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1. INTRODUCTION
The thesis explores methods of creating hardware accelerators for 
computationally intensive and resource consuming problems. It also addresses 
hardware/software co-design approaches for solving these tasks and studies 
different reconfigurable platforms. 

The introductory chapter presents the motivation behind the thesis, followed by 
the problem formulation and the outline of main contributions. The last section 
of this chapter is an overview of the thesis structure. 

1.1. Motivation 

Fast information processing is in very high demand in electronic, 
environmental, medical, and biological applications. They frequently need to 
process data streams produced by sensors and calculate certain parameters [1]. 
Signals from sensors may need to be filtered and analyzed to prevent error 
conditions. To provide a more precise and reliable conclusion, combinations of 
different values need to be extracted, ordered, and analyzed. 

Many methods that are used to solve such problems possess the need for 
parallel processing of data streams and high repetition of operations. Network-
based hardware accelerators for such systems allow to process very high 
volumes of data simultaneously. The reconfigurable hardware platforms are 
very appropriate for implementation of such systems because of their low cost, 
flexibility, availability and many other advantages [2]. 

The use of reconfigurable technologies may help to overcome challenges that 
the area of hardware design faces nowadays. By reconfigurable technologies we 
commonly mean field-programmable gate arrays (FPGA) and programmable 
systems on chip (PSoC). Those platforms allow the productivity to be increased 
and time-to-market to be shortened, because of their relatively low cost and fast 
development methodology. They may be used effectively for both production of 
final products and design prototyping. New FPGAs constantly appearing on the 
market permit to design faster and more complex systems. Recently released 
multiprocessing systems, such as all-programmable ultra-scale PSoC, combine 
multicore processors, graphical processors (GPU), real-time processors and 
programmable logic providing us with the possibility to design embedded 
systems with computational power comparable with that of general purpose 
computers and lower power consumption [3]. 
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1.2. Problem formulation 

The current thesis is focused on network-based hardware accelerators for 
parallel data processing in the areas or combinatorial search (e.g. Boolean 
satisfiability and set/matrix covering) and data processing (e.g. sort, search and 
frequent item computations).  

Sorting and searching procedures are needed in numerous computing systems 
[4]. They can be used efficiently for data extraction and ordering in information 
processing. Some common problems that they apply to are (see also Figure 1.1): 

1. Extracting sorted maximum/minimum subsets from a given set.
2. Filtering data, i.e. extracting subsets with values that fall within given

limits.
3. Dividing data items into subsets and finding the

minimum/maximum/average values in each subset, or sorting each subset.
4. Finding the value that is repeated most often, or finding the set of n values

that are repeated most often.
5. Removing all duplicated items from a given set.
6. Computing medians.
7. Solving the problems indicated in points 1-6 above for matrices (for

rows/columns of the matrices).

Figure 1.1 Common problems that are frequently solved in information processing 
systems [5] 

We target our results towards reconfigurable platforms because these devices 
are regarded more and more as a universal platform that enables computational 
algorithms to be significantly accelerated. The following known architectures 

The maximum 
sorted subset

The minimum 
sorted subset

Sorted subset 
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maximum and 
minimum values

The given set of data

Removing 
repeated 
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Finding the 
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item
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manipulation

Data sort

Dividing into intervals and 
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Interval 0 Interval V‐1

Filtering
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are analyzed, compared, and explored in this work: 1) advanced FPGAs 
incorporating embedded blocks (DSP slices, embedded cores, etc.) and 
supported by existing soft cores; 2) programmable systems on chip (PSoC) that 
enable on-chip interactions between an embedded processing multi-core system 
and a reconfigurable logic with embedded blocks. The main idea is to select 
problems from the areas listed above and evaluate effectiveness of different 
architectures assuming also their potential combination in a new (proposed 
architecture) that might be the most efficient.  

1.3. Contributions 

In this thesis, we present novel methods and hardware/software architectures for 
acceleration of data sorting and merging, filtering and subset extraction, parallel 
covering of matrices/sets, Hamming weight computation. The results are 
presented in numerous recent publications. The proposed solutions 
outperformed many known alternatives (and many of them by a significant 
margin). Comparisons have been done with software only systems and other 
known FPGA-based systems known from publications.  

The main contributions of this thesis are summarized as follows:  

 Hardware/software architectures for fast extraction of minimum and
maximum sorted subsets from large data sets and three methods of such
extractions based on highly parallel and easily scalable sorting networks.

o Three methods of subsets extraction.

o Filtering and very large subsets extraction

 Hardware/software architectures for data sorting that involve sorting and
merging operations.

o The solution based on hardware sorting with subsequent software
merging of sorted subsets using embedded processor of PSoC and
general purpose PC.

o The solution based on hardware sorting with subsequent hardware
merge of small sorted subsets with software merge of larger
subsets.

 Hamming weight/distance counters/comparators based on FPGA lookup
tables (LUTs).

 A novel technique for implementation of matrix/set covering algorithms in
hardware and software of recent all programmable systems-on-chip.
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1.4. Thesis Organization 

The remaining part of the thesis contains 5 chapters. Chapter 2 provides 
background information on hardware parallel processing and network-based 
design and makes a review of state-of-the-art in this area. It also contains a 
survey of related works of the topics. 

Chapter 3 contains descriptions of all proposed methods of data sorting and 
merging, minimal and maximal subset extraction, Hamming weight calculation 
and matrix covering. 

Chapter 4 presents architectures of hardware/software co-design based on 
FPGA, PSoC and general purpose PC. It also describes implementations of the 
proposed methods using these approaches. 

Chapter 5 provides experimental results of the proposed methods using 
proposed hardware/software co-design approaches and contains comparison 
with known alternatives. 

Chapter 6 concludes the thesis and discusses the directions for the further 
research. 
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2. RELATED WORKS
Highly parallel networks for sorting and searching enable numerous operations 
to be executed simultaneously. They have been extensively studied in VLSI 
area [6] [7]. These methods are very appropriate for devices which provide 
massive parallelism like GPU [8] or FPGAs [9] and PSoCs. All these platforms 
have their advantages and disadvantages. FPGA work on a relatively low speed, 
but provide flexibility which makes it possible to develop optimized application 
specific solutions. GPU usually work on much faster clock rates, but have fixed 
architecture. Additional advantage of FPGA is much better energy efficiency. 
GPU offer shorter development time, but recent high-level synthesis tools and 
emerging of hybrid PSoC platforms reduced development time for FGPA as 
well. Choosing the right platform is always a tradeoff between all these factors 
[10] [11] [12] [13]. 

2.1. Sorting 

Parallel algorithms for data sorting have been studied in computer science for 
decades. There are many different parallel sorting algorithms [6]. Most notable 
of them are Parallel QuickSort [14], Parallel Radix Sort [15], Sample Sort [16] 
[17], Histogram Sort [18] and a family of algorithmic methods known as sorting 
networks [19]. The latter present a great interest for hardware acceleration. A 
sorting network is a set of vertical lines composed of comparators that can swap 
data to change their positions in the input multi-item vector. The data propagate 
through the lines from left to right to produce the sorted multi-item vector on 
the outputs of the rightmost vertical line. 

Compator/
Swapper

A

B

max(A,B)

min(A,B)

A

B

max(A,B)

min(A,B)

(a)                                                                                (b)

Figure 2.1 (a) A comparator/swapper block. (b) A comparator/swapper block in Knuth 
notation. 
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Sorting networks are composed solely from circuits known as 
comparators/swappers (C/S) or “compare and exchange blocks” (CAE). Single 
C/S unit is depicted in Figure 2.1(a).  For inputs A and B the top output of C/S 
gives us the result of the function max(A,B), and the bottom output gives 
min(A,B). Figure 2.1(b) shows the most common way to represent sorting 
networks – Knuth notation or Knuth diagram. This notation is used in the rest of 
this work. 

The problem of finding the optimal sorting network is a very well-known 
problem in computer science and remains a subject of extensive research [20] 
[21]. One of the most famous results on the sorting network depth was obtained 
by Ajtai et al. in their AKS network [22]. However, further research showed 
that more common merge sorting networks require less comparator layers than 
this proposed network. AKS network is faster only for very large number of 
inputs and it is impossible to implement a network of that size with modern 
technology [6] [23].  

(b)(a)

(c) (d)

Figure 2.2 Different sorting networks with 8 inputs: (a) “Butterfly network” version 
of Bitonic sorting network. (b) Bitonic sorting network without reversal. (c) Odd-
even merge sorting network. (d) Odd-even transposition sorting network. 
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The majority of modern hardware sorting network implementations use more 
practical even-odd and bitonic mergers invented by Kenneth E. Batcher [24] 
[19]. Bitonic sorting network is based on sorting of bitonic sequence. It is a 
sequence which monotonically increases and then monotonically decreases or 
can be modified by circular shifting to become monotonically increasing and 
decreasing. Original Batcher’s design of Bitonic network is shown in Figure 
2.2(a). It utilizes “butterfly network” concept where C/S blocks swap data in 
different direction. More common and intuitive representation of Bitonic 
network is shown in Figure 2.2(b). In this version of sorter all comparators point 
in the same direction. The rewiring was done based on the rule that every 
sequence of two sorted sets can become Bitonic by reversing one of them. 
Another Batcher’s sorting algorithm is Even-Odd Merge sort. It is based on 
parallel merging of odd and even elements of two monotonic sequences with 
subsequent applying the column of parallel comparators. Sorting network based 
on Batcher’s Odd-Even Merge algorithm is shown in Figure 2.2(c).  

Other types are rarer (see for example the comb sort [25] in [26], the bubble and 
insertion sort in [27] [9]). Research efforts are concentrated mainly on networks 
with a minimal depth or number of comparators and on co-design, rationally 
splitting the problem between software and hardware. The regularity of the 
circuits and interconnections are studied in [28] [29] [30] where networks with 
iteratively reusable components were proposed.  

A notable concept of sorting network design is a periodic network. The term has 
been proposed by Schröder in [31]. This type of network consists of identical 
sequences of comparators. The simplest and one of the most well-known 
examples is Odd-Even Transition (also known as Odd-Even Transposition or 
OETS) network depicted in Figure 2.2(d). It was proposed by Grasseli [32] and 
Kautz [33] and proved by Knuth in [4]. Traditional implementation of OETS is 
less efficient than Batcher’s networks, but it is more reliable and simpler. 
Salloum and Wang proved that OETS has good fault-tolerant properties [34]. 

Hematian et al. proposed an optimized OETS network in [35]. They modified 
the network by connecting the first and the last items together and thus making 
the network in a ring shape. This approach reduces the total number of 
comparisons. It is shown in [36] that very regular odd-even transition networks 
with two sequentially reusable vertical lines of comparators are more practical 
because they operate at a higher clock frequency and provide sufficient 
throughput. These proposed improvements were developed with focus on 
FPGA implementation. 

Two of the most frequently investigated parallel sorters on FPGAs are based on 
sorting [27] and linear [37] networks. Three types of sorting networks have 
been studied: pure combinational (e.g. [27] [9] [29]), pipelined (e.g. [27] [9] 
[29]), and combined (partially combinational and partially sequential) (e.g. [28] 
[30]). The linear networks, which are often referred to as linear sorters [37], 
take a sorted list and insert new incoming items in the proper positions. The 
method is the same as the insertion sort [4] that compares a new item with all 
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the items in parallel, then inserts the new item at the appropriate position and 
shifts the existing elements in the entire multi-item vector. Additional 
capabilities of parallelization are demonstrated in the interleaved linear sorter 
system proposed in [37]. The main problem with this is that it is applicable only 
for small data sets (see, for example, the designs discussed in [37], which 
accommodate only tens of items).  

Sorting is a very computationally expensive and time consuming operation 
which requires a lot of hardware resources. There are different approaches 
proposed to overcome these limitations. Utilizing iterative networks with 
reusable comparators permits to process significantly larger data sets. Another 
two possibilities to get rid of these problems are utilization of a relatively small 
parallel sorter along with a merging circuit or implementation a partial sorting. 

Different approaches of hardware sorting units were studied by Marcelino et al. 
in [38]. They implemented a hardware/software hybrid sorter with a sorting unit 
based on insertion sorting algorithm and unbalanced merging unit. They also 
utilized Batcher’s Even-Odd sorting network for software implementation and 
experimented with different combinations of software (QuickSort, Even-Odd 
network) and hardware (Insertion sorting, unbalanced merge). They also 
discussed possibilities of using pipelined sorting networks and balanced 
merging units.  

Another hardware merger based on a partial Bitonic mergers form [39] was 
proposed by Song et al. in [40]. They implemented a parallel pipelined merge 
tree based on this concept which can merge simultaneously up to 32 sorted data 
sets. Partial Bitonic sorters were used in their architecture instead of C/S blocks. 
This approach significantly speeds up the merge operation, but also requires 
more FPGA LUTs for the comparisons. Another advantage of their design in 
comparison to other merge-tree implementations is that it eliminates the 
intensive memory usage. 

Chen and Prasanna in [41] proposed a hardware/software hybrid solution for 
accelerating database operations using FPGA and CPU. Their sorting algorithm 
is based on merge-sort algorithm where first few sorting stages are implemented 
in FPGA as folded bitonic sorting networks. The rest of the algorithm is 
implemented in CPU. The complete system was implemented in Xilinx Zynq 
ZC7020 PSoC device. Their hardware/software algorithm achieved 3.1x faster 
performance than software only (on the same CPU) performance. 

GPU are also used for implementation of specific parallel algorithms such as 
sorting networks [42]. Buck and Purcell showed how to implement bitonic 
merge sort on GPU efficiently [43]. Kipfer and Westermann in [44] 
demonstrated implementation of Even-Odd Merge sort and improved efficiency 
of sorting by using full resources of GPU. 

Greb and Zachmann in [45] presented a parallel sorting algorithm based on 
bitonic sort for GPU implementation. They reported slightly better results than 
previously published ones. Segupta et al. implemented radix-sort and quicksort 
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[46] [8]. Sintorn et al. also proposed implementation of QuickSort for GPU 
[47]. Radix-sort by Segupta showed 50% faster performance than plain bitonic 
sort. Quicksort implementation performed worse than sorting networks. Sintorn 
and Assarsson developed a sorter for GPU based on merge sort with 
introduction of partial quicksort and bucketsort sorting on the later stages of 
merge network to over merge sort disadvantages. They report that their system 
is 10% faster than GPU-based radix sort [48]. Satish et al. continued work on 
radix-sort and reported that their results were the best for GPU at that time [49]. 
Their algorithm is included in NVIDIA CUDA SDK since version 2.2. 
Leischner et al. proposed a comparison based GPU Sample sort which showed 
better results in some cases [50]. Another combination of bitonic sort and 
merging was proposed by Ye et al. in [51]. Their sorter performed faster than 
previous comparison-based techniques, but slower than radix-sort. All these 
solutions were developed for single GPU systems. Tanasic et al. proposed 
merge-sort based sorter for multi-GPU systems [52]. 

2.2. Partial sorting 

Parallel sorters are very efficient, but their implementation is always limited by 
available resources. One of the possible solutions is to implement reduced 
sorters for partial sorting, because in many practical cases only partial sorting is 
needed. One of these cases is a maximum and minimum subsets finding. 

The problem of finding subsets of minimum and maximum values is known, but 
very low number of solutions exist.  The majority of works in this area are 
focused on finding 1 or 2 maximal or minimal values in data sets [53] [54] [55], 
but only few works are focused on subsets. 

Frarmahini-Farahani et al. investigated the problem of partial sorting and max-
set-selection in [39]. They proposed a modular design of a partial sorting system 
based on Batcher’s Odd-Even and Bitonic sorting networks. Their system is 
built on sorting blocks constructed from Batcher’s Odd-Even Merge (OEM) and 
Bitonic sorting networks (BM), where bitonic sorters are reduced in order to get 
sorted maximal (or minimal) subset. They also proposed an approach to select 
unsorted maximal subset by replacing bitonic sorters with maximum selection 
units. Their proposed system takes N=2n data items and extracts minimal or 
maximal sorted subset of M=2m items, where n and m are whole numbers and 
1≤M<N. In theory this technique is extendable to 2n-to-2m size. Also they 
proposed an architecture for iterative max selection units that can potentially 
work with data streams. Another solution of this problem was developed by 
Biroli and Wang in [56]. Their approach is not based on sorting networks, but 
still uses parallel comparators. They applied fast circuit topologies for single 
max/min value search by Goren et al. [54] to find a subset of the largest or 
smallest values. In contradiction to Frarmahini-Farahani they didn’t use 
Batcher’s networks. Both works focused on finding relatively small subsets. 
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The work by Frarmahini-Farahani is more suitable to deal with large subsets, 
but its expansion will lead to large area consumption. 

Another example of partial sorting application is a classification problem [57] 
[58] (sometimes it is called simply „partial sorting“ [59] [60]). Bertrossi et al. 
proposed a classifying network in [61]. They developed two algorithms based 
on Leighton’s Columnsort algorithm [23] which is based on sorting networks. 
The comparators in their designs were replaced by the classifying circuits [62]. 
They proved the efficiency of Columnsort algorithm for the classification 
problem solving. The classifying network based solutions showed better results 
than the traditional columnsort with comparator-based sorting networks. 

2.3. Frequent items encountering 

The majority of frequent item encountering techniques are software-based. 
Different algorithms and techniques were studied and compared in [63] by 
Cormode et al. 

Teubner et al. suggested to use FPGAs in [64] and [65]. They proposed three 
different hardware designs with various trade-offs for the frequent item search. 
The first proposed solution is an almost straightforward hardware 
implementation of software Space-Saving algorithm with min-heap data 
structure in RAM blocks for data storage. The second solution is also based on 
the same algorithm, but instead of BRAMs with min-heap structure they used 
two search trees implemented in lookup tables in order to get rid of min-heap 
sorting. This approach showed significantly better results for relatively small 
amounts of data, but execution performance dropped with growing sizes of the 
circuit. In order to overcome the drawbacks of the second solution they decided 
to reduce the number of connections by using an array for the data storage, 
where each data is only connected to its two neighbors. The pipelined circuit of 
their third solution choses the best results in terms of performance and 
scalability. They achieved throughput four times higher than the best published 
result. 

Shi et al. in [66] implemented a hardware accelerator for frequent item intersect 
algorithm Eclat. They designed a comparator network for two data vectors 
comparison. This circuit acts as a fragment of the algorithm merge part. 
According to their experimental result this approach showed from 6x to 26.7x 
speedup of the algorithm to the best software implementation existed. 

2.4.  Search problems 

Examples of combinatorial search are matrix/set covering, the Boolean 
satisfiability (SAT), graph coloring and others. Many tasks are NP-complete 
and, thus, they are time consuming [67]. 
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Given the broad applicability of SAT solvers, there has been much effort 
devoted to exploring efficient search strategies [68] [69] [70]. The majority of 
SAT solvers are based on the classic sequential Davis-Putham-Logemann-
Loveland (DPLL) algorithm and its derivations. In recent years many parallel 
SAT solvers emerged [71].  Moreover, given the ease of parallelization of some 
parts of proposed algorithms, there has been much interest in the hardware 
implementation of SAT solvers. Large study of available hardware solvers was 
done by Skliarova and Ferrari in [72]. They also proposed their own novel 
hardware solver that utilizes matrix representation of Boolean functions. 

Since then a few new approaches were suggested. Kanazawa and Maruyama 
developed a parallel hardware solver based on WSAT search algorithm. The 
circuit can be described as a network of buffers and clause elevators. The 
algorithm runs as many independent tries as possible and evaluates only clauses 
that are possibly unsatisfied by a flipping of a variable [73] [74].  

Gulati et al. proposed a hardware SAT solver with the problem partitioning for 
ASIC in [75] and FPGA in [76]. Their FSM-based circuit performs the traversal 
of the implication graph and the conflict clause generation in parallel. 

Haller and Sigh proposed another FPGA-based SAT solver which uses off-chip 
DRAM memory in order to overcome the on-chip memory limitation [77]. 
Davis et al. developed a hardware/software SAT solver, where only Boolean 
constraint propagation (BCP) is accelerated by hardware [68]. Suzuki and 
Maruyama implemented in [78] a partial hardware acceleration of SatElite 
algorithm in order to minimize DRAM delay. 

Matrix representation of SAT problem also fits SIMD GPU approach. Luo and 
Liu implemented solvers based on greedy local search GSAT algorithm and 
genetic CGA algorithms in GPU. Their CGA implementation performed faster 
than the CPU [79]. Another GSAT-based GPU SAT solver was proposed by 
Deleau et al. in [80]. It showed poor results compared to CPU WalkSAT 
implementation. Meyer et al. proposed a CUDA SAT solver framework based 
of massive process parallelism [81]. 

 Beckers et al. adapted a hybrid approach to GPU [82]. In their system the CPU 
executes MiniSAT algorithm while GPU runs parallel local search (Tabu Walk) 
and provides the Tabu list. Fujii and Fujimoto explored GPU-based acceleration 
of Boolean constraint propagation for SAT problem [83]. 

2.5. Hamming weight  

The Hamming weight for a general vector (not obligatory binary) is defined as 
the number of its non-zero elements. Although many modern general purpose 
processors form Intel [84] and ARM [85] can calculate Hamming weight 
natively, it still presents an interest for hardware implementation because of its 
wide applicability.  
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King et al. in [86] proposed a fully combinational architecture for hardware 
digital Hamming weight comparator for artificial weightless neural network. 

A Hamming weight comparator based on a bit sorter was proposed by Pedroni 
in [87]. It is a triangular matrix or a network of simple logic blocks made from 
trivial gates AND+OR. This circuit sorts ’0’ and ’1’ in a word and returns the 
sorted sequence. The HW comparison circuit is a reduced bit sorter. The 
unnecessary layers are removed.  

Piestrak in [88] proposed another Hamming weight comparator circuit based on 
Knuth’s optimal sorting network. He developed two different comparison 
circuits. One that compares Hamming weight of a vector with some pre-defined 
threshold and another which compares Hamming weights of two vectors. This 
method showed significantly better results than Pedroni curcuit or other 
methods. 

Parhami in [89] designed another Hamming height comparator based on 
Hamming weight counters that consists of a tree of ripple-carry adders. His 
circuit is capable of counting Hamming weight, comparing it with a fixed 
threshold as well as comparing two vectors. The reported experimental results 
showed an improvement over Piestrak’s results. 

2.6. Hamming distance 

Hamming weight is closely related to Hamming distance calculation. Many 
practical applications use Hamming weight calculators as a part of Hamming 
distance comparing units. In hardware implementations the Hamming distance 
is usually calculated by applying XOR operation to two vectors and subsequent 
Hamming weight calculation. 

Although efficient Hamming weight calculators mentioned above can be used 
for computing Hamming distance, in many practical applications other, not very 
efficient solutions, were used. Appiah et al. [90] used a multiplexer network to 
calculate Hamming distance. Jin et al. in [91] developed a Hamming distance 
module for high-speed optical flow estimation. Their solution compares two 
120-bit vectors which are divided into a pair of 15 contiguous 8-bit substrings. 
Basically their Hamming distance comparator is composed from Hamming 
weight calculators based on adder trees with additional buffers. Kovačević et al. 
in [92] used a network of adders for Hamming distance calculation in their 
Hamming neural network implementation.  
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2.7. Practical applications 

Sorting and searching procedures are needed in numerous computing systems. 
They can be used efficiently for data extraction and ordering in information 
processing. Some common problems that they apply to are:  extracting sorted 
maximum/minimum subsets from a given set; filtering data, i.e. extracting 
subsets with values that fall within given limits; dividing data items into subsets 
and finding the minimum/maximum/average values in each subset, or sorting 
each subset; finding the value that is repeated most often, or finding the set of n 
values that are repeated most often; removing all duplicated items from a given 
set; computing medians; solving the problems indicated above for matrices (for 
rows/columns of matrices). 

Parallel sorters are in high demand in high-performance computing, including 
cosmological simulations [93]. Parallel sorting is also used in benchmarks for 
testing supercomputers [94]. Sorters based on sorting networks are suitable for 
hardware-based median filters which are commonly used in image processing 
[95]. The hardware median filter is a circuit that receives an array of data and 
returns the median value [96] [97] [98].  

Many applications do not require all inputs to be sorted. Some of them involve 
selecting only maximal and minimal values. Many electronic, environmental, 
medical, and biological applications need to process data streams produced by 
sensors and measure external parameters within given upper and lower bounds 
(thresholds) [1]. Let us consider some examples. Applying the technique [99]  
in real-time applications requires knowledge acquisition obtained from 
controlled systems (e.g. plant). For example, signals from sensors may be 
filtered and analyzed to prevent error conditions (see [99] for additional details). 
To provide more exact and reliable conclusion a combination of different values 
need to be extracted, ordered, and analyzed. Similar tasks appear in monitoring 
thermal radiation from volcanic products [100], filtering and integration of 
information from a variety of different sources in medical applications [101] 
and so on. Since many systems are hard real-time, performance is important and 
hardware accelerators may provide significant assistance for software products. 
Similar problems appear in so-called straight selection sorting (in such 
applications where we need to find a task with the shortest deadline in 
scheduling algorithms [102]) and high-energy physics (where only the most 
energetic particles need to be analyzed [103]). 

Maximum and minimum subsets extraction is required in searching, statistical 
data manipulation and data mining (e.g. [104] [105] [106] [107]). To describe 
one of the problems from data mining informally let us consider an example 
[104] with analogy to a shopping card. A basket is the set of items purchased at 
one time. A frequent item is an item that often occurs in a database. A frequent 
set of items often occur together in the same basket. A researcher can request a 
particular support value and find the items which occur together in a basket 
either a maximum or a minimum number of times within the database [104]. 
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Similar problems appear to determine frequent inquiries at the Internet, 
customer transactions, credit card purchases, etc. requiring processing very 
large volumes of data in the span of a day [104]. Fast extracting the most 
frequent or the less frequent items from large sets permits data mining 
algorithms to be simplified and accelerated. Sorting of subsets may be involved 
in many known methods from this area. 

Full and reduced sorting networks are being studied in the area of correction 
problem, where sorting of almost sorted data set is required. The most recent 
works on this topic were done by Kik et al. [108] [109], Piotrów [110] and 
Stachowiak [111] [112]. 

In the scope of parallel vector processing we discuss practical application of 
Hamming weight and Hamming distance.  Many analysis and filtering problems 
can be solved through Hamming weight counting for the vectors and 
comparison of the results. 

Hamming weight and Hamming distance calculators and comparators are 
widely in use in variety of different applications. Hamming weight is a key part 
of many combinatorial search related tasks like Boolean satisfability and matrix 
covering. Hamming distance calculation is an essential operation in image 
recognition [90] [113] [114], and is used in many other areas like optical flow 
estimation [91] and more recently for physically unclonable functions (PUFs) 
[115] [116]. 

Hamming distance calculators are the essential part of Hamming neural 
networks [117]. It is a network which implements the optimum minimum error 
classifier, a unit that calculates Hamming distances of input data, compares 
them with pattern in memory and selects the data with the minimum distance, 
which becomes the first layer pattern that represents the most similar object. 
Lippman in [117] showed that this type of network has many advantages over 
the earlier Hoping network. 

Combinatorial search algorithms are frequently involved to solve optimization 
problems. Matrix/set covering is one of the problems in optimization. It belongs 
to partitioning problems arising in such practical applications as scheduling 
aircrafts, location emergency stations in urban areas, fault testing of electronic 
circuits, resource distribution in multi-core systems, and many others [67]. 
Boolean satisfability problem solvers have many applications in EDA 
(Electronic Design Automation) fields, such as logic minimization, test pattern 
generation, routing in field-programmable devices [69]. 
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2.8. Summary 

This chapter contains a brief survey of related works. The purpose of this 
chapter is to inform a reader about the current state of the art in the researched 
area and to provide necessary information needed to understand subjects studied 
in this work. 

This describes different hardware-based methods of parallel sorting, subset 
extraction and combinatorial search. Additionally it introduces the basic 
principles of network-based design. This survey showed us that although this 
area is very well researched, some topics covered in our works, like, for 
example subset extraction, are underdeveloped and very few publications about 
them exist. Also this chapter describes related works in a scope of Hamming 
weight and Hamming distance calculating. The last section of the chapter 
presents a survey of practical applications of our research subjects, which shows 
us that solving problems discussed in this thesis is in very high demand. 

The most common drawbacks of the techniques and their implementations 
mentioned in this chapter are intensive resource usage and small volumes of 
data items that can be processed with them. Many sorting methods are not 
suitable for processing of high-speed data streams. Very few solutions exist in 
the area of partial data sorting and subsets extraction, as well as combined 
solutions of these operations, which are in a high demand in many practical 
applications. The techniques proposed in this thesis, which are based on highly 
parallel networks were developed in order to overcome these disadvantages.  
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3. NETWORK-BASED SOLUTIONS FOR
PARALLEL DATA AND VECTOR PROCESSING 
In this chapter the proposed methods of parallel data and vector processing are 
presented. We explore various highly parallel network-based algorithms for 
acceleration of solving different computationally intensive and resource 
consuming problems. Section 3.1 describes the proposed method for data 
sorting based on sorting network and merging [118] [5] [119]. Section 3.2 
presents methods of solving the minimum and maximum subset extraction 
problem [120] [121] [122]. Section 3.3 discusses a solution for Hamming 
weight calculation [123]. Section 3.4 describes a practical application of the 
methods proposed in this chapter for fast matrix covering [124].  

3.1. Data sorting 

Sorting networks are widely used in data [9] and vector [88] processing and 
they enable comparison and swapping operations over multiple data items to be 
executed in parallel. A review of recent results in this area can be found in [36] 
where it is shown that many researchers and engineers consider such technique 
as very beneficial for data and vector processing in FPGAs and PSoCs. 
Although the methods [24] [19] enable the fastest theoretical throughput, the 
actual performance is limited by interfacing circuits supplying initial data and 
transmitting the results and the communication overheads do not allow 
theoretical results to be achieved in practical designs. 

In our approach we use a periodical pipelined Odd-Even Transposition sorting 
network, which requires a significantly smaller number of 
comparators/swappers (C/S) than the most widely used Batcher’s networks 
from [24] [19]. In this approach many C/S are active in parallel and reused in 
different iterations. The proposed circuit (see Figure 3.1) contains N M-bit 
registers Rg0,…,RgN-1. Unsorted input data are loaded to the circuit through N 
M-bit lines d0,d1,…,dN-1. For the fragment on the left-hand side of Figure 3.1, the 
number N of data items is even, but it may also be odd. Each C/S is shown in 
Knuth notation (:) [4] and it compares items in the upper and lower registers 
and transfers the item with the larger value to the upper register and the item 
with the smaller value to the lower register (see the upper right-hand corner of 
Figure 3.1). Such operations are applied simultaneously to all the registers 
linked to even C/S in one clock cycle (indicated by the letter α) and to all the 
registers linked to odd C/S in a subsequent clock cycle (indicated by the letter 
β). This implementation may be unrolled to an even-odd transposition network 
[44], but vertical lines of C/S in Figure 3.1 are activated sequentially and the 
number of C/S is reduced compared to [44] by a factor of N=2. For example, if 
the number N is even then the circuit from [44] requires N × (N − 1)/2 C/S and 
the circuit in Figure 3.1 – only N − 1 C/S. The circuit in [44] is combinational 
and the circuit in Figure 3.1 may require up to N iterations. The number N of 
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iterations can be reduced very similarly to [29]. Indeed, if beginning from the 
second iteration, there is no data exchange in either even or odd C/S, then all 
data items are sorted. If there is no data swapping for even C/S in the first 
iteration, data swaps for odd C/S may still take place. Note that the network 
[44] possesses a long combinational delay from inputs to outputs. The circuit in 
Figure 3.1 can operate at a high clock frequency because it involves a delay of 
just one C/S per iteration (i.e., in each rising/falling edge of the clock). 

37
22
11
38
24
9
0
24
11
11
17

37
22
38
11
24
9
24
0
11
11
17

37
38
22
24
11
24
9
11
0
17
11

38
37
24
22
24
11
11
9
17
0
11

38
37
24
24
22
11
11
17
9
11
0

38
37
24
24
22
11
17
11
11
9
0

38
37
24
24
22
17
11
11
11
9
0 A

s 
so
o
n
as
 t
h
er
e
is
"n
o
 s
w
ap

p
in
g"
 

th
e 
so
rt
in
g 
is
 c
o
m
p
le
te
d

unsorted data sorted data
clock cycles (iterations)

1 2 3 4 5 6

ev
en

ev
en

ev
en

o
d
d

o
d
d

o
d
d

Rg0

Rg1

Rg2

Rg3

Rg4

Rg5

Rg6

Rg7

RgN‐1

d0

d1

d2

d3

d4

d5

d6

d7

dN‐1

d0

d1

d2

d3

d4

d5

d6

d7

dN‐1

 

    

The same comparators are reused

The same comparators are reused

N
 M

‐b
it
 u
n
so
rt
ed

 it
em

s 
d
0,
 d

1,
 …
 , 
d
N
‐1

N
 M

‐b
it
 s
o
rt
ed

 it
em

s 
d
0,
 d

1,
 …
 , 
d
N
‐1

di

dj

max(di,dj)

min(di,dj)

Figure 3.1 Pipelined Odd-Even Transposition network [118] 

Let us look at the example shown in Figure 3.1 (N = 11, M = 6). Initially, 
unsorted data d0, d1,…,d10 are copied to Rg0;…;Rg10. Each iteration (6 iterations 
in total) is forced by an edge (either rising or falling) of a clock. The signal α 
activates the C/S between the registers (Rg0,Rg1),(Rg2,Rg3),…,(Rg8,Rg9). The 
signal β activates the C/S between the registers 
(Rg1,Rg2),(Rg3,Rg4),…,(Rg9,Rg10). There are 10 C/S in total. Rounded 
rectangles in Figure 3.1 indicate elements that are compared at iterations 1-6. 
Data are sorted in 6 clock cycles and 6 < N = 11. Unrolled circuits from [44] 
would require 50 C/S with the total delay equal to the delay of N sequentially 
connected C/S. 

Although the proposed approach requires less C/S blocks than the most 
practically used Batcher’s networks and allows to sort significantly larger 
amounts of data, resources still restrict from sorting very large amounts of data 
in parallel. In order to overcome this obstacle we propose different approaches 
of sorting network combinations with software and hardware merging of sorted 
data subsets. 
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Figure 3.2 The circuit for sorting blocks [118] 

Figure 3.2 depicts the used iterative network, the core of the hardware 
architecture. There are also two additional registers Ri and Ro. The register Ri 
sequentially receives N data items from the inputs. It was explained above that 
such N items compose one block that can be entirely sorted in the network. In 
practice, four items are packed and thus, parallel writing to the register Ri of 
four 32-bit items is actually done. As soon as the first block is received, all data 
items from this block are sorted in the iterative network, and the maximum 
number of clock cycles is N/2. At the same time, data items from the next block 
are received. As soon as data items from the first block are sorted, they are 
copied in parallel to the output register Ro. After that the second block is copied 
to the register R and sorted (see Figure 3.2) and the third block is being received 
from the inputs. At the same time, the first sorted block is copied to the 
embedded block-RAM for subsequent data merging. Hence, the first sorted 
block will be copied to RAM after acquisition of two blocks from the inputs. 
Then data acquisition from the inputs, data sorting, and copying data to the 
merger will be done in parallel. We can see from Figure 3.2 that there are just 
two sequential levels of C/S in the iterative data sorter. Thus, the delay is very 
small and we can apply high synchronization frequency. Additional 
improvements are done to adjust the speed of data acquisition and sorting. 
Indeed, one block of N data items is received in N/4 clock cycles and the sorting 
time is up to N/2 clock cycles, i.e. it is almost two times longer. 

Figure 3.3 demonstrates how to adjust the speed. There are now two iterative 
data sorters running in parallel. The first sorter processes data from the first half 
of the register Ri and the second sorter processes data from the second half of 
the register Ri. At the beginning, two blocks with 2×N items are copied to the Ri 
and it involves 2×N/4 = N/2 clock cycles. Then two blocks are sorted in 
parallel, which also involves up to N/2 clock cycles. Finally, two sorted blocks 
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are copied to two dual-port embedded block-RAMs. The respective write port is 
configured for data width 64. Thus, pairs of data items are copied in each clock 
cycle and it involves totally also N/2 clock cycles for both blocks. Therefore, 
everything is completely adjusted. 
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Figure 3.3 Adjusting the number of clock cycles required in different blocks [118] 

3.1.1. Data sorting with subsequent software merge 

Although using iterative periodic sorting networks permits sorting significantly 
larger data sets, than with other sorting networks, resource availability still puts 
us into certain boundaries. The limitation of the input data size might be 
unacceptable for many practical applications and the sorter must be designed 
with the capability of sorting the unlimited data sets. 

Data sorting can be combined with the data merge in order to overcome this 
problem. Using hardware network-based sorter together with a general purpose 
processor allows us to implement the merge operation completely or partially 
software.  

The first approach is a hardware/software system which sorts blocks in 
hardware with subsequent merging in software. This method requires use of a 
general purpose CPU which works in cooperation with hardware modules. We 



31 

have developed two variations of this method. The first uses a system with 
programmable logic and embedded CPU on the same chip such as PSoC. The 
second requires external CPU which communicates with the hardware through 
some interface like very high speed PCI express.  

The proposed system sorts relatively small subsets of larger sets in hardware 
and then merges the subsets in software of a higher level system (see Figure 
3.4). The initial set of data that is to be sorted is divided into L subsets of N 
items. Each subset is sorted in hardware using the referenced networks. 
Merging is executed as shown in Figure 3.4, in a host system/processor that 
interacts with the hardware. Each horizontal level of merging permits the size of 
blocks to be doubled. Thus, if N = 210 = 1,024 and K = 220 = 1,048,576 items 
are to be sorted, then 10 levels of mergers are required (see Figure 3.4). Clearly, 
the larger are the blocks sorted in FPGAs the fewer merging are needed. Thus, 
we have to sort in hardware as many data items as possible with such 
throughput that is similar to throughput of sorting networks. 

This algorithm is identical for all the proposed implementations and can be 
described as follows. The sorter receives blocks composed of N M-bit data 
items and stored in memories (such as external DDR and OCM). The sorter 
executes iterative operations over multiple parallel data and is controlled by a 
dedicated finite state machine (FSM) called Sorter Control Unit. The ports are 
also controlled by a dedicated FSM. The results of sorting are copied back to 
memory and then the software merges incoming blocks of sorted data. 

N‐item sorted set 1 N‐item sorted set 2 N‐item sorted set LN‐item sorted set L‐1

Merge Merge

Merge Merge

Merge

Hardware

Sorted set

Horizontal  levels

Higher level system

Figure 3.4 Hardware/software system for data sorting and merging [118] 

The hardware part informs the general purpose processor through interrupt 
signals when the sorting operation over data blocks is completed. After 
receiving the interrupts signal the software merge operation triggers. The 
software and hardware parts access the data in memory independently. The 
software is in idle state while waiting for the data to become available. The 
sorting in hardware and merging in software can be done in parallel if 
necessary. The size of the data blocks depends only on resource availability of 
the chosen device. 
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3.1.2. Data sorting with subsequent hardware merge 

The second method is similar to the previous one, but it is capable of supplying 
larger blocks of sorted data for subsequent data merge in software. The main 
idea behind this method is to implement the merge system in hardware 
alongside the sorting network. This method significantly increases amount of 
data that can be sorted in hardware. Although the sorting network works much 
faster than the merge algorithm, the latter requires much less resources. The 
combination of the sorting network with the merging tree significantly enhances 
the sorting for very large data sets. Figure 3.5 demonstrates this architecture. 
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Figure 3.5 Hardware architecture of sorter/merger 

The hardware implementation of this method consists of two major components 
– sorting system and merge system. The sorting system is identical to the one
described in the previous method, but all its outputs are connected now to the 
merging system. The merge component performs the merge algorithm using a 
tree-like structure, which is done on the basis of embedded block-RAM. Figure 
3.6 shows one level of merging. Input data come from two embedded block-
RAMs, merged, and copied to a new embedded block RAM. There are two 
address counters for each input RAM. At the beginning they are set to 0. Two 
data items are read and compared. If the item is selected from the first RAM 
then the address counter of the first RAM is incremented, otherwise the address 
counter of the second RAM is incremented. Two N-item blocks are merged in 
2×N clock cycles. Different types of parallel merging have been verified and 
compared. We found that the best result (i.e. the fastest and the less resource 
consuming) is produced in a simple RAM-based circuit depicted in Figure 3.6. 
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Figure 3.6 Simple merging two sorted blocks [118] 

There are G levels to merge L sorted blocks and 2G-1 < L ≤ 2G. The first level is 
composed of L embedded block-RAMs. The second level is composed of L/2 
embedded block-RAMs, and the last level is composed of one embedded block-
RAM. The size of each RAM for the first level is N 32-bit words for reading 
and N/2 64-bit words for writing. The size of each subsequent level is doubled. 
Initially, L embedded block-RAMs of the first level are filled in with sorted 
blocks. Then these blocks are merged at the second level. Afterwards the blocks 
of the second level are being merged at the third level and at the same time the 
block-RAMs of the first level are being filled in with a new subset of L sorted 
blocks. Thus, many subsets of L blocks will be processed in parallel and this is 
a special type of pipeline organized based on embedded block-RAMs (see 
Figure 3.7). 
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Figure 3.7 Pipelined merging with embedded block-RAM [118] 

Architecture in Figure 3.7 permits many sets with L blocks (each block contains 
N M-bit data items) to be sorted in pipeline in a way that is shown in Figure 3.8. 
Equal numbers enclosed in circles indicate steps executed in parallel. It was 
shown above that the first time the level 1 block-RAM will be filled in with 
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sorted data from the first block is after 3×N/2 clock cycles. After that it is 
updated with the new block in N/2 clock cycles. So, an additional delay appears 
just from the beginning and it is avoided in the subsequent steps. As soon as 
data are copied to the first level RAM, merging is started and the sorted data are 
copied from the first level to the second level RAM. This process involves 
L×N/2 clock cycles. During this period of time the first-level RAM is used for 
merging and new data items cannot be copied to this RAM. In fact it is possible 
to merge and to sort data at the same time. However, we found that such merger 
requires a complex arbitration which significantly increases hardware resources 
leading to reducing the size N of blocks. Finally, such more complicated circuits 
do not give any advantage. This means that the resulting throughput cannot be 
increased. As soon as merging is completed, all data are copied to the second-
level RAM and the first-level RAM may be refilled with new L sorted blocks. 

So
rt
in
g

R
A
M
 (
le
ve
l 1
)

M
e
rg
e 
an

d
 R
A
M

(l
ev
e
l 2
)

M
e
rg
e 
an

d
 R
A
M

(l
e
ve
l 3
)

M
e
rg
e 
an

d
 R
A
M

(l
e
ve
l 4
)

M
e
rg
e
 a
n
d
 R
A
M

(l
ev
el
 5
)

M
e
rg
e 
an

d
 R
A
M

(l
e
ve
l 6
)

M
e
rg
e 
an

d
 R
A
M

(l
e
ve
l 7
)

1 2 3 4 5 6 7

3

3×N/2 + L×N/2

4 5 6 7

5 6 7

Fr
o
m
 P
C
I‐
ex
p
re
ss

To
 P
C
I e
xp
re
ss

L 
×
N
/2
 

cl
o
ck
 

cy
cl
es

L 
×
N
/2
 

cl
o
ck
 

cy
cl
es

L 
×
N
/2
 

cl
o
ck
 

cy
cl
es

L 
×
N
/2
 

cl
o
ck
 

cy
cl
es

L 
×
N
/2
 

cl
o
ck
 

cy
cl
es

L 
×
N
/2
 

cl
o
ck
 

cy
cl
es

7

Figure 3.8 Parallel operations in the proposed architecture [118] 

Figure 3.8 explicitly indicates parallel operations. For example, number 7 
enclosed in circle indicates operations executed in parallel, which are merging 
at levels 3, 5, 7 and data sorting. This method can be applied to data sorting of 
very large sets (tens and hundreds of millions of data items). In this case, the 
GPC divides a very large set into subsets composed of L×N data items. The 
subsets are sorted in the pipelined structure shown in Figure 3.8 and then 
merged in software of GPC. Section 5.1.2. demonstrates that the implemented 
in Virtex-7 FPGA data sorter allows to sort data in hardware for L=128 and 
N=512. Thus, 512×128 = 65,536 32-bit data items (or 256 KB) are sorted and 
then 256 KB blocks can be merged in software. It will be shown in the section 
5.1.2. that sorting in hardware (including data exchange with GPC) is faster that 
similar sorting in software. Merging larger blocks permits the time of sorting in 
software to be considerably reduced.  
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3.1.3. Sorting and merging with parallel data item counting 

We propose a method of data sorting algorithm based on parallel sorting 
network with subsequent merge and data counting for the sorting acceleration 
and frequent item computation. The functionality of the merge units from the 
system described in the previous section is expanded by adding the operation of 
compressing the data by counting of the repeated data.   

The circuit compares all the items in two sorted subsets of N data items and 
merges them into one sorted subsets. The maximal size of the final data set is 
2×N items as in the system proposed in section 3.2.1. This worst case scenario 
can occur if no repeated items were found in both input subsets.  

Although the maximal number of clock cycles for merging N-item blocks is 
2×N, our system with compression and item counting requires less clock cycles 
for the data sets with repeated items. Every subsequent level of merging 
requires less clock cycles than the previous one, because the compression and 
counting was partially done in the previous level. 

Modyfied fragment from Figure 3.6. is depicted on Figure 3.9 (a). The 
compression and the counting of the items is done in “compare and add” block 
shown in Figure 3.9(b). The system stores the data item which was written after 
the previous comparison and compares it with both inputs. If the item part of the 
item/count pair previously written to the RAM block is not equal to both of 
them, then the merger writes the item/count pair with larger item value to the 
output RAM block and increments both write address counter and read address 
counter for the input with the largest value. Otherwise, the merger does not 
increment the write address of the block and writes the new count number to the 
count part of the item/count pair. The new count number is the sum of the count 
parts of the previously written data item and the count of one of the inputs, 
which has an item part equal to the previously written one. During the first level 
of merging every pair has ‘1’ as its count value. All zeros in the count part mean 
that the total number of repetitions exceeded the capabilities of the RAM block. 

The RAM blocks of every item of the merging system are capable of storing all 
data from the inputs, but if the sorted set supplied to the merger contains 
repeated items, the system does not fill the RAM blocks completely. The 
merger reads the value from the write address register of the mergers from the 
previous level. It informs the merger about how many item pairs were actually 
written during the previous merge operation. 
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Figure 3.9 “Merge and count” architecture: A) General architecture of the merger B) 
Compare and add operation [119] 

3.2. Partial sorting and minimum/maximum subset extraction 

The network-based sorting circuit described above can be used efficiently for 
solving numerous supplementary tasks. One of these tasks is the extraction of 
the maximum and/or minimum subsets from the sorted sets. Also solving these 
tasks requires much less resources and therefore can use hardware more 
efficiently. 

Let set S containing N M-bit data items be given. The maximum subset contains 
Lmax largest items in S, and the minimum subset contains Lmin smallest items in 
S (Lmax ≤ N and Lmin ≤ N). We mainly consider such tasks for which Lmax << N 
and Lmin << N, which are more common for practical applications. Since N may 
be very large (millions of items), the set cannot be completely processed in 
hardware because the resources required are not available.  

We propose three different methods for finding minimum/maximum subsets. 
All these methods are based on sorting networks described in the previous 
chapter and perform partial sorting. At first we describe how to use these 
methods for simultaneous calculation of maximum and minimum subsets. After 
that other tasks and additional functionality will be discussed.  Figure 3.10 
depicts generalized architecture for all methods. 
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Figure 3.10 Computing the maximum and the minimum sorted subsets [121] 

All methods are based on pipelined OETS network described above and 
designed for streaming data. The sorting unit receives the incoming data and 
outputs current minimum and maximum subsets every iteration. Data are 
incrementally received in blocks containing exactly K items and then processed 
by parallel networks described below. The last block may contain less than K 
items. If so, it will be extended up to K items (we will talk about such extension 
a bit later). Part of sorted items with maximum values will be used to form the 
maximum subset and part of sorted items with minimum values will be used to 
form the minimum subset. As soon as all Q blocks have been handled the 
maximum and/or minimum subsets will be ready for subsequent processing. 
The following steps describe how the system works with streaming data 
identical to all proposed methods: 

1. The first block containing K M-bit data items is copied to input registers and
becomes available at the inputs of sorting unit. 

2. The block is sorted in parallel in the sorting unit with one of proposed
methods. 

3. Lmax sorted items with maximum values become available on the outputs of
the upper half of the sorting unit. Lmin sorted items with minimum values 
become available on the outputs of the bottom half of the sorting unit. 

4. A new block is copied to the input register and becomes available at the
inputs of the main SN. Such operations are repeated until all Q-1 blocks are 
handled. 
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5. The last block may contain less than K items and it is processed slightly
differently. As soon as all Q blocks have been transferred from the system block 
RAM and Q-1 blocks have been handled in the sorting unit, the last block (if it 
is incomplete) is extended to K items by copying the largest item from the 
created minimum sorted subset. Thus, the last block becomes complete. Clearly, 
the largest item from the created minimum sorted subset cannot be moved again 
to the minimum subset and the last block is handled similarly to the previous 
blocks.  

3.2.1. Method based on three sorting networks 

The first method involves three sorting networks: one main sorting network 
(SN) and two additional sorting networss (SNmin and SNmax). 
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Figure 3.11 The first method of extracting the maximum and minimum sorted subsets 
[120] 

Sorting networks SNmin and SNmax have input registers. The minimum and 
maximum sorted subsets will be built incrementally in halves of registers 
indicated at the bottom part of Figure 3.11. At initialization step, these parts are 
pre-loaded with possible maximum and minimum values which data from the 
source set may have. Then the following steps are executed: 

1. The first block containing K M-bit data items is copied from block RAM and
becomes available at the inputs of the main SN. 

2. The block is sorted in parallel in the main SN which can be done in
combinational networks from [19] (such as even-odd merger) or in sequential 
iterative networks from [36] (such as iterative OETS). In the last case additional 
control is provided. 

3. Lmax sorted items with maximum values are loaded in a half of the SNmax

input register as it is shown in Figure 3.11. Lmin sorted items with minimum 
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values are loaded in a half of the SNmin input register as it is shown in Figure 
3.11. All the items are resorted by the relevant sorting networks SNmax and 
SNmin. 

4. A new block is copied from block RAM and becomes available at the inputs
of the main SN. Such operations are repeated until all Q blocks are handled. 
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Figure 3.12 Example of extracting sorted subsets using the first method [120] 

Figure 3.12 shows an example, assuming that the minimum possible value of 
data items is 0 and the maximum possible value is 99 (clearly, other values may 
also be chosen). At the first step (a), shown in left-hand part of Figure 3.12, 
input registers for SNmax and SNmin are initialized, and the first block of data 
becomes available for the main SN. U indicates undefined values. At the next 
step (b) input registers are updated as it is shown by dashed fragments in Figure 
3.12 At step (c) a new block of data becomes available. Note that loading the 
register for the main SN can be done in parallel with copying Lmax/Lmin to 
SNmax/SNmin. Items in SNmax and SNmin are sorted as soon as the relevant input 
registers are updated. After executing steps (a) - (g) the maximum and 
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minimum sorted subsets are ready (see the right-hand part of Figure 3.12) for 
the items shown in grey in the main SN. Clearly, this method enables the 
maximum and minimum sorted subsets to be incrementally constructed for very 
large sets. 

3.2.2. Method based on swapping networks 

In the second method we use the circuits introduced in [57]. They are also 
composed of comparators/swappers explained in [4]. Any comparator converts 
a two-item input to the two-item output in such a way that the upper value is 
greater than or equal to the lower value. Let us call circuits from [57] a 
swapping network. If they are applied to two sorted subsets with equal sizes 
then it is guaranteed that the upper half outputs of the network contain the 
largest values from the two sorted subsets and the lower half outputs of the 
network contain the smallest values from the two sorted subsets. Additionally, 
the outputs of this circuits form two Bitonic sequences. The swapping network 
depicted in Figure 3.13 transforms sorted sequences A and B to Bitonic 
sequences A and B, where all elements of Bitonic sequence A are larger than all 
elements in Bitonic sequence B.  

Sorted 
sequence

B

Sorted 
sequence

A

Bitonic 
sequence

A

Bitonic 
sequence

B

Figure 3.13 Swapping network 

The idea of the second method is illustrated in Figure 3.14 on the same example 
from Figure 3.12. 
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Figure 3.14 Example of extracting sorted subsets using the second method [120] 

Now the size of the networks SNmax and SNmin was reduced twice (there are now 
just 4 M-bit inputs instead of 8 in Figure 3.12). Much like Figure 3.12 both 
these networks have input registers (4 M-bit registers for our example). At 
initialization step SNmax and SNmin are filled in with the minimum and 
maximum values which are assumed as before to be 0 and 99. There are two 
additional fragments in Figure 3.14 which contain swapping networks described 
above. If we resort separately the upper and the lower parts then two sorted 
subsets will form a single sorted set. Let us analyse the upper swapping network 
in Figure 3.14 At step (a) inputs of the network are sorted subsets {0,0,0,0} and 
{99,92,71,70}. Thus, two new subsets {70,71,92,99} and {0,0,0,0} are created. 
Sorting them enables the maximum sorted subset {99,92,71,70} with four items 
to be found on outputs of SNmax. At step (c) inputs of the swapping network are 
sorted subsets {99,92,71,70} and {98,80,71,69} and two new subsets 
{99,92,80,98} and {70,71,71,69} are created. Sorting them enables the 
maximum sorted subset {99,98,92,80} to be built. At step (e) inputs of the 
swapping network are sorted subsets {99,98,92,80} and {20,19,18,17} and no 
swapping is done. Hence, the maximum sorted subset is {99,98,92,80} and it is 
the same as in Figure 3.12 The lower swapping network in Figure 3.14 
functions similarly. 
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The second method involves an additional delay on the comparators of 
swapping networks but eliminates copying from the main SN to SNmax and 
SNmin. Besides, the sizes of SNmax and SNmin are reduced twice. 

Also in some practical applications receiving sorted maximal and minimal 
subsets is not required and only unsorted ones are needed. In that case we can 
turn the second sorting network off during the last iteration of the algorithm.  

3.2.3. Method based on single sorting network 

The third method is similar to the first one, but instead of three independent 
sorting networks, it has only one network and is based on breaking links 
between comparators.  

0

7

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Fe
ed

b
ac
k 
re
gi
st
er
 (
FR

)

8

15

9
10
11
12
13
14

L m
ax

L m
in

K

Load   Sort      Copy   Load  Sort    Load   Sort

U
U
U
U
26
37
11
19
3
7
99
56
U
U
U
U

A

U
U
U
U
99
56
37
26
19
11
7
3
U
U
U
U

99
56
37
26
99
56
37
26
19
11
7
3
19
11
7
3

99
56
37
26
29
37
22
99
1
55
39
47
19
11
7
3

B

99
99
56
55
47
39
37
37
29
26
22
19
11
7
3
1

‐
co
m
p
ar
at
o
r 
is
 d
is
ab

le
d
 (
i.e
. i
t 
is
 b
ro
ke
n
)

Comparator may be
either enabled or disabled 

99
99
56
55
12
45
83
5
18
11
11
11
11
7
3
1

C

99
99
83
56
55
45
18
12
11
11
11
11
7
5
3
1

‐
in
co
m
p
le
te

Th
e 
m
ax
im

u
m
 v
al
u
e

M
ax
im

u
m
 s
u
b
se
t

M
in
im

u
m
 s
u
b
se
t

Step 1 Step 2 Step 3Iterative sorting network

Figure 3.15 An example of sorting using the method based on single sorting network. 
[121] 

At the first step, the first K M-bit data items are sorted in the network [36] 
which processes Lmax+K+Lmin data items but comparators linking the upper part 
(handling Lmax M-bit data items) and the lower part (handling Lmin M-bit data 
items) are deactivated (i.e. the links with the upper and bottom parts are 
broken). So, sorting is done only in the middle part handling K M-bit items. As 
soon as the sorting is completed, the maximum subset is copied to the upper 
part of the network and the minimum subset is copied to the lower part of the 
network. 

From the second step, all the comparators are properly linked, i.e. the network 
from [29] handles Lmax+K+Lmin items, but the feedback copying (see the first 
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step and Figure 3.15) is disabled. Now for each new K M-bit items the 
maximum and the minimum sorted subsets are appropriately corrected, i.e. new 
items may be appended. 

Let us look at the example shown in Figure 3.15 for which: N = 21, K = 8, Lmax 
= Lmin =4, and S = 26,37,11,19,3,7,99,56,29,37,22,99,1,55,39,47,12,45,83,5,18. 
The set S is divided into the following three subsets: A = 26,37,11,19,3,7,99,56, 
B = 29,37,22,99,1,55,39,47, and C = 12,45,83,5,18.  

Note that the last subset C contains only 5 elements and is incomplete. Symbol 
U in Figure 3.15 indicates undefined value. The iterative sorting network is 
exactly the same as in [36]. There are 3 steps in Figure 3.15. At the first step, K 
(K=8) items are sorted and copied to the maximum and minimum subsets.  

Two comparators are disabled in accordance with the explanations given above 
(breaking links of the middle section in the sorted network with the upper and 
the lower sections). At the second step, all the network comparators are enabled 
and Lmax+K+Lmin items are sorted by the iterative network with feedback 
register (FR). All necessary details can be found in [36]. It is easy to show that 
the maximum number of iterations is (max(Lmax,Lmin)+K)/2  and much like the 
previous case this number is almost always smaller [36]. At the last (third) step, 
the incomplete subset C is extended to K items by copying the maximum value 
(11) from the minimum subset 11,7,3,1 to the positions of missing data (see 
Figure 3.15). After sorting Lmax+K+Lmin items at the step 3 the final result is 
produced. 

3.2.4. Separate maximum and minimum extraction 

Some practical applications don’t require maximal and minimal subsets 
simultaneously. For this purpose a reduced partial sorter that contains one main 
and one additional sorting network was proposed. 

This task can be solved by removing the networks SNmin (for finding only the 
maximum subset) or SNmax (for finding only the minimum subset) of methods 
described above. Figure 3.16 depicts first two methods reduced only for 
maximum extraction. 
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Figure 3.16 Sorters for extraction of maximal subsets [122] 

Method A in Figure 3.16 is a reduced version of the method based of three 
sorting networks. This version of the partial sorter utilizes two sorting networks 
of the same size. The first sorting network receives blocks of data and sorts 
them. After the sorting is completed, the maximal (or minimal) half loads into 
the second sorting network along with maximal (or minimal) half of outputs of 
the second network. For maximal set selection, in the initial step the second 
network is loaded with zeros. For minimal set selection, it is loaded with 
maximal possible value. After all the data is transmitted, the system waits for 
the completion of sorting in both sorting networks. The maximal (or minimal) 
half of the outputs of the second network is loaded in the output register and 
waits for read request. 

Method B in Figure 3.16 is a reduced version of the method based on 
swapping networks. This method doesn’t require sorting minimal or maximal 
subset of the current iteration with results of the previous iteration. That is why 
sorting networks can be reduced twice. Both networks are connected here with a 
swapping network. All outputs of the first sorting network are connected to the 
swapping network along with all outputs of the second sorting network. On the 
outputs of the second network we receive unsorted maximal and minimum 
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subsets of the input data, where all items of the upper half of the network are 
larger than all items of the lower half.  

The second method obviously requires less hardware results than the first 
method and can be combined with partial Bitonic sorter because of utilizing the 
swapping network. Although both methods are more or less equivalent for 
extracting both minimal and maximal subsets at the same time, the second 
method should be more suitable for separate extracting. 

3.2.5. Very large scale subsets extraction 

For some practical applications the maximum and minimum subsets may be 
large and the available hardware resources become insufficient to implement 
sorting networks. The arising problem can be solved using the following 
technique. 

Let lmax and lmin be constraints for the upper (SNmax) and bottom (SNmin) parts of 
the sorting network, i.e. circuits with larger values (than lmax and lmin) cannot be 
implemented due to the lack of hardware resources or because of some other 
reasons. Let the parameters for the maximum and minimum subsets be greater 
than lmax and lmin, i.e. Lmax > lmax and Lmin > lmin. In such case the maximum and 
minimum subsets can be computed iteratively as follows: 

1. At the first iteration, the maximum subset containing lmax items and the
minimum subset containing lmin items are computed. The subsets are transferred 
to the CPU. The software part removes the minimum value from the maximum 
subset and the maximum value from the minimum subset. Such correction 
avoids loss of repeated items at subsequent steps. Indeed, the minimum value 
from the maximum subset (the maximum value from the minimum subset) can 
appear for subsets to be subsequently constructed in point 3 below and they will 
be lost because of filtering (see point 3). 

2. The minimum value from the corrected in software maximum subset is
assigned to Bu. The maximum value from the corrected in software minimum 
subset is assigned to Bl. The values Bu and Bl are supplied to hardware. 

3. The same data items (from memory), as in point 1 above, are preliminary
filtered in the PL in such a way that only items that are less or equal than Bu and 
greater or equal than Bl are allowed to be transferred to block RAM, i.e. 
computing sorted subsets is done only for the filtered data items. Thus, the 
second part of the maximum and the minimum subsets will be computed and 
appended (in software) to the previously computed subsets (such as subsets 
from point 1). 

4. The points 2 and 3 above are repeated until the maximum subset with Lmax

items and the minimum subset with Lmin items are computed.  

Note, that if the number of repeated items is greater than or equal to lmax/lmin, 
then the method above may generate infinite loops. This situation can easily be 
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recognized. Indeed, if any new subset contains the same value repeated K times 
then an infinite loop will be created. In such case we can use another method 
based on software/hardware sorters from [125]. In Chapter 5 we will present the 
results of experiments for such sorters.  

3.2.6. Filtering 

Input data may optionally be filtered allowing only items that fall within pre-
given constraints to be processed. Let Bu and Bl be predefined upper (Bu) and 
lower (Bl) bounds for the given set S. We would like to use one of the circuits 
described above only for such data items D that fall within the bounds Bu and 
Bl, i.e. Bl ≤ D ≤ Bu (or, possibly, Bl < D < Bu). Figure 3.17 depicts the proposed 
architecture that enables data items to be filtered at run-time (i.e. during the data 
exchange between hardware and software). There is an additional block on the 
upper input of the MUX, which takes a data item Ik and executes the operation 
indicated on the right-hand part of Figure 3.17. If the counter is incremented, 
then a new register is chosen to store data item Ik. Otherwise, the signal WE 
(write enable) is passive and a new item with a value that is out of the bounds 
Bu and Bl is not recorded in the registers. 

(count = count+1, WE) when
Bl  Ik  Bu else null; 

If input value Ik is within the 
constraints Bu and Bl then 
increment the address counter 
and allow writing data 
(activate the signal WE – write 
enable). Otherwise deactivate 
the signal WE and do not 
increment the address counter.
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Figure 3.17 Digital filter [121] 

Let us look at the same example in Figure 3.15 for which we choose Bu = 90 
and Bl = 10. At the first step incoming data items have preliminary been 
filtered, the values 99, 7, and 3 have been removed (because they are either 
greater than Bu = 90 or less than Bl = 10), and the subset A with 8 items is built 
from 11 first elements of the set S. At the second (last) step, the values 99, 1, 
and 5 have been removed, and the subset B = 55,39,47,12,45,83,18 is built from 
the remaining allowed elements of the set S. Since there are 7 items in B and K 
= 8, this subset is incomplete. 



47 

3.3. Hamming Weight 

We propose Hamming Weight counting circuit based on network of FPGA 
lookup tables (LUTs). An  FPGA  LUT(n,m)  can  be  used  to  directly  
implement  arbitrary Boolean functions f0,...,fm-1  of  n  variables  x0,...,xn-1. 
Clearly,  h  LUTs(n,m)  can  be  configured  to  calculate  the  Hamming  weight 
w(A)  of  a  vector  A={a0,...,an-1},  where  h= (log2(n+1))/m .   The   idea   is 
to   build   a   network   from  LUTs(n,m)  that  can  find  the  Hamming  weight 
w(A)  for  an  arbitrary  vector  A  of  size  N  and  then  to  compare  this 
weight  with  either  a  fixed  threshold κ or  with  the  weight  of  another binary  
vector  B  assuming  that  the  Hamming  weight  of  B  has been found 
similarly. Since Hamming distance d(A,B) = w(A XOR B) we can find d(A,B) 
as Hamming weights of "XORed" arguments A and B.  

Figure 3.18 Hamming weight counters for N=8 (a) and N=36 (b) [123] 

An   analysis   of   practical   applications   shows   that   the   majority   of 
them   require   the   Hamming   weight/distance   count/comparison for such 
values of N that are divisible by 8, 32, or 36. We suggest two optimized LUT-
based designs permitting the Hamming weight to be found for N=8 (Figure 
3.18(a)) and N=36 (Figure 3.18(b)).  For  N=32  either  four  bits  in  Figure 
3.18(b)  are  assigned to 0 or the results of Figure 3.18(a) are incrementally 
added in a tree-based structure much similar to [89] composed of the design  in 
Figure  3.18(a)  and  adders.  The  circuit  in  Figure 3.18(b)  without  two   right 
adders  Σ  has (log2(n+1))/m ×( N/n +  (N/2)/n ) LUTs(n,m). Even for m=1 
(the worst case) we  need  only  27  LUTs  for  Zynq  xc7z020  containing  
totally  53200 LUTs. 

The Hamming weight for N>36 can be found in a similar tree-based  structure. 
There  are  two  layers  in  Figure 3.18(a)  with  LUTs(6,3) and LUTs(5,4). The 
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first layer counts w(ai
0,...,ai

5) and  the  second  layer  takes  the  results  of  the 
first  layer  and finally  determines  the  4-bit  weight  w(ai

0,...,ai
7).  The  delay 

from  the  inputs  to  the  outputs  is  equal  to  just  2  LUT  delays.  There are 
also two layers in Figure 3.18(b)  with  LUTs(6,3)  and  two  combinational   
adders.   The   first   layer   is   composed   of   6  LUTs(6,3)  and  it  outputs  six  
Hamming  weights  w1,...,w6  for  six sub-vectors A1,...,A6 of the input vector. 
The second layer contains   3   LUTs(6,3)   and   it   outputs   Hamming 
weights α1α2α3, β1β2β3, χ1χ2χ3  of  the  most  significant  bits  (MSB)  in 
w1,...,w6 (α1α2α3),  the  middle  bits  in  w1,...,w6 (β1β2β3)  and  the less 
significant bits (LSB) in w1,...,w6 (χ1χ2χ3). The final result is computed by two 
combinational adders as it is shown in  Figure 3.18(b).  We  found  that  any 
layer  with  index  greater  than lognN  is not cost-effective because either the 
size of output weights will be increased compared to the previous layers or 
LUTs  will  be  used  not-efficiently.  All  LUTs  in  Figure 3.18(b)  are  
configured  identically. 

3.4. Matrix covering 

We have studied combinatorial search problems that utilize Hamming weight 
calculating and sorting and one of them is matrix covering problem.  

The covering problem can identically be formulated on either sets [67], [126] or 
matrices [67]. Let A = (aij) be a 0-1 incidence matrix. The sub-set Ai = {j | aij = 
1} contains all columns covered by row i (i.e. the row i has value 1 in all 
columns of the sub-set Ai). The minimal row cover is composed of the minimal 
number of the sub-sets Ai that cover all the matrix columns. Clearly, for such 
sub-sets there is at least one value 1 in each column of the matrix. Let us 
consider an example from [2] of a set S and sub-sets S1,…,S6 (Figure 3.19), 
which can be represented in the form of the following matrix A: 

1 2 3 4 5 6 7 8 9 10 11 12
S1: 1 1 0 0 1 1 0 0 1 1 0 0 
S2: 0 0 0 0 0 1 1 0 0 1 1 0 
S3: 1 1 1 1 0 0 0 0 0 0 0 0 
S4: 0 0 1 0 1 1 1 1 0 0 0 0 
S5: 0 0 0 0 0 0 0 0 1 1 1 1 
S6: 0 0 0 1 0 0 0 1 0 0 0 0 
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Figure 3.19 An example of a set S with sub-sets S1,...,S6 from [124] 

We consider below a slightly modified method from [127] that is applied to 
binary matrices exemplified above and the matrix from Figure 3.19 [126] will 
be used to illustrate the steps of the chosen method that are the following: 

1. Finding the column Cmin with the minimum Hamming weight (HW) that
is the number of ones. If there are many columns with the same
(minimum) HW, selecting such one for which the maximum row is larger,
where the maximum row contains 1 in the considered column and the
maximum number of ones;

2. If HW = 0 then the desired covering does not exist, otherwise from the set
of rows containing ones in the column Cmin finding and including in the
covering the row Rmax with the maximum HW;

3. Removing the row Rmax and all the columns from the matrix that contain
ones in the row Rmax. If there are no columns then the covering is found
otherwise go to the step 1.

Let us apply the step 1–3 to the matrix A above: 

1. The column 12 is chosen;

2. The row S5 is included in the covering;

3. The row S5 and the columns 9, 10, 11, 12 are removed from the matrix.

1. The remaining columns contain the following number  of ones: 2, 2, 2, 2, 2,
3, 2, 2. The column 3 is chosen because for this column the row S4 has the 
maximum HW equal to 5; 

2. The row S4 is chosen and included in the covering;

3. The row S4 and the columns 3, 5, 6, 7, 8 are removed from the matrix.

1. The remaining matrix contains rows S1, S2, S3, S6 and columns 1, 2, 4 with
the following HWs: 2, 2, 2. The column 1 is chosen; 

2. The row S3 is chosen and included in the covering;

1
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S1 = {1,2,5,6,9,10};
S2 = {6,7,10,11};
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S5 = {9,10,11,12};
S6 = {4,8}.
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3. After removing the row S3 the covering is found and it includes the rows S3,
S4, S5 shown in italic font in the matrix above. The minimum covering is the 
same as in [126] that was found with a different algorithm. 

We suggest the given matrix to be unrolled in such a way that all its rows and 
columns are saved in hardware (in programmable logic of FPGA of PSoC)  
registers. Note that more than a hundred of thousands of such registers are 
available in the recent low-cost FPGAs. This technique permits all rows and 
columns to be accessed and processed in parallel. 

Figure 3.20 demonstrates the unrolled matrix A shown above (and repeated in 
Figure 3.20 for convenience). HW counters compute HW for all the 
rows/columns in parallel using combinational circuits, such as that are proposed 
in [36].  

Figure 3.20 Architecture of the proposed hardware accelerator on an example of 
unrolled matrix [124] 

The MIN column and MAX row circuits permit to find out the minimal column 
Cmin and the maximum row Rmax. It is shown in [128] that these circuits can be 
built as MAX-MIN fully combinational networks producing the results faster 
than in 20 ns. Since all the circuits (computing HW and the maximum/minimum 
values) are functioning in parallel, the steps 1 and 2 may be completed faster 
than in 20 + 20 = 40 ns even in low-cost FPGAs. So, a very significant 
acceleration can be expected. 
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  Figure 3.21(a) presents such a circuit for a matrix 32 × 32 for which the 
number of bits in any HW is 6 (because the maximum number of ones in a 32-
bit vector is 32 that can be represented by a 6-bit code). A particular 
(simplified) example for only 6 input items 3, 14, 21, 11, 14, 27 is given in 
Figure 3.21(b). The maximum value (27) is found in a combinational circuit 
with only 3 gate level delays. Clearly, there is 5 gate level delay for matrices 32 
× 32 and 6 gate level delay for matrices 64 × 64. 
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Figure 3.21 MAX circuit from [8] for 32  32 matrix (a); an example (b). [124] 

  Since all the circuits (computing HW and the maximum/minimum values) are 
functioning in parallel, the steps 1 and 2 may be completed faster than in 20 + 
20 = 40 ns even in low-cost FPGAs. So, a very significant acceleration can be 
expected. 

In accordance with the proposals, the matrix is unrolled only once and any 
reduced matrix is formed by masking previously selected rows and columns. 
One select register and two mask registers (one for rows and another one for 
columns) shown in Figure 3.20 are additionally allocated in the PL. The select 
register is zero-filled at the beginning of the step 1 and after the step 1 it 
indicates by values 1 those rows that have to be chosen by the selected column 
(i.e. such rows have values 1 in the selected column). The mask registers are 
filled in with zeroes at the beginning of the algorithm and they mask (by the 
values 1) those rows and columns that have been removed from the matrix in 
each iteration. For example, the select register contains the value 000010 after 
the first step in the example matrix A. The mask registers after the first iteration 
in the example are set to 000000001111 for the columns and 000010 for the 
rows. After the second iteration they are updated as 001011111111 for the 
columns and 000110 for the rows. 
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3.5.  Summary 

This chapter describes methods proposed in this research. It presents the 
pipelined periodic sorting network – which serves as a basis of our data sorting 
solutions. The advantage over other sorting networks were discussed and 
possible drawbacks were stated.  

We proposed two approaches of full data sorters with different combination of 
sorting networks and merging of sorted subsets. The first proposed method of 
data sorting involves parallel sorting of data fragments in hardware with 
subsequent merging of those fragments in software. The second method also 
suggest a combination of hardware and software components, but hardware in 
this case performs both network-based sorting and merge operation based on a 
tree-like structure of block RAM-based mergers. The second method relies on 
sorting smaller data fragments than the first method, but hardware merging 
allows larger sorted data fragments supplying for subsequent data merging. 

Partial sorting methods for maximal and minimal subset extraction were also 
described in this chapter. We proposed three different methods for this problem 
solving and discussed advantages of each of them. The first method is based on 
main and additional sorting networks with copying data between them. The 
second method is based on swapping network, which permits avoiding 
additional data copying and reducing the size of additional sorting networks. 
The third method is based on switchable C/S block which permits using a single 
sorting network and less C/S blocks. The possibility of filtering and extracting 
very large scale subsets, which allow to go beyond hardware limitation, was 
also discussed. 

The architecture of FPGA LUT-based circuit for Hamming weight calculation 
was presented. The hardware system for matrix covering also described in this 
chapter utilizes this circuit along with a combinational network composed of 
C/S blocks for maximal and minimal item extraction.    

Also we proposed hardware-based system for matrix covering, which utilizes 
LUT-based Hamming weight calculators and comparator networks.  
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4. HARDWARE/SOFTWARE CO-DESIGN
The known results [129] [130] [131] have shown that software/hardware 
solutions may be significantly faster than software only solutions. Hardware 
only solutions are the fastest, but they are not suitable for the majority of 
practical application, because of the resource limitation.  We explored different 
platforms for hardware/software co-design. 

In this chapter three different approaches are explained: processing system and 
programmable logic combination on PSoC [120] [121], FPGA/PC combination 
and a three-level system which combines programmable logic and processing 
system of PSoC with a host PC [5] [118] [119]. Also we describe hardware 
architectures based on these approaches for methods proposed in the previous 
chapter. 

4.1. PS/PL system 

This chapter describes our approach of hardware software co-design for PSoC 
architecture from the Zynq-7000 family. It is an architecture that combines the 
dual-core ARM CortexTM MPCoreTM-based processing system and Xilinx 
programmable logic on the same microchip. There are similar solution from 
other FPGA manufacturers [132] [133] [134], but we focus on Xilinx platforms.  

Figure 4.1 illustrates interactions between the basic functional components of 
the Zynq-7000 PSoC [135] that contains two major top-level blocks: the 
processing system (PS) and the programmable logic (PL). Communications 
with external devices are provided through multiplexed input/outputs (MIO) 
with potential extension from the PL through extended MIO (EMIO). Zynq 
PSoCs offer numerous communication mechanisms from simpler general-
purpose input to more advanced data exchange through AXI interfaces allowing 
access to external DDR memory, to on-chip memory (OCM) and to level 2 
cache of PS. 

Software and hardware can be designed autonomously and linked in a 
hardware/software system. To increase performance, the most time-consuming 
parts of software might be redesigned and implemented in hardware. 
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Figure 4.1 Interactions between the basic functional components of the Zynq-7000 
PSoC [125] 

Let us look at Figure 4.2. Clearly, software/hardware system is faster if: Ts > Tsch 
≤ Tsh + Th + Tc, where Ts, Tsch, Tsh, Tc, Th are time intervals required for different 
modules. In highly parallel implementations software, hardware and interactions 
between hardware and software can run concurrently. For example, software 
may run in parallel with hardware; operations in hardware over previously 
received data may be done at the same time when new data are being 
transferred. Thus, Tsch ≤ Tsh + Th + Tc. For instance we would like communication 
and application-specific operations to be overlapped in hardware as much as 
possible (see Figure 4.2). Note that while hardware only designs may be the 
fastest, the complexity of such designs is often limited by the available 
resources in the PL. 



55 

Software 
only (Ts)

Software (Tsh)

Hardware (Th)

Communication 
overhead (Tc)

Software/hardware

A
P
So

C

PS

PL

Tsch ≤ Tsh + Tc + Th

As much in 
parallel as 
possible

Figure 4.2 Software only and software/hardware systems [125] 

Fig. 4.3 presents the proposed software/hardware architecture for the problems 
discussed in Chapter 3. All hardware acceleration is done in an application-
specific processing block (ASP) which is entirely implemented in the PL. There 
is another block in the PL called communication-specific processing (CSP) 
which interacts with the PS, i.e. it receives a large set of data items step by step 
in blocks and transfers the extracted sorted subsets. Besides, CSP is responsible 
for exchange of control signals between the PS and PL. 

The PS is responsible for solving the following tasks: 

1. Acquiring data and saving them in either on-chip memory (OCM) or
external memory that is DDR.

2. Forming requests to the PL which is done through a set of control
signals.

3. Collecting data and performing tasks in software.
4. Verifying the results.
5. Solving exactly the same problem in software. This point is required

just for experiments and comparison.
6. Computing the consumed time.

The PL is responsible for solving the following tasks: 

1. Processing control signals received from the PS which are: a request
(start) to begin data processing; source address in memory of input
data (i.e. the address of the set that has to be handled); destination
address in memory of output data (i.e. the address to copy the
extracted subsets); the number of blocks Q of input data transferred
from the PS to PL; and the number of items in the last block. The PL
also forms two signals that are sent to the PS which are: an interrupt
generated as soon as the job is completed (i.e. the subsets have been
extracted and copied to memory) and the number of clock cycles
consumed in the PL which is needed for experiments and
comparisons.

2. Performing computations on requests from the PS in highly-parallel
ASP.
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3. Counting clock cycles consumed in the PL from receiving the
request up to generating the interrupt.
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Figure 4.3 The proposed software/hardware architecture for data sorting [125] 

Selection of proper AXI ports is very important. Experiments in [136] have 
shown that for transferring a small number of data items (from 16 to 64 bytes) 
general-purpose input/output ports (GPP) are always the best. In Zynq PSoC 
there are four available 32-bit GPP, two of which are masters and the other two 
are slaves from the side of the PS. They are optimized for access from the PL to 
the PS peripherals and from the PS to the PL registers/memories [137]. Since 
the latter feature is what we need, a master GPP was chosen for transferring 
control signals shown in Figure 4.3. AXI ACP allows cache memory of 
application processing unit (APU) in the PS to be involved for data transfers 
and there exists an opportunity to provide either cacheable or non-cacheable 
data from/to the indicated above memories (i.e. OCM or DDR) [136]. Mapping 
of memories may be done in computer-aided design software. Experiments in 
[136] [131] have shown that for transferring large volumes of data items AXI 
ACP is very appropriate. Thus, this port was chosen to receive the source set 
from memory (OCM or DDR) in the PL and to copy extracted subsets from the 
PL to memory. 

Figure 4.4 gives more details about the chosen software/hardware interactions 
where: solid arrows () indicate who is the master (the beginning) and who is 
the slave (the end); double compound lines show control flow; and dashed lines 
indicate directions of data flow (i.e. one direction -  or both directions - ). 
Control (and possibly a small number of additional auxiliary) signals are 
transferred through GPP. An initial (source) set and extracted subsets are copied 
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through AXI ACP. The used memory (OCM or DDR) is indicated by the 
respective mapping both in hardware and in software. 

The snoop controller [135] in Figure 4.4 provides cacheable and non-cacheable 
access to memories (OCM or DDR). Cache area can be either disabled or 
enabled in software. In particular, data received from/copied to memories may 
be pre-cached, i.e. they can be first saved into faster cache and then transferred 
with the main goal to increase performance of communications. Note that for 
standalone programs cache memory is entirely available. For programs running 
under an operating system (such as Linux) some area in cache memory may be 
used by programs of the operating system and the size of available cache 
memory is reduced. Many additional details can be found in [131]. 
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4.1.1. Hardware/software co-design for subset extraction 

This section presents the hardware architecture for methods of subsets 
extractors from section 3.2 based on proposed hardware/software approach. 

Initial (source) data set and extracted subsets are accommodated in memory as it 
is shown in Figure 4.5. All necessary details about particular locations and sizes 
are supplied from the PS to PL through GPP (see Figure 4.4).  
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To extract the maximum and/or minimum sorted subsets the following sequence 
of operations is executed: 

1. The PS prepares source data in memory, calculates the number of
blocks Q = N/K (the value K is predefined), the number of items
in the last block (which can be less than K), and indicates the source
and destination addresses. Here, N is the total number of data items
that have to be processed.

2. The PS sets the start signal that is permanently tested in the PL.

3. As soon as the signal start is set, the PL transfers blocks of data in
burst mode and saves them in a dedicated dual-port embedded block
RAM (one port is assigned for transferring data from the PS to PL
and another port for copying data from the block RAM to PL
registers considered in the next section).

4. As soon as the first block is completely transferred to the block
RAM through the first port, it is copied through the second port to
PL registers that are used as inputs of sorting networks for extracting
subsets in ASP.

5. The maximum and minimum subsets are incrementally constructed
using methods from the previous chapter and subsequent blocks of
source data are transferred from memory to the block RAM in
parallel.

6. The block RAM is organized as a circular buffer as it is shown in
Figure 4.6. If it becomes full data transfer is suspended until space
for subsequent block is freed.

7. As soon as all Q blocks are processed the maximum and minimum
subsets are ready (the details are given in section 3.2).

8. The maximum and minimum subsets are copied from the PL to
memory (see Figure 4.5).

9. As soon as the previous point is completed, the PL generates a
hardware interrupt to the PS indicating that the job has been
finished.

10. Optionally, the PL may count the number of clock cycles for solving
the problem in hardware that it supplied to the PS through GPP.

11. PS may solve other problems in parallel with the PL. However, as
soon as an interrupt is generated it is handled by the PS. Hence, the
extracted subsets may immediately be used, for example, as data
needed for projects of higher hierarchical levels.
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The circular buffer in Figure 4.6 is managed by the PL control unit that is a 
finite state machine. The buffer is built in the PL block RAM which is written 
through the first port (used for transfer data from the PS) and read through the 
second port (used to copy data from the block RAM to PL registers). As soon as 
the buffer is full, data transfer from the PS to PL is suspended. As soon as some 
area of the buffer is released (because data have already been read), data 
transfer is renewed. 
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4.1.2. Hardware/software system for search problems 

Figure 4.7 presents the proposed partitioning in software and hardware modules 
(assuming implementation in Zynq PSoC) of the considered algorithm that 
enables the minimal covering to be found. 
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Software in the PS is responsible for the following steps: 

1. Getting from a host computer or generating the matrix, unrolling it, and
saving in external DDR memory as a set of rows and a set of columns; 
2. As soon as Cmin is found, the PL generates an interrupt of type a. The PS
receives the Cmin and sets the select register in the PL through general-purpose 
ports; 
3. As soon as Rmax is found, the PL generates an interrupt of type b. The PS
receives the Rmax and sets the mask registers in the PL through general-purpose 
ports [135]; 
4. At any iteration it is checked if the solution is found or if it does not exist. If
the solution is found it is indicated by the PS or transmitted to the host computer 
and the algorithm is completed. 
Hardware in the PL implements the architecture in Figure 3.20 and is 
responsible for the following steps: 
1. Getting the unrolled matrix from external DDR through high-performance
AXI Interface and saving the rows and columns in slice registers as it is shown 
in Fig. 3.20.  
2. Getting from the PS select/mask vectors and setting/updating the select and
the mask registers. 
3. Finding out the value Cmin at each iteration and as soon as the value of Cmin is
ready, generating an interrupt of type a. 
4. Finding out the value Rmax at any iteration and as soon as the value of Rmax is
ready, generating an interrupt of type b. 

4.2. FPGA-based system with host PC 

Another platform that have been studied is a two-level system that combines 
general purpose PC for software part and FPGA for hardware acceleration. The 
data transfer between hardware and software levels is organized through PCI-
express. The architecture of hardware accelerator part of this two-level 
architecture is shown in Figure 4.8. On-board DDR memory is used for 
preliminarily data collection by FPGA and storage. The DDR is controlled by a 
memory interface generator. 

Figure 4.8 Architecture of a two-level FPGA-based system for data sorting [5] 
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Data transfer in the host PC is organized through direct memory access (DMA) 
module that was developed for PC and FPGA integration of the two-level 
system. The hardware uses the Intellectual Property (IP) core of the central 
direct memory access (CDMA) module [138] to copy data through AXI PCI 
express (AXI-PCIE) [139]. The project is similar to [140] and links CDMA and 
AXI-PCIE modules based on a simple data mover (i.e. the mode "scatter gather" 
is not used). A master port (M-AXI) of the AXI-PCIE operates similarly to GP 
ports in [136] and supplies control instructions from the PC to customize data 
transfers. The instructions indicate the physical address of data for PC memory, 
the size of transferred data, etc. 

Software in the host PC runs the 32-bit Linux operating system (kernel 3.16) 
and executes programs (written in the C language) that take results from PCI-
express (from the accelerator) for further processing. To support the data 
exchange between two parts of the system, a driver (kernel module) for general 
purpose PC was developed. The driver creates in the directory /dev a character 
device file that can be accessed through read and write functions, for example 
write(file, data_array, data_size). Up to 5 base address registers (BAR) can be 
allocated but we used just one. 

The PC BIOS assigns a number (an address) to the selected BAR and a 
corresponding interrupt number that will be later used to indicate the 
completion of a data transfer. As soon as the driver is loaded, a special 
operation (probe) is activated and the availability of the device with the given 
identification number (ID) is verified (the ID is chosen during the customization 
of the AXI-PCIE). Then a sequence of additional steps is performed (see [141] 
for necessary details). A number of file operations are executed in addition to 
the probe function. In our particular case, access to the file is done through 
read/write operations. Figure 4.9 demonstrates the interaction of a user 
application with the driver (kernel module) and some additional operations that 
may be executed. 
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Figure 4.9 Kernel module [5] 

As soon as a user program calls the read function, the read(file, data_array, 
data_size) function gets the address in the user memory space and the number of 
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bytes that need to be transferred. Initially, the data are copied to a buffer and 
then the physical address of the buffer is obtained. Now the data are ready to be 
transferred from PSoC/FPGA. Then the data are copied and the driver is waiting 
for an interrupt indicating that the data transmission is complete. The necessary 
operations for generating the interrupt are given in [138]. Additional details can 
be found in [141]. 

For the methods in sections 3.1-3.2 the proposed networks can be used as 
follows. The sorter receives blocks composed of N M-bit data items that are 
collected from inputs initially and stored in DDR memory. Interactions with 
memory are done through the memory interface block (see Figure 4.8). The 
sorter executes iterative operations over multiple parallel data and is controlled 
by a dedicated finite state machine (FSM) called Sorter Control Unit (see Figure 
4.8). The ports are also controlled by a dedicated FSM (see HP/ACP Control 
Unit in Figure 4.8). The results of sorting are copied back to memory and then 
transmitted to the host PC through the PCI-express bus. Specially developed 
dedicated circuits are responsible for data collection and organization that is 
done in accordance with the established requirements. Finally, the dedicated 
circuits prepare data in memory so that these data can be processed in the FPGA 
and the results of the processing (stored in memory) are ready to be transmitted 
to the host PC. The blocks CDMA with control units (PCI Control Unit and 
Interrupt Control Unit in Figure 4.8) are responsible for transmitting data. 

4.3. Three-level system 

The third approach can be described as a combination of both system discussed 
previously: PS/PL system and a system with a host PC.  

Certain Zynq devices (for example, Xilinx zc706) with support of PCI-Express 
interface allow us to build a three-level architecture which combines PS and PL 
of PSoC with general purpose PC. Figure 4.10 shows the basic architecture for 
data transfer between a host PC and an PSoC through PCI-express.  
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Figure 4.11 presents the architecture of hardware accelerator part of the three-
level system for the example of distributed data sort. The architecture is based 
on the hardware accelerator from the previous section, but includes PS part of 
the PSoC. We assume that the data collected in the PSoC are preprocessed in 
the PSoC by applying various highly parallel circuits, and the results are 
transferred to the host PC through the PCI-express bus. The device driver for 
general purpose PC is similar to the one described in section 4.2. The CDMA 
module can be connected to either AXI HP or AXI ACP interfaces in PSoC and 
transmits data from either on-chip memory (OCM) or external DDR. After 
supplying the addresses, the number of data bytes (that need to be transferred) is 
indicated and the data transmission is started. As soon as data transmission is 
completed, the CDMA module triggers an interrupt that has to be properly 
handled (the interrupt number is determined by the BIOS of the host PC). The 
following customization is done for 1) AXI-PCIE: legacy interrupts, 128 bits 
data width, and 2) CDMA: 256 bytes burst size, 128 bits data width. Note that 
the architecture in Figure 4.11 allows data transfers in both directions, i.e. data 
from the PC may also be received. 
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Figure 4.11 Architecture of a three-level PSoC-based system for data sorting [5] 

The proposed architecture is similar to the architecture described in section 4.2. 
The main difference that in addition to two levels – PL (FPGA) and host PC 
system, there is another level – PS of the PSoC system. Interaction between the 
PL and PS are implemented as in PS/PL system described in section 4.1.  but 
with inclusion of Zynq PS as in PS/PL system, The data processing logic (for 
example, sorter) receives blocks composed of N M-bit data items that are 
collected from inputs initially and stored in memories (such as external DDR 
and OCM). In case of a three-level system, transactions with memory are done 
through AXI HP/ACP ports of PS (see Figure 4.11) and not through the 
memory interface block (see Figure 4.8). Other steps of the method are also 
similar to the two-level system with host PC, but PSoC PS, instead of specially 
developed dedicated circuits, is responsible for data collection and organization 
that is done in accordance with the established requirements. The PS  prepares 
the data so it can be processed in the PL and transmitted to the host PC.  

4.4. Summary 

This chapter proposes and describes different approaches of hardware/software co-
design for reconfigurable FPGA and PSoC devices. The first approach involves 
usage of PS and PL of PSoC device with communication between them through 
AXI interface ports. 

Also this chapter presents two-level and three-level approaches using a general 
purpose computer (host PC) and communication through high-speed PCI express 
interface. The first level of the two-level system is programmable logic (FPGA) and 
the second is host PC running Linux operating system. The three-level system was 
designed for PSoC devices and has an additional level which is PS of the PSoC 
device. Linux Kernel module was written for integration of both architectures. 

This chapter covers all aspects of hardware/software implementations of methods 
proposed in the previous chapter. The proposed techniques and methods are 
suitable for processing large volumes of items and designed to work with 
streaming data. The architectures presented in this research can be easily 
utilized for different hardware accelerators. 
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5. EXPERIMENTS
This chapter describes experimental results of systems discussed in Chapter 3. 
All experimental setups are based on approaches presented in Chapter 4. The 
platforms and techniques were chosen according to requirements and features of 
the systems. 

Experiments were done with different prototyping boards. The platforms for 
hardware/software systems that involve PL and PS of PSoC device were Xilinx 
ZC702 [142] and ZedBoard [143]. For the systems that involved data transfer 
between PC and accelerators, we used two boards. The first is the Xilinx ZC706 
[144] evaluation board containing the Zynq-7000 XC7Z045 PSoC device with 
PCI express endpoint connectivity "Gen1 4-lane (x4)". The PS is the dual-core 
ARM Cortex-A9 and the PL is a Kintex-7 FPGA from the Xilinx 7th series. The 
second board is VC707 and it contains the Virtex-7 XC7VX485T FPGA from 
the Xilinx 7th series with PCI express endpoint connectivity "Gen2 8-lane (x8)" 
[145]. All designs were done for: 1) hardware in the PL of PSoC/FPGA 
synthesized from specifications in VHDL that describe circuits interacting with 
Xilinx IP cores (Xilinx Vivado Design Suite 2016.2); 2) software in the PS of 
PSoC developed in C language (Xilinx Software Development Kit – SDK 
2015.1); 3) user programs developed in C running under the Linux operating 
system in the host PC. The PL clock frequency is 125 MHz. The PS frequency 
is 666 MHz. Data were transferred from the ZC706/VC707 to the host PC 
through PCI-express. The PCI-express bus frequency is 100 MHz.  The host PC 
contains Intel core i7 3820 3.60 GHz. 

5.1. Data sorting 

We have implemented different hardware/software systems based on methods 
described in Chapter 3. All the proposed approaches were implemented and 
tested on FPGA and PSoC platforms. Experiments were conducted for hardware 
sorting with subsequent software merge and for hardware sorting and merging 
with subsequent software merging for very large subsets. 

5.1.1. Hardware sorting of data subsets and software merging 

Hardware/software system based on hardware sorting network-based sorters 
with subsequent software merge was implemented using two different 
approaches: GPP+FPGA and three-level system described in sections 4.2 and 
4.3. Figure 5.1 demonstrates organization of experiments with data sorters for 
the three-level system.  
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We assume that data are collected by the ZC706/VC707 board and stored in 
DDR memory (in the experiments, data are produced as described in point 1 
below). Subsequently, different components (A, B, C, D) may be involved in 
data processing: 

1. Data are randomly generated and sorted using only networks in hardware
(component A), indicated below as Sorting blocks;

2. Data are generated and sorted in the PC, indicated below as PC sort.

3. Data are transferred from the ZC706/VC707 to the PC through PCI-express
and sorted by software in the PC (component D), indicated below as PC
sort+data transfer;

4. Data are completely sorted in the PSoC (the set of data items is decomposed
into blocks, blocks are sorted in the PL by the networks described in section
3.1 , the sorted blocks are merged in the PS to produce the final result) and
the sorted data are transferred to the PC through PCI-express (components
A and B), indicated below as Sorting+PS merge;

5. Data are completely sorted in PSoC/FPGA and in the PC in such a way that:
a) blocks of data are sorted in the PL of PSoC or in FPGA; b) the sorted
blocks are transferred to the PC through PCI-express; and c) the blocks are 
merged by software in the PC (components A and C). This case is indicated 
below as Sorting+PC merge. 

Sorting in hardware only (see point 1 above) permits the circuits that process 
the maximum possible number of data items and can be entirely implemented in 
the programmable logic without any support from software to be evaluated. We 
also present the results of evaluation of the circuits including threshold values 
that are potential limitations of the methods proposed. 

Evaluation of the proposed circuits has been done through a set of experiments 
with the network described in section 3.1 (depicted in Figure 3.1), selecting four 
data sets sizes of 512, 1024, 2048, and 4096 items (32 bits). The results are 
shown in Figure 5.2. 
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We counted only the percentage of look-up tables (LUTs), which are the 
primary PL/FPGA resources that are used for the network. The percentage of 
other resources is lower, for example, the percentage of flip-flops for the FPGA 
does not exceed 23% and for the PL – 31% for all data set sizes (from 512 to 
4096). From Figure 5.2 we can see that the available resources permit only 
iterative networks of up to 2048 32-bit data items to be implemented. Thus 
2048 is the threshold for hardware only implementations based on the 
microchips indicated above. A preliminary evaluation shows that 8192 items is 
the maximum threshold value for hardware-only implementations of the circuit 
from section 3.1 in the most advanced FPGAs/PSoCs currently available on the 
market. 
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Figure 5.2 The results of sorting in hardware only using iterative networks described in 
section 3.1 [5] 

The results obtained for the five measurements indicated above are reported in 
Figure 5.3 (the two curves PC sort and PC sort + data transfer show the same 
results without and with data transfers). The result for each type of experiment 
is an average of 64 runs. 

The following conclusions can be drawn from Figure 5.3: 

 The fastest results were obtained for the components A and C, i.e. pre-
sort in the PL with a subsequent merge in the PC (see point 4 above).
Note that the fastest (the lowest) curve in Figure 5.3– is built for sorting
individual subsets only. Thus, the complete data set has not been sorted
and the relevant results cannot be used for comparisons.
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 The slowest result is shared between the remaining two cases (see points
2, 3 above).

 Note that for almost all data sizes, sorting and merging in PSoC is faster
than sorting in PC software. Thus, cheaper (than PC) PSoCs are more
advantageous and may be used efficiently for embedded applications.

 Sorting blocks in the PL network (see Figure 3.1) is significantly faster
than subsequent merging. All communication and protocol overheads
were taken into account.
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Figure 5.3 The results of experiments with the three-level system sorting data (the size 
of one block is 1024 32-bit data items) [5] 

Similar experiments were done with the VC707 prototyping board, but with 
blocks of data containing 2048 32-bit data items (i.e. the blocks sorted in the 
hardware network are two times larger). The results are shown in Figure 5.4.  
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Figure 5.4 The results of experiments with the two-level system sorting data (the size of 
one block is 2048 32-bit data items) [5] 

From analyzing these results we can conclude that: 

 Using an FPGA from the Virtex-7 family, sorting in hardware networks is
slightly faster, but the difference is negligible.

 Using larger blocks (2048 vs. 1024) allows sorting in point 4 (see the
beginning of this section) to be faster by a factor ranging from 1.2 to 1.8.
This is because the depth of software merges is reduced by one level.

Comparisons with the best known alternatives can be done by analyzing the 
fastest known networks. For data sorting, the latency and the cost of the most 
widely discussed networks are shown in Table 5.1. The formulae for the table 
are taken from [4] [27] [9] [36] [44]. For example, if N = 1024 then the latency 
is equal to D(1024)=55 for the fastest known even-odd merge and bitonic merge 
networks [24] [19], which is smaller than the number of iterations for the 
proposed network. However, C(1024) for the less resource consuming even-odd 
merge network is 24,063 C/S and for the proposed network C(1024) = 1023 
C/S. Thus, the difference is a factor of about 24. It means that with the same 
hardware resources, the proposed networks can process blocks of data with 
significantly larger number N of data items. Indeed, the resources C(1024) = 
24,063 of the known even-odd merge network are the same as for 24 proposed 
networks each of which sorts the same number of data items, i.e. 1024. This 
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means that the proposed network occupies less than 5% of the resources of the 
known network and the number of sorted items is exactly the same.  

TABLE 5.1. Cost С(N) and latency D(N) of the most widely discussed networks 

Type of the network C(N) D(N) 

Bubble and insertion sort N×(N-1)/2 2×N-3 

Even-odd transposition N×(N-1)/2 N 

Even-odd merge (p2-p+4)×2p-2-1, 
N=2p 

p×(p+1)/2, N=2p 

Bitonic merge (p2+p)×2p-2, N=2p p×(p+1)/2, N=2p 

The proposed network (see 
Figure 3.1) 

N-1 ≤N 

The experiments done for the board Xilinx vc707 [146] have shown that for the 
networks [24] [19] N≤128, while for the proposed networks N ≤ 2048. Thus, the 
proposed networks may handle about 16 times larger blocks. The blocks created 
in hardware are further merged in software, thus the number of levels in 
software will be increased in the known networks by a factor of log216=4 
(comparing to the proposed network). The following experiments were done: 

1. Blocks with two sizes (that are 128 and 2048 32-bit words) have been
sorted in software using the known (for the size 128) and the proposed (for
the size 2048) networks. The measured times are T128 and T2048.

2. Since the known networks cannot be used for N=2048, the same results
have been obtained through a subsequent merge in software of blocks with
N=128 to get blocks with N=2048. The measured time is T128 + Tmerge.

3. Finally we measured the value (T128 + Tmerge) / T2048. The fastest method was
used i.e. pre-sort in the PL with subsequent merge in the PC. The result that
was an average of 64 runs exceeds 5. Note that additional delays appeared
also in data transmission through PCI-express of smaller blocks of data
items.

For subsequent merging required for larger data sets all the conditions for the 
proposed and known methods are the same. Thus, the proposed methods are 
always faster because merging in software begins with significantly larger pre-
sorted blocks. Clearly, threshold values for maximum sizes of sorted sets are the 
same as for general-purpose software running in a PC. 
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5.1.2. Hardware merging of sorted subsets 

The system with network-based sorter with subsequent merge in hardware for 
smaller data fragments and software merge for larger fragments described in 
section 3.1.2 was also implemented. It was compared with both software sorting 
and hardware sorting with PC merge. Figure 5.5 demonstrates organization of 
experiments with data sorters for the three-level system. 

1) Preparing initial
(unsorted) blocks
and sending the
blocks to FPGA;

2) Receiving sorted
blocks from FPGA;

3) Processing sorted
blocks

GPC FPGA

Sorting blocks 
by an iterative 

network

A
Merging the 
sorted blocks 
in a RAM‐

based circuit

B

PCI‐express

Figure 5.5 Organization of experiments with data sorters (the size of  the input data is 
256KB of 32-bit data items) [118] 

The system for data transfers between a host PC and an FPGA has been 
designed, implemented, and tested. Experiments were done in the VC707 
prototyping board that contains Virtex-7 XC7VX485T FPGA from the Xilinx 
7th series with PCI express endpoint connectivity "Gen1 8-lane (x8)". All 
circuits were synthesized from the specification in VHDL and implemented in 
the Xilinx Vivado 2016.2 design suite. Software programs in the host PC run 
under Linux operating system and they were developed in C language. Data 
were transferred from the host PC to the VC707 and back through PCI express. 
The host PC is based on Intel core i7 3820 3.60 GHz. 

Experiments have been done in accordance with Figure 5.5. The maximum size 
of data that are entirely sorted in FPGA is 256 KB. For larger size of data 
additional merging is done in the host PC. The results and comparison with 
sorting in the host PC are presented in Figure 5.6. It is clearly seen that sorting 
throughput for the proposed systems is significantly better than in the host PC. 
For example, 1,024 KB data can be sorted in the proposed system in 0.016 s and 
in the host PC in 0.11 s. Comparing the time of sorting reported in the 
referenced papers and the results of Figure 5.6 clearly demonstrate that the 
proposed solutions are faster.  
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Figure 5.6 Comparison with software sorting 

Figure 5.7 Comparison with hardware sorting with PC merge. 

The comparison with software merge solution with larger sorting network 
proposed above is presented in Figure 5.7. The results demonstrate that the 
proposed sorting with subsequent data merge in hardware is faster than sorting 
with PC merge, but both solutions perform better than the software sorting. In 
hardware merge-based solution we have utilized twice smaller sorting network, 
because of resource limitations of the VC707 device. Both solutions perform 
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almost identically with small data sets, but the hardware merge performs better 
starting with 64KB date set and peaks with 256KB set, which is maximal 
possible set to be sorted solely in hardware. After 256KB threshold the system 
starts using software merge similar to the software merge-based solution, but it 
merges data blocks of 256KB instead of 8KB. 1,024 KB data can be sorted in 
the hardware merge-based system in 0.016 s and in the software merge-based in 
0.027 s. Also it is important to mention that hardware-merge based solution 
utilized more than 70% of the device RAM blocks, while software merge 
solution doesn’t necessitate the usage of RAM blocks. 

Figure 5.8. Experimental results of sorting data sets with simultaneous item counting 
for different item sizes [119] 

Merging with item counting was performed for 32-, 16- and 8-bit items. The 36-
bit size of the word for 32-bit items in the BRAM was chosen. It means that the 
item count part of the word is 4-bit and capable of counting up to 15 repetitions, 
which is enough for experiments with randomly generated data. The system was 
configured to work with 32-bit words with 16-bit size of both the item and the 
count parts for counting and merging of 16- and 8-bit data. 

The experiments were conducted with randomly generated numbers. The 
merging with counting 32-bit items didn’t show any noticeable speedup over 
simple merging, since 216 of randomly generated numbers do not have 
significant number of repetitions. The merging with counting of the same 
number of 16-bit data items is 1,45 times faster than the simple merge and 
merge of 8-bit items is 27,28 times faster. 

We experimented with different volumes of 8-, 16- and 32-bit data items and 
compared them with software sorting.  The host PC was used for merging the 
data sets larger than volume of data that can be processed with the FPGA. In 
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addition to data sorting and merging, PCI express throughput and operating 
system overhead were also taken into account. 

Figure 5.8 depicts comparison of sorting data sets in the proposed system with 
8-, 16-, and 32-bit item sizes. 

5.2. Partial sorting 

We have implemented all the proposed in section 3.2 methods of partial sorters 
for minimal and maximal subset extractors using all platforms discussed in 
Chapter 4. Initially all these solutions were designed for PS/PL PSoC 
implementation, but we have conducted experiments for 2- and 3-level 
architectures involving host PC for exploration of additional features and 
comparison with known hardware alternatives. 

5.2.1. Hardware/software implementation of simultaneous min/max 
extractors 

The hardware/software systems for min/max subset extraction were designed as 
it was proposed in section 4.1.1. Xilinx PSoC Zynq-7000 was chosen as a 
platform for this implementation. 

Figure 5.9 shows the organization of experiments. Initial (source) data are either 
generated randomly in software of the PS with the aid of C language rand 
function (see number 1 in Figure 5.9) or prepared in the host PC (see number 2 
in Figure 5.9). In the last case data may be generated by some functions or 
copied from available benchmarks. Computing subsets in software/hardware 
systems is done completely in Zynq PSoC xc7z020-1clg484c housed on 
ZedBoard [143] with the aid the software/hardware architecture described in 
section 4.1. Computing subsets in software only sorters is completely done in 
the PS calling C language qsort function which sorts data and after that the 
maximum and minimum subsets are extracted from the sorted data. The results 
are verified in software running either in the PS (see number 3 in Figure 5.9) or 
in the host PC (see number 4 in Figure 5.9). Functions for verification of the 
results are given in [131]. Verification time is not taken into account in the 
measurements below.  

Synthesis and implementation of hardware modules were done in Xilinx Vivado 
2016.2 design environment from specifications in VHDL. Standalone software 
applications have been created in C language and uploaded to the PS memory 
from Xilinx SDK (version 2016.2) using methods described in [131]. 
Interactions with PSoC are done through the SDK console window.  
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Figure 5.9 Experimental setup [120] 

For all the experiments 64-bit AXI ACP port was used for transferring blocks 
between the PL and memories. More details about this port can be found in 
[131] [136] [137]. The size of each block for burst mode is chosen to be 128 of 
64-bit items (two 32-bit items are sent/received in one 64-bit word). Two 
memories were tested: the OCM and external (on-board) DDR. The OCM is 
faster because it provides 64-bit data transfers [135], but the size of this memory 
is limited to 256 KB. The available on ZedBoard 4 Gb DDR provides 32-bit 
data transfers. 

The measurements were based on time units (returned by the function 
XTime_GetTime [34]) for Lmax = Lmin = 64, M=32, and K = 200. Each unit 
returned by this function corresponds to 2 clock cycles of the PS [35]. The PS 
clock frequency is 666 MHz. Thus, any unit corresponds to approximately 3 ns. 
The PL clock frequency was set to 100 MHz. Figure 5.10 shows the time 
consumed for computing the maximum and minimum subsets for data sets with 
different sizes in KB (from 2 to 128). Since M=32 the number of processed 
words (N) is equal to the indicated size divided by 4. Figure 5.11 shows the 
acceleration of software/hardware systems comparing to the software only 
sorting in the PS. Note that Figures 5.10, 5.11 present diagrams for OCM. If 
DDR memory is used then communication overheads are slightly increased but 
acceleration in the software/hardware systems comparing to software only 
system is again significant. For M=64 speed-up is increased in almost 2 times.  
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– three sorting networks (section 3.2.1), method 2 – swapping networks (section 3.2.2),
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Figure 5.11 Acceleration of software/hardware systems comparing to software only 
system [120] 

If the size of the requested subsets is increased in such a way that all data need 
to be read from memory several times (see section 3.2.5.) then acceleration is 
decreased. Table 5.2 presents the results for extracting larger subsets 
(containing from 127 to 505 32-bit data items) from 128 KB set. 



78 

Table 5.2. The results for extracting larger subsets from 128 KB set 

N 127 190 253 316 379 442 505 

Time 
in s 

926.4 1,393.7 1,856.7 2,320.5 2,780.4 3,245.5 3,708.9 

For very large subsets acceleration may even be less than 1, i.e. software only 
system becomes faster. In such cases software/hardware sorters can be used 
directly and they provide acceleration for all potential cases even for Lmax = N or 
Lmin = N. Such acceleration is not as high as in Figure 5.11 and it is equal to 6 
for N = 512, K = 256 (now K is the size of blocks sorted in hardware and 
further merged in software) and 1.4 for N = 33,554,432, K = 256. These results 
were taken from experiments with data sorters from [131] (in all experiments 
M=32). We found that for small and moderate subsets the proposed here 
methods provide significantly better acceleration.  

5.2.2. Three-level system for min/max extractors 

The next experiments were done extracting the maximum and the minimum 
sorted subsets using the system described in section 4.3, which involves usage 
of general purpose PC and PCI express communication. We found that the 
acceleration is better than for complete data sorters described in section 5.1, 
which use the same approach. This is because the number of data transferred 
through PCI express is significantly decreased and almost all operations are 
done in the PSoC/FPGA. We implemented and tested the iterative circuit 
presented in section 3.1 (Figure 3.1) in the PL of PSoC, which takes data from 
the DDR memory and extracts the maximum and minimum subsets with 
Lmax/Lmin data items, where Lmax/Lmin varies from 128 to 1024 (as before M = 
32, L varies from 2 KB to 1024 KB). Table 5.3 presents the results for Lmax/Lmin 
= 128. 

TABLE 5.3. The results of experiments extracting the maximum/minimum subsets 

Data (KB)  Time (μs)  Data (KB)  Time (μs) 

2  70  64  254 

4  75  128  425 

8  89  256  916 

16  112  512  1543 

32  157  1024  3535 
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Table 5.3 presents the results for larger numbers of data items in extracted 
subsets (from 128 to 1024) for L = 256 KB. 

For very large subset extraction the approach described in section 3.2.5 was 
used. Table 5.4 represents experimental results for very large scale extraction 
based on 3-level for subsets up to 512 data items. 

TABLE 5.4.: The results of experiments with extracting subsets with different number of 
data items 

Data  Time (μs)  Data  Time (μs) 

128+128  916  640+640  4481 

256+256  1808  768+768  5372 

384+384  2698  896+896  6261 

512+512  3589  1024+1024  7152 

5.2.3. Separate min/max extractors and comparison with known 
hardware alternatives 

If only the maximum or only the minimum subsets have to be computed the 
acceleration is almost the same as with maximal and minimal extraction, but the 
occupied hardware resources are reduced. 

We implemented only minimum or only maximum subsets extractors with an 
aim to compare it with known alternatives. For this implementation Xilinx 
Virtex-7 FPGA was chosen and the two level-based architecture from section 
4.2 was used. We compared it with software sorting and a hardware solution 
from [39] (OEM/BM). Software solution is the most obvious and the most 
widely used quicksort implementation from C++ language (sort function). With 
this approach a whole data set is being sorted with subsequent extraction of the 
maximal (or minimal) subset. For comparison in hardware area, the system 
from [39] was implemented. After some experiments we found the optimal 
configuration for implementation for Virtex-7 device which extracts 128-item 
data sets. Any implementation for extracting 256-item data sets utilizes more 
than 100% resources of the device. We used suggested in the section 3.2.4 
concept of iterative max-set-selection units. The basis of this system is 
constructed from the two following blocks: 256-to-128 odd-even merge max-
selection units and reduced bitonic 256-to-128 unit which starts with core max-
selection unit. Inputs for core max selection units are outputs of OEM 256-to-
128 and outputs of BM sorter (which contains results from the previous 
iteration). 
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For our methods we implemented two different systems. One for finding 128-
item data subset in order to compare with OEM/BM method, and another for 
finding 1024-item data sets which is the maximal possible circuit that fits in the 
chosen Virtex-7 device. Post-implementation resource usage is shown in Table 
5.5. Methods A and B in this table refer to the methods described in section 
3.2.4 and depicted in Figure 3.15. Method A is a method based on two sorting 
networks and Method B is a method based on swapping networks. 

Table 5.5. Resource utilization for methods A and B from Figure 3.15 

Method 
Resources 

FF LUT 

Method A 128 9% 22% 

Method B 128 8% 19% 

Method A 1024 
(max) 

38% 94% 

Method B 1024 
(max) 

22% 70% 

OEM/BM 128 
(max) 

52% 78% 

Figure 5.12 Experimental results. Hardware subset extraction based on swapping 
network compared to software solution [122]. 
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Lookup table (LUT) usage for the method A is 3,5 times smaller and for the 
method B is 4 times smaller than OEM/BM based solution. The method A 
requires 5,7 times fewer amount of flip-flop (FF) than OEM/BM and the 
method B requires 6,5 times fewer FFs. Also it is necessary to mention that all 
modules required for PCIe DMA system utilize about 15% of LUTs. By 
subtracting these resources we see that pure min/max system for the method A 
requires 9 times fewer LUTs and the method B requires 15,7 times fewer LUTs. 

Available resources of Virtex-7 device allow us to expand our circuits for 
extracting larger maximum or minimum subsets. Both proposed architectures 
were expanded to extract subsets of 1024 items which is 10 times more than 
with OEM/BM approach. Although for simultaneous extracting of maximum 
and minimum subsets both proposed methods are identical in terms of resource 
usage and performance, the method B is better for extraction of maximum or 
minimum subset alone. 

Fig. 5.12 shows experimental results. With Virtex-7 and the proposed PCI 
express transfer system all hardware implementations showed approximately 
identical results. With architectures that allow faster data transfer OEM/BM 
approach may show better results, because for the proposed methods A and B 
the worst case performance is K/2 clock cycles for K inputs and OEM/BM 
performance is dependent on the number of pipeline stages. But because of 
significant economy of resources with the proposed methods (especially the 
method B) it is possible to speed up sorting by placing two or more instances of 
the sorting circuit that will sort parts of the whole data simultaneously. 

Comparison of the proposed methods for extracting the maximum and 
minimum sorted subsets with the results in [39] demonstrates that the proposed 
method permits significantly larger subsets to be constructed. Indeed, the 
maximum size of extracted subsets in [39] is smaller and the maximum size of 
initial set is only 256 items. This is because the methods [39] are based on even-
odd merge and bitonic merge networks for which the complexity of the circuits, 
i.e. the value of C(N), is limited. In our case, the maximum size of extracted 
subsets is 1024 (which exceeds the size of initial data sets in [39]) and the size 
of initial set is up to 1024 KB. The size of each item is 32 bits. The conclusion 
is the following: 1) the proposed methods enable data sets with significantly 
larger numbers of items to be processed; 2) the size of the extracted (minimum, 
maximum, or both) subsets may be increased in the proposed networks; 3) the 
performance (throughput) for processing large subsets in the proposed methods 
is better because complex tasks cannot be entirely solved in hardware using the 
methods [39] and the necessary software introduces large additional delays. 

5.3. Hamming weight and matrix covering 

The charts in Figure 5.13(a) permit to compare the suggested architectures with 
the best known alternatives, such as [89], [88], [87]. All the circuits were 
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synthesized, implemented in the Xilinx Zynq xc7z020 microchip, and tested in 
two prototyping boards: 1) Xilinx Zynq-7000 EPP ZC702; and 2) ZedBoard. 

The first chart (Figure 5.13(a)) shows the maximum combinational path delay 
and the second chart indicates the number of FPGA slices for different designs. 
The total number of available slices in the microchip xc7z020 is 13 300. For our 
circuits we also considered pipelined implementations which include additional 
registers between layers (see PLR in Figure 3.18). We found that the maximum 
delay between the registers can be as little as 1.253 ns. Thus, potential 
throughput can be less than 2 ns per weight. 

Implementation of matrix covering circuit which includes HW counters 
described in section 3.3 was done in the Xilinx Zynq-7000 PSoC ZC702 
evaluation kit. Software for the ARM was developed in C language and 
hardware for the PL was synthesized from specification in VHDL. Experiments 
were done with two types of matrices 32 × 32 and 64 × 64. Thus, either 32 + 32 
= 64 or 64 + 64 = 128 HW counters have been implemented in the PL section 
and all these circuits can run in parallel. Since Cmin and Rmax are found at 
different steps of the algorithm, only half of the HW counters work in parallel 
enabling either the minimal column Cmin or the maximal row Rmax to be found. 

Figure 5.13 Latency (a) and cost (b) comparison with comptitive solutions by Piestrak 
[88], Parhami [89] amd Perdroni [87]. [123] 
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We compared three different implementations in which the covering algorithm 
is either: 

1. Described in C language program running in PC with Intel i7 2.66 GHz
processor; 
2. Described in C language program running in ARM Cortex-A9;
3. Implemented in the PS and in the PL of Zynq-7000 PSoC.

Initial matrices have been generated randomly using the C rand function and 
identically for all the described above implementations. The number of 
instances (examples) was chosen to be 100,000. 

In the last case (see the point 3 above) that is the original contribution of the 
thesis  the following results have been obtained: 

1. Generating in the PS and transmitting the matrices from the PS to the PL
requires about 31 µs for 32 rows and 32 columns and about 34 µs for 64 rows 
and 64 columns. Only one AXI 32-bit (for the matrices 32 × 32) or 64-bit (for 
the matrices 64 × 64) port from the 4 available ports has been used. Clearly, 
additional ports permit the indicated time to be reduced; 
2. Each iteration in the PL is executed in about 28 ns for the matrices 64 × 64
and about 24 ns for the matrices 32 × 32; 
3. Communications between the PS and the PL (through interrupts and general-
purpose ports) at any iteration of the algorithm require negligible time 
comparing to other operations. 

The covering is found significantly faster than in software. The acceleration 
comparing with the PS only (see point 2 above) is from 30 to 50 times and 
comparing with the PC (see point 1 above) is from 5 to 10 times. This is 
because operations of the covering algorithm in software require many cycles 
and frequent transmission of data between processors and memories. For 
example, if we consider 64 × 64 matrices then a single matrix transfer from the 
PS to the DDR takes 33,300 ns on average and this is the most time consuming 
operation. Data transfer from the DDR to the PL is done in 284 ns on average. 
Once the PL receives the matrix data, no more interaction with the DDR is 
required for further processing. 

5.4. Summary 

In this chapter experimental results are presented. We conducted experiments 
for methods presented in Chapter 3 and implemented using approaches 
described in Chapter 4. 

The experiments were done with an advanced prototyping systems of Xilinx 7th 
series FPGA and PSoC devices, allowing data processing in complex 
hardware/software systems.  

We implemented, verified and tested methods proposed in this work and 
compared them with software running on general purpose computer and 
hardware solutions known from publications.  
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6. CONCLUSIONS
This thesis explored different methods of network-based accelerators for 
parallel data processing in several subjects. This chapter summarizes the main 
thesis contributions and outlines the directions for the future work. 

The accelerators for solutions of the problems proposed in this thesis are in very 
high demand in many areas and especially in those where time and resource 
consumption is critical. Fast sorting of high volumes of incoming streaming 
data with simultaneous subsets extraction and processing are vital tasks in many 
real-time systems where the information must be quickly analyzed. 

The architectures for building such accelerators in multi-level 
hardware/software systems were also proposed. These approaches can be 
modified for large variety of different data processing tasks which require fast 
analysis of the streaming data.  

The main contributions of the presented work are summarized below. 

 Hardware/software architectures for fast extraction of minimum and
maximum sorted subsets from large data sets and three methods of such
extractions based on highly parallel and easily scalable sorting networks.

The basic idea of the methods is incremental construction of the subsets that is 
done concurrently with transfer of initial data (source sets) through advanced 
high-performance interfaces in burst mode. The extracted subsets may be 
filtered and this feature is useful for control applications. The proposed 
solutions are highly parallel permitting capabilities of programmable logic to be 
used very efficiently. All the suggested methods were implemented in 
commercial microchips, tested, evaluated, and compared with alternatives. The 
results of experiments have shown significant speed-up of the proposed 
software/hardware systems comparing to software only systems and to 
competitive hardware/software implementations. The advantages of the 
proposed techniques over competitive hardware/software techniques include the 
ability to sort significantly larger data fragments and significantly more efficient 
resource utilization. The proposed techniques require from 9 to 15 times less 
FPGA LUTs than known alternatives for extracting subsets of the same sizes. 
The acceleration over GPP-only solutions is significant. 

 Hardware/software architectures for data sorting that involve sorting and
merging operations.

The distinctive feature of these architectures is parallelization at several stages 
with the adjusted time. The first stage is data sorting in hardware using periodic 
pipelined sorting networks and it is done in such a way that data acquisition, 
sorting and transferring the sorted data are carried out at the same time. The last 
stage is merging of hardware sorted subsets in software. The first architecture 
consists of these two stages, while the second architecture has the middle stage, 
which is a hardware pipelined RAM-based merger that enables merging at 
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different levels to be done in parallel and it can also be combined with the first 
stage. Such type of processing is efficient for sorting large sets (tens and 
hundreds millions of data items). The experiments were done with an advanced 
prototyping system (allowing data processing in a general-purpose computer 
and in recent FPGA from the Virtex-7 and PSoC Zynq-7000 of Xilinx). The 
results of experiments demonstrate significant acceleration comparing to 
general-purpose software and the results reported in publications. In comparison 
with other sorting networks the proposed sorters occupy significantly less 
hardware resources and therefore can sort larger amounts of data. The proposed 
network occupies less than 5% of the resources of the known network and the 
number of sorted items is exactly the same. Therefore the proposed system with 
subsequent merging is always faster than the alternatives because the merging 
starts with significantly larger sorted data subsets. Additionally the solution 
which involves simultaneous data sorting and item counting was proposed. This 
approach demonstrates even better performance with data sets with high number 
of repeated items and requires approximately the same amount of the hardware 
resources. It provides both fully sorted data set and a list of repeated data items. 

 Hamming weight/distance counters/comparators based on FPGA LUTs.

The results of experiments confirm correctness and effectiveness of the 
proposed technique. The proposed approach showed better results in both 
performance and resource utilization in comparison with other known 
alternatives. 

 A novel technique for implementation of matrix/set covering algorithms in
hardware and software of recent all programmable systems-on-chip.

A new method that permits the known approximate algorithm to be executed 
over suggested unrolled matrices is discussed and the relevant hardware 
accelerator is developed. It is shown that the covering algorithm can efficiently 
be partitioned in software and hardware modules that finally have been 
completely implemented and tested in Xilinx Zynq microchips. The results of 
experiments and comparisons with two different software implementations 
demonstrate significant speedup which is very important for various practical 
applications that are also mentioned in the paper. The comparison with PS only 
implementation showed the acceleration from 30 to 50 times and with PC – 5 to 
10 times. 
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6.1. Future Work 

This section outlines tasks and directions that need further investigation in the 
scope the studied topic. 

The investigation of different properties of network-based algorithms should be 
continued in order to increase hardware acceleration even further. The ability of  
swapping networks to generate bitonic sequences was higlighted and their 
properties can be integrated in the merge-tree structure for merging sorted data 
sets. Different methods proposed in this thesis could be also integrated for 
acceleration of more complex practical applications. One of those possible 
applications is integration of data sorting with simultaneous item counting and 
subsets extraction for solving the most frequent item computation. 

The new generation of PSoC devices which combine FPGA, CPU, real-time 
CPU and GPU on the same microchip should be analyzed and utilized for the 
applications discussed in this research. The distributed methods proposed in this 
thesis will definitely benefit from these newly emerged platforms. 
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ABSTRACT 
The thesis explores topics related to hardware acceleration of computationally 
intensive and resource consuming problems that may be used efficiently in 
information processing that is frequently needed in electronic, environmental, 
medical, and biological applications. We propose hardware acceleration 
methods for problems such as data sorting and merging, filtering and subset 
extraction, parallel covering of matrices/sets, Hamming weight computation and 
related tasks. Our solutions are based on highly parallel network-based methods 
which consist of large numbers of repeated elements. 

We use reconfigurable technologies such as field-programmable gate arrays 
(FPGA) and programmable systems on chip (PSoC) as target platforms for 
implementation of our data processing methods. Effectivness of these platforms 
and their combinations were investigated in this research. These platforms are 
very appropriate for implementation of such systems because of their low cost, 
flexibility, availability and many other advantages. 

The main contributions of this research are techniques for fast extraction of 
minimum and maximum sorted subsets from large data sets, data processing 
that involve sorting, merging operations and simultaneous item counting, 
hamming weight/distance counters/comparators, matrix/set covering and their 
implementations which involve hardware/software co-design and combinations 
of reconfigurable platforms. 
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KOKKUVÕTE 
Selles väitekirjas uuritakse teemasid, mis on seotud arvutusmahukate ja 
ressursikulu probleemide lahendamise riistvarakiirendusega, mida võib 
kasutada informatsiooni töötlemisel, mis on tihti vajalik elektroonika-, 
keskkonna-, meditsiini- ja bioloogilistes rakendustes. Pakutakse välja riistvara 
kiirenduse meetodeid erinevate probleemide nagu informatsiooni sorteerimine 
ja ühendamine, filtreerimine ja alamhulkade ekstraheerimine, paralleelsete 
maatriksite/kogumite katmine, Hamming’u kaalu arvutamine ja nendega seotud 
ülesannete lahendamiseks. Lahendused põhinevad tugevalt paralleelsetel võrgu-
põhistel meetoditel, mis koosnevad paljudest korduvatest arvutuselementidest. 

Andmetöötlusmeetodite realiseerimiseks kasutatakse riistvaraplatvormina 
ümberkonfigureeritavaid tehnoloogiaid nagu väliprogrammeeritavad 
väravamassiivid (FPGA) ja programmeeritavad süsteemid kiipidel (PSoC). 
Valitud platvormid sobivad väitekirjas väljatöötatud meetodite rakendamiseks 
oma odavuse, paindlikkuse ja teiste eeliste poolest. Lisaks uuriti antud töös ka 
platvormide efektiivsust meetodite rakendamiseks. 

Väitekirja põhitulemusteks on: kiire minimaalsete ja maksimaalsete sorteeritud 
alamhulkade leidmine suurtest andmehulkadest; andmetöötlusmeetodid, mis 
hõlmavad sorteerimist, operatsioonide ühendamist ja samaaegsete objektide 
loendamist; Hamming’u kaalu/kauguse loendurite/komparaatorite erilahenduse 
loomine; maatriksite/kogumite katmine; samuti loetletud tulemuste 
rakendamine, mis hõlmab riistvara/tarkvara koosprojekteerimist ja 
ümberkonfigureeritavate platformide kombineerimist. 
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f\ỲRYSWV]\
U[
Y\abUY\e
WVeUX
SWc
T\
W]̂U\d\e
UV
̂WYekWY\
W]]\Z\YWXRY[
̀RY
k̂U]̂spt	qTW[\e
[RZbXURV[
WY\
\[f\]UWZZc
fYRSU[UV_�
�X
U[
[̂RkVWVe
fYRd\e
UV
X̂\
fWf\Y
X̂WX
Y\]\VXZc
Wff\WY\e
RV
X̂\
SWYo\XWZZ
fYR_YWSSWTZ\
[c[X\S[qRVq]̂Uf
u	p�R�v
R̀
wUZUVh
xcVaẀSUZc
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Artjom Rjabov (2016). Hardware-based systems for partial sorting of 
streaming data. 15th Biennial Baltic Electronics Conference (BEC2016), 
Tallinn, Estonia, October 3-5, 2016. IEEE, 59−62. 
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Sklyarov, V.; Rjabov, A.; Skliarova, I.; Sudnitson, A. (2016). High-
performance Information Processing in Distributed Computing Systems. 
International Journal of Innovative Computing, Information and Control, 12 (1), 
139−160. 
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Abstract. The paper suggests and describes two architectures for parallel data sort. The first architecture is applicable to large data
sets and it combines three stages of data processing: data sorting in hardware (in a Field-Programmable Gate Arrays – FPGA), merging
preliminary sorted blocks in hardware (in the FPGA), and merging large subsets received from the FPGA in general-purpose software.
Data exchange between the FPGA and a general-purpose computer is organized through a fast Peripheral Component Interconnect (PCI)
express bus. The second architecture is applicable to small data sets and it enables sorting to be done at the time of data acquisition, i.e. as
soon as the last data item is received, the sorted items can be transferred immediately. The results of experiments clearly demonstrate the
advantages of the proposed architectures that permit the reduction of the required hardware resources and increasing throughput compared
to the results reported in publications and software functions targeted to data sorting.

Key words: parallel data processing, merging, iterative networks, communication-time processing, Field-Programmable Gate Array
(FPGA), Peripheral Component Interconnect (PCI) express bus.

1. INTRODUCTION

Sorting is a procedure that is needed in numerous computing systems [1,2]. For many practical applications,
sorting throughput is very important. To better satisfy performance requirements, fast accelerators based on
Field-Programmable Gate Arrays (FPGAs) (e.g. [3–11]), Central Processing Units (CPUs) (e.g. [7,12–16]),
and multi-core CPUs (e.g. [17,18]) have been researched in depth. Two of the most frequently explored parallel
sorters are based on sorting [1–3,19] and linear [4] networks. A sorting network is a set of vertical lines composed
of comparators that can swap data to change their positions in the input multi-item vector. The data propagate
through the lines from left to right to produce the sorted multi-item vector on the outputs of the rightmost vertical
line. Three types of such networks have been studied: pure combinational (e.g. [3,9]), pipelined (e.g. [2,3,9]),
and combined (partially combinational and partially sequential) [2,5,20]. The linear networks, which are often
referred to as linear sorters [4], take a sorted list and insert new incoming items in the proper positions. The
method is the same as the insertion sort [1] that compares a new item with all items in parallel, then inserts the

* Corresponding author, artjom.rjabov@ttu.ee
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Fig. 1. The number of comparators for different values N of data items.

new item at the appropriate position, and shifts the existing elements in the entire multi-item vector. The main
problem with this method is that it is applicable only to small data sets (see, for example, the designs discussed
in [4], which accommodate only tens of items).

The majority of sorting networks implemented in hardware use Batcher even-odd and bitonic mergers [21].
Other types are rarer (see, for example, the comb sort [22] in [8], the bubble and insertion sort in [3,9], and
the even-odd transition (transposition) sort in [12]). Research efforts are concentrated mainly on the following
three directions: (1) networks with a minimal depth or number of comparators (e.g. [3,13]); (2) co-design,
rationally splitting the problem between software and hardware (e.g. [3,9]), and (3) the regularity of the circuits
and interconnections (e.g. [2,5]).

We target our results towards FPGAs because these devices are regarded more and more as a universal
platform that enables computational algorithms to be significantly accelerated. The FPGAs still operate on a
lower clock frequency than non-configurable Application-Specific Integrated Circuits (ASICs) and Application-
Specific Standard Products (ASSPs) and broad parallelism is evidently required to compete with potential
alternatives. Thus, sorting and linear networks can be seen as very adequate models. Unfortunately, they have
many limitations. Suppose N data items, each of size M bits, need to be sorted. The results of [3,13] show
that the most widely used sorting networks [19,21] cannot be built for N > 128 (M = 32), even in a relatively
advanced FPGA because the hardware resources are not sufficient. Iterative networks from [2] enable the number
of comparators C(N) to be notably decreased but even after that we cannot sort more than 4096 items in the most
advanced FPGAs, such as that from the Virtex-7 family of Xilinx. When N is increased, the complexity of the
networks (the number of comparators/swappers C(N4)) grows rapidly [1–3,9,19] (see Fig. 1).

It is easy to conclude from Fig. 1 that sorting networks can be implemented in an FPGA only for a small
number N of items while practical applications require millions of such items to be processed. One possible
way is to sort relatively small subsets of larger sets in an FPGA and then to merge the subsets in software of
a higher-level system (see Fig. 2). The initial set of data that is to be sorted is divided into Z subsets of N
items. Each subset is sorted in an FPGA using the referenced networks. Merging is executed as shown in Fig. 2,
in a host system/processor that interacts with the FPGA. Each horizontal level of merging permits the size of
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Fig. 2. The merging of sorted subsets in a software of a higher-level system.

blocks to be doubled. Thus, if N = 210 = 1024 and K = 220 = 1048576 items are to be sorted, then 10 levels of
mergers are required (see Fig. 2). Clearly, the larger are the blocks sorted in FPGAs, the less merging is needed.
Thus, we have to sort in hardware as many data items as possible with such throughput that is similar to the
throughput of sorting networks. Besides, the networks [19,21] involve significant propagation delays through
long combinational paths. Such delays are caused not only by comparators, but also by multiplexers that have
to be inserted and by interconnections. Hence, clock signals with high frequency cannot be applied. Pipelining
permits the clock frequency for circuits to be increased because delays between registers in a pipeline are reduced.
A number of such solutions are described in [3,13]. However, once again, the complexity of the circuits becomes
the main limitation. The analysis presented in [2] enables us to conclude the following: (1) the known even-odd
merge and bitonic merge circuits [19,21] are the fastest and enable the best throughput to be achieved. However,
they are very resource-consuming and can only be used effectively in existing FPGAs for sorting very small
data sets; (2) pipelined solutions permit faster circuits than in point (1) to be designed. However, assuming
that pipelining can be based on flip-flops in the used slices (so that additional slices are not required), resource
consumption is at least the same as in point (1), therefore, in practice, only very small data sets can be sorted; (3)
the existing even-odd merge and bitonic merge circuits are not very regular (compared to the even-odd transition
network, for example) and, thus, the routing overhead may be significant in FPGAs.

There is also another problem that might arise. As a rule, initial data and final results are stored in conventional
memories and each data item is kept at the relevant address of the memory. Suppose we would like to sort a set of
data items. Let us look at Fig. 3 where the initial (unsorted) set is saved in the memory and the resulting (sorted)
set is also saved in the memory. Parallel operations need to be applied to parallel subsets of data items, thus, in the
beginning, initial data need to be unrolled (see Fig. 3) and the sorted items need to be stored in the memory one by
one (see Fig. 3). Hence pre- and post-processing operations are involved and they (1) sequentially read unsorted
data items and save them in a long-size input register and (2) copy the sorted data items from the long-size output
register to conventional memories. These operations undoubtedly involve significant additional time. To reduce
or even avoid such time, we have to be able to combine reading/writing data items and their sorting. We will call
such type of data sorters communication-time data sorters.

This paper proposes a set of methods and device architectures with the following novel contributions:
1. The less resource-consuming iterative networks from [2] should be combined in hardware with pipelined

Random Access Memory (RAM)-based data mergers, which permits
(a) increasing the number of data items sorted in hardware significantly (more than one hundred times compa-

red to [2]) without performance degradation,
(b) performing data sorting in parallel with merging in hardware;



326 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323–335

D
0

D
1

D
N

-1

D
0

D
1

D
N

-1

U
n

ro
ll

in
g

 d
a

ta

Initial (unsorted) data

D
a

ta
 p

ro
ce

ss
in

g

D
0

D
1

D
N

-1

D
0

D
1

D
N

-1

The resulting 

(sorted) data

S
a

v
in

g
 t

h
e

 r
e

su
lt

Memory Memory

D0,…,DN-1 are N data 

items

Fig. 3. Pre- and post-processing.

2. Communication-time data sorters that enable data acquisition and sorting to be executed in parallel in such a
way that data sorting is completed as soon as the last data item has been received;

3. Three-level data sorters, two of which (network-based sorters and RAM-based mergers) are implemented in
an FPGA and the last one – in a higher-level computing system that is in our case a general-purpose computer
interacting with the FPGA through the Peripheral Component Interconnect (PCI) express bus.

2. SYSTEM ARCHITECTURE

Figure 4 depicts the considered system architecture. There are two basic subsystems that are a general-purpose
computer (GPC) and an FPGA interacting through the PCI express bus. Let us assume that the FPGA can sort L
blocks and each block contains up to N data items, i.e. such a number of items that can be sorted in the network
[2]. The FPGA receives L blocks (containing up to N data items) from the GPC, sorts each block (see the rectangle
A in Fig. 4), merges the sorted blocks (see the rectangle B in Fig. 4), and sends L×N sorted data items back to the
GPC. The size M of each item is chosen to be 32 bits and it might be increased easily (FPGA circuits are easily
scalable). Four 32-bit data items are packed in 128-bit words for data exchange through the PCI express bus.

1) Preparing initial 
(unsorted) blocks 
and sending the 
blocks to FPGA;

2) Receiving sorted 
blocks from FPGA;

3) Processing sorted 
blocks

GPC FPGA

Sorting blocks 
by an iterative 

network

A
Merging the 
sorted blocks 

in a RAM-
based circuit

B

PCI-express

Fig. 4. General architecture of the considered system.
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The FPGA implements circuits for the two levels referenced above, i.e. for an iterative sorter (see the rectangle
A in Fig. 4) and for a merger (see the rectangle B in Fig. 4). In the beginning, we will use the network from [2]
extended with some additional registers allowing data acquisition, sorting, and subsequent merging to be partially
combined. Such an architecture implemented in the FPGA will be discussed in the following two subsections.
The next section suggests some improvements of the network to design communication-time data sorters.

2.1. Iterative network for sorting data

Figure 5 depicts the used iterative network. The core of the network is the circuit proposed in [2]. There are also
two additional registers Ri and Ro. The register Ri sequentially receives N data items from the GPC through the
PCI express bus. It was explained above that such N items compose one block that can be entirely sorted in the
network [2]. In practice, four items are packed and thus, parallel writing to the register Ri of four 32-bit items
is actually done. As soon as the first block is received, all data items from this block are sorted in the iterative
network from [2], and the maximum number of clock cycles is N/2 [2]. At the same time, data items from the
next block are received from the GPC through the PCI express bus. As soon as data items from the first block are
sorted, they are copied in parallel to the output register Ro. After that the second block is copied to the register
R and sorted (see Fig. 5) and the third block is being received from the GPC through the PCI express bus. At
the same time, the first sorted block is copied to the embedded block-RAM for subsequent merging. Hence, the
first sorted block will be copied to RAM after the acquisition of two blocks from the PCI express bus. Then data
acquisition from the GPC, data sorting, and copying data to the merger will be done in parallel. We can see from
Fig. 5 that there are just two sequential levels of comparators/swappers in the iterative data sorter [2]. Thus, the
delay is very small and we can apply high synchronization frequency. The results of [2] clearly demonstrate that
such circuits are very efficient. Additional improvements are done to adjust the speed of data acquisition and
sorting. Indeed, one block of N data items is received in N/4 clock cycles and the sorting time is up to N/2 clock
cycles, i.e. it is almost two times longer.

Figure 6 demonstrates how to adjust the speed. There are now two iterative data sorters running in parallel.
The first sorter processes data from the first half of the register Ri and the second sorter processes data from the
second half of the register Ri. In the beginning, two blocks with 2×N items are copied to Ri and it involves
2×N/4 = N/2 clock cycles. Then two blocks are sorted in parallel, which also involves up to N/2 clock cycles.
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Fig. 6. Adjusting the number of clock cycles required in different blocks.

Finally, two sorted blocks are copied to two dual-port embedded block-RAMs. The respective write port is
configured for data width 64. Thus, pairs of data items are copied in each clock cycle and it involves totally also
N/2 clock cycles for both blocks. Therefore, everything is completely adjusted.

2.2. Pipelined merging

Merging is done on the basis of embedded block-RAM. Figure 7 shows one level of merging. Input data comes
from two embedded block-RAMs, which is merged, and copied to a new embedded block-RAM. There are two
address counters for each input RAM. In the beginning they are set to 0. Two data items are read and compared.
If the item is selected from the first RAM, the address counter of the first RAM is incremented, otherwise the
address counter of the second RAM is incremented. Two N-item blocks are merged in 2 × N clock cycles.
Different types of parallel merging have been verified and compared. We found that the best result (i.e. the fastest
and the less resource-consuming) is produced in a simple RAM-based circuit depicted in Fig. 8.

There are G levels to merge L sorted blocks and 2G−1 < L ≤ 2G. The first level is composed of L embedded
block-RAMs. The second level is composed of L/2 embedded block-RAMs, and the last level is composed of
one embedded block-RAM. The size of each RAM for the first level is N 32-bit words for reading and N/2 64-bit
words for writing. The size of each subsequent level is doubled. Initially, L embedded block-RAMs of the first
level are filled in with sorted blocks. Then these blocks are merged at the second level. Afterwards the blocks
of the second level are merged at the third level and at the same time the block-RAMs of the first level are being
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Fig. 7. Simple merging of two sorted blocks.
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Fig. 8. Pipelined merging with embedded block-RAM.

filled in with a new subset of L sorted blocks. Thus, many subsets of L blocks will be processed in parallel and
this is a special type of pipeline organized based on embedded block-RAMs (see Fig. 8).

The architecture in Fig. 8 permits many sets with L blocks (each block contains N M-bit data items) to be
sorted in the pipeline in the way shown in Fig. 9. Equal numbers enclosed in circles indicate the steps executed
in parallel. It was shown in the previous section (2.1) that the first time the level 1 block-RAM will be filled in
with sorted data from the first block is after 3×N/2 clock cycles. After that it is updated with the new block
in N/2 clock cycles. So, an additional delay appears just from the beginning and it is avoided in the subsequent
steps. As soon as data are copied to the first-level RAM, merging is started and the sorted data are copied from
the first-level to the second-level RAM. This process involves L×N/2 clock cycles. During this period of time
the first-level RAM is used for merging and new data items cannot be copied to this RAM. In fact, it is possible
to merge and to sort data at the same time. However, we found that such merger requires a complex arbitration
which significantly increases hardware resources leading to reducing the size N of blocks. Finally, such more
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Fig. 9. Parallel operations in the proposed architecture.
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complicated circuits do not give any advantage. This means that the resulting throughput cannot be increased.
As soon as merging is completed, all data are copied to the second-level RAM and the first-level RAM may be
refilled with new L sorted blocks.

Figure 9 explicitly indicates parallel operations. For example, merging at levels 3, 5, 7 is executed in parallel
with data sorting. This method can be applied to the sorting of very large sets of data (tens and hundreds of
millions of data items). In this case, the GPC (see Fig. 4) divides a very large set into subsets composed of L×N
data items. The subsets are sorted in the pipelined structure shown in Fig. 9 and then merged in the software
of the GPC. The experimental section below demonstrates that the data sorter implemented in Virtex-7 FPGA
allows sorting data in hardware for L = 128 and N = 512. Thus, 512× 128 = 65536 32-bit data items (or
256 KB) are sorted and then 256 KB blocks can be merged in software. It will be shown in the experimental
section that sorting in hardware (including data exchange with the GPC) is faster than similar sorting in software.
Merging larger blocks permits the time of sorting in software to be considerably reduced.

3. COMMUNICATION-TIME DATA SORTERS

The actual performance of the designed circuits is often limited by the interfacing circuits that supply the initial
data and return the results. Indeed, even for the most recent and most advanced on-chip interaction methods,
such as those used in the Advanced eXtensible Interface (AXI), the communication overheads do not allow the
theoretical throughput to be achieved in practical designs. The method and architecture described above permit
only a small delay for data transmission in the beginning. When we sort large sets of data such delay is indeed
negligible compared to the total delay. So, the proposed technique is very effective. In many practical cases we
would like to sort small sets, such as those composed of N data items. For such a case the delay between the
last received item and the final result of sorting becomes up to N/2 clock cycles and this may not be acceptable
for many practical applications. We consider in this section such a method that enables the sorted results to be
sequentially copied immediately after the last data item is received.

We describe below a parallel circuit that enables sorting to be entirely done within the time required for data
transfers to and from the circuit; no additional time is required. Further, the design is very economical. The
communication-time circuit, which is based on the network for discovering minimum and maximum values from
[23], is shown in Fig. 10. It is composed of N M-bit registers R0,..., RN−1, and N −1 comparators/swappers.

At the initialization step, all the registers R0,..., RN−1 are set to the minimum possible value for data items.
For the sake of simplicity, this value is assumed to be 0. Any other value may also be chosen. Data items are
received sequentially from interfacing circuits through the multiplexer Mux. The value x is set to 0, so all input

a

b

c

d

a

b

c

d

e

f

g

e

f

g

N
 M

-b
it
 i
te

m
s

V

N
 M

-b
it
 r

e
g

is
te

rs

M-bit 

input M-bit 
output

x

x

x

x x

x

x

x=0 x=1

Communicates either M-bit input vector or V

clock

Configurable 
comparator swapper

s

R0

RN-1Mux

Fig. 10. Communication-time data accumulator/sorter.



V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 331

a

b

c

d

a

b

c

d

e

f

g

e

f

g

0

M-bit 

input M-bit 
output

Communicates M-bit input vector

clock

M-bit input45 0 90 24 3 70 24 56

0

0

0

0

0

0

56

0

0

0

0

0

0

24

56

0

0

0

0

0

0

0

0

0

c1 c2 c3 c4 c5 c6 c7 c8

0

0

0

0

24

56

70

0

0

0

0

3

56

24

70

0

0

0

3

24

56

24

70

0

0

3

24

24

56

70

90

0

3

24

24

0

70

56

90

0

24

3

24

45

70

56

90

0

R0

RN-1
s

Mux

Fig. 11. An example of communication-time accumulation of input data items.

items will be moved up and accommodated somehow in the registers. Indeed, since the bottom line (marked as
M-bit output) always contains the smallest value [23], any incoming item is either the smallest, or will be moved
up. Figure 11 demonstrates how N M-bit items are accommodated, using an example with N = 8 items arriving
in the following sequence: 1) 56; 2) 24; 3) 70; 4) 3; 5) 24; 6) 90; 7) 0; 8) 45.

Data may be received from a host system (such as ARM [24]) and accommodated in the registers R0,..., RN−1
during communication time in N clock cycles indicated in Fig. 11 by symbols c1, ..., c8(N = 8). As soon as N
sorted data are received, the sorted result can be transferred immediately to the host system as shown in Fig. 12.

Now the multiplexer Mux communicates the maximum possible data value (m) to the register RN−1 and x
is 0. Since x = 0, the maximum value will always be moved up at each clock cycle [23] enabling real-time
transmission of the sorted items (through the M-bit output) in ascending order. To transmit the sorted items in
descending order, it is necessary to set x to 1 and to replace the maximum possible value for data items (m) that
is supplied to the multiplexer M with the minimum possible value.
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The experiments have demonstrated that the circuit shown in Fig. 10 for N = 512, M = 32 can be built even
for relatively small FPGAs, such as those available in the Nexys-4 prototyping board of Digilent. For advanced
FPGAs, such as those from the Xilinx Virtex-7 family, the communication-time data sorter may be built for
N > 4096. The results of experiments and comparisons will be given in the next section. Note once again that
the communication-time circuits described above are advantageous for small autonomous sorters, which need the
result to be produced immediately after the last item is received. In particular, they do not give any advantage for
the methods and architectures described in Section 2. Therefore, the methods described in Section 2 are beneficial
for sorting large data sets and the methods considered here are beneficial for sorting small data sets.

4. EXPERIMENTS AND COMPARISONS

The system for data transfers between a host PC and an FPGA has been designed, implemented, and tested.
Experiments were done in the VC707 prototyping board [25] that contains Virtex-7 XC7VX485T FPGA from
the Xilinx 7th series with PCI express endpoint connectivity “Gen1 8-lane (x8)”. All circuits were synthesized
from the specification in VHDL and implemented in the Xilinx Vivado 2016.1 design suite. Software programs
in the host PC run under the Linux operating system and they were developed in C language. The data were
transferred from from the host PC to VC707 and back through the PCI express. The host PC is based on Intel
core i7 3820 3.60 GHz.

The experiments were done in accordance with Fig. 4. The maximum size of data that are entirely sorted in
the FPGA is 256 KB. For a larger size of data additional merging is done in the host PC. The results are presented
in Fig. 13. It is clearly seen that the sorting throughput for the proposed systems is significantly better than in
the host PC. For example, 1024 KB data can be sorted in the proposed system in 16 ms and in the host PC in
110 ms. The comparison of the time of sorting reported in the referenced papers and the results of Fig. 13 clearly
shows that the proposed solutions are faster. Figure 14 demonstrates the organization of the experiments for
communication-time data sorters (see Section 3).

Now autonomous circuits applicable to small data sets are synthesized, implemented, and tested. We have
used a relatively low-cost Digilent Nexys-4 prototyping board with Xilinx Artix-7 FPGA xc7a100 [26]. N initial
unsorted 32-bit data items (M = 32) are generated randomly and supplied to the communication-time data
accumulator/sorter through the M-bit input (see Fig. 10). The clock frequency for data transfers was chosen to be
100 MHz (that is the default frequency of the on-board oscillator). An initial unsorted set of data is supplied and
the sorted set is transmitted back entirely within 2×N clock cycles, which is just the time for data communication.

Table 1 displays the hardware resources that were used, as obtained from the Vivado post-implementation
reports (including supplementary circuits, such as random number generation (RND)). Clearly, circuits for

Fig. 13. An example of transmitting sorted data items.
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Table 1. The hardware resources used for the Nexys-4 prototyping board

significantly larger values of N than in the known even-odd merge and bitonic networks [19,21] have been
built. The design proposed is also faster. Indeed, solving similar problems to those in Table 1 in networks
[19,21] requires data to be copied to a long register that provides network inputs. The size S of this register,
even for the smallest number of N = 64 in Table 1, is equal to N × N = 2048 and if N = 512, then
S = 16384 bits. Commercial FPGAs do not have such a large number of external pins and data items need
to be copied sequentially and multiplexed to different sections of the register. Similarly, the sorted items must
be segmented and transmitted back sequentially through the relevant interfacing circuits. If we consider on-
chip communications (such as those available for Zynq all programmable systems-on-chip – APSoC [25]), we
can see that the maximum number of high-performance AXI interfaces is 5 and the maximum number of bits
transferred through each interface is 64. Thus, multiplexing is also necessary, which involves additional delays
and resources. In the proposed design, the circuit itself receives and transmits data in parallel with sorting and no
additional resources are required. The number of combinational levels in the proposed circuit is equal to ⌈log2N⌉
and it is less than for the networks [19,21] where it is equal to ⌈log2N⌉×(⌈log2N⌉–1).

5. CONCLUSION

The paper proposes two architectures that are applicable to sorting large and small data sets. The distinctive
feature of the first architecture is parallelization at several stages with the adjusted time. The first stage is data
sorting, which is done in such a way that data acquisition, sorting, and transferring the sorted data are carried out
at the same time. The second stage is a pipelined RAM-based merger that enables merging at different levels to be
done in parallel and it can also be combined with the first stage. Such a type of processing is efficient for sorting
large sets (tens and hundreds of millions of data items). The distinctive feature of the second architecture is
communication-time processing, which permits sequential transfer of the results of sorting immediately after
the last data items have been received. Such a type of processing is often needed for autonomous sorter
operations over a relatively small number of data items (from hundreds to thousands of items). Thus, the proposed
architectures complement each other. The experiments were done with an advanced prototyping system (allowing
data processing in a general-purpose computer and in a recent FPGA from the Virtex-7 family of Xilinx) and
with autonomous circuits implemented in a low-cost FPGA from the Artix-7 family of Xilinx. The results of
experiments demonstrate significant acceleration compared to general-purpose software and the results reported
in publications.
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Kiired iteratiivsed ahelad ja RAM-i baasil ühendajad, kiirendamaks andmete sortimist
riist- ning tarkvara süsteemides

Valery Sklyarov, Iouliia Skliarova, Artjom Rjabov ja Alexander Sudnitson

On välja pakutud ja kirjeldatud kaks arhitektuuri paralleelsete andmete sortimiseks. Esimene on mõeldud
suuremahuliste andmekogude jaoks, ühendades kolm andmete töötlemise astet: andmete sortimine riistvaras
(FPGA-s), eelsorditud andmete ühendamine riistvaras (FPGA-s) ja seejärel nende suurte alamhulkade
üldotstarbeline ühendamine tarkvara abil. Andmete vahetamine FPGA ja üldotstarbelise arvuti vahel toimub
läbi PCI ekspress-siini. Teine arhitektuur on rakendatav väiksemate andmekogude puhul, võimaldades sorti-
mist andmete samaaegse vastuvõtuga, st kui viimane andmete osa on käes, võib sorditud osad kohe edasi
saata. Võrreldes erinevate varem avaldatud tulemustega, kus on kasutatud tarkvaralisi lahendusi, näitavad katse-
tulemused pakutud arhitektuuride eeliseid, mis lubavad vähendada vajaminevaid riistvararessursse ja suurendada
tootlikkust.
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