
Archetypes Based Techniques for
Development of Domains,

Requirements and Software

GUNNAR PIHO

P R E S SP R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C67

Towards LIMS Software Factory

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Dissertation was accepted for the defence of the degree of Doctor of

Philosophy in Engineering on 14
th

 November 2011.

Supervisor: Professor Jaak Tepandi, Department of Informatics, Tallinn

University of Technology

Opponents: Professor Janis Grundspenkis, Faculty of Computer Science and

Computer Systems, Riga Technical University

Professor Marlon Dumas, Institute of Computer Science,

University of Tartu

Defence of the thesis: 19
th
 December 2011

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and

achievement, submitted for the doctoral degree at Tallinn University of

Technology has not been submitted for any academic degree.

Signature of candidate:

Date:

Copyright: Gunnar Piho 2011

ISSN 1406-4731

ISBN 978-9949-23-211-6 (publication)

ISBN 978-9949-23-212-3 (PDF)

INFORMAATIKA JA SÜSTEEMITEHNIKA C67

Arhetüüpidel tuginevad
tehnikad valdkondade, nõuete ja

tarkvara arendamiseks

GUNNAR PIHO

LIMS-i tarkvaravabriku näitel

To my family

 To my parents

 To my teachers

7

ABSTRACT

Software development is a complex task. Developing dependable software
is expensive, takes time and requires knowledge, tools and also techniques.
In order to alleviate growing demand for customizable software, a variety
of ideas and initiatives (e.g. software product lines, software factories, etc.)
for developing software by reusing archetypal components have been
proposed.

This work is based on software engineering triptych (from domain model via

requirements to software) proposed by Dines Bjørner and on archetypes and

archetype pattern base initiative proposed by Arlow and Neustadt. These ideas

are used in engineering of domain models for clinical laboratory and in LIMS

(Laboratory Information Management System) software development.

Business archetypes and archetype patterns are originally designed and

introduced by Jim Arlow and Ila Neustadt. Business archetype patterns

(product, party, order, inventory, quantity and rule), composed by business

archetypes (person‘s name, address, phone number, etc.), describe the universe

of discourse of businesses as it is, neither referring to the software requirements

nor to the software design.
We analysed Arlow and Neustadt‘s business archetype patterns according to

the Zachman Framework and Bjørner‘s domain analysis methodology. We also

compared these archetype patterns with analysis and data model patterns by

Hay, Fowler, and Silverston. As a result, the refined and enhanced version of

business archetypes and archetype patterns is presented. We propose this refined

and enhanced version of archetypes and archetype patterns for engineering of

business domains, requirements and software. The clinical laboratory domain

model, we designed, is based on this refined and enhanced version of archetypes

and archetype patterns. We utilize this clinical laboratory domain model in real

life LIMS software development.

The resulted work is archetypes and archetype patterns based techniques for

development of domains, requirements and software. In our understanding by

using these techniques we can lead software development towards development

of software factory. The wider research goal is to develop archetypes and

archetype patterns based information systems that software end users, in

collaboration with software developers, are able to change safely and easily

according to changes in business processes.

8

KOKKUVÕTE

Tarkvara arendamine on keeruline protsess. Usaldusväärse tarkvara arendamine

on kallis, võtab aega ning nõuab teadmisi, töövahendeid ja tehnikaid.

Leevendamaks üha kasvavat nõudlust mugandatava tarkvara tootmise järele on

viimasel ajal välja arendatud erinevaid arhetüüpsete rakenduste genereerimise

ja/või rakenduste komponentidest kokkupanemise ideid ja initsiatiive kas siis

tarkvaravabriku või tarkvara tooteliini nime all.

Antud töös on lähtutud Dines Bjørneri tarkvara triptühhoonia (valdkonna

mudelist nõuete kaudu korrektse tarkvarani) ning Arlow ja Neustadti

arhetüüpide ja arhetüüpmustrite ideedest. Neid ideid on rakendatud

laboratooriumi valdkonnamudeli ja sellel valdkonnamudelil põhineva

laboratooriumi infosüsteemi arendamisel.

Originaalis Arlow ja Neustadti poolt disainitud äri arhetüüpmustrid (toode,

osapool, tellimus, inventar, kvantiteet ja reegel) koosnevad äri arhetüüpidest

(inimese nimi, aadress, telefoni number, jne). Sisuliselt on tegemist mudelitega,

mis abstraheerivad reaalset ärimaailma nii nagu see on ilma igasuguste viideteta

tarkvarale ning tarkvarale esitatavatele nõuetele.

Neid Arlow ja Neustadti poolt pakutud arhetüüpe ja arhetüüpmustreid oleme

lähtuvalt Zachmani raamistikust analüüsinud Bjørneri valdkonnaanalüüsi

metoodikat kasutades. Ka oleme võrrelnud Arlow ja Neustadti mustreid Hay,

Fowleri ja Silverstoni vastavate mustritega. Tulemuseks saime äri arhetüüpide

ja arhetüüpmustrite parandatud ja täiendatud versiooni, mida me pakume

valdkondade, nõuete ja tarkvara arendamiseks. Neid parandatud arhetüüpe ja

arhetüüpmustreid oleme kasutanud meditsiinilaboratooriumi valdkonnamudeli

arendamisel. Loodud meditsiinilaboratooriumi valdkonnamudelit aga kasutame

reaalse laboratooriumi infosüsteemi arendamisel.

Töö tulemused on esitatud arhetüüpidel põhinevate tehnikatena valdkondade,

nõuete ja tarkvara arendamiseks. Me leiame, et arhetüüpidel tuginevate

tehnikate abil on võimalik liikuda tarkvaravabrikute arendamise suunas.

Kaugemaks eesmärgiks on välja arendada arhetüüpidel ja arhetüüpmustritel

tuginevad infosüsteemid, mida lõppkasutajad koos arendajatega on võimelised

lihtsalt ja turvaliselt muutma vastavalt muutuvatele ärivajadustele.

9

ACKNOWLEDGEMENTS

I would like to express my gratitude to many people who supported me while I

was working on this dissertation. I thank my supervisor Professor Jaak Tepandi.

I thank opponents of current thesis, Professor Janis Grundspenkis from Riga

Technical University and Professor Marlon Dumas from University of Tartu. I

am grateful to my colleagues from Institute of Informatics (Tallinn University

of Technology) and Clinical and Biomedical Proteomic Group (Cancer

Research Clinical Centre, Leeds Institute of Molecular Medicine, St James's

University Hospital at University of Leeds). Special thanks to Mrs Reet Elling

from Tallinn University of Technology for helping me in paperwork during my

doctoral studies. I also thank the Tallinn University of Technology, the Estonian

Science Foundation, the Estonian Information Technology Foundation, the

Estonian Entrepreneurship University of Applied Sciences and University of

Leeds for financial support. I thank all of my teachers. I thank my family - my

parents Ilmar and Õilme, my wife Sirje and my children Sandra, Laura, Paul and

Rasmus.

10

CONTENTS

ABSTRACT .. 7
KOKKUVÕTE ... 8
ACKNOWLEDGEMENTS ... 9
CONTENTS .. 10
ABBREVIATIONS ... 11
1 INTRODUCTION ... 12

1.1 RESEARCH PROBLEM ... 12
1.2 RESEARCH APPROACH ... 14
1.3 CONTRIBUTIONS .. 15
1.4 HYPOTHESIS .. 16
1.5 DELIMITATIONS ... 17
1.6 OUTLINE OF THE THESIS ... 17

2 ARCHETYPES BASED DEVELOPMENT .. 18
2.1 FROM DOMAIN VIA REQUIREMENTS TO SOFTWARE.. 18
2.2 TEST DRIVEN MODELLING .. 21
2.3 FROM DOMAIN MODEL TO SOFTWARE ... 29
2.4 VALIDATION AND VERIFICATION... 30
2.5 SUMMARY .. 32

3 MODELS OF ARCHETYPES AND ARCHETYPE PATTERNS .. 33
3.1 METHODOLOGY ... 33
3.2 CREATING OF INITIAL MODELS .. 34
3.3 EVALUATION OF MODELS... 41
3.4 FINE TUNING OF MODELS .. 50
3.5 DEFINITIONS OF MODELS ... 53
3.6 USING OF MODELS ... 75
3.7 SUMMARY .. 82

4 CASE STUDY: CLINICAL LABORATORY SOFTWARE .. 84
4.1 MOTIVATION FOR LIMS AND LIMS SF DEVELOPMENTS ... 85
4.2 CLINICAL LABORATORY DOMAIN MODEL ... 88
4.3 LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) .. 97
4.4 TOWARDS CLINICAL LABORATORY SOFTWARE FACTORY .. 103
4.5 SUMMARY .. 117

5 EVALUATION AND ANALYSIS OF ABD ...118
5.1 DOMAIN ANALYSIS AND MODELLING .. 118
5.2 SOFTWARE DEVELOPMENT PROCESSES AND METHODOLOGIES ... 125

6 CONCLUSION ..134
6.1 CONTRIBUTIONS .. 134
6.2 HYPOTHESIS .. 135
6.3 FUTURE WORK .. 138

REFERENCES ..140
7 APPENDICES ...146

7.1 ORDER LIFECYCLE ... 146
7.2 USING THE BUSINESS PROCESS ARCHETYPE PATTERN ... 147
7.3 ELULUGU ... 163
7.4 CURRICULUM VITAE ... 164
7.5 LIST OF ARTICLES PUBLISHED BY THE THESIS AUTHOR ... 165

11

ABBREVIATIONS

A&AP - Archetypes and Archetype Patterns

ABD - Archetypes Based Development

AP - Archetype Patterns

API - Application Programming Interface

ASTM - American Society for Testing and Materials

CBPG - Clinical and Biomedical Proteomics Group

CGS - The Centimetre-Gram-Second System

CIL - Common Intermediate Language

CIM – Computing Independent Model

CMM – Capability Maturity Model

CMMI – Capability Maturity Model Integration

CRM – Customer Relationship Management

DDD – Domain Driven Design

DM – Domain Model

DSL – Domain Specific Language

DLL – Dynamic Link Library

HL7 – Health Level Seven International

IDE - Integrated Development Environment

IT – Information Technology

LIMS - Laboratory Information Management System

MDA – Model Driven Architecture

MTA - Medical Technical Assistant

OO - Object Oriented

PIM – Platform Independent Model

PSM – Platform Specific Model

RAD - Rapid Application Development

SF – Software Factory

SI – The International System of Units

SPL - Software Product Line

TDD – Test Driven Development

TDM - Test Driven Modelling

QC – Quality Control

UML – Universal Modelling Language

UP – Unified Process

VAT – Value Added Tax

WCF - Windows Communication Foundations

WPF - Windows Presentation Foundations

XP – Extreme Programming

12

1 INTRODUCTION

We propose archetypes and archetype patterns (A&AP) based techniques for

development of domains, requirements and software. We use these techniques

in development of a real life laboratory information management system

(LIMS) [1] software and LIMS Software Factory.

We have published fourteen conference papers (Appendix 7.5) connected to

this thesis. Conference paper [2] summarizing the main points of the current

thesis was accepted by 21st European Japanese Conference on Information

Modelling and Knowledge Bases (June 6-10, 2011, Tallinn, Estonia). Post

conference proceedings of this conference will be published in 2012 by IOS,

Amsterdam, in the series "Frontiers in Artificial Intelligence and Applications".

1.1 Research Problem

There are two main challenges in software development: complexity and

change. Software engineers have tried to cope with complexity by applying

object oriented development techniques [3 pp. 66-86] and formal methodologies

[4]. To cope with change, software process methodologies [3 pp. 87-105],

including agile software development methodologies [5], have been used. When

developing enterprise applications, software engineers have to embrace both

complexity as well as change.

Layering is a common technique for complicated software systems [6 p. 17].

Both .Net and Java framework have tools for developing 4-tier software systems

[7]. Nowadays 4-tier software architecture is a modification of common 3-tier

architecture [6 pp. 19-22]. 3-tier architecture has got a data source layer

(accessing data), a domain model layer (defining logic) and a presentation layer

(using logic). 4-tier architecture has an additional communication layer

(containing and connecting logic).

In our understanding the communication layer and the presentation layer are

similar in their nature. The presentation layer gives humans an interface (forms,

documents, etc.) to the defined logic (domain model). Similarly, the

communication layer gives artificial agents (services, software systems, etc.) an

interface (communication protocols, etc.) to the defined logic. This is why in the

following we are describing changes only in the presentation (together with the

communication layer), the domain and the data source layers. We see following

possibilities to change the presentation (and the communication) layer:

UI.1. Design changes in external shape (form);

UI.2. Changes in the presentation or in the communication layer without

changes in other (domain logic and data source) layers;

UI.3. Changes in the presentation or in the communication layer which

result in need to change the domain logic layer.

Normally, the presentation and the communication layer have no direct access

to the data source layer. Therefore, we omit the possibility to change the

13

presentation (and the communication) layer so that the data source layer has to

be changed. Similarly to the changes in the presentation (and the

communication) layer, there can be changes in the domain logic and in the data

source layers.

The domain logic layer must be designed (good design principle) without

any access neither to the presentation nor to the communication layers. It

follows that possible types of changes in the domain layer are:

DM.1. Refactoring [8], which means altering internal structure of the

domain logic without changing its nature or external behaviour;

DM.2. Principal change (changing the nature or the external behaviour) in

the domain layer without changes in the data source layer;

DM.3. Change in the domain layer which also requires the change in the

data source layer.

Data source layer has to be designed without any access to other layers. It

follows, that changes in the data source layer are:

DB.1. Refactoring, which means altering internal structure (renaming of

tables, renaming of columns, etc.) without any need to transfer data

from the old database format to the new one;

DB.2. Principal change of database layout so that we have to transfer data

from the old database format to the new one.

As changes of type UI.1 can be conducted by using tools and technologies like

Windows Presentation Foundations (WPF) [9], Windows Communication

Foundations (WCF) [10], BizTalk [11] or similar, these types of changes are out

of our interest. Refactoring (DM.1, DB.1) is also out of our interest. By

refactoring we mean making small changes step by step in order to improve the

design of existing code [12 p. 37] or database layout during the development.

Refactoring‘s are not related to the domain nor to software requirements and are

supported by different refactoring tools like [13]. As compound

changes (UI.3 and DM.3) can be reduced to two changes independent from each

other (e.g. UI.3=DM.2+UI.2), our main interest in current thesis are

independent changes DB.2, DM.2 and UI.2.

We are looking for ways to minimize (better to completely avoid) changes in

the domain logic (DM.2) and in the data source (DB.2) layers as these changes

are risky and time consuming. We are trying to find possibilities to fulfil user

requirements only by making changes in the presentation or in the

communication layers (UI.2). It would be nice if these changes can be made by

end users even at run-time. Current solutions (e.g. WPF, WCF, BizTalk and

similar) are sufficient () when the domain logic and the data source

layers are designed exactly according to customer‘s business needs.

Unfortunately customer‘s business needs are constantly changing.

14

1.2 Research Approach

We use a case-study-based research methodology. The case is Laboratory

Information Management System (LIMS) software development in Clinical and

Biomedical Proteomics Group (Cancer Research UK Clinical Centre, Leeds

Institute of Molecular Medicine, St. James University Hospital at University of

Leeds). LIMS represents a class of computer systems designed to manage

laboratory information [1].

In research laboratories, like CBPG, business processes are changing

constantly and different research groups within the same research laboratory,

sometimes even different investigators in one and the same research group,

require different business processes and different or differently organized data.

While standardized in some ways, such system for scientists has to be flexible

and adaptable so, that there are customizable possibilities to describe data,

knowledge and also research methods. This is why we decided not to develop

only LIMS, but decided to develop a software factory for LIMS.

By Greenfield, et al. [3], the software factory is the domain specific RAD

(Rapid Application Development) with frameworks, languages, patterns and

tools. When general-purpose RAD uses „logical information about the software

captured by general-purpose development artefacts―, then the software factory

uses „conceptual information captured by domain specific models― [3 p. 564].

Figure 1-1: The Architecture of the LIMS Software Factory

Figure 1-1 illustrates our research and developments towards LIMS Software

Factory (SF). Based on the domain model of laboratory, the LIMS SF

architecture consists of the LIMS DSL (domain specific language), the LIMS

Engine and the Tests Engine. Requirements for the particular LIMS software

will be described with the LIMS DSL. The LIMS Engine has to generate the

LIMS software according to these requirements. The Tests Engine has to

validate these requirements with respect to the domain model of laboratory and

has to verify the generated LIMS software. The Figure 1-1 is based on the

software engineering triptych (from domain model via requirements to

software). The key point is that all models we are talking about are not only

documentation artefacts, but also source artefacts, as common in software

factories [3].

15

In our understanding, to minimize or avoid changes in the domain logic and in

the data source layers, as described in Section 1.1, we need a universal domain

model that is implemented in the domain logic layer together with supporting

database layout and data access layer. This domain model has to be mature,

ought not to be changed all the time and it has to be possible to use this domain

model to fulfil various user specific requirements for a particular class of

software systems. If such domain model (e.g. for clinical laboratory) is

available, then in order to make changes in the presentation layer or in the

communication layer (UI.2, Section 1.1) we need some tools. By using these

tools, the user (preferably end user) has to be able to define and change

(preferably at run-time) the formats of user interfaces (web, windows, mobile,

etc.) and other electronic documents (printouts, communication protocols, input

documents, etc.) according to business requirements. These tools should

preferably be supported by DSL that is based on the domain model mentioned

above.

In current thesis we concentrate on developments of domain models for

laboratory and on possibilities to use these domain models of laboratory in

specification and validation of LIMS software requirements and in verification

of software. With current thesis, we summarize current status of our research

and developments towards LIMS software factory (Figure 1-1) components -

LIMS DSL, LIMS Engine and Test Engine. We propose business archetypes

and archetype patterns (A&AP) based approach for modelling and development

of domain models. A&AP are models of base concepts (e.g. role) from which

all concepts of the same kind (e.g. clinician, patient, customer, etc.) are

originated. A&AP describe the universe of discourse of businesses as it is,

neither referring to the software requirements nor to the software design.

Models for business A&AP are originally proposed by Arlow and Neustadt

[14]. We have improved these A&AP models and propose archetypes based

techniques (ABD) for development of domains, requirements and software. In

ABD we utilize these improved A&AP models.

With LIMS software developments in CBPG we are looking for and evaluate

possibilities to use proposed A&AP models and ABD techniques in real life

software development. Our special interest is to design A&AP and domain

models, based on these A&AP, as abstract and universal as possible. We try to

find possibilities to specify user requirements (and even domain models) at

runtime by using these abstract and universal domain models and A&APs. We

are also looking for possibilities to validate so specified requirements and verify

software generated according to so specified requirements.

1.3 Contributions

The contributions of current thesis are:

1. Archetypes Based Development techniques (ABD) for development of

domains, requirements and software;

16

ABD includes

a. ZF (Zachman Framework) columns based analysis (by asking

questions what, how, where, who, when and why) and design

(products, processes, locations, persons, events and rules) of

domains and requirements by using archetypes and archetype

patterns.

b. ZF rows based development – from conceptual and semantic

models via logical, physical and detailed models to software

product.

2. Improved models of business archetypes and archetype patterns (A&AP).

A&AP are models (code artefacts) for independent phenomena (products,

processes, locations, persons, events and rules) of ZF.

ABD is presented in Part 2. A&AP models are presented in Part 3. In Part 4 we

exemplify the usefulness of ABD and A&AP models in real life software

development. In Part 5 we evaluate ABD and A&AP from the perspectives of

domain engineering and software development methodologies.

1.4 Hypothesis

We claim that archetypes based development techniques (ABD) together with

proposed models of business archetypes and archetype patterns (A&AP) lead

software development towards software factory (SF) development and thence

towards possibilities to fulfil user requirements by making changes only in the

presentation or in the communication layers as described in Section 1.1.

In our understanding this claim can be summed up in the following

conjectural points:

1. Triptych software development (from domain models via requirements to

software) is possible and reasonable.

2. We can develop models (frameworks, source artefacts) of A&AP. We can

develop domain models by using these A&AP models.

3. We can specify user requirements by using domain and/or A&AP models.

We can generate software according to so specified user requirements.

4. We can validate user requirements and verify software by using these

models. User requirements can falsify domain as well as A&AP models.

5. We can improve and expand A&AP and domain models. We can reduce

risks associated with changes in A&AP and domain models.

6. We can build different tools (generators of UI and other source artefacts,

languages for end users to describe requirements, validation and verification

tools for requirements and software, etc.) on top of these models. A&AP,

domain models and associated tools form software factories. We can

develop software factories so, that software end users can change software

safety and easily even at runtime by making changes only in the

presentation or in the communication layers.

17

1.5 Delimitations

The following restrictions should be considered:

1. The ABD, A&AP and laboratory domain models are based solely on the

author‘s experiences in development of different software for clinical

laboratories.

2. The main focus of thesis is on proof-of-concepts of development directions

and strategies for author‘s current real life LIMS software project.

3. Current real life LIMS software, used in everyday routine of CBPG, should

to be taken as prototype software in context of current thesis.

4. The presented A&AP model is designed, but not finally realized.

5. The presented laboratory domain model is designed, but not finally realized.

6. In current version of real life LIMS software only simplified versions of

both (A&AP and laboratory domain) models are used.

7. In current version of real life LIMS software only some simple (A&AP

based DB layout, generating of UI, some documents based configurations)

elements of prospective software factory are used.

1.6 Outline of the Thesis

Archetypes Based Development techniques are described in Part 2. These

techniques include Zachman Framework based analysis (Section 2.1.1), triptych

software process (Section 2.1.2) and test driven modelling (Section 2.2). We

exemplify how requirements can be specified (Section 2.3) and validated

(Section 2.4) by using these techniques.

We use these techniques when improving models of archetypes and

archetype patterns, originally introduced by Arlow and Neustadt (Part 3). We

describe methodology (Section 3.1) and create initial models (Section 3.2). In

Section 3.3 we evaluate these models by comparing them with models by

Fowler [15], Hay [16] and Silverston [17]. We proceed with fine tuning

(Section 3.4) and definitions (Section 3.5) of archetypes and archetype patterns

and consummate (Section 3.6) with discussions about using these improved

models of A&AP in development of domain models.

The usefulness of proposed techniques and models is exemplified in Part 4

where the clinical laboratory domain model (Section 4.2) and real life LIMS

development (Section 4.3) is described. In Section 4.4 we propose a theoretical

foundation for development of software factories and evolutionary information

systems. This theoretical foundation utilizes archetypes and archetype patterns

based domain models and P-systems (membrane computing) by G. Paun [18].

Archetypes Based Development techniques (as explained in Part 5) are in

agreement with and complement important software development processes and

methodologies, such as Bjørner‘s domain modelling (Section 5.1), Model

Driven Architecture (Section 5.2.3), Extreme Programming (Section 5.2.4) and

Capability Maturity Model Integration for Development (Section 5.2.5).

18

2 ARCHETYPES BASED DEVELOPMENT

In the following, we explain the main ideas behind archetypes based techniques

for development of domains, requirements and software. We call these

techniques ABD (Archetypes Based Development). In explanations we use a

simple domain of quantity. The ideas of current part were first published in the

paper ―The Zachman Framework with Archetypes and Archetype Patterns‖ [19]

presented in the Baltic Database and Information Systems conference, Riga,

Latvia, 2010. We presented the ideas of Test Driven Modelling in MIPRO

conference, Opatia, Croatia, 2011 [20].

2.1 From Domain via Requirements to Software

According to software engineering triptych, in order to develop software we

have to

1) Informally and/or formally describe a domain (𝒟);

2) Derive requirements () from these domain descriptions; and

3) Finally from these requirements we have to determine software design

specifications and implement the software (), so that 𝒟

(meaning the software is correct) holds [21].

The term domain or application domain can be anything to which computing

can be applied [22]. In ABD, the archetype patterns, domain models and

software requirements are analysed and modelled according to the Zachman

Framework (ZF) [23]. ZF for enterprise architecture has been widely accepted

as a standard for identifying and organizing descriptive representations that have

critical roles in enterprise management and system development. For this

reason, the ZF was selected as a reference model for ABD.

ZF is a two dimensional matrix consisting of 6 rows and 6 columns. Each

column of ZF describes a single, independent phenomenon. These independent

phenomena are things (what), processes (how), locations (where), people (who),

events (when) and strategies (why). In ABD, these independent phenomena are

analysed and developed by using product (what), business process (how),

organization structure (where), person (who), order and inventory (when) as

well as rule (why) archetype patterns.

2.1.1 Zachman Framework Based Analysis

Table 2-1 illustrates how in ABD we use product, party and party relationship,

order and inventory, rule, quantity and money archetype patterns for modelling

of independent phenomena of enterprises described by columns of ZF.

Column 1 (what, things) describes what products (either goods or services)

are and how these products are related to each other. Examples of product

relations are ―produced by using‖, ―produced from‖, ―is a component of‖,

―belongs to‖, ―upgradable to‖, ―substituted by‖, ―complemented by‖,

―compatible with‖, ―incompatible with‖ and etc. For modelling of products and

19

product relationships we use the product AP (Section 3.5.6). Two additional

APs (quantity, Section 3.5.1 and rule, Section 3.5.3) are needed when modelling

products.

Table 2-1: ZF Columns with Archetype Patterns

Business requirements

What How Where Who When Why

Things Processes Locations Persons Events Strategies

Products

and

services

Reporting

(feedback)

Organization

and

organization

structure

Persons Business events Business

rules

Party AP

Product

AP

Party relationship AP Order

AP

Inventory

AP

Rule AP

Quantity and money AP

Common infrastructure

Column 2 (how, processes) describes business processes. Examples of business

processes are ―buying‖, ―selling‖, ―producing‖, ―planning‖, ―servicing‖,

―controlling‖, ―reporting‖, ―transporting‖, and so on. For modelling of business

processes we use the business process AP (Section 3.5.9). Business process AP

actively manages the progress of business processes by using feedbacks from

particular business process managers. Each process is a party relationship where

a subordinate (the role of a person) reports to a supervisor (the role of a person).

We have designed the business process AP as a special case of the party

relationship AP (Section 3.5.5).

Column 3 (where, location) describes the structure of an organization in

terms of organization units and in terms of roles of these organization units. We

strongly separated roles from parties (persons, organizations) ―playing‖ these

roles. For modelling of locations (organization structure, business environment)

we use the party (Section 3.5.4) and the party relationship (Section 3.5.5) APs.

Column 4 (who, persons) describes persons employed by an organization or

parties (persons, organizations) playing some other roles (customers, suppliers,

etc.) related to business processes of the organization. For modelling of persons

and related parties we use the party (Section 3.5.4) and the party relationship

(Section 3.5.5) APs.

Column 5 (when, events) describes all business events which are somehow

related to organization business processes. Examples of these events are ―new

order from a customer‖, ―plan is ready‖, ―some resource has reached the

minimal acceptable limit‖, ―new employee is hired‖, and etc. All such kinds of

events should be logged and an audit trail should be produced. We model

business events by using the order (Section 3.5.8) and the inventory (Section

3.5.7) APs. With the order AP, any request (not only buying and selling) to

20

change something in the enterprise‘s inventory or in some other list (employees

list for instance) can be recorded.

Column 6 (why, strategies) describes strategies in terms of business rules.

We use the simple propositional calculus based rules archetype pattern (Section

3.5.3) as a base model for strategies.

2.1.2 Zachman Framework Based Implementation

Archetypes Based Development is a software triptych process (from domain

model via requirements to software) [22] with business archetypes and business

archetype patterns. ABD involves ZF based implementation for A&APs,

domain models as well as for requirements (Table 2-2). ZF columns are used for

understanding and analysing of A&APs, domains and requirements (Section

2.1.1). ZF rows are used as a methodological guidance for implementing of

A&APs, domain models and software. Therefore when ZF columns are

indicating ―what to implement‖, then ZF rows are indicating ―how to

implement‖.

Table 2-2: ZF Rows and ABD

ZF
MDA

Abstraction Concretization

 Model A&AP Domain Requirements

1 Contextual

d
o

m
ai

n
 e

n
g

in
ee

ri
n
g

d
o

m
ai

n
 a

n
al

y
si

s

Terms Terms Terms

tr
ip

ty
ch

 s
o

ft
w

ar
e

en
g

in
ee

ri
n
g

 Scope Glossary specified as unit tests

2 Conceptual

Business

Semantic
CIM

Specs Specs Specs

A&AP, Domain and Requirements are specified

as

unit tests acceptance tests

3 Logical

System
PIM Design of

A&AP

Design in terms of

 A&AP DM

4 Physical

Technology
PSM

C#
A&AP based

DSL
DM based DSL

 Source code satisfying specifications for

 A&AP D also A&AP R, D and A&AP

5 Detailed Code

 Byte-code (CIL) ready to run

6 Product

Application

DLL used as DSL in

concretization

Row 1 (Contextual model) is a glossary (list of things, objects, assets, etc.) that

defines the scope or boundary for A&APs, domains or requirements. For

example, the scope for persons in clinical laboratory can include terms like

patient, clinician, medical technical assistant, and so on. We specify the scope

by unit tests as described in Section 2.2.1.

Row 2 (Semantic model) is a definition of an actual archetype pattern,

domain model or user requirements. In ABD, the semantic model of A&APs is

specified by unit tests (Sections 2.2.2 and 2.2.3). For the domain models (DM)

21

and requirements the semantic model is specified by acceptance tests as

explained in Section 2.3.

Row 3 (Logical model) is a formal view of A&APs, DMs or requirements in

terms of classes, properties, methods and events satisfying the semantic (Row 2)

model. For A&APs this is a design of a physical model (code, Row 4) in some

general purpose programming language (e.g. C#). For domains, this is a design

in an A&APs based language. For software, this is a design in a DM based

language. In real life developments (described in Part 4), all our logical models

are described in terms of interfaces as explained and illustrated in Section 3.5.

Row 4 (Physical model) is an actual source code in some general purpose

programming language for A&APs or embedded (into general purpose

programming language) DSL (framework, API) for domains and requirements.

A physical model has to satisfy the semantic model (Row 2). Row 5 (Detailed

definition) is a ready to run code (byte code, e.g. CIL in .NET). Row 6 (Product)

is either a DLL or an application. A&APs based DLL is used as DSL for

specifying domain models. Domain model (DM) based DLL is used for

specifying user requirements.

How we use the A&AP based DLL as embedded DSL for modelling of

domains is described in Section 3.6. In ABD, as common for SF (software

factories) [3], all models (including contextual, semantic and logical) are source

artefacts and not only documentation artefacts.

2.2 Test Driven Modelling

As all models in ABD are course artefacts and not only documentation artefacts,

we can utilize Test Driven Development [24] methodology for modelling

(analysing and implementing) of domains and for specifying user requirements.

In TDM, contextual and semantic models (Table 2-2, Section 2.1.2) are

specified by unit tests and logical and physical models (Table 2-2, Section

2.1.2) are developed to satisfy these unit tests.

2.2.1 From Synopsis to Contextual Scope Model

Like Bjørner‘s domain analysis methodology [25; 26], our TDM methodology

starts with synopsis and with sketching (visualizing) of a general picture of a

domain. In addition we already start with coding (domain models are DLLs). As

soon as the synopsis is ready, we name classes, implement skeletons for each

class and sketch the first class diagram. All this is test driven [24].

For example in case of domain model of physical quantity, the synopsis can

be as follows: A physical quantity (for example ―10 kilometres―) is a numerical

value of a measure expressed by a number and a unit. We can: (a) compare two

quantities; (b) perform arithmetic operations with quantities; (c) round a

quantity; and (d) convert a quantity from one unit to another.

Based on such synopsis we need at least the following four classes: quantity,

unit, measure and number. Because the number (or similar) is a base class in

22

any programming language, we omit the implementation of number and

implement only Quantity, Unit and Measure classes (Figure 2-1).

Figure 2-1: First Skeleton of the Domain Model of Quantity

Because the procedure is test driven, we formalize the domain scope by unit

tests (written in C# like pseudo code) as follows.

 (())

 (()) (1)

 (())

This means, that we have a unit test called , which takes type as a

parameter, and by using reflection [27] technology invokes all public

constructors with default (null for instance) parameter values.

When we first specify unit tests , the test environment does not

even compile, and the type names Quantity, Unit and Measure are red.

 (())
 (())
 (())

The reason is that there are no such kind of types as Quantity, Unit and Measure

in the system. Thus we have to specify these types and sketch the first draft of

the domain model of quantity as follows.

 *
 *+
 *+ (2)
 *+
 +

As we use Visual Studio 2010 IDE (Integrated Development Environment), the

class diagram in Figure 2-1 and the textual representation above are just

different views of one and the same code with full reverse engineering features.

After we have specified the quantity domain types Quantity, Unit and

Measure (2), the domain requirements, specified by unit tests (1),

compile and the type names in the listing will change their colour to blue.

Informally this means, that we have a list of domain terms (contextual scope

model) under an automated verification. This means, that we can be sure, that at

least these types are in system and it is possible to create these types.

In real environment the unit test is designed so, that it also tests

whether all domain classes are tested. For example, if we specify a new type

 (in namespace) we also have to

23

specify the test for this type. This means, that the class specification

(3) must be explicitly accompanied by the requirement specified by unit test (4).
 *+ (3)

 (()) (4)

Consequently, as soon as we change (either deliberately or accidentally) the

contextual scope of a domain by adding or deleting types (domain terms), the

automated verification environment informs us about this inconsistency.

2.2.2 Formalization of Narratives as Unit Tests

Like in Bjørner‘s domain analysis methodology [22 p. 19], in our TDM

methodology we derive narratives from synopsis. By a narrative document

Bjørner means a description document which systematically and reasonably

explains in natural language the designated universe of discourse [22 p. 19]. For

example, we can sketch the following starting narratives describing the quantity

domain from the synopsis of physical quantity above (Section 2.2.1).

N.1. There are types Quantity, Measure, Unit and Number;

N.1.1. With quantity we can associate:

N.1.1.1. A unit (e.g. cm) in which a quantity is measured;

N.1.1.2. An amount (e.g. 1.86), which is a numerical value of a measurement;

N.1.2. With unit we can associate:

N.1.2.1. A name (e.g. centimetre) as a unique identification for units

N.1.2.2. A measure (e.g. distance) which has been measured;

N.1.2.3. A factor (e.g. 0.01 if talking about cm and if is the distance base unit)

which shows how many base units a particular unit is equal to;

N.1.3. With measure we can associate:

N.1.3.1. A name (e.g. Distance) as a unique identification for measures

N.1.3.2. A formula (e.g.

) defining the measure.

N.1.4. We can define following operations with quantity

N.1.4.1. Arithmetic

N.1.4.2. Comparing

N.1.4.3. Rounding

N.1.4.4. Converting

Bjørner formalizes narratives by using the RAISE [28; 29] specification

language. Differently from Bjørner‘s domain analysis methodology we do not

formalize narratives neither in the RAISE specification language nor in any

other specification language like Z [30], B [31], or VDM-SL [32]. We specify

our domain narratives as unit tests in ordinal programming language. For

example, the quantity narratives above can be specified by unit tests as follows:

, - ()*+
, - () *+
, - () *+
, - () *+
, - () *+

24

, - () *+
, - () *+
, - () *+

In summary, narratives describe domains semantically. Narratives, written as

unit tests, have the same attributes [22] as narratives written in natural language:

they are documents; they describe the domain systematically; they can be

designed reasonably comprehensively; unit test names explain the essence in

natural, yet most likely (application domain-specific) professional language;

and they explain entities, functions and behaviours (including events) of a

designated universe of discourse. In addition, narratives written as unit tests

(source artefacts) are able to test the domain models (implemented as DLLs)

automatically.

2.2.3 Specification of Narratives

When we first write unit test based narratives, a body (marked as {} in listing in

Section 2.2.2) of each unit test is specified as follows:

 * () +

This means that a narrative is inconclusive - not yet specified. When we run

these inconclusive narratives, we get the ―yellow‖ pattern (the uppermost table

on Figure 2-2; the circles with question marks are yellow). When a narrative is

specified, but the model is not implemented according to these narratives, we

will get the ―red‖ pattern (the middle table on Figure 2-2; the circles with

crosses are red). In the following some specified narratives are exemplified:

, - () *
 () ()

 ()
 ((()))
 ((()))

 +
, - () *
 () () ()

 ()
 ()

 (())
 (())
 (())
 (())
 (())
 (())
 (())
 (())
 +

25

The first test (A0702000) checks that instance of type Quantity has properties

Unit and Amount and that the property named Unit is a type of Unit and that the

property named Amount is a (primitive) type of double. The second exemplified

test (A0705010) checks that arithmetic operations are defined and that results of

all arithmetic operations are of type Quantity.

Figure 2-2: ―Yellow‖ (question marks), ―Red‖ (crosses) and ―Green‖ (check

marks) Patterns of Narratives

In particular, variable is defined as the smallest positive Double value that is

significant in numeric operations or comparisons, so expressions involving

test the boundary conditions.

2.2.4 Structure of Unit Tests (Formally Specified Narratives)

For each narrative, specified as unit test, we keep a simple unified structure:

1. We define the helper function (one or more) for verification of post

conditions;

2. We define preconditions;

3. We execute a piece of code;

4. We verify post conditions.

This means, that narratives, specified as unit tests, are in harmony with Hoare

triple (* +) [33], describing a connection between a precondition (P), a

program (piece of code) (Q) and a description of a result (post condition, R) of

execution of a program. For example, the narrative A07050100 (Section 2.2.3)

defines the helper function named , which indicates an error for all

objects which are not of type Quantity. Then we define preconditions q1, q2

(two objects of type Quantity), and r (smallest possible double value). Finally

we verify that results of all defined arithmetic operations are of type Quantity.

After specifying narratives as unit tests we have to implement the quantity

model according to specified narratives to get the ―green‖ pattern (the lower

table on Figure 2-2; the circles with check marks are green).

26

In conclusion, after specifying domain narratives as unit tests we have at least

some preliminary contextual (ZF Row 1), semantic (ZF Row 2) as well as

logical (ZF Row 3) models. Contextual and semantic models are specified as

unit tests. A logical model (the skeleton of a physical model) of a domain,

satisfying contextual and semantic models, can be presented in the form of class

diagram as illustrated in Figure 2-3.

Figure 2-3: Preliminary Version of Quantity Domain Model

Figure 2-4: Quantity Domain Model in Terms of Interfaces

The other possibility, as shown in Figure 2-4, is to present logical models as

interfaces. To keep clear difference between logical and physical models we

prefer interfaces as the primary presentation for logical models. Naturally all of

these models, contextual, semantic as well as logical, are just preliminary

models. It is also clear that all these models are changing and evolving

according to further developments. Since narratives (contextual and semantic

models) are specified as unit tests, it is relatively safe to change and improve

27

domain models. That is because unit tests are able to automatically track

potential inconsistencies between new developments and work done.

2.2.5 Fine Tuning of Domain Models

Logical model is not a ready to use model of a domain. Logical model is only a

blueprint of a domain in terms of classes (or interfaces) and their public

members (properties, methods and events) and in principle can be independent

from any particular implementation and implementation environment. Think,

for example, about possibility to implement the addition (―+‖) operation of

quantity as follows:

 () *
 ()
 +

This is obviously not correct, but this implementation is just enough to get the

―green‖ pattern according to the narratives we have specified so far. Let us now

add a new unit test as follows:

, - () *

 () (() ())
 * +
 * +
 * +
 * +
 * +
 * +
 * +
 * +
 * +
 * +
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 (())
 +

First we have defined a helper function . This

helper function returns true if the Quantity given by the first parameter has

Amount and Unit equal to values given by the second and third parameters

accordingly. Then we define preconditions: two different Measures; three

different Units with different Factors for first Measure; one unit for second

Measure; and four different Quantities which each have a value measured in

different Unit.

28

Figure 2-5: ―Red‖ pattern, when we add new narratives

Finally we verify the correctness of the add operation. According to the

specified unit test, we expect the following narratives:

1. We can add quantities with one and the same unit.

2. We can add quantities of one and the same measure. For example we can

add meters with centimetres.

3. A unit factor equal to one show that the unit is a base unit. For example, we

expect that in SI system the Meter is defined with Factor equal to one.

4. Factor different to one show that the Quantity with Amount equal to the

Factor of this Unit is equal to the measure‘s base unit. For example, in SI

system, 10 Decimetres equals to one Meter, because the Factor of

Decimetre in SI system is equal to the 10; the 0.001 Kilometres is equal to

one Meter, because the Factor of the Kilometres in SI system is equal to

0.001.

5. If the add operation is defined and and are the units of quantities

and (one and the same measure), then the unit of quantity is .

For example .

6. If the add operation is defined and and are the amounts of quantities

 and (one and the same measure) and if and are the factors of

units of quantities and respectively then the amount of is

equal to

. For example

 .

7. We expect that .

8. If quantities are measured by units of different measures, then the result of

add operation is UND (Undefined).

These narratives (A07050101), specified as unit tests, give us the ―red‖ pattern

as shown in Figure 2-5 (the circle with a cross is red). To get the ―green‖

pattern, we need to supplement the domain model of quantity by implementing

the add operation as specified by unit test A07050101.

With such a gradual and step by step upgrading of the model we come closer

and closer to the physical domain model of quantity, which has types Quantity,

29

Unit and Measure and which is able to perform arithmetic (
), comparing (),

rounding and converting operations with given quantities. Process from physical

model (code in general purpose programming language) via detailed model

(byte code) to product (DLL used as DSL in more concrete implementation) is

fully automated thanks to nowadays integrated development environments.

2.3 From Domain Model to Software

According to the software engineering triptych, in order to develop software we

first have to informally or formally describe a domain (𝒟); then we somehow

have to derive the requirements () from these domain descriptions; and finally,

from these requirements we have to determine software design specifications

and implement the software (), so that 𝒟 holds [21], meaning the

software is correct. The key point is that all models we are talking about are not

only documentation artefacts, but are source artefacts. Thus the domain model

of quantity is ready to run DLL.

As an example, by using the (implemented) domain model (𝒟) of quantity

and the (implemented) quantity repository [6 pp. 322-327] (part of quantity

domain, registers and holds all measures as well as units, realised as static

functions of Quantity archetype), we can specify (write in code) particular

requirements () for some specific measures and units. For instance, if area,

volume and speed are needed as measures, we can specify these requirements as

follows:

 ()
 ()

 ()

 ()
 ()

 ()

 ()

 ()
 ()

First we have defined (registered with methods of quantity repository) two base

measures Distance and Time by specifying their names and symbols. Then we

have defined (registered) three derived measures Speed, Acceleration and Area

30

by specifying their names, symbols and formulas. For example, the formula

 has been formalized as . In

definitions we can use both the base as well as derived measures. For instance,

we have used derived measure when defining . Finally we

have defined units for base measures only.

The set of definitions given above is all that is required in order to have

software (), which is able to convert all the area, volume and speed (as well as

distance and time) units from one particular unit to another. It also performs all

arithmetic, comparison and unit conversion operations with quantities. For

instance, the software is able to divide meters with seconds and give an answer

in kilometres per hour. The correctness of software (𝒟) according to

some particular requirement (for example converting ―kilometres per hour‖ to

―meters per second‖) can now be validated by following acceptance tests [24].

 ()
 ()
 ()
 ()

 ()
 ()
 ()
 ()

 (())
 (())
 (())

In the acceptance tests shown above, we first have defined five quantities: first

four by using integrated into domain model parsing and the last one by using

divide operation. Next we have verified the units and the measures of quantities.

Finally, we have tested some specific relationships. For example, that

.

2.4 Validation and Verification

In Part 3, by using methodology we described above, we develop archetypes

and archetype patterns (models of independent phenomena describing products,

business processes, organization layouts, persons, events and rules) for business

domains, requirements and software. In Part 4 we use the same methodology

and the developed archetypes and archetype patterns for developing laboratory

domain models and laboratory software. The target is to specify user

requirements by using DSLs based on domain and A&AP models.

We see possibilities (at least partially) to validate requirements as well as to

verify software with domain models developed according to TDM. If with

31

domain model based DSL (embedded into general purpose language, API) it is

possible to prescribe user software requirements, then these requirements are

valid (compatible) according to this domain model. If both, domain descriptions

specified as unit tests (semantic models of domains, Table 2-2, Section 2.1.2)

and software requirements specified as acceptance tests (semantic models of

requirements, Table 2-2, Section 2.1.2) are satisfied (―green‖ pattern in Figure

2-2), then in our understanding the domain model has verified (at least partially)

the software which satisfies these requirements.

The question now is: how to validate domain models. Bjørner suggest

manual validation, where domain engineers ―sit together‖ with stakeholders and

review the model line by line [25 p. 347]. But this is the same way domain

models are engineered and developed using TDM: domain specialist together

with software engineers write and specify domain narratives by using pair

programming for instance. We still have the question: do we get the right model

by ―sitting together‖. In our understanding by ―sitting together‖ we cannot

validate domain models. By ―sitting together‖ we can just develop domain

models. In our understanding domain models cannot be validated. We can only

falsify domain models.

Domain models can be falsified by requirements from real life. If a domain

model satisfies some of the real life requirements, then we can just say that

these requirements have not falsified the domain model. But if with this domain

model we cannot satisfy one particular requirement from the real life, then this

requirement (in case the requirement is correct) has falsified the domain model.

For example, the domain model of quantity, implemented above, satisfies the

following requirements:

1. Meter is the base unit of a distance with factor equal to one.

2. Kilometre is the unit of a distance with factor equal to 0.001

But we can falsify our domain model of quantity by using the following real life

requirements:

1. Metre is the distance base unit in the SI system with factor equal 1.

2. Centimetre is the distance base unit in the CGS system with factor equal 1.

3. Metre is the distance unit in the CGS system with factor equal to 0.01.

4. Centimetre is the distance unit in the SI system with factor equal to 100.

In our domain model of quantity each unit has got only one factor. In the

requirements above, both units have two factors: one for the SI system and the

other for the CGS system of units. Because our domain model is implemented

according to semantic model specified by unit tests, we can safely upgrade this

quantity domain model to satisfy both real life requirements above. For this we

have to specify some new narratives (specify semantic models) and upgrade

logical and physical models to satisfy these narratives. In the same time, the

―old‖ narratives automatically take care that our upgraded domain model also

holds for all the previously specified narratives.

32

2.5 Summary

Archetypes Based Development (ABD) is a software engineering triptych [22]

based software development process with archetypes and archetype patterns

[14]. ABD is guided by Zachman Framework [23]. In ABD (Table 2-1), the

independent phenomena, described by ZF columns, are analysed and developed

by using product (what), business process (how), organization structure (where),

person (who), order and inventory (when), as well as rule (why) archetype

patterns. Therefore the ZF columns with archetypes describe ―what to develop‖.

In ABD, we use Test Driven Modelling (TDM). TDM is tied with ZF rows

(Table 2-2) and describes ―how to develop‖. In TDM, we first delimit the scope

of phenomena to get a contextual model (according to ZF Row 1). We next

specify requirements with unit tests. These unit tests form semantic models (ZF

Row 2) of phenomena. By incremental specification and implementation of

requirements we get step by step closer to logical (ZF Row 3) and physical (ZF

Row 4) models. Logical models are models of phenomena in terms of interfaces

(or class designs) and their relationships. Physical models are models of

phenomena in some general purpose programming language. Physical models

have to satisfy semantic models (ZF, Row 2) specified by unit tests. A detailed

model (ZF Row 5) is a model in ready to run byte-code (e.g. CIL in .NET) and a

product (ZF Row 6) is a DLL used as embedded DSL for prescribing software

requirements or an application used by a customer.

There are (at least) three separated development processes in ABD (Table

2-2):

1. Development of A&APs (archetypes and archetype patterns);

2. Development of domain models; and

3. Development of applications.

TDM is utilized in all of these developments. A general purpose programming

language is used in the development of A&APs. The target of the development

of A&APs is to get the embedded (into general purpose programming language)

DSL for development of domains. In development of domains, the A&APs

based embedded DSL is used for specifying domain descriptions (contextual

and semantic models of domains). The target of the development of domain

models is to get the embedded DSL for developing applications. In application

development (customizing and hopefully automated generating in future), the

domain model based embedded DSL is used for specifying customer

requirements.

Following the software engineering triptych [22], we have a domain (𝒟)

model specified by using A&APs based embedded DSL. This domain model is

then used for specifying customer requirements (). According to specified

requirements, the software (meaning application) () is developed (customized

and hopefully can be generate in future). With TDM we ensure the correctness

of application (𝒟) as much as possible.

33

3 MODELS OF ARCHETYPES AND ARCHETYPE PATTERNS

Patterns in software engineering are widely used for describing general and

repeated issues as well as for describing solutions to these issues [34]. Lots of

patterns [35; 16; 15; 17; 36; 14] are also developed for modelling of enterprise

business logic and data.

One of the problems with these enterprise business logic and data patterns is

semantic heterogeneity [37]. Semantic heterogeneity means that models and

data schemes describing the same or similar universe of discourse but developed

by different independent parties are different. Such semantic heterogeneity is an

obstruction when developing interoperable software systems [38]. This is

especially critical in distributed healthcare systems, where semantic

interoperability is mission critical [39].

Common nowadays solutions for dealing with semantic heterogeneity are

data mapping tools similar to Microsoft BizTalk Server [11]. However, it would

be useful if different patterns describing one and the same domain (for example

the domain of persons and organization) could be combined into one, or at least

be subsumed by one, pattern [34]. This clearly requires an assumption that we

can analyse, model and unify domains as described by Bjørner [22; 40; 25].

We published the ideas, described in current part of paper, in MIPRO 2007

[41] and in doctoral symposium of Formal Methods conference, Turku, Finland,

2008 [42].

3.1 Methodology

Archetypes and archetype patterns [14] by Arlow and Neustadt are selected as

initial models because these patterns have intuitive names and are compatible

with ZF [23] (Table 2-1) as well as with triadic model of activity [43].

Figure 3-1: Triadic Model and its A&AP Analogue

34

The triadic model of activity (Figure 3-1) is used as a theoretical base in

industrial-organizational psychology to describe human work, mind, culture,

and activity. According to the triadic model, all activities are performed either

by one or more subjects. Thus the party archetype pattern is required. The

product archetype pattern is also needed. It is because when performing

activities, subjects can use tools and the outcome of an activity is some object

(product or service). Each activity is triggered by a goal which in a business

domain is some kind of order from a client - therefore the order archetype

pattern is also essential. Each activity has a result, which in businesses will be a

record in an inventory list - hence, the inventory archetype pattern is required.

From an inventory list a subject (manager, etc.) gets feedback about business

activities. In businesses, feedback will be measured mainly by money or by

some other physical measure - therefore, the quantity archetype pattern is

required. Finally, arrows in Figure 3-1 are rules describing different conditions

which have to be followed. Thus the rule archetype pattern is necessary.

We remove from Arlow and Neustadt‘s archetypes and archetype patterns all

operational level attributes so the resulting redesigned archetypes and patterns

include only knowledge level attributes as suggested by Fowler [15 p. 26].

Obtained archetypes and patterns are then evaluate by using them for modelling

Fowler [15], Hay [35; 16] and Silverston‘s [17] patterns.

The methodology we use in development of archetypes and archetype

patterns is the following:

1. We define initial models;

2. We evaluate these initial models and improve them if necessary;

3. We define the final set of models.

We describe in detail the development of party and party relationship archetype

patterns. Thereat we utilize TDM described in Section 2.2. All other archetype

patterns are then described only by their logical models. We use these A&APs

for developing domain models for a clinical laboratory domain (Section 4.2).

3.2 Creating of Initial Models

We start with a synopsis and a contextual scope model (Section 3.2.1). We then

derive narratives (Section 3.2.2), specify these narratives as unit tests (semantic

model, Section 3.2.3) and implement the preliminary models (Section 3.2.4) so

that these narratives specified as unit tests are satisfied (―green‖ pattern; the

lower table on Figure 2-2; the circles with check marks are green).

3.2.1 Synopsis – Party

We refer to the party and party relationship archetype patterns originally

designed by Arlow and Neustadt [14].

35

The party archetype pattern (Figure 3-2)
1

 represents a (identifiable,

addressable) unit that may have a legal status and has some autonomous control

over its actions. Persons and organizations are types of parties. Party has zero

or more addresses (phone number, e-mail, web address, postal address) where

one and the same address can belong to more than one parties. Party has zero or

more registered identifiers (passport, VAT number, domain name, stock

exchange symbol, etc.). Party authentication is the way to confirm that party is

who they say they are. Each party can play different roles (e.g. one and the same

person in a laboratory can be the patient as well as medical technical assistant or

clinician). Preference stands for a party‘s (or a role‘s) choice of or linking for

something (like dietary preference) and is typically selected from a set of

options. The capability is a collection of facts about what a person or

organization is capable of doing as well as body metric stores information about

the human body.

Figure 3-2: The Party Archetype Pattern Abstraction

Figure 3-3 abstracts the party relationship archetype pattern, which captures a

fact about semantic relationship between two parties in which each party plays a

specific role. Binary (more flexible and cleaner than n-ary) relationship is used,

which means that one relationship binds two related roles called ―client‖ and

1 Class diagrams are done with integrated into Visual Studio 2010 class diagram tool.

Prefix ―T‖ in class names comes from ―type‖ and means ―archetype‖. Inheritance in

Visual Studio class diagrams is shown similarly as in UML. A single arrow (meaning is

1 to 0...1 relation) as well as double arrows (meaning is 1 to 0...n relations) are notations

for class attributes. In class diagrams only the main relations between the classes are

shown, but all the class details (fields, properties, methods and events) are hidden.

36

―supplier‖. It has to be clarified that role is always only used to store

information that belongs to role itself and not either to a party or to a

relationship.

Figure 3-3: The Party Relationship Archetype Pattern Abstraction

Role type is used to store common information for a set of similar role instances

as well as relationship type is used to store common information for a set of a

similar relationship instances. Responsibility describes a particular activity that a

party, playing a role, may be expected to perform, where the assigned

responsibility captures the fact that responsibility is assigned to concrete party

playing that role. Condition of satisfaction as well as the requirements for party

role type, for party relationship type and for responsibility are rule sets (see the

rule archetype pattern - Figure 3-14) where the capability (rule context) contains

information (currently about party) needed for the execution of rules (e.g. can

party complete needed responsibilities for role in relationship).

3.2.2 Narratives – Party

First of all we list the party and party relationship related types as follows.

N.3. Party Archetype Pattern

N.3.1. There are following types :

N.3.1.1. Party with Person and Organization subtypes;

N.3.1.2. Address with , , and

 sybtypes;

N.3.1.3. and types;

N.3.1.4. Locale with subtype ;

37

N.3.1.5. with and

subtypes;

N.3.1.6. and ;

N.3.1.7. ;

N.3.1.8. Name with subtypes and ;

N.3.1.9. , , and Attribute;

N.3.1.10. , and ;

N.3.1.11. and ;

N.3.1.12. , , , and

 ;

N.3.1.13. , , and

 ;

Next we associate each type with related attributes. For example narratives,

describing the name and the person name archetype, are written as follows.

N.3.5. With a name (either person or organization name; other possibilities for future

study) we can associate;

N.3.5.1. Zero or more (legal, trading, artist's, nickname, etc.);

N.3.5.2. A ;

N.3.5.3. A date;

N.3.5.4. A date;

N.3.6. With a person name (additionally to a name) we can associate;

N.3.6.1. Zero or more prefixes (for example Mr, Dr, etc.);

N.3.6.2. Zero or one given names;

N.3.6.3. Zero or more middle names;

N.3.6.4. A family name;

N.3.6.5. Zero or one preferred names (for example Bill);

N.3.6.6. Zero or more suffixes (for example Jr., PhD, etc.);

That is all for now. This means, that initially narratives list only types and

attributes for these types.

3.2.3 Formalization – Party

As described in Section 2.2.2, we specify all narratives as unit tests. We initially

have only two types of narratives (enumeration of types and enumeration of

type attributes) and therefore only two types of unit tests to start.

In regard to the first type of narratives (enumeration of types), we have to

verify that all types are listed in a namespace (e.g.

in). We also have to verify, that in this namespace

there are no types other than specified ones. The following unit test illustrates

the foregoing.

 , - () *

 ()
 (())

38

 (())
 (())

 (())

 (())

 ()
 +

First, by using reflection, we get a list of all classes (types in C# are classes) that

are declared in the namespace in question. For each class we verify either a

class type (abstract, static, enumeration) or an ability to create objects of that

class. After verification, a sub-test (, , and

) deletes a verified class from the list of namespace classes

(). If a class from the list of namespace classes cannot be

found, then a test indicates an error. Finally, when all types have been tested,

 list has to be empty.

Next we verify class attributes for each class. The following code illustrates

the verification of narratives for the person name archetype (see narratives from

Section 3.2.2).

, - () *
 ()

 (())

 (())
 (())
 (())
 (())
 (())
 (())
 ()

 ((()))

 (())
+

The general structure of class attribute narratives, specified as unit tests, is

mostly the same as the structure for class list narratives (also specified as unit

test).

1. We get a list of all class properties and methods by using reflection;

2. We verify a name and a type of each property and method;

3. If a property or method name is not found from the list of class

properties and methods, a test indicates an error;

4. When all properties and methods have been tested, the

 list has to be empty;

39

5. We delete the name of the tested class from the list of classes to be

tested.

Figure 3-4: One Property is Not Tested

Such method ensures that as soon as we add or delete a class, a property or a

method, we will be automatically informed by unit tests that there is something

we have not covered by unit tests. This is illustrated in Figure 3-4.

3.2.4 Initial Model - Party

After specification of narratives as unit tests and getting the ―green‖ pattern (see

the lower table on Figure 2-2; the circles with check marks are green), we have

at least an initial versions of all the models described by ZF rows. We have a

contextual model (Row 1, Table 2-2) or a glossary (e.g. narratives N.3.1 in

Section 3.2.2) specified as unit tests (e.g. unit

test in Section 3.2.3). We also have a

semantic model (Row 2, Table 2-2) where narratives are specified as unit tests.

For instance, narratives N.3.6 (Section 3.2.2) are specified as unit test

 () (Section 3.2.3).

Because models are source artefacts and because we have unit tests, which

verify these models, have given us the ―green‖ pattern, we have also at least

some preliminary logical (Row 3, Table 2-2), physical (Row 4, Table 2-2) and

detailed (Row 5, Table 2-2) models as well as a product (Row 6, Table 2-2).

Logical models (for instance as visualized in Figure 3-5) are designs of classes

and their relationships realized in code. For example, the logical model (only

declaration, not implementation) of the archetype, presented as

code as follows:

 *
 * +
 * +
 * +
 * +
 * +
 * +
 +

40

Figure 3-5: Visualization of the Initial Party Archetype Pattern

41

To keep clear difference between logical and physical models we prefer

interfaces (as described in 2.2.4) as primary presentation for logical models as

follows:

 *
 * +
 * +
 * +
 * +
 * +
 * +
 +

3.3 Evaluation of Models

We explain and illustrate the evaluation of party archetype pattern by using this

pattern for modelling of Fowler‘s accountability [15] patterns. We then

summarize evaluation of other archetype patterns according to patterns by

Fowler [15], Hay [16] and Silverston [17].

Figure 3-6: Fowler’s Party in Terms of the Party AP

Fowler‘s accountability patterns apply when a person or an organization is

responsible to another. Thus the Fowler‘s accountability is an abstract notion

that can represent many specific issues, including organization structures,

contracts, and employment. All Fowler‘s accountability patterns can be

modelled by the party archetype pattern (Section 3.2.4, Figure 3-5).

42

3.3.1 Fowler’s Party Pattern

The Fowler‘s party [15 pp. 18-19], abstracting persons and organizations,

includes phone numbers, geographical and e-mail addresses. These phone

numbers, geographic and e-mail addresses in terms of the party archetype

pattern are all (, and)
persons‘ contacts (Figure 3-6).

3.3.2 Fowler’s Organization Hierarchies

Fowler has modelled organization hierarchies [15 pp. 19-22] either as a feature

of an organization (Fig. 2.4 in [15 p. 20]) or a feature of an organization‘s

structure (Fig.2.6 in [15 p. 22]). The biggest difference between the Fowler‘s

accountability pattern and the party archetype pattern is that in party archetype

pattern there is a concept of a role (Figure 3-5) while Fowler has not.

Figure 3-7: Fowler’s Organization Structure in Terms of the Party AP

This means that when operating unit, region, division and sales office are

organization subtypes (Fig.2.6 in [15 p. 22]) in Fowler‘s model, then in the

party archetype pattern they are role types that organizations can play in

relationships with other organizations. In terms of the party archetype pattern,

the Fowler‘s organization structure with parent and subsidiary organizations is

a party relationship with consumer and provider roles (Figure 3-7). Operating

unit, region, division and sales office are role types in terms of party archetype

pattern. A relationship type holds rules (constraints) about role types which can

form relationships in question.

We follow the Fowler‘s recommendation to separate knowledge level and

operational level [15 p. 26] knowledge. We want domain models to be only

43

models of knowledge and that requirements (operational level) from customers

can be changed at runtime.

It follows that role types (operating unit, region, division and sales office) as

well as relationship types (is operating unit, is region, is division and is sales

office) are not ―design time‖ subtypes of role type and relationship type

accordingly, but are ―run time‖ subtypes i.e. singletons [44]. It means that

similarly to Kilogram, Meter and Hour (Section 2.3), these terms (operating

unit, region ... is operation unit, is region...) are not related to domain models

(design time), but are related to requirements (run time). The following code

illustrates the foregoing.

 *
 () () *
 ((()))
 +
 +
 *
 (
) () *
 (
 ())
 +
 +
 ...

 ()

 ()

 ()

 ()

 ()

 (
)

 ()

 ()

 ()

The Structure Type and the Subsidiary Type are just simple subtypes (design

time, domain model belongings) of and .

Constraints (restrictions) are declared in these helper types: only an organization

44

can be in a role of a subsidiary and only two organizations, being in a role of

subsidiary type, can form a structure (relationship between two roles).

With such models it is possible to realize quite complicated organization

structures. For example, we modelled as well as tested the organization structure

shown in Figure 3-8.

Organization o1 (see the code above for roles and for relationships types)

plays the role of a main organization in two relationships: with organization o2

as well as with organization o3. Organization o2 plays the role of an operating

unit in three relationships: in relationship with o1 (type), the

organization o2 is a provider (Figure 3-8), but in relationships (type)

with organizations o4 and o5, the organization o2 is a consumer.

As we can see from Figure 3-8, the organization o5 takes the role of a region

in two relationships (with organizations o2 and o3) and the role of a division in

relationship with organization o8. This means that in our archetypes based

organization structure model, each organization is able to play more than one

role.

Figure 3-8: Organization Structure as Party Relationships

The condition we have to think about is that an organization, a role and a

relationship are all different concepts and should keep the information related

either to the organization, the role or the relationship respectively. The

following is a snapshot from the code specifying the structure shown in Figure

3-8.

 ()
 ()
 ()
 ()

45

 ()
 ()
 ()
 ()
 ()
 ()

The code for the method is the following

 (

) *
 ()
 ()
 (
 , -)
 (
 , -)
 ()

 +

A party manager () is a repository [6 pp. 322-327] for parties,

their roles and relationships. The method checks, if a party is

registered or not. If not, then adds the party to the repository.

Similarly, two other methods (and) are

also implemented. This means that in every period of time, one and the same

party is registered only once. The same (registered only once) is true also for

one and the same role, role type, relationship as well as for relationship type.

The uniqueness of organizations, roles and relationship types is initially

based only on their names. However, more complex, rules-based validation is

also possible. The uniqueness of relationships is ensured by allowing each of

two organizations to form only one relationship with one and the same

relationship type at the same time with each other. Analogously, one and the

same organisation can be at one and the same time registered only once in a role

with one and the same role type.

For example, the same person (gender has to be female) can exactly once be

registered (starting from the birthday of her first child) for the mother‘s role and

can be registered exactly once to be in the role of mother in party relationship

(is mother of) with each of his children.

We can test the structure given in Figure 3-8 with acceptance tests as

follows.

 (())
 (())
 (())
 (())
 (())

46

 ((
))
 ((
))
 ((
))
 ((
))

In acceptance tests above, the Parties method () gets a

list of all registered parties playing either some role type

(main, , region or division) or some relationship type

(, , or) and checks that

all given parties (e.g. o1, o2…), and no more, are in this list.

We can model the Fowler‘s accountability pattern (see Figure 3-10 and

explanations from Section 3.3.3 for and)

using the party archetype pattern similarly to Fowler‘s organization structure

pattern (Fig.2.7 in [15 p. 23]). We omit the explanations, as these explanations

are exactly the same as shown in the case of organization structure.

Figure 3-9: Responsibility and Assigned Responsibility

Fowler‘s discussions about accountability knowledge level [15 pp. 24 - 27] are

exactly how we designed the party and the party relationship archetype patterns

– separation of knowledge and operational levels. The same is true according to

Fowler‘s discussions about generalization [15 pp. 27 - 28]. A domain model is a

generalization (ideally of all possible real world requirements inside one and the

same domain) as we have already shown in this section.

47

Concluding - Fowler‘s suggested organization structure as well as

accountability patterns are special cases and applications of the party and the

party relationship archetype patterns.

3.3.3 Fowler’s Operating Scope

The Fowler‘s operating scope [15 pp. 30 - 32] can also be modelled by the party

archetype pattern using the responsibility and the assigned responsibility

archetypes (Figure 3-9).

A role type holds information (responsibility) of an activity that a party

playing a role with specified role type may be expected to perform. An assigned

responsibility of a particular role holds the information about responsibilities

assigned to the particular party playing that role.

The Fowler‘s operating scope pattern (Fig.2.14 in [15 p. 31]) in terms of the

party archetype pattern is visualized in Figure 3-10 and is specified as follows.

 *
 () () *+
 +
 *
 ()
 () *+
+
 *
 () () *
 ((())) +
+
 *
 (
) () *
 (
 ()) +
+
 *
 * * , - ++
+
 *
 *
 * , - ++
+
 *
 * * () , - + +
 * * , - + +
+
 *
 *
 * , - + +
 *

48

 * , - + +
+
 *
 *
 * , - + +
+

Figure 3-10: Operating Scope and the Party Archetype Pattern

As shown in this example, in the party archetype pattern a post is not a party as

in Fowler‘s patterns [15 pp. 32 - 33]. In terms of the party archetype pattern a

post is a role only a person can play (see constraint in specifications for

particular role type) in relationships with organizations. Operating scope and

their subtypes in terms of A&APs are ―assigned responsibilities‖ of a role.

Accountability is party relationship and accountability type is party relationship

type (Figure 3-10).

49

3.3.4 Conclusions

We exemplified, that accountability patterns described by Fowler [15 pp. 17 -

33] are special cases of the party and the party relationship archetype patterns.

The biggest difference in comparison to the party and the party relationship

archetype pattern is that Fowler‘s patterns of accountability have no

independent concept for party roles and party role types. The lack of the party

role leads to the fact, that in addition to a person and an organization (two

subtypes of party) Fowler has a third subtype of a party - a post. In our opinion

this is contradicting the reality. For example, in our opinion there are no persons

who essentially are doctors, patients, students, etc. However, there are persons

who for some period of time carry out some of these roles (including posts).

Table 3-1: Fowler’s Analysis Patterns and Archetype Patterns

Fowler’s Analysis Pattern Archetype Pattern

Accountability Party and Party Relationship

Quantity, Measurement and Observations Quantity

Observations for corporate finance Party, Product, Inventory, Order,

Quantity and Money

Referring to objects Unique identifier, registered identifier,

name

Inventory and accounting Inventory

Planning Party relationship

Contract and portfolio Order together with Inventory

Derivative financial trades Product (services)

The lack of a party role concept forces Fowler to admit that if Dr. Edwards is

both a GP (general practitioner) and a paediatrician, we can record that only by

creating a special GP/paediatrician party type, with both GP and paediatrician as

super types [15 p. 28]. Such a double inheritance is unnecessary, if we have a

concept of a role.

Table 3-2: Hay’s Data Models and the Archetype Patterns

Hay’s Data Pattern Archetype Pattern

Enterprise and Its World Party and Party Relationship

Things of the Enterprise Product

Procedures and Activities Party and Party Relationship

Contracts Order together with Inventory

Accounting Inventory

The Laboratory Lifting of different archetype patterns

Material Requirements Planning Party Relationship, Process

Process Manufacturing Party Relationship, Process

Documents Not covered

Table 3-1 summarizes Fowler‘s analysis patterns [15] from the perspective of

archetype patterns. Table 3-2 summarizes Hay‘s data patterns [16] from the

perspective of archetype patterns. Table 3-3 summarizes Silverstone‘s universal

50

data patterns [17] from the perspective of archetype patterns. All these patterns

describe similar phenomena of universe of discourse but are modelled

differently. Models, where one and the same thing is modelled differently, are

semantically heterogeneous [37].

Despite similarities between these patterns we found ideas from Fowler, Hay

and Silverstone‘s patterns that we use in improved models of archetypes and

archetype patterns.

From Fowler‘s quantity we took a concept of measure and an idea for

modelling formulas. The concept of ―attributes‖ we use in different archetypes

is based on Fowler‘s observation and measurement. From Fowler‘s planning

pattern and from Silverston‘s work effort data model pattern we took ideas for

our proposed business process archetype pattern.

Table 3-3: Silverston‘s Data Patterns and the Archetype Patterns
Silverston’s Data Pattern Archetype Pattern

People and Organizations Party and Party Relationship

Products Product

Ordering Products Order

Shipments Party Relationship, Process

Work Effort Inventory and Order, Process

Invoicing Order, Process

Accounts and Budgeting Inventory and Order

Human Resources Party and Party Relationship

Enterprise Data Model Inventory and all other archetypes

Sales Analysis Inventory and all other archetypes

From Hay we got the idea to expand ―discrete‖ models to ―continuous‖ ones

which we use in our business process archetype pattern. We use some Hay‘s

ideas and patterns like the laboratory pattern and the material requirements

planning pattern in the domain model of laboratory (Section 4.2) we developed.

When I first read about archetypes and archetype patterns by Arlow and

Neustadt, I had a feeling that archetype pattern for a document is missing. This

lacuna is filled by Hay when describing documents. We plan to use Hay‘s

document model together with Bjørner‘s document [26] model and Lindqvist

and Christensen‘s electronic document [45] model as a base model for the

development of the domain model for documents. In Section 4.4 we describe an

idea where archetype patterns based business domain models and document

domain models are cornerstones for development of software factories.

3.4 Fine Tuning of Models

After evaluation, the initial model should be finalized. Current unit tests

(contextual and semantic models) are controlling that:

1. Needed types (and no more) exist and it is possible to create (use) these

types;

2. These types have needed (and no more) properties and methods.

51

In fine tuning stage we will supplement a semantic model to ensure not only the

existence of necessary properties and methods, but also their correct runtime

behaviour as we have shown in Section 2.2.5. Take a look at the following test

(semantic model, narrative specified as unit test).

 , - ()*

 () () () ()

 ()
 (())

 ()
 ()
 (())
 (())
 +

With this unit test we verify that the class can be created

without parameters as well as with parameters and that after creation the created

 object holds correct property values.

Figure 3-11: Custom, Class and Undefined Pattern of Physical Model

The pattern of this unit test is as described in Section 2.2.4.

1. We define a helper function for verification of post conditions (e.g.

);

52

2. We define preconditions (e.g. a, f, t, and w);

3. We execute a piece of code (e.g. new ());
4. We verify post conditions (e.g. (())).

The logical model of the resultant party archetype pattern is shown in Figure

3-15 and the party relationship archetype pattern is shown in Figure 3-16. As

mentioned previously (Section 2.2.4 and Section 3.2.4), for logical models we

use the ―language‖ of interfaces. The physical model for the person name

() archetype (illustrated in Figure 3-11) is following.

 *
 (

)
 () *

 +
 * +
 * +
 * +
 * +
 * +
 * +
+
 *
 (

)
 (
) * +
+
 *

 ()
 () * +
 * * +
 +
 +

53

We define logical models (Row 3 of ZF, Table 2-2), according to semantic

(Row 2 of ZF, Table 2-2) models specified as unit tests (described in Section

2.2), by using interfaces. We then use open for extensions common archetypes

(abstract classes) where we implement all needed functionality. Finally, we have

closed for modification archetypes (sealed classes). We also use closed for

modifications special cases (for instance) as

suggested by Fowler [6].

3.5 Definitions of Models

We briefly describe the resultant archetype patterns we propose for development

of business domains.

3.5.1 Quantity Archetype Pattern

A quantity (Figure 3-12) is an amount of something measured according to

some standard of measurements.

Figure 3-12: Quantity Archetype Pattern

Differently to the quantity archetype designed by Arlow and Neustadt [14], we

have the concept of measure (inspired by Fowler‘s quantity pattern [15]) and a

unit factors based conversion mechanism (modified idea inspired by Borland

Delphi IDE). The unit archetype () represents a standard of measurement.

54

Unit attributes are name, description (both derived from), symbol,

measure (Table 3-4), terms and factors
Unit terms are used to define composed units precisely for automatic unit

conversion. For instance, the terms for unit litre () and

newton (

) are illustrated in Table 3-5. Unit factor is an amount of base

units equal to a unit in question. For one and the same unit more than one unit

factors are possible. For example, the unit kilogram has the factor equal to 1 in

SI (International System of Units) system but the factor equal to 1000 in CGS

(Centimetre Gram Second System of Units) system. Similarly to the unit and the

unit term archetypes there are the measure and the measure term archetypes,

exemplified in Table 3-6. Additionally to properties, some common methods

(Table 3-7) are defined for quantity, unit and measure archetypes

Table 3-4: Simple unit attributes

Unit Semantics Name Symbol Measure Description

Metre Unit of distance ―metre‖ ―m‖ Distance ―The metre is….‖

Kilogram Unit of mass ―kilogram‖ ―kg‖ Mass ―The kilogram is …‖

Second Unit of time ―second‖ ―s‖ Time ―The second is ….‖

Table 3-5: Attributes of the Unit and Unit Terms Archetype

Unit Name Symbol Measure Unit ()
Litre ―litre‖ ―l‖ Area dm^3

Newton ―newton‖ ―N‖ Force kg^1, m^1, s^-2

Table 3-6: Attributes of the Measure and the Measure Term Archetypes

Measure Name Symbol ()
Time ―time‖ ―T‖

Distance ―distance‖ ―L‖

Mass ―mass‖ ―M‖

Area ―area‖ ―A‖ L^3

Force ―force‖ ―F‖ M^1, L^1, T^3

Table 3-7: Common Methods of the Quantity Pattern

Method Quantity Unit Measure

Add Not defined Not defined

 Not defined Not defined

Divide

Inverse ()

Multiply

Power ()

Round Not defined Not defined

Subtract Not defined Not defined

55

3.5.2 Money Archetype Pattern

The money archetype pattern (Figure 3-13) is a special case of the quantity

archetype pattern.

Money archetype represents an amount of a specific currency. A currency is

accepted in one or more location. Money has properties amount and currency. A

currency () has properties name (e.g. ―Euro‖), description (e.g.

―Currency of the European Community‖) (derived from), introduction

date and expiration date (derived from), alphabetic code (e.g.

―EUR‖), numeric code (e.g. 978 according to ISO 4217), major unit symbol

(e.g. ―€‖), minor unit symbol (e.g. ―c‖) and ratio of minor unit to major unit

(e.g. 100). A currency can be an ISO currency (defined by ISO 4217) and a non

ISO currency (e.g. customer loyalty credits).

Figure 3-13: Money Archetype Pattern

56

The payment archetype () represents money paid by one party to

another, in return for goods or services. The payment method

() archetype represents a medium by which a payment can

be made. Cash (), check () and payment card ()

are payment methods.

Similarly to unit conversion (Section 3.5.1) each currency has one or more

exchange rates. An exchange rate (time limited) is a conversion factor to a

―base‖ currency. Normally the ―base‖ currency is a domestic currency and the

exchange rate of a domestic currency is equal to 1.

For example in some EU countries the domestic currency is EUR and the

exchange rate for EUR in those countries is therefore 1. However, the currency

conversion mechanism allows using multiple ―base‖ currencies. For this reason

each exchange rate has a type. In addition to the use of multiple ―base‖

currencies, this mechanism provides an opportunity to define different rates for

sales, purchases, major clients and etc. Which exchange rate must be used in

concrete currency conversion is determined by exchange rate type

() applicability rules.

3.5.3 Rule Archetype Pattern

We use semantically the same rule pattern (Figure 3-14) as designed by Arlow

and Neustadt [14].

The rule archetype () represents a business constraint and is defined by

a sequence of rule elements (). The rule context archetype

() contains an informational context for the evaluation of a rule.

Also in a rule context, information is represented by a sequence of rule element

() archetypes. Rule elements are either operators () or

variables (). Rules can be grouped into rule sets ().
An active rule () represents a type of rule that automatically

executes an activity after the evaluation of a rule. It is possible to override a rule

by a given special value (). Why, when and who established an

override are the properties of the rule override archetype.

Although Arlow and Neustadt have a third type of rule element, namely

proposition (), this difference is technical rather than substantive.

In our model a proposition is just a Boolean type variable (). Such a

technical realization allows us to easily determine what type of rule elements

may be elements of the rule () archetype and what can be elements of the

rule context () archetype. If rule elements of archetype can

be all rule element types (and including),

then rule elements of archetype can only be variables

(), i.e. including propositions ().

Similarly to Arlow and Neustadt‘s rule archetype pattern, operators can be

logical operators () and comparison operators (
). For every generic

variable () operations (equal, not equal, greater, not greater,

57

less, not less) have to be defined according to a variable type T. Additionally to

propositions (T is Boolean), logical operations () have to

be defined. In principle, currently used operators with defined operations can be

complemented with arithmetic operators and arithmetic operations related to

these operators.

Figure 3-14: Rule Archetype Pattern

3.5.4 Party Archetype Pattern

In real world a party represents an identifiable, addressable unit that may have a

legal status and that normally has an autonomous control over its actions [14 p.

122]. In information systems, the party archetype pattern (Figure 3-15) is a

representation of information about persons and organizations needed for

information systems in order to achieve their specific business goals.

 A party identifier () uniquely identifies a party. A

registered identifier () has been assigned (e.g. VAT

registration number, national insurance number, passport number, credit card

number, domain names, etc.) to a party by a recognized statutory body and is

58

valid for some period of time. A party authentication ()

is an agreed and trusted way to confirm that parties are who they say they are.

Figure 3-15: Party Archetype Pattern

59

A party contact (, ,
and) represents information that is used to contact a

party. Differently to Arlow and Neustadt‘s contacts, we added the telecom

equipment registration () and the using of

contact () archetypes. Such a solution allows to register more than

one telecom addresses (old equipment such as phones and faxes) in any

particular geographic address and to register any telecom address to more than

one party.

For generalization (e.g. , and are all

attributes) and flexibility (to add new attributes even at runtime) reasons we

introduced the attribute () archetype into the party archetype pattern.

Attribute has valid from, valid to, name, category, value and conformed by

properties. For example the notation ―person is 176 cm tall, measured by Dr

Smith at 3rd of May 2000‖ is an attribute with category denoting ―body

metrics‖, name denoting ―is tall‖, value denoting ―176 cm‖, confirmed by

denoting ―Dr Smith‖, and valid from denoting ―3rd of May 2000‖.

Person and organization are types of parties. Additionally to common party

() properties, the person archetype has some specific

properties. An ethnicity () is an attribute which is used to classify

people according to their racial, national, religious, linguistic, cultural origin or

by other background. A body metric () is an attribute which is

used to store information about a human body such as size, weight, hair colour,

eye colour, clinical laboratory measurements, diagnosis, and etc. The

organization archetype inherits most of its attributes from the common party

archetype.

Differently from Arlow and Neustadt, there is the organization type

() property and no organization subtypes (organization

unit and company). This gives us possibilities to flexibly adjust types of

organizations, even during runtime and gives organizations possibilities to

flexibly redesign organization structures as exemplified in Section 3.3.2 and

illustrated in Figure 3-8. For example, an organization can reorganize marketing

team via marketing department to marketing division.

3.5.5 Party Relationships

A party relationship (Figure 3-16) captures the fact that there is a semantic

relationship between two parties in which each party plays a specific role. There

are only binary relationships (flexible, conceptually cleaner and easier to

understand) between exactly two parties. This means that every n-ary

relationship is reduced to two or more binary relationships.

The party role () archetype captures semantic of a role (e.g. mother,

father, customer, patient, student, etc.) played by a party in a particular party

relationship (). Not separating parties from roles they are

involved with is a quite common design mistake in information systems.

60

I have seen a hospital information system, which refused to recognize physician

of this hospital as a patient. As persons we are in roles of students, clients,

patients or physicians in relationship with other parties for some limited period

of time. A role is related with a party (e.g. Gunnar is a software developer in

Clinical and Biomedical Proteomics Group) in some period of time with some

concrete requirements for responsibility and conditions of satisfaction.

Figure 3-16: Party Relationship Archetype Pattern

A role type () (e.g. software developer in Clinical and Biomedical

Proteomics Group) provides a way to store all the common information for a set

of party role instances. Using subtype property (collection) of a role type

61

archetype it is possible to build complicated role type hierarchies. The party

role constraint (, Section 3.5.3) specifies the type of a party and other

conditions that are needed for the party to play a specific role.

A preference () represents a party‘s or role‘s expressed choice

of (or linking for) something. It is often a set of possible or offered options [14

p. 150]. General preferences (e.g. dietary preferences) held by a party ();

specific preferences (e.g. working time preferences) held by a party playing a

particular party role (). Preference type () is specified

by a name, a description and a range of possible options ()

for a preference. Each preference specifies exactly one option from a range of

options listed in its preference type. Preference type may be related to a specific

product or a service (Section 3.5.6).

3.5.6 Product Archetype Pattern

The product archetype pattern (Figure 3-17) represents a generalized model for

products (goods or services) parties (persons or organizations) produce, use, sell

or buy. Products can be unique things (e.g. Mona Lisa by Leonardo da Vinci),

identical things (e.g. loaves of bread), identifiable things (e.g. cars with unique

serial numbers), measured things (e.g. flour measured in tons or kilograms) or

services.

The product type () archetype describes common properties

of a set of goods or services [14 p. 208]. The product instance

() archetype represents a specific instance of a product type

[14 p. 208]. Each product type has a unique identifier. Each product instance

can be uniquely identified by a serial number.

The product feature type () archetype and the

product feature instance () archetype are used for

product specifications. The product feature type archetype represents a type of a

product feature () and its possible values (e.g. {blue, green, yellow,

red}). The product feature instance archetype represents a specific feature (such

as colour) and its value (e.g. blue). Each product type has a set of possible

features (). Possible features can be mandatory or optional.

Differently from Arlow and Neustadt [14], where a possible feature value is just

a collection of objects, in our model a possible value is a collection of attributes

().
The batch archetype () describes a set of product instances of a

specific product type that are to be tracked together for example for quality

control purposes [14 p. 215]. Differently from Arlow and Neustadt, we have

defined batch as a special product instance and therefore derived from

 archetype. We also have added a batch type ()

as a special product type inherited from . The reason for this is

that, for instance, batches of samples in clinical laboratories can sometimes be

just normal products we have to manage and audit trail. This means, that like

62

any product instance, each batch has a serial number and is composed according

to specifications defined by a batch type.

Figure 3-17: Product Archetype Pattern

Each batch contains only one type of product instances identified by

property. Product instances in batches can be identified by serial numbers.

Batches may be optionally validated by one or more parties. Validations are

indicated by party signatures (). In our batch archetype,

63

differently from Arlow and Neustadt‘s, dates (sell by, best before, etc.) and also

allowed maximum and minimum product instances are ―product features‖ and

therefore are described by product feature type and product feature instance. In

comparison to the batch model we introduce, the original model, designed by

Arlow and Neustadt, is a special case.

The product catalogue () archetype represents a

persistent store of product information [14 p. 221]. The catalogue entry

() archetype represents information about a specific type of

product held in a product catalogue [14 p. 224]. In our product catalogue model,

differently to Arlow and Neustadt‘s product catalogue model [14 pp. 221-225],

each catalogue entry is time limited and a category is an attribute ()

and not only a string.

A selection of different products grouped together as a unit is often called a

package. The package is also a product and therefore we have a package type

() and a package instance () archetypes

inherited accordingly from the product type and the product instance

archetypes. Although our package model is based on rule-driven package

specification explained and illustrated by Arlow and Neustadt [14 pp. 230-242],

we have introduced some significant changes.

The package type is a product type that specifies a content of a package. The

content of a package is a collection of package elements ().
A package element can be either simple (), optional

(IOptionalPackageElement), or conditional (IConditionalPackageElement).

Packages with fixed content can be modelled by using simple package

elements. An example of such package is a meat package containing for

example a pound of minced meat, one chicken, four pork chops and so one. The

simple package element archetype has product type (minced meat, chicken, etc.)

and amount (, see Section 3.5.1) properties. With optional package

element it is possible to model packages similar to meal sets in restaurants

where a customer, for example, can pick one starter, one main course and one

dessert from a fixed selection of starters, main courses and desserts. With

conditional package elements it is possible to add conditions to optional

packages. For example, if a customer orders

― ‖ for the starter, he/she cannot

order ― ‖ for the dessert. Concluding,

packages in our product model, instead of minimum and maximum integer

values, have minimum and maximum quantities and all package types (simple,

optional and conditional) are modelled similarly by using general and unified

concept of a package element.

Our product relationship (Figure 3-18) pattern, differently from Arlow and

Neustadt‘s product relationship, is similar to the party relationship pattern

(Section 3.5.5). This means, that in addition to the product relationship

() archetype, we have the product relationship type

() archetype. The product relationship archetype

64

stores all common information for a set of product relationships and describes

constraints for valid ―provider‖ and ―consumer‖ product types in product

relationship.

Figure 3-18: Product Relationship and Pricing

We have a different model (comparing to Arlow and Neustadt) also for pricing

(Figure 3-18). The product type archetype stores possible prices

(). Possible prices have a set of preconditions (rule set, Section

3.5.3) in order to apply. The product instance holds a price, which can be either

an applied () or an arbitrary () price. Applied

prices are prices from a collection of possible prices of a product type and are

applied only when preconditions are fulfilled. Arbitrary prices can be applied by

some party and must be signed by an applier. In some cases an arbitrary price

must be approved by other authorized persons. The pricing of packages can be

either assigned (a package has a set price) or aggregated (the price of a package

depends on prices of package components).

65

There are some special products (Figure 3-19) in the product archetype pattern.

These special products are measured product, service, unique product and

identical product.

Figure 3-19: Special Product Types

The measured product type () and the measured

product instance () archetypes are used for

products where it is important to account the quantity of a product. The

measured product type has measure (e.g. height, weight) and preferred unit (e.g.

metre, kilogram) properties. The measured product type also records quantity

on hand. The measured product instance has a quantity property.

66

A service is a process or an activity that is offered for sale [14 p. 254]. The

service type () is a product type (). A service is

available for a period of time. The service instance () is a

product instance. The service instance has scheduled and actual time periods.

Additionally to the product instance, the service instance has a service delivery

status (), which reflects the lifecycle of service

execution.

We have introduced the state pattern [12 pp. 57-60] to the service archetype.

According to the state pattern, different service states (IScheduledService,

IExecutingService, ICancelledServic and ICompletedService) are represented by

individual classes. The effect is moving behaviour methods (Cancel, Executing,

Complete and) to where they belong. Additionally, such

swapping of a single field into a bunch of separate classes is in agreement with

the Single Responsibility Principle [12 p. 60].

Most products in modern times are mass produced. However, some products

are unique or so called ―one-off‖ products. The unique product

() in our model, differently from Arlow and Neustadt‘s,

inherits both the product type and the product instance archetypes. This means,

that depending on the context a unique product acts either as a normal product

type or a normal product instance. It also means that batches of unique products

(e.g. archaeological findings or museum specimens) are possible.

The identical product archetype is applied, when a product instance (mass

production) is an identical copy of a product type. Also the identical product

() archetype in our model has double inheritance. The

identical product archetype is inherited from the measured product type and

from the measured product instance. This means, that the identical product

archetype, depending on the context, acts either as a normal product type or a

normal product instance.

3.5.7 Inventory Archetype Pattern

The inventory archetype pattern (Figure 3-20) represents a model for managing

a stock (or store) of products (goods or services). The inventory ()

archetype represents a collection of inventory entries () held

in a stock by a business. An inventory entry records a product type

(IProductType) and a collection of available instances of that product type

(ICommonProductInstance).

In comparison to the inventory archetype pattern by Arlow and Neustadt [14

pp. 267-301], the inventory in our model belongs explicitly to some party

(). The inventory archetype pattern is designed as a

repository [6 p. 322] and because of performance reasons is designed to support

the lazy load pattern [6 p. 200]. According to the lazy load pattern, an object

does not contain all data it needs, but knows how to get it when necessary. This

means that inventory does not contain all inventory entries, but only knows how

to get them.

67

The same is true for the inventory entry archetype. The inventory entry

archetype, by knowing an identifier of a product type

() and a collection of product serial numbers

() is able to get information about a product type

() and product instances () when needed.

There are two inventory entry types: inventory entry for products and

inventory entry for services. A product inventory entry

() is an inventory entry that holds a set of available

product instances of the same product type. Each product inventory entry may

have a restock policy () which, by a set of rules (see Sections

3.5.3), determines when inventory items need to be reordered. Outstanding

purchase orders (, see Section 3.5.8) are used to calculate a

quantity of an ordered items for a particular period.

Figure 3-20: Inventory Archetype Pattern

A service inventory entry () is an inventory entry that

holds a set of service instances of the same service type. A capacity manager

() manages the utilization of a capacity by releasing service

instances.

One of the key functions of an inventory is to decide whether product or

service instances are available for sale. The reservation archetype

68

() represents an assignment of one or more product instances to

one or more receivers. The reservation request ()

archetype represents a request from a requester () for a

reservation to be made. Each reservation has a unique identifier

() which uniquely identifies a reservation. This

reservation identifier is used for product reservation. For example if

 property of is not

 then this product instance is reserved.

The availability policy () archetype

and cancellation policy () archetype are

rule sets (Section 3.5.3) describing either availability or cancellation rules.

3.5.8 Order Archetype Pattern

The main archetypes of the order archetype pattern (Figure 3-21) are the order

manager, the order and the order line.

Figure 3-21: Order Archetype Pattern

69

In comparison to the order archetype pattern by Arlow and Neustadt [14 pp.

303-389], our model has a different order status management system and is

designed as a static document which maintains information about company

events (e.g. order is created, payment is made, payment is accepted, delivery is

sent, and etc.). The dynamic part of Arlow and Neustadt‘s order archetype

pattern (designed by activity diagrams) is removed from the order archetype

pattern and is designed (Appendix 7.2) by using the business process archetype

pattern (Section 3.5.9).

Figure 3-22: Order Line Archetype

The order archetype, according to Arlow and Neustadt [14 p. 304], represents a

record of a request from a buyer to a seller to supply some goods or services.

There are two order types: a purchase order () and a sales

order ().

70

Orders can be categorized () and in addition to common

properties, date created (order is inherited from) and terms and

conditions (), the order archetype has attributes

() property. With attributes property different customer requirements

(or even domain) specific features, like sales channel (shop, Internet, etc.) or

discount context (e.g. describing information in order to use

discounts), can be modelled.

The order line () archetype (Figure 3-22) represents a part of an

order that is a summary of particular goods or services ordered by a buyer [14 p.

310]. The order line archetype has product type, product instance, amount of

ordered items, unit price of an item, expected and actual delivery dates, and

other properties. By using an order line receiver property, products in each order

line can be delivered separately.

Additionally, an order line has responsibility to manage charges and taxes

related to the particular order line. A charge line represents an additional charge

(packaging, transporting, etc.) for an order line [14 p. 319]. The charge line is

described by amount of money, comment and description attributes. The

description indicates what the additional charge is for (e.g. packaging, handling,

shipping, and etc.) and the comment is just for recording additional information.

The tax on line () archetype represents a tax charged on an

order line () or on a charge line () [14 p. 320]. The

tax on line () archetype, by pointing to the tax policy

() archetype, records what taxation type has been applied

and what taxation rate is used. The order manager ()

archetype is responsible for managing prevailing tax policies.

The order manager archetype manages a collection of orders (), tax

policies () and discount types (). The order manager

() is designed as repository [6 pp. 322-327]. This means,

that the order manager archetype appears as an in-memory collection of domain

objects (), although objects can be

physically stored in a database or in some other storage. The order manager

manages all amendments in these collections. With CRUD (create, read, update

and delete) operations it is possible to add new, to search, to change and to

delete existing entities. As all of our archetypes are designed as read only

software artefact then changes can only be made by sending a clear and explicit

request to repository for repository to perform these needed changes. All CRUD

requests, with explicit requester‘s identifier, must be sent to authorized

repository which records request, checks requesters‘ privileges, and only if

requester is allowed to make such a request, it completes the request. With such

logic we can audit trail all requests and changes, and if needed, we are also able

to restore the previous situation with built in undo and redo features of

repository.

A party can be in different roles (vendor, sales agent, payment receiver,

order initiator, and etc.) related to ordering of goods and services. In our

71

understanding these party roles, related to orders, are more requirements than

domain related features. Therefore we propose collection based solution instead

of modelling these roles explicitly (as done by Arlow and Neustadt, Figure 9.5

in [14 p. 316]). Such a solution allows us to meet different requirements from

customers even at runtime.

Order events () and order status () (Figure 3-23)

are used for an order lifecycle management. The order lifecycle is driven by

certain notable occurrences or order events. An order event can be authorized

by one or more parties through party signatures. The date authorized property

records a date and a time when all required authorizations are obtained and the

date processed property records a date and a time when this event is fully

processed.

Figure 3-23: Order Status and Events

The order status () archetype represents a particular order state

and contains possible activities that can be performed with an order in current

72

state [14 p. 326]. Differently from Arlow and Neustadt, where the order status is

just an attribute holding enumerations (initializing, open, closed and cancelled),

we have modelled order status by using state pattern from Nilsson [12 pp. 57-

60].

With the state pattern, we encapsulate different states as individual concrete

classes (, , ,
and) inherited from an abstract base class ().
Such swapping of a single field into a bunch of separate classes results in

moving behaviour methods to where they belong and satisfies the Single

Responsibility Principle [12 p. 60].

More precise description of order status and order events is given in

Appendix 7.1. In the order archetype pattern, only results of sales and purchases

processes will be recorder. This means, that the order archetype pattern acts as

documentation for sales and order processes. Payment (Appendix 7.2.3),

purchases (Appendix 7.2.4) and sales (Appendix 7.2.5) processes are business

processes described in the next section.

3.5.9 Process Archetype Pattern

Business archetype patterns (Party, Party Relationship, Product, Inventory,

Order, Rule), designed by Arlow and Neustadt [14], are in good harmony with

Zachman Framework (Section 2.1.1) and can be used for describing

independent business phenomena (ZF columns). Arlow and Neustadt have

archetypes for recording things (product archetype pattern), locations (party

relationship archetype pattern), persons (party archetype pattern), events

(inventory and order archetype patterns) and strategies (rule archetype pattern).

Arlow and Neustadt have no archetype pattern for recording processes. This is

the reason why we have designed the process archetype pattern (Figure 3-25).

It is important to note, that we are talking only about business processes.

This means, that there is (Figure 3-25) at least some outcome ()

somehow reflected in company‘s accounts (information recorded either by the

order or the inventory archetype patterns). This also means, that there is a

subordinate party role () responsible to reporting to

some supervisor party role ().

Figure 3-24: Process and Feedback

Thus, the metaphor of our business process model is a subordinate‘s report (or

feedback, Figure 3-24) to a supervisor. Therefore processes in our model are

described by communications between two parties (persons, organizations, or

even artificial agents) ―playing‖ some roles. In our understanding this metaphor

73

is quite powerful for modelling of different kinds of business processes and

even business plans.

Figure 3-25: Business Process Archetype Pattern

Similarly to movies, that emulate dynamic reality by sequences of static

pictures, the business process archetype pattern emulates dynamics of business

processes by sequences of reports (feedbacks). More reports from trusted and

different parties means better and more implicit picture about the whole process

as a dynamic phenomenon. The business process archetype pattern can also be

used for planning of business processes. When an actual report is a feedback

about what has already happened, then a plan is a ―feedback‖ about business

processes we hope will occur in future. By comparing plans, modelled as

expected future reports, and actual reports we can monitor the compliance of

plans and reality and correct the plans if needed.

74

Therefore we have modelled business processes as communications (reports,

feedbacks). Arlow and Neustadt have designed the CRM (Customer

Relationship Management) archetype pattern [14 pp. 187-201] on top of the

party relationship archetype pattern.

We have designed the business process archetype pattern similarly - on top

of the party relationship archetype pattern. This means, that each task (,

part of business process, Figure 3-25) is a party relationship (,

see Section 3.5.5) which binds together consumer and provider roles.

Other process archetype pattern (Figure 3-25) archetypes are the following.

The process manager archetype () records all possible

processes () of allowed process types () described by

the process manager type (). An example of a process

manager type is sales manager. Examples of process types are different sales

types (debited sales, invoiced sales, credited sales and prepaid sales).

Each business process consists of one or more business threads ().

A business thread is described by a thread type (). Allowed

thread types are listed in a business process type. Examples of thread types in a

sales business process are sales initialization, receiving of payments, despatch

of deliveries, change of sales conditions and cancellation of sales. Each business

process (Figure 3-25) has a manager (), which is a party

role ().
One and the same thread (e.g. receiving of payments) can include more than

one task (e.g. receiving a payment). This is why we need threads (e.g. all

payments) and tasks (e.g. particular payment) in our model. Therefore each

business thread (Figure 3-25) consists of one or more business tasks (). A

business task has task type () property. Allowed thread task types

are listed in thread types. A task has a task manager

(()) and participants

() properties. A task manager is responsible for reporting

to a senior manager (()). Similarly to

threads that consist of one or more tasks, tasks consist of one or more actions

(). Each action has an action type () and one or more

outcome () properties. Each outcome has an outcome type

().

Business processes often require some kind of approvals. Process threads can

be terminated (), actions can be initiated

() and approved (), as well as outcomes

can be approved () by authorized persons. The party

signature archetype () is used for such approvals.

As business processes vary and can be changed often, we have designed the

business process archetype pattern to be managed by rules (Figure 3-26). By

using the rule archetype pattern‘s (Section 3.5.3) rule set () and rule

context () archetypes, we can formally describe and validate wide

variety of business requirements used by business processes. This means, that

75

each process element type (, , ,

 and - inherited from)

has property, and each process element (, , ,

 and - inherited from) has

 property.

Figure 3-26: Rule Based Process Management

For example, to establish that the buyer has rights to withdraw within 14 days

from purchases transaction, the receive purchase cancellation task type must

have the following simple rule

 * +

Depending on cancellation and initiation dates, a seller either accepts or

declines the sales cancellation. For example, when a seller receives the

cancellation request which gives context * +,
the buyer has rights to withdraw.

Some concrete common business processes (communication, reporting,

payment, purchase and sales) are described in Appendix 7.2.

3.6 Using of Models

A domain stakeholder [25] is a person or an organization united somehow in

interest or dependency on the domain. Each stakeholder has some roles, rights,

duties as well as specifically identified perspective or view on a domain.

76

By analysing stakeholders‘ views, rights and duties, we get knowledge about the

domain.

Lindqvist and Christensen [45] have generalized stakeholders to a global

administrator, a local administrator, a person and a third party. We use the same

classification along with the assumption, that a stakeholder is a role that persons

and/or organizations are playing.

Figure 3-27 illustrates parties‘ roles in clinical laboratory. Stakeholders‘

relationships in clinical laboratory are illustrated in Figure 3-28.

A person is an individual capable of sample analysis in a laboratory. Persons

are laboratory employees. A role that these persons, employed by a laboratory,

are playing, in the laboratory, is the role of a MTA (Medical Technical

Assistant). Some MTA‘s can also be in the role of a local administrator.

Figure 3-27: Abstraction of Clinical Laboratory Related Party Roles

 A local administrator is the administrator of a particular laboratory. A local

administrator takes care of maintaining infrastructure in a laboratory.

A global administrator is an administrator who tracks and uniquely

identifies organizations and individuals. Examples of people‘s identifiers are

passport numbers, social security numbers and identity card numbers. Examples

of companies‘ identifiers are domain names, stock exchange symbols, registered

names and office addresses.

A third party, in a laboratory, is a person or an organization, which causes

MTA to analyse samples or is somehow affected by sample analysis process in

the laboratory. A third party does not interact directly with the sample analysis

process.

Third parties in a laboratory are:

Laboratory – a sample analysing company. A MTA works for a laboratory.

Patient – a person whose sample (blade, serum, urine, etc.) is being analysed.

Clinician – a person who treats patients. A clinician requests (initiates) a

sample analysis in a clinical laboratory and clinicians receive analysis reports

from a laboratory MTA.

77

Hospital – a company where clinicians are working and patients can be

hospitalized. A laboratory can be a department of a hospital.

Auditor – a company (institution) which for example audits QC in a clinical

laboratory. A laboratory has to send periodical reports about laboratory QC to

auditors.

Fund – a company or a fund offering health insurance for patients.

Supplier – a company which maintains laboratory equipment and sells reagents

and spare parts to laboratories.

Representative – a person who represents a company (hospital, auditor, fund or

supplier) or a person (patient, clinician).

Figure 3-28: Laboratory Stakeholders Relationships Abstraction

The following narratives (L.3) illustrate clinical laboratory stakeholders (roles

related to a laboratory) and their relationships.

L.3. Organizations and persons are parties in a clinical laboratory

L.3.1. All parties are uniquely identified (they have some registered identifiers like

passport number or VAT registration number) by a global administrator (some

government or other legal organization).

L.3.2. Each party can play one or more roles in a laboratory.

L.3.2.1. Roles that persons can play in a laboratory are: MTA, patient, physician, and

representative of an organization or other person.

L.3.2.2. Roles that organizations can play are: laboratory, hospital, auditor, supplier,

and fund.

78

L.3.2.3. Each company‘s role (laboratory, hospital, auditor, supplier, or found) has

zero or more representatives (persons representing a company).

L.3.3. Party relationship is a relationship between two parties, where each party plays

a specific role.

L.3.3.1. Laboratory employs one or more MTAs.

L.3.3.1.1. Responsibilities are assigned to MTAs. Meaning that persons who play

this role have to have some capabilities (education, experience, certificates, etc.).

L.3.3.1.2. Some MTA‘s are local laboratory managers.

L.3.3.2. A clinician can treat one or more patients.

L.3.3.2.1. More than one clinician can treat one and the same patient at one and the

same time.

L.3.3.2.2. A person who, is a clinician, has capabilities (education, experience,

certificates, etc.). Clinician‘s role has requirements, which can give a person

(playing this role) some specific rights (responsibilities) (e.g. to treat children, to

treat some special disease, etc.).

L.3.3.2.3. A clinician can order sample analysis only for patients he/she treats.

L.3.3.3. A laboratory tests (determines) samples.

L.3.3.3.1. It is possible that a laboratory has to collect samples.

L.3.3.3.2. Sample determination (can include validation, decision making, etc.) can

require some specific information (e.g. dietary, age, gender, active medicaments,

putative/actual diagnosis, etc.) about patients.

L.3.3.4. Patients can be either hospitalized or not.

L.3.3.4.1. Only one hospital can hospitalize one and the same patient at the same

time.

L.3.3.4.2. There are a fixed number of beds in a hospital.

L.3.3.4.3. A hospitalized patient is in one bed or moves from one bed to another.

L.3.3.5. A clinician is either a sole proprietor (for example some GP‘s - general

practitioners), or has to be employed by at least one health care company.

L.3.3.5.1. When ordering sample analysis, a clinician has to assign only one health

care company to the sampling request.

L.3.3.6. Patient‘s health can be insured by one or more health insurance funds.

L.3.3.7. A laboratory delivers sampling invoices (depending on rules or agreements)

either to hospitals, funds, clinicians or patients.

L.3.3.7.1. If an invoice is sent, then only one payer has to be marked.

L.3.3.8. One or more auditors can audit different activities in a laboratory.

L.3.3.8.1. Most common audit in laboratories is QC audit.

L.3.3.8.1.1. QC reports have to be sent periodically to auditors.

L.3.3.8.1.2. QC report has to be signed by one or more MTAs

L.3.3.9. One or more suppliers can be maintaining laboratory equipment and/or

supplying spare parts and other supplies needed for sample analysis.

According to laboratory stakeholders‘ skeleton (Figure 3-28) and the party role

and the party relationship archetypes (Figure 3-29), we need:

1. Specific role types (patient, MTA, clinician, and representative) that

persons can play;

2. Specific role types (laboratory, hospital, auditor, supplier and fund)

that organizations can play;

79

3. Specific relationship types (laboratory MTA, laboratory manager,

hospital clinician, hospital patient, laboratory patient, clinician patient,

etc.).

For complete explanations of the party and the party relationship archetype

patterns please see Sections 3.5.4 and 3.5.5. The concise logical model of party

relationships is illustrated in Figure 3-29.

There are two possibilities to model laboratory related role and relationship

types (domain models in general). We call these ―runtime‖ and ―design time‖

techniques. The ―runtime‖ technique is described in Section 2.3.

Figure 3-29: Concise Logical model of Role and Relationship

We believe, based on our current knowledge, that this ―runtime‖ technique

allows us to change domain models even at runtime. This means, that laboratory

related (or more generally domain related) role and relationship types are not

special classes or interfaces, but are singleton unique values in a domain. This

possible ―runtime‖ model of laboratory related role and relationship types is

illustrated in the following pseudo code.

80

 (())
 (())
 (())

 (())

 (())

 (())
 (())

 (())

 (())

 ()

 ()

 ()

 ()

First, in the code above, role types that only persons (()) can

play are specified. Next, role types only organizations

(()) can play are specified. Finally relationship types,

which can be formed between persons playing roles of particular types, are

specified.

The technique, shown in the listing above, is in essence similar to normal

OO (object oriented) modelling technique (―design time‖ modelling of classes

and interfaces) shown in Figure 3-30.

The main difference between these techniques is not what (laboratory

domain in both cases) we model, but how we model – either by using ―design

time‖ class/interface technique or ―runtime‖ singleton instances technique. Even

the inheritance is supported by the ―runtime‖ model to some extent using

 attributes (Figure 3-29).

However, in domain analysis, we prefer (at least currently) the normal OO

(―design time‖) technique and we normally use the ―runtime‖ modelling

technique for specification of customer requirements. The ―design time‖

technique allows us to specify domain terms (clinician, patient, etc.) that we can

use as DSL when specifying customer requirements.

81

Figure 3-30: Laboratory Role and Relationship Types

82

3.7 Summary

According to Arlow and Neustadt [14], a business archetype is a primordial

thing that occurs consistently and universally in business domains and in

business software systems. A business archetype pattern is a collaboration of

business archetypes. We modified and complemented these archetypes and

archetype patterns originally designed by Arlow and Neustadt. As common for

software factories [3], all our models are source artefacts. However, we

distinguish the idea of archetype and archetype patterns (A&AP) from the

implementation (A&API). When we designed the A&AP and implemented the

A&API, we used the following principles.

Separation of knowledge and operational levels is one of our A&APs design

principles. For instance, there are no concrete units (kilogram, metre, second,

etc.) in our quantity archetype pattern. This is because we strongly separate

knowledge (abstraction - unit as general concept) and operational (concept

concretisations – kilogram, metre, second, etc.) levels from the archetype

patterns as suggested by Fowler [15 pp. 8, 24-27]. Such concretizations

(kilogram, metre, second, etc.) are neither issues of archetypes and archetype

patterns nor domains but are issues of business requirements for some particular

software. Such a separation technique gives us flexibility to change and modify

software according to requirements. The goal is to provide modifications of

requirements even at runtime in order to add evolutionary properties to software

systems.

Bjørner’s real world modelling principle is the next design principle we use.

This is an opposite of the „stop trying to model the real world― [46] principle.

According to Bjørner‘s real world principle, we have to analyse „what already

exists‖ and describe „the world as it is‖ [22 p. 18]. This is why there is the

measure archetype in the quantity archetype pattern we designed, and why

instead of Arlow and Neustadt‘s [14] derived units (e.g.

) we have the

derived measure (e.g.

) archetype.

Using of constructions similar to RDF (Resource Description Framework)

triplets is the next principle we use. This means, that most of our archetypes

(see Section 3.5) have attributes property holding a collection of {category,

predicate, object, authorized by, authorized when} records which are used

similarly to RDF {subject, predicate, object} triplets.

Good object-oriented design principles. As our archetypes and archetype

patterns are not just documentation artefacts, but are source artefacts, we use

principles of good object-oriented design [47]. For example, we use the Single

Responsibility Principle (SRP) by designing archetypes and archetype patterns

so that they are responsible only for domain knowledge but are not responsible

for infrastructure, presentation and data access. This means, that A&APs are

designed and A&API is implemented to be infrastructure ignorant (similarly to

persistence ignorance [12 pp. 183-184]).

83

We also use the Open-Closed Principle (closed for modifications, open for

extensions) [47] by using interfaces and common classes as shown in the

following example of the archetype.

 *
 * +
 * +
 * +
 * +
 * +
 * +
 +

 * +
 * +
 * +

We define logical models (Row 3 of ZF, Table 2-2), according to semantic

(Row 2 of ZF, Table 2-2) models specified as unit tests (described in Section

2.2), by using interfaces. We then use open for extensions common archetypes

(abstract classes) where we implement all needed functionality. Finally, we have

closed for modification archetypes (sealed classes). We also use closed for

modifications special cases (for instance) as

suggested by Fowler [6].

Liskov Substitution Principle (LSP) is also used when designing archetypes

and archetype patterns. For example, we never inherit student (as described in

[12]) or patient from person, because no such kinds of persons as patients or

students exist in real world. In designing of archetypes and archetype patterns

we strongly separate parties (John Smith for instance) from roles (being a

student or a patient) parties are involved with.

We use the principle of comprehensive test when implementing A&API.

This means, that all our models are implemented according to the test driven

modelling techniques (Section 3.2) where we utilize the test driven development

[24] techniques for domain analysis and modelling.

84

4 CASE STUDY: CLINICAL LABORATORY SOFTWARE

We use ABD (Part 2) in development of real life LIMS software and LIMS SF

(Software Factory) in CBPG (Clinical and Biomedical Proteomics Group,

Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St.

James University Hospital) at University of Leeds under the project called

MyLIS.

LIMS represents a class of computer systems designed to manage laboratory

information [1]. MyLIS is sample management software designed for clinical

research laboratories and intended to satisfy such important criteria of modern

information systems as interoperability [38] and dependability [48]. A wider

research goal is to develop LIMS that evolves in an evolutionary way together

with business processes.

Figure 1-1 illustrates our research and developments towards Software

Factory for LIMS. Based on business archetypes and archetype patterns based

domain model of laboratory, the LIMS Software Factory architecture consists of

LIMS Domain Specific Language (DSL), LIMS Engine and Tests Engine.

The same methodology we described in Part 2 for development of archetypes

and archetype patterns is also used for development of specific (e.g. laboratory)

domains (Table 2-2).

1. A glossary and semantic models are both specified as unit tests;

2. Logical design of domain models is specified in terms of A&APs and the

implementation of domain models is realized so that all unit tests (semantic

models, both for domains and A&APs) hold;

3. We use archetypes and archetype patterns based models (Section 3.5),

implemented as DLL (as embedded DSL), to get a specific domain model

(e.g. laboratory);

4. Specific domain models (e.g. laboratory, implemented as DLL) are used as

embedded DSL when specifying requirements.

We started with LIMS developments, under the code name MyLIS, in

September 2008. The prototypic MyLIS has been used in CBPG laboratory

from the end of 2009 and is currently in its third version, used by three different

CBPG research groups with different requirements. Although in CBPG MyLIS

is used in everyday laboratory routine, it acts also as a test polygon where we

test, evaluate and verify A&APs based techniques and LIMS SF ideas.

MyLIS development is agile in a sense that we stared with a very simple

laboratory domain model based on a very simple A&AP model. The version of

A&AP model, we explained in Part 3, is more mature than the model we use in

the current working version of MyLIS. Models, used in the working MyLIS

version, are similar to the initial party model described in Section 3.2.4 and

visualized in Figure 3-5. This means, there are no interfaces based logical

models (Section 3.5), no influences from Fowler [15], Hay [16] and Silverston‘s

[17] models and no custom-class-undefined patterns illustrated in Figure 3-11.

85

The foregoing is also true for the laboratory domain model used in the current

MyLIS version. Therefore, laboratory domain models, described in Section 4.2,

are currently under development.

In Section 4.1, we describe motivation and strategies used in MyLIS

developments. In Section 3.6, based on laboratory related party roles, we

described how archetypes and archetype patterns are used in domain

development. In Section 4.2, we describe domain models of laboratory. In

Section 4.3, we are talking about MyLIS developments where ABD techniques

and laboratory domain models are utilized. In Section 4.4, we describe our

research and developments towards LIMS SF and evolutionary information

systems.

We have published three conference papers [42; 49; 50] related to MyLIS

research and developments.

4.1 Motivation for LIMS and LIMS SF developments

LIMS [1; 51] is a complicated software system. Medical laboratories differ from

other laboratories in the sense that medical laboratory data are classified as

sensitive patient data and therefore these are subject to data protection laws.

However, research laboratories differ from other laboratories in the sense that

business processes used by research laboratories are constantly changing and

different research groups within the same research laboratory, sometimes even

different investigators in one and the same research group, require different and

customizable business processes. At the same time, research laboratories and

researchers require exchange of information and interoperability of software

systems in a global manner.

The 2020 Science Group (Venice, July 2005) [52], a group of internationally

distinguished scientists, considering the future of science and the role, also

impact, of computing and computer science on sciences, including

revolutionizing medicine and healthcare, highlighted that ―...end-to-end

scientific data management, from data acquisition and data integration, to data

treatment, provenance and persistence‖ is one of the immediate and important

science challenges for the year 2020. They also indicated that ―a first step in

that direction is peer-to-peer and service-oriented architectures‖ and that ―the

development of an infrastructure for scientific data management is therefore

essential‖.

It would be good if, for example, cancer researchers were able to share and

distribute their data and knowledge with other cancer researchers around the

world automatically and conveniently. It would be also good if cancer

researchers could use in their research clinical data about patients around the

world.

Such a world-wide, peer-to-peer and service oriented infrastructure for

scientific data management requires that data and knowledge are semantically

understandable for machines. It is also important that patients‘ clinical data and

patients‘ sensitive personal data are strongly separated.

86

While standardized in some ways, such system for scientists has to be flexible

and adaptable so, that there are customizable possibilities to describe data,

knowledge and research methods. This system has to be tied with mathematical

methods and have flexible data processing features. It also needs advanced

authorizing and security features.

We see ABD for development of domains, requirements and software as a

promising idea to build such an infrastructure for medical research (including

cancer research) scientist. The kernel of techniques in question is a universal,

well-designed, semantic model (archetypes and archetype patterns describing

objects, subjects, processes, locations, events and rules) used for describing

domain models and requirements.

Table 4-1: Meta-modelling with archetypes and archetype patterns

Layer Content Changes Tool

Meta-meta-

model (M3)

Objects, properties, ...

programming language

Rarely, design time e.g. C#

language

Meta-

model (M2)

Archetypes and archetype

patterns (e.g. business archetypes

and archetype patterns)

Rarely, design time Code

Model

(M1)

Domain model (e.g. clinical

laboratory domain model)

Sometimes, run-time

and/or design time

Data (or

code)

Reality

(M0)

Requirements Often, run-time Data

We see possibilities to implement database layouts, communication protocols

and graphical user interfaces on top of archetypes and archetype patterns based

models (Section 3.5) and neither on top of laboratory domain models (Section

4.2) nor on top of particular requirements from a laboratory. We see possibilities

to modify data descriptions and research methods even at runtime and distribute

as well as compare them with others.

In our understanding this can be archived by meta-models (M2, Table 4-1),

containing archetypes and archetype patterns, and by domain models (M1),

designed on top of these meta-models. Meta-models as well as domain models

should reflect the universe of discourse, contain only knowledge level and not

operational level information and be designed infrastructure ignorant (Section

3.7).

This is why (only knowledge level information), for example, in the quantity

archetype pattern, there are no concrete measures, units and unit converting

factors. Therefore, there are no such types (classes in C#, design time artefacts)

as Kilometre, Hour and Kilogram or even such types (classes in C#) as

Distance, Time and Mass. These concrete measures, units and unit converting

factors are coming from domains or from particular software requirements and

they are data (objects in C#, run-time artefacts). This is why (infrastructure

ignorance) we have included repositories into archetypes and archetype patterns

87

(quantities, inventory, party manager, orders manager) and designed UI by

using reflection technology.

Some of these data (describing either domain or requirement knowledge) are

special data - they are ―singletons‖. Not singletons [44], but ―singletons‖. A

singleton ensures a type (class) which only has one instance and provides a

global point of access to it. The ―singleton‖ Kilogram, for example, ensures

globally one and the same semantic meaning. We realized ―singletons‖ similarly

to the singleton registry pattern by Fowler [6 p. 483].

Figure 4-1: Example of Doctors and Patients in Hospital

All other archetype patterns are designed similarly to quantity archetype pattern.

For example, the party archetype pattern (Figure 3-29) has types

and . The laboratory domain model (Figure 3-30) has role types

Fund, Patient, Hospital, Supplier, Laboratory, Physician, Auditor also MTA

(Medical Technical Assistant) and relationship types ―patient is insured by a

fund‖, ―MTA works for a laboratory‖, ―physician works for a hospital‖, ―the

patient has an attending physician‖, and etc. All this can be modelled and

realized in software systems so that run-time changes to domain models and

requirements are possible.

This, for example, means (Figure 4-1), that we have a meta-model (M2) with

 , , , , and

types according to the party archetype pattern (Figure 3-29). These types

(classes in C#) are realized in code. Next we have the laboratory domain model

with terms like Doctor, Patient and Hospital. Doctor, Patient and Hospital are

not subclasses of class, but are instances (―singletons‖, objects) of

 class. Similarly, Physician and Employee are ―singleton‖ instances of

the class. In Figure 4-1, two persons, Ila and Jim, are

related so that in indicated as physician1 with

 indicated as Physician, Jim plays a , indicated as

88

doctor1, with , indicated as Doctor and Ila plays a

indicated as patient1 with indicated as Patient.

4.2 Clinical Laboratory Domain Model

In the following we develop the domain model for clinical laboratories. This

laboratory DM is based on the ASTM standard laboratory guidelines [1; 51].

We use the A&AP model (Section 3.5, realized as DLL) as a DSL similarly to

laboratory stakeholders‘ case explained in Section 3.6.

In laboratory domain analysis and laboratory DM design we follow

independent phenomena described by the columns of ZF (Table 2-1). This

means that by asking common questions what (products), how (processes),

where (locations), who (persons), when (events) and why (motivations), we

analyse and model different clinical laboratory domain facets.

We found, that there are no laboratory specific aspects for events (when),

modelled using the inventory (Section 3.5.7) and the order (Section 3.5.8)

archetype patterns. The same is also true regard to motivations (why), modelled

using the rule (Section 3.5.3) archetype pattern. In Section 3.6 we designed

laboratory stakeholders we used for modelling locations (where, the structure of

laboratory) and persons (who, generally parties). Therefore, in current section

we have to model only laboratory products (Section 4.2.1) and processes

(Section 4.2.2).

4.2.1 Products and Services in Laboratory

Products and services are phenomena and concepts of domain, which are

fundamental to all other domain facet (or domain phenomena). The clinical

laboratory domain is a domain of sample management. Main products in

clinical laboratory are analyser, sample, tube, and rack. Main service in a

clinical laboratory is sample determination (testing).

A sample is a small part of a material or a product intended to be a

representative of the whole [51]. Each sample must be uniquely identified and

the location of a sample in a laboratory, a sample login, distribution and final

sample elimination and utilization has to be carefully tracked. Samples are

normally kept in sample tubes. Figure 4-2 abstracts the life-cycle of samples in

a laboratory. The first positive identification leads samples to registered state.

Normally, each sample in a laboratory has to be accompanied by a sample order

which determines tests ordered by ordering clinicians. When a sample and the

accompanying order are both in a laboratory (in principle they can arrive at

different times), the sample is in open state. This means, that the sample is ready

for determinations. Open samples are normally located in distribution

workstations. In distribution workstations samples will be distributed to analysis

or storage workstations. In analysis workstations samples are analysed - results

of some sample attributes are determined. In storage workstations samples are

held for possible late determination (e.g. for possible redetermination or

possible subsidence purposes before determination), stationary storage (e.g.

89

long-term storage in -80C refrigerators) or utilization. Before utilization all

samples should be marked as eliminated from laboratory.

A tube or a sample tube is a cover of samples. It is possible to get different

tube types with different sizes produced by different vendors. All such

information (capacity, vendor, etc.) can be important in sample determination.

Figure 4-2: Life-cycle of Samples

Figure 4-3: Life-cycle of Racks

A rack is a container of samples in tubes. Each rack is uniquely identified and

the location of a rack as well as the content of a rack must be carefully tracked.

Figure 4-3 abstracts the life-cycle of racks in a laboratory. Registered (uniquely

identified and inventoried) rack is normally in empty state. Racks are charged

with samples in distribution workstations. After that, filled racks are normally

moved to some analysis workstations, where racks are located until all rack

90

samples are determined. Racks can also be moved to some storage workstations

for stationary storage or to distribution workstations for correction or discharge.

Racks can also be discharged in some workstations where samples are

eliminated from a laboratory before utilization of samples. Obsolete or broken

racks have to be marked as ―eliminated‖ in the inventory list before utilization.

A determination is a single result of sample analysis [51]. Determination has

properties: type (test) indicating what was determined, object (sample)

determined, value of the determination, date when the sample was determined,

by which analyser the sample was determined and one or more MTA signatures.

A test (e.g. cholesterol, sugar, protein) is a type of determination. Tests may be

grouped into profiles (e.g. complete blood picture or small blood picture).

An analyser is a laboratory tool which is used for sample determination.

Analysers are located in laboratory workstations. A workstation is a place in a

laboratory (the main organization unit in laboratory) where samples are

distributed, analysed (determined) or stored for later use. Samples are located in

workstations or move from one workstation to another. Products and their

relationships in clinical laboratory are illustrated in Figure 4-4.

Figure 4-4: Abstraction of Laboratory Products

The logical model of laboratory domain products and product relationships is

shown in Figure 4-5. The product archetype pattern is described in Section

3.5.6. There are analyser () and sample ()

product types and corresponding product instances (and)

in the laboratory domain model.

91

Figure 4-5: Laboratory Products and Product Relationships

92

There are package type () and corresponding package instance

() for modelling containers in the domain model of laboratory.

There are service type () and corresponding service

instance () for modelling determinations in the laboratory

domain model. There are unique products for modelling tests () and

materials (), identical products for modelling tubes () and

unique packages for modelling profiles () in the clinical laboratory

domain model.

In principle it is possible to describe all characteristics of products using

product feature () and product feature type

() archetypes. Shortcuts have been designed for these

product features and feature types, as shown in Figure 4-5, to facilitate

understanding. For instance, the determination () has

―shortcuts‖ to Analyser, Quantity, Sample and Test features.

Figure 4-6: Sample Status and Events

Defining such shortcuts is basically the only reason why we do not have implicit

classes for party roles (Section 3.6) and why we have implicit classes for

product instances (, , and) in

the laboratory domain model.

93

Implicitly defined relationships are relationships between containers and their

elements () and relationships between samples and

analysers ().

Figure 4-7: Container Status and Events

The question is, why only these and why there are no implicitly designed

relationships between samples and determinations (or between determinations

and analysers; or between determinations and tests). The answer is simple: if a

determination is made, then it is made by a particular analyser, for a particular

sample and what was determined was a particular test. These properties of a

determination will never change or if they will, then this is just a correction of

recording mistakes. At the same time, relationships container-content and

sample-analyser are in continuous change and all these changes should be audit

tracked.

94

Similarly to order status and order events (Figure 3-23), container and sample

have status and event properties for managing their lifecycles as shown in

Figure 4-6 and Figure 4-7.

4.2.2 Laboratory Business Processes

4.2.2.1 Sample Determination

A laboratory is an organization managing samples in order to analyse these

samples (determination of sample properties). It has to be mentioned that more

than one laboratory is possible in the same physical location and these

laboratories can share laboratory equipment as well as employees.

Figure 4-8: Sample Determination in Laboratory

Sample determination process in laboratory is described by ASTM Standard

Guide for LIMS [51]. The initiation of a request for testing/sampling starts the

sampling process in a laboratory. Manual, phone, process-driven, time or

calendar-based, etc. orders for sampling are possible. Laboratory obtains

different kind of information (client, biography, requested test(s), safety…)

needed for sampling from a sample order. Sample collection can precede or

follow sample order. Unique labels for samples (barcodes) and some documents

(collection lists) can be generated during collection and/or login process.

Schedule work process includes adjusting sample priorities and reassigning

laboratory work as required. Control samples, and QC samples can also be

added to scheduled workflow if needed.

95

Analysis process contains sample measurement (determination) and data

capturing. After the analysis process, the results are reviewed by a qualified

person (verification and correction process). Once determination results are

verified, results can be reported to a customer. Some laboratories are able to

make interpretation and support decision making. Re-tests (the same sample

will be re-tested) and re-samplings (a new sample will be first collected from a

patient and then this new sample will be tested) can be initiated at multiple

points in laboratory workflow. Figure 4-8 abstracts sample determination in

laboratories.

Figure 4-9: Logical Model of Sample Determination

As sample determination is similar to selling of services, we have modelled

sample determination (Figure 4-9) similarly to selling (Figure 7-14) process

using the business process archetype pattern (Figure 3-25). This means, we have

a process which process type is testing (). Each testing process will be

initialized by a sampling order and includes testing threads ()

described by laboratory standard workflow [51]. Each of the testing threads

consists of testing tasks (party relationship between two party roles). Each task

has activities and each activity has outcomes related to a laboratory inventory

96

list. Threads in laboratory testing process are initialization, cancellation,

changing, preceding, reporting, sample utilization, validation, interpretation and

sample storing. As all these sample determination threads are designed similarly

to sales threads, described in Appendix 7.2.5, we omit here detailed

explanations of these sample determination threads.

4.2.2.2 Quality Control Process

Quality control process (Figure 4-10) in a laboratory is similar to sample

determination process in a laboratory (Figure 4-8). In the following, we only

describe some important differences rather than the whole QC process.

Figure 4-10: Quality Control in Laboratory

In general, QC process is a sample determination process. The difference is that

QC samples are made of QC materials and QC materials have targeted values

for each test. Therefore the aim of QC determination is to check a determination

quality of laboratory analysers. Normally QC process in a laboratory is

prescribed by rules and regulations from QC auditors. Examples of QC rules

and regulations in laboratories are RiliBÄK [18] and Westgard QC [22]. These

rules prescribe when and how the parameters of QC samples should be

determined; which are acceptable tolerances from targeted values; how to deal

97

with non-acceptable differences between targeted values and values obtained by

determination; and how to report about QC. Based on these rules, MTAs either

create QC orders manually or the generation of QC orders can be automated by

rules (Section 3.5.3). Simple example of such a rule is to perform QC

determination every morning before laboratory routine. Example of more

complicated rules is to perform QC determinations after every thousand normal

determinations or after every working hour.

As business process archetype (Figure 3-26) is designed to be managed by

rules, it is possible to add different QC rules to needed process archetype pattern

archetypes.

4.2.2.3 Planning and Monitoring of Material Requirements

There is a set of different accessories used in sample determination processes in

laboratories. Spare parts, reagents and QC materials are examples of these

accessories. In terms of A&APs, all these accessories are products and can be

modelled using the measured product (Figure 3-19) archetype. Therefore by

using the inventory archetype pattern (Section 3.5.7) it is possible to monitor the

quantity of each of these accessories and by using rules (3.5.3) it is possible to

automatically generate purchase orders (7.2.4) and send these orders to supplies.

4.2.2.4 Laboratory Automation

Laboratory automation is how online analysers receive information about what

determinations have to be applied to some specific samples and how clinicians

and GPs (general practices), by using HIS (Hospital Information Systems), can

order tests and receive determination reports automatically. The key to

laboratory automation are communication protocols ([53; 54; 55]).

Communication protocols describe rules and formats of messages sent and

received between laboratory instruments and LIMS system or between LIMS

and HIS systems. Informally communication between LIMS system and

analysers as well as HIS systems is similar to communication between two

parties described in Appendix 7.2.1. This informal similarity and our experience

in developing OCS (Online Control Server, mentioned in Section 4.4.3) for

laboratory automation is why we are working towards a laboratory automation

archetype pattern. This laboratory automation archetype pattern is based on OSI

(Open Systems Interconnection) model, ASTM [54] and HL7 [55] standards

and utilizes the business process archetype pattern (Section 3.5.9). This

laboratory automation archetype pattern is for future study.

4.3 Laboratory Information Management System (LIMS)

The architecture of MyLIS software is illustrated in Figure 4-11. This

architecture is derived from the architecture proposed by Helander [12 pp. 467-

477]. The data access layer implements object-relational mapping of persistent

data. The domain model layer has three sub-layers. Each sub-layer is realized as

98

DLL (framework, API) and acts as DSL embedded into programming language

(C# in case) for the sub-layer above it. Business archetype patterns sub-layer is

the DSL for the Laboratory Domain Model sub-layer, which itself is the DSL

for the Clinical Laboratory Domain Model sub-layer
2
. On top of the domain

model layer, we have a relatively thin service layer [6 pp. 30-32], where

requirements for particular laboratory are specified. The Clinical Laboratory

Domain Model acts as DSL for these concrete, specified in the service layer,

user requirements.

Figure 4-11: The Architecture of MyLIS Software

As the target is to change requirements and domain models even at runtime, the

presentation (rich client, web client) as well as communication (XML document

based communication interface between server and client) layer artefacts are

implemented using reflection [27] (.NET reflection for example).

For this the presentation layer uses access modifiers (private, protected,

internal and public) for selecting properties of objects to show in user interface.

2
 In current version we have not separated domain models for clinical laboratory and

laboratory domains. We have just one clinical laboratory domain model on top of

archetypes and archetype patterns. Refactoring of clinical laboratory models to two

separated models is a task for future study.

99

Figure 4-12: Screenshot of MyLIS user interface

100

For example, browsing forms show public read-only and read-write properties

but editing forms show only public read-write properties. MyLIS user interface,

shown in Figure 4-12, is developed so that UI generator analyses the structure

(type and properties) of an object and generates UI according to this information

at runtime. We also have a small ―language‖ for this; we use this language to

describe which properties and in which order to show in UI. For example, the

UI, illustrated in Figure 4-12, is generated according to the following scripts.

 ,- ,- * +
 ,- ,- *
 +
 ,- ,- *
 +

First, the lists the properties, by their names, the master grid shows.

Next, the lists the properties the detail panel (left side panel of

main form) shows. Finally, the lists the properties the edit dialog

shows.

In context of document format based changes of information systems, we

propose in Section 4.4, this means that we have document formats (,

 ,) which describe documents (user interfaces).

When we change document formats, the user interfaces, and therefore the

information system, will change. As document formats are properties, it is

possible to change the values of these properties at runtime using, for example,

reflection technology.

We already use such ―document formats‖ technology in number of places in

current version of MyLIS. For example, the following script (content of file)

first describes the automatically generated dialog, shown in Figure 4-13, and

then prints the barcode (Figure 4-14) according to entered, using this dialog,

values.

 * +
 * +
 * +
 * + ()
 * +
 * +
 * + ()
 * +
 * +

 * +

101

 * +
 * +
 * +

Figure 4-13: Fragment of Generated Barcode Printing Dialog

Figure 4-14: Example of Generated Barcode

MyLIS database layout (under the development, current working version uses

object images serialized into flat files) is designed according to A&APs. For

example, the medical laboratory has terms patient, physician and MTA (medical

technical assistant). However, in the database layout we do not see tables for

patients, physicians and MTAs. Database layout (for patients, physicians and

MTSs) is designed using only archetypal concepts of the party archetype

pattern.

We use the single table inheritance pattern proposed by Fowler [6]. In this

pattern, the inheritance hierarchy of classes is represented as a single table

which has fields for all properties of various classes. As domain model classes,

as well as classes designed according to user requirements (if any), are designed

so that they are only concretizations of A&AP classes (for example, using

attributes technology described in Section 3.5.4), we do not have to know all the

derived classes before we design database layouts. Because of the same reason

(all classes are concretizations of A&APs) there will be no ―empty‖ fields in

database layouts. Such ―empty‖ fields are inevitable side effects of single table

inheritance pattern as also pointed out by Fowler.

For example, ethnicity, body metrics, date of birth and gender (Figure 3-15)

are properties of the person () archetype. Person as well as organization

() are both concretizations of the general party ()

archetype. If mentioned specific person properties (ethnicity, body metrics, date

of birth and gender) are all attributes (with category values ―ethnicity‖, ―body

102

metrics‖, ―date of births‖ and ―gender‖), then, using single table inheritance

pattern, the database table for both party as well as for organization classes can

be designed as shown in Figure 4-15.

Figure 4-15: Example of Design of Database Table

Figure 4-16: Example of Generated Excel Reports

Such A&APs based database design should theoretically allow different

commercial databases (e.g. Oracle, MySQL, MS SQL etc.) to work with MyLIS

software. This is because we use databases only to store data (tables and views)

and we do not use database engines for storing logic (stored procedures,

triggers, etc.). It should also give a possibility to upgrade user and even domain

requirements either without or with minor changes in the database layout and

therefore without needs to map data from one DB layout to other.

103

For independence and performance reasons each client has also an offline

(local) database. This is because the job should get done even with no

connection to application and/or database servers. Naturally, this needs some

built in synchronization mechanisms for data stored in databases.

We also have a customizable MS Excel import/export feature that allows

data import from (and export to) MS Excel tables using A&APs based

converting. This is implemented similarly to UI generator described above. For

example, the following script generates Excel file illustrated in Figure 4-16.

 ,- ,- *
 +

We use such customizable Excel file techniques also in generating customizable

user reports.

Similarly to the A&APs based Excel interface, we are also working towards

A&APs based XML interface that allows exchange of data and therefore

ensures interoperability with other software systems.

4.4 Towards Clinical Laboratory Software Factory

Figure 1-1 illustrates our research and developments towards Software Factory

[3] for Laboratory Information Management Systems (LIMS) [1]. Figure 1-1 is

based on the software engineering triptych [22]. According to the software

engineering triptych, in order to develop software we must first informally or

formally describe a domain (𝒟); then we somehow have to derive requirements

() from these domain descriptions; and finally from these requirements we

have to determine software design specifications and implement the software

(), so that 𝒟 (meaning that the software is correct) holds [21].

All models we are talking about are not only documentation artefacts but are

source artefacts as common for software factories [3]. It means that the

(laboratory) domain model in Figure 1-1 is implemented as DLL.

Let us consider syntax, semantics and pragmatics. Pragmatics could be a

necessity. Need to cure and be cured. Need to teach and be taught. Need to

produce and sell products. Those needs are explicit, bound with particular

people and organizations. Perhaps pragmatics are requirements that every

particular person or organization have for a system. Maybe this

necessities/requirements/pragmatics can be explained to others. How accurately,

however, is a different question (perhaps you know the story about the swing –

the swings, that the child wanted, that the father understood he wanted and

finally the craftsman built, were all different). Perhaps it could be that

pragmatics is in the Bjørner‘s equation.

Semantics could be a domain - collection of concepts and relationships

between those concepts. Perhaps semantics is a rationalized and generalized

abstract language satisfying needs of pragmatics. Semantics could be 𝒟 in the

Bjørner‘s equation.

104

Syntax should then be in the Bjørner‘s equation or some part of . For

instance, when we speak then in addition to speech (syntax), an appropriate

infrastructure is also needed (mouth, ears, knowledge for presenting semantics

according to specific syntax and knowledge for understanding presented

semantics).

Based on what was said previously, it seems that the Bjørner‘s equation

𝒟 is relatively general equation. Statement
could also be more generally comprehensible. For us to be able to explain our

necessities R so that those necessities get satisfied, we need a corresponding

infrastructure S (syntax - language, alphabet, image, sound, taste, smell, etc. –

as a part of infrastructure) and a system of concepts D that is independent of that

infrastructure. Information system would then be described as (𝒟)
and this information system is correct if 𝒟 applies.

4.4.1 Paun’s P-systems

Let us consider the same thing (Information system) in P-system‘s

(Membrane Computing) notation [18].

 ()

 is a finite and non-empty alphabet of objects [18]. At the moment we do

not specify if they are domain or infrastructure objects.

 is a set of catalysts [18]. For example, if , where
* +, then * +. This means that (e.g. the format of a document) is

not important by itself. It is only needed to be able to extract (e.g. domain

archetype) from (e.g. document). More generally: is infrastructure

(eyes, ears, knowledge) that is needed to extract (semantics) from

(syntax). Or the other way round – to put semantics () into the form of a

specific syntax ().

 is a membrane structure, consisting of membranes [18].

Notice similarities between the membrane structure (Figure 4-17) and the

structure of a company. Companies are structured into divisions; divisions

into departments; departments into working groups; and working groups

into posts (not workers). That can be given formally

.

It seems to me that the concept of party role and relationship (Section 3.5.5)

is an important concept for specifying organization structures. Let us

consider an organizational structure of a laboratory for example. Laboratory

is not a party but a role that is performed by a particular juristic person, e.g.

Lab Ltd, for a certain period of time. Note that the change of juristic person

does not change anything in the laboratory (the role). The same applies for

posts. There are posts (also party roles) in the structure of company that a

certain party (person) is hired to carry out for a period of time.

105

Figure 4-17: A Membrane as an Abstraction of a Company (picture from [18]).

 are strings over representing multisets of objects present

in regions of a membrane structure [18]. Every structural unit in a

company receives documents () (information received in speech or mimics

is also equivalent to a document). In every structural unit there are also

descriptions of these documents i.e. formats () of these documents. For

instance, a staff department knows exactly what should be the format () of

a document () to compose an employment contract document ()

according to contract document format (). On the other hand, the staff

department is not able to deal with those documents about which they have

no corresponding formats. For example, the staff department of a company

has not got any idea, what to do with a confirmation document about

acquisition of a new car for the company. Best thing to do with those

documents is to forward them to the transportation or accounting

department. In conclusion: is a set of documents () (infrastructure

objects), formats of these documents () (catalysts, infrastructure objects)

and corresponding archetypal knowledge () (archetypal domain objects)

that are in a structural unit (organization or organization unit) at any given

time.

 is a finite set of evolution rules associated with regions

 of a membrane structure [18]. Situation described in previous clause

would be described by following simple rules.

It means that according to a document (e.g. order), the recruitment of a

worker is started. As a result the employment contract () is made with the

worker and archetypal knowledge () about the worker is created. That

archetypal knowledge is then written into a specific document (e.g.

record in a list of workers) of the company. It is necessary to have

106

descriptions of all documents () as they are company-specific.

Archetypal knowledge is derived from a domain model.

 is either one of the membrane labels , or , representing results

of computation [18]. In our example would indicate the company‘s

ledger, where the ―budget‖ of the system (company) is continuously

―recorded‖ in real time.

In conclusion, information systems have dictionaries, catalysts, structure, data

and rules (()) as follows:

 Dictionary (()) containing concepts of the following

domains:

o – Agent (for example party Lab Ltd) archetypes and archetype

patterns;

o – Domain (business where agent operates, for example clinical

laboratory) archetypes and archetype patterns;

o – Rule (calculus that agent uses, for example business rules in

laboratory) archetypes and archetype patterns;

o – Document (language that agent is able to use, for example input,

output and internal documents in laboratory) archetypes and archetype

patterns;

 Catalysts (

 * + *(

)+):

o Parts of an infrastructure ();

o Describe how language should be understood, i.e. how external

language is translated to internal concepts;

o Are document formats;

o Describe (*(

)+) the information communicated by a

document by using document and domain archetypes. *(

)+ is a set

of relationships between archetype elements. (

) is a relationship

between two elements and should be read as: the element of the

document archetype contains the value of the domain archetype ;

o Catalysts can be described as requirements. so that

, - (realizes and satisfies requirement) where ⋀, -

 ⋀[] (means ―by definition‖; notes

identity).

 Structure (

 * + *(

)+):

o A part of an infrastructure ();

o Emulates the real world. For instance, in company‘s information

systems the structure of a company is emulated. That is because in the

real world every specific activity is performed in a specific company‘s

structural unit by a person, working on a certain post;

o Describes an agent (*(

)+) who is „educated in a specific

domain―. *(

)+ is a set of relationships. (

) is a relationship,

107

that should be read as: agent is a domain object (archetype) and the

agent‘s property j (e.g. result of conducted calculations) is the property

k (e.g. inventory book) of the archetype b;

o Structures can be described as requirements. so that

, - with ⋀, - ⋀[] ;

o One structural element () can contain the result () of

the calculation.

 Data ():

o They are documents and catalysts;

o Catalysts are document formats that convert internal domain language

into language (i.e. document) understood by an external environment;

o Documents are parts of an infrastructure (). They are syntax – inputs

and outputs.

o Every agent understands documents it sends and receives. Therefore it

can execute such operations as () ()
 Rules of calculation ():

o Are parts of a infrastructure ();

o Essentially algorithms;

o Can be changed using requirements ();

o In a specific structure it describes what has to be done with a document

when it arrives.

4.4.2 Relationship between Equations of Paun and Bjørner

Based on discussions we gave above, it seems that there is a relationship

between equations (𝒟) and

 () as follows:

1. Domain, () . It seems that four abstract (archetypal) models (agent,

domain, calculus and language – or other names) are needed;

2. Software, (), containing catalysts,

structure, resources for every structural element, algorithms for every

structural element, the result;

3. Requirements, (, - , - , - , - , -) , are

infrastructure descriptions in the language of domain objects. , - has to be

read as a description of x.

4.4.3 World of information systems and agents – informal

explanation

An agent is the one that performs „calculus―. For that it needs resources

(catalysts and rules). It is independent and autonomous, reacts to events (arrival

of documents) and is able to learn. This means, that we can change (teach)

languages (catalyst), derivation rules (rules), knowledge (domain) and develop

the agent (make the agents structure more complicated and more perfect). Input

108

and output documents are events for agents. Documents are processed according

to document formats and according to given rules (resources).

There is a man (man is an agent). The man learnt to play the lute (acquired a

domain). The man heard birds singing (language) and studied (derivation rules)

to mimic birds singing. The man leant musical notations (new language) and

can play the lute (new derivation rule) according to these musical notations. We

are dealing with an agent who understands the ―calculus‖ of sounds and can

convert (calculate) an input, given in musical notations (document), into an

output document presented in sound.

There is a scientist (scientist is an agent). The scientist started to observe the

movement of moon and other astronomical objects (acquired a domain). He

knows numbers and can write them (language, document). He started to take

notes of the movement of moon and other astronomical objects using numbers

(conversion rules between numbers and movement of astronomic objects). By

analysing these notes, the scientist found relationships and constructed formulae

(new language) describing movements of astronomical objects. Using those

formulae the scientist leant to predict movements of astronomical objects and

solar (and lunar) eclipses (new derivation rules). We are dealing with an agent

who understands the calculus of astronomical objects and is able to calculate

positions of these astronomical objects.

There is a businessman (businessmen is an agent). The businessman leant to

buy fancy spices from India, deliver them to Europe and sell them there

(domain). He learnt to write down his deliveries and sales into his notebook

(language). He leant to predict his profit (derivation rules). We are dealing with

an agent who knows the calculus of business and can calculate the balance of

his business.

A software developer developed a software (software is an agent) which is

able to communicate with laboratory equipment. This software (Online Control

Server) was based on OSI (Open Systems Interconnection) model and ASTM

standard protocol E1394-97 which together form a domain of communication

protocols for communicating with laboratory analysers. This software was able

to communicate with different laboratory devices using different protocols

(languages) by converting those native laboratory protocols into E1394-97

standard protocol and vice versa. It was possible to add new protocols

(languages) at run-time. This software is an agent which is able to convert (and

understand) different communication protocols into E1394-97 protocol and vice

versa.

A software developer is developing LIMS. This LIMS knows (learns to

know) the domain of a laboratory according to ASTM LIMS standard guide

E1578-06. This domain is based on business archetypes. That LIMS knows

languages of Excel, XML and SQL. This LIMS can convert information from

Excel, XML and SQL documents into laboratory domain concepts and vice

versa (calculus). It should be possible to add other derivation rules (―calculus‖

methods) like statistical analysis methods, data mining methods and etc. into

109

this LIMS. We are dealing with an agent who aids people working in

laboratories to process laboratory data.

4.4.4 Example as an Informal Proof of Concept

An agent (staff department for instance) performs calculations (keeps records of

employees). We have objects () . We have an archetypal

agent . According to P-systems, this agent has knowledge (),

language (), structure (), events (arriving documents), rules () and the

result of agents work (calculation).

 * * ++

We have, for example, archetypal domain knowledge about employees. Let an

employee be represented just by a simple record (object) containing the name

(assume the name to be unique), the start date of the employment contract and

the end date of the contract. We have also a staff department with lists of

document formats, documents and employees records.

 *
 *
 +,
 * +
 * +

 +

We also have an archetypal calculus. These are operations that agent knows.

 * *
 () * + () ()
 () () +
 +

This means, that with every list (T means either or) an

agent is able to perform Add, Find, Delete, Update and Count operations.

We have an archetypal document and an archetypal document format.
 *
 * +

 +

We have catalysts. Catalysts are parts of infrastructure that can be defined by

requirements i.e. descriptions of real documents corresponding to real

situations. Currently, for simplicity reasons, formats only describe how many

110

rows and columns a document consists of and tie every column with a specific

domain concept or include predicates (document has to be composed according

to these predicates) like formats of requests and

 shown in pseudo code below. In this pseudo code, there is

the format of recruitment documents (), the format of

dismissal documents (), the format of error correction

documents (), the format of documents for requesting lists of

employees (), the format of employees list

documents (), the format of documents for requesting

information () and the format of information documents

().
 *
 (

 ⋀

 ⋀ , -

 ⋀ , -)
 (

 ⋀

 ⋀ , -
 ⋀ , -)
 (
 ⋀

 ⋀ , -
 ⋀ , -

 ⋀ , -)
 (
)
 (
 ()
 ⋀ ⋀
 ⋀ , -

 ⋀ , -
 ⋀ , -)
 (
 , - ()

 ⋀ , - ())
 (()
 ⋀

 ⋀
 ⋀ , - , -

 ⋀ , - , -)
+

We have a structure of an agent. This structure corresponds to a real situation

and can be described using requirements.

111

 * +

We have input and output data (documents) according to document formats

(catalysts).

 *
 ()
 ()
 ()
 (

)
 ()
 ()
 ()
 +

We have rules of calculations. These rules can be presented as Hoare triplets

[33] (* + * +) and describe what to

do when a document arrives to a staff department.

 *
 (
 * (, -
 (, -))

 ())
 +
 ()
 * ())+
)

 (
 * (, -
 (, -))

 ())
 +
 ()
 * ())+
)

 (
 * (, -
 (, -))
 (, -
 (, -))
 ()

)⋀ ())
 +
 ()
 * ())
 ⋀ ())

112

 +
)
 (
 * () +
 ()
 ()
 * () +
)
 (
 * () +
 ()
 ()
 * () +
)
+

We have a result of calculations

 (
 ⋀)

4.4.5 There is an Agent

It appears that an information system is an agent that performs calculations and

can be described as ().

1. It is collaborative. It receives messages () from a surrounding

environment (messages can be documents) and sends messages to the

surrounding environment.

2. It is autonomous. It communicates only by sending and receiving

documents.

a. It decides, according to catalyst (), if a document is correct (in

compliance with the document format),

b. It decides, according to rules (), how to process the

document

3. It has an ability to learn. In my opinion this can be realised as follows:

a. We send messages which include new knowledge ();

b. We send messages which include new languages ()

c. We send messages which include new agents‘ structure ()

d. We send messages which include new agents‘ liabilities

e. Note: I agree that in the beginning this is ―learning‖ and not learning.

This means, that we just change the data the system (agent) uses for

calculations.

4.4.6 Immutable objects

States of all objects in a system can only be changed with a constructor. This

means, that all class properties are read-only.

113

 *
 ()
 * +
 * +

 * +

+

This makes it possible to log all changes in a system and avoids changes that are

made by accident. Changes are dealt only by a repository (we exemplified the

techniques we use in Section 3.5.8). For every particular object there is only

one repository in the system. Every repository is responsible for a set (all

employees for example) or for a subset (e.g. employees of particular

department) of objects. Messages (language), a repository accepts, are the

following:

 ** () * + () () () + +

Authentication (who is the sender of a message) parameters can be added. A

repository must be implemented so that it logs every change and there should

always be a possibility to roll back changes.

4.4.7 Dependability – informative meaning

Even if we can describe information systems according to relationships

 (𝒟) and (), the question,

what does it mean that 𝒟 holds, still exists. Let we have an information

system

 ()

In the following, we propose some ideas for dependability criteria of

information systems.

Let be an amount of all possible (whatever it may mean) messages

(documents) and the amount of those messages that the given system

knows.

1. Availability

a. If we (authorization is not important) do not send any messages to the

system, the system will never go down.

b. If we (authorization is not important) at an arbitrary moment of time

send the system an arbitrary message , the system will not go

down;

c. If we (authorization is not important) at an arbitrary moment of time

send the system a lot of arbitrary messages , the system will

not go down;

114

d. There is a ―death message‖, that can be sent by an authorized ―death

coachman‖, which takes the system down.

2. Reliability

a. If we (some authorized agent) at an arbitrary moment of time send the

system an arbitrary message then the system sends us an ACK

(Acknowledgement) or a NAK (Negative Acknowledgement) message

in an agreed time period T.

b. If we (some authorized agent) at an arbitrary moment of time send the

system an arbitrary message (not recognized by system),

then the system sends us a NAK message in an agreed time period T

(perhaps necessary, although this is stressing for the system).

c. If during a time period T we do not receive ACK nor NAK messages

then following possibilities exist:

i. For example, a DoS (denial-of-service) attack or a DDoS

(distributed DoS) attack is undergoing and therefore information

moves slowly;

ii. The system (e.g. during DoS or DDoS attack) deals with preserving

itself and ignores all messages or some messages selectively;

iii. The system is down (is killed by ―death message‖ from ―death

coachman‖).

3. Safety

a. A system does only what is described by requirements given by catalyst

 and rules

4. Integrity

a. Processing of a document is an „atomic― activity. It either occurs or

does not. There are no intermediary possibilities.

5. Maintainability

a. „Health checks― of a system can take place every day or by other given

rules. For example, the whole set of tests (i.e. unit and acceptance tests)

can be started whenever it is needed.

b. „Health monitoring― of a system can take place all the time. ―Health

monitoring‖ means logging of all system events (what documents were

received, what changes they made and what documents were sent out).

This feature was implemented into the Online Control Server (OCS,

mentioned in Section 4.4.3). With OCS logs it possible to track errors. It

was also possible to emulate whole previous laboratory days according

to log files after any changes made in the system. In addition, it was also

possible to do the stress tests (e.g. 1 minute of real time is 1, 0.1 or 0.01

seconds when played back) for the system using real laboratory data.

c. Evolutionary criteria (change) should also be followed. The condition is

that whenever the system is changed, dependability criteria have to be

preserved.

6. Confidentiality.

a. All documents (input and output messages) have to be signed;

115

b. System reacts (and sends ACK and NAK messages) only to correctly

signed documents.

c. All documents can be encrypted.

d. All documents that are sent are also signed by the system (agent)

4.4.8 Evolutionary criteria

It is possible to explain informatively the meaning of (𝒟) and
() . But what can we do with these

explanations? Is it possible, for instance, to derive evolutionary criteria from

these equalities?

Table 4-2 Evolutionary versus non-evolutionary information systems

 Non-evolutionary (one-

off software developed

exactly according to

requirements from clients)

Software factory (one-

off software generated

for a client)

Evolutionary

(Software factory is a

part of a system used

by a client)

 Static, code (classes, e.g.

Unit)

Changes are made by

describing new

requirements in a

software factory.

Changes are made by

sending appropriate

messages to systems

 Static, code or permanent

data in a database (client

based static objects

possessing relatively

constant values that do not

change during the lifetime

of a system. E.g. kilogram)

Changes are made by

describing new

requirements in a

software factory.

Changes are made by

sending appropriate

messages to systems

 Static, architecture of a

system

Changes are made by

describing new

requirements in a

software factory.

Changes are made by

sending appropriate

messages to systems

 Dynamic, all data Dynamic, all data Dynamic, all data

 Static, algorithms in use Changes are made by

describing new

requirements in a

software factory.

Changes are made by

sending appropriate

messages to systems

 Static, locations where

results of calculation are

written

Changes are made by

describing new

requirements in a

software factory.

Changes are made by

sending appropriate

messages to systems

Perhaps being able to change (add and delete as objects are immutable) the

following is enough for the system to be evolutionary.

1. Being able to change dictionaries (, implemented as source artefacts)

of agents, domains, calculus and documents. For example, defining of

new objects from existing objects. E.g., defining a new domain concept

116

patient so, that patient is a role that can only be played by a party who

is a person.

2. Being able to change document formats (catalysts,) that the system

uses for communications.

3. Being able to change the structure () of a system (agent).

4. Data () can be changed anyway. We can add as many

lines as needed to documents or send as many documents as needed.

5. Being able to change calculation rules ().

6. Being able to change the location () where calculation results are held.

Table 4-2 describes how changes are implemented in three differently

developed information systems.

Changes are made by describing new requirements in a software factory

means that there are ready to use pieces (DLLs) that can be put together and

generated according to requirements from clients. Information about where and

what is running is kept in software factories. As there are several clients with

different requirements and configurations, a software factory must be

instrumented with a quite complicated version control system which includes a

data mapping system from an old system to a new one and an automated testing

system. In our understanding, it is possible to avoid data mappings when

database layouts are based on A&AP (as described in Section 4.3) and neither

on domain models nor on requirements.

An algorithm for ―can be changed by sending appropriate messages to

system‖ can be something as follows:

1. A document about changes is received (like every document it has to

correspond to the form of a document):

 ()

2. A signature of the document is checked and if the signature does not

meet authorization rules, the message will be ignored.

3. If the document format is wrong, a NAK (Negative

Acknowledgement) message will be sent to the requester and the

process of changing of system is cancelled.

4. Which part or subpart of the system (or) is about to be

changed is determined from the document description.

5. A copy is made of the corresponding part () and of tests

testing this part ().

6. Changes are made to the corresponding part () and to tests

testing this part ().
7. Tests are started (Including all tests from the previous set of tests

except these tests that are amended).

8. If an error occurs while testing, the initial state is restored and a NAK

message with an error message indicating a test error is sent to the

requester.

9. The log file from a previous day is taken and emulated.

117

10. If an error occurs in the emulation, then the initial state is restored and

a NAK message is sent.

11. The system is running a new version.

12. Possibly there have to be an Undo and a Redo features.

13. Possible recovery of the initial version, in case of errors, can follow

tests as well as emulations of previous days.

4.5 Summary

Implementation and testing of the LIMS Software and LIMS Software Factory

elements proves feasibility of A&AP models (Section 3.5), laboratory domain

models (Section 4.2) and archetypes based techniques (Part 2) in real life

systems. Prototypic MyLIS has been used in CBPG (Clinical and Biomedical

Proteomics Group) from the end of 2009. It is currently in its third version and

is presently used by three different CBPG research groups with different

requirements. When in CBPG this software is used in everyday laboratory

routine, then for us this LIMS is a test polygon where we evaluate and verify

our LIMS Software Factory ideas.

We see the P-systems (()),

described by dictionaries (), catalysts (), structure (), data ()

and rules (), as a roadmap towards evolutionary information

systems (Section 4.4). Proposed interpretation of P-systems is based on agent‘s

metaphor. An autonomous agent (e.g. enterprise) is active in a domain (e.g.

laboratory) and by communicating (e.g. sending and receiving documents) with

an external environment processes (i.e. calculates) information (e.g. tests

laboratory samples).

In this interpretation, dictionaries () are archetypal concepts used for

modelling agents, domains, documents and calculations. Catalysts () can be

interpreted as document formats describing how external languages (documents)

is translated into internal domain knowledge. A structure () is a description

(e.g. organization structure) of an agent. An agent is able to communicate with

an environment by receiving and transmitting data () and

according to algorithms, described by rules (), is able to process

calculations. An agent keeps results of calculations in some of its structural

units (), e.g. in the general ledger of an accounting department.

We described and explained this P-system based approach and derived

dependability as well as evolutionary criteria for information systems using this

approach. We see this P-system based approach as roadmap to develop

information systems that software end users are able to change according to

changes in business processes.

118

5 EVALUATION AND ANALYSIS OF ABD

In the current part, we briefly evaluate and analyse ABD (Archetypes Based

Development). We consider domain analysis and modelling and software

development processes and methodologies topics.

We have published [56] the ideas described in Section 5.2 in post conference

proceedings of Baltic DB&IS 2010, published in 2011 by IOS, Amsterdam, in

the series "Frontiers in Artificial Intelligence and Applications".

5.1 Domain Analysis and Modelling

We analyse ABD, described in Section 2, by comparing it with Dines Bjørner‘s

software triptych principle [22] and with Bjørner‘s domain analysis

methodology [25]. Bjørner‘s domain analysis methodology is based on domain

stakeholders as well as on pragmatically chosen domain facets. Domain facets,

according to Bjørner, are: (1) intrinsic; (2) business processes; (3) supporting

technologies; (4) management and organization; (5) rules, regulations and

scripts; and (6) human behaviour. In the following analysis we follow the

domain engineering research topics proposed by Bjørner in 2007 [21]. We start

with domain analysis research topics (R5...R13) (Bjørner has numbered the

research topics as R1 to R17), continue with infrastructure (R3, R4) research

topics, and proceed with lifting and projecting (R2) research topic. We follow

with requirements (R15, R16), domain models (R17), domain theories (R14)

and we consummate with the 𝒟 relation (R1) research topics.

5.1.1 Research Topic R5 – Intrinsic

Bjørner uses domain intrinsic [25 p. 264] for these phenomena and concepts of

a domain which are fundamental to any of the other (business processes,

supporting technologies, management and organization, rules and regulations

and human behaviour) domain facets. For instance, in clinical laboratory the

intrinsic (Section 4.2.1) can be a sample, an analyser, a rack and a

determination. These are all products (goods or services) businesses use or

make or which are somehow related to business processes and can be abstracted

by product archetype pattern (Section 3.5.6). In ABD, instead of the term

intrinsic, we use the term product for all of these concepts of domain, which are

things and of which we can ask a question "what".

5.1.2 Research Topics R6 and R7 - Support Technologies

Support technology is a domain facet carrying out business processes [25]. For

example, there is support technology radar, which ―observes‖ flight traffic [21].

The radar technology is not perfect. Its positioning of flights follows some

probabilistic or statistical pattern [21]. In ABD, business processes and support

technologies (also process) are modelled by using business process archetype

pattern (Section 3.5.9) which metaphor is report or feedback.

119

By using feedback, it is possible to collect information about processes. Similar

to movies that emulate dynamics of reality by showing sequences of static

pictures, the feedback (progress report) emulates business process dynamics by

static ―pictures‖ concerning the business process. Based on party relationship

archetype pattern, each progress report (possibly from address to address) is a

party relationship where a subordinate reports to a supervisor. With this

approach, we have a set of reports which is not perfect, but with some

probabilistic pattern describes the whole business process.

The quality control (QC) procedure in a laboratory is a support technology.

Quality control is similar to the laboratory‘s main business process. When in the

laboratory the main business process is sample testing (some sample parameters

are measured) in order to get some information about samples (e.g. reports from

analyser to work-area manager), then in laboratory QC procedure QC samples

(artificial samples with known parameters) are tested in order to get information

about the testing procedure (reports from analyser to QC manager). The QC

technology is not perfect, but with some probabilistic or statistical pattern we

still can say something about the quality of measurement in a laboratory.

5.1.3 Research Topics R8 and R9 - Management and Organization

In ABD, we strongly separate parties (persons, organizations, artificial agents)

from roles (patient, physician, hospital, etc.) these parties are involved with

within business domains. We use the party relationship archetype pattern

(Section 3.5.5) for modelling of management and organization (Section 3.3.2).

We only use binary relationships, which mean that one relationship binds

exactly two roles called ―consumer‖ and ―provider‖. It has to be clarified that

the role is always only used to store information that belongs to the role itself

and not to a party or to a relationship. Role type is used to store common

information for a set of similar role instances and relationship type is used to

store common information for a set of a similar relationship instances. With

such party relationship archetype pattern we are able to model quite complicated

organization structures as for instance is exemplified in Figure 3-8.

5.1.4 Research Topic R10 - Rules and Regulations

Rules and regulations are prescriptions that have to be followed in order to do

business. Rules and regulations are either followed or not. In this sense we can

look at rules and regulations as logical statements. This is why, in ABD, all

rules and regulations are modelled by using the rule archetype pattern (Section

3.5.3). A rule in the rule archetype pattern is a constraint on the operation which

semantic is defined by sequence of rule elements. Rule elements can be

operators, propositions and variables. Operator is either a Boolean operator

(e.g.) or a quantifier operator (). When a

rule represents some kind of a mask or a pattern, then a rule context contains an

informational context for the evaluation of the rule. When evaluating a rule, we

will get either the Boolean value true or false.

120

5.1.5 Research Topics R11 and R12 - Human Behaviour

Human behaviour is a quality spectrum (careful, diligent, accurate, sloppy,

delinquent, criminal, etc.) of carrying out assigned responsibilities. There are the

following properties for modelling of responsibilities, capabilities and

conditions of satisfactions in party and party relationship archetype patterns

(3.5.4).

 Capability (party, e.g. ―Java programming skill at level 8 out of 10‖)

 Responsibility (role type, e.g. ―motivating the team‖)

 Condition of satisfaction (rule set, responsibility, e.g. ―average score for

staff motivation >= 7 out of 10 on staff feedback‖)

 Assigned responsibility (role, responsibility assigned to the specific party

role in specific relationship)

In ABD, we use party and feedback (Section 3.5.9, concretization of party

relationship) archetype patterns for modelling of human behaviour. This means,

that the monitoring and control of human behaviour is a management process

where supervisor gives periodical feedback to subordinates. This feedback is

based on stated capabilities, responsibilities and on conditions of satisfaction.

5.1.6 Research Topic R13 - Sufficiency of Domain Facets

Instead of domain facets based methodology, in ABD we use ZF (Zachman

Framework) with archetypes and archetype patterns based methodology. We

found that the Bjørner‘s domain facets based domain analysis method is a

special case of the domain analysis methodology based on ZF with archetype

patterns (Table 5-1).

Table 5-1: ABD and Bjørner’s Domain Analysis Methodology

 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

ZF What

(Things)

How

(Processes)

Where

(Location)

Who

(Persons)

When

(Events)

Why

(Strategies)

ABD Product AP Progress

Report AP

Party and Party

Relationship AP

Order and

Inventory

AP

Rule AP

Bjørner Intrinsic Main

Business

Process;

Related

Processes

Management

and

Organization

Stakeholders;

Human

Behaviour

 Rules,

Regulations

and Scripts

121

For example, the set of intrinsic concepts (basic concepts to any other domain

facet) is the subset of all products and services businesses use, buy or sell and

can be analysed and modelled by using product archetype pattern (column 1).

The main business process together with related processes, management and

human behaviour can be analysed and modelled by the business process

(reporting or feedback) archetype pattern (column 2). The organization structure

can be analysed and modelled using the party relationship archetype pattern

(column 3). Stakeholders can be modelled by the party archetype pattern

(column 4). Rules, regulations and scripts can be analysed and modelled

according to the rule archetype pattern (column 6).

In addition to the Bjørner‘s facets, the ZF based approach has order and

inventory archetype patterns for analysing and modelling of business events

(column 5). Such an orders based modelling of events is also used by the REA

system [57]. Behind such modelling is the fact that generally all events in

businesses are triggered by some kind of orders being either written or verbal.

5.1.7 Research Topics R3 and R4 - Infrastructure Components

We do not use the term infrastructure as it is defined in the World Bank report

in 1994 [58] or as used by Bjørner in [21] when posing research topics. The

main target of ABD is to generate tailored software automatically according to

requirements and domain models. Thus, by the infrastructure we mean the

following [12 p. 279].

 Authorization and authentication

 Integration (service requests and responses)

 Data management and access (persistence)

 Presentation

 Logging

By definition, the domain descriptions describe the universe of discourse as it is,

without any references neither to software requirements nor to the software

design [25 pp. 7-9]. This is why in ABD, domain models are developed as

POCO (Plain Old CRL Object; coming from POJO - Plain Old Java Object)

objects and are free from any infrastructure-related distractions.

This infrastructure ignorant (similar to persistence ignorance [12 p. 183])

approach, that we use in the engineering of domain models, is in harmony with

SRP (single responsibility principle) [47] which states, that every object should

have only a single responsibility. In ABD, the domain model is responsible only

for acquiring domain knowledge and neither for infrastructure nor for

requirements.

If for instance, we are talking about the clinical laboratory, then the clinical

laboratory domain describes products, business processes, organization

structure, persons, events and business rules used in a laboratory. These

descriptions are then used by LIMS [51; 1] software. If for example, the generic

LIMS workflow [51] includes features to support laboratory processes (generate

122

sample request, sample collection, sample distribution, etc.), then the domain

model of laboratory describes these processes.

There is a difference between laboratory domain processes and

corresponding LIMS processes. When, for example, the sample collection

domain process manages samples, then the corresponding LIMS processes

manage information (records) about these samples. Additionally, the LIMS

processes should deal with information technology related infrastructure

(authorization, integration of service requests and responses, data management

and access, presentation and logging).

In our understanding these infrastructure components (authorization,

integration...) are also domains (infrastructure domains) and can be analysed

and modelled similarly to business domains. These infrastructure domain

models are playing key roles in proposed foundations (Section 4.4) for

developing software factories and evolutionary information systems.

5.1.8 Research Topic R2 - Lifted Domains and their Projections

The transportation domain is an abstraction of the more concrete road, rail, sea

and air transportation domains [21]. For Bjørner such abstracted domains are

―lifted‖ from more concrete domains and concrete domains are ―projections‖ of

abstracted domains.

If, for instance, a lifted (abstracted) domain (lets name this domain as party

relationship) has types of ‗party‘, ‗party role’, ‗party role type’, ‗party

relationship‘ and ‗party relationship type‘ (specified as , ,

 , and ,

Figure 3-29), then for example in projected concretizations (for example in

domain ―party relationships in clinical laboratory‖) we would probably have to

concretize only types of and as

shown in Figure 3-30 and as described in Section 3.6.

One possibility for concretisation can be realized by using inheritance as

shown in Figure 3-30. Role types in the clinical laboratory (Medical Technical

Assistant, Patient, Physician, Hospital, Laboratory, Workarea, etc.) are all

general ‗party role types‘ () and party relationship types in the

clinical laboratory (Patient is Hospitalized, Manager in Laboratory, Medical

Technical Assistant in Laboratory, etc.) are all general ‗party relationship types‘

().

The other possibility is to use instantiation as for quantity requirements is

shown in Section 2.3. In this case, ‗role types‘ and ‗party relationship types‘ in

clinical laboratory can be instantiated as ―singleton‖ as shown in Section 3.6.

We use both techniques in our clinical LIMS software factory developments

(Part 4). Although, based on our current experiences, it seems to us that from

the point of evolutionary information systems (Section 4.4), the instantiation of

―singletons‖ will probably be a better and more flexible solution. At the same

time the normal OO inheritance gives clear and simple domain terminology.

123

5.1.9 Research Topic R15 and R16 – Requirements

In contrast to the procedure based (how to do) software development methods

and models we agree, that ―to develop and research a number of requirements-

specific domain (software) development models is a grand challenge‖ [21]. We

see the archetypes and archetype patterns based development (Section 2) as

possible requirements-specific development method which combines both

―what to do‖ and ―how to do‖ elements. In our understanding, guided with ZF

columns, the ABD includes ―what to do‖ elements and guided with ZF rows the

ABD includes ―how to do‖ elements. Still, future developments, research and

evaluations are needed.

5.1.10 Research Topics R14 and R17 - Domain Models and Theories

As pointed out by Bjørner, it is a grand challenge to develop and research

families of domain models [21]. Despite some progress, to use the archetypes

and archetype patterns based methods for development and validation of clinical

laboratory domain models and information systems, plenty of research effort is

still needed. We expect that the domain models will enable more efficient

development, deployment, and support of self-development evolutionary

information systems as explained in Section 4.4.

5.1.11 Research Topic R1 - The 𝒟 Relation

In Section 2.3, the 𝒟 relation (from domain model via requirement to

software) is exemplified by using a simple domain of quantity. As the domain

model of quantity (𝒟) (Figure 3-12) is realized in code as DLL, we can say, that

there is a formal (machine readable) description of the quantity domain similar

to the following simplified version

 *
 { }
 *

 * +
 * +
 * +
 * +

 +
 { }
 +

We also have the formal prescription of requirements () as exemplified in

Section 2.3. The question now is: do we have and if we have, then what is in

this quantity example the formal specification of the software design () of the

software which is able to convert quantity from one particular unit to another

124

and perform arithmetic and rounding operations with quantities (for instance,

divides meters with seconds and gives the answer in kilometres per hour).

If the domain description (𝒟) is a model of an application domain (quantity

currently) in some language and if the requirements prescription () prescribes

in some language what the software is expected to do and if the software design

() specifies in some executable programming language, how execution may

proceed, then why cannot the software design be a domain model realized in

some programming language.

It seems now, that the domain model description (𝒟) and the software design

() are one and the same. However, they do not match exactly. First, the

software design is not only a domain description in programming language, but

also a tool for prescribing requirements. Secondly, we can use technology of

interfaces to fully separate semantics of the domain model from its realization.

In the following example code, the description of term ―unit‖ (term from

quantity domain) is specified as interfaces by using programming language C#.

 *
 * +
 * +
 * +
 * +
 * +
 ()
 ()
 ()
 ()
 ()
 ()
 +

Now in quantity domain, we have the description of the domain (𝒟) (as

interfaces in programming language C#), the design of the software ()

(implements the domain descriptions as DLL in programming language C#) and

the prescription of requirements ().

So designed software acts as domain specific language (DSL) embedded into

general purpose programming language C#. So prescribed requirements

prescribe in provided DSL what the software is expected to do and the C#

compiler generates software according to 𝒟 so that 𝒟 (means

that the software is correct) holds.

But how we can be sure, that the 𝒟 holds and what does it mean that

the software is correct? Without loss of generality, this assertion can be in some

form of a pre/post condition of [21]. Now, if indicates pre conditions and

indicates post conditions, then according to Hoare triple [33] we can

write * + and interpret it as follows - ―If the assertion is true before

execution of a software with a software design , then the assertion will be

true after execution of the software‖.

125

We can interpret the software design (in object oriented world) as

 {

 }

In this interpretation, the element

 (the lower index indicates a class and the

upper index indicates an element of the class) is some class element (method,

property, field or event). Let us assume (good software design, no copy and

paste programming techniques), that there are no duplications in software

design.

Formally this means, that

Let us also assume, that every single part

 of software design is unit tested

[24]. This means, that for every and for every there is a unit test with pre

and post conditions (

) so that

*

+

. We can read this as follows:

―Based on our best current knowledge this small amount of software is correct

because according to the unit test the assertion

 is true before execution of

this amount of software designed as

 and the assertion

 is true after

execution of this amount of software‖.

Let us assume now, that a part of software is designed to satisfy domain

descriptions {

} and a part of this software

{

 } is designed to satisfy requirement

prescriptions. Assuming, that all software design is covered by unit tests, it may

be correct to say that the prerequisite, the 𝒟 holds, is that all unit tests

(

*

+

) have to pass.

If so, then it could be wise to describe domains as well as prescribe

requirements in terms of unit tests (contextual and semantic models) as we

explained in Section 2.2. Based on these ideas we see possibilities to expand

and elaborate the archetype based domain analysis and modelling methodology,

integrate it with information systems self-development approach, and work out

techniques for integrating domain models with software factories (Section 4.4).

5.2 Software Development Processes and Methodologies

Sometimes it seems to me, that the main issue in software development is

whether to do extreme programming or not to do extreme programming. Not

that I find KISS (Keep It Simple and Stupid), YAGNI (You Aren’t Going to

Need It), DSTCPW (Do the Simplest Thing that Could Possibly Work) and other

extreme programming (XP) [5] and agile software development [59] truths and

practices useless. I just do not believe that they are absolute and universal.

Based on my experience, these agile practices can exist in harmony even with

126

statements such as „...formal techniques apply in all phases, stages and steps of

software engineering, and in the development of all kinds of software ...― [22 p.

9]. I also agree, that to not use formal techniques „... would be tantamount to

cheating the customer — also known as criminal neglect ...― [22 p. 31].

5.2.1 ―What to do‖ versus ―How to do‖

Based on my experience as a software developer and on some software

development process knowledge [60], it seems to me that the majority of

software development methodologies try to reduce the software development

risks by making things right.

However, studies show [61] that risks in software development are related

not only to the software development process ("how to do"), but are also related

to unrealistic and unarticulated project goals ([61], the main reason of failure),

with badly defined system requirements ([61], the third reason of failure from

top) and with inability to handle the project's complexity ([61], the eighth

reason of failure from top), which I think are more "what to do" (domain)

problems rather than ―how to do‖ (process) problems.

Table 5-2: Effectiveness and Efficiency in Software Development

High

Right thing is done wrongly.

Software developers achieve their

objectives though they use

software development process

which is not correct and mature.

Waste of resources. Improving of

software development process can

make here things better.

Right thing is done correctly.

Software developers achieve

their objectives by using

software development process

which is correct and mature.

They use resources rationally.

E
ff

ec
ti

v
en

es
s

–

L
ev

el

o
f

ac
h
ie

v
in

g

th
e

o
b
je

ct
iv

es

Wrong thing is done wrongly.

Software developers do not achieve

their objectives.

Wrong thing is done

correctly.

Software developers do not

achieve their objectives though

they use a software

development process which is

correct and mature.

Low

Bad Efficiency – Using of resources Good

I do not know exactly the background of Charette‘s work [61], but if „... IT

projects rarely fail for just one or two reason ...― [61] and „... failures, in fact,

can be treated to combination ... ― [61], and if each such combination includes

one of the mentioned reasons (unrealistic goals, badly defined requirements or

127

complexity), then I will be brave to speculate that, if we do not know exactly

what to do, then it absolutely does not matter which development procedure we

use (how to do) in software development – we do not get useful results anyway.

There are many such examples in the world (even the story of LINUX

operating system) where the top-level software is developed by using the lowest

maturity level (Initial) [62] software development process. According to a study,

which was done some ten years ago [63], 70% of the software companies have

worked on the CMM first level. Not all of these projects have gone wrong after

all. However, based on the Standish Group research, Greenfield etc. [3] argue

that only 16% of all software projects are successful, 51% will require

considerably more time and money than originally planned and 31% of the

software projects are terminated primarily because of their poor quality.

In my understanding, if we do not know exactly what is needed (business or

domain requirements of software), it is absolutely irrelevant which of the

software development processes we will use – this software will never be ready

or even if it will be ready, then it will not be usable. If, however, we know

exactly what to do (the business requirements of software) then this software

will be ready at some point and will be usable. But by using mature software

development process, we can develop this software more efficiently and

economically - that is to say more profitably. Table 5-2 summarizes my

understanding about software development processes.

5.2.2 DDD and TDD from Software Triptych Perspective

Dines Bjørner [22] has formulated the relationship (probably derived
3
 from

―satisfaction of the requirement‖ relationship by Jackson and Zave [64])

between the software development process and software requirements as the

software engineering triptych, which consists of following stages.

1. From domain analysis [26] to the formal domain model.

2. From the formal domain model via specifying and proper selection of

domain features to software requirements.

3. From software requirements (for example by using test driven

development [24]) to the dependable [48] and correct software.

According to the software engineering triptych and on condition that someone

(for example, a user incorporated into the software development team – one of

the main Extreme Programming [5] practises) knows exactly what should be

requirements for the software under the development and provided that those

requirements are not just too inconsistent, the Test Driven Development (TDD)

[24] and Extreme Programming [5] as well as the entire agile software

development should be adequate to produce high-quality and dependable

software.

3
 Thanks to Daniel M. Berry for this comment.

128

Such customer-requirements-specific one-off software development with "stop

trying to model the real world" [46] strategy should ensure that the third stage

of the software engineering triptych - from the software requirements to the

dependable software – is of sufficient quality. As reported by Paulk [65], the

extreme programming development is at relatively high level from the

perspective of CMM.

However, software requirements from the customer can sometimes be very

controversial. In addition, the client may simply forget to explain something or

forget to talk about some of exceptional cases, which can transform the entire

big picture that developers have got so far. A tool against such conflicting claim

should be Domain Driven Design (DDD) [66] introduced by Evans
4
. Software

development with DDD in combination with TDD should provide a much better

result than software development without TDD and DDD. It seems to me, that

the software development by using DDD and TDD is like the application of the

second stage of the software triptych in reverse – from specific customer

requirements to the domain model.

Software developed using DDD, should be more dependable than one

developed without DDD. Unfortunately DDD supports mostly one-off software

developments (developed domain model is based on concrete requirements) and

the developed software can be used only by those companies whose business

process is compatible with the business process realised in the software or by

those companies who are willing to adapt their business processes according to

the software.

The author of thesis faced such problem in 1999-2005 when developing the

Multilab
TM

 LIMS software [67; 68] for small and medium sized clinical

laboratories. All the laboratories (approximately 60 laboratories in Germany)

that implemented the Multilab
TM

 software were to change their business process

in a greater or lesser extent.

However, what can be done with these companies who for some reason do

not want or cannot change their business processes
5
? Company‘s unique

business process can be the most valuable strategy to make profitable business.

In current thesis, the proposed archetypes and archetype patterns based

development techniques for developing domains, requirements and software is

designed according to the software triptych. We see this proposed archetypes

and archetype patterns based development as one of those requirements-specific

4
 A very useful DDD book [12] is written by Nilsson.

5
 Thanks to the Clinical and Biomedical Proteomics Group (Cancer Research UK

Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital

at University of Leeds), who was not willing to change their business process, it was

possible to fund this project and to complete the thesis.

129

(what to do) development methods [21] rather that process-specific (how to do)

development methods. With ABD we see possibilities to lead software

development towards software factory and thence towards possibilities for end

users to evolve software systems in evolutionary way together with business

processes.

5.2.3 ABD and MDA

Table 5-3 summarizes how, in our opinion, the software triptych, ZF and Model

Driven Architecture (MDA) [69] activities are related.

Upper (first and second) rows of ZF correspond to requirements from some

concrete enterprise in the context of the software triptych and to the Computing

Independent Model (CIM) in the context of MDA. We interpret CIM as a

conceptual and business level model that is a product of the enterprise

requirements analysis process. Middle (third and fourth) rows of ZF correspond

to the domain part in the context of the software triptych and to the Platform

Independent Model (PIM) in the context of MDA. The PIM is interpreted as a

logical design model. Lower (fifth and sixth) rows of ZF correspond to software

part in the context of the software triptych and to the Platform Specific Model

(PSM) in the context of MDA.

Table 5-3: The Rows of ZF in the Context of Software Triptych and MDA

Triptych ZF Rows MDA

Requirements 1,2 CIM (conceptual, business, analysis)

Domain 3,4 PIM (logical design)

Software 5,6 PSM (physical implementation)

5.2.4 ABD and XP

Extreme Programming (XP) [5] is an agile software development methodology

with basic practices like test driven development, pair programming, planning

game, continuous integration, small releases, metaphor, simple design,

refactoring, collective ownership, 40-hour week, coding standards and so on.

Table 5-4 (made by using the similar table from [65]) summarizes ABD and XP

activities.

While XP is for development of tailored one-off software for customer and is

based on customer requirements, the ABD is for development of software

factories (SF) so that tailored one-off software for specific customer

requirements can be generated automatically (at least partially) by using SF

tools and other artefacts.

Table 5-4 has two columns for ABD. The "ABD for SF" column summarizes

how to use XP activities when developing software factory artefacts. The "ABD

for Software" column summarizes the activities needed for generating software

from SF according to customer needs.

130

Table 5-4: Comparing XP and ABD

Common-

sense

XP extreme XP practice ABD for SF ABD for Software

Manage

requirements

Review

requirements

all the time

On site

customer

On site domain

specialist

Requirements are

coded in DSL so that

customer can

validate them

Code reviews Review code

all the time

Pair

programming

Pair

programming

Code is generated

(largely)

automatically

Testing Test all the

time

Unit testing,

functional

testing

Unit tests based

domain

modelling

Domain model

validates and verifies

requirements

Design Design is

everybody's

daily business

Refactoring Refactoring

towards

archetype

patterns

Archetypes and

archetype patterns

based predefined by

SF design

Simplicity Simplest

design that

supports the

system‘s

current

functionality

The simplest

thing that

could possibly

work

The simplest

abstraction that

could possibly

work

Architecture Everybody

works to

refine the

architecture

Metaphor Based on ZF

with archetype

patterns

Archetypes and

archetype patterns

based predefined by

SF architecture

Integration

testing

Integrate and

test several

times a day

Continuous

integration

Continuous

integration

Short

iterations

Short (sec,

min, hours)

iterations

Planning

game

Archetypes

based planning

(game)

Manage

versions

Plan and

release

frequently

small units of

business

functionality

Frequent

small releases

Archetype

patterns based

releases

Requirements based

step by step releases

with possibilities to

undo and redo.

131

We mostly use XP practices in combination with domain analysis and domain

modelling activities when developing A&AP based software factory artefacts.

Still, instead of an ―on site customer‖ we need an ―on site‖ domain specialist.

Instead of XP practices, where everyone can change design (refactoring) as well

as refine the architecture (metaphor) towards the simplest thing and design that

can possibly works, in ABD, when developing SF artefacts, we have relatively

fixed ZF with archetype patterns based architecture. Therefore the refactoring is

mostly towards efficient and universal use of archetype patterns.

ABD uses the XP unit testing practice in domain analysis and modelling

(Section 2.2). This means, that all domain narratives are specified (contextual

and semantic models) as unit tests [24]. We call this approach Test Driven

Modelling.

When the SF is ready, we can hopefully generate one-off software

automatically (Figure 1-1). This means that by using a domain model based

DSL (domain specific language) we ―code‖ customer requirements. The DSL

has to be designed so that a domain specialist is able to understand this DSL and

is able to validate correctness of so specified requirements.

The software generated will be based on these requirements. Requirements

will be first validated according to the domain model and the generated software

will be verified according to requirements as well as according to domain

model. As the final validation and verification can be conducted only when the

software is deployed into the real environment and used by the customer in real

everyday business, it is wise to implement and deploy requirements step-by-

step. For these purposes the undo and redo mechanisms for requirements as well

as for data have to be implemented in SF artefacts.

ABD complements XP by focussing on understanding of the domain (what

to do) and on modelling domains formally, on the decision analysis and

resolution (by selecting a solution that meets multiple demands of relevant

stakeholders), on requirements development (by describing customer

requirements in terms of domain) and on validation and verification by

validating requirements against domain models and verification of software

according to specified requirements.

5.2.5 ABD and CMMI for Development

CMMI (Capability Maturity Model Integration) for Development ―is a process

improvement maturity model for the development of products and services‖

[62]. It describes best practises for improving maturity of software

development. In the following, we refer to CMMI for Development as to

"CMMI".

ABD addresses (Table 5-5) many of the CMMI Level 2 requirements

management process area (PA) specific practices through its use of the domain

model, synopsis (similar to stories in XP) and narratives (similar to XP tasks).

When XP integrates feedback on customer expectations and needs by

132

emphasizing short release cycles and continual customer involvement, the ABD

maintains ―common understanding‖ through the ZF with archetypes and

archetype patterns by asking questions what, how, where, who, when and why.

Although requirements from customers might evolve dramatically over time, in

our understanding, a properly abstracted and formalized domain model

simplifies the introduction of changes to specifications, as requirements are in

terms of domain model. In addition, it reduces the risks involved with

introducing these changes, as Test Driven Modelling enables us (at least

partially) to validate user requirements according to domain models and to

verify software according to so specified user requirements.

Table 5-5: ABD Satisfaction of CMMI Process Areas

Level Key process areas Satisfaction

2: Managed Requirements Management ++

Project Planning +

Project Monitoring and Control +

Measurement and Analysis +

Process and Product Quality Assurance +

Configuration Management -

Supplier Agreement Management -

3: Defined Organizational Process Focus -

Organizational Process Definition -

Organizational Training -

Integrated Project Management -

Risk Management +

Decision Analysis and Resolution -

Requirements Development ++

Product Integration ++

Technical Solution ++

Validation ++

Verification ++

4: Quantitatively

Managed

Organizational Process Performance -

Quantitative Project Management -

5: Optimized Organizational Innovation and Deployment -

Causal Analysis and Resolution -

++ largely, + partly and - not addressed in ABD

Although the archetype patterns based system architecture establishes the

project‘s main direction, in ABD the project plan (project planning PA) is not

detailed for the project whole life cycle. Still, by analysing and designing

requirements in terms of archetype patterns based domain models together with

133

XP practices like short iterations (1-3 weeks) and small releases (2-6 months)

enables developers to identify and manage their plans.

ABD addresses project monitoring similarly to XP by using ―big visual

chart‖, project velocity, and commitments for small releases. The ―big visual

chart‖ in XP means an open workspace together with white board based

information reflecting the projects progress and close communication between

project members and an onsite customer. An overall schedule and budget in XP

are calculated by figuring the estimated time for the work factored with the

project velocity (40-hours weeks, implemented tasks per developer per week

and etc.). By using small releases, the feedbacks for commitments from real

users from the real environment provide reassurance and the opportunity to

intervene fast. All these activities are also ABD activities. Differently from XP,

where the development team is a lot like an explorer with a compass, the ABD

team is also equipped with a decent map – the ZF with archetypes and archetype

patterns gives additional possibilities (where we are, how much is to go) for

measurement and analysis of both work products as well as development

processes.

ABD addresses Level 3 risk management PA (manage risks with continuing

and forward-looking activities that include identification of risk parameters)

partly through activities described already in project monitoring and control PA.

Additionally some preventative activities like customer readable simple

synopsis and narratives, archetypes and archetype patterns based design,

refactoring, coding standards, unit testing and especially unit testing based

modelling are all elements of risk management.

Requirements development PA (identifies customer needs and translates

these needs into high-level conceptual solutions) is addressed in ABD through

describing customer requirements in terms of the archetypes and archetype

patterns based domain models. Translation of customer requirements into

domain model (or A&AP) terms is one of the key features of ABD. The

archetypes based domain model is also the key feature that addresses Level 3

product integration (generate the best possible integration sequence by

integrating product components) and the technical solution (develops technical

data packages for product components) PA‘s. The same is also true for

validation (incrementally validate products against customer‘s needs) and

verification (ensure that selected work products meet specified requirements)

which are both natural components of ABD (Section 2.2). By formal analysis of

requirements through using archetypes and archetype patterns based domain

analysis and modelling techniques, the subjective nature of requirements, design

and architecture decisions will be reduced in order to select solutions that meet

multiple demands of relevant stakeholders.

In conclusion we can say that by using ABD it is possible to cover some

institutional practices that the CMMI for Development identifies as key

elements for good engineering and management.

134

6 CONCLUSION

6.1 Contributions

This work is based on software engineering triptych (from domain models via

requirements to software) proposed by Dines Bjørner and on archetypes and

archetype pattern base initiative proposed by Arlow and Neustadt. These ideas

are used in engineering of domain models for clinical laboratory and in LIMS

(Laboratory Information Management System) software development.

The resulted work is archetypes and archetype patterns based techniques for

engineering of domains, requirements and software. In our understanding by

using these techniques we can lead software developments towards software

factory developments. The wider research goal is to develop archetypes and

archetype patterns based information systems that software end users, in

collaboration with software developers, are able to change safely and easily

according to changes in business processes.

The contributions of thesis are Archetypes Based Development (ABD)

techniques for development of domains, requirements and software (Part 2) and

improved models of Business Archetypes and Archetype Patterns (A&AP) (Part

3). The ABD includes (Section 2.1.1) ZF (Zachman Framework) columns based

analysis (by asking questions what, how, where, who, when and why) and design

(products, processes, locations, persons, events and rules) of domains and

requirements by using archetypes and archetype patterns. The ABD also

includes ZF rows based development (Section 2.1.2) – from conceptual and

semantic models via logical, physical and detailed models to software product.

In ABD the validation and verification (Section 2.4) of requirements and

software is based on the Test Driven Modelling (Section 2.2) techniques.

Business A&APs (Part 3), used in ABD, are models (code artefacts) used for

modelling independent phenomena (products, processes, locations, persons,

events and rules) of ZF.

In Part 4 we exemplified the usefulness of ABD and A&AP models in real

life software developments. We presented the domain model of laboratory

(Section 4.2), where the ABD and A&AP models were utilized. We also

described LIMS software (Section 4.3) developed for and already used in

everyday laboratory routine by Clinical and Biomedical Proteomic Group

(Cancer Research Clinical Centre, Leeds Institute of Molecular Medicine, St

James's University Hospital at University of Leeds). We also presented

possibilities to use domain models as objects in P-systems (4.4). In our

understanding this P-systems based approach leads us towards information

systems that software end users, in collaboration with software developers, are

able to evolve in an evolutionary way according to changes in business

processes.

While implementation and testing of the LIMS Software proves feasibility of

archetypes based techniques in real life systems, these A&APs based techniques

135

are also in agreement with and complement important software development

processes and methodologies, such as Bjørner‘s domain modelling, MDA

(Model Driven Architecture), XP (Extreme Programming) and CMMI

(Capability Maturity Model Integration) for Development as explained in Part 5.
6.2 Hypothesis

We claimed (Section 1.4) that archetypes based development techniques (ABD)

together with proposed models of archetypes and archetype patterns (A&AP)

lead software development towards software factory (SF) development and

thence towards possibilities to fulfil user requirements by making changes only

in the presentation or in the communication layers.

This claim we summed up into 6 conjectural points (Section 1.4) about which,

based on our work done, we can say the following.

1. Triptych software development (from domain models via requirements to

software) is possible and reasonable.

In Part 2 we explained and exemplified archetypes based development (ABD)

techniques by using simple domain model of quantity. ABD includes Zachman

Framework based analysis (Section 2.1.1), triptych software process (Section

2.1.2) and test driven modelling (Section 2.2). Archetypes and archetype

patterns (A&AP) (Part 3) are an integrated part of the ABD. We use A&APs as

DSL (Domain Specific Language) for developing domain models (Sections 3.6

and 4.2). So developed domain models we use as DSLs for specification

(Section 2.3) and for verification (Section 2.4) of requirements. We use ABD

techniques in development of real life software. ABD is also in agreement with

and complement important software development processes and methodologies

such as Bjørner‘s domain modelling, Model Driven Architecture, Extreme

Programming and Capability Maturity Model Integration for Development as

shown in Part 5.

2. We can develop models (frameworks, source artefacts) of A&AP. We can

develop domain models by using these A&AP models.

We presented the A&AP model in Section 3.5. This model is an improved

version of A&APs originally proposed by Arlow and Neustadt [14]. We

separated from these Arlow and Neustadt models the knowledge and operational

levels as suggested by Fowler [15] and added the archetype pattern for business

processes. We evaluated (Section 3.3) A&AP models by comparing them with

models by Fowler [15], Hay [16] and Silverston [17] and found that all these

patterns describe similar phenomena of businesses but are modelled differently

i.e. these models are semantically heterogeneous [37]. Our presented A&AP

models are in harmony with Zachman Framework (Table 2-1) and Triadic

Model of Activity (Figure 3-1) and is designed to abstract the universe of

discourse of businesses as it is, neither referring to the software requirements

136

nor to the software design. Presented A&AP models are a framework, realized

in .NET with C# by using ABD, described in Part 2.

We exemplified the development of domain models according to ABD

techniques (Section 3.6) and presented the design of the domain model of

laboratory (Section 4.2). We evaluated the development process of domain

models, we suggest and use, by comparing it (Section 5.1) to domain analysis

and development methodology by Bjørner. We found that our proposed ZF

based methodology complements domain facets methodology proposed by

Bjørner (Table 5-1). Proposed laboratory domain model (Section 4.2) is

designed according to ASTM LIMS Standard Guide [1; 51]. The verification of

compliance with other important laboratory and health care standards like

Health Level Seven [55], openEHR [70] and communication protocols between

laboratory instruments and laboratory software [53; 54] is for future study.

3. We can specify user requirements by domain and/or A&AP models. We can

generate software according to so specified user requirements.

We presented our ideas how user requirements can be specified by domain

models in Section 2.3. In real life LIMS software development, for specification

of user requirements, we use laboratory domain model based DSL. This DSL is

realized as embedded into general purpose programming language (C#) API

(framework). We use this laboratory domain model based DSL for specifying

user requirements similarly as we used A&AP based DSL for specifying

domain models (as exemplified in Section 3.6).

Figure 6-1: Joint Specification of Requirements and Test Scenarios.

In design-time, using DSLs embedded into general purpose languages is good

enough and in our understanding this technique is suitable for analysing of

domains and for development of domain models. Unfortunately this technique

does not work at run-time. Thus we need some languages and tools to describe

user requirements and test scenarios as illustrated in Figure 1-1. It would be

most beneficial, however, to specify requirements and test scenarios jointly as

illustrated in Figure 6-1. This task will be for future study.

Figure 1-1 illustrates our developments towards software factory. Currently

we do not generate software automatically and therefore this will be the main

137

task for future studies and developments. Still we already generate user

interfaces as we briefly described in Section 4.3 and we have some simple

techniques to work with documents and document formats as we proposed in

Section 4.4 and already use for some simple cases as described in Section 4.3

4. We can validate user requirements and verify software by using these

models. User requirements can falsify domain as well as A&AP models.

We discussed and exemplified this in Section 2.4. We see possibilities (at least

partially) to validate requirements as well as to verify software with domain

models developed according to TDM (Test Driven Modelling, Section 2.2). If

with domain model based DSL (embedded into general purpose language, API)

it is possible to prescribe user software requirements, then these requirements

are valid (compatible) according to this domain model. If both, domain

descriptions specified as unit tests and software requirements specified as

acceptance tests, are satisfied (―green‖ pattern in Figure 2-2), then in our

understanding the domain model has verified (at least partially) these

requirements. If a domain model satisfies some of the real life requirements,

then we can just say that these requirements have not falsified the domain

model. But if with this domain model we cannot satisfy one particular

requirement from the real life, then this requirement (in case the requirement is

correct) has falsified the domain model.

5. We can improve and expand A&AP and domain models. We can reduce

risks associated with changes in A&AP and domain models.

In ABD (Part 2) we use Test Driven Modelling (TDM) (Section 2.2). TDM

utilizes Test Driven Development [24] methodology for modelling (analysing

and implementing) of domains and for specifying user requirements. In TDM

we first delimit the scope of phenomena to get a contextual model (according to

ZF Row 1). We next specify requirements with unit tests. These unit tests form

semantic models (ZF Row 2) of phenomena. By incremental specification and

implementation of requirements we get step by step closer to logical (ZF Row

3) and physical (ZF Row 4) models. Logical models are models of phenomena

in terms of interfaces (or class designs) and their relationships. Physical models

are models of phenomena in some general purpose programming language.

Physical models have to satisfy semantics (ZF, Row 2) specified by unit tests.

6. We can build different tools (generators of UI and other source artefacts,

languages for end users to describe requirements, validation and verification

tools for requirements and software, etc.) on top of these models. A&AP,

domain models and associated tools form software factories. We can

develop software factories so, that software end users can evolve software

in an evolutionary way even at runtime by making changes only in the

presentation or in the communication layers.

138

We see the P-systems (()),

described by dictionaries (), catalysts (), structure (), data ()

and rules (), as a roadmap towards software factories and

evolutionary information systems (Section 4.4). Proposed interpretation of P-

systems is based on agent‘s metaphor. An autonomous agent (e.g. enterprise) is

active in a domain (e.g. laboratory) and by communicating (e.g. sending and

receiving documents) with an external environment processes (i.e. calculates)

information (e.g. tests laboratory samples). This task will be for future study.

6.3 Future Work

Besides future improvements, developments and evaluations of ABD, A&APs,

domain models (e.g. implementing laboratory automation patterns as described

in Section 4.2.2.4) and developments of LIMS software towards LIMS software

factory (as proposed in Section 4.4), one of the possible future tasks is to

analyse and improve the degree of formality of the Test Driven Modelling

(TDM) (Section 2.2) features and possibilities.

For example, according to Bjørner‘s domain analysis [26], the first narratives

of quantity domain (Section 2.2.2) in RAISE specification language could be

the following:

In TDM, the same is specified by using unit tests as shown and explained in

Section 2.2. However, is there a significant difference in the degree of formality

between these two specifications? If there is, then which of them is more formal

and if the TDM is less formal, then how can the formality of TDM be improved.

In our understanding the real value of any formal method is validation of

requirements and verification of software to increase the software dependability.

We discussed this issue in Sections 2.4 and 5.1.11, but more mature and

accurate research is needed.

The other future research goal can be developing domain and requirements

specification languages with integrated TDM features on top of archetypes and

archetype patterns (A&AP). Currently we use A&APs based DSLs, realized as

APIs (or framework) and embedded into general purpose language (C#), for

specifying domain models (clinical laboratory for example), as described in

Section 2.3.

139

Figure 6-2: Towards LIMS Software Factory.

In design-time, using DSLs embedded into general purpose languages is good

enough and in our understanding this technique is suitable for analysing

domains. Unfortunately this technique does not work at run-time. Thus we need

some languages and tools to describe user requirements and test scenarios at

runtime as illustrated in Figure 1-1. It would be most beneficial, however, to

specify requirements and test scenarios jointly as illustrated in Figure 6-1.This

means that one specification results in two outputs: requirements for generating

software and test scenarios for verifying these requirements and for validating

generated software.

Domains and requirements specification languages research topic is closely

related to the evolutionary self-development research topic we explained in

Section 4.4. In this section we discussed possibilities to build evolutionary self-

development information systems as P-systems [18] where domain model

(clinical laboratory for example) concepts together with document domain

concepts, agent domain concepts and calculus domain concepts are used as

alphabet (language) elements of P-systems. We see this evolutionary self-

development research topic as fundamental towards LIMS Software factory

(Figure 6-2) and evolutionary information systems where end users, in

collaboration with software developers, are able to evolve software in an

evolutionary way according to changes in business processes, by making

changes only in the presentation or in the communication layers.

140

REFERENCES

[1] ASTM., E1578-06 Standard Guide for Laboratory Information Management

Systems (LIMS). s.l. : ASTM International, 2006.

[2] Piho, G., Tepandi, J. and Roost, M., "Archetypes Based Techniques for

Modelling of Business Domains, Requirements and Software." Tallinn : s.n.,

23-27 May 2011. 21st European Japanese Conference on Information

Modelling and Knowledge Bases.

[3] Greenfield, J., et al., Software Factories: Assembling Applications with

Patterns, Models, Frameworks, and Tools. s.l. : Wiley, 2004.

[4] Heitmeyer, C., "Managing Complexity in Software Development with

Formally Based Tools." Electronic Notes in Theoretical Computer Science

(ENTCS). December 2004, Vol. 108, pp. 11-19 .

[doi>10.1016/j.entcs.2004.11.004] .

[5] Beck, K., Extreme Programming Explained: Embrace Change. s.l. :

Addison-Wesley, 2000.

[6] Fowler, M., Patterns of Enterprise Application Architecture. Boston, MA :

Addison-Wesley, 2003.

[7] Chappell, D., "Comparing .NET and Java: The View from 2006."

Barcelona : Microsoft TechEd Developers, 2006.

[8] Fowler, Martin., "Refactoring." [Online] 22 08 2011.

http://www.refactoring.com/.

[9] Microsoft., "Microsoft Presentation Foundation." [Online] [Cited: 22 08

2011.] http://windowsclient.net/.

[10] —. "Windows Communication Foundation." [Online] [Cited: 22 08 2011.]

http://msdn.microsoft.com/en-us/library/ms731082.aspx.

[11] —. Microsoft BizTalk Server. [Online]

http://www.microsoft.com/biztalk/en/us/default.aspx.

[12] Nilsson, J., Applying Domain-Driven Design and Patterns. Boston, MA :

Addison-Wesley, 2006.

[13] JetBrains., "ReSharper 6." [Online] [Cited: 22 08 2011.]

http://www.jetbrains.com/resharper/.

[14] Arlow, J. and Neustadt, I., Enterprise Patterns and MDA: Building Better

Software With Archetype Patterns and UML. s.l. : Addisson-Wesly, 2003.

[15] Fowler, M., Analysis Patterns: Reusable Object Models. s.l. : Addison-

Wesley, 2005.

141

[16] Hay, D. C., Data Model Patterns, First Edition : A Metadata Map (The

Morgan Kaufmann Series in Data Management Systems). s.l. : Morgan

Kaufmann, 2006.

[17] Silverston, L., The Data Model Resource Book 1. A Library of Universal

Data Models for All Enterprises. s.l. : Wiley, 2001. Vol. 1.

[18] Paun, G., "Introduction to Membrane Computing." [Online] 2004. [Cited:

30 08 2011.] http://psystems.disco.unimib.it/download/MembIntro2004.pdf.

[19] Piho, G., Tepandi, J. and Roost, M., "The Zachman Framework with

Archetypes and Archetype Patterns." [ed.] J. Barzdins and M. Kirikova. Riga,

Latvia, Baltic DB&IS, July 5-7, 2010 : University of Latvia Press, 2010.

Databases and Information Systems: Proceedings of the Ninth International

Baltic Conference. pp. 455-570.

[20] Piho, G., et al., "Test Driven Domain Modelling." Opatia, Horvatia : s.n.,

23-27 May 2011. 34th International Convention on Information and

Communication Technology, Electronics and Microelectronics. accepted by

MIPRO 2011.

[21] Bjørner, D., "Domain Theory: Practice and Theories (A Discussion of

Possible Research Topics)." Macau SAR, China : The 4thInternational

Colloquium on Theoretical Aspects of Computing - ICTAC, 2007.

[22] Bjørner, D., Software Engineering, Vol. 1: Abstraction and Modelling.

Texts in Theoretical Computer Science, the EATCS Series. : Springer, 2006.

[23] Zachman, J. A., "A Framework for Information Systems Architecture."

IBM Systems Journal. 1987, Vol. 26, 3.

[24] Beck, K., Test-Driven Development: By Example. Boston, MA : Addison-

Wesley, 2003.

[25] Bjørner, D., Software Engineering, Vol. 3: Domains, Requirements, and

Software Design. Texts in Theoretical Computer Science, the EATCS Series. :

Springer, 2006.

[26] —. Documents: A Domain Analysis. [Online]

http://www2.imm.dtu.dk/~db/5lectures/document.pdf.

[27] Wikipedia., Reflection (computer programming). [Online]

http://en.wikipedia.org/wiki/Reflection_(computer_programming)#cite_note-0.

[28] The RAISE Language Group., THE RAISE Specification Language: The

BCS Practioner Series. s.l. : Prentice Hall, 1992. ISBN 0-13-752833-7.

[29] The RAISE Method Group., The RAISE Development Method: BCS

Practitioner Series. s.l. : Prentice Hall, 1995. ISBN 0-13-752700-4.

[30] Woodcock, J.C.P. and Davies, J., Using Z: Specification, Proof and

Refinement. Prentice Hall : s.n., 1996.

142

[31] Abrial, J.-R., The B Book: Assigning Programs to Meanings. UK :

Cambridge University Press, 1996.

[32] Bjørner, D. and Jones, C., [ed.]., "The Vienna Development Method: The

Meta-Language." LNCS, s.l. : Springer, 1978, Vol. 61.

[33] Hoare, C. A. R., "An axiomatic basis for computer programming."

Communications of the ACM. October 1969, Vol. 12, 10, pp. 576–580,583.

http://sunnyday.mit.edu/16.355/Hoare-CACM-69.pdf.

[34] Beydoun, G., et al., "FAML: A Generic Metamodel for MAS

Development." IEEE Transactions on Software Engineering.

November/December 2009, Vol. 35, 6, pp. 841-863.

[35] Hay, D. C., Data Model Patterns: Conventions of Thought. s.l. : Dorset

House Publishing, 1996.

[36] Silverston, L., The Data Model Resource Book 2. A Library of Data

Models for Specific Industries. s.l. : Wiley, 2001.

[37] Halevy, A.Y., "Why Your Data Won't Mix: Semantic Heterogeneity."

Queue. 2005, Vol. 3, 8, pp. 50-58.

[38] Wache, H., "Solving Semantic Interoperability Conflicts." Brussel : s.n., 02

February 2009. Methodology workshop: Modelling eGovernment entities

Methodologies and Experiences under review.

http://www.semic.eu/semic/view/documents/presentations/SEMIC-EU-

Methodology-Wache-Solving-

Conflicts.pdf;jsessionid=A065C6F205788A2F1E4E3366E9F24D10.

[39] Heard, S., et al., "Templates and Archetypes: how do we know what we are

talking about?" [Online] 2003. [Cited: 21 06 2010.]

http://www.openehr.org/publications/archetypes/templates_and_archetypes_hea

rd_et_al.pdf.

[40] Bjørner, D., Software Engineering, Vol. 2: Specifications of Systems and

Languages. Texts in Theoretical Computer Science, the EATCS Series. :

Springer, 2006.

[41] Piho, G., "Archetype patterns based method of prescribing enterprise

software requirements." [toim.] D. Čišic, et al. Rijeka (Croatia) : Studio

Hofbauer, 2007. MIPRO 2007 proceedings: MIPRO 2007, Opatia (Croatia),

May 21-25. Kd. Business Intelligence Systems, lk 236 - 241.

[42] Piho, G., "Towards archetypes based domain model of clinical laboratory."

[ed.] E. Troubitsyna. Turku, Finland : TUCS (Turku Centre for Computer

Science) General Publications, 2008. Proceedings of Doctoral Symposium held

in conjunction with Formal Methods 2008. Vol. 48, pp. 33 - 42.

143

[43] Bendy, G.Z. and Harris, S.R., "The Systematic-Structural Theory of

Activity: Applications to the Study of Human Work." Mind, Culture, and

Activity. 2005, Vol. 12, 2, pp. 128-147.

[44] Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented

Software. Reading, MA : Addison-Wesley, 1995.

[45] Lindqvist, A. and Christensen, B., Abstract Document System - instantiated

for patient medical records. The Department of Computer Science and

Engineering, Institute of Informatics and Mathematical Modelling.

Copenhagen : Technical University of Denmark, 2004. Master thesis. IMM-

THESIS-2004-23.

[46] Wirfs-Brock, R. J., "Looking for Powerful Abstractions." IEEE Software.

Jan/Feb 2006, Vol. 23, 1, pp. 13-15.

[47] Martin, R. C., Agile Software Development: Principles, Patterns, and

Practices. New Yersey : Prentice Hall, 2002.

[48] Avižienis, A., Laprie, J.-C. and Randell, B., Fundamental Concepts of

Dependability. Research Report N01145. s.l. : LAAS-CNRS, April 2001.

[49] Piho, G., et al., "From archetypes-based domain model of clinical

laboratory to LIMS software." Opatia, Croatoa, 24-28 May 2010 : IEEE, 2010.

MIPRO, 2010 Proceedings of the 33rd International Convention. Vol. Digital

Economy, pp. 1179-1184. ISBN: 978-1-4244-7763-0.

[50] Piho, G., et al., "From Archetypes Based Domain Model via Requirements

to Software: Exemplified by LIMS Software Factory." Opatia, Horvatia : s.n.,

2011. 34th International Convention on Information and Communication

Technolology Technology, Electronics and Microelectronic (MIPRO, May 23-

27, 2011).

[51] ASTM., E1578-93 (Reapproved 1999) Standard Guide for Laboratory

Information Management Systems (LIMS). s.l. : ASTM International, 1999.

[52] Science 2020., "Towards 2020 Science." [Online] 2005.

http://research.microsoft.com/towards2020science/background_overview.htm.

[53] ASTM., E1381-02 Standard Specification for Low-Level Protocol to

Transfer Messages Between Clinical Laboratory Instruments and Computer

Systems (Withdrawn). s.l. : ASTM International, 2002.

[54] —. E1394-97 Standard Specification for Transferring Information Between

Clinical Instruments and Computer Systems (Withdrawn). s.l. : ASTM

International, 2002.

[55] HL7., HL7 Standards. [Online] http://www.hl7.org/.

[56] Piho, G., Tepandi, J. and Roost, M., "Evaluation of Archetypes Based

Development." [ed.] J. Barzdins and M. Kirikova. Frontiers in Artificial

144

Intelligence and Applications. Databases and Information Systems VI - Selected

Papers from the Ninth International Baltic Conference, DB&IS 2010, 2011,

Vol. 224, pp. 283 - 295.

[57] Hruby, P., Model-Driven Design Using Business Patterns. Berlin

Heidelberg : Springer-Verlag, 2006.

[58] The World Bank., World Development report 1994: Infrastructure for

Development. s.l. : Oxford Universaity Press, 1994. http://www-

wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/1994/06/01/

000009265_3970716142907/Rendered/PDF/multi0page.pdf.

[59] Cocburn, A., Agile Software Development. Boston, MA : Addisson-

Wesley, 2002.

[60] Piho, G., Introducing XP-methodology in a Small Estonian Software

Company. Master thesis (in Estonian). Tallinn : Tallinn University (former

Tallinn Pedagogical Univerity), 2003.

http://www.cs.tlu.ee/instituut/opilaste_tood/magistri_tood/2003_sugis/Gunnar_

Piho/Gunnar_Piho_Mag_Too.pdf.

[61] Charette, R.N., "Why Software Fails." IEEE Spectrum. Sept. 2005.

http://www.spectrum.ieee.org/sep05/1685.

[62] CMMI product team., CMMI for Development, Version 1.2, CMU/SEI-

2006-TR-008. s.l. : Software Engineering Institute, 2007.

http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf.

[63] Douglas, S., et al., Pattern-Oriented Software Architecture, Patterns for

Concurrent and Networked Objects. s.l. : Wiley, 2000. Vol. 2.

[64] Jackson, M. and Zave, P., "Deriving specifications from requirements: an

example." New York : ACM, 1995. Proceedings of the 17th international

conference on Software engineering (ICSE '95). pp. 15-24.

[65] Paulk, M. C., "Extreme Programming from a CMM Perspective." Raleigh,

NC 23-25 July : Paper for XP Universe, 2001.

http://www.sei.cmu.edu/cmm/papers/xp-cmm-paper.pdf.

[66] Evans, E., Domain-Driven Design: Talking Complexity in the Heart of

Software. Boston, MA : Addison-Wesley, 2004.

[67] Sysmex., Multilab - Laboratory Information Management System.

www.sysmex-europe.com. [Online] http://www.sysmex-

europe.com/Products/Clinical%20Information%20Solutions/LIS/multilab/.

[68] MesHR., Informatička i upravljačka rješenja u laboratoriju. MulitLab®.

[Online] http://www.meshr.hr/proizvodi/info_rjesenja/#2.

145

[69] Alhir, S. S., "Understanding the Model Driven Architecture (MDA)."

[Online] 2003. [Cited: 29 08 2011.]

http://www.methodsandtools.com/archive/archive.php?id=5.

[70] openEHR., "openEHR Archetypes." [Online] 2007. [Cited: 28 05 2009.]

http://www.openehr.org/svn/knowledge/archetypes/dev/index.html. Release

1.0.1.

146

7 APPENDICES

7.1 Order Lifecycle

There are a number of different events (Figure 3-23) which we have to audit

trail during the order lifecycle. These events depend on the order status. One

class of events are lifecycle events () which change the status

of the order. An order that has no lifecycle events is in the initializing state

(). The open event () can occur only if the

order is in the initializing state. After the open event, the order will be either in

 or in which are both sub-states of

the open state (). We separated abstract into two

concrete sub-types and , because in

these sub-types different payment, despatch and receipt events can occur.

The order in open state () can be closed (sale is completed) or

cancelled. If all the sales transactions (payments, delivery) have been

completed, the order will be transformed into the closed state ()
by the close event (). In some situations (depending on terms and

conditions) the sale can be cancelled. If this is so, by using cancel event

() the order will be transformed into the cancelling station

(). After all the loose ends (return of items and refunds) are

completed, the order will be transferred from the cancelling station by close

event () into the cancelled state ().
There are three sub-types (, and

) of the abstract amend event (). All of these

sub-types can only occur, when the order is in the open state ().
With the amend order line all the changes in order lines can be audit trailed. As

mentioned earlier, all our archetypes are read only, and therefore it is impossible

to change any part of any archetype without a clear request. Therefore, instead

of changing some properties in the order line, the old order line is marked as

cancelled and a new order line is created. The amend order line event points to

both, newly created as well as cancelled, order lines. The amend order line

event () also points to the returned items, if such items exist.

The amended order line identifier () is used to

interconnect amended order lines. Similarly to the amend order line event, with

amend related party event (), all the changes in related

parties are audit trailed. Like amend order line event pointing to the cancelled

and newly created order lines, so amend related party event points to the

cancelled and newly created parties. The third amend event

() tracks changes in sale conditions. The logic behind

 is exactly the same as the logic behind amend order line

and amend related party events.

The discount event () can occur only when the order is in

the open state (). There can be different discounting reasons.

147

Discounts on orders may be granted for high-value customers, for customers

who raised the order by the internet, for customers in specific geographic

regions and etc. There are two different discount types

(and), managed by order manager

(). The discount type contains a set of rules (see Section 3.5.3)

that describe the conditions () under which a particular discount may

be applied. The discount event () points to the discount which

calculates the discounted price for the order.

The despatch event archetype () is an event that can be

applied only to a sales order when the sales order is in the open state

(). The despatch event records goods or services sent to the

delivery receiver. Despatch event records properties such as the date () on

which the despatch was made, the unique despatch identifier () and

shipment instructions (). It also points to the despatch line

() which records the amount of despatched items

() for the particular order line ().

The delivery receiver may reject some of the despatched items. Rejected

items will be recorded by the rejected items () archetype. Items

received by delivery are recorded by the receipt event ()

archetype. The receipt event can be applied to a purchase order only when the

purchase order is in open state (). Receipt event contains

the delivery identifier that links to a specific delivery of goods or services and

the delivery date on which the delivery was received. Similarly to the delivery

event the receipt event points both to the receipt line () which

records the amount of received items () of the particular

order line () and to the rejected items (), in case

some items are rejected.

The order payment () archetype represents a payment

() made or accepted [14 p. 343]. Order payment has attributes from

account and to account and is used for recording respective bank accounts. The

payment () archetype is described in the money archetype pattern

(Section 3.5.2). Six accounting events () can be applied to

an open order. Three of these events - send invoice (), accept

payment () and make refund () - can be

applied to a sales order in the open state (). The other three of these

events - accept invoice (), make payment ()
and accept refund () - can be applied to a purchase order in the

open state ().

7.2 Using the Business Process Archetype Pattern

7.2.1 Communication and CRM

When we have a common process archetype pattern (Figure 3-25), the

communication and the CRM archetype pattern from Arlow and Neustadt [14

148

pp. 187-201] can be modelled as a special case of process archetype pattern as

shown in Figure 7-1.

A communication process manager () with a

communication manager () type

() manages all customer communications as a set of

processes () with process type

().

Figure 7-1: Logical Model of Communication

Communication () is a task type (). A task with a

task type captures details of communications between two

parties. For simplicity, communication always originates from one provider role

(e.g. customer service representative) and is received by one consumer role (e.g.

either customer or customer agent – someone who represents a customer) [14 p.

198]. However, many other party roles may be participants in the

communication in question.

Each such communication (task, party relationship) can have attributes such

as date sent (business has initiated the communication), date received (customer

has initiated the communication), content (summary of conversation), from

address (address where the communication originated), to address (address

where the communication was received), and etc. See Section 3.5.4 for the

custom attributes system we use in our archetypes.

149

Communication routing () is a special case of task

routing that represents a handover between customer service representatives. A

customer service representative is a party role played by someone who acts on

behalf of, and with the authorization and authority of the customer service

department [14 p. 197].

The communication case () is a type of process,

which holds a collection of all communications (task with type

of) about a specific topic related to a specific customer (the

party role type). The communication process can have the following attributes:

title (summarizes the nature of the communication case), description (short

description of the communication case), raised by (pointer to the party role that

raised the case), start date, end date, priority and so on. The communication

thread () represents a sequence of communications

about a particular topic.

For each task (Figure 3-26), the communication may also be a source of zero

to many actions and any action may have zero or more outcomes.

7.2.2 Reporting

Similarly to communication and CRM (Appendix 7.2) we can use the process

archetype pattern (Figure 3-25) to model reporting‘s (Figure 7-2).

The reporting process manager () with a process

manager type () manages all reports as a set of processes

() with a process type ().

Report () is a task type () which captures details of

reports between two parties. For simplicity, a report always originates from one

report provider role (e.g. subordinate) and is received by one consumer role (e.g.

manager). However, many other party roles may also be participants.

Each such report (task, party relationship) can have attributes like date sent

(the date and time when the report was initiated), date received (the date and

time when the report was received), content (summary of the report), from

address (address where the report was originated), to address (address where

the report was received), and etc.

Report routing () is a special case of task routing that

represents a handover either between subordinates or between managers.

The report case () is a type of process, which holds a collection

of all reports (task with type of) about a specific topic related to a

specific subordinate (the party role type). The routing process can have the

following attributes: title (summarizes the nature of the reporting case),

description (short description of the reporting case), raised by (pointer to the

party role that raised the case), start date, end date, priority and so on.

The reporting thread () represents a sequence of reports

about a particular topic. As common for each task (Figure 3-26), the report may

also be a source of zero to many actions and any action may have zero or more

outcomes.

150

Figure 7-2: Logical Model of Reporting

7.2.3 Payments

In this section we are preparing for sales (Appendix 7.2.5) and purchase

(Appendix 7.2.4) processes by modelling different payment strategies, that have

been described and modelled by using activity diagrams by Arlow and Neustadt

[14 pp. 346-348]. When Arlow and Neustadt models are documentation

artefacts, then our models are source artefacts (as normal for software factories)

and are all concretizations of the process archetype pattern (Figure 3-25)

described in Section 3.5.9.

In Figure 7-3 the major action types () and major outcome

types () of payment process is illustrated. The ―major‖ means

that an addition to accepting activities and outcomes (e.g. ,
), there can be also declining activities (like

 ,).

Each outcome from sales (Appendix 7.2.5) and purchase (Appendix 7.2.4)

processes is related through an order event () with order ()

or order line () archetypes. This is illustrated for example in Figure

7-20. As each order is related through an order line and an inventory entry also

with inventory, we can say (at least in buying and selling context), that order

151

and inventory archetype patterns can be used for recording (logging) of different

business events as we already stated in Section 2.1.1 when we discussed how

Zachman Framework columns and archetype patterns are related.

Figure 7-3: Logical Model of Payment Actions and Outcomes

The major activities of payment processes are open sales order

(), accept payment (), send items

(), send receipt (), close sales order

(), send invoice () and debit account

(). It follows then that the major outcomes of payment processes

are sales order is open (), payment is accepted

(), items are sent (), receipt is sent

(), sales order is closed (), invoice is

sent () and account is debited ().

The order of these activities and rules (each process element and process

element type can be ordered as well as attributed by rules, Figure 3-26) for

executing these activities depend on the sales type. Depending on companies

selling strategies, the type of sale can be prepaid (, Figure 7-4),

credited (, Figure 7-5), invoiced (, Figure 7-6)

and debited (, Figure 7-7).

In a prepaid sale (Figure 7-4), no deliveries will be despatched

() before the full payment. Prepaid sale is common case

between individuals and a business or when the customer is unknown and

therefore has no relationship of trust with the business [14 p. 346]. Prepaid sale

is initialised by a buyer by sending a purchase order along with full payment.

152

Receipt of a purchase order () activates a task with

 action, then receiving a payment () the

vendor normally activates a task with accept payment ()

action.

The task despatch delivery (), with the sequenced

activities send items (), send receipt () and close

sales order () starts (rule based) when sales order is open

() and payment is accepted ()

outcomes have been achieved.

Figure 7-4: Logical Model of Prepayment

Although the simplest prepaid sale processes can be modelled without sale

threads (, and), we

retain them for reasons of universality (buyer can make more than one payments

and items can be delivered to different receivers) and for compatibility (with

other sale types).

The credited sale (, Figure 7-5) differs from prepaid sale

(, Figure 7-4) in that deliveries will be despatched directly after

receiving a purchase order from buyer. Essentially the task despatch delivery

(), with sequenced activities send items () and

send invoice () commences (rule based) when a sales order is

open (). Again, the deliveries can be despatched to many

different receivers in different deliveries. The receive payments

() thread with possible accept payment

(), send receipt () and close sales order

() actions commences when the first payment is received

153

(task) by vendor and ends when the full payment according

to purchased items is done. Many different payments are possible and naturally

the actions of send receipt () and close sales order

() can be activated (rule based) when all the required

payments (according to invoice) are accepted.

Figure 7-5: Logical Model of Credited Payment

In an invoiced sale (, Figure 7-6), the buyer pays after the

purchase order has been received () by the vendor

and in advance of receipt of the goods [14 p. 347]. The

 task is the only task in the sale initialise

() thread but includes two actions

().

After the full payment from buyer is received (thread

with one or more tasks with activity), the

vendor delivers the products (goods or services) to the delivery receivers within

an agreed time period. The despatch deliveries () thread

consists one or more despatch delivery () tasks with at least

one activity. The last (or the only one) tasks

includes two further activities ().

154

Figure 7-6: Logical Model of Invoiced Payments

Figure 7-7: Logical Model of Debited Payments

A debited sale (, Figure 7-7) occurs in both B2B (business – to -

business) transactions and in individual-to-business transactions, when the

individual has an account with the business [14 p. 348].

155

Receiving a purchase order () activates a task with

 action followed by send invoice () and debit

account () activities. The receiving of a payment

() is still the task of separate thread and

normally with accept payment () action.

The despatch delivery () task, with sequenced activities

send items (), send receipt () and close sales order

() commences (rule based) when sales order is open

() and payment is accepted ()

outcomes have been achieved.

7.2.4 Purchases

As there are four possible payment methods, we also have four possible

purchases. These are , ,

 and (Figure 7-8).

Figure 7-8: Logical Model of Purchases

All of these purchases include initialize (, Figure 7-9),

change (, Figure 7-11), make payments (,
Figure 7-12), receive deliveries (Figure 7-13) and cancel

(, Figure 7-10) threads. Although for some purchase types,

these threads can be firmly related to each other and can begin immediately

after one has finished (for example in case of where the

156

make payments starts immediately after the purchase order is sent), we still keep

these threads separately.

Figure 7-9: Logical Model of Purchase Initialization

Purchase initialization thread has one task with and

 activities. The cancel purchase thread

(, Figure 7-10) can include four tasks – initialize purchase

decline, receive sales decline, return purchases, and receive refund. Both vendor

and buyer have rights to initialize cancellation. Buyer commences the

cancellation () by sending a decline (action of

 task) to the vendor. When the vendor accepts

decline (see sales cancellation Figure 7-16), then delivered purchases (if any)

should be returned () and any payments received should be

refunded (). Different rules and rights can and should be

followed by both sides, when cancelling purchases.

Similarly both parties can also initialize purchase amendments

(, Figure 7-11). The purchase change thread has the same

(or similar) tasks and activities as the cancel purchase thread has. When both

parties have accepted amendments (see also sales change, Figure 7-17), then

any delivered purchases should be returned () and any

payments received should be refunded ().

157

Figure 7-10: Logical Model of Purchase Cancellation

Figure 7-11: Logical Model of Purchase Change

158

Figure 7-12: Logical Model of Make Payments

Figure 7-13: Logical Model of Receive Deliveries

We already have discussed payments in Section 7.2.3. The make payments

thread with receive invoice and initialize payment tasks is illustrated in Figure

7-12. Figure 7-13 illustrates the receive deliveries thread. This thread consists of

one or more tasks . The whole delivery can be accepted or

declined and each separate item within the delivery can be accepted or rejected.

7.2.5 Sales

As purchases and sales are interrelated we also have four possible sales –

 , , and (Figure

159

7-14). All of these sales include initialize sale, change sale, receive payments,

despatch deliveries and cancel sale threads. The sale initialization thread

(, Figure 7-15) has only one task ()

with two activities .

Figure 7-14: Logical Model of Sales

The cancel sale thread (, Figure 7-16) can include four tasks –

receive purchase decline, initialize sales decline, receive purchased items, and

refund. As was the case for cancellation, both parties can also initialize sale

amendments (, Figure 7-17). The sale change thread has same (or

similar) tasks and activities as the cancel sale thread. When both parties have

accepted the amendments (see also purchase change, Figure 7-11), then

delivered purchases (if any) should be returned () and any

payments received should be refunded (). The receive payments thread

with one or more receive payment task and accept or decline payment activities

is illustrated in Figure 7-18. Figure 7-19 illustrates the despatch deliveries

() thread. This thread consists of one or more

tasks . One delivery tasks includes three action types

(, ,) with their

corresponding outcomes. The action can (but must not) be

generated for every item in delivery.

160

Figure 7-15: Logical Model of Sales Initialization

Figure 7-16: Logical Model of Sales Cancellation

161

Figure 7-17: Logical Model of Sales Change

Figure 7-18: Logical model of Receive Payments

162

Figure 7-19: Logical Model of Despatch Items

Figure 7-20: Logical Model of Sales, Purchases and Order Events

163

7.3 Elulugu

Nimi Gunnar Piho

Telefon +3725111236

E-kiri gunnar.piho@computer.org

Haridustee

2005-2011 Tallinna Tehnikaülikool, Informaatikainstituut, doktorant.

2001–2003 Tallinna Pedagoogikaülikool, Infotehnoloogia juhtimine,

magistratuur

1974–1979 Tallinna Pedagoogiline Instituut, matemaatika ja füüsika

õpetaja.

1971–1974 Valga 1. Keskkool

Töökogemus

09. 2008 - Bioinformaatik - Clinical and Biomedical Proteomics Group,

Cancer Research UK Clinical Centre, Leeds Institute of

Molecular Medicine,St James's University Hospital (Beckett

Street, Leeds LS9 7TF, UK), University of Leeds –

laboratooriumi infosüsteemi arendamine.

2005-2008 Mainori Kõrgkool, lektor/IT Instituudi direktor.

1999–2005 Systek Informationsystems GmbH (Germany), tarkvara

arendaja/arendusmeeskonna juht

1998–1999 Medisoft AS, tarkvara arendaja

1998–1998 Sofimation OY (Finland), tarkvara arendaja

1990–1997 Erinevad valitavad ametikohad (Kolila vallavanem; Talupidajate

Keskliidu juhatuse liige; Eesti Kongressi liige; Maapanga

juhatuse liige)

1987–1990 Tervishoiuministeeriumi arvutuskeskus, tarkvara arendaja.

1980–1986 Sideministeeriumi arvutuskeskus, tarkvara arendaja

mailto:gunnar.piho@computer.org

164

7.4 Curriculum Vitae

Name Gunnar Piho

Phone +372 51 11236

E-mail gunnar.piho@computer.org

Education

Sept 2005 - Tallinn University of Technology, Department of

Informatics, PhD studies.

2001 - 2003 Tallinn Pedagogical University, Management of

Information Technology, master studies.

1974 - 1979 Tallinn Pedagogical Institute, Mathematics.

1971 - 1974 Valga Secondary School No 1

Work experience

2008 - Bioinformatician - Clinical and Biomedical Proteomics

Group, Cancer Research UK Clinical Centre, Leeds Institute

of Molecular Medicine, St James's University Hospital

(Beckett Street, Leeds LS9 7TF, UK), University of Leeds –

developing of LIMS (Laboratory Information Management

Systems) for particular laboratory.

2005-2008 Mainor Business School, Lecturer / Director of IT

Institute.

1999–2005 Systek Informationsystems GmbH (Germany), software

developer/team leader in Estonian office.

1998–1999 Medisoft AS, software developer.

1998–1998 Sofimation OY (Finland), software developer

1990–1997 Active in politics (Chairman of Kohila district; member of the

board of Estonian Farmers Union; member of the Estonian

Congress, member of the board of Estonian Land Bank)

1987 – 1990 Computing Centre at Ministry of Healthcare, software

developer.

1980 – 1986 Computing Centre at Ministry of Communication,

software developer.

mailto:gunnar.piho@computer.org

165

7.5 List of Articles Published by the Thesis Author

1. Piho, G.; Tepandi, J.; Roost, M.; Parman, M.; Puusep, V. (2011). From

Archetypes Based Domain Model via Requirements to Software:

Exemplified by LIMS Software Factory. MIPRO 2011 - 34th

International Convention on Information and Communication

Technology, Electronics and Microelectronics: Telecommunications

and Information, Opatia, Horvatia, May 23-27, 2011. (3.2)

2. Piho, G.; Tepandi, J.; Parman, M.; Puusep, V.; Roost, M. (2011). Test

Driven Domain Modelling. MIPRO 2011 - 34th International

Convention on Information and Communication Technology,

Electronics and Microelectronics: Telecommunications and

Information, Opatia, Horvatia, May 23-27 2011. (3.2)

3. Piho, G.; Tepandi, J.; Roost, Mart (2011). Archetypes Based

Techniques for Modelling of Business Domains, Requirements and

Software. 21st European Japanese Conference on Information

Modelling and Knowledge Bases, June 6-10, 2011, Tallinn, Estonia.

(3.2)

4. Piho, G.; Tepandi, J.; Roost, M. (2011). Evaluation of the Archetypes

Based Development. Barzdins, J.; Kirikova, M.; (Ed.). Databases and

Information Systems VI - Selected Papers from the Ninth International

Baltic Conference, DB&IS 2010 (283 - 295).IOS Press, Frontiers in

Artificial Intelligence and Applications, Volume 224 (3.1)

5. Piho, G.; Tepandi, J.; Parman, M.; Perkins, D. (2010). "From

archetypes-based domain model of clinical laboratory to LIMS

software." Opatia, Croatoa, 24-28 May 2010 : IEEE, 2010. MIPRO,

2010 Proceedings of the 33rd International Convention, Volume:

Digital Economy, pages 1179-1184, ISBN: 978-1-4244-7763-0. (3.2)

6. Piho, G.; Roost, M.; Perkins, D.; Tepandi, J.; (2010). "Towards

archetypes-based software development." [ed.] T. Sobh and K.

Elleithy, Springer, 2010. Innovations in Computing Sciences and

Software Engineering: Proceedings of the CISSE 2009, pages 561-566,

DOI: 10.1007/978-90-481-9112-3_97, ISBN: 978-90-481-9111-6. (3.1)

7. Piho, G.; Tepandi, J.; Roost, M. (2010). "Domain analysis with

archetype pattern based Zachman framework for enterprise

architecture." [ed.] A K Mahmood, et al. Kuala Lumpur, Malaisia,

15th - 17th June 2010 : IEEE, 2010. Proceedings The 4th International

Symposium on Information Technology 2010, Vol 3 - Knowledge

Society and System Development and Application, pages 1351-1356,

ISBN 978-1-4244-6716-7. (3.1)

8. Piho, G., Tepandi, J. ja Roost, M., "The Zachman framework with

archetypes and archetype patterns." [ed.] J. Barzdins ja M. Kirikova.

Riga, Latvia, Baltic DB&IS, July 5-7, 2010 : University of Latvia Press,

166

2010. Databases and Information Systems: Proceedings of the Ninth

International Baltic Conference, pages 455-570. (3.2)

9. Tepandi, J.; Piho, G.; Liiv, I. (2010). "Domain engineering for cyber

defence visual analytics: a case study and implications." Tallinn,

Estonia : CCD COE Publications, 2010. CCDCOE Conference on

Cyber Conflict, pages 59-77. (3.2)

10. Piho, G (2008). ―Towards archetypes based domain model of clinical

laboratory‖. In: Proceedings of Doctoral Symposium held in

conjunction with Formal Methods 2008: Doctoral Symposium of 15th

International Symposium on Formal Methods, May 26-30 2008, Turku,

Finland. Troubitsyna, E. (Ed.) Turku, Finland: Turku Centre for

Computer Science, 2008, (TUCS General Publications; 48), pages 33 -

42.

11. Piho, G. (2008). ―Towards archetypes and archetype patterns based

software engineering techniques of domains, requirements and

software‖. Nordic workshop and doctoral symposium on dependability

and security (NODES 08) August 29, 2008, Marguse, Estonia. , 2008,

31 - 36.

12. Piho, G. (2008). ―A Quantity: A simple example of software

development with domain analysis‖. In: Collection of articles from

second annual conference of Doctoral School of Information and

Communication Technology (IKTDK): 25.-26. April 2008, Voore

(Estonia): Tallinn: Tallinn Technical University Press, 2008, pages 73 -

76.

13. Piho, G. (2007). ―Archetype patterns based method of prescribing

enterprise software requirements‖. In: MIPRO 2007 proceedings:

MIPRO 2007, Opatia (Croatia), May 21-25, 2007. (Ed.) Čišic, D.;

Hutinski, Ž.; Baranovic, M.; Sandri, R.; Rijeka (Croatia): Studio

Hofbauer, 2007, (Business Intelligence Systems), pages 236 - 241. (3.2)

14. Piho, G. (2007). ―Archetypes and archetype patterns based

engineering techniques of domains, requirements and software: the

clinical LIMS software factory‖. In: Collection of articles from second

annual conference of Doctoral School of Information and

Communication Technology (IKTDK). Viinistu (Estonia), 11.-12. Mai

2007. Tallinn: Tallinn Technical University Press, 2007, pages 65 - 68.

167

DISSERTATIONS DEFENDED AT

TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the

Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility

Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-

Business. 1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of

Cost Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by

Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods

for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data

Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis

and Reproduction of Periodic Components of Band-Limited Discrete-Time

Signals. 2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:

Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with

Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented

Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of

Digital Systems. 2004.

168

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in

Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to

Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication

Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-

Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based

Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja

elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.

2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum

Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой

фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n

переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech

Recognition. 2006.

32. Erki Eessaar. Relational and Object-Relational Database Management

Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-

impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired

Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis

and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of

Nonlinear Systems: ANARX Model Based Approach. 2007.

169

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case

Studies of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit

State Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A

Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit

Based on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear

Information Processing Methods: Case Studies of Estonian Islands

Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-

Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program

Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –

Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the

Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.

48. Vineeth Govind. DfT-Based External test and Diagnosis of Mesh-like

Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children

Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation

Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and

Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of

Attack Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User

Interfaces. 2010.

170

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and

Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.

2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability

Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger

Integrated Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.

2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-

Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile

Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance

Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber

Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models.

2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

