
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Karen Ofljan 164912 IAPB

WEB APPLICATION FOR MANAGING

EXERCISES AND TEST FILES FOR THEM

Bachelor’s thesis

Supervisor: Ago Luberg

 MSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Karen Ofljan 164912 IAPB

VEEBIRAKENDUS HARJUTUSTE JA

TESTIFAILIDE HALDAMISEKS

Bakalaurusetöö

Juhendaja: Ago Luberg

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Karen Ofljan

12.08.2019

4

Abstract

The goal of the thesis is to provide an overview of the process of designing and deploying

a web application, which purpose is to ease management of programming exercises in the

future. This thesis is written in English and is 50 pages long, including 5 chapters, 17

figures and 2 tables.

In the first chapter, general goals and work plan are introduced. Second chapter introduces

use cases of the application to the reader, including comprehensive flow charts. Third

chapter provides explanations for using certain tools in the development process. Fourth

chapter describes the development process in high detail, acquainting the reader with

various steps and decisions during the development process. Fifth and final chapter

provides an overview of the results and sums up the thesis, pointing out, what was

achieved and what was not.

5

Annotatsioon

Antud töö sihiks on anda ülevaadet veebirakenduse disainimisest ja paigaldamisest.

Rakenduse eesmärk on lihtsustada programmeerimisülesannete ja testifailide haldamist.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 50 leheküljel, 5 peatükki, 17

joonist, 2 tabelit.

Esimene peatükk tutvustab lugejat antud töö eesmärkide ja esialgse arenduse plaaniga.

Teine peatükk toob välja rakenduse kasutajalugusid, mis on illustreeritud nn

voodiagrammide abil. Kolmas peatükk põhjendab tööristade valikut, mida kasutati

rakenduse arenduses. Neljas peatükk detailselt kirjeldab arenduse protsessi, tutvustades

lugejat erinevate sammude ja ja otsustega, mis olid tehtud arendusprotsessi jooksul. Viies

ja viimane peatükk annab ülevaade tulemustest ja selgitab, mis oli tehtud ja mis mitte.

6

List of abbreviations and terms

TUT

OOP

Tallinn University of Technology

Object-Oriented Programming

API Application Programming Interface

ORM Object-Related Mapping

DAO Data Access Object

DTO Data Transfer Object

UI User Interface

UX User Experience

PK Primary Key

FK Foreign Key

CRUD Create, Read, Update, Delete (database operation)

DI Dependency Injection

CI Continuous Integration

CD Continuous Deployment

UML

SOLID

Unified Modeling Language

Single responsibility,

Open/closed,

Liskov substitution,

Interface segregation

Dependency inversion

7

Table of contents

1 Introduction ... 10

2 USE CASES AND FUNCTIONALITY ... 11

3 SELECTION OF THE TOOLS .. 22

3.1 Back end ... 22

3.1.1 API ... 22

3.1.2 Database ... 23

3.2 Front end ... 24

3.3 Setting up development environment ... 24

4 DEVELOPMENT FLOW .. 26

4.1 Whole application design .. 26

4.2 Back end ... 26

4.2.1 Database schema design ... 26

4.2.2 API design .. 28

4.3 CI/CD integration .. 33

4.3.1 Docker and docker-compose ... 33

4.3.2 Setting up a Gitlab runner ... 34

4.4 Front end ... 36

4.4.1 UI and UX design ... 36

4.4.2 Code design .. 36

5 Summary ... 38

References .. 39

Appendix 1 – Example of input/output file .. 42

Appendix 2 – SQL code of database schema ... 43

Appendix 3 – Dockerfile and docker-compose.yml ... 47

Appendix 4 – Gilab-ci.yml .. 49

8

List of figures

Figure 1. Add test file from Git repository flow. .. 12

Figure 2. See all exercises flow. .. 13

Figure 3. Add new exercise flow. .. 14

Figure 4. Show all tags flow. ... 15

Figure 5. Add new tag flow. .. 16

Figure 6. Search for exercise flow. .. 17

Figure 7. Edit exercise flow... 18

Figure 8. Delete exercise flow. .. 19

Figure 9. Detach/edit tag flow. .. 20

Figure 10. Download/generate file. ... 21

Figure 11. Firewall configuration via Amazon AWS security group. 25

Figure 12. Application structure. ... 26

Figure 13. Schema representation in UML. ... 28

Figure 14. Back end structure and flow. .. 29

Figure 15. Instruction for setting up a Gitlab Runner. .. 34

Figure 16. Attached runner. ... 35

Figure 17. Injecting environment variables. ... 35

9

List of tables

Table 1. Database engines taken into consideration. .. 23

Table 2. Endpoints and actions. ... 32

10

1 Introduction

Each subject in TUT which is focused on programming usually involves regular practical

assignments. Once composed, those practical assignments are being collected during each

course and sometimes are reused in the following courses. At this point TUT does not

have any centralized system for storing the exercise information, so the process of

searching for specific exercise/categorizing them is overly complicated. This paper gives

a detailed overview about building a web application which would solve those issues.

The web application must provide functionality for easy manipulation of the exercise

data, which includes exercise name, year and statistics (students passed, students failed),

test files for the exercise and tags. Test file is either a file with actual tests

(TestComparator.java etc) or an input/output file for specific exercise. Author defines an

input/output file as a file, which contains necessary data for generating automatic tests

from it: for example, consider a function named compare which takes in an integer and

returns “Even” if given integer is even number and “Odd” if provided integer is odd.

Input/output file will contain different inputs, e.g 2, 3, 12, 456 etc, and expected output

for each input: ‘Even’, ‘Odd’, ‘Even’... For an example of such file see Appendix 1.

In addition, some exercises are being reused for courses, where the programming

language taught to the students differs from the original language in which the exercise

and tests were written. It was proposed to introduce a simple generation mechanism,

which, given an input/output file mentioned above will generate an actual test file in a

language specified by user. So, for example, from single source file user can potentially

generate both Java and Python tests.

To sum up, the goal of this paper is

1) Design and build a web application (database, API and frontend) for managing

exercises;

2) Provide functionality of generating actual tests from input/output files.

11

2 USE CASES AND FUNCTIONALITY

The application’s main goal is to simplify the process of managing exercises and related

data. The storage for exercise related data should be centralized. By term ‘data managing’

author means basic CRUD for exercises, tags and test files, as well as possibility to

conveniently search for specific exercises among those in the database. In addition, the

application should provide functionality for automatic upload of the exercise test files

into the database from custom Git repository after corresponding push event.

- Add test file from Git

Prerequisites: API must be running on external server and API endpoint must be added

to Git repository as a webhook and must be configured to listen for push events. Example

for Gitlab with API running on a box with IP of 15.188.3.43:

Settings => Integrations => URL: 15.188.3.43/Git_callback => mark ‘Push Events

=> unmark ‘SSL verification’ => Add webhook.

Flow description: Teacher wants to add new test file for exercise. Test file must be in json

format and file name must match the following pattern: <any text>EX<any

text>_test_data.json. Teacher commits and pushes the file. API receives a Git callback

with commit data. API parses the callback, clones the repo if it was not previously cloned

or pulls it in the opposite case, then looks if modified/added section of callback contains

strings of required pattern. If so, API reads the files by one, tries to fetch exercise and file

by name. If both exercise and file exist in the database, API updates the file contents. If

only exercise is present, API creates the file and attaches it to the exercise. If none exist,

API creates both. The cycle continues until all files in the commit are parsed. Figure 1

gives an illustration of the flow.

12

Yes

Figure 1. Add test file from Git repository flow.

13

- Show list of available exercises

Prerequisites: none

Flow description: Teacher wants to see all exercises which are stored in the database.

Example of the flow:

Figure 2. See all exercises flow.

- Add exercise and related data manually

Prerequisites: none

14

Flow description: Teacher wants to add new exercise. For the example of the flow, please

refer to figure 3:

Figure 3. Add new exercise flow.

- Show list of available tags

Prerequisites: none

15

Flow description: Teacher wants to see all tags in the database. The flow is illustrated on

figure 4.

Figure 4. Show all tags flow.

- Add tag

Prerequisites: none or existing exercise

Flow description: Teacher wants to add new tag. The flowchart is available below:

16

Figure 5. Add new tag flow.

- Search for exercise

Prerequisites: exercises exist in the database

Flow description: Teacher wants to find a specific exercise. Search flow illustrating chart

is shown on figure 6:

17

Figure 6. Search for exercise flow.

- Edit exercise

Prerequisites: Exercise exist in the database

Flow description: Teacher wants to edit an exercise (figure 7).

18

Figure 7. Edit exercise flow.

- Delete exercise/tag

19

Prerequisites: exercise or tag exist in the database

Flow description: Teacher wants to delete exercise or tag (figure 8).

Figure 8. Delete exercise flow.

The same flow goes for tag, only URLs are different. For example, instead of calling

DELETE api/exercise front end will call DELETE api/tag.

20

- Detach tag from exercise / edit the tag

Prerequisites: Exercise exist in the database, user is on the exercise view page

(/exercise?id={id}).

Flow description: Teacher wants to detach certain tag from the exercise or edit certain tag

(figure 9).

Figure 9. Detach/edit tag flow.

21

- Generate test file from input/output file/download file

Prerequisites: Exercise exist in the database, user is on the exercise view page

(/exercise?id={id}).

Flow description: Teacher wants to either download test file or to generate test file from

I/O file (figure 10).

Figure 10. Download/generate file.

22

3 SELECTION OF THE TOOLS

3.1 Back end

3.1.1 API

Since the project is going to be rather small, it was decided to avoid enterprise-oriented

languages and frameworks like Java (Spring) or C# (.NET), and look up for open source

solutions. In that case, what is needed is a small API, maybe with some simple ORM

framework. API should be written in language which is flexible, easy enough to develop

with and at the same time has community support of considerable size. These criteria

leave us with two possible options (taking the author’s past experience into account) –

Python (Django) and JavaScript (Node.js). After some thinking and weighing pros and

cons of both approaches, it was decided to move along with Node.js, since it has some

advantages over Django:

1) First and most important – TypeScript support, which was created with the goal

to provide strong typing for JavaScript, as well as add simplified syntax for advanced

OOP concepts (annotations, generics, interfaces, abstract classes...) [1], which is hard to

achieve with pure JS;

2) Using one language for a whole application is appealing, since it is easier to

develop in that case (no need to worry about serialization compatibilities etc);

3) Python for web is not the best choice, since, based on author’s previous

experience, the code is hard to structure and debug (no strong typing + weak OOP);

Since using pure Node.js (even with Express) will mean reinventing the wheel in most of

the use cases of the application, it was decided to choose a framework with most of the

desired features supported. Those features included, but were not limited to:

- Full TypeScript support;

- Possibility of annotation-based endpoints;

- Easy Swagger integration;

23

- ORM tool(s) support;

- Easy middleware integration (for example, custom logging or exception filtering);

- Possibility of annotation-based validation of incoming payloads;

Considering all the required features, the NestJs seemed like a best choice: it is written

entirely in TypeScript, hence has full support of it and perfectly meets all the rest of listed

requirements.

3.1.2 Database

The structure of the application implies that at least part of the data fits best into the

relational type database for several reasons: entities used will have relations with each

other, our application is not expected to process a lot of traffic and data amount which we

are going to store is limited. [2] Whereas NoSQL tools provide flexible solutions for

certain cases where large volumes of different data need to be stored and processed, this

specific application cannot gain any advantage from it. In addition, considering that at the

beginning it was decided to put aside enterprise-oriented tools, author had excluded

Oracle, DB2 and MsSQL from the list of available options. At this point, the list included

MySQL and PostgreSQL, as those are the most popular open source relational database

engines. Author’s previous experience with MySQL was rather dramatic; MySQL has

shown itself very simple to use, but, on the other hand, the exposed functionality was

limited. For instance, MySQL does not allow subsequent updates for table with unique

alternative key [3] and, moreover, has some architectural drawbacks. As a result,

PostgreSQL was the way to go. As for the server-side GUI for database representation,

phpPgAdmin was chosen. The whole list of database engines taken into consideration is

represented by table 1:

Table 1. Database engines taken into consideration.

Engine Open-source Free to use Relational

PostgreSQL Yes Yes Yes

MySQL Yes Yes Yes

DB2 No No Yes

24

MsSQL No No Yes

Oracle No No Yes

Elasticsearch Partly Yes No

MongoDB Yes Yes No

3.2 Front end

The most challenging thing to choose was the tool for the front end side of the application.

The reason for this is mostly based on author’s previous experience with front end

technologies, which is very limited. The initial list of possible options included Angular,

Vue, React. These frameworks are the most popular and used at the moment of writing

the paper, hence they were selected as potential candidates. [4] [5] [6]

Vue was excluded from the list first, since, although it is considered to be more flexible

and easier to use than its alternatives, it is also harder to maintain clean code with it. Vue

is also the newest framework from the three and has least of contributors, which could

mean potential instability and bugs. [7]

Angular is the oldest from the three and author had some experience with its predecessor,

AngularJS, so it was decided to move along with React – to learn something completely

new and check how the most popular JS framework [4] [5] [6] feels like. As for styling

frameworks, bootstrap and sass were chosen.

3.3 Setting up development environment

Since the application will make use of actual database, it is required to set up a running

server with selected database engine and simple GUI installed. For this to happen it was

decided to take advantage of Amazon AWS EC2 instances. EC2 stands for Elastic

Compute Cloud or virtual computing environments. Simply put, these are just servers

which anybody can use for a fixed price. [8]

25

The choice of operating system is obvious: Ubuntu, since, considering author’s previous

experience, it is the easiest to use (also, there are not so much options provided for the

micro instances). After the decision has been made, it was needed to install required

packages and configure Apache to allow connections from public Internet. Happily, most

of the options can be configured using Amazon AWS security groups (figure 11).

Figure 11. Firewall configuration via Amazon AWS security group.

I that case, the configuration allows HTTP connections to the instance at ports 80, 3000

and 3001, as well as SSH connections at port 22 and database connections at port 5432.

In that case we do not necessarily need access to ports 3000 and 3001, they were marked

accessible in case we will want to deploy and test the application on the instance.

The whole work of setting the database environment is to install Apache and PHP,

postgresql, phpPgAdmin, allow connections to the database from remote hosts, set user

info for phpPgAdmin and allow remote authentications with username and password. [9]

[10]

26

4 DEVELOPMENT FLOW

4.1 Whole application design

Whole application design is simple – user manipulates the data stored in the external

database through API, which accepts requests from front end. User does not interfere with

API nor database directly, but only through front end application layer. The diagram of

the application’s architecture is shown below:

Figure 12. Application’s architecure.

As you can see, back end is totally hidden from the user and does its job under the hood.

4.2 Back end

4.2.1 Database schema design

To start with, we must decide what database schema the API will work with. Considering

that the application main goal is to manage exercises, the schema should definitely

contain a table called exercise. Exercise should have id (int PK), exercise_name (varchar

NOT NULL UNIQUE), exercise_description (TEXT NULL) year (int NOT NULL <=

current year) of creation, students passed (int NOT NULL NOT NEGATIVE) and failed

27

(int NOT NULL NOT NEGATIVE). For the table information to be consistent, we must

introduce constraints: thus, each row should have unique exercise name, year must not be

in the future, exercise name must not be empty string, passed and failed must not hold

negative values and neither of the columns can be null.

Next, each exercise can have one or more test files – to accomplish this, we should

introduce a new table, test_file, which will hold information about each test file and its

relation to a specific exercise. To sum up, each row must have: id(int), file_name (varchar

UNIQUE NOT NULL), file_content (bytearray), foreign key to exercise table as

exercise_id (int NOT NULL) and additional column called is_raw_code (boolean NOT

NULL). The last column’s purpose is to indicate whether the file is the actual test file

with the code (e.g Test.java), or it is a file with input/output values for a function or

exercise (testfile.json or testfile.txt). There is no doubt that some constraints are to be

introduced for this table as well. We would definitely want file name to be unique, but it

is important not to add such constraint for raw file content, since that can considerably

slow down the database performance. We will generate hash from the content instead and

check uniqueness using the hash, calculated with built-in md5 function [11]. The last two

constraints we must add will check if the file content is not empty and does not exceed 5

megabytes, which is more than enough for text files.

In addition, we want to introduce tags for each exercise. Each tag will represent some

abstract attribute of the exercise: for instance, we want to categorize exercises by

complexity, and in order to achieve that, we must introduce tags like easy, intermediate,

hard. One exercise can have multiple tags and same tag can be attached to multiple

exercises. This kind of relationship is called many-to-many. To avoid redundant data and

keep our database performance at its peak, instead of introducing just one table, tag, we

will introduce two: tag and exercise_tags. First table will hold info about each tag and an

unique identifier: id (int PK), tag_name (varchar NOT NULL UNIQUE), whereas the

second table will serve as an intermediate table, which purpose is to join exercise and tag

together. Thus, the table exercise_tags will consist of id (int PK), exercise_id (int FK to

exercise), tag_id (int FK to tag) and will have single unique check: the combination of

exercise_id and tag_id must be unique, since we do not want repetitive data in our

database.

28

Figure 13. Schema representation in UML.

To compose UML representation of the schema and generate SQL from the diagram

author used the tool called Enterprise Architect. For complete schema source code please

refer to Appendix 2.

4.2.2 API design

Before writing first lines of code it is important to think through the architecture of the

application, regardless if it is just a small API like this or more ambitious project. It is

considered a good practice to follow SOLID principles when designing an application. In

short, this means several things: each class/module should be responsible for single part

of the application, code should be reused as much as possible, dependencies should be

correctly organized [12].

The commonly used design pattern for such applications is called MVC. MVC, or model-

view-controller, is a design pattern which was introduced to solve the problem of

designing an application with rather trivial goal: handle user input and display the results

[13]. Good API design commonly makes use of the following concepts:

- Entity for reflecting database structure in the code;

- Dao or Data Access Object for manipulating Entities (basic CRUD as well as

more complex operations);

29

- Dto or Data Transfer Object for mapping and validation of the received data from

the client;

- Service for additional manipulations with the results queried from the

database/received from client;

- Controller for actual endpoint declarations;

This design pattern provides excellent logic separation, hence, makes it easier both to

develop and maintain the code in the future. The flowchart of properly structured back

end should look like this:

Figure 14. Back end structure and flow.

Ideally, each part of the application knows only about its predecessor: so, for instance,

service knows about dao but does not know about the controller and dao knows about

entity(s) but does not know about the service. Consider the following example: given a

table called user with columns id, email and password, we want to set up an API which

will allow basic CRUD for the table. Using the pattern described above, the pseudocode

for such API will look like this:

30

@Entity

public class User {

 @Column

 private int id;

 @Column

 private String email;

 @Column

 private String password;

}

@Repository

public class UserDao<User> {

 // SELECT * FROM `user` WHERE `id` = “id”;

 public User findOne(Integer id) {...}

 // INSERT INTO `user` (...) VALUES (...);

 public void put(User u) {...}

 // DELETE FROM `user` WHERE `id` = “id”;

 public void delete(Integer id) {...}

}

@Service

public class UserService {

 private UserDao userDao;

 @Autowired

 public UserService(UserDao userDao) {

 this.userDao = userDao;

}

public User findOne(Integer id) {

 User u = this.dao.findOne(id);

 delete u.password;

 return u;

}

public void delete(Integer id) {...}

public void put(User u) {...}

}

31

public class UserDto {

 @Min(0)

 private Integer id;

 @NotEmpty

 @IsEmail

 private String email;

 @NotEmpty

 @Min(7)

 private String password;

 public User getUser() { return new User(id, email, password); }

}

@Controller

@Path(“/user”)

public class UserController {

 private UserService userService;

 @Autowired

 public UserService(UserService userService) {

 this. userService = userService;

}

 @Get(“/”)

 public User getUserById(@QueryParam(“id”) Integer id) {

 return this.userService.findOne(id);

}

@Put(“/”)

public void put(@Valid UserDto dto) {

 return this.userService.put(dto.getUser());

}

@Delete(“/”)

public void delete(@QueryParam(“id”) Integer id) {...}

}

32

As you can see from the example, each layer is responsible for its own part of the

application and each next layer depends on the previous one. In this example, our API

has three endpoints (table 2):

Table 2. Endpoints and actions.

Http method Example URL Action

GET user?id=15 Fetches user info from the

database

PUT user/ Inserts new user to the

database

DELETE user?id=15 Deletes the user from the

database

In order to avoid repetitive code and make the application more flexible, the special

technique was used in this example. The technique is called dependency injection, or DI,

which allows to create implementations of dependencies automatically, thus reducing the

amount of manually written code. [14] In the example, the DI is marked with annotation

@Autowired (commonly used in Java). So, to clarify, instead of writing

private UserDao userDao = new UserDao();

we can create the object instance implicitly with a help of DI:

@Autowired

private UserDao userDao;

Or

private UserDao userDao;

@Autowired

public UserDao(UserDao userDao) { this.userDao = userdao; }

The application needs to provide possibility of environment separation. Considering the

fact that no sane person would prefer to manually build code and restart the server every

time changes are made, it was decided to make use of nodemon library, which will reload

33

the server when changes in the code are detected. Sensitive information like database

authorization credentials etc must be separated from the logic of the application.

Moreover, this information must be passed with environment variables, as this makes the

application more flexible and secure.

It is more convenient to develop the application when all endpoints are exposed and easily

accessible from browser, without need of third-party libraries like Postman. To fulfil this

goal, Swagger should be installed and configured.

In addition, nobody wants to write queries by hand, especially trivial ones (e. g. CRUD).

To avoid unnecessary code, ORM framework is required. It is also important security-

wise, since escaping raw values is safer when it is done automatically. Fortunately, NestJs

is shipped with such framework already included. The library is called typeorm and it

provides all the basic functionality we need to generate secure SQL queries.

4.3 CI/CD integration

CI/CD is a group of techniques, which goal is to simplify the process of building and

deploying the project [15]. To ease the deployment process and make first steps in the

direction of fully automated builds and deploys, it was decided to use docker-compose +

Gitlab runner as a CI/CD tool. Why is it important? At this moment the application

consists of two parts – back end and front end, each requires manual installation of

dependencies, building and copying files from one folder to another. Furthermore, the

application deployed this way is not isolated from the server and its dependencies, which

has potential security drawbacks and simply less clean [16] [17].

4.3.1 Docker and docker-compose

Docker and docker-compose provide functionality of building and deploying the whole

app with a single command, moreover, in a containerized form. To start with, Dockerfile

should be created. Dockerfile is a special type of file, which serves as an instruction for

building a single container. [17] For an example of Dockerfile used for the application

please refer to Appendix 3. Docker-compose is a higher-level tool, which is designed to

manipulate multiple docker containers. Taking statement above into consideration, one

may think that docker-compose is not necessary in case of our application, since for now

it uses only one container – it was decided not to deploy database using docker, since it

34

is considered bad practise to deploy a database to production inside a container. [18]

Although this may be true now, docker-compose will ease the production rollouts in the

future as the application grows from one container to multiple.

4.3.2 Setting up a Gitlab runner

As proper CI/CD is usually triggered by push events to target branches, we need to

configure a Gitlab runner and attach it to the repository our project is hosted in. Gitlab

runner is an open-source project, which allows to run jobs and send feedback to Gitlab.

[19]

A new server is needed to set up the runner. As before, it was decided to take advantage

of Amazon AWS EC2 instance. After it is created and configured (configuration is

basically the same as in case of database server) we need to install the runner with a few

simple commands. Installation is followed by registration process, which will attach the

runner to desired Gitlab repository. During registration process, it is required to specify

Gitlab’s domain (Gitllab.cs.ttu.ee), secret token of the repository (in that case –

1qFFR1qkowbiwWVR2HYF). The information is available at: Settings → CI/CD

→Runners → Set up Runner manually (figure 15).

Figure 15. Instruction for setting up a Gitlab Runner.

The last thing to specify is the Runner Executor. For simplicity it was decided to use shell

type [20], since the only thing is expected from the runner is to execute a single command:

35

$ docker-compose up -d –-build

Clarification: run Dockerfile script (docker-compose up), rebuild every time (--build) run

in detached mode (-d).

If everything went as it should, attached runner will appear under “Active runners”

section:

Figure 16. Attached runner.

The last thing to do is to set up a special file, called Gilab-ci.yml, which will serve s an

instruction to the Runner and initialize environment variables which docker-compose will

inject. For an example of gilab-ci.yml file with clarification notes please see Appendix 4.

Initialization of environment variables can be done at Settings → CI/CD → Variables

(figure 17).

Figure 17. Injecting environment variables.

36

4.4 Front end

4.4.1 UI and UX design

Proper UI and UX is crucial, since it is the only layer of the application user directly

interacts with. Even with most marvellous back end and brilliant CI/CD, an application

will never have any success if it does not provide comprehensive UI.

General layout of the application will be as follows: the application should have a sidebar

with links to available pages which could be toggled on and off as well as a top bar.

The application will consist of four pages:

1. Front page

Front page, or home page, will display data of all exercises in a table form. User will be

able to delete exercises or go into more detailed view by clicking on specific one.

2. Exercise page

Exercise page will display all data of a specific exercise (including tags and test files).

Using that page user will be able to modify exercise data, delete the exercise completely

or add a new one.

3. Exercise tags page

Exercise tags page will display all the tags available in a table form. User will be able to

add a new tag or delete existing ones.

4. Login page (Optional)

Simple login page.

As for the UI, it was decided to choose dark and minimalistic colours.

4.4.2 Code design

Same as with the API, frontend part of the application requires design as well. React

provides its own pattern of logic separation using components. A component is usually

37

just a JSX file, which is responsible for the small part of the whole application. As stated

in React docs [21]:

Components let you split the UI into independent, reusable pieces,

and think about each piece in isolation.

In context of this application, it is convenient to separate logic by entities: exercise tag,

and test file. Each entity will have its own table, where its properties will be displayed;

thus, it was decided to separate components as follows:

components/

├───errors/

├───exercise/

├───layout/

├───minor/

├───router/

├───table/

└───tag/

Where layout folder includes general layout components, like sidebar.tsx and top-bar.tsx,

router is for routing configurations and minor is for utility components, for example,

spinner animation component. Other names are self-explanatory.

38

5 Summary

The purpose of the paper is to give an overview of the work done, as well as to acquaint

the reader with its results. The work process included designing and deploying a web

application for managing and categorizing programming exercises. In addition, database

schema was designed, and CI/CD was configured. As a result, the process of managing

exercises in the future will be more optimized than before.

Although major part of the work is done, there is still space for improvements. For

instance, test file generation functionality was left undone. In addition, the application in

its current form does not have proper authentication, which is crucial (ideally,

authentication should be perform with Uni-ID and be role-based). Thirdly, although

invalid user inputs are properly handled with both API and database, front end does not

provide much feedback and error messages, which is important as well. Another major

part of every application is automated tests, which were skipped in this case due to the

lack of time.

To sum up, although there are some things left to do, the application in its current form is

ready to be used to fulfil its purpose.

39

References

[1] “TypeScript Design Goals,” 2014. [Online]. Available:

https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals.

[Accessed 10 08 2019].

[2] M. Shahin, “WHEN TO USE SQL VS. NOSQL,” 08 11 2018. [Online]. Available:

https://www.integrant.com/when-to-use-sql-vs-nosql/. [Accessed 11 08 2019].

[3] “How to swap values of two rows in MySQL without violating unique constraint?,”

[Online]. Available: https://stackoverflow.com/questions/11207574/how-to-swap-

values-of-two-rows-in-mysql-without-violating-unique-constraint. [Accessed 11

08 2019].

[4] S. A, “The Best JS Frameworks for Front End,” 19 01 2019. [Online]. Available:

https://rubygarage.org/blog/best-javascript-frameworks-for-front-end. [Accessed

13 08 2019].

[5] “Front end frameworks popularity,” 12 2018. [Online]. Available:

https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190.

[6] “9 Popular JavaScript Frameworks for 2019,” 01 2019. [Online]. Available:

https://raygun.com/blog/popular-javascript-frameworks/. [Accessed 2019 08 13].

[7] “Angular vs Vue vs React,” 13 06 2019. [Online]. Available:

https://www.codeinwp.com/blog/angular-vs-vue-vs-react/. [Accessed 14 08 2019].

[8] “What is Amazon EC2?,” [Online]. Available:

https://docs.aws.amazon.com/en_us/AWSEC2/latest/UserGuide/concepts.html.

[Accessed 2019 08 14].

[9] “Install PostgreSQL with phpPgAdmin on Ubuntu 16.04,” 24 08 2016. [Online].

Available: https://www.rosehosting.com/blog/install-postgresql-with-phppgadmin-

on-ubuntu/. [Accessed 14 08 2019].

40

[10] “How to allow remote connections to PostgreSQL database server,” [Online].

Available: https://bosnadev.com/2015/12/15/allow-remote-connections-

postgresql-database-server/. [Accessed 16 08 2019].

[11] “PostgreSQL MD5 Function,” [Online]. Available:

http://www.postgresqltutorial.com/postgresql-md5/. [Accessed 10 08 2019].

[12] S. LH, “SOLID Principles: Explanation and examples,” [Online]. Available:

https://itnext.io/solid-principles-explanation-and-examples-715b975dcad4.

[Accessed 17 08 2019].

[13] “The MVC pattern in theory and practice,” [Online]. Available:

http://warp.povusers.org/programming/mvc.html. [Accessed 14 08 2019].

[14] J. Shore, “Dependency Injection Demystified,” 22 03 2006. [Online]. Available:

https://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html.

[Accessed 17 08 2019].

[15] S. PITTET, “Continuous integration vs. continuous delivery vs. continuous

deployment,” [Online]. Available: https://www.atlassian.com/continuous-

delivery/principles/continuous-integration-vs-delivery-vs-deployment. [Accessed

10 08 2019].

[16] “Top 7 benefits of using containers,” 03 04 2017. [Online]. Available:

https://blog.kumina.nl/2017/04/the-benefits-of-containers-and-container-

technology/. [Accessed 15 08 2019].

[17] “Docker documentation,” [Online]. Available: https://docs.docker.com/. [Accessed

15 08 2019].

[18] “Should You Run Your Database in Docker?,” [Online]. Available:

https://vsupalov.com/database-in-docker/. [Accessed 16 08 2019].

[19] “GitLab Runner Docs,” [Online]. Available: https://docs.gitlab.com/runner/.

[Accessed 16 08 2019].

[20] “Runner Executor - Shell,” [Online]. Available:

https://docs.gitlab.com/runner/executors/shell.html. [Accessed 20 08 2019].

[21] “React Docmentation,” [Online]. Available: https://reactjs.org/docs. [Accessed 20

08 2019].

41

[22] D. Radulov, “Continuous Integration with Docker Compose,” 13 09 2017. [Online].

Available: https://semaphoreci.com/blog/2017/09/13/continuous-integration-with-

docker-compose.html. [Accessed 10 08 2019].

[23] “UNIQUE constraint on large VARCHARs - PostgreSQL,” [Online]. Available:

https://dba.stackexchange.com/questions/94205/unique-constraint-on-large-

varchars-postgresql. [Accessed 15 08 2019].

42

Appendix 1 – Example of input/output file

{

 "year": 2017,

 "author": "Karen",

 "exercise_name": "comparator",

 "data": [

 {

 "function_name": "comparator",

 "arguments": [

 "int"

],

 "output_type": "string",

 "test_data": [

 {

 "input": [

 93

],

 "output": "The input number is bigger than 5!"

 },

 {

 "input": [

 5

],

 "output": "The input number is 5!"

 },

 {

 "input": [

 2

],

 "output": "The input number is smaller than 5!"

 }

]

 }

]

}

43

Appendix 2 – SQL code of database schema

/* -- */

/* Generated by Enterprise Architect Version 13.0 */

/* Created On : 13-Jul-2019 2:03:04 PM */

/* DBMS : PostgreSQL */

/* -- */

/* Drop Sequences for Autonumber Columns */

DROP SEQUENCE IF EXISTS exercise_id_seq

;

DROP SEQUENCE IF EXISTS exercise_tags_id_seq

;

DROP SEQUENCE IF EXISTS tag_id_seq

;

DROP SEQUENCE IF EXISTS test_file_id_seq

;

/* Drop Tables */

DROP TABLE IF EXISTS exercise CASCADE

;

DROP TABLE IF EXISTS exercise_tags CASCADE

;

DROP TABLE IF EXISTS tag CASCADE

;

DROP TABLE IF EXISTS test_file CASCADE

;

/* Create Functions */

CREATE OR REPLACE FUNCTION f_check_year_not_in_the_future()

 RETURNS trigger AS

$BODY$

BEGIN

 IF NEW.year > DATE_PART('year', current_date) THEN

 RAISE EXCEPTION 'Year must not be in the future'

 USING HINT = 'Change the year';

 END IF;

 RETURN NEW;

END;

$BODY$

LANGUAGE plpgsql

;

/* Create Tables */

CREATE TABLE exercise

(

 id integer NOT NULL DEFAULT

NEXTVAL(('"exercise_id_seq"'::text)::regclass),

44

 exercise_name varchar(50) NOT NULL,

 exercise_description text NULL,

 passed integer NOT NULL DEFAULT 0,

 failed integer NOT NULL DEFAULT 0,

 year integer NOT NULL

)

;

CREATE TABLE exercise_tags

(

 id integer NOT NULL DEFAULT

NEXTVAL(('"exercise_tags_id_seq"'::text)::regclass),

 exercise_id integer NOT NULL,

 tag_id integer NOT NULL

)

;

CREATE TABLE tag

(

 id integer NOT NULL DEFAULT

NEXTVAL(('"tag_id_seq"'::text)::regclass),

 tag_name varchar(255) NOT NULL

)

;

CREATE TABLE test_file

(

 id integer NOT NULL DEFAULT

NEXTVAL(('"test_file_id_seq"'::text)::regclass),

 exercise_id integer NOT NULL,

 file_name varchar(150) NOT NULL,

 file_content bytea NOT NULL,

 is_raw_code boolean NOT NULL DEFAULT false

)

;

/* Create Primary Keys, Indexes, Uniques, Checks */

ALTER TABLE exercise ADD CONSTRAINT PK_exercise

 PRIMARY KEY (id)

;

ALTER TABLE exercise

 ADD CONSTRAINT AK_exercise_exercise_name_uniq UNIQUE (exercise_name)

;

ALTER TABLE exercise ADD CONSTRAINT CHK_exercise_passed_is_not_negative

CHECK (passed >= 0)

;

ALTER TABLE exercise ADD CONSTRAINT CHK_exercise_failed_is_not_negative

CHECK (failed >= 0)

;

ALTER TABLE exercise ADD CONSTRAINT CHK_exercise_exercise_name_not_empty

CHECK (LENGTH(TRIM(exercise_name)) > 0)

;

CREATE TRIGGER TRG_exercise_year_not_in_the_future

BEFORE INSERT OR UPDATE ON exercise

FOR EACH ROW

45

 EXECUTE PROCEDURE f_check_year_not_in_the_future();

;

ALTER TABLE exercise_tags ADD CONSTRAINT PK_exercise_tags

 PRIMARY KEY (id)

;

ALTER TABLE exercise_tags

 ADD CONSTRAINT AK_exercise_tags_exercise_tag_uniq UNIQUE

(exercise_id,tag_id)

;

CREATE INDEX IXFK_exercise_tags_exercise ON exercise_tags (exercise_id

ASC)

;

CREATE INDEX IXFK_exercise_tags_tag ON exercise_tags (tag_id ASC)

;

ALTER TABLE tag ADD CONSTRAINT PK_tag

 PRIMARY KEY (id)

;

ALTER TABLE tag

 ADD CONSTRAINT AK_tag_tag_name_uniq UNIQUE (tag_name)

;

ALTER TABLE tag ADD CONSTRAINT CHK_tag_tag_name_not_empty CHECK

(LENGTH(TRIM(tag_name)) > 0)

;

ALTER TABLE test_file ADD CONSTRAINT PK_test_file

 PRIMARY KEY (id)

;

ALTER TABLE test_file

 ADD CONSTRAINT AK_test_file_file_name_uniq UNIQUE (file_name)

;

ALTER TABLE test_file ADD CONSTRAINT

CHK_test_file_file_content_not_empty CHECK (LENGTH(file_content) > 0)

;

ALTER TABLE test_file ADD CONSTRAINT

CHK_test_file_file_content_does_not_exceed_5_mb CHECK

(LENGTH(file_content) <= 5 * pow(10, 6))

;

CREATE UNIQUE INDEX IXAK_test_file_file_content_hash_uniq ON test_file

(md5(file_content))

;

CREATE INDEX IXFK_test_file_exercise ON test_file (exercise_id ASC)

;

/* Create Foreign Key Constraints */

ALTER TABLE exercise_tags ADD CONSTRAINT FK_exercise_tags_exercise

 FOREIGN KEY (exercise_id) REFERENCES exercise (id) ON DELETE

Cascade ON UPDATE No Action

;

46

ALTER TABLE exercise_tags ADD CONSTRAINT FK_exercise_tags_tag

 FOREIGN KEY (tag_id) REFERENCES tag (id) ON DELETE Cascade ON

UPDATE No Action

;

ALTER TABLE test_file ADD CONSTRAINT FK_test_file_exercise

 FOREIGN KEY (exercise_id) REFERENCES exercise (id) ON DELETE

Cascade ON UPDATE No Action

;

/* Create Table Comments, Sequences for Autonumber Columns */

CREATE SEQUENCE exercise_id_seq INCREMENT 1 START 1

;

CREATE SEQUENCE exercise_tags_id_seq INCREMENT 1 START 1

;

CREATE SEQUENCE tag_id_seq INCREMENT 1 START 1

;

CREATE SEQUENCE test_file_id_seq INCREMENT 1 START 1

;

47

Appendix 3 – Dockerfile and docker-compose.yml

Dockerfile:

Use image based on alpine linux (most lightweight) which has nodejs

installed by default ###

FROM node:12-alpine

WORKDIR /usr/app/

RUN apk update && apk upgrade

RUN mkdir tut-tests-api && mkdir tut-tests-ui

Caching node modules for faster subsequent builds ###

COPY ./tut-tests-api/package.json /usr/app/tut-tests-api/package.json

RUN cd tut-tests-api/ && npm i

COPY ./tut-tests-ui/package.json /usr/app/tut-tests-ui/package.json

RUN cd tut-tests-ui/ && npm i

== ###

COPY . /usr/app

RUN cd ./tut-tests-api && npm run build

RUN cd ./tut-tests-ui && npm run build && cp -a build/* ../tut-tests-

api/build/public

Clean up ###

RUN rm -rf tut-tests-ui/ && cd tut-tests-api/ && ls | grep -v -E

"build|node_modules" | xargs rm -rf

WORKDIR /usr/app/tut-tests-api/build/

EXPOSE 3000

CMD ["node", "src/main.js"]

48

docker-compose.yml:

version: '3'

services:

 app:

 build: .

 ports:

 - "3000:3000"

 environment:

 - "DB_USER=${DB_USER}"

 - "DB_PASSWORD=${DB_PASSWORD}"

 - "DB_NAME=${DB_NAME}"

 - "DB_HOST=${DB_HOST}"

 - "DB_PORT=${DB_PORT}"

 - "NODE_ENV=${NODE_ENV}"

49

Appendix 4 – Gilab-ci.yml

image: docker

services:

 - docker:dind

before_script:

- sudo apt update && sudo apt upgrade

Maybe later it will be better to do everything here, without docker-

compose. But now is now. #####

stages:

- build

 - test

 - deploy

run_tests:

 stage: test

 script: echo "No tests yet :("

deploy_to_server:

 stage: deploy

 ### Available only on push to master branch ###

 only:

 - master

 environment: production

 script:

 - sudo apt install python-pip -y

 - pip install docker-compose

 - docker-compose up -d -–build

 ### User must trigger the job manually ###

 when: manual

50

Appendix 4 – Repository link

Repository https://gitlab.cs.ttu.ee/Karen.Ofljan/tut_test_generator

https://gitlab.cs.ttu.ee/Karen.Ofljan/tut_test_generator

