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1. INTRODUCTION

The thesis explores methods of creating hardware accelerators for
computationally intensive and resource consuming problems. It also addresses
hardware/software co-design approaches for solving these tasks and studies
different reconfigurable platforms.

The introductory chapter presents the motivation behind the thesis, followed by
the problem formulation and the outline of main contributions. The last section
of this chapter is an overview of the thesis structure.

1.1. Motivation

Fast information processing is in very high demand in electronic,
environmental, medical, and biological applications. They frequently need to
process data streams produced by sensors and calculate certain parameters [1].
Signals from sensors may need to be filtered and analyzed to prevent error
conditions. To provide a more precise and reliable conclusion, combinations of
different values need to be extracted, ordered, and analyzed.

Many methods that are used to solve such problems possess the need for
parallel processing of data streams and high repetition of operations. Network-
based hardware accelerators for such systems allow to process very high
volumes of data simultaneously. The reconfigurable hardware platforms are
very appropriate for implementation of such systems because of their low cost,
flexibility, availability and many other advantages [2].

The use of reconfigurable technologies may help to overcome challenges that
the area of hardware design faces nowadays. By reconfigurable technologies we
commonly mean field-programmable gate arrays (FPGA) and programmable
systems on chip (PSoC). Those platforms allow the productivity to be increased
and time-to-market to be shortened, because of their relatively low cost and fast
development methodology. They may be used effectively for both production of
final products and design prototyping. New FPGAs constantly appearing on the
market permit to design faster and more complex systems. Recently released
multiprocessing systems, such as all-programmable ultra-scale PSoC, combine
multicore processors, graphical processors (GPU), real-time processors and
programmable logic providing us with the possibility to design embedded
systems with computational power comparable with that of general purpose
computers and lower power consumption [3].
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1.2. Problem formulation

The current thesis is focused on network-based hardware accelerators for
parallel data processing in the areas or combinatorial search (e.g. Boolean
satisfiability and set/matrix covering) and data processing (e.g. sort, search and
frequent item computations).

Sorting and searching procedures are needed in numerous computing systems
[4]. They can be used efficiently for data extraction and ordering in information
processing. Some common problems that they apply to are (see also Figure 1.1):

1. Extracting sorted maximum/minimum subsets from a given set.

2. Filtering data, i.e. extracting subsets with values that fall within given
limits.

3. Dividing data items into subsets and finding the
minimum/maximum/average values in each subset, or sorting each subset.

4. Finding the value that is repeated most often, or finding the set of n values

that are repeated most often.

Removing all duplicated items from a given set.

Computing medians.

7. Solving the problems indicated in points 1-6 above for matrices (for
rows/columns of the matrices).

SN

The given set of data
|

Filtering :>

Dividing into intervals and
Interval 0 | finding the minimum/maximum/| Interval V-1
average values in each interval

Sorted subset
The maximum between the given The minimum
sorted subset maximum and sorted subset
minimum values

Data sort
Removing Statistical data Finding the
repeated manipulation most repeated
items item

Figure 1.1 Common problems that are frequently solved in information processing
systems [5]

We target our results towards reconfigurable platforms because these devices
are regarded more and more as a universal platform that enables computational
algorithms to be significantly accelerated. The following known architectures
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are analyzed, compared, and explored in this work: 1) advanced FPGAs
incorporating embedded blocks (DSP slices, embedded cores, etc.) and
supported by existing soft cores; 2) programmable systems on chip (PSoC) that
enable on-chip interactions between an embedded processing multi-core system
and a reconfigurable logic with embedded blocks. The main idea is to select
problems from the areas listed above and evaluate effectiveness of different
architectures assuming also their potential combination in a new (proposed
architecture) that might be the most efficient.

1.3. Contributions

In this thesis, we present novel methods and hardware/software architectures for
acceleration of data sorting and merging, filtering and subset extraction, parallel
covering of matrices/sets, Hamming weight computation. The results are
presented in numerous recent publications. The proposed solutions
outperformed many known alternatives (and many of them by a significant
margin). Comparisons have been done with software only systems and other
known FPGA-based systems known from publications.

The main contributions of this thesis are summarized as follows:

e Hardware/software architectures for fast extraction of minimum and
maximum sorted subsets from large data sets and three methods of such
extractions based on highly parallel and easily scalable sorting networks.

0 Three methods of subsets extraction.
0 Filtering and very large subsets extraction

e Hardware/software architectures for data sorting that involve sorting and
merging operations.

0 The solution based on hardware sorting with subsequent software
merging of sorted subsets using embedded processor of PSoC and
general purpose PC.

0 The solution based on hardware sorting with subsequent hardware
merge of small sorted subsets with software merge of larger
subsets.

e Hamming weight/distance counters/comparators based on FPGA lookup
tables (LUTs).

e A novel technique for implementation of matrix/set covering algorithms in
hardware and software of recent all programmable systems-on-chip.
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1.4. Thesis Organization

The remaining part of the thesis contains 5 chapters. Chapter 2 provides
background information on hardware parallel processing and network-based
design and makes a review of state-of-the-art in this area. It also contains a
survey of related works of the topics.

Chapter 3 contains descriptions of all proposed methods of data sorting and
merging, minimal and maximal subset extraction, Hamming weight calculation
and matrix covering.

Chapter 4 presents architectures of hardware/software co-design based on
FPGA, PSoC and general purpose PC. It also describes implementations of the
proposed methods using these approaches.

Chapter 5 provides experimental results of the proposed methods using
proposed hardware/software co-design approaches and contains comparison
with known alternatives.

Chapter 6 concludes the thesis and discusses the directions for the further
research.

15



2. RELATED WORKS

Highly parallel networks for sorting and searching enable numerous operations
to be executed simultaneously. They have been extensively studied in VLSI
area [6] [7]. These methods are very appropriate for devices which provide
massive parallelism like GPU [8] or FPGAs [9] and PSoCs. All these platforms
have their advantages and disadvantages. FPGA work on a relatively low speed,
but provide flexibility which makes it possible to develop optimized application
specific solutions. GPU usually work on much faster clock rates, but have fixed
architecture. Additional advantage of FPGA is much better energy efficiency.
GPU offer shorter development time, but recent high-level synthesis tools and
emerging of hybrid PSoC platforms reduced development time for FGPA as
well. Choosing the right platform is always a tradeoff between all these factors
[10] [11][12][13].

2.1. Sorting

Parallel algorithms for data sorting have been studied in computer science for
decades. There are many different parallel sorting algorithms [6]. Most notable
of them are Parallel QuickSort [14], Parallel Radix Sort [15], Sample Sort [16]
[17], Histogram Sort [18] and a family of algorithmic methods known as sorting
networks [19]. The latter present a great interest for hardware acceleration. A
sorting network is a set of vertical lines composed of comparators that can swap
data to change their positions in the input multi-item vector. The data propagate
through the lines from left to right to produce the sorted multi-item vector on
the outputs of the rightmost vertical line.

A —> — max(A,B) A max(A,B)
Compator/ ‘
Swapper . .
B — — min(A,B) B min(A,B)
(a) (b)

Figure 2.1 (a) A comparator/swapper block. (b) A comparator/swapper block in Knuth
notation.
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Sorting networks are composed solely from circuits known as
comparators/swappers (C/S) or “compare and exchange blocks” (CAE). Single
C/S unit is depicted in Figure 2.1(a). For inputs A and B the top output of C/S
gives us the result of the function max(A,B), and the bottom output gives
min(A,B). Figure 2.1(b) shows the most common way to represent sorting
networks — Knuth notation or Knuth diagram. This notation is used in the rest of
this work.

) 4 ) 4 ) 4
) 4 ) 4
B \ AR
Y
L
) 4 ) 4 ) 4
1
vl ¥
 §  §
Y VY
(a) (b)
() (d)

Figure 2.2 Different sorting networks with 8 inputs: (a) “Butterfly network” version
of Bitonic sorting network. (b) Bitonic sorting network without reversal. (c) Odd-
even merge sorting network. (d) Odd-even transposition sorting network.

The problem of finding the optimal sorting network is a very well-known
problem in computer science and remains a subject of extensive research [20]
[21]. One of the most famous results on the sorting network depth was obtained
by Ajtai et al. in their AKS network [22]. However, further research showed
that more common merge sorting networks require less comparator layers than
this proposed network. AKS network is faster only for very large number of
inputs and it is impossible to implement a network of that size with modern
technology [6] [23].
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The majority of modern hardware sorting network implementations use more
practical even-odd and bitonic mergers invented by Kenneth E. Batcher [24]
[19]. Bitonic sorting network is based on sorting of bitonic sequence. It is a
sequence which monotonically increases and then monotonically decreases or
can be modified by circular shifting to become monotonically increasing and
decreasing. Original Batcher’s design of Bitonic network is shown in Figure
2.2(a). It utilizes “butterfly network” concept where C/S blocks swap data in
different direction. More common and intuitive representation of Bitonic
network is shown in Figure 2.2(b). In this version of sorter all comparators point
in the same direction. The rewiring was done based on the rule that every
sequence of two sorted sets can become Bitonic by reversing one of them.
Another Batcher’s sorting algorithm is Even-Odd Merge sort. It is based on
parallel merging of odd and even elements of two monotonic sequences with
subsequent applying the column of parallel comparators. Sorting network based
on Batcher’s Odd-Even Merge algorithm is shown in Figure 2.2(c).

Other types are rarer (see for example the comb sort [25] in [26], the bubble and
insertion sort in [27] [9]). Research efforts are concentrated mainly on networks
with a minimal depth or number of comparators and on co-design, rationally
splitting the problem between software and hardware. The regularity of the
circuits and interconnections are studied in [28] [29] [30] where networks with
iteratively reusable components were proposed.

A notable concept of sorting network design is a periodic network. The term has
been proposed by Schrdoder in [31]. This type of network consists of identical
sequences of comparators. The simplest and one of the most well-known
examples is Odd-Even Transition (also known as Odd-Even Transposition or
OETS) network depicted in Figure 2.2(d). It was proposed by Grasseli [32] and
Kautz [33] and proved by Knuth in [4]. Traditional implementation of OETS is
less efficient than Batcher’s networks, but it is more reliable and simpler.
Salloum and Wang proved that OETS has good fault-tolerant properties [34].

Hematian et al. proposed an optimized OETS network in [35]. They modified
the network by connecting the first and the last items together and thus making
the network in a ring shape. This approach reduces the total number of
comparisons. It is shown in [36] that very regular odd-even transition networks
with two sequentially reusable vertical lines of comparators are more practical
because they operate at a higher clock frequency and provide sufficient
throughput. These proposed improvements were developed with focus on
FPGA implementation.

Two of the most frequently investigated parallel sorters on FPGAs are based on
sorting [27] and linear [37] networks. Three types of sorting networks have
been studied: pure combinational (e.g. [27] [9] [29]), pipelined (e.g. [27] [9]
[29]), and combined (partially combinational and partially sequential) (e.g. [28]
[30]). The linear networks, which are often referred to as linear sorters [37],
take a sorted list and insert new incoming items in the proper positions. The
method is the same as the insertion sort [4] that compares a new item with all
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the items in parallel, then inserts the new item at the appropriate position and
shifts the existing elements in the entire multi-item vector. Additional
capabilities of parallelization are demonstrated in the interleaved linear sorter
system proposed in [37]. The main problem with this is that it is applicable only
for small data sets (see, for example, the designs discussed in [37], which
accommodate only tens of items).

Sorting is a very computationally expensive and time consuming operation
which requires a lot of hardware resources. There are different approaches
proposed to overcome these limitations. Utilizing iterative networks with
reusable comparators permits to process significantly larger data sets. Another
two possibilities to get rid of these problems are utilization of a relatively small
parallel sorter along with a merging circuit or implementation a partial sorting.

Different approaches of hardware sorting units were studied by Marcelino et al.
in [38]. They implemented a hardware/software hybrid sorter with a sorting unit
based on insertion sorting algorithm and unbalanced merging unit. They also
utilized Batcher’s Even-Odd sorting network for software implementation and
experimented with different combinations of software (QuickSort, Even-Odd
network) and hardware (Insertion sorting, unbalanced merge). They also
discussed possibilities of using pipelined sorting networks and balanced
merging units.

Another hardware merger based on a partial Bitonic mergers form [39] was
proposed by Song et al. in [40]. They implemented a parallel pipelined merge
tree based on this concept which can merge simultaneously up to 32 sorted data
sets. Partial Bitonic sorters were used in their architecture instead of C/S blocks.
This approach significantly speeds up the merge operation, but also requires
more FPGA LUTs for the comparisons. Another advantage of their design in
comparison to other merge-tree implementations is that it eliminates the
intensive memory usage.

Chen and Prasanna in [41] proposed a hardware/software hybrid solution for
accelerating database operations using FPGA and CPU. Their sorting algorithm
is based on merge-sort algorithm where first few sorting stages are implemented
in FPGA as folded bitonic sorting networks. The rest of the algorithm is
implemented in CPU. The complete system was implemented in Xilinx Zynq
ZC7020 PSoC device. Their hardware/software algorithm achieved 3.1x faster
performance than software only (on the same CPU) performance.

GPU are also used for implementation of specific parallel algorithms such as
sorting networks [42]. Buck and Purcell showed how to implement bitonic
merge sort on GPU efficiently [43]. Kipfer and Westermann in [44]
demonstrated implementation of Even-Odd Merge sort and improved efficiency
of sorting by using full resources of GPU.

Greb and Zachmann in [45] presented a parallel sorting algorithm based on
bitonic sort for GPU implementation. They reported slightly better results than
previously published ones. Segupta et al. implemented radix-sort and quicksort
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[46] [8]. Sintorn et al. also proposed implementation of QuickSort for GPU
[47]. Radix-sort by Segupta showed 50% faster performance than plain bitonic
sort. Quicksort implementation performed worse than sorting networks. Sintorn
and Assarsson developed a sorter for GPU based on merge sort with
introduction of partial quicksort and bucketsort sorting on the later stages of
merge network to over merge sort disadvantages. They report that their system
is 10% faster than GPU-based radix sort [48]. Satish et al. continued work on
radix-sort and reported that their results were the best for GPU at that time [49].
Their algorithm is included in NVIDIA CUDA SDK since version 2.2.
Leischner et al. proposed a comparison based GPU Sample sort which showed
better results in some cases [50]. Another combination of bitonic sort and
merging was proposed by Ye et al. in [S1]. Their sorter performed faster than
previous comparison-based techniques, but slower than radix-sort. All these
solutions were developed for single GPU systems. Tanasic et al. proposed
merge-sort based sorter for multi-GPU systems [52].

2.2.  Partial sorting

Parallel sorters are very efficient, but their implementation is always limited by
available resources. One of the possible solutions is to implement reduced
sorters for partial sorting, because in many practical cases only partial sorting is
needed. One of these cases is a maximum and minimum subsets finding.

The problem of finding subsets of minimum and maximum values is known, but
very low number of solutions exist. The majority of works in this area are
focused on finding 1 or 2 maximal or minimal values in data sets [53] [54] [55],
but only few works are focused on subsets.

Frarmahini-Farahani et al. investigated the problem of partial sorting and max-
set-selection in [39]. They proposed a modular design of a partial sorting system
based on Batcher’s Odd-Even and Bitonic sorting networks. Their system is
built on sorting blocks constructed from Batcher’s Odd-Even Merge (OEM) and
Bitonic sorting networks (BM), where bitonic sorters are reduced in order to get
sorted maximal (or minimal) subset. They also proposed an approach to select
unsorted maximal subset by replacing bitonic sorters with maximum selection
units. Their proposed system takes N=2" data items and extracts minimal or
maximal sorted subset of M=2" items, where n and m are whole numbers and
1<M<N. In theory this technique is extendable to 2"-to-2"™ size. Also they
proposed an architecture for iterative max selection units that can potentially
work with data streams. Another solution of this problem was developed by
Biroli and Wang in [56]. Their approach is not based on sorting networks, but
still uses parallel comparators. They applied fast circuit topologies for single
max/min value search by Goren et al. [54] to find a subset of the largest or
smallest values. In contradiction to Frarmahini-Farahani they didn’t use
Batcher’s networks. Both works focused on finding relatively small subsets.
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The work by Frarmahini-Farahani is more suitable to deal with large subsets,
but its expansion will lead to large area consumption.

Another example of partial sorting application is a classification problem [57]
[58] (sometimes it is called simply ,,partial sorting®™ [59] [60]). Bertrossi et al.
proposed a classifying network in [61]. They developed two algorithms based
on Leighton’s Columnsort algorithm [23] which is based on sorting networks.
The comparators in their designs were replaced by the classifying circuits [62].
They proved the efficiency of Columnsort algorithm for the classification
problem solving. The classifying network based solutions showed better results
than the traditional columnsort with comparator-based sorting networks.

2.3. Frequent items encountering

The majority of frequent item encountering techniques are software-based.
Different algorithms and techniques were studied and compared in [63] by
Cormode et al.

Teubner et al. suggested to use FPGAs in [64] and [65]. They proposed three
different hardware designs with various trade-offs for the frequent item search.
The first proposed solution is an almost straightforward hardware
implementation of software Space-Saving algorithm with min-heap data
structure in RAM blocks for data storage. The second solution is also based on
the same algorithm, but instead of BRAMs with min-heap structure they used
two search trees implemented in lookup tables in order to get rid of min-heap
sorting. This approach showed significantly better results for relatively small
amounts of data, but execution performance dropped with growing sizes of the
circuit. In order to overcome the drawbacks of the second solution they decided
to reduce the number of connections by using an array for the data storage,
where each data is only connected to its two neighbors. The pipelined circuit of
their third solution choses the best results in terms of performance and
scalability. They achieved throughput four times higher than the best published
result.

Shi et al. in [66] implemented a hardware accelerator for frequent item intersect
algorithm Eclat. They designed a comparator network for two data vectors
comparison. This circuit acts as a fragment of the algorithm merge part.
According to their experimental result this approach showed from 6x to 26.7x
speedup of the algorithm to the best software implementation existed.

2.4.  Search problems
Examples of combinatorial search are matrix/set covering, the Boolean

satisfiability (SAT), graph coloring and others. Many tasks are NP-complete
and, thus, they are time consuming [67].
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Given the broad applicability of SAT solvers, there has been much effort
devoted to exploring efficient search strategies [68] [69] [70]. The majority of
SAT solvers are based on the classic sequential Davis-Putham-Logemann-
Loveland (DPLL) algorithm and its derivations. In recent years many parallel
SAT solvers emerged [71]. Moreover, given the ease of parallelization of some
parts of proposed algorithms, there has been much interest in the hardware
implementation of SAT solvers. Large study of available hardware solvers was
done by Skliarova and Ferrari in [72]. They also proposed their own novel
hardware solver that utilizes matrix representation of Boolean functions.

Since then a few new approaches were suggested. Kanazawa and Maruyama
developed a parallel hardware solver based on WSAT search algorithm. The
circuit can be described as a network of buffers and clause elevators. The
algorithm runs as many independent tries as possible and evaluates only clauses
that are possibly unsatisfied by a flipping of a variable [73] [74].

Gulati et al. proposed a hardware SAT solver with the problem partitioning for
ASIC in [75] and FPGA in [76]. Their FSM-based circuit performs the traversal
of the implication graph and the conflict clause generation in parallel.

Haller and Sigh proposed another FPGA-based SAT solver which uses off-chip
DRAM memory in order to overcome the on-chip memory limitation [77].
Davis et al. developed a hardware/software SAT solver, where only Boolean
constraint propagation (BCP) is accelerated by hardware [68]. Suzuki and
Maruyama implemented in [78] a partial hardware acceleration of SatElite
algorithm in order to minimize DRAM delay.

Matrix representation of SAT problem also fits SIMD GPU approach. Luo and
Liu implemented solvers based on greedy local search GSAT algorithm and
genetic CGA algorithms in GPU. Their CGA implementation performed faster
than the CPU [79]. Another GSAT-based GPU SAT solver was proposed by
Deleau et al. in [80]. It showed poor results compared to CPU WalkSAT
implementation. Meyer et al. proposed a CUDA SAT solver framework based
of massive process parallelism [81].

Beckers et al. adapted a hybrid approach to GPU [82]. In their system the CPU
executes MiniSAT algorithm while GPU runs parallel local search (Tabu Walk)
and provides the Tabu list. Fujii and Fujimoto explored GPU-based acceleration
of Boolean constraint propagation for SAT problem [83].

2.5. Hamming weight

The Hamming weight for a general vector (not obligatory binary) is defined as
the number of its non-zero elements. Although many modern general purpose
processors form Intel [84] and ARM [85] can calculate Hamming weight
natively, it still presents an interest for hardware implementation because of its
wide applicability.
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King et al. in [86] proposed a fully combinational architecture for hardware
digital Hamming weight comparator for artificial weightless neural network.

A Hamming weight comparator based on a bit sorter was proposed by Pedroni
in [87]. It is a triangular matrix or a network of simple logic blocks made from
trivial gates AND+OR. This circuit sorts 0’ and ’1’ in a word and returns the
sorted sequence. The HW comparison circuit is a reduced bit sorter. The
unnecessary layers are removed.

Piestrak in [88] proposed another Hamming weight comparator circuit based on
Knuth’s optimal sorting network. He developed two different comparison
circuits. One that compares Hamming weight of a vector with some pre-defined
threshold and another which compares Hamming weights of two vectors. This
method showed significantly better results than Pedroni curcuit or other
methods.

Parhami in [89] designed another Hamming height comparator based on
Hamming weight counters that consists of a tree of ripple-carry adders. His
circuit is capable of counting Hamming weight, comparing it with a fixed
threshold as well as comparing two vectors. The reported experimental results
showed an improvement over Piestrak’s results.

2.6. Hamming distance

Hamming weight is closely related to Hamming distance calculation. Many
practical applications use Hamming weight calculators as a part of Hamming
distance comparing units. In hardware implementations the Hamming distance
is usually calculated by applying XOR operation to two vectors and subsequent
Hamming weight calculation.

Although efficient Hamming weight calculators mentioned above can be used
for computing Hamming distance, in many practical applications other, not very
efficient solutions, were used. Appiah et al. [90] used a multiplexer network to
calculate Hamming distance. Jin et al. in [91] developed a Hamming distance
module for high-speed optical flow estimation. Their solution compares two
120-bit vectors which are divided into a pair of 15 contiguous 8-bit substrings.
Basically their Hamming distance comparator is composed from Hamming
weight calculators based on adder trees with additional buffers. Kovacevic et al.
in [92] used a network of adders for Hamming distance calculation in their
Hamming neural network implementation.

23



2.7.  Practical applications

Sorting and searching procedures are needed in numerous computing systems.
They can be used efficiently for data extraction and ordering in information
processing. Some common problems that they apply to are: extracting sorted
maximum/minimum subsets from a given set; filtering data, i.e. extracting
subsets with values that fall within given limits; dividing data items into subsets
and finding the minimum/maximum/average values in each subset, or sorting
each subset; finding the value that is repeated most often, or finding the set of n
values that are repeated most often; removing all duplicated items from a given
set; computing medians; solving the problems indicated above for matrices (for
rows/columns of matrices).

Parallel sorters are in high demand in high-performance computing, including
cosmological simulations [93]. Parallel sorting is also used in benchmarks for
testing supercomputers [94]. Sorters based on sorting networks are suitable for
hardware-based median filters which are commonly used in image processing
[95]. The hardware median filter is a circuit that receives an array of data and
returns the median value [96] [97] [98].

Many applications do not require all inputs to be sorted. Some of them involve
selecting only maximal and minimal values. Many electronic, environmental,
medical, and biological applications need to process data streams produced by
sensors and measure external parameters within given upper and lower bounds
(thresholds) [1]. Let us consider some examples. Applying the technique [99]
in real-time applications requires knowledge acquisition obtained from
controlled systems (e.g. plant). For example, signals from sensors may be
filtered and analyzed to prevent error conditions (see [99] for additional details).
To provide more exact and reliable conclusion a combination of different values
need to be extracted, ordered, and analyzed. Similar tasks appear in monitoring
thermal radiation from volcanic products [100], filtering and integration of
information from a variety of different sources in medical applications [101]
and so on. Since many systems are hard real-time, performance is important and
hardware accelerators may provide significant assistance for software products.
Similar problems appear in so-called straight selection sorting (in such
applications where we need to find a task with the shortest deadline in
scheduling algorithms [102]) and high-energy physics (where only the most
energetic particles need to be analyzed [103]).

Maximum and minimum subsets extraction is required in searching, statistical
data manipulation and data mining (e.g. [104] [105] [106] [107]). To describe
one of the problems from data mining informally let us consider an example
[104] with analogy to a shopping card. A basket is the set of items purchased at
one time. A frequent item is an item that often occurs in a database. A frequent
set of items often occur together in the same basket. A researcher can request a
particular support value and find the items which occur together in a basket
either a maximum or a minimum number of times within the database [104].
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Similar problems appear to determine frequent inquiries at the Internet,
customer transactions, credit card purchases, etc. requiring processing very
large volumes of data in the span of a day [104]. Fast extracting the most
frequent or the less frequent items from large sets permits data mining
algorithms to be simplified and accelerated. Sorting of subsets may be involved
in many known methods from this area.

Full and reduced sorting networks are being studied in the area of correction
problem, where sorting of almost sorted data set is required. The most recent
works on this topic were done by Kik et al. [108] [109], Piotrow [110] and
Stachowiak [111] [112].

In the scope of parallel vector processing we discuss practical application of
Hamming weight and Hamming distance. Many analysis and filtering problems
can be solved through Hamming weight counting for the vectors and
comparison of the results.

Hamming weight and Hamming distance calculators and comparators are
widely in use in variety of different applications. Hamming weight is a key part
of many combinatorial search related tasks like Boolean satisfability and matrix
covering. Hamming distance calculation is an essential operation in image
recognition [90] [113] [114], and is used in many other areas like optical flow
estimation [91] and more recently for physically unclonable functions (PUFs)
[115][116].

Hamming distance calculators are the essential part of Hamming neural
networks [117]. It is a network which implements the optimum minimum error
classifier, a unit that calculates Hamming distances of input data, compares
them with pattern in memory and selects the data with the minimum distance,
which becomes the first layer pattern that represents the most similar object.
Lippman in [117] showed that this type of network has many advantages over
the earlier Hoping network.

Combinatorial search algorithms are frequently involved to solve optimization
problems. Matrix/set covering is one of the problems in optimization. It belongs
to partitioning problems arising in such practical applications as scheduling
aircrafts, location emergency stations in urban areas, fault testing of electronic
circuits, resource distribution in multi-core systems, and many others [67].
Boolean satisfability problem solvers have many applications in EDA
(Electronic Design Automation) fields, such as logic minimization, test pattern
generation, routing in field-programmable devices [69].
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2.8. Summary

This chapter contains a brief survey of related works. The purpose of this
chapter is to inform a reader about the current state of the art in the researched
area and to provide necessary information needed to understand subjects studied
in this work.

This describes different hardware-based methods of parallel sorting, subset
extraction and combinatorial search. Additionally it introduces the basic
principles of network-based design. This survey showed us that although this
area is very well researched, some topics covered in our works, like, for
example subset extraction, are underdeveloped and very few publications about
them exist. Also this chapter describes related works in a scope of Hamming
weight and Hamming distance calculating. The last section of the chapter
presents a survey of practical applications of our research subjects, which shows
us that solving problems discussed in this thesis is in very high demand.

The most common drawbacks of the techniques and their implementations
mentioned in this chapter are intensive resource usage and small volumes of
data items that can be processed with them. Many sorting methods are not
suitable for processing of high-speed data streams. Very few solutions exist in
the area of partial data sorting and subsets extraction, as well as combined
solutions of these operations, which are in a high demand in many practical
applications. The techniques proposed in this thesis, which are based on highly
parallel networks were developed in order to overcome these disadvantages.
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3. NETWORK-BASED SOLUTIONS FOR
PARALLEL DATA AND VECTOR PROCESSING

In this chapter the proposed methods of parallel data and vector processing are
presented. We explore various highly parallel network-based algorithms for
acceleration of solving different computationally intensive and resource
consuming problems. Section 3.1 describes the proposed method for data
sorting based on sorting network and merging [118] [S] [119]. Section 3.2
presents methods of solving the minimum and maximum subset extraction
problem [120] [121] [122]. Section 3.3 discusses a solution for Hamming
weight calculation [123]. Section 3.4 describes a practical application of the
methods proposed in this chapter for fast matrix covering [124].

3.1. Data sorting

Sorting networks are widely used in data [9] and vector [88] processing and
they enable comparison and swapping operations over multiple data items to be
executed in parallel. A review of recent results in this area can be found in [36]
where it is shown that many researchers and engineers consider such technique
as very beneficial for data and vector processing in FPGAs and PSoCs.
Although the methods [24] [19] enable the fastest theoretical throughput, the
actual performance is limited by interfacing circuits supplying initial data and
transmitting the results and the communication overheads do not allow
theoretical results to be achieved in practical designs.

In our approach we use a periodical pipelined Odd-Even Transposition sorting
network,  which requires a  significantly = smaller —number of
comparators/swappers (C/S) than the most widely used Batcher’s networks
from [24] [19]. In this approach many C/S are active in parallel and reused in
different iterations. The proposed circuit (see Figure 3.1) contains N M-bit
registers Rgo,...,Rgn.1. Unsorted input data are loaded to the circuit through N
M-bit lines do,d:,.. dn-1. For the fragment on the left-hand side of Figure 3.1, the
number N of data items is even, but it may also be odd. Each C/S is shown in
Knuth notation (:) [4] and it compares items in the upper and lower registers
and transfers the item with the larger value to the upper register and the item
with the smaller value to the lower register (see the upper right-hand corner of
Figure 3.1). Such operations are applied simultaneously to all the registers
linked to even C/S in one clock cycle (indicated by the letter a) and to all the
registers linked to odd C/S in a subsequent clock cycle (indicated by the letter
B). This implementation may be unrolled to an even-odd transposition network
[44], but vertical lines of C/S in Figure 3.1 are activated sequentially and the
number of C/S is reduced compared to [44] by a factor of N=2. For example, if
the number N is even then the circuit from [44] requires N x (N — 1)/2 C/S and
the circuit in Figure 3.1 — only N — 1 C/S. The circuit in [44] is combinational
and the circuit in Figure 3.1 may require up to N iterations. The number N of
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iterations can be reduced very similarly to [29]. Indeed, if beginning from the
second iteration, there is no data exchange in either even or odd C/S, then all
data items are sorted. If there is no data swapping for even C/S in the first
iteration, data swaps for odd C/S may still take place. Note that the network
[44] possesses a long combinational delay from inputs to outputs. The circuit in
Figure 3.1 can operate at a high clock frequency because it involves a delay of
just one C/S per iteration (i.e., in each rising/falling edge of the clock).

B do d, unsorted data sorted data d
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Figure 3.1 Pipelined Odd-Even Transposition network [118]

Let us look at the example shown in Figure 3.1 (N = 11, M = 6). Initially,
unsorted data do, di,...,dio are copied to Rgo;...;Rgio. Each iteration (6 iterations
in total) is forced by an edge (either rising or falling) of a clock. The signal a
activates the C/S between the registers (Rgo,Rgi),(Rg2Rgs),...,(Rgs,Rgo). The
signal B activates the C/S between the registers
(Rgi,Rg),(Rg3,Rgs),...,(Rgo,Rg10). There are 10 C/S in total. Rounded
rectangles in Figure 3.1 indicate elements that are compared at iterations 1-6.
Data are sorted in 6 clock cycles and 6 < N = 11. Unrolled circuits from [44]
would require 50 C/S with the total delay equal to the delay of N sequentially
connected C/S.

Although the proposed approach requires less C/S blocks than the most
practically used Batcher’s networks and allows to sort significantly larger
amounts of data, resources still restrict from sorting very large amounts of data
in parallel. In order to overcome this obstacle we propose different approaches
of sorting network combinations with software and hardware merging of sorted
data subsets.
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Figure 3.2 The circuit for sorting blocks [118]

Figure 3.2 depicts the used iterative network, the core of the hardware
architecture. There are also two additional registers R; and R,. The register R;
sequentially receives N data items from the inputs. It was explained above that
such N items compose one block that can be entirely sorted in the network. In
practice, four items are packed and thus, parallel writing to the register R; of
four 32-bit items is actually done. As soon as the first block is received, all data
items from this block are sorted in the iterative network, and the maximum
number of clock cycles is N/2. At the same time, data items from the next block
are received. As soon as data items from the first block are sorted, they are
copied in parallel to the output register R,. After that the second block is copied
to the register R and sorted (see Figure 3.2) and the third block is being received
from the inputs. At the same time, the first sorted block is copied to the
embedded block-RAM for subsequent data merging. Hence, the first sorted
block will be copied to RAM after acquisition of two blocks from the inputs.
Then data acquisition from the inputs, data sorting, and copying data to the
merger will be done in parallel. We can see from Figure 3.2 that there are just
two sequential levels of C/S in the iterative data sorter. Thus, the delay is very
small and we can apply high synchronization frequency. Additional
improvements are done to adjust the speed of data acquisition and sorting.
Indeed, one block of N data items is received in N/4 clock cycles and the sorting
time is up to N/2 clock cycles, i.e. it is almost two times longer.

Figure 3.3 demonstrates how to adjust the speed. There are now two iterative
data sorters running in parallel. The first sorter processes data from the first half
of the register R; and the second sorter processes data from the second half of
the register Ri. At the beginning, two blocks with 2xN items are copied to the R;
and it involves 2xN/4 = N/2 clock cycles. Then two blocks are sorted in
parallel, which also involves up to N/2 clock cycles. Finally, two sorted blocks
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are copied to two dual-port embedded block-RAMs. The respective write port is
configured for data width 64. Thus, pairs of data items are copied in each clock
cycle and it involves totally also N/2 clock cycles for both blocks. Therefore,
everything is completely adjusted.
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Figure 3.3 Adjusting the number of clock cycles required in different blocks [118]

3.1.1. Data sorting with subsequent software merge

Although using iterative periodic sorting networks permits sorting significantly
larger data sets, than with other sorting networks, resource availability still puts
us into certain boundaries. The limitation of the input data size might be
unacceptable for many practical applications and the sorter must be designed
with the capability of sorting the unlimited data sets.

Data sorting can be combined with the data merge in order to overcome this
problem. Using hardware network-based sorter together with a general purpose
processor allows us to implement the merge operation completely or partially
software.

The first approach is a hardware/software system which sorts blocks in
hardware with subsequent merging in software. This method requires use of a
general purpose CPU which works in cooperation with hardware modules. We
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have developed two variations of this method. The first uses a system with
programmable logic and embedded CPU on the same chip such as PSoC. The
second requires external CPU which communicates with the hardware through
some interface like very high speed PCI express.

The proposed system sorts relatively small subsets of larger sets in hardware
and then merges the subsets in software of a higher level system (see Figure
3.4). The initial set of data that is to be sorted is divided into L subsets of N
items. Each subset is sorted in hardware using the referenced networks.
Merging is executed as shown in Figure 3.4, in a host system/processor that
interacts with the hardware. Each horizontal level of merging permits the size of
blocks to be doubled. Thus, if N = 2'° = 1,024 and K = 2% = 1,048,576 items
are to be sorted, then 10 levels of mergers are required (see Figure 3.4). Clearly,
the larger are the blocks sorted in FPGAs the fewer merging are needed. Thus,
we have to sort in hardware as many data items as possible with such
throughput that is similar to throughput of sorting networks.

This algorithm is identical for all the proposed implementations and can be
described as follows. The sorter receives blocks composed of N M-bit data
items and stored in memories (such as external DDR and OCM). The sorter
executes iterative operations over multiple parallel data and is controlled by a
dedicated finite state machine (FSM) called Sorter Control Unit. The ports are
also controlled by a dedicated FSM. The results of sorting are copied back to
memory and then the software merges incoming blocks of sorted data.

Sorted set

Figure 3.4 Hardware/software system for data sorting and merging [118]

The hardware part informs the general purpose processor through interrupt
signals when the sorting operation over data blocks is completed. After
receiving the interrupts signal the software merge operation triggers. The
software and hardware parts access the data in memory independently. The
software is in idle state while waiting for the data to become available. The
sorting in hardware and merging in software can be done in parallel if
necessary. The size of the data blocks depends only on resource availability of
the chosen device.
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3.1.2. Data sorting with subsequent hardware merge

The second method is similar to the previous one, but it is capable of supplying
larger blocks of sorted data for subsequent data merge in software. The main
idea behind this method is to implement the merge system in hardware
alongside the sorting network. This method significantly increases amount of
data that can be sorted in hardware. Although the sorting network works much
faster than the merge algorithm, the latter requires much less resources. The
combination of the sorting network with the merging tree significantly enhances
the sorting for very large data sets. Figure 3.5 demonstrates this architecture.
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Figure 3.5 Hardware architecture of sorter/merger

The hardware implementation of this method consists of two major components
— sorting system and merge system. The sorting system is identical to the one
described in the previous method, but all its outputs are connected now to the
merging system. The merge component performs the merge algorithm using a
tree-like structure, which is done on the basis of embedded block-RAM. Figure
3.6 shows one level of merging. Input data come from two embedded block-
RAMSs, merged, and copied to a new embedded block RAM. There are two
address counters for each input RAM. At the beginning they are set to 0. Two
data items are read and compared. If the item is selected from the first RAM
then the address counter of the first RAM is incremented, otherwise the address
counter of the second RAM is incremented. Two N-item blocks are merged in
2xN clock cycles. Different types of parallel merging have been verified and
compared. We found that the best result (i.e. the fastest and the less resource
consuming) is produced in a simple RAM-based circuit depicted in Figure 3.6.
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Figure 3.6 Simple merging two sorted blocks [118]

There are G levels to merge L sorted blocks and *9! < L < 26, The first level is
composed of L embedded block-RAMs. The second level is composed of L/2
embedded block-RAMs, and the last level is composed of one embedded block-
RAM. The size of each RAM for the first level is N 32-bit words for reading
and N/2 64-bit words for writing. The size of each subsequent level is doubled.
Initially, L embedded block-RAMs of the first level are filled in with sorted
blocks. Then these blocks are merged at the second level. Afterwards the blocks
of the second level are being merged at the third level and at the same time the
block-RAMs of the first level are being filled in with a new subset of L sorted
blocks. Thus, many subsets of L blocks will be processed in parallel and this is
a special type of pipeline organized based on embedded block-RAMs (see
Figure 3.7).
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Figure 3.7 Pipelined merging with embedded block-RAM [118]
Architecture in Figure 3.7 permits many sets with L blocks (each block contains
N M-bit data items) to be sorted in pipeline in a way that is shown in Figure 3.8.

Equal numbers enclosed in circles indicate steps executed in parallel. It was
shown above that the first time the level 1 block-RAM will be filled in with
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sorted data from the first block is after 3xN/2 clock cycles. After that it is
updated with the new block in N/2 clock cycles. So, an additional delay appears
just from the beginning and it is avoided in the subsequent steps. As soon as
data are copied to the first level RAM, merging is started and the sorted data are
copied from the first level to the second level RAM. This process involves
LxN/2 clock cycles. During this period of time the first-level RAM is used for
merging and new data items cannot be copied to this RAM. In fact it is possible
to merge and to sort data at the same time. However, we found that such merger
requires a complex arbitration which significantly increases hardware resources
leading to reducing the size N of blocks. Finally, such more complicated circuits
do not give any advantage. This means that the resulting throughput cannot be
increased. As soon as merging is completed, all data are copied to the second-
level RAM and the first-level RAM may be refilled with new L sorted blocks.
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Figure 3.8 Parallel operations in the proposed architecture [118]

Figure 3.8 explicitly indicates parallel operations. For example, number 7
enclosed in circle indicates operations executed in parallel, which are merging
at levels 3, 5, 7 and data sorting. This method can be applied to data sorting of
very large sets (tens and hundreds of millions of data items). In this case, the
GPC divides a very large set into subsets composed of LxN data items. The
subsets are sorted in the pipelined structure shown in Figure 3.8 and then
merged in software of GPC. Section 5.1.2. demonstrates that the implemented
in Virtex-7 FPGA data sorter allows to sort data in hardware for L=128 and
N=512. Thus, 512x128 = 65,536 32-bit data items (or 256 KB) are sorted and
then 256 KB blocks can be merged in software. It will be shown in the section
5.1.2. that sorting in hardware (including data exchange with GPC) is faster that
similar sorting in software. Merging larger blocks permits the time of sorting in
software to be considerably reduced.
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3.1.3. Sorting and merging with parallel data item counting

We propose a method of data sorting algorithm based on parallel sorting
network with subsequent merge and data counting for the sorting acceleration
and frequent item computation. The functionality of the merge units from the
system described in the previous section is expanded by adding the operation of
compressing the data by counting of the repeated data.

The circuit compares all the items in two sorted subsets of N data items and
merges them into one sorted subsets. The maximal size of the final data set is
2xN items as in the system proposed in section 3.2.1. This worst case scenario
can occur if no repeated items were found in both input subsets.

Although the maximal number of clock cycles for merging N-item blocks is
2xN, our system with compression and item counting requires less clock cycles
for the data sets with repeated items. Every subsequent level of merging
requires less clock cycles than the previous one, because the compression and
counting was partially done in the previous level.

Modyfied fragment from Figure 3.6. is depicted on Figure 3.9 (a). The
compression and the counting of the items is done in “compare and add” block
shown in Figure 3.9(b). The system stores the data item which was written after
the previous comparison and compares it with both inputs. If the item part of the
item/count pair previously written to the RAM block is not equal to both of
them, then the merger writes the item/count pair with larger item value to the
output RAM block and increments both write address counter and read address
counter for the input with the largest value. Otherwise, the merger does not
increment the write address of the block and writes the new count number to the
count part of the item/count pair. The new count number is the sum of the count
parts of the previously written data item and the count of one of the inputs,
which has an item part equal to the previously written one. During the first level
of merging every pair has ‘1’ as its count value. All zeros in the count part mean
that the total number of repetitions exceeded the capabilities of the RAM block.

The RAM blocks of every item of the merging system are capable of storing all
data from the inputs, but if the sorted set supplied to the merger contains
repeated items, the system does not fill the RAM blocks completely. The
merger reads the value from the write address register of the mergers from the
previous level. It informs the merger about how many item pairs were actually
written during the previous merge operation.
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Figure 3.9 “Merge and count” architecture: A) General architecture of the merger B)
Compare and add operation [119]

3.2.  Partial sorting and minimum/maximum subset extraction

The network-based sorting circuit described above can be used efficiently for
solving numerous supplementary tasks. One of these tasks is the extraction of
the maximum and/or minimum subsets from the sorted sets. Also solving these
tasks requires much less resources and therefore can use hardware more
efficiently.

Let set S containing N M-bit data items be given. The maximum subset contains
Lmax largest items in S, and the minimum subset contains Lmi, smallest items in
S (Lmax < N and Lyin < N). We mainly consider such tasks for which Lyax << N
and Lmin << N, which are more common for practical applications. Since N may
be very large (millions of items), the set cannot be completely processed in
hardware because the resources required are not available.

We propose three different methods for finding minimum/maximum subsets.
All these methods are based on sorting networks described in the previous
chapter and perform partial sorting. At first we describe how to use these
methods for simultaneous calculation of maximum and minimum subsets. After
that other tasks and additional functionality will be discussed. Figure 3.10
depicts generalized architecture for all methods.
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Figure 3.10 Computing the maximum and the minimum sorted subsets [121]

All methods are based on pipelined OETS network described above and
designed for streaming data. The sorting unit receives the incoming data and
outputs current minimum and maximum subsets every iteration. Data are
incrementally received in blocks containing exactly K items and then processed
by parallel networks described below. The last block may contain less than K
items. If so, it will be extended up to K items (we will talk about such extension
a bit later). Part of sorted items with maximum values will be used to form the
maximum subset and part of sorted items with minimum values will be used to
form the minimum subset. As soon as all Q blocks have been handled the
maximum and/or minimum subsets will be ready for subsequent processing.
The following steps describe how the system works with streaming data
identical to all proposed methods:

1. The first block containing K M-bit data items is copied to input registers and
becomes available at the inputs of sorting unit.

2. The block is sorted in parallel in the sorting unit with one of proposed
methods.

3. Lmax sorted items with maximum values become available on the outputs of
the upper half of the sorting unit. Lmin sorted items with minimum values
become available on the outputs of the bottom half of the sorting unit.

4. A new block is copied to the input register and becomes available at the
inputs of the main SN. Such operations are repeated until all Q-1 blocks are
handled.

37



5. The last block may contain less than K items and it is processed slightly
differently. As soon as all Q blocks have been transferred from the system block
RAM and Q-1 blocks have been handled in the sorting unit, the last block (if it
is incomplete) is extended to K items by copying the largest item from the
created minimum sorted subset. Thus, the last block becomes complete. Clearly,
the largest item from the created minimum sorted subset cannot be moved again
to the minimum subset and the last block is handled similarly to the previous
blocks.

3.2.1. Method based on three sorting networks

The first method involves three sorting networks: one main sorting network
(SN) and two additional sorting networss (SNmin and SNay).

rightmost segment
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Figure 3.11 The first method of extracting the maximum and minimum sorted subsets
[120]

Sorting networks SNumin and SNmax have input registers. The minimum and
maximum sorted subsets will be built incrementally in halves of registers
indicated at the bottom part of Figure 3.11. At initialization step, these parts are
pre-loaded with possible maximum and minimum values which data from the
source set may have. Then the following steps are executed:

1. The first block containing K M-bit data items is copied from block RAM and
becomes available at the inputs of the main SN.

2. The block is sorted in parallel in the main SN which can be done in
combinational networks from [19] (such as even-odd merger) or in sequential
iterative networks from [36] (such as iterative OETS). In the last case additional
control is provided.

3. Limax sorted items with maximum values are loaded in a half of the SNiax
input register as it is shown in Figure 3.11. Ly, sorted items with minimum
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values are loaded in a half of the SNuiy input register as it is shown in Figure
3.11. All the items are resorted by the relevant sorting networks SNma.x and
SNmin-

4. A new block is copied from block RAM and becomes available at the inputs
of the main SN. Such operations are repeated until all Q blocks are handled.
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Figure 3.12 Example of extracting sorted subsets using the first method [120]

Figure 3.12 shows an example, assuming that the minimum possible value of
data items is 0 and the maximum possible value is 99 (clearly, other values may
also be chosen). At the first step (a), shown in left-hand part of Figure 3.12,
input registers for SNmax and SNmin are initialized, and the first block of data
becomes available for the main SN. U indicates undefined values. At the next
step (b) input registers are updated as it is shown by dashed fragments in Figure
3.12 At step (c) a new block of data becomes available. Note that loading the
register for the main SN can be done in parallel with copying Lmax/Lmin to
SNmax/SNmin. Items in SNmax and SN, are sorted as soon as the relevant input
registers are updated. After executing steps (a) - (g) the maximum and
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minimum sorted subsets are ready (see the right-hand part of Figure 3.12) for
the items shown in grey in the main SN. Clearly, this method enables the
maximum and minimum sorted subsets to be incrementally constructed for very
large sets.

3.2.2. Method based on swapping networks

In the second method we use the circuits introduced in [57]. They are also
composed of comparators/swappers explained in [4]. Any comparator converts
a two-item input to the two-item output in such a way that the upper value is
greater than or equal to the lower value. Let us call circuits from [57] a
swapping network. If they are applied to two sorted subsets with equal sizes
then it is guaranteed that the upper half outputs of the network contain the
largest values from the two sorted subsets and the lower half outputs of the
network contain the smallest values from the two sorted subsets. Additionally,
the outputs of this circuits form two Bitonic sequences. The swapping network
depicted in Figure 3.13 transforms sorted sequences A and B to Bitonic
sequences A and B, where all elements of Bitonic sequence A are larger than all
elements in Bitonic sequence B.

Sorted * Bitonic
sequence < . [~ sequence
A A
— I:_/

2 )\

Sorted | Bitonic
sequence < > sequence
B BN B
— v _J

Figure 3.13 Swapping network

The idea of the second method is illustrated in Figure 3.14 on the same example
from Figure 3.12.
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Figure 3.14 Example of extracting sorted subsets using the second method [120]

Now the size of the networks SNmax and SNmin was reduced twice (there are now
just 4 M-bit inputs instead of 8 in Figure 3.12). Much like Figure 3.12 both
these networks have input registers (4 M-bit registers for our example). At
initialization step SNmax and SNmin are filled in with the minimum and
maximum values which are assumed as before to be 0 and 99. There are two
additional fragments in Figure 3.14 which contain swapping networks described
above. If we resort separately the upper and the lower parts then two sorted
subsets will form a single sorted set. Let us analyse the upper swapping network
in Figure 3.14 At step (a) inputs of the network are sorted subsets {0,0,0,0} and
{99,92,71,70}. Thus, two new subsets {70,71,92,99} and {0,0,0,0} are created.
Sorting them enables the maximum sorted subset {99,92,71,70} with four items
to be found on outputs of SNmax. At step (c) inputs of the swapping network are
sorted subsets {99,92,71,70} and {98,80,71,69} and two new subsets
{99,92,80,98} and {70,71,71,69} are created. Sorting them enables the
maximum sorted subset {99,98,92,80} to be built. At step (e) inputs of the
swapping network are sorted subsets {99,98,92,80} and {20,19,18,17} and no
swapping is done. Hence, the maximum sorted subset is {99,98,92,80} and it is
the same as in Figure 3.12 The lower swapping network in Figure 3.14
functions similarly.
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The second method involves an additional delay on the comparators of
swapping networks but eliminates copying from the main SN to SNpm.x and
SNmin. Besides, the sizes of SNm.x and SN are reduced twice.

Also in some practical applications receiving sorted maximal and minimal
subsets is not required and only unsorted ones are needed. In that case we can
turn the second sorting network off during the last iteration of the algorithm.

3.2.3. Method based on single sorting network

The third method is similar to the first one, but instead of three independent
sorting networks, it has only one network and is based on breaking links
between comparators.
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Figure 3.15 An example of sorting using the method based on single sorting network.

[121]

At the first step, the first K M-bit data items are sorted in the network [36]
which processes LmaxtK+Lmin data items but comparators linking the upper part
(handling L.« M-bit data items) and the lower part (handling Lmin M-bit data
items) are deactivated (i.e. the links with the upper and bottom parts are
broken). So, sorting is done only in the middle part handling K M-bit items. As
soon as the sorting is completed, the maximum subset is copied to the upper
part of the network and the minimum subset is copied to the lower part of the
network.

From the second step, all the comparators are properly linked, i.e. the network
from [29] handles LuyatK+Lmin items, but the feedback copying (see the first
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step and Figure 3.15) is disabled. Now for each new K M-bit items the
maximum and the minimum sorted subsets are appropriately corrected, i.e. new
items may be appended.

Let us look at the example shown in Figure 3.15 for which: N =21, K = 8, Lyax
= Lmin =4, and S = 26,37,11,19,3,7,99,56,29,37,22,99,1,55,39,47,12,45,83,5,18.
The set S is divided into the following three subsets: A =26,37,11,19,3,7,99,56,
B =29,37,22,99,1,55,39,47, and C = 12,45,83,5,18.

Note that the last subset C contains only 5 elements and is incomplete. Symbol
U in Figure 3.15 indicates undefined value. The iterative sorting network is
exactly the same as in [36]. There are 3 steps in Figure 3.15. At the first step, K
(K=8) items are sorted and copied to the maximum and minimum subsets.

Two comparators are disabled in accordance with the explanations given above
(breaking links of the middle section in the sorted network with the upper and
the lower sections). At the second step, all the network comparators are enabled
and LpaxtK+Lmin items are sorted by the iterative network with feedback
register (FR). All necessary details can be found in [36]. It is easy to show that
the maximum number of iterations is [(max(Lmax,Lmin)+K)/2] and much like the
previous case this number is almost always smaller [36]. At the last (third) step,
the incomplete subset C is extended to K items by copying the maximum value
(11) from the minimum subset 11,7,3,1 to the positions of missing data (see
Figure 3.15). After sorting Lmax+K+Lmin items at the step 3 the final result is
produced.

3.2.4. Separate maximum and minimum extraction

Some practical applications don’t require maximal and minimal subsets
simultaneously. For this purpose a reduced partial sorter that contains one main
and one additional sorting network was proposed.

This task can be solved by removing the networks SNmin (for finding only the
maximum subset) or SN« (for finding only the minimum subset) of methods
described above. Figure 3.16 depicts first two methods reduced only for
maximum extraction.
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Figure 3.16 Sorters for extraction of maximal subsets [122]

Method A in Figure 3.16 is a reduced version of the method based of three
sorting networks. This version of the partial sorter utilizes two sorting networks
of the same size. The first sorting network receives blocks of data and sorts
them. After the sorting is completed, the maximal (or minimal) half loads into
the second sorting network along with maximal (or minimal) half of outputs of
the second network. For maximal set selection, in the initial step the second
network is loaded with zeros. For minimal set selection, it is loaded with
maximal possible value. After all the data is transmitted, the system waits for
the completion of sorting in both sorting networks. The maximal (or minimal)
half of the outputs of the second network is loaded in the output register and
waits for read request.

Method B in Figure 3.16 is a reduced version of the method based on
swapping networks. This method doesn’t require sorting minimal or maximal
subset of the current iteration with results of the previous iteration. That is why
sorting networks can be reduced twice. Both networks are connected here with a
swapping network. All outputs of the first sorting network are connected to the
swapping network along with all outputs of the second sorting network. On the
outputs of the second network we receive unsorted maximal and minimum
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subsets of the input data, where all items of the upper half of the network are
larger than all items of the lower half.

The second method obviously requires less hardware results than the first
method and can be combined with partial Bitonic sorter because of utilizing the
swapping network. Although both methods are more or less equivalent for
extracting both minimal and maximal subsets at the same time, the second
method should be more suitable for separate extracting.

3.2.5. Very large scale subsets extraction

For some practical applications the maximum and minimum subsets may be
large and the available hardware resources become insufficient to implement
sorting networks. The arising problem can be solved using the following
technique.

Let Imax and lmin be constraints for the upper (SNmax) and bottom (SNmin) parts of
the sorting network, i.e. circuits with larger values (than Imax and lmin) cannot be
implemented due to the lack of hardware resources or because of some other
reasons. Let the parameters for the maximum and minimum subsets be greater
than lmax and Imin, i.€. Lmax > lmax and Liin > Imin. In such case the maximum and
minimum subsets can be computed iteratively as follows:

1. At the first iteration, the maximum subset containing lm. items and the
minimum subset containing lmin items are computed. The subsets are transferred
to the CPU. The software part removes the minimum value from the maximum
subset and the maximum value from the minimum subset. Such correction
avoids loss of repeated items at subsequent steps. Indeed, the minimum value
from the maximum subset (the maximum value from the minimum subset) can
appear for subsets to be subsequently constructed in point 3 below and they will
be lost because of filtering (see point 3).

2. The minimum value from the corrected in software maximum subset is
assigned to B,. The maximum value from the corrected in software minimum
subset is assigned to Bi. The values B, and By are supplied to hardware.

3. The same data items (from memory), as in point 1 above, are preliminary
filtered in the PL in such a way that only items that are less or equal than B, and
greater or equal than B are allowed to be transferred to block RAM, i.e.
computing sorted subsets is done only for the filtered data items. Thus, the
second part of the maximum and the minimum subsets will be computed and
appended (in software) to the previously computed subsets (such as subsets
from point 1).

4. The points 2 and 3 above are repeated until the maximum subset with Lyax
items and the minimum subset with Ly, items are computed.

Note, that if the number of repeated items is greater than or equal to lmax/lmin,
then the method above may generate infinite loops. This situation can easily be
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recognized. Indeed, if any new subset contains the same value repeated K times
then an infinite loop will be created. In such case we can use another method
based on software/hardware sorters from [125]. In Chapter 5 we will present the
results of experiments for such sorters.

3.2.6. Filtering

Input data may optionally be filtered allowing only items that fall within pre-
given constraints to be processed. Let B, and B be predefined upper (B.) and
lower (Bi) bounds for the given set S. We would like to use one of the circuits
described above only for such data items D that fall within the bounds B, and
By, i.e. Bi < D < B, (or, possibly, B < D < B,). Figure 3.17 depicts the proposed
architecture that enables data items to be filtered at run-time (i.e. during the data
exchange between hardware and software). There is an additional block on the
upper input of the MUX, which takes a data item Ix and executes the operation
indicated on the right-hand part of Figure 3.17. If the counter is incremented,
then a new register is chosen to store data item Ix. Otherwise, the signal WE
(write enable) is passive and a new item with a value that is out of the bounds
B, and B; is not recorded in the registers.
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R.l> (count = count+1, WE) when
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|k Ik - = 5 i k u
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Figure 3.17 Digital filter [121]

Let us look at the same example in Figure 3.15 for which we choose B, = 90
and B; = 10. At the first step incoming data items have preliminary been
filtered, the values 99, 7, and 3 have been removed (because they are either
greater than B, = 90 or less than B; = 10), and the subset A with 8 items is built
from 11 first elements of the set S. At the second (last) step, the values 99, 1,
and 5 have been removed, and the subset B = 55,39,47,12,45,83,18 is built from
the remaining allowed elements of the set S. Since there are 7 items in B and K
= 8§, this subset is incomplete.
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3.3. Hamming Weight

We propose Hamming Weight counting circuit based on network of FPGA
lookup tables (LUTs). An FPGA LUT(n,m) can be used to directly
implement arbitrary Boolean functions fo,...,fn.1 of n variables Xo,...,Xn 1.
Clearly, h LUTs(n,m) can be configured to calculate the Hamming weight
w(A) of a vector A={ao,...,an-1}, where h=[(log>(n+1))/m]. The idea is
to build a network from LUTs(n,m) that can find the Hamming weight
w(A) for an arbitrary vector A of size N and then to compare this
weight with either a fixed threshold x or with the weight of another binary
vector B assuming that the Hamming weight of B has been found
similarly. Since Hamming distance d(A,B) = w(A XOR B) we can find d(A,B)
as Hamming weights of "XORed" arguments A and B.
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Figure 3.18 Hamming weight counters for N=8 (a) and N=36 (b) [123]

An analysis of practical applications shows that the majority of
them require the Hamming weight/distance count/comparison for such
values of N that are divisible by 8, 32, or 36. We suggest two optimized LUT-
based designs permitting the Hamming weight to be found for N=8 (Figure
3.18(a)) and N=36 (Figure 3.18(b)). For N=32 either four bits in Figure
3.18(b) are assigned to O or the results of Figure 3.18(a) are incrementally
added in a tree-based structure much similar to [89] composed of the design in
Figure 3.18(a) and adders. The circuit in Figure 3.18(b) without two right
adders X has [(log(n+1))/m]*([N/n]+[ (N/2)/n]) LUTs(n,m). Even for m=1
(the worst case) we need only 27 LUTs for Zynq xc7z020 containing
totally 53200 LUTs.

The Hamming weight for N>36 can be found in a similar tree-based structure.
There are two layers in Figure 3.18(a) with LUTs(6,3) and LUTs(5,4). The
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first layer counts w(al,...,a's) and the second layer takes the results of the
first layer and finally determines the 4-bit weight w(al,...,a'7). The delay
from the inputs to the outputs is equal to just 2 LUT delays. There are
also two layers in Figure 3.18(b) with LUTs(6,3) and two combinational
adders. The first layer is composed of 6 LUTs(6,3) and it outputs six
Hamming weights wi,...,ws for six sub-vectors Al,...,A6 of the input vector.
The second layer contains 3 LUTs(6,3) and it outputs Hamming
weights aj0203, BiP2Bs, xix2xs of the most significant bits (MSB) in
wl,...,w6 (ojop03), the middle bits in wl,..,w6 (Bip2p3) and the less
significant bits (LSB) in wl,...,w6 (ux2)3). The final result is computed by two
combinational adders as it is shown in Figure 3.18(b). We found that any
layer with index greater than [log,N] is not cost-effective because either the
size of output weights will be increased compared to the previous layers or
LUTs will be used not-efficiently. All LUTs in Figure 3.18(b) are
configured identically.

3.4. Matrix covering

We have studied combinatorial search problems that utilize Hamming weight
calculating and sorting and one of them is matrix covering problem.

The covering problem can identically be formulated on either sets [67], [126] or
matrices [67]. Let A = (ajj) be a 0-1 incidence matrix. The sub-set Ai = {j | ajj =
1} contains all columns covered by row i (i.e. the row i has value 1 in all
columns of the sub-set Ai). The minimal row cover is composed of the minimal
number of the sub-sets Ai that cover all the matrix columns. Clearly, for such
sub-sets there is at least one value 1 in each column of the matrix. Let us
consider an example from [2] of a set S and sub-sets Si,...,S¢ (Figure 3.19),
which can be represented in the form of the following matrix A:

1 23 45 6 7 8 9 10 11 12
S: ' 1100 1 1001 1 0 O
So: 000001100 1 1 O
S 11 1 1 0 0 0 00 0 0 0
S 0 0 1 01 1 1 1 0 0 0 0
Ss:0 0 0 0 0 0 0 0 1 1 1 1
Se:: 0 0 01 0001 0 0 0 O
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s, =1{1,2,5,6,9,10};
s, =1{6,7,10,11};
S, ={1,2,3,4);
s,=1{3,5,6,7,8};

S, ={9,10,11,12};
S, = {4,8}.

..... Ss from [124]

We consider below a slightly modified method from [127] that is applied to
binary matrices exemplified above and the matrix from Figure 3.19 [126] will
be used to illustrate the steps of the chosen method that are the following:

1. Finding the column Cpi, with the minimum Hamming weight (HW) that
is the number of ones. If there are many columns with the same
(minimum) HW, selecting such one for which the maximum row is larger,
where the maximum row contains 1 in the considered column and the
maximum number of ones;

2. If HW = 0 then the desired covering does not exist, otherwise from the set
of rows containing ones in the column Cuin finding and including in the
covering the row Ruyax with the maximum HW;

3. Removing the row Rmax and all the columns from the matrix that contain
ones in the row Rumax. If there are no columns then the covering is found
otherwise go to the step 1.

Let us apply the step 1-3 to the matrix A above:

1. The column 12 is chosen;

2. The row S5 is included in the covering;

3. The row S5 and the columns 9, 10, 11, 12 are removed from the matrix.

1. The remaining columns contain the following number of ones: 2, 2, 2, 2, 2,
3, 2, 2. The column 3 is chosen because for this column the row S4 has the
maximum HW equal to 5;

2. The row S4 is chosen and included in the covering;
3. The row S4 and the columns 3, 5, 6, 7, 8 are removed from the matrix.

1. The remaining matrix contains rows S1, S2, S3, S6 and columns 1, 2, 4 with
the following HWs: 2, 2, 2. The column 1 is chosen;

2. The row S3 is chosen and included in the covering;
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3. After removing the row S3 the covering is found and it includes the rows S3,
S4, S5 shown in italic font in the matrix above. The minimum covering is the
same as in [126] that was found with a different algorithm.

We suggest the given matrix to be unrolled in such a way that all its rows and
columns are saved in hardware (in programmable logic of FPGA of PSoC)
registers. Note that more than a hundred of thousands of such registers are
available in the recent low-cost FPGAs. This technique permits all rows and
columns to be accessed and processed in parallel.

Figure 3.20 demonstrates the unrolled matrix A shown above (and repeated in
Figure 3.20 for convenience). HW counters compute HW for all the
rows/columns in parallel using combinational circuits, such as that are proposed
in [36].

R Lo 0 _<— Select register for the rows — 0 8]
c
“g g [0 0 < Mask register for the rows — 0 0]
2 §\110011001100 000001100110 000000001111 000100010000 <
‘B X S S meeeeee- S S
g 1 ! l v 2 v sy g7
E.'_E ? 1 | HW counterl I HW counter | | HW counter I I HW counter |
0 o | |
0 1
0
1
[1) 2 The maximum row
o &
T 8 PL registers for matrix rows

]
I
Mask register ; MIN
for the columns X —> The minimum column
l i column
0 I >
1 123456789101112
11
08 Si: 110011001 10 0
1 S 0000OO11O0O0OT1T1 O
0 The matrixA:|S3: 111100000 00 0
0 S 00101111000 0
0 Ss: 000000001 11 1
0812 S 00010001000 0
1
0

Figure 3.20 Architecture of the proposed hardware accelerator on an example of
unrolled matrix [124]

The MIN column and MAX row circuits permit to find out the minimal column
Chin and the maximum row Rpmax. It is shown in [128] that these circuits can be
built as MAX-MIN fully combinational networks producing the results faster
than in 20 ns. Since all the circuits (computing HW and the maximum/minimum
values) are functioning in parallel, the steps 1 and 2 may be completed faster
than in 20 + 20 = 40 ns even in low-cost FPGAs. So, a very significant
acceleration can be expected.
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Figure 3.21(a) presents such a circuit for a matrix 32 x 32 for which the
number of bits in any HW is 6 (because the maximum number of ones in a 32-
bit vector is 32 that can be represented by a 6-bit code). A particular
(simplified) example for only 6 input items 3, 14, 21, 11, 14, 27 is given in
Figure 3.21(b). The maximum value (27) is found in a combinational circuit
with only 3 gate level delays. Clearly, there is 5 gate level delay for matrices 32
x 32 and 6 gate level delay for matrices 64 X 64.

a) 32 input HWs wjth 6 bits each
r 1
p fo " ) S0 09 9 &9 &9 -9 9 9 9 9

]

| | A 4
The %
b) £ [3 —e 14 o21 27) maximum 3
2 |14 I 3 1313 value 2
S 21 —e 21 114 114 ——iax) §
B 11 11|11 ‘I ax | S
5 ﬂ 27 27 121 Min s
£ |27 D CTEET RTINS 5

3 gate level delay
&>

Figure 3.21 MAX circuit from [8] for 32 x 32 matrix (a); an example (b). [124]

Since all the circuits (computing HW and the maximum/minimum values) are
functioning in parallel, the steps 1 and 2 may be completed faster than in 20 +
20 = 40 ns even in low-cost FPGAs. So, a very significant acceleration can be
expected.

In accordance with the proposals, the matrix is unrolled only once and any
reduced matrix is formed by masking previously selected rows and columns.
One select register and two mask registers (one for rows and another one for
columns) shown in Figure 3.20 are additionally allocated in the PL. The select
register is zero-filled at the beginning of the step 1 and after the step 1 it
indicates by values 1 those rows that have to be chosen by the selected column
(i.e. such rows have values 1 in the selected column). The mask registers are
filled in with zeroes at the beginning of the algorithm and they mask (by the
values 1) those rows and columns that have been removed from the matrix in
each iteration. For example, the select register contains the value 000010 after
the first step in the example matrix A. The mask registers after the first iteration
in the example are set to 000000001111 for the columns and 000010 for the
rows. After the second iteration they are updated as 001011111111 for the
columns and 000110 for the rows.
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3.5. Summary

This chapter describes methods proposed in this research. It presents the
pipelined periodic sorting network — which serves as a basis of our data sorting
solutions. The advantage over other sorting networks were discussed and
possible drawbacks were stated.

We proposed two approaches of full data sorters with different combination of
sorting networks and merging of sorted subsets. The first proposed method of
data sorting involves parallel sorting of data fragments in hardware with
subsequent merging of those fragments in software. The second method also
suggest a combination of hardware and software components, but hardware in
this case performs both network-based sorting and merge operation based on a
tree-like structure of block RAM-based mergers. The second method relies on
sorting smaller data fragments than the first method, but hardware merging
allows larger sorted data fragments supplying for subsequent data merging.

Partial sorting methods for maximal and minimal subset extraction were also
described in this chapter. We proposed three different methods for this problem
solving and discussed advantages of each of them. The first method is based on
main and additional sorting networks with copying data between them. The
second method is based on swapping network, which permits avoiding
additional data copying and reducing the size of additional sorting networks.
The third method is based on switchable C/S block which permits using a single
sorting network and less C/S blocks. The possibility of filtering and extracting
very large scale subsets, which allow to go beyond hardware limitation, was
also discussed.

The architecture of FPGA LUT-based circuit for Hamming weight calculation
was presented. The hardware system for matrix covering also described in this
chapter utilizes this circuit along with a combinational network composed of
C/S blocks for maximal and minimal item extraction.

Also we proposed hardware-based system for matrix covering, which utilizes
LUT-based Hamming weight calculators and comparator networks.
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4. HARDWARE/SOFTWARE CO-DESIGN

The known results [129] [130] [131] have shown that software/hardware
solutions may be significantly faster than software only solutions. Hardware
only solutions are the fastest, but they are not suitable for the majority of
practical application, because of the resource limitation. We explored different
platforms for hardware/software co-design.

In this chapter three different approaches are explained: processing system and
programmable logic combination on PSoC [120] [121], FPGA/PC combination
and a three-level system which combines programmable logic and processing
system of PSoC with a host PC [5] [118] [119]. Also we describe hardware
architectures based on these approaches for methods proposed in the previous
chapter.

4.1. PS/PL system

This chapter describes our approach of hardware software co-design for PSoC
architecture from the Zyng-7000 family. It is an architecture that combines the
dual-core ARM® Cortex™ MPCore™-based processing system and Xilinx
programmable logic on the same microchip. There are similar solution from
other FPGA manufacturers [132] [133] [134], but we focus on Xilinx platforms.

Figure 4.1 illustrates interactions between the basic functional components of
the Zyng-7000 PSoC [135] that contains two major top-level blocks: the
processing system (PS) and the programmable logic (PL). Communications
with external devices are provided through multiplexed input/outputs (MIO)
with potential extension from the PL through extended MIO (EMIO). Zynq
PSoCs offer numerous communication mechanisms from simpler general-
purpose input to more advanced data exchange through AXI interfaces allowing
access to external DDR memory, to on-chip memory (OCM) and to level 2
cache of PS.

Software and hardware can be designed autonomously and linked in a
hardware/software system. To increase performance, the most time-consuming
parts of software might be redesigned and implemented in hardware.
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Figure 4.1 Interactions between the basic functional components of the Zyng-7000
PSoC [125]

Let us look at Figure 4.2. Clearly, software/hardware system is faster if: Ts > Tsen
S Tsh + Tn + Te, where Ts, Tsen, Tsn, Te, Th are time intervals required for different
modules. In highly parallel implementations software, hardware and interactions
between hardware and software can run concurrently. For example, software
may run in parallel with hardware; operations in hardware over previously
received data may be done at the same time when new data are being
transferred. Thus, Tsch < Ten + Th + Tc. For instance we would like communication
and application-specific operations to be overlapped in hardware as much as
possible (see Figure 4.2). Note that while hardware only designs may be the
fastest, the complexity of such designs is often limited by the available
resources in the PL.
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Figure 4.2 Software only and software/hardware systems [125]

Fig. 4.3 presents the proposed software/hardware architecture for the problems
discussed in Chapter 3. All hardware acceleration is done in an application-
specific processing block (ASP) which is entirely implemented in the PL. There
is another block in the PL called communication-specific processing (CSP)
which interacts with the PS, i.e. it receives a large set of data items step by step
in blocks and transfers the extracted sorted subsets. Besides, CSP is responsible
for exchange of control signals between the PS and PL.

The PS is responsible for solving the following tasks:

1.
2.
3.
4.
5.

6.

Acquiring data and saving them in either on-chip memory (OCM) or
external memory that is DDR.

Forming requests to the PL which is done through a set of control
signals.

Collecting data and performing tasks in software.

Veritying the results.

Solving exactly the same problem in software. This point is required
just for experiments and comparison.

Computing the consumed time.

The PL is responsible for solving the following tasks:

1.

Processing control signals received from the PS which are: a request
(start) to begin data processing; source address in memory of input
data (i.e. the address of the set that has to be handled); destination
address in memory of output data (i.e. the address to copy the
extracted subsets); the number of blocks Q of input data transferred
from the PS to PL; and the number of items in the last block. The PL
also forms two signals that are sent to the PS which are: an interrupt
generated as soon as the job is completed (i.e. the subsets have been
extracted and copied to memory) and the number of clock cycles
consumed in the PL which is needed for experiments and
comparisons.

Performing computations on requests from the PS in highly-parallel
ASP.
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3. Counting clock cycles consumed in the PL from receiving the
request up to generating the interrupt.

PS

Using software only to solve exactly the same  Verification in software

problem without hardware circuits
Data transfer from/to

These operations are controlled by software selected memories
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Interrupt from J ( )}_
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7
Configured for the chosen HP
generic values K, M, Lo Linin m —
\Z GP — general purpose

HP — high performance

Figure 4.3 The proposed software/hardware architecture for data sorting [125]

Selection of proper AXI ports is very important. Experiments in [136] have
shown that for transferring a small number of data items (from 16 to 64 bytes)
general-purpose input/output ports (GPP) are always the best. In Zynq PSoC
there are four available 32-bit GPP, two of which are masters and the other two
are slaves from the side of the PS. They are optimized for access from the PL to
the PS peripherals and from the PS to the PL registers/memories [137]. Since
the latter feature is what we need, a master GPP was chosen for transferring
control signals shown in Figure 4.3. AXI ACP allows cache memory of
application processing unit (APU) in the PS to be involved for data transfers
and there exists an opportunity to provide either cacheable or non-cacheable
data from/to the indicated above memories (i.e. OCM or DDR) [136]. Mapping
of memories may be done in computer-aided design software. Experiments in
[136] [131] have shown that for transferring large volumes of data items AXI
ACP is very appropriate. Thus, this port was chosen to receive the source set
from memory (OCM or DDR) in the PL and to copy extracted subsets from the
PL to memory.

Figure 4.4 gives more details about the chosen software/hardware interactions
where: solid arrows (—) indicate who is the master (the beginning) and who is
the slave (the end); double compound lines show control flow; and dashed lines
indicate directions of data flow (i.e. one direction - — or both directions - <>).
Control (and possibly a small number of additional auxiliary) signals are
transferred through GPP. An initial (source) set and extracted subsets are copied
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through AXI ACP. The used memory (OCM or DDR) is indicated by the
respective mapping both in hardware and in software.

The snoop controller [135] in Figure 4.4 provides cacheable and non-cacheable
access to memories (OCM or DDR). Cache area can be either disabled or
enabled in software. In particular, data received from/copied to memories may
be pre-cached, i.e. they can be first saved into faster cache and then transferred
with the main goal to increase performance of communications. Note that for
standalone programs cache memory is entirely available. For programs running
under an operating system (such as Linux) some area in cache memory may be
used by programs of the operating system and the size of available cache
memory is reduced. Many additional details can be found in [131].
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Figure 4.4 Hardware/software interactions [120]

4.1.1. Hardware/software co-design for subset extraction
This section presents the hardware architecture for methods of subsets
extractors from section 3.2 based on proposed hardware/software approach.

Initial (source) data set and extracted subsets are accommodated in memory as it
is shown in Figure 4.5. All necessary details about particular locations and sizes
are supplied from the PS to PL through GPP (see Figure 4.4).
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To extract the maximum and/or minimum sorted subsets the following sequence
of operations is executed:

1.

10.

11.

The PS prepares source data in memory, calculates the number of
blocks Q = [N/K ] (the value K is predefined), the number of items
in the last block (which can be less than K), and indicates the source
and destination addresses. Here, N is the total number of data items
that have to be processed.

The PS sets the start signal that is permanently tested in the PL.

As soon as the signal start is set, the PL transfers blocks of data in
burst mode and saves them in a dedicated dual-port embedded block
RAM (one port is assigned for transferring data from the PS to PL
and another port for copying data from the block RAM to PL
registers considered in the next section).

As soon as the first block is completely transferred to the block
RAM through the first port, it is copied through the second port to
PL registers that are used as inputs of sorting networks for extracting
subsets in ASP.

The maximum and minimum subsets are incrementally constructed
using methods from the previous chapter and subsequent blocks of
source data are transferred from memory to the block RAM in
parallel.

The block RAM is organized as a circular buffer as it is shown in
Figure 4.6. If it becomes full data transfer is suspended until space
for subsequent block is freed.

As soon as all Q blocks are processed the maximum and minimum
subsets are ready (the details are given in section 3.2).

The maximum and minimum subsets are copied from the PL to
memory (see Figure 4.5).

As soon as the previous point is completed, the PL generates a
hardware interrupt to the PS indicating that the job has been
finished.

Optionally, the PL may count the number of clock cycles for solving
the problem in hardware that it supplied to the PS through GPP.

PS may solve other problems in parallel with the PL. However, as
soon as an interrupt is generated it is handled by the PS. Hence, the
extracted subsets may immediately be used, for example, as data
needed for projects of higher hierarchical levels.
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Figure 4.5. Accommodation of the initial data set and the extracted subsets in memory
[120]

The circular buffer in Figure 4.6 is managed by the PL control unit that is a
finite state machine. The buffer is built in the PL block RAM which is written
through the first port (used for transfer data from the PS) and read through the
second port (used to copy data from the block RAM to PL registers). As soon as
the buffer is full, data transfer from the PS to PL is suspended. As soon as some
area of the buffer is released (because data have already been read), data
transfer is renewed.
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4.1.2. Hardware/software system for search problems
Figure 4.7 presents the proposed partitioning in software and hardware modules

(assuming implementation in Zynq PSoC) of the considered algorithm that
enables the minimal covering to be found.
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Figure 4.7. Partitioning of the algorithm in sofiware and hardware modules [124]
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Software in the PS is responsible for the following steps:

1. Getting from a host computer or generating the matrix, unrolling it, and
saving in external DDR memory as a set of rows and a set of columns;

2. As soon as Cuin is found, the PL generates an interrupt of type a. The PS
receives the Cmin and sets the select register in the PL through general-purpose
ports;

3. As soon as Rmax is found, the PL generates an interrupt of type b. The PS
receives the Rmax and sets the mask registers in the PL through general-purpose
ports [135];

4. At any iteration it is checked if the solution is found or if it does not exist. If
the solution is found it is indicated by the PS or transmitted to the host computer
and the algorithm is completed.

Hardware in the PL implements the architecture in Figure 3.20 and is
responsible for the following steps:

1. Getting the unrolled matrix from external DDR through high-performance
AXI Interface and saving the rows and columns in slice registers as it is shown
in Fig. 3.20.

2. Getting from the PS select/mask vectors and setting/updating the select and
the mask registers.

3. Finding out the value Cpin at each iteration and as soon as the value of Cpin is
ready, generating an interrupt of type a.

4. Finding out the value Rmax at any iteration and as soon as the value of Ruax is
ready, generating an interrupt of type b.

4.2. FPGA-based system with host PC

Another platform that have been studied is a two-level system that combines
general purpose PC for software part and FPGA for hardware acceleration. The
data transfer between hardware and software levels is organized through PCI-
express. The architecture of hardware accelerator part of this two-level
architecture is shown in Figure 4.8. On-board DDR memory is used for
preliminarily data collection by FPGA and storage. The DDR is controlled by a
memory interface generator.
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Figure 4.8 Architecture of a two-level FPGA-based system for data sorting [5]
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Data transfer in the host PC is organized through direct memory access (DMA)
module that was developed for PC and FPGA integration of the two-level
system. The hardware uses the Intellectual Property (IP) core of the central
direct memory access (CDMA) module [138] to copy data through AXI PCI
express (AXI-PCIE) [139]. The project is similar to [140] and links CDMA and
AXI-PCIE modules based on a simple data mover (i.e. the mode "scatter gather"
is not used). A master port (M-AXI) of the AXI-PCIE operates similarly to GP
ports in [136] and supplies control instructions from the PC to customize data
transfers. The instructions indicate the physical address of data for PC memory,
the size of transferred data, etc.

Software in the host PC runs the 32-bit Linux operating system (kernel 3.16)
and executes programs (written in the C language) that take results from PCI-
express (from the accelerator) for further processing. To support the data
exchange between two parts of the system, a driver (kernel module) for general
purpose PC was developed. The driver creates in the directory /dev a character
device file that can be accessed through read and write functions, for example
write(file, data_array, data_size). Up to 5 base address registers (BAR) can be
allocated but we used just one.

The PC BIOS assigns a number (an address) to the selected BAR and a
corresponding interrupt number that will be later used to indicate the
completion of a data transfer. As soon as the driver is loaded, a special
operation (probe) is activated and the availability of the device with the given
identification number (ID) is verified (the ID is chosen during the customization
of the AXI-PCIE). Then a sequence of additional steps is performed (see [141]
for necessary details). A number of file operations are executed in addition to
the probe function. In our particular case, access to the file is done through
read/write operations. Figure 4.9 demonstrates the interaction of a user
application with the driver (kernel module) and some additional operations that
may be executed.

User application Kernel module
Open Ctﬁsyugz:as f;ocr: Get physical Enable COMA
pen. —» Write/Read [— P — address —> interrupts
Device file (copy_from_user) (pci_map_single) (writel)
Werite operation pcl_map_sing
[
v
Write address to .
translation ertesgur;e and Write number of Copy data to the
registers destination bytes to COMA Wait for user space
—» addressesto [— : —> . —
of AXI-PCIE IP CDMA resi register interrupt (copy_to_user)
registers . :
core . (writel) Read Operation
. (writel)
(writel)

Figure 4.9 Kernel module [5]

As soon as a user program calls the read function, the read(file, data_array,
data_size) function gets the address in the user memory space and the number of
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bytes that need to be transferred. Initially, the data are copied to a buffer and
then the physical address of the buffer is obtained. Now the data are ready to be
transferred from PSoC/FPGA. Then the data are copied and the driver is waiting
for an interrupt indicating that the data transmission is complete. The necessary
operations for generating the interrupt are given in [138]. Additional details can
be found in [141].

For the methods in sections 3.1-3.2 the proposed networks can be used as
follows. The sorter receives blocks composed of N M-bit data items that are
collected from inputs initially and stored in DDR memory. Interactions with
memory are done through the memory interface block (see Figure 4.8). The
sorter executes iterative operations over multiple parallel data and is controlled
by a dedicated finite state machine (FSM) called Sorter Control Unit (see Figure
4.8). The ports are also controlled by a dedicated FSM (see HP/ACP Control
Unit in Figure 4.8). The results of sorting are copied back to memory and then
transmitted to the host PC through the PCl-express bus. Specially developed
dedicated circuits are responsible for data collection and organization that is
done in accordance with the established requirements. Finally, the dedicated
circuits prepare data in memory so that these data can be processed in the FPGA
and the results of the processing (stored in memory) are ready to be transmitted
to the host PC. The blocks CDMA with control units (PCI Control Unit and
Interrupt Control Unit in Figure 4.8) are responsible for transmitting data.

4.3. Three-level system

The third approach can be described as a combination of both system discussed
previously: PS/PL system and a system with a host PC.

Certain Zynq devices (for example, Xilinx zc706) with support of PCI-Express
interface allow us to build a three-level architecture which combines PS and PL
of PSoC with general purpose PC. Figure 4.10 shows the basic architecture for
data transfer between a host PC and an PSoC through PCl-express.
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Figure 4.10 Basic architecture for data transfer between a host PC and a PSoC through
PCl-express [5]

Figure 4.11 presents the architecture of hardware accelerator part of the three-
level system for the example of distributed data sort. The architecture is based
on the hardware accelerator from the previous section, but includes PS part of
the PSoC. We assume that the data collected in the PSoC are preprocessed in
the PSoC by applying various highly parallel circuits, and the results are
transferred to the host PC through the PCl-express bus. The device driver for
general purpose PC is similar to the one described in section 4.2. The CDMA
module can be connected to either AXI HP or AXI ACP interfaces in PSoC and
transmits data from either on-chip memory (OCM) or external DDR. After
supplying the addresses, the number of data bytes (that need to be transferred) is
indicated and the data transmission is started. As soon as data transmission is
completed, the CDMA module triggers an interrupt that has to be properly
handled (the interrupt number is determined by the BIOS of the host PC). The
following customization is done for 1) AXI-PCIE: legacy interrupts, 128 bits
data width, and 2) CDMA: 256 bytes burst size, 128 bits data width. Note that
the architecture in Figure 4.11 allows data transfers in both directions, i.e. data
from the PC may also be received.

64



Y

a
@
g \ J
= an ] Sorter HP/ACP A5 £
g [, Control el Sorter qee| Control sl =N rak
interconmnect . b interconnect [ +
= < Unit Unit W
a E =
2l Y L B
) I 1 &
Erm elre comA T [ T '€
— 2 w
9 E [ | pcl [ interrupt GP i &
5 Control Control [— Control [+—o W— =] 3
. - " interconnect — 2
g Unit Unit Unit o
= |
ERIED .
= = Programmable Logic

Figure 4.11 Architecture of a three-level PSoC-based system for data sorting [5]

The proposed architecture is similar to the architecture described in section 4.2.
The main difference that in addition to two levels — PL (FPGA) and host PC
system, there is another level — PS of the PSoC system. Interaction between the
PL and PS are implemented as in PS/PL system described in section 4.1. but
with inclusion of Zynq PS as in PS/PL system, The data processing logic (for
example, sorter) receives blocks composed of N M-bit data items that are
collected from inputs initially and stored in memories (such as external DDR
and OCM). In case of a three-level system, transactions with memory are done
through AXI HP/ACP ports of PS (see Figure 4.11) and not through the
memory interface block (see Figure 4.8). Other steps of the method are also
similar to the two-level system with host PC, but PSoC PS, instead of specially
developed dedicated circuits, is responsible for data collection and organization
that is done in accordance with the established requirements. The PS prepares
the data so it can be processed in the PL and transmitted to the host PC.

4.4. Summary

This chapter proposes and describes different approaches of hardware/software co-
design for reconfigurable FPGA and PSoC devices. The first approach involves
usage of PS and PL of PSoC device with communication between them through
AXI interface ports.

Also this chapter presents two-level and three-level approaches using a general
purpose computer (host PC) and communication through high-speed PCI express
interface. The first level of the two-level system is programmable logic (FPGA) and
the second is host PC running Linux operating system. The three-level system was
designed for PSoC devices and has an additional level which is PS of the PSoC
device. Linux Kernel module was written for integration of both architectures.

This chapter covers all aspects of hardware/software implementations of methods
proposed in the previous chapter. The proposed techniques and methods are
suitable for processing large volumes of items and designed to work with
streaming data. The architectures presented in this research can be easily
utilized for different hardware accelerators.
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5. EXPERIMENTS

This chapter describes experimental results of systems discussed in Chapter 3.
All experimental setups are based on approaches presented in Chapter 4. The
platforms and techniques were chosen according to requirements and features of
the systems.

Experiments were done with different prototyping boards. The platforms for
hardware/software systems that involve PL and PS of PSoC device were Xilinx
ZC702 [142] and ZedBoard [143]. For the systems that involved data transfer
between PC and accelerators, we used two boards. The first is the Xilinx ZC706
[144] evaluation board containing the Zynq-7000 XC7Z045 PSoC device with
PCI express endpoint connectivity "Genl 4-lane (x4)". The PS is the dual-core
ARM Cortex-A9 and the PL is a Kintex-7 FPGA from the Xilinx 7th series. The
second board is VC707 and it contains the Virtex-7 XC7VX485T FPGA from
the Xilinx 7th series with PCI express endpoint connectivity "Gen2 8-lane (x8)"
[145]. All designs were done for: 1) hardware in the PL of PSoC/FPGA
synthesized from specifications in VHDL that describe circuits interacting with
Xilinx IP cores (Xilinx Vivado Design Suite 2016.2); 2) software in the PS of
PSoC developed in C language (Xilinx Software Development Kit — SDK
2015.1); 3) user programs developed in C running under the Linux operating
system in the host PC. The PL clock frequency is 125 MHz. The PS frequency
is 666 MHz. Data were transferred from the ZC706/VC707 to the host PC
through PClI-express. The PCI-express bus frequency is 100 MHz. The host PC
contains Intel core 17 3820 3.60 GHz.

5.1. Data sorting

We have implemented different hardware/software systems based on methods
described in Chapter 3. All the proposed approaches were implemented and
tested on FPGA and PSoC platforms. Experiments were conducted for hardware
sorting with subsequent software merge and for hardware sorting and merging
with subsequent software merging for very large subsets.

5.1.1. Hardware sorting of data subsets and software merging

Hardware/software system based on hardware sorting network-based sorters
with subsequent software merge was implemented using two different
approaches: GPP+FPGA and three-level system described in sections 4.2 and
4.3. Figure 5.1 demonstrates organization of experiments with data sorters for
the three-level system.
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Figure 5.1 Organization of experiments with data sorters (the size of one block is 1024
32-bit data items) [5]

We assume that data are collected by the ZC706/VC707 board and stored in
DDR memory (in the experiments, data are produced as described in point 1
below). Subsequently, different components (A, B, C, D) may be involved in
data processing:

1. Data are randomly generated and sorted using only networks in hardware
(component A), indicated below as Sorting blocks;

2. Data are generated and sorted in the PC, indicated below as PC sort.

3. Data are transferred from the ZC706/VC707 to the PC through PCl-express
and sorted by software in the PC (component D), indicated below as PC
sort+data transfer;

4. Data are completely sorted in the PSoC (the set of data items is decomposed
into blocks, blocks are sorted in the PL by the networks described in section
3.1, the sorted blocks are merged in the PS to produce the final result) and
the sorted data are transferred to the PC through PCI-express (components
A and B), indicated below as Sorting+PS merge;

5. Data are completely sorted in PSOC/FPGA and in the PC in such a way that:
a) blocks of data are sorted in the PL of PSoC or in FPGA; b) the sorted
blocks are transferred to the PC through PCl-express; and c) the blocks are
merged by software in the PC (components A and C). This case is indicated
below as Sorting+PC merge.

Sorting in hardware only (see point 1 above) permits the circuits that process
the maximum possible number of data items and can be entirely implemented in
the programmable logic without any support from software to be evaluated. We
also present the results of evaluation of the circuits including threshold values
that are potential limitations of the methods proposed.

Evaluation of the proposed circuits has been done through a set of experiments
with the network described in section 3.1 (depicted in Figure 3.1), selecting four
data sets sizes of 512, 1024, 2048, and 4096 items (32 bits). The results are
shown in Figure 5.2.
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We counted only the percentage of look-up tables (LUTs), which are the
primary PL/FPGA resources that are used for the network. The percentage of
other resources is lower, for example, the percentage of flip-flops for the FPGA
does not exceed 23% and for the PL — 31% for all data set sizes (from 512 to
4096). From Figure 5.2 we can see that the available resources permit only
iterative networks of up to 2048 32-bit data items to be implemented. Thus
2048 is the threshold for hardware only implementations based on the
microchips indicated above. A preliminary evaluation shows that 8192 items is
the maximum threshold value for hardware-only implementations of the circuit
from section 3.1 in the most advanced FPGAs/PSoCs currently available on the
market.

Percentage of used LUTs

160

140 - —-ZC706 (utilization % LUTSs) V.4
-=-V/C707 (utilization % LUTSs) /

120

100 The maximum available hardware resources //
80 ////

. _

40 /./

512 1024 2048 4096
Number of 32-bit data items

Figure 5.2 The results of sorting in hardware only using iterative networks described in
section 3.1 [5]

The results obtained for the five measurements indicated above are reported in
Figure 5.3 (the two curves PC sort and PC sort + data transfer show the same
results without and with data transfers). The result for each type of experiment
is an average of 64 runs.

The following conclusions can be drawn from Figure 5.3:

e The fastest results were obtained for the components A and C, i.e. pre-
sort in the PL with a subsequent merge in the PC (see point 4 above).
Note that the fastest (the lowest) curve in Figure 5.3— is built for sorting
individual subsets only. Thus, the complete data set has not been sorted
and the relevant results cannot be used for comparisons.
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e The slowest result is shared between the remaining two cases (see points
2, 3 above).

e Note that for almost all data sizes, sorting and merging in PSoC is faster
than sorting in PC software. Thus, cheaper (than PC) PSoCs are more
advantageous and may be used efficiently for embedded applications.

e Sorting blocks in the PL network (see Figure 3.1) is significantly faster
than subsequent merging. All communication and protocol overheads
were taken into account.
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Figure 5.3 The results of experiments with the three-level system sorting data (the size
of one block is 1024 32-bit data items) [5]

Similar experiments were done with the VC707 prototyping board, but with
blocks of data containing 2048 32-bit data items (i.e. the blocks sorted in the
hardware network are two times larger). The results are shown in Figure 5.4.
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Figure 5.4 The results of experiments with the two-level system sorting data (the size of
one block is 2048 32-bit data items) [5]

From analyzing these results we can conclude that:

e Using an FPGA from the Virtex-7 family, sorting in hardware networks is
slightly faster, but the difference is negligible.

e Using larger blocks (2048 vs. 1024) allows sorting in point 4 (see the
beginning of this section) to be faster by a factor ranging from 1.2 to 1.8.
This is because the depth of software merges is reduced by one level.

Comparisons with the best known alternatives can be done by analyzing the
fastest known networks. For data sorting, the latency and the cost of the most
widely discussed networks are shown in Table 5.1. The formulae for the table
are taken from [4] [27] [9] [36] [44]. For example, if N = 1024 then the latency
is equal to D(1024)=55 for the fastest known even-odd merge and bitonic merge
networks [24] [19], which is smaller than the number of iterations for the
proposed network. However, C(1024) for the less resource consuming even-odd
merge network is 24,063 C/S and for the proposed network C(1024) = 1023
C/S. Thus, the difference is a factor of about 24. It means that with the same
hardware resources, the proposed networks can process blocks of data with
significantly larger number N of data items. Indeed, the resources C(1024) =
24,063 of the known even-odd merge network are the same as for 24 proposed
networks each of which sorts the same number of data items, i.e. 1024. This
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means that the proposed network occupies less than 5% of the resources of the
known network and the number of sorted items is exactly the same.

TABLE 5.1. Cost C(N) and latency D(N) of the most widely discussed networks

Type of the network C(N) D(N)
Bubble and insertion sort Nx(N-1)/2 2xN-3
Even-odd transposition Nx(N-1)/2 N

Even-odd merge

(p*-pt4)x2r3-1,
N=2P

px(p+1)/2, N=2P

Bitonic merge

(p*+p)x2P2, N=2P

px(pt1)/2, N=2P

The proposed network (see
Figure 3.1)

N-1

<N

The experiments done for the board Xilinx vc707 [146] have shown that for the
networks [24] [19] N<128, while for the proposed networks N < 2048. Thus, the
proposed networks may handle about 16 times larger blocks. The blocks created
in hardware are further merged in software, thus the number of levels in
software will be increased in the known networks by a factor of |_10g216—|=4
(comparing to the proposed network). The following experiments were done:

1.

Blocks with two sizes (that are 128 and 2048 32-bit words) have been
sorted in software using the known (for the size 128) and the proposed (for
the size 2048) networks. The measured times are Ti2s and Taoss.

Since the known networks cannot be used for N=2048, the same results
have been obtained through a subsequent merge in software of blocks with
N=128 to get blocks with N=2048. The measured time is Ti28 + Tmerge-

Finally we measured the value (T128 + Tmerge) / T2043. The fastest method was
used i.e. pre-sort in the PL with subsequent merge in the PC. The result that
was an average of 64 runs exceeds 5. Note that additional delays appeared
also in data transmission through PCl-express of smaller blocks of data
items.

For subsequent merging required for larger data sets all the conditions for the
proposed and known methods are the same. Thus, the proposed methods are
always faster because merging in software begins with significantly larger pre-
sorted blocks. Clearly, threshold values for maximum sizes of sorted sets are the
same as for general-purpose software running in a PC.
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5.1.2. Hardware merging of sorted subsets

The system with network-based sorter with subsequent merge in hardware for
smaller data fragments and software merge for larger fragments described in
section 3.1.2 was also implemented. It was compared with both software sorting
and hardware sorting with PC merge. Figure 5.5 demonstrates organization of
experiments with data sorters for the three-level system.

1) Preparing initial
(unsorted) blocks B
and sending the Merging the

blocks to FPGA; sorted blocks
2) Receiving sorted in a RAM-

blocks from FPGA; based circuit
3) Processing sorted

blocks
GPC FPGA

Sorting blocks
by an iterative
network

Figure 5.5 Organization of experiments with data sorters (the size of the input data is
256KB of 32-bit data items) [118]

The system for data transfers between a host PC and an FPGA has been
designed, implemented, and tested. Experiments were done in the VC707
prototyping board that contains Virtex-7 XC7VX485T FPGA from the Xilinx
7th series with PCI express endpoint connectivity "Genl 8-lane (x8)". All
circuits were synthesized from the specification in VHDL and implemented in
the Xilinx Vivado 2016.2 design suite. Software programs in the host PC run
under Linux operating system and they were developed in C language. Data
were transferred from the host PC to the VC707 and back through PCI express.
The host PC is based on Intel core 17 3820 3.60 GHz.

Experiments have been done in accordance with Figure 5.5. The maximum size
of data that are entirely sorted in FPGA is 256 KB. For larger size of data
additional merging is done in the host PC. The results and comparison with
sorting in the host PC are presented in Figure 5.6. It is clearly seen that sorting
throughput for the proposed systems is significantly better than in the host PC.
For example, 1,024 KB data can be sorted in the proposed system in 0.016 s and
in the host PC in 0.11 s. Comparing the time of sorting reported in the
referenced papers and the results of Figure 5.6 clearly demonstrate that the
proposed solutions are faster.
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Figure 5.6 Comparison with software sorting
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Figure 5.7 Comparison with hardware sorting with PC merge.

The comparison with software merge solution with larger sorting network
proposed above is presented in Figure 5.7. The results demonstrate that the
proposed sorting with subsequent data merge in hardware is faster than sorting
with PC merge, but both solutions perform better than the software sorting. In
hardware merge-based solution we have utilized twice smaller sorting network,
because of resource limitations of the VC707 device. Both solutions perform
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almost identically with small data sets, but the hardware merge performs better
starting with 64KB date set and peaks with 256KB set, which is maximal
possible set to be sorted solely in hardware. After 256KB threshold the system
starts using software merge similar to the software merge-based solution, but it
merges data blocks of 256KB instead of 8KB. 1,024 KB data can be sorted in
the hardware merge-based system in 0.016 s and in the software merge-based in
0.027 s. Also it is important to mention that hardware-merge based solution
utilized more than 70% of the device RAM blocks, while software merge
solution doesn’t necessitate the usage of RAM blocks.

14
12 ——32-bit 16-bit 8-bit

10

Time in ms

211 212 213 214 215 216 217 218
Number of items

Figure 5.8. Experimental results of sorting data sets with simultaneous item counting
for different item sizes [119]

Merging with item counting was performed for 32-, 16- and 8-bit items. The 36-
bit size of the word for 32-bit items in the BRAM was chosen. It means that the
item count part of the word is 4-bit and capable of counting up to 15 repetitions,
which is enough for experiments with randomly generated data. The system was
configured to work with 32-bit words with 16-bit size of both the item and the
count parts for counting and merging of 16- and 8-bit data.

The experiments were conducted with randomly generated numbers. The
merging with counting 32-bit items didn’t show any noticeable speedup over
simple merging, since 2'® of randomly generated numbers do not have
significant number of repetitions. The merging with counting of the same
number of 16-bit data items is 1,45 times faster than the simple merge and
merge of 8-bit items is 27,28 times faster.

We experimented with different volumes of 8-, 16- and 32-bit data items and
compared them with software sorting. The host PC was used for merging the
data sets larger than volume of data that can be processed with the FPGA. In
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addition to data sorting and merging, PCI express throughput and operating
system overhead were also taken into account.

Figure 5.8 depicts comparison of sorting data sets in the proposed system with
8-, 16-, and 32-bit item sizes.

5.2.  Partial sorting

We have implemented all the proposed in section 3.2 methods of partial sorters
for minimal and maximal subset extractors using all platforms discussed in
Chapter 4. Initially all these solutions were designed for PS/PL PSoC
implementation, but we have conducted experiments for 2- and 3-level
architectures involving host PC for exploration of additional features and
comparison with known hardware alternatives.

5.2.1. Hardware/software implementation of simultaneous min/max
extractors

The hardware/software systems for min/max subset extraction were designed as
it was proposed in section 4.1.1. Xilinx PSoC Zyng-7000 was chosen as a
platform for this implementation.

Figure 5.9 shows the organization of experiments. Initial (source) data are either
generated randomly in software of the PS with the aid of C language rand
function (see number 1 in Figure 5.9) or prepared in the host PC (see number 2
in Figure 5.9). In the last case data may be generated by some functions or
copied from available benchmarks. Computing subsets in software/hardware
systems is done completely in Zynq PSoC xc7z020-1clgd484c housed on
ZedBoard [143] with the aid the software/hardware architecture described in
section 4.1. Computing subsets in software only sorters is completely done in
the PS calling C language gsort function which sorts data and after that the
maximum and minimum subsets are extracted from the sorted data. The results
are verified in software running either in the PS (see number 3 in Figure 5.9) or
in the host PC (see number 4 in Figure 5.9). Functions for verification of the
results are given in [131]. Verification time is not taken into account in the
measurements below.

Synthesis and implementation of hardware modules were done in Xilinx Vivado
2016.2 design environment from specifications in VHDL. Standalone software
applications have been created in C language and uploaded to the PS memory
from Xilinx SDK (version 2016.2) using methods described in [131].
Interactions with PSoC are done through the SDK console window.
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Figure 5.9 Experimental setup [120]

For all the experiments 64-bit AXI ACP port was used for transferring blocks
between the PL and memories. More details about this port can be found in
[131] [136] [137]. The size of each block for burst mode is chosen to be 128 of
64-bit items (two 32-bit items are sent/received in one 64-bit word). Two
memories were tested: the OCM and external (on-board) DDR. The OCM is
faster because it provides 64-bit data transfers [135], but the size of this memory
is limited to 256 KB. The available on ZedBoard 4 Gb DDR provides 32-bit
data transfers.

The measurements were based on time units (returned by the function
XTime_GetTime [34]) for Luax = Lmin = 64, M=32, and K = 200. Each unit
returned by this function corresponds to 2 clock cycles of the PS [35]. The PS
clock frequency is 666 MHz. Thus, any unit corresponds to approximately 3 ns.
The PL clock frequency was set to 100 MHz. Figure 5.10 shows the time
consumed for computing the maximum and minimum subsets for data sets with
different sizes in KB (from 2 to 128). Since M=32 the number of processed
words (N) is equal to the indicated size divided by 4. Figure 5.11 shows the
acceleration of software/hardware systems comparing to the software only
sorting in the PS. Note that Figures 5.10, 5.11 present diagrams for OCM. If
DDR memory is used then communication overheads are slightly increased but
acceleration in the software/hardware systems comparing to software only
system is again significant. For M=64 speed-up is increased in almost 2 times.

76



Time in pus
100 000

10000 /

1000
/ —+Software only
-=-Hardware (method 1)
/ Hardware (method 2)

——Hardware (method 3)

100

The results for methods
\ 1and 2 are almost

10 + identical and that is why
the respective lines
overlap
1 T !
2 4 8 16 32 64 128 Size of data in KB
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Figure 5.11 Acceleration of software/hardware systems comparing to software only
system [120]

If the size of the requested subsets is increased in such a way that all data need
to be read from memory several times (see section 3.2.5.) then acceleration is
decreased. Table 5.2 presents the results for extracting larger subsets
(containing from 127 to 505 32-bit data items) from 128 KB set.
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Table 5.2. The results for extracting larger subsets from 128 KB set

N 127 190 253 316 379 442 505

Time

in ps 9264 | 1,393.7 1,856.7 | 2,320.5 | 2,780.4 | 3,245.5 | 3,708.9

For very large subsets acceleration may even be less than 1, i.e. software only
system becomes faster. In such cases software/hardware sorters can be used
directly and they provide acceleration for all potential cases even for Lyax= N or
Lmin= N. Such acceleration is not as high as in Figure 5.11 and it is equal to 6
for N = 512, K = 256 (now K is the size of blocks sorted in hardware and
further merged in software) and 1.4 for N = 33,554,432, K = 256. These results
were taken from experiments with data sorters from [131] (in all experiments
M=32). We found that for small and moderate subsets the proposed here
methods provide significantly better acceleration.

5.2.2. Three-level system for min/max extractors

The next experiments were done extracting the maximum and the minimum
sorted subsets using the system described in section 4.3, which involves usage
of general purpose PC and PCI express communication. We found that the
acceleration is better than for complete data sorters described in section 5.1,
which use the same approach. This is because the number of data transferred
through PCI express is significantly decreased and almost all operations are
done in the PSoC/FPGA. We implemented and tested the iterative circuit
presented in section 3.1 (Figure 3.1) in the PL of PSoC, which takes data from
the DDR memory and extracts the maximum and minimum subsets with
Lmax/Lmin data items, where Lmax/Lmin varies from 128 to 1024 (as before M =
32, L varies from 2 KB to 1024 KB). Table 5.3 presents the results for Lyax/Lmin
=128.

TABLE 5.3. The results of experiments extracting the maximum/minimum subsets

Data (KB) Time (us) Data (KB) Time (us)
2 70 64 254
4 75 128 425
8 89 256 916
16 112 512 1543
32 157 1024 3535
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Table 5.3 presents the results for larger numbers of data items in extracted
subsets (from 128 to 1024) for L =256 KB.

For very large subset extraction the approach described in section 3.2.5 was
used. Table 5.4 represents experimental results for very large scale extraction
based on 3-level for subsets up to 512 data items.

TABLE 5.4.: The results of experiments with extracting subsets with different number of
data items

Data Time (us) Data Time (us)
128+128 916 640+640 4481
256+256 1808 768+768 5372
384+384 2698 896+896 6261
512+512 3589 1024+1024 7152

5.2.3. Separate min/max extractors and comparison with known
hardware alternatives

If only the maximum or only the minimum subsets have to be computed the
acceleration is almost the same as with maximal and minimal extraction, but the
occupied hardware resources are reduced.

We implemented only minimum or only maximum subsets extractors with an
aim to compare it with known alternatives. For this implementation Xilinx
Virtex-7 FPGA was chosen and the two level-based architecture from section
4.2 was used. We compared it with software sorting and a hardware solution
from [39] (OEM/BM). Software solution is the most obvious and the most
widely used quicksort implementation from C++ language (sort function). With
this approach a whole data set is being sorted with subsequent extraction of the
maximal (or minimal) subset. For comparison in hardware area, the system
from [39] was implemented. After some experiments we found the optimal
configuration for implementation for Virtex-7 device which extracts 128-item
data sets. Any implementation for extracting 256-item data sets utilizes more
than 100% resources of the device. We used suggested in the section 3.2.4
concept of iterative max-set-selection units. The basis of this system is
constructed from the two following blocks: 256-t0-128 odd-even merge max-
selection units and reduced bitonic 256-to-128 unit which starts with core max-
selection unit. Inputs for core max selection units are outputs of OEM 256-to-
128 and outputs of BM sorter (which contains results from the previous
iteration).
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For our methods we implemented two different systems. One for finding 128-
item data subset in order to compare with OEM/BM method, and another for
finding 1024-item data sets which is the maximal possible circuit that fits in the
chosen Virtex-7 device. Post-implementation resource usage is shown in Table
5.5. Methods A and B in this table refer to the methods described in section
3.2.4 and depicted in Figure 3.15. Method A is a method based on two sorting
networks and Method B is a method based on swapping networks.

Table 5.5. Resource utilization for methods A and B from Figure 3.15

Resources
Method
FF LUT
Method A 128 9% 22%
Method B 128 8% 19%
Method A 1024 38% 949%
(max)
Method B 1024 229 70%
(max)
OEM/BM 128 520, 78%
(max)
100
10
g
£ !
(]
£
'_
01 Method B 1024 PC sorting
0,01
8 16 32 64 128 256 512 1024

The size of data in KB

Figure 5.12 Experimental results. Hardware subset extraction based on swapping
network compared to software solution [122].
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Lookup table (LUT) usage for the method A is 3,5 times smaller and for the
method B is 4 times smaller than OEM/BM based solution. The method A
requires 5,7 times fewer amount of flip-flop (FF) than OEM/BM and the
method B requires 6,5 times fewer FFs. Also it is necessary to mention that all
modules required for PCle DMA system utilize about 15% of LUTs. By
subtracting these resources we see that pure min/max system for the method A
requires 9 times fewer LUTs and the method B requires 15,7 times fewer LUTs.

Available resources of Virtex-7 device allow us to expand our circuits for
extracting larger maximum or minimum subsets. Both proposed architectures
were expanded to extract subsets of 1024 items which is 10 times more than
with OEM/BM approach. Although for simultaneous extracting of maximum
and minimum subsets both proposed methods are identical in terms of resource
usage and performance, the method B is better for extraction of maximum or
minimum subset alone.

Fig. 5.12 shows experimental results. With Virtex-7 and the proposed PCI
express transfer system all hardware implementations showed approximately
identical results. With architectures that allow faster data transfer OEM/BM
approach may show better results, because for the proposed methods A and B
the worst case performance is K/2 clock cycles for K inputs and OEM/BM
performance is dependent on the number of pipeline stages. But because of
significant economy of resources with the proposed methods (especially the
method B) it is possible to speed up sorting by placing two or more instances of
the sorting circuit that will sort parts of the whole data simultaneously.

Comparison of the proposed methods for extracting the maximum and
minimum sorted subsets with the results in [39] demonstrates that the proposed
method permits significantly larger subsets to be constructed. Indeed, the
maximum size of extracted subsets in [39] is smaller and the maximum size of
initial set is only 256 items. This is because the methods [39] are based on even-
odd merge and bitonic merge networks for which the complexity of the circuits,
i.e. the value of C(N), is limited. In our case, the maximum size of extracted
subsets is 1024 (which exceeds the size of initial data sets in [39]) and the size
of initial set is up to 1024 KB. The size of each item is 32 bits. The conclusion
is the following: 1) the proposed methods enable data sets with significantly
larger numbers of items to be processed; 2) the size of the extracted (minimum,
maximum, or both) subsets may be increased in the proposed networks; 3) the
performance (throughput) for processing large subsets in the proposed methods
is better because complex tasks cannot be entirely solved in hardware using the
methods [39] and the necessary software introduces large additional delays.

5.3. Hamming weight and matrix covering

The charts in Figure 5.13(a) permit to compare the suggested architectures with
the best known alternatives, such as [89], [88], [87]. All the circuits were
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synthesized, implemented in the Xilinx Zynq xc7z020 microchip, and tested in
two prototyping boards: 1) Xilinx Zyng-7000 EPP ZC702; and 2) ZedBoard.

The first chart (Figure 5.13(a)) shows the maximum combinational path delay
and the second chart indicates the number of FPGA slices for different designs.
The total number of available slices in the microchip xc7z020 is 13 300. For our
circuits we also considered pipelined implementations which include additional
registers between layers (see PLR in Figure 3.18). We found that the maximum
delay between the registers can be as little as 1.253 ns. Thus, potential
throughput can be less than 2 ns per weight.

Implementation of matrix covering circuit which includes HW counters
described in section 3.3 was done in the Xilinx Zyng-7000 PSoC ZC702
evaluation kit. Software for the ARM was developed in C language and
hardware for the PL was synthesized from specification in VHDL. Experiments
were done with two types of matrices 32 x 32 and 64 x 64. Thus, either 32 + 32
= 64 or 64 + 64 = 128 HW counters have been implemented in the PL section
and all these circuits can run in parallel. Since Cmin and Rm.x are found at
different steps of the algorithm, only half of the HW counters work in parallel
enabling either the minimal column Cy;n or the maximal row Ruax to be found.
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Figure 5.13 Latency (a) and cost (b) comparison with comptitive solutions by Piestrak
[88], Parhami [89] amd Perdroni [87]. [123]
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We compared three different implementations in which the covering algorithm
is either:

1. Described in C language program running in PC with Intel i7 2.66 GHz
processor;

2. Described in C language program running in ARM Cortex-A9;

3. Implemented in the PS and in the PL of Zyng-7000 PSoC.

Initial matrices have been generated randomly using the C rand function and
identically for all the described above implementations. The number of
instances (examples) was chosen to be 100,000.

In the last case (see the point 3 above) that is the original contribution of the
thesis the following results have been obtained:

1. Generating in the PS and transmitting the matrices from the PS to the PL
requires about 31 ps for 32 rows and 32 columns and about 34 ps for 64 rows
and 64 columns. Only one AXI 32-bit (for the matrices 32 x 32) or 64-bit (for
the matrices 64 x 64) port from the 4 available ports has been used. Clearly,
additional ports permit the indicated time to be reduced;

2. Each iteration in the PL is executed in about 28 ns for the matrices 64 x 64
and about 24 ns for the matrices 32 x 32;

3. Communications between the PS and the PL (through interrupts and general-
purpose ports) at any iteration of the algorithm require negligible time
comparing to other operations.

The covering is found significantly faster than in software. The acceleration
comparing with the PS only (see point 2 above) is from 30 to 50 times and
comparing with the PC (see point 1 above) is from 5 to 10 times. This is
because operations of the covering algorithm in software require many cycles
and frequent transmission of data between processors and memories. For
example, if we consider 64 x 64 matrices then a single matrix transfer from the
PS to the DDR takes 33,300 ns on average and this is the most time consuming
operation. Data transfer from the DDR to the PL is done in 284 ns on average.
Once the PL receives the matrix data, no more interaction with the DDR is
required for further processing.

5.4. Summary

In this chapter experimental results are presented. We conducted experiments
for methods presented in Chapter 3 and implemented using approaches
described in Chapter 4.

The experiments were done with an advanced prototyping systems of Xilinx 7™
series FPGA and PSoC devices, allowing data processing in complex
hardware/software systems.

We implemented, verified and tested methods proposed in this work and
compared them with software running on general purpose computer and
hardware solutions known from publications.
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6. CONCLUSIONS

This thesis explored different methods of network-based accelerators for
parallel data processing in several subjects. This chapter summarizes the main
thesis contributions and outlines the directions for the future work.

The accelerators for solutions of the problems proposed in this thesis are in very
high demand in many areas and especially in those where time and resource
consumption is critical. Fast sorting of high volumes of incoming streaming
data with simultaneous subsets extraction and processing are vital tasks in many
real-time systems where the information must be quickly analyzed.

The architectures for building such accelerators in  multi-level
hardware/software systems were also proposed. These approaches can be
modified for large variety of different data processing tasks which require fast
analysis of the streaming data.

The main contributions of the presented work are summarized below.

e Hardware/software architectures for fast extraction of minimum and
maximum sorted subsets from large data sets and three methods of such
extractions based on highly parallel and easily scalable sorting networks.

The basic idea of the methods is incremental construction of the subsets that is
done concurrently with transfer of initial data (source sets) through advanced
high-performance interfaces in burst mode. The extracted subsets may be
filtered and this feature is useful for control applications. The proposed
solutions are highly parallel permitting capabilities of programmable logic to be
used very efficiently. All the suggested methods were implemented in
commercial microchips, tested, evaluated, and compared with alternatives. The
results of experiments have shown significant speed-up of the proposed
software/hardware systems comparing to software only systems and to
competitive hardware/software implementations. The advantages of the
proposed techniques over competitive hardware/software techniques include the
ability to sort significantly larger data fragments and significantly more efficient
resource utilization. The proposed techniques require from 9 to 15 times less
FPGA LUTs than known alternatives for extracting subsets of the same sizes.
The acceleration over GPP-only solutions is significant.

e Hardware/software architectures for data sorting that involve sorting and
merging operations.

The distinctive feature of these architectures is parallelization at several stages
with the adjusted time. The first stage is data sorting in hardware using periodic
pipelined sorting networks and it is done in such a way that data acquisition,
sorting and transferring the sorted data are carried out at the same time. The last
stage is merging of hardware sorted subsets in software. The first architecture
consists of these two stages, while the second architecture has the middle stage,
which is a hardware pipelined RAM-based merger that enables merging at
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different levels to be done in parallel and it can also be combined with the first
stage. Such type of processing is efficient for sorting large sets (tens and
hundreds millions of data items). The experiments were done with an advanced
prototyping system (allowing data processing in a general-purpose computer
and in recent FPGA from the Virtex-7 and PSoC Zyng-7000 of Xilinx). The
results of experiments demonstrate significant acceleration comparing to
general-purpose software and the results reported in publications. In comparison
with other sorting networks the proposed sorters occupy significantly less
hardware resources and therefore can sort larger amounts of data. The proposed
network occupies less than 5% of the resources of the known network and the
number of sorted items is exactly the same. Therefore the proposed system with
subsequent merging is always faster than the alternatives because the merging
starts with significantly larger sorted data subsets. Additionally the solution
which involves simultaneous data sorting and item counting was proposed. This
approach demonstrates even better performance with data sets with high number
of repeated items and requires approximately the same amount of the hardware
resources. It provides both fully sorted data set and a list of repeated data items.

¢ Hamming weight/distance counters/comparators based on FPGA LUTs.

The results of experiments confirm correctness and effectiveness of the
proposed technique. The proposed approach showed better results in both
performance and resource utilization in comparison with other known
alternatives.

e A novel technique for implementation of matrix/set covering algorithms in
hardware and software of recent all programmable systems-on-chip.

A new method that permits the known approximate algorithm to be executed
over suggested unrolled matrices is discussed and the relevant hardware
accelerator is developed. It is shown that the covering algorithm can efficiently
be partitioned in software and hardware modules that finally have been
completely implemented and tested in Xilinx Zynq microchips. The results of
experiments and comparisons with two different software implementations
demonstrate significant speedup which is very important for various practical
applications that are also mentioned in the paper. The comparison with PS only
implementation showed the acceleration from 30 to 50 times and with PC — 5 to
10 times.
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6.1. Future Work

This section outlines tasks and directions that need further investigation in the
scope the studied topic.

The investigation of different properties of network-based algorithms should be
continued in order to increase hardware acceleration even further. The ability of
swapping networks to generate bitonic sequences was higlighted and their
properties can be integrated in the merge-tree structure for merging sorted data
sets. Different methods proposed in this thesis could be also integrated for
acceleration of more complex practical applications. One of those possible
applications is integration of data sorting with simultaneous item counting and
subsets extraction for solving the most frequent item computation.

The new generation of PSoC devices which combine FPGA, CPU, real-time
CPU and GPU on the same microchip should be analyzed and utilized for the
applications discussed in this research. The distributed methods proposed in this
thesis will definitely benefit from these newly emerged platforms.
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ABSTRACT

The thesis explores topics related to hardware acceleration of computationally
intensive and resource consuming problems that may be used efficiently in
information processing that is frequently needed in electronic, environmental,
medical, and biological applications. We propose hardware acceleration
methods for problems such as data sorting and merging, filtering and subset
extraction, parallel covering of matrices/sets, Hamming weight computation and
related tasks. Our solutions are based on highly parallel network-based methods
which consist of large numbers of repeated elements.

We use reconfigurable technologies such as field-programmable gate arrays
(FPGA) and programmable systems on chip (PSoC) as target platforms for
implementation of our data processing methods. Effectivness of these platforms
and their combinations were investigated in this research. These platforms are
very appropriate for implementation of such systems because of their low cost,
flexibility, availability and many other advantages.

The main contributions of this research are techniques for fast extraction of
minimum and maximum sorted subsets from large data sets, data processing
that involve sorting, merging operations and simultaneous item counting,
hamming weight/distance counters/comparators, matrix/set covering and their
implementations which involve hardware/software co-design and combinations
of reconfigurable platforms.
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KOKKUVOTE

Selles viitekirjas uuritakse teemasid, mis on seotud arvutusmahukate ja
ressursikulu  probleemide lahendamise riistvarakiirendusega, mida voib
kasutada informatsiooni tootlemisel, mis on tihti vajalik elektroonika-,
keskkonna-, meditsiini- ja bioloogilistes rakendustes. Pakutakse vélja riistvara
kiirenduse meetodeid erinevate probleemide nagu informatsiooni sorteerimine
ja Uhendamine, filtreerimine ja alamhulkade ekstraheerimine, paralleelsete
maatriksite/kogumite katmine, Hamming’u kaalu arvutamine ja nendega seotud
tilesannete lahendamiseks. Lahendused pohinevad tugevalt paralleelsetel vorgu-
poOhistel meetoditel, mis koosnevad paljudest korduvatest arvutuselementidest.

Andmetdotlusmeetodite  realiseerimiseks kasutatakse —riistvaraplatvormina
iimberkonfigureeritavaid tehnoloogiaid nagu véliprogrammeeritavad
véravamassiivid (FPGA) ja programmeeritavad siisteemid kiipidel (PSoC).
Valitud platvormid sobivad viitekirjas viljatootatud meetodite rakendamiseks
oma odavuse, paindlikkuse ja teiste eeliste poolest. Lisaks uuriti antud t66s ka
platvormide efektiivsust meetodite rakendamiseks.

Viitekirja pohitulemusteks on: kiire minimaalsete ja maksimaalsete sorteeritud
alamhulkade leidmine suurtest andmehulkadest; andmet66tlusmeetodid, mis
hélmavad sorteerimist, operatsioonide iihendamist ja samaaegsete objektide
loendamist; Hamming’u kaalu/kauguse loendurite/komparaatorite erilahenduse
loomine; maatriksite/kogumite  katmine; samuti loetletud tulemuste
rakendamine, mis hdlmab riistvara/tarkvara  koosprojekteerimist ja
timberkonfigureeritavate platformide kombineerimist.
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Abstract—The paper discusses the use of extensible processing
platforms for the design of high-performance systems which
combine fast parallel operations over data streams in
programmable logic and problem-specific software running in
advanced RISC machine. The streams contain information that
needs to be analyzed and filtered. The main idea is to digitalize
frequently changed data from numerous sensors and to
represent each data item in form of a binary vector. It is shown
that many analysis and filtering problems can be solved through
Hamming weight counting for the vectors and comparison of the
results with pre-given bounds (thresholds). The proposed
architecture takes advantages from fixed plus variable
computations and implements novel methods. The results of
experiments and evaluations of the architecture in two Zynq-
based prototyping boards are also presented.

L INTRODUCTION

Combining capabilities of software and hardware permits
many characteristics of developed applications to be
improved. The earliest work in such direction was done at the
University of California at Los Angeles [1]. The idea was to
create Fixed + Variable structure computer and to augment a
standard processor by an array of reconfigurable logic
assuming that this logic can be utilized to solve some
processor tasks faster and more efficiently. Today very similar
technique has been implemented on a chip such as Xilinx
Zynq xc7z020 extensible processing platform (EPP) [2]. A
processing system (PS) (dual ARM® Cortex™-A9 MPCore™
of Zynq) executes software programs and C/C++ languages
can be used to develop such programs. Programmable logic
(PL) is FPGA Artix-7 [3] implemented on the same microchip
with PS. PS and PL can exchange data using AXI-based
(Advanced eXtensible Interface) high-bandwidth connectivity.
Thus, in the same microchip we can implement and test: 1)
systems requiring development of software and invoking on-
chip processing block (i.e. PS); 2) application-specific
hardware in programmable logic, i.e. PL (for such hardware
we can also use soft processing cores, embedded blocks, such
as DSPs and memories, and arbitrary logic composed of look-
up tables and flip-flops); 3) fixed+variable structure
computing that combines PS and PL with high-speed data

978-1-4799-0066-4/13/$31.00 ©2013 IEEE

Artjom Rjabov, Alexander Sudnitson
Computer Department,
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exchange between PS and PL through AXI interface. Fig. 1
describes scenarios of interactions between PS and PL which
we are going to discuss below.

a) b)

Interaction with
a host computer

Transferring the
results to the PS.

Receiving multi- Fast
bit data items in
parallel from

ThL

—
—
Fast
parallel

LWL

Internal_output

—
parallel <

External output
W

Internal input

external devices | -1 PTOCCTE > Transferring the _{, processing
results to outputs > —>
—
— —
Figure 1. Interactions between PS and PL: PL provides fast parallel

processing of external data and PS can use the results (a); PL executes
dedicated operations for PS on internal requests from PS (b)

Two types of computations will be considered. In the first
type (see Fig. la) PL functions as an autonomous system
receiving data from external pins, executing operations over
the data, and transferring the results either to external pins or
to PS. In the second type (see Fig. 1b) PL is considered to be a
slave sub-system of PS. As soon as PS needs to accelerate PL-
dedicated operations, a request is sent to PL and data
associated with the operations are transferred to PL. PL
executes the operations using arbitrary logic and embedded
components (such as DSPs). As soon as the operations are
completed, PL informs PS that the results are ready and they
are sent to PS. Both types of computations will be applied to
stream processing. In the first type streams are received by PL
from external sensors. In the second type a pre-processing is
done in PS receiving data from other software programs or
from the host computer connected through available
input/output ports [2].

A brief summary of what is new and distinctive in this
paper is given below:
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e Model of computations over streams in EPP combining
PS and PL (sections 11, III).

e  Fast parallel look-up table based counters for Hamming
weight computations (section IV).

e EPP-based implementation of the entire system and the
results of experiments and comparisons (section V).

II.  MODEL OF COMPUTATIONS OVER STREAMS

Many electronic, environmental, medical, and biological
applications need to process data streams produced by
sensors that measure external parameters within the given
upper and lower bounds (thresholds). Examples of such
measurements are monitoring thermal radiation from volcanic
products [4], digital filtering [5], etc. Let us describe the
problem in a way shown in Fig. 2a. A set of sensors So,...,Sn.1
(the value N can achieve thousands) measure and output data.
A set of data values (SDV) collected at the same time is
represented in form of sub-sets such as that include: 1) values
that are below the lower bound, 2) values that are between the
upper and the lower bounds, and 3) values that are above the
upper bound. The number of sub-sets can be just two (i.e.
above and below the given threshold) or more than three (i.e.
there are more than three groups in which we would like to
analyze data values produced by the sensors). Dependently on
applications SDV are generated with different frequency
which might be very high (measured in megahertz). Thus,
processing such SDVs has to be very fast and high-speed
accelerators are greatly required. Let us look at the model
depicted in Fig. 2b, where the interval of potential values is
digitalized. If a measured value falls to a pre-given discrete
interval a flag 'l' is recorded in the corresponding binary
vector, which is zero-filled at the beginning (see Fig. 2b).

In many practical cases we would like to analyze a
distribution of potential values between different intervals
(see Fig. 2¢). For example, we would like to know how often
volcanic activity [4] falls to a set of critical values, how the
results of measurements in different (environmental, medical,
biological) experiments are distributed, how well signals can
be filtered in digital and signal processing, etc. Thus, we need
to know how many active values fall in certain sub-sets.

/The entire interval
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Figure 2. Data streams formed by sensors for different types of
measurements (a), potential way to digitalize the measured values (b),
selecting sub-sets of values which are needed for further analysis (c)
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The Hamming weight w(A) of each sub-set A in Fig. 2¢
indicates its power (intensity of the relevant signals).
Generally, the more the intensity the more critical is the
subset. The more sub-sets have critical values the higher
probability of an event which might happen (for example,
scientists can conclude that there exist a high probability of a
volcano eruption [4]). Analyzing the Hamming weights in
different time slots (see Fig. 2a) or in different sub-sets (see
Fig. 2b) permits to conclude when or where the activity of
measured values is higher or lower (see Fig. 3a).

Measuring Hamming distances enables us to check
repetitions of activities within the chosen time intervals.
Discovering the maximum and the minimum values permits to
know in which time (let us say of the day or night) the activity
is the highest or the lowest (see Fig. 3b). Sorting of values
enables charts showing activities during the chosen period of
time to be built (see an example in Fig. 3c). All such details
are required for monitoring and making conclusions or
decisions in different indicated above areas.
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Figure 3. Analysis of Hamming weights in different sub-sets (a),
discovering the maximum/minimum values in a sub-set (b), sorting the
weights in a selected SDV sub-set (Int; is a time slot with index i)

Filtering is a kind of processing shown in Fig. 2, 3.
Suppose that we are interested only in SDVs with Hamming
weights above (or alternatively below) of a given threshold x
and we would like to choose just such values for further
processing. So, we need a digital filter which can be built
using the Hamming weight counter/comparator. The conside-
red above processing (see Fig. 2, 3) requires high performance
computations. To rapidly find Hamming weights of long-size
binary vectors, bits of such vectors need to be handled in
parallel. Thus, FPGAs (PL of EPP) are very appropriate.

It is practical and efficient to combine processing in
software and in hardware. For example, processing system
might collect data from different sources and execute such
operations over the received data that do not need highly
parallel computations (e.g. monitoring and making
conclusions). As soon as it is necessary to perform fast parallel
operations (such as that are shown in Fig. 2, 3) the relevant
data are transferred to PL operating as high-performance
accelerator (see Fig. 1). The results are transferred back to the
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PS. Programmable logic is faster for such operations as
sort/search [6] (especially when we apply hardware-targeted
methods [7]), Hamming weight computation/comparison [8]
and many others [9].

11

Fig. 4 demonstrates the implemented system that involves
both PS and PL. An interaction between PS and PL is
organized with the aid of Xillybus Lite IP core [10].

ax
General AXI <‘—' Xillybus | A1\ | User
Purpose Interconnect [\—/| IPcore [\ logic
Ports
Programmable Logic (PL)

Implemented interaction between PS and PL

IMPLEMENTATION OF COMPUTATIONS IN EPP

User
Application [\

Linux.
Kernel

Driver

Processing system (PS)

Figure 4.

The user software applications run in ARM Cortex-A9
under Linux. The user (application-specific) logic is designed
in Xilinx ISE 14.4 [11] (the details will be given in the next
section) and interacts with the Xillybus IP core. The latter
provides data exchange with PS through AXI running under
Linux. Software applications were developed in C/C++ and
they execute the following tasks: 1) getting data from the host
PC and transmitting these data to PL; 2) getting and
application-specific analysis of the results from PL; 3) support
for experiments with the developed hardware in PL. User
application-specific project in PL can be configured to support
both types of computations shown in Fig. 1, i.e. initial stream
is uploaded either from external pins or internally from PS
through AXI. Currently we tested only Hamming
weights/distance counters and comparators (see section IV)
for streams represented in form of a binary matrix with K lines

(modeled data items) containing N-bit vectors used for
computations of Hamming weights or distances.

IV. PARALLEL LUT-BASED HUMMING WEIGHT COUNTERS

An FPGA LUT(n,m) can be used to directly implement
arbitrary Boolean functions fp,....f,.; of n variables Xq,...,X;.1-
Clearly, h LUTs(n,m) can be configured to calculate the
Hamming weight w(A) of a vector A={a,,...,a,}, where h=
|—(10g2(n+1))/1n1 The idea is to build a network from
LUTs(n,m) that can find the Hamming weight w(A) for an
arbitrary vector A of size N and then to compare this weight
with either a fixed threshold x or with the weight of another
binary vector B assuming that the Hamming weight of B has
been found similarly. Since Hamming distance d(A,B) = w(A
XOR B) we can find d(A,B) as Hamming weights of "XORed"
arguments A and B. The Hamming weight for a general vector
(not obligatory binary) is defined as the number of its non-
zero elements [8].

An analysis of practical applications shows that the
majority of them require the Hamming weight/distance
count/comparison for such values of N that are divisible by 8,
32, or 36. We suggest here two optimized LUT-based designs
permitting the Hamming weight to be found for N=8 (Fig. 5a)
and N=36 (Fig. 5b). For N=32 either four bits in Fig. 5b are
assigned to 0 or the results of Fig. 5a are incrementally added
in a tree-based structure much similar to [8] composed of the
design in Fig. 5a and adders. The circuit in Fig. 5b without
two right adders X (see Fig. 5b) has r(logz(n+1))/m—|><
(|—N/n~|+|— (N/2)/n~|) LUTs(n,m). Even for m=1 (the worst case)
we need only 27 LUTs for Zynq xc7z020 containing totally
53200 LUTs.
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Figure 5. Hamming weight counters for N=8 (a) and N=36 (b)

The Hamming weight for N>36 can be found in a similar
tree-based structure. There are two layers in Fig. 5a with
LUTs(6,3) and LUTs(5,4). The first layer counts w(ay,...,a's)
and the second layer takes the results of the first layer and
finally determines the 4-bit weight w(a'y,...,a’;). The delay

from the inputs to the outputs is equal to just 2 LUT delays.
There are also two layers in Fig. 5b with LUTs(6,3) and two
combinational adders. The first layer is composed of 6
LUTSs(6,3) and it outputs six Hamming weights wy,...,ws for
six sub-vectors A, ...,A¢ of the input vector. The second layer
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contains 3 LUTs(6,3) and it outputs Hamming weights
o005, B1BaBs, Xix2)s of the most significant bits (MSB) in
Wi,...,Ws (0,0,03), the middle bits in wy,...,ws (BiB2B3) and
the less significant bits (LSB) in wy,...,Ws (J1)X2)3)- The final
result is computed by two combinational adders as it is shown
in Fig. 5b. We found that any layer with index greater than
|—10gnN—| is not cost-effective because either the size of output
weights will be increased compared to the previous layers or
LUTs will be used not-efficiently. All LUTs in Fig. 5b are
configured identically (see INIT statements in Fig. 5b for
configuring LUTs in Xilinx ISE 14.4 environment [11]).

V.  EXPERIMENTS AND COMPARISONS

The charts in Fig. 6 permit to compare the suggested
architectures with the best known alternatives, such as
[8,12,13]. All the circuits were synthesized, implemented in
the Xilinx Zynq xc7z020 microchip, and tested in two
prototyping boards: 1) Xilinx Zynq-7000 EPP ZC702; and 2)
ZedBoard.
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Figure 6. Latency (a) and cost (b) comparison

The first chart (Figure 6a) shows the maximum
combinational path delay and the second chart indicates the
number of FPGA slices for different designs. The total
number of available slices in the microchip xc7z020 is 13
300. For our circuits we also considered pipelined
implementations which include additional registers between
layers (see PLR in Fig. 5). We found that the maximum delay
between the registers can be as little as 1.253 ns. Thus,
potential throughput can be less than 2 ns per weight.

The project that includes interactions between PL and PS
(see Fig. 5) was entirely implemented and tested. It was used
to process 252-bit binary vectors supplied from different
sources and for subsequent analysis of the results in software.
The block "User logic", shown in Fig. 4, implements the
Hamming weight/distance counters/comparators with the
tree-based structure composed of 7 blocks depicted in Fig. 5b

and the final adders that were built from two embedded to
xc7z020 DSP slices 48E1 [14]. There are totally 220 DSP
slices in Zynq xc7z020 microchip. Each slice was configured
as 4 independent 12-bit adders with blocked internal carry
propagation between the adders to ensure independent
addition operations [14]. The "User logic" block (see Fig. 4)
can easily be replaced with a new block for implementing
other operations shown in Fig. 3. Thus, the system is reusable
and can be seen as a very good base for further experiments.

VI. CONCLUSION

The paper suggests novel methods and a reusable system
for analysis of streams involving Hamming weight/ distance
counters/comparators. The system is reusable and it is
composed of problem-specific software running in advanced
RISC machine and a hardware accelerator mapped to
programmable logic. The results of experiments confirm
correctness and effectiveness of the proposed technique.

ACKNOWLEDGMENT

This research was supported by FCT (Portugal), the EU
through the European Regional Development Fund and by the
Estonian Science Foundation Grant No. 9251.

REFERENCES

[1] G. Estrin, “Organization of Computer Systems — The Fixed Plus
Variable Structure Computer”, Proc. Western Joint Computer Conf.,
New York, 1960, pp. 33-40.

[2] M. Santarini. Zynq-7000 EPP Sets Stage for New Era of Innovations.
Xcell journal, issue 75, second quarter, 2011.

[3] Zyng-7000 All Programmable SoC First Generation Architecture:
http://www.xilinx.com/support/documentation/data_sheets/ds188-XA-
Zyng-7000-Overview.pdf.

[4] L. Field, T. Barnie, J. Blundy, R.A. Brooker, D. Keir, E. Lewi, K.
Saunders, Integrated field, satellite and petrological observations of the
November 2010 eruption of Erta Ale, Bull Volcanol (2012) 74:2251-
2271.

[5] P.D. Wendt, E. J. Coyle, and N. C. Gallagher, “Stack filters,” IEEE Trans. on
Acoust., Speech, Signal Processing, vol. 34, no. 4, pp. 898-908, Aug. 1986.

[6] R. Mueller, J. Teubner, G. Alonso, Sorting Networks on FPGAs, The
International Journal on Very Large Data Bases, vol. 21, no. 1, 2012,
pp. 1-23.

[7] D. Mihhailov, V. Sklyarov, I Skliarova, A. Sudnitson, "Hardware
Implementation of Recursive Algorithms", Proceedings of the 2010
IEEE International 53" Midwest Symposium on Circuits and Systems -
MWSCAS 2010, Seattle, USA, August 2010, pp. 225-228.

[8] B. Parhami, Efficient Hamming Weight Comparators for Binary
Vectors Based on Accumulative and Up/Down Parallel Counters, [EEE
Trans. on Circuits and Systems—II: Express Briefs, vol. 56, no. 2, pp.
167-171, Feb. 2009.

[9] D.G. Bailey, Design for Embedded Image Processing on FPGAs, John
Wiley and Sons, 2011.

[10] Xillybus Lite for Zynq-7000: Easy FPGA registers with Linux.
Auvailable at http://xillybus.com/xillybus-lite.

[11] ISE 14.4 design tools and documentation. Available at: www.xilinx.com.

[12] S.J. Piestrak, Efficient hamming weight comparators of binary vectors,
Electronic Letters, vol. 43, no. 11, pp. 611-612, May 2007.

[13] V. Pedroni, Compact Hamming-comparator-based rank order filter for
digital VLSI and FPGA implementations, Proc. of the IEEE
International Symposium on Circuits and Systems - ISCAS’2004, pp.
585-588.

[14] Xilinx, "7 Series DSP48E1 Slice User Guide", 2012.

855



PUBLICATION II

Skliarova, I.; Sklyarov, V.; Rjabov, A.; Sudnitson, A. (2014). Fast Matrix
Covering in All Programmable Systems-on-Chip. Elektronika ir
Elektrotechnika, 20 (5), 150—153.

109






http://dx.doi.org/10.5755/j01.eee.20.5.7116

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 5, 2014

Fast Matrix Covering in All Programmable
Systems-on-Chip

V. Sklyarov', I. Skliarova', A. Rjabov?, A. Sudnitson?
!Department of Electronics, Telecommunications and Informatics/IEETA, University of Aveiro,
3810-193 Aveiro, Portugal
’Department of Computer Engineering, Tallinn University of Technology,
12617 Tallinn, Estonia
skl@ua.pt

!Abstract—The paper suggests a technique for solving the
matrix/set covering problem in all programmable systems-on-
chip. A novel very fast hardware accelerator is proposed and
implemented in the programmable logic (PL) of a Xilinx Zynq
microchip. The accelerator is managed by software running in
the processing system (ARM Cortex-A9) available on the same
microchip and communicating with the PL through high-speed
interfaces. The results of implementation, experiments, and
comparisons demonstrate significant speedup comparing to
software running in general-purpose PC and in the ARM.

architectures, concurrent
field programmable gate

Index  Terms—Accelerator
computing, parallel processing,
arrays, system-on-chip.

I. INTRODUCTION

Combinatorial search algorithms are frequently involved
to solve optimization problems. Examples are matrix/set
covering, the Boolean satisfiability, graph coloring and
many others described and reviewed in [1]-[4]. Many tasks
are NP-complete and, thus, they are time consuming. We
consider here the matrix/set covering which belongs to
partitioning problems [1] arising in such practical
applications as scheduling aircrafts, location emergency
stations in urban areas, fault testing of electronic circuits,
resource distribution in multi-core systems, and many others
[1]. For many applications high performance is required and
it may be achieved in hardware accelerators for which
FPGA-based solutions are especially promising. It is shown
and proved in the paper that recently appeared on the market
all programmable systems-on-chip (APSoC) of Xilinx Zynq
family [5] are very appropriate for implementation of
combinatorial search algorithms enabling the problem to be
decomposed into two sub-problems that are 1) higher-level
activation of primary sub-tasks in which the algorithm has
been decomposed, and 2) fast execution of the sub-tasks in
the hardware accelerator. According to the proposals, the
first sub-problem is assigned to a processing system (PS)
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implemented on the basis of industry-standard dual-core
ARM Cortex-A9 in Zynq APSoC. The acceleration is done
in a programmable logic - PL (Xilinx Artix-7 FPGA) that is
available on the same microchip with the ARM. It is shown
that such type of hardware/software co-design permits
elegant and efficient solutions to be found that are faster
than the best known alternatives.

The remainder of the paper is organized in six sections.
Section II defines the problem and presents an example.
Section III suggests architecture of the hardware accelerator.
Section IV is dedicated to software/hardware co-design.
Experimental setup is discussed in Section V. The results
and comparisons are reported in section VI. The conclusion
is given in Section VII.

II.  PROBLEM DEFINITION

The covering problem can identically be formulated on
either sets [1], [2] or matrices [1]. Let A = (aj) be a 0-1
incidence matrix. The sub-set A; = {j | a;j = 1} contains all
columns covered by row i (i.e. the row i has value 1 in all
columns of the sub-set Aj). The minimal row cover is
composed of the minimal number of the sub-sets A; that
cover all the matrix columns. Clearly, for such sub-sets there
is at least one value 1 in each column of the matrix. Let us
consider an example from [2] of a set S and sub-sets Si,...,Ss
(Fig. 1), which can be represented in the form of the
following matrix A:

1 23 45 6 7 8 9 10 11 12
S 110 0 1 1 0 0 1 1 0 0
S: 00 00 01 1 0 0 1 1 0
S 1111 0 0 0 0 0 0 0 0
S 0 0 1 0 1 1 1 1 0 0 0 0
S0 0 0 0 0 0 0 0 1 1 1 1
S 0 0 061 0 001 0 0 0 0

Different algorithms have been proposed to solve the
covering problem [1]-[3], such as greedy heuristic [1], [2]
and a very similar method [3]. An analysis of the known
algorithms has shown the following:

1. The majority of them are approximate since the

problem is NP-complete;
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2. The algorithms are very similar and they differ
insignificantly;

3. The algorithms may equally be applied to either sets or
matrices and any of such models can be chosen because
they are directly convertible to each other.

s,={1,2,5,6,9,10};
s,=1{6,7,10,11};
S, ={1,2,3,4%

S, =1{3,5,6,7,8}

S, ={9,10,11,12};
Se = {4,8).

S
Fig. 1. An example of a set S with sub-sets Si,...,S¢ from [2].

Sq

We consider below a slightly modified method from [3]
that is applied to binary matrices exemplified above and the
matrix from Fig. 1 [2] will be used to illustrate the steps of
the chosen method that are the following:

1. Finding the column Cpix with the minimum Hamming
weight (HW) that is the number of ones. If there are many
columns with the same (minimum) HW, selecting such
one for which the maximum row is larger, where the
maximum row contains 1 in the considered column and
the maximum number of ones;

2. If HW = 0 then the desired covering does not exist,

otherwise from the set of rows containing ones in the

column Cp, finding and including in the covering the row

Rinax with the maximum HW;

3. Removing the row Ruax and all the columns from the

matrix that contain ones in the row Rma. If there are no

columns then the covering is found otherwise go to the

step 1.

Let us apply the step 1-3 to the matrix A above:

1. The column 12 is chosen;

2. The row Ss is included in the covering;

3. The row Ss and the columns 9, 10, 11, 12 are removed

from the matrix.

1. The remaining columns contain the following number

of ones: 2, 2, 2, 2, 2, 3, 2, 2. The column 3 is chosen
because for this column the row S4 has the maximum HW
equal to 5;

2. The row Sy is chosen and included in the covering;

3. The row S4 and the columns 3, 5, 6, 7, 8 are removed
from the matrix.

1. The remaining matrix contains rows Si, Sz, S3, S¢ and
columns 1, 2, 4 with the following HWs: 2, 2, 2. The
column 1 is chosen;

2. The row Ss is chosen and included in the covering;

3. After removing the row S the covering is found and it
includes the rows S3,S4,Ss shown in italic font in the
matrix above. The minimum covering is the same as in [2]
that was found with a different algorithm.

III. ARCHITECTURE OF HARDWARE ACCELERATOR

This section presents the proposed architecture of the
hardware accelerator executing the steps 1 and 2 from
Section II. We suggest the given matrix to be unrolled in
such a way that all its rows and columns are saved in the PL
registers. Note that more than a hundred of thousands of
such registers are available in the recent low-cost FPGAs.
This technique permits all rows and columns to be accessed
and processed in parallel.

Figure 2 demonstrates the unrolled matrix A shown above
in Section II (and repeated in Fig. 2 for convenience). HW
counters compute HW for all the rows/columns in parallel
using combinational circuits, such as that are proposed in
[6], [7]. These circuits are very fast allowing HWs to be
computed in less than 20 ns even in low-cost FPGAs.

The MIN column and MAX row circuits permit to find
out the minimal column Cy, and the maximum row Rpay. It
is shown in [8] that these circuits can be built as MAX-MIN
fully combinational networks producing the results faster
than in 20 ns. Since all the circuits (computing HW and the
maximum/minimum values) are functioning in parallel, the
steps 1 and 2 may be completed faster than in 20 + 20 =
40ns even in low-cost FPGAs. So, a very significant
acceleration can be expected.

e w [o 0 < Select register for the rows _—> 0 0]
2
g g [0 0_<— Mask register for the rows — 0 0]
gé\noonoouoo 000001100110 000000001111 000100010000
@"E Y S, SZ\_\L -------- SSI_\L Se
&
=E ¢,
0
0
0
0
The maximum row
of 32
T 8 PL registers for matrix rows
'
'
Mask register E — MIN
for the columns H column [—> The minimum column
s " I
1 123456789101112
11 o -
08 S 11001100110 0
1 S2: 00000110011 0
0 The matrixA:| S5 111100000 00 0
0 S 00101111000 0
0 Ss: 000000001 11 1
0812 Se¢ 00010001000 0
1
0

Fig. 2. Architecture of the proposed hardware accelerator on an example of unrolled matrix A from Section II.
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In accordance with the proposals, the matrix is unrolled
only once and any reduced matrix is formed by masking
previously selected rows and columns. One select register
and two mask registers (one for rows and another one for
columns) shown in Fig. 2 are additionally allocated in the
PL. The select register is zero-filled at the beginning of the
step 1 and after the step 1 it indicates by values 1 those rows
that have to be chosen by the selected column (i.e. such rows
have values 1 in the selected column). The mask registers
are filled in with zeroes at the beginning of the algorithm
and they mask (by the values 1) those rows and columns that
have been removed from the matrix in each iteration. For
example, the select register contains the value 000010 after
the first step in the example of Section II. The mask registers
after the first iteration in the example are set to
000000001111 for the columns and 000010 for the rows.
After the second iteration they are updated as 001011111111
for the columns and 000110 for the rows.

IV. SOFTWARE/HARDWARE CO-DESIGN

Figure 3 presents the proposed partitioning in software
and hardware modules (assuming implementation in Zynq
APSoC) of the considered algorithm that enables the
minimal covering to be found.

Software in the PS is responsible for the following steps:

1. Getting from a host computer or generating the matrix,

unrolling it, and saving in external DDR memory as a set

of rows and a set of columns;

2. As soon as Cpin is found, the PL generates an interrupt

of type a. The PS receives the Cmin and sets the select

register in the PL through general-purpose ports [5];

3. As soon as Rmax is found, the PL generates an interrupt

of type b. The PS receives the Rmax and sets the mask

registers in the PL through general-purpose ports [5];

4. At any iteration it is checked if the solution is found or

if it does not exist. If the solution is found it is indicated

by the PS or transmitted to the host computer and the
algorithm is completed.

Hardware in the PL implements the architecture in Fig. 2
and is responsible for the following steps:

1. Getting the unrolled matrix from external DDR through

high-performance Advanced eXtensible Interface (AXI)

[5] and saving the rows and columns in slice registers as it

is shown in Fig. 2.

PS

2. Getting from the PS select/mask vectors and
setting/updating the select and the mask registers.

3. Finding out the value Cuin at each iteration and as soon
as the value of Cpin is ready, generating an interrupt of
type a.

4. Finding out the value Ruax at any iteration and as soon
as the value of Ruax is ready, generating an interrupt of

type b.

V. EXPERIMENTAL SETUP

Implementation was done in the Xilinx Zyng-7000
APSoC ZC702 evaluation kit [9] containing a microchip
(APSoC) Zynq xc7z020. The PS is the dual-core ARM
Cortex-A9 and the PL is Artix-7 FPGA from the 7" series of
Xilinx. Currently only AXI, general-purpose ports and
interrupts have been used (from 16 available interrupts we
selected only two assigned above as type a and b). Software
for the ARM was developed in C language and hardware for
the PL was synthesized from specification in VHDL.
Computing HW was done in LUT-based circuits from [7]
that are very economical and fast. Experiments were done
with two types of matrices 32 x 32 and 64 x 64. Thus, either
32 + 32 = 64 or 64 + 64 = 128 HW counters have been
implemented in the PL section and all these circuits can run
in parallel. Since Cpin and Ruax are found at different steps in
the current implementation, only half of the HW counters
work in parallel enabling either the minimal column Cy, or
the maximal row Rumax to be found.

Because the occupied resources are indeed very small [7],
we implemented all the required HW counters assuming that
in future improvements all of them might function in
parallel. The MIN and MAX circuits are built as
combinational networks and they are described in detail in
[8].

Figure 4(a) presents such a circuit for a matrix 32 x 32 for
which the number of bits in any HW is 6 (because the
maximum number of ones in a 32-bit vector is 32 that can be
represented by a 6-bit code).

A particular (simplified) example for only 6 input items 3,
14, 21, 11, 14, 27 is given in Fig. 4(b). The maximum value
(27) is found in a combinational circuit with only 3 gate
level delays. Clearly, there is 5 gate level delay for matrices
32 x 32 and 6 gate level delay for matrices 64 x 64.

: PL

Transferring the
matrix to the PL
through the DDR

External DDR :)

AXl interface

Getting C,;, and C

setting the select
register

Getting R, and Rovan

General-purpose
ports and interrupts

updating the mask
registers

< Interruptoftype b __________________

Mask registers 5

Finding out the
covering or indicating
that the covering
does not exists

APSoC

Hardware
accelerator from
Fig. 2

Fig. 3. Partitioning of the algorithm in software and hardware modules.
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32 input HWs wjth 6 bits each
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H 14 21 27 . The
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s 21 J1a 114

2J]21 111 111 Max

M TS Vi Min 3

3 |14 s
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e Zegate level delay

Fig. 4. MAX circuit from [8] for 32 x 32 matrix (a); an example (b).

VI. RESULTS AND COMPARISONS

We compared three different implementations in which
the covering algorithm is either:

1. Described in C language program running in PC with

Intel i7 2.66 GHz processor;

2. Described in C language program running in ARM

Cortex-A9 (for evaluation kit [9]);

3. Implemented in the PS and in the PL of Zyng-7000

APSoC as it is shown in Fig. 3 (for evaluation kit [9]).

Initial matrices have been generated randomly using the C
rand function and identically for all the described above
implementations. The number of instances (examples) was
chosen to be 100,000.

In the last case (see the point 3 above) that is the original
contribution of the paper, the following results have been
obtained:

1. Generating in the PS and transmitting the matrices from

the PS to the PL requires about 31 ps for 32 rows and 32

columns and about 34 ps for 64 rows and 64 columns.

Only one AXI 32-bit (for the matrices 32 x 32) or 64-bit

(for the matrices 64 x 64) port from the 4 available ports

has been used. Clearly, additional ports permit the

indicated time to be reduced;

2. Each iteration in the PL is executed in about 28 ns for

the matrices 64 x 64 and about 24 ns for the matrices

32 x 32;

3. Communications between the PS and the PL (through

interrupts and general-purpose ports) at any iteration of

the algorithm require negligible time comparing to other
operations.

The covering is found significantly faster than in software.
The acceleration comparing with the PS only (see point 2
above) is from 30 to 50 times and comparing with the PC
(see point 1 above) is from 5 to 10 times. This is because
operations of the covering algorithm in software require
many cycles and frequent transmission of data between
processors and memories. For example, if we consider
64 x 64 matrices then a single matrix transfer from the PS to
the DDR takes 33,300 ns on average and this is the most
time consuming operation. Data transfer from the DDR to
the PL is done in 284 ns on average. Once the PL receives
the matrix data, no more interaction with the DDR is

required for further processing.

For future work we will use accelerator coherency ports
available for Zynq microchips and allowing data exchange
directly with the processor cache memory [10], [11].
Besides, an additional optimization technique will be
provided looking for the better distribution of different sub-
tasks between the PS and the PL.

VIIL

The paper presents a novel technique for implementation
of matrix/set covering algorithms in hardware and software
of recent all programmable systems-on-chip. A new method
that permits the known approximate algorithm to be
executed over suggested unrolled matrices is discussed and
the relevant hardware accelerator is developed. It is shown
that the covering algorithm can efficiently be partitioned in
software and hardware modules that finally have been
completely implemented and tested in Xilinx Zynq
microchips. The results of experiments and comparisons
with two different software implementations demonstrate
significant speedup which is very important for various
practical applications that are also mentioned in the paper.

CONCLUSIONS
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Abstract—The paper suggests a technique for extracting
and filtering sorted subsets in a three-level computing system
with such sub-systems as general-purpose computer (level 1),
ARM Cortex-A9 (level 2), and reconfigurable logic (level 3).
The last two levels are implemented in Zynq-7000 device
available on the prototyping board ZC706. Communications
between the levels 1 and 2-3 are organized through PCI express
bus and interactions between components of levels 2 and 3 -
through on-chip AXI interfaces. We studied two levels of
software programs (running in PC and ARM), high-
performance hardware accelerators implemented in Zynq-7000
programmable logic, and architecture enabling interactions
and exchange of data between different levels. The selected for
analysis sorting problem has high computational complexity
and is widely required in data processing (data mining and
statistical data manipulation, in particular). The results of
experiments demonstrate that the elaborated architecture is
efficient and permits fast solutions to be found. Proposals for
potential further improvements are also given.

Index Terms—Computing sorted subsets, communicating
software/hardware systems, sorting networks, filtering,
programmable systems-on-chip.

1. INTRODUCTION

Many practical applications require acquisition, analysis,
and filtering of large data sets. Let us consider some
examples. In [1] a data mining problem is explained with
analogy to a shopping card. A basket is the set of items
purchased at one time. A frequent item is an item that often
occurs in a database. A frequent set of items often occur
together in the same basket. A researcher can request a
particular support value and find the items which appear
together in a basket either a maximum or a minimum
number of times within the database [1]. Similar problems
appear to determine frequent queries at the Internet,
customer transactions, credit card purchases, etc. requiring
processing very large volumes of data in the span of a day
[1]. Fast extraction of the most frequent or the less frequent
items from large sets permits data mining algorithms to be
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accelerated and may be used in many known methods from
this scope, e.g. [2]-[4]. Another example can be taken from
the area of control. Applying the technique [5] in real-time
applications requires knowledge acquisition from the
controlled systems. For example, signals from sensors may
be filtered and analysed to prevent error conditions [5]. To
provide more exact and reliable conclusion, combination of
different values need to be extracted, ordered, and analysed.
Similar tasks appear in monitoring thermal radiation from
volcanic products [6], filtering and integrating information
from a variety of different sources in medical applications
[7] and so on.

Since many systems have hard real-time constraints,
performance is important and hardware accelerators may
provide significant assistance for software products (such as
[5]). Similar problems appear in so-called straight selection
sorting (in such applications where we need to find the task
with the shortest deadline in scheduling algorithms [8]).

The paper suggests a new method to design high-
performance accelerators based on all programmable
systems-on-chip (APSoC) from the Xilinx Zynq-7000
family [9] communicating with a general-purpose computer
through PCI express bus. APSoCs are recently developed
field-configurable devices integrating the most advanced
programmable logic (PL) and a widely used processing
system (PS): the dual-core ARM® Cortex™ MPCore™.
The available interfaces between the PS and PL are
supported by ready-to-use intellectual property (IP) cores.
These, combined with numerous architectural and
technological advances, have enabled APSoCs to open a
new era in the development of highly optimized
computational systems [10].

The remainder of the paper is organized in four sections.
Section II describes the problem and suggests an
architecture of a 3-level system. Section III considers
different modes of functionality of hardware accelerators.
Section IV reports the results of experiments and compares
them with alternative computations in general-purpose
software. The conclusion is given in Section V.

II. PROBLEM DEFINITION AND SYSTEM ARCHITECTURE

Let A be a set of data items that can be of any predefined
type common for general-purpose languages (e.g. integer).
We consider here such computations that permit:
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— Extract subsets of A containing Limax (Lmin) items with

the maximum (the minimum) values;

— Extract subsets containing filtered values of A that fall

within the given upper (u) and lower (1) bounds.

The set A can be very large and we would like to execute
the computations indicated above as fast as possible.

The proposed system architecture combines the following
three levels (Fig. 1):

1. Software of a host computer (such as PC) developed in

a general-purpose programming language (e.g. C/C++ or

Java). Since such software has a number of known

constraints (such as the maximum number of parallel

threads, and architecture-specific limitations) we would

like to develop a more flexible and parallel acceleration

system taking advantages of field-programmable

technology.

2. APSoC PL enabling broad parallelism to be provided

and eliminating architectural constraints (i.e. the most

appropriate accelerator architecture can be proposed and

realized).

3. APSoC software that permits interactions between

different levels to be simplified and optimized with the

aid of available efficient IP cores.

PC software executing NN
. . — APSoC AXI memory
higher level computations Streams | mapped to PCI Express

(developed in C/C++/Java) | ofdata
) Streams
Control signals of data
10! (®

APSoC PS software (s:iogtarlosl APSoC PL hardware
executing control functions g accelerator
(developed in C/C++) (developed in VHDL)

Fig. 1. Elaborated architecture.

In the proposed designs software (in the host PC and in
the PS of APSoC) is running under Linux operating system.
The following functionality (Fig. 1) is provided:

— As soon as some acceleration is needed, the program (in

the host PC, see block 1) copies data from the set A

through PCI express bus to DDR memory (see block 2)

communicating with the APSoC (see blocks 3, 4) and

controlled by the APSoC (ZC706 prototyping system [11]

of Xilinx will be used in further experiments).

— As soon as data are transferred to the DDR, an interrupt

(see block 1) is generated and handled in the APSoC PS

(block 3). C/C++ function, that handles the interrupt in

the PS, requests the acceleration operation in the PL and

supplies necessary data (such as the number and the size
of items in the received set A: see blocks 3 and 4) through

AXI (Advanced eXtensible Interface [9]) GP (general-

purpose [9]) port. Basic functionality of the function that

handles interrupts is similar to [12].

— The PL accelerator (see block 4) executes highly

parallel operations over the set A and copies the extracted

subset to the same DDR memory.

— As soon as all items that form the result are transferred

to the DDR, the PL generates an interrupt to the PS (see

blocks 3 and 4) which is handled in the PS software.

— Interrupt handler in software of the PS sets a special

flag indicating that the requested acceleration operation

has been completed (see blocks 1 and 3). The flag is
tested in the PC software and as soon as it is set, the

resulting data are copied to the PC (see blocks 1 and 2).
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Configuration of the APSoC, specifying the requested
acceleration operation such as finding  the
minimum/maximum subsets or filtering using bounds (and
consequently enabling the required operation to be chosen),
is done before the execution time. It is also possible to
choose operations during run-time providing necessary
details from the PC to the PS and further to the PL. Data
exchange between different sub-systems (PC, DDR
memory, PS and PL) is initiated as follows (Fig. 2):

1. PC/PS (memory): a) software of the host PC executes

C library function memcpy which copies data from the set

A (kept in the host PC memory) to the DDR memory

through the following blocks: Xilinx IP core for working

with PCI express [13] (see the block AXI memory
mapped to PCI express), AXI interconnect and PS
memory controller (Fig. 2); b) software of the host PC
generates an interrupt (through additional memcpy
function) indicating completion of data transfer and
handled in the PS (see PCI Control Unit and interrupt

IRQ in Fig. 2).

2. Memory, PS/PL: a) software of the APSoC PS

transfers control signals to the PL through an AXI GP

master port using Xil_Out32 function of Xilinx [14] (see

GP Control Unit in Fig. 2); b) software of the APSoC PS

sends a request to the PL (once again through an AXI GP

master port) to execute the chosen operation.

3. The PL carries out the indicated operation getting

blocks of data from the DDR memory and transferring the

results to the DDR memory through AXI high-
performance (HP) ports (see HP Control Unit and

interrupt IRQ in Fig. 2).

4. When the results are ready and copied by the PL to the

DDR, the PL generates an interrupt handled by the PS.

5. Interrupt handler in the PS sets the flag for the host PC

(see PCI Control Unit in Fig. 2).

6. The PC transfers the resulting subset using memcpy

function and the Xilinx IP core for working with PCI

express.

Programmable —
gram APSoC
Logic
GP
Control — cp %
Unit E | e
- - Qo
< 2 5
— @ | g
HPO kS o]
Min/Max HP J 2 5
sorter | Control — _,— LES g
Unit 2 l
E] Hp2
. z
5
"a memory ||| §
AXI memory PCl controller E
mapped to Control 3
PCl express £ Unit
é -

[ PCl express bus =

Fig. 2. Interactions between different system components.

III. FUNCTIONALITY OF THE HARDWARE ACCELERATOR

Let N be the number of elements in the given set A. We
consider such tasks for which Ly << N and Lpiy << N
which are more common for practical applications.
Accelerating circuits implement partial sort that is done in
highly parallel networks [15]. Since N may be large, it
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cannot be processed completely in hardware due to the lack
of sufficient resources.

We suggest solving the problem iteratively using
hardware architecture shown in Fig. 3. Data are
incrementally received in blocks containing up to K items
and then processed by the sorting circuits [15] which
iteratively execute many parallel operations and can be
applied for significantly larger number of data items within
the same hardware than other known sorting networks. The
proposed method enables sorted subsets to be incrementally
constructed as follows:

1. At initialization step (preceding the execution step) the

maximum and the minimum subsets are filled in with the

minimum and the maximum values as it is shown in

Fig. 3.

2. Blocks with data items are sequentially supplied to the

inputs of the sorting circuits located between the circuits

which compute the maximum and the minimum subsets.

All data items from one block are supplied in parallel. A

new block arrives only when all data items from the

previous block are processed (i.e. items, which satisfy
criteria of the bottom block go down and items, which
satisfy criteria of the upper block go up as it is shown in

Fig. 3).

3. As soon as all the blocks (in which the set A is

decomposed) are processed, the maximum and the

minimum subsets are ready and they are transferred to the

DDR memory.
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Fig. 3. Basic structure of the hardware accelerator.

It is easy to show that the circuit in Fig. 3 permits very
large sets A to be processed. The sizes of the
minimum/maximum subsets and the size of the blocks may
vary (the details are given in the next section).

If data items need to be filtered then the circuit shown in
Fig. 4 is invoked. Now we would like to use the circuit in
Fig. 3 only for such data items that are within the bounds 1
and u. The circuit in Fig. 4 enables data items to be filtered
in real-time (i.e. during data exchange between the PL and
the DDR memory). The block "/ and/or u" admits only those
data items from AXI HP port that fall within the given
bounds l/u. If and only if the item Iy is admitted, the address
counter is incremented and the write enable (WE) signal is
asserted allowing the value Ix to be written to the input
register with the number chosen by the address counter.
Data items from the input registers are inputs of the circuit
shown in Fig. 3.

The filtered values may be: a) sent back to the DDR
memory; b) sorted using the projects from [12]; c) used to

extract the minimum/maximum subsets (Fig. 3).
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Fig. 4. Filtering circuit.

Note that additional circuits (such as problem-targeted
control finite state machines) are needed for executing
operations in Fig. 3 and Fig. 4. They are implemented
similarly to [12], [15], [16].

IV. EXPERIMENTS AND COMPARISONS

Experiments were done with the Xilinx ZC706
prototyping system [11] containing the Zynq-7000
XC7Z045 APSoC device with PCI express endpoint
connectivity "Genl 4-lane (x4)". The PS is the dual-core
ARM Cortex-A9 and the PL is Kintex-7 FPGA from the
Xilinx 7" series. In all the experiments data from the set A
are generated in the host PC randomly and the results are
analyzed and verified also in the host PC. The size of data
was chosen to be 256 KB. In the experiments the host PC
generates 32-bit integer values and 64K (65,536) of 32-bit
words are processed. The values of Luyin/Lmax varied from
128 to 1024 bytes (i.e. from 32 to 256 32-bit words).

A similar task was also solved in software only of the host
PC where data from the set A were preliminary sorted and
then the maximum and minimum subsets for different
values of Lmin/Lmex were extracted. The bound values
(Lmin/Lmax) in the host PC almost do not influence the results
because the time is mainly consumed by the sort function.
The following simple Java code was used:

long time=System.nanoTime();
Arrays.sort(A);
long time_end=System.nanoTime();

where A is an array representing the set A. The array is
generated randomly as:

for(int i = 0; i < A.length; i++)
A[i] = rand.nextInt(Integer MAX VALUE);

The time is measured as (double) (time end -
time)/1000000. ps. Sorting 64 K of 32-bit data in PC with
i7-4770 CPU 3.4 GHz and 8 GB of RAM requires
approximately 18,000 ps. Similar results were also obtained
for C/C++ programs running in the same PC. Transferring
256 KB from PC to DDR memory requires approximately
1,800 ps. Table I indicates the time consumed in the APSoC
for extracting subsets with different number of data items
and the resulting acceleration (taking into account the
indicated above communication overhead of 1,800 ps).
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GENERAL-PURPOSE SOFTWARE RUNNING IN PC WITH
MULTICORE 17 PROCESSOR AND 8 GB OF RAM.

Limin and Linax The consumed time in ps Acceleration
128 and 128 2,908 3.8(6.2)
256 and 256 4,041 3.1 (4.5)
384 and 384 5,090 2.6 (3.5)
512 and 512 6,201 22(2.9)
640 and 640 7,284 2.0 (2.5)
768 and 768 8,348 1.8(2.2)
896 and 896 9,477 1.6 (1.9)

1024 and 1024 10,544 1.5(1.7)

The column “Lii, and Linax” includes two values because
the analysed circuit permits the maximum subset with Liax
elements and the minimum subset with Ly, elements to be
extracted at the same time.

The second column indicates the consumed time for all
necessary operations in the PS and PL of the APSoC.

The column “Acceleration” also shows (see the values in
parentheses) acceleration without taking into account
communication overheads (i.e. without the mentioned above
value 1,800 ps). Analysis of this case permits to estimate
potential acceleration when data are transferred only once
and then used for different computations in the APSoC.

We also evaluated potentialities for further accelerations
and came to the following conclusions.

Software in the host PC is running in a high-performance
multicore processor operating at significantly higher clock
frequency than APSoC. To achieve additional acceleration
in generally slower reconfigurable logic: a) high-level
parallelism has to be used enabling hundreds of operations
needed in software programs to be executed at the same
time; b) the depth of combinational circuits implemented in
the PL cannot be large because deep circuits involve
extensive combinational path delays. The chosen sorted
network [15] is not deep and operates at significantly higher
clock frequency than alternative known circuits (see
experiments in [15]). Higher-level parallelism can be
achieved by joining data exchange and data processing
operations. Let us look at Fig. 3, Fig. 4. Data are received
from AXI HP ports sequentially and the maximum size of
data items from one port is 64 bit. Such data need to be
unrolled with the aid of the distributor circuit shown in
Fig. 4. Thus, while a current block of data is being
processed in the circuit in Fig. 3, the next block can be
received and unrolled.

From Table I we can see that the larger are the values
Lmin/Lmax, the smaller is the achieved acceleration. However,
for the majority of practical applications very large values of
Lmin/Lmax  are  not needed. Additional experiments
demonstrated that the larger are the blocks of data handled
in the PL the higher is the acceleration. We found that the
size of such blocks for the ZC706 system could be increased
from the considered 256 32-bit words to 2,048 32-bit words.
Thus, the results may be additionally improved.

There are 4 AXI HP and one AXI accelerator coherency
ports in Zynq devices [9]. Using many ports in parallel can
be seen as another opportunity to increase throughput of
hardware accelerators in the PL.
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V. CONCLUSIONS

The paper suggests novel solutions for extracting subsets
with the desired properties from large data sets and
evaluates capabilities of a 3-level computing system that
combines general-purpose software, application-specific
software and reconfigurable hardware. We elaborated
architecture of such a system and evaluated different
implementations of the proposed solutions making a number
of experiments with the Xilinx ZC706 prototyping system
which interacts with a general-purpose computer through
PCI express bus. We found that the considered PC-PS-PL
computing system is faster by a factor ranging from 1.5 to
3.8 comparing to general-purpose software running in i7-

based multicore PC.
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Abstract: The paper describes hardware/software architecture of a system for extracting the maximum and minimum sorted subsets
from large data sets, two methods that enable high-level parallelism to be achieved, and implementation of the system in recently
appeared on the market Zyng-7000 microchips incorporating a high-performance processing unit and advanced programmable logic
from the Xilinx 7th family. The methods are based on highly parallel and easily scalable sorting networks and the proposed technique
enabling sorted subsets to be extracted incrementally with very high speed that is close to the speed of data transfer through high-
performance interfaces. The results of implementations and experiments clearly demonstrate significant speed-up of the developed
software/hardware system comparing to alternative software implementations.
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Sistem na osnovi Zynq za izluscitev razvrscenih
ynq
podsklopov iz obseznih podatkovnih sklopov

Izvle¢ek: Clanek predstavlja programsko/strojno zasnovo sistema za izlui¢itev najvecjin in najmanjsih razvri¢enih podsklopov v
obseznih podatkovnih sklopih. Predstavljeni sta dve metodi, ki omogocata visoko stopnjo vzporednosti in implementacijo sistema v
trznem ZYNG-7000 mikrocipu na osnovi programabilne logike Xilinx sedme generacije. Metode temeljijo na vzporedni in enostavno
razsirljivih omrezjih ter omogocajo izludcitev podsklopov s hitrostjo blizu hitrosti prenosa podatkov. Rezultati dokazujejo veliko
pohitrenje programsko/strojnih resitev v primerjavi s programskimi resitvami.

Kljuéne besede: processing system; programmable logic; system-on-chip; sorting networks; hardware/software co-design
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1 Introduction

Port (ACP) enable fast data exchange with theoretical

All Programmable Systems-on-Chip (APSoC) from bandwidths shown in [1].

Zyng-7000 family [1,2] combine on the same microchip

the dual-core ARM® Cortex™ MPCore™-based high- Zynq APSoC design flow includes the development of
performance processing system (PS) with advanced hardware in the PL [10] (supported by available Xilinx
programmable logic (PL) from the Xilinx 7" family and IP cores) and software in the PS [11] for different types
may be used effectively for the design of hardware ac- of applications such as standalone (bare metal) [12],
celerators in such areas as hard real-time systems [3], running under an operating system (e.g. Linux) [12] and
image [4] and data [5] processing, satellite on-board combined [13]. Hardware implemented in the PL can
processing [6], programmable logic controllers [7], be the same for standalone and Linux applications but
driver assistance applications [8], wireless networks [9], software programs use different functions and interac-
and many others [2]. Interactions between the PS and tion mechanisms [12]. Since bare metal projects are
PL are supported by different interfaces and other sig- generally faster, we will consider them as a base which
nals through over 3,000 connections [1]. Available four does not exclude using the results for projects running
32/64-bit high-performance (HP) Advanced eXtensible under operating systems. The latter may benefit from
Interfaces (AXI) and a 64-bit AXI Accelerator Coherency available drivers and other support [12]. Since both
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types of projects can run in parallel in different cores
[13] they may be combined if required.

Many electronic, environmental, medical, and biologi-
cal applications need to process data streams produced
by sensors and measure external parameters within
given upper and lower bounds (thresholds) [14]. Let us
consider some examples. Applying the technique [15]
in real-time applications requires knowledge acquisi-
tion obtained from controlled systems (e.g. plant). For
example, signals from sensors may be filtered and ana-
lysed to prevent error conditions (see [15] for additional
details). To provide more exact and reliable conclusion
a combination of different values need to be extracted,
ordered, and analysed. Similar tasks appear in monitor-
ing thermal radiation from volcanic products [16], fil-
tering and integration of information from a variety of
different sources in medical applications [17] and so on.
Since many systems are hard real-time, performance is
important and hardware accelerators may provide sig-
nificant assistance for software products. Similar prob-
lems appear in so-called straight selection sorting (in
such applications where we need to find a task with
the shortest deadline in scheduling algorithms [18]),
in statistical data manipulation and data mining (e.g.
[19-22]). To describe one of the problems from data
mining informally let us consider an example [19] with
analogy to a shopping card. A basket is the set of items
purchased at one time. A frequent item is an item that
often occurs in a database. A frequent set of items of-
ten occur together in the same basket. A researcher can
request a particular support value and find the items
which occur together in a basket either a maximum
or a minimum number of times within the database
[19]. Similar problems appear to determine frequent
inquiries at the Internet, customer transactions, credit
card purchases, etc. requiring processing very large vol-
umes of data in the span of a day [19]. Fast extracting
the most frequent or the less frequent items from large
sets permits data mining algorithms to be simplified
and accelerated. Sorting of subsets may be involved in
many known methods from this area [e.g. 20-22].

Let us consider a system that collects data produced by
some measurements or copies such data from a data-
base. A valuable assistance for applications described
above may be provided by fast extraction of the maxi-
mum and minimum sorted subsets from the set of
collected data, where the maximum/minimum sorted
subset contains L /L data items. This problem can
be solved in a software only system. For example, C
function gsort permits large data sets to be sorted. Af-
ter sorting is completed, extracting the maximum and
minimum subsets may easily be done collecting them
from the top and from the bottom of the sorted set.
However, for many practical applications, such as that
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are referenced in [18,19], performance of the described
above operations is important and software functions
need to be accelerated. The paper suggests methods
and high-performance implementations for solving
the indicated above problem in APSoC from the Xilinx
Zyng-7000 family.

The remainder of the paper is organized in five sec-
tions. Section 2 presents the proposed system archi-
tecture and describes overall functionality. Section 3
suggests two novel methods allowing the maximum
and minimum sorted subsets to be extracted from
large data sets. Section 4 shows how large subsets (for
which hardware resources are not sufficient) can be
computed and discusses additional capabilities. Imple-
mentation in Zyng microchip and the results of thor-
ough evaluation and comparison of software only and
software/hardware solutions with explicit indication of
the achievable accelerations are discussed in section 5.
Section 6 concludes the paper.

2 System Architecture and Functionality

The known results [2,5,12] have shown that software/
hardware solutions may be significantly faster than
software only solutions. Let us look at Fig. 1. Clearly,
software/hardware system is faster if: T >T  <T +T,
+T, where T,T.,.T,T., T, aretime intervals required for
different modules. In highly parallel implementations
software, hardware and interactions between hard-
ware and software can run concurrently. For example,
software may run in parallel with hardware; operations
in hardware over previously received data may be done
at the same time when new data are being transferred.
Thus, T, <T_  +T, +T.This paper evaluates and com-
pares software/hardware and software only solutions
taking into account all the involved communication
overheads and paying special attention to high level of
parallelism. For instance we would like communication
and application-specific operations to be overlapped
in hardware as much as possible (see Fig. 1). Note that
while hardware only designs may be the fastest, the
complexity of such designs is often limited by the avail-
able resources in the PL.

PS y \\\
Software
5 mj:;y ) Software (T,;) L
o b
o Communication?
& | overhead A Toon < Ton + T+ Th
< E e
Asmuchin | |1 Hardware (T;) }
parallel as_A2s====ocooooooobo <
PL possible””\ Software/hardware /

Figure 1: Software only and software/hardware sys-
tems
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Fig. 2 presents the proposed software/hardware archi-
tecture. Extracting subsets is done in an application-
specific processing block (ASP) which is entirely imple-
mented in the PL. We will discuss the ASP in the next
section with all necessary details. There is another block
in the PL called communication-specific processing
(CSP) which interacts with the PS, i.e. it receives a large
set of data items step by step in blocks and transfers the
extracted sorted subsets. Besides, CSP is responsible for
exchange of control signals between the PS and PL.

The PS is responsible for solving the following tasks:

1.

6.

Acquiring data and saving them in either on-chip
memory (OCM) or external memory that is DDR.
Forming requests to extract subsets in the PL
which is done through a set of control signals.
Collecting extracted subsets and storing them in
OCM or external memory.

Verifying the results.

Solving exactly the same problem in software. This
point is required just for experiments and comparison.
Computing the consumed time.

The PL is responsible for solving the following tasks:

1.

=-4F processing_system7_0

Processing control signals received from the PS
which are: a request (start) to begin data process-
ing; source address in memory of input data (i.e.
the address of the set that has to be handled); desti-
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Figure 2: The proposed software/hardware architecture

nation address in memory of output data (i.e. the
address to copy the extracted subsets); the number
of blocks Q of input data transferred from the PS
to PL; and the number of items in the last block Ko
The PL also forms two signals that are sent to the
PS which are: an interrupt generated as soon as
the job is completed (i.e. the subsets have been
extracted and copied to memory) and the num-
ber of clock cycles consumed in the PL which is
needed for experiments and comparisons.

2. Extracting subsets on requests from the PS in
highly-parallel ASP.
3. Counting clock cycles consumed in the PL from re-

ceiving the request up to generating the interrupt.

Reg 0x4E200000 64K ~ O0x4E20FFFF

Reg 0x4E210000 64K ~ OX4E21FFFF

Reg . 0x4E220000 64K ~ OX4E22FFFF

Reg GPP MappINg  ox4ez230000 64 ~ O0x4E23FFFF

Reg 0x4E240000 64K ~ O0X4E24FFFF

Memo0 0x40000000 ~ 0x4000FFFF
/Mapplng of HP AXI port 0

HPO_DDR_LOWOCM 000000000 512M ~ Ox1FFFFFEF

Mem0 0xC0000000 64K ~ OXCOOOFEFF
/Mapplng of HP AXI port 1

HP1_DDR_LOWOCM 0%00000000 512M ~ Ox1FFFFFFF

Memo0 0%C0000000 64K ~ OXCOOOFFFF
/Mappmg of HP AXI port 2

HP2_DDR_LOWOCM 0x00000000 512M ~ OX1FFFFFFF

Memo0 0xC0000000 0xCOOOFFFF
/Mappmg of HP AXI port 3

HP3_DDR_LOWOCM 000000000 512M ~ OX1FFFFFFF

Memo0 0xC0000000 ~ O0XCOOOFFFF
/Mapplng of HP AXI ACP

ACP_DDR_LOWOCM 0x00000000 512M ~ Ox1FFFFFFF

ACP_QSPI_LINEAR 0xFC000000 16M ~ OXFCFFFEFFF

ACP_IOP 0xE0000000 44  ~ OXEQ3FFFFF

Memo0 0xC0000000 64K ~ O0xCOOOFFEF

ACP_M_AXI_GPO

Figure 3: Address mapping from Vivado 2014.2 block design editor
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Note that for experiments and comparisons some ad-
ditional signals for interactions between the PS and PL
may be needed.

There are some generic parameters for which hardware
in the PL is statically configured (see Fig. 2). They are:
K - the number of items that are handled in hard-
ware in each block (Km <K);
M - the size of each data item;
L. —the number of items in the maximum subset;

L, — the number of items in the minimum subset.

Selection of proper AXI ports is very important. Experi-
ments in [23] have shown that for transferring a small
number of data items (from 16 to 64 bytes) general-
purpose input/output ports (GPP) are always the best.
In Zynq APSoC there are four available 32-bit GPP, two
of which are masters and the other two are slaves from
the side of the PS. They are optimized for access from
the PL to the PS peripherals and from the PS to the PL
registers/memories [24]. Since the latter feature is what
we need, a master GPP was chosen for transferring con-
trol signals shown in Fig. 2. AXI ACP allows cache mem-
ory of application processing unit (APU) in the PS to be
involved for data transfers and there exists an oppor-
tunity to provide either cacheable or non-cacheable
data from/to the indicated above memories (i.e. OCM
or DDR) [23]. Mapping of memories may be done in
computer-aided design software (in our case in Xilinx
Vivado block design editor according to addresses
given in [1] and shown in Fig. 3, and in Xilinx Software
Development Kit - SDK). Experiments in [12,23] have
shown that for transferring large volumes of data items
AXI ACP is very appropriate. Thus, this port was chosen
to receive the source set from memory (OCM or DDR)
in the PL and to copy extracted subsets from the PL to
memory.

Fig. 4 gives more details about the chosen software/
hardware interactions where: solid arrows (—) indicate
who is the master (the beginning) and who is the slave
(the end); triple compound lines show control flow;
and dashed lines indicate directions of data flow (i.e.
one direction - — or both directions - <-). Control (and
possibly a small number of additional auxiliary) signals
are transferred through GPP. An initial (source) set and
extracted subsets are copied through AXI ACP.The used
memory (OCM or DDR) is indicated by the respective
mapping both in hardware (see Fig. 3) and in software,
which in our case was described in C language, and the
mapping is done like the following:

#define OCM_ADDRESS 0x00000000
#define DDR_ADDRESS 0x16D84000
#define GPIO_BASE_IO_Control 0x40000000

#define HP_ADDRES

OCM_ADDRESS

Note that additional details about mapping with many
examples can be found in [12].

The snoop controller [1] in Fig. 4 provides cacheable
and non-cacheable access to memories (OCM or DDR)
[1]. Cache area can be either disabled or enabled in
software with the aid of function Xil_SetTlbAttributes
[25]. In particular data received from/copied to memo-
ries may be pre-cached, i.e. they can be first saved into
faster cache and then transferred with the main goal
to increase performance of communications. Note that
for standalone programs cache memory is entirely
available. For programs running under an operating
system (such as Linux) some area in cache memory
may be used by programs of the operating system and
the size of available cache memory is reduced. Many
additional details can be found in [12].

Software modules running in processing
cores

[
[ Snoop controller le S o

Master
| 512 KB cache and controller |

.
H
_ H
E H
Application s :
=|Q
Processing Master 23 =
Unit - APU i E=Y
Slave (64-bit data) o5 § '
3L H
OCM (256 KB) ‘Memory 13z Ef
interfaces g8 H
&
L[ Central interconnect PS
Master | Control sgnals_ On-chip components —_Curst mode
GPP | Slave

Control flow Embedded

dual-port RAM

Control Unit

PL

Input register

Figure 4: Hardware/software interactions

Initial (source) data set and extracted subsets are ac-
commodated in memory as it is shown in Fig. 5. All nec-
essary details about particular locations and sizes are
supplied from the PS to PL through GPP (see Fig. 2).

To extract the maximum and/or minimum sorted sub-

sets the following sequence of operations is executed:

1. The PS prepares source data in memory, calcu-
lates the number of blocks Q = [ N/K] (the value
K is predefined), the number of items in the last
block (which can be less than K), and indicates
source and destination addresses. Here, N is the
total number of data items that have to be pro-
cessed.

// OCM address (see [1] for details)

// DDR address (see [1] for details)

// GPP address (see [1] for details)

// for this example OCM address is chosen
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2. The PS sets the start signal that is permanently
tested in the PL.
3. Assoon as the signal start is set, the PL transfers

blocks of data in burst mode and saves themin a
dedicated dual-port embedded block RAM (one
port is assigned for transferring data from the PS
to PL and another port for copying data from the
block RAM to PL registers considered in the next

section).
source address ) © % TothePL
Kitems S 2
Q blocks of data, s E
each of which is Z
handled in the PLin rSs
parallel: Q = N/K] Ec
2w
—~— ] S E
Kiost items | | = 8
. . M
destination
address Maximun || Lmex items
subset
M bits may be Minimum ||Lyi, items
accommodated in subset From the PL
one or more
words of memory \J
Memory

Figure 5: Accommodation of the initial data set and
the extracted subsets in memory

4. Assoon as the first block is completely transferred
to the block RAM through the first port, it is cop-
ied through the second port to PL registers that
are used as inputs of sorting networks for extract-
ing subsets in ASP.

The maximum and minimum subsets are incre-
mentally constructed using methods from the
next section and subsequent blocks of source
data are transferred from memory to the block
RAM in parallel.

The block RAM is organized as a circular buffer as
it is shown in Fig. 6. If it becomes full data transfer
is suspended until space for subsequent block is
freed.

As soon as all Q blocks are processed the maxi-
mum and minimum subsets are ready (the details
will be given in the next section).

The maximum and minimum subsets are copied
from the PL to memory (see Fig. 5).

As soon as the previous point is completed, the
PL generates a hardware interrupt to the PS in-
dicating that the job has been finished (the de-
tails about such interrupts with examples can be
found in [12]).
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10. Optionally, the PL may count the number of clock
cycles for solving the problem in hardware that it
supplied to the PS through GPP.

PS may solve other problems in parallel with the
PL. However, as soon as the interrupt is gener-
ated it is handled by the PS. Hence, the extracted
subsets may immediately be used, for example,
as data needed for projects of higher hierarchical
levels.

11.

/ Reading data
/’/from block RAM

/“{Read address for
/ the second port

( Empty area
. Writing data to block RAM yd
\‘\\ from memory

Write address fo;tﬁst port
Figure 6: Block RAM organized as a circular buffer

The circular buffer in Fig. 6 is managed by the PL control
unit (see Fig. 4) that is a finite state machine. The buffer
is built in the PL block RAM which is written through
the first port (used for transfer data from the PS) and
read through the second port (used to copy data from
the block RAM to PL registers). As soon as the buffer
is full, data transfer from the PS to PL is suspended. As
soon as some area of the buffer is released (because
data have already been read) data transfer is renewed.

3 Methods for Extracting Sorted Subsets

Let set S containing N M-bit data items be given. The
maximum subset contains L __ largest items in S and
the minimum subset contains L smallest items in S
(L, <NandL_ < N).We mainly consider such tasks
forwhichL  <<NandL_ <<Nwhich are more com-
mon for practical applications. Large and very large
subsets may also be extracted and section 4 explains
how to compute them. Experiments with such subsets
are also reported in section 5. Sorting will be done in
highly parallel networks, such as [26] or [27]. Since N
may have very large value (millions of items) it cannot
completely be processed in hardware due to unavail-
ability of sufficient resources.
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We suggest solving the problem iteratively using hard-
ware architecture of ASP shown in Fig. 7. Data are incre-
mentally received in blocks containing exactly K items
and then processed by parallel networks described
below. We mentioned above that the last block may
contain less than K items. If so, it will be extended up
to K items (we will talk about such extension a bit lat-
er). Part of sorted items with maximum values will be
used to form the maximum subset and part of sorted
items with minimum values will be used to form the
minimum subset. As soon as all Q blocks have been
handled the maximum and/or minimum subsets will
be ready to be transferred to the PS.

We suggest two methods enabling the maximum and
minimum sorted subsets to be incrementally con-
structed. The first method is illustrated in Fig. 8.

—> .
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2 )
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Figure 8: The first method of extracting the maximum
and minimum sorted subsets

Sorting networks SN . and SN have input registers.
The minimum and maximum sorted subsets will be
built incrementally in halves of registers indicated at
the bottom part of Fig. 8. At initialization step, these
parts are pre-loaded with possible maximum and mini-
mum values which data from the source set may have.
Such values can be indicated by the PS in additional
fields through GPP or calculated in the PL. Then the fol-
lowing steps are executed:
1. The first block containing K M-bit data items is
copied from block RAM and becomes available at
the inputs of the main SN.

2. The block is sorted in parallel in the main SN
which can be done in combinational networks
from [26] (such as even-odd merger) or in se-
quential iterative networks from [27] (such as it-
erative even-odd transition network). In the last
case additional control is provided.

3. L, sorteditemswith maximum values are loaded
inahalfof the SN__ input registerasiitis shownin
Fig. 8.L , sorted items with minimum values are
loaded in a half of the SN __ input register as it is
shown in Fig. 8. All the items are resorted by the
relevant sorting networks SN__ and SN__ .

4. A new block is copied from block RAM and be-
comes available at the inputs of the main SN.
Such operations are repeated until all Q-1 blocks
are handled.

5. The last block may contain less than K items and
it is processed slightly differently. As soon as all
Q blocks have been transferred from the PS to
the PL block RAM and Q-1 blocks have been han-
dled in ASP, the last block (if it is incomplete) is
extended to K items by copying the largest item
from the created minimum sorted subset. Thus,
the last block becomes complete. Clearly, largest
item from the created minimum sorted subset
cannot be moved again to the minimum subset
and the last block is handled similarly to the pre-
vious blocks.

Let as look at an example in Fig. 9.

a b
0 0 -
oll]o @
0 0 =
ol| |o 3
SNmax U 99 €
u | [ie2 2
u |ifi7e £
u |ili70 3
__Tnit_; Toad S
Z[35]:[fo9] =
~|70|i|io2
5|12 i71
2129] |70 Symbol U
L5858 indicates
® ;é gg undefined
£ |
592 ._29 value
2136 |ii12
£1131 i1 -
= [oad : Sort Fi
u |i[i35 3
u |ili29 p
U 12 =]
M | g | -
99|| ||99 €
99 99 4]
99| |lo9 £
Init  Load

Figure 9: Example of extracting sorted subsets using
the first method
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It is assumed that the minimum possible value of data
items is 0 and the maximum possible value is 99 (clear-
ly, other values may also be chosen). At the first step
(a), shown in left-hand part of Fig. 9, input registers for
SN, ., and SN __ are initialized, and the first block of data
becomes available for the main SN. U indicates unde-
fined values. At the next step (b) input registers are up-
dated as it is shown by dashed fragments in Fig. 9. At
step (c) a new block of data becomes available. Note
that loading the register for the main SN can be done
in parallel with copying L__/L to SN__/SN . Items

max’ “min
inSN__ and SN__ are sorted as soon as the relevant in-

put registers are updated. After executing steps (a) - (g)
the maximum and minimum sorted subsets are ready
(see the right-hand part of Fig. 9) for the items shown
in grey in the main SN. Clearly, this method enables the
maximum and minimum sorted subsets to be incre-

mentally constructed for very large sets.

The idea of the second method is illustrated in Fig. 10
on the same example from Fig. 9.

— a b ¢ d e f o
8 70|99 | [99]| [99] [99] [99 ﬁ
71(]92| [92] |98 |98 |98
SNinax | 0 92|71 |80 [92] |92] |02|™3
0 99| 70| |98] [80] |80 |80| E
= it Swap sort - Swap Sort - swap sort £
Z |35 0 8o| [70] [12] [20 &
~|70 o ||o 71| |12 |19 €
5112 0 ||e8| [71| [13] |18 o
2(29 0 (|24 (69| [14] |17 [=
@ | 58 [swapping| 58 | | 19 47 15 16
w | 71 |networks| 36 18 47 16 15
£[99 99 (|69 [19] [27] |14
5192 99 (|72 (18] [28] |13 o
2136 99 | |47 [29] [19] |12 2l
|11 99 (|47 35| [20] |14 >
= Load ot oad Sort load Sort £
99 11][35] [0 14 [11] [12 2
N 99 12 29 14 12 12 11| ¢
SNuin | 99 29|12 |12 |11 ] |11||12|" £
99 35| |11 (11| |0 o |0 ©
Init Swap Sort Swap Sort Swap Sort (=

Figure 10: Example of extracting sorted subsets using
the second method

Now the size of the networks SN and SN__was re-
duced twice (there are now just 4 M-bit inputs instead
of 8in Fig. 9). Much like Fig. 8 both these networks have
input registers (4 M-bit registers for our example). At
initialization step SN and SN __ are filled in with the
minimum and maximum values which are assumed as
before to be 0 and 99. There are two additional frag-
ments in Fig. 10 which contain circuits from [28]. They
are composed of comparators shown in Knuth notation
[29]. Any comparator converts a two-item input to the
two-item output in such a way that the upper value is
greater than or equal to the lower value. Let us call cir-
cuits from [28] a swapping network. If they are applied
to two sorted subsets with equal sizes then it is guar-
anteed that the upper half outputs of the network con-
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tain the largest values from two sorted subsets and the
lower half outputs of the network contain the smallest
values from two sorted subsets. If we resort separately
the upper and the lower parts then two sorted subsets
will form a single sorted set. Let us analyse the upper
swapping network in Fig. 10. At step (a) inputs of the
network are sorted subsets {0,0,0,0} and {99,92,71,70}.
Thus, two new subsets {70,71,92,99} and {0,0,0,0} are
created. Sorting them enables the maximum sorted
subset {99,92,71,70} with four items to be found on
outputs of SN__ . At step (c) inputs of the swapping net-
work are sorted subsets {99,92,71,70} and {98,80,71,69}
and two new subsets {99,92,80,98} and {70,71,71,69}
are created. Sorting them enables the maximum sort-
ed subset {99,98,92,80} to be built. At step (e) inputs of
the swapping network are sorted subsets {99,98,92,80}
and {20,19,18,17} and no swapping is done. Hence, the
maximum sorted subset is {99,98,92,80} and it is the
same as in Fig. 9. The lower swapping network in Fig.
10 functions similarly.

The second method involves an additional delay on
the comparators of swapping networks but eliminates
copying (through feedbacks in Fig. 8) from the main SN
toSN__ and SN __ . Besides, the sizes of SN__ and SN___
are reduced twice.

a;

Let us discuss now an attainable complexity of sorting
networks in the PL. Itis shownin [5,27] that even in rela-
tively complex field-programmable gate arrays (FPGAs)
the size K is limited. For example, for even-odd merge
and bitonic merge networks [26] K cannot exceed a
few hundreds of 32-bit items even for very advanced
FPGAs (such as the largest devices from the Xilinx Vir-
tex-7 family [30]). In Zynq devices and circuits from [31]
the maximum value of K cannot exceed 100 of 32-bit
items. Iterative even-odd transition networks from [27]
permit significantly larger number of items (exceeding
thousands of 32-bit items) to be processed and they
may efficiently be used for computing sorted subsets
in hardware. Fig. 11 gives an example of the network
from [27] which permits up to K = 16 data items to be
sorted.

K M-bit data items that have to be sorted are loaded
(from block RAM) to the feedback register (FR). Sort-
ing is executed in a segment of even-odd transition
network composed of two linked lines with even and
odd comparators. Sorting is completed in K/2 itera-
tions (clock cycles) at most. Note, that almost always
the number of iterations is less than K/2 because of the
technique [27] according to which if there is no swaps
of data on the right-most line of the comparators then
sorting is completed. Note that the network [27] pos-
sesses significantly smaller combinational delays than
networks from [26]. Besides, in the proposed architec-
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Figure 11: An example of iterative sorting network
from [27] for K=16 data items

ture (see Fig. 4) iterations are done at the same time as
subsequent data are being received from the PS. Such
parallelism enables delays to be optimally adjusted al-
lowing the total performance to be improved.

4 Computing Large Subsets and
Additional Capabilities

For some practical applications the maximum and
minimum subsets may be large and the available
hardware resources become insufficient to implement
sorting networks. Indeed, in accordance with [12] the
largest sorting network that can be implemented in
Zynq microchip xc7z020-1clg484c (that will further be
used for experiments) is 512 32-bit items. The arising
problem can be solved using the following technique.
Letl andl _be constraints for the upper (SN, )and
bottom (SN _ ) parts in Fig. 7, i.e. the circuits SN__ and
SN, with larger values (than | _ and | ) cannot be
implemented due to the lack of hardware resources or
because of some other reasons. Let the parameters for
the maximum and minimum subsets be greater than
landl iel >1 -andL >1_.Insuch case
the maximum and minimum subsets can be computed
iteratively as follows:

1. At the first iteration, the maximum subset con-
taining | items and the minimum subset con-
taining |  items are computed. The subsets are
transferred to the PS (to memories). The PS re-
moves the minimum value from the maximum
subset and the maximum value from the mini-
mum subset. Such correction avoids loss of re-
peated items at subsequent steps. Indeed, the
minimum value from the maximum subset (the
maximum value from the minimum subset) can
appear for subsets to be subsequently construct-
ed in point 3 below and they will be lost because
of filtering (see point 3).
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2. The minimum value from the corrected in the PS
maximum subset is assigned to B . The maximum
value from the corrected in the PS minimum sub-
set is assigned to B. The values B and B, are sup-
plied to the PL through GPP.

3. The same data items (from memory), as in point
1 above, are preliminary filtered in the PL in such
a way that only items that are less or equal than
B, and greater or equal than B, are allowed to be
transferred to block RAM, i.e. computing sorted
subsets is done only for the filtered data items.
Thus, the second part of the maximum and the
minimum subsets will be computed and append-
ed (in the PS) to the previously computed subsets
(such as subsets from point 1).

4. The points 2 and 3 above are repeated until the
maximum subset with L__ items and the mini-
mum subset with L . items are computed.

Note, that if the number of repeated items is greater
than orequal to | /I . then the method above may
generate infinite loops. This situation can easily be rec-
ognized. Indeed, if any new subset (that is sent from
the PL to the PS) contains the same value repeated K
times then an infinite loop will be created. In such case
we can use another method based on software/hard-
ware sorters from [12]. In the next section we will pre-
sent the results of experiments for such sorters.

For some practical applications only the maximum or
the minimum subsets need to be extracted. This task
can be solved by removing the networks SN (for find-
ing only the maximum subset) or SN (for finding only
the minimum subset).

5 Implementations, Experiments and
Comparisons

Fig. 12 shows the organization of experiments. We
have used a multi-level computing system [12]. Initial
(source) data are either generated randomly in soft-
ware of the PS with the aid of C language rand func-
tion (see number 1 in Fig. 12) or prepared in the host PC
(see number 2 in Fig. 12). In the last case data may be
generated by some functions or copied from available
benchmarks. Computing subsets in software/hardware
systems is done completely in Zyng APSoC xc7z020-
1clg484c housed on ZedBoard [32] with the aid of the
described above software/hardware architecture (see
Fig. 4). Computing subsets in software only sorters is
completely done in the PS calling C language gsort
function which sorts data and after that the maximum
and minimum subsets are extracted from the sorted
data. The results are verified in software running either
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in the PS (see number 3 in Fig. 12) or in the host PC (see
number 4 in Fig. 12). Functions for verification of the re-
sults are given in [12]. Verification time is not taken into
account in the measurements below. Methods that are
used for copying files between the PC and APSoCs are
explained in [12] with examples.

Synthesis and implementation of hardware modules
were done in Xilinx Vivado 2014.2 design environment
from specifications in VHDL. Standalone software appli-
cations have been created in C language and uploaded
to the PS memory from Xilinx SDK (version 2014.2) us-
ing methods described in [12]. Interactions with APSoC
are done through the SDK console window.

Qe Verting the st
function ran software of the PS

Generating data and verification of
the results Displaying the results

Zynq APSoC

~ /Output files =

A G —Q X
Processing in rom theshost PC Software,
software of fl Host PC @ developed
the host PC in SDK
Input fil

Verifying the | S PS

results in the

Hardware,
developed
in Vivado

Interfaces

Measuring the time required in software Evaluation of communication overheads

only and in hardware/software systems

Figure 12: Experimental setup

For all the experiments 64-bit AXI ACP port was used
for transferring blocks between the PL and memories.
More details about this port can be found in [12,23,33].
The size of each block for burst mode is chosen to be
128 of 64-bit items (two 32-bit items are sent/received
in one 64-bit word). Two memories were tested: the
OCM and external (on-board) DDR. The OCM is faster
because it provides 64-bit data transfers [1], but the
size of this memory is limited to 256 KB. The available
on ZedBoard 4 Gb DDR provides 32-bit data transfers.

The measurements were based on time units (returned
by the function XTime_GetTime [34]) for L =1L =
64, M=32, and K = 200. Each unit returned by this func-
tion corresponds to 2 clock cycles of the PS [35]. The
PS clock frequency is 666 MHz. Thus, any unit corre-
sponds to approximately 3 ns. The PL clock frequency
was set to 100 MHz. Fig. 13 shows the time consumed
for computing the maximum and minimum subsets for
data sets with different sizes in KB (from 2 to 128). Since
M=32 the number of processed words (N) is equal to
the indicated size divided by 4. Fig. 14 shows the ac-
celeration of software/hardware systems comparing to
software only systems. Note that Figs. 13, 14 present
diagrams for OCM. If DDR memory is used then com-
munication overheads are slightly increased but accel-
eration in the software/hardware systems comparing

to software only system is again significant. For M=64
speed-up is increased in almost 2 times.

Time in ps
100,000

10,000 /

/

1,000 /

—+Software only
- ~=-Hardware (method 1)

100 / Hardware (method 2)

.-,/

The results for methods
1and 2 are almost
10 ,/ identical and that is why
the respective lines
overlap

Size of data in KB

2 ‘ 4 ‘ 8 ‘ 16 ‘ 32 ‘ 64 ‘ 128 ‘
Figure 13: Computing time in software only and soft-
ware/hardware systems

Acceleration
100

Example: this point

/ indicates acceleration
90 by a factor of 70.7 of

the proposed software/
hardware solutions
80 comparing to the

software only solution

70 2 - -—
—+Acceleration of

60
/ software/hardware
50

systems comparing to
/ software only system
40

30

2 4 8 16 32 64 128 Size of data in KB

Figure 14: Acceleration of software/hardware systems
comparing to software only system

If only the maximum or only the minimum subsets have
to be computed the acceleration is almost the same,
but the occupied hardware resources are reduced.

If the size of the requested subsets is increased in such
away that all data need to be read from memory sever-
al times (see section 4) then acceleration is decreased.
Table 1 presents the results for extracting larger sub-
sets (containing from 127 to 505 32-bit data items)
from 128 KB set.

Table 1: The results for extracting larger subsets from 128 KB set

Time in ps 926.4
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For very large subsets acceleration may even be less
than 1, i.e. software only system becomes faster. In
such cases software/hardware sorters from [12] can be
used directly and they provide acceleration for all po-
tential casesevenforL _ =NorL_ =N.Such accelera-
tion is not as high as in Fig. 14 and it is equal to 6 for
N =512, K= 256 (now K is the size of blocks sorted in
hardware and further merged in software) and 1.4 for
N = 33,554,432, K = 256. These results were taken from
experiments with data sorters from [12] (in all experi-
ments M=32). We found that for small and moderate
subsets the proposed here methods provide signifi-
cantly better acceleration.

6 Conclusion

The paper suggests hardware/software architecture
for fast extraction of minimum and maximum sorted
subsets from large data sets and two methods of such
extractions based on highly parallel and easily scalable
sorting networks. The basic idea of the methodsis incre-
mental construction of the subsets that is done concur-
rently with transfer of initial data (source sets) through
advanced high-performance interfaces in burst mode.
Thorough experiments were done with entirely imple-
mented on-chip designs in Zynq xc7z020-1clg484c de-
vice housed on ZedBoard. The size of initial sets varies
from 512 to more than 33 million of 32-bit words. The
results demonstrate significant speed-up comparing to
pure software implementations in the same Zynq de-
vice, namely performance was increased by 1-2 orders
of magnitude for small subsets and by a factor ranging
from 1.4 to 6 for very large subsets.
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Abstract—Fast data sorting is an essential component of many
high-performance computing systems. High-throughput and
highly parallel sorting algorithms are very appropriate for
devices which provide massive parallelism like FPGAs and
APSoCs. One of the major drawbacks of these platforms is
amount of available resources which is a serious obstacle for
design of hardware sorters. However, for many practical
applications complete sorting is not important and only partial
sorting for extraction of maximum and minimum subsets of the
data is required. In this paper we investigate the maximum and
minimum extraction problem, present a hardware-based
extracting circuit based on pipelined periodic sorting networks
and compare it with known alternatives.

Keywords—High-performance computing sy s, Infor
processing; Sorting networks; Parallel sorting; Partial sorting;
reconfigurable computing.

1. INTRODUCTION

Parallel algorithms for data sorting have been studied in
computer science for decades. There are many different parallel
sorting algorithms. The most notable of them are Parallel
QuickSort, Parallel Radix Sort, Sample Sort, Histogram Sort
[1] and a family of algorithmic methods known as sorting
networks [2]. The latter presents a great interest for hardware
acceleration. A sorting network is a set of vertical lines
composed of comparators that can swap data to change their
positions in the input multi-item vector. The data propagate
through the lines from left to right to produce the sorted multi-
item vector on the outputs of the rightmost vertical line. Sorting
is a very computationally expensive and time consuming
operation which requires a lot of hardware resources. There are
different approaches to overcome these limitations. Utilizing
iterative networks with reusable comparators permits to
process significantly larger data sets. Another two possibilities
to overcome these problems are utilization of a relatively small
parallel sorter along with a merging circuit or implementation
of partial sorting. In this paper we investigate the latter
possibility.

Many applications do not require all inputs to be sorted.
Some of them necessitate only maximal and minimal values to
be selected. Many electronic, environmental, medical, and
biological applications need to process data streams produced
by sensors and measure external parameters within given upper
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and lower bounds (thresholds). Maximum and minimum
subsets extraction is required in searching, statistical data
manipulation and data mining (e.g. [3] [4]). To describe one of
the problems from data mining informally let us consider an
example [3] with analogy to a shopping card. A basket is the
set of items purchased at one time. A frequent item is an item
that often occurs in a database. A frequent set of items often
occur together in the same basket. A researcher can request a
particular support value and find the items which occur
together in a basket either a maximum or a minimum number
of times within the database [3]. Similar problems appear to
determine frequent inquiries at the Internet, customer
transactions, credit card purchases, etc. requiring processing
very large volumes of data in the span of a day [3]. Fast
extracting the most frequent or the less frequent items from
large sets permits data mining algorithms to be simplified and
accelerated. Sorting of subsets may be involved in many
known methods from this area.

The paper suggests a method and high-performance
hardware implementation of a partial sorter for maximum (or
minimum) subset extraction and maximum (or minimum)
unsorted subset selection based on parallel sorting network.
The system is designed for working over streaming data. It
utilizes AXI interfaces and is suggested as a PCI express
peripheral.

The remainder of the paper contains 6 sections. Section II
analyzes the related work. Section III describes highly parallel
networks for sorting and explores hardware co-design. Section
IV describes experimental setup and hardware accelerator
architecture. Section V presents the results of experiments and
comparisons with known alternatives. The conclusion is given
in Section IV.

II. RELATED WORK

The problem of finding subsets of minimum and maximum
values is well known, but very small number of solutions exist.
The majority of works in this area are focused on finding 1 or 2
maximal or minimal values in data sets ([5] [6]), but only few
works are focused on subsets.

Frarmahini-Farahani et al. investigated the problem of
partial sorting and max-set-selection in [7]. They proposed a
modular design of a partial sorting system based on Batcher’s
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odd-even and bitonic sorting networks. Their system is built on
sorting blocks constructed from Batcher’s odd-even merge
(OEM) and bitonic sorting networks (BM), where bitonic
sorters are reduced in order to get sorted maximal (or minimal)
subset. They also proposed an approach to select unsorted
maximal subset by replacing bitonic sorters with maximum
selection units. In theory this technique is extendable to 2"-to-
2™ size (where m<n). Also they proposed an architecture for
iterative max selection units that can potentially work with data
streams. Another solution of this problem was developed by
Biroli and Wang in [8]. Their approach is not based on sorting
networks, but still uses parallel comparators. They applied fast
circuit topologies for single max/min value search by Goren et
al. [5] to find a subset of the largest or smallest values. In
contradiction to Frarmahini-Farahani they didn’t use Batcher’s
networks. Both works focused on finding relatively small
subsets. The work by Frarmahini-Farahani is more suitable for
work with large subsets, but its expansion will lead to large
resource consumption.

In our previous works we also explored minimum and
maximum extractors. In [9] and [10] we proposed different
hardware/software methods for simultanious minimal and
maximal subset and implemented them on Zynq-7000 APSoC
devices. In [11] we proposed a multi-level architecture for
minimal/maximal subset extraction which utilizes a general
purpose processor of a host PC and the programmable logic
and processing system of Zynq device.

III. COMPUTING SORTED SUBSETS

As it was suggested in [9], some practical applications
don’t require maximal and minimal subsets simultaniously. For
this purpose a reduced partial sorter that contains one main and
one additional sorting network was discussed. In this paper we
furher investigate this suggested approach because of its
applicability and possible comparison with known alternatives.
Additionally it is a pure hardware implementation which does
not require embedded processing system like in our previous
projects and it is designed as a hardware accelerator with PCI-
express interface for ease on practical usage over streaming
data.

Let set S containing N M-bit data items be given. The
maximum subset contains Li.x largest items in S. We mainly
consider such tasks for which L. < N which are more
common for practical applications (also applicable to a
minimum subset). Since N may have very large value (millions
of items) it cannot be processed completely in hardware due to
the limited resources. It is shown in [12, 13] that even for
relatively complex Field-Programmable Gate Arrays (FPGAs)
the size N is limited. For example, for even-odd merge and
bitonic merge networks [2] N cannot exceed a few hundreds of
32-bit items even for very advanced FPGAs (such as the largest
devices from the Xilinx Virtex-7 family).

As a basis for our sorting circuit we use a periodic
pipelined Odd-Even Transition Sorting Network (also known
as Odd-Even Transposition Sorting Network or OETS). A
periodic network is a type of network which consists of
identical sequences of comparators. Traditional implementation
of OETS is less efficient than Batcher’s networks, but it is
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Fig. 1. Proposed methods for partial sorting circuits.

more reliable and its implementation is simpler. Salloum and
Wang proved that OETS has good fault-tolerant properties
[14].

Like in our previous works, we use pipelined approach with
reusable comparators presented in [13]. K M-bit data items that
have to be sorted are loaded (from block RAM) to the feedback
register (FR). Sorting is executed in a segment of even-odd
transition network composed of two linked lines with even and
odd comparators. Sorting is completed in K/2 iterations (clock
cycles) at most. Note, that almost always the number of
iterations is less than K/2 because of the technique [13]
according to which if there are no swaps of data on the right-
most line of comparators then sorting is completed. Note that
the network [13] possesses significantly smaller combinational
delays than networks from [2]. Besides, in the proposed
architecture iterations are done at the same time as subsequent
data are being received from the PS. Such parallelism enables
delays to be optimally adjusted allowing the total performance
to be improved.

Two methods are depicted in Fig. 1. The first method
utilizes two sorting networks of the same size. The first sorting
network receives blocks of data and sorts them. After the
sorting is completed, the maximal (or minimal) half loads into
the second sorting network along with maximal (or minimal)
half of outputs of the second network. For maximal set
selection, in the initial step the second network is loaded with
zeros. For minimal set selection, it is loaded with maximal
possible value. After all the data is transmitted, the system
waits for the completion of sorting in both sorting networks.
The maximal (or minimal) half of the outputs of the second
network is loaded in the output register and waits for read
request.

The second method is also based on sorting networks, but
these networks are two times smaller than in the first method,
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because we don’t need here to sort results of the previous
iteration with results of the current iteration. Both networks are
connected here with a swapping network. All outputs of the
first sorting network are connected to the swapping network
along with all outputs of the second sorting network. On the
outputs of the second network we receive unsorted maximal
and minimum subsets of the input data, where all items of the
upper half of the network are larger than all items of the lower
half. In some practical applications receiving sorted maximal
and minimal subsets is not required and only unsorted ones are
needed. In that case we can turn the second sorting network off
during the last iteration of the algorithm. It will reduce
execution time which will be noticeable for relatively small
amounts of data.

IV. HARDWARE ARCHITECTURE AND EXPERIMENTAL SETUP

The system was designed as a hardware accelerator for a
host PC which communicates through PCI-express interface in
Direct Memory Access (DMA) mode. Fig. 2 depicts this
architecture.

Software in the host PC runs the 32-bit Linux operating
system (kernel 3.16) and executes programs (written in C
language) that take results from PCI-express (from the FPGA)
for further processing. We assume that the data collected in the
FPGA are preprocessed in the programmable logic by applying
various highly parallel networks (see Section III), and the
results are transferred to the host PC through the PCI-express
bus. To support data exchange through PCl-express, a
dedicated driver was developed. The programmable logic uses
the Intellectual Property (IP) core of the central direct memory
access (Xilinx CDMA) module to copy data through AXI PCI
express (Xilinx AXI-PCIE). Data transfer in the host PC is
organized through direct memory access (DMA). To work with
different devices, a driver (kernel module) was developed. The
driver creates in the directory /dev a character device file that
can be accessed through read and write functions, for example
write(file, data array, data size). The PC BIOS assigns a
number (an address) to the selected base address register
(BAR) and a corresponding interrupt number that will be later
used to indicate the completion of a data transfer. As soon as
the driver is loaded, a special operation (probe) is activated and
the availability of the device with the given identification
number (ID) is verified (the ID is chosen during the
customization of the AXI-PCIE). Then a sequence of
additional steps is performed (see [15, pp. 302-326] for

:
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necessary details). A number of file operations are executed in
addition to the probe function. In our particular case, access to
the file is done through read/write operations.

V. EXPERIMENTAL RESULTS AND COMPARISON

All hardware solutions were implemented, evaluated and
tested in Xilinx Virtex-7 XC7VX485T FPGA. The
implementation in this paper was designed with an aim to
compare it with known alternatives. We compared it with
software sorting and a hardware solution from [7] (OEM/BM).
Software solution is the most obvious and the most widely used
quicksort implementation from C++ language (sort function).
With this approach a whole data set is being sorted with
subsequent extraction of the maximal (or minimal) subset. For
comparison in hardware area, the system from [7] was
implemented. After some experiments we found the most
optimal configuration for implementation for Virtex-7 device
which extracts 128-item data sets. Any implementation for
extracting 256-item data sets utilizes more than 100%
resources of the device. We implemented suggested in the
paper concept of iterative max-set-selection units. The basis of
this system is constructed from the two following blocks: 256-
to-128 odd-even merge max-selection units and reduced
bitonic 256-to-128 unit which starts with core max-selection
unit. Inputs for core max selection units are outputs of OEM
256-t0-128 and outputs of BM sorter (which contains results
from the previous iteration).

For our methods we implemented two different systems.
One for finding 128-item data subset in order to compare with
OEM/BM method, and another for finding 1024-item data sets
which is the maximal possible circuit that fits in Virtex-7
device. Post-implementation resource usage is shown in
Table 1.

TABLE 1. RESOURCE UTILIZATION

Method Resources
FF LUT
Method A 128 9% 22%
Method B 128 8% 19%
Method A 1024 (max) 38% 94%
Method B 1024 (max) 22% 70%
OEM/BM 128 (max) 52% 78%
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Lookup table (LUT) usage for the method A is 3,5 times
smaller and for the method B is 4 times smaller than OEM/BM
based solution. The method A requires 5,7 times fewer amount
of flip-flop (FF) than OEM/BM and the method B requires 6,5
times fewer FFs. Also it is necessary to mention that all
modules required for PCle DMA system utilize about 15% of
LUTs. By subtracting these resources we see that pure
min/max system for the method A requires 9 times fewer LUTs
and the method B requires 15,7 times fewer LUTs.

Auvailable resources of Virtex-7 device allow us to expand
our circuits for extracting larger maximum or minimum
subsets. Both proposed architectures were expanded to extract
subsets of 1024 items which is 10 times more than with
OEM/BM approach. Although for simultaneous extracting of
maximum and minimum subsets both proposed methods are
identical in terms of resource usage and performance, the
method B is better for extraction of maximum or minimum
subset alone.

Fig. 3. shows experimental results. With Virtex-7 and the
proposed PCI express transfer system all hardware
implementations showed approximately identical results. With
architectures that allow faster data transfer OEM/BM approach
may show better results, because for the proposed methods A
and B worst case performance is K/2 clock cycles for K inputs
and OEM/BM performance is dependent on the number of
pipeline stages. But because of significant economy of
resources with the proposed methods (especially the method B)
it is possible to speed up sorting by placing two or more
instances of the sorting circuit that will sort parts of the whole
data simultaneously.

VI. CONCLUSION

The paper suggests hardware-based methods of partial sorting
for computing the maximum and minimum subsets of large
sets of streaming data. The proposed solutions are highly
parallel permitting capabilities of programmable logic to be
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used very efficiently. All the proposed methods were
implemented in commercial microchips, tested, evaluated, and
compared with alternatives. The results of experiments have
shown significant advantages over other software and
hardware solutions.
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ABSTRACT. This paper explores distributed computing systems that may be used effi-
ciently in information processing that is frequently needed in electronic, environmental,
medical, and biological applications. Three major components of such systems are: 1)
data acquisition and preprocessing; 2) transmitting the resulls of preprocessing to a higher
level computing system that is a PC; and 3) post processing in higher level computing sys-
tem (in the PC). Preprocessing can be done in highly parallel accelerators that are mapped
to reconfigurable hardware. The core of an accelerator is a sorting/searching network that
is implemented either in an FPGA or in a programmable system-on-chip (such as Zyng
devices). Data is transmitted to a PC through a high-bandwidth PCIl-express bus. The
paper suggests novel solutions for sorting/searching networks that enable the number of
data items that can be handled to be significantly increased compared to the best known
alternatives, maintaining a very high processing speed that is either similar to, or higher
than in the best known alternatives. Preprocessing can also include supplementary tasks,
such as extracting the minimum/maximum sorted subsets, finding the most frequently
occurring items, and filtering the data. A higher level computing system executes final
operations, such as merging the blocks produced by the sorting networks, implement-
ing higher level algorithms that use the results of preprocessing, statistical manipulation,
analysis of existing and acquired sets, data mining. It is shown through numerous exper-
iments that the proposed solutions are very effective and enable a more diverse range of
problems to be solved with better performance.

Keywords: High-performance computing systems, Information processing, Sorting,
Searching, Merging, Reconfigurable hardware, PCI-express bus, Programmable systems-
on-chip

1. Introduction. Sorting and searching procedures are needed in numerous computing

systems [1]. They can be used efficiently for data extraction and ordering in information

processing. Some common problems that they apply to are (see also Figure 1):

1. Extracting sorted maximum/minimum subsets from a given set;

2. Filtering data, i.e., extracting subsets with values that fall within given limits;

3. Dividing data items into subsets and finding the minimum/maximum/average values
in each subset, or sorting each subset;
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4. Finding the value that is repeated most often, or finding the set of n values that are
repeated most often;

5. Removing all duplicated items from a given set;

. Computing medians;

7. Solving the problems indicated in points 1-6 above for matrices (for rows/columns of
the matrices).

(=)

The given set of data
Il

Filtering >

Dividing into intervals and
Interval 0 | finding the minimum/maximum/| Interval V-1
average values in each interval

Sorted subset
The maximum between the given The minimum
sorted subset maximum and sorted subset
minimum values

Data sort
Removing Statistical data Finding the
repeated manipulation most repeated
items item

FiGURE 1. Common problems that are frequently solved in information
processing systems

These problems are important because many electronic, environmental, medical, chem-
ical, and biological applications need to process data streams produced by sensors and
calculate certain parameters [2]. Let us consider some examples. Applying the technique
[3] in real-time applications requires data acquisition from control systems such as in a
manufacturing or process plant. Signals from sensors may need to be filtered and analyzed
to prevent error conditions (see [3] for additional details). To provide a more precise and
reliable conclusion, combinations of different values need to be extracted, ordered, and
analyzed. Similar tasks arise in monitoring thermal radiation from volcanic eruptions [4],
filtering and integrating information from a variety of sources in medical applications [5],
in data mining [6], and so on. Since many control systems are real-time, performance is
important and hardware accelerators can provide significant assistance for software.

The problems listed above can be solved as shown in Figure 2. Measured data items
are handled in such a way that they are optionally filtered before various types of data
processing algorithms are applied. Performance can be increased by employing broad
parallelism and we suggest providing support for such parallelism in networks for sorting
and searching.

Let us introduce a set of high-level operations, each of which is dedicated to one of the
problems listed in points 1-6 above. The paper suggests methods for high-performance im-
plementation of such operations in a distributed computing system with the architecture
depicted in Figure 3.

Two basic subsystems (a pre-processor implemented in reconfigurable devices and a host
PC) communicate through a high-bandwidth PClI-express (Peripheral Components Inter-
face) bus. Two types of reconfigurable devices are studied: advanced field-programmable
gate arrays (FPGAs), such as those from the Xilinx Virtex-7 family, and all-programmable
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FIGURE 2. General architecture of data processing
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FIGURE 3. Architecture of a distributed computing system

systems-on-chip (APSoCs), such as those from the Xilinx Zyng-7000 family. In the first
case, two-levels of processing are involved: accelerators implemented in reconfigurable
hardware, and general-purpose software running in a PC. In the latter case, a third level
of processing is added that is application-specific software running in a multi-core pro-
cessing unit embedded to APSoC. The basic tasks of the host PC and the reconfigurable
subsystem are listed in Figure 3.
The main contributions of the paper can be summarized as follows:
1) Selecting widely reusable operations for various types of information processing, and
developing a methodology for using such operations in engineering applications;
2) Highly parallel networks for various sorting and searching algorithms and their thor-
ough evaluation;
3) Multi-level implementation of the selected operations in general-purpose and applicati-
on-specific software, and in reconfigurable hardware;
4) Experimental evaluation of the proposed technique in two advanced prototyping boards
— the ZC706 [7] and the VCT707 [8].
The remainder of the paper contains 6 sections. Section 2 analyzes related work. Section
3 identifies potential practical applications of the results and gives a number of real world
examples from different areas. Section 4 describes highly parallel networks for sorting and
searching. Section 5 explores software/hardware co-design. Section 6 presents the results
of experiments and comparisons. The conclusion is given in Section 7.

2. Related Work. The majority of known methods and designs that are relevant to
this paper are in three main areas: 1) high-performance distributed systems that include
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a general-purpose computer (such as a PC) and a reconfigurable subsystem interacting
through a high-bandwidth PCI-express bus; 2) sorting and searching using highly parallel
networks; 3) software/hardware co-design targeted to combine reconfigurable hardware
with general-purpose and application-specific software. The following subsections discuss
the related work that has been done in each area separately.

2.1. High-performance distributed systems. High-performance distributed systems
are used in many areas such as in medical equipment, aerospace, transportation vehicles,
intelligent highways, defense, robotics, process control, factory automation, and building
and environmental management [9]. A number of such systems for different application
areas are described in [10-12]. Let us consider one of them from [12]. Typical adaptive
cruise control and collision avoidance systems receive periodic inputs from sensors such as
radar, lidar (light identification detection and ranging), and cameras, and then process the
data to extract the necessary information. The system then executes a control algorithm
to decide how much acceleration or deceleration is required, and sends commands to
actuators to execute the appropriate actions. Since this is time-critical functionality, the
end-to-end latency from sensing to actuation must be bounded.

The application domains define different requirements for systems. Independently of
the domains, the majority of applications need data processing that may be organized
in different ways. For example, a researcher may require support for finding data items
that occur together in a certain situation, either a maximum or a minimum number of
times. Such problems arise in determining the frequency of inquiries over the Internet, for
customer transactions such as credit card purchases, which typically produce very large
volumes of data in the course of a day [6]. Data processing is involved in software systems
[13], priority buffering in scheduling algorithms [10], information retrieval [14], extracting
data from sensors within predefined ranges [2], video processing [15], knowledge acquisi-
tion from controlled environments [3], and so on. Satisfying the real-time requirements for
these applications can be achieved in on-chip devices that combine a multi-core process-
ing system (PS) running multi-thread software with programmable logic (PL) that can
be used to implement hardware accelerators. For example, devices from the Xilinx Zyng-
7000 family of APSoC have already been successfully used in a number of engineering
designs [11,12]. The Zynq APSoC combines the dual-core ARM®Cortex™-A9 central
processing unit with the PL appended with on-chip memories (OCM), high-performance
(HP) interfaces, a rich set of input/output peripherals, and a number of embedded to
the PL components, such as digital signal processing (DSP) slices. APSoC devices enable
complete solutions to be implemented on a single microchip running software that may be
enhanced with easily customizable hardware. Various advantages of the APSoC platform
are summarized in [16,17]. Interactions between the ARM-based PS and PL are supported
by nine on-chip Advanced eXtensible Interfaces (AXI): four 32-bit general-purpose (GP)
ports; four 32/64-bit HP ports, and one 64-bit accelerator coherency port (ACP) [15].
There are a number of prototyping systems available, some of which (e.g., [7]) allow ad-
ditional data exchange with higher level computers such as PCs through PCl-express.
On-chip interfaces [18] enable hardware accelerators and other circuits (supporting, for
example, communications with sensors and actuators) in the PL to be linked with multi-
core software running in the PS. The PCl-express bus permits multilevel systems to be
developed that combine software running in a general-purpose computer (e.g., PC), soft-
ware running in the PS, and hardware implemented in the PL.

Satisfying real-time requirements is critical in many of the systems referenced above and
this can be a problem for the software-only systems that, perhaps, are the most frequently
applied nowadays [11,13]. Hardware-only systems are also widely used in a number of
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areas (e.g., [12]). It is concluded in [12] that the most sensible approach is for the data
intensive portions of an application to be implemented in hardware, thus providing a high
degree of determinism and lower execution time, while the high-level decision making is
implemented in software, supporting easy customization. It is shown in [19] that on-chip
interactions between software and hardware may be seen as a bottleneck (even if HP ports
are used) especially for applications that require the exchange of high volumes of data.

The architectures and functionalities of various PCl-express systems are described in
[20]. A PCI connection has one or more data transmission lanes, each of which consists of
two pairs of wires: one for receiving and one for sending data. The maximum theoretical
bandwidth of a single lane is up to 2.5 Giga transfers per second (GT/s) in each direction
simultaneously [21], which is the same as Gb per second except that some bits are lost
as a result of interface overhead and consequently the theoretical bandwidth is reduced
by approximately 20% [21,22]. The bandwidth of x lanes is the bandwidth of one lane
multiplied by y.

There are many systems that involve high-performance on-chip communications and
interactions with PC through a PCl-express bus. The distinctive feature of this paper is
the study and evaluation of such systems for a particular area of data processing targeted
to problems that were described in Section 1. We will show in the next section that there
exist a very large number of potential practical applications for such processing.

2.2. Sorting and searching networks. Highly parallel networks for sorting and search-
ing enable numerous operations to be executed simultaneously, which is very appropriate
for FPGAs and APSoCs. Two of the most frequently investigated parallel sorters are
based on sorting [23] and linear [24] networks. A sorting network is a set of vertical
lines composed of comparators that can swap data to change their positions in the input
multi-item vector. The data propagate through the lines from left to right to produce
the sorted multi-item vector on the outputs of the rightmost vertical line. Three types
of such networks have been studied: pure combinational (e.g., [23,25,26]), pipelined (e.g.,
[23,25,26]), and combined (partially combinational and partially sequential) (e.g., [27]).
The linear networks, which are often referred to as linear sorters [24], take a sorted list
and insert new incoming items in the proper positions. The method is the same as the
insertion sort [1] that compares a new item with all the items in parallel, then inserts
the new item at the appropriate position and shifts the existing elements in the entire
multi-item vector. Additional capabilities of parallelization are demonstrated in the in-
terleaved linear sorter system proposed in [24]. The main problem with this is that it is
applicable only for small data sets (see, for example, the designs discussed in [24], which
accommodate only tens of items).

The majority of sorting networks that are implemented in hardware use Batcher even-
odd and bitonic mergers [28,29]. Other types are rarer (see for example the comb sort [30]
in [31], the bubble and insertion sort in [23,25], and the even-odd transition sort in [32]).
Research efforts are concentrated mainly on networks with a minimal depth or number
of comparators and on co-design, rationally splitting the problem between software and
hardware. The regularity of the circuits and interconnections are studied in [26,27] where
networks with iteratively reusable components were proposed. We target our results to-
wards FPGAs and APSoCs because they are regarded more and more as a universal
platform incorporating many complex components that were used autonomously not so
long ago. The majority of modern FPGAs contain embedded DSP slices and embedded
multi-port memories, which are very appropriate for sorting. GPU (graphics processing
unit) cores have also been placed inside an APSoC in recent devices [17], but even without
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such cores, streaming SIMD (single instruction multiple data) applications can be sup-
ported with the existing programmable logic. Comparing FPGA-based implementations
with alternative systems [33,34] clearly demonstrates the potential of reconfigurable hard-
ware, which encourages further research in this area. FPGAs still operate at a lower clock
frequency than non-configurable ASICs (application-specific integrated circuits) and AS-
SPs (application-specific standard products) and broad parallelism is evidently required
to compete with potential alternatives. Thus, sorting and linear networks can be seen
as very adequate models. Unfortunately, they have many limitations. Suppose N data
items, each of size M bits, need to be sorted. The results of [23,25] show that sorting
networks cannot be built for N > 64 (M = 32), even in the relatively advanced FPGA
FX130T from the Xilinx Virtex-5 family because the hardware resources are not suffi-
cient. When N is increased, the complexity of the networks (the number of comparators
C(N)) grows rapidly (see Figure 1 in [26]). Besides, propagation delays through long
combinational paths in FPGA networks are significant [26]. Such delays are caused not
only by comparators, but also by multiplexers that have to be inserted even in partially
regular circuits [27], and by interconnections.

It is shown in [26] that very regular even-odd transition networks with two sequentially
reusable vertical lines of comparators are more practical because they operate at a higher
clock frequency, provide sufficient throughput, and enable a significantly larger number
of items to be processed in programmable logic.

2.3. Multi-level software/hardware co-design. Multi-level software/hardware co-
design is a new kind of system design that combines on-chip hardware/software co-design
and co-design at the level of PC interacting with the on-chip subsystem, such as that
implemented in Zyng-7000 devices. To our knowledge just a few publications (such as
[35,36]) briefly discuss such multi-level co-designs. On the other hand existing prototyp-
ing boards, such as [7] permit such designs to be evaluated. Besides, they are valuable
for numerous practical applications that were listed in Section 1.

3. Potential Practical Applications. Let us discuss now applicability of the consid-
ered design technique. An ordinary sorting is required in many types of information pro-
cessing. For a large number of data items, the known procedures that are used are time
consuming and can be accelerated using the methods proposed in this paper. This is
especially important for portable embedded applications. In the latter case, even sorting
thousands of items can be done significantly faster in software/hardware (e.g., in APSoC)
than in software only.

One common problem is clustering objects in accordance with their attributes. Different
methods have been proposed for solving this problem and many of them involve sorting
and searching as frequently used operations [37-40]. For example, in the CPES (Clustering
with Prototype Entity Selection) method [41], a fitness function is proposed to decide if
given objects can be clustered. Sorting the results produced by the fitness function enables
solutions to be found faster. Actually, for many practical applications it is important to
make sorting built-in, much as in operations such as computing the Hamming weights
of binary vectors, e.g., POPCNT (population count) [42] and VCNT (Vector Count Set
Bits) [43]. Similar proposals were made in [44].

Another example is extracting a required number of items through the Internet. For
example, suppose we would like to find the N cheapest products from very large number
of available options. An FPGA/APSoC based system requests and receives data from dif-
ferent suppliers and extracts the maximum/minimum subsets with the indicated number
of items. Different search criteria can be applied and very large volumes of data can be
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analyzed. Other practical applications (in which high throughput is very important) are
described in [2]. One particular example can be taken from [2], which requires deciding
how often the data collected falls within a set of critical values that are above or below a
given threshold. Generally, the greater the intensity, the more critical is the subset and
the higher the probability of an event which might happen. By discovering the maximum
and minimum subsets you can determine when the activity is the highest or the lowest.

The algorithm [45] discovers rules associated with a set of classes and it has been
tested on a real world application data set related to website phishing. In this algorithm
the classifier sorts classes within each rule based on their frequency. Thus, sorting is also
needed.

In [25] small even-odd merge and bitonic sorting networks were used to implement
a median operator over a count-based sliding window. Such an operator is commonly
needed to eliminate noise in sensor readings [46] and in data analysis [47], which are tasks
that occur often in control engineering.

The method proposed in [48] (based on the Monte Carlo method coupled with a sorting
algorithm [49] and gradient search [50]) systematically evaluates possible behaviors of a
closed-loop system by analyzing its time response. This permits various techniques to
be applied for solving problems that are commonly encountered in networked control
systems.

The software/hardware solutions proposed in this paper are faster. They are based on
two (PC - FPGA) or three (PC - APSoC: PS - PL) level systems. The effectiveness of the
hardware/software solutions is underlined in [51], addressing the importance of portable
computing hardware environments to handle massive data.

4. Highly Parallel Networks for Sorting and Searching. It is shown in Section 2.2
that sorting networks are widely used in data [25] and vector [52] processing and they
enable comparison and swapping operations over multiple data items to be executed in
parallel. A review of recent results in this area can be found in [26] where it is shown
that many researchers and engineers consider such technique as very beneficial for data
and vector processing in FPGAs and APSoCs. Although the methods [28,29] enable the
fastest theoretical throughput, the actual performance is limited by interfacing circuits
supplying initial data and transmitting the results and the communication overheads do
not allow theoretical results to be achieved in practical designs [19].

The proposed circuits require a significantly smaller number of comparators/swappers
(C/S) than networks from [28,29] and many C/S are active in parallel and reused in differ-
ent iterations. The first circuit (see Figure 4) contains N M-bit registers Rqo, . .., Rgn_1.
Unsorted input data are loaded to the circuit through N M-bit lines dy, d1, ..., dy_1. For
the fragment on the left-hand side of Figure 4, the number N of data items is even, but
it may also be odd which is shown in the example in the same Figure 4. Each C/S is
shown in Knuth notation () [1] and it compares items in the upper and lower registers
and transfers the item with the larger value to the upper register and the item with the
smaller value to the lower register (see the upper right-hand corner of Figure 4). Such
operations are applied simultaneously to all the registers linked to even C/S in one clock
cycle (indicated by the letter o) and to all the registers linked to odd C/S in a subse-
quent clock cycle (indicated by the letter 3). This implementation may be unrolled to
an even-odd transition network [32], but vertical lines of C/S in Figure 4 are activated
sequentially and the number of C/S is reduced compared to [32] by a factor of N/2. For
example, if the number N is even then the circuit from [32] requires N x (N —1)/2 C/S
and the circuit in Figure 4 — only N — 1 C/S. The circuit in [32] is combinational and
the circuit in Figure 4 may require up to N iterations. The number N of iterations can
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be reduced very similarly to [26]. Indeed, if beginning from the second iteration, there is
no data exchange in either even or odd C/S, then all data items are sorted. If there is no
data swapping for even C/S in the first iteration, data swaps for odd C/S may still take
place. Note that the network [32] possesses a long combinational delay from inputs to
outputs. The circuit in Figure 4 can operate at a high clock frequency because it involves
a delay of just one C/S per iteration (i.e., in each rising/falling edge of the clock).

Let us look at the example shown in Figure 4 (N = 11, M = 6). Initially, unsorted data
do,dy, ..., dyo are copied to Ry, ..., Rgio. Each iteration (6 iterations in total) is forced
by an edge (either rising or falling) of a clock. The signal « activates the C/S between
the registers Rgo, Rg1, Rga, Rgs, . . ., Rgs, Rgo. The signal /3 activates the C/S between the
registers Ry, Rga, Rg3, Rgy, . . ., Rge, Rg10. There are 10 C/S in total. Rounded rectangles
in Figure 4 indicate elements that are compared at iterations 1-6. Data are sorted in 6
clock cycles and 6 < N = 11. Unrolled circuits from [32] would require 50 C/S with the
total delay equal to the delay of N sequentially connected C/S.

The second circuit is shown in Figure 5 and it combines the first circuit with the radix
sort. Now only single bits from the registers of Figure 4 are compared and if the upper bit
is 0 and the lower bit is 1, then M-bit data in the relevant upper and lower registers are
swapped. Thus, any C/S is built on only one gate (see Figure 5) much like in [52]. Data
are sorted in such a way that at the first step bit 0 (the least significant bit) is chosen.
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At the second step bit 1 is chosen and at the last step bit M — 1 is chosen. Hence, bits in
all registers are chosen sequentially, i.e., they are scanned. Clearly, the number of clock
cycles is increased but the resources occupied are reduced because one-bit C/S are smaller
than M-bit C/S.

The maximum number of clock cycles for sorting N M-bit items is increased up to
N x M but in practical designs it is smaller because the method described above enables
sorting to be completed as soon as there is no need for swapping data items.

Figure 6 demonstrates an example. The same data as in Figure 4 are chosen. Now we
consider binary codes of the items. For the first sort (0) bit 0 is analyzed, which is the
least significant bit. All the remaining sorts (1-5) and the relevant (analyzed) bits are
shown in Figure 6. After the last step (sort 5), all data are sorted and for clarity binary
codes are shown as decimal numbers.

sort0 sortl sort2 sort3 sortd sortS

37-100101:100101;001011:010110;001011:011000:100110 — 38
22 - 010110:001011{001011{100110/001011{011000/100101 - 37
11-001011; 001001 001011 100101 001011:010110:011000 - 24
38- 100110 001011 010110: 001011 001001 010001 011000 - 24
24— 011000 001011 100110} 001011 011000: 001011 1010110 - 22
9- 001001.010001,100101.001011‘011000.001011‘010001 17
0- 000000;010110{001001:001001{010110:001011:001011 - 11
24 - 011000;100110{010001/010001}100110:001001:001011 - 11
11-001011:011000,011000/011000/100101:100110!001011 — 11
11 - 001011:000000{000000{000000{010001 /100101001001 - 9

17 - 010001:011000011000i011000 000000 000000000000 — 0
wito? e wic2?d piez® picad pist ;56
scanning all bits'from 0 to M-1

unsorted data sorted data

FIGURE 6. An example

The networks described above can be used efficiently for solving numerous supplemen-
tary tasks. One of these tasks is the extraction of the maximum and/or minimum subsets
from the sorted sets [53-55]. Let set S containing L M-bit data items be given. The max-
imum subset contains L., largest items in S, and the minimum subset contains L,
smallest items in S (Lyax < L and Ly, < L). We mainly consider such tasks for which
Lax << L and Ly, << L, which are more common for practical applications. Since L
may be very large (millions of items), the set cannot be completely processed in hardware
because the resources required are not available. Figure 7 shows the top-level architec-
ture from [55] in which the proposed iterative data sorter is used. Much like [55], the
given set S is decomposed on Q = [L/K'] subsets, all of which contain exactly K M-bit
items except the last, which may have less than K M-bit items. Subsets are computed
incrementally in @ steps (we assume below that K < L).

At the first step, the first K M-bit data items are sorted in the network (such as that
shown in Figure 4) which handles L.y + K + Ly, data items in total but comparators
linking the upper part (handling L.x M-bit data items) and the lower part (handling
Lmin M-Dbit data items) are deactivated (i.e., the links with the upper and lower parts are
broken). So, sorting is done only in the middle part handling K M-bit items. As soon
as sorting is completed, the maximum subset is copied to the upper part of the network
and the minimum subset is copied to the lower part.

From the second step, all the comparators are active, i.e., the network (see Figure 4)
handles Lyax + K + Ly items. Now for each new K M-bit items, the maximum and
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FIGURE 7. Computing the maximum and minimum sorted subsets

minimum sorted subsets are properly corrected, i.e., new items may be inserted. All other
details relevant to top-level architecture in Figure 7 can be found in [55].

The next potential task that can be solved with the aid of the proposed methods is
filtering [55]. Let B, and B; be predefined upper (B,) and lower (B;) bounds for the given
set .S. We would like to use the circuit in Figure 7 only for such data items D that fall
within the bounds B, and By, i.e., B, < D < B, (or, possibly, B, < D < B,). Once
again the basic component is the sorting network (see Figure 4) and it can be used in the
method [55] that enables data items to be filtered at run-time (i.e., during data exchange).

Clearly, the operations described above can be implemented in software. For example,
the C function gsort permits large data sets to be sorted. After that, extracting the
maximum and minimum subsets is easily done. Filtering may be done by testing and
eliminating items that do not fall within the predefined constraints. However, for many
practical applications the performance of the operations described above is important.
The results of thorough experiments and comparisons have shown that software/hardware
solutions are significantly faster than software only solutions.

Many other problems can also be solved applying the proposed networks. For example,
in [2] a highly parallel architecture was proposed that permits repeated items to be found
efficiently. The basic component of the architecture [2] is a sorting network, and using
the proposed technique for such a network permits the hardware resources to be reduced
and the performance to be increased. Thus, the results of this paper are useful for a large
number of practical applications.

5. Software/Hardware Co-design. Figure 8 shows the basic architecture for data
transfer between a host PC and an APSoC through PCl-express.

Figure 9 presents a more detailed architecture of a three-level system for the example
of distributed data sort. Software in the host PC runs the 32-bit Linux operating system
(kernel 3.16) and executes programs (written in the C language) that take results from
PCl-express (from the APSoC) for further processing. We assume that the data collected
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in the APSoC are preprocessed in the APSoC by applying various highly parallel networks
(see Section 4), and the results are transferred to the host PC through the PCI-express
bus. To support data exchange through PCl-express, a dedicated driver was developed.
The APSoC uses the Intellectual Property (IP) core of the central direct memory access
(CDMA) module [56] to copy data through AXI PCI express (AXI-PCIE) [57]. The project
is similar to [58] and links CDMA and AXI-PCIE modules based on a simple data mover
(i.e., the mode “scatter gather” [58] is not used). A master port (M-AXI) of the AXI-
PCIE operates similarly to GP ports in [19] and supplies control instructions from the
PC to customize data transfers. The instructions indicate the physical address of data for
PC memory, the size of transferred data, etc. The CDMA module can be connected to
either AXI HP or AXI ACP interfaces in APSoC and transmits data from either on-chip
memory (OCM) or external DDR. After supplying the addresses, the number of data
bytes (that need to be transferred) is indicated and the data transmission is started. As
soon as the data transmission is completed, the CDMA module triggers an interrupt that
has to be properly handled (the interrupt number is determined by the BIOS of the host
PC). The following customization is done for 1) AXI-PCIE: legacy interrupts, 128 bits
data width, and 2) CDMA: 256 bytes burst size, 128 bits data width. Note that the
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architecture in Figure 9 allows data transfers in both directions, i.e., data from the PC
may also be received.

The architecture for the case when an FPGA is used (instead of an APSoC) is similar,
and is shown in Figure 10 (now there are just two levels). The only difference is the
transfer of data items from an external source to FPGA DDR memory where the data
are preliminarily collected by the FPGA and stored. The DDR is controlled by a memory
interface generator.

Data transfer in the host PC is organized through direct memory access (DMA). To
work with different devices, a driver (kernel module) was developed. The driver creates
in the directory /dev a character device file that can be accessed through read and write
functions, for example write(file, data_array, data size). Up to 5 base address registers
(BAR) can be allocated but we used just one.

The PC BIOS assigns a number (an address) to the selected BAR and a corresponding
interrupt number that will be later used to indicate the completion of a data transfer. As
soon as the driver is loaded, a special operation (probe) is activated and the availability
of the device with the given identification number (ID) is verified (the ID is chosen during
the customization of the AXI-PCIE). Then a sequence of additional steps is performed
(see [59, pp.302-326] for necessary details). A number of file operations are executed in
addition to the probe function (see Figure 11). In our particular case, access to the file
is done through read/write operations. Figure 11 demonstrates the interaction of a user
application with the driver (kernel module) and some additional operations that may be
executed.

As soon as a user program calls the read function, the read(file, data_array, data_size)
function gets the address in the user memory space and the number of bytes that need
to be transferred. Initially, the data are copied to a buffer and then the physical address
of the buffer is obtained. Now the data are ready to be transferred from APSoC/FPGA.
Then the data are copied and the driver is waiting for an interrupt indicating that the
data transmission is complete. The necessary operations for generating the interrupt are
given in [56]. Additional details can be found in [59, pp.258-287].

The proposed networks (see Section 4) can be used as follows. The sorter receives blocks
composed of N M-bit data items that are collected from sensors initially and stored in
memories (such as external DDR and OCM). Interactions with memory are done through
AXI HP/ACP ports (see Figure 9) or through the memory interface block (see Figure 10).
The sorter (such as that shown in Figure 4) executes iterative operations over multiple
parallel data and is controlled by a dedicated finite state machine (FSM) called Sorter
Control Unit (see Figures 9 and 10). The ports are also controlled by a dedicated FSM
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(see HP/ACP Control Unit in Figures 9 and 10). The results of sorting are copied back
to memory and then transmitted to the host PC through the PCl-express bus. APSoC
PS is responsible for data collection and organization that is done in accordance with the
established requirements. For the case of FPGA, data collection and organization are
done by specially developed dedicated circuits. Finally, either the PS or the dedicated
circuits prepare data in memory so that these data can be processed in the PL/FPGA
and the results of the processing (stored in memory) are ready to be transmitted to the
host PC. The blocks CDMA with control units (PCI Control Unit and Interrupt Control
Unit in Figures 9 and 10) are responsible for transmitting data.

6. Experiments and Comparisons. The system for data transfers between a host PC
and an APSoC/FPGA has been designed, implemented, and tested. Experiments were
done with two prototyping boards. The first is the Xilinx ZC706 evaluation board [7]
containing the Zyng-7000 XC7Z045 APSoC device with PCI express endpoint connec-
tivity “Genl 4-lane (x4)”. The PS is the dual-core ARM Cortex-A9 and the PL is a
Kintex-7 FPGA from the Xilinx 7th series. The second board is VC707 [8] and it contains
the Virtex-7 XC7VX485T FPGA from the Xilinx 7th series with PCI express endpoint
connectivity “Gen2 8-lane (x8)”. All designs were done for: 1) hardware in the PL of
APSoC/FPGA synthesized from specifications in VHDL that describe circuits interacting
with Xilinx IP cores (Xilinx Vivado Design Suite 2015.1/2015.2); 2) software in the PS
of APSoC developed in C language (Xilinx Software Development Kit — SDK 2015.1); 3)
user programs running under the Linux operating system in the host PC developed in C.
Data were transferred from the ZC706/VC707 to the host PC through PCl-express. The
host PC contains Intel core i7 3820 3.60GHz.

Figure 12 demonstrates organization of experiments with data sorters.

We assume that data are collected by the ZC706/VCT707 board and stored in DDR
memory (in the experiments, data are produced as described in point 1 below). Subse-
quently, different components (A, B, C, D) may be involved in data processing:

1) Data are randomly generated in the programmable logic (in the PL of APSoC or in the
FPGA) and sorted using only networks in hardware (component A), indicated below
as Sorting blocks;

2) Data are transferred from the ZC706/VC707 to the PC through PCl-express and sorted
by software in the PC (component D), indicated below as PC' sort;

3) Data are completely sorted in the APSoC (the set of data items is decomposed into
blocks, blocks are sorted in the PL by the networks described above, the sorted blocks
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are merged in the PS to produce the final result) and the sorted data are transferred
to the PC through PCl-express (components A and B), indicated below as Sorting +
PS merge;

4) Data are completely sorted in APSoC/FPGA and in the PC in such a way that: a)
blocks of data are sorted in the PL of APSoC or in FPGA; b) the sorted blocks are
transferred to the PC through PCl-express; and c¢) the blocks are merged by software
in the PC (components A and C). This case is indicated below as Sorting + PC merge.
Sorting in hardware only (see point 1 above) permits the circuits that process the maxi-

mum possible number of data items and can be entirely implemented in the programmable
logic without any support from software to be evaluated. In the next subsections we will
present the following results: 6.1) evaluation of the circuits including threshold values
that are potential limitations of the methods proposed; 6.2) comparisons with the best
known alternatives.

6.1. Evaluation of the proposed circuits. Evaluation of the proposed circuits has
been done through a set of experiments with the network from Figure 4, selecting four
data sets sizes of 512, 1024, 2048, and 4096 items. The results are shown in Figure 13.
We counted only the percentage of look-up tables (LUTSs), which are the primary
PL/FPGA resources that are used for the network. The percentage of other resources is
lower, for example, the percentage of flip-flops for the FPGA does not exceed 23% and

Percentage of used LUTs

160
140 ——ZC706 (utilization % LUTs)
-a-\/C707 (utilization % LUTs)
120 -
100 The maximum available hardware rescurces »
80 P
60
40
20
0 - T

512 1024 2048 4096
Number of 32-bit data items

FIGURE 13. The results of sorting in hardware only using iterative networks
from Figure 4
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for the PL — 31% for all data set sizes (from 512 to 4096). From Figure 13 we can see that
the available resources permit only iterative networks of up to 2048 32-bit data items to
be implemented. Thus 2048 is the threshold for hardware only implementations based on
the microchips indicated above. A preliminary evaluation shows that 8192 items is the
maximum threshold value for hardware-only implementations of the circuit from Figure
4 in the most advanced FPGAs/APSoCs currently available on the market.

The circuit in Figure 5 was also implemented and tested. As we expected in Section
4, the occupied resources were reduced, and the time was increased compared to the
network in Figure 4 by a factor of about M. For example, if the size of one block is 1024
(N = 1024) of 32-bit (M = 32) items, then the percentage of LUTs used for VC707 is
25% for the network in Figure 4, and 18% for the network in Figure 5. Thus, sorting 4096
items in the FPGA of VC707 is possible. However, we found that the remaining resources
are not sufficient to implement the other blocks shown in Figure 14. Thus, the circuit in
Figure 5 makes sense only for autonomous hardware networks.

In further experiments (see Figure 12) only the network from Figure 4 will be used.
The size of data varies from 2 KB to 1024 KB (M = 32). The results obtained for the
four measurements indicated above are reported in Figure 14 (the two curves PC sort and
PC sort + data transfer show the same results without and with data transfers). The
result for each type of experiment is an average of 64 runs.

The following conclusions can be drawn from Figure 14.

e The fastest results were obtained for the components A and C, i.e., pre-sort in the
PL with a subsequent merge in the PC (see point 4 above). Note that the fastest
(the lowest) curve in Figure 14 is built for sorting individual subsets only. Thus, the
complete data set has not been sorted and the relevant results cannot be used for
comparisons.

e The slowest result is shared between the remaining two cases (see points 2, 3 above).

e Note that for almost all data sizes, sorting and merging in APSoC is faster than
sorting in PC software. Thus, cheaper (than PC) APSoCs are more advantageous
and may be used efficiently for embedded applications.

e Sorting blocks in the PL network (see Figure 4) is significantly faster than subsequent
merging. All communication and protocol overheads were taken into account.

Time in us
160.000 — Curves for the cases PC sort and ——
140.000 - PC sort+data transfer are almost overlapped
120.000
—+Sorting blocks (us)
100.000 -#-Sorting + PS merge (us)
80.000 Sorting + PC merge (us)
—#-PC sort + data transfer (us)
40.000

20.000 /
—t—t

0 - =Fe—07

2 4 8 16 32 64 128 256 512 1024
The size of data in KB

FIGURE 14. The results of experiments with the three-level system sorting
data (the size of one block is 1024 32-bit data items)
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Time in tts
120.000 —+Sorting blocks (ps)
-=-Sorting + PC merge (us)
100.000 — PC sort + data transfer (us) ——
—=Sorting + PC merge (us) from Fig. 14
80.000
60.000
40.000
20.000
0

2 4 8 16 32 64 128 256 512 1024

The size of data in KB

FI1GURE 15. The results of experiments with the two-level system sorting
data (the size of one block is 2048 32-bit data items)

Similar experiments were done with the VC707 prototyping board, but with the blocks
of data containing 2048 32-bit data items (i.e., the blocks sorted in the hardware network
are two times larger). The results are shown in Figure 15.

From analyzing these results we can conclude that:

e Using an FPGA from the Virtex-7 family, sorting in hardware networks is slightly

faster, but the difference is negligible;

e Using larger blocks (2048 vs. 1024) allows sorting in point 4 (see the beginning of
this section) to be faster by a factor ranging from 1.2 to 1.8. This is because the
depth of software merges is reduced by one level.

The next experiments were done extracting the maximum and the minimum sorted
subsets. We found that the acceleration is better than in Figures 14 and 15 for data sort-
ing. This is because the number of data transferred through PCI express is significantly
decreased and almost all operations are done in the APSoC/FPGA. We implemented and
tested the circuit shown in Figure 7 in the PL of APSoC, which takes data from the DDR,
memory and extracts the maximum and minimum subsets with Lyax/Lmin data items,
where Liax/ Lmin varies from 128 to 1024 (as before M = 32, L varies from 2 KB to 1024
KB). Table 1 presents the results for Lmax/Lmn = 128.

TABLE 1. The results of experiments extracting the maximum/minimum subsets

Data (KB) | Time (us) | Data (KB) | Time (us)
2 70 64 254
4 75 128 425
8 89 256 916
16 112 512 1543
32 157 1024 3535

For some practical applications the maximum and/or minimum subsets may be large
and the available hardware resources become insufficient to implement the circuit from
Figure 7 [54]. The problem can be solved by applying the following technique. Let lyax
and [, be constraints for the upper and lower parts of the sorting network in Figure 7,
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i.e., circuits with larger values (than lyax and I, ) cannot be implemented due to the lack
of hardware resources or for some other reasons. Let the parameters for the maximum
and minimum subsets be greater than [, and Ly, i.€., Lmax > lmax and Lyin > L. In
this case, the maximum/minimum subsets can be computed incrementally as follows [54].

1. In the first iteration the maximum subset containing /.. items and the minimum
subset containing [, items are computed. The subsets are transferred to the PS (to
memories). The PS removes the minimum value from the maximum subset and the
maximum value from the minimum subset. This correction avoids the loss of repeated
items in subsequent steps. Indeed, the minimum value from the maximum subset (the
maximum value from the minimum subset) can appear in subsets that are generated
in point 3 below, and they will be lost because of filtering (see point 3 below).

2. The minimum value from the corrected in the PS maximum subset is assigned to B,,.
The maximum value from the corrected in the PS minimum subset is assigned to B;.
The values B, and B; are supplied to the PL through a general-purpose port.

3. The same data items (from memory), as in point 1 above, are initially filtered [55] so
that only items that are less than B, and greater than B; are allowed to be processed,
i.e., computing sorted subsets can be done only for the filtered data items. Thus, the
second part of the maximum and minimum subsets will be computed and appended
(in the PS) to the previously computed subsets (such as the subsets from point 1).
Points 2 and 3 above are repeated until the maximum subset with L., items and the

minimum subset with L.;, items are computed.

If the number of repeated items is greater than or equal t0 Lyay/lmm, then the method
above may generate infinite loops. This situation can easily be recognized. Indeed, if
any new subset becomes empty after the corrections in point 1 above, then an infinite
loop will be created. In this case, we can use the previously described method based on
software/hardware sorters (i.e., sorting in hardware and subsequent merging in software).
Thus, data items are sorted before the desired number of the largest and/or the smallest
items are taken.

Table 2 presents the results for larger numbers of data items in extracted subsets (from
128 to 1024) for L = 256 KB.

TABLE 2. The results of experiments with extracting subsets with different
number of data items

Data | Time (us) Data Time (us)
128 4- 128 916 640 4 640 4481
256 + 256 1808 768 4 768 5372
384 4 384 2698 896 + 896 6261
512 4512 3589 1024 4 1024 7152

The developed software and hardware can also solve higher level tasks. As examples,
we considered creating objects in software for further clustering and finding the frequency
of occurrence of data items in hardware. The attributes of any individual object are gen-
erated randomly in software within a given range. Objects and attributes are associated
with rows and columns of a matrix. Clearly, the Hamming weight of any row r indicates
how many times the attribute associated with r appeared in different objects (associated
with columns). Two tasks are solved in the PL: 1) calculating the Hamming weights
using the methods and tools from [2]; and 2) sorting the Hamming weights with the aid
of the methods described above. The sorted values are used to simplify solving different
problems from the scope of data mining.



156 V. SKLIAROV, A. RJABOV, I. SKLIAROVA AND A. SUDNITSON

Finding the item that occurs most frequently can be done entirely in hardware. Suppose
we have a set of L sorted data items which may include repeated items and we need the
most frequently repeated item to be found. This problem is solved in the hardware circuit
proposed in [2]. Thus, combining the proposed solutions with the circuit [2] enables the
complete problem to be solved.

6.2. Comparisons with the best known alternatives. Comparisons with the best
known alternatives can be done by analyzing the fastest known networks. For data sorting,
the latency and the cost of the most widely discussed networks are shown in Table 3. The
formulae for the table are taken from [1,23,25,26,32]. For example, if N = 1024 then the
latency is equal to D(1024) = 55 for the fastest known even-odd merge and bitonic merge
networks [28,29], which is smaller than the number of iterations for the proposed network.
However, C(1024) for the less resource consuming even-odd merge network is 24,063 C/S
and for the proposed network C(1024) = 1023 C/S. Thus, the difference is a factor of
about 24. It means that with the same hardware resources, the proposed networks can
process blocks of data with significantly larger number N of data items. Indeed, the
resources C'(1024) = 24,063 of the known even-odd merge network are the same as for 24
proposed networks each of which sorts the same number of data items, i.e., 1024. This
means that the proposed network occupies less than 5% of the resources of the known
network and the number of sorted items is exactly the same.

TABLE 3. Cost C'(N) and latency D(N) of the most widely discussed networks

Type of the network C(N) D(N)
Bubble and insertion sort N x(N-1)/2 2x N -3
Even-odd transition N x(N-1)/2 N
Even-odd merge (p2 —p+4)x 22 | N=2|px(p+1)/2, N=2°
Bitonic merge (p2 +p) x P72 N =2p px(p+1)/2, N=2P
The proposed network (see Figure 4)| N —1 <N

The experiments done for the board [8] have shown that for the networks [28,29]
N < 128, while for the proposed networks N > 2048. Thus, the proposed networks
may handle about 16 times larger blocks. The blocks created in hardware are further
merged in software, thus the number of levels in software will be increased in the known
networks by a factor of [log, 16] = 4 (comparing to the proposed network). The following
experiments were done:

1. Blocks with two sizes (that are 128 and 2048 32-bit words) have been sorted in software
using the known (for the size 128) and the proposed (for the size 2048) networks. The
measured times are Tias and Thous.

2. Since the known networks cannot be used for N = 2048, the same results have been
obtained through a subsequent merge in software of blocks with N = 128 to get blocks
with N = 2048. The measured time is Tios + Tinerge-

3. Finally we measured the value (7125 + Tierge)/T20as. The fastest method was used i.e.,
pre-sort in the PL with subsequent merge in the PC (see Subsection 6.1). The result
that was an average of 64 runs exceeds 5. Note that additional delays appeared also
in data transmission through PCl-express of smaller blocks of data items.

For subsequent merging required for larger data sets all the conditions for the proposed
and known methods are the same. Thus, the proposed methods are always faster because
merging in software begins with significantly larger pre-sorted blocks. Clearly, threshold
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values for maximum sizes of sorted sets are the same as for general-purpose software
running in a PC.

Comparison of the proposed methods for extracting the maximum and minimum sorted
subsets with the results in [53] demonstrates that the proposed method permits signifi-
cantly larger subsets to be constructed. Indeed, the maximum size of extracted subsets
in [53] is only 8 items and the maximum size of initial set is only 256 items. The size of
each item is 10 bits. This is because the methods [53] are based on even-odd merge and
bitonic merge networks for which the complexity of the circuits, i.e., the value of C(N),
is limited. In our case, the maximum size of extracted subsets is 1024 (which exceeds the
size of initial data sets in [53]) and the size of initial set is up to 1024 KB. The size of
each item is 32 bits (versus 10 in [53]). The conclusion is the following: 1) the proposed
methods enable data sets with significantly larger numbers of items to be processed; 2)
the size of the extracted (minimum, maximum, or both) subsets may be increased in the
proposed networks; 3) the performance (throughput) for processing large subsets in the
proposed methods is better because complex tasks cannot be entirely solved in hardware
using the methods [53] and the necessary software introduces large additional delays.

7. Conclusions. The paper is dedicated to distributed computing systems that involve
higher level computers (such as a PC) interacting with programmable systems-on-chip
through a PCl-express bus. We studied different levels of such systems, namely higher
level software running in the host PC, data transfer through PCl-express, lower level
software running in ARM of a programmable system-on-chip, and hardware accelerators
implemented in the programmable logic. It is shown that sorting and searching are com-
mon operations in different types of data and information processing. We found the fastest
way to implement such operations and suggested numerous supplementary operations that
are common to different computing systems. A number of hardware accelerators were pro-
posed, all of which were completely implemented and tested in commercial computers and
microelectronic devices. The practical analysis consisted of numerous experiments using
the most recent all programmable systems-on-chip combining a processing system with
configurable logic. The experiments comprehensively demonstrated that the proposed
multilevel solutions outperformed software running in a PC by a significant margin. It is
also shown that the networks proposed can be used in numerous practical applications in
control engineering and applied informatics.
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Abstract: Computing and filtering sorted subsets are frequently required in statis-
tical data manipulation and control applications. The main objective is to extract
subsets from large data sets in accordance with some criteria, for example, with the
maximum and/or the minimum values in the entire set or within the predefined con-
straints. The paper suggests a new computation method enabling the indicated above
problem to be solved in all programmable systems-on-chip from the Xilinx Zynq fam-
ily that combine a dual-core Cortex-A9 processing unit and programmable logic linked
by high-performance interfaces. The method involves highly parallel sorting networks
and run-time filtering. The computations are done in communicating software, run-
ning in the processing unit, and hardware, implemented in the programmable logic.
Practical applications of the proposed technique are also shown. The results of imple-
mentation and experiments clearly demonstrate significant speed-up of the developed
software /hardware system comparing to alternative software implementations.
Keywords: computing sorted subsets, communicating hardware/software systems,
filtering, sorting networks, control applications.

1 Introduction

Many electronic, environmental, medical, and biological control applications need to process
data streams produced by sensors and measure external parameters within given upper and
lower bounds (thresholds) [1]. Let us consider some examples. Applying the technique [2] in
real-time applications requires knowledge acquisition from controlled systems (e.g. plant). For
example, signals from sensors may be filtered and analyzed to prevent error conditions (see [2]
for additional details). To provide more exact and reliable conclusion, combination of different
values need to be extracted, ordered, and analyzed. Similar tasks appear in monitoring thermal
radiation from volcanic products [3], filtering and integration of information from a variety of
different sources in medical applications [4] and in other practical applications described in [5].
Since many control systems are real-time, performance is important and hardware accelerators
may provide significant assistance for software. A similar data processing is applicable to data
mining algorithms, such as [6].

Let us consider control systems that collect, filter and analyze data produced by some mea-
surements. We will describe below such computations that permit:

e the maximum and/or minimum sorted subsets to be extracted (the maximum/minimum
sorted subset of size Lyax/Lmin contains Liyax/Lmin data items with maximum /minimum
values from a given set);

e the maximum and/or minimum sorted subsets to be found within the given upper B, and
lower Bj bounds.

Copyright (© 2006-2016 by CCC Publications - Agora University
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Figure 1: General architecture of data processing

The problem can be solved as it is shown in Fig. 1.

There are two blocks in Fig. 1. Measured data items are handled in such a way that the
maximum and/or minimum subsets with Lpax and/or Ly, items are extracted by the data
processing block. Input data may optionally be filtered allowing only items (such as D) that fall
within pre-given constraints (e.g. B < D < By or B; < D < By) to be processed.

The paper suggests a method and high-performance implementation of architecture in Fig.
1 in all programmable systems-on-chip (APSoC) from the Xilinx Zynq-7000 family [7] that are
recently developed field-configurable devices integrating the most advanced programmable logic
(PL) and a widely used processing system (PS) based on the dual-core ARM@®) Cortex™ MP-
Core™. The available interfaces between the PS and PL are supported by ready-to-use intellectual
property (IP) cores. These, combined with numerous architectural and technological advances,
have enabled APSoCs to open a new era in the development of highly optimized computational
systems for a vast variety of practical applications, including high-performance computing, data,
signal and image processing, control, and many others. The main target of APSoCs is integration
in the developed systems of software and hardware components assuming that such integration
enables characteristics (most often performance) of the system to be improved. The complexity of
hardware only solutions is frequently limited by the available resources in the PL. Software /hard-
ware solutions can be very complex and they are appropriate for control applications, such as
that are described, for example, in [2,4]. The most close related work can be found in [5,8] where
the importance of the considered problem is underlined, but the methods that allow the problem
to be solved are different and the proposed below methods permit better results to be achieved.

The remainder of the paper is organized in eight sections. Section 2 presents the proposed
software/hardware architecture. Section 3 describes a novel method allowing the maximum and
minimum sorted subsets for a given set of data items to be computed. Section 4 suggests a
run-time filtering method. Section 5 is dedicated to on-chip communication mechanisms link-
ing software and hardware components. Section 6 shows how large subsets (for which hardware
resources are not sufficient) can be computed and discusses additional capabilities such as extract-
ing only the maximum or only the minimum subsets. Section 7 demonstrates potential practical
application (from the areas of control and data mining). Implementations in Zynq microchips
and the results of thorough evaluation and comparison of software only and software/hardware
solutions with explicit indication of the achieved acceleration are discussed in section 8. Section
9 concludes the paper.



128 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

2 Software/Hardware Architecture

Fig. 2 presents the proposed software/hardware architecture.
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Figure 2: The proposed software/hardware architecture

The PS collects data, that may be acquired from different sources (such as from a host PC
or from sensors connected to a Zynq device), and stores them in on-chip or external memory.
The PL processes requests from the PS, that is, reads data from memories, and rapidly extracts
the maximum and/or minimum subsets. Both parts, that are the PS and PL, may function in
parallel and any request can be seen as a macroinstruction executed in the PL concurrently with
other potential instructions in the PS.

It is shown in 9] that for transferring a small number of data items between the PS and the PL
on-chip general-purpose ports (GPP) can be used more efficiently than other available interfaces.
Thus, requests from the PS to the PL are formed through GPP where the PS is the master and
the PL is a slave. It is also shown in [7,9] that large volumes of data can be more efficiently
transferred from/to memories to/from the PL through high performance (HP) interfaces: High-
Performance Advanced eXtensible Interface (AXI HP) and AXI Accelerator Coherency Port
(AXI ACP). In all our designs memories are slaves and either the PL or the processor in the PS
is the master. To increase performance, data from memories may be requested to be cacheable.

3 Computing Sorted Subsets

Let set S containing N M-bit data items be given. The maximum subset contains Ly, largest
items in S and the minimum subset contains Ly, smallest items in S (Liyax < N and Ly, < N).
We mainly consider such tasks for which L.y < < N and Ly, < < N which are more common
for practical applications. Since N may have very large value (millions of items) it cannot be
processed completely in hardware due to the unavailability of sufficient resources. It is shown

in [10,11] that even for relatively complex Field-Programmable Gate Arrays (FPGAs) the size
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N is limited. For example, for even-odd merge and bitonic merge networks [12] N cannot exceed
a few hundreds of 32-bit items even for very advanced FPGAs (such as the largest devices from
the Xilinx Virtex-7 family). In Zynq devices implementing circuits from [12| the maximum value
of N does not exceed 128 32-bit items. Iterative even-odd transition networks from [11] permit
significantly larger number of items (exceeding thousands of 32-bit items) to be processed and
they will be used for computing sorted subsets in hardware. However, in practical cases the
given sets anyhow cannot be entirely processed and computing the maximum and/or minimum
sorted subsets needs to be done sequentially, nevertheless handling many items in parallel. Fig.
3 depicts the proposed architecture that enables the considered problem to be solved.

L.x M-bit data items (from K M-bit data items) for initialization at the beginning
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for maximum subset M,
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Lmin M-bit data items {" Minimum
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Lmin M-bit data items (from K M-bit data items) for initialization at the beginning

Figure 3: Computing the maximum and the minimum sorted subsets
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Figure 4: Processing the last (possibly incomplete) subset

Let us divide the given set S into Q = [N/K] subsets, all of which contain exactly K M-bit
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items except the last one, which may have less than K M-bit items. Computing subsets is done
incrementally in Q steps (we assume below that K < N).

At the first step, the first K M-bit data items are sorted in the network [11] which processes
Liax I K+ Lpyin data items but comparators linking the upper part (handling Ly.x M-bit data
items) and the lower part (handling Ly, M-bit data items) are deactivated (i.e. the links with
the upper and bottom parts are broken). So, sorting is done only in the middle part handling K
M-bit items. As soon as the sorting is completed, the maximum subset is copied to the upper
part of the network and the minimum subset is copied to the lower part of the network (see Fig.
3).

From the second step, all the comparators are properly linked, i.e. the network from [11]
handles Lyax+K+Lpyin items, but the feedback copying (see the first step and Fig. 3) is disabled.
Now for each new K M-bit items the maximum and the minimum sorted subsets are appropriately
corrected, i.e. new items may be appended.

At the last step, the number of incoming items may be less than K. Fig. 4 explains how the
maximum and minimum subsets are corrected for the last possibly incomplete subset of items.
There is an additional MUX in Fig. 4, which supplies data items from a HP port (linking the
PL with memory) until the received item is not the last. As soon as the last item is read from
memory, the next items (until K) are taken as the maximum value from the minimum subset
(see the lower subset in Fig. 3). Clearly, such an item cannot be moved again to the minimum
subset and the last sorting step is executed similarly to the previous steps.

Let us look at the example shown in Fig. 5 for which: N = 21, K = 8, Liyjax = Lmin =
4, and S = 26,37,11,19,3,7,99,56,29,37,22,00.1,55,30,47,12,45,83,5,18. The set S is divided into
the following three subsets: A = 26,37,11,19,3,7,99,56, B = 29,37,22,99.1,55,39,47, and C =
12,45,83,5,18.

Note that the last subset C contains only 5 elements and is incomplete. Symbol U in Fig.
5 indicates undefined value. The iterative sorting network is exactly the same as in [11]. Any
comparator is shown in Knuth notation [13] and it converts two-item inputs in two-item outputs
in such a way that the upper value is greater than or equal to the lower value. The maximum
number of iterations for sorting is K/2 [14] and this number is almost always smaller because
the method [11] terminates subsequent iterations as soon as all items are sorted. There are 3
steps in Fig. 5. At the first step, K (K=8) items are sorted and copied to the maximum and
minimum subsets.

Two comparators are disabled in accordance with the explanations given above (breaking
links of the middle section in the sorted network with the upper and the lower sections). At the
second step, all the network comparators are enabled and Lyax+K+ L, items are sorted by the
iterative network with feedback register (FR). All necessary details can be found in [11]. It is easy
to show that the maximum number of iterations is [(max(Lmax,Lmin)+K)/2] and much like the
previous case this number is almost always smaller [11]. At the last (third) step, the incomplete
subset C is extended to K items by copying the maximum value (11) from the minimum subset
11,7,3,1 to the positions of missing data (see Fig. 5). After sorting Liax+K-+Lmin items at the
step 3 the final result is produced.
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Figure 5: An example (computing subsets)

4 Filtering

Let B, and B; be predefined upper (B,) and lower (B}) bounds for the given set S. We would
like to use the circuit in Fig. 3 only for such data items D that fall within the bounds B, and
By, i.e. By < D < B, (or, possibly, B; < D < B,). Fig. 6 depicts the proposed architecture that
enables data items to be filtered at run-time (i.e. during the data exchange between the PS and
PL). There is an additional block on the upper input of the MUX (see also Fig. 4), which takes
a data item Iy from a HP port and executes the operation indicated on the right-hand part of
Fig. 6. If the counter is incremented, then a new register is chosen to store Ix. Otherwise, the
signal WE (write enable) is passive and a new item with a value that is out of the bounds By
and Bj is not recorded in the registers.
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Figure 6: Digital filter
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Let us look at the same example in Fig. 5 for which we choose By = 90 and B; = 10 (see
Fig. 7). At the first step incoming data items have preliminary been filtered, the values 99, 7,
and 3 have been removed (because they are either greater than B, = 90 or less than B; = 10),
and the subset A with 8 items is built from 11 first elements of the set S. At the second (last)
step, the values 99, 1, and 5 have been removed, and the subset B = 55,39,47,12,45,83,18 is built
from the remaining allowed elements of the set S. Since there are 7 items in B and K = 8, this
subset is incomplete.

As can be seen from Fig. 7, two steps are sufficient to extract the maximum and the minimum
subsets from the filtered set S. Similarly, filtering and computing sorted subsets can be done for
very large data sets.
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Figure 7: An example (filtering and computing subsets)

Clearly, the described above operations can be done in software. For example, C function gsort
permits large data sets to be sorted. After that extracting the maximum and minimum subsets
may easily be done. Filtering can be provided much like it is shown in Fig. 6 eliminating items
that do not fall within the predefined constraints. However, for many practical applications
performance of the described above operations is important. To evaluate software/hardware
solutions three different components need to be taken into account (see Fig. 8): 1) software
part; 2) hardware part; and 3) the circuits that provide for data exchange between software and
hardware. Numerous experiments were done in |15 to compare such solutions with software only
systems. One example in [15] enables sorting blocks of data composed of 320 32-bit items in the
PL that are further merged in the PS (see Fig. 8). From 512,288 to 4,194,304 of 32-bit data items
were randomly generated in the PS (i.e. the size of data varies from 2MB to 16MB) and then
sorted in software with the aid of the function gsort and in the software/hardware system (see
Fig. 8). The actual performance improvement was by a factor of about 2.5. It was shown in [15]
that hardware circuits in the PL are significantly faster than software in the PS. In this paper we
evaluate and compare software/hardware and software only solutions taking into account all the
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involved communication overheads that were measured in [15]. We will mainly use AXI ACP [7]
which provides one of the fastest interfaces for exchange of large data sets between the PS and
PL [7,9,15]. The number of data items transferred from the PS/memory to the PL is the same
as in [15]. However, the number of data items transferred from the PL to the PS/memory is
significantly smaller enabling much better acceleration to be achieved.

/[ Merging blocks ]

Transferring blocks
between software
and hardware

I~
\[ Sorting blocks ]

Figure 8: An example of a software/hardware system
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5 Communication of Software and Hardware

Fig. 9 shows how communication is organized between software and hardware. It is done
similarly to [8,15], but the proposed in this paper processing is different. The developed hardware
in the PL is divided in two parts: application-specific (that is filtering and computing subsets)
and communication-specific processing. The latter is studied in [15] and provides support for
data exchange with storage of the PL that is either block RAM or registers built from flip-flops
of configurable logic blocks.
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Figure 9: Communication between software and hardware components
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Data are transmitted in blocks of 32/64-bit items (i.e. either M=32 or M=64) and the fastest
burst mode is applied. Input data items Iy (k=0,1,... K-1) are processed by the described above
circuits (see Fig. 3, 4, 6). Note that GPP do not allow burst mode to be applied but are very
appropriate for transferring small number of signals that may be used for control in the PL and
for some additional details. In our system they are:

1) start requiring data processing in the PL to be initiated;

2) K (see Fig. 3);

3) By and By (see Fig. 6);

4) additional signals, namely source address, destination address and sizes of data to be
transferred from the PS to the PL and vice versa.

Fig. 10 demonstrates a component diagram for reading the initial large volume data from
the PS and for transferring the results (i.e. the computed maximum and minimum subsets) from
the PL to the PS. We found that in such interactions between the PS and PL the best way is
to use HP ports to read data from the PS (memories) and transfer them to the PL and to write
data from the PL to the PS (memories). Since memory controllers belong to the PS we can talk
about data transfers between the PS and PL. Exchange of data in both directions is done in
burst mode supported by a burst reader and a burst writer described in [8,15]. Both processing
(Ty) and communication (T¢) times are measured and taken into account.
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Figure 10: Operations in hardware components

6 Computing Large Subsets and Additional Capabilities

For some practical applications the maximum and/or minimum subsets may be large and the
available hardware resources become insufficient to implement the circuits in Fig. 3.
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The arising problem can be solved using the following technique. Let lyax and lyy be
constraints for the upper and bottom parts of the sorting network in Fig. 3, i.e. circuits with
larger values (than lyax and lyin) cannot be implemented due to the lack of hardware resources
or for some other reasons. Let the parameters for the maximum and minimum subsets be greater
than lax and L, 1.6, Liax > lmax and Ly, > o, In such case the maximum and minimum
subsets can be computed incrementally [8] as follows:

1. At the first iteration the maximum subset containing ly,,x items and the minimum subset
containing lyi, items are computed. The subsets are transferred to the PS (to memories).
The PS removes the minimum value from the maximum subset and the maximum value
from the minimum subset. Such correction avoids loss of repeated items at subsequent
steps. Indeed, the minimum value from the maximum subset (the maximum value from
the minimum subset) can appear for subsets to be subsequently constructed in point 3
below and they will be lost because of filtering (see point 3).

2. The minimum value from the corrected in the PS maximum subset is assigned to B,. The
maximum value from the corrected in the PS minimum subset is assigned to Bj. The values
By and By are supplied to the PL through GPP.

3. The same data items (from memory), as in point 1 above, are preliminary filtered (see Fig.
6) in such a way that only items that are less than B,, and greater than B; are allowed to be
processed, i.e. computing sorted subsets can be done only for the filtered data items. Thus,
the second part of the maximum and minimum subsets will be computed and appended
(in the PS) to the previously computed subsets (such as subsets from point 1). Note, that
the method for processing incomplete subsets (see Fig. 4) may need to be applied for the
last iteration.

4. The points 2 and 3 above are repeated until the maximum subset with Ly ax items and the
minimum subset with Ly, items are computed.

Note, that if the number of repeated items is greater than or equal t0 Lnax /lmin, then the method
above may generate infinite loops [8]. This situation can easily be recognized. Indeed, if after
corrections in point 1 above any new subset becomes empty then an infinite loop will be created.
In such case we can use another method based on software/hardware sorters from [9]. In section
8 we will present the results of experiments for such sorters.

For some practical cases only the maximum or the minimum subsets need to be extracted.
This task can be solved easier than in Fig. 3 with the aid of the circuit shown in Fig. 11 (for
computing only the maximum subset).

M
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S + g i

© 'S 3 .
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Figure 11: Computing the maximum subset for a given set

At initialization stage Liax M-bit words of the FR (see Fig. 5) are filled in with the smallest
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possible value (such as zero or the minimal value for M-bit data items). After that the processing
is executed as before (see section 3) and finally the maximum subset will be computed. For
computing the minimum subsets the bottom part of Fig. 3 is filled in with the largest possible
value (such as the maximum value for M-bit data items).

7 Practical Applications

Let us consider practical applications from the scope of control. We have already mentioned
in section 1 that applying the technique [2] in real-time systems requires knowledge acquisition
from controlled devices. The data may be compared with the previously collected data that are
kept in databases for similar control scenarios. The results of comparison can be analyzed and
used to modify the algorithms allowing control operations to be optimized, undesirable (or error
prone) situations to be avoided, etc. Let us look at Fig. 12 where software collects important
data from a controlled system, such as changes in temperature, deviation of positions, offsets,
etc. The collected data are optionally filtered and their subsets (maximum, minimum, or both)
are computed (see the bottom part of Fig. 12). Data from previous scenarios for analogous
conditions are extracted from the database and they are also optionally filtered and similar
subsets are computed (see the upper part of Fig. 12).

: .| Select a set of .| Optional .| Computing
i\ Data base ) | parameters "| filtering "| subsets |
b SOFtWAre--wooomomed L hardware .---- & S i
ir Controll \‘ Modifications of |, Analysis and
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Figure 12: An example of control application

Data from the controlled system (see the bottom part of Fig. 12) and from the database (see
the upper part of Fig. 12) are analyzed. For example, average maximum values are checked.
The results of analysis may be used to modify control algorithms much like it is done in [9, 16].
For example, modules of controllers from [9] can be replaced to optimize execution of relevant
operations.

Another group of potential applications is from the scope of statistical data manipulation
such as data mining. To describe one of the problems from this area informally let us consider
an example [6] with analogy to a shopping card. A basket is the set of items purchased at one
time. A frequent item is an item that often occurs in a database. A frequent set of items often
occur together in the same basket. A researcher can request a particular support value and find
the items which occur together in a basket either a maximum or a minimum number of times
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within the database |6]. Similar problems appear to determine frequent inquiries at the Internet,
customer transactions, credit card purchases, etc. producing very large volumes of data in the
span of a day [6]. Computing sets of the most frequent or the less frequent items in large data
sets permits the relevant data mining algorithms to be simplified and accelerated. Sorting of
subsets is involved in many known algorithms from this area e.g. [17-19] and the results of the
paper may provide a valuable assistance.

8 Implementation, Experiments, and Comparisons

Much like [8] we have used a multi-level computing system [9]. Initial data are either generated
randomly in software of the PS with the aid of C language rand or prepared in the host PC.
In the last case data may be generated by some functions or copied from available benchmarks.
Computing subsets in software /hardware systems is mainly done in Zynq APSoC xc72z020 housed
on ZedBoard [20] with the aid of the described above software/hardware architectures (see Fig.
2-4, 6,9, 10). Computing subsets in software only sorters is completely done in software of the
PS calling C language gsort function which sorts data and after that the maximum and/or the
minimum subsets are extracted. The results are verified in software running either in the PS or
in the host PC. Functions for verification of the results are given in [9]. Verification time is not
taken into account in the measurements below.

Synthesis and implementation of hardware modules were done in Xilinx Vivado 2015.2. Stan-
dalone software applications were created in C language and uploaded to the PS memory from
the Xilinx Software Development Kit (SDK) using methods described in [9]. Interactions with
APSoC are done through the SDK console window.

For all the experiments 64-bit AXI ACP port was used for transferring blocks between the
PL and memories. The size of each block for burst mode is chosen to be 128 of 64-bit items.
Two memories were tested: the OCM (for smaller number of data items) and external (on-
board) DDR. The OCM is faster because it provides for 64-bit data transfers [7] but the size of
this memory is limited to 256 KB. The available on ZedBoard 4 Gb DDR supports 32-bit data
transfers.

The measurements were based on time units (returned by the function XTime GetTime [21])
for Lipax = Lmin = 128, M=32, and K = 256 (see Fig. 3). The following operations have
been executed: a) copying data to the selected memory in the PS; b) providing the necessary
initialization for the function XTime _GetTime (i.e. the consumed time will be measured from this
point); ¢) making the request, i.e. setting (through GPP) source address, destination address,
the size of data to be copied, and start processing in the PL (optionally some other data, such
as B, and B for filtering, may be provided); d) copying data from the PS to PL and executing
all the required operations in the PL; e) copying the computed subsets from the PL to PS; f)
generating a hardware interrupt that is handled in the PS as a completion of the request (thus,
the consumed time is measured at this point in the PS). Each unit returned by the function
XTime_GetTime corresponds to 2 clock cycles of the PS [21]. The PS clock frequency is 666
MHz. Thus, any unit corresponds to approximately 3 ns. The PL clock frequency was set to 100
MHz.

Fig. 13 shows the time consumed for computing the maximum and minimum subsets for
data sets with different sizes in KB (from 2 to 128). Since M=32 the number of processed words
(N) is equal to the indicated size divided by 4.

Fig. 14 shows the acceleration of the software/hardware system comparing to the software
only system. Note that Fig. 13, 14 give diagrams for the OCM. If DDR memory is used then
communication overheads are slightly increased but acceleration in the software/hardware system
comparing to the software only system is again significant.
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Let us compare the results with [5,8]. The number of data items in the proposed solutions
is larger than in [5] and can easily be additionally increased. For similar data sets the achieved
acceleration is better than in [8] thanks to additional optimization of the proposed circuits.

We also implemented and tested the proposed circuits in a more advanced prototyping board
ZC706 [22] with Zynq microchip xc7z045. Data were taken from DDR memory and the maximum
and minimum subsets were extracted with K data items where K varied from 256 to 1,024 (as
before M = 32, N is equal to 256 KB). The consumed time varies from 1,850 ps for Ly, =
Limax = 256 to 7,200 us for Ly = Linax = 1,024. Thus, the proposed solutions can be used for
solving significantly more complicated problems that cannot be solved, in particular, with the
aid of the methods [5]. If only the maximum or only the minimum subsets have to be computed
the acceleration is slightly increased (although it is almost the same) and the occupied hardware
resources are reduced.

The proposed filtering (see Fig. 6) does not consume any additional time because it is
combined with data transfers. So, we can say that the time is included in communication
overheads and the latter were taken into account in all measurements. It should be noted that
filtering is not described in [5,8].

Time in ps
100 000

10 000

1000

——Software/hardware

-=-Software only
100

10

16 32 64 128 Size of data in KB

N
SN
(o]

Figure 13: Computing time in software only and software/hardware systems

If the size of the requested subsets is increased in such a way that all data need to be read from
memory several times then the results are the same as in [8] (see comments in [8] for additional
details).

We found that parallel circuits that enable the maximum and minimum subsets to be ex-
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Figure 14: Acceleration of software/hardware system comparing to software only system

tracted in the ZedBoard [20] can be built up to K — 256. In this case additional hardware
resources that enable data exchange between the PS (memories) and PL are available. Similar
circuits for the ZC706 can be built up to K = 1,024. Note that if a block of data needs to
be sorted in hardware then the number of processed data may be greater because in our case
two blocks (each of which possesses K items) have to be handled in parallel and in case of data
sorting [9] it is sufficient to handle just one block of data. Additional optimizations such as
partial merging in hardware circuits permit the size K to be additionally increased. However,
the processing time will also be increased.

9 Conclusion

The paper suggests methods for computing the maximum and minimum subsets that are
extracted from large data sets in communicating software/hardware systems, namely in devices
from the Xilinx Zynq family, which combine a high-performance processing system with advanced
programmable logic. The extracted subsets may be filtered and this feature is useful for control
applications. The proposed solutions are highly parallel permitting capabilities of programmable
logic to be used very efficiently. All the proposed methods were implemented in commercial
microchips, tested, evaluated, and compared with alternatives. The results of experiments have
shown significant speed-up of the proposed software/hardware systems comparing to software
only systems and to competitive hardware/software implementations. In particular, the size of
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subsets was increased and additional tasks important for control applications were discussed and
solved. Practical applications of the proposed technique for control applications and statistical
data manipulation were also given.
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Abstract - Data sorting and frequent item computation are
important tasks in data processing. The paper suggests an
architecture for parallel data sorting with simultaneous
counting of every item frequency. The architecture is
designed for streaming data and incorporates data sorting
in hardware, merging of preliminary sorted blocks with
compressing of repeated items with -calculating of
repetitions in hardware, and merging large subsets received
from the hardware in general-purpose software. Hardware
merge components of this architecture count and compress
repeated items in sorted subsets in order to reduce merging
time and prepare the data for frequent item computation.
The results of experiments clearly demonstrate advantages
of the proposed architectures.

Keywords—High-performance  computing  systems,
Information processing; Sorting networks; Parallel sorting;
Partial sorting; reconfigurable computing.

1. INTRODUCTION

Sorting is a procedure that is needed in numerous
computing systems. Parallel algorithms for data sorting
have been studied in computer science for decades. There
are many different parallel sorting algorithms. The most
notable of them are Parallel QuickSort, Parallel Radix
Sort, Sample Sort, Histogram Sort [1] and a family of
algorithmic methods known as sorting networks [2]. To
better satisfy performance requirements, fast hardware
accelerators have been researched in depth. The sorting
networks presents a great interest for hardware
acceleration because of their massive parallelism. A
sorting network is a set of vertical lines composed of
comparators that can swap data to change their positions
in the input multi-item vector. The data propagate through
the lines from left to right to produce the sorted multi-item
vector on the outputs of the rightmost vertical line. Sorting
is a very resource expensive and time consuming
operation. There are different approaches to overcome the
resource limitation. Ultilizing iterative networks with
reusable comparators permits to process significantly
larger data sets, but still to some extent. The combination
of iterative network-based sorters with subsequent
merging permits to process larger data sets than the
sorting network allows. The merge operation can be
implemented completely in software or partially in
hardware for relatively small sorted data subsets. The
merging can be implemented as tree-like structure of
merge units. This approach allows us to reduce sorting
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time even further by detecting the repeated elements with
subsequent recording of how many times the data was
repeated and deleting the repeated entries in the sorted list.
This approach allows us to reduce sorting time for data
sets with repeated elements and prepare the data for
frequent item computation.

Data sorting and frequent item computation is required
in searching, statistical data manipulation and data mining
(e.g. [3, 4]). To describe one of the problems from data
mining informally let us consider an example [3] with
analogy to a shopping card. A basket is the set of items
purchased at one time. A frequent item is an item that
often occurs in a database. A frequent set of items often
occur together in the same basket. A researcher can
request a particular support value and find the items which
occur together in a basket either a maximum or a
minimum number of times within the database [3]. Similar
problems appear to determine frequent inquiries at the
Internet, customer transactions, credit card purchases, etc.
requiring processing very large volumes of data in the
span of a day [3]. Fast extracting the most frequent or the
less frequent items from large sets permits data mining
algorithms to be simplified and accelerated.

The paper suggests a method and high-performance
hardware implementation of data sorting algorithm based
on parallel sorting network with subsequent merge. The
functionality of the merge units is expanded by adding the
operation of compressing the data by counting of the
repeated data. The system is designed for working over
streaming data. It utilizes Advanced eXtensible Interface
(AX]) interfaces and is suggested as a PCI express (PCle)
peripheral.

The remainder of the paper contains 6 sections.
Section II analyzes the related work. Section III describes
highly parallel networks for sorting and explores hardware
co-design. Section IV presents proposed system for data
merge and item counting. Section V describes
experimental setup and hardware accelerator architecture.
Section VI presents the results of experiments and
comparisons. The conclusion is given in Section VII.

II.  RELATED WORK

Different approaches of hardware sorting units were
studied by Marcelino et al. in [5]. They implemented a
hardware/software hybrid sorter with a sorting unit based
on insertion sorting algorithm and unbalanced merging
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unit. They also utilized Bathcer’s Even-Odd sorting
network for software implementation and experimented
with different combinations of software (QuickSort, Even-
Odd network) and hardware (Insertion sorting, unbalanced
merge). They also discussed possibilities of using
pipelined sorting networks and balanced merging units.
Chen and Prasanna in [6] proposed a hardware/software
hybrid solution for accelerating database operations using
Field-Programmable Gate Array (FPGA) and Central
Processing Unit (CPU). Their sorting algorithm is based
on merge-sort algorithm where first few sorting stages are
implemented in FPGA as folded bitonic sorting networks.
The rest of the algorithm is implemented in CPU.

Hardware acceleration of frequent item computation
was explored by Teubner et al. in [7]. They suggested to
use FPGAs and proposed three different methods. The
first method is a straightfoward implementation of Space-
Saving algorithm with min-heap data structure in Block
Random-Access Memory (BRAM) for data storage. For
the second method instead of BRAMs with min-heap
structure they used two search trees implemented in
lookup tables in order to get rid of min-heap sorting. The
pipelined circuit of their third solution choses the best
results in terms of performance and scalability. They
achieved throughput four times higher than the best
published result.

In our previous works we also explored different
approaches of hardware/software systems for high-
performance data processing and sorting [8-12]. In [9] we
proposed a sorting-network-based hardware sorters with
subsequent merge in software as well as different
approaches of partial sorting for minimal and maximal
subsets extraction which is used in frequent item
computation. The latter problem also was explored in [10,
11]. In [12] we proposed a multi-level architecture for
minimal/maximal subset extraction which utilizes a
general purpose processor of a host PC and the
programmable logic and processing system of Zynq
device.

III. PIPELINED ITERATIVE PERIODIC SORTING NETWORK

As a basis for our sorting circuit we use a periodic
pipelined Odd-Even Transition Sorting Network (also
known as Odd-Even Transposition Sorting Network or
OETS). A periodic network is a type of network which

Sorting network
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Fig. 1. The circuit for sorting data blocks
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consists of identical sequences of comparators. Traditional
implementation of OETS is less efficient than Batcher’s
networks, but it is more reliable and its implementation is
simpler. Salloum and Wang proved that OETS has good
fault-tolerant properties [13].

Like in our previous works, we use pipelined approach
with reusable comparators presented in [14]. K M-bit data
items that have to be sorted are loaded (from block RAM)
to the feedback register. Sorting is executed in a segment
of even-odd transition network composed of two linked
lines with even and odd comparators. Sorting is completed
in K/2 iterations (clock cycles) at most. Note, that almost
always the number of iterations is less than K/2 because of
the technique [14] according to which if there are no
swaps of data on the right-most line of comparators then
sorting is completed. Note that the network [14] possesses
significantly smaller combinational delays than networks
from [2]. Besides, in the proposed architecture iterations
are done at the same time as subsequent data are being
received from the inputs. Such parallelism enables delays
to be optimally adjusted allowing the total performance to
be improved.

The sorter used in the proposed architecture is
depicted in Fig. 1. It is based on the iterative sorting
network described above and designed as an AXI bus
peripheral to receive data from PCI express bus. The AXI
slave control unit writes the data to the input register and
initiates the sorting operation when the register is full. At
the same time it starts writing the next data subset to the
input register while the sorting network performs data
sorting. After the completion of the sorting the system
moves the data to the output register and the merging
system copies it into its embedded RAM blocks. All three
operations (receiving the data, sorting, copying from the
output register) work in parallel in order to achieve
maximal possible performance.

IV. PIPELINED MERGING AND ITEM COUNTING

The merging part of the circuit is based on embedded
block-RAM. Xilinx Virtex 7 FPGA provide RAM blocks
with 36kbit of memory [15], where the data word size can
be adjusted for the needs of the system. Every word in
RAM blocks of our system contain a pair of data item and
its count. The sizes of both the item and the count are also
adjustable and should be chosen considering the nature of
the input data.
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Fig. 2. depicts the elements of the merging system and  block is not equal to both of them, then the merger writes
interactions between them. The “merge and count” block  the item/count pair with larger item value to the output
of level L receives the input data from two embedded = RAM block and increments both write address counter
block-RAMs of the previous level(L-1). The circuit and read address counter for the input with the largest
compares all the items in two sorted subsets of N data  value. Otherwise, the merger does not increment the write
items and merges them into one sorted subset. The  address of the block and writes the new count number to
maximal size of the final data set is 2xN items. This worst ~ the count part of the item/count pair. The new count
case scenario can occur if no repeated items were found in =~ number is the sum of the count parts of the previously
both input subsets. Every merging element of the system  written data item and the count of one of the inputs, which
contain two address counters for selecting the data from  has an item part equal to the previously written one.
block RAMs of the previous level and one counter for  During the first level of merging every pair have ‘1’ as its
writing the merged and counted data to the output RAM  count value. All zeros in the count part mean that the total
block. number of repetitions exceeded the capabilities of the

Although the maximal number of clock cycles for RAM block.

merging N-item blocks is 2xN, our system with The RAM blocks of every item of the merging system
compression and item counting require less clock cycles  are capable of storing all data from the inputs, but if the
for the data sets with repeated items. Every subsequent  sorted set supplied to the merger contains repeated items,
level of merging require less clock cycles than the  the system does not fill the RAM blocks completely. The
previous one, because the compression and counting was ~ merger reads the value from the write address register of
partially done in the previous level. the mergers from the previous level. It informs the merger
about how many item pairs were actually written during

Merge fragment from Fig. 2. is depicted on Fig. 3(a). the previous merge operation.

The compression and the counting of the items is done in
“compare and add” block shown in Fig. 3(b). The system The proposed architecture is designed to be
stores the data item which was written after the previous  constructed with any number of merging/counting layers
comparison and compares it with both inputs. If the item  and the size of the initial sorter, but the final
part of the item/count pair previously written to the RAM  implementation always depends on the target device.
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Fig. 4. Merging system
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Fig. 4. depicts the merging system implemented for
Virtex-7 FPGA device with 8 level of merging/counting.
It has one initial level of RAM blocks which contain data
subsets sorted with the sorting network described in
section III. The sorter in this implementation receives 32-
bit items grouped by 4 and writes sorted subsets of 512
elements into the initial level of RAM blocks. The writing
to the first RAM blocks of the merging system is also
implemented in groups of 4 items in order to keep up with
the bus speed. The merging operation is not performed
during this step.

The first element of the first level of the merge
operation activates when the first two sorted subsets
become available on the initial BRAM level. Every
merging and counting element of every level starts its
operation immediately when two mergers/counters
connected to it from the previous level finish merging and
counting.

Although the number of merging/counting levels and
therefore the size of the final data set is limited by the
resource availability of the target device, the architecture
was designed to process streaming any volumes of data.
The merging levels can be disabled if not all of them are
required for the data processing. It can be done by
supplying item count value (see Fig. 4). The final level is
responsible for the preparation of the data from the last
enabled level for the bus transaction and merges the
subsets from the previous level if all levels are enabled.
The merging/counting system also can merge several data
sets in a pipeline for subsequent processing in GPC. When
the merge level finishes its operations, the previous level
becomes available to process new item pairs since the next
level has acquired all necessary data.

V. HARDWARE ARCHITECTURE AND EXPERIMENTAL SETUP

The system was designed as a hardware accelerator for
a host PC which communicates through PCI-express
interface in Direct Memory Access (DMA) mode. Fig. 5.
depicts this architecture.

Software in the host PC runs the 32-bit Linux
operating system (kernel 3.16) and executes programs
(written in C language) that take results from PCI-express
(from the FPGA) for further processing. We assume that
the data collected in the FPGA are preprocessed in the
programmable logic by applying various highly parallel
networks (see Section III), and the results are transferred

to the host PC through the PCl-express bus. To support
data exchange through PCl-express, a dedicated driver
was developed. The programmable logic uses the
Intellectual Property (IP) core of the central direct
memory access (Xilinxk CDMA) [16] module to copy data
through AXI PCI express bridge (Xilinx AXI-PCIE) [17].
Data transfer in the host PC is organized through direct
memory access (DMA). To work with different devices, a
driver (kernel module) was developed. The driver creates
in the directory /dev a character device file that can be
accessed through read and write functions, for example
write(file, data array, data size). The PC BIOS assigns a
number (an address) to the selected base address register
(BAR) and a corresponding interrupt number that will be
later used to indicate the completion of a data transfer. As
soon as the driver is loaded, a special operation (probe) is
activated and the availability of the device with the given
identification number (ID) is verified (the ID is chosen
during the customization of the AXI-PCIE). Then a
sequence of additional steps is performed (see [18 pp.
302-326] for necessary details). A number of file
operations are executed in addition to the probe function.
In our particular case, access to the file is done through
read/write operations.

VI. EXPERIMENTAL RESULTS AND COMPARISON

The system for data transfers between a host PC and
an FPGA has been designed, implemented, and tested.
Experiments were done in the VC707 prototyping board
[19] that contains Virtex-7 XC7VX485T FPGA from the
Xilinx 7th series with PCI express endpoint connectivity
"Genl 8-lane (x8)". All circuits were synthesized from the
specification in VHDL and implemented in the Xilinx
Vivado 2016.2 design suite. Software programs in the host
PC run under Linux operating system and they were
developed in C language. Data were transferred from the
host PC to the VC707 and back through PCI express. The
host PC is based on Intel core i7 3820 3.60 GHz.

For the experiments two sorting and merging systems
were built. The first system is capable of sorting 32-bit
data items and does not perform sorting compression and
data counting. The second system is based on the first
system, but includes compressing and merging
functionality. The second system is adjustable for different
data item sizes. Both systems are capable of sorting 2'¢ of
32-bit data items (256KB) maximum and require identical
number of RAM blocks.

Iﬂ, Introut
2 Sorting,
§ AXI  [saxicr e AXI ’ COMA | merging and
u PCIE [sax_fe interconnect counting
U S
o M_AXI >

Fig. 5. Basic hardware architecture.
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We conducted the experiments for sorting and
merging without any item counting only for of 2'¢ 32-bit,
since the merge operation is the most time consuming part
of the system and it depends only on the number of the
inputs and not the size of the item. Merging with item
counting was performed for 2'¢ of 32-, 16- and 8-bit items.
The 36-bit size of the word for 32-bit items in the BRAM
was chosen. It means that the item count part of the word
is 4-bit and capable of counting up to 15 repetitions,
which is enough for experiments with randomly generated
data. The system was configured to work with 32-bit
words with 16-bit size of both the item and the count parts
for counting and merging of 16- and 8-bit data.

The experiments were conducted with randomly
generated numbers. The merging with counting 32-bit
items didn’t show any noticeable speedup over simple
merging, since 2'° of randomly generated numbers do not
have significant number of repetitions. The merging with
counting of the same number of 16-bit data items is 1,45
times faster than the simple merge and merge of 8-bit
items is 27,28 times faster.

We experimented with different volumes of 8-, 16-
and 32-bit data items and compared them with software
sorting. The host PC was used for merging the data sets
larger than volume of data that can be processed with the
FPGA. In addition to data sorting and merging, PCI
express throughput and operating system overhead were
also taken into account.

Fig. 6. shows the experimental results of sorting
different volumes of randomly generated 32-bit data items
in the proposed system compared to the software sorting
implemented with C language gsort function. The
results clearly demonstrate that the proposed solution is
faster. Our experiments did not show any noticeable
difference in sorting sets with different size of data items
in software with gsort and therefore the results only for
32-bit data items are presented.

Fig. 7. depicts comparison of sorting data sets in the
proposed system with 8-, 16-, and 32-bit item sizes.

The experiments show that the sorting throughput for
the proposed systems is significantly better than in the
host PC. Also it is clearly seen that merge operation with
compression of repeated items is faster for data sets with
high item repetition. Also the proposed system performs
not only data sorting, but provides the number of
repetitions of every data item in the set along with
completely sorted data. This information can be used for
extracting the most frequently encountered items and
other subsequent data processing. The subset extraction of
the most frequent numbers can be done in hardware by
inserting after the last level of merging partial sorters for
subset extraction presented in [10].

VII. CONLUSION

The paper suggests hardware-based methods of data
sorting with simultaneous counting the repetition of all
data items. The merging system performs counting and
compression of the sorted subsets, which speeds up

188

120
—e—Sorting time in the ;&
a0 proposed system /
—e—Sorting time in the /
» 80 /
= host PC /
-5 60 2
= a0 /
‘,:3-
20 ﬂf’y
.. < /
0P e

211 2_2 2_3 2'_4 2'_5 2_6 2'_7 218
Number of items

Fig. 6. Experimental results of sorting 32-bit data items in
the proposed system and in the host PC.

14

—e— 16-bit

——32-bit
12 8-bit

10

Time in ms

2;; 2;2 2,3 2,4 2;5 2;6 2,? 2;8
Number of items
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sorting of data sets with large number of repeated items
and provides the number of repetitions for all items along
with completely sorted data set. The proposed solutions
are  highly parallel permitting capabilities of
programmable logic to be used very efficiently. All the
proposed methods were implemented in commercial
microchips, tested, evaluated, and compared. The results
of experiments have shown significant advantages of the
proposed architecture.
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Abstract. The paper suggests and describes two architectures for parallel data sort. The first architecture is applicable to large data
sets and it combines three stages of data processing: data sorting in hardware (in a Field-Programmable Gate Arrays — FPGA), merging
preliminary sorted blocks in hardware (in the FPGA), and merging large subsets received from the FPGA in general-purpose software.
Data exchange between the FPGA and a general-purpose computer is organized through a fast Peripheral Component Interconnect (PCI)
express bus. The second architecture is applicable to small data sets and it enables sorting to be done at the time of data acquisition, i.e. as
soon as the last data item is received, the sorted items can be transferred immediately. The results of experiments clearly demonstrate the
advantages of the proposed architectures that permit the reduction of the required hardware resources and increasing throughput compared
to the results reported in publications and software functions targeted to data sorting.

Key words: parallel data processing, merging, iterative networks, communication-time processing, Field-Programmable Gate Array
(FPGA), Peripheral Component Interconnect (PCI) express bus.

1. INTRODUCTION

Sorting is a procedure that is needed in numerous computing systems [1,2]. For many practical applications,
sorting throughput is very important. To better satisfy performance requirements, fast accelerators based on
Field-Programmable Gate Arrays (FPGAs) (e.g. [3-11]), Central Processing Units (CPUs) (e.g. [7,12-16]),
and multi-core CPUs (e.g. [17,18]) have been researched in depth. Two of the most frequently explored parallel
sorters are based on sorting [1-3,19] and linear [4] networks. A sorting network is a set of vertical lines composed
of comparators that can swap data to change their positions in the input multi-item vector. The data propagate
through the lines from left to right to produce the sorted multi-item vector on the outputs of the rightmost vertical
line. Three types of such networks have been studied: pure combinational (e.g. [3,9]), pipelined (e.g. [2,3,9]),
and combined (partially combinational and partially sequential) [2,5,20]. The linear networks, which are often
referred to as linear sorters [4], take a sorted list and insert new incoming items in the proper positions. The
method is the same as the insertion sort [1] that compares a new item with all items in parallel, then inserts the

* Corresponding author, artjom.rjabov @ttu.ee
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Fig. 1. The number of comparators for different values N of data items.

new item at the appropriate position, and shifts the existing elements in the entire multi-item vector. The main
problem with this method is that it is applicable only to small data sets (see, for example, the designs discussed
in [4], which accommodate only tens of items).

The majority of sorting networks implemented in hardware use Batcher even-odd and bitonic mergers [21].
Other types are rarer (see, for example, the comb sort [22] in [8], the bubble and insertion sort in [3,9], and
the even-odd transition (transposition) sort in [12]). Research efforts are concentrated mainly on the following
three directions: (1) networks with a minimal depth or number of comparators (e.g. [3,13]); (2) co-design,
rationally splitting the problem between software and hardware (e.g. [3,9]), and (3) the regularity of the circuits
and interconnections (e.g. [2,5]).

We target our results towards FPGAs because these devices are regarded more and more as a universal
platform that enables computational algorithms to be significantly accelerated. The FPGAs still operate on a
lower clock frequency than non-configurable Application-Specific Integrated Circuits (ASICs) and Application-
Specific Standard Products (ASSPs) and broad parallelism is evidently required to compete with potential
alternatives. Thus, sorting and linear networks can be seen as very adequate models. Unfortunately, they have
many limitations. Suppose N data items, each of size M bits, need to be sorted. The results of [3,13] show
that the most widely used sorting networks [19,21] cannot be built for N > 128 (M = 32), even in a relatively
advanced FPGA because the hardware resources are not sufficient. Iterative networks from [2] enable the number
of comparators C(N) to be notably decreased but even after that we cannot sort more than 4096 items in the most
advanced FPGAs, such as that from the Virtex-7 family of Xilinx. When N is increased, the complexity of the
networks (the number of comparators/swappers C(N4)) grows rapidly [1-3,9,19] (see Fig. 1).

It is easy to conclude from Fig. 1 that sorting networks can be implemented in an FPGA only for a small
number N of items while practical applications require millions of such items to be processed. One possible
way is to sort relatively small subsets of larger sets in an FPGA and then to merge the subsets in software of
a higher-level system (see Fig. 2). The initial set of data that is to be sorted is divided into Z subsets of N
items. Each subset is sorted in an FPGA using the referenced networks. Merging is executed as shown in Fig. 2,
in a host system/processor that interacts with the FPGA. Each horizontal level of merging permits the size of
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blocks to be doubled. Thus, if N = 2! = 1024 and K = 2%° = 1048576 items are to be sorted, then 10 levels of
mergers are required (see Fig. 2). Clearly, the larger are the blocks sorted in FPGAs, the less merging is needed.
Thus, we have to sort in hardware as many data items as possible with such throughput that is similar to the
throughput of sorting networks. Besides, the networks [19,21] involve significant propagation delays through
long combinational paths. Such delays are caused not only by comparators, but also by multiplexers that have
to be inserted and by interconnections. Hence, clock signals with high frequency cannot be applied. Pipelining
permits the clock frequency for circuits to be increased because delays between registers in a pipeline are reduced.
A number of such solutions are described in [3,13]. However, once again, the complexity of the circuits becomes
the main limitation. The analysis presented in [2] enables us to conclude the following: (1) the known even-odd
merge and bitonic merge circuits [19,21] are the fastest and enable the best throughput to be achieved. However,
they are very resource-consuming and can only be used effectively in existing FPGAs for sorting very small
data sets; (2) pipelined solutions permit faster circuits than in point (1) to be designed. However, assuming
that pipelining can be based on flip-flops in the used slices (so that additional slices are not required), resource
consumption is at least the same as in point (1), therefore, in practice, only very small data sets can be sorted; (3)
the existing even-odd merge and bitonic merge circuits are not very regular (compared to the even-odd transition
network, for example) and, thus, the routing overhead may be significant in FPGAs.

There is also another problem that might arise. As a rule, initial data and final results are stored in conventional
memories and each data item is kept at the relevant address of the memory. Suppose we would like to sort a set of
data items. Let us look at Fig. 3 where the initial (unsorted) set is saved in the memory and the resulting (sorted)
set is also saved in the memory. Parallel operations need to be applied to parallel subsets of data items, thus, in the
beginning, initial data need to be unrolled (see Fig. 3) and the sorted items need to be stored in the memory one by
one (see Fig. 3). Hence pre- and post-processing operations are involved and they (1) sequentially read unsorted
data items and save them in a long-size input register and (2) copy the sorted data items from the long-size output
register to conventional memories. These operations undoubtedly involve significant additional time. To reduce
or even avoid such time, we have to be able to combine reading/writing data items and their sorting. We will call
such type of data sorters communication-time data sorters.

This paper proposes a set of methods and device architectures with the following novel contributions:

1. The less resource-consuming iterative networks from [2] should be combined in hardware with pipelined
Random Access Memory (RAM)-based data mergers, which permits
(a) increasing the number of data items sorted in hardware significantly (more than one hundred times compa-
red to [2]) without performance degradation,
(b) performing data sorting in parallel with merging in hardware;
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2. Communication-time data sorters that enable data acquisition and sorting to be executed in parallel in such a
way that data sorting is completed as soon as the last data item has been received;

3. Three-level data sorters, two of which (network-based sorters and RAM-based mergers) are implemented in
an FPGA and the last one — in a higher-level computing system that is in our case a general-purpose computer
interacting with the FPGA through the Peripheral Component Interconnect (PCI) express bus.

2. SYSTEM ARCHITECTURE

Figure 4 depicts the considered system architecture. There are two basic subsystems that are a general-purpose
computer (GPC) and an FPGA interacting through the PCI express bus. Let us assume that the FPGA can sort L
blocks and each block contains up to N data items, i.e. such a number of items that can be sorted in the network
[2]. The FPGA receives L blocks (containing up to N data items) from the GPC, sorts each block (see the rectangle
A in Fig. 4), merges the sorted blocks (see the rectangle B in Fig. 4), and sends L x N sorted data items back to the
GPC. The size M of each item is chosen to be 32 bits and it might be increased easily (FPGA circuits are easily
scalable). Four 32-bit data items are packed in 128-bit words for data exchange through the PCI express bus.

1) Preparing initial
(unsorted) blocks B
and sending the Merging the
blocks to FPGA; sorted blocks
2) Receiving sorted K PCexpress | in a RAM-
blocks from FPGA; based circuit
3) Processing sorted

blocks
GPC FPGA

Sorting blocks
by an iterative
network

Fig. 4. General architecture of the considered system.
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The FPGA implements circuits for the two levels referenced above, i.e. for an iterative sorter (see the rectangle
A in Fig. 4) and for a merger (see the rectangle B in Fig. 4). In the beginning, we will use the network from [2]
extended with some additional registers allowing data acquisition, sorting, and subsequent merging to be partially
combined. Such an architecture implemented in the FPGA will be discussed in the following two subsections.
The next section suggests some improvements of the network to design communication-time data sorters.

2.1. Iterative network for sorting data

Figure 5 depicts the used iterative network. The core of the network is the circuit proposed in [2]. There are also
two additional registers R; and R,. The register R; sequentially receives N data items from the GPC through the
PCI express bus. It was explained above that such N items compose one block that can be entirely sorted in the
network [2]. In practice, four items are packed and thus, parallel writing to the register R; of four 32-bit items
is actually done. As soon as the first block is received, all data items from this block are sorted in the iterative
network from [2], and the maximum number of clock cycles is N/2 [2]. At the same time, data items from the
next block are received from the GPC through the PCI express bus. As soon as data items from the first block are
sorted, they are copied in parallel to the output register R,. After that the second block is copied to the register
R and sorted (see Fig. 5) and the third block is being received from the GPC through the PCI express bus. At
the same time, the first sorted block is copied to the embedded block-RAM for subsequent merging. Hence, the
first sorted block will be copied to RAM after the acquisition of two blocks from the PCI express bus. Then data
acquisition from the GPC, data sorting, and copying data to the merger will be done in parallel. We can see from
Fig. 5 that there are just two sequential levels of comparators/swappers in the iterative data sorter [2]. Thus, the
delay is very small and we can apply high synchronization frequency. The results of [2] clearly demonstrate that
such circuits are very efficient. Additional improvements are done to adjust the speed of data acquisition and
sorting. Indeed, one block of N data items is received in N /4 clock cycles and the sorting time is up to N/2 clock
cycles, i.e. it is almost two times longer.

Figure 6 demonstrates how to adjust the speed. There are now two iterative data sorters running in parallel.
The first sorter processes data from the first half of the register R; and the second sorter processes data from the
second half of the register R;. In the beginning, two blocks with 2 x N items are copied to R; and it involves
2 x N/4 = N/2 clock cycles. Then two blocks are sorted in parallel, which also involves up to N /2 clock cycles.

Iterative data sorter

Parallel copying

Input register R,
Register (R)

Parallel copying
of sorted data

9o -0 069 -9
Output register R,

of unsorted data
opying data to RAM for
subsequent merging

- =9 0—4

|/
— o9

equential data acquisition
from PCl express bus

‘1'5
l,c

Fig. 5. The circuit for sorting blocks.
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Finally, two sorted blocks are copied to two dual-port embedded block-RAMs. The respective write port is
configured for data width 64. Thus, pairs of data items are copied in each clock cycle and it involves totally also
N /2 clock cycles for both blocks. Therefore, everything is completely adjusted.

2.2. Pipelined merging

Merging is done on the basis of embedded block-RAM. Figure 7 shows one level of merging. Input data comes
from two embedded block-RAMs, which is merged, and copied to a new embedded block-RAM. There are two
address counters for each input RAM. In the beginning they are set to 0. Two data items are read and compared.
If the item is selected from the first RAM, the address counter of the first RAM is incremented, otherwise the
address counter of the second RAM is incremented. Two N-item blocks are merged in 2 x N clock cycles.
Different types of parallel merging have been verified and compared. We found that the best result (i.e. the fastest
and the less resource-consuming) is produced in a simple RAM-based circuit depicted in Fig. 8.

There are G levels to merge L sorted blocks and 29~ < L < 29, The first level is composed of L embedded
block-RAMs. The second level is composed of L/2 embedded block-RAMs, and the last level is composed of
one embedded block-RAM. The size of each RAM for the first level is N 32-bit words for reading and N /2 64-bit
words for writing. The size of each subsequent level is doubled. Initially, L embedded block-RAMs of the first
level are filled in with sorted blocks. Then these blocks are merged at the second level. Afterwards the blocks
of the second level are merged at the third level and at the same time the block-RAMs of the first level are being

.| 64 ] 32

§ —> First block-RAM & tﬁgpr\éisnuglt

2 Read ports 2 —>! Block-RAM
h=4 (]

= 64 32 s

= | —<> Second block-RAM

Fig. 7. Simple merging of two sorted blocks.
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filled in with a new subset of L sorted blocks. Thus, many subsets of L blocks will be processed in parallel and
this is a special type of pipeline organized based on embedded block-RAMs (see Fig. 8).

The architecture in Fig. 8 permits many sets with L blocks (each block contains N M-bit data items) to be
sorted in the pipeline in the way shown in Fig. 9. Equal numbers enclosed in circles indicate the steps executed
in parallel. It was shown in the previous section (2.1) that the first time the level 1 block-RAM will be filled in
with sorted data from the first block is after 3 x N/2 clock cycles. After that it is updated with the new block
in N/2 clock cycles. So, an additional delay appears just from the beginning and it is avoided in the subsequent
steps. As soon as data are copied to the first-level RAM, merging is started and the sorted data are copied from
the first-level to the second-level RAM. This process involves L x N/2 clock cycles. During this period of time
the first-level RAM is used for merging and new data items cannot be copied to this RAM. In fact, it is possible
to merge and to sort data at the same time. However, we found that such merger requires a complex arbitration
which significantly increases hardware resources leading to reducing the size N of blocks. Finally, such more
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Fig. 9. Parallel operations in the proposed architecture.



330 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323-335

complicated circuits do not give any advantage. This means that the resulting throughput cannot be increased.
As soon as merging is completed, all data are copied to the second-level RAM and the first-level RAM may be
refilled with new L sorted blocks.

Figure 9 explicitly indicates parallel operations. For example, merging at levels 3, 5, 7 is executed in parallel
with data sorting. This method can be applied to the sorting of very large sets of data (tens and hundreds of
millions of data items). In this case, the GPC (see Fig. 4) divides a very large set into subsets composed of L x N
data items. The subsets are sorted in the pipelined structure shown in Fig. 9 and then merged in the software
of the GPC. The experimental section below demonstrates that the data sorter implemented in Virtex-7 FPGA
allows sorting data in hardware for L = 128 and N = 512. Thus, 512 x 128 = 65536  32-bit data items (or
256 KB) are sorted and then 256 KB blocks can be merged in software. It will be shown in the experimental
section that sorting in hardware (including data exchange with the GPC) is faster than similar sorting in software.
Merging larger blocks permits the time of sorting in software to be considerably reduced.

3. COMMUNICATION-TIME DATA SORTERS

The actual performance of the designed circuits is often limited by the interfacing circuits that supply the initial
data and return the results. Indeed, even for the most recent and most advanced on-chip interaction methods,
such as those used in the Advanced eXtensible Interface (AXI), the communication overheads do not allow the
theoretical throughput to be achieved in practical designs. The method and architecture described above permit
only a small delay for data transmission in the beginning. When we sort large sets of data such delay is indeed
negligible compared to the total delay. So, the proposed technique is very effective. In many practical cases we
would like to sort small sets, such as those composed of N data items. For such a case the delay between the
last received item and the final result of sorting becomes up to N/2 clock cycles and this may not be acceptable
for many practical applications. We consider in this section such a method that enables the sorted results to be
sequentially copied immediately after the last data item is received.

We describe below a parallel circuit that enables sorting to be entirely done within the time required for data
transfers to and from the circuit; no additional time is required. Further, the design is very economical. The
communication-time circuit, which is based on the network for discovering minimum and maximum values from
[23], is shown in Fig. 10. It is composed of N M-bit registers Ry,..., Ry—1, and N — 1 comparators/swappers.

At the initialization step, all the registers Ry,..., Ry— are set to the minimum possible value for data items.
For the sake of simplicity, this value is assumed to be 0. Any other value may also be chosen. Data items are
received sequentially from interfacing circuits through the multiplexer Mux. The value x is set to 0, so all input

Configurable
— — = ~ comparator swapper al
a— Ry X
» b— % % x b
AN Y = m—
= d— & d
o) e—{ = - e
P4 = le—x
M-bit [9—1 Z = 9]
input Rus F— —— Mibit
s clojlt %O ‘l’<?1 ou pU

V' Communicates either M-bit input vector or V

Fig. 10. Communication-time data accumulator/sorter.
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45090243702456 —_— M-bit input
Ro €l 2 3 4 5 6 c7 8
fa—1 | 0 0 0 0 0 0 3 2 g
b—{ o T 0 0 0 0 0 3 243 p
c— o 0 0 O 0 3 24 24 24 c
d —o T 0 0 O 3 24 24 0 45 d
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M_b|t g — T 56 _56 70 70 70 90 90 90 g/
|n put 0 0 0 0 o 0 0 0 0 M_blt
3 T Rivt output
clocl

0 Communicates M-bit input vector

Fig. 11. An example of communication-time accumulation of input data items.

items will be moved up and accommodated somehow in the registers. Indeed, since the bottom line (marked as
M-bit output) always contains the smallest value [23], any incoming item is either the smallest, or will be moved
up. Figure 11 demonstrates how N M-bit items are accommodated, using an example with N = 8 items arriving
in the following sequence: 1) 56; 2) 24; 3) 70; 4) 3; 5) 24; 6) 90; 7) 0; 8) 45.

Data may be received from a host system (such as ARM [24]) and accommodated in the registers Ry...., Ry—1
during communication time in N clock cycles indicated in Fig. 11 by symbols c1, ..., ¢8(N = 8). As soon as N
sorted data are received, the sorted result can be transferred immediately to the host system as shown in Fig. 12.

Now the multiplexer Mux communicates the maximum possible data value (m) to the register Ry_; and x
is 0. Since x = 0, the maximum value will always be moved up at each clock cycle [23] enabling real-time
transmission of the sorted items (through the M-bit output) in ascending order. To transmit the sorted items in
descending order, it is necessary to set x to 1 and to replace the maximum possible value for data items (m) that
is supplied to the multiplexer M with the minimum possible value.

Ry €l 2 3 4 5 6 c7
24 24 45 56 70 90 m a

3— 24

a

b— s T 24 45 5670 90 m m b

c— 2 45 56 70 90 m m m c

d_ 45 T 56 70 90 m m m m d

e—1 1 70 90 m m m m m e

f — 56 T 90 m_m _m _m m m f

M-bit g— w0 1\ m m m m m m m g/

input o 3 24 24 45 56 70 90 M-bit
T R 907056 45242430 —soutput

clock

M Communicates the maximum value (m)

Fig. 12. An example of transmitting sorted data items.
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The experiments have demonstrated that the circuit shown in Fig. 10 for N = 512, M = 32 can be built even
for relatively small FPGAs, such as those available in the Nexys-4 prototyping board of Digilent. For advanced
FPGAs, such as those from the Xilinx Virtex-7 family, the communication-time data sorter may be built for
N > 4096. The results of experiments and comparisons will be given in the next section. Note once again that
the communication-time circuits described above are advantageous for small autonomous sorters, which need the
result to be produced immediately after the last item is received. In particular, they do not give any advantage for
the methods and architectures described in Section 2. Therefore, the methods described in Section 2 are beneficial
for sorting large data sets and the methods considered here are beneficial for sorting small data sets.

4. EXPERIMENTS AND COMPARISONS

The system for data transfers between a host PC and an FPGA has been designed, implemented, and tested.
Experiments were done in the VC707 prototyping board [25] that contains Virtex-7 XC7VX485T FPGA from
the Xilinx 7th series with PCI express endpoint connectivity “Genl 8-lane (x8)”. All circuits were synthesized
from the specification in VHDL and implemented in the Xilinx Vivado 2016.1 design suite. Software programs
in the host PC run under the Linux operating system and they were developed in C language. The data were
transferred from from the host PC to VC707 and back through the PCI express. The host PC is based on Intel
core i7 3820 3.60 GHz.

The experiments were done in accordance with Fig. 4. The maximum size of data that are entirely sorted in
the FPGA is 256 KB. For a larger size of data additional merging is done in the host PC. The results are presented
in Fig. 13. It is clearly seen that the sorting throughput for the proposed systems is significantly better than in
the host PC. For example, 1024 KB data can be sorted in the proposed system in 16 ms and in the host PC in
110 ms. The comparison of the time of sorting reported in the referenced papers and the results of Fig. 13 clearly
shows that the proposed solutions are faster. Figure 14 demonstrates the organization of the experiments for
communication-time data sorters (see Section 3).

Now autonomous circuits applicable to small data sets are synthesized, implemented, and tested. We have
used a relatively low-cost Digilent Nexys-4 prototyping board with Xilinx Artix-7 FPGA xc7a100 [26]. N initial
unsorted 32-bit data items (M = 32) are generated randomly and supplied to the communication-time data
accumulator/sorter through the M-bit input (see Fig. 10). The clock frequency for data transfers was chosen to be
100 MHz (that is the default frequency of the on-board oscillator). An initial unsorted set of data is supplied and
the sorted set is transmitted back entirely within 2 X N clock cycles, which is just the time for data communication.

Table 1 displays the hardware resources that were used, as obtained from the Vivado post-implementation
reports (including supplementary circuits, such as random number generation (RND)). Clearly, circuits for

120
=— Sorting time in the proposed system P
100 e—Sorting time in the host PC /

80 /

60 A

Time in ms
\

40

8 16 32 64 128 256 512 1024
The size of data in KB

Fig. 13. An example of transmitting sorted data items.
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Fig. 14. Experimental setup.

Table 1. The hardware resources used for the Nexys-4 prototyping board

N=64 N=128 N=256 N=512
Lookup tables 3760 (6%) 7448 (12%) 20699 (33%) 35645 (56%)
Flip-flops 2213 (2%) 4276 (3%) 8405 (7%) 16643 (13%)

significantly larger values of N than in the known even-odd merge and bitonic networks [19,21] have been
built. The design proposed is also faster. Indeed, solving similar problems to those in Table 1 in networks
[19,21] requires data to be copied to a long register that provides network inputs. The size S of this register,
even for the smallest number of N = 64 in Table 1, is equal to N x N = 2048 and if N = 512, then
S = 16384 bits. Commercial FPGAs do not have such a large number of external pins and data items need
to be copied sequentially and multiplexed to different sections of the register. Similarly, the sorted items must
be segmented and transmitted back sequentially through the relevant interfacing circuits. If we consider on-
chip communications (such as those available for Zynq all programmable systems-on-chip — APSoC [25]), we
can see that the maximum number of high-performance AXI interfaces is 5 and the maximum number of bits
transferred through each interface is 64. Thus, multiplexing is also necessary, which involves additional delays
and resources. In the proposed design, the circuit itself receives and transmits data in parallel with sorting and no
additional resources are required. The number of combinational levels in the proposed circuit is equal to [log2N]
and it is less than for the networks [19,21] where it is equal to [logoN|x([logaN-1).

5. CONCLUSION

The paper proposes two architectures that are applicable to sorting large and small data sets. The distinctive
feature of the first architecture is parallelization at several stages with the adjusted time. The first stage is data
sorting, which is done in such a way that data acquisition, sorting, and transferring the sorted data are carried out
at the same time. The second stage is a pipelined RAM-based merger that enables merging at different levels to be
done in parallel and it can also be combined with the first stage. Such a type of processing is efficient for sorting
large sets (tens and hundreds of millions of data items). The distinctive feature of the second architecture is
communication-time processing, which permits sequential transfer of the results of sorting immediately after
the last data items have been received. Such a type of processing is often needed for autonomous sorter
operations over a relatively small number of data items (from hundreds to thousands of items). Thus, the proposed
architectures complement each other. The experiments were done with an advanced prototyping system (allowing
data processing in a general-purpose computer and in a recent FPGA from the Virtex-7 family of Xilinx) and
with autonomous circuits implemented in a low-cost FPGA from the Artix-7 family of Xilinx. The results of
experiments demonstrate significant acceleration compared to general-purpose software and the results reported
in publications.



334 Proceedings of the Estonian Academy of Sciences, 2017, 66, 3, 323-335

ACKNOWLEDGEMENTS

This research was supported by the institutional research funding IUT 19-1 of the Estonian Ministry of Education
and Research, the Study IT in Estonia Programme, Estonian Association of Information Technology, and
Telecommunications and Portuguese National Funds through FCT — Foundation for Science and Technology,
in the context of the project UID/CEC/00127/2013. The publication costs of this article were covered by the
Estonian Academy of Sciences.

REFERENCES

1. Knuth, D. E. The Art of Computer Programming. Sorting and Searching, Vol. IlI. Addison-Wesley, 2011.

2. Sklyarov, V. and Skliarova, I. High-performance implementation of regular and easily scalable sorting networks on an FPGA.
Microprocess. Microsyst., 2014, 38(5), 470-484.

3. Mueller, R., Teubner, J., and Alonso, G. Sorting networks on FPGAs. Int. J. Very Large Data Bases, 2012, 21(1), 1-23.

4. Ortiz, J. and Andrews, D. A configurable high-throughput linear sorter system. In Proceedings of the 2010 IEEE International
Symposium on Parallel & Distributed Processing. IEEE, 2010, 1-8.

5. Zuluaga, M., Milder, P., and Puschel, M. Computer generation of streaming sorting networks. In Proceedings of the 49th Design
Automation Conference. ACM, New York, 2012, 1245-1253.

6. Singh, S. and Greaves, D. J. Kiwi: synthesis of FPGA circuits from parallel programs. In Proceedings of the 16th IEEE International
Symposium on Field-Programmable Custom Computing Machines. IEEE, 2008, 3—12.

7. Che, S., Li, J., Sheaffer, J. W., Skadron, K., and Lach, J. Accelerating compute-intensive applications with GPUs and FPGAs. In
Proceedings of the 2008 Symposium on Application Specific Processors. IEEE, 2008, 101-107.

8. Chamberlain, R. D. and Ganesan, N. Sorting on architecturally diverse computer systems. In Proceedings of the 3rd International
Workshop on High-Performance Reconfigurable Computing Technology and Applications. ACM, New York, 2009, 39-46.

9. Mueller, R. Data Stream Processing on Embedded Devices. Ph.D. thesis, ETH, Zurich, 2010.

10. Koch, D. and Torresen, J. FPGASort: a high performance sorting architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting. In Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM,
New York, 2011, 45-54.

11. Sklyarov, V., Skliarova, I., Mihhailov, D., and Sudnitson, A. Implementation in FPGA of address-based data sorting. In Proceedings
of the 21st International Conference on Field-Programmable Logic and Applications. IEEE, 2011, 405-410.

12. Kipfer, P. and Westermann, R. GPU Gems 2, Improved GPU Sorting. http://http.developer.nvidia.com/GPUGems2/
gpugems2_chapter46.html, 2005 (accessed 08.06.2016).

13. Gapannini, G., Silvestri, F., and Baraglia, R. Sorting on GPU for large scale datasets: a thorough comparison. Inf. Process. Manage,
2012, 48(5), 903-917.

14. Ye, X., Fan, D., Lin, W., Yuan, N., and Ienne, P. High performance comparison-based sorting algorithm on many-core GPUs. In
Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed Processing. IEEE, 2010, 1-10.

15. Satish, N., Harris, M., and Garland, M. Designing efficient sorting algorithms for manycore GPUs. In Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing. IEEE, 2009, 1-10.

16. Cederman, D. and Tsigas, P. A practical quicksort algorithm for graphics processors. In Proceedings of the 16th Annual European
Symposium on Algorithms. Springer-Verlag, Berlin, Heidelberg, 2008, 246-258.

17. Grozea, C., Bankovic, Z., and Laskov, P. FPGA vs. multi-core CPUs vs. GPUs: hands-on experience with a sorting application.
In Facing the Multicore-Challenge (Keller, R., Kramer, D., and Weiss, J. P., eds). Springer-Verlag, Berlin, Heidelberg, 2010,
105-117.

18. Edahiro, M. Parallelizing fundamental algorithms such as sorting on multi-core processors for EDA acceleration. In Proceedings of
the 2009 Asia and South Pacific Design Automation Conference. IEEE, 2009, 230-233.

19. Aj-Haj Baddar, S. W. and Batcher, K. E. Designing Sorting Networks. A New Paradigm. Springer, 2011.

20. Marcelino, R., Neto, H. C., and Cardoso, J. M. P. A comparison of three representative hardware sorting units. In Proceedings of the
35th Annual IEEE Conference on Industrial Electronics. IEEE, 2009, 2805-2810.

21. Batcher, K. E. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint Computer Conference. ACM, New
York, 1968, 307-314.

22. Lacey, S. and Box, R. A fast, easy sort: a novel enhancement makes a bubble sort into one of the fastest sorting routines. Byte, 1991,
16(4), 315-320.

23. Sklyarov, V. and Skliarova, I. Fast regular circuits for network-based parallel data processing. Adv. Electr. Comput. Eng., 2013, 13(4),
47-50.

24. Xilinx, Inc. Zyng-7000 all programmable SoC. Technical Reference Manual. https://www.xilinx.com/support/
documentation/user_guides/ugb85-Zynq-7000-TRM.pdf, 2016 (accessed 01.02.2017).



V. Sklyarov et al.: Fast iterative circuits to accelerate data sort 335

25. Xilinx, Inc. VC707 Evaluation Board for the Virtex-7 FPGA User Guide. https://www.xilinx.com/support/documentation/
boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf, 2016 (accessed 01.02.2017).

26. Digilent, Inc. Nexys4 DDR FPGA Board Reference Manual. https://reference.digilentinc.com/_media/nexys4-ddr:
nexys4ddr_rm.pdf, 2016 (accessed 08.06.2016).

Kiired iteratiivsed ahelad ja RAM-i baasil iihendajad, kiirendamaks andmete sortimist
riist- ning tarkvara siisteemides

Valery Sklyarov, Iouliia Skliarova, Artjom Rjabov ja Alexander Sudnitson

On vilja pakutud ja kirjeldatud kaks arhitektuuri paralleelsete andmete sortimiseks. Esimene on mdeldud
suuremahuliste andmekogude jaoks, tihendades kolm andmete tootlemise astet: andmete sortimine riistvaras
(FPGA-s), eelsorditud andmete iihendamine riistvaras (FPGA-s) ja seejdrel nende suurte alamhulkade
iildotstarbeline tihendamine tarkvara abil. Andmete vahetamine FPGA ja iildotstarbelise arvuti vahel toimub
labi PCI ekspress-siini. Teine arhitektuur on rakendatav vdiksemate andmekogude puhul, vdimaldades sorti-
mist andmete samaaegse vastuvotuga, st kui viimane andmete osa on kides, vdib sorditud osad kohe edasi
saata. Vorreldes erinevate varem avaldatud tulemustega, kus on kasutatud tarkvaralisi lahendusi, niitavad katse-
tulemused pakutud arhitektuuride eeliseid, mis lubavad vihendada vajaminevaid riistvararessursse ja suurendada
tootlikkust.
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