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PREFACE 

 
This master thesis has been supported by the project „Increasing the knowledge 

intensity of Ida-Viru entrepreneurship“ („AIoT*5G - Artificial intelligence, edge 

computing and IoT solutions in distributed systems“)  co-funded by the European 

Union. 

 

The thesis examines the use of 1D Convolutional Neural Networks (1D CNNs) on the 

ESP32 microcontroller—a low-power, cost-effective device—for analyzing gait 

disorders prevalent in older adults and individuals with neurological conditions. By 

integrating the ESP32-D0WDQ6 with the MPU6050 sensor modules, the study 

demonstrates the platform's capability for real-time gait analysis, specifically in 

identifying and classifying abnormalities like steppage gait.  

 

Despite the limitations posed by resource-constrained hardware, this study shows that 

even small, efficiently designed 1D CNNs can offer valuable insights into gait 

disorders. However, the research also identifies the importance of tailoring model 

architectures specifically for low-power devices. Future work should focus on 

optimizing the architecture through techniques such as pruning and quantization, 

improving memory management, and supporting parallel processing across the 

ESP32's dual-core architecture. 

 

This work establishes a benchmark for deploying machine learning models on the 

ESP32 platform, demonstrating that with proper model design, low-power devices can 

be leveraged effectively for advanced gait analysis for clinical, wellness and 

occupational use. 

 

I would like to express my gratitude to Alar Kuusik and Muhammad Usman Naseer for 

their unwavering, constant support and guidance throughout my thesis work. Special 

thanks to Jakob Rostovski, a PhD student at Tallinn University of Technology, for his 

willingness to share his own research insights and constructive feedback during the 

project.
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1. INTRODUCTION 

 
Gait disorders, characterized by abnormal patterns in walking, are common in the 

aging population and in individuals with specific neurological disorders. Gait disorders 

and deviations are also risk factors for occupational safety. These disorders pose 

significant risks for dependence, cognitive decline, falls, and even mortality. Studies 

indicate that after the age of 70, approximately 35% of people exhibit some form of 

gait abnormality, a figure that rises substantially in those over 85 [1]. The 

manifestation of these disorders, such as reduced speed and stride length, often 

suggests underlying pathologies, both in the nervous and non-nervous systems. 

A typical gait cycle, initiating with the contact of one foot and ending with the contact 

of the other, consists of stance and swing phases [2]. Aging affects various elements 

of the gait cycle: after 70 years, walking speed declines by about 15% per decade, 

and faster walking sees an even sharper decline [3]. Slow walking speed is a strong 

predictor of mortality, exceeding even the impact of chronic conditions and 

hospitalizations in older adults. The muscle weakness, particularly in the calves, 

contributes significantly to this decline. However, older adults often compensate for 

this weakness through the use of hip flexors and extensor muscles [4]. 

The double stance time, a phase where both feet are in contact with the ground, 

increases with age, accounting for up to 26% of the gait cycle in older individuals [5]. 

This increase affects stride length and may be more pronounced on uneven surfaces or 

in fall-prone situations. Changes in walking posture are also notable; older individuals 

tend to walk with greater anterior pelvic rotation and without forward lean. 

Contributing factors include increased abdominal fat, weakened abdominal muscles, 

and rigidity in hip flexors. The expected result of the research is to develop a 

automatic personalized multi- sensor device which can predict falls with more than 

90% accuracy in different environmental conditions and contexts for user mobile 

applications. 

Gait disorders are particularly prevalent in patients with neurological problems, 

significantly increasing their risk of falls [6]. Understanding and addressing these 

disorders is essential for fall prevention and enhancing overall mobility in the aging 

population. Technological advancements like accelerometers for step counting and 

wearable sensors have greatly improved the assessment and analysis of gait outside 

traditional laboratory settings, allowing for more accurate and natural observation of 

gait in everyday environments [7]. 

In conclusion, gait disorders in older adults and those with neurological conditions are 

a critical public health concern. Continuous efforts in research, technological 
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innovation, and community design are vital to mitigate their impacts and improve 

quality of life. In this work, we address these gaps by investigating the feasibility of 

deploying low-cost and energy efficient AIoT solutions for human motion deviation 

monitoring. Through extensive testing, we highlight key challenges encountered 

during the deployment of 1D-CNN models. These contributions will pave the way for 

more advanced AIoT systems, demonstrating that low-power devices can be leveraged 

for running ML models when model architectures are appropriately tailored. The 

proposed approach serves as a benchmark for deploying machine learning on low-

power devices. 
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2. LITERATURE REVIEW 

 

2.1 Gait disorders and patterns 

Gait analysis, a critical process in assessing and understanding human locomotion, 

plays a vital role in healthcare for diagnosing and monitoring gait disorders. Its 

importance is particularly pronounced in identifying early signs of health issues in the 

aging population and individuals with neurological conditions [8]. Gait patterns vary 

significantly, each characterized by unique features that can indicate specific health 

conditions or functional impairments. Understanding these various gait types is 

essential in clinical diagnostics and research [9].  

Table 1 shows a phenomenological classification of common gait disorders [10]. 

 

Table 1. Phenomenological classification of gait disorders (modified from [11]) 

 

Type of Gait Abnormality Descriptive Characteristics 

Hemispastic gait One-sided body extension movements 

Paraspastic gait Bilateral stiffness with outward leg movement 

Ataxic gait Wide stance, disordered coordination 

Sensory ataxic gait Worsens without visual cues, cautious 

Freezing gait Sudden halting, especially during turns 

Astasia gait Disturbance in balance while standing 

Cautious gait Broad based, cautious, slow, anxious 

Propulsive gait Forward center of gravity with rapid, short steps 

Steppage gait Elevated thigh lift due to foot muscle weakness 

Antalgic gait Reduced weight-bearing phase due to pain 

Choreatic gait Dance-like movements, lack of stability 

Dystonic gait Foot or leg adopts unusual posture 

Waddling gait Duck-like walking, lateral movement 

Vertiginous gait Unsteady, tilting to one side 

Psychogenic gait Bizarre, atypical gait with infrequent falls 
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Each gait type offers insights into underlying physiological or neurological issues, 

making their identification and analysis crucial in healthcare settings. Particularly, the 

analysis of abnormal gaits like steppage gait can reveal significant information about 

neuromuscular health and guide treatment decisions. 

Steppage gait is a distinctive walking pattern that arises primarily from weakness or 

paralysis of the dorsiflexor muscles of the foot, which include the tibialis anterior, 

extensor hallucis longus, and extensor digitorum longus. Individuals with steppage 

gait exhibit an exaggerated lifting of the knee and hip during walking, as if stepping 

over an obstacle on the ground. This compensatory action is necessary to prevent the 

toes from dragging along the ground, which occurs due to the inability to properly flex 

the ankle and lift the foot (foot drop). 

The most common underlying causes of steppage gait include peripheral neuropathies, 

such as those associated with diabetes mellitus or trauma to the peroneal nerve. 

Additionally, steppage gait can be seen in neurodegenerative conditions such as 

Charcot-Marie-Tooth disease, where progressive loss of muscle tissue and touch 

sensation occurs in the feet and legs [2]. 

Clinically, steppage gait can be identified by observing the patient walk. The hallmarks 

include a foot that hangs with the toes pointing down, causing the toes to scrape the 

ground when walking, and a gait that involves lifting the leg higher than normal at the 

hip. The sound of foot scuffing or seeing wear on the tip of the shoe may be a first 

clue. To confirm the diagnosis and assess the severity, gait analysis technologies, 

including pressure mats, motion capture systems, or electromyography, are utilized to 

measure and record the walking patterns, muscular activity, and compensatory 

mechanisms used by the patient. 

In the treatment and management of steppage gait, rehabilitation exercises, physical 

therapy, and sometimes surgical interventions are employed. A key component of 

therapy is strengthening the muscles responsible for dorsiflexion of the foot and 

employing orthotic devices to support the foot and improve walking [8]. Recent 

advancements in functional electrical stimulation (FES) have shown promise in 

providing temporary improvement in dorsiflexor strength during walking, thus 

improving the gait pattern in real-time. 
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2.2 Gait and motion monitoring technologies 

 

The domain of gait and motion monitoring has evolved dramatically with 

advancements in technology, offering profound benefits for diagnosing and managing 

gait disorders such as steppage gait. Traditional gait analysis relied on visual 

observation, often with video support, to assess the biomechanics of gait. While 

effective for basic assessments, these methods were confined to laboratory settings 

and lacked the ability to capture the dynamism of everyday movements [8]. 

Advancements brought about sophisticated motion capture systems that use markers 

to track the three-dimensional movement of the body. These systems provide detailed 

analyses of gait kinematics and kinetics but require controlled environments and 

specialized equipment [9]. The proliferation of wearable sensor technology has 

democratized gait analysis. Devices like accelerometers and gyroscopes allow for the 

real-time, naturalistic observation of gait, enabling long-term monitoring outside 

clinical settings [12]. Smartphones and wearable devices have integrated gait analysis 

capabilities, featuring built-in sensors and applications that process and interpret 

motion data. This has facilitated remote monitoring and tele-rehabilitation, expanding 

the reach of gait analysis to everyday settings [13]. In clinical practice, gait analysis 

technologies have become essential tools for customizing treatment and monitoring 

rehabilitation. For patients with disorders like steppage gait, these technologies help in 

creating more effective, patient-specific therapeutic interventions [9]. The following 

table 2 summarizes the various gait and motion monitoring technologies. 
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  Table 2. Summary of Gait and Motion Monitoring Technologies 

 

Technology 

Category 

Description Benefits Limitations Applications 

Early 

Systems 

Visual 

observation and 
video recording; 

use of force 

platforms for 
kinetic analysis. 

Provides 

foundational 
gait data; good 

for initial 

assessments. 

Limited to 

labs; static 
data 

collection. 

Baseline 

measurements; 
biomechanical 

studies. 

Motion 
Capture 

Marker-based 
systems tracking 

3D body 

movements; 
detailed 

kinematic and 

kinetic analysis. 

High detail and 
precision. 

Requires 
controlled 

environment; 

costly setup. 

Advanced gait 
research; 

detailed clinical 

diagnostics. 

Wearable 

Sensors 

Portable devices 

measuring 
movement; 

includes 

accelerometers, 
gyroscopes, 

magnetometers 

Real-time 

data; 
naturalistic 

settings; 

continuous 
monitoring. 

Potentially 

less precise; 
data volume 

management. 

Daily 

monitoring; 
personalized 

rehab 

programs.  

Clinical 

Practice 

Application of 

gait analysis for 

therapeutic 
evaluation and 

management. 

Tailors 

treatments; 

objective 
progress 

measurement.
  

Requires 

interpretation 

expertise. 

Treatment 

customization; 

rehabilitation 
tracking. 

 

By leveraging these diverse technologies, clinicians and researchers can gather 

extensive data on gait patterns, offering critical insights into disorders like steppage 

gait and informing more effective treatment protocols. 

 

2.3 Machine Learning in gait analysis 

 
Machine learning (ML) has emerged as a transformative force in gait analysis, offering 

powerful tools to interpret complex data and extract meaningful patterns. Machine 

learning, a subset of artificial intelligence (AI), involves the use of statistical 

techniques to enable computers to 'learn' from and make predictions or decisions 

based on data. In gait analysis, ML algorithms process large datasets collected from 

sensors to identify and classify gait patterns, detect abnormalities, and predict 

outcomes [14]. 
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ML algorithms are particularly beneficial in diagnosing gait disorders, assessing the 

risk of falls, and monitoring rehabilitation progress. By learning from data gathered by 

gait analysis tools, these algorithms can differentiate between various gait types and 

pinpoint deviations from normal patterns that may indicate a disorder or risk of injury 

[15]. Convolutional Neural Networks, a class of deep neural networks, are particularly 

adept at processing data with a grid-like topology, such as time-series data from 

sensors. CNNs have shown promise in identifying subtle patterns in gait that may not 

be discernible through traditional analysis methods. For example, a CNN can learn to 

recognize the characteristic footfall patterns of individuals with steppage gait, aiding in 

early detection and intervention [16]. 

 

The efficacy of ML models in gait analysis is quantified using metrics such as accuracy, 

precision, sensitivity (recall), specificity, and the F1 score. In [17] research showcased 

the ability of Support Vector Machines (SVM) to classify gait data with high precision 

and recall, underlining the potential of ML in identifying gait abnormalities. Recurrent 

Neural Networks (RNNs), and in particular, Long Short-Term Memory (LSTM) 

networks, excel at analyzing time-series data and have been shown to be effective in 

capturing the temporal dependencies of gait cycles, leading to high classification [18].  

 

Challenges in applying ML to gait analysis include managing the variability in data due 

to differences in sensor placement, individual biomechanics, and environmental 

factors. As ML algorithms require large volumes of high-quality training data to learn 

effectively, the collection and annotation of such datasets are non-trivial tasks [19]. 

 

2.4 Convolutional Neural Networks (CNNs) 

and 1D CNNS 

Convolutional Neural Networks (CNNs) are a specialized type of deep neural networks 

renowned for their ability to process and analyze data with grid-like structures, such 

as images and time-series sequences. These networks employ layers of convolutional 

filters to extract high-level features from raw data automatically, which is crucial for 

tasks requiring pattern recognition, such as image classification, voice recognition, and 

complex signal analysis. The strength of CNNs lies in their architecture, which 

effectively captures spatial and temporal dependencies in data through a hierarchical 

learning process [20]. 

1D Convolutional Neural Networks are tailored to process one-dimensional data. They 

are ideally suited for analyzing sequential data, such as audio waves, sensor-

generated time-series, and physiological signals like ECG and EEG. Unlike traditional 
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deep neural networks that fully connect all inputs and outputs, 1D CNNs utilize 

convolutional operations across time, allowing them to capture dynamic changes and 

patterns over intervals. This attribute makes them highly efficient for real-time signal 

processing and anomaly detection in continuous data streams [21]. The primary 

advantage of 1D CNNs in applications such as gait analysis lies in their ability to 

efficiently process temporal data and detect patterns across time. Each layer in a 1D 

CNN applies a series of convolutional filters to the input data, which are trained to 

recognize specific temporal features at various scales. These features are then pooled 

and normalized through subsequent layers to enhance the network’s ability to 

generalize from training data to unseen scenarios. In practice, this means 1D CNNs 

can identify subtle abnormalities in gait cycles from accelerometer and gyroscope data 

integrated into wearable devices, providing valuable insights for diagnostic and 

therapeutic purposes in real-time [16]. 

The fundamental difference between 1D and 2D CNNs revolves around their respective 

domains of application. While 2D CNNs are primarily designed for image data, 

involving convolutions over two-dimensional spatial data, 1D CNNs focus on one-

dimensional data streams. This difference affects their internal structure and the 

nature of the filters used. In 1D CNNs, filters slide across a single dimension, focusing 

on detecting patterns over time, which is less computationally intensive and more 

targeted for sequential data analysis, such as in wearable sensor outputs or financial 

time series [22].  

The table 3 outlines the differences between 1D and 2D CNNs across various aspects 

such as input data type, primary use, convolution operations, complexity, data 

representation, and typical examples. 
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  Table 3. Comparison of 1D vs. 2D Convolutional Neural Networks 

 

Feature 1D CNN 2D CNN 

Input Data 

Type 

One-dimensional data such as time-

series signals 

Two-dimensional data such as 

images or matrices 

Primary Use Audio processing, ECG/EEG signal 

analysis, motion analysis in time-

series data 

Image processing, video 

analysis, spatial pattern 

recognition 

Convolution Convolution operations are 

performed across time, focusing on 

temporal features 

Convolution operations are 

performed over both spatial 

dimensions, extracting features 

from a 2D space 

Complexity Typically less computationally 

intensive due to fewer dimensions 

More computationally 

demanding due to the 

complexity of spatial data 

Data 

Representation 

Often deals with data where time or 

sequence is a critical axis, e.g., 

stock prices, physiological signals 

Deals with data where spatial 

relationships are crucial, e.g., 

recognizing objects in photos 

Examples  Monitoring heart rhythms, 

analyzing speech patterns, 

detecting anomalies in sensor 

streams 

Facial recognition, autonomous 

vehicle navigation, medical 

image diagnosis 

 

 

 

The PRG424 research project which is proposed by the Tallinn University of 

Technology is a significant endeavor in wearable sensor networks, utilizing advanced 

machine learning techniques to elevate data analysis capabilities. Among the various 

models evaluated, Convolutional Neural Networks (CNNs), particularly 1D CNNs, 

showcased superior performance in tasks that involve complex sensor data analysis. 

CNNs were exemplary in their ability to interpret complex data from body-area 

networks within the PRG424 project. Their capability to extract meaningful patterns 

from noise-embedded sensor data set them apart from other evaluated models. This 

proficiency was crucial for developing systems aimed at reliable and efficient health 

monitoring. 
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Technical Achievements Highlighted in PRG424: 

 

• Robust Feature Extraction and Noise Reduction: 

CNNs effectively isolated key features from noisy data streams, a critical function for 

accurate health diagnostics and monitoring [23]. 

 

• Optimized Real-Time Data Processing: 

The models demonstrated real-time processing capabilities, essential for applications that 

require immediate data analysis to inform health interventions [24]. 

 

• Adaptability Across Varied Sensor Inputs: 

The adaptability of CNNs was further validated by their performance across multiple 

sensor types and configurations, enhancing the system's reliability and applicability [25]. 

 

• Performance Metrics in Gait Analysis: 

The "1D-CNN-AD" algorithm, highlighted in the work by Kumar et al. (2024), showcases 

high F1 scores for detecting Hyperkinetic and Slap gait patterns, achieving 98.1% and 

90.8% respectively. This highlights that 1D CNNs can reliably classify specific gait 

abnormalities. However, the study also points out performance variability in recognizing 

gait patterns like Ataxic and Hemiplegic due to individual differences. [33]. 

 

 
The outstanding performance of CNNs in the PRG424 project underscores their potential 

in handling complex, real-world data effectively. This success motivates additional 

research into CNN-based models, particularly 1D CNNs, for further applications in 

wearable technology and health monitoring systems. The findings from PRG424 serve 

as a benchmark, demonstrating that CNNs not only meet but often exceed the 

performance of traditional machine learning techniques in challenging scenarios. 

 

Methods developed in PRG424 project will be further developed in ongoing project 

“AIoT*5G - Artificial intelligence, edge computing and IoT solutions in distributed 

systems” including activities of improving occupational health and safety via smart IoT 

devices. 
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3. RESEARCH METHODOLOGY 

 

3.1 Hardware selection 

In the development of wearable technology for gait analysis, selecting the right 

components is crucial for effective monitoring and data collection. The ESP32 

microcontroller, which is designed for energy efficiency and MPU6050 sensor have 

been chosen due to their optimal computational power and functionality for the given 

task, and cost-effectiveness, making them particularly suitable for this application. 

 

The ESP32-D0WDQ6 is a microcontroller known for its ability to handle lightweight 

machine learning tasks directly on the device, making it suitable for applications that 

require quick data processing and immediate decision-making. Its dual-core Tensilica 

Xtensa LX6 processor, operating at up to 240 MHz, provides enough computational 

power for analyzing gait patterns in real time [26]. Below are specific reasons why the 

ESP32-D0WDQ6 is preferred: 

 

• Efficient Processing: The dual-core processor and 520 KB of SRAM allow it to 

manage basic machine learning algorithms for real-time gait pattern 

recognition. 

 

• Wireless Connectivity: Built-in Wi-Fi and Bluetooth enable it to communicate 

wirelessly with other devices, making it possible to transmit data for remote 

monitoring and analysis. 

 

• Input/Output Flexibility: The ESP32-D0WDQ6 provides various interfaces like 

SPI, I2C, UART, and ADC inputs, allowing easy integration with different 

sensors and devices. 
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Figure 1. ESP32-D0WDQ6 

 

To visually summarize the differences among the ESP32 variants, the following table 

compares the key features of the ESP32-D0WDQ6 with other models like the ESP32-

S0WD, ESP32-D2WD, ESP32-WROOM, ESP32-WROVER, and ESP32-C3: 
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Table 4. Comparison of ESP32 Variants 

Feature ESP32-

D0WDQ6 

ESP32-

S0WD 

ESP32-

D2WD 

ESP32-

WROOM 

ESP32-

WROVER 

ESP32-C3 

Core 

Type 

Dual-core LX6 Single-core 

LX6 

Dual-core 

LX6 

Single-core 

LX6 

Dual-core 

LX6 with 

PSRAM 

Single-core 

RISC-V 

Max 

Clock 

Speed 

Up to 240 

MHz 

Up to 160 

MHz 

Up to 240 

MHz 

Up to 160 

MHz 

Up to 240 

MHz 

Up to 160 

MHz 

Wi-Fi Dual-mode Single-

mode 

Dual-mode Single-

mode 

Dual-mode Single-

mode 

Bluetooth BT 4.2, BLE BT 4.2, 

BLE 

BT 4.2, 

BLE 

BT 4.2, 

BLE 

BT 4.2, 

BLE 

BLE only 

RAM 520 KB 

SRAM 

520 KB 

SRAM 

520 KB 

SRAM 

520 KB 

SRAM 

520 KB 

SRAM plus 

PSRAM 

400 KB 

SRAM 

Security 

Features 

Basic Basic Basic Basic Enhanced Enhanced 

with RISC-

V 

TrustZone 

Cost Medium Low Medium Low Medium Low 

Use Case 

Suitability 

Best for high-

performance 

applications 

needing dual-

core efficiency 

Suitable for 

less 

complex 

applications 

Similar 

performance 

but less 

popular, 

fewer 

community 

resources 

Suitable for 

less 

complex 

applications 

Best for 

applications 

needing 

additional 

memory 

Best for 

cost-

sensitive, 

security-

enhanced 

applications 
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In addition to its dual-core processor, high clock speed, enhanced connectivity, and 

sufficient RAM and expandability, the ESP32-D0WDQ6 is notably favored for its robust 

adoption within the developer community. This widespread usage guarantees access 

to extensive support and a rich library of resources, which are crucial for effective 

troubleshooting and the enhancement of AIoT applications. 

Moreover, the ESP32-D0WDQ6 offers an excellent balance of performance and cost (5-

6 Euro). While it is not the least expensive model in the market—such as the ESP32-

S0WD or ESP32-C3—its moderate price is well justified by superior processing power 

and connectivity options. These features make the ESP32-D0WDQ6 an ideal choice for 

applications requiring advanced capabilities without compromising on budget. 

The MPU6050 is a micromechanical inertial motion sensor that integrates a 3-axis 

gyroscope and a 3-axis accelerometer on a single chip. This sensor is widely used in 

applications requiring accurate and efficient motion tracking, such as gait analysis. The 

following points detail the MPU6050's specifications and justify its selection for gait 

analysis [27]. 

• Comprehensive Motion Tracking: The MPU6050 provides critical gyroscopic and 

accelerometric inputs essential for capturing the complex dynamics of human 

gait. The sensor’s dual functionality enables it to accurately measure both 

angular rate and linear acceleration, offering a detailed profile of body 

movements. 

• High Precision and Sensitivity: The MPU6050 features a 16-bit Analog-to-Digital 

Converter (ADC) for each 6-axis motion tracking channel. This high-resolution 

sensing allows for the detection of minute variations in movement, essential for 

detailed and precise gait analysis [27]. 

• Low Power Consumption: Like the ESP32, the MPU6050 is designed for low 

power consumption, drawing as little as 3.9 mA in standard measurement 

modes. This feature makes it ideal for prolonged monitoring in wearable 

devices, where battery life is a critical factor. 

• Ease of Integration: It communicates over I2C protocol, which simplifies its 

integration with popular microcontrollers, such as the ESP32. This ease of 

connection supports the rapid development and deployment of complex 

systems like those used in gait analysis. The sensor also includes built-in pull-

up resistors on the I2C lines, which are crucial for ensuring reliable data 

transmission by maintaining the integrity of the signal during high or floating 

states. 
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Figure 2. Breakout board with BMU6050 IMU 

 

The combination of ESP32 and MPU6050 provides a powerful, efficient, and cost-

effective solution for gait analysis. The ESP32’s processing power and connectivity 

options allow it to quickly process and transmit the data collected by the MPU6050, 

supporting not only the monitoring and analysis of gait patterns but also enabling the 

detection of gait abnormalities in real-time. 

 

3.2 Software selection 
 

3.2.1 Hardware selection 

The primary options considered were C, C++, Arduino, and Rust. While highly 

efficient, C requires more complex boilerplate code for hardware interaction, which can 

increase development time and complexity, making it less suitable for rapid 

prototyping. Although C++ offers extensive control and efficiency, the complexity of 

setting up and managing C++ environments for microcontroller programming, 

compared to Arduino’s integrated setup, can be cumbersome in projects needing quick 

iterations and hardware integrations. Rust is known for its safety and concurrency 

features, Rust is a compelling choice for high-reliability systems. 
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However, its ecosystem for embedded development is less mature compared to 

Arduino’s, with fewer libraries specifically designed for quick implementation and less 

community support for beginner to intermediate level projects focusing on AIoT. 

Arduino, a platform and an Integrated Development Environment (IDE) that uses a 

simplified version of C++, as selected as the programming environment for its ease of 

use, rapid prototyping capabilities, and extensive library support, making it ideal for 

integrating complex devices like the MPU6050. Its user-friendly Arduino IDE simplifies 

coding and debugging, which is advantageous for projects with tight deadlines. 

Additionally, Arduino's vast global community offers substantial resources and 

support, which are vital for troubleshooting and refining AIoT applications. As an open-

source platform, Arduino provides cost-effectiveness and broad hardware 

compatibility, ensuring minimal integration issues with devices such as the ESP32. 

To save the data in some file formats, Python is selected, I use it to continuously read 

sensor readings from the serial monitor or Bluetooth port, save it in csv file format and 

do needed manipulation on the data. 

 

3.2.2 For Running CNN 

Since we use the TensorFlow library to train the model, Python was selected as the 

programming language because it seamlessly integrates with TensorFlow. To deploy 

and run the 1D CNN model on the ESP32, Arduino was initially selected due to its 

existing use in collecting data from the MPU6050 sensor. However, issues with 

TensorFlow Lite Arduino libraries, discussed in Chapter 4.4, led to exploring other 

deployment methods. 

The official option provided by Espressif is to use ESP-IDF, but an even better solution 

was found in PlatformIO [30]. PlatformIO is an open-source, cross-platform 

development environment designed for embedded systems, offering a comprehensive 

suite of tools for simplifying the development process across various platforms, 

including the ESP32. I chose to use PlatformIO integrated with Visual Studio Code IDE. 
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3.3 Designing ML model for ESP32 
 

3.3.1 Model Architecture and Design 

Deploying a CNN on an ESP32 device presents various challenges, including the 

constraints of computational power and memory. Despite these challenges, I designed 

and implemented models to simulate a practical CNN, starting with simpler models 

and gradually increasing complexity. 

 

Target CNN Model Architecture: 

The real research project utilizes a 1D CNN with two convolutional layers (max 256 

neurons per layer), followed by a max-pooling layer and two dense layers: 

 

• Input: 480 features (256 Hz sampling rate) 

• Layer 1: Conv1D (256 neurons) 

• Max-Pooling Layer 

• Dense Layers: 100 neurons and 2 neurons respectively 

 

Given the challenges highlighted in various literature sources regarding running CNNs 

on the ESP32, I began with basic architectures to understand resource limitations and 

progressively advanced toward the final model. 

 

1. Given First Model: Feedforward Neural Network (Multilayer Perceptron) 

This simple model aimed to provide a baseline: 

• Input Layer: 2 features 

• Hidden Layer: 5 neurons, ReLU activation 

• Output Layer: 1 neuron, Sigmoid activation (binary classification) 

 

2. Second Model: 1D CNN 

This model incorporated convolutional operations for enhanced feature extraction: 

• Input Shape: (2, 1) for two steps with one feature per step 

• Conv1D Layer: 64 filters, kernel size 2, ReLU activation 

• Flatten Layer: Converts 2D output into a single-dimensional vector 

• Dense Layer: 50 neurons, ReLU activation 

• Output Layer: 1 neuron, Sigmoid activation (binary classification) 

 

3. Third Model: Enhanced 1D CNN 

A more complex model with multiple convolutional layers: 

• Input Layer: Shape (20, 1) 

• Conv1D Layer 1: 32 filters, kernel size 5, ReLU activation 
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• Conv1D Layer 2: 32 filters, kernel size 3, ReLU activation 

• MaxPooling Layer: Pool size 2 

• Flatten Layer: Converts multi-dimensional feature maps into a single vector 

• Dense Layer: 50 neurons, ReLU activation 

• Output Layer: 1 neuron, Sigmoid activation (binary classification) 

 

4. Final Model: Simulating Steppage Gait Analysis (1D CNN) 

This model aligns closely with the target application, aiming to classify three types of 

movement: turn, walk, and abnormal. 

• Input Layer: Shape (20, 6) for accelerometer and gyroscope data 

• Conv1D Layer 1: 32 filters, kernel size 5, ReLU activation 

• Conv1D Layer 2: 32 filters, kernel size 3, ReLU activation 

• MaxPooling Layer: Pool size 2 

• Flatten Layer: Converts feature maps into a flat feature vector 

• Dense Layer: 50 neurons, ReLU activation 

• Output Layer: 3 neurons (Softmax activation to classify movement types) 

 

Table 5 provides a quick reference to the architecture, complexity, and use case of 

each model. 
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Table 5. Comparison of Neural Network Models for Gait Analysis on ESP32 

 

Feature First Model 

(Feedforward 

NN)  

Second Model 

(1D CNN)  

Third Model 

(Enhanced 1D 

CNN) 

Fourth Model 

(Steppage Gait 

Analysis - 1D 
CNN) 

Input Shape  (2,) (2, 1)  (20, 1) (20, 6) 

Layers - Input: 2 

features 

- Hidden: 5 
neurons 

- Output: 1 

neuron 

- Conv1D: 64 

filters 

- Flatten 
- Dense: 50 

neurons 

- Output: 1 
neuron 

- Conv1D: 32 

filters 

- Conv1D 1: 32 
filters 

- MaxPooling: 

pool size 2 
- Flatten 

- Dense: 50 
neurons 

- Output: 1 

neuron 

- Conv1D 1: 32 

filters 

- Conv1D 2: 32 
filters 

- MaxPooling: 

pool size 2 
- Flatten 

- Dense: 50 
neurons 

- Output: 3 

neurons 

Activation 

Functions 

ReLU (hidden) 

Sigmoid (output) 

ReLU (Conv1D, 

Dense) 
Sigmoid (output) 

ReLU (Conv1D, 

Dense) 
Sigmoid (output) 

ReLU (Conv1D, 

Dense) 
Softmax 

(output) 

Pooling None None MaxPooling (pool 
size 2)  

MaxPooling (pool 
size 2) 

Target Task Binary 

classification 

Binary 

classification 

Binary 

classification 

Multi-class 

classification 
(turn, walk, 

abnormal)  

Complexity Low Moderate High Very High 

Suitable Use 

Case 

Simple binary 

classification 

Time-series 

classification 

Time-series 

classification 

Multi-feature, 

multi-class gait 
analysis 
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3.3.2 Model training and conversion 

Training Setup: 

• Libraries: TensorFlow and Keras were used for model implementation due to 

their comprehensive neural network layers and model optimization. Tensorflow 

is also used in the PRG424 project. In this project, I have used the latest 

version of Tensorflow as of now is 2.16.1.Runs on different platforms: Linux, 

macOS, Windows 

• Data Generation: For the first three models in Table 3, training scripts utilized 

a custom data generator function to simulate training data dynamically. These 

generators produced sequences of varying lengths and feature sets that were 

fed into the training pipeline via TensorFlow datasets. For the last model, I 

have used the datasets which are collected using the MPU6050 sensor - this is 

discussed in chapter 4.3 in detail. 

Model Training: 

• The models increased in complexity across the scripts, starting with a simple 

binary classifier and advancing to multi-class models with diverse feature sets. 

Each model was trained over 10 epochs with the Adam optimizer and 

appropriate loss functions (BinaryCrossentropy or 

SparseCategoricalCrossentropy) 

Model Conversion to TFLite: 

• When targeting embedded systems like the ESP32, it is important to convert 

Tensorflow models to Tensorflow Lite as it ensures that the model remains 

lightweight, compatible, and efficient while delivering the desired inference 

performance on devices like the ESP32. However, during conversion, some 

operations in the TensorFlow model couldn't be converted to TensorFlow Lite 

equivalents. The presence of unconverted operations in your model affects the 

generated TensorFlow Lite model in the following ways: 

Compatibility Issues: Some parts of the model may not run natively on 

devices, potentially affecting efficiency. 

Fallback to Reference Ops: The non-converted operations might be executed 

using reference implementations, which can be slower or less optimized than 

fully converted operations. 
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Inference Speed and Size: The use of non-optimized operations could slow 

down inference speed and increase the model size, reducing the efficiency 

expected from a TFLite model. 

To fix this issue, I tried to simplify the architecture and verify the Tensorflow 

Lite compatibility, however, some of the operations are still not converted. This 

can be seen in Table 6. 

 

Table 6. Model Characteristics 

Feature First Model 

(Feedforward 

NN)  

Second Model 

(1D CNN)  

Third Model 

(Enhanced 1D 

CNN) 

Fourth Model 

(Steppage Gait 

Analysis - 1D 

CNN) 

Training Time 

(seconds) 

58 76 88 84 

Converted 

Model Size 

(Kilobyte) 

4 8.7 62 65 

Total 

Operations 

14 17 28 28 

Non-Converted 

Operations 

3 4 11 11 

 

 

TFLite Conversion to Data Array: 

• The ESP32 microcontroller lacks a file system, making it challenging to directly 

load TensorFlow Lite models. To embed the model, it is converted to a data 

array using the Linux command-line tool xxd. This tool converts the .tflite 

model file into a C-style array: 

xxd-i model.tflite>modelData.cc 
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The resulting .cc file contains an array of weights and parameters. By including it in 

the project as source code, the model data can be accessed directly, simplifying 

deployment. 
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4. PROJECT IMPLEMENTATION 

 

4.1 Hardware setup 

Connecting an MPU6050 sensor to an ESP32 is fairly straightforward, as the MPU6050 

uses the I2C communication protocol. 

 

Figure 3. Wiring Diagram of main components 

 

 

• SDA (I2C Serial Data Line) - Connected the SDA pin of the MPU6050 to GPIO 19 on 

the ESP32. This pin serves as the data line for I2C communication. 

 

• SCL (I2C Serial Clock Line) - Connected the SCL pin of the MPU6050 to GPIO 22 on 

the ESP32. This pin provides the clock signal for synchronizing I2C communication. 

 

 

 

 

 

 



32  

4.2 Sensor placement 

To record data for steppage gait accurately using the MPU6050 sensor, which captures 

both acceleration and angular velocity, the sensor should be placed where it can best 

measure the leg's kinematics. For steppage gait, which is often characterized by an 

exaggerated lifting of the knee and foot due to muscle weakness or nerve damage, 

key points of interest could be: 

• On the Shin: Placing the sensor on the shin, close to the tibia, can help record 

the forward motion and the elevated lifting of the foot that occurs with each 

step. 

• Top of the Foot: This can give you information about the foot's tilt and lift as 

the person tries to prevent the toe from dragging. 

• Ankle: Since steppage gait involves a higher foot lift, placing the sensor near 

the ankle can help monitor the ankle's angle during the gait cycle. 

The steppage gait is characterized by an exaggerated flexion of the ankle to lift the foot 

higher off the ground, preventing the toes from scraping the floor. Placing the sensor on 

top of the foot directly captures this motion. The top of the foot is a pivotal point in gait 

analysis as it can provide data on both the vertical lift (important in steppage gait) and 

the foot's orientation during stride. Other points, like the shin or thigh, may not offer as 

direct a measure of these specific movements. Therefore, it is decided to place the 

sensor on top of the foot which is shown in Figure 4. 
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Figure 4. Placement of MPU6050 and ESP32 for Steppage Gait Analysis 

 

 

4.3 Data collection 

In order to train ML model for steppage gait, at least two sets of data should be 

collected. For the initial tests, I have created a simple Arduino sketch which is tailored 

to gather motion data from an MPU6050 sensor using an ESP32 microcontroller and 

send this data to the serial port through Bluetooth. The choice to use Bluetooth for data 

transmission was driven by the need for remote, wireless communication in the data 

collection process, essential for gathering extensive datasets across different 

environments without physical tethering. 

 

1. Initial Setup 

• The script initializes I2C communication using specific GPIO pins for the 

MPU6050 sensor. 

• It sets up serial communication at a baud rate of 115200 bps for output and checks 

if the sensor is connected and responsive. 

• The accelerometer and gyroscope measurement ranges, which are respectively ±8g 

and 500 dps, are configured to allow for capturing a wide range of motions. 
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2. Sensor Configuration and Testing 

• The MPU6050 sensor is initialized and its full-scale measurement ranges for 

acceleration and angular velocity are set. 

• The script checks for a successful connection with the sensor and, if failed, it halts 

further execution. 

 

3. Data Collection and Processing 

• In the main loop, motion data including 3-axis acceleration and 3-axis gyroscope 

readings are continuously collected. 

• The raw sensor data is converted into real-world units (meters per second squared 

for acceleration and degrees per second for gyroscopic measurements). 

 

4. Data Output 

• The converted data, along with a timestamp, is formatted into a CSV string and 

sent to the serial port. 

 

5. Efficiency and Stability 

• A short delay of 3 milliseconds is incorporated in the loop to help stabilize the rate 

of data output and sample the data at a rate of 200Hz, equivalent to acquiring data 

every 5 milliseconds. 

While the data is printed continuously on the serial monitor, we need to save the data 

in some file formats, however, Arduino IDE doesn’t provide such an option by default. 

Therefore, I have made a simple python script which establishes a serial connection 

with an ESP32 microcontroller, continuously monitors incoming data, decodes it, and 

systematically logs it to a CSV file for efficient data recording and analysis. The script 

ensures real-time data capture from the MPU6050 sensor, with each received datum 

being decoded and saved to a CSV file on the computer, facilitating further data 

manipulation and study. 

After desired data is collected in a csv file, the next step is to analyze the stability of the 

sampling rate which will indicate how consistent the intervals between samples are. 

However, Bluetooth communication issues such as signal interference and inconsistent 

sampling intervals initially posed significant challenges. 
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Initial Challenges: 

External interference during Bluetooth transmission caused inconsistencies in sampling 

intervals, leading to fluctuating data collection. Transmission delays introduced periodic 

spikes in sampling intervals, making it difficult to achieve a consistent 200 Hz sampling 

rate as it is shown in Figure 5. 

 

 

Figure 5. Consistency of Sampling Intervals at 200Hz Sampling Rate (Wireless Bluetooth 

Communication) 

 

Final Solution: Buffering and Batch Transmission 

To overcome these challenges, a solution was designed to incorporate data buffering 

and batch transmission: 

Data collected by the MPU6050 sensor is temporarily stored in an internal buffer. Once 

the buffer reaches a predefined size, the data is transmitted in a batch over Bluetooth, 

reducing the impact of intermittent interference. Figure 6 visualizes the architectural 

diagram of overall process.  
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Figure 6. MPU6050 Data Acquisition and Bluetooth Transmission Flowchart 

 

By incrementally adjusting the delay added to stabilize data transmission rates, we 

achieved an optimal setting of a 4 ms delay with a batch size of 5. This reduced the 

transmission spikes and achieved a consistent sampling rate of 196 Hz as it is shown in 

Figure 7 and in Figure 8, suitable for walking motion analysis. 
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Figure 7. Consistency of Sampling Intervals at 196Hz Sampling Rate (Wireless Bluetooth 

Communication with Logic of Buffering - batch size = 5, delay = 4, samples = 100) 

 

 

Figure 8. Consistency of Sampling Intervals at 196Hz Sampling Rate (Wireless Bluetooth 

Communication with Logic of Buffering - batch size = 5, delay = 4, samples = 5000) 

 

To sum up, the Bluetooth data acquisition system successfully achieved a sampling rate 

of 196 Hz with a buffering and batch transmission approach. However, this solution is 

not fully reliable for consistent sampling intervals due to inherent limitations. The 
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external interference during Bluetooth transmission causes intermittent delays and 

periodic spikes, resulting in inconsistent data collection. Although the batch 

transmission method helped reduce transmission spikes and maintained a stable 196 Hz 

rate, this approach still struggles with providing stable consistency between samples. 

Furthermore, obtaining higher sampling rates with reliable consistency becomes 

increasingly complex due to signal interference and buffering limitations. 

 

 

4.4 Data labeling 

After we collect the data, the next step is to turn it into an audio file. To do this, we 

used a handy Python script developed by a team member from the PRG424 research 

group. However, in the generated audio file, there was a kind of distortion – like the 

signal was being squeezed too much. This problem, known as signal clamping, was 

because we didn’t set the MPU6050 sensor to catch all the data we were throwing at it; 

it was set to a range of ±2g, which, plainly speaking, wasn’t enough. Realizing this, we 

adjusted the sensor to a wider range of ±4g, thinking it would surely be enough. But, 

when we made the audio file again, the problem was still there – the sound was still 

hitting a limit. Figure 9 shows a part of the generated audio file. Even though the range 

was set to ±4g, we have still experienced signal clamping. 

 

Figure 9.  Generated audio file where sensor range is set to ±4g 
 

Therefore, it was decided to increase the range to ±8g and it avoided signal clamping. 

Figure 10 shows the generated audio file where sensor range was set to ±8g. 

 

Figure 10.  Generated audio file where sensor range is set to ±8g 
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We've compiled four separate recordings, each capturing approximately 35-40 instances 

of movement. These include regular walking steps, right and left turns, and abnormal 

steps designed to mimic the steppage gait pattern. Figure 11 shows labeled audio data 

which is then used to generate a text file that can be used as an input for training ML 

model.  

 

Figure 11.  Labeled audio data 

 

4.4 Deploying and running model on esp32 

Since Arduino Studio was already used to collect data from the MPU6050 sensor, I 

explored deploying machine learning models on the ESP32 through Arduino. However, 

numerous issues arose during the deployment process that took significant time to 

troubleshoot, ultimately yielding unsatisfactory results. There are mostly 2 libraries 

recommended by the Arduino community to run ML models through Arduino Studio. 

 

1. TensorFlowLite_ESP32 Library 

This library, provided by the TensorFlow authors, hadn't been updated for two 

years, limiting its compatibility with newer models such as 2.16.1 which is the 

latest version of TensorFlow. By downgrading the TensorFlow version to 2.5.0, 

some issues were mitigated, allowing the first two models to function correctly. 

Unfortunately, this wasn't a complete solution since it failed to support the last 

two, more complex models [28]. 

 

2. EloquentTinyML Library 

Switching to EloquentTinyML (source: EloquentTinyML) seemed promising, as it 

provided clearer instructions and easy-to-follow examples. All models were 

initially deployed successfully, but the ESP32 would only run for 3 seconds before 
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ceasing output. Additionally, Arduino’s strict compiler settings treated warnings 

as errors, complicating the build process [29]. 

Attempts to modify compiler flags to suppress errors led to further issues, prompting 

the switch from Arduino Studio. 

PlatformIO [30], an open-source cross-platform environment, offered a more flexible 

solution. Integrated with Visual Studio Code, it simplified development and deployment. 

By building the TensorFlow Lite library with CMake [31], a wrapper was created for 

easier integration with the Arduino framework on PlatformIO. Project structure is shown 

in Figure 12. 

 

Figure 12.  PlatformIO project strcuture 

Since we have already built the Tensorflow Lite library (tfmicro), we create the 

NeuralNetwork class around it which loads and manages the pre-trained model 

(model_data.cc), initializes a TensorFlow Lite interpreter, and registers essential neural 

network operations. We then allocate 20KB tensor area to provide workspace for the 

model during inference. The main.cpp file contains the main Arduino sketch that calls 

the neural network class for predictions. To successfully deploy the model on esp32 we 

also need to include “Arduino.h” library which is provided by the PlatformIO.  

The following configuration is used for the ESP32-D0WDQ6 model: 

[env:esp32dev] 

platform = espressif32 

board = esp32dev 

framework = arduino 

monitor_speed = 115200 
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Figure 13 visualizes the high-level architectural diagram of overall process. 

 

Figure 13. Flowchart of Running ML model on ESP32 

 

For the first 3 models, described in Table 4, I have created a simple binary classification 

script - every iteration, two random numbers are generated between 0.0 and 1.0. These 

numbers are set as inputs for the neural network, The network processes these inputs 

to make a prediction. The code then compares the predicted value with expected value 

(whether the generated second number is greater that generated first number).  I was 

able to deploy the first 2 models on esp32. Simple binary classification models worked 
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smoothly. Data was fed at a consistent 200 Hz rate, and the results met expectations. A 

part of output of serial readings provided in Figure 14: 

 

Figure 14.  Output of First 2 models 

 

The Figure 14 displays the Serial Monitor's output. The first column shows the elapsed 

time since the program started, and the second column lists two randomly generated 

numbers as inputs. The third column represents the neural network's prediction, which 

is a floating-point value between 0 and 1 returned by NeuralNetwork->predict(). This 

value indicates the probability that the second number is greater than the first. In the 

code (main.cpp), a threshold of 0.5 is used to convert this probability into a binary 

result: 

• 0: The score is less than 0.5, meaning the second number is predicted to be less 

than or equal to the first. 

• 1: The score is 0.5 or higher, meaning the second number is predicted to be 

greater than the first. 

For instance, if the second number is greater than the first, the neural network will 

likely return a result close to 1, and if not, the result will be close to 0. The last two 

columns compare the actual and predicted results of the two inputs. It is also observed 

that actual response time of trained 1D-CNN model (2nd model in Table 5) is smaller 

than 0.1 ms, however, to get consistency between every prediction, we should have at 

least 5 ms delay in the loop. 
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Although I have successfully deployed first 2 simple models from Table 5 on ESP32, the 

final two models faced deployment challenges, received below errors: 

Unsupported Operation (EXPAND_DIMS), Memory Alignment and Tensor Allocation 

failure, Unhandled Exception (Guru Meditation Error: Core 1 panic'ed (LoadProhibited)). 

Errors related to memory allocation which caused an exception in the ESP32 

microcontroller that it could not handle, causing a system crash and automatic reboot. 

Despite extensive efforts, these issues couldn't be fully resolved. Although the 

"Unsupported Operation" issue was addressed, the exception seemed connected to it, 

as 11 out of 28 operations failed to convert during the TensorFlow-to-TensorFlowLite 

conversion for the last two models. 

By and large, while the deployment of the first two simpler models on the ESP32 

demonstrated effective results, the final two models encountered significant challenges 

during implementation. These challenges highlight the inherent limitations of deploying 

intricate machine learning models on resource-constrained embedded devices. The 

ESP32 is effective for simpler models, but for more demanding tasks, optimizations and 

model adjustments will be essential. 
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5.  CONCLUSION 

This work concentrated on collecting gait data and deploying 1D Convolutional Neural 

Networks (1D CNNs) on low-power devices, specifically the ESP32 microcontroller. The 

combination of the ESP32-D0WDQ6 microcontroller and the MPU6050 sensor provided 

an efficient platform for real-time gait analysis. Despite the computational and 

memory limitations of the microcontroller, 1D CNN models were successfully 

implemented, providing benchmark data on running machine learning models on the 

ESP32. 

By using strategies such as data buffering, batch transmission, and timer interrupts, 

the system achieved consistent data sampling rates and stable data transmission over 

Bluetooth to collect data for off-device model training. Deploying complex machine 

learning models on ESP32 device presented challenges related to memory alignment 

and tensor allocation.  

Nonetheless, the current system showed that even small 1D CNN models can cause 

memory issues if the model architecture is not explicitly designed for low-power 

devices like the ESP32. The 1D CNN model designed by the PRG424 research group, 

which has 480 features, could not be deployed, or run effectively on the ESP32 in its 

current form. Optimizing the architecture and reducing model size will be crucial steps 

for enabling efficient deployment and execution of machine learning models on this 

platform. The work highlights the importance of tailored model design and 

optimization to make practical use of low-power, resource-constrained devices in 

advanced gait analysis. 
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6. FUTURE WORK 

 
There are several improvements that can further advance this research. First, as for 

data collection simple wired communication can be used rather than Bluetooth 

communication system because we concluded that this system is not reliable. 1D CNN 

architectures designed specifically for low-power devices should be optimized. This will 

involve pruning redundant layers, minimizing the number of filters, and using 

quantization techniques to reduce the model's memory footprint and computational 

requirements. 

 

Another important aspect will be exploring more effective methods for converting 

models to TensorFlow Lite (TFLite) for the ESP32. Ensuring that the operations in the 

original models remain compatible with the lightweight TFLite framework can be 

achieved through custom implementations or simplifying the model architecture. 

 

Memory management is also essential, where optimizing memory usage will improve 

data buffering strategies and ensure proper tensor allocation. Allocating enough 

memory space for the tensor arena and managing other onboard processes will help 

prevent system crashes. Supporting parallel processing across the ESP32's dual-core 

architecture will help distribute computational tasks more evenly, thereby reducing 

processing time. 

 

These suggestions will help in addressing challenges while using the full potential of 

1D CNNs on low-power devices for consistent and scalable gait analysis. 
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7. SUMMARY 

 
This thesis delves into the prevalence, characteristics, and implications of gait 

disorders, particularly focusing on their occurrence in older adults and individuals with 

neurological conditions. It emphasizes how gait abnormalities increase the risk of 

dependence, cognitive decline, and mortality. The research identifies various gait 

types and disorders, providing insights into their physiological and neurological 

origins. Steppage gait, a primary focus, is characterized by an exaggerated lifting of 

the knee and hip due to dorsiflexor muscle weakness. 

 

Technological advancements in gait analysis, such as motion capture systems and 

wearable sensors, have improved monitoring and assessment outside of clinical 

settings. However, these systems still face limitations in precision and data volume 

management. 

 

The thesis highlights the potential of machine learning, especially convolutional neural 

networks (CNNs) and their 1D variant (1D CNNs), in gait analysis. These models can 

effectively identify gait patterns, diagnose disorders, and predict potential risks. The 

research projects "PRG424" and “AIoT*5G” showcases the efficacy of CNNs in 

wearable sensor networks for extracting meaningful patterns and providing real-time 

processing and adaptability across varied sensor inputs. 

 

The research methodology involves selecting the right hardware, particularly the 

ESP32 microcontroller and MPU6050 sensor, for efficient gait analysis. The ESP32-

D0WDQ6 is chosen due to its dual-core processor, high performance, and built-in Wi-

Fi and Bluetooth for seamless data transmission. Various neural network models, from 

simpler to medium complexity, are developed to test how they will perform on low-

power devices. 

 

Despite challenges related to memory and computational constraints, the thesis 

demonstrates the feasibility of using 1D CNNs on the ESP32 platform. The findings 

emphasize the importance of model optimization and tailored architecture design to 

maximize the potential of low-power devices in gait analysis. 
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8. KOKKUVÕTE 

 
See lõputöö keskendub kõnnihäirete levimusele, omadustele ja mõjudele, eriti nende 

esinemisele eakatel ja neuroloogiliste seisunditega inimestel. Töö rõhutab, kuidas 

kõnnihäired suurendavad sõltuvuse, kognitiivse languse ja suremuse riski. Uurimus 

tuvastab mitmesugused kõnnitüübid ja -häired, pakkudes teavet nende füsioloogiliste 

ja neuroloogiliste päritolude kohta. Erilist tähelepanu pööratakse stepp-kõnnile, mida 

iseloomustab põlve ja puusa liialdatud tõstmine dorsifleksion lihaste nõrkuse tõttu. 

 

Tehnoloogilised edusammud kõnnianalüüsis, nagu liikumise jäädvustamise süsteemid 

ja kantavad andurid, on parandanud jälgimist ja hindamist kliinilistest seadetest 

väljaspool. Siiski on neil süsteemidel endiselt piirangud täpsuses ja andmemahtude 

haldamises. 

 

Lõputöö toob esile masinõppe, eriti konvolutsioon iliste närvivõrkude (CNN) ja nende 

1D variandi (1D CNN), potentsiaali kõnnianalüüsis. Need mudelid suudavad tõhusalt 

tuvastada kõnnimustreid, diagnoosida häireid ja ennustada potentsiaalseid riske. 

Uurimisprojektid "PRG424" ja "AIoT*5G" demonstreerivad CNNide tõhusust kantavate 

andur võrkudega, võimaldades tähendusrikkaid mustreid välja tuua ning pakkuda 

reaalajas töötlemist ja kohandatavust erinevate andurisignaalidega. 

 

Uurimismetoodika hõlmab sobiva riistvara valimist, eriti ESP32 mikrokontrolleri ja 

MPU6050 anduri, tõhusaks kõnnianalüüsiks. Valitud on ESP32-D0WDQ6, mis on 

valitud oma kahe tuumaga protsessori, kõrge jõudluse ning sisseehitatud Wi-Fi ja 

Bluetoothi tõttu sujuvaks andmeedastuseks. Erinevad närvivõrgu mudelid, 

lihtsamatest keskmise keerukuse, on arendatud, et testida, kuidas need madala 

võimsusega seadmetes toimivad. 

 

Hoolimata mäluga ja arvutuslikest piirangutest, näitab lõputöö 1D CNNide kasutamise 

teostatavust ESP32 platvormil. Leiud rõhutavad mudeli optimeerimise ja kohandatud 

arhitektuuri kujundamise tähtsust, et maksimeerida madala võimsusega seadmete 

potentsiaali kõnnianalüüsis. 
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