

TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical Power Engineering and Mechatronics

LOW COST AIOT SYSTEM FOR HUMAN MOTION

DEVIATION MONITORING

KULUEFEKTIIVNE TEHISINTELLEKTI TOEGA ASJADE

INTERNETI SÜSTEEM LIIKUMISE KÕRVALEKALLETE

JÄLGIMISEKS

MASTER THESIS

Student: Eshgin Guluzade

Student code: 212298MAHM

Supervisor: Alar Kuusik, PhD, Senior research

scientist

Co-supervisor: Muhammad Usman Naseer,
Early-Stage researcher

Tallinn 2024

2

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“13” May 2024

Author: Eshgin Guluzade

Thesis is in accordance with terms and requirements

“13” May 2024

Supervisor: Alar Kuusik

Accepted for defence

“.......”. 20… .

Chairman of theses defence commission: ...

/name /

3

Non-exclusive Licence for Publication and Reproduction of Graduation Thesis¹

I, Eshgin Guluzade

1. grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Low Cost AIoT System For Human Motion Deviation Monitoring”,

supervised by Alar Kuusik and Muhammad Usman Naseer,

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology (TalTech) until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

______________ (date)

¹ The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for

restriction on access to the graduation thesis that has been signed by the school's dean, except in case of the University's

right to reproduce the thesis for preservation purposes only. If a graduation thesis is based on the joint creative activity of

two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-

exclusive licence, the non-exclusive license shall not be valid for the period.

4

Department of Electrical Power Engineering and Mechatronics

THESIS TASK

Student: Eshgin Guluzade, 212298

Study programme: MAHM02/18

Main speciality: Mechatronics

Supervisor(s): Senior research scientist, Alar Kuusik, 620 2166;

Early-Stage researcher, Muhammad Usman Naseer

Thesis topic:

(in English) Low Cost AIoT System for Human Motion Deviation Monitoring

(in Estonian) Kuluefektiivne tehisintellekti toega asjade interneti süsteem liikumise

kõrvalekallete jälgimiseks

Thesis main objectives:

1. Collecting IMU data for steppage gait analysis

2. Training of 1D CNN model

3. Implementing 1D CNN model on low-cost, low-power devices, specifically

ESP32

Thesis tasks and time schedule:

No Task description Deadline

1. Literature Review 15.02.2024

2. Adaptation of Existing Algorithm for Real-Time Processing 05.03.2024

3. Integration the software with ESP32, 30% of thesis textual content

prepared

20.03.2024

4. Training and Optimization of Adapted Algorithm developed 05.04.2024

5. Real-World Testing completed, 70% of text prepared 20.04.2024

6. Final Thesis Submission 13.05.2024

Language: English Deadline for submission of thesis: “13” May 2024

Student: Eshgin Guluzade……........ “.......”............................. 20….a

/signature/

Supervisor: Alar Kuusik …………………….. “.......”......................20….a

/signature/

Consultant: Muhammad Usman Naseer “.......”......................20….a

5

/signature/

Head of study programme: Anton Rassõlkin …............ “.......”......................20….a

/signature/

6

TABLE OF CONTENTS

PREFACE ... 7

LIST OF ABBREVIATIONS AND SYMBOLS .. 8

1. INTRODUCTION ... 9

2. LITERATURE REVIEW .. 11

2.1 Gait disorders and patterns ... 11

2.2 Gait and motion monitoring technologies .. 13

2.3 Machine Learning in gait analysis ... 14

2.4 Convolutional Neural Networks (CNNs) and 1D CNNS .. 15

3. RESEARCH METHODOLOGY .. 19

3.1 Hardware selection ... 19

3.2 Software selection ... 23

3.2.1 Hardware selection ... 23

3.2.2 For Running CNN ... 24

3.3 Designing ML model for ESP32 .. 25

3.3.1 Model Architecture and Design ... 25

3.3.2 Model training and conversion.. 28

4. PROJECT IMPLEMENTATION ... 31

4.1 Hardware setup .. 31

4.2 Sensor placement ... 32

4.3 Data collection ... 33

4.4 Data labeling ... 38

5. CONCLUSION .. 44

6. FUTURE WORK... 45

7. SUMMARY ... 46

8. KOKKUVÕTE .. 47

9. LIST OF REFERENCES ... 48

7

PREFACE

This master thesis has been supported by the project „Increasing the knowledge

intensity of Ida-Viru entrepreneurship“ („AIoT*5G - Artificial intelligence, edge

computing and IoT solutions in distributed systems“) co-funded by the European

Union.

The thesis examines the use of 1D Convolutional Neural Networks (1D CNNs) on the

ESP32 microcontroller—a low-power, cost-effective device—for analyzing gait

disorders prevalent in older adults and individuals with neurological conditions. By

integrating the ESP32-D0WDQ6 with the MPU6050 sensor modules, the study

demonstrates the platform's capability for real-time gait analysis, specifically in

identifying and classifying abnormalities like steppage gait.

Despite the limitations posed by resource-constrained hardware, this study shows that

even small, efficiently designed 1D CNNs can offer valuable insights into gait

disorders. However, the research also identifies the importance of tailoring model

architectures specifically for low-power devices. Future work should focus on

optimizing the architecture through techniques such as pruning and quantization,

improving memory management, and supporting parallel processing across the

ESP32's dual-core architecture.

This work establishes a benchmark for deploying machine learning models on the

ESP32 platform, demonstrating that with proper model design, low-power devices can

be leveraged effectively for advanced gait analysis for clinical, wellness and

occupational use.

I would like to express my gratitude to Alar Kuusik and Muhammad Usman Naseer for

their unwavering, constant support and guidance throughout my thesis work. Special

thanks to Jakob Rostovski, a PhD student at Tallinn University of Technology, for his

willingness to share his own research insights and constructive feedback during the

project.

8

LIST OF ABBREVIATIONS AND SYMBOLS

AI – Artificial Intelligence

ADC - Analog-to-Digital Converter

BHI - Biomedical and Health Informatics

BLE - Bluetooth Low Energy

CNN - Convolutional Neural Network

CSV - Comma-Separated Values

CSV - Comma-Separated Values

ECG – Electrocardiogram

EEG – Electroencephalogram

ESP-IDF - Espressif IoT Development Framework

FES - Functional Electrical Stimulation

GPIO - General Purpose Input/Output

IDE - Integrated Development Environment

I2C - Inter-Integrated Circuit

MAC - Medium Access Control

ML - Machine Learning

NN - Neural Network

PSRAM - Pseudo-Static Random-Access Memory

ReLU - Rectified Linear Unit

RNN - Recurrent Neural Network

SPI - Serial Peripheral Interface

SRAM - Static Random-Access Memory

SVM - Support Vector Machine

TFLite - TensorFlow Lite

USB - Universal Serial Bus

WBAN - Wireless Body Area Network

9

1. INTRODUCTION

Gait disorders, characterized by abnormal patterns in walking, are common in the

aging population and in individuals with specific neurological disorders. Gait disorders

and deviations are also risk factors for occupational safety. These disorders pose

significant risks for dependence, cognitive decline, falls, and even mortality. Studies

indicate that after the age of 70, approximately 35% of people exhibit some form of

gait abnormality, a figure that rises substantially in those over 85 [1]. The

manifestation of these disorders, such as reduced speed and stride length, often

suggests underlying pathologies, both in the nervous and non-nervous systems.

A typical gait cycle, initiating with the contact of one foot and ending with the contact

of the other, consists of stance and swing phases [2]. Aging affects various elements

of the gait cycle: after 70 years, walking speed declines by about 15% per decade,

and faster walking sees an even sharper decline [3]. Slow walking speed is a strong

predictor of mortality, exceeding even the impact of chronic conditions and

hospitalizations in older adults. The muscle weakness, particularly in the calves,

contributes significantly to this decline. However, older adults often compensate for

this weakness through the use of hip flexors and extensor muscles [4].

The double stance time, a phase where both feet are in contact with the ground,

increases with age, accounting for up to 26% of the gait cycle in older individuals [5].

This increase affects stride length and may be more pronounced on uneven surfaces or

in fall-prone situations. Changes in walking posture are also notable; older individuals

tend to walk with greater anterior pelvic rotation and without forward lean.

Contributing factors include increased abdominal fat, weakened abdominal muscles,

and rigidity in hip flexors. The expected result of the research is to develop a

automatic personalized multi- sensor device which can predict falls with more than

90% accuracy in different environmental conditions and contexts for user mobile

applications.

Gait disorders are particularly prevalent in patients with neurological problems,

significantly increasing their risk of falls [6]. Understanding and addressing these

disorders is essential for fall prevention and enhancing overall mobility in the aging

population. Technological advancements like accelerometers for step counting and

wearable sensors have greatly improved the assessment and analysis of gait outside

traditional laboratory settings, allowing for more accurate and natural observation of

gait in everyday environments [7].

In conclusion, gait disorders in older adults and those with neurological conditions are

a critical public health concern. Continuous efforts in research, technological

10

innovation, and community design are vital to mitigate their impacts and improve

quality of life. In this work, we address these gaps by investigating the feasibility of

deploying low-cost and energy efficient AIoT solutions for human motion deviation

monitoring. Through extensive testing, we highlight key challenges encountered

during the deployment of 1D-CNN models. These contributions will pave the way for

more advanced AIoT systems, demonstrating that low-power devices can be leveraged

for running ML models when model architectures are appropriately tailored. The

proposed approach serves as a benchmark for deploying machine learning on low-

power devices.

11

2. LITERATURE REVIEW

2.1 Gait disorders and patterns

Gait analysis, a critical process in assessing and understanding human locomotion,

plays a vital role in healthcare for diagnosing and monitoring gait disorders. Its

importance is particularly pronounced in identifying early signs of health issues in the

aging population and individuals with neurological conditions [8]. Gait patterns vary

significantly, each characterized by unique features that can indicate specific health

conditions or functional impairments. Understanding these various gait types is

essential in clinical diagnostics and research [9].

Table 1 shows a phenomenological classification of common gait disorders [10].

Table 1. Phenomenological classification of gait disorders (modified from [11])

Type of Gait Abnormality Descriptive Characteristics

Hemispastic gait One-sided body extension movements

Paraspastic gait Bilateral stiffness with outward leg movement

Ataxic gait Wide stance, disordered coordination

Sensory ataxic gait Worsens without visual cues, cautious

Freezing gait Sudden halting, especially during turns

Astasia gait Disturbance in balance while standing

Cautious gait Broad based, cautious, slow, anxious

Propulsive gait Forward center of gravity with rapid, short steps

Steppage gait Elevated thigh lift due to foot muscle weakness

Antalgic gait Reduced weight-bearing phase due to pain

Choreatic gait Dance-like movements, lack of stability

Dystonic gait Foot or leg adopts unusual posture

Waddling gait Duck-like walking, lateral movement

Vertiginous gait Unsteady, tilting to one side

Psychogenic gait Bizarre, atypical gait with infrequent falls

12

Each gait type offers insights into underlying physiological or neurological issues,

making their identification and analysis crucial in healthcare settings. Particularly, the

analysis of abnormal gaits like steppage gait can reveal significant information about

neuromuscular health and guide treatment decisions.

Steppage gait is a distinctive walking pattern that arises primarily from weakness or

paralysis of the dorsiflexor muscles of the foot, which include the tibialis anterior,

extensor hallucis longus, and extensor digitorum longus. Individuals with steppage

gait exhibit an exaggerated lifting of the knee and hip during walking, as if stepping

over an obstacle on the ground. This compensatory action is necessary to prevent the

toes from dragging along the ground, which occurs due to the inability to properly flex

the ankle and lift the foot (foot drop).

The most common underlying causes of steppage gait include peripheral neuropathies,

such as those associated with diabetes mellitus or trauma to the peroneal nerve.

Additionally, steppage gait can be seen in neurodegenerative conditions such as

Charcot-Marie-Tooth disease, where progressive loss of muscle tissue and touch

sensation occurs in the feet and legs [2].

Clinically, steppage gait can be identified by observing the patient walk. The hallmarks

include a foot that hangs with the toes pointing down, causing the toes to scrape the

ground when walking, and a gait that involves lifting the leg higher than normal at the

hip. The sound of foot scuffing or seeing wear on the tip of the shoe may be a first

clue. To confirm the diagnosis and assess the severity, gait analysis technologies,

including pressure mats, motion capture systems, or electromyography, are utilized to

measure and record the walking patterns, muscular activity, and compensatory

mechanisms used by the patient.

In the treatment and management of steppage gait, rehabilitation exercises, physical

therapy, and sometimes surgical interventions are employed. A key component of

therapy is strengthening the muscles responsible for dorsiflexion of the foot and

employing orthotic devices to support the foot and improve walking [8]. Recent

advancements in functional electrical stimulation (FES) have shown promise in

providing temporary improvement in dorsiflexor strength during walking, thus

improving the gait pattern in real-time.

13

2.2 Gait and motion monitoring technologies

The domain of gait and motion monitoring has evolved dramatically with

advancements in technology, offering profound benefits for diagnosing and managing

gait disorders such as steppage gait. Traditional gait analysis relied on visual

observation, often with video support, to assess the biomechanics of gait. While

effective for basic assessments, these methods were confined to laboratory settings

and lacked the ability to capture the dynamism of everyday movements [8].

Advancements brought about sophisticated motion capture systems that use markers

to track the three-dimensional movement of the body. These systems provide detailed

analyses of gait kinematics and kinetics but require controlled environments and

specialized equipment [9]. The proliferation of wearable sensor technology has

democratized gait analysis. Devices like accelerometers and gyroscopes allow for the

real-time, naturalistic observation of gait, enabling long-term monitoring outside

clinical settings [12]. Smartphones and wearable devices have integrated gait analysis

capabilities, featuring built-in sensors and applications that process and interpret

motion data. This has facilitated remote monitoring and tele-rehabilitation, expanding

the reach of gait analysis to everyday settings [13]. In clinical practice, gait analysis

technologies have become essential tools for customizing treatment and monitoring

rehabilitation. For patients with disorders like steppage gait, these technologies help in

creating more effective, patient-specific therapeutic interventions [9]. The following

table 2 summarizes the various gait and motion monitoring technologies.

14

 Table 2. Summary of Gait and Motion Monitoring Technologies

Technology

Category

Description Benefits Limitations Applications

Early

Systems

Visual

observation and
video recording;

use of force

platforms for
kinetic analysis.

Provides

foundational
gait data; good

for initial

assessments.

Limited to

labs; static
data

collection.

Baseline

measurements;
biomechanical

studies.

Motion
Capture

Marker-based
systems tracking

3D body

movements;
detailed

kinematic and

kinetic analysis.

High detail and
precision.

Requires
controlled

environment;

costly setup.

Advanced gait
research;

detailed clinical

diagnostics.

Wearable

Sensors

Portable devices

measuring
movement;

includes

accelerometers,
gyroscopes,

magnetometers

Real-time

data;
naturalistic

settings;

continuous
monitoring.

Potentially

less precise;
data volume

management.

Daily

monitoring;
personalized

rehab

programs.

Clinical

Practice

Application of

gait analysis for

therapeutic
evaluation and

management.

Tailors

treatments;

objective
progress

measurement.

Requires

interpretation

expertise.

Treatment

customization;

rehabilitation
tracking.

By leveraging these diverse technologies, clinicians and researchers can gather

extensive data on gait patterns, offering critical insights into disorders like steppage

gait and informing more effective treatment protocols.

2.3 Machine Learning in gait analysis

Machine learning (ML) has emerged as a transformative force in gait analysis, offering

powerful tools to interpret complex data and extract meaningful patterns. Machine

learning, a subset of artificial intelligence (AI), involves the use of statistical

techniques to enable computers to 'learn' from and make predictions or decisions

based on data. In gait analysis, ML algorithms process large datasets collected from

sensors to identify and classify gait patterns, detect abnormalities, and predict

outcomes [14].

15

ML algorithms are particularly beneficial in diagnosing gait disorders, assessing the

risk of falls, and monitoring rehabilitation progress. By learning from data gathered by

gait analysis tools, these algorithms can differentiate between various gait types and

pinpoint deviations from normal patterns that may indicate a disorder or risk of injury

[15]. Convolutional Neural Networks, a class of deep neural networks, are particularly

adept at processing data with a grid-like topology, such as time-series data from

sensors. CNNs have shown promise in identifying subtle patterns in gait that may not

be discernible through traditional analysis methods. For example, a CNN can learn to

recognize the characteristic footfall patterns of individuals with steppage gait, aiding in

early detection and intervention [16].

The efficacy of ML models in gait analysis is quantified using metrics such as accuracy,

precision, sensitivity (recall), specificity, and the F1 score. In [17] research showcased

the ability of Support Vector Machines (SVM) to classify gait data with high precision

and recall, underlining the potential of ML in identifying gait abnormalities. Recurrent

Neural Networks (RNNs), and in particular, Long Short-Term Memory (LSTM)

networks, excel at analyzing time-series data and have been shown to be effective in

capturing the temporal dependencies of gait cycles, leading to high classification [18].

Challenges in applying ML to gait analysis include managing the variability in data due

to differences in sensor placement, individual biomechanics, and environmental

factors. As ML algorithms require large volumes of high-quality training data to learn

effectively, the collection and annotation of such datasets are non-trivial tasks [19].

2.4 Convolutional Neural Networks (CNNs)

and 1D CNNS

Convolutional Neural Networks (CNNs) are a specialized type of deep neural networks

renowned for their ability to process and analyze data with grid-like structures, such

as images and time-series sequences. These networks employ layers of convolutional

filters to extract high-level features from raw data automatically, which is crucial for

tasks requiring pattern recognition, such as image classification, voice recognition, and

complex signal analysis. The strength of CNNs lies in their architecture, which

effectively captures spatial and temporal dependencies in data through a hierarchical

learning process [20].

1D Convolutional Neural Networks are tailored to process one-dimensional data. They

are ideally suited for analyzing sequential data, such as audio waves, sensor-

generated time-series, and physiological signals like ECG and EEG. Unlike traditional

16

deep neural networks that fully connect all inputs and outputs, 1D CNNs utilize

convolutional operations across time, allowing them to capture dynamic changes and

patterns over intervals. This attribute makes them highly efficient for real-time signal

processing and anomaly detection in continuous data streams [21]. The primary

advantage of 1D CNNs in applications such as gait analysis lies in their ability to

efficiently process temporal data and detect patterns across time. Each layer in a 1D

CNN applies a series of convolutional filters to the input data, which are trained to

recognize specific temporal features at various scales. These features are then pooled

and normalized through subsequent layers to enhance the network’s ability to

generalize from training data to unseen scenarios. In practice, this means 1D CNNs

can identify subtle abnormalities in gait cycles from accelerometer and gyroscope data

integrated into wearable devices, providing valuable insights for diagnostic and

therapeutic purposes in real-time [16].

The fundamental difference between 1D and 2D CNNs revolves around their respective

domains of application. While 2D CNNs are primarily designed for image data,

involving convolutions over two-dimensional spatial data, 1D CNNs focus on one-

dimensional data streams. This difference affects their internal structure and the

nature of the filters used. In 1D CNNs, filters slide across a single dimension, focusing

on detecting patterns over time, which is less computationally intensive and more

targeted for sequential data analysis, such as in wearable sensor outputs or financial

time series [22].

The table 3 outlines the differences between 1D and 2D CNNs across various aspects

such as input data type, primary use, convolution operations, complexity, data

representation, and typical examples.

17

 Table 3. Comparison of 1D vs. 2D Convolutional Neural Networks

Feature 1D CNN 2D CNN

Input Data

Type

One-dimensional data such as time-

series signals

Two-dimensional data such as

images or matrices

Primary Use Audio processing, ECG/EEG signal

analysis, motion analysis in time-

series data

Image processing, video

analysis, spatial pattern

recognition

Convolution Convolution operations are

performed across time, focusing on

temporal features

Convolution operations are

performed over both spatial

dimensions, extracting features

from a 2D space

Complexity Typically less computationally

intensive due to fewer dimensions

More computationally

demanding due to the

complexity of spatial data

Data

Representation

Often deals with data where time or

sequence is a critical axis, e.g.,

stock prices, physiological signals

Deals with data where spatial

relationships are crucial, e.g.,

recognizing objects in photos

Examples Monitoring heart rhythms,

analyzing speech patterns,

detecting anomalies in sensor

streams

Facial recognition, autonomous

vehicle navigation, medical

image diagnosis

The PRG424 research project which is proposed by the Tallinn University of

Technology is a significant endeavor in wearable sensor networks, utilizing advanced

machine learning techniques to elevate data analysis capabilities. Among the various

models evaluated, Convolutional Neural Networks (CNNs), particularly 1D CNNs,

showcased superior performance in tasks that involve complex sensor data analysis.

CNNs were exemplary in their ability to interpret complex data from body-area

networks within the PRG424 project. Their capability to extract meaningful patterns

from noise-embedded sensor data set them apart from other evaluated models. This

proficiency was crucial for developing systems aimed at reliable and efficient health

monitoring.

18

Technical Achievements Highlighted in PRG424:

• Robust Feature Extraction and Noise Reduction:

CNNs effectively isolated key features from noisy data streams, a critical function for

accurate health diagnostics and monitoring [23].

• Optimized Real-Time Data Processing:

The models demonstrated real-time processing capabilities, essential for applications that

require immediate data analysis to inform health interventions [24].

• Adaptability Across Varied Sensor Inputs:

The adaptability of CNNs was further validated by their performance across multiple

sensor types and configurations, enhancing the system's reliability and applicability [25].

• Performance Metrics in Gait Analysis:

The "1D-CNN-AD" algorithm, highlighted in the work by Kumar et al. (2024), showcases

high F1 scores for detecting Hyperkinetic and Slap gait patterns, achieving 98.1% and

90.8% respectively. This highlights that 1D CNNs can reliably classify specific gait

abnormalities. However, the study also points out performance variability in recognizing

gait patterns like Ataxic and Hemiplegic due to individual differences. [33].

The outstanding performance of CNNs in the PRG424 project underscores their potential

in handling complex, real-world data effectively. This success motivates additional

research into CNN-based models, particularly 1D CNNs, for further applications in

wearable technology and health monitoring systems. The findings from PRG424 serve

as a benchmark, demonstrating that CNNs not only meet but often exceed the

performance of traditional machine learning techniques in challenging scenarios.

Methods developed in PRG424 project will be further developed in ongoing project

“AIoT*5G - Artificial intelligence, edge computing and IoT solutions in distributed

systems” including activities of improving occupational health and safety via smart IoT

devices.

19

3. RESEARCH METHODOLOGY

3.1 Hardware selection

In the development of wearable technology for gait analysis, selecting the right

components is crucial for effective monitoring and data collection. The ESP32

microcontroller, which is designed for energy efficiency and MPU6050 sensor have

been chosen due to their optimal computational power and functionality for the given

task, and cost-effectiveness, making them particularly suitable for this application.

The ESP32-D0WDQ6 is a microcontroller known for its ability to handle lightweight

machine learning tasks directly on the device, making it suitable for applications that

require quick data processing and immediate decision-making. Its dual-core Tensilica

Xtensa LX6 processor, operating at up to 240 MHz, provides enough computational

power for analyzing gait patterns in real time [26]. Below are specific reasons why the

ESP32-D0WDQ6 is preferred:

• Efficient Processing: The dual-core processor and 520 KB of SRAM allow it to

manage basic machine learning algorithms for real-time gait pattern

recognition.

• Wireless Connectivity: Built-in Wi-Fi and Bluetooth enable it to communicate

wirelessly with other devices, making it possible to transmit data for remote

monitoring and analysis.

• Input/Output Flexibility: The ESP32-D0WDQ6 provides various interfaces like

SPI, I2C, UART, and ADC inputs, allowing easy integration with different

sensors and devices.

20

Figure 1. ESP32-D0WDQ6

To visually summarize the differences among the ESP32 variants, the following table

compares the key features of the ESP32-D0WDQ6 with other models like the ESP32-

S0WD, ESP32-D2WD, ESP32-WROOM, ESP32-WROVER, and ESP32-C3:

21

Table 4. Comparison of ESP32 Variants

Feature ESP32-

D0WDQ6

ESP32-

S0WD

ESP32-

D2WD

ESP32-

WROOM

ESP32-

WROVER

ESP32-C3

Core

Type

Dual-core LX6 Single-core

LX6

Dual-core

LX6

Single-core

LX6

Dual-core

LX6 with

PSRAM

Single-core

RISC-V

Max

Clock

Speed

Up to 240

MHz

Up to 160

MHz

Up to 240

MHz

Up to 160

MHz

Up to 240

MHz

Up to 160

MHz

Wi-Fi Dual-mode Single-

mode

Dual-mode Single-

mode

Dual-mode Single-

mode

Bluetooth BT 4.2, BLE BT 4.2,

BLE

BT 4.2,

BLE

BT 4.2,

BLE

BT 4.2,

BLE

BLE only

RAM 520 KB

SRAM

520 KB

SRAM

520 KB

SRAM

520 KB

SRAM

520 KB

SRAM plus

PSRAM

400 KB

SRAM

Security

Features

Basic Basic Basic Basic Enhanced Enhanced

with RISC-

V

TrustZone

Cost Medium Low Medium Low Medium Low

Use Case

Suitability

Best for high-

performance

applications

needing dual-

core efficiency

Suitable for

less

complex

applications

Similar

performance

but less

popular,

fewer

community

resources

Suitable for

less

complex

applications

Best for

applications

needing

additional

memory

Best for

cost-

sensitive,

security-

enhanced

applications

22

In addition to its dual-core processor, high clock speed, enhanced connectivity, and

sufficient RAM and expandability, the ESP32-D0WDQ6 is notably favored for its robust

adoption within the developer community. This widespread usage guarantees access

to extensive support and a rich library of resources, which are crucial for effective

troubleshooting and the enhancement of AIoT applications.

Moreover, the ESP32-D0WDQ6 offers an excellent balance of performance and cost (5-

6 Euro). While it is not the least expensive model in the market—such as the ESP32-

S0WD or ESP32-C3—its moderate price is well justified by superior processing power

and connectivity options. These features make the ESP32-D0WDQ6 an ideal choice for

applications requiring advanced capabilities without compromising on budget.

The MPU6050 is a micromechanical inertial motion sensor that integrates a 3-axis

gyroscope and a 3-axis accelerometer on a single chip. This sensor is widely used in

applications requiring accurate and efficient motion tracking, such as gait analysis. The

following points detail the MPU6050's specifications and justify its selection for gait

analysis [27].

• Comprehensive Motion Tracking: The MPU6050 provides critical gyroscopic and

accelerometric inputs essential for capturing the complex dynamics of human

gait. The sensor’s dual functionality enables it to accurately measure both

angular rate and linear acceleration, offering a detailed profile of body

movements.

• High Precision and Sensitivity: The MPU6050 features a 16-bit Analog-to-Digital

Converter (ADC) for each 6-axis motion tracking channel. This high-resolution

sensing allows for the detection of minute variations in movement, essential for

detailed and precise gait analysis [27].

• Low Power Consumption: Like the ESP32, the MPU6050 is designed for low

power consumption, drawing as little as 3.9 mA in standard measurement

modes. This feature makes it ideal for prolonged monitoring in wearable

devices, where battery life is a critical factor.

• Ease of Integration: It communicates over I2C protocol, which simplifies its

integration with popular microcontrollers, such as the ESP32. This ease of

connection supports the rapid development and deployment of complex

systems like those used in gait analysis. The sensor also includes built-in pull-

up resistors on the I2C lines, which are crucial for ensuring reliable data

transmission by maintaining the integrity of the signal during high or floating

states.

23

Figure 2. Breakout board with BMU6050 IMU

The combination of ESP32 and MPU6050 provides a powerful, efficient, and cost-

effective solution for gait analysis. The ESP32’s processing power and connectivity

options allow it to quickly process and transmit the data collected by the MPU6050,

supporting not only the monitoring and analysis of gait patterns but also enabling the

detection of gait abnormalities in real-time.

3.2 Software selection

3.2.1 Hardware selection

The primary options considered were C, C++, Arduino, and Rust. While highly

efficient, C requires more complex boilerplate code for hardware interaction, which can

increase development time and complexity, making it less suitable for rapid

prototyping. Although C++ offers extensive control and efficiency, the complexity of

setting up and managing C++ environments for microcontroller programming,

compared to Arduino’s integrated setup, can be cumbersome in projects needing quick

iterations and hardware integrations. Rust is known for its safety and concurrency

features, Rust is a compelling choice for high-reliability systems.

24

However, its ecosystem for embedded development is less mature compared to

Arduino’s, with fewer libraries specifically designed for quick implementation and less

community support for beginner to intermediate level projects focusing on AIoT.

Arduino, a platform and an Integrated Development Environment (IDE) that uses a

simplified version of C++, as selected as the programming environment for its ease of

use, rapid prototyping capabilities, and extensive library support, making it ideal for

integrating complex devices like the MPU6050. Its user-friendly Arduino IDE simplifies

coding and debugging, which is advantageous for projects with tight deadlines.

Additionally, Arduino's vast global community offers substantial resources and

support, which are vital for troubleshooting and refining AIoT applications. As an open-

source platform, Arduino provides cost-effectiveness and broad hardware

compatibility, ensuring minimal integration issues with devices such as the ESP32.

To save the data in some file formats, Python is selected, I use it to continuously read

sensor readings from the serial monitor or Bluetooth port, save it in csv file format and

do needed manipulation on the data.

3.2.2 For Running CNN

Since we use the TensorFlow library to train the model, Python was selected as the

programming language because it seamlessly integrates with TensorFlow. To deploy

and run the 1D CNN model on the ESP32, Arduino was initially selected due to its

existing use in collecting data from the MPU6050 sensor. However, issues with

TensorFlow Lite Arduino libraries, discussed in Chapter 4.4, led to exploring other

deployment methods.

The official option provided by Espressif is to use ESP-IDF, but an even better solution

was found in PlatformIO [30]. PlatformIO is an open-source, cross-platform

development environment designed for embedded systems, offering a comprehensive

suite of tools for simplifying the development process across various platforms,

including the ESP32. I chose to use PlatformIO integrated with Visual Studio Code IDE.

25

3.3 Designing ML model for ESP32

3.3.1 Model Architecture and Design

Deploying a CNN on an ESP32 device presents various challenges, including the

constraints of computational power and memory. Despite these challenges, I designed

and implemented models to simulate a practical CNN, starting with simpler models

and gradually increasing complexity.

Target CNN Model Architecture:

The real research project utilizes a 1D CNN with two convolutional layers (max 256

neurons per layer), followed by a max-pooling layer and two dense layers:

• Input: 480 features (256 Hz sampling rate)

• Layer 1: Conv1D (256 neurons)

• Max-Pooling Layer

• Dense Layers: 100 neurons and 2 neurons respectively

Given the challenges highlighted in various literature sources regarding running CNNs

on the ESP32, I began with basic architectures to understand resource limitations and

progressively advanced toward the final model.

1. Given First Model: Feedforward Neural Network (Multilayer Perceptron)

This simple model aimed to provide a baseline:

• Input Layer: 2 features

• Hidden Layer: 5 neurons, ReLU activation

• Output Layer: 1 neuron, Sigmoid activation (binary classification)

2. Second Model: 1D CNN

This model incorporated convolutional operations for enhanced feature extraction:

• Input Shape: (2, 1) for two steps with one feature per step

• Conv1D Layer: 64 filters, kernel size 2, ReLU activation

• Flatten Layer: Converts 2D output into a single-dimensional vector

• Dense Layer: 50 neurons, ReLU activation

• Output Layer: 1 neuron, Sigmoid activation (binary classification)

3. Third Model: Enhanced 1D CNN

A more complex model with multiple convolutional layers:

• Input Layer: Shape (20, 1)

• Conv1D Layer 1: 32 filters, kernel size 5, ReLU activation

26

• Conv1D Layer 2: 32 filters, kernel size 3, ReLU activation

• MaxPooling Layer: Pool size 2

• Flatten Layer: Converts multi-dimensional feature maps into a single vector

• Dense Layer: 50 neurons, ReLU activation

• Output Layer: 1 neuron, Sigmoid activation (binary classification)

4. Final Model: Simulating Steppage Gait Analysis (1D CNN)

This model aligns closely with the target application, aiming to classify three types of

movement: turn, walk, and abnormal.

• Input Layer: Shape (20, 6) for accelerometer and gyroscope data

• Conv1D Layer 1: 32 filters, kernel size 5, ReLU activation

• Conv1D Layer 2: 32 filters, kernel size 3, ReLU activation

• MaxPooling Layer: Pool size 2

• Flatten Layer: Converts feature maps into a flat feature vector

• Dense Layer: 50 neurons, ReLU activation

• Output Layer: 3 neurons (Softmax activation to classify movement types)

Table 5 provides a quick reference to the architecture, complexity, and use case of

each model.

27

Table 5. Comparison of Neural Network Models for Gait Analysis on ESP32

Feature First Model

(Feedforward

NN)

Second Model

(1D CNN)

Third Model

(Enhanced 1D

CNN)

Fourth Model

(Steppage Gait

Analysis - 1D
CNN)

Input Shape (2,) (2, 1) (20, 1) (20, 6)

Layers - Input: 2

features

- Hidden: 5
neurons

- Output: 1

neuron

- Conv1D: 64

filters

- Flatten
- Dense: 50

neurons

- Output: 1
neuron

- Conv1D: 32

filters

- Conv1D 1: 32
filters

- MaxPooling:

pool size 2
- Flatten

- Dense: 50
neurons

- Output: 1

neuron

- Conv1D 1: 32

filters

- Conv1D 2: 32
filters

- MaxPooling:

pool size 2
- Flatten

- Dense: 50
neurons

- Output: 3

neurons

Activation

Functions

ReLU (hidden)

Sigmoid (output)

ReLU (Conv1D,

Dense)
Sigmoid (output)

ReLU (Conv1D,

Dense)
Sigmoid (output)

ReLU (Conv1D,

Dense)
Softmax

(output)

Pooling None None MaxPooling (pool
size 2)

MaxPooling (pool
size 2)

Target Task Binary

classification

Binary

classification

Binary

classification

Multi-class

classification
(turn, walk,

abnormal)

Complexity Low Moderate High Very High

Suitable Use

Case

Simple binary

classification

Time-series

classification

Time-series

classification

Multi-feature,

multi-class gait
analysis

28

3.3.2 Model training and conversion

Training Setup:

• Libraries: TensorFlow and Keras were used for model implementation due to

their comprehensive neural network layers and model optimization. Tensorflow

is also used in the PRG424 project. In this project, I have used the latest

version of Tensorflow as of now is 2.16.1.Runs on different platforms: Linux,

macOS, Windows

• Data Generation: For the first three models in Table 3, training scripts utilized

a custom data generator function to simulate training data dynamically. These

generators produced sequences of varying lengths and feature sets that were

fed into the training pipeline via TensorFlow datasets. For the last model, I

have used the datasets which are collected using the MPU6050 sensor - this is

discussed in chapter 4.3 in detail.

Model Training:

• The models increased in complexity across the scripts, starting with a simple

binary classifier and advancing to multi-class models with diverse feature sets.

Each model was trained over 10 epochs with the Adam optimizer and

appropriate loss functions (BinaryCrossentropy or

SparseCategoricalCrossentropy)

Model Conversion to TFLite:

• When targeting embedded systems like the ESP32, it is important to convert

Tensorflow models to Tensorflow Lite as it ensures that the model remains

lightweight, compatible, and efficient while delivering the desired inference

performance on devices like the ESP32. However, during conversion, some

operations in the TensorFlow model couldn't be converted to TensorFlow Lite

equivalents. The presence of unconverted operations in your model affects the

generated TensorFlow Lite model in the following ways:

Compatibility Issues: Some parts of the model may not run natively on

devices, potentially affecting efficiency.

Fallback to Reference Ops: The non-converted operations might be executed

using reference implementations, which can be slower or less optimized than

fully converted operations.

29

Inference Speed and Size: The use of non-optimized operations could slow

down inference speed and increase the model size, reducing the efficiency

expected from a TFLite model.

To fix this issue, I tried to simplify the architecture and verify the Tensorflow

Lite compatibility, however, some of the operations are still not converted. This

can be seen in Table 6.

Table 6. Model Characteristics

Feature First Model

(Feedforward

NN)

Second Model

(1D CNN)

Third Model

(Enhanced 1D

CNN)

Fourth Model

(Steppage Gait

Analysis - 1D

CNN)

Training Time

(seconds)

58 76 88 84

Converted

Model Size

(Kilobyte)

4 8.7 62 65

Total

Operations

14 17 28 28

Non-Converted

Operations

3 4 11 11

TFLite Conversion to Data Array:

• The ESP32 microcontroller lacks a file system, making it challenging to directly

load TensorFlow Lite models. To embed the model, it is converted to a data

array using the Linux command-line tool xxd. This tool converts the .tflite

model file into a C-style array:

xxd-i model.tflite>modelData.cc

30

The resulting .cc file contains an array of weights and parameters. By including it in

the project as source code, the model data can be accessed directly, simplifying

deployment.

31

4. PROJECT IMPLEMENTATION

4.1 Hardware setup

Connecting an MPU6050 sensor to an ESP32 is fairly straightforward, as the MPU6050

uses the I2C communication protocol.

Figure 3. Wiring Diagram of main components

• SDA (I2C Serial Data Line) - Connected the SDA pin of the MPU6050 to GPIO 19 on

the ESP32. This pin serves as the data line for I2C communication.

• SCL (I2C Serial Clock Line) - Connected the SCL pin of the MPU6050 to GPIO 22 on

the ESP32. This pin provides the clock signal for synchronizing I2C communication.

32

4.2 Sensor placement

To record data for steppage gait accurately using the MPU6050 sensor, which captures

both acceleration and angular velocity, the sensor should be placed where it can best

measure the leg's kinematics. For steppage gait, which is often characterized by an

exaggerated lifting of the knee and foot due to muscle weakness or nerve damage,

key points of interest could be:

• On the Shin: Placing the sensor on the shin, close to the tibia, can help record

the forward motion and the elevated lifting of the foot that occurs with each

step.

• Top of the Foot: This can give you information about the foot's tilt and lift as

the person tries to prevent the toe from dragging.

• Ankle: Since steppage gait involves a higher foot lift, placing the sensor near

the ankle can help monitor the ankle's angle during the gait cycle.

The steppage gait is characterized by an exaggerated flexion of the ankle to lift the foot

higher off the ground, preventing the toes from scraping the floor. Placing the sensor on

top of the foot directly captures this motion. The top of the foot is a pivotal point in gait

analysis as it can provide data on both the vertical lift (important in steppage gait) and

the foot's orientation during stride. Other points, like the shin or thigh, may not offer as

direct a measure of these specific movements. Therefore, it is decided to place the

sensor on top of the foot which is shown in Figure 4.

33

Figure 4. Placement of MPU6050 and ESP32 for Steppage Gait Analysis

4.3 Data collection

In order to train ML model for steppage gait, at least two sets of data should be

collected. For the initial tests, I have created a simple Arduino sketch which is tailored

to gather motion data from an MPU6050 sensor using an ESP32 microcontroller and

send this data to the serial port through Bluetooth. The choice to use Bluetooth for data

transmission was driven by the need for remote, wireless communication in the data

collection process, essential for gathering extensive datasets across different

environments without physical tethering.

1. Initial Setup

• The script initializes I2C communication using specific GPIO pins for the

MPU6050 sensor.

• It sets up serial communication at a baud rate of 115200 bps for output and checks

if the sensor is connected and responsive.

• The accelerometer and gyroscope measurement ranges, which are respectively ±8g

and 500 dps, are configured to allow for capturing a wide range of motions.

34

2. Sensor Configuration and Testing

• The MPU6050 sensor is initialized and its full-scale measurement ranges for

acceleration and angular velocity are set.

• The script checks for a successful connection with the sensor and, if failed, it halts

further execution.

3. Data Collection and Processing

• In the main loop, motion data including 3-axis acceleration and 3-axis gyroscope

readings are continuously collected.

• The raw sensor data is converted into real-world units (meters per second squared

for acceleration and degrees per second for gyroscopic measurements).

4. Data Output

• The converted data, along with a timestamp, is formatted into a CSV string and

sent to the serial port.

5. Efficiency and Stability

• A short delay of 3 milliseconds is incorporated in the loop to help stabilize the rate

of data output and sample the data at a rate of 200Hz, equivalent to acquiring data

every 5 milliseconds.

While the data is printed continuously on the serial monitor, we need to save the data

in some file formats, however, Arduino IDE doesn’t provide such an option by default.

Therefore, I have made a simple python script which establishes a serial connection

with an ESP32 microcontroller, continuously monitors incoming data, decodes it, and

systematically logs it to a CSV file for efficient data recording and analysis. The script

ensures real-time data capture from the MPU6050 sensor, with each received datum

being decoded and saved to a CSV file on the computer, facilitating further data

manipulation and study.

After desired data is collected in a csv file, the next step is to analyze the stability of the

sampling rate which will indicate how consistent the intervals between samples are.

However, Bluetooth communication issues such as signal interference and inconsistent

sampling intervals initially posed significant challenges.

35

Initial Challenges:

External interference during Bluetooth transmission caused inconsistencies in sampling

intervals, leading to fluctuating data collection. Transmission delays introduced periodic

spikes in sampling intervals, making it difficult to achieve a consistent 200 Hz sampling

rate as it is shown in Figure 5.

Figure 5. Consistency of Sampling Intervals at 200Hz Sampling Rate (Wireless Bluetooth

Communication)

Final Solution: Buffering and Batch Transmission

To overcome these challenges, a solution was designed to incorporate data buffering

and batch transmission:

Data collected by the MPU6050 sensor is temporarily stored in an internal buffer. Once

the buffer reaches a predefined size, the data is transmitted in a batch over Bluetooth,

reducing the impact of intermittent interference. Figure 6 visualizes the architectural

diagram of overall process.

36

Figure 6. MPU6050 Data Acquisition and Bluetooth Transmission Flowchart

By incrementally adjusting the delay added to stabilize data transmission rates, we

achieved an optimal setting of a 4 ms delay with a batch size of 5. This reduced the

transmission spikes and achieved a consistent sampling rate of 196 Hz as it is shown in

Figure 7 and in Figure 8, suitable for walking motion analysis.

37

Figure 7. Consistency of Sampling Intervals at 196Hz Sampling Rate (Wireless Bluetooth

Communication with Logic of Buffering - batch size = 5, delay = 4, samples = 100)

Figure 8. Consistency of Sampling Intervals at 196Hz Sampling Rate (Wireless Bluetooth

Communication with Logic of Buffering - batch size = 5, delay = 4, samples = 5000)

To sum up, the Bluetooth data acquisition system successfully achieved a sampling rate

of 196 Hz with a buffering and batch transmission approach. However, this solution is

not fully reliable for consistent sampling intervals due to inherent limitations. The

38

external interference during Bluetooth transmission causes intermittent delays and

periodic spikes, resulting in inconsistent data collection. Although the batch

transmission method helped reduce transmission spikes and maintained a stable 196 Hz

rate, this approach still struggles with providing stable consistency between samples.

Furthermore, obtaining higher sampling rates with reliable consistency becomes

increasingly complex due to signal interference and buffering limitations.

4.4 Data labeling

After we collect the data, the next step is to turn it into an audio file. To do this, we

used a handy Python script developed by a team member from the PRG424 research

group. However, in the generated audio file, there was a kind of distortion – like the

signal was being squeezed too much. This problem, known as signal clamping, was

because we didn’t set the MPU6050 sensor to catch all the data we were throwing at it;

it was set to a range of ±2g, which, plainly speaking, wasn’t enough. Realizing this, we

adjusted the sensor to a wider range of ±4g, thinking it would surely be enough. But,

when we made the audio file again, the problem was still there – the sound was still

hitting a limit. Figure 9 shows a part of the generated audio file. Even though the range

was set to ±4g, we have still experienced signal clamping.

Figure 9. Generated audio file where sensor range is set to ±4g

Therefore, it was decided to increase the range to ±8g and it avoided signal clamping.

Figure 10 shows the generated audio file where sensor range was set to ±8g.

Figure 10. Generated audio file where sensor range is set to ±8g

39

We've compiled four separate recordings, each capturing approximately 35-40 instances

of movement. These include regular walking steps, right and left turns, and abnormal

steps designed to mimic the steppage gait pattern. Figure 11 shows labeled audio data

which is then used to generate a text file that can be used as an input for training ML

model.

Figure 11. Labeled audio data

4.4 Deploying and running model on esp32

Since Arduino Studio was already used to collect data from the MPU6050 sensor, I

explored deploying machine learning models on the ESP32 through Arduino. However,

numerous issues arose during the deployment process that took significant time to

troubleshoot, ultimately yielding unsatisfactory results. There are mostly 2 libraries

recommended by the Arduino community to run ML models through Arduino Studio.

1. TensorFlowLite_ESP32 Library

This library, provided by the TensorFlow authors, hadn't been updated for two

years, limiting its compatibility with newer models such as 2.16.1 which is the

latest version of TensorFlow. By downgrading the TensorFlow version to 2.5.0,

some issues were mitigated, allowing the first two models to function correctly.

Unfortunately, this wasn't a complete solution since it failed to support the last

two, more complex models [28].

2. EloquentTinyML Library

Switching to EloquentTinyML (source: EloquentTinyML) seemed promising, as it

provided clearer instructions and easy-to-follow examples. All models were

initially deployed successfully, but the ESP32 would only run for 3 seconds before

40

ceasing output. Additionally, Arduino’s strict compiler settings treated warnings

as errors, complicating the build process [29].

Attempts to modify compiler flags to suppress errors led to further issues, prompting

the switch from Arduino Studio.

PlatformIO [30], an open-source cross-platform environment, offered a more flexible

solution. Integrated with Visual Studio Code, it simplified development and deployment.

By building the TensorFlow Lite library with CMake [31], a wrapper was created for

easier integration with the Arduino framework on PlatformIO. Project structure is shown

in Figure 12.

Figure 12. PlatformIO project strcuture

Since we have already built the Tensorflow Lite library (tfmicro), we create the

NeuralNetwork class around it which loads and manages the pre-trained model

(model_data.cc), initializes a TensorFlow Lite interpreter, and registers essential neural

network operations. We then allocate 20KB tensor area to provide workspace for the

model during inference. The main.cpp file contains the main Arduino sketch that calls

the neural network class for predictions. To successfully deploy the model on esp32 we

also need to include “Arduino.h” library which is provided by the PlatformIO.

The following configuration is used for the ESP32-D0WDQ6 model:

[env:esp32dev]

platform = espressif32

board = esp32dev

framework = arduino

monitor_speed = 115200

41

Figure 13 visualizes the high-level architectural diagram of overall process.

Figure 13. Flowchart of Running ML model on ESP32

For the first 3 models, described in Table 4, I have created a simple binary classification

script - every iteration, two random numbers are generated between 0.0 and 1.0. These

numbers are set as inputs for the neural network, The network processes these inputs

to make a prediction. The code then compares the predicted value with expected value

(whether the generated second number is greater that generated first number). I was

able to deploy the first 2 models on esp32. Simple binary classification models worked

42

smoothly. Data was fed at a consistent 200 Hz rate, and the results met expectations. A

part of output of serial readings provided in Figure 14:

Figure 14. Output of First 2 models

The Figure 14 displays the Serial Monitor's output. The first column shows the elapsed

time since the program started, and the second column lists two randomly generated

numbers as inputs. The third column represents the neural network's prediction, which

is a floating-point value between 0 and 1 returned by NeuralNetwork->predict(). This

value indicates the probability that the second number is greater than the first. In the

code (main.cpp), a threshold of 0.5 is used to convert this probability into a binary

result:

• 0: The score is less than 0.5, meaning the second number is predicted to be less

than or equal to the first.

• 1: The score is 0.5 or higher, meaning the second number is predicted to be

greater than the first.

For instance, if the second number is greater than the first, the neural network will

likely return a result close to 1, and if not, the result will be close to 0. The last two

columns compare the actual and predicted results of the two inputs. It is also observed

that actual response time of trained 1D-CNN model (2nd model in Table 5) is smaller

than 0.1 ms, however, to get consistency between every prediction, we should have at

least 5 ms delay in the loop.

43

Although I have successfully deployed first 2 simple models from Table 5 on ESP32, the

final two models faced deployment challenges, received below errors:

Unsupported Operation (EXPAND_DIMS), Memory Alignment and Tensor Allocation

failure, Unhandled Exception (Guru Meditation Error: Core 1 panic'ed (LoadProhibited)).

Errors related to memory allocation which caused an exception in the ESP32

microcontroller that it could not handle, causing a system crash and automatic reboot.

Despite extensive efforts, these issues couldn't be fully resolved. Although the

"Unsupported Operation" issue was addressed, the exception seemed connected to it,

as 11 out of 28 operations failed to convert during the TensorFlow-to-TensorFlowLite

conversion for the last two models.

By and large, while the deployment of the first two simpler models on the ESP32

demonstrated effective results, the final two models encountered significant challenges

during implementation. These challenges highlight the inherent limitations of deploying

intricate machine learning models on resource-constrained embedded devices. The

ESP32 is effective for simpler models, but for more demanding tasks, optimizations and

model adjustments will be essential.

44

5. CONCLUSION

This work concentrated on collecting gait data and deploying 1D Convolutional Neural

Networks (1D CNNs) on low-power devices, specifically the ESP32 microcontroller. The

combination of the ESP32-D0WDQ6 microcontroller and the MPU6050 sensor provided

an efficient platform for real-time gait analysis. Despite the computational and

memory limitations of the microcontroller, 1D CNN models were successfully

implemented, providing benchmark data on running machine learning models on the

ESP32.

By using strategies such as data buffering, batch transmission, and timer interrupts,

the system achieved consistent data sampling rates and stable data transmission over

Bluetooth to collect data for off-device model training. Deploying complex machine

learning models on ESP32 device presented challenges related to memory alignment

and tensor allocation.

Nonetheless, the current system showed that even small 1D CNN models can cause

memory issues if the model architecture is not explicitly designed for low-power

devices like the ESP32. The 1D CNN model designed by the PRG424 research group,

which has 480 features, could not be deployed, or run effectively on the ESP32 in its

current form. Optimizing the architecture and reducing model size will be crucial steps

for enabling efficient deployment and execution of machine learning models on this

platform. The work highlights the importance of tailored model design and

optimization to make practical use of low-power, resource-constrained devices in

advanced gait analysis.

45

6. FUTURE WORK

There are several improvements that can further advance this research. First, as for

data collection simple wired communication can be used rather than Bluetooth

communication system because we concluded that this system is not reliable. 1D CNN

architectures designed specifically for low-power devices should be optimized. This will

involve pruning redundant layers, minimizing the number of filters, and using

quantization techniques to reduce the model's memory footprint and computational

requirements.

Another important aspect will be exploring more effective methods for converting

models to TensorFlow Lite (TFLite) for the ESP32. Ensuring that the operations in the

original models remain compatible with the lightweight TFLite framework can be

achieved through custom implementations or simplifying the model architecture.

Memory management is also essential, where optimizing memory usage will improve

data buffering strategies and ensure proper tensor allocation. Allocating enough

memory space for the tensor arena and managing other onboard processes will help

prevent system crashes. Supporting parallel processing across the ESP32's dual-core

architecture will help distribute computational tasks more evenly, thereby reducing

processing time.

These suggestions will help in addressing challenges while using the full potential of

1D CNNs on low-power devices for consistent and scalable gait analysis.

46

7. SUMMARY

This thesis delves into the prevalence, characteristics, and implications of gait

disorders, particularly focusing on their occurrence in older adults and individuals with

neurological conditions. It emphasizes how gait abnormalities increase the risk of

dependence, cognitive decline, and mortality. The research identifies various gait

types and disorders, providing insights into their physiological and neurological

origins. Steppage gait, a primary focus, is characterized by an exaggerated lifting of

the knee and hip due to dorsiflexor muscle weakness.

Technological advancements in gait analysis, such as motion capture systems and

wearable sensors, have improved monitoring and assessment outside of clinical

settings. However, these systems still face limitations in precision and data volume

management.

The thesis highlights the potential of machine learning, especially convolutional neural

networks (CNNs) and their 1D variant (1D CNNs), in gait analysis. These models can

effectively identify gait patterns, diagnose disorders, and predict potential risks. The

research projects "PRG424" and “AIoT*5G” showcases the efficacy of CNNs in

wearable sensor networks for extracting meaningful patterns and providing real-time

processing and adaptability across varied sensor inputs.

The research methodology involves selecting the right hardware, particularly the

ESP32 microcontroller and MPU6050 sensor, for efficient gait analysis. The ESP32-

D0WDQ6 is chosen due to its dual-core processor, high performance, and built-in Wi-

Fi and Bluetooth for seamless data transmission. Various neural network models, from

simpler to medium complexity, are developed to test how they will perform on low-

power devices.

Despite challenges related to memory and computational constraints, the thesis

demonstrates the feasibility of using 1D CNNs on the ESP32 platform. The findings

emphasize the importance of model optimization and tailored architecture design to

maximize the potential of low-power devices in gait analysis.

47

8. KOKKUVÕTE

See lõputöö keskendub kõnnihäirete levimusele, omadustele ja mõjudele, eriti nende

esinemisele eakatel ja neuroloogiliste seisunditega inimestel. Töö rõhutab, kuidas

kõnnihäired suurendavad sõltuvuse, kognitiivse languse ja suremuse riski. Uurimus

tuvastab mitmesugused kõnnitüübid ja -häired, pakkudes teavet nende füsioloogiliste

ja neuroloogiliste päritolude kohta. Erilist tähelepanu pööratakse stepp-kõnnile, mida

iseloomustab põlve ja puusa liialdatud tõstmine dorsifleksion lihaste nõrkuse tõttu.

Tehnoloogilised edusammud kõnnianalüüsis, nagu liikumise jäädvustamise süsteemid

ja kantavad andurid, on parandanud jälgimist ja hindamist kliinilistest seadetest

väljaspool. Siiski on neil süsteemidel endiselt piirangud täpsuses ja andmemahtude

haldamises.

Lõputöö toob esile masinõppe, eriti konvolutsioon iliste närvivõrkude (CNN) ja nende

1D variandi (1D CNN), potentsiaali kõnnianalüüsis. Need mudelid suudavad tõhusalt

tuvastada kõnnimustreid, diagnoosida häireid ja ennustada potentsiaalseid riske.

Uurimisprojektid "PRG424" ja "AIoT*5G" demonstreerivad CNNide tõhusust kantavate

andur võrkudega, võimaldades tähendusrikkaid mustreid välja tuua ning pakkuda

reaalajas töötlemist ja kohandatavust erinevate andurisignaalidega.

Uurimismetoodika hõlmab sobiva riistvara valimist, eriti ESP32 mikrokontrolleri ja

MPU6050 anduri, tõhusaks kõnnianalüüsiks. Valitud on ESP32-D0WDQ6, mis on

valitud oma kahe tuumaga protsessori, kõrge jõudluse ning sisseehitatud Wi-Fi ja

Bluetoothi tõttu sujuvaks andmeedastuseks. Erinevad närvivõrgu mudelid,

lihtsamatest keskmise keerukuse, on arendatud, et testida, kuidas need madala

võimsusega seadmetes toimivad.

Hoolimata mäluga ja arvutuslikest piirangutest, näitab lõputöö 1D CNNide kasutamise

teostatavust ESP32 platvormil. Leiud rõhutavad mudeli optimeerimise ja kohandatud

arhitektuuri kujundamise tähtsust, et maksimeerida madala võimsusega seadmete

potentsiaali kõnnianalüüsis.

48

9. LIST OF REFERENCES

[1] Joe Verghese MD, Aaron LeValley MA, Charles B. Hall PhD, Mindy J. Katz MPH,

Anne F. Ambrose MD, Richard B. Lipton MD, “Epidemiology of Gait Disorders in

Community-Residing Older Adults”, December 2005

[2] Jacquelin Perry and Judith M. Burnfield, “Gait Analysis: Normal and Pathological

Function” 2010

[3] Stephanie Studenski, MD, MPH; Subashan Perera, PhD; Kushang Patel, PhD,”

Gait Speed and Survival in Older Adults”, January 2011

[4] Matteo Cesari MD, PhD, Stephen B. Kritchevsky PhD, Brenda W. H. J. Penninx

PhD, Barbara J. Nicklas PhD, Eleanor M. Simonsick PhD, Anne B. Newman MD, MPH,

Frances A. Tylavsky DrPH, Jennifer S. Brach PT, PhD, GCS, Suzanne Satterfield MD,

DrPH, Douglas C. Bauer MD, Marjolein Visser PhD, Susan M. Rubin MPH, Tamara B.

Harris MD, MS, Marco Pahor MD, “Prognostic Value of Usual Gait Speed in Well-

Functioning Older People—Results from the Health, Aging and Body Composition

Study”, September 2005

[5] D C Kerrigan 1, M K Todd, U Della Croce, “Gender differences in joint

biomechanics during walking: normative study in young adults”, 1998

[6] Bastiaan R. Bloema, Jasper E. Visseraand John H.J. Allum, “Posturography” 2003

[7] Rolf Moe-Nilssen, Jorunn L Helbostad, “Estimation of gait cycle characteristics by

trunk accelerometry”, January 2004

[8] Whittle, M. W., “Gait Analysis: An Introduction. Butterworth-Heinemann”, 1996

[9] Perry, J., & Burnfield, J. M., “Gait Analysis: Normal and Pathological Function” in

Journal of Sports Science and Medicine, June 2010

[10] Ružička E, Jankovic JJ. Disorders of gait. In: Jankovic JJ, Tolosa E,

“Parkinson’s disease and movement disorders” 2002

49

[11] Walter Pirker, Regina Katzenschlager, “Gait disorders in adults and the elderly”,

2016

[12] Tao, W., Liu, T., Zheng, R., & Feng, H., “Gait analysis using wearable sensors”,

February 2012

[13] Muro-de-la-Herran, A., Garcia-Zapirain, B., & Mendez-Zorrilla, A., “Gait analysis

methods: An overview of wearable and non-wearable systems, highlighting clinical

applications” Sensors, 14(2), 3362-3394, February 2014

[14] Hausdorff, J. M., “Gait dynamics, fractals and falls: finding meaning in the stride-

to-stride fluctuations of human walking.” Human Movement Science, 26(4), 555-589,

2007

[15] Dai, H., Lin, H., & Lueth, T. C., “Automatic classification of gait patterns in

patients with Parkinson’s disease using a wearable sensor system” IEEE-EMBS

International Conference on Biomedical and Health Informatics (BHI), 144-147, 2014

[16] LeCun, Y., Bengio, Y., & Hinton, G., “Deep learning”. Nature, 521(7553), 436-

444, 2015

[17] Andrea Mannini 1, Angelo Maria Sabatini, “Machine learning methods for

classifying human physical activity from on-body accelerometers', February 2010

[18] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J.,

“LSTM: A search space odyssey”, IEEE transactions on neural networks and learning

systems, 28(10), 2222-2232), 2017

[19] Kidziński, Ł., Delp, S., & Schwartz, M., “Automatic real-time gait event detection

in children using deep neural networks”, 2019

[20] Goodfellow, I., Bengio, Y., & Courville, A., “Deep Learning” in MIT Press, 2016

[21] Kiranyaz, S., Ince, T., & Gabbouj, M., “1D Convolutional Neural Networks and

Applications: A Survey”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2021

50

[22] Zhang, Q., Yang, L. T., Chen, Z., & Li, P, “A Survey on Deep Learning for Big

Data” Information Fusion, 42, 146-157, 2018

[23] Khan, F., Ahmad, R., Ahmed, W., Alam, M.M., & Drieberg, M., “Interference and

Priority aware Coexistence (IPC) algorithm for link scheduling in IEEE 802.15.6 based

WBANs”, 2019

[24] Khan, R.; Alam, M.M.; Kuusik, A., “Channel Prediction based Enhanced

Throughput and Channel Aware MAC in SmartBAN Standard”, in 16th International

Symposium on Wireless Communication Systems, 2019

[25] Saboor, A. et al., “Latest Research Trends in Gait Analysis Using Wearable

Sensors and Machine Learning: A Systematic Review”, in IEEE, 2020

[26] ESP32 Series Datasheet Version 4.5,

[https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pd

f]

[27] MPU-6000 and MPU-6050 Product Specification Revision 3.4,

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

[28] Arduino TensorflowLite ESP32 Library

https://github.com/tanakamasayuki/Arduino_TensorFlowLite_ESP32

[29] EloquentTinyML Library, https://github.com/eloquentarduino/EloquentTinyML

[30] PlatformIO, https://platformio.org/

[31] TensorFlow Lite Builder with CMake,

https://www.tensorflow.org/lite/guide/build_cmake

[32] Github Issue to request missing TensorFlow operations to TFLite

https://github.com/tensorflow/tensorflow/issues/21526

[33] Jakob Rostovski, Mohammad Hasan Ahmadilivani, Andrei Krivošei, Alar Kuusik &

Muhammad Mahtab Alam, Real-Time Gait Anomaly Detection Using 1D-CNN and

LSTM, May 2024

	AUTHOR’S DECLARATION
	Non-exclusive Licence for Publication and Reproduction of Graduation Thesis¹
	THESIS TASK
	Thesis topic:

	PREFACE
	LIST OF ABBREVIATIONS AND SYMBOLS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Gait disorders and patterns
	2.2 Gait and motion monitoring technologies
	2.3 Machine Learning in gait analysis
	2.4 Convolutional Neural Networks (CNNs) and 1D CNNS

	3. RESEARCH METHODOLOGY
	3.1 Hardware selection
	3.2 Software selection
	3.2.1 Hardware selection
	3.2.2 For Running CNN

	3.3 Designing ML model for ESP32
	3.3.1 Model Architecture and Design
	3.3.2 Model training and conversion

	4. PROJECT IMPLEMENTATION
	4.1 Hardware setup
	4.2 Sensor placement
	4.3 Data collection
	4.4 Data labeling

	5. CONCLUSION
	6. FUTURE WORK
	7. SUMMARY
	8. KOKKUVÕTE
	9. LIST OF REFERENCES

