Systems, Columbus, Ohio, USA, 2013.

[124] I. Skliarova, V. Sklyarov, A. Rjabov, A. Sudnitson, "Fast Matrix
Covering in All Programmable Systems-on-Chip," Elektronika ir
Elektrotechnika, vol. 20, no. 5, pp. 150-153, 2014.

[125] V. Sklyarov, I. Skliarova, J. Silva, A. Rjabov, A. Sudnitson,
Hardware/Software Co-design for Programmable Systems-on-Chip,
Tallinn: TUT Press, 2014.

[126] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, MIT Press, 2009, p. 1312 .

[127] A. Zakrevskij, Y. Pottosin, L. Cheremisiniva, Combinatorial Algorithms
of Discrete Mathematics, Tallinn: TUT Press, 2008, p. 193 .

[128] V. Sklyarov, I. Skliarova, "Fast regular circuits for network-based
parallel data processing," Advances in Electrical and Computer
Engineering, vol. 13, no. 4, p. 47–50, 2013.

[129] Crockett L.H., Elliot R.A., Enderwitz M.A., and Stewart R.W, The Zynq
Book, 2014.

[130] V. Sklyarov, I. Skliarova, A. Barkalov, L. Titarenko, Synthesis and
Optimization of FPGA-based Systems, Springer, 2014.

[131] V. Sklyarov, I. Skliarova, J. Silva, A. Rjabov, A. Sudnitson, C. Cardoso,
Hardware/Software Co-design for Programmable Systems-on-Chip, TUT
Press, 2014.

[132] Altera, "Cyclone V Overview," 10 6 2016. [Online]. Available:
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-
v/cv_51001.pdf. [Accessed 12 04 2017].

[133] Intel, "Arria 10 Device Overview," 15 3 2017. [Online]. Available:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf.
[Accessed 12 4 2017].

[134] Microsemi, "SmartFusion2 Product Information," 8 2016. [Online].
Available: https://www.microsemi.com/document-
portal/doc_download/131308-smartfusion2-product-information-
brochure. [Accessed 12 4 2017].

[135] Xilinx, Inc., "Zynq-7000 All Programmable SoC Technical Reference
Manual," 2014. [Online]. Available:

98

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-
7000-TRM.pdf.

[136] J. Silva, V. Sklyarov, I. Skliarova I, "Comparison of On-chip
Communications in Zynq-7000 All Programmable Systems-on-Chip,"
IEEE Embedded Systems Letters, vol. 7, no. 1, pp. 31-34, 2015.

[137] Neuendorffer, S., and Martinez-Vallina, F., "Building Zynq Accelerators
with Vivado High Level Synthesis," in ACM/SIGDA Int. Symp. on Field
Programmable Gate Arrays, Monterey, CA, USA,, 2013.

[138] Xilinx, "AXI Central Direct Memory Access v4.1," 2015. [Online].
Available:
http://www.xilinx.com/support/documentation/ip_documentation/axi_cd
ma/v4_1/pg034-axi-cdma.pdf..

[139] Xilinx, "LogiCORE IP AXI Bridge for PCI Express v1.06," 2012.
[Online]. Available:
http://www.xilinx.com/support/documentation/ip_documentation/axi_pci
e/v2_5/pg055-axi-bridgepcie.pdf.

[140] Xilinx, "PCI Express Endpoint-DMA Initiator Subsystem," 2013.
[Online]. Available:
http://www.xilinx.com/support/documentation/application_notes/xapp11
71-pcie-central-dma-subsystem.pdf.

[141] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers.

[142] Xilinx, Inc., "ZC702 Evaluation Board User Guide UG850 (v1.5)," 2015.
[Online]. Available:
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_z
vik/ug850-zc702-eval-bd.pdf.

[143] Avnet, Inc., "ZedBoard (ZynqTM Evaluation and Development)
Hardware User’s Guide," [Online]. Available:
http://www.zedboard.org/sites/default/files/documentations/ZedBoard_H
W_UG_v2_2.pdf.

[144] Xilinx, Inc., "ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All
Programmable SoC User Guide UG954 (v1.6)," 2016. [Online].
Available:
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/u
g954-zc706-eval-board-xc7z045-ap-soc.pdf.

[145] Xilinx, Inc., "VC707 Evaluation Board for the Virtex-7 FPGA User
Guide UG885 (v1.7.1)," 2016. [Online]. Available:
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/u

99

g885_VC707_Eval_Bd.pdf.

[146] Xilinx, Inc., "VC707 Evaluation Board for the Virtex-7 FPGA User
Guide, UG885 (v1.4)," [Online]. Available:
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug
885_VC707_Eval_Bd.pdf.

[147] Xilinx, Inc., "Simple AMP Running Linux and," 2013.

[148] Xilinx, Inc., "OS and Libraries Document Collection UG647," 2014.
[Online]. Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2
/oslib_rm.pdf.

[149] J. D. Davis, Z. Tan, F. Yu, L. Zhang, "A practical reconfigurable
hardware accelerator for Boolean satisfiability solvers," in Proceedings
of the 45th annual Design Automation Conference, 2008.

100

ACKNOWLEDGEMENTS
I would like to thank everybody who helped me during my PhD studies and
without whom this work would never appeared.

Particularly, I would like to express my gratitude to my supervisors Assoc.Prof.
Aleksander Sunditsõn, Prof. Valery Sklyarov and Assist.Prof. Iouliia Skliarova
for their support and for helping me to my first steps in the engineering domain.
They have guided me through my PhD studies and provided challenging tasks. I
has been a big pleasure to do research work with them.

I would also like to thank all the people who worked with me in Department of
Computer Systems who contributed to my work discussions and ideas.

Special thanks to Dr. Margus Kruus, the head of Department of Computer
Systems for his support with many administrative issues and to Prof. Andres
Keevallik for his constant attention.

Furthermore, I would like to acknowledge several organizations that have
supported my PhD studies: Tallinn University of Technology, Information
Technology Foundation (HITSA), Estonian Association of Information
Technology and Telecommunications (ITL) and Estonian Ministry of Education
and Research.

Finally, I would like to thank my family for their patience and support.

Artjom Rjabov

Tallinn, April 2017

101

ABSTRACT
The thesis explores topics related to hardware acceleration of computationally
intensive and resource consuming problems that may be used efficiently in
information processing that is frequently needed in electronic, environmental,
medical, and biological applications. We propose hardware acceleration
methods for problems such as data sorting and merging, filtering and subset
extraction, parallel covering of matrices/sets, Hamming weight computation and
related tasks. Our solutions are based on highly parallel network-based methods
which consist of large numbers of repeated elements.

We use reconfigurable technologies such as field-programmable gate arrays
(FPGA) and programmable systems on chip (PSoC) as target platforms for
implementation of our data processing methods. Effectivness of these platforms
and their combinations were investigated in this research. These platforms are
very appropriate for implementation of such systems because of their low cost,
flexibility, availability and many other advantages.

The main contributions of this research are techniques for fast extraction of
minimum and maximum sorted subsets from large data sets, data processing
that involve sorting, merging operations and simultaneous item counting,
hamming weight/distance counters/comparators, matrix/set covering and their
implementations which involve hardware/software co-design and combinations
of reconfigurable platforms.

102

KOKKUVÕTE
Selles väitekirjas uuritakse teemasid, mis on seotud arvutusmahukate ja
ressursikulu probleemide lahendamise riistvarakiirendusega, mida võib
kasutada informatsiooni töötlemisel, mis on tihti vajalik elektroonika-,
keskkonna-, meditsiini- ja bioloogilistes rakendustes. Pakutakse välja riistvara
kiirenduse meetodeid erinevate probleemide nagu informatsiooni sorteerimine
ja ühendamine, filtreerimine ja alamhulkade ekstraheerimine, paralleelsete
maatriksite/kogumite katmine, Hamming’u kaalu arvutamine ja nendega seotud
ülesannete lahendamiseks. Lahendused põhinevad tugevalt paralleelsetel võrgu-
põhistel meetoditel, mis koosnevad paljudest korduvatest arvutuselementidest.

Andmetöötlusmeetodite realiseerimiseks kasutatakse riistvaraplatvormina
ümberkonfigureeritavaid tehnoloogiaid nagu väliprogrammeeritavad
väravamassiivid (FPGA) ja programmeeritavad süsteemid kiipidel (PSoC).
Valitud platvormid sobivad väitekirjas väljatöötatud meetodite rakendamiseks
oma odavuse, paindlikkuse ja teiste eeliste poolest. Lisaks uuriti antud töös ka
platvormide efektiivsust meetodite rakendamiseks.

Väitekirja põhitulemusteks on: kiire minimaalsete ja maksimaalsete sorteeritud
alamhulkade leidmine suurtest andmehulkadest; andmetöötlusmeetodid, mis
hõlmavad sorteerimist, operatsioonide ühendamist ja samaaegsete objektide
loendamist; Hamming’u kaalu/kauguse loendurite/komparaatorite erilahenduse
loomine; maatriksite/kogumite katmine; samuti loetletud tulemuste
rakendamine, mis hõlmab riistvara/tarkvara koosprojekteerimist ja
ümberkonfigureeritavate platformide kombineerimist.

103

PUBLICATION I

Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2013). Implementation
of Parallel Operations over Streams in Extensible Processing Platforms. The
56th IEEE International Midwest Symposium on Circuits and Systems (IEEE
MWSCAS 2013), Columbus, Ohio, USA, August 4-7, 2013. IEEE, 852−855.

�

���������	�
������
	�	���������	�
�������������	���
��������
����
������
���
�	��������	���������	���������

	����
	���	���������� ��!�
����
������ ��
���� ��
����
�����	�����"�	#����
���

	"�	#���� ��$���%$	����� ���	�&�����&�
�����'�����������	����������!����	��
���������
	�	��$��#�$	���"��	
�#�����	���"��#���#������()*+,-.+/012�34325�6789:8828�;12�:82�<=�2>;2?87@A2�35<92887?B�3A4;=<5C8�=<5�;12�6287B?�<=�17B1D325=<5C4?92�8E8;2C8�F1791�9<C@7?2�=48;�3454AA2A�<3254;7<?8�<G25�64;4�8;524C8�7?�35<B54CC4@A2�A<B79�4?6�35<@A2CD83297=79�8<=;F452�5:??7?B�7?�46G4?926�HIJK�C4917?2L�012�8;524C8�9<?;47?�7?=<5C4;7<?�;14;�?2268�;<�@2�4?4AEM26�4?6�=7A;2526L�012�C47?�7624�78�;<�67B7;4A7M2�=52N:2?;AE�914?B26�64;4�=5<C�?:C25<:8�82?8<58�4?6�;<�5235282?;�2491�64;4�7;2C�7?�=<5C�<=�4�@7?45E�G29;<5L�I;�78�81<F?�;14;�C4?E�4?4AE878�4?6�=7A;257?B�35<@A2C8�94?�@2�8<AG26�;15<:B1�O4CC7?B�F27B1;�9<:?;7?B�=<5�;12�G29;<58�4?6�9<C34578<?�<=�;12�528:A;8�F7;1�352DB7G2?�@<:?68�P;15281<A68QL�012�35<3<826�45917;29;:52�;4R28�46G4?;4B28�=5<C�=7>26�3A:8�G4574@A2�9<C3:;4;7<?8�4?6�7C3A2C2?;8�?<G2A�C2;1<68L�012�528:A;8�<=�2>3257C2?;8�4?6�2G4A:4;7<?8�<=�;12�45917;29;:52�7?�;F<�SE?ND@4826�35<;<;E37?B�@<4568�452�4A8<�35282?;26L����#� �T�%��!'���T�'���
�
����	�	�
�
�
����������U	���	�&�V	�&U	�������
����	����V	�	����
��
������&�������&�	���
�	�
����������
������&#��V���	��
����U����
�����V�&
����
���U	��&����	���V��!�
����
������'	�
����
	�	��W��� �������XYZ#��V��
&�	�U	��������	���[\]̂_�̀�abc\bdê��������������������	�&����	�������	���	�&	�&��������������	��	��	�����������
���	�������
��	����
����V	���V
�����
���	�������
�
f�&��������������������������	�����	�����	�&���������
�
�����#���&	��������
�
�	�����V�
g���V	�������
���������&����	��V
�����V�	��h
�
���i��g���jfklk�������
�����������
�����	������m�

n�XlZ#� ��������
����������m
�n�m&�	�� %op�'�����qr s�o
'���q����i��gn��������������U	��������	���	�&�'�'tt��	���	�����	��������&����&����������V������	��#�
����	��	�������
��m
Wn�
��u
v � ��
�rj�XwZ�
���������&�����V���	����
����V
��U
�V�
�#�
��	�&�
W��	�����V	����&	�	���
��� h�r�	��&�m &�	���&��h����
����������	��n�V
�Vr�	�&U
&�V��������
�
��#��V����
���V���	����
����V
��U���	��
���������	�&�����x�Yn�����������g�
�
���&������������������U	���	�&�
����
�����r�V
���������
���������m
#�#�
�ny�ln�	���
�	�
��r����
�
��V	�&U	���
�������	��	�������
���
#�#�
W�m�������V�V	�&U	���U���	��	��������������������
��������������&&�&������������V�	����
��	�&������
����	�&�	��
��	������
���������&��������r����	�����	�&���
�r�����ny�wn�z\]̂_̀{bc\bdê�����������������
����V	������
����
��	�&�
W�U
�V�V
�Vr����&�&	�	�

���V	�������U����
��	�&�
W��V����V� h��
�����	��#�u
�#�Y�&����
��������	�
������
����	��
�������U����
��	�&�
W�UV
�V�U��	�����
������&
����������U#��|}|~�� ������������������������ ��������������������������������|}�����������������������������������
�������������������������������� |~|}��������������������������������������� �������������������������������

�� ��
�u
�����Y#�������	��
�������U����
��	�&�
Wx�
W�����
&����	����	�	������������
������������	��&	�	�	�&�
���	�������V����������m	ny�
W����������&�&
�	��&�����	�
��������
�����
�����	����g�����������
��m�n��U�����������������	�
����U
����������
&���&#�����V���
���������m����u
�#�Y	n�
W������
����	��	��	���������������������
�
���&	�	������������	���
����������
�������	�
����������V��&	�	��	�&���	������
����V�����������
�V������������	���
���������
�#�����V�������&������m����u
�#�Y�n�
W�
������
&���&�������	���	������r����������
�#� �������	��
�����&�����	������	���
Wr&�&
�	��&�����	�
�����	���g�����
����������
W�	�&�&	�	�	����
	��&�U
�V��V������	�
����	�����	�������&����
W#�
W�����������V������	�
������
���	��
��	������
��	�&�����&&�&������������m���V�	����
�n#� �������	���V������	�
����	�����������&��
W�
�������
���V	���V����������	�����	&��	�&��V���	�����������
�#����V����������������	�
����U
������	���
�&��������	���������
��#�����V���
�������������	���	�������
��&����
W������������	���������#�����V�������&������	����r�������
���
��&����
��
������
�
���&	�	��������V�������U	��������	������������V��V���������������������&��V����V�	�	
�	����
������������������XlZ#� ���
�������	������UV	��
����U�	�&�&
��
���
���
���V
���	����
���
��������Ux�

���� �¡¢¡£ ��¡¤¤¥¥¡£¦¢§¦̈§¢©¤¤�ª�¤¢§�«¬¬¬

109

PUBLICATION II

Skliarova, I.; Sklyarov, V.; Rjabov, A.; Sudnitson, A. (2014). Fast Matrix
Covering in All Programmable Systems-on-Chip. Elektronika ir
Elektrotechnika, 20 (5), 150−153.

����������	
��
��������������	
�������������
������
����
����
������� �!"#$
%&%$'
()**$(+(
&
+$,#-./)$
01'
(123.-*
+#$4&+'.56($+
,13$'.-*
%'172$4
.-
&22
%'1*'&44&72$
(8(+$4(91-9,#.%:
;
-13$2
3$'8
0&(+
#&'<=&'$
&,,2'&+1'
.(
%'1%1($<
&-<.4%2$4$-+$<
.-
+#$
%'1*'&44&72$
21*.,
>?@A
10
&
B.2.-5
C8-/4.,'1,#.%:
"#$
&,,2'&+1'
.(
4&-&*$<
78
(10+=&'$
')--.-*
.-+#$
%'1,$((.-*
(8(+$4
>;DE
F1'+$59;GA
&3&.2&72$
1-
+#$
(&4$4.,'1,#.%
&-<
,144)-.,&+.-*
=.+#
+#$
?@
+#'1)*#
#.*#9(%$$<.-+$'0&,$(:
"#$
'$()2+(
10
.4%2$4$-+&+.1-H
$5%$'.4$-+(H
&-<,14%&'.(1-(
<$41-(+'&+$
(.*-.0.,&-+
(%$$<)%
,14%&'.-*
+1(10+=&'$
')--.-*
.-
*$-$'&29%)'%1($
?F
&-<
.-
+#$
;DE:IJKLM
 NL�O�!;,,2'&+1'
 &',#.+$,+)'$(H
 ,1-,)''$-+,14%)+.-*H
%&'&22$2
%'1,$((.-*H
0.$2<
%'1*'&44&72$
*&+$&''&8(H
(8(+$491-9,#.%:�������PQ������RSTUVWXRYUWZ
[\WY]̂
WZ_RYUX̂S[
WY\
̀Y\ab\VXZc
UVdRZd\eXR
[RZd\
RfXUSUgWXURV
fYRTZ\S[�
�hWSfZ\[
WY\
SWXYUhi[\X]Rd\YUV_

X̂\
jRRZ\WV
[WXU[̀UWTUZUXc

_YWf̂
]RZRYUV_
WVeSWVc
RX̂\Y[
e\[]YUT\e
WVe
Y\dU\k\e
UV
l�m�l�m�
nWVc
XW[o[WY\
�pq]RSfZ\X\
WVe

X̂b[

X̂\c
WY\
XUS\
]RV[bSUV_�
r\]RV[Ue\Y
̂\Y\
X̂\
SWXYUhi[\X
]Rd\YUV_
k̂U]̂
T\ZRV_[
XRfWYXUXURVUV_
fYRTZ\S[
l�m
WYU[UV_
UV
[b]̂
fYW]XU]WZWffZU]WXURV[
W[
[]̂\ebZUV_
WUY]YẀX[

ZR]WXURV
\S\Y_\V]c[XWXURV[
UV
bYTWV
WY\W[

̀WbZX
X\[XUV_
R̀
\Z\]XYRVU]
]UY]bUX[
Y\[RbY]\
eU[XYUTbXURV
UV
SbZXUq]RY\
[c[X\S[

WVe
SWVc
RX̂\Y[l�m�
sRY
SWVc
WffZU]WXURV[
̂U_̂
f\ỲRYSWV]\
U[
Y\abUY\e
WVeUX
SWc
T\
W]̂U\d\e
UV
̂WYekWY\
W]]\Z\YWXRY[
̀RY
k̂U]̂spt	qTW[\e
[RZbXURV[
WY\
\[f\]UWZZc
fYRSU[UV_�
�X
U[
[̂RkVWVe
fYRd\e
UV
X̂\
fWf\Y
X̂WX
Y\]\VXZc
Wff\WY\e
RV
X̂\
SWYo\XWZZ
fYR_YWSSWTZ\
[c[X\S[qRVq]̂Uf
u	p�R�v
R̀
wUZUVh
xcVaẀSUZc
l�m
WY\
d\Yc
WffYRfYUWX\
̀RY
USfZ\S\VXWXURV
R̀]RSTUVWXRYUWZ
[\WY]̂
WZ_RYUX̂S[
\VWTZUV_
X̂\
fYRTZ\S
XR
T\e\]RSfR[\e
UVXR
XkR
[bTqfYRTZ\S[
X̂WX
WY\
�v
̂U_̂\YqZ\d\ZW]XUdWXURV
R̀
fYUSWYc
[bTqXW[o[
UV
k̂U]̂
X̂\
WZ_RYUX̂S
̂W[T\\V
e\]RSfR[\e

WVe
�v
̀W[X
\h\]bXURV
R̀
X̂\
[bTqXW[o[
UVX̂\
̂WYekWY\
W]]\Z\YWXRY�
]]RYeUV_
XR
X̂\
fYRfR[WZ[

X̂\ÙY[X
[bTqfYRTZ\S
U[
W[[U_V\e
XR
W
fYR]\[[UV_
[c[X\S
up�vnWVb[]YUfX
Y\]\Ud\e�]XRT\Y�y

����z
W]]\fX\e{WVbWYc
|

������̂U[
Y\[\WY]̂
kW[
[bffRYX\e
Tc
�Q
X̂YRb_̂ �bYRf\WV
�_URVWZP\d\ZRfS\VX
sbVe[
}~
���
�������������
��������
�������
���
����
��
�����������
�������~
��
���������
���
���������
���
�����
����

WVe
TcpRYXb_b\[\�WXURVWZ
sbVe[
X̂YRb_̂
s��qsRbVeWXURV
̀RY
�]U\V]\
WVe�\]̂VRZR_c

UV
X̂\
]RVX\hX
R̀
X̂\
fYR�\]X
p�[Xq��i���iQ�����i�����

USfZ\S\VX\e
RV
X̂\
TW[U[
R̀
UVeb[XYcq[XWVeWYe
ebWZq]RY\	�n
�RYX\hq	�
UV
xcVa
	p�R��
�̂\
W]]\Z\YWXURV
U[
eRV\UV
W
fYR_YWSSWTZ\
ZR_U]qp�
uwUZUVh
	YXUhq�
spt	v
X̂WX
U[WdWUZWTZ\
RV
X̂\
[WS\
SU]YR]̂Uf
kUX̂
X̂\
	�n�
�X
U[
[̂RkVX̂WX
[b]̂
Xcf\
R̀
̂WYekWY\i[R̀XkWY\
]Rqe\[U_V
f\YSUX[\Z_WVX
WVe
\̀̀U]U\VX
[RZbXURV[
XR
T\
̀RbVe
X̂WX
WY\
̀W[X\YX̂WV
X̂\T\[X
oVRkV
WZX\YVWXUd\[��̂\
Y\SWUVe\Y
R̀
X̂\
fWf\Y
U[
RY_WVUg\e
UV
[Uh
[\]XURV[��\]XURV
��
e\̀UV\[
X̂\
fYRTZ\S
WVe
fY\[\VX[
WV\hWSfZ\��\]XURV
���
[b__\[X[
WY]̂UX\]XbY\
R̀
X̂\
̂WYekWY\
W]]\Z\YWXRY��\]XURV
��
U[
e\eU]WX\e
XR
[R̀XkWY\îWYekWY\
]Rqe\[U_V��hf\YUS\VXWZ
[\Xbf
U[
eU[]b[[\e
UV
�\]XURV
��
�̂\
Y\[bZX[WVe
]RSfWYU[RV[
WY\
Y\fRYX\e
UV
[\]XURV
���
�̂\
]RV]Zb[URVU[
_Ud\V
UV�\]XURV
�������p��j��nP�s��������̂\
]Rd\YUV_
fYRTZ\S
]WV
Ue\VXU]WZZc
T\
̀RYSbZWX\e
RV\UX̂\Y
[\X[
l�m
l�m
RY
SWXYU]\[
l�m�
�\X;�
uWU�v
T\
W
�q�UV]Ue\V]\
SWXYUh�
�̂\
[bTq[\X
	U�
��

WU��
�¡
]RVXWUV[
WZZ]RZbSV[
]Rd\Y\e
Tc
YRk
U
u¢£¤£X̂\
YRk
U
̂W[
dWZb\
�
UV
WZZ]RZbSV[
R̀
X̂\
[bTq[\X
	Uv�
�̂\
SUVUSWZ
YRk
]Rd\Y
U[]RSfR[\e
R̀
X̂\
SUVUSWZ
VbST\Y
R̀
X̂\
[bTq[\X[;UX̂WX]Rd\Y
WZZ
X̂\
SWXYUh
]RZbSV[�
�Z\WYZc

̀RY
[b]̂
[bTq[\X[
X̂\Y\U[
WX
Z\W[X
RV\
dWZb\
�
UV
\W]̂
]RZbSV
R̀
X̂\
SWXYUh�
�\X
b[]RV[Ue\Y
WV
\hWSfZ\
̀YRS
l�m
R̀
W
[\X
�
WVe
[bTq[\X[
��
¥
�|usU_�
�v

k̂U]̂
]WV
T\
Y\fY\[\VX\e
UV
X̂\
̀RYS
R̀
X̂\R̀ZZRkUV_
SWXYUh;¦� � � � � | � y � �� �� ����¦ � � � � � � � � � � � ���¦ � � � � � � � � � � � �§̈© ª ª ª ª « « « « « « « «§¬© « « ª « ª ª ª ª « « « «§­© « « « « « « « « ª ª ª ª�|¦ � � � � � � � � � � � �PÙ̀\Y\VX
WZ_RYUX̂S[
̂Wd\
T\\V
fYRfR[\e
XR
[RZd\
X̂\]Rd\YUV_
fYRTZ\S
l�m�l�m

[b]̂
W[
_Y\\ec
̂\bYU[XU]
l�m

l�mWVe
W
d\Yc
[USUZWY
S\X̂Re
l�m�
	V
WVWZc[U[
R̀
X̂\
oVRkVWZ_RYUX̂S[
̂W[
[̂RkV
X̂\
̀RZZRkUV_¦���̂\
SW�RYUXc
R̀
X̂\S
WY\
WffYRhUSWX\
[UV]\
X̂\fYRTZ\S
U[
�pq]RSfZ\X\z

sW[X
nWXYUh
�Rd\YUV_
UV
	ZZ
pYR_YWSSWTZ\�c[X\S[qRVq�̂Uf���oZcWYRd�

���oZUWYRdW�

	���WTRd�

	��beVUX[RV�ª®¤̄°±²³¤́²
µ¶
·̧¤¹²±µ́¢¹º»
¼¤̧¤¹µ³³½́¢¹°²¢µ́º
°́¾
¿́¶µ±³°²¢¹ºÀ¿··¼Á»
Ấ¢Ã¤±º¢²Ä
µ¶
ÁÃ¤¢±µ»Å̈ª«ÆªÇ̈
ÁÃ¤¢±µ»
Èµ±²½É°̧Ê®¤̄°±²³¤́²
µ¶
Ëµ³̄½²¤±·́É¢́¤¤±¢́É»
¼°̧̧¢́́ Ấ¢Ã¤±º¢²Ä
µ¶
¼¤¹Ì́µ̧µÉÄ»ªÊÍªÎ
¼°̧̧¢́́ »
·º²µ́¢°ºÏ̧Ð½°£̄²
X̂Xf¦iieh�eRU�RY_i�������i����\\\���������|

ÑÒÓ

115

PUBLICATION III

Rjabov, A.; Sklyarov, V.; Skliarova, I.; Sudnitson, A. (2015). Processing
Sorted Subsets in a Multi-level Reconfigurable Computing System. Elektronika
ir Elektrotechnika, 21 (2), 30−33, 10.5755/j01.eee.21.2.11509.

����������	
��
��������������	

����
���������

����
��

���
�

����

��������� !"#
$%$#&
'())#'*'
%
*#+",-.(#
/0&
#1*&%+*-,)
%,2
/-3*#&-,)
'0&*#2
'(4'#*'
-,
%
*"&##53#6#3
+07$(*-,)
'8'*#7
9-*"
'(+"
'(45'8'*#7'
%'
)#,#&%35$(&$0'#
+07$(*#&
:3#6#3
;<=
>?@
A0&*#15>B
:3#6#3
C<=
%,2
&#+0,/-)(&%43#
30)-+
:3#6#3
D<E
!"#
3%'*
*90
3#6#3'
%&#
-7$3#7#,*#2
-,
F8,.5GHHH
2#6-+#
%6%-3%43#
0,
*"#
$&0*0*8$-,)
40%&2
FAGHIE
A077(,-+%*-0,'
4#*9##,
*"#
3#6#3'
;
%,2
C5D
%&#
0&)%,-J#2
*"&0()"
KAL
#1$&#''
4('
%,2
-,*#&%+*-0,'
4#*9##,
+07$0,#,*'
0/
3#6#3'
C
%,2
D
5
*"&0()"
0,5+"-$
>ML
-,*#&/%+#'E
N#
'*(2-#2
*90
3#6#3'
0/
'0/*9%&#
$&0)&%7'
:&(,,-,)
-,
KA
%,2
>?@<=
"-)"5$#&/0&7%,+#
"%&29%&#
%++#3#&%*0&'
-7$3#7#,*#2
-,
F8,.5GHHH
$&0)&%77%43#
30)-+=
%,2
%&+"-*#+*(&#
#,%43-,)
-,*#&%+*-0,'
%,2
#1+"%,)#
0/
2%*%
4#*9##,
2-//#&#,*
3#6#3'E
!"#
'#3#+*#2
/0&
%,%38'-'
'0&*-,)
$&043#7
"%'
"-)"
+07$(*%*-0,%3
+07$3#1-*8
%,2
-'
9-2#38
&#.(-
-,
2%*%
$&0+#''-,)
:2%*%
7-,-,)
%,2
'*%*-'*-+%3
2%*%
7%,-$(3%*-0,=
-,
$%&*-+(3%&<E
!"#
&#'(3*'
0/
#1$#&-7#,*'
2#70,'*&%*#
"%
*"#
#3%40&%*#2
%&+"-*#+*(&#
-'
#//-+-#,*
%,2
$#&7-*'
/%'*
'03(*-0,'
*0
4#
/0(,2E
K&0$0'%3'
/0&
$0*#,*-%3
/(&*"#&
-7$&06#7#,*'
%&#
%3'0
)-6#,E

OPQRS
TR�U� A07$(*-,)
'0&*#2
'(4'#*'=
+077(,-+%*-,)
'0/*9%&#V"%&29%&#
'8'*#7'=
'0&*-,)
,#*90&W'=
/-3*#&-,)=
$&0)&%77%43#
'8'*#7'50,5+"-$E
��
�����XY�����
Z[\]
̂_[̀ab̀[c
[̂ ĉb̀[abd\e
_fghb_f
[̀ghbebabd\

[\[c]ebe

[\i
jbcaf_b\k
dj
c[_kf
i[a[
efae�
�fa
he
̀d\ebif_
edlf
fm[l̂ cfe�
�\
n�o
[
i[a[
lb\b\k
̂_dpcfl
be
fm̂c[b\fi
qbar
[\[cdk]
ad
[
erd̂ b̂\k
̀[_i�
	
p[esfa
be
arf
efa
dj
bafle
ĥ_̀r[efi
[a
d\f
ablf�
	
j_fghf\a
bafl
be
[\
bafl
ar[a
djaf\
d̀ h̀_e
b\
[
i[a[p[ef�
	
j_fghf\a
efa
dj
bafle
djaf\
d̀ h̀_
adkfarf_
b\
arf
e[lf
p[esfa�
	
fef[̀rf_
̀[\
_fghfea
[
[̂_ab̀hc[_
eĥ d̂_a
t[chf
[\i
jb\i
arf
bafle
qrb̀r
[̂ f̂[_
adkfarf_
b\
[
p[esfa
fbarf_
[
l[mblhl
d_
[
lb\blhl
\hlpf_
dj
ablfe
qbarb\
arf
i[a[p[ef
n�o�
�blbc[_
̂_dpcfle
[̂ f̂[_
ad
ifaf_lb\f
j_fghf\a
ghf_bfe
[a
arf
�\af_\fa

h̀eadlf_
a_[\e[̀abd\e

̀_fiba
̀[_i
̂h_̀r[efe

fà�
_fghb_b\k
_̂d̀feeb\k
tf_]
c[_kf
tdchlfe
dj
i[a[
b\
arf
ê[\
dj
[
i[]
n�o�
u[ea
fma_[̀abd\
dj
arf
ldea
j_fghf\a
d_
arf
cfee
j_fghf\a
bafle
j_dl
c[_kf
efae
̂f_lbae
i[a[
lb\b\k
[ckd_barle
ad
pf

Z[\hè_b̂a
_f̀fbtfi
�dtflpf_
��

���vw
[̀ f̀̂afi
x[\h[_]
�y

�����

�rbe
fef[̀r
q[e
eĥ d̂_afi
p]
arf
�h_d̂f[\
Y\bd\
ar_dhkr
arf
�h_d̂f[\
�fkbd\[c
Xftfcd̂lf\a
uh\i

arf
b\eabahabd\[c
fef[̀r
jh\ib\k
�Y�
����
dj
arf
�ead\b[\
Zb\bea_]
dj
�ih̀[abd\
[\i
�fef[_̀r

arf
�ead\b[\
�̀bf\̀f
udh\i[abd\
z_[\a
�d�
����

[\i
{d_ahkhfef
�[abd\[c
uh\ie
ar_dhkr
u��
�
udh\i[abd\
jd_
�̀bf\̀f
[\i
�f̀r\dcdk]

b\
arf
̀d\afma
dj
arf
̂_d|f̀a
{�ea���}���}Y����~}���v�

[̀ f̀cf_[afi
[\i
l[]
pf
hefi
b\
l[\]
s\dq\
lfardie
j_dl
arbe
èd̂f

����
n�o�nvo�
	\darf_
fm[l̂ cf
̀[\
pf
a[sf\
j_dl
arf
[_f[
dj
̀d\a_dc�
	̂ ĉ]b\k
arf
af̀r\bghf
n�o
b\
_f[c�ablf
[̂ ĉb̀[abd\e
_fghb_fe
s\dqcfikf
[̀ghbebabd\
j_dl
arf
d̀\a_dccfi
e]eafle�
ud_
fm[l̂ cf

ebk\[ce
j_dl
ef\ed_e
l[]
pf
jbcaf_fi
[\i
[\[c]efi
ad
̂_ftf\a
f__d_
̀d\ibabd\e
n�o�
�d
_̂dtbif
ld_f
fm[̀a
[\i
_fcb[pcf
̀d\̀chebd\

̀dlpb\[abd\
dj
ibjjf_f\a
t[chfe
\ffi
ad
pf
fma_[̀afi

d_if_fi

[\i
[\[c]efi�
�blbc[_
a[ese
[̂ f̂[_
b\
ld\bad_b\k
arf_l[c
_[ib[abd\
j_dl
tdc̀[\b̀
̂_dih̀ae
nyo

jbcaf_b\k
[\i
b\afk_[ab\k
b\jd_l[abd\
j_dl
[
t[_bfa]
dj
ibjjf_f\a
edh_̀fe
b\
lfib̀[c
[̂ ĉb̀[abd\e
n~o
[\i
ed
d\�
�b\̀f
l[\]
e]eafle
r[tf
r[_i
_f[c�ablf
̀d\ea_[b\ae

f̂_jd_l[\̀f
be
bl̂ d_a[\a
[\i
r[_iq[_f
[̀ f̀cf_[ad_e
l[]
_̂dtbif
ebk\bjb̀[\a
[eebea[\̀f
jd_
edjaq[_f
̂_dih̀ae
�eh̀r
[e
n�o��
�blbc[_
̂_dpcfle
[̂ f̂[_
b\
ed�̀[ccfi
ea_[bkra
efcf̀abd\
ed_ab\k
�b\
eh̀r
[̂ ĉb̀[abd\e
qrf_f
qf
\ffi
ad
jb\i
arf
a[es
qbar
arf
erd_afea
if[icb\f
b\
èrfihcb\k
[ckd_barle
n�o��
�rf
̂ [̂f_
ehkkfeae
[
\fq
lfardi
ad
ifebk\
rbkr�f̂_jd_l[\̀f
[̀ f̀cf_[ad_e
p[efi
d\
[cc
 ̂dk[ll[pcf
e]eafle�d\�̀rb̂
�	{�d��
j_dl
arf
�bcb\m
�]\g�~���
j[lbc]
n�o
̀dllh\b̀[ab\k
qbar
[
kf\f_[c�̂h_̂def
̀dl̂ haf_
ar_dhkr
{��
fm̂_fee
phe�
	{�d�e
[_f
_f̀f\ac]
iftfcd̂fi
jbfci�̀d\jbkh_[pcf
iftb̀fe
b\afk_[ab\k
arf
ldea
[it[\̀fi
̂dk[ll[pcf
cdkb̀
�{��
[\i
[
qbifc]
hefi
̂_d̀feeb\k
e]eafl
�{���
arf
ih[c�̀d_f
	�Z�
�d_afm�Z
Z{�d_f�Z�
�rf
[t[bc[pcf
b\af_j[̀fe
pfaqff\
arf
{�
[\i
{�
[_f
eĥ d̂_afi
p]
_f[i]�ad�hef
b\afccf̀ah[c
̂_d̂f_a]
��{�
̀d_fe�
�rfef

 d̀lpb\fi
qbar
\hlf_dhe
[_̀rbaf̀ah_[c
[\i
af̀r\dcdkb̀[c
[it[\̀fe

r[tf
f\[pcfi
	{�d�e
ad
d̂f\
[
\fq
f_[
b\
arf
iftfcd̂lf\a
dj
rbkrc]
d̂ablb�fi
d̀l̂ ha[abd\[c
e]eafle
n��o�
�rf
fl[b\if
dj
arf
̂[̂f_
be
d_k[\b�fi
b\
jdh_
ef̀abd\e�
�f̀abd\
��
ifè_bpfe
arf
 _̂dpcfl
[\i
ehkkfeae
[\
[_̀rbaf̀ah_f
dj
[
��cftfc
e]eafl�
�f̀abd\
���
̀d\ebif_e
ibjjf_f\a
ldife
dj
jh\̀abd\[cba]
dj
r[_iq[_f
[̀ f̀cf_[ad_e�
�f̀abd\
��
_f̂d_ae
arf
_fehcae
dj
fm̂f_blf\ae
[\i
̀dl̂ [_fe
arfl
qbar
[caf_\[abtf
̀dl̂ ha[abd\e
b\
kf\f_[c�̂h_̂def
edjaq[_f�
�rf
̀d\̀chebd\
be
kbtf\
b\
�f̀abd\
��
���
{�����Z
X�u�������
	�X
�����Z
	��������Y��
�fa
	
pf
[
efa
dj
i[a[
bafle
ar[a
̀[\
pf
dj
[\]
̂_fifjb\fi
a]̂f
̀dlld\
jd_
kf\f_[c�̂h_̂def
c[\kh[kfe
�����
b\afkf_��
�f
̀d\ebif_
rf_f
eh̀r
̀dl̂ ha[abd\e
ar[a
̂f_lba�

{_d̀feeb\k
�d_afi
�hpefae
b\
[
Zhcab�cftfc
�f̀d\jbkh_[pcf
�dl̂ hab\k
�]eafl
	_a|dl
�|[pdt�

�[cf_]
�sc][_dt�

�dhcbb[
�scb[_dt[�

	cfm[\if_
�hi\baed\�
�����������
��
��������
������������
�������
��� ��¡��¢
��
��£¤�����¢�
��������
�¡�����
¥����������
��
���£�����£¡�
����£������£�����¡
��¦
§��������£¡̈§���©�
��� ��¡��¢
��
© �����
© �����
ª�������
���«����«�¬� ­������£��

raâ�}}im�idb�d_k}����~��}|���fff�����������

®̄

121

PUBLICATION IV

Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2015). Zynq-based
System for Extracting Sorted Subsets from Large Data Sets. Journal of
Microelectronics, Electronic Components and Materials, 45, 142−152.

���

������	
��
������
��	���

���������������

�� !"#$%&'�(�%)&*�+,-�./)-$0)1 2�(,-)&'�(3#%&)%�+-,*�4$-2&�5$)$�(&)%67�(89�$-,:;<�=7�(891$-,:$;<�>7�?@$#,:A<�>7�(3' 1)%, A;B 1:&-%1)��,+�>:&1-,�C�=..D><�E$*F3%�B 1:&-%1)G-1,�'&�($)1$2,<�>:&1-,<�H,-)32$9AD$991 �B 1:&-%1)��,+�D&0I ,9,2�<�D$991 <�.%), 1$JKLMNOPMQ�RS��TUT�V�W�X�V�Y�X�SUVWZUV�[X�\�ZUV��UV�S�����]V���\�U�X�X��̂ �\�V��_�VU���̀a��S��̂U_�̂]̂ �ÙW�̂�̀�̂]̂ �X�V��W�X]YX��X�\V�̂ �bUVa��WU�U�X��Xc��Z��̂��S�WX��SU���̀UYb��S�aSdb�e�b�TUVUbb�b�X̂����Y��U�S��e�Wc�ÙW��̂Tb�̂ �̀�U���̀��\��S��X�X��̂ ��̀�V���̀�b��UTT�UV�W��̀��S��̂UVf���g�̀hdijjj�̂��V��S�TX��̀��VT�VU��̀a�U�S�aSdT�V\�V̂Ù���TV���XX�̀a�]̀���ÙW�UWeÙ��W�TV�aVÛ ÛYb��b�a���\V�̂ ��S��k�b�̀_�i�S�\Û �b�l�RS��̂��S�WX�UV��YUX�W��̀�S�aSb��TUVUbb�b�ÙW��UX�b��X�UbUYb��X�V��̀a�̀��Z�VfX�ÙW��S��TV�T�X�W����S̀�h]���̀UYb�̀a�X�V��W�X]YX��X����Y���_�VU���W��̀�V�̂ �̀�Ubb��Z��S�e�V��S�aS�XT��W��SU���X��b�X������S��XT��W��\�WU�U��VÙX\�V��SV�]aS�S�aSdT�V\�V̂Ù����̀��V\U��Xl�RS��V�X]b�X��\��̂Tb�̂ �̀�U���̀X�ÙW��_T�V�̂�̀�X��b�UVb��W�̂ �̀X�VU���X�à�\��Ù��XT��Wd]T��\��S��W�e�b�T�W�X�\�ZUV�[SUVWZUV��X�X��̂ ���̂ TUV�̀a����Ub��V̀U��e��X�\�ZUV���̂Tb�̂ �̀�U���̀Xl�mnopqNrLQ�TV���XX�̀a�X�X��̂ s�TV�aVÛ ÛYb��b�a��s�X�X��̂ d�̀d�S�Ts�X�V��̀a�̀��Z�VfXs�SUVWZUV�[X�\�ZUV����dW�X�à(1%)&*� $�,% ,:1��� !�t$�1t93uv1)&:�-$t:-uv& 1I�F,'%89,F,:�1t�,#%&w 1I�F,'$)8,: 1I�%89,F,:xyz{n|n}Q�~bÙ�f�TV�WX�Ueb�U�TV�aVÛ Xf�[X�V��̀���UX̀�e��X�X��̂ U��U���b]�����e�̀U�e����S��̀�̀U�̂Ù���S�VU�eV���̀�S�T�WXfb�T�e�e��YX��̀�S�T�WU�f�è�S�Xfb�T�Sl��V�WX�Ueb��̀��X�U�We��̂���W�c�f���̂ �a��U�U�e�X�f��X��T̀���e�T�V�Ẁ�X����̀��̂Tb�̂ �̀�U�����X�X��̂ U�e��V�̀�̂ �g���dijjj�̂�fV���T]�̀U��X̀�e��TV�aVÛ UY�b̀��b�a�f��k�b�̀_�X�Ŵ ��a�̀�VU����l�����W����̂ �b�����̀U�e�T�V�Ẁ���̀��̀�X�Uè��VU���Vb��e�S��̂ V����S���V��̂ �a��U�����b]�����e�T�WXfb�T�e�X�S��V�X����Yb��]�S��V�X���TV�̀�XU�T�WU�f�el����]b�U���W�fU�]�����e�b�f��T�S��V�̀���TV�aVÛ Xf�[X�V��̀�S�V�����e�e�TV�̂�V�Ue��X�TV�aVÛ Xf�̂��V����eÛ �lm{��|�n�KnLnrnQ�TV���XX�̀a�X�X��̂ s�TV�aVÛ ÛYb��b�a��s�X�X��̂ d�̀d�S�Ts�X�V��̀a�̀��Z�VfXs�SUVWZUV�[X�\�ZUV����dW�X�à������������������������������� ��¡�¢��£��

¤�]V̀Ub��\����V��b���V�̀��Xc��b���V�̀���¥�̂ T�̀�̀�X�ÙW��U��V�UbX¦�bl��§c���l���̈�j�§©c�����ª��§�

;�=)-,'30)1, «¬¬�­®̄°®±²²±³¬́�µ¶·̧́²·¹̄º¹»¼½¾�¿«­µ̄»À�Á®̄²�Â¶ºÃ¹ÄÅÅÅ�Á±²½¬¶�ÆÇÈÉÊ�Ë̄²³½º́�̄º�̧¼́�·±²́ �²½Ë®̄Ë¼½¾�¼̧́�ÌÍ±¬¹Ë̄®́�«ÎÏÐ�»̄®̧́ÑÒÏ�Ï­»̄®́ÒÏ¹³±·́Ì�¼½°¼¹¾́®Á̄®²±ºË́�¾®̄Ë́··½º°�·¶·̧́²�¿­µÀ�Ó½̧¼�±ÌÔ±ºË́Ì�¾®̄°®±²²±³¬́�¬̄°½Ë�¿­ÕÀ�Á®̄²�̧¼́�Ö½¬½ºÑ�Ä̧¼�Á±²½¬¶�±ºÌ�²±¶�³́�Í·́Ì�́ÁÁ́Ȩ̈½Ố¬¶�Á̄®�̧¼́�Ì́·½°º�̄Á�¼±®ÌÓ±®́�±Ë¹Ë́¬́®±̧̄ ®·�½º�·ÍË¼�±®́±·�±·�¼±®Ì�®́±¬¹̧½²́ �·¶·̧́²·�Æ×ÊÈ�½²±°́�ÆØÊ�±ºÌ�Ì±̧±�ÆÙÊ�¾®̄Ë́··½º°È�·±̧́ ¬¬½̧́�̄º¹³̄±®Ì�¾®̄Ë́··½º°�ÆÚÊÈ�¾®̄°®±²²±³¬́�¬̄°½Ë�Ë̄º̧®̄¬¬́®·�ÆÄÊÈ�Ì®½Ố®�±··½·̧±ºË́�±¾¾¬½Ë±̧½̄º·�ÆÛÊÈ�Ó½®́¬́··�º́ Ó̧̄ ®Ü·�ÆÝÊÈ�±ºÌ�²±º¶�̧̄¼́®·�ÆÉÊÞ�ßº̧ ®́±Ȩ̈½̄º·�³́ Ó̧́ º́�̧¼́�­µ�±ºÌ�­Õ�±®́�·Í¾¾̄®̧́Ì�³¶�Ì½ÁÁ́®́º̧�½º̧ ®́Á±Ë́·�±ºÌ�̧̄¼́®�·½°¹º±¬·�̧¼®̄Í°¼�̄Ố®�×ÈÅÅÅ�Ë̄ºº́Ȩ̈½̄º·�ÆÇÊÞ�«Ô±½¬±³¬́�Á̄Í®�×ÉàÚØ¹³½̧�¼½°¼¹¾́®Á̄®²±ºË́�¿á­À�«ÌÔ±ºË́Ì�́Ö̧ º́·½³¬́�ßº̧ ®́Á±Ë́·�¿«ÖßÀ�±ºÌ�±�ÚØ¹³½̧�«Öß�«ËË́¬́®±̧̄ ®�»̄¼́®́ºË¶�
­̄®̧�¿«»­À�́º±³¬́�Á±·̧�Ì±̧±�́ÑË¼±º°́�Ó½̧¼�̧¼́ ®̧̄́½Ë±¬�³±ºÌÓ½Ì̧¼·�·¼̄Óº�½º�ÆÇÊÞ�Â¶ºÃ�«­µ̄»�Ì́·½°º�Á¬̄Ó�½ºË¬ÍÌ́·�̧¼́�Ì́Ố¬̄¾²́ º̧�̄Á�¼±®ÌÓ±®́�½º�̧¼́�­Õ�ÆÇÅÊ�¿·Í¾¾̄®̧́Ì�³¶�±Ô±½¬±³¬́�Ö½¬½ºÑ�ß­�Ë̄®́·À�±ºÌ�·̄Á̧Ó±®́�½º�̧¼́�­µ�ÆÇÇÊ�Á̄®�Ì½ÁÁ́®́º̧�̧¶¾́·�Á̄�±¾¾¬½Ë±̧½̄º·�·ÍË¼�±·�·̧±ºÌ±¬̄º́�¿³±®́�²́ ±̧¬À�ÆÇÉÊÈ�®Íºº½º°�ÍºÌ́®�±º�̄¾́®±̧½º°�·¶·̧́²�¿âãäã�Õ½ºÍÑÀ�ÆÇÉÊ�±ºÌ�Ë̄²³½º́Ì�ÆÇ×ÊÞ�á±®ÌÓ±®́�½²¾¬́²́ º̧ Ì́�½º�̧¼́�­Õ�Ë±º�³́�̧¼́�·±²́ �Á̄®�·̧±ºÌ±¬̄º́�±ºÌ�Õ½ºÍÑ�±¾¾¬½Ë±̧½̄º·�³Í̧�·̄Á̧Ó±®́�¾®̄°®±²·�Í·́�Ì½ÁÁ́®́º̧�ÁÍºȨ̈½̄º·�±ºÌ�½º̧ ®́±Ë¹½̧̄º�²́ Ë¼±º½·²·�ÆÇÉÊÞ�µ½ºË́�³±®́�²́ ±̧¬�¾®̄ǻȨ̈·�±®́�°́º́®±¬¬¶�Á±·̧́®È�Ó́�Ó½¬¬�Ë̄º·½Ì́®�̧¼́²�±·�±�³±·́�Ó¼½Ë¼�Ì̄ ·́�º̄ �̧́ÑË¬ÍÌ́�Í·½º°�̧¼́�®́·Í¬̧·�Á̄®�¾®̄ǻȨ̈·�®Íºº½º°�ÍºÌ́®�̄¾́®±̧½º°�·¶·̧́²·Þ�Ò¼́�¬±̧̧ ®́�²±¶�³́º́Á½̧�Á®̄²�±Ô±½¬±³¬́�Ì®½Ố®·�±ºÌ�̄ ¼̧́®�·Í¾¾̄®̧�ÆÇÉÊÞ�µ½ºË́�³̄ ¼̧�

135

PUBLICATION V

Artjom Rjabov (2016). Hardware-based systems for partial sorting of
streaming data. 15th Biennial Baltic Electronics Conference (BEC2016),
Tallinn, Estonia, October 3-5, 2016. IEEE, 59−62.

�����������	��
��	
��	
���
���
���
���
���
��
�
�������
��
�

��
���
������
�����
���

��
�����
��
������������
 ������
!�����	�
�
��
 �"#�������
 �������
�	
����
��
���$������%

�$��
&'()*+,)-./01
2/1/
0341567
50
/6
8008615/9
:3;<36861
3=
;/6>
?57?@<84=34;/6:8
:3;<A1567
0>018;0B
C57?@1?43A7?<A1
/62
?57?9>
</4/9989
0341567
/973451?;0
/48
D84>
/<<43<45/18
=34
28D5:80
E?5:?
<43D528
;/005D8
</4/998950;
95F8
.GHI0
/62
IGJ3K0B
L68
3=
1?8
;/M34
24/EN/:F0
3=
1?808
<9/1=34;0
50
/;3A61
3=
/D/59/N98
4803A4:80
E?5:?
50
/
08453A0
3N01/:98
=34
280576
3=
?/42E/48
0341840B
C3E8D84O
=34
;/6>
<4/:15:/9
/<<95:/15360
:3;<9818
0341567
50
631
5;<341/61
/62
369>
</415/9
0341567
=34
8P14/:1536
3=
;/P5;A;
/62
;565;A;
0AN0810
3=
1?8
2/1/
50
48QA5482B
R6
1?50
</<84
E8
56D80157/18
1?8
;/P5;A;
/62
;565;A;
8P14/:1536
<43N98;O
<480861
/
?/42E/48@N/082
8P14/:1567
:54:A51
N/082
36
<5<895682
<845325:
0341567
681E34F0
/62
:3;</48
51
E51?
F63E6
/91846/15D80B

STUVW*X(YZ[\]̂_T*̀W*a+b,T
,Wa_c)[b\
(U()Ta(d
eb̀W*a+)[Wb
_*W,T(([b\f
gW*)[b\
bT)VW*h(f
i+*+jjTj
(W*)[b\f
i+*)[+j
(W*)[b\f
T,Wb̀[\c+'jT
,Wa_c)[b\k
l$

lm �n�!� lnm
��������
������
#�	
���
��
�
	��
���
#���
����
	
�����
��
"����
��
	"���"�
���
��"���	$
 #���
���
����
��������

��������
	��
���
������
#�	$
 #�
��	

��
����
��

#��
���
��������
o��"p���
�
��������
����q
���
�
������
���
�
��	
�����
���

rst
���
�
������
��
������
#��"
��
#��	
p����
�	
	��
���
��
���p	
rut$
 #�
��

��
���	��
	
�
����

��
���	

���
#�������
�""�����
���$
�
	��
���
��
���p
�	
�
	�

��
���
�"��
����	
"����	��
��
"������
��	

#�

"��
	���
��
�

�
"#����

#���
��	�
���	
��

#�
����

���
���
��
��"
��$
 #�
��
�
�������
�

#����#

#�
����	
����
���

�
���#

�
�����"�

#�
	��
��
���
���
��
��"
��
��

#�
��
��
	
��

#�
���#
��	

���
�"��
����$
���
���
�	
�
����
"����
�
�������
�q���	���
���

���
"��	�����
�����
���
�#�"#
��v����	
�
��

��
#�������
��	���"�	$
 #���
���
��������

������"#�	

�
����"���

#�	�
����
�
���	$
!
���w���
�
���
���
��
���p	
��
#
���	����
"������
��	
�����
	

�
���"�		
	������"��
��
������
��
�
	�
	$
���
#��

��
��		�����
��	

�
����"���

#�	�
�������	
���
�
���w�
���
��
�
����
�����
	����
��������
	��
��
�����
��
#
�
�������
"��"��

��
��������
�
���
��
���
���
	��
���$
l�

#�	
�����
��
����	
���
�

#�
��

��
��		�����
�$
x���
�����"�
���	
��
��

��v����
���
����
	

�
��
	��
��$
����
��

#��
��"�		�
�
�
����
��q����
���
�������
�����	

�
��
	���"
��$
x���
���"
����"�
����������
���
����"���
���
�������"��
�����"�
���	
����

�
���"�		
��
�
	
����	
�����"��
��
	��	��	
���
���	���
�q
�����
������
��	
��
#��
�����
�����

���
�����
�����	
y
#��	#���	z$
x�q����
���
�������
	��	�
	
�q
��"
���
�	
��v�����
��
	���"#����
	
�
�	
�"��
��
�
��������
���
���
��
�
������
y�$�$
r{t
r|tz$
 �
��	"����
���
��

#�
�������	
����
��
�
������
����������
��

�	
"��	����
��
�q�����
r{t
��
#
�������

�
�
	#������
"���$
�
��	p�

�	

#�
	�

��
�
��	
���"#�	��
�

���

���$
�
���v���

�
��
�	
��
�
��

#�

��
��
�""��	
��
�
��
���	�$
�
���v���

	�

��
�
��	
��
��
�""��

���
#��
��

#�
	���
��	p�
$
�
��	���"#��
"��
��v��	

�
���
�"����
	�����

�����
���
����

#�
�
��	
�#�"#
�""��

���
#��
��
�
��	p�

��
#��
�
��q����
��
�
�������
������
��

���	
��
#��

#�
��
���	�
r{t$
�������
�������	
������

�
��
������
���v���

��v�����	
�

#�
l�
����
�
"�	
����

���	�"
���	�
"����

"���
���"#�	�	�
�
"$
��v������
���"�		���
����
�����
������	
��
��
�
��

#�
	���
��
�
���
r{t$
}�	

�q
��"
���

#�
��	

���v���

��

#�
��		
���v���

�
��	
����
�����
	�
	
�����
	
��
�
������
������
#�	

�
��
	���������
���
�""�����
��$
���
���
��
	��	�
	
���
��
��������
��
����
p����
��
#��	
����

#�	
����$
 #�
�����
	����	
	
�
��
#��
���
#��#����������"�
#�������
��������
�
���
��
�
���
���
	��
��
���
��q����
y��
�������z
	��	�

�q
��"
���
���
��q����
y��
�������z
��	��
��
	��	�

	���"
���
��	��
��
��������
	��
���
��
���p$
 #�
	�	
��
�	
��	�����
���
���p���
����
	
�������
��
�$
l

�
���w�	
�~l
��
����"�	
���
�	
	����	
��
�	
�
��l
�q���		
�����#����$
 #�
���������
��

#�
�����
"��
���	
�
	�"
���	$
��"
���
ll
�����w�	

#�
����
��
���p$
��"
���
lll
��	"����	
#��#��
��������
��
���p	
���
	��
���
���
�q�����	
#�������
"����	���$
��"
���
l�
��	"����	
�q�������
��
	�
��
���
#�������
�""�����
��
��"#�
�"
���$
��"
���
�
���	��
	

#�
��	��
	
��
�q�������
	
���
"������	��	
��
#
p����
��
����
���	$
 #�
"��"��	���
�	
�����
��
��"
���
l�$
 ll$���� ��
�n�� #�
�������
��
�������
	��	�
	
��
�������
���
��q����
�����	
�	
����
p�����
��

����
	����
������
��
	���
���	
�q�	
$
 #�
������
�
��
���p	
��

#�	
����
���
��"�	��
��
�������
s
��
u
��q����
��
�������
�����	
��
��
�
	�
	
yr�t
r�tz�
��

����
���
���p	
���
��"�	��
��
	��	�
	$
}�����#����}���#���
�

��$
����	
���
��

#�
�������
��
���
���
	��
���
���
��q�	�
�	���"
���
��
r�t$
 #��
�����	��
�
�������
��	���
��
�
���
���
	��
���
	�	
��
��	��
��
��
"#���	

���������������������������
�����
���� ����
 ¡¢££¡¤¥
 ¤¥�¡¦
�¥¢¦�§̈£¡¦©
ª̈ £«¢§¢£¦¢
¬ �ª����­®¤¥¥¡££̄
�©�̈£¡¤̄
°¦�̈±¢§
���̄
������

141

PUBLICATION VI

Sklyarov, V.; Rjabov, A.; Skliarova, I.; Sudnitson, A. (2016). High-
performance Information Processing in Distributed Computing Systems.
International Journal of Innovative Computing, Information and Control, 12 (1),
139−160.

������������	
�����	������
���
�������������������������������	 ������������������� !"#�$$%"&'()'"(*+��,-�./0%,-1��.02�1�,��3/4.5 66789:;8<=>?@>ABCDEFDGHIJC?IEFDGHK?FI BDFJCLL?I@?I M?LKD?NOKCM JFGBOK?I@ LPLKCGLQRSTUVWXSYRUZ[\]̂ U_̀Zab̀RcZ[d]eZfSYYRWXSYRUZ[R\Rgh ŜTiRghTUWfhgY_jZgdkl�m���-����no���������p0q�����--,��������p��r��n��-����p��p���,���no���������p��r��n��-����po�s�������s�ntu����v��u��p��3�ntu����tu����&*"!)"(&0w���,s��xpy�z��,����{|,�}m�~l�m���-����n��-m,���o�s�������sq������v��u��p��3�nq�������s3q������"(!*#0op��������yp��r��}p,r���p��|��,}��������������������������������������ĉj_UR�_�������������	��	��������������������������������������	����������	�����������
���������	�������	�������	�����	���	�������� �������¡����������������������������¢£¤�������������������������������¥¦¤�������������������	��������������������������	�
�	����������������������§�¥���̈ ¤����������������������	�
�	����������������©�����§�¤ §���������������������������	�����		�	����	���������������������������ª�����	�����«��� ���������������	����������������¬������������«��­���������	�����������������®§̄ °���������������	���������������©������±�����
����¤ ²�������������������§������������������«����§������������� ������������������
�	��	����������������¬������������«��­���������	����������������������������������	�����������ª����	���������������������������­��«��	�������
���������������
��������������������������������������	��������������������������­��«��	�������
�� §����������������	�����	�������	�����������­����������������������������¬���������������������ª��������������������	�������������������ª	������������� °������	�
�	�����������������������ª��	����������������������������	��­������������������������«��­�����	���������������	�
�	�	����������������������	����������������������������	������	���������	�� �������«���	���������
����³����
��������	��������
���������������	���������	
��«�������������������� ´µ¶·̧ ¹º»¼½�s�)m��n��-������-m,���sp3p��-p0��n��-�����m����pp��s0$�����s0$�������s0¾��s��s0¿����Às,��1�����rÁ���0w��)�Âm��pp1,p0w��s��--�1��p3p��-p)��)���m�Ã?ÄÅÆÇÈÉÊÅËÇÄÌÍÎ�Ï�ÐÑÒÐ���Ò��Ó�ÐÑÔ�Î�������Ò��Ð������ÐÐ����Î���Î�Ô�Ï�ÐÑ���Ï���Õ�ÖÃ×Ó���ÒÐ�������Ø���ÐÏ��ÙÎ��ÒÏÒ�ÚÏ�Ò�Ï�ÎÐÒÐ�Î�����ÐÑ�Ð�ÐÙÎ��ÒÏ�ÎÐÔ�Î�����ÐÑÃÍÎ���Î��ÎÐÔ�Î�����ÏÓÒÏÏÓ��ÒÔÔ��ÏÎÒ��Û���Ò��ÎÜ�Ñ����ÝÞ�ÃßÚÏ�Ò�Ï�ÐÑ�Î�Ï���ÒÚ����à��Ð���������Ï�Ù�Î�ÒÑ���Ð��Ï��ÃÜ��Ï���ÐÑ�ÒÏÒá�Ã�Ãá�ÚÏ�Ò�Ï�ÐÑ�����Ï�â�ÏÓ�Ò����ÏÓÒÏÙÒ��â�ÏÓ�ÐÑ���Ð����Ï��ãÃ������ÐÑ�ÒÏÒ�Ï����ÐÏÎ�����Ï�ÒÐ�äÐ��ÐÑÏÓ���Ð����à�ÒÚ����àÒ���ÒÑ��Ò�����Ð�Ò�Ó�����ÏáÎ��Î�Ï�ÐÑ�Ò�Ó�����Ï�åæç

165

PUBLICATION VII

Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2016). Computing
Sorted Subsets for Data Processing in Communicating Software/Hardware
Control Systems. International Journal of Computers Communications &
Control,11 (1), 126−141, 10.15837/ijccc.2016.1.

�������������	�
��������
�
������

��� !�"�#��$%&'()*+,-.&/*01.)230*34&/56*67/&8033+,-+,%&''),+86*+,-.&4*96/0:;6/196/0%&,*/&<.=3*0'3>?@ABCDEFGHI?@ABJDEFGDHK?LMDNFGHK?@OPQJRSFQTUVWXYZ[\]̂_̀UVWXaZ[\]Z
bcd��ecf"gh�d�c�g�i�jf$gh�k�lf�gbcle���k�lgmm bcl!fcgbe!bn�bhg�m!fcleo������!mj e
bcd��ecfp�cgn��!bfc!qg����#������d�c�g��g�f q!kr�g���ejgbncbq! fsg��etku !$jfvUwxZy\]_vUVz{|a}~\|�!kkcbb
bcd��ecf"gh��lsbgkgq"�i�jf$gh�gmj f���bqcb���cbq�t!n��mc!f�������������!kkcbb��efgbc!vy~}[Z�}��gmj fcbq!bn�kf��cbqeg�f�ne �e�fe!��h��� �bfk"��� c��ncbef!fce�fcl!kn!f!m!bcj k!fcgb!bnlgbf�gk!jjkcl!fcgbe$�s�m!cbg���lfcd�cefg��f�!lfe �e�feh�gmk!�q�n!f!e�fecb!llg�n!bl��cfsegm�l�cf��c!�hg���!mjk���cfsfs�m!�cm m!bnog�fs�mcbcm md!k �ecbfs��bfc��e�fg��cfscbfs�j��n��b�nlgb�ef�!cbfe$�s�j!j��e qq�efe!b��lgmj f!fcgbm�fsgn�b!�kcbqfs�cbncl!f�n!�gd�j�g�k�mfg��egkd�ncb!kkj�gq�!mm!�k�e"ef�me�gb�lscjh�gmfs��ckcb��"b�h!m�ck"fs!flgm�cb�!n !k�lg���g�f�����j�gl�eecbq bcf!bnj�gq�!mm!�k�kgqclkcbt�n�"scqs�j��hg�m!bl�cbf��h!l�e$�s�m�fsgncbdgkd�escqsk"j!�!kk�keg�fcbqb�f�g�te!bn� b�fcm��kf��cbq$�s�lgmj f!fcgbe!��ngb�cblgmm bcl!fcbqeghf�!���� b�bcbqcbfs�j�gl�eecbq bcf�!bns!�n�!���cmjk�m�bf�ncbfs�j�gq�!mm!�k�kgqcl$��!lfcl!k!jjkcl!fcgbeghfs�j�gjge�nf�lsbc� �!��!kegesg�b$�s���e kfeghcmjk��m�bf!fcgb!bn��j��cm�bfelk�!�k"n�mgbef�!f�ecqbc�l!bfej��n� jghfs�n�d�kgj�neghf�!��os!�n�!��e"ef�mlgmj!�cbqfg!kf��b!fcd�eghf�!��cmjk�m�bf!fcgbe$��Y�\[{~�lgmj fcbqeg�f�ne �e�fe�lgmm bcl!fcbqs!�n�!��oeghf�!��e"ef�me��kf��cbq�eg�fcbqb�f�g�te�lgbf�gk!jjkcl!fcgbe$� �,*/&1)8*+&,�DQC�B��REFQJ�H�QGJEFQ��QRDBH��PJ�DBHDQPNJFBF�J�DB�FQREFBD��BJ�DRJFQSQ��PRF�EF��SSPDRDSRE�D�S�EFPO��PNCS�QSFESDQP��DSOE���R�EQDB�DED��R�ES�JR�JQ�JG�QO���EDQPBF��ENFOQPS�R�E�S�FBPS����?��ROS�FQSJP�ESF����D��B�S?K��BCJQ�R��R���QJ�O����JQE�DB�RJ��D��BJ�DRJFQSE��OJE�SAQF�B�P��D��OJSJRJFQ EF��FQREFBB�PSCSR��S��?�?�BDQR�?¡FE��D��B�HSJ�QDBS EF�S�QSFES�DCN�¢BR�E�PDQPDQDBC£�PRF�E�G�QR�EEFE�FQPJRJFQS�S����� FEDPPJRJFQDBP�RDJBS�?¤F�EFGJP��FE���D�RDQPE�BJDNB��FQ�BOSJFQH�F�NJQDRJFQF PJ¥�E�QRGDBO�SQ��PRFN���RED�R�PHFEP�E�PHDQPDQDBC£�P?@J�JBDERDSASD���DEJQ�FQJRFEJQ�R��E�DBEDPJDRJFQ EF�GFB�DQJ��EFPO�RS�¦�H¢BR�EJQ�DQPJQR��EDRJFQF JQ FE�DRJFQ EF�DGDEJ�RCF PJ¥�E�QRSFOE��SJQ��PJ�DBD��BJ�DRJFQS�§�DQPJQFR��E�ED�RJ�DBD��BJ�DRJFQSP�S�EJN�PJQ�̈�?@JQ���DQC�FQREFBSCSR��SDE�E�DB�RJ��H��E FE�DQ��JSJ��FERDQRDQP�DEP�DE�D���B�EDRFES�DC�EFGJP�SJ�QJ¢�DQRDSSJSRDQ�� FESF R�DE�?KSJ�JBDEPDRD�EF��SSJQ�JSD��BJ�DNB�RFPDRD�JQJQ�DB�FEJR��SHSO��DS�©�?��ROS�FQSJP�E�FQREFBSCSR��SR�DR�FBB��RH¢BR�EDQPDQDBC£�PDRD�EFPO��PNCSF����D�SOE���QRS?ª��JBBP�S�EJN�N�BF�SO���F��ORDRJFQSR�DR��E�JR«¬R���D�J�O�DQP­FE�JQJ�O�SFER�PSONS�RSRFN���RED�R�P�R���D�J�O�­�JQJ�O�SFER�PSONS�RF SJ£��® °̄­�®±²�FQRDJQS�® °̄­�®±²PDRDJR��S�JR��D�J�O�­�JQJ�O�GDBO�S EF�D�JG�QS�R�³¬R���D�J�O�DQP­FE�JQJ�O�SFER�PSONS�RSRFN� FOQP�JR�JQR���JG�QO���É µDQPBF��É ¶NFOQPS?·̧ ¹º»±¼½¾¿ ÀÁÁÂÃÀÁÄÂÅº···ÆµÅ¶±Ç̄¾±̧²ÈÃÉ¼̧»̄ Ê²±ËÌ»È±¾º

183

PUBLICATION VIII

Rjabov, A.; Sklyarov, V.; Skliarova, I.; Sudnitson, A. (2017). RAM-based
mergers for data sort and frequent item computation. Conforence on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO2017), Opatija, Croatia, May 22-26, 2017, IEEE.

��������	
���
���
���
	���
����
��	
��������
����
�����������
������
��������
������
�����������
 ������
������������
���!��	��
��	�������
�
"���������
��
#�������
$�
�������
�
%������
&���������
��
%��'����
��

%�������
$������
��
"���������
��
$�����������
%�����������������
��	
 ����������($$%��
&���������
��
�������

�������
)����
��
������*������+���*��

,-./012/
3
41/1
.50/678
179
:0;<=;7/
6/;>
25>?=/1/657
10;
6>?50/17/
/1.@.
67
91/1
?052;..678A
BC;
?1?;0
.=88;./.
17
102C6/;2/=0;
:50
?101DD;D
91/1
.50/678
E6/C
.6>=D/17;5=.
25=7/678
5:
;F;0G
6/;>
:0;<=;72GA
BC;
102C6/;2/=0;
6.
9;.687;9
:50
./0;1>678
91/1
179
67250?501/;.
91/1
.50/678
67
C109E10;H
>;08678
5:
?0;D6>6710G
.50/;9
-D52@.
E6/C
25>?0;..678
5:
0;?;1/;9
6/;>.
E6/C
21D2=D1/678
5:
0;?;/6/657.
67
C109E10;H
179
>;08678
D108;
.=-.;/.
0;2;6F;9
:05>
/C;
C109E10;
67
8;7;01D3?=0?5.;
.5:/E10;A
I109E10;
>;08;
25>?57;7/.
5:
/C6.
102C6/;2/=0;
25=7/
179
25>?0;..
0;?;1/;9
6/;>.
67
.50/;9
.=-.;/.
67
509;0
/5
0;9=2;
>;08678
/6>;
179
?0;?10;
/C;
91/1
:50
:0;<=;7/
6/;>
25>?=/1/657A
BC;
0;.=D/.
5:
;J?;06>;7/.
2D;10DG
9;>57./01/;
19F17/18;.
5:
/C;
?05?5.;9
102C6/;2/=0;.A
K;GE509.LI68C3?;0:50>172;
 25>?=/678
 .G./;>.H
M7:50>1/657
?052;..678N
O50/678
7;/E50@.N
P101DD;D
.50/678N
P10/61D
.50/678N
0;257:68=01-D;
25>?=/678A
 *
 Q%�R"&#% RQ
������

��
�
�����	���
�'��
��
���	�	
��
��������
��������

�������*
)�������
��
����'��
���
	���
������

'���
����
���	��	
��
��������
�������
���
	���	��*
%'���
���
����
	��������
��������
������

��
����'��*
%'�
����
�������
��
�'��
���
)�������
S���������
)�������
��	�!
�����
������
�����
T����
���
����
UVW
��	
�
������
��
��
����'���
���'�	�
���X�
��
������

���X����
UYW*
%�
������
�������
�����������
�������������
����
'��	X���
������������
'���
����
�������'�	
��
	���'*
%'�
������

���X����
��������
�

����
��������
���
'��	X���
������������
�������
��
�'���
�������
�����������*
�
������

���X���
��
�
���
��
��������
�����
�������	
��
�����������
�'��
���
�X��
	���
��
�'��
�
�'���
���������
��
�'�
�����
����������
������*
%'�
	���
�����
���
�'���
'
�'�
�����
����
����
��
��
'�
��
���	���
�'�
�����	
����������
������
��
�'�
�������
��
�'�
��
'�����
��������
����*
������

��
�
����
��������
�!�������
��	
����
��������

���������*
%'���
���
	��������
�������'��
��
��������
�'�
��������
����������*
&����Z��

���������
���X����
X��'
��������
�����������
�������
��
�������
��
����������
���
��
	���
�����
���
�����
��
����
�!����*
%'�
�����������
��
���������
���X��������	
�������
X��'
����������
���
��

�������
��
�������
���
��
	���
����
�'��
�'�
������

���X���
����X�*
%'�
���
�
���������
���
��
����������	
����������
��
����X���
��
���������
��
'��	X���
���
����������
�����
�����	
	���
�������*

%'�
���
��

���
��
����������	
��
���������
���������
��
���
�
�����*
%'��
�������'
����X�
��
��
��	���
������

����
����
����'��
��
	�������

�'�
�������	
��������
X��'
����������
�����	��

��
'�X
����
�����
�'�
	���
X��
�������	
��	
	������

�'�
�������	
�������
��
�'�
�����	
����*
%'��
�������'
����X�
��
��
��	���
������

����
���
	���
����
X��'
�������	
��������
��	
�������
�'�
	���
���
��������
����
�����������*
"���
������

��	
��������
����
�����������
��
�������	
��
�����'��
�
�����������
	���
������������
��	
	���
�����

[�*
*
U\�
]Ŵ*
%�
	�������
���
��
�'�
��������
����
	���
�����

����������
���
��
�����	��
��
�!�����
U\W
X��'
�����
�
��
�
�'�����

���	*
�
������
��
�'�
���
��
�����
����'���	
��
���
����*
�
��������
����
��
��
����
�'��
�����
������
��
�
	�������*
�
��������
���
��
�����
�����
�����
��
��'��
��
�'�
����
������*
�
�������'��
���
�������
�
����������
�������
�����
��	
���	
�'�
�����
X'��'
�����
��
��'��
��
�
������
���'��
�
��!����
��
�
�������
������
��
�����
X��'��
�'�
	�������
U\W*
�������
��������
������
��
	��������
��������
���������
��
�'�
 ��������
��������
�������������
���	��
���	
����'�����
���*
��������

���������

����
���
�
�������
��
	���
��
�'�
����
��
�
	��
U\W*
_���
�!�������

�'�
����
��������
��
�'�
����
��������
�����
����
���
�
����
�������
	���
�����

��
����'��
��
��
���������	
��	
����������	*

%'�
�����
��

����
�
���'�	
��	
'�
'������������
'��	X���
��������������
��
	���
������

��
����'�
����	
��
��������
������

���X���
X��'
����������
���
�*
%'�
�������������
��
�'�
���
�
�����
��
�!���	�	
��
�		��

�'�
���������
��
����������

�'�
	���
��
�������

��
�'�
�������	
	���*

%'�
������
��
	���
��	
���
X�����

����
��������

	���*
 �
�����Z��
�	�����	
�̀��������
 ��������
[�̀ ̂
����������
��	
��
��

����	
��
�
)#
�!�����
[)# �̂
�����'����*
%'�
������	��
��
�'�
�����
��������
a
��������*
�������

�����Z��
�'�
������	
X���*
�������

	��������
'�
'��
��������
���X����
���
������

��	
�!������
'��	X���
���	���
�*
�������
 �
��������
�������	
������
���
	���
���
�
��	
����
�������
*
�������
�
	��������
�!����������
�����
��	
'��	X���
�����������
���'��������*
�������
�
��������
�'�
�������
��
�!���������
��	
�����������*
%'�
����������
��

����
��
�������
� *
 *
 �$b�%$"
cR�d
"��������
�������'��
��
'��	X���
������

�����
X���
���	��	
��
���������
��
��*
��
UeW*
%'��
����������	
�
'��	X���(����X���
'����	
������
X��'
�
������

����
����	
��
���������
������

��
����'�
��	
���������	
���
��

fgh ijklm
nofpqirrs

191

PUBLICATION IX

Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2017). Fast Iterative
Circuits and RAM-based Mergers to Accelerate Data Sort in
Software/Hardware Systems, Proceedings of the Estonian Academy of
Sciences, 66 (3), 323-335.

Proceedings of the Estonian Academy of Sciences,
2017, 66, 3, 323–335

https://doi.org/10.3176/proc.2017.3.07
Available online at www.eap.ee/proceedings

Fast iterative circuits and RAM-based mergers to accelerate data sort in
software/hardware systems

Valery Sklyarova, Iouliia Skliarovaa, Artjom Rjabovb*, and Alexander Sudnitsonb

a Department of Electronics, Telecommunications and Informatics/IEETA, University of Aveiro, Campus Universitário de Santiago,
3810-193 Aveiro, Portugal; {skl, iouliia}@pb.ua.pt

b Department of Computer Systems, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A,
12618 Tallinn, Estonia; aleksander.sudnitson@ttu.ee

Received 3 February 2017, accepted 14 March 2017, available online 6 July 2017

© 2017 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. The paper suggests and describes two architectures for parallel data sort. The first architecture is applicable to large data
sets and it combines three stages of data processing: data sorting in hardware (in a Field-Programmable Gate Arrays – FPGA), merging
preliminary sorted blocks in hardware (in the FPGA), and merging large subsets received from the FPGA in general-purpose software.
Data exchange between the FPGA and a general-purpose computer is organized through a fast Peripheral Component Interconnect (PCI)
express bus. The second architecture is applicable to small data sets and it enables sorting to be done at the time of data acquisition, i.e. as
soon as the last data item is received, the sorted items can be transferred immediately. The results of experiments clearly demonstrate the
advantages of the proposed architectures that permit the reduction of the required hardware resources and increasing throughput compared
to the results reported in publications and software functions targeted to data sorting.

Key words: parallel data processing, merging, iterative networks, communication-time processing, Field-Programmable Gate Array
(FPGA), Peripheral Component Interconnect (PCI) express bus.

1. INTRODUCTION

Sorting is a procedure that is needed in numerous computing systems [1,2]. For many practical applications,
sorting throughput is very important. To better satisfy performance requirements, fast accelerators based on
Field-Programmable Gate Arrays (FPGAs) (e.g. [3–11]), Central Processing Units (CPUs) (e.g. [7,12–16]),
and multi-core CPUs (e.g. [17,18]) have been researched in depth. Two of the most frequently explored parallel
sorters are based on sorting [1–3,19] and linear [4] networks. A sorting network is a set of vertical lines composed
of comparators that can swap data to change their positions in the input multi-item vector. The data propagate
through the lines from left to right to produce the sorted multi-item vector on the outputs of the rightmost vertical
line. Three types of such networks have been studied: pure combinational (e.g. [3,9]), pipelined (e.g. [2,3,9]),
and combined (partially combinational and partially sequential) [2,5,20]. The linear networks, which are often
referred to as linear sorters [4], take a sorted list and insert new incoming items in the proper positions. The
method is the same as the insertion sort [1] that compares a new item with all items in parallel, then inserts the

* Corresponding author, artjom.rjabov@ttu.ee

324 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323–335

1

4

16

64

256

1 024

4 096

16 384

65 536

262 144

1 048 576

4 194 304

16 777 216

bubble/insertion/even-odd transition

even-odd merge

bitonic merge

iterative even-odd transition

N
u

m
b

e
r

o
f

co
m

p
a

ra
to

rs
 C

(N
)

Fig. 1. The number of comparators for different values N of data items.

new item at the appropriate position, and shifts the existing elements in the entire multi-item vector. The main
problem with this method is that it is applicable only to small data sets (see, for example, the designs discussed
in [4], which accommodate only tens of items).

The majority of sorting networks implemented in hardware use Batcher even-odd and bitonic mergers [21].
Other types are rarer (see, for example, the comb sort [22] in [8], the bubble and insertion sort in [3,9], and
the even-odd transition (transposition) sort in [12]). Research efforts are concentrated mainly on the following
three directions: (1) networks with a minimal depth or number of comparators (e.g. [3,13]); (2) co-design,
rationally splitting the problem between software and hardware (e.g. [3,9]), and (3) the regularity of the circuits
and interconnections (e.g. [2,5]).

We target our results towards FPGAs because these devices are regarded more and more as a universal
platform that enables computational algorithms to be significantly accelerated. The FPGAs still operate on a
lower clock frequency than non-configurable Application-Specific Integrated Circuits (ASICs) and Application-
Specific Standard Products (ASSPs) and broad parallelism is evidently required to compete with potential
alternatives. Thus, sorting and linear networks can be seen as very adequate models. Unfortunately, they have
many limitations. Suppose N data items, each of size M bits, need to be sorted. The results of [3,13] show
that the most widely used sorting networks [19,21] cannot be built for N > 128 (M = 32), even in a relatively
advanced FPGA because the hardware resources are not sufficient. Iterative networks from [2] enable the number
of comparators C(N) to be notably decreased but even after that we cannot sort more than 4096 items in the most
advanced FPGAs, such as that from the Virtex-7 family of Xilinx. When N is increased, the complexity of the
networks (the number of comparators/swappers C(N4)) grows rapidly [1–3,9,19] (see Fig. 1).

It is easy to conclude from Fig. 1 that sorting networks can be implemented in an FPGA only for a small
number N of items while practical applications require millions of such items to be processed. One possible
way is to sort relatively small subsets of larger sets in an FPGA and then to merge the subsets in software of
a higher-level system (see Fig. 2). The initial set of data that is to be sorted is divided into Z subsets of N
items. Each subset is sorted in an FPGA using the referenced networks. Merging is executed as shown in Fig. 2,
in a host system/processor that interacts with the FPGA. Each horizontal level of merging permits the size of

V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 325

N-item sorted set 1 N-item sorted set 2 N-item sorted set ZN-item sorted set Z-1

Merge Merge

Merge Merge

Merge

FPGA

Sorted set

Horizontal levels

Higher level system

Fig. 2. The merging of sorted subsets in a software of a higher-level system.

blocks to be doubled. Thus, if N = 210 = 1024 and K = 220 = 1048576 items are to be sorted, then 10 levels of
mergers are required (see Fig. 2). Clearly, the larger are the blocks sorted in FPGAs, the less merging is needed.
Thus, we have to sort in hardware as many data items as possible with such throughput that is similar to the
throughput of sorting networks. Besides, the networks [19,21] involve significant propagation delays through
long combinational paths. Such delays are caused not only by comparators, but also by multiplexers that have
to be inserted and by interconnections. Hence, clock signals with high frequency cannot be applied. Pipelining
permits the clock frequency for circuits to be increased because delays between registers in a pipeline are reduced.
A number of such solutions are described in [3,13]. However, once again, the complexity of the circuits becomes
the main limitation. The analysis presented in [2] enables us to conclude the following: (1) the known even-odd
merge and bitonic merge circuits [19,21] are the fastest and enable the best throughput to be achieved. However,
they are very resource-consuming and can only be used effectively in existing FPGAs for sorting very small
data sets; (2) pipelined solutions permit faster circuits than in point (1) to be designed. However, assuming
that pipelining can be based on flip-flops in the used slices (so that additional slices are not required), resource
consumption is at least the same as in point (1), therefore, in practice, only very small data sets can be sorted; (3)
the existing even-odd merge and bitonic merge circuits are not very regular (compared to the even-odd transition
network, for example) and, thus, the routing overhead may be significant in FPGAs.

There is also another problem that might arise. As a rule, initial data and final results are stored in conventional
memories and each data item is kept at the relevant address of the memory. Suppose we would like to sort a set of
data items. Let us look at Fig. 3 where the initial (unsorted) set is saved in the memory and the resulting (sorted)
set is also saved in the memory. Parallel operations need to be applied to parallel subsets of data items, thus, in the
beginning, initial data need to be unrolled (see Fig. 3) and the sorted items need to be stored in the memory one by
one (see Fig. 3). Hence pre- and post-processing operations are involved and they (1) sequentially read unsorted
data items and save them in a long-size input register and (2) copy the sorted data items from the long-size output
register to conventional memories. These operations undoubtedly involve significant additional time. To reduce
or even avoid such time, we have to be able to combine reading/writing data items and their sorting. We will call
such type of data sorters communication-time data sorters.

This paper proposes a set of methods and device architectures with the following novel contributions:
1. The less resource-consuming iterative networks from [2] should be combined in hardware with pipelined

Random Access Memory (RAM)-based data mergers, which permits
(a) increasing the number of data items sorted in hardware significantly (more than one hundred times compa-

red to [2]) without performance degradation,
(b) performing data sorting in parallel with merging in hardware;

326 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323–335

D
0

D
1

D
N

-1

D
0

D
1

D
N

-1

U
n

ro
ll

in
g

 d
a

ta

Initial (unsorted) data

D
a

ta
 p

ro
ce

ss
in

g

D
0

D
1

D
N

-1

D
0

D
1

D
N

-1

The resulting

(sorted) data

S
a

v
in

g
 t

h
e

 r
e

su
lt

Memory Memory

D0,…,DN-1 are N data

items

Fig. 3. Pre- and post-processing.

2. Communication-time data sorters that enable data acquisition and sorting to be executed in parallel in such a
way that data sorting is completed as soon as the last data item has been received;

3. Three-level data sorters, two of which (network-based sorters and RAM-based mergers) are implemented in
an FPGA and the last one – in a higher-level computing system that is in our case a general-purpose computer
interacting with the FPGA through the Peripheral Component Interconnect (PCI) express bus.

2. SYSTEM ARCHITECTURE

Figure 4 depicts the considered system architecture. There are two basic subsystems that are a general-purpose
computer (GPC) and an FPGA interacting through the PCI express bus. Let us assume that the FPGA can sort L
blocks and each block contains up to N data items, i.e. such a number of items that can be sorted in the network
[2]. The FPGA receives L blocks (containing up to N data items) from the GPC, sorts each block (see the rectangle
A in Fig. 4), merges the sorted blocks (see the rectangle B in Fig. 4), and sends L×N sorted data items back to the
GPC. The size M of each item is chosen to be 32 bits and it might be increased easily (FPGA circuits are easily
scalable). Four 32-bit data items are packed in 128-bit words for data exchange through the PCI express bus.

1) Preparing initial
(unsorted) blocks
and sending the
blocks to FPGA;

2) Receiving sorted
blocks from FPGA;

3) Processing sorted
blocks

GPC FPGA

Sorting blocks
by an iterative

network

A
Merging the
sorted blocks

in a RAM-
based circuit

B

PCI-express

Fig. 4. General architecture of the considered system.

V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 327

The FPGA implements circuits for the two levels referenced above, i.e. for an iterative sorter (see the rectangle
A in Fig. 4) and for a merger (see the rectangle B in Fig. 4). In the beginning, we will use the network from [2]
extended with some additional registers allowing data acquisition, sorting, and subsequent merging to be partially
combined. Such an architecture implemented in the FPGA will be discussed in the following two subsections.
The next section suggests some improvements of the network to design communication-time data sorters.

2.1. Iterative network for sorting data

Figure 5 depicts the used iterative network. The core of the network is the circuit proposed in [2]. There are also
two additional registers Ri and Ro. The register Ri sequentially receives N data items from the GPC through the
PCI express bus. It was explained above that such N items compose one block that can be entirely sorted in the
network [2]. In practice, four items are packed and thus, parallel writing to the register Ri of four 32-bit items
is actually done. As soon as the first block is received, all data items from this block are sorted in the iterative
network from [2], and the maximum number of clock cycles is N/2 [2]. At the same time, data items from the
next block are received from the GPC through the PCI express bus. As soon as data items from the first block are
sorted, they are copied in parallel to the output register Ro. After that the second block is copied to the register
R and sorted (see Fig. 5) and the third block is being received from the GPC through the PCI express bus. At
the same time, the first sorted block is copied to the embedded block-RAM for subsequent merging. Hence, the
first sorted block will be copied to RAM after the acquisition of two blocks from the PCI express bus. Then data
acquisition from the GPC, data sorting, and copying data to the merger will be done in parallel. We can see from
Fig. 5 that there are just two sequential levels of comparators/swappers in the iterative data sorter [2]. Thus, the
delay is very small and we can apply high synchronization frequency. The results of [2] clearly demonstrate that
such circuits are very efficient. Additional improvements are done to adjust the speed of data acquisition and
sorting. Indeed, one block of N data items is received in N/4 clock cycles and the sorting time is up to N/2 clock
cycles, i.e. it is almost two times longer.

Figure 6 demonstrates how to adjust the speed. There are now two iterative data sorters running in parallel.
The first sorter processes data from the first half of the register Ri and the second sorter processes data from the
second half of the register Ri. In the beginning, two blocks with 2×N items are copied to Ri and it involves
2×N/4 = N/2 clock cycles. Then two blocks are sorted in parallel, which also involves up to N/2 clock cycles.

R
e

g
is

te
r

(R
)

Iterative data sorter

In
p

u
t

re
g

is
te

r
R

i

O
u

tp
u

t
re

g
is

te
r

R
o

P
a

ra
ll

e
l
co

p
y

in
g

o

f
u

n
so

rt
e

d
 d

a
ta

P
a

ra
ll

e
l
co

p
y

in
g

o

f
so

rt
e

d
 d

a
ta

S
e

q
u

e
n

ti
a

l
d

a
ta

 a
cq

u
is

it
io

n

fr
o

m
 P

C
I

e
xp

re
ss

 b
u

s

C
o

p
y

in
g

 d
a

ta
 t

o
 R

A
M

 f
o

r
su

b
se

q
u

e
n

t
m

e
rg

in
g

Fig. 5. The circuit for sorting blocks.

328 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323–335

In
p

u
t

re
g

is
te

r
R

i

O
u

tp
u

t
re

g
is

te
r

R
o

P
a

ra
ll

e
l
co

p
y

in
g

o

f
u

n
so

rt
e

d
 d

a
ta

P
a

ra
ll

e
l
co

p
y

in
g

o

f
so

rt
e

d
 d

a
ta

S
e

q
u

e
n

ti
a

l
d

a
ta

 a
cq

u
is

it
io

n

fr
o

m
 P

C
I

e
xp

re
ss

 b
u

s

C
o

p
y

in
g

 d
a

ta
 t

o
 R

A
M

 f
o

r
su

b
se

q
u

e
n

t
m

e
rg

in
g

F
o

u
r

3
2

-b
it

 (
tw

o
 6

4
-b

it
)

it
e

m
s

a
re

 c
o

p
ie

d
 i

n
 p

a
ra

ll
e

l

Fig. 6. Adjusting the number of clock cycles required in different blocks.

Finally, two sorted blocks are copied to two dual-port embedded block-RAMs. The respective write port is
configured for data width 64. Thus, pairs of data items are copied in each clock cycle and it involves totally also
N/2 clock cycles for both blocks. Therefore, everything is completely adjusted.

2.2. Pipelined merging

Merging is done on the basis of embedded block-RAM. Figure 7 shows one level of merging. Input data comes
from two embedded block-RAMs, which is merged, and copied to a new embedded block-RAM. There are two
address counters for each input RAM. In the beginning they are set to 0. Two data items are read and compared.
If the item is selected from the first RAM, the address counter of the first RAM is incremented, otherwise the
address counter of the second RAM is incremented. Two N-item blocks are merged in 2 × N clock cycles.
Different types of parallel merging have been verified and compared. We found that the best result (i.e. the fastest
and the less resource-consuming) is produced in a simple RAM-based circuit depicted in Fig. 8.

There are G levels to merge L sorted blocks and 2G−1 < L ≤ 2G. The first level is composed of L embedded
block-RAMs. The second level is composed of L/2 embedded block-RAMs, and the last level is composed of
one embedded block-RAM. The size of each RAM for the first level is N 32-bit words for reading and N/2 64-bit
words for writing. The size of each subsequent level is doubled. Initially, L embedded block-RAMs of the first
level are filled in with sorted blocks. Then these blocks are merged at the second level. Afterwards the blocks
of the second level are merged at the third level and at the same time the block-RAMs of the first level are being

First block-RAM

Second block-RAM

64

64

W
ri

te
 p

o
rt

s 32

32

Read ports

M
e

rg
in

g Copying
the result

Block-RAM

Fig. 7. Simple merging of two sorted blocks.

V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 329

L
b

lo
ck

-R
A

M
s

o
f

le
ve

l
1

L
×

N
/2

cl

o
ck

cy

cl
e

s

L/
2

 b
lo

ck
-R

A
M

s
o

f
le

ve
l
2

M
e

rg
in

g

M
e

rg
in

g

T
h

e
 s

iz
e

 o
f

o
n

e
 s

o
rt

e
d

b

lo
ck

 i
s

N

D
a

ta
 i

te
m

s
fr

o
m

 R
o

T
h

e
si

ze
o

f
o

n
e

 s
o

rt
e

d

b
lo

ck
 i

s
2

×
N

L/
2

×
N

×
2

/2
=

 L
 ×

N
/2

cl

o
ck

 c
yc

le
s

L/
4

 b
lo

ck
-R

A
M

s
o

f
le

ve
l
3

M
e

rg
in

g

T
h

e
 s

iz
e

 o
f

o
n

e
 s

o
rt

e
d

b

lo
ck

 i
s

4
×

N

L/
4

 ×
N

×
4

/2

=
 L

 ×
N

/2

cl
o

ck
 c

yc
le

s

M
e

rg
in

g

O
n

e
 b

lo
ck

-R
A

M
 o

f
le

ve
l G

T
h

e
 s

iz
e

 o
f

o
n

e
 s

o
rt

e
d

b

lo
ck

 i
s

2
G

-1
×

N

L
×

N
/2

cl

o
ck

cy

cl
e

s

Pipeline

L×
N

 s
o

rt
e

d
 it

e
m

s

Fig. 8. Pipelined merging with embedded block-RAM.

filled in with a new subset of L sorted blocks. Thus, many subsets of L blocks will be processed in parallel and
this is a special type of pipeline organized based on embedded block-RAMs (see Fig. 8).

The architecture in Fig. 8 permits many sets with L blocks (each block contains N M-bit data items) to be
sorted in the pipeline in the way shown in Fig. 9. Equal numbers enclosed in circles indicate the steps executed
in parallel. It was shown in the previous section (2.1) that the first time the level 1 block-RAM will be filled in
with sorted data from the first block is after 3×N/2 clock cycles. After that it is updated with the new block
in N/2 clock cycles. So, an additional delay appears just from the beginning and it is avoided in the subsequent
steps. As soon as data are copied to the first-level RAM, merging is started and the sorted data are copied from
the first-level to the second-level RAM. This process involves L×N/2 clock cycles. During this period of time
the first-level RAM is used for merging and new data items cannot be copied to this RAM. In fact, it is possible
to merge and to sort data at the same time. However, we found that such merger requires a complex arbitration
which significantly increases hardware resources leading to reducing the size N of blocks. Finally, such more

S
o

rt
in

g

R
A

M
 (

le
v
e

l
1

)

M
e

rg
e

 a
n

d
 R

A
M

(l
e

ve
l 2

)

M
e

rg
e

 a
n

d
 R

A
M

(l
e

ve
l 3

)

M
e

rg
e

 a
n

d
 R

A
M

(l
e

ve
l 4

)

M
e

rg
e

 a
n

d
 R

A
M

(l
e

ve
l 5

)

M
e

rg
e

 a
n

d
 R

A
M

(l
e

ve
l 6

)

M
e

rg
e

 a
n

d
 R

A
M

(l
e

ve
l 7

)

1 2 3 4 5 6 7

3

3×N/2 + L×N/2

4 5 6 7

5 6 7

F
ro

m
 P

C
I-

e
xp

re
ss

To
 P

C
I

e
xp

re
ss

L
×

N
/2

cl

o
ck

cy

cl
e

s

L
×

N
/2

cl

o
ck

cy

cl
e

s

L
×

N
/2

cl

o
ck

cy

cl
e

s

L
×

N
/2

cl

o
ck

cy

cl
e

s

L
×

N
/2

cl

o
ck

cy

cl
e

s

L
×

N
/2

cl

o
ck

cy

cl
e

s

7

Fig. 9. Parallel operations in the proposed architecture.

330 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323–335

complicated circuits do not give any advantage. This means that the resulting throughput cannot be increased.
As soon as merging is completed, all data are copied to the second-level RAM and the first-level RAM may be
refilled with new L sorted blocks.

Figure 9 explicitly indicates parallel operations. For example, merging at levels 3, 5, 7 is executed in parallel
with data sorting. This method can be applied to the sorting of very large sets of data (tens and hundreds of
millions of data items). In this case, the GPC (see Fig. 4) divides a very large set into subsets composed of L×N
data items. The subsets are sorted in the pipelined structure shown in Fig. 9 and then merged in the software
of the GPC. The experimental section below demonstrates that the data sorter implemented in Virtex-7 FPGA
allows sorting data in hardware for L = 128 and N = 512. Thus, 512× 128 = 65536 32-bit data items (or
256 KB) are sorted and then 256 KB blocks can be merged in software. It will be shown in the experimental
section that sorting in hardware (including data exchange with the GPC) is faster than similar sorting in software.
Merging larger blocks permits the time of sorting in software to be considerably reduced.

3. COMMUNICATION-TIME DATA SORTERS

The actual performance of the designed circuits is often limited by the interfacing circuits that supply the initial
data and return the results. Indeed, even for the most recent and most advanced on-chip interaction methods,
such as those used in the Advanced eXtensible Interface (AXI), the communication overheads do not allow the
theoretical throughput to be achieved in practical designs. The method and architecture described above permit
only a small delay for data transmission in the beginning. When we sort large sets of data such delay is indeed
negligible compared to the total delay. So, the proposed technique is very effective. In many practical cases we
would like to sort small sets, such as those composed of N data items. For such a case the delay between the
last received item and the final result of sorting becomes up to N/2 clock cycles and this may not be acceptable
for many practical applications. We consider in this section such a method that enables the sorted results to be
sequentially copied immediately after the last data item is received.

We describe below a parallel circuit that enables sorting to be entirely done within the time required for data
transfers to and from the circuit; no additional time is required. Further, the design is very economical. The
communication-time circuit, which is based on the network for discovering minimum and maximum values from
[23], is shown in Fig. 10. It is composed of N M-bit registers R0,..., RN−1, and N −1 comparators/swappers.

At the initialization step, all the registers R0,..., RN−1 are set to the minimum possible value for data items.
For the sake of simplicity, this value is assumed to be 0. Any other value may also be chosen. Data items are
received sequentially from interfacing circuits through the multiplexer Mux. The value x is set to 0, so all input

a

b

c

d

a

b

c

d

e

f

g

e

f

g

N
 M

-b
it
 i
te

m
s

V

N
 M

-b
it
 r

e
g

is
te

rs

M-bit

input M-bit
output

x

x

x

x x

x

x

x=0 x=1

Communicates either M-bit input vector or V

clock

Configurable
comparator swapper

s

R0

RN-1Mux

Fig. 10. Communication-time data accumulator/sorter.

V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 331

a

b

c

d

a

b

c

d

e

f

g

e

f

g

0

M-bit

input M-bit
output

Communicates M-bit input vector

clock

M-bit input45 0 90 24 3 70 24 56

0

0

0

0

0

0

56

0

0

0

0

0

0

24

56

0

0

0

0

0

0

0

0

0

c1 c2 c3 c4 c5 c6 c7 c8

0

0

0

0

24

56

70

0

0

0

0

3

56

24

70

0

0

0

3

24

56

24

70

0

0

3

24

24

56

70

90

0

3

24

24

0

70

56

90

0

24

3

24

45

70

56

90

0

R0

RN-1
s

Mux

Fig. 11. An example of communication-time accumulation of input data items.

items will be moved up and accommodated somehow in the registers. Indeed, since the bottom line (marked as
M-bit output) always contains the smallest value [23], any incoming item is either the smallest, or will be moved
up. Figure 11 demonstrates how N M-bit items are accommodated, using an example with N = 8 items arriving
in the following sequence: 1) 56; 2) 24; 3) 70; 4) 3; 5) 24; 6) 90; 7) 0; 8) 45.

Data may be received from a host system (such as ARM [24]) and accommodated in the registers R0,..., RN−1
during communication time in N clock cycles indicated in Fig. 11 by symbols c1, ..., c8(N = 8). As soon as N
sorted data are received, the sorted result can be transferred immediately to the host system as shown in Fig. 12.

Now the multiplexer Mux communicates the maximum possible data value (m) to the register RN−1 and x
is 0. Since x = 0, the maximum value will always be moved up at each clock cycle [23] enabling real-time
transmission of the sorted items (through the M-bit output) in ascending order. To transmit the sorted items in
descending order, it is necessary to set x to 1 and to replace the maximum possible value for data items (m) that
is supplied to the multiplexer M with the minimum possible value.

a

b

c

d

a

b

c

d

e

f

g

e

f

g

m

M-bit

input M-bit
output

Communicates the maximum value (m)

clock

90 70 56 45 24 24 3 0

c1 c2 c3 c4 c5 c6 c7

24

3

24

45

70

56

90

0

24

24

45

56

70

90

m

3

24

45

56

70

90

m

m

24

45

56

70

90

m

m

m

24

56

70

90

m

m

m

m

45

70

90

m

m

m

m

m

56

90

m

m

m

m

m

m

70

m

m

m

m

m

m

m

90

R0

RN-1s

Mux

Fig. 12. An example of transmitting sorted data items.

332 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323–335

The experiments have demonstrated that the circuit shown in Fig. 10 for N = 512, M = 32 can be built even
for relatively small FPGAs, such as those available in the Nexys-4 prototyping board of Digilent. For advanced
FPGAs, such as those from the Xilinx Virtex-7 family, the communication-time data sorter may be built for
N > 4096. The results of experiments and comparisons will be given in the next section. Note once again that
the communication-time circuits described above are advantageous for small autonomous sorters, which need the
result to be produced immediately after the last item is received. In particular, they do not give any advantage for
the methods and architectures described in Section 2. Therefore, the methods described in Section 2 are beneficial
for sorting large data sets and the methods considered here are beneficial for sorting small data sets.

4. EXPERIMENTS AND COMPARISONS

The system for data transfers between a host PC and an FPGA has been designed, implemented, and tested.
Experiments were done in the VC707 prototyping board [25] that contains Virtex-7 XC7VX485T FPGA from
the Xilinx 7th series with PCI express endpoint connectivity “Gen1 8-lane (x8)”. All circuits were synthesized
from the specification in VHDL and implemented in the Xilinx Vivado 2016.1 design suite. Software programs
in the host PC run under the Linux operating system and they were developed in C language. The data were
transferred from from the host PC to VC707 and back through the PCI express. The host PC is based on Intel
core i7 3820 3.60 GHz.

The experiments were done in accordance with Fig. 4. The maximum size of data that are entirely sorted in
the FPGA is 256 KB. For a larger size of data additional merging is done in the host PC. The results are presented
in Fig. 13. It is clearly seen that the sorting throughput for the proposed systems is significantly better than in
the host PC. For example, 1024 KB data can be sorted in the proposed system in 16 ms and in the host PC in
110 ms. The comparison of the time of sorting reported in the referenced papers and the results of Fig. 13 clearly
shows that the proposed solutions are faster. Figure 14 demonstrates the organization of the experiments for
communication-time data sorters (see Section 3).

Now autonomous circuits applicable to small data sets are synthesized, implemented, and tested. We have
used a relatively low-cost Digilent Nexys-4 prototyping board with Xilinx Artix-7 FPGA xc7a100 [26]. N initial
unsorted 32-bit data items (M = 32) are generated randomly and supplied to the communication-time data
accumulator/sorter through the M-bit input (see Fig. 10). The clock frequency for data transfers was chosen to be
100 MHz (that is the default frequency of the on-board oscillator). An initial unsorted set of data is supplied and
the sorted set is transmitted back entirely within 2×N clock cycles, which is just the time for data communication.

Table 1 displays the hardware resources that were used, as obtained from the Vivado post-implementation
reports (including supplementary circuits, such as random number generation (RND)). Clearly, circuits for

Fig. 13. An example of transmitting sorted data items.

V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 333

N=32

Random

Number

Generator

(RND)

R0: 32 bit

RN-1: 32 bit

1 Accumulating data from the RND in R0,…,RN-1

Data

sorting (see

Fig. 10)

Verifying the sorted data

M
e

m
o

ry

(b
lo

ck
 R

A
M

)

Displaying the

sorted set on a

VGA monitor

for visual tests

2 Transmitting and verifying the sorted data

Fig. 14. Experimental setup.

Table 1. The hardware resources used for the Nexys-4 prototyping board

significantly larger values of N than in the known even-odd merge and bitonic networks [19,21] have been
built. The design proposed is also faster. Indeed, solving similar problems to those in Table 1 in networks
[19,21] requires data to be copied to a long register that provides network inputs. The size S of this register,
even for the smallest number of N = 64 in Table 1, is equal to N × N = 2048 and if N = 512, then
S = 16384 bits. Commercial FPGAs do not have such a large number of external pins and data items need
to be copied sequentially and multiplexed to different sections of the register. Similarly, the sorted items must
be segmented and transmitted back sequentially through the relevant interfacing circuits. If we consider on-
chip communications (such as those available for Zynq all programmable systems-on-chip – APSoC [25]), we
can see that the maximum number of high-performance AXI interfaces is 5 and the maximum number of bits
transferred through each interface is 64. Thus, multiplexing is also necessary, which involves additional delays
and resources. In the proposed design, the circuit itself receives and transmits data in parallel with sorting and no
additional resources are required. The number of combinational levels in the proposed circuit is equal to ⌈log2N⌉
and it is less than for the networks [19,21] where it is equal to ⌈log2N⌉×(⌈log2N⌉–1).

5. CONCLUSION

The paper proposes two architectures that are applicable to sorting large and small data sets. The distinctive
feature of the first architecture is parallelization at several stages with the adjusted time. The first stage is data
sorting, which is done in such a way that data acquisition, sorting, and transferring the sorted data are carried out
at the same time. The second stage is a pipelined RAM-based merger that enables merging at different levels to be
done in parallel and it can also be combined with the first stage. Such a type of processing is efficient for sorting
large sets (tens and hundreds of millions of data items). The distinctive feature of the second architecture is
communication-time processing, which permits sequential transfer of the results of sorting immediately after
the last data items have been received. Such a type of processing is often needed for autonomous sorter
operations over a relatively small number of data items (from hundreds to thousands of items). Thus, the proposed
architectures complement each other. The experiments were done with an advanced prototyping system (allowing
data processing in a general-purpose computer and in a recent FPGA from the Virtex-7 family of Xilinx) and
with autonomous circuits implemented in a low-cost FPGA from the Artix-7 family of Xilinx. The results of
experiments demonstrate significant acceleration compared to general-purpose software and the results reported
in publications.

334 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323–335

ACKNOWLEDGEMENTS

This research was supported by the institutional research funding IUT 19-1 of the Estonian Ministry of Education
and Research, the Study IT in Estonia Programme, Estonian Association of Information Technology, and
Telecommunications and Portuguese National Funds through FCT – Foundation for Science and Technology,
in the context of the project UID/CEC/00127/2013. The publication costs of this article were covered by the
Estonian Academy of Sciences.

REFERENCES

1. Knuth, D. E. The Art of Computer Programming. Sorting and Searching, Vol. III. Addison-Wesley, 2011.
2. Sklyarov, V. and Skliarova, I. High-performance implementation of regular and easily scalable sorting networks on an FPGA.

Microprocess. Microsyst., 2014, 38(5), 470–484.
3. Mueller, R., Teubner, J., and Alonso, G. Sorting networks on FPGAs. Int. J. Very Large Data Bases, 2012, 21(1), 1–23.
4. Ortiz, J. and Andrews, D. A configurable high-throughput linear sorter system. In Proceedings of the 2010 IEEE International

Symposium on Parallel & Distributed Processing. IEEE, 2010, 1–8.
5. Zuluaga, M., Milder, P., and Puschel, M. Computer generation of streaming sorting networks. In Proceedings of the 49th Design

Automation Conference. ACM, New York, 2012, 1245–1253.
6. Singh, S. and Greaves, D. J. Kiwi: synthesis of FPGA circuits from parallel programs. In Proceedings of the 16th IEEE International

Symposium on Field-Programmable Custom Computing Machines. IEEE, 2008, 3–12.
7. Che, S., Li, J., Sheaffer, J. W., Skadron, K., and Lach, J. Accelerating compute-intensive applications with GPUs and FPGAs. In

Proceedings of the 2008 Symposium on Application Specific Processors. IEEE, 2008, 101–107.
8. Chamberlain, R. D. and Ganesan, N. Sorting on architecturally diverse computer systems. In Proceedings of the 3rd International

Workshop on High-Performance Reconfigurable Computing Technology and Applications. ACM, New York, 2009, 39–46.
9. Mueller, R. Data Stream Processing on Embedded Devices. Ph.D. thesis, ETH, Zurich, 2010.

10. Koch, D. and Torresen, J. FPGASort: a high performance sorting architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting. In Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM,
New York, 2011, 45–54.

11. Sklyarov, V., Skliarova, I., Mihhailov, D., and Sudnitson, A. Implementation in FPGA of address-based data sorting. In Proceedings
of the 21st International Conference on Field-Programmable Logic and Applications. IEEE, 2011, 405–410.

12. Kipfer, P. and Westermann, R. GPU Gems 2, Improved GPU Sorting. http://http.developer.nvidia.com/GPUGems2/

gpugems2_chapter46.html, 2005 (accessed 08.06.2016).
13. Gapannini, G., Silvestri, F., and Baraglia, R. Sorting on GPU for large scale datasets: a thorough comparison. Inf. Process. Manage,

2012, 48(5), 903–917.
14. Ye, X., Fan, D., Lin, W., Yuan, N., and Ienne, P. High performance comparison-based sorting algorithm on many-core GPUs. In

Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed Processing. IEEE, 2010, 1–10.
15. Satish, N., Harris, M., and Garland, M. Designing efficient sorting algorithms for manycore GPUs. In Proceedings of the 2009 IEEE

International Symposium on Parallel & Distributed Processing. IEEE, 2009, 1–10.
16. Cederman, D. and Tsigas, P. A practical quicksort algorithm for graphics processors. In Proceedings of the 16th Annual European

Symposium on Algorithms. Springer-Verlag, Berlin, Heidelberg, 2008, 246–258.
17. Grozea, C., Bankovic, Z., and Laskov, P. FPGA vs. multi-core CPUs vs. GPUs: hands-on experience with a sorting application.

In Facing the Multicore-Challenge (Keller, R., Kramer, D., and Weiss, J. P., eds). Springer-Verlag, Berlin, Heidelberg, 2010,
105–117.

18. Edahiro, M. Parallelizing fundamental algorithms such as sorting on multi-core processors for EDA acceleration. In Proceedings of
the 2009 Asia and South Pacific Design Automation Conference. IEEE, 2009, 230–233.

19. Aj-Haj Baddar, S. W. and Batcher, K. E. Designing Sorting Networks. A New Paradigm. Springer, 2011.
20. Marcelino, R., Neto, H. C., and Cardoso, J. M. P. A comparison of three representative hardware sorting units. In Proceedings of the

35th Annual IEEE Conference on Industrial Electronics. IEEE, 2009, 2805–2810.
21. Batcher, K. E. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint Computer Conference. ACM, New

York, 1968, 307–314.
22. Lacey, S. and Box, R. A fast, easy sort: a novel enhancement makes a bubble sort into one of the fastest sorting routines. Byte, 1991,

16(4), 315–320.
23. Sklyarov, V. and Skliarova, I. Fast regular circuits for network-based parallel data processing. Adv. Electr. Comput. Eng., 2013, 13(4),

47–50.
24. Xilinx, Inc. Zynq-7000 all programmable SoC. Technical Reference Manual. https://www.xilinx.com/support/

documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2016 (accessed 01.02.2017).

V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 335

25. Xilinx, Inc. VC707 Evaluation Board for the Virtex-7 FPGA User Guide. https://www.xilinx.com/support/documentation/
boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf, 2016 (accessed 01.02.2017).

26. Digilent, Inc. Nexys4 DDR FPGA Board Reference Manual. https://reference.digilentinc.com/_media/nexys4-ddr:
nexys4ddr_rm.pdf, 2016 (accessed 08.06.2016).

Kiired iteratiivsed ahelad ja RAM-i baasil ühendajad, kiirendamaks andmete sortimist
riist- ning tarkvara süsteemides

Valery Sklyarov, Iouliia Skliarova, Artjom Rjabov ja Alexander Sudnitson

On välja pakutud ja kirjeldatud kaks arhitektuuri paralleelsete andmete sortimiseks. Esimene on mõeldud
suuremahuliste andmekogude jaoks, ühendades kolm andmete töötlemise astet: andmete sortimine riistvaras
(FPGA-s), eelsorditud andmete ühendamine riistvaras (FPGA-s) ja seejärel nende suurte alamhulkade
üldotstarbeline ühendamine tarkvara abil. Andmete vahetamine FPGA ja üldotstarbelise arvuti vahel toimub
läbi PCI ekspress-siini. Teine arhitektuur on rakendatav väiksemate andmekogude puhul, võimaldades sorti-
mist andmete samaaegse vastuvõtuga, st kui viimane andmete osa on käes, võib sorditud osad kohe edasi
saata. Võrreldes erinevate varem avaldatud tulemustega, kus on kasutatud tarkvaralisi lahendusi, näitavad katse-
tulemused pakutud arhitektuuride eeliseid, mis lubavad vähendada vajaminevaid riistvararessursse ja suurendada
tootlikkust.

206

CURRICULUM VITAE

Personal data

Name: Artjom Rjabov

Date of birth: 23.08.1988

Place of birth: Orenburg, Russia

Citizenship: Estonian

Contact data

Address: Järveotsa tee 7-23, Tallinn, Estonia

Phone: +37258160184

E-mail: artjom.rjabov@gmail.com

Education

2013 – 2017 Tallinn University of Technology PhD

2010 – 2013 M.Sc. in Computer Engineering, Tallinn University of
Technology

2007 – 2010 B.Sc. in Computer Engineering, Tallinn University of
Technology

Professional employment

2015 – … Tallinn University of Technology, Faculty of Information
Technology, Department of Computer Engineering; Early Stage
Researcher

2012 Web Developer, WeDo OÜ

2010 – 2011 SQA Partners; QA Engineer

Awards

2016 Ustus Augur grant, Estonian Association of Information
Technology and Telecommunications (ITL)

2015 – 2016 "IT Academy" scholarship for PhD students (Information
Technology Foundation for Education)

2013 – 2014 "Tiger University" scholarship for ICT PhD students
(Information Technology Foundation for Education)

207

ELULOOKIRJELDUS

Isikuandmed

Nimi: Artjom Rjabov

Sünniaeg: 23.08.1988

Sünnikoht: Orenburg, Venemaa

Kodakondsus: Eesti

Kontaktandmed

Aadress: Järveotsa tee 7-23, Tallinn, Estonia

Telefon: +37258160184

E-mail: artjom.rjabov@gmail.com

Hariduskäik

2013 – 2017 Tallinna Tehnikaülikool, info- ja kommunikatsioonitehnoloogia
õppekava. Doktoriõpe

2010 – 2013 Tallinna Tehnikaülikool, arvuti ja süsteemitahnika. Magistriõpe

2007 – 2010 Tallinna Tehnikaülikool, arvuti ja süsteemitahnika.
Bakalaurusõpe

Teenistuskäik

2015 – … Tallinn University of Technology, Faculty of Information
Technology, Department of Computer Engineering; Early Stage
Researcher

2012 WeDo OÜ, Programmeerija

2010 – 2011 SQA Partners; QA inseneer

Teaduspreemiad

2016 Ustus Aguri nimiline stipendium (Eesti Infotehnoloogia ja
Telekommunikatsiooni Liit)

2015 – 2016 IT Akadeemia stipendium doktorantidele (Hariduse
Infotehnoloogia Sihtasutus)

2013 – 2014 Tiigriülikooli stipendium IKT doktorantidele (Hariduse
Infotehnoloogia Sihtasutus)

208

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-
Business. 1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of
Cost Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods
for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis
and Reproduction of Periodic Components of Band-Limited Discrete-Time
Signals. 2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

209

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete
ja elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n
переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech
Recognition. 2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired
Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case
Studies of Linguistic and Banking Data. 2007.

210

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit
State Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management.
2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit
Based on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands
Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and
Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of
Attack Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

211

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger
Integrated Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-
Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models.
2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending
Web Users` Behaviour. 2012.

212

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance
Spectroscopy of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation
Method. 2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into
Observer Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power
Structures: Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application
to University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

213

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to
Experiments. 2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and
Visual Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic
Surgery and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in
High-Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood
of Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation
Factors of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to
ESL SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and
Delayed Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics.
2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing
of Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astatpov. Distributed Signal Processing for Situation Assessment
in Cyber-Physical Systems. 2016.

214

118. Erkki Moorits. Embedded Software Solutions for Development of Marine
Navigation Light Systems. 2016.

119. Andres Ojamaa. Software Technology for Cyber Security Simulations.
2016.

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots.
2016.

121. Kadri Umbleja. Competence Based Learning – Framework,
Implementation, Analysis and Management of Learning Process. 2017.

122. Andres Hunt. Application-Oriented Performance Characterization of the
Ionic Polymer Transducers (IPTs). 2017.

123. Niccolò Veltri. A Type-Theoretical Study of Nontermination. 2017.

124. Tauseef Ahmed. Radio Spectrum and Power Optimization Cognitive
Techniques for Wireless Body Area Networks. 2017.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

