
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Software Science

Estimating object detection reliability
for TTU "Iseauto" self-driving car

Master’s thesis

Artur Vainola
153015

Supervisor
Juhan-Peep Ernits, PhD

Tallinn 2018



Declaration

I declare that this thesis is the result of my own research except as cited in the refer-
ences. The thesis has not been accepted for any degree and is not concurrently submitted
in candidature of any other degree.

June 1, 2018

Artur Vainola

........................
(Signature)



Abstract

Emergence of convolutional neural networks has sparked the computer vision field,
resulting in abundance of different object detecting methods. Performance of object de-
tectors is evaluated using benchmark datasets, but metrics they use are very general and
reflect ability to detect wide range of classes. In a context of safety-critical applications
like autonomous vehicles, minimizing misdetection rate is more important than being able
to differentiate bus from truck. There is no known method for evaluating performance of
object detectors in a context of self-driving car.

We develop an object detector evaluation method that considers aspects of the con-
text of autonomous vehicles. Proposed method requires building a benchmark dataset by
recording and annotating context-specific data and makes it possible to estimate reliability
of different detectors by comparing the output against ground truth.

We then use our developed method to analyze performance of Fast Region-based
Convolutional Neural Network (Fast-RCNN), Single-Shot Detector (SSD) and You Only
Look Once v2 (YOLOv2) in the context of TTÜ "Iseauto" project, estimating reliability
and providing basis for choosing the best option.

The thesis is in English and contains 34 pages of text, 5 chapters, 16 figures, 2 tables.



Annotatsioon

Objektituvastuse töökindluse hindamine TTÜ "Iseauto" kontekstis

Konvolutsiooniliste närvivõrkude kasutuselevõtt on suurendanud huvi masin-
nägemise valdkonna vastu ja loonud kasvupinnase erinevate objektituvastuse meetodite
tekkeks. Erinevate meetodite võrdlemiseks kasutatakse võrdlusandmekogusid, aga nen-
des kasutatuav meetrika on väga üldine ja mõõteb pigem tuvastajate võimekust tuvas-
tada suurt hulka objektide kategooriaid. Autonoomsete sõidukite kui turvakriitiliste rak-
enduste kontektstis on olulisem minimeerida tuvastamata objektide hulka kui teha vahet
bussil ja veoautol. Teadaolevalt pole ühtegi head meetodit, kuidas mõõta objektituvasta-
jate töökindlust isesõitvate autode kontekstis.

Käesolevas väitekirjas arendatakse välja objektituvastajate töökindluse mõõtmise
meetod, mis võtab arvesse autonoomsete sõidukite konteksti. Pakutav meetod baseerub
kontekstispetsiifilise võrdlusandmekogu loomisel, mille loomiseks on tarvis koguda
videosalvestisi ja neid annoteerida. Meetod võimaldab hinnata erinevate objektituvas-
tajate töökindluste võrreldes nende poolt tuvastatud objekte annoteeritud objektidega.

Seejärel kasutatakse arendatud meetodit, et analüüsida Fast-RCNN, SSD ja YOLOv2
objektituvastajate täpsust TTÜ "iseauto" projekti kontekstis, hinnates nende töökindlust
ja luues aluse parima objektituvastaja valikuks.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 34 leheküljel, 5 peatükki,
16 joonist, 2 tabelit.
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1. Introduction

According to World Health Organization (WHO) [2], more than 1.2 million people
die each year as a result of road traffic crashes. Nearly half of those dying on the world’s
roads are “vulnerable road users”: pedestrians, cyclists, and motorcyclists. Main cause of
accidents is human error: speeding, distracted driving, driving under the influence, etc.

There is a strong belief that artificial intelligence can help reduce the impact of traffic
accidents on mortality. In addition to making traffic safer it could bring many more ben-
efits like greater accessibility, better road efficiency, positive impact on the environment
by helping reduce the energy footprint of transportation, increased productivity, reduced
time spent on everyday commuting by shortening the journey and making it possible to
use the time for other tasks.

Reduced cost and increased availability of sensing technologies and computing
power has brought about dramatic advancements in autonomous systems research and
built a solid foundation for autonomous vehicle development. Nowadays, most car manu-
facturers already have “drivers assistant” systems installed into their cars, helping drivers
with tasks of different complexity from simple parking assistance to so called “semi-
autonomous” driving systems. Furthermore, many of them are putting lots of resources
and effort into shifting more and more tasks from human driver to onboard computers,
hoping to eventually build cars that drive without the need of human intervention.

However, building a self-driving car that exceeds human driving performance is far
from an easy task. In order to be able to operate autonomously, it needs to have a good
understanding of surrounding world. To achieve this, complex sensory systems have been
developed, utilizing different sensors like monocular video cameras, stereo-cameras, IR-
cameras, TOF-cameras, RADARs, LIDARs and ultrasonic sensors. While LIDARs are
very good for localization using 3D point cloud maps, it alone does not provide a per-
formant object detection solution. Therefor most systems use video cameras, alone or in
combination with LIDARs, for object detection and tracking.
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When talking about object detection we usually refer to a task of localizing and clas-
sifying multiple objects of single or multiple classes on an image or video frame. While
computers have been used for decades to detect objects on video images, demand for
fast and reliable object detection method and recent advancements in machine learning
technologies have brought much attention to computer vision field. This has resulted in
new and better object detecting methods emerging every year. Abundance of methods
[3] [4] [5] [6] have made it possibility to choose an algorithm that best fits your appli-
cation, but making a choice requires understanding of performance metrics. For object
detection, most popular metric used in all known evaluation datasets is mean average
precision (mAP), which generalizes well, but has few slightly different implementations
making it difficult to interpret. With available benchmark datasets [7] [8] [9] we can mea-
sure general performance of each method, but when the context is specific, general score
might not give you the best information. To find best method for specific task, we need to
evaluate each method with relevant data and metrics.

TTÜ in collaboration with Silber Auto is building a autonomous self-driving vehi-
cle called "Iseauto". It is an educational project that challenges the ability to build a
self-driving car within one year, using mainly open-source software and very limited re-
sources. Initially the car must be able to drive autonomously only on a fixed route inside
TTÜ campus. It is a custom built car based on Mitsubishi i-MiEV electric car and has
different sensors (LIDARs, cameras, Global positioning system (GPS), Inertial measure-
ment unit (IMU), etc) providing information about surrounding world and an onboard
computer to process the data and provide high level driving commands.

With TTÜ “Iseauto“ project we are facing the problem of finding suitable object
detection method for detecting vehicles and pedestrians. While fixing the route reduces
the complexity of the problem as we can focus on performance within certain surround-
ing terrain, we still have to deal with changes in environment due to weather conditions
and seasons. In addition we need to consider the speed and computation complexity of
possible method as it has to run in real-time and with multiple cameras simultaneously.

Autoware, an open-source software platform for urban autonomous driving, is used
as the main software platform for TTÜ “Iseauto” self-driving car. Autoware has inte-
gration with different object detection methods [3] [4] [5] [6] and we need to evaluate
how well these methods performs in a safety-critical application with different light and
weather conditions. Based on this we formulate following research question:

• REQ1: How to measure the performance of an object detector for a self-driving
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car?

• REQ2: Which metrics should be used to evaluate the performance considering the
context of "Iseauto project"?

• REQ3: How does each of the available detectors performs on our data?

• REQ4: How compute-intensive is each object detector and how fast they can pro-
cess real-time video stream on available graphics processing unit (GPU)?

General goal is to develop a method for estimating object detection reliability in
different conditions. To achieve the general goal we will:

• develop a method to easily analyse performance of existing methods with different
configurations and scenes

• record scenes from actual the route in different weather and light conditions to
increase the variation of the sample set

• use the developed method to create ground truth data by labelling recorded videos,

• analyse which performance metrics are relevant in the context of self-driving cars,

• use the developed method to perform ananlysis of different scenes to understand
the reliability of existing object detectors,

• analyze the speed and efficiency of each object detector running on two different
GPUs.

Using this approach, we will be able to suggest object detection method and configuration
for detecting vehicles and pedestrians in a fixed route inside TTÜ campus considering
detection reliability, speed and efficiency of the methods.

In next chapter, Chapter 2, we introduce the software platform that we are using for
development of the car, give a brief overview about the available object detectors and
benchmark datasets, and explain what metrics are used to compare performance of dif-
ferent object detectors. Chapter 3 describes the process of building our own benchmark
dataset. In Chapter 4 we explain what metrics we used for analyzing the data, present
the results of performance analysis and show the records of speed and efficiency observa-
tions.
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2. Background and related work

2.1 Autoware

As a development platform, "Iseauto" project is using Autoware [10], an open-
sourced software platform for urban autonomous driving. Autoware is built on top of
Robot Operating System (ROS) [11], an open-source meta-operating system for robots.
ROS provides the services you would expect from an operating system, including hard-
ware abstraction, low-level device control, implementation of commonly used function-
ality, message-passing between processes, and package management. It also provides
tools and libraries for obtaining, building, writing, and running code across multiple com-
puters. The Robot Operating System (ROS) runtime "graph" is a peer-to-peer network
of processes (called ROS nodes) that are loosely coupled using the ROS communication
infrastructure. ROS implements several different styles of communication, including syn-
chronous communication over services, asynchronous streaming of data over topics, and
storage of data on a Parameter Server [12].

Autoware offers solutions for different subtasks required for autonomous driving.
Every subtask is separate ROS node that subscribes to all topics it needs as an input and
publishes its output to another topic that other nodes use as input. Object detection and
tracking subsystem on Autoware consists of 6 different nodes:

1. camera node - for mapping raw camera data to ROS topic;

2. object detection node - for detecting objects on a video frame;

3. points2image node - for projecting LIDAR points on the video image;

4. ranging node - for calculating distance to detected objects;

5. object tracking node - for tracking detected objects and;
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6. re-projection node - for calculating 3D coordinates of detected objects;

, and are illustrated with relations to each-other on the Figure 2.1.

Figure 2.1: Object tracking module structure in Autoware [1]

This work focuses mainly on object detection node (2), which uses output of camera
node (1) as input and publishes its output to a topic that is input for ranging node (4).
Ranging node (4) output together with camera node (1) output are inputs for object track-
ing node (5), which in turn produces input for re-projection node (6). Current Autoware
implementation has integration with four different object detectors: DPM [3], Fast-RCNN
[4], SSD [5] and YOLOv2 [6]; and next section gives a brief overview of each.

2.2 Object detectors

Object detectors use a trained model to detect objects on an image or a video frame.
Training a model is a method of supervised learning requiring considerable amount of
labeled data. Usually the context where people need to detect objects is in some way
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specific and self-trained model could have an advantage when designed for specific task
and trained with relevant data. But annotating enough data to train a performant object
detection model is expensive. Even though usage of bounding-box is relatively inexpen-
sive compared to pixel-based annotation, it still requires much more effort than tagging
an image with a class. A rough rule of thumb is that a supervised deep learning algorithm
will generally achieve acceptable performance with around 5,000 labeled examples per
category and will match or exceed human performance when trained with a dataset con-
taining at least 10 million labeled examples [13]. Recording and annotating1 such dataset
of representative sample of at least 3 categories1 did not fit into the time-frame of this
work and we had to use one of the pre-trained models.

2.2.1 DPM

Before the arrival of Convolutional Neural Network (CNN)s, state-of-the-art object
detection method was DPM [3]. It is an object detection algorithm that uses a sliding
window method to reduce the complex object detection task to easier binary classification
task. It is based on a Dalal-Triggs detector [14] that uses a single filter on Histogram of
Oriented Gradients (HOG) features to represent an object category and a linear Support
vector machine (SVM) classifier with a sliding window approach, where a filter is applied
at all positions and scales of an image.

Emergence of CNN and deep learning brought object detectors performance to a new
level and earlier state-of-the-art models like DPM [3] aren’t able to compete with available
CNN object detectors [4][5][6]. Furthermore, it is being deprecated in the Autoware in
the near future and therefor is not evaluated in this work.

2.2.2 Fast-RCNN

Fast-RCNN [4] is an object detector that is built on previous work of Region-based
Convolutional Neural Networks (R-CNN) [15] and SPP-net [16]. Compared to its pre-
decessor R-CNN, it improves training and testing speed while also increasing detection
accuracy. It uses a single-stage training with multi-task loss that backpropagates to all
network layers. Instead of sliding window method it uses a Selective Search algortihm
[17] for region proposal, reducing the number of prior bounding-boxes typically close to

1100 frames per hour and 2 objects per frame is a rough average measured during annotation.
13 object categories: cars, pedestrians and cyclist; is an absolute minimum required set.
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2000. Rather than feeding all the region proposals to CNN, it uses SPP-net [16] approach
to calculate CNN representation of the image only once and use that to calculate the CNN
representation for each patch. It is implemented in Python and C++ using Convolutional
architecture for fast feature embedding (Caffe) [18], framework for state-of-the-art deep
learning algorithms and a collection of reference models.

Fast-RCNN was state-of-the-art on VOC 2012 when the article was released, but
newer methods [6] [5] have shown better results. Furthermore, it is much slower com-
pared to single-shot object detectors, making it questionable option for self-driving car.

2.2.3 SSD

SSD [5] is a method for detecting objects in images using a single deep neural net-
work. It discretizes the output space of bounding boxes into a set of default boxes over
different aspect ratios and scales per feature map location. At prediction time, the network
generates scores for the presence of each object category in each default box and produces
adjustments to the box to better match the object shape. Additionally, the network com-
bines predictions from multiple feature maps with different resolutions to naturally handle
objects of various sizes. SSD is simple relative to methods that require object proposals.
It completely eliminates proposal generation and subsequent pixel or feature resampling
stages and encapsulates all computation in a single network, making it easy to train and
straightforward to integrate into systems that require a detection component.

SSD uses a weighted sum of the localization loss and the confidence loss as overall
objective loss function and hard negative mining to achieve faster optimization and more
stable training. To make the model more robust to various input object sizes and shapes,
each training image is randomly sampled one of the following options:

• Use the entire original input image.

• Sample a patch so that the minimum jaccard overlap with the objects is 0.1, 0.3,
0.5, 0.7, or 0.9.

• Randomly sample a patch.

Compared to methods that utilize an additional object proposal step, SSD has com-
petitive accuracy on VOC, COCO, and ILSVRC but is much faster.
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2.2.4 YOLOv2

YOLO9000 is a single-shot object detector that can detect over 9000 object cat-
egories. It is built on YOLOv2, a model with various improvements to the YOLOv2
detection method.

Structure of the YOLOv2 allows it to change the input image size on the fly. Instead
of fixing the input image size, they change the network every few iterations, forcing the
network to learn to predict well across a variety of input dimensions. This novel method
called multi-scale training allows YOLO9000 to run at varying sizes, offering an easy
tradeoff between speed and accuracy.

YOLOv2 uses a method to jointly train on object detection and classification. Using
this method it trains simultaneously on the COCO detection dataset [8] and the ImageNet
[9] classification dataset. As classification dataset has much wider and deeper range of
labels, they use a so called hierarchical classification instead of simple softmax. Us-
age of WordTree, a hierarchical tree built from WordNet [19] concepts, allows it to train
classification on both detection and classification data. For data containing only classifi-
cation information they backpropagate only classification error. This joint training allows
YOLOv2 to predict detections for object classes that don’t have labelled detection data.

For predicting bounding-boxes YOLOv2 uses anchor-boxes, but instead of choosing
priors by hand, it runs k-means clustering on the training set bounding-boxes to automat-
ically find good anchor-boxes. Use of anchor-boxes gives it increase in recall from 81%
to 88% compared to predecessor. Objectness prediction predicts the Intersection over
Union (IoU) of the ground truth and the proposed box and the class predictions predict
the conditional probability of that class given that there is an object.

YOLOv2 runs significantly faster the other state-of-the-art object detectors like
Fast-RCNN [4] and SSD [5], making it good option for real-time applications like self-
driving car.

2.3 Benchmark datasets

There are several freely available datasets like [7] [8] [9] [20] that anyone can use
for training or evaluating their model. In addition to training and evaluation images, they
usually contain also tools for measuring performance. Often providers of the datasets
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hold yearly challenges for different computer vision task like classification, detection and
tracking. These challenges are considered as benchmarks for measuring performance of
a model and top performers are titled as state-of-the-art.

2.3.1 VOC

One of the popular benchmark datasets for evaluating object detector performance is
VOC Challenge [7]. It was object detection benchmark standard until 2012. It consists of
two components: (1) a publicly available dataset of images and annotation, together with
standardised evaluation software; and (2) an annual competition and workshop. A new
dataset with ground truth annotation was released each year from 2005 until 2012 when
it retired. It had two principal challenges:

• classification — does the image contain any instances of a particular object class?
(where the object classes include cars, people, dogs, etc.)

• detection — where are the instances of a particular object class in the image (if
any)?

There is complete annotation for twenty classes. For annotation they initially used Me-
chanical Turk, but as the quality of location data was too low, trained annotators were used
for annotating ground-truth bounding-boxes. All images are annotated with axis-aligned
bounding-boxes for every instance of the twenty classes. In addition to a bounding box
for each object, attributes such as: ‘orientation’, ‘occluded’, ‘truncated’, ‘difficult’; are
specified.

IoU with threshold of 0.5 is used for deciding if the prediction was a hit or miss.
Detections output are assigned to ground truth object annotations satisfying the IoU cri-
terion in order ranked by the (decreasing) confidence output. Ground truth objects with
no matching detection are false negatives and multiple detections of the same object in
an image are considered false detections, e.g. 5 detections of a single object count as 1
correct detection and 4 false detections. For performance evaluation it uses a mAP metric
described in Section 2.4
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2.3.2 COCO

Another popular dataset for training general object detection models is COCO [8].
It is a dataset with the goal of advancing the state-of-the-art in object recognition by
gathering images of complex everyday scenes containing common objects in their natural
context. Dataset contains 91 common object categories with 82 of them having more than
5,000 labeled instances. In total the dataset has 2,500,000 labeled instances in 328,000
images. COCO is significantly larger in number of instances per category than the VOC
and ILSVRC. Objects are labeled using per-instance segmentations instead of bounding-
boxes to aid in precise object localization. For annotation they used Amazon Mechanical
Turk, but required workers to pass a training to increase the quality of annotations.

For performance evaluation COCO uses a slightly different mAP metric (Section 2.4)
that averages the usual mAP over multiple IoU values. This mean that COCO mAP score
shouldn’t be directly compared with other datasets as they have different interpretations.

2.3.3 ILSVRC

ILSVRC [9] is a object category classification and detection benchmark dataset
based on ImageNet, containing hundreds of object categories and millions of images.
It is a object detection benchmark standard since 2012 when the VOC [7] retired. Simi-
larly to VOC, ILSVRC consists of two components: a publically available dataset and an
annual competition and corresponding workshop. The challenge has been held annually
since 2010 and has become a standard benchmark for large-scale object recognition.

ILSVRC annotations are divided into two categories:

1. image-level annotation of a binary label for the presence or absence of an object
class in the image,

2. object-level annotation of a tight bounding box and class label around an object
instance in the image.

It has 60,658 training images with 478,807 training objects from 200 object classes. Im-
ages are annotated using Amazon Mechanical Turk with 3 stage quality pipeline, contain-
ing ’drawing’, ’quality verification’ and ’coverage verification’ stages.
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It penalizes the algorithm for missing object instances, for duplicate detections of one
instance, and for false positive detections. The final metric for evaluating an algorithm
on a given object class is average precision over the different levels of recall achieved by
varying the threshold for confidence score (Section 2.4). To measure overall performance
of an object detector, mean average precision across all categories is used (Section 2.4).

2.3.4 KITTI

KITTI [20] object detection benchmark consists of 7481 training images and 7518
test images, comprising a total of 80.256 labeled objects. Datsets are captured by driv-
ing around the mid-size city of Karlsruhe, in rural areas and on highways. Up to 15
cars and 30 pedestrians are visible per image. Dataset provides accurate 3D bounding-
boxes for object classes such as cars, vans, trucks, pedestrians,cyclists and trams. It is a
3D object detection benchmark evaluating both 3D location and orientation predictions.
Ground-truth data is obtained by manually labeling objects in 3D point clouds produced
by Velodyne LIDAR, and projecting them back onto the image. This results in tracklets
with accurate 3D poses, which can be used to asses the performance of algorithms for 3D
orientation estimation.

First, average precision (explained in Section 2.4) is used to evaluate 2D object de-
tection performance. Detections are iteratively assigned to ground truth labels starting
with the largest overlap, measured by bounding box intersection over union. Detections
with IoU (explained in Section 2.4) > 0.5 count as true positives and multiple detections of
the same object count as false positives. Finally they evaluate performance of jointly de-
tecting objects and estimating their 3D orientation using their own measure called average
orientation similarity (AOS) [20].

2.4 Metrics

Performance metrics are used to determine how well the output of an algorithm
matches the ground truth. Different metrics capture different aspects of performance.
Using different metrics help developers to optimize on specific performance aspects. In
order to evaluate object detection performance, we need to understand how different met-
rics relate to different contexts, and focus only on the relevant metrics.

Back in 2002 Mariano, Vladimir Y., et al [21] defined 7 metrics that could be used
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for performance evaluation:

• Area-based recall for frame - a pixel-count-based metric that measures how well the
algorithm covers the pixel regions of the ground-truth. Computed for each frame,
and it is the weighted average for the whole data set.

• Area-based precision for frame - a pixel-count-based metric that measures how
well the algorithm minimized false alarms. Computed for each frame, and it is
the weighted average for the whole data set.

• Average fragmentation - a metric measuring how well the ground-truth object is
not broken into pieces. Every output box that overlaps the ground-truth object is
counted as a fragment for that object, even if the overlap is a single pixel. Intended
to penalize an algorithm for multiple output boxes covering a ground-truth object.

• Average object area recall - a metric measuring the average area recall of all the
ground-truth objects in the data set. The recall for an object is the proportion of its
area that is covered by the algorithm’s output boxes. The objects are treated equally
regardless of size.

• Average detected box area precision - this metrics is a counterpart of the previous
metric where the output boxes are examined instead of the ground truth objects.
Precision is computed for each output box and averaged for the whole frame. The
precision of a box is the proportion of its area that covers the ground truth objects.

• Localized object count recall - in this metric, a ground-truth object is considered
detected if a minimum proportion of its area is covered by the output boxes. Recall
is computed as the ratio of the number of detected objects with the total number
of ground-truth objects. The ground-truth objects are treated equally regardless of
size.

• Localized output box count precision - counterpart of previous metric. Counts the
number of output boxes that significantly covered the ground truth. Output boxes
are treated equally regardless of size.

IoU, also known as Jaccard Index or Jaccard similarity coefficient, is used in most
object detectors and evaluation tools. It measures similiarities between two sample sets
(in object detection context most commonly the bounding-box representations of location
on an image) and is calculated by dividing the area of intersection with the area of union.
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While in object detectors it is used to train the model to predict the confidence score, in
evaluation tools it is used to decide if the prediction is a hit or miss.

All common benchmark datasets use mAP to evaluate the performance of object
detector. average precision (AP) [22] is a metric that considers precision as a function
of recall and computes average value of precision over the interval of recall from r=0

to r=1. Sometimes an interpolated average precision [23] (often also called 11-point
interpolated average precision) is used to reduce the impact of "wiggles" by defining the
precision function as a the maximum precision over all recalls greater than r. For object
detectors, AP is computed for each class and different levels of recall is achieved by
varying treshold of confidence score. While mAP is usually simply a mean of the APs
over all classes, COCO [8] averages it over IoU tresholds from 0.5 to 0.95 with a step of
0.5, to penalize high number of bounding-boxes with wrong classification.
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3. Acquisition of validation data

To find out which of the available methods works best in our context, we decided to
evaluate performance of the available object detectors on our own dataset. For this we
needed to record video frames and annotate recorded videos.

3.1 Recording video frames

In order to create our own dataset, we first needed to gather sufficient amount of
data. There was no platform available yet at that time, so data collecting was done using
a regular passenger car with laptop running Autoware and sensors attached to the roof
rack. Without special vehicle for data acquisition, we had to prepare and set up all the
equipment for every session. This made it very time consuming and required presence
of several team members, To get a good respresentative sample of data we wanted to
drive around the planned route multiple times in different weather and light conditions
and managed to organize 3 sessions: in November, in January and in April.

Unfortunately the selection of available cameras was very limited and videos were
recorded with two different cameras:

• Pointgrey Flea3 USB3 camera @ 1280x1024(1,3MP) and

• Pointgrey Bumblebee2 stereo camera @ 648x488(0.3MP).

Furthermore, the quality of the videos recorded with Bumblebee2 was so low that we
were not able to use it for the analysis and were forced to using only the Flea3.

All videos were recorder at 7 frames per second (FPS) to provide more variance
while keeping the total number of frames from growing too high and not to over-
whelm the annotation task with too much similar frames. Cameras were connected
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to ROS using pointgrey_camera_driver node, which published all frames into
/camera/image_raw ROS topic. Messages from camera and other sensors were
saved into ROS data file (rosbag).

3.2 Annotating

Annotating, often also called ground-truthing, requires a human operator to manually
mark the boundaries of target objects, making pixel-level annotation very expensive task.
Use of simple bounding-box instead of pixel-level representation allows less expensive
ground-truthing and enables large volume and variety of video data to be ground-truthed.
Therefor, majority of datasets and object detection algorithms use axis-aligned bounding-
box to represent location of an object.

For annotating our recorded videos we considered different tools [24] [25], but de-
cided to use docker image version [26] of Video Annotation Tool from Irvine, Califor-
nia (VATIC) [27]. It is an open-source video annotation tool built on MySQL database
and Apache HTTP server, making it possible to run it on a server and access it anywhere,
without the need of installing anything locally. It has integration with Amazon Mechani-
cal Turk to oursource the annotation work, but in this work we used it in offline mode and
did all the annotation by ourselves. Despite few minor shortcomings it has a simple and
intuitive graphical user interface.

VATIC uses jpg images for each frame and provides tool to extract the frames from a
video. It keeps the images in specific directory structure to make it convenient to read the
frames in correct order. If you already have you frames as images, it has a tool to place
the sequence of images into desired structure. As our videos were recorded into rosbag
file as ros messages, we used image_saver node in ros image_view packages to
extract each frame as jpg image and turkic formatframes tool to divide images
into suitable directory structure for vatic.

VATIC uses class tag, axis-aligned bounding-box as representation of object location,
and boolean flags to mark object as occluded or outside of the view frame. Despite the
different way of representing the rectangle, usage of axis-aligned bounding-boxes made
it easier to analyze the results, because all object detectors use the same abstraction for
representing the predicted object location.

To create good quality annotations we focused on three properties: consistency, ac-
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curacy, exhaustiveness. Consistency was sustained by doing all of the annotations by
single person. For high accuracy we looked through all the annotated recordings multiple
times. Exhaustiveness was achieved by annotating everything that was interpretable as an
object of one of the relevant classes.

One of the drawbacks of VATIC in a context of autonomous vehicles turned out to be
the linear interpolation of bounding-boxes on intermediate frames. When annotating two
non-consecutive frames, it uses linear interpolation to add annotations to all the frames
inbetween. Linear interpolation works good on linearly moving objects, but on a moving
vehicle where camera is also moving, even otherwise linearly moving object do not appear
to be moving in a straight line with respect to camera.

At the time of annotating we were not aware of it, but there exists an external tool
called vatic-tracker [28] that can be integrated with VATIC. It replaces the linear inter-
polation with a object tracking algorithm using OpenCV and should help with increasing
the annotation speed noticeably when dealing with non-linear movements.

As VATIC had graphical user interface (GUI) only for annotation, other tasks
had to be done using command-line interface. To add new video frame into database
we used turkic load <identifier> </path/to/frames/directory>

-offline -blow-radius 0. Option -offline was used to mark the annotation
job as offline job instead of using Mechanical Turk. Option -blow-radius 0 was
used to tell VATIC not to discard bounding-box values on neightbouring frames when the
object is annotated on a new frame. To publish frames to webserver for annotaion we
used turkic publish -offline and to export annotations into text file we used
turkic dump <identifier> -o <output-file-name>.

In total, we annotated 6 different scenes, 4 from the session in January and 2 from
the session in April (due to the bad quality of the videos recorded with Bumblebee2
camera, we were not able to use any recording from the session in November). Each
scene contained 280-321 frames with an average of 2.4 objects on a frame.

3.3 Running detectors on acquired data

In order to perform the analysis, we stored the output of all object detectors on all 6
annotated recordings. We used Autoware nodes to run the object detectors, rosplay to
play the recorded rosbag and rostopic echo to save messages published by object de-
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tector into yaml file. Playing the rosbags in real-time resulted in more compute-intensive
detectors to struggle with proccessing all the frames on the recording. As our goal was to
isolate the performance factor and analyse that separately, we slowed down the playback
of the rosbags to get output for each frame from all detectors.
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4. Analysis of the results

4.1 Object-based statistics

To get an overview of how many objects were detected and missed, we computed a
so called object-based statistics, using IoU as a measure for accepting predicted object as
true positive (TP). This is basically implementation of a "localized object count recall"
introduced in [21]. On each frame we counted TPs, FNs and FPs using following rules:

• all ground truth (GT) objects which have any detected object with IoU above thresh-
old count as TP

• all GT objects without any detected object with IoU above threshold count as FN

• all detected objects without any GT object with IoU above threshold count as FP

• all detected objects that had a GT object with IoU above threshold, but were not
counted as TP due to some other detected object having higher IoU (multiple de-
tection of same object), were disregarded.

In this metric the concept of true negative (TN) is not used as the amount of possible TN
could be very high and have no statistical significance.

As in the context of our detection task multiple detections of the same GT object
doesn’t possess any threats, disregarding them just reduced the noise. Counting them as
TPs would be problematic as sum of TPs and FNs wouldn’t match the GT object count
any more. Counting them as FPs would not give us any valuable information, but rather
make it more difficult to detect more important FPs.

Finally we summed up all TPs, FNs and FPs to get the statistics for the whole scene.
All the figures representing object-based scores show the total values of each group for
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each detector for the whole scene. To make thing clear, when we talk about recall in the
following chapters, while not explicitly stated on the charts, we mean the propostion of
TPs to GTs (TPs + FNs).

4.2 Pixel-based statistics

To get an overview of relative area covered by hit and error we also computed a so
called pixel-based statistics by marking every pixel on each frame as TP, FN, FP or TN
following these rules:

• pixels that are not inside any object, GT or detected, are marked as TN;

• pixels that are inside at least one GT object and one detected object are marked as
TP;

• pixels that are inside at least one GT object but not inside any detected object are
marked as FN;

• pixels that are not inside any GT objects but are inside at least one detected object
are marked as FP.

Compared to just adding up errors on each object, this removes the effect of "double
counting" caused by overlapping areas and every pixel is only counted once. Then we
counted them on each frame and divided by total number of pixels (in out case 1280x1024
= 1310720) to get relative area of the frame covered by each group. Finally we averaged
the relative areas of each group to get the statistics for the whole scene.

This metric is somewhat similar to "area-based recall for frame" and "area-based
precision for frame" introduced in [21], but we use it together with the object base metric
to understand the average sizes of detected and missed objects.

4.3 Combining detectors

In addition to comparing the performance of different detectors, we wanted to see if
using multiple detectors simultaneously could improve the results. Therefor we merged
to outputs of YOLOv2 and SSD and performed the object-based analysis on that. Simply
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merging the outputs of detectors meant that we should see an increase in positives, both
TP and FP, but as we disregard all double detections with IoU over threshold, the increase
should be more noticeable in FPs and TPs should still represent portion of GT objects.

4.4 Performance

(a) Object based TP, FN and FP counts (b) Share of TP, FN and FP pixels (TN left out)

Figure 4.1: Object and pixel based results of scene 20180111_03

(a) Examples of YOLO FPs (b) SSD missing a pedestrian on crossing

Figure 4.2: Frames from scene 20180111_03

First scene was recorded in January with little snow and cloudy weather, containing
total of 3 different pedestrian and 14 different cars. From Figure 4.1 we can see that none
of the detectors performed well. Although there is significant difference between TP and
FN counts of detectors, only combined YOLOv2 and SSD was able to achieve more FNs
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than TPs. Pixel based scores show that while the number of FNs was higher than number
of TP, area covered by them was not so different, which indicates that FNs were smaller
than TPs. From single trackers YOLOv2 managed to show the best recall, but also had
much higher amount of FPs with 2 examples visible on Figure 4.2(a). Probably the most
important observation is that SSD was not able to detect the pedestrian crossing the road
Figure 4.2(b) until he was already half way across. Another thing to notice is that while
SSD had relatively low amount of FPs, area covered by them was very large.

(a) Object based TP, FN and FP counts (b) Share of TP, FN and FP pixels (TN left out)

Figure 4.3: Object and pixel based results of scene 20180111_04

(a) Parking lot with lots of cars (b) Examples of YOLO FPs

Figure 4.4: Frames from scene 20180111_03

Second scene was recorded on the same day with similar conditions but different
location and setting. Scene started in parking lot with lots of cars (Figure 4.4(a)) and
contained total of 17 different cars and only 1 pedestrian. In general, object analysis show
slightly better results (Figure 4.3) but none of the detectors was performing remarkably
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(a) Frame from scene 20180111_03 (b) Frame from scene 20180111_04

Figure 4.5: Large FP caused by the visibility of the front of our test car

better. Different from first scene is that here SSD managed to achieve best recall, with
amount of FNs still very high, but the small area of FNs on Figure 4.3(b) indicates that
average size of the missed object was relatively small and thus the objects were probably
far away. Figure 4.4(b) shows again examples of FPs triggered by YOLOv2 detecting
trash bins as cars, causing much higher amount of FPs than SSD. Similarly to the previous
scene, we can see that SSD had lowest number of FPs, but average area was very large.
When visualizing the outputs, we discovered that it in both scenes it was caused by the
front of the car being visible on the frames and SSD detecting it as a car (Figure 4.5).
We could crop the bottom part of the frames before passing them to detector to avoid
these FNs, but we can just ignore them, because camera placement on the final vehicle
eliminates this problem.

(a) Object based TP, FN and FP counts (b) Share of TP, FN and FP pixels (TN left out)

Figure 4.6: Object and pixel based results of scene 20180111_06

22



(a) Examples of Fast-RCNN FPs (b) Examples of Fast-RCNN FPs

Figure 4.7: Frames from scene 20180111_06

Third scene again was recorded on the same day as first and second, but the setup
was a parking lot with cars parked sparsely, no pedestrian and few cars passing by on the
road behind the parking lot. From Figure 4.6 we can see that for some reason Fast-RCNN
was performing very poorly as seen on Figure 4.7(a), failing to detect all cars except one
on the left edge of the screen, and Figure 4.7(b), detecting one car as three smaller ones
and causing 3 FNs instead of 1 TP. YOLOv2 managed to show again the best results and
also noticeable is that here combined detector had very little edge over YOLO in recall. In
general results were similar to previous scenes (with an exception of Fast-RCNN), giving
approximately same amount of TPs and FNs, but Figure 4.6(b) indicates that FNs were
on an average 3-4 times smaller.

(a) Object based TP, FN and FP counts (b) Share of TP, FN and FP pixels (TN left out)

Figure 4.8: Object and pixel based results of scene 20180111_07

Fourth scene was selected as a test how consistently detectors perform. It was
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(a) (b)

Figure 4.9: Frames from scene 20180111_07. Examples of Fast-RCNN and SSD failing
to detect a pedestrian

recorded in same conditions, mostly in same location and with similar setup as the first
scene, having total of 9 cars and 3 pedestrians. In general, as seen on Figure 4.8, re-
sults are quite similar to the first scene having more FNs than TPs, except here YOLOv2
showed even more significant advantage over others and and combining it with SSD didn’t
have much effect. Figure 4.8(b) shows that Fast-RCNN and SSD were missing large GT
objects with examples of missed pedestrian on Figure 4.9.

(a) Object based TP, FN and FP counts (b) Share of TP, FN and FP pixels (TN left out)

Figure 4.10: Object and pixel based results of scene 20180430_02

Fifth scene was recorded in April with dry and sunny weather. Setup was easier
than in previous scenes, containing only total of 3 persons and 1 car, but frontal sun and
high contrasts increased difficulty of the task. With an exception of Fast-RCNN, results
(Figure 4.10) were pretty good. While YOLO managed to show strong recall, it came
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(a) Example of YOLO FP (b) SSD and YOLO fail to accurately locate

Figure 4.11: Frames from scene 20180430_02

at an expense of high FPs count, mainly caused by a detection of same non-existent car
(Figure 4.11(a)) on more than half of the frames. In contrast, SSD had just few FPs, but
also noticeably lower recall. Another example of this scene on Figure 4.11(b) shows how
SSD (green box) and YOLO (blue box) both failed with accurately locating the pedestrian
(yellow box) very close to the camera.

(a) Object based TP, FN and FP counts (b) Share of TP, FN and FP pixels (TN left out)

Figure 4.12: Object and pixel based results of scene 20180430_03

Sixth scene was recorded on the same day and with similar weather and light condi-
tions as fifth scene. Setup was more difficult with total of 4 pedestrians and 3 cars, but this
time with rear sun. Figure 4.12 shows that again there is significant difference between
object-based values of detectors, amount of FNs was still quite high ranging from 0.7 for
YOLO to 0.25 for Fast-RCNN. Pixel-based values on Figure 4.12(b) show that FNs were
on average smaller than TPs. One thing to notice on this scene is that rear sun dropped the
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(a) SSD FP caused by a shadow (b) YOLO FP caused by a shadow

Figure 4.13: Frames from scene 20180430_03

shadow of ourself in front of us, causing both SSD (Figure 4.13(a)) and YOLO (Figure
4.13(b)) to mistakenly predict it to be a person.

4.5 Tuning of the metric

Observing statistics of all the scenes together, we noticed that an average size of FN
detections was, with few exceptions for Fast-RCNN and SSD, smaller than average size
of TP detections. As object further from the camera appear smaller on the video, there
was a reason to believe that many on the FNs are far from the camera. This brought us to
a hypothesis, that considerable amount of FNs were small object that are far from us and
therefor we don’t care if we fail to detect them.

With a help of dynamics and lens optics, we were able to test our hypothesis. Know-
ing maximum speed, reaction time and braking deceleration, we can calculate maximum
stopping distance for the car and consider all the object farther away as "don’t care". We
know that the maximum speed for the vehicle will be 20km/h, but as the vehicle is still
being built, we don’t yet know the breaking deceleration for it. Therefor we used an aver-
age passenger car breaking deceleration of 5.4m/s2. Reaction time in out case is basically
the time it will take for a detector node from taking an input until publishing output. Due
to detectors having different speeds, we decided to use average human reaction time of
0.7sec which should be safe for even the slowest Fast-RCNN. This gave us 6.8m for stop-
ping distance for the vehicle moving at its maximum speed of 20km/h. So, with a little
buffer, everything that is farther than 10m can be considered as "don’t care".
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To figure out how far objects are by looking at the video frame, we need to know
details about the camera and the actual object. More precisely, if we know:

• lens focal length;

• sensor size in mm;

• sensor size in pixels;

• size of the object on image (in pixels, width or height);

• approximate width or height of the object in real life in meters;

, we can calculate approximate distance between the camera and the object in real life. Es-
timating approximate minimum size of a car and a pedestrian and using above-mentioned
principles, we computed the threshold size for both and assumed that all undetected ob-
jects below the threshold size are at least certain distance away from the camera. Both
objects with respective threshold size and frequent aspect ratio are visualized on Figure
4.14. As distant "don’t care" objects are not safety-critical in our context, we trimmed the
FN count by removing all instances where area of the GT object is below the threshold.

(a)

Figure 4.14: Threshold sizes for "don’t care" car and pedestrian objects

Results (Figure 4.15) show that our hypothesis was correct and with eliminating
small undetected GT objects we were able to reduce FN count remarkably. While the
percentage of decrease was different on scenes, results show that all detectors were strug-
gling with detecting small objects. With an exception in scene 20180430_02, number of
eliminated FNs was almost equal for all detectors. On an average, we were able to remove
around 50% of false-negatives.
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Figure 4.15: Object based statistics with small FNs trimmed off

In a safe-critical application like self-driving car, we need to be extremely cautious
with false-negatives. Despite the considerable decrease, the amount of remained false-
negatives is still substantial. Object tracking can help with filling gaps in sequential
frames, but it still depends on detecting the object first. Considering these results, fur-
ther steps need to be done to improve the recall of the detector.

4.6 Speed and efficiency

In real-time applications like self-driving car almost as important as performance
of the detectors is speed and efficiency. Ability to process frames faster translates into
faster reaction times. As longer reaction time prolongs the stopping distance, it is safety
critical to be able to process the frame within a certain time-frame, whereas length of the
time-frame depends on the speed of the car.

To understand GPU load of each detector, we used rosplay to play recorded videos
in real-time (1280x1024 @ 7 FPS) and Autoware nodes to run the object detector. During
the playback we used NVidia System Management Interface (nvidia-smi) to log out the
GPU load. To examine how well each object detector can process real-time input, we
counted how many frames each detector was able to process. We ran this experiment on 2
different GPUs: NVidia Tesla K40m (Table 4.1) and NVidia Geforce GTX 1080 Ti (Table
4.2).
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Table 4.1: GPU load and processed frame count on NVidia Tesla K40m

Object detector GPU load processed/total frames
Fast-RCNN 100% 240/961
SSD 70-90% 961/961
YOLOv2 30-50% 960/961

Table 4.2: GPU load and processed frame count on NVidia Geforce GTX 1080 Ti

Object detector GPU load processed/total frames
Fast-RCNN 80-100% 734/961
SSD 18-36% 960/961
YOLOv2 10-24% 960/961

From the results we can see that there is noticeable difference of GPU load between
object detectors on both GPUs. Fast-RCNN was utilizing the whole GPU on both ex-
periments and still wasn’t able to process all frames. Managing to process only 76% of
the frames on the more powerful Geforce GTX 1080 Ti clearly indicated that Fast-RCNN
might not be the best option for a real-time application like self-driving car. While SSD
and YOLOv2 both managed to process all1 frames on both GPUs, there was considerable
difference between the load even on the Geforce GTX 1080 Ti, making YOLOv2 the best
choice for speed and efficiency.

11 frame deficit was caused by the initialization proccess and was not considered important in the statis-
tics.
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5. Conclusion

With emergence of CNNs the field of computer vision has advanced vastly resulting
in an abundance of different methods for detecting object on a video. Quality of a method
is usually measured using one of the benchmark datasets which evaluate how well the
method can perform with large number of different object classes and contexts. In case
of a specific context, a state-of-the-art method that is trained and evaluated on a context-
free dataset might not be the top performer. If you have enough context specific data you
can train you own object detector, but annotating ground truth data for object detection
is relatively expensive task. Therefor using a pre-trained model is often the only option,
but there was no developed method that helps to decide which of the available methods is
best considering specific context and application.

To understand how reliably the available methods can detect cars and pedestrians,
we developed a method for analyzing and evaluating performance of different object de-
tectors in autonomous self-driving car context. The general idea of our method is using
our own benchmark dataset containing relevant data and relevant, context specific metrics
to measure the performance of different methods. Using this method, we first recorded
scenes on the planned route in different weather and light conditions and selected 6 scenes
that give us a good sample set. Next we created ground truth data by annotating selected
scenes, ran each object detector on each annotated scene and gathered performance statis-
tics by comparing the output to the ground truth using context specific metrics. Finally we
compared the statistics of different object detectors and used annotation tool to visualize
prediction of object detectors together with ground truth data to get better understanding
of the statistics.

While out of the three available detectors YOLOv2 [6] showed best performance
and efficiency, results clearly indicate that none of the analysed object detectors is able
to detect objects with reliability required for safety-critical applications like self-driving
cars. To guarantee safety, we can not rely only on the object detector, but need to use it in
combination with other sensors, that can fill in the weak spots.
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There are several ideas how to further improve the performance. As we only per-
formed the analysis with one camera, using different cameras and camera configurations
could result in better performance and should be studied. Fine tuning a pre-trained detec-
tor is widely used method to adapt it to certain context, but requires more training data.
Futhermore, there could be new and better methods that were not studied in this thesis, but
this requires developing integration with Autoware. In fact integration with new version
of YOLO, YOLOv3, is in development and could potentially perform better than studied
detectors.
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