
DOCTORAL THESIS

Cybersecurity Testing and
Attack Propagation Analysis of
Autonomous Driving Software

Andrew James Roberts

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

41/2025

Cybersecurity Testing and Attack
Propagation Analysis of Autonomous

Driving Software

ANDREW JAMES ROBERTS

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Software Science
The dissertation was accepted for the defence of the degree of Doctor of Philosophy on
27th May 2025

Supervisor: Professor Dr. Olaf Manuel Maennel
School of Computer and Mathematical Sciences
University of Adelaide
Adelaide, Australia

Co-supervisors: Dr.-Ing. Mohammad Hamad

Opponents:

Department of Computer Engineering
Technical University of Munich
Munich, Germany
Assoc. Professor Dr. Raivo Sell
Department of Mechanical and Industrial Engineering, School of Engineering
Tallinn University of Technology
Tallinn, Estonia
Professor Dr. Iain Phillips
Loughborough University
Loughborough, United Kingdom
Asst. Professor Dr. Monowar Hasan
Washington State University
Washington, United States of America

Defence of the thesis: 25th June 2025, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Andrew James Roberts
signature

Copyright: Andrew James Roberts, 2025
ISSN 2585-6898 (publication)
ISBN 978-9916-80-317-2 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9916-80-318-9 (PDF)
DOI https://doi.org/10.23658/taltech.41/2025
Printed by Koopia Niini & Rauam

Roberts, A. J. (2025). Cybersecurity Testing and Attack Propagation Analysis of Autonomous
Driving Software [TalTech Press]. https://doi.org/10.23658/taltech.41/2025

https://digikogu.taltech.ee/et/Item/fbecd0b1-252c-4a7d-b06c-588683fd4640

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

41/2025

Autonoomse sõiduki juhtimistarkvara
küberturvalisuse testimine ja rünnakute

leviku analüüs

ANDREW JAMES ROBERTS

Contents

List of Publications . 9
Author’s Contributions to the Publications . 10
Abbreviations . 12
1 Introduction . 141.1 Problem Statement . 141.2 Problem Motivation . 151.3 Thesis Contributions . 161.4 Thesis Structure . 17
2 Preliminaries . 182.1 Autonomous Driving . 182.1.1 Autonomous Driving Software. 192.1.2 Autonomous Driving Software Frameworks . 202.2 iseAuto: Autonomous Vehicle for Public Transportation . 232.2.1 Architecture . 242.2.2 Sensor Configuration . 242.2.3 iseAuto Autonomous Driving Software. 252.2.4 Low-Level Control . 292.3 Cyber Threats to Autonomous Driving . 302.3.1 AI Semantic Components . 302.3.2 AI System Components. 382.4 Autonomous Driving Cybersecurity Testing . 392.4.1 Autonomous Driving Test Platforms . 392.4.2 Cybersecurity Testing Methods . 432.5 Summary . 45
3 Evaluation of Autonomous Driving Software to Cyber Attacks 463.1 Methodology for Combined Safety and Security of Autonomous DrivingSoftware Testing. 463.1.1 Combined Safety and Cybersecurity testing methodology for ADAlgorithms . 463.1.2 Results and Analysis . 523.1.3 Discussion. 583.1.4 Related Work . 603.2 Analysing Adversarial Threats to Rule-Based Local-Planning Algorithms forAutonomous Driving . 613.2.1 Threat Model . 633.2.2 Experimental Setup . 653.2.3 Results . 673.2.4 Discussion. 703.2.5 Relation to existing solutions . 723.3 Analysis of Autonomous Driving Software to Low-Level Sensor Cyber Attacks 723.3.1 Approach Overview . 743.3.2 Adversarial Model . 743.3.3 Attack Model . 75

5

3.3.4 Experiment . 763.3.5 Results . 783.3.6 Discussion. 863.4 Summary . 87
4 Debugging Autonomous Control Software to Cyber Attacks . 894.1 ADAssure: A Debugging Methodology for AD Control Algorithms. 894.1.1 ADAssure: Methodology . 894.1.2 Association Rule Generation Phase. 914.1.3 Association Rule Mining. 914.1.3.1 Time Notation . 914.1.3.2 Attack Detection . 924.1.4 Assertion Review and Debugging . 924.1.5 Autonomous Driving Control Algorithm. 934.1.6 Experimentation and Results . 934.1.7 AD Control System Datasets . 934.1.7.1 Automated Analysis . 954.1.7.2 Assertion Review and Debugging . 954.1.8 Relation to Existing Work . 984.2 REACT: Autonomous Intrusion Response for Intelligence Vehicles 994.2.1 Response Strategies . 1004.2.2 Dynamic Cost and Impact Evaluation. 1034.2.3 Optimal Selection Algorithms. 1074.2.4 Proposed Automotive IRS . 1124.2.5 IRS component . 1144.2.6 Evaluation. 1174.2.7 Results . 1184.2.7.1 Parameters adaption . 1224.2.7.2 Inclusion of Velocity Considerations . 1234.2.8 Conclusion and Outlook. 1234.3 Summary . 124
5 Tools for Autonomous Driving Software Cybersecurity Testing. 1255.1 Cybersecurity Test Range for Autonomous Vehicles. 1255.1.1 Relation to Existing Work . 1255.1.2 AV Shuttle Cybersecurity Program. 1265.1.3 Cybersecurity Test Beds for AV Shuttles . 1305.1.4 Cybersecurity Test Scenarios for AV Shuttles. 1325.1.5 Discussion. 1395.2 ADSecLang - A Domain Specific Language for Cybersecurity Testing of Au-tonomous Vehicles . 1405.2.1 ADSecLang: The Proposed Solution . 1415.2.2 Semantics of ADSecLang . 1435.2.3 Evaluation Case Studies . 1455.2.4 Relation to Existing Work . 1495.3 SenseFuzz . 1505.3.1 FuzzSense . 1515.3.1.1 Orchestrator: . 1515.3.1.2 Mutator: . 1525.3.1.3 Scenario Fuzzer: . 152

6

5.3.1.4 Sensor Data Fuzzers: . 1535.3.1.5 Oracle and Evaluation: . 1535.3.2 Sensor Data Fuzzing . 1535.3.3 Multi-Stage Approach . 1555.3.3.1 Scenario Fuzzing Iteration . 1555.3.3.2 Sensor Fuzzing Iteration . 1555.3.4 Experiment & Results . 1565.3.5 Related Work . 1575.3.6 Future Direction of FuzzSense . 1585.4 ADSecData Platform: Open-Source Data Platform for Autonomous DrivingCybersecurity . 1585.4.1 Autonomous Vehicle Cybersecurity Data . 1595.4.2 ADSecData Platform. 1645.4.3 ADSecData Case Study . 1655.5 Discussion . 1685.6 Future Roadmap of ADSecData . 1695.7 Relation to Existing Work . 1695.8 Summary . 170
6 Future Direction . 171
7 Conclusion . 172
References . 174
Acknowledgments . 206
Abstract . 207
Kokkuvõte . 209
Appendix I . 211
Appendix II . 219
Appendix III . 229
Appendix IV . 237
Appendix V . 251
Appendix VI . 271
Appendix VII . 279
Appendix VIII . 289
Appendix IX . 307

Appendix X . 319
Curriculum Vitae . 331

7

Elulookirjeldus . 333

List of Publications
The present Ph.D. thesis is based on the following publications that are referred to in thetext by Roman numbers.
I A. Roberts, L. Teply, M. Bellone, M. Pese, O. Maennel, M. Hamad, and S. Steinhorst.Fuzzsense: Towards a modular fuzzing framework for autonomous driving software.In arXiv, 2025II A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Adsecdata platform: An open-source data platform for autonomous drivingcybersecurity. In 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring),pages 1–7, 2025III A. Roberts, J. Cheng, O. Maennel, M. Hamad, and S. Steinhorst. Adseclang: A domain-specific language for cybersecurity testing of autonomous vehicles. In 2025 IEEE 101st
Vehicular Technology Conference (VTC2025-Spring), pages 1–6, 2025IV A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Analysis of autonomous driving software to low-level sensor cyber attacks.In 2025 IEEE/ACM 20th Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pages 1–11, 2025V M.Hamad, A. Finkenzeller,M. Kühr, A. Roberts, O.Maennel, V. Prevelakis, and S. Stein-horst. React: Autonomous intrusion response system for intelligent vehicles. Com-
puters & Security, 145:104008, 2024VI A. Roberts,M. R. H. Iman,M. Bellone, T. Ghasempouri, J. Raik, O.Maennel,M. Hamad,and S. Steinhorst. Adassure: Debugging methodology for autonomous driving controlalgorithms. In 2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1–6, 2024VII A. Roberts, M. Malayjerdi, M. Bellone, O. Maennel, and E. Malayjerdi. Analysingadversarial threats to rule-based local-planning algorithms for autonomous driving.
Inaugural Symposium on Vehicle Security and Privacy (VehicleSec 2023) with NDSS,pages 1–8, 2023VIII A. Roberts, S. Marksteiner, M. Soyturk, B. Yaman, and Y. Yang. A global survey of stan-dardization and industry practices of automotive cybersecurity validation and verifi-cation testing processes and tools. SAE International Journal of Connected and Auto-
mated Vehicles, 7, 11 2023IX M. Malayjerdi, A. Roberts, O. M. Maennel, and E. Malayjerdi. Combined safety andcybersecurity testing methodology for autonomous driving algorithms. Proceedings
of the 6th ACM Computer Science in Cars Symposium, pages 1–10, 2022X A. Roberts, O. Maennel, and N. Snetkov. Cybersecurity test range for autonomousvehicle shuttles. 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW), pages 239–248, 2021

9

Author’s Contributions to the Publications
I In Publication I as the first author, I designed the FuzzSense architecture. The Fuz-zSense architecture that I designed furthers state-of-the-art through targeting theAD sensor and enables fuzzingmultiple targets using diverse fuzzing techniques. Fuz-zSense is an initial contribution to the community of an extensible fuzzing architec-ture thatwill enable the community to test AD systems in amore agile and repeatablemanner. The results of the initial testing of reveal its ability to find vulnerabilities instate-of-the-art AD software frameworks. I authored the manuscript
II In Publication II as the first author, I designed the framework of the ADSecData plat-form. ADSecData is the first contribution in the research community that providesanalysis of the utility of AD data for cybersecurity. ADSecData is also the only open-source AD cybersecurity data platform. I conducted the collection and analysis ofavailable automotive cybersecurity datasets. I highlighted the research gaps in thecommunity and then I provide the ADSecData data generation process. The resultsof the paper is available, open-source AD cybersecurity datasets. I authored themanuscript.
III In Publication III as the first author, I designed ADSecLang. ADSecLang is a domain-specific language for AD cybersecurity. I defined the taxonomy and workflows andanalysis of the experiments. The ADSecLang validated performance in discovery vul-nerabilities in state-of-the-art end-to-end AD software. ADSecLang is the first con-tribution for the development of structured cybersecurity testing of AD systems. Iauthored the manuscript.
IV In Publication IV as the first author, I originated the idea of analysis of the propa-gation of attacks to AD systems. I conducted a literature review of real-world andacademic research on attacks to automotive and aviation sensors. I developed theattack model and conducted the propagation analysis. The propagation analysis isone of the first contributions to the research community of analysis of the effect ofcyber attacks to the integrated hardware/software architecture in AD systems. I au-thored the manuscript.
V In Publication V as a contributing author, I provided input to the design of intru-sion response in automotive systems. I analysed the results of the technical experi-ments and provided feedback in collaboration with other authors. I co-authored themanuscript.
VI In Publication VI I was the joint first author. I originated the idea of the ADAssuremethodology. I provided the novel approach of using variances in vehicle dynamicsdata as a means of fingerprinting cyber attack behaviour. I contributed the datasetsand conducted themanual analysis to compare the results of the automated analysisand fine-tune the assertions which are used as deterministic rules on the controlsystem. I co-authored the manuscript.
VII In Publication VII as the first author, I developed the attack model which consists of3 diverse attacks (lateral and longitudinal deviation and time-message delay) to thecost-based planning algorithm. I conducted the analysis of the results which demon-strated that these attacks can successfully exploit vulnerabilities in the planning soft-ware of the case study vehicle (iseAuto). I authored the manuscript.

10

VIII In Publication VIII, as the joint first author, I wrote the sections on automotive cy-bersecurity regulation, academic survey and analysis of processes and tools usedin industry. This work was the first publication on automotive cybersecurity by theInternational Alliance for Mobility Testing and Standardisation Working Group 4, Cy-bersecurity, for which I was a leading contributor. It is also one of the first studieson automotive cybersecurity regulations, standards and industry tools/processes. Ico-authored the manuscript.
IX In Publication IX as the joint first author, I provided the novel approach of combiningsafety and security metrics in a methodology to enhance analysis of cybersecuritytesting. I developed the attack model (adversarial LiDAR point cloud injection) andthe metrics for security. The results validated that the attack model was able to ex-ploit vulnerabilities in the perception and planningmodules of the case study vehicle(iseAuto). I conducted further analysis of the testing results and collaborated withthe software developers to provide recommendations for improving AD software ro-bustness. I co-authored the manuscript.
X In Publication X as the first author, I conducted an analysis of AD testbeds and ADprograms operating in real-world conditions. The analysis resulted in the choice ofDuckieTown for further evaluation. I collaborated with the DuckieTown Foundation,procured the hardware and built the DuckieTown testbed at TalTech. I developedthe cyber threat generation method, which involved interviewing real-world AD op-erators to ascertain realistic threat scenarios. I conducted the experiments and theanalysis which validated the ability of the small-factor cyber-physical testbed to sup-port edge and corner cases for AD cybersecurity. I authored the manuscript.

11

Abbreviations
ABS Anti-Lock Braking
ACC Advanced Cruise Control
AD Autonomous Driving
ADAS Advanced Driver Assistance System
AI Artificial Intelligence
AV Autonomous Vehicle
CAN Controller Area Network
CNN Convolutional Neural Network
DNN Deep Neural Network
DTC Distance-to-Collision
ECU Electronic Control Unit
E/E Electrical/Electronic Components
EMI Electromagnetic Interference
ESC Electronic Stability Control
GNSS Global Navigational Satellite System
GPS Global Positioning System
HiL Hardware-in-the-Loop
IMU Inertial Measurement Unit
IRS Intrusion Response System
IDS Intrusion Detection System
LKAS Lane-Keeping Assistance System
LiDAR Light Detection and Ranging
LIN Local Interconnect Network
MOST Media Oriented Systems Transport
NDT Normal Distributions Transform
NPC Non-Playable Character
ODD Operational Design Domain
PID Proportional–Integral–Derivative Controller
ROS Robotic Operating System
RSU Road Sign Unit

12

SAE Society of Automotive Engineers
SAW Simple Additive Weighting
SDV Software-Defined-Vehicles
SiL Software-in-the-Loop
SOC Security Operations Center
SUT System-Under-Test
VSOC Vehicle Security Operation Center
TARA Threat Analysis and Risk Assessment
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything

13

1 Introduction
In recent years, the automotive domain has seen a transformation of vehicular architec-tures from legacy, analog, serial, mechanical control to connected vehicles with software and network-centric architectures. Autonomous Driving (AD) furthers this transformation, replacing human control with software control, guided by intelligent algorithms. AD soft-ware relies on input from telemetry of diverse sensors (LIDAR, Camera, Radar, IMU etc.) to create perception of the driving environment and localisation for navigational planning and motion-control [223]. Integrity and availability of sensing input are critical to ensuring the robustness of autonomous control decisions [223] [276] [10]. Security of automotive technologies has been a burgeoning area of research for the last decade since proof-of-concept attacks on controller-area-networks (CAN) and infotainment systems introduced to the public consciousness, the potentiality for an attacker to exploit insecure wireless networks and software vulnerabilities to cause unsafe and adverse driving actions [196]. Within these attack models, the CAN messages for vehicle actuation communicated be-tween embedded electrical (E/E) components can be manipulated to alter the behaviour of the vehicle to produce unsafe outcomes. The attack surface is increased for AD architec-tures for which the software replaces the human-in-the-loop, and thus the software acts as the interpreter of sensing data, the manager of decision-control and the observer of driving behaviour. Within this software-centric transformation, methods and tools to test the robustness of AD software to cyber attacks and to assess vulnerabilities of decision-control functions is of vital importance in the digital transformation of automotive.
1.1 Problem Statement
AVs have been introduced into real-world driving environments through diverse trials of ride-hailing services [279] [214] [343] and last-mile public transportation shuttles [122] [73] [17]. During the course of their operation these vehicles have experienced a number of adver-sarial events. Activists in San Francisco have used adversarial examples in the form of traffic cones placed at incautious areas of the driving environment (Figure 1a) and stop signs printed on t-shirts (Figure 1b). The aim of these attacks is to induce the object detection to misclassify the adversarial example as an integrous part of the driving environment, interrupt the driving mission, and cause decision uncertainty, effectively immobilising the vehicle [203] [221] [147]. Adversaries are motivated by the challenge of manipulating the autonomous cognition which is supplanting human control and the possibility to induce the algorithmic control to perform actions which impact safety, security and result in an unsuccessful mission.

(a) Safe Street Activist Group Place Cone of Cruise AV [147] (b) Activist with Adversarial Example T-Shirt [221]

Figure 1: Attacks on AV ride-hailing systems

14

AVs operating in the road environment are further susceptible to a range attacks.These include usage of lasers to occlude perception sensors (Camera, LiDAR) [302] [159][5] [88], projection of adversarial examples on the road environment including transpar-ent images [208] and physical invariants (malicious road patches etc.) [316] [114] [178]and jamming and spoofing of GNSS, to name a few. Jamming and spoofing of GNSS isa recurrent feature of driving environments located within and in proximity to areas ofgeopolitical tensions (See Figure 2).

Figure 2: GNSS Jamming Activity within the Baltic States 10th January 2025 [310].

Given the nascent nature of AD technology, there is a predominant need to investigatethe vulnerabilities of real-world, operational AD systems to cyber attack, understand howthe existing design lacks robustness to cyber attacks and develop mechanisms for testingand assurance for operational readiness.
1.2 Problem Motivation
There is a preponderance of challenges of cybersecurity of AD software. This thesis fo-cuses on three main areas, vulnerability testing, analysis of system impact from cyberattacks and testing methods, tools and processes. The primary motivation for character-ising the problem within these areas and orienting the focus of the thesis in this directionis our overall aimwhich is to assess the vulnerability of a real-world vehicle to cyber attacksand develop knowledge and tangible artifacts which can enhance cybersecurity testing.As evidenced through the aforementioned examples of attacks on real-world vehicles therobustness of the design of AD software is challenged by cyber attacks, particularly, inno-vative attacks which develop from edge and corner cases. Development of AD technologyhas predominantly focused on complex areas of system integration and safety validation.Initial supporting technologies such as the ROS middleware [2] and Autoware softwareframework [4] were designed without mechanisms for secure communication, authenti-

15

cation and integrity checking. Further, within the cybersecurity domain, research is pre-dominantly conducted in a silo, isolated from the knowledge of AD software developers,control system designers and safety validation engineers. There are a sparsity of studiesthat contend with AD software developed and customised for a real-world vehicle withalgorithms optimised for its body physical properties, driving maneuvers and ODD.Cybersecurity testing of AD is challenged by a lack of comprehensive testing meth-ods which delineate the affect cyber attacks have on system behaviour. Binary pass/failmetrics are the predominant means for evaluating the success of attacks in contrast tometrics which extrapolate a more meaningful evaluation of system behaviour in the con-text of safety and security [263]. Algorithm designers need to receive detailed feedbackfrom cybersecurity testing to aid root-cause analysis of safety failures. Whether the failurecan be attributed to a lack of optimisation of the algorithm to a given scenario-based testor if there exists a lack of robustness to cyber attack. Further, there is limited knowledgeon how attacks propagate within this system-of-systems architecture, what crucial break-points exist which affect control behaviours andwhat responsemechanisms are available.At a practical level, to test software used in real-world, operational vehicles, a greaterunderstanding of testbed technologies and tools for structured testing is required. Attackmodels overwhelmingly are targeted at the physical layer. Such examples include shininglasers into LiDAR sensors, mirror reflections aimed at the camera and adversarial exam-ples targeting road markings and traffic signs. These attacks, are primarily conducted insimulation environments, using generic, off-the-shelf algorithms and vehicle sensor con-figurations. For applicability to real-world programs, there is a need to investigate theuse of diverse testbed technologies including digital-twins which have fidelity to the soft-ware stack and sensor configurations of the vehicle. Attacks are constructed as proof-of-concepts, which for usage in operational settings, require customisation and/or reverseengineering to deploy the attack outside its originating environment [263] [223]. Devel-opment of structured attack test generation in simulation environments is essential toenable agile and repeatable testing, lower the cost of testing and enable reproducabilityand wider community usage.
1.3 Thesis Contributions
This thesis provides foundational knowledge for cybersecurity testing of AD software inthe context of real-world, operational systems. This work investigates the robustness ofAD software to cyber attacks and focuses on addressing a range of key areas of concern.We propose solutions to cybersecurity testing to address the aforementioned challengesthat provide greater depth of insights into the robustness of AD software. More specifi-cally, the thesis provides the following contributions to cybersecurity testing:

• We propose diverse iterative and agile AD cybersecurity testing methods. We applythem to a case study of a real-world, operational, AV shuttle.
• We demonstrate the utility of these methods using a testing tool-chain approachconsisting of diverse test-bed technologies.
• Wediscover vulnerabilities in bothmodular and end-to-end software architectures.Specifically in the planning and localisation software modules of the modular archi-tecture, and the training of neural networks in the end-to-end architecture.
• We evaluate the findings with AD software control designers and safety validationengineers and use this knowledge to understand system optimisation and developmethods for root-cause analysis.

16

• We present tools for AD cybersecurity testing to enhance structured testing, andcommunity efforts towards standardisation of testing.
The itemised list of open-source tools are as follows:
• ADSecData Platform - Datasets of experiments conducted in this thesis: https:
//sites.google.com/view/adsecdataplatform/home

• REACT - Dynamic intrusion response system for automotive: https://github.
com/AndrewRobertsEst/REACT

• Self-driving testbed for cybersecurity demonstration videos https://tinyurl.
com/2xxvvkzd

• ADSecLang -Domain specific language for AD cybersecurity testing:https://github.
com/AndrewRobertsEst/AttackLa

• FuzzSense - Fuzzing tool for AD software: https://anonymous.4open.science/
r/FuzzSense-E680/README.mdFuzzSense

1.4 Thesis Structure
The thesis is divided into 7 Chapters. Chapter 2 details background information about ADsoftware, in particular the foundations of AD software frameworks, cyber threats and adiscussion of some related work (Pub. VIII). Next, in Chapter 3, we approach the problemof evaluating affects of cyber attacks within the AD software. In this chapter, we presenta methodology for combined security and safety testing and utilise a testing-tool chainapproach to explore the problem amidst a range of diverse cyber attacks at the algorithmand sensor level (Pub. IX, VII, IV). Chapter 4 deepens the analysis of cyber attacks in ADsoftware by presenting methods for fingerprinting cyber activity, debugging AD softwareand investigates mechanisms cyber incident response (Pub. VI, V). Chapter 5 presentsconceptual frameworks for structured and fuzz testing and open-data sharing(Pub. X, III,I, II). Chapter 6 provides direction for future work. Chapter 7 concludes with a summaryof the findings and their relevance to the broader community.

17

2 Preliminaries
The architecture of autonomous vehicles consist of a diverse technology stack incorpo-rating from the low-level sensing, electromechanical devices to the high-level softwarecontrol. To understand the cybersecurity implications of driving autonomy, it is necessaryto first understand the technology stack of AVs. Within this section we will present first,a high-level overview of autonomous driving. Consequently, a more detailed extrapola-tion of the AV technology stack will be presented within the context of the case study AVutilised in this thesis. Last, the cyber threats to autonomous driving are presented.
2.1 Autonomous Driving
To ensure a consistent taxonomy of driving autonomy, SAE [246] have defined diverse lev-els of autonomy according to technology features and driving control. There are 6 levels ofdriving automation according to the SAE Levels of Driving Automation (See Figure 3). Level0 to 2 vehicular architectures are based on human driver control and supervision of thevehicle. Level 0 represents legacy vehicles, there is no autonomy features and softwarefunctionality is limited to the provision of warnings and driver assist notices. Level 1 to2, which is typical of modern connected vehicles, provide limited autonomy technologiessuch as cruise control, lane-centering and steering, brake and acceleration support. Level2 is a designation of popular limited autonomy technologies, OpenPilot [22] and Tesla Au-topilot [332] (considered between level 2 and level 3). In level 2, the vehicular sensorsmonitor the driving environment and from the sensing data, lane centering and adaptivecruise control algorithms informmotion control and actuation decisions to maintain vehi-cle position in the driving environment. The autonomy software does not perform com-plex driving maneuvers such as overtaking and intersection management and is not ableto proactively respond to dynamic driving situations. The human driver is required to keepcontrol and supervision of the vehicle at all times. Level 3 offers limited self-driving func-tionality with the requirement of human-control when the autonomy functionality en-counters uncertainties that it cannot resolve. Full self-driving autonomy is defined withinlevel 4 and level 5. Within these autonomy levels, the autonomous software is expectedto control the vehicle without human intervention. This thesis focuses on self-driving au-tonomy as defined from levels 4 to 5.

18

Figure 3: SAE J3016 Levels of Driving Automation [246].

2.1.1 Autonomous Driving SoftwareHighly automated vehicles, SAE Level 4 to 5, exhibit a sensor layout which consists ofdiverse sensors (Camera, LiDAR, RADAR, IMU, GNSS) and multiplicity of sensors to ensuredense coverage. This is in contrast to semi-autonomous vehicles which predominantly usecamera and ultrasonic radar sensors. The number of camera sensors of semi-autonomousvehicles can range from 3 in the case of comma ai to 8 in Tesla vehicle model [300]. Inhighly automated vehicles, the AD software performs the tasks of perception, planning,localisation and decision-control. Due to the reliance on algorithms to perform the drivingactions and the absence of active human supervision and intervention, highly automatedvehicles have the most robust sensing profile for perception and localisation. However,due to cost, especially of the LiDAR and high-definition camera sensors, this architectureis predominantly utilised for autonomous public-transit shuttles and specific commercialuse-cases such as logistics and freight [265]. Figure 4 displays the layout of sensors on alevel 4 AV for public transportation.

19

Figure 4: Perception Sensor Layout of Autonomous Vehicle for Public Transport [87].

2.1.2 Autonomous Driving Software Frameworks
Architectures for AD are categorised in three types (Figure 5); modular/pipeline, end-to-
end and hybrid [244]. The modular/pipeline architecture compartmentalises the auton-omy task pipeline (localisation, perception (detection), prediction, path planning , decision-making, control) intomodules. Amajor benefit of themodular approach is that each of thealgorithms for the AD tasks can be accessed and modified according to the requirementsof the vehicle development and testing team. This modular approach enables softwaredevelopers to work on each task, andmore clearly understand the inputs, outputs and be-haviours of each task in the pipeline. The modular architecture further allows the mixedusage of commercial vendor developedmoduleswith open-sourcemodules. Eachmodulecan be seen as the top of a hierarchical structure with sub-modules required for individualprocesses. A module and its constituents can extend to hundreds of thousands lines ofcode, considering the complexity of the task. This modularity can also be a disadvantage,if there exists a lack of robustness of one module, it affects that performance of the oth-ers. Further, there is additional effort to integratemodular components and ensure seam-less communication and performance. The End-to-End architecture uses deep learning tohandle the entire navigation pipeline in an unified process. Sensing input is directed into aneural network for processing of navigation decisions. The benefits of end-to-end includea more simplified architecture and more holistic optimisation as optimisation takes placeon unified architecture rather than modular parts. Drawbacks include the requirementsfor training data such as a need for large scale datasets and holistic data that includes edgeand corner cases. Also, the lack of transparency of the end-to-end DNN which resem-bles a black-box. This opacity complicates efforts to debug and troubleshoot. The hybridapproach uses elements of the modular and end-to-end architectures, leveraging neuralnetworks for path-planning, whilst maintaining separate modules for perception and con-trol. The advantages of this approach the targeted use of deep learning for more complextasks, and deterministic algorithms for tasks that require reliability and interpretability.

20

The drawbacks of the hybrid approach are complexity of integration and resource usagedriven by combined use of deep learning and deterministic algorithms [244].

Figure 5: Autonomous Driving Architecture [244]

There are two predominant software frameworks for levels 4 and 5 autonomy, Auto-ware [4](Figure. 6) and Apollo [15](Figure. 8).

21

Figure 6: Autoware Architecture [4]

Autoware [4] is an open-source software framework, consisting of a modular/pipelinearchitecture that encompasses the full-range of AD functionality (localisation, percep-tion (detection), prediction, planning , control) with defined interfaces and APIs. Eachof the modules can take diverse sensor input to inform task performance. The develop-ment of Autoware is supported by theAutoware foundationwhich consists of contributorsfrom industry and academia. The AV technology stack of Autoware (Figure 7) is based onROS [143]. ROS is a middleware that consists of software libraries to support the packag-ing of hardware and devices and a messaging service to support communication betweenactuation and high-level software processes.

Figure 7: Autonomous Vehicle Technology Stack - Autoware [143]

Apollo [15] is an open platform, end-to-end architecture. The open-platform means
22

that development and testing teams can access the simulation and execute tests, how-ever, the neural network is a black-box and therefore its training and configuration is notopen-source. Developer access needs to be granted by Apollo to gain advanced privileges.Cyber RT, like ROS, is the middleware software which underpins the run-time communi-cations required for real-time operation.

Figure 8: Apollo 10.0 Architecture [15]

2.2 iseAuto: Autonomous Vehicle for Public Transportation

This thesis uses a real-world operational AV system as a case-study. The iseAuto [254](seeFigure 9), is a SAE level 4, real-world AV shuttle for public transportation. It provides last-mile shuttle transport for public users in Tallinn, Estonia and has provided similar servicesfor cities in European countries such as Norway and Greece.

Figure 9: iseAuto autonomous shuttle [185]

23

2.2.1 Architecture
The architecture of the iseAuto displayed in Figure 10 consists of advanced sensors, the ADplatformwhich contains theAD software, the supporting compute platformandnetworks,and the low-level control and actuation [256].

Figure 10: Autonomous vehicle high-level functional architecture [256]

2.2.2 Sensor Configuration
Sensors are connected to the AD platform running AI-based models for identification, de-tection and segmentation of objects and environmental information through a Gigabitethernet switch. Data flow is managed and synchronized directly in the Autoware stack,sending data as ROS topics to concurrent threads (nodes) running inference over the AI-based deployed modules. Sensing information are used for perception-related function-alities such as object detection, segmentation and sensor fusion.

The iseAuto uses a multi-LiDAR sensor system for perception and localisation. TwoVelodyne LiDARs are mounted at the top front (VLP-32) and the back (VLP-16) of the vehi-cle, in addition to two Robosense RS-Bpearl at both sides (left and right), to decrease thesensor blind zone around the vehicle. Table 1 lists the iseAuto sensors.
Table 1: Autonomous Vehicle Sensors

Sensor Model

3D lidar (front) Velodyne Ultra puck VLP 323D lidar (rear) Velodyne VLP-162xSide lidar Robosense BpearlSafety lidar Ouster OS0-90 (Safety)3xCamera FlirGNSS Trimble BX992Radar TI

24

2.2.3 iseAuto Autonomous Driving SoftwareThe iseAuto uses Autoware.ai [144] autonomous software stack. As Autoware is a mod-ular architecture, each of the software modules of the iseAuto autonomy platform arecustomised to the requirements of the vehicle. These include the types of missions, bodyphysical profile and driving environment.iseAuto uses ROS to communicate with different blocks of the software stack. Figure 11depicts a ROS-GRAPH displaying only a small subset of the nodes involved in communicat-ing sensing data to the trajectory planning algorithm involved in the overtaking operation.

Figure 11: ROS Graph of AV Shuttle During Overtaking Scenario

Apart of the ROS nodes/topics running on the vehicle are represented in Figure 12. Thesoftware stack is mainly composed of the following main components, sensing and per-ception, mapping, localization and motion planning. Perception modules runs AI-basedmodules for detection, segmentation and interpretation of traffic scenes. Localization andmission planning receive constant feedback from vehicle and global positioning to gener-ate new control commands.
Sensing & Perception ModuleThe algorithm uses the output of the kf_contour_track algorithms to consider all the per-ceived objects based on the LiDARs point cloud in its local path planning. Earlier, theeuclidean clustering algorithm received the filtered point cloud data and prepared pointclusters, which is the input of the kf_contour_track. This combination of cluster and con-tour tracking is done in each sequence for the open-planner to evaluate possible trajec-tories and create the behaviour based on that.
Localisation ModuleThis module provides accurate information regarding the position and orientation of thevehicle. Using a NDT matching search algorithm, it identifies the best matching positionbased on sensor perception. It uses input from the IMU and the point cloud generated bythe LiDAR. Then, it attempts to match the points from our current scan to a grid of prob-ability functions derived from the map. NDT matching algorithms can also benefit fromthe GNSS sensor, which provides initial rough estimates of localization on geo-referencedmaps, thereby avoiding any sudden errors in localization calculations that may result infailures. Figure 13 displays the flow of the localisation algorithm within the AD system.

25

Figure 12: Intelligent driving software stack structure showing ROS nodes/topics communication
between essential elements

Figure 13: Localisation Algorithm Flow within AD System.

Mission & Motion-Planning Module
The iseAuto uses OpenPlanner [56] as its planning algorithm(see Figure 14). OpenPlanneris one of the most widely used path-planner modules in AD software. In the latest versionof this algorithm, which is currently 2.5, the module has become noticeably more ad-vanced in terms of supporting various high-definition map formats, predicting the trajec-tories of other actors, and using a kinematics-based trajectory generator [56]. This versionis compatible with Autoware.ai 1.15. Open-planner combines global and local plannersthat jointly utilize the road network map to generate local waypoints based on a globalroute and manage discrete behaviours such as avoiding dynamic obstacles and followingtraffic lights.For the AD system to plan a mission, firstly, a global planner generates a global ref-erence path using a vector (road network) map. The function of the global planner is tostipulate a route between the starting position and goal position of the mission on theroad map. The local-planner generates smooth and obstacle-free trajectories in the oper-

26

Figure 14: OpenPlanner 2.5 Architecture [57]

Figure 15: Abstract Local Planning Algorithm Flow within AD System.

ational local domain following the global route.The local-planner consists of several modules (see Figure 15); trajectory generation,trajectory evaluation, intention and trajectory estimator, object-tracker and behavior se-lection (decision making) [57].The trajectory generation module generates alternative tracks parallel to the mainpath defined by the global planner. These tracks are named roll-outs (see Figure 16).The trajectory evaluation module assesses all possible roll-outs and the data input fromsensed-data of the AV and makes a cost estimation. The behaviour selector will lead theAV to motion on a roll-out based on the least-cost. Figure 16 shows how open-plannerselected roll-out number 6 in order to pass the non-player character (NPC). It also detectsthe curb lines and avoids those roll-outs which intersect the curbs.Table 2 displays the input and outputs of each of the local-planning modules (Note.intention and trajectory estimator and object-tracker are not visible are still developmen-
27

Figure 16: How open-planner generates different trajectory to pass an object

tal).
Table 2: Local-Planning Module

Node Input Output

Trajectory Generator Initial_Pose Local Trajectories
Current_Pose
Current_Velocity
Lane_Waypoints_Array

Trajectory Evaluator Current_Velocity Local Trajectory_Cost
Current_Pose
Local_Trajectories
Lane_Waypoints_Array
Predicted_Objects
Current_Global_Local_IDS

Behavioural Selector Current_Velocity Current_Behaviour
Current_Pose
Local_Trajectory_Cost
Local_Weighted_Trajectories

Control Algorithm
The local motion planning algorithm generates a trajectory (or a set of control commandsfor the AV) byminimizing a cost function, within a workspace, that includes a set of designparameters. The cost function constitutes the rules for motion-planning which inform thedecision-making for autonomous driving.The cost function is built on five factors and calculated in Equation 1:

C =




wcent
wtrans

wlongColl
wlatColl

wvis



·




Ccent
Ctrans

ClongColl
ClatColl

Cvis




T

(1)

where, Ccent is the cost associated to the central trajectory and is designed to keep the
28

vehicle in the central trajectory;Ctrans is the transition cost that prevents the vehicle fromjumping between roll-outs;ClongColl andClatColl are the cost of the longitudinal and lateralcollision respectively, and finally Cvis is the weight associated to the visibility [207]. Eachof these costs are weighted by their respective weighting factors wi [58].
2.2.4 Low-Level ControlLow-level control is at the base of our software stack having task to give actuators theright commands to generate a desired behaviour. Analog controllers have the functionto follow a specific reference signal. It is clear that such signals are measured by trans-ducers and applied to actuators as current or voltage signals to apply a torque to a motorat the low level. The most common and well known analog controller in automotive isthe ECU, which regulates injection, speed, and other engine parameters. Brake controlmodules are also very common and control various aspects of the braking system, such asABS, ESC, traction control, and brake force distribution. Now, assuming that our goal is tokeep any value of cruise speed, a velocity regulator works by receiving a measure of thecurrent speed, comparing it to the reference, and generate a control signal to accelerateor brake accordingly. Low level controllers typically work on a simple control feedbackloop involving some type of linear systemmodel (or a linearized one). The most common,state of the art, and well established controller in automotive is the PID controller. Theyare wide spread in automotive for their simplicity, robustness, usability and real-time ca-pabilities. A PID controller continuously calculate an error signal based on the differencebetween a desired setpoint and the measured process variable, and then adjust the con-trol output accordingly. They use proportional, integral, and derivative actions to regulatea vehicle actions. The underling equation is relatively easy involving three constants pro-portional, integral and derivative constants, typically indicated asKp,Ki, andKd , toweightthe each action respectively. With reference to Figure 10, PID controllers are at the baseof the "drive controller" and "steering controller" block. Control theory provides a verystable mathematical theory about analysis and synthesis of the controllers, thus how dis-turbance might affect the controller is, in principle, well known. This work aim to provideinsights on how the behaviour of the controller might affect the decision-making blocksin a real-world, operational AV.
Intermediate Layer/Master ControllerThe role of the Master Controller is to parse analog input to the digital network of thevehicle. The Master Controller communicates with the low-level control through the CANbus. The low-level control section in Figure 10 shows all the basic components in oursystem, which are connected to the master controller by 3 different CAN busses:

• CAN1 is used to connect all safety critical components, such as brake systems andelectric motor.
• CAN2 is used for redundancy over all the safety critical components.
• CAN3 is dedicated to low-priority body-related functions such as door automationand lighting.
The Master Controller receives data from the low level via CAN bus and forwards tothe upper-layers via ethernet. Then receives processed signals from the intelligent blocks(the upper-layers) and generate the control commands for the actuators, parsed via CANbus. Basic data from low-level sensors are processed here and forwarded to the upperlayer, this includes speed, acceleration, encoder positioning, voltage and currents. The

29

master controller directly communicates with the upper levels (i.e. AD Software) via ROStopics flowing over the ethernet connected to the Ubuntu-based Autoware PC.

2.3 Cyber Threats to Autonomous Driving

Cyber threats to AD software can be categorised as threats to AI semantic componentsand the AI system components [263]. AI semantic components directly influence the ADmodel and are defined as the advanced sensor technologies (LiDAR, camera, RADAR, GNSSetc.) which generate input data to the AD model. AI system components are the support-ing infrastructure. They are defined as those components which comprise the underlyinginfrastructure which supports the AD model and the operational state of the AV. Such ex-amples of AI system components include the application software, networks, hardware,and E/E devices. The aim of each threat category is to induce the AD pipeline to influencedriving actions which violate safe behaviour.

2.3.1 AI Semantic Components

The adversarial threat models contained in literature, of attacks against AI semantic com-ponents, exploit the physical properties of the sensor technology and the semantic prop-erties of the AD algorithms. Advancement in threat research has emanated from founda-tional work by Eykholt et al. [267] and Petit & Shladover [223]. Eykholt et al. [267] devel-oped adversarial generated robust physical invariants in the form of stickers with pixelsmanipulated in a manner to that would affect the object detection DNN. These stickerswhich were placed on environmental objects such as stop signs and pedestrians. Theydemonstrated that these adversarial examples in the form of physical invariants, couldmanipulate the logic of the DNN of an object detector to fail to recognise (disappearance)or incorrectly classify (creation) the object. Affects to the vehicle included failing to stopfor stop signs and accelerating when the object detector misclassified the adversarial stopsign as an 80 speed limit sign. Petit & Shladover [223] compiled one of the first lists ofpotential attacks to AD. Many of the innovations in threat research emanated from thedirections provided in their paper, especially targeting machine vision and LiDAR. Sincethe publication of these papers, there has emerged a diverse range of proof-of-conceptattacks against the AI semantic components.
Threats to camera perception and localisation centre on assessing limitations of thecamera hardware and the training parameters of theDNN. Threatmodels include jammingor spoofing light signals using adversary infrared and laser devices. This technique aims toexploit vulnerabilities of the camera hardware and filtering within object detection algo-rithms such as YOLO and R-CNN [337] [128] [321] [133] [305] [159] [317] [61]. Other attacksinclude: manipulation of image pixels [267] [47] [101] [212] [206] [161] [27] [46], camouflag-ing obstacles [335] [114] [302], projecting ghost or transparent images to make them ap-pear physical [209] [191] [178] [5], adversarial generatedmalicious road patches [319] [316][132] [47] [134] and manipulating the bounding boxes used for object detection and colli-sion avoidance so that obstacles appear larger or smaller than actual [163] [301] [277] [181].Attacks against level 2 and level 3 autonomy focus on exploiting the parameters of ADASand LKAS systems [250] [138]. Studies which generate perturbations of lane-markingshave demonstrated vehicles can crash due to low-cost adversarial generated road mark-ings [250] [138] [174]. Table 3 lists threats to the camera sensor.

30

Table 3: Cyber Threats to camera perception and localisation

Cyber Threats to Camera Sensor
Paper Threat Model Attacker Knowledge Test Environ-

ment
Object DetectionLu et al. [128] Use of different anglesand lighting for experi-ments of perturbed physicalinvariants.

White-Box Simulation

Eykholt etal. [267] Robust physical invariants.Perturbation of Road SignUnits (Stop Sign) using pix-elized stickers to confuse ob-ject detection.

White-Box Real-World &Simulation

Chen etal. [46] Manipulation of image pix-els to fool DNNobject detec-tion.
White-Box Simulation

Huang etal. [163] Manipulation of the param-eters of the bounding box tomanipulate confidence of R-CNN and YOLO v3 object de-tection.

White-Box & Black-Box Simulation

Zhao etal. [337] Robust physical invariantsto manipulate R-CNN andYOLO v3 object detection.
White-Box Simulation

Xiao etal. [319] Adversarial generated 3Dmesh added to 3D ob-jects to manipulate objectdetection.

White-Box Simulation

Zhang etal. [335] Camouflage vehicles usingadversarial physical gener-ation against object detec-tion.

White-Box & Black-Box Simulation

Nassi etal. [209] Projected ghost objects onthe camera sensor to foolTesla, autopilot, object de-tection to perceive them asphysical objects.

Black-Box Real-World

Man etal. [191] Projection of ghost objectson the camera sensor tomanipulate object detection(Yolo v3 and R-CNN).

White-Box Real-World &Simulation

Wu et al. [316] Adversarial generated mali-cious patches to downgradeobject detection (COCO andYolo v2).

White-Box Simulation

31

Xu et al. [321] Adversarial T-Shirts (movingphysical invariant) againstYolo-v2 and R-CNN objectdetection.

White-Box Simulation

Hu et al. [114] Adversarial generated cam-ouflage attack against objectdetection.
White-Box & Black-Box Simulation

Hamdi etal. [101] Semantic manipulation ofthe learning parameters toenable pixelmanipulation ofthe object detection DNN.

White-Box & Black-Box Simulation

Ji et al. [133] Manipulation of acousticsignals used for communica-tion with the IMU, triggersmotion compensation andblurred camera image im-pacting object-detection(YOLO v3/4/5, R-CNN andApollo).

White-Box & Black-Box Simulation &Real-World

Lovisotto etal. [178] Projection of physical invari-ants to manipulate object-detection (YOLOv3)
Black-Box Simulation &Real-World

Wang etal. [302] Infrared light used to per-turb camera sensor and ma-nipulate object-detection ofTesla, autopilot.

Black-Box Real-World &Simulation

Köhler etal. [159] Laser perturbation of cam-era sensor to distort objectdetection.
Black-Box Simulation

Wang etal. [305] Compresses dimensionsof detection boxes to ma-nipulate object-detection(YOLOv3, R-CNN)

White-Box & Black-Box Simulation

Zolfi et al. [5] Contactless translucentadversarial generated patchplaced against the cameralens to manipulate objectdetection (YOLOv2,v5,R-CNN).

White-Box Simulation

Zhu et al. [317] Placement of lighting bulbon infrared pedestriandetectors to attenuate thelighting to perturb objectdetection.

White-Box Simulation &Real-World

32

Davidson etal. [61] Spoofing of optical flowsensing of the camera tomanipulate the flight ofthe drone. Developmentof RANSAC optical flowalgorithm enhancement.

White-Box Simulation

Guo et al. [88] Projection of modulatedlight emission from anadversarial source to induceincorrect object-detectionof traffic-signs

White-Box Real-World &Simulation

Ma et al. [182] Perturbation of videoframes of the camera sen-sor to increase latency ofobject-tracking

White-Box Simulation

Semantic SegmentationNakka etal. [206] Attacker generates pertur-bations in the image that im-pact semantic segmentationto cause the object detec-tion to fail to detect road/-navigational path from inter-fering objects.

White-Box Simulation

Nesti etal. [212] Adversarial generated roadand driving environment(billboard) patches toimpact semantic segmen-tation to cause the objectdetection to fail to detectroad/navigational path frominterfering objects.

White-Box Simulation &Real-World

Object TrackingJha et al. [132] Manipulation of sensortelemetry through physi-cal attacks (road patchesetc.) induce the vehicleto miscalculate distancesto pedestrians and otherdriving obstacles. Thesemanipulations are gener-ated by a DNN to evadedefensive mechanisms.

White-Box Simulation

Jia et al. [134] Adversarial Examples(Patches) to distract objecttracking.
White-Box Simulation

Ding etal. [65] Adversarial perturbations ofvideo frames to misguideobject trackers.
White-Box Real-World &Simulation

33

Chen etal. [47] Adversarial patch gener-ation to distract objecttracking.
White-Box Simulation

Lane DetectionSato etal. [250] Fool automated lane de-tected algorithm usingan adversarial generated“dirty” road patch.

White-Box Simulation

Jing etal. [138] Subtle manipulation of lanemarkings to fool automatedlane detection.
White-Box & Black-Box Simulation

Traffic Light DetectionTang etal. [277] Tampering with the Regionof Interest (ROI) for the au-tomated traffic light detec-tion to fail to detect the traf-fic light.

White-Box Simulation

Wang etal. [301] Adversarial camouflage ondriving environment objectsto manipulate object detec-tion (Yolo v5)

White-Box & Black-Box Simulation

Camera LocalisationWang etal. [302] Adversarial infrared sensorperturbation of the camerasensor.
White-Box Simulation &Real-World

Threats to LiDAR perception and localisation predominantly focus on injecting ma-licious LiDAR point clouds into the LiDAR sensor and removing LiDAR point cloud datapoints. Such attacks are aimed at limitations of the perception and localisation algorithmto filter adversarial sensor telemetry manipulation [35] [273] [286] [341] [325] [340] [171][284]. Table 4 lists threats to the LiDAR sensor.
Table 4: Cyber Threats to LiDAR perception and localisation

Cyber Threats to LiDAR Sensor
Paper Threat Model Attacker Knowledge Test Environ-

ment
LiDAR PerceptionCao et al. [35] Spoofing and manipulationof the input of the LiDARsensor. Two attack scenar-ios are implemented, emer-gency brake attack and AVfreezing attack/block traffic.

White-Box Simulation

34

Sun etal. [273] Black-box attacks on LiDARfor general vulnerabilitytesting. Involves inputtingrandomised adversarialLiDAR points into LiDARstream to alter perception.Paper develops CARLOdetection algorithm.

Black-Box Simulation

Tu et al. [286] Adversarial mesh on top ofthe Autonomous vehicle toobscure the LiDAR detec-tor. Defensive mechanismdeveloped using data aug-mentation.

White-Box Simulation

Zhu etal. [341] Arbitrary objects with re-flective surfaces placedaround driving location bydrones.

White-Box & Black-Box Simulation &Real-World

Yang etal. [325] Injection of malicious LiDARpoint cloud data through ad-versarial road-side objects.
White-Box & Black-Box Simulation

Hau etal. [340] Manipulation of LiDAR sen-sor stream through removalof point clouds to disabledetection of 3D objects.

White-Box Simulation

Li et al. [171] Adversarial spoofing of a AVtrajectory with small pertur-bations.
White-Box Simulation

Semantic SegmentationTsai etal. [284] Adversarial generated pointcloud data against DNN. White-Box SimulationReal-World(Not AV)
LiDAR LocalisationLuo etal. [180] Side-Channel attack againstcache of LiDAR perception.Attack reveals leakage ofdata, including location andplanning of the AV.

White-Box Simulation

Threats to SONAR and RADAR target the transmission of malicious communicationson frequencies such as mmWave [275]. These malicious communications take the formof flooding signals and crafted adversarial signals in the specific spectrum band. The aimis to manipulate the SONAR and RADAR to incorrectly interpret a signal as a close objectwhich will feed to the object detection algorithm [266]. Table 5 lists threats to the SONARand RADAR sensor.

35

Table 5: Cyber Threats to SONAR & RADAR

Attacks to SONAR & RADAR Sensor
Paper Threat Model Attacker Knowledge Test Environ-

ment
Radar PerceptionSun etal. [275] Spoofing of mmWavesensing including addingfake obstacles at arbitrarylocations and faking thelocations of existing ob-stacles. Five scenariosare generated in bothsimulation and real-worldenvironments. Defensivemechanisms are developedusing challenge-responseauthentication scheme andRF fingerprinting.

White-Box & Black-Box Simulation &Real-World(AV)

Son etal. [266] Adversarial sound noiseto manipulate MEMSgyroscopes.
White-Box Real-World

Threats to IMU and GNSS sensors take the form of jamming, spoofing and data ma-nipulation [103] [155] [59] [151] [198]. GNSS spoofing and jamming is prevalent in manyoperational environments and impacts the reliability of the localisation of the AV whichcan cause incorrect trajectory planning [59] [198]. Malicious injection of the odometrydata (velocity, yaw etc.) of the IMU which includes can impact the trajectory planning ofthe AV which can have downstream affects to the control algorithm [103] [155]. Manipu-lation of environmental telemetry (temperature, sensor pressure etc.) can invoke the AVto take safety decisions such as a deploying emergency safety measures [151]. Table 6 liststhreats to the IMU and GNSS sensors.
Table 6: Cyber Threats & IMU Sensor

Cyber Threats to GNSS & IMU Sensor
Paper Threat Model Attacker Knowledge Test Environ-

mentMit et al. [198] GNSS spoofing attacks onTesla Model 3. Black-Box Simulationand exper-iments onreal-worldvehicle.Dasgupta etal. [59] Replication of target vehiclesatellite reception to injectstealthy GPS perturbationsto alter vehicle course

White-Box Simulationbased ondata fromreal-worldvehicle

36

Han &Zhou [103] Fuzzing of the GNSS sensortelemetry data input to ma-nipulate the Apollo seman-tic control program to crashthe AV

White-Box and Black-Box Simulation.

Kim et.al [155] Fuzzing of the IMU dataused for feedback control onrobotic systems.
White-Box and Black-Box Simulation

Kim et.al [151] Fuzzing of the telemetry of adrone communicating usingthe MAVLINK protocol. Ran-dom generated input is sentto sensor telemetry data in-puts for IMU such as barom-eter, gyroscopy which causethe drone to crash.

White-Box and Black-Box Simulation

Threat models to sensor fusion algorithms exploit vulnerabilities of the diverse sensorarchitecture. These include injecting LiDAR point clouds or infrared signals from an adver-sarial device placed at an angle unobserved by the camera sensor [323] [288] [92] [264].Table 7 lists threats to sensor fusion.
Table 7: Cyber Threats to Sensor Fusion

Sensor Fusion Perception
Paper Threat Model Attacker Knowledge Test Environ-

mentCao etal. [323] Adversarial 3D printed ob-ject that AV fails to detect.This attack is tested againstMSF algorithms.

White-Box SimulationReal-World(non-AV)
Hallyburtonet al. [92] Placement of rogue LiDAR ina specified location near thevehicle, the "frustrum" andinjection of malicious pointclouds between an angle ofinvisibility of the camera andLiDAR sensor

White-Box Simulation

Tu et al. [288] Adversarial 3D printedobject targeting MSF algo-rithms (LiDAR + Camera).
White-Box Simulation

Sensor Fusion LocalisationShen etal. [264] GNSS spoofing attack onMSF (LiDAR locator, GNSSLocalisation).
White-Box Simulation

A shortcoming of the AI semantic component threat research include the lack of di-versity of target systems. The threats contained in Tables 3-7 use passenger vehicles with
37

a limited sensor profile and off-the-shelf software with no optimisation to the driving sce-narios contained in the experiment. Threat models such as Hallyburton et al. [92] ex-ploit a gap in sensor coverage in passenger vehicles which would do not apply to highly-automated vehicles such as AV passenger shuttles.
2.3.2 AI System ComponentsAI system components include the following:

• Middleware software such as the ROS, CyberRT and others, which enable commu-nication between the hardware and software and facilitate control messages fromthe higher level AD software to the actuation.
• Networks which enable communication in this densely-interconnected ecosystemand have unique properties, CAN, LIN, MOST, FlexRay.
• E/E components and compute platforms which support ECUs, AD software andother real-time systems.
• The electromechanical components which support the actuation processes of thevehicle.

These components were not designed with security in mind and have been proven tobe vulnerable to cyber threats which target the inherent lack of authentication and en-cryption [232] [153]. Initial threat research on middleware software focused on spoof-ing the publish-subscribe model of message communication which existed in an envi-ronment where there are no mechanisms for a subscribing node to trust a publishingnode [232] [153]. This vulnerability of lack of authentication allowed attackers to spoofthe master node and issue motion-control commands to low-level actuation, in effect,taking control of the autonomous vehicle [113]. Also, message flooding attacks which cre-ate a denial-of-service (DOS) which impact the availability of themessage communicationtransmission which enables safe control of the AV [155]. Other middleware software andcommunication protocols such as MQTT, which is used for V2X, suffer from the same lackof security in their initial design [94].Attackswhich exploit vulnerabilities of system components aim tomanipulate the sen-sor data input are particularly dangerous as they have the direct ability to affect the ADpipeline. Threats to network communication protocols target the external communicationinterfaces and the internal communication system. Threatmodels of the external commu-nication interfaces include manipulating the message exchange between the AV systemand the intelligent traffic control infrastructure [77]. Examples include manipulating thegeographical location broadcast by the AV system to the intelligent traffic control. This willcause the traffic control to incorrectly estimate the location of the vehicle and make anadverse decision for traffic management [77]. As concluded in Shen et al. [263], there is alack of cyber threat research on systems unique to the autonomous system architectureand the initial research on ROS have only begun to explore the dependency of the seman-tic components on system components [208]. There is lack of understanding of the rela-tion of downstream AI system components to the how attacks of the system components(malware, data manipulation and buffer overflows) impact driving decisions [245]. Thereare numerous surveys of AI system component attacks [201] [63] [85] [327] [62] [172],therefore, Table 8 presents two threats to the AI system components that directly involveexperimentation with AD systems.

38

Table 8: Cyber Threats to AI System Components

AI System Components
Paper Threat Model Attacker Knowledge Test Environ-

mentHonget.al [113] Exploitation of ROS pub-lish/subscribe privileges tomanipulate sensor data torelocate NPCs into path ofvehicle.

White-Box Simulation

Feng etal. [77] Manipulation of the geo-location protocol of the V2Xto change the location of ve-hicles and manipulation thetraffic management.

White-Box Simulation

2.4 Autonomous Driving Cybersecurity Testing
The majority of the cybersecurity testing on autonomous transportation systems utilisevulnerability testing methods (See Tables 3-8). Testing can be categorised as white-box,black-box and gray-box. A white-box test is where the attacker has knowledge of the sys-tem and is able to use that knowledge to develop an assumption or hypothesis on thevulnerability of the system. The attacker is then able develop a threat model based onthis knowledge. A black-box test is where the attacker has no knowledge of the internalprocesses or architecture of the target system. Gray-box testing is a combination of white-box and black-box, select parts of the target system are known whilst others are opaque.As seen in Tables 3-8, white-box testing is more prevalent. As white-box testing is guidedby knowledge of the system, interpretability of results is less challenging than black-boxtesting where no system knowledge is assumed.
2.4.1 Autonomous Driving Test Platforms
Testing of AD systems are performed on simulation (SiL), cyber-physical (HiL) and real-
world testing platforms. Simulation platforms consists of a rendered 3D virtual environ-ment (which can be customised to replicate the real-world physical environment through3D LiDAR mapping) consisting of the ODD and AV. The AD software in the simulator, is adigital-twin, which replicates the technology stack of the AV software (Autoware, Apolloetc.). However, limitations of the SiL are that the algorithms underpinning the softwareneed to be customised to the body-physical profile of the vehicle (light-vehicle, shuttleetc.), driving maneuvers and ODD (weather, pedestrians, other vehicles) and the amountof fidelity of the physical properties of the sensors in the simulation environment is anactive topic of research [162] [251]. Without access to the AD software of a real-world,validated AV, it is questionable whether a cyber attack conducted in a SiL succeeded dueto a vulnerability or a lack of optimisation of the AD algorithms for the type of vehicle,driving maneuver and ODD. Whilst benchmarking/golden run tests are conducted in cy-bersecurity studies [298], they lack the robustness of safety and software reliability testingdue to the extensive amount of tests required and the computational resources involvedin generating high-fidelity 3D test scenarios. Therefore, a number of studies use open-pilot [22] and Apollo [15]. Openpilot is a level 2 system and therefore not applicable tofull-autonomy studies and as aforementioned, the black-box nature of the end-to-endmodel and the lack of developer access for Apollo complicates debugging failures.

39

Cyber-physical testbeds (HiL) are utilised where there is a need to observe integrationbetween hardware and software. This is most common in testing the integration betweenactuation and E/E components with software control. Whilst HiL are commonplace inlegacy and connected automotive, there are few examples of AD HiL testbeds. Whilst newcontributions such as RAMN [282] exist, where ECUs are fused with AD software, they donot explore integration withmore advanced AD sensors (LiDAR, camera) and components(AI computers (Nvidia Drive etc.)).Real-World testbeds take the form of proving grounds and test track environments.Proving grounds are predominantly used for type approval and test track environmentsfor functional testing and edge and corner cases. These testbeds are the most expensivedue to the costs and labor in building and maintenance. Recent research has shown anincrease in the use of real-world testbeds to conduct cybersecurity research [264] [224].This is due to the aforementioned need to improve the understanding of the fidelity of thesimulation environments to real-world environments. Safety validation testing in provid-ing grounds has also demonstrated the capability to stream the data from the real-worldtest to the simulation platform. Thereby, enhancing the fidelity of the simulation. Table 9lists the simulation platforms for AD.
Table 9: Autonomous Driving Software Simulation Platforms

Autonomous Driving Software Simulation Platforms
Simulator Characteristics Cybersecurity Testing
AWSIM [1] + Open-Source simulator for au-tonomous driving. Aligned to Auto-ware Foundation.+ Integration with ROS.+ Enhanced fidelity to physicalproperties of LiDAR & camera sens-ing+ Allows custom configuration ofdriving environment, AV, Sensors.+ Scenario Test library integration

+ Sensor Attacks (LiDAR,camera, RADAR etc.).+ System ComponentAttacks (Middleware,software, network etc.)

CARLA [68] + Open-Source simulator for au-tonomous driving.+ Integration with ROS.+ Allows custom configuration ofdriving environment, AV, Sensors.+ Scenario Test library integration

+ Sensor Attacks (LiDAR,Camera, RADAR etc.).+ System ComponentAttacks (Middleware,software, network etc.)
LGSVL [242] + Open-Source simulator for au-tonomous driving+ ROS Integration.+ Allows custom configuration ofdriving environment, AV, Sensors.+ End-of-life/Sunsetted+ Scenario Test library integration

+ Sensor Attacks (LiDAR,Camera, RADAR etc.).+ System ComponentAttacks (Middleware,software, network etc.)

40

Apollo [146] + Open-Source but for supportedfor commercial activity.+ Apollo 10.0 with Apollo Cyber RT+ Custom Scenario Test Library

+ Sensor (LiDAR, Camera,RADAR etc.).System Component Attacks(Middleware, software, net-work etc.)
GAZEBO + Open-Source simulator based onROS+ Limited customisation of AV driv-ing environment, AV, Sensors+ Limited Scenario Test Case Inte-gration

+ System ComponentAttacks (Middleware,software, network etc.)

Air Sim [259] +Developed byMicrosoft for Droneand Autonomous Vehicle SoftwareDevelopment+ Supports diverse autonomy soft-ware control architectures (ROS in-tegration, ArudPilot, HiTL, SiTL etc.)+ Allows custom configuration ofdriving environment and sensors.+ No test libraries

System Component Attacks(Middleware, software, net-work etc.

SIM4CV [204] + Open-Source, developed forComputer Vision research+ Custom configuration of semanticcontrol program+ End of life/Sunsetted

+No Testing has occurred onSIM4CV

The literature of cyber threats to AD demonstrated that approximately 90% of theexperimentation was conducted in simulation environments [223] [276] [10]. Yet Eykoltet al. [267] noted that the success rates of attacks in simulation, such as those on theobject-detection, differed from real-world. This is most prominent in the physical attackswere the simulation is challenged in replicating lighting and other physical effects. Thereis a lack of experimentation of cybersecurity testing on real-world systems due to limitedfacilities and safety risk constraints.There are numerous AD cybersecurity testing platforms [329] [79] [338] [200]. Whilstthese platforms are useful for advancing the research and development of threat modelsthey have sparse usage for validation testing of AD software to cyber threats. A reason forthis can be that the design of these testbeds are constrained by a lack of alignment withsafety validation testing methods. Further, AD software developers and safety engineersprefer modular tools which can be utilised in their own customised digital-twin simulationenvironments. Another shortcoming of the cybersecurity testing platforms are that theyare technology centric and attack plug-ins are developed for a specific technology stack.There is a lack of overarching principles and methods to guide cybersecurity testing thatwould enable a standardised approach. Table 10 lists AD cybersecurity testing platforms.

41

Table 10: Autonomous Driving Cybersecurity Security Testing Platforms

Autonomous Driving Cybersecurity Security Testing Platforms
Simulator Characteristics Cybersecurity Testing
RAMN [282] + Cyber-physical testbed for AVs+ Integration with AD software+ Replicates features of AU-TOSAR and automotive networks(CAN/CAN-FD)

+ Testbed was created tosupport automotive net-work development, testingof AD software HiL and pen-etration testing of syntacticsoftware attacks
SEPAD [329] + Cyber-physical testbed for AVs+ Limited autonomy based onOpenPilot ADAS+ Replicates features of AUTOSARand automotive ethernet+ No further development sincerelease

+ Not tested, but test bedwas created to support pen-etration testing of syntacticsoftware attacks

SIMUTACK [79] + Simulation environment based onCARLA SUMA (Scenario Generator),OMNeT++ (V2X).+ Autopilot for AD Software+ Built-in plugins for Attack Genera-tion+ No further development since re-lease

+ Attacks to Sensors (LiDAR,Camera etc.).+ V2X attacks.+ In-Vehicle network at-tacks.

PASS [338] + Simulation environment based onApollo Baidu and ROS.+ Built-in plugins for Attacks andDefenses+ Integrates evaluation metrics forsafety+ No further development since re-lease

+ Attacks to Sensors (LiDAR,Camera etc.)+ Fuzz testing+ Has supported Capture-the-Flag style, game-basedtesting

Simulator
for Cooper-
ative and
Automated
Driving Secu-
rity [200]

+ CARLA and ROS based.+ Integrates VEINS V2X networkemulation+ SUMO Traffic Scenario Simulation+ No further development since re-lease

Network Attacks to v2x

AVL Zala-
zone Test
Track [20]

+ Proving ground used for type ap-proval and R&D + Cybersecurity testing ofV2X and connected infras-tructures
Michigan MC-
ity [194] + Real-world testbed+ Industry and academia R&D + Cybersecurity testing ofV2X and connected infras-tructures + Testing of AD cy-ber threats to advanced sen-sor technologies

42

TalTech Au-
tonomous
Systems
Lab [18]

+ Real-world testbed+ Industry and academia R&D + Cybersecurity testing ofV2X and connected infras-tructures + Testing of AD cy-ber threats to advanced sen-sor technologies
2.4.2 Cybersecurity Testing MethodsTesting is predominantly conducted in high-fidelity digital twin simulation environmentsand then test sets regressed to real-world proving grounds and test tracks. Cybersecuritytesting of AD software can be categorised as structured testing or penetration testing andfuzz testing. There are limited methods and tools tailored for structured testing of ADsoftware. Contemporary approaches centre on methods used for connected and legacyvehicles. These entail conducting the TARA and generating cybersecurity test cases tar-geted at the SUT [192] [239]. Many of these test cases can be extrapolated from proof-of-concept attacks such as those presented in Tables 3-8. The shortcomings of the availableproof-of-concept attacks are that considerable effort is required to reverse engineer theattackmodel and replicate it for different SUTs. Further, the design of these attackmodelslack consideration for parameters important for safety testing such as temporal aspects ofthe scenario (time attack should be triggered, how long attack should be broadcast etc.)and scenario design (ODD, driving configurations). There also exists a lack of guidance andstandardisation as to how threats can be translated from functional level descriptions tothe technical implementation in the digital-twin simulation environment.Fuzzing is a popular testing technique used to discover vulnerabilities in a system torandomised and unsanitised data input. Fuzzing can occur at three different layers of ADsoftware; the simulator, the scenario and the sensor. A simulation-based fuzzer manip-ulates the properties of the simulation, this can include GPU and frame refresh rate andCPU settings. A scenario-based fuzzermanipulates the parameters of the driving scenario,these can range from weather (rain, puddles on lanes, snow etc.), odometry (speed, ve-locity etc.) to planned navigation of road vehicles and pedestrians. A sensor-based fuzzermanipulates the sensor data (LiDAR, camera etc.) which is used as input to theADpipeline.There are diverse approaches for the design of fuzzing tools for AD software:

• Adversarial neural networks for adversarial examples targeted at object detectionand to generate adversarial trajectories of other road vehicles and pedestrians [170][339] [281] [333].
• Mutation-based fuzzers predominantly used for sensor fuzzing. They are designedto send unsanitised sensor data input to the AD pipeline [151] [153] [153] [281]. Testcases which cause crashes are added to a seed pool which is used tomutate furthertest cases in an iterative manner.
Table 11 lists AD fuzz testing tools.

43

Table 11: Fuzzing Tools for Autonomous Driving

Fuzzing Tools for Autonomous Driving
Fuzzer Target Method Oracle Feedback
PGFuzz [151] Sensor

Layer(Drone
Software)+ Odometry(velocity,gyroscope)

Mutation-based Policy-guided(PhysicalLimitations)
Crashes, Devi-ation from ex-pected route,sensor incon-sistency

RoboFuzz [153] Sensor Layer
(Drone)+ IMU (yaw,acceleration,speed) anduser controlcommands(throttle, yaw,pitch, roll)

Mutation-based Physical Con-straints Crashes, Devi-ation from ex-pected route,sensor incon-sistency

RVFuzzer [155] Sensor Layer
(Drone)+ IMU (yaw,acceleration,speed) anduser controlcommands(throttle, yaw,pitch, roll)messagesto controlprogram.

Mutation-based Physical con-straints Control pa-rametersand controlinstability

DeepRoad [333] Sensor Layer+ Camera im-ages
Neural Net-work PredictedImage andpredictedsteering angle

Object Detec-tion Perfor-mance andcrashes anddeviations ofAD
DeepTest [281] Sensor Layer+ Cameraimages duringadverse driv-ing conditions(rain, fog etc.)

Neural Net-work PredictedImage andpredictedsteering angle

Object Detec-tion Perfor-mance andcrashes anddeviations ofAD
PlanFuzz [298] Scenario

Layer+ Objects(boxes, bicy-cles)

Mutation-based PlanningInvariants Planningbehaviour

44

DriveFuzz [154] Scenario
Layer+ Weather,mission (lo-cation ofSUT vehicle)actor (othervehicles,pedestrians)

Mutation-based traffic rulesand regula-tions
Controlbehaviour

AVFuzzer [170] Scenario
Layer+ Route Map,SUT vehicle,weather andobjects.

Neural Net-work vehicle state(Collision,infraction,mobility)

Controlbehaviour

AutoFuzz [339] Scenario
Layer+ Route Map,SUT vehicle,weather andobjects.

Neural Net-work Traffic Viola-tions and APIGrammar
Controlbehaviour(collisions,infraction)

2.5 Summary
AVs represent a dense ecosystem of diverse software and hardware technologies inte-grated by an overarching AD software framework (Section 2.1). The research communityhas contributed an initial list of proof-of-concept attacks and vulnerabilities of AD software(Section 2.3). The predominant attack targets are the sensing and perception hardwareand software modules and the networked infrastructure which supports the algorithmicAD platform. Limitations of this initial research include a lack of analysis as to how cyberattacks propagate through the AD software and affect decision-control and knowledge asto how attacks can be applied to real-world systems rather than open-source simulations.Further, there is a lack of deeper investigation of the testing technologies which supportcybersecurity research and validation testing (Section 2.4). These limitations are mean-ingful as this lack of knowledge leaves questions as to the utility of current methods, toolsand testing results to real-world AD programs. Therefore, there is an apparent need todevelop methods and tools to enable more repeatable and agile testing and to gain fromtest results greater intuition as to the robustness and resilience of AD software to cyber at-tacks. Within this thesis these gaps will be explored within the context of an experimentalcase study of a real-world, operational AV (Section 2.2).

45

3 EvaluationofAutonomousDriving Software to CyberAttacks
3.1 Methodology for Combined Safety and Security of Autonomous Driv-

ing Software Testing
Testing AD algorithms for performance under safety test cases is a predominant focus fordevelopers to assess the reliability of the algorithm and for optimisation. AD algorithmsare also susceptible to manipulation from cyber threats which target the advanced hard-ware technologies sensor telemetry which serves as an essential input for perception,detection, and control decisions [27, 174, 325]. Existing methods [35, 92] for testing arechallenged by the complexity of evaluating system-of-system interactions to identify keyrelationships and parameters, and limitations of testing inherent to real-world AV pro-grams, resource usage and time. The main idea of this research is to establish a methodfor combined safety and cybersecurity testing of developmental AD algorithms to evaluatesystem-of-system interactions to identify and investigate parameters that impact safetyand the effect of cyber attacks, and to develop future ideas for optimisation of testing. Todevelop such a method, we are interested in three research questions aligned with thechallenges of combined safety and cybersecurity for AD algorithms:
RQ1 How can AD algorithm designers evaluate the reliability and optimisation of the ADalgorithm to both safety and cybersecurity test cases?
RQ2 How can combined safety and cybersecurity testing be conducted on a developingAD algorithm?
RQ3 What key relations and parameters can we identify that can optimise safety andcybersecurity testing?

To evaluate these research questions, we apply the methodology to a developing ADalgorithm in a digital twin, SiL simulator and real-world AV testing environment. Cyber-security testing and safety testing are often conducted separately, reducing our under-standing of the relationship between failures of the algorithm caused under normal safetyscenarios and failures caused by the impact of cyber attacks. For AD algorithms in thedevelopment stage, where the reliability and optimisation of the AD algorithm to safetyscenarios have not been established, this exploration of the relationship between safetyand cybersecurity can offer novel insights to improve the awareness of the AD algorithmdesigner to shortcomings in the algorithm.
3.1.1 Combined Safety and Cybersecurity testing methodology for AD AlgorithmsThe architecture of the proposed combined testingmethodology is presented in Figure 17.This method takes advantage of a high-fidelity SiL simulation [255] approach to validateand verify the performance of a AD software under critical cyber security conditions. Thismethod consists of three main following elements:

• Attack script: which simulates a critical security condition.
• High-fidelity simulator: It is a game engine environment that provides the physicsfor modeling sensors and motion.
• AD software: It is the autonomous driving software that controls the AV.
The combined safety and cybersecuritymethodology consists of the following iterativesteps:

46

• Scenario Selection:

– Selection of driving scenario (intersection, overtaking manoeuvre etc.)
• Analysis of the scenario to extrapolate the safety evaluation criterion applicable:

– Selection of safety evaluation criteria is based on relevance to scenario i.e astraight line navigation will not require distance-to-collision criteria metric asthere is no other vehicles.
• Safety Test Case Setup:

– Initialisation of the SiL high-fidelity simulator and configuration to the real-world AV
– Initial scenario testing using the safety test cases to assess the reliability of thealgorithm and the quality of the test data
– Optimisation of the safety test cases to select a subset of the scenario tests toassess the reliability of the algorithm
– Run of the safety test case scenarios
– Selection of distinct safety test case scenarios which provide most stable re-sults in terms of success of mission and safety violation

• Cybersecurity Test Case Setup:

– Analysis of the scenario to determine cyber attack strategy for test cases
– Development of the code for adversary generation in the SITL high-fidelity sim-ulator
– Selection of attack parameters
– Optimised the cybersecurity test cases
– Evaluate cybersecurity test cases in SiL high-fidelity simulator
– Real-World AV Testing for safety and cybersecurity

• Results Analysis:

– Analysis of the performance of AD algorithm to safety criteria
– Analysis of sensitivity of attack parameters and driving parameters

Testing EnvironmentAll tests are conducted in a virtual environment powered by the “Unreal game engine”(Unreal) [40]. CARLA simulator [69] is one of the open-source high-fidelity vehicle simu-lators capable of connecting to different AD software and scenario generator applications.In this study, we use Carla 0.9.13 as the high-fidelity simulator. Figure 17 illustrates the re-quirements for the high-fidelity simulator to conduct simulation testing which are twocomponents, the digital twin of our AV and the virtual replication of our target environ-ment. These replicated components help us to gainmore accurate results of the proposedplatform [187]. The AV digital twin is a 3D model of our real-world world AV shuttle, de-signed in Blender, a graphical 3D modeling software, and imported and built in Unrealfor deployment in CARLA. This model uses the same dimension and sensor configuration(model, position, and orientation) from the real AV shuttle. The environment digital twin,in our case, is identical to the location where we are testing and operating our shuttle,
47

this includes the urban details and vegetation. The next module in the simulator is a sce-nario generator that produces the desired scenario based on the user input specification.Finally, the simulator engine generates sensor data from sensors, including LiDARs, cam-eras and others and publishes it for other blocks (see Figure 17 the simulator block). Then,the AD software receives this data as raw LiDAR point-cloud information and processesthe data as mentioned in the diagram (Figure 17).

Figure 17: Architecture of the testing platform

This simulation setup was implemented on a desktop computer with the followingconfiguration:
• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB

Scenario Selection
To evaluate the combined safety and cybersecurity testing, we chose a simple overtakingmanoeuvre, which is one of the most safety challenging operations [186]. Figure 18 showsthe functional level of the planned scenario. To generate a variety of distinct scenarios,we opt for the initial relative distance to the NPC Dx and the NPC constant speed SNPC asthe distinct scenario parameters.

Figure 18: Overtaking Scenario and parameters

48

Table 12: Target scenarios definition

Actor Speed Dx Goal
AV [0:6]m/s 0 (m) overtake the NPC safelyNPC [1 1.4 1.8 2.1 2.5] [15 20 25](m) keep moving

Safety Evaluation Criteria
In determining the evaluation criteria for AV safety we considered two conditions, 1) mis-sion success and 2) safety violations. A safety violation consists of a collision and danger-ous driving behaviour. In determining which criteria to apply, we considered the EuroN-CAP [3] and ISO26262 [127] standards as well those used in composite studies [35,89,92].We derived that the safety goal of the AD algorithm is to execute the overtaking missionwithout colliding or interfering with other ego vehicles or objects and without exhibitingdriving behaviour which is dangerous to the AV passengers. Table 13 details the safetycriteria applied in our experiments.

Table 13: Safety Evaluation Criteria

Safety Condition Data Label Description Metric
Succeed Suce AV Successful complete the mission Pass/Fail
Not Finished NotF Failure to finish the mission Pass/Fail
Distance-to-Collision DTC Violation of the safe distancebetween AV and NPC AV within 0.5mof other vehicle
Break on Driving Lane BrD AV initiates emergency break on driving lane Pass/Fail
Break on Passing Lane BrP AV initiates emergency break on passing lane Pass/Fail
Collision Col AV collides with NPC Pass/Fail
Violation V Safety Violation

Safety Test Case Setup
To evaluate the reliability and optimisation of the AD algorithm for the overtaking ma-noeuvre, we, firstly, initiated a run of 50 distinct scenarios in the high-fidelity simulator,repeating 6 times. Each scenario was repeated 6 times to ensure the reproducibility ofthe outcome. With the mentioned desktop configuration, it took approximately 100 secfor each scenario and, in total, 8.3 hours for 300 runs. The purpose of the first scenariorun was to provide a general overview of the performance of the algorithm. We targeteda range of 1 to 3 m/s for the NPC speed and 15 to 30 m for the initial relative distance tothe NPC for selecting the 50 distinct scenario parameters. The results showed that the ADalgorithm could not safely overtake the NPC at an NPC speed higher than 2.5 m/s and adistance (Dx) of more than 25 m.Although a high number of scenario variations shows better coverage in the scenariospace to find corner cases, it will lead to an increase in the time duration of the runs.Furthermore, the number of each scenario repetitions was not sufficient to statisticallyexplain the occurrence of each safety violation. Finally, it is worth mentioning that, as ourprimary study focus is not just the validation of the AV performance, we need to use anoptimum number of trials for both safety and cyber test cases. Due to this, we limited the

49

scenario parameters space to the intervals listed in Table 19 that regressed the test set to15 distinct cases in a full factorial setup. This enabled us to repeat the simulation of thesetest cases 50 times and apply the full set of safety criteria: collision, DTC, break in passinglane, break in driving lane, failure to finish, and mission success.Each scenario is generated by the CARLA scenario runner utilizing the Python be-haviour trees to handle series and parallel events in the scenario. Figure 19 depicts thescenario scheme startingwith themain sequence behaviour. This series beginswith trans-forming the actors into the environment and finishes by destroying the actor block. A par-allel behaviour (Driving Toward Intersection) is defined to run the attack and the scenariostop block while the NPC follows the defined waypoint. For safety test case scenarios, theattack block is skipped, and the scenario waits till the stop criteria are satisfied.

Figure 19: Flow-graph of how each scenario is processed in the simulation platform

Cyber Test Case SetupTo determine the cyber attack strategy for implementation in this test scenario, we anal-ysed the overtaking scenario and its applicability to state-of-the-art attacks on AD algo-rithms. We selected LiDAR spoofing as it is a realistic attack in the driving environmentof our real-world AV shuttle [35] and its impact is relevant to safety outcomes due tothe likelihood that the manipulated driving behaviour will result in collisions, emergencybreaking, and lane violations [325]. Attacks on LiDAR perception predominantly focus onspoofing LiDAR 3D point-clouds through the following means: 1) injection of adversarialLiDAR 3D point cloud data to add adversarial objects to the driving environment inducinga false positive result of the AD perception [35, 273] 2) removal of LiDAR 3D point clouddata to perturb the ability of the perception algorithm to detect objects in the driving en-vironment, also known as a false negative result [92,340] 3) manipulating LiDAR 3D pointcloud data to obfuscate the true distance of environmental objects (Other road vehicles,pedestrians, other road objects) from the AV, causing the perception to fail translation 4)implementation of adversarial mesh in the driving environment to introducemanipulatedpoints into the LiDAR 3D point cloud and create unpredictable perception events [287].The aim of the attacker, in adversarial LiDAR threat models, is to induce the victim AV toperform dangerous driving manoeuvres, which include; emergency breaking, collisions,and exceeding the limits of the driving lanes. Variables that have been shown to influ-ence attack success include; angle of attack of the adversarial point cloud vector, densityof the spoofed points, duration of the broadcast of spoofed points, distance of the point
50

cloud to the target [35,92,273,325]. We implemented a variation of the attack suggestedby Yang et al. [325], where the adversary creates an adversarial roadside object to injectspoofed, malicious LiDAR point clouds into the target AV LiDAR. In our attack, an adver-sary has configured a LiDAR on the roadside to inject malicious point cloud data into theAV as it is conducting the overtaking manoeuvre. Using the knowledge gained from liter-ature [92, 273, 325], the parameters we chose to generate our attack are: density of theLiDAR point clouds, frequency (the publishing rate of the fake points), duration of the ad-versarial point cloud broadcast, and location, which is the relative location between thetarget vehicle and NPC. As an infinite number in the range of each of the parameters canbe chosen, we decided to limit our testing to parameter values that had demonstratedutility to investigate the impact of cyberattacks on AD algorithms. For example, Hally-burton et al. [92] found that the success of cyber attacks increased when spoofed pointdensity were over 80. Therefore we chose a range for spoof point density from 50 to 300.
Taguchi AnalysisIn this study, we use the Taguchi method for statistical evaluation [285] of the attack pa-rameters effect on each safety criterion. The number of tests with four parameters and3 levels for each in full factorial mode would become unrealistic to perform, noting thateach experiment should repeat 50 times (81x50 = 4050 distinct scenarios). A design of theexperiment is recommended in order to avoid full factorial tests and reduce the numberof tests without compromising accuracy [285].A Taguchi design of experiment (DOE) technique [285] was applied to quantify the in-fluence of four proposed attack parameters; the false points (FP) density, the FP frequency,the attack duration, and the attack location. In total, 9 experiments were designed with3 different values for the four parameters. The analyses hence possess four factors andthree levels for the Taguchi L9 matrix. Table 14 lists the configuration for each run con-ducted for cybersecurity tests.

Table 14: Taguchi L’9 matrix for study of factor influence

Num. Density Frequency Duration Location
1 50 5 3 32 50 7 6 63 50 10 9 94 150 5 6 95 150 7 9 36 150 10 3 67 300 5 9 68 300 7 3 99 300 10 6 3

[50 150 300] [5 7 10] [3 6 9] [3 6 9]
Figure 20 demonstrates the cyber attack setup within the overtaking scenario (Pleasenote, the Figure only depicts the overtaking frameandnot the entire overtaking sequence.).The proposed attackmodelwill start by generating spoof points from the designated placeon the roadside. At the starting point, P1, the AV has relative distance to NPC that definesthe attack location. After a specific duration (Attack Duration), the AV reaches, P2. Whilethe attacker keeps the malicious LiDAR pointing toward the AVs front LiDAR. Overall, thespoofed point direction changes from θ1 to θ2. Code was created for the generation ofthe adversarial LiDAR fake points to be run in the digital twin, high-fidelity simulation en-

51

vironment. This is available on the GitHub site [188].

Figure 20: Attack scheme

3.1.2 Results and Analysis
In this section, we present the results of the safety and cybersecurity testing of the ADalgorithm. The purpose of the safety test case results is to evaluate the reliability andoptimisation of the algorithm.
Safety Test Case
The aim of the testing is to assess the utility of the methodology to evaluate the relation-ship between the reliability of the AD algorithm to safety and the impact of cybersecurity.As the testing is based on a real-world AV, we were motivated to establish what resultscould be gained from an amount of tests that took into account the requirements forCPU and GPU resources and the time involved in running high-fidelity simulations. Forinstance, 50 distinct scenarios run 3 times expends x amount of resources, and takes xamount of time. Therefore, we, firstly, performed a baseline evaluation test where weran 50 distinct scenarios of the overtaking manoeuvre, 3 times. Each scenario is distinctbased on changes to parameters such as NPC speed and initial distance to NPC.In our proposed simulation platform, we perform 15 distinct scenarios, run 50 times;in total, 750 consecutive simulation runs were conducted. Table 15 shows the parametersof the distinct scenarios evaluated against the safety criteria. Using our configuration fortesting, the AD algorithm shows the performance for the overtaking manoeuvre with asuccess rate of 43.9% of the simulated scenarios, whilst, 66.1% are safety violations.Figure 21 displays the performance of the AD algorithm. NPC speed is an importantparameter as it influences the decision control for the critical cut-in manoeuvre of theovertaking mission. In the context of the results of the simulations, we can see that NPCspeed impacts certain safety criteria. The first such relation that can be seen, is that morecollisions are caused at high speeds, > 2.1 m/s. This can be the effect of a poor trajectoryevaluator that doesn’t consider the prediction of the other actors motions in the pro-cess of the waypoint generation. In most collision cases the AV tried to perform a cut-inwhile the NPC collided from the right side. The probability of this safety violation will beincreased as the NPC speed increases. NPC speed also impacts the likelihood of a DTCsafety violation. In the range of the NPC speed parameter, 1 m/s to 1.8 m/s, it can beobserved that AV Shuttle violates the safe distance to the NPC. This can be due to the AVspeed adjusting relative to the NPC speed and the cut-in is attempted at low-speed, whilstacceleration is required to safely attempt the cut-in. This low-speed cut-in firstly causes a

52

Table 15: Summary of the safety simulation

Dx SNPC VCol VDTC VBrP VBrD VNotF VSuce
1 15 1 18% 22% 0% 10% 24% 26%2 20 1 18% 40% 8% 6% 18% 10%3 25 1 4% 20% 32% 8% 20% 16%4 15 1.4 6% 32% 16% 2% 12% 32%5 20 1.4 22% 26% 14% 6% 2% 30%6 25 1.4 4% 12% 22% 8% 0% 54%7 15 1.8 36% 34% 8% 2% 6% 14%8 20 1.8 22% 12% 2% 2% 0% 62%9 25 1.8 18% 6% 0% 4% 0% 72%10 15 2.1 4% 0% 4% 2% 4% 86%11 20 2.1 8% 10% 0% 0% 0% 82%12 25 2.1 24% 0% 0% 4% 0% 72%13 15 2.5 14% 6% 0% 6% 2% 72%14 20 2.5 44% 22% 14% 0% 2% 18%15 25 2.5 64% 18% 0% 0% 6% 12%

mean 20.4% 17.3% 8.0% 4.0% 6.4% 43.9%STD 16.8% 2.3% 9.8% 3.2% 8.1% 28.3%min 4% 0% 0% 0% 0% 10%max 64% 40% 32% 10% 24% 86%

DTC violation and if the overtaking manoeuvre progresses it causes a collision. DTC andcollision correlate based on the relative speed. A low-speed NPC will likely result in a DTCviolation, whilst in a higher-speed scenario, a collision is more likely to happen.
In the lowest speed range, 1 m/s to 1.4 m/s, it is more likely that the AV will initiate anemergency break in the passing lane. This is due to the relationship of the NPC speed tothe AV Shuttle speed. The emergency break on the passing lane at low speeds is causedby a failure of the open-planner trajectory evaluator to effectively plan the overtakingtrajectory. Figure 22 demonstrates the AV emergency break in the passing lane, for ascenario with an NPC Speed of 1 m/s. The upper rectangle represents the AV and thelower rectangle is the NPC. The two rectangles closest to the left represent the framethat the first emergency break on the passing lane safety violation occurs. The most rightrectangles represent the end of themission. The AV speed and the acceleration verify twohard brakes in the mission while it was in the passing lane. The failure of the trajectoryplanning of the open-planner algorithm is apparent.
The failure to finish the overtaking mission is most prominent at the lowest speed,1 m/s, this is due to the time the AV Shuttle is taking to perform the cut-in process andtherefore cannot enact the overtaking manoeuvre within the simulation timeout which is40 s. It was observed that for the proposed configuration, for the lower speed of the NPC,the open-planner trajectory evaluator is not reliable as it suggests waypoints that are notwithin safe navigation and this is due to the lack of firm decision-making of which roll-out to choose. Ultimately, this causes collision and DTC safety violations. Furthermore,the failure to finish the simulation results, we see the low-speed delays in the overtakingmanoeuvre decision making which results in the breach of the 40 s time-out.
The success rate of the safety test cases increases as the NPC drives from 1.4 to 2.1m/sspeed. This focal success point around scenario 10 with an NPC speed of 2.1 m/s can bea sign of matching the current configuration of perception and open-planner with the

53

Figure 21: Safety results of 15 distinct scenarios

scenario situation.
The safety metrics results are shown in Figure 24 based on the initial relative distancefrom the AV to NPC. It shows that the rate of collision safety violations for longer initialdistances from NPC slightly increased while the success rate decreased. This is the onlytrend that can be identified from results for initial relative distance, so it can be concludedthat speed is a more determining parameter for the safety testing of our AV.
Overall, the results in Figure 21 indicate that speed is a critical parameter for our AVsafety testing platform.

Cybersecurity Test Case
For the cybersecurity test cases we chose 2 of the 15 distinct scenarios (Figure 21). Thiswas to allow a greater scale of testing to be conducted on a select number of relevantscenarios. Scenario 10 was chosen as it demonstrated the most reliable performance, interms of themost successful overtaking manoeuvres. Scenario 2 was chosen as it demon-strated the least successful results for overtaking. These two scenarios were run 50 timeseach, as had been conducted with the safety scenario runs. Figure 25 shows the perfor-mance of cybersecurity testing, conducted on scenario 2 and 10, in comparison to safetytest cases.

Scenario 10 results reveal a discernible impact of the cyber attack. The LiDAR spoofingattack causes an increase in safety violations, prominently, in collisions and emergencybreaking in the passing lane. This is also a concurrent result of the Scenario 2 test cases.Figure 17 shows the control level view, that incorporates sensor perception and missionand motion-planning. In the safety violation cases, we noticed that the euclidean cluster-ing and kf_countour detect the spoofed LiDAR injection as an object and this false positivedetection impacts the local-planning to force the AV to make the cut-in, in the overtak-ing manoeuvre process. Specifically, as the placement of the adversarial LiDAR device ison the left of the AV, the roll-outs of the left-side are blocked by the trajectory-evaluator.
54

Figure 22: A Brake on Passing Lane safety violation

Figure 23: Test Results based on NPC Speed

This forces the AV to veer right and attempt the cut-in process that causes predominantlycollision, DTC safety violations.Cao et al. [35] and Hallyburton et al. [92] identify density of the spoofed points tobe one of the key variables affecting cyber attack success rate. Figure 26 and figure 27present the sensitivity of each attack parameter according to the cyber attack test cases.From evaluating the raw data of the test sets, and the sensitivity analysis for the cyberattack test cases of scenario 10, we concur with these assessments. We find the rate of
55

Figure 24: Results based on Initial Relative Distance to NPC

collisions is influenced by the density of the point cloud and the location of the attack.We can also see the influence the point of attack and duration have on causing a breakon passing lane safety violation. As the duration of transmitting of the LiDAR point cloudsincreases and the location of the attack is further from the NPC, the likelihood of the AVinitiating its breaks is higher.
In comparison, Scenario 2 cyber attack test case results show that safety violationsare less sensitive to attack parameters. This can be due to the difficulty in interpreting theimpact of cybersecurity on this scenario due to the already high rate of safety violationsof the algorithms exhibited in the safety test case.

Table 16: Results of Cyber Attack applied to Scenario 10

Num. VCol VDTC VBrP VBrD VNotF VSuce
1 54% 20% 2% 0% 6% 18%2 38% 38% 6% 2% 6% 10%3 30% 28% 22% 2% 4% 14%4 24% 28% 16% 6% 2% 24%5 26% 16% 12% 6% 4% 36%6 4% 4% 6% 4% 0% 82%7 32% 14% 14% 6% 0% 34%8 50% 24% 8% 2% 0% 16%9 50% 30% 2% 2% 0% 16%

mean 34.2% 22.4% 9.8% 3.3% 2.4% 27.8%std 15.9% 10.1% 6.7% 2.2% 2.6% 22.2%min 4.0% 4.0% 2.0% 0.0% 0.0% 10.0%max 54.0% 38.0% 22.0% 6.0% 6.0% 82.0%

56

Figure 25: Performance Results Comparing Cyber Vs Safety Test Cases

Table 17: Results of Cyber Attack applied to Scenario 2

Num. VCol VDTC VBrP VBrD VNotF VSuce
1 16% 34% 28% 8% 14% 0%2 26% 34% 20% 0% 8% 12%3 20% 42% 20% 4% 6% 8%4 26% 34% 16% 0% 14% 10%5 22% 36% 16% 0% 20% 6%6 22% 32% 20% 0% 18% 8%7 0% 0% 0% 0% 0% 0%8 0% 0% 0% 0% 0% 0%9 0% 0% 0% 0% 0% 0%

mean 14.7% 23.6% 13.3% 1.3% 8.9% 4.9%std 11.4% 17.9% 10.6% 2.8% 7.9% 4.9%min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%max 26.0% 42.0% 28.0% 8.0% 20.0% 12.0%
Real-World AV Testing
The real-world AV testingwas conducted on a private road environment using our AV Shut-tle, and an NPC vehicle (turquoise Mitsubishi iMIEV). The NPC vehicle is stationary duringthe tests as a safety assessment deemed it was too dangerous to conduct the experimentwith a moving vehicle. This is due to the experiment being within a road environmentwhere pedestrians and other vehicles are present. We conducted 3 test cases; a safetytest case, cybersecurity test case and an optimised cybersecurity test case. The first testwas an overtaking safety scenario. Two repetitions of the safety test casewere conducted.The first test demonstrated a successful execution of the overtaking mission. The secondtest resulted in a DTC safety violation. The AV motioned to within 0.42 m of the NPC.The DTC violation is evident in Frame 3 of Figure 28, which details the second overtakingsafety test case. Frame 4 demonstrates the eventual overtake after the DTC safety vio-lation. Whilst the number of repetitions in the real-world pale in comparison to thoseconducted in the simulator, the real-world results concur with simulation results, that the

57

Figure 26: Scenario 10 - Cyber Attack Test Cases - Parameter Sensitivity

AD algorithm does not have enough reliability for the deployment in real-world missions.

Table 18: Result of the 3 real-world test cases

Test Type Num. of repeats success Safety Violations
Safety Tests 2 1 1 DTC=0.42mCyber Tests 2 1 1 DTC=0.38mOptimised Cyber Tests 1 0 1 DTC=0.32m

The cybersecurity test was conducted 3 times. Table 18 lists all the real-word exper-iments and their results. The first cybersecurity test demonstrated no impact from thespoofed LiDAR points and the overtaking manoeuvre was successful. The second cyber-security test resulted in a DTC violation, the AV motioned to within 0.38 m of the NPC.After these two tests, we optimised the target angle of the spoofed points in relation tothe attack scheme in Figure 75, to reduce the attack starting angle of θ1. We did this be-cause during the real-world test we observed that the reduced angle would provide assistthe spoofed points to be closer to the AV trajectory and would cause the AV to detourfrom its intended route. It can be seen that this did work as the DTC decreased to 0.32 m.Figure 29 depicts the real-world cybersecurity test. Frame 2 represents the moment theattack was generated and perceived by the AD algorithm.
3.1.3 DiscussionFrom the analysis of the results we interpreted that different safety violations are con-nected to different modules of the AD algorithm.

Perception Module: We interpreted the cause of safety violations of the emergencybreak in the passing lane and emergency break in the driving lane to be related to the
58

Figure 27: Scenario 2 - Cyber Attack Test Cases - Parameter Sensitivity

quality of the ground filtration. As we observed, ground filtering outcome changes dur-ing the AV manoeuvres (turns) because the shuttle body is tilted because of suspensionand this results in the lidar reference frame orientation changing. Then some part of theground point cloud as an unfiltered perception can be seen in the detection algorithms asan obstacle. This fake sudden obstacle might stop the AV during the motion. The spoofedLiDAR point cloud threat model is likely to make this condition worse. Optimisations forthis: New body designs to rectify or limit the issues of LiDAR with the physics of the AVShuttle are being developed. To focus specifically on these corner and edge cases and lookat optimisation of the filtering of the perception algorithm. The latter recommendationis complicated by the fact it may include trade-offs; if the LiDAR perception algorithm isspecifically tuned for this corner/edge case it could lead to over-filtration in normal driv-ing scenarios, therefore this is one of the optimisation options to resolve the perceptionfor the algorithm.
Open-Planner Module: We interpret the cause of safety violations for DTC and colli-sion as due to an issue of the open-planner in predicting the trajectory of the NPC duringthe process of performing a cut-in, in front of the NPC. The optimisation would involve in-corporation of features that would enable the prediction of the trajectory of the NPC andfor perception improve the perception of the side-lidar to accurately perceive the NPC.We found that optimising all the perception and open-planner parameters for our shuttlemodel would significantly improve the reliability of the AD algorithm.

Open-Planner Developer Feedback
We sent a presentation of our results to the developers of the open-planner AD algorithm.In response, they acknowledged that it is a developing algorithm and we are engaged inmore detailed discussions with them on how to optimise the algorithm. They also an-nounced they are transitioning from Autoware.ai to Autoware.universe which is a moredeveloped and advanced platform. Amongst their responses, they also pointed to the

59

Figure 28: Real-World AV Test - Safety Test Case

novelty of receiving feedback on the reliability of cybersecurity test cases in addition tosafety test cases.
3.1.4 Related Work
The closest contributions to our work are Yang et al. [325], Hallyburton et al. [92], Cao etal. [35] and Zhu et al. [341]. Each of these papers utilises a LiDAR spoofing threat modelthat varies based on the method for delivering the attack, adversarial generation and thetype AD algorithm. Hallyburton et al. [92] target camera and LiDAR sensor fusion. Theyidentify a blind spot between the camera and LiDAR sensor at the rear of the target AV.They use a malicious, 3D LiDAR point cloud array to inject malicious spoof points into therear angle of the target AV. The attack was tested in a high-fidelity simulation and real-world against multiple perception algorithms. The results revealed a high rate of successutilising this attack. Cao et al [35], Yang et al [325], and Zhu et al [341] developed LiDARspoofing attacks based on a threat model of a malicious LiDAR 3D point cloud injectionin the road environment and by the roadside. Each of these contributions demonstratedthat cyber attack results from AV simulation testing can be used to identify key parame-ters such as point cloud density, attack location and duration and that these parameterscan be optimised to test the robustness of perception algorithms. We chose to extendfrom the related literature, in our work, in three areas; simulation testing configuration,safety criteria evaluation and target AD algorithm is in the developmental phase and isused within a real-world AV program. A feature of the selected work is that simulation

60

Figure 29: Real-World AV Test - Cyber Attack Test Case

testing often selected only one frame or a limited amount of frames and therefore thefull driving mission was not observed. Whilst this is useful for reducing testing resourceusage, running massive scale of tests and applicable to the scope of their work, as ourstudy evaluates the AD algorithm and combines safety, our study focused on conductingsimulation testing for the entire driving mission. Secondly, the evaluation of cyber attacksfocused on attack success rate and attack parameters whilst the safety impact on the AVas a result of cyber attacks was not as clearly elaborated. In our study, we evaluate thecyber attack test cases with the same criteria as the safety case to derive the category ofsafety violation. Lastly, most of the simulations use default AV configurations and evalu-ate well-established algorithms. Our study uses a simulator configured for a real-world AVand evaluates an AD algorithm in the developmental stage where reliability and optimi-sation are required to be assessed under safety, non-cyber test cases before the impactof cyber attacks can be understood.
3.2 AnalysingAdversarial Threats toRule-Based Local-PlanningAlgorithms

for Autonomous Driving
Navigation and planning algorithms are essential for AD. For the self-driving vehicle to nav-igate the road environment, the navigation and path-planning algorithm must calculate aroute that ensures safety for the passenger and external environmental actors (pedes-trians, other vehicles and road users, etc.) and achievement of the journey (mission).

61

Initial studies of navigation and path planning algorithms for AD have shown them to bevulnerable to adversarial attacks that introduce uncertainties into the route calculation,which causes downstream effects on the safe behavioral control of the AV. To improvethe reliability of navigation and planning algorithms, they need to be further tested foruncertainties, and these methods are incorporated into the architecture of autonomousdriving [34, 37, 334].There are a few studies that focus on adversarial attacks on local-planning. These stud-ies target machine learning algorithms for local-planning modules such as trajectory pre-diction (Trajectron++, Agentformer and GRIP++) [34, 36, 334]. The predominant threatmodel adopted, focuses on developing methods and tools of adversarial learning to un-derstand the trajectory prediction model of the target AV and then either crafting mali-cious sensor data input or training other ego AVs in the driving environment to interferewith the target AVs predicted trajectory [34, 36, 303, 334]. The required result of a suc-cessful adversarial attack is to cause the target AV to generate a trajectory that is unsafe,inefficient, or uncomfortable for passengers. In this work, we expand on the target ofattacks to a rule-based algorithm for local-planning, and focus on the trajectory gener-ation and estimation of an AV. Our justification for focusing on rule-based algorithms isthat, whilst AI approximate reasoning algorithms seem to be highly promising for the nearfuture, an impediment to current adoption is the lack of feedback in real-world drivingscenarios [52]. Rule-based algorithms for path-planning in robot navigation and AD arewell-established, and more ubiquitous in real-world deployments.A rule-based local-planning algorithm uses a cost function to estimate the least-costpath. The cost function takes input from immediately sensed-data; current pose, velocityetc.. The cost estimation is based on a calculation of factors such as; lateral collision, lon-gitudinal collision, lane transition, central deviation etc., and weighting is given to thesefactors based on criteria such as safety and efficiency. By interpreting the cost-function,used for trajectory generation and estimation, as part of local-planning, an adversarialattack can be crafted which affects the downstream behavioral control whose decisionsimpact the safe driving state of the AV.The main idea is that the white-box knowledge of the cost estimation function of therule-based local planning algorithm can be used to craft adversarial attacks by manipulat-ing factors inherent to the cost function. Evaluating white-box generated attacks enablean understanding of the level of stealth of the adversarial threat, and whether adversarialmanipulation by the cyber attack can be distinguished from noise. Furthermore, theseattacks will enable evaluation and assessment of the optimisation of the algorithm to un-certainties and the quality of decision-making.The key questions we engage are the following:
1. What is the sensitivity of the cost function to adversarial data manipulation of keydriving parameters?
2. How can an adversarial attack hide in the cost function from detection?
3. What optimisations of the rule-based algorithmcanbe considered tomitigate againstadversarial data manipulation?
The problem area of this research, is centred on a local-planning algorithm, open-planner 2.5, which is used in an AV shuttle program that operates in real-world roadconditions in Europe [57]. As with the open-source software community, developmentof vulnerability research and testing methods proliferate across the ecosystem and areutilised and innovated for diverse platforms. The aim of this study is to focus on the vul-nerability of the local-planning function of autonomous driving and provide direction and

62

guidance to the autonomous driving security community to develop vulnerability testingon diverse planners and algorithms. In a broader sense, this research aims to understandhow AD algorithms used in real-world AD programs can be tested for adversarial threatsand validated to improve assurance for real-world operational driving.
3.2.1 Threat ModelThe attack targets the local planning cost function, with the aim of inducing the trajectoryevaluation to choose a motion-planning route that is not optimal for safety, functional-ity of the driving mission and comfort of the passengers. To achieve this, the most directmechanism to impact the cost function is tomanipulate, with adversarial data, the sensed-data input that is inherent to local-planning. The Current_Pose data is the optimal targetfor this as it is the primary sensed-data for localisation of the vehicle, containing the longi-tudinal, lateral positioning and orientation of the AV. Whilst altering the pose data of thevehicle has previously been conducted in other studies [34,36,303,334], in our attack weaim to explore the sensitivity of our cost function to data manipulations and conductingthe attack during specific time-intervals.For the threat model used in our study, we assume that the attacker has access tothe internal network of the AV and is able to listen to control message communicationsand collect data. This could be achieved through supply-chain compromise of a libraryin the control software, insider threat actor, or many of the vulnerabilities in existingcommunication frameworks for autonomous systems such as the robotic operating sys-tem (ROS) [64]. Given the attacker has access to the internal network, the question arises,why not change the Lane_ID or a driving parameter which would be more simplistic anddirect? We view these attacks as overt in nature and likely to be detected, the compellingnature of adversarial data manipulation is that the attack is difficult for AV safety engi-neers to interpret between noise and an explicit cyber threat. Another consideration arethe external interfaces of the vehicle localisation sensing, which generates the pose data.It is a possibility that the pose data can be manipulated by an external attack in the formof GPS spoofing or an adversarial LiDAR, dependent on the sensor configuration used forthe localisation of the vehicle. The study focused on the vulnerability of the planner andits search space, considering localisation. We considered internal attacks to be importantdue to the increase in attacks through software and hardware supply-chains, and there-fore the scope of the attacks within the study highlighted this area.
Attack Case 1: Position Offset AttackThe attacker creates a spoofed ROS topic which is able to deliver malicious input data ofthe Current_Pose (longitude, latitude, and velocity) to all the nodes of the local planningmodule. The data manipulation is injected online/dynamically during the critical overtak-ing manoeuvre involving the AV and NPC. Figure 30 displays the critical driving scenarioand the time frames in which the manipulated Current_Pose data is injected into the lo-cal planning pipeline cost estimation. The red dashed lines in Figure 30 represent theroll-outs, and the green highlighted, denoting the selected motion-path.

63

Figure 30: Threat Model

For the manipulation of the Current_Pose data, we introduce a deviation to lateraland longitudinal pose. For the lateral pose data, the sensitivity deviation introduced wasstructured as follows:
• Attack Case 1a: 0.16%
• Attack Case 1b: 0.33%
• Attack Case 1c: 0.5%
In designing the range of deviation, we considered state-of-the-art attacks such asAdvDO attack [34], which noted two requirements for developing adversarial threats toplanning algorithms:
1. Malicious data input needs to be feasible to the real, physical constraints of thevehicle [34].
2. Malicious data input of the local-planning algorithm should be close to the nominaltrajectory [34].
Therefore, we chose a range from a slight perturbation of pose to a 1m deviation.The longitudinal pose data sensitivity deviation range was structured as follows:
• Attack Case 1d: 0.33%
• Attack Case 1e: 0.66%
• Attack Case 1f: 1.00%
This range is the same as the longitudinal deviation. The difference in percentagecomes from the difference in coordinate values of lateral and longitude. The lateral valueis almost double those of the longitudinal, and therefore the percentage is doubled.

Attack Case 2: Message Time-Delay
For the second attack case, we inserted a time-delay into themessages of theCurrent_Posetopic communicating to the nodes of the local planning module. We introduced a mes-sage delay when the AV passes 2m in front of the NPC (from the centre) in the lateraldirection. We introduce 3 different time delays in the message:

64

• Attack Case 2a: 0.3 seconds
• Attack Case 2b: 0.6 seconds
• Attack Case 2c: 1.0 seconds
The message frequency is approximately 50hz, so this is a message every 20 millisec-onds. We chose the above range of deviation of time-delay as it enabled a spectrum of amessage from the delay from approximately 15, to 50 messages.

3.2.2 Experimental Setup
Test Environment and Configuration
In terms of conducting such experiments, simulation is the best method among all testingmethods for AVs. To accelerate the testing, we bypassed the sensing and detection nodesof the algorithm and focused on the planning part by utilizing the low-fidelity simulationfeature provided by Autoware.ai and Openplanner. The low-fidelity simulation uses theopen-planner 2.5 control algorithm. It provides simulated localization and detection datafor the planning nodes and receives the actuation commands to simulate the AV kinemat-ics. This process runs faster due to the low-detail environment required for the simulationand the lack of the process to simulate the sensors. Figure 31 displays the different framesof an overtaking simulation in the simulator.

Figure 31: Example of an overtaking simulation in the low-fidelity simulator, a) starting point of the
overtaking b) middle of the mission, AV is on the opposite lane reaching the NPC c) AV cuts in

Target Mission
Overtaking is one of the most challenging maneuvers for AVs [186]. In this research, weselected this operation as the target scenario for studying the planning algorithm underthe cyber-attack. The scenario parameters in Figure 32 are listed in Table 19.

65

Figure 32: Overtaking Scenario and parameters

Table 19: Target scenarios definition

Actor Speed (m/s) Dx(m) Goal
AV [0:6] 0 overtake the NPC safely
NPC 3 25 keep moving

Safety Evaluation Test
To assess the safety and reliability of the planning algorithm in normal conditions (no at-tack), we ran the scenario simulation 300 times to reach a meaningful statistical popu-lation. Then, the planning algorithm behavior in each case was evaluated with the local-planner performance evaluation criteria (explained in the next section).
Attack Test Cases
Finally, the platform was used to simulate the proposed adversarial data manipulationsand time-delay messaging, during the overtaking mission and monitor the algorithm’sbehavior. For each attack case, we ran the simulation (with attack) 100 times. Overall,900 simulations were conducted for all attack cases.
Evaluation Criteria
For the evaluation, we used previously established safety criterion [190] with evaluationcriteria recommended by SafeBench, a benchmarking framework for safety evaluation ofAD algorithms for critical driving scenarios [320]. Table 20 displays the metrics used forthe performance evaluation.

Table 20: Safety Evaluation Criteria

Safety Condition Data Label Description Metric
Succeed Suce AV Successful complete the mission Pass/Fail
Not Finished NotF Failure to finish the mission Pass/Fail
Distance-to-Collision DTC Violation of the safe distancebetween AV and NPC AV within 0.5mof other vehicle
Break on Driving Lane BrD AV initiates emergency break on driving lane Pass/Fail
Break on Passing Lane BrP AV initiates emergency break on passing lane Pass/Fail
Collision Col AV collides with NPC Pass/Fail
Violation V Safety Violation

66

3.2.3 ResultsAfter running 1200 simulations, all recorded data including the AV and the NPC positionand orientation were processed to assess the simulations based on the evaluation crite-ria. We also visualized the recorded data to study the violation and their cause in eachsimulation as shown in Figure 33. Figure 33.a represents a safety run completed success-fully. Next, (b) and (c) display lateral and longitudinal attack cases which experiencedbrake and collision safety violations respectively. Finally, (d) shows a message time delayattack which is finished by a collision. The asterisk signs in the AV trajectory show thepoint where the Openplanner changes the rollout. Overall, all the safety violation resultsfor the whole experiment are presented in Figure 34.

Figure 33: 2D representation of the simulation of each test group. a) a successful safety test, b)
a lateral attack case that led to a brake violation, c) a longitudinal attack case that experienced a
collision, and d) a message time delay that causes a collision. for the attack cases a vertical line
shows the start and stop point of the attack

For each of the attack test cases, we saw an increase in safety violations of the AVcompared to the normal safety test case experiment. As the value of the deviation forlateral and longitudinal values increased the number of successful mission completionsdecreased. Although marginal, the greater number of safety violations for the attacks onthe Current_Pose data were observed in the lateral deviations. Given the importance oflateral positioning to the overtaking manoeuvre, this can be understood as any deviationincreases the complexity of executing the overtakingmanoeuvre. In the 1f attack test case,the highest value longitudinal change (approximately 1 meter) led to a crash with curbsideand not able to continue themission. This eventwas reported as a braking safety violation.The time-delay messaging attack test case saw the only result for mission not finishedmetric. Furthermore, the greater the delay of the Current_Pose data reaching the local-planning nodes, the increased likelihood that a safety violation will occur, and in the caseof our experiments, the greater the likelihood of a the most serious safety violation, col-lision.
67

Figure 34: All simulation result based on the proposed safety criteria

Table 21 demonstrates the results of the safety test according to the performance eval-uation criteria. The level of safety violations are reflective of an algorithm which is in de-velopment and being optimised for critical driving scenarios such as overtaking.
Table 21: Summary of the Safety Simulation

Num. VCol VDTC VBrP VBrD VNotF VSuce
300 4.6% 8.6% 19% 6% 0% 51.6%

TS ACC YV LI
mean 29.1 0.4 3.8 7.1
STD 6.7 0.2 2.2 4.6
min 21.9 0.2 1.8 2
max 42.3 1.3 21.7 25

Table 22 shows that for each deviation there is a high number of safety violations incomparison to the safety test case results. In regards to the sensitivity analysis, a smallerdeviation of around 20 to 25 cm can achieve the result that the local-planning algorithmis only successful in generating a trajectory that completes the mission in 24% of the totaltest set. Furthermore, a small deviation in the lateral pose, can achieve a higher number of
68

Table 22: Summary of the Attack Case 1: Position Offset Attack Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce
1a 100 24% 11 % 34% 7% 0% 24%
1b 100 5% 11 % 81% 1% 0% 2%
1c 100 13% 11 % 74% 2% 0% 0%
1a TS ACC YV LI

mean 35.3 0.4 9 7.5
STD 7.4 0.2 7.5 5.4
min 21.9 0.2 1.9 1
max 42.4 1 23 23

1b TS ACC YV LI
mean 41.4 0.4 9.5 4.8
STD 3.5 0.1 4.4 3
min 22.1 0.2 3.1 1
max 42.4 1.2 23.7 21

1c TS ACC YV LI
mean 41.7 0.4 7.8 4.7
STD 1.7 0.1 1.2 2.7
min 32 0.3 4.3 1
max 42.3 1 9.8 15

collisionswith an ego vehicle. Itmay also be seen from the lane invasion and steering angleresults that small deviations to lateral pose result in a fluctuation of the cost of differentrollouts which cause greater lane transitions as the cost function causes the AV to choosea route based on minimum cost. The higher deviation results in a higher occurrence ofbreaking activity and hitting the curb. Furthermore, the higher deviation results in theAV being stuck in the passing lane, this is due the dramatic change in lateral pose. The 1meter deviation attack case results in 0% success of finishing the mission.
Table 23 results of the longitudinal deviations also display a high number of safety vio-lations in comparison to the safety test case results. Collision safety violation is highest forthe longitudinal deviation attack. This can be reasoned as the longitudinal deviation doesnot experience the same high volume of breaking passing lane safety violations, wherethe vehicle gets stuck, as seen with the lateral pose deviation. The higher deviation oflongitudinal pose, results in increased acceleration and this causes sharp breaking. This isindicated with the 1f result, the 1 meter deviation attack case, which displays a higher in-stance of breaking safety violation. The 1meter deviation attack case results in 0% successof finishing the mission.
Table 24 demonstrates the shorter delay of local pose data has minimal impact on thesuccess of the mission and safety violations. As the time duration of the message delay

69

Table 23: Summary of the Attack Case 1: Position Offset Longitudinal Deviation Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce
1d 100 23% 16 % 30% 7% 0% 24%
1e 100 58% 9 % 25% 3% 0% 5%
1f 100 34% 14 % 51% 1% 0% 0%
1d TS ACC YV LI

mean 33.8 0.5 5.7 9.1
STD 7.6 0.3 4.9 5.4
min 18.1 0.2 1.7 2
max 43.2 1.4 23 27

1e TS ACC YV LI
mean 32.2 0.6 6.7 10.5
STD 9.5 0.2 3.2 5
min 17.8 0.2 1.9 2
max 43.2 1.1 20.5 25

1f TS ACC YV LI
mean 32.2 0.7 5.9 11.3
STD 7.9 0.2 2.5 4.7
min 18 0.3 2.7 2
max 43.2 1.4 22.1 26

is increased the impact to the reliability of the local-planning algorithm is higher. Test 2c,which is the delay of Current_Pose data of 1.0 second, shows considerable increases incollisions and decreases in the likelihood of the success of the mission. The time-delay ofthe pose data to the local-planning nodes results in a loss of localisation and the greaterdelay the greater impact on the cost calculation which in turn causes uncertainty for thebehaviour selector/decision-making.
3.2.4 Discussion
The results of the test simulations demonstrated that the cost function is sensitive to mi-nor deviations of both the lateral and longitudinal pose. The success rate of the mission isvisibly diminished when adding adversarial data manipulations to the sensed-data input.The higher the deviation, the higher the likelihood of mission failure. The minor deviationattacks, where the deviation is a range of 20 to 25cm offer a good starting point to mutateadversarial data for further attacks based on this range. Whilst the higher range attacksconducted in our experiments showed a higher rate of mission failure, a deviation of 1meter can be seen a noisy enough to be observable. We also noticed such behaviour in areal-world AV shuttle [254] and a manual emergency break had to be enacted to preventan emergency.

70

Table 24: Summary of the Attack Case 2: White-Box Delay Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce
2a 100 20% 9 % 16% 4% 0% 51%
2b 100 21% 8 % 17% 7% 0% 47%
2c 100 41% 10 % 14% 2% 4% 29%
2a TS ACC YV LI

mean 29.3 0.4 4.2 7.6
STD 8.1 0.2 2.2 5.4
min 18.1 0.2 1.8 2
max 53 1.1 16.7 24

2b TS ACC YV LI
mean 30.6 0.4 4.8 7.8
STD 8.6 0.3 3.7 4.8
min 22.9 0.2 1.8 2
max 58 1.1 23.8 21

2c TS ACC YV LI
mean 32.9 0.4 7 8.3
STD 9.6 0.3 5.2 5
min 13 0.2 1.1 0
max 58.2 1.3 22.9 23

The time-delay attack demonstrated that minor delays cause minimal impact on thesuccess of themission and the occurrence of safety violations. Delays in sensed-data inputflowing to the local-planningmodules of greater than 1 second increase the rate ofmissionfailure and safety violations. Given that 1 message is broadcast every 20 milliseconds, 1second represents around 50 messages, and a delay of this magnitude is also likely to bemore observable.
For the attack to hide in the cost function, investigatingmutations forminor deviationsof lateral and longitudinal values in the range of 20 to 30 cm, offer an optimal target range.
Mitigation of the adversarial deviation and time-delay attack could include the imple-mentation of a redundant driver. This means that the AV should run a concurrent processexecuting a concurrent planning instance. If the redundant driver and the actual drivingalgorithm give different results, then this could indicate that an attack might be happen-ing. In such a case, the AV could either stop safely awaiting for human intervention orswitch to the redundant driver to complete its mission. The development of the architec-ture for a redundant driving integrity checking function also needs to consider isolationfrom the primary driving function so that an attacker cannot also compromise both.

71

3.2.5 Relation to existing solutions
As safety validation of AD algorithms is a critical field for the adoption of AD in real-worldenvironments, there is a focus on testing the reliability of trajectory prediction and gen-eration to adversarial driving actors in the road environment. Wang et al. [303], Abeysiri-goonawardena, Dudek & Shkurti [6], Chen et al. [44], Klischat et al. [157], and O’Kelly etal. [215] use simulation environments to develop adversarial trained NPCs whose drivingactions cause safety violations of the trajectory prediction of the targeted AV. These sim-ulations are focused on safety validation and are not focused on the exploitation of thealgorithm by adversarial threat actors, however, their methods in generating adversarialexamples and target parameters and data values are of great use in developing adversarialcyber threats.On a practical level, involving the real-world operation of AVs, there are few researchstudies into the robustness of planning and navigation algorithms to adversarial threats.Prominent among them are Zhang et al. [334], Cao et al. [36] and Cao et al. [34]. Thesestudies focus on the robustness of the trajectory prediction, the ability of the AV to predictthe trajectory of another ego vehicle or environmental object (pedestrian, animals etc.)and make driving decisions accordingly. The attacks in these studies are targeted at deep-neural networks (DNNs), and therefore focus on adversarial learning to develop robustadversarial trajectories. In relation to our work, the observations on ranges for deviationof lateral and longitudinal values and the considerations for crafting adversarial data wereuseful in developing our attack cases.In this experimental research, we conducted a sensitivity analysis of the openplanner2.5 rule-based planning algorithm to adversarial data manipulation of lateral and longi-tude values and delayed sensed-input messages to local-planning nodes. We evaluatedthese attacks in a low-fidelity simulation test environment using an overtakingmanoeuvrecritical driving scenario. The results showed that the planning cost-function is sensitive toadversarial data manipulation that introduces deviations to the lateral and longitudinalvalues. These adversarial deviations cause higher rates of failure to complete missionsand cause safety violations. For the message delay attack, limited delays in the range upto approximately 0.6 seconds have a limited impact on the trajectory calculation. Mes-sage delays for 1 second or greater cause a visible difference in the safety violation rate andmission success. We opine that limited deviations are an optimal area to explore furtherattacks and inmore diverse critical driving scenarios.Through this work we propose a classof stealthy attacks on the local-planning function of AD. An area of future research is thedevelopment of monitoring systems developed around such basis of attacks. The resultsshow the feasibility of monitoring real-time properties of the messages propagations andtherefore post-mortem forensics might be able to determine the presence of an attackercausing safety violations of AVs.
3.3 Analysis of Autonomous Driving Software to Low-Level Sensor Cyber

Attacks
Cyber attackswhichmanipulate input to physical processes in cyber-physical systemspresenta fundamental challenge to secure system design [331]. Within the domain of automo-tive systems, transformation of legacy, analog architectures to digitally connected and ADtechnologies present new challenges. Legacy, analog automotive systems were designedbased on a principle of contained, isolated system boundaries, restricting the flow of datawithin an analog system and sub-system [30]. The AD system architecture transforms thisdesign, requiring the lower-level, analog control of actuation processes (steering control,braking, acceleration etc.) to be open and connected to digital controllers so their process

72

signals can be translated to digital input for the higher-level decision control [205].There have been numerous real-world examples of semi-autonomous control archi-tectures enacting unsafe decisions from erroneous sensing data from low-level actuationsensors [294] [74]. The 2018 SmartLynx Airline incident demonstrated that a physical dis-turbance from amaintenance activity on the horizontal stabilising sensor caused the sens-ing input to send erroneous data which propagated through to the control systems forflight planning, stabilisation and safety. The control systems initiated multiple concurrentactuation decisions (horizontal stabilisation, acceleration etc.) which affected the safeoperation of the flight [74]. Ultimately, manual intervention to override the autonomouscontrol resolved the unsafe state of the flight.Within the context of cyber threats, numerous studies have proven the vulnerability ofmicroelectronic sensors to electromagnetic interference (EMI) [225], [290], [336], acousticsensor [289] [283] and data manipulation attacks [60], [131], [202], [51]. Furthermore,the network that exchanges actuation signals, CAN Bus network, has been shown to beinherently vulnerable to a diversity of man-in-the-middle [31, 139] attacks. Yet, there is alack of practical investigation which extends this analysis of the propagation of maliciousdata input within an AD system, where physical processes are software controlled andmanual, human intervention is not available.

Figure 35: High-level architecture of Steering Angle Sensor Manipulation within AD System.

This experimental research ismotivated to investigate how cyber attacks to electrome-chanical components, in our case, a steering-angle sensor, propagate through the AV sys-tem, affecting higher-level decision-making. The aim of this research is to analyse thedesign of a real-world AD vehicular system and assess mechanisms to enhance the de-sign of the architecture of AD systems to be more robust and resilient. To achieve this,we, firstly, investigate a real-world AV software ecosystem, analysing the integration be-tween the lower-level control, characterised by electromechanical components, and thehigh-level control, characterised by digital systems which support algorithmic decision-making. Secondly, how malicious input propagates within this ecosystem. Finally, deter-mine mechanisms for enhancing secure design.To guide this research, we focus on the following research questions:
RQ1 How does a manipulation to the electromechanical component propagate through

the AD software stack?

RQ2 What dependencies exist between the AD control algorithm and low-level control?

RQ3 Where in the architecture of the autonomous vehicle can defensive mechanisms be
placed to defend against control invariants?

73

3.3.1 Approach Overview
Our approach (see Figure 36) is to, firstly, implement the sensor interference attackmodelin our custom high-fidelity AD test-bed environment. The test-bed environment containsthe software stack of our real-world vehicle and configurations consistent with the real-world kinematics of the vehicle.

Secondly, from the results of the experiments, we assess the impact of the cyber at-tacks utilising defined safety criteria. Furthermore, we conduct a sensitivity analysis ofthe vehicles dynamic parameters to identify the behavioural affect of the malicious inputand assist in pinpointing critical areas of the AV software which are affected by the attack.
Third, we conduct a bottom-up analysis, to ascertain what happens to the high-level,decision-control, when malicious data is injected into the low-level. The bottom-up anal-ysis details the relationship between inputs and outputs in the AV software stack.
Fourth, the previous analysis enables backstepping at a conceptual level to stabilizeelements of the control model which are susceptible to the sensor interference attack.

Figure 36: Conceptualization of our approach, from attack to backstepping.

We justify the use of this approach as it enables us to take an architectural view of theAV software stack. Existing studies usemethods that view the problem ofmanipulation oflow-level sensor input either within the context of a PID control [225] [290] issue or solelyfocus on the autonomous control [131]. We believe, taking an architectural perspective,where the interconnections and dependencies of the system are encountered, enablesthe designer/s of the AV to gain more insight into the functioning of the system underattacks.
3.3.2 Adversarial Model
The objective of the attacker is to cause the AV to take unsafe driving actions resultingfrom manipulation of the steering angle sensor. We assume the attackers cannot directlyaccess the digitised sensor readings. Instead, we assume that the attacker can exploitvulnerabilities in the steering angle sensor using proven techniques such as EMI, to affectthe integrity of the sensor data (analog signals on the signal conditioning path beforebeing digitised).We assume that the attackers can physically place an EMI device near

74

the steering angle sensor and are capable of crafting and transmitting interference to thesensor during the navigation of the AV and thus transform the waveform of the sensoroutput. We further assume that the attackers do not possess an in-depth understandingof the voltage levels of the steering sensor and therefore focus on injecting incrementalnoise into the sensor. We assume that the attackers can observe the operation of the AVand control the attack in terms of initiation and cessation of the attack during varied timeperiods or within the frames of a critical driving manoeuvre.
3.3.3 Attack Model
The attack is conducted in the measurement of the input and output of the PID controllerfor the steering angle (See Figure. 37).

Figure 37: Steering angle sensor attack.

The key parameters that affect the success rate of the attack are: duration, noise,
attack trigger action.Within, our attack model, attacks are conducted with differing sensitivity levels of thesteering angle sensor, durations and are triggered at targeted points of the AV mission.We have chosen a range of sensor attack noise levels (0.01, 0.05, 0.1, 0.2), rather thana specific target point. We expect that our attack, will generate errors that propagatefrom the low level to the localizer and trajectory-generator blocks. The study of Pöllny etal. [225], which conducted EMI attacks on a sensor used in an automotive ECU, indicatedthat an attacker does not need to set a specific value for the steering angle attack, butsimply to find the sufficiently high level of noise that would alter system behaviour to theattacker goal.Whilst, EMI attacks have been proven successful against microelectronic componentsin [150] [131] [225] [60] [290] [336] [283], the attacks are applied to the stand-alone sensorhardware and application use-cases such as microphones, temperature sensors, drones.The novelty of the attack model in our study is the implementation of the attack to afully-autonomous vehicle that integrates low-level actuation with high-level AD decision-making. This enables the ability to assess the affect of the attack to the entire AV softwarestack. Furthermore, the attack is conducted utilising scenario-specific testing. This is ofcritical importance, as it is widely understand that the performance of the AD decision-making layer differs based on scenario specific behaviour [131]. For the AD algorithmsmaybe better optimised for specific driving manoeuvres such as overtaking, or ODDs such asbusy intersections. Our attack is conducted in a simulation test environment, as attacksat the physical, hardware-level are proven, the gap in existing research, is how these in-puts propagate within the system and affect the decision-making within an autonomoussystem.

75

3.3.4 Experiment
Experimental Setup
To conduct the attack and analyse the subsequent effects, we developed an experimentaltest environment.This environment consists of a simulation platform that fuses the low-level actuation, simulated inMATLAB, with a high-fidelity simulation of the AV software ofour real-world vehicle, simulated in CARLA. The simulation test environment provides anoptimal platform as it uses the same mathematical model of the steering actuation sen-sor and the same software stack as the real-world vehicle. Furthermore, the simulationenvironment enables attack testing to be conducted in an agile manner, whilst, removingthe safety risk factors of testing the AV in the physical, road environment.
Attack Implementation
We chose to conduct the low-level attack on three diverse scenarios (see Figure. 38):1) Straight-line, 2) Overtaking manoeuvre and, 3) Left-turning maneuver at intersection.These scenarios were chosen as they are consistent with the most-popularly tested driv-ing scenarios according to the survey of test methods and practices by Lou, Deng, Zheng,Zhang & Zhang [177]. As shown in Figure 38, the high-fidelity simulation view for the 3scenarios is conducted. The Straight-Line scenario shows that the EMI attack is initiatedafter the vehicle traveled 20 meters, with two different attack durations: 10 and 20 me-ters. For the overtaking manoeuvre, the attack begins during the cut-in process and lastsfor 10 meters. Finally, in the intersection scenario, the attack is launched as the vehicleenters the intersection and persists for a distance of 10 meters.To conduct our experiments, firstly, we conduct the scenario with no-attack for 100runs. This establishes a baseline of the performance of the AV without attacks. Fromthere, each of the attacks with different noise levels and duration are run 100 times. Over-all, approx. 1900 simulation runs are recorded, and as the high-fidelity simulation usesGPU and CPU resources, this is a time-consuming process. Figure 39 presents the sce-nario flow used to integrate the attack into the mission in CARLA. It outlines the sequenceof behaviors from the vehicle’s initialization and driving towards the goal to executing anattack or stopping based on a distance trigger. The attack is enabled based on a prede-fined condition. This structured flow allows for precise control over when and how theattack occurs during the scenario, ensuring consistent testing of the AV’s response to dis-turbances.
Evaluation Criteria
Table 25 and 26 detail the safety and performance criteria applied in our experiments,respectively. As we have diverse scenarios which involve scenarios with ego vehicles, cer-tain criteria is only applicable to their corresponding scenario. In this analysis, missionfailure (NotF) and safety violations (SafetyV) are distinct evaluation criteria used to assessthe performance and safety of the AV during the scenarios.Mission failure (NotF) refers to instances where the vehicle was unable to completethe mission. This typically occurs due to critical events that prevent the AV from finishingits task, such as collisions (VCol), localization loss (VNDT Ls), or sidewalk incursions (VSiIn).These violations are severe enough to terminate the mission.Safety violations (SafetyV), on the other hand, refer to any breaches of safety that oc-cur during the mission but do not necessarily prevent the vehicle from completing it. Amission may still be considered successful even if multiple safety violations are recorded.Examples of these include deviation to the center lane (VDT L), sharp braking (VBrD), local-ization loss (VNDT Ls), collisions (VCol), and violations of distance to collision (VDTCVDTC).

76

Figure 38: Game-engine view of three simulated scenarios representing the attack occurrence place
during the mission; 1) Straight-line 2) Overtake 3) Intersection.

In these cases, while the AV may exhibit unsafe behaviors or suboptimal performance, itis still able to complete the mission.
Two critical safety metrics are sidewalk incursions (VSiIn) and collisions (VCol), bothrepresenting severe safety hazards. A sidewalk incursion indicateswhere theAV veeredoffits intended path and encroached into pedestrian zones, potentially endangering peopleon sidewalks. Similarly, a collision signifies an event where the AV collided with a nearbyNPC vehicle.
Another key performance indicator is the deviation to the reference path (Dev2Ref),whichmeasures how far the AV strayed from its intended trajectory. It is important to notethat Dev2Ref is not the deviation at a single point; rather, it represents the summationof the deviations at several reference points along the planned path to the actual routetraveled by the AV. This cumulative nature of the metric results in larger values, especiallywhen the AV frequently deviates from the intended trajectory.

77

Figure 39: Flow-graph of how each scenario is processed in the simulation platform.

Table 25: Safety Evaluation Criteria

Safety
Condition

Data
Label

Description Metric

Not Finished NotF Failure to finish the mission Pass/Fail
Sidewalk Incursion SiIn AV deviationinto pedestrian zone Pass/Fail
Collision Col AV collides with NPC Pass/Fail
Distance-to-Collision DTC Violation of the safe distancebetween AV and NPC AV within 0.5mof other vehicle
Distance-to-Centre Lane DTL Violation of the safe distancebetween AV and Centre Lane AV within 0.4mof centre lane
Break onDriving Lane BrD AV initiates emergency breakon driving lane Pass/Fail
Localization NDTLs Localization Loss NDTerror> 1.0
Violation V Safety Violation

3.3.5 Results
For each of the scenario’s, the results, as expressed in Tables. 27, 28, 29 demonstrate thatincreasing level of noise and duration of the EMI attack impact the safety and performanceof the AV.Themanipulation of the steering sensor input, at higher noise levels, affects the feedback-loop for calculation of localisation which results in the AV experiencing loss and jumps oflocalisation. The NDT algorithm, used in the localisation algorithm, exhibits weakness inholding the position of the AV during sensor manipulation, which is demonstrated by lossof localisation, in attempting to re-correct, it incurs jumps. The loss and jumps of the lo-calisation affect the displacement of the AV as such the cost-based algorithm used by themission andmotion planningmodule, recalculates the trajectories and chooses a new roll-out. The choice of new trajectory of the AV disrupts the flow of critical maneuvers within

78

Table 26: Performance Evaluation Criteria

Performance
Criteria

Data
Label

Description Metric

Lane Transition RlOut AV executes multiple roll-outtransition Pass/Fail
Localization NDT LocalizationPerformance AV localization matching
Localization NDTer Mean localization pose error Localization error margin
Duration Dur Duration in seconds
Max NDT score MxNDTSr Max NDT scoreduring a mission Smaller = Better
Path Deviation Dev2Ref Sum of deviation to thereference path in sampled points Smaller = Better
Max Lat Deviation MxLaDev Max lateral deviationfrom original path Smaller = Better

the scenario such as the cut-in process of overtaking, smoothing of trajectory in keepingstraight-line and turning at the intersection.
Scenario 1: Straight-Line
Within the Straight-Line Scenario Safety Results (Table. 27), safety violations begin to oc-cur when 0.05 noise is introduced into the sensor input, marking the threshold where theAV system starts to struggle with maintaining safety. At this noise level, a 10% safety vio-lation rate provided by lateral deviation violations was observed. As the noise level andattack duration increase, the AV experiences a progressive degradation in performance,culminating in the highest noise level (0.2) and the longest attack duration (20 meters),which results in a 42% safety violation rate and 38% lateral deviation violation.

A key characteristic of the AV’s behavior in this scenario is the Deviation-to-Centre-Lane. The noise is injected into the steering sensor, and abrupt changes in the steeringactuation cause the vehicle’s control system to oscillate between making corrections andfollowing the desired path. Autoware’s motion planner attempts to rectify the vehicle’scourse, but the corrections are often sub-optimal, resulting in the AV veering to a danger-ous proximity to the center line. This behavior indicates a weakness in the resilience ofthe AV’s planning algorithm when recovering from anomalous inputs, as the system failsto regain optimal performance after the attack.
A more extreme example of dangerous trajectories, is where the EMI injection causesthe AV to lose localisation which, cascades to affect the decision-making of the planningalgorithm. The attack localization loss, as indicated by the NDT Error Value and NDT Scoreincreasing, and the sharp variances between autoware and simulator. This behaviour re-sults in the AV veering into the adjacent lane and hitting the side curb, a behaviour char-acteristic of 6% of the runs within the maximum noise and duration simulation set. Asso-ciated with these safety violations are significant performance degradation. In scenarioswith low noise levels (0.01), the maximum lateral deviation is limited to around 0.2 me-ters. However, under maximum noise (0.2) and 20-meter duration conditions, the lateraldeviation increases dramatically to 8.2meters, showcasing the substantial impact of noiseon the AV’s ability to maintain its path. This severe lateral deviation illustrates the dangerposed by noise-induced errors in the vehicle’s steering and localization systems.

79

Table 27: Summary of the Safety and Performance Evaluation - Straight Line Scenario. The first line
is our baseline path where no attack was applied.

SAFETY
Length Noise NotF SafetyV VSiIn VDTL VNDTLs VBrD

- baseline 0% 0% 0% 0% 0% 0%
10 m 0.01 0% 0% 0% 0% 0% 0%10 m 0.05 10% 10% 0% 10% 0% 0%10 m 0.1 12% 12% 0% 6% 6% 0%10 m 0.2 30% 30% 2% 26% 12% 8%
20 m 0.01 0% 0% 0% 0% 0% 0%20 m 0.05 34% 34% 2% 30% 8% 2%20 m 0.1 34% 36% 4% 28% 18% 6%20 m 0.2 42% 42% 6% 38% 14% 2%

PERFORMANCE
Length Noise Dur RlOut MxLaDev MxNDTSr

- baseline 57.6s 0 0.1m 11.9
10 m 0.01 59.9s 0 0.2m 11.910 m 0.05 61.5s 0.16 1.6m 12.010 m 0.1 65.5s 0.3 1.5m 12.510 m 0.2 71.8s 1.18 8.3m 25.5
20 m 0.01 70.2s 0 0.3m 14.220 m 0.05 75.6s 0.94 1.7m 25.520 m 0.1 82.6s 1.36 8.2m 46.920 m 0.2 85.6s 1.64 8.2m 35.0

Moreover, the RIOutmetric—which tracks the average number of local trajectory tran-sitions during a mission—shows a significant increase under high-noise conditions. Thisindicates the motion planner’s growing uncertainty and inability to maintain a stable tra-jectory. As the AV continuously switches between trajectories, it struggles to converge onan optimal path, leading to erratic driving behavior and further deviations. Another factorexacerbating these challenges is the increased mission duration under noise attacks. TheAV, displaced from its efficient path due to trajectory deviations and localization errors,takes longer to complete the mission. In the 0.2 noise / 20-meter scenario, the missionduration extended by nearly 28 seconds compared to the no-attack baseline, reflectingthe inefficiency introduced by the noise attacks.
Scenario 2: Overtake Maneuver
In this experiment, the attack length was fixed at 10 meters while varying the noise levelsto assess their impact on the vehicle’s performance and safety. In the no-attack scenario(see Table. 27), the AV successfully completed the overtaking maneuver with minimal dis-ruptions. Themission failure rate (NotF) was 0%, and a 1% violation of distance to collision(VDTC) was recorded, indicating that in one case, the vehicle exceeded the safe distancefrom nearby objects. Despite this, there were no sidewalk incursions (VSiIn), collisions

80

(VCol), or localization loss (VNDT Ls). The vehicle maintained a safe average DTC of 0.4 me-ters. The mission duration was 104.7 seconds, with an NDT error of 0.2 and a standarddeviation of 0.1.
Table 28: Summary of the Safety and Performance Evaluation - Overtake Scenario. No attack was
carried out in the baseline experiment.

SAFETY
Noise NotF SafetyV VSiIn VCol VNDTLs VDTC VBrD

baseline 0% 1% 0% 0% 0% 1% 0%
0.01 7% 18% 2% 3% 4% 14% 1%0.05 16% 23% 8% 3% 11% 10% 2%0.1 29% 40% 18% 2% 26% 14% 1%0.2 33% 39% 23% 7% 28% 14% 2%

PERFORMANCE
Noise Dur RlOut DTC MxNDTSr NDTer S-NDTer

baseline 104.7s 8.2 0.4m 19.4 0.2m 0.1m
0.01 107.3s 7.8 0.2m 55.9 0.2m 0.2m0.05 121.4s 8.9 0.2m 73.9 0.4m 0.5m0.1 125.4s 10.0 0.2m 63.9 0.7m 0.9m0.2 124.7s 10.2 0.2m 53.1 0.6m 0.8m

In the 0.01 noise scenario,VNotF increased to 7%, and by the 0.2 noise level, it reached33%. Similarly, VNDT Loss was first observed at 0.01 noise (4%), growing to 28% in the 0.2noise scenario. These results indicate that noise in the sensor input significantly disruptsthe vehicle’s ability to maintain accurate localization, directly impacting mission success.
In the no-attack scenario, VSiIn and VCol were recorded at 0%, reflecting ideal behav-ior where the AV stayed within its designated path and successfully avoided NPCs duringovertaking. However, as noise levels increased, both metrics worsened. In the 0.01 noisescenario, VSiIn rose to 2%, and VCol to 3%, showing the system’s diminished capacity tomaintain lane discipline and avoid nearby vehicles. At the highest noise level (0.2), side-walk incursions increased to 23%, while collisions reached 7%, a significant rise indicatingthe AV’s inability to safely manage the overtaking maneuver under heavy noise interfer-ence. These results suggest that sensor noise not only disrupts the vehicle’s path but alsocritically impacts its ability to avoid hazards that could lead to severe accidents involvingboth pedestrians and other vehicles.
TheVDTC, which reflects the rate at which the AV exceeded safe distances from nearbyobjects, increased from 1% in the no-attack case to 14% in the 0.2 noise scenario. Thiswas accompanied by a rise in sharp braking events as the AV’s control system struggled tocompensate for the noisy input, leading tomore frequent sudden stops. As the noise levelincreased, the RollOut metric showed greater instability. In the 0.2 noise case, the Roll-Out metric increased from 8.2 (in the no-attack scenario) to 10.2, indicating the planner’sincreasing uncertainty in maintaining a stable trajectory.
The mission duration increased as the noise level rose. In the 0.2 noise scenario, theAV took 124.7 seconds to complete the maneuver, an increase from 104.7 seconds in the

81

no-attack scenario. Additionally, the NDT error and its standard deviation saw significantincreases, with the NDTer rising from 0.2 to 0.6 and the S-NDTer increasing from 0.1 to0.8, highlighting the degradation in localization performance under noisy conditions.
Scenario 3: Intersection
In the intersection scenario, the attack length remained unchanged at 10 m, while thenoise levels varied to assess their impact on the AV’s performance during this complexmaneuver. In the baseline scenario, the AV successfully navigated the intersectionwithoutmission failure (0%) or significant safety violations, aside from a small 3% VDTC. Therewere no recorded VSiIn or VCol , and the AV maintained an average DTC of 0.4 meters,with an NDTer of 0.1 and a minimal deviation from the reference path of 20.4 meters.The overall mission duration was 65.8 seconds, and the system performed with only 2.2RollOut changes, indicating a stable and efficient planning process.
Table 29: Summary of the Safety and Performance Evaluation - Intersection Scenario. No attack was
carried out in the baseline experiment.

SAFETY
Noise NotF SafetyV VSiIn VCol VNDTLoss VDTC DTC

baseline 0% 3% 0% 0% 0% 3% 0.4m
0.01 8% 15% 0% 1% 7% 10% 0.2m0.05 19% 27% 2% 3% 16% 13% 0.2m0.1 23% 32% 6% 3% 19% 16% 0.2m0.2 25% 28% 4% 4% 22% 7% 0.1m

PERFORMANCE
Noise Dur RlOut MxNDTSr NDTer S-NDTer Dev2Ref S-Dev2Ref

baseline 65.8s 2.2 38.5 0.1m 0.1m 20.4m 8.2m
0.01 70.5s 3.1 39.5 0.2m 0.2m 39.1m 98.8m0.05 72.9s 3.9 40.9 0.4m 0.4m 63.6m 170.4m0.1 74.2s 4.5 37.5 0.5m 0.5m 69.6m 147.5m0.2 74.5s 4.1 39.1 0.4m 0.5m 77.9m 154.9m

As noise levels increased, the NotF rate rose from 8% at 0.01 noise to 25% at 0.2 noise.Safety violations also saw a sharp increase, particularly in terms ofVNDT Ls, which jumpedfrom 7% at 0.01 noise to 22% at 0.2 noise. This degradation in localization directly im-pacted theAV’s ability tomake timely decisions and follow the intended trajectory, leadingto more dangerous driving behavior.While sidewalk incursions and collisions were rare in the baseline scenario, they be-came more frequent as noise levels rose. At 0.2 noise, 4% of the runs resulted in VSiIn,and 4% in VCol with NPCs within the intersection. This behavior indicates a critical safetyfailure, where the AV not only lost control of its lane discipline but also failed to avoidNPCs and pedestrian zones.The cumulative deviation remained relatively low in the no-attack baseline scenario,indicating stable performance. However, under the influence of noise, this deviation in-creased significantly. For example, in the 0.2 noise scenario, the Dev2Ref reached 77.9meters, with a high standard deviation of 154.9 meters, demonstrating the system’s grow-ing instability under attack. The high standard deviation reflects the inconsistency in the
82

AV’s ability to maintain a predictable trajectory, as deviations varied considerably at dif-ferent points along the path. The increasing Dev2Ref values show that the AV struggledto recover from noise-induced errors, leading to significant drift from the planned path.
The results show that the roll-out metric increased as noise levels rose. In the 0.01noise scenario, the roll-out increased to 3.1, and by 0.2 noise, it rose to 4.1, indicating theplanning system’s growing uncertainty in selecting and maintaining a stable path. Themaximum NDT score also fluctuated, reaching a high of 40.9 in the 0.05 noise scenario,highlighting the deteriorating localization performance.
The NDT error and its standard deviation also increased with higher noise levels. At0.2 noise, the NDT error rose to 0.4, with a standard deviation of 0.5, indicating significantlocalization drift. This localization instability contributed to unsafe driving behavior, asreflected in the increased VDTC and collisions. The mission duration also increased withnoise levels, from 65.8 seconds in the baseline scenario to 74.5 seconds at 0.2 noise. Thisduration increase indicates the AV’s struggle to efficiently navigate the intersection underattack, as the planning algorithm and control systems were frequently forced to adjust tocounteract the noise-induced deviations.

Comparison Between Safety Violations and Simulated Scenario
Figure 40 represents radar graphs that provide a clear visual representation of the impactof noise attacks on the AV across all different mission types: straight-line driving, overtak-ing, and intersection maneuvers, with varying attack lengths (10 meters and 20 meters)for the straight-line scenario. By comparing these radar graphs, we can discern how theattack influences the AV in different maneuvers and understand whether the vulnerabilityis related to the nature of each maneuver.

In the straight-line scenario (Figure 40 (a) and (b)), the radar plots show a clear differ-ence between the 10-meter and 20-meter attack lengths. With the 10-meter attack (Fig-ure (a)), the VDT L and VNDT Ls are relatively contained at noise levels below 0.1, but theyspike at 0.2 noise, indicating that longer attack lengths exacerbate the vehicle’s struggleto maintain its trajectory. By contrast, in the 20-meter attack scenario (Figure (b)), theimpact of noise is more pronounced across all noise levels, with a higher percentage ofNotF and significantly greater VDT L and VNDT Ls values. This suggests that the longer at-tack duration amplifies the system’s inability to recover from perturbations in the steeringsensor, causing the AV to deviate further from the planned path.
In the overtaking scenario (Fig. 40 (c)), the radar plot highlights that this maneuver isparticularly vulnerable to VNDT Ls and VDTC as noise levels increase. Even at 0.01 noise,the AV shows a marked increase in these safety violations, and by 0.2 noise, VNDT Ls and

VDTC reach critical levels. This indicates that overtaking is amore complex and challengingmaneuver for the AV compared to straight-line driving, as it requires the vehicle to safelyexecute lane changes and avoid collisions with NPCs. The complexity of coordinating be-tween localization, path planning, and collision avoidance makes the system more proneto safety violations when noise is introduced.
In the intersection scenario (Fig. 40 (d)), the radar plot demonstrates that this maneu-ver is less affected by VDTC compared to the overtaking scenario, but the mission failurerate and localization loss are notably higher. Even at 0.01 noise, NotF jumps to 8%, and

VNDT Ls reaches 7%, while at 0.2 noise, NotF reaches 25%, indicating a substantial failurerate. The intersection maneuver places a high demand on the AV’s localization and plan-ning systems, as it requires precise decision-making in a constrained environment withmultiple potential collision points. The increase in safety violations with rising noise lev-els reflects the difficulty the AV faces in maintaining control during complex navigation
83

Figure 40: Safety violation of simulated scenarios.

tasks in intersections, where it must simultaneously monitor multiple potential threatsand adjust its trajectory.The vulnerability of the AV to noise attacks appears closely tied to the nature of themaneuver. Straight-line driving is less demanding in terms of control and localization, andas a result, the AV is able to handle noise better—though longer attack durations (as inFig. 40 (b)) significantly increase the risk ofmission failure. In contrast, overtaking involvesmore dynamic path changes and collision avoidance, making it more susceptible to noise,as seen in the sharp rise inVDTC andVNDT Ls even at low noise levels. Intersectionmaneu-vers also present significant challenges, particularly due to the need for precise localiza-tion and decision-making at multiple points, resulting in higher mission failure rates andlocalization loss as noise levels increase. These findings suggest that the more complexthe maneuver (i.e., those requiring more dynamic control and interaction with externalfactors like NPCs or intersection points), the more vulnerable the AV is to noise attacks.
Violation to noise correlation analysis
The correlation heatmap shown in Figure 41 reveals significant insights into how differentsafety violations and performance metrics are affected by noise levels across various ma-neuvers and attack durations. Among all the maneuvers, straight-line driving (10m attack)demonstrates the highest correlation between noise levels and mission failure, with a co-

84

Figure 41: Correlation coefficients between violation metrics (horizontal axis) and noise levels ([0,
0.01, 0.05, 0.1, 0.2]) for each scenario (vertical axis). The values indicate the strength of the rela-
tionship between the likelihood of each violation and changes in noise levels.

efficient of 0.99, indicating that shorter attack duration in straight-line driving are highlysensitive to noise. The overtake scenario follows this with a correlation of 0.93. Boththe intersection and straight-line 20m scenarios show a correlation of 0.84 for missionfailure, suggesting that longer attack duration and intersection maneuvers are somewhatless sensitive to noise, possibly due to the nature of themission. Regarding sidewalk incur-sions, longer attack duration in the straight-line (20m) and overtake scenarios show thestrongest correlations, at 0.98 and 0.96, respectively. In contrast, the intersection ma-neuver displays the weakest correlation for sidewalk incursions, reflecting the controlled,slower nature of this maneuver.When examining localization loss, straight-line 10mand overtake show the highest cor-relations, 0.97 and 0.92, respectively, indicating that these scenarios are most affected bynoise in terms of localization. The intersection scenario, though still sensitive to noise(0.86), shows a somewhat lower correlation, likely due to the AV’s reduced speed andstatic behavior at stop points. Collision, on the other hand, shows similarly strong correla-tions in overtaking (0.84) and intersection (0.87) scenarios, but this metric is irrelevant instraight-line driving, as there are noNPCs involved in thosemaneuvers. The correlation forRollOut switches is also highest in straight-line 10mattacks (0.97), followed by straight-line20m and overtake, while intersections have the lowest correlation (0.71) in this category.For NDTer, longer attack durations in straight-line scenarios show the highest correlation(0.92), while intersections and overtakes show lower values.Overall, the straight-line (10m) and overtake scenarios exhibit the highest sensitivity tonoise across several metrics, such as mission failure, sidewalk incursions, and localizationloss. Intersection scenarios, in contrast, show consistently lower correlations, likely dueto the nature of the maneuver, where the vehicle slows down or stops, reducing the dy-namic impact of noise during attacks. This behavior at intersections explains the weakeroverall correlation with noise, as the AV is generally at lower speeds and is less engagedin continuous movement compared to the overtake and straight-line scenarios. This high-
85

lights how the nature of each maneuver, particularly its dynamic or static characteristics,influences the vehicle’s vulnerability to noise-induced safety violations and performancedegradation.
3.3.6 Discussion
Throughout the paper, we demonstrated that AD software is sensitive to EMI attacks thatcan generate different levels of safety violations from low-priority violations, from whichthe vehicle can recover but resulting in suboptimal behaviour, to severe violations causingcollisions or endangering other road users.

RQ1 How does a manipulation to the electromechanical component propagate
through the AD software stack?

Fromour results, it emerges that an EMI attack at the steering sensor level often causesSiIn, DTL, or DTC violations, which are the most commonly visible in Figure 40. To back-step this behaviour, to eventually debug such a complex AD software stack in a generalpurpose approach, developers will require an accurate analysis of each block in terms ofdata input-output relation. In our case, we carried out a back-step analysis at the ROS-topic level to identify the nodes that subscribe to specific messages. Here, we found outthat the most probable user of steering sensor data, thus generating violations, is themission and motion planning module, visible in Figure 12, and composed of several sub-blocks including op_trajectory_generator and op_waypoint_follower, that repre-sent the most probable components generating wrong decisions. While at the low level,PID controllers might be able to withstand noise to some extent, intelligent controllershave shown inherent vulnerability to this attack propagating from the low level up as rawsensor data to the master controller and up to the ROS topics.
RQ2 What dependencies exist between the AD control algorithm and low-level
control?

High-level intelligent controllers trust digital data flowing over the in-vehicle networkcommunication level. The interdependence of control algorithms resides in the feedbackloop reading data from the low level while the AD acts in a hybrid deliberate/reactiverobotic paradigm. In such a paradigm, well studied in robotics, an AD reacts quickly uponsensingwithout performing global-planning, which is typically a computationally demand-ing task running concurrently. SiIn, DTL, or DTC violations, which are the most commonlyfound in our analysis, are a typical result of the reactive behaviour of ADs. Similarly, theplanner might generate unsafe trajectories in case of localization data corruption suchas NDTLs violation or increase in NDTer margin. Eventually, the vehicle can recover fromsome violation when the global-planner generates a new waypoint, but this is not alwaysguaranteed when some stochasticity is involved in the process.
RQ3 Where in the architecture of the autonomous vehicle can defensive mecha-
nisms be placed to defend against control invariants?

Strategies to detect and mitigate low-level sensor data input manipulation focus onredundancy and multiple levels of data integrity checks. To investigate this question westep through each of the layers of the AV:
• Low-Level PID Controller: Integrity and plausibility checking of the PID can miti-

86

gate but not stop the injection of anomalous sensor input values. The PID has itsown robustness, which is mathematically proved, the PID lacks the intelligence tointerpret the meaning behind the input data. Therefore, attacks which manipulatethe sensor input always have the possibility of traversing the PID. It is also possibleto implement analog filters and hardware saturation, however, as mentioned, atthis level, there is no means to discern attack behaviour which resembles regularsignal/circuit specification and its operating characteristic.
• Intermediate Layer: At this level, it is possible to conduct inspection of the CANdata. The master controller has low-computational capacity. Therefore, implemen-tation of mechanisms to interpret and provide intelligence of the CAN data is lim-ited. Data saturation and filtering is possible at this level. However, filtering andsaturation strategies would be challenged to defend against an adaptive sensor ma-nipulation attack which searches for the filtering and saturation parameters anddevelop a 1-step or n-step attack which falls outside the range.
• High-Level Control Layer: A redundant, fall-back controller has a cost in terms offinancial, compute and network resources, and cannot guarantee that an attackwould also aim to manipulate the redundant controller. Furthermore, redundantcontrollers accessing the same sensor data might generate the same unexpectedbehaviour.
Our recommendations, for this particular use case, is to accurately model the sensorbehaviour at the physical level considering the physical world world we live in. In thiscontext, sensors, such as everything else, should obey Newton (for motion) and Maxwellequations (for electromagnetism). To detect sensor data anomaly our knowledge of thephysical model of the sensor can be utilised to predict variances to this model. This wouldeffectively detect a possible attack much earlier and thus prevent DTC & DTL violationsoccurring in the motion planning block. The validation of sensor data can run in a con-current process throwing exceptions in case of unexpected levels of noise. The responseaction to an exception need to be modelled on the level of risk.

3.4 Summary
Within this section we developed methods for cybersecurity testing of AD software andillustrated their utility for vulnerability discovery by conducting applied, experimental test-ing. Precise metrics that incorporate safety, which represent the integration and stabilityof vehicle dynamics and autonomous software control, and security, which represent theparameters of the attack model, enable the ability the discern the affect of cyber attacksto the semantic properties of AD software. Malicious injection and time-delay attackstargeted at the perception and planning modules, and the low-level actuation sensing,results in malicious input propagating through the software to affect the reliability andsafety of control decisions. From the conducted sensitivity analysis, vulnerabilities of thesoftware modules can be characterised as a lack of robustness to malicious injection ofinput data at parameter ranges which represent minimal deviation. Whilst the sensitivityranges present a finding in terms of the case study vehicle, iseAuto, these values will differbased on the class of vehicle (light-passenger, heavy rigid) and the design of the controlsystem. Therefore, the novelty lies in the overarching methods used to distinct the im-pact of cyber attacks to the software and vehicle dynamics and testing approach used todeliver the attack and generate feedback of the system. Furthermore, the results, withinthe context of applied, experimental testing on a real-world system, illuminates the gap

87

in comprehensive scenario-based testing where cyber attack test cases are considered. Itfurther highlights the need for integration of control software design processes and testfeedback. The next section contends with this issue through investigating techniques toassist software and control system designers with debugging and root-cause analysis.

88

4 Debugging Autonomous Control Software to Cyber Attacks
4.1 ADAssure: A Debugging Methodology for AD Control Algorithms
AVs are increasingly being utilised for transportation on public roads. Waymo and Cruiseoffer AD ride-hailing services in San Francisco, Apollo Baidu in China, and numerous suchservices are operating in Europe. Central to the wider-adoption of AD vehicles on publicroads is the security and safety of their control algorithms that enable self-driving technol-ogy. AD control algorithms comprise a complex code-base of interconnectedmodules thatperform tasks and sub-tasks that enable a vehicle to sense, perceive, localise, and navi-gate in a driving environment. With the increase in diversity of AD use-cases from valetparking to public transportation in public traffic, the code base of AD control algorithmswill reputedly grow from 100-200 million to billions of lines of code [28].

Within this complex environment, debugging the code for logical errors arising fromunexpected control behaviour is a fundamental challenge [330]. AD system designersneed to pinpoint where in the control software weaknesses are, in order to focus debug-ging efforts in an efficient manner. Existing studies attempt to rectify unexpected AD con-trol behaviour at run-time through smoothing trajectories utilising neural networks [41][137] [173]. The applicability of these studies in real-world AD programs are limited dueto the highly dynamic environment of autonomous driving and the probabilistic nature ofthe algorithms for planning.
Furthermore, in these studies, the analysis lacks the expertise from the algorithm de-signer and safety engineer to inform on the nature of the behaviour of vehicle dynamics,whether noise identified as irregular could be considered for a control engineer withinnormal constraints, whether AD behaviour could be considered a legitimate safety re-sponse to an unexpected event and whether the parameters for which the run-time solu-tion is designed are appropriate for differing class of vehicles with different dynamic pro-files. We consider the design phase to offer themost promising area of initial investigationto improve the robustness of control algorithms, which can be translated to real-world ADsystems.
We propose ADAssure, a methodology for debugging control algorithms during thedesign-timephase of AD control software development (Figure 42). ADAssure is built uponthe idea that the data of vehicle dynamics and sensing of AD systems can be analysed foranomalous control behaviour, which can then be transformed into assertions on the ADcontrol. We use association rules that enable us to mine datasets of varying scales andfingerprint the pattern of anomalous activity. These rules can be used to guide AD systemdesigners to focus on the debugging of the control algorithms. To evaluate ADAssure, wefocus on a control system algorithm used in a real-world AD vehicular system providingride-hailing services.

4.1.1 ADAssure: Methodology
The development of ADAssure has three main motivations. First, it aims to provide ADsystem designers with a methodology to identify and fix vulnerabilities that align withthe design of AD algorithms. Second, given the ever-changing nature of the autonomousvehicle system, it strives to establish a structured methodology that allows for consistent,flexible, and repeatable testing. Third, it aims to support unit testing, allowing testing ofindividual components of the autonomous system in isolation from other dynamic factorsaffecting autonomous control.

The foundations of the ADAssure methodology are based on the analysis of the vehi-cle dynamics and sensing data to guide the creation of assertions of the vulnerability of
89

Radar

Input Sensor Data

End-to-End Learning

Perception Localisation Planning ControlCamera

GPS /
IMU LiDAR Acceleration/Deceleration

Turning/Braking…

Autonomous Driving Control Algorithms Output Action

Cyber Attack Scenario

Corner Case Scenario
ADAssure Methodology

Assertion
Review and
Debugging

AD Data
Collection

Assertion
Generation

Or

Figure 42: Comprehensive ADAssuremethodology overview that illustrates each step of the process,
from data collection to assertion creation, review of assertions, and debugging.

the AD control algorithms. The analysis consists of a sensitivity analysis of vehicle dynam-ics data (e.g., velocity, yaw, and steering angle), sensor data (e.g., lateral and longitudi-nal movement), and visualisation of the trajectory of the AD system. This helps identifykey parameters to build assertions of the AD control algorithms. The AD control systemdesigners can use the assertions to identify and locate the vulnerabilities of the controlmodel and develop mechanisms to test and fix the errors. The ADAssure methodologycomprises three main phases: AD Data Collection, Association Rule Generation, and As-sertion Review and Debugging. Next, we will explore each phase in more depth.
Autonomous Driving Data CollectionThis phase consists of generating data from the real-world system or simulation environ-ment. The benefit of a simulation environment is that driving scenarios can be automatedor designed to test a specific condition, such as a cyber-attack or a corner case. The dataoutput is structured according to established metrics. These can be vehicle dynamics pa-rameters (yaw angle, velocity, etc.), sensing data (position co-variance, point-cloud, etc.),and safety parameters (distance-to-collision, etc.). The AD data is outputted in a formatthat can be interpreted by analytical tools, in our use-case, .csv format.

Association Rule Mining Time Notation Attack DetectionDatasets

Benign

Malicious
Assertion

Review and
Debugging

Pre-
processing Mining Time

Notation
Temporal Association

Rules (Assertions)
Association

Rules

Figure 43: Phases for Assertion Generation

90

Algorithm 1 Association rule mining & time notation
Input: N ,D Output: next[N] = antecedent→ next[N]consequent, be f ore[N] = antecedent→
be f ore[N]consequent {*}[l]Initialization and Preprocessing R = antecedent→ consequent

for all f ∈D do D ′ = MoveUp(f (N)) {*}[l]Mining R← apriori(D ′) {*}[l]Time Notation
if (R.antecedent == (t ∈D ′)) and (R.consequent == (f ∈D ′)) then next[N]← label(R)

if (R.antecedent == (f ∈D ′)) and (R.consequent == (t ∈D ′)) then be f ore[N]← label(R)

4.1.2 Association Rule Generation Phase
The goal of this phase is to process the data generated from the previous phase and pro-duce a set of association rules that can be translated into assertions in the Assertion Re-view and Debugging phase. This phase is comprised of three primary steps (as shown inFigure 43):

1. Association Rule Mining,
2. Time Notation,
3. Attack Detection.
The association rule mining is applied to both benign andmalicious datasets, resultingin two distinct sets of association rules. These rules are then processed through the TimeNotation step to incorporate temporal information, yielding temporal association rules(assertions) in the form of next[N] and be f ore[N] patterns. We define next[N] typeof rule in the general form of X → next[N]Y . This rule indicates that when X occurs,after N time instants, Y will occur. N is a positive integer value. Moreover, we de-fine be f ore[N] rule in the general form of X → be f ore[N]Y . This rule demonstratesthat whenever X happens, Y should have occurred N time instants before that. The"Attack Detection" step compares these temporal association rules, ultimately detectingattacks and anomalies within the datasets. Subsequent sections provide a more in-depthdiscussion of each step.

4.1.3 Association Rule Mining
This step primarily serves two objectives: pre-processing the datasets and subsequentlymining association rules from thepreprocesseddata. Tomine the association rules, apriorialgorithm [102] was adopted and enhanced to mine temporal rules capable of detectingattacks at various time instances during autonomous vehicle (AV) operation. Algorithm1 presents the details of the Association Rule Mining and Time Notation steps. In thisalgorithm, D denotes the dataset and D ′ is the preprocessed dataset, while f and t rep-resent the dataset’s features and target values. To prepare the dataset for mining the
next[N] and be f ore[N] temporal patterns, all the features of the dataset are movedNrecords above its original position. However, the target of the dataset remains as it is.Afterwards, the apriori algorithm is applied to the preprocessed dataset to mine a set ofassociation rules. The output of this phase is a set of association rules in the general formof antecedent→ consequent that are ready to be forwarded to the Time Notation step.
4.1.3.1 Time Notation In this step, the method integrates the concept of time into theassociation rules generated in the association rule mining step, leading to a set of tem-poral association rules. The method determines to which temporal pattern (next[N]or be f ore[N]) each extracted rule belongs and subsequently assigns the corresponding

91

time label to the rule. If the antecedent value matches a target value in the dataset, andthe consequent value has already beenmoved to another record in the dataset, the rule islabelled as a next temporal association rule. Otherwise, if the antecedent of a rule minedin the association rulemining stepmatches a dataset feature that has already beenmovedto another record and the consequent of the rule matches the target value of the dataset,we label this rule as a be f ore temporal association rule. The mined rules are in the formsof antecedent → next[N]consequent, and antecedent → be f ore[N]consequent, servingas assertions for debugging the AD system.

4.1.3.2 Attack Detection This step aims to identify rules indicating attacks on the AV.We assume that the sets of mined rules from the benign and malicious datasets shouldbe similar under normal conditions, without any AV attacks. Any deviation between theserule sets signifies an anomaly in the autonomous vehicle. Per this assumption, the tem-poral association rules (assertions) mined during the time notation phase are classifiedinto two sets. The first category comprises rules exclusively mined from the maliciousdataset, lacking counterparts in the benign dataset. Any rule extracted solely from themalicious dataset, without a corresponding counterpart in the benign dataset, signifies anattack. These rules reveal abnormal behaviour in the malicious dataset, contrasting withdifferent behaviour observed in the corresponding time instance of the benign dataset.Consequently, we classify these as attacks. The second category comprises similar rulesmined from both benign and malicious datasets, but with different minimum support(min_supp) and minimum confidence (min_conf) values. The variations in these valuesindicate that, while the mined rules are similar, abnormal behaviours and anomalies existbetween the datasets. The apriori algorithm employs these two metrics (i.e., min_suppand min_conf). The min_supp value is the threshold and aminimum value that is chosenby the expert to decide whether a rule occurs frequently in the dataset or not [107, 328].The min_conf is the minimum value that is chosen by the expert and is an indication ofhow often a rule has been found to be true [102,260]. Increasing the min_supp value re-sults in fewer association rules that describe more general behaviour of the autonomousvehicle, while decreasing the min_supp value leads to rules covering rare behaviours (cor-ner cases). Similarly, raising the min_conf value produces fewer but more valid rules.Valid rules refer to association rules that will not be violated with different attack scenar-ios like corner cases. These values in the ADAssure facilitate an effective attack detectionprocess. The second category of rules aids the ADAssure in effectively identifying cornercases and the attacks that rarely occur on the AV. These rare attacks exhibit behaviourvery similar to normal vehicle operation but are malicious and can lead to AV failure.
4.1.4 Assertion Review and Debugging
Within this phase, the association rules generated from the association rule mining arereviewed in conjunction with an analysis of the control behaviour and individual dataparameters to develop assertions. Trajectory maps of the AD system and graphs, whichdemonstrate the sensitivity of the data parameters during benign and cyber-attack sce-narios, are compared to the anomalous behavioral patterns detected by the associationrule mining tool. Using expertise from the algorithm designer and safety validation engi-neer assists in understanding which parameters can uniquely demonstrate a vulnerabilityof an algorithm within the system. From developing an assertion on the system’s vulner-ability, the debugging effort focuses on a control flow analysis. As the assertion assistsin pinpointing the specific module, the static analysis can focus on the control flow ofthe substituent functions within the module. As an example of the importance of this

92

pinpointing, a local-planning module could have 15 diverse algorithms, and within these,each could have multiple different methods or functions. As the code of AD algorithmsare differential equations, debugging can suggest optimisations that enable mitigationmechanisms against the identified vulnerabilities.
4.1.5 Autonomous Driving Control Algorithm
To evaluate the methodology, we focus on an AD control algorithm used in a real-worldAD ride-hailing service. Within the AD pipeline, there are four key modules: localisation,perception, planning, and control. Within our study, we focus on the localisation andplanning modules.
4.1.6 Experimentation and Results
To evaluate the impact of corner cases onAD systembehaviour using theADAssuremethod-ology, we use datasets of corner cases from simulation and real-world driving from thetarget AD system. The 1st corner case scenario dataset is of three diverse cyber-securityattacks on the AD system conducted in a simulation environment. As our focus is theplanning and localisation algorithms, we used a low-fidelity simulation provided by Au-
toware.AI and the OpenPlanner 2.5 planning algorithm. The 2nd corner case scenariodataset is of a Global Positioning System (GPS) spoofing event that occurred on the ADsystem during its operation on the roads of a capital city.
4.1.7 AD Control System Datasets
Cybersecurity Corner Case Dataset:Within this dataset, three attacks were conducted onthe target AD vehicular system, which is attempting an overtaking maneuver. The threeattacks are classified as:

1. Lateral Position Offset Attack
2. Longitudinal Position Offset Attack
3. Message Time-Delay.
In the lateral and longitudinal position offset attack, an attacker injects malicious datainput into the lateral or longitudinal pose whilst the AD vehicular system is in the pro-cess of the overtaking manoeuvre (Figure 44). This attack could be conducted throughGPS spoofing or interception and manipulation of the localisation sensor data. The at-tacker introduces a delay into the current_pose (lateral and longitudinal) sensor mes-sages reaching the AD control pipeline for the message time-delay. The malicious data isinjected at around the 21 mmark of the AV journey (travelled distanced) to the 67 m. Eachattack was conducted 300 times, accommodating a variation of different attack parame-ters. The lateral and longitudinal attacks introduced a deviation ranging from 0.16 % to

1.0 %, which equates to around 20 cm to 1 m. The message time-delay introduced delaysof 0.3 %, 0.6 %, 1.0 % second, as a message is transmitted every 20 ms, this range rep-resents a delay of 15 to 50 messages. In total, the dataset comprises over 1500 scenarioruns of attacks and benign safety cases.
GPS Spoofing Real-World AV Dataset: The AD ride-hailing service transmits its sensordata via a logging node to an edge server, which stores the AD System data in a database.During its operations near the port area of the city, the AD vehicle encountered a lossof localisation from a GPS spoofing event which also affected other GPS-enabled plat-forms. This GPS spoofing continued intermittently throughout the precedingmonths. The

93

Table 30: AD System Data.

AD Data Type Description

AV_X Longitudinal Position of the AD System as to the HD MapAV_Y Lateral Position of the AD System as to the HD MapAV_Steer Steering Angle of the AD SystemAV_Vel Velocity of the AD SystemAV_Yaw Orientation of the AD System based on its centre of gravityRoll-out_Num Current Lane according to the lane selector of the AD Con-trol AlgorithmDTC Distance to collision of the AD vehicular system to the over-taking vehicle.Position Co-variance GPS position co-varianceAltitude Altitude derived from the GPS

dataset used in this study is from the logging system of AD ride-hailing service.
AD System Data: The simulation and real-world datasets were structured to outputdata as shown in Table 30.

Figure 44: The threat model used for conducting the attack cases.

Table 31: ADAssure Assertion Generation phase results.

Dataset Assertion Execution
Time

Name #Records Total #Next[N] #Be f ore[N]

Longitude 412 5 3 2 1 nsLatitude 356 7 7 0 1 nsDelay 417 5 3 2 1 nsGNSS 16 5 4 1 1 ns

94

Experimental Results
To evaluate the ADAssuremethodology, we chose six attack types and their correspondingsafety (benign) scenarios. These attack types included each of the aforementioned attackswith differing levels of noise (lateral and longitudinal position offset, delay message).

4.1.7.1 Automated Analysis Utilising the ADAssure methodology on the three types ofattacks yields three distinct set of assertions corresponding to each attack type. The re-sults of the assertion generation phase are presented in Table 31.
The threshold for minimum support (min_supp) is set at 0.01 , while the minimumconfidence (min_conf) threshold is 1Notably, themethod exhibits a swift execution time.
Within the 3 attacks of the cybersecurity corner case dataset, the assertions iden-tify two patterns of anomalous AD behaviour. Firstly, extreme steering angles of 20◦ and

−20◦ and sudden lane transition. Secondly, multiple lane-transitions combined with theextreme steering angle and sudden changes in vehicular velocity. This behaviour can beseen to be the effect of cyber activity on the smoothness of the initiation of the over-taking manoeuvre which results in turbulent movements and in some cases, a collisionevent. The assertions generated from the GNSS spoofing dataset identified the changesto the altitude and position co-variance. These were consistent with dramatic change inthe values of the GPS coordinates and the resultant change in altitude.

4.1.7.2 Assertion Review andDebugging The patterns identified in the association rulesenables us to extrapolate that the Yaw angle and angular velocity are good reference pointto show the effect of cyber-attacks. During the injection of the position offset attacks, thevehicle’s orientation demonstrates dramatic action; in some circumstances, the vehiclecan be seen to be essentially spinning. As displayed in Figure 45, the Lateral Position Off-set Attack displays the Yaw (angle) of the vehicle making sharp changes, of 15 deg/secfrom 15 meters mark of the AV journey. This vehicle dynamic behaviour is a characteristicalso seen in both the longitudinal position offset (Figure 46) and delay message attack(Figure 47). The results for the velocity parameter demonstrate that it only indicates im-mediate collision of the vehicle, and it does not support early identification of anomalousvehicle behaviour. Assertion 1 contends that the AD system should not allow movementsthat challenge the physical limitations of the steering model.
Assertion 1: To determine the vulnerability of the yaw angle and mo-mentum, we can derive the assertion: AV.displacement_of_yaw_angle >
max_yaw_angle_threshold && time< time_threshold.
The roll-out transition, steer, and distance-to-collision parameters demonstrate iden-tifiable change during a cyber-attack. The manipulation of the lateral and longitudinalposition alters the vehicle position on the map and, therefore, has the effect of inducinggreater transitions between roll-outs, which is the effective position of the vehicle on theroad. The frequency of transition impacts the smoothness of the steering angle. From thedistance-to-collision parameter, it is noted that the effect of the attack is most prominentduring the overtaking maneuver and mostly during the cut-in process, when the vehiclecuts-in front of the passing vehicle (NPC). Assertion 2 contends that when the vehicle tran-sitions across multiple roll-outs and displays 180◦ steering and closes to less than 0.5 mto the passing vehicle, this represents affected behaviour from the cyber attack.

95

Figure 45: Lateral position offset attack vehicle parameters.

Assertion 2: To identify vehicle dynamic changes from cyber-attack: AV.x −
NPC.x < distance_threshold && AV.lane_transition >max_transition_number &&
AV.steer_angle /∈ [min, max]_steer_angle

Assertion 3 contends with activity seen in the longitudinal position offset (Figure 46)where the AV collides with the passing vehicle and then accelerates to the previous set-point.
Assertion 3: To identify collisions we can derive the assertion: |AV.vk−AV.vk+1|>
threshold.
Assertion 3 could also be used to detect anomalies in GPS data. The GNSS spoofingattack demonstrates a significant deviation in the altitude and position co-variance param-eters. Assuming that velocity data comes from two sources, a wheel sensormeasurementand calculated by deriving the position from GPS data, the two results should be close toeach other. In the case of a GNSS spoofing attack, the deviation in the position co-variancewould generate a spike in the velocity (calculated by deriving the position in GPS data),and thus violating assertion 3.For our specific AD system, the threshold for assertion 1 is 15◦ yaw angle displacementwithin 1 s duration. Assertion 2 threshold is identified as a distance between AV and pass-ing vehicle as less than 0.5 m, lane transition greater than 1 roll-out and steering angle that

96

Figure 46: Longitudinal position offset attack vehicle parameters.

is outside the bounds of 20 and −20◦. It is important to note that these values are validfor a low-speed AV ride-hailing service and for designers of different classes of vehicles, itis required to calculate values consistent with their specific application.Solvable bugs come from several points in the controller; a simple one is wrong or im-precise saturation values of the control signal, which generates a high acceleration or ahigh steering angle in the vehicle. This is clearly visible in Figure 46 where a signal over-shoot causes the vehicle to change lane multiple times. Another example, clearly visiblein Figure 45,46& 47 is the lack of a fallback plan. There is a clear indication of a collision asthe vehicle speed suddenly drops to 0 ms−1 and then quickly accelerates to the referencepoint, this is a violation of Assertion 3. A robust controller should have a fallback planfor such a case which indicates a bug in the functional design of the controller. In such acase, the vehicle should be aware of the fact that the global trajectory cannot be followedanymore and switch to emergency mode.The main reason for searching for unexpected behaviours is to debug the controller,with reference to the experimental results, a violation of Assertion 1 can be associated toa bug in the /ndt_posemodule (see Figure 13), while a violation of Assertion 2 can be back-propagated to themodule /op_trajectory_evaluator. A violation of assertion three can bebackpropagated to themodules of /op_trajectory_generator and /op_behaviour_selector(see Figure 13). To pinpoint the violation of assertion 3 to a specific function, we abstractedfrom the local_planner algorithm and its substituent lane_rule algorithm, the getClosest-
WaypointNumbermethod, which selects the next waypoint to follow in the global trajec-tory and returned an exception to be handled as a different driving behaviour (e.g., there

97

Figure 47: Delay message attack vehicle parameters.

was a crash, emergency mode activated).
In the case of GNSS attack, the NDT localisation algorithm doesn’t detect the deviationin position co-variance, and this is due to the normal vector pointing in the same direc-tion. Debugging focuses on optimisation of the NDT localisation using visual odometry forholding the local position at short-distances until the source of the disturbance has beenresolved.

4.1.8 Relation to Existing Work

Recent publications on anomaly detection in vehicular AD control systems propose theusage of vehicle dynamics as a key detection indicator for cyber-attacks [140] [183] [262].Studies such as Guo et al. [90] emphasise the effect cyber-attacks have on the trajectoryof the AD system and the noise of individual sensors. Mitigation mechanisms focus ontwo diverse approaches 1) implementation of an observer of AD vehicle state estimationwhich can inform an emergency action (sensor switching etc.) [90] 2) implementation oftrajectory smoothing algorithm to correct unplanned vehicle behaviour [183] [262]. How-ever, these solutions for detection andmitigation are developed based on assumptions ofdriving environment and algorithm configuration and this limits the scope of their appli-cability.
98

4.2 REACT: Autonomous Intrusion Response for Intelligence Vehicles
In recent years, there has been remarkable progress in the development of smart vehicles.Today’s vehicles resemble interconnected networks onwheels, with numerous embeddedcomputers, called ECU, linked through various types of networks, hosting an extensivenumber of software components totaling over a hundred million lines of code. Moreover,these networks incorporate various intelligent sensors (such as Cameras, LiDAR, Radar,etc.) and different connectivity technologies that enhance the vehicle’s ability to perceiveand interact with the surrounding environment, thus bolstering autonomy and minimiz-ing the reliance on human intervention. However, with the rise of connectivity and thetransformation to SDV, the vulnerability to cyberattacks targeting these systems has alsoescalated [295].

VSOC

Hacker

Attack Info

Updates
and

Patches
Attack info

Vehicle Status

Environment
Conditions

Responses
Evaluation

Optimal
Response(s)

Selection

(a) State Of The Art
Time

Hacker
VSOC

Updates
and

Patches

Attack Info

Possible
Responses

Attack

Attack

Q1 Q2 Q3

(b) REACT

Figure 48: On the left side, the current vehicle system shares attack information with the VSOC but
often has to wait for extended periods to receive necessary security patches and updates. This wait-
ing period puts the vehicle in a malicious status (red, diagonal lines). On the right side, the vehicle
can select and implement security solutions to avoid the long waiting time for security patches and
updates and return to normal status (green, cross diagonal lines).

Recently, there has been a growing interest in addressing the security threats thatmay target smart vehicles. For instance, the ISO 21434 [123] standard has been intro-duced, with a significant portion dedicated to the development of threat analysis and riskassessment methodologies. Moreover, the field of intrusion detection and prevention inthe automotive domain has witnessed extensive research, leading to various avenues forresearch [152]. However, despite these efforts, the number of attacks targeting smart ve-hicles continues to rise [295]. This is to be expected, as security is not absolute, and wemust acknowledge that complete prevention of all security threats may not be attainable.Therefore, greater emphasis should be placed on defining how the system should behave
when confronted with such unavoidable attacks.The cybersecurity incident response is an integral aspect of security management, asoutlined in ISO/SAE 21434 within the operational and maintenance clause [123]. Based onthe standard, this process aims to provide remedial actions and updates, which may in-volve post-development changes to address security vulnerabilities. The process necessi-tates the vehicle to share cybersecurity information about the vulnerability that triggeredthe cybersecurity incident response. Being part of the ISO/SAE 21434, it is now imperativethat manufacturers comply with new regulations by having a cybersecurity managementsystem that oversees the cybersecurity activities and processes in the product life-cycle.To achieve this, Vehicle Security Operation Centers (VSOCs) will be utilized to supportmonitoring [23,216,257]. Such VSOCs will employ expert teams that continuously analyzedata collected from all connected vehicles, enabling automakers to swiftly and efficientlyaddress security incidents [216]. Although it’s arguable that numerous taskswithin a VSOC

99

could be automated, the challenge of scalability persists, especially considering the ex-tensive fleet of connected vehicles and the immense data volumes accumulated by eachvehicle, reaching terabytes [314]. The transfer and processing of such data turn out to besignificant issues, particularly in urban areas with hundreds of cars per vicinity, leading tobottlenecks. Additionally, the connectivity itself could be an attractive target for attack-ers. In this context, the integration of VSOCs into the smart vehicle ecosystem demandssolutions for addressing connectivity challenges between vehicles and the VSOC, as wellas managing privacy concerns tied to shared data [98].
Finally, and more importantly, there is a need to ensure a near-real-time responseto security attacks. Taking into account the need for a human in the loop, as well as thelatency introduced by high-volume shared data and communication between the vehiclesand the VSOC, achieving a near-real-time response seems unrealistic. This perspective issupported by the European Union Agency for Cybersecurity (ENISA), which has cautionedthat responding to high-criticality attacks could potentially take days or even weeks [75].The scenario of extended waiting presents a dilemma, with two options, each having itsown disadvantages. Allowing a vehicle to operate with a compromised component dueto extended waiting for a security update is far from the ideal situation. Alternatively,suspending the compromised component until the security update is received might notbe the best course of action either, particularly if the component plays a crucial role inoperations.
Contributions: Therefore, there is a need for vehicles to be equipped with the capa-bility to swiftly respond to cyberattacks. However, having such a capability requires theanswering of three main questions (see Figure 48):

Q1: What are the possible responses that can be taken?
Q2: What factors need to be considered when evaluating these responses?
Q3: How to select one or more of these responses at the run-time based on the re-sponses’ evaluation?
This research aims to address these questions by investigating and categorizing po-tential responses according to the impact of various cyber attacks to which each responseaims to react. Consequently, we present a dynamic risk assessment and cost evaluation forattacks and responses, utilizing given data such as attack information and vehicle status.This assessment supports the selection of suitable responses. Furthermore, the we ex-plore different approaches for response selection, conducts comparisons, and identifiesthose best suited for automotive systems. We introduce an intrusion response system,referred to as REACT, and evaluate its utility using two attack scenarios. We evaluate thequality of the responses REACT generates and its overall efficiency. In summary, the maincontributions of this paper are as follows:

4.2.1 Response Strategies
The purpose of this section is to address the first question (Q1) about possible responsestrategies. To do so, it is critical to have a deep understanding of the system as well as thepotential attacks and threats it may face. Therefore, this section introduces the designof an automotive reference architecture, discusses the potential threats that may arise,and provides a comprehensive summary of the different response strategies that can beutilized to mitigate these attacks.

100

Cenrtral Gateway

Diagnostic
Gateway

ODB-IIDoIP

External
Communication

GPS Cellular ModuleV2X

Digital Toll
CollectionEV Charging

Powertrain
Gateway

Engine control

Transmission
control

Battery
management

Combustion
control

Body / Comfort

Light control

Wiper control

Key control

Climate control

Door/Trunk
control

Chassis

Steering
control

Acceleration
control

Brake control

Airbag control

Instrument
cluster

TPMS
receiver

ADAS

Front
camera(s)

Surround
camera(s)

Radar(s)

LiDAR

Ultrasonic
sensors

Infotainment

WiFi hotspot

USB ports

Video screens

Bluetooth

Speech
recognition

Ethernet

CAN

FlexRay

Other

LIN

Figure 49: Reference vehicle architecture with possible attack surfaces (orange).

Automotive Reference Architecture
In order to understand how Intrusion Response System (IRS) can be integrated into mod-ern vehicles and the potential responses they can provide, it is essential to first understandtheir system architecture. Figure 49 presents a generic, realistic and comprehensive ref-erence architecture that can be found in modern vehicles. It is notable that a modernvehicle includes highly interconnected subsystems. The figure also shows how modernvehicles have many embedded devices, known as Electronic Control Units (ECUs), whichare distributed allover the vehicle, communicating among themselves via different typesof networks such as CAN, Flexray and Ethernet. These ECUs are grouped in different do-mains or zones based on the functionality such as infotainment, Advanced Driver Assis-tance System (ADAS), powertrains, etc. Besides ECUs, modern vehicles are equipped withmany sensors (e.g., cameras, LiDAR, etc.), advanced communication technology for con-necting with the external world, and diagnostic ports (e.g., OBD-II) that collectively forma significant attack surface for different types of attacks and threats [42]. The unrestrictedor/and uncontrolled interaction among all those components puts the whole system indanger. Attackers could launch a stepping-stone attack [293], where they compromisea non-critical ECU with weaker security (e.g., the infotainment system), in order to gaincontrol of a more crucial one (e.g., engine control) [53, 197]. All these characteristics ofthe vehicle architecture suggest that any proposed IRS should take into account the con-strained resources and the highly interconnected and distributed nature of a vehicularsystem.
Threats and Attacks
Threat Analysis and Risk Assessment (TARA), an essential component of ISO 21434, is em-ployed as a systematic way to identify and assess cybersecurity threats and risks in the

101

MITM Attack/Sniffing

Information
Disclosure

Alter/ falsify
 Timing

Alter / falsify
 Information

Alter / falsify
behavior

Denial of
Service

Spoofing to get secrets Side Channel Attack

Se
nd

 d
ev

ic
e

to
 sl

ee
p

m
od

e

M
an

ip
ul

at
e

m
es

sa
ge

 c
yc

lin
g

tim
e

Bus overflow

Replay attackAdversarial samples

Spoofing
Reach a specific goal

Pivoting with obtained information

Figure 50: Classification of intrusion results and examples of attacks for each possible intrusion re-
sult.

automotive industry, facilitating the implementation of effective mitigation strategies.Since TARA does not dictate a specific method to identify threats, various methods havebeen proposed, such as STRIDE [142], SAVTA [97], attack trees [96, 109], and many oth-ers [179]. Following the methodology of TARA, these methods provide a comprehensivelist of threats and attacks that may target the vehicular system and offer preventive mea-sures. However, they do not address the reactive measures required for an automotiveIRS.Using the list of threats and attacks to create a response for each of them seems to benot ideal due to several challenges, including the large number of attacks and the require-ments for precise information about each attack, whichmust be provided by the IntrusionDetection System (IDS). This challenge becomes evident when considering Zero-Day at-tacks, where information about such attacks may not be available to the IRS at the timeof detection by the IDS. Even if an anomaly-based IDS shares some information about theattack pattern with the IRS, a response solely based on known attack patterns may notsufficiently react to these Zero-Day attacks. Therefore, the most effective approach is toenable the IRS to understand the situation it aims to respond to. This involves focusing onthe impact or outcome of different attacks rather than solely on the attacks themselves.To achieve that, wehave developed amodel, illustrated in 50, which represents the ac-tual results of intrusions collected from various research works. The model encompassesfivemain attack outcomes, each of which can result frommultiple types of attacks. Exam-ples of these attacks are depicted in the outer nodes of 50. Also, to reflect the outcomeof stepping-stone attacks, the model links the different outcomes to demonstrate thatcertain attacks may cause a series of results. The five attack outcomes are:
• Falsify / Alter Information: Different attacks have the potential to modify informa-

102

tion on a bus or within an ECU. It is important to note that not every alteration ofinformation automatically results in undesirable behavior. For instance, adversarialsamples [184], such as incorrect classifications of objects detected by a camera, maynot necessarily lead to incorrect behaviors.
• Falsify / Alter Timing: This outcome typically occurs as a result of attacks targetingthe communication buses of the vehicle [175,311] or the real-time tasks on the ECUs[95].
• Information Disclosure: This outcome is the result of attacks, such as spoofing,eavesdropping, and others, that aim to allow attackers to gain unauthorized ac-cess to sensitive information exchanged during communication or storedwithin theECUs [54].
• System Unavailability: This outcome typically occurs as a result of Denial of Service(DoS) attacks that aim to cause a loss of availability for a specific component or sub-system in the vehicle [218]. Such attacks can lead to severe damage to the system,especially if they target high-critical components [9].
• Falsify / Alter behavior: This outcome is the result of tampering attacks that specif-ically target the components, data, or parameters of a system with the intentionof altering the system’s intended behavior and achieving unauthorized or maliciousoutcomes [197]. While this intrusion outcomemay appear similar to falsify/alter in-formation, the key distinction is that in falsify/alter information attacks, the goal isto tamper with the information itself without the explicit method of changing thesystem’s behavior, even though it may indirectly lead to such changes.

Response Possibilities
After classifying the outcome of the attack, it becomes easier to determine which re-sponses can be used to address that particular outcome and handle the attacks that causeit. In order to do so, we have examined typical responses discussed in both the automo-tive and non-automotive domains. It should be noted that while some research papers inthe automotive domain have discussed the need for responses to certain attacks, there iscurrently no comprehensive research that lists and classifies all possible responses. Fur-thermore, it is important to consider that some of the responses we collected were orig-inally designed for computer networks and may not be directly applicable to automotivebus systems due to the lack of specific security mechanisms [72]. For example, responseactions such as IP address changes or port blocking [14] are highly specific to Ethernet andhigher protocols such as IP, and therefore have limited suitability for certain aspects ofcommunication in vehicles. To address this challenge, we have defined a list of genericresponses that are specific enough to be applied in an automotive IRS, while also beingadaptable to constrained and potentially insecure devices. Table 32 provides an overviewof the different responses based on the identified attack outcomes. In addition, we haveincluded a General category that encompasses responses applicable to all five categories.Formore detailed information about each response, please refer to the respective sourcescited in Table 32.
4.2.2 Dynamic Cost and Impact Evaluation
In this section, we will address Q2 by outlining the key factors required to enable theselection of the most effective response by the IRS. These factors can be categorized into

103

Table 32: Classification of generic responses to intrusion results.

Intrusion Result Response Index. Response

Falsify / Alter Tim-ing 1. Use of redundant information [100], 2. Correction of timing[72, 219], 3. Force additional authentication [14], 4. Restart the de-vice/system [149], 5. Change settings [117], 6. Redirect traffic [117],
7. Re-initialization [110]Falsify / Alter In-formation 1. Use of redundant information (Reallocation) [100], 3. Force ad-ditional authentication [14], 4. Restart the device/system [149], 8.Create a backup [49], 5. Change settings [117], 7. Re-initialization[110], 9. Correct protocol specification faults [111], 10. Split or mergefunctions [326]InformationDisclosure 11. Issue authentication challenges [219], 12. Re-enforce access con-trol [12], 3. Force additional authentication [14], 13. Introduce ahoneypot [12], 4. Restart the device/system [149], 14. Modify fire-wall [117], 6. Redirect traffic [117], 10. Split or merge functions [326],
7. Re-initialization [110], 15. Network isolation [72]System Unavail-ability 1. Use of redundant information (Reallocation) [100], 12. Re-enforceaccess control [12], 13. Introduce a honeypot [12], 4. Restart the de-vice/system (source or destination) [149], 14. Modify firewall [117],
6. Redirect traffic [117], 10. Split or merge functions [326], 7. Re-initialization [110], 16. Limit resources of the attacker [49], 17. Safemode [99]Falsify / Alter Be-havior 1. Use of redundant information (Reallocation) [100], 18. Correctionof behavior [219], 9. Correct protocol specification faults [111], 3.Force additional authentication [14], 19. Restart the miss-behavingsystem [149], 5. Change settings [117], 10. Split or merge functions[326], 7. Re-initialization of the miss-behaving device [110], 17. Safemode [99], 8. Create a backup [49]General 20. Isolation [100], 21. Limit communication of malicious system[100], 22. Drop packets [149], 23. Trace communication [100], 24. In-troduce additional logging [14], 25. Block network traffic [12], 26. Killprocess [100], 27. Reduce trust level of the source [100], 28. Performa security auditing [99], 29. Request / Perform software update [219],
30. Notify Security Operations Center (SOC) / administrator [12, 13],
31. No action [13], 32. Adapt parameters for IDS [108], 33. Warn /inform other ECUs [19, 100]

two groups: intrusion-related factors, which pertain to the attack’s impact and risk, and
response-related factors, which concern the cost and benefit of the chosen response.
Intrusion-Related Factors
Intrusion PropertiesFor each detected intrusion, the following properties need to be determined:

• Source of the intrusion: This represents the component from which the attack waslaunched. Referring to the automotive reference architecture depicted in Figure 49,sources can include entities from the attack surface as well as external attackerstargeting any of these components.
104

• Destination of the intrusion: The attacked entity can be described as the destinationof the intrusion. This could be ECUs, sensors, or bus systems.
• Intrusion result: This refers to one of the outcomes that were previously defined inSubsection 4.2.1. Similar to the source and destination of an intrusion, this informa-tion is also provided by an IDS.
• Intrusion impact: This information serves to depict the impact of the intrusion onthe system and is essential for evaluating the risks during the attack.

Dynamic Attack Impact Assessment
To assess the potential risks associated with an intrusion, it is necessary to understand theimpact of the attack and the likelihood of its occurrence [123,168]. To calculate the impactof the intrusion, many methods were already adopted such as HEAVENS [126]. HEAVENSclassifies the impact of a given threat based on four metrics [179, 306]:

1. Safety impact, denoted as S with S ∈ {0,10,100,1000}

2. Financial impact, denoted as F with F ∈ {0,10,100,1000}

3. Operational impact, denoted as O with O ∈ {0,1,10,100}

4. Privacy impact, denoted as P with P ∈ {0,1,10,100}

In the original HEAVENSmethod, the overall impact I is calculated as a sum of the foursingle impacts as depicted in Equation 2 [306].
I = S+F +O+P (2)

One issue with the impact calculation, as presented in Equation 2, is the overempha-sis on safety and financial parameters. This skewed emphasis not only complicates thecomparison and independent evaluation of the four metrics but also renders it unsuit-able for an automotive IRS. In the automotive context, safety and operational considera-tions typically outweigh financial and privacy-related aspects for most automotive func-tions. Considering the aforementioned issue, we propose normalizing all possible valuesto 0,1,10,100, representing no, low, medium, or high impact for each of the four metricsin HEAVENS.Another limitation of the current risk assessmentmethods, includingHEAVENS, is theirfailure to account for dynamic environmental factors, such as run-time context, opera-tional status, and the surrounding environment. This gap may arise because HEAVENSis primarily applied during the design phase, making it somewhat oblivious to run-timeconditions. To address this challenge and enhance the method’s applicability for usewithin automotive IRS, we introduce a new metric termed "Environment," denoted as
E. This metric, E, encompasses dynamic factors that are crucial for assessing intrusionimpact [100]. Potential inputs that can be used to derive the environmental parameter Einclude vehicle speed, road conditions, the proximity of nearby objects, and more. Theseparameters can exert significant influence, as a single intrusionmay yield different impactsdepending on physical and environmental considerations.The final enhancement option for the HEAVENS method involves the capability to dy-namically adjust the assessment of intrusion impact. Following a successful intrusion re-sponse, it may become evident that the stored parameters for S, F , O, P, and E requirea different representation. HEAVENS currently confines impact values to 0,1,10,100, and

105

a simple adjustment to a new value could result in significant over-representation. To ad-dress this issue, introducing weights for each of the five evaluation metrics (wS, wF , wO,
wP, and wE) offers a valuable mechanism for accommodating learning and adaptationprocesses. The optimization proposals discussed earlier to transform the calculation ofintrusion impact using the HEAVENS method into a dynamic process lead to Equation 3.

I = wS ·S+wF ·F +wO ·O+wP ·P+wE ·E (3)
Utilizing dynamically adjusted static values for S, F , O, and P, each incorporating theirrespectiveweights, in addition to dynamically acquired values forE alongwith an adaptedstatic weight. In cases involving specific automotive architectures, the equation can alsobe applied in a more granular fashion for particular assets. Initial values for all these pa-rameters can be established by security experts, drawing upon their experiential knowl-edge.The source and destination of the attack are employed to determine the attack’s lo-cation, aiding in the calculation of the subsequent attack likelihood, especially when con-sidering step-stone attacks, across various parts of the system. This assessment of attacklikelihood, in conjunction with the evaluation of attack impact, contributes to the overallrisk assessment.

Response-Related Factors
Response Properties
Similar to the intrusion, each response will have five properties that need to be identified:

• Actual action: They refer to the actual actions taken in the event of an intrusion.These actions can be selected from those presented in Table 32.
• Precondition: Some responses may require preconditions that must be met. Thesepreconditions can be expressed as Boolean expressions and serve as prerequisitesto trigger the response.
• Place of application: Refers to the locationwhere the responsewill be implemented.A response can be applied either at the source entity of an intrusion, the destina-tion, or at both locations.
• Stop condition: Refers to the condition for which the implemented response shouldcease. This condition can be related to a specific time [176], the successful reestab-lishment of security policies [100], or the necessity for persistent measures [293].
• Cost and benefit of the response: Refers to the costs and benefits incurred whenimplementing a response to an intrusion or security incident.

Dynamic response cost and benefit assessment
When considering the cost of responses, various methods were employed to determinetheir value in IT systems [261]. These methods primarily rely on one of three models: astatic cost model that assigns a fixed cost value for each response, a static evaluated costmodel that calculates cost using a static functionwith someadjustment possibilities, or dy-namic evaluated cost models that offer fully dynamic evaluation based on real-time data.Each model varies in terms of simplicity, adaptability, and accuracy, catering to differentsystem requirements and scenarios.

106

Statically evaluated cost models provide a valid trade-off between achievable imple-mentation efforts, especially on constrained devices similar to the ones used in automo-tive systems, and plausible results. These models maintain a static approach to calcu-lating response costs, even though the actual cost values may vary. Various metrics forcalculating response costs are mentioned in current literature. The first metric evaluatesthe impact of the response on availability [261]. Availability’s impact is represented as
A∈ 0,1,10,100, with 0meaning negligible and 100meaning severe impact on availability,to ensure consistency with intrusion metrics. The second metric, describing the responsecost, assesses its effect on the performance of the (sub)system [261], similar to the de-ployment cost of countermeasures [91]. This metric is denoted as Per f ∈ 0,1,10,100,with 0 meaning negligible impact on performance and 100 meaning severe impact onperformance, to maintain a uniform scale with the impact of the response on availability.

To achieve results similar to the adapted HEAVENS method described in 4.2.2, a com-parable equation can be employed to calculate the cost (c) of a response. By adoptingspecific weights (wA and wPer f) for the impact on availability and performance along withtheir actual values (A and Per f), the response cost can be computed as shown in Equa-tion 4. This approach results in a highly adaptable method for calculating the responsecost. While the initial values for A and Per f can bemanually determined, they can also beadjusted over time. The specific weights offer ameans to introduce a learning componentwithin the mathematical framework.
c = wA ·A+wPer f ·Per f (4)

Likewise, the adapted HEAVENS method introduced in 4.2.2 can be repurposed forevaluating the benefit of a response, with the exception of the environmental parame-ter E and its associated weight wE . While HEAVENS assesses intrusion impact using fourmetrics, these same metrics can be employed to quantify the benefits in these four cat-egories when assessing response value. By employing identical value possibilities with
S,F,O,P ∈ 0,1,10,100, a corresponding benefit value can be determined. The calcula-tion of the benefit (b) for each response option, as shown in Equation 5, is derived fromEquation 3.

b = wS ·S+wF ·F +wO ·O+wP ·P (5)
Compared to existing research [91, 270], this repurposed HEAVENS method of Equa-tion 5 provides a more holistic approach on evaluating the benefit of applied responses.For each response option classified in Table 32, the cost calculated using Equation 4 andthe benefit determined using Equation 5 must be applied, and preconditions must be es-tablished. Initial values for S, F , O, P, A, and Per f , along with their respective weights,can be assigned by security experts and subsequently updated eithermanually or throughlearning algorithms within an IRS. Similar to the impact calculation of intrusions, theseweights can be adjusted to improve the accuracy of the model.

4.2.3 Optimal Selection Algorithms
In this section, we will address the third question Q3, by exploring numerous potentialmethods for selecting response strategies(4.2.3), compare these approaches and pro-vide a rationale for our chosen strategy(4.2.3), and describe how to adopt the selectedstrategies(4.2.3).

107

Possible AlgorithmsTo determine the best method for selecting appropriate responses, we explore variousalgorithms and solutions used in non-automotive domains and compare them to identifythemost suitable one that can be implementedwithin the vehicle system. Several surveys,such as [24, 25, 211], provide valuable insights into response selection approaches in non-automotive domains, making them worth investigating for more comprehensive details.
Simple Additive Weighting (SAW)SAW [80] is the simplest and most often used method. The basic concept of this methodis to find a preference value (p) for each possible response, and then select the responsewith the highest preference value as the best option. To illustrate how this method works,let us assume that we have n possible responses (R = {r1,r2, . . . ,rn}) and m criteria(C R = {cr1,cr2, . . . ,crm}) that will be used as a reference for evaluating the responses.Each criterionwill be assigned aweightw j where∑

m
j=1 w j = 1. To calculate the preferencevalues, a normalized decision matrix is first created, where each element of the matrix isnormalized based on the nature of the criterion, whether it is a cost or benefit, as shownin Equation 6.

αi j =





vi, j
maxi(vi, j)

, if criterion cr j is a benefit
mini(vi, j)

vi, j
, if criterion cr j is a cost (6)

where vi, j is the performance value of the response ri when it is evaluated in terms ofcriterion cr j. The preference value (pi) of response ri is then obtained by calculating theweighted sum of the normalized performance values using Equation 7.
pi =

m

∑
j=1

w j ·αi j (7)
Finally, the response ri with the highest preference value (pi) is considered as the bestselection response.
Linear Programming (LP)LP is a mathematical technique that can be employed to select optimal responses [112].LP can be used to find the best combination of responses that maximizes or minimizesa certain objective function. To illustrate the workings of this method, let us consider ascenario where we have n possible responses (R = r1,r2, . . . ,rn). The optimization of theobjective function can be as in Equation 8.

n

∑
i=1

xisi→maxor min (8)
where xi represents a criterion related to the response ri and −→s be a vector of binarydecision variables, where si is equal to 1, it indicates that the corresponding response
ri ∈R will be executed. Conversely, if si is equal to 0, it signifies that the response ri ∈Rwill not be executed. The optimization problem typically includes constraints to ensurethe selection process adheres to specific conditions or limitations.
Game-Theoretic AlgorithmAnother mathematical method to determine optimal responses against cyber attacks isgame-theoretic algorithms [299, 326, 342]. In the game-theoretic approach, the attackerand the IRS are modeled as two players. Each player has a set of actions available to

108

them, such as different attack strategies A = {a1,a2, . . . ,ak} for the attacker and re-sponse strategiesR = {r1,r2, . . . ,rn} for the IRS. The goal of the IRS is to select the optimalresponse to the attack at a given time. One way to achieve that is by minimizing the max-imum damage of the attack: minri∈R(maxai∈A (U(ri,ai)))whereU(ri,ai) represents theutility function for the IRS when the attacker chooses attack ai and the IRS responds withresponse ri.
AI-based mechanisms
Many AI-based mechanisms were used to support the dynamic selection of the responsesuch as Genetic Algorithms [78], Convolutional Neural Networks [318], Supervised ma-chine learning [269], Q-Learning [120], andmanymore [243]. Using any of these AImodelsusually requires many steps including data collection and pre-processing, feature extract-ing, model training, and feedback loop to improve the quality of the selected responses.
Other Methods
There are alternative mathematical approaches to IRSs that are not derived from generalmathematical problems. One example is REASSESS [217] that uses human-evaluated met-rics and prior responses to select optimal responses. While it offers simplicity, this relianceon human evaluation can lead to inaccurate assumptions. Its mandatory learning behav-ior is unsuitable for automotive systems, and it lacks the option for flexible learning to en-hance responses, requiring a well-established feedback loop. Another simpler approachis the cost-sensitive generic framework [271, 272], which includes steps like defining op-erational costs, ranking responses using a weighted sum method, and selecting the bestresponse with an intrusion matrix. However, its reliance on static value assignments andsensitive parameters, typically defined by human experts, canmake objective assessmentchallenging and results in potentially harmful responses.
Comparison
Table 33 summarizes all the advantages and the drawbacks of the five classes of responseselection algorithms.The primary advantage of SAW is its relative simplicity and utilization of lightweightmathematical operators, making it suitable for running on constrained deviceswith a poly-nomial run-time, without requiring complex external libraries [29]. However, the maindrawback of SAW is the need for an adapted SAW method to achieve more accurate re-sults. This often leads to increased complexity and longer run-time compared to the orig-inal SAW. Another drawback is the dependency on subjective parameters such as specificweights. This dependency can result in highly variable outcomes that may not accuratelyreflect the system state [160].A major benefit of LP is its ability to formulate a single objective function and multipleconstraints, providing an accurate representation of multi-objective optimization prob-lems. However, compared to SAW, LP requires complex implementation, resulting in in-creased computational complexity for large systems [112]. The run-time of the algorithmdepends on the solvingmethod employed, such as the commonly used Simplex algorithm.While the Simplex algorithmhas polynomial run-time for typical problems [253], it exhibitsexponential worst-case run-time in theory [156].The advantage of game-theoretic approaches lies in their consideration of the systemstate, resulting in a highly accurate representation of the system. Furthermore, game-theoretic approaches can be deployed in a distributed manner, as highlighted in [342]. Amajor drawback of this method is the use of highly complex models, which are necessary

109

Table 33: Comparison of the different response selection methods

Method Benefits Drawbacks

SAW + Simplicity and lightweightoperators+ Suitable for constrained de-vices+ Polynomial run-time

- Adapted methods for accuracy in-crease complexity- Reliance on subjective parameters

LP + Flexible structures+ Typically polynomial run-time+ Existing libraries for solvers

- Higher complexity for modeling andcalculation- Theoretically exponential run-time
Game-Theoretic
Algorithms

+ System state consideration+ Accurate system represen-tation
- Very complex models- Computational complexity- Reliance on subjective parameters

AI-based Solu-
tions

+ Handle large amount ofdata+ Fast response selection
- Uncertainty of the selected re-sponses- High resource requirements

Other Methods + Simple mathematical mod-els+ Typically fast+ Combination with othermethods possible+ Learning is possible

- Complexity raises with large systems- Human influence has always subjec-tive opinions

to determine optimal moves in game-theoretic algorithms. Solving such complex modelsoften requires significant resources and leads to large communication overhead [342],making this approach unsuitable for constrained devices. Additionally, most models inpractice make assumptions or simplifications due to the near-infinite number of possiblesystem states [299, 326, 342], as complete modeling of all states is infeasible.
Using AI-based methods is still limited because of many issues such as the high mem-ory and computation requirements of some of these methods [118] and the unrealisticresponses that some models can produce (e.g., Genetic Algorithms). Additionally, un-certainty surrounding the outputs of these models limits their adoption. Finally, mostof these methods rely on the availability of datasets for model training. However, au-tonomous vehicles often operate in dynamic and unpredictable environments. When theoperating environment significantly deviates from what the AI has learned, it may en-counter challenges in adapting effectively or making appropriate decisions.
Finally, while the cost-sensitive generic framework andREASSESS are simple anddemon-strate promising in computer and network technologies, adapting them to a highly het-erogeneousmulti-bus architecture, like the vehicular reference architecture, presents sig-nificant challenges.
After careful consideration of the factors discussed above, we have chosen to explorethe adapted SAW method, as well as LP with a focus on both benefit maximization andcost minimization for the design of an automotive IRS. The decision to focus on these twomethods is based on their relative simplicity, computational efficiency, and their ability

110

to accurately represent multi-objective optimization problems. The remaining algorithmfamilies were assessed but are not pursued further due to reasons such as increased com-plexity, resource requirements, and limitations in modeling all possible system states.
Adopting of SAW and LP
Adopting of SAWTo adopt the SAW method for automotive IRSs, we first need to define the criteria C Rthat will be used to evaluate each response. For this purpose, we can utilize the HEAV-ENS parameters, including the cost of a response c (see Equations 4) and the benefit ofa response b (see Equation 5). However, using these two parameters still presents someissues that need to be addressed in order to effectively use and adapt SAW for valid re-sults. The first problem arises when using these parameters during the creation of theelements of the normalized decision matrix, as depicted in Equation 6. This problem orig-inates from the fact that our modified HEAVENS method allows values of vi, j to be in theset 0,1,10,100 for both criteria (i.e., c and b). If maxi(vi, j) = 0 applies, Equation 6 resultsin an illegal operation if the criterion is a benefit. Similarly, if the criterion is a cost and
va, j = 0, Equation 6 also results in an illegal operation. This issue can be circumventedby using a small value greater than 0 instead of 0. The second problem does not stemfrom a mathematical perspective but rather from the application of this method in a fullyautomated IRS. Since the SAW method only considers criteria C R from the applicableresponse set R, it does not take into account the impact I of an intrusion. As a result ofthis limitation, it is possible that a response incurring high costs may be chosen even for aminor intrusion. Although this is a significant challenge for the application of SAW in IRSs,this drawback has not been addressed in existing research.To tackle this problem, it is mandatory to set the preference value p (see Equation7) into relation with the intrusion impact I. For each asset A of the vehicle referencearchitecture and each intrusion resultR, a normalized intrusion impact can be calculated.Such a normalized intrusion impact must be calculated for eachmetric S, F , O, P and E ofthe adapted HEAVENS method in Equation 3. This behavior is formulated in Equation 9.

[l]α{S,F,O,P,E},A,R =

{ w{S,F,O,P,E},A,R · v{S,F,O,P,E},A,R
∑|R|(w{S,F,O,P,E},A · v{S,F,O,P,E},A)

, if ∑|R|(w{S,F,O,P,E},A · v{S,F,O,P,E},A) ̸= 0

0, otherwise (9)Similar to Equation 7, a weighted sum must be calculated. But, since the individ-ual weights w are already included in Equation 9, a simple summation over all metrics
S,F,O,P and E of the adapted HEAVENS method is sufficient. This sum will be set intorelation with the preference value of the responses from Equation 7, such that the re-sponse ri with the highest preference value p will be used, which is below the sum of allnormalized HEAVENS values as depicted in Equation 10.

best response= max

{
pi | pi < ρ · ∑

l∈{S,F,O,P,E}
αl,A,R

}
(10)

The parameter ρ in Equation 10 is a parameter to adjust larger deviations in the orderof magnitude between the sum of the normalized HEAVENS and the preference value p.
Adopting of Linear ProgrammingThe first step to adopt the LP is defining the objective function. For the set of possibleresponses R, it is possible to define two different objective functions:

111

• The first option of an objective function follows the principle of maximum benefitas depicted in Equation 11. The goal is to solve the binary decision vector −→s tomaximize the benefit b. Although this can lead to very good solutions, it is possiblethat the best executable response is not found immediately since preconditions ofidentified responses are not satisfied.
|R|
∑
i=1

sibi→max (11)
• The second option of an objective function follows the minimum cost principle andis comparable to existing IRSs [110,112]. Equation 12 therefore leads tomore conser-vative responses since the cost cwill beminimized and the benefit b of a response isnot considered. A drawback is that the identified solution inside−→s might not healthe system completely and another try might be necessary.

|R|
∑
i=1

sici→min (12)
For both objective functions from Equation 11 and 12 the same constraints must besatisfied for a response to qualify for execution. Existing constraints of IRSs using LP [110,112] are not suitable for an automotive IRS. Because of that, specific constraints must beelaborated:
1. The cost cof the responsemust bebelow the impact I of the detected intrusion [112].Equation 13 depicts this first constraint.

|R|
∑
i=1

sici < I (13)
2. Only one response can and must be executed as depicted in Equation 14.

|R|
∑
i=1

si = 1 (14)
It is additionally necessary that−→s is a binary vector, leading to the variable definition

si ∈ {0,1}.
4.2.4 Proposed Automotive IRSIn this section, wewill discuss some design decisions regarding REACT, our proposed auto-motive IRS (refer to secirsdeployment)anddetailitscomponents(re f ertosec : irscomponents).

IRS DeploymentOur proposed automotive IRS can be deployed in three different locations:
• Central Gateway: The vehicle will have one IRS that receives information from var-ious ECUs. This central IRS will have a comprehensive view and understanding ofthe entire system. However, it is considered a single point of failure.
• Domain Gateway: The vehicle will have one IRS per domain gateway. Each onewill be mainly responsible for the ECUs belonging to that domain and will interactwith other IRSs. Implementing this solution requires the existence of an IntrusionResponse eXchange Protocol (IRXP) [100].

112

Risk Evaluation
Module

Respone Set
Generation

Optimal
Response
Selection

Pre-Condition
Checks

Response
Execution

ECU
Domain Gateway

Attack Info

ID
S

Response
Agent

Security AlertsSecurity
Sensor

REACT

Feedback

StatusStatus

ResponseResponse

ID
S

Inner Loop
Outer Loop

Response
Storage

Figure 51: Internal architecture of REACT.

• ECU: The vehicle will have one IRS per ECU. This IRS will be primarily responsiblefor reacting to attacks related to its host ECU. Simultaneously, it can exchange re-sponses related to other ECUs if needed. Choosing this option ensures the absenceof a single point of failure. However, deploying such a solution requires that eachECU is capable of running the IRS, and it also necessitates the existence and thesupport of an IRXP [100].
The architecture depicted in Figure 51 illustrates the scenario where the IRS is de-ployed in the central gateway. Any potential change would be primarily associated withthe source of certain information required for the functionality of the IRS, whether it orig-inates from the same ECU (in the case of implementing the IRS per ECU) or from externalsources such as other ECUs or domains at the gateway. Regardless of the chosen deploy-ment location for the IRS, it necessitates the reception and sharing of information withother components within the vehicle, as outlined below:
• Attack Information: This information is provided by the IDS, and as described in4.2.2, it includes the source of the attack, the destination, the intrusion result, andthe impact of the attack. Recent IDSs, such as [66, 129], are capable of identify-ing the source and destination of an intrusion using various technologies, such asCAN databases (used by [129]) or ECU fingerprinting [50, 158]. The intrusion im-pact can be calculated as described in 4.2.2. Additionally, the intrusion result canbe derived from the attack type, which existing IDSs, such as [105], can provide.In our research, we consider the IDS functionality as trusted, treating it as a black-box that reliably detects intrusions without requiring additional false-positive han-dling [111,292]. In our architecture, we place the IDS in the domain gateway. Conse-quently, a security sensor [13] is needed to monitor its portion of the environmentfor security-related observations. This data is then reported to the domain-specificgateway, which houses the domain IDS.
• Status Information: This includes information about the various states of the vehicleand its surroundings. This data is collected and aggregated from various vehiclesensors and shared with the IRS.
• Response Information: This information can encompass the precise responses neededfor specific ECUs or those that need to be shared with the SOC. In our architecture,we assume the presence of response agents located in each ECU. These agents areresponsible for receiving responses and deploying them within the respective ECU.

It is crucial to mention the necessity of ensuring the security of this data by implementingsecure communication between the ECU, domain gateway, and the IRS.
113

4.2.5 IRS component
The IRS consists of the following sub-components (as shown in Figure 51):

• Risk EvaluationModule: This module will be responsible for assessing the impact ofan intrusion. The component will receive information about the intrusion from theIDS as well as information about the vehicle status.
• Response Set Generation: This module compiles a list of possible responses, utiliz-ing information obtained from both the IDS and the risk evaluation module. Pleasenote that not every response is applicable to every type of intrusion result (refer toTable 32).
• Optimal Response Selection: This component integrates data fromall previousmod-ules to determine the optimal response that can be applied. Within this component,any of the algorithms presented in sec:posiblealgo can be integrated.
• Precondition Checking: Given the limitations imposed by the system architecture,where not all types of responses can be applied (for example, in cases where asensor is unavailable due to a DoS attack, it may not always be possible to use aredundant source of information from another sensor if such a backup sensor doesnot exist), it is imperative to verify whether the selected optimal response is ap-plicable or if an alternative response must be chosen. The Precondition Checkingmodule receives the chosen response and assesses its feasibility. If a response isfound to be inapplicable, a feedback loop is established with the previous OptimalSelection Module. This inner loop is repeated until the necessary preconditions foran individual response are met. The order of the Optimal Response Selection andthe Precondition Checking is carefully evaluated and results in time benefits:

1. "Check-First-Then-Select": The logical order of first eliminating all inapplicableresponses and subsequently selecting the best response r from the remainingavailable options is illustrated by the timing behavior of Equation 15.
t =

(|R|
∑
i=1

tcheck,ri

)
+ tselect,r + texecute,r (15)

The time to select the optimal response tselect,r and the time to execute theresponse texecute,r are summed only once, since the selected response will sat-isfy the preconditions. In contrast, the time to check the preconditions tcheck,ris summed over the set of possible responses R, since every response’s pre-condition will be checked.
2. "Select-First-Then-Check": While a response may be applied with the proba-bility p, it might also be that the constraints are not satisfiedwith a probability

(1− p). This leads to a timing behavior of Equation 2.
t = tselect,r1 + tcheck,r1 + p · texecute,r1 +(1− p)

·
|R|
∑
i=2

(
tselect,ri + tcheck,ri

)

(16)

114

While the first selected response must always be checked, it is only executed withthe probability p. If the preconditions are not satisfied, the Inner Loop will be re-peated maximum |R|−1 times.
It is evident that for a certain number of responses approaching infinity, Equations 15 and 2yield the same runtime t when p = 0.5. For higher values of p, the runtime as per Equa-tion 2 is even lower. This holds true even when tselect,r decreases, as the number of possi-ble responses decreases accordingly. Based on these equations, the architecture depictedin Figure 51 exhibits a "Select-First-Then-Check" behavior.
Response Execution: This component is responsible for transmitting the chosen responseinitially to the domain-specific gateways and subsequently to the respective ECUs for im-plementation through their local response engines. After a predefined duration, this com-ponent triggers the IDS to assess the effectiveness of the applied response in mitigatingthe intrusion. By incorporating this IDS-Feedback loop, the Outer Loop can be iteratedmultiple times, each iteration involving a system re-evaluation. This concept serves tocounter persistent attacks or stepping-stone attacks effectively. Furthermore, the feed-back loop can be utilized to update the parameters of the risk evaluation module for ad-dressing future intrusions.An essential consideration in the IRS architecture shown in Figure 51 is the implemen-tation of termination criteria for the inner and outer loop. The absence of such criteriacould lead to an endless loop, posing a risk to the stability of the entire IRS system. Whilesomeprior research has addressed termination criteria [100,261], thesemethods often in-volve complex evaluation techniques [38,119] or rely on artificial intelligence support [176].However, the high computational requirements and intricate modeling approaches asso-ciated with these methods are impractical for automotive infrastructure. To address thechallenge of preventing endless loops in both the inner and outer loops, we employ twodistinct methods.

1. Preventing Inner Endless Loops: To avoid an endless evaluation of preconditions,we continuously reduce the possible response set by eliminating non-applicable re-sponses. Additionally, we have introduced a special response, labeled as "No Ac-tion" (indexed as 31), which will consistently lead to the last possible response. Thisspecific response carries the highest cost, similar to the impact of an intrusion, butprovides no benefit. These attributes ensure that the inner loop never reaches adeadlock since "No Action" can always be applied.
2. Avoiding Outer Endless Loops: Once a response is applied, the system undergoes ananalysis through the IDS-Feedback mechanism to identify if a new stepping-stoneattack is detected or if the system is secure. In case a new stepping-stone attack isdetected, the entire outer loop illustrated in Figure 51 reiterates. To prevent an end-less loop scenario when the same response is repeatedly applied, we implementchanges to the parameters of the applied response based on the success of the re-sponse. The parameter adaptation differs between a successful and a non-successfulresponse. When the selected response is unsuccessful, it indicates that the bene-fit values assigned to all HEAVENS parameters may not be accurate. Consequently,an adjustment is needed, resulting in a reduction of the benefit values for all HEAV-ENS parameters in the previously applied response. This entails the assumption thatthe relative order of each parameter remains unchanged; for example, if the safetybenefit held a higher value than the financial benefit prior to the adjustment, it willcontinue to do so afterward. This behavior is mathematically expressed in Equation17.

115

∀i ∈ {S,F,O,P} :

inew(iold) =




10, if iold = 100
1, if iold = 10
0, if iold = 1 or iold = 0

(17)

A similar parameter adaptation is required in case the response was applied suc-cessfully. However, the parameters cannot simply be increased, as this could leadto predictable responses. Predictable responses pose security risks, as attackers canexploit this behavior [29]. For that reason, two adaptations aremade if the responseis successful to avoid predictable behavior:
• Original values are restored if the response was previously not successful andits values were adapted according to Equation 17.
• In a second step, the corresponding weights wi∈S,F,O,P are randomly adjustedusing a prefactor r, where rmin ≤ r ≤ rmax. This retains the original order ofmagnitude of wi while introducing sufficient variation through the multiplica-tion r ·wi to generate different results in the next iteration.

As previously mentioned, the parameters to calculate the intrusion impact (Equa-tion 3), the response cost (Equation 4) and the response benefit (Equation 5) relyon input by security experts. However, this input may not always be optimal [168].Consequently, this can lead to the selection of an undesired response. Fortunately,the outer loop provides amechanism to compensate for potentially incorrect param-eters. In cases where responses prove ineffective, the parameters are dynamicallyadapted using Equation 17.
Note that Equation 17 presented earlier does not account for the dynamic environ-mental parameter, denoted as E, and its corresponding weight, wE . Further detailsand definitions are necessary to incorporate this parameter into the adaptation pro-cess. These details should encompass various aspects of the vehicle’s status andits surrounding environment. For simplicity, we have focused on the vehicle’s ve-locity as a parameter that can help represent the vehicle’s status. To determine arealistic rating for the impact of vehicle speed, several factors must be taken intoaccount. Studies of traffic accidents have revealed that the impact is influenced notonly by the types of vehicles involved but also by their positions at the potentialcrash site [141]. Additionally, the age of the passengers in the vehicles can affect theimpact of injuries in a traffic accident [231]. Based on this research, the approachpresented in Equation 18 is applied to the parameter E in the adapted HEAVENSmethod’s prototype implementation [141, 231].

E(v) =





100, if v≥ 75 km/h
10, if 50 km/h≤ v < 75 km/h
1, if 30 km/h≤ v < 50 km/h
0, if 0 km/h≤ v < 30 km/h

(18)

Response Storage: Within this component, a repository is maintained containing a rangeof potential responses alongside their associated metrics. These metrics can be updatedthrough the feedback mechanism or expanded with the inclusion of new responses andparameters via an external connectivity interface. When implementing this on specifichardware, it is crucial to implement securitymeasures to prevent unauthorized tamperingwith the memory area.
116

Our proposed IRS architecture, featuring both an inner loop and an outer loop, cou-pled with the incorporation of automotive-specific considerations into the external ar-chitecture, introduces a novel paradigm in the realm of fully automated IRSs. Note thatthere is already some related work for each part of the IRS (such as the selectionmethod),which was covered in the previous sections. However, there is no system that attempts toinclude all the aspects against which we can compare our work.
4.2.6 Evaluation

Table 34: IDS-related information and vehicle state parameters for both evaluation scenarios.

Property Scenario 1 Scenario 2

Name Adversarial sample Information disclosure at the info-tainment system
Infected Asset Front Camera Infotainment Gateway
Affected Asset Acceleration control Infotainment Gateway
Intrusion Result Falsify / Alter behavior Information Disclosure
Dynamic Param-
eter

Velocity: 70 km/h Velocity: 0 km/h

Implementation, Testbed, and Use CasesThe proposed IRS was implemented using the Python programming language. To imple-ment Linear Programming and the associated Simplex algorithm, we utilized the PuLP
library [199], a well-established choice, along with the GNU Linear Programming Kit asthe solver. It is important to note that the adapted SAWmethod remains independent ofthis decision, as it relies solely on standard Python mathematical operators.The testbed designed for evaluating the IRS incorporates an embedded system setupto realistically emulate the automotive infrastructure. To ensure this fidelity, our imple-mentation was executed on a Raspberry Pi 4 Model B Rev 1.2, a choice justified by the de-vice’s ARM-based quad-core processor running at 1.5 GHz. This processing power closelyaligns with the high-performance chips commonly found in the automotive industry.The goal of the evaluation is to assess two key aspects of the proposed IRS. Firstly,we aim to evaluate its proficiency in optimal response selection, and secondly, we intendto measure various computational metrics, including memory consumption and the timerequired to obtain optimal responses while using the three different selection algorithms:LP with maximum benefit, LP with minimum cost, and adapted SAW.For our evaluation, we employed two representative intrusion scenarios inspired byreal-world intrusions:

1. Adversarial Sample: This scenario involves slight modifications to the input dataof a machine learning algorithm, resulting in significantly different outputs fromthe original [184]. Given the prevalent use of machine learning algorithms in cam-eras for automated vehicles, they are vulnerable to exploitation via adversarial sam-ples [184]. In our evaluation, we exploited a front camera in a rural setting, leadingto an altered behavior in the acceleration control.
2. Information Disclosure at the Infotainment System: This scenario draws inspirationfrom an actual attack on a vehicle, where an information disclosure in the infotain-ment system served as the initial step in a stepping-stone attack [197].

117

The specific IDS parameters and vehicle states employed as input for the scenarios aremeticulously detailed in Table 34. Please remember that in our prototype of the IRS, weconsider only the velocity of the attacked vehicle as an illustrative example of a vehicle’sstatus.
4.2.7 Results
In this section, wewill present the results of testing our IRS using twoprominent scenarios.We will evaluate response quality, response selection time, memory consumption, andthe adaptation of response parameters for each of the three selection algorithms: LP withmaximum benefit, LP with minimum cost, and the adapted SAW.
Response Quality
The objective of the response quality evaluation is to assess how different optimal selec-tion algorithms prioritize responses and determine the overall impact and benefit of theapplied responses. To achieve that, the precondition of each response is set to ‘rejected’for every proposed response. This ensures that the IRS will continue to suggest responsesfrom the list of possible responses. Each applied response can have both positive and neg-ative effects on the system, so the cost and benefit values of the selected responses arepresented. In this evaluation, default parameters are utilized for each new test, ensuringuniformity in the algorithm evaluation across various metrics.

Figure 52 depicts the cost and benefit of all proposed responses in the order they areapplied by the respective algorithm for both scenarios. The figure shows that our pro-posed IRS suggests a different number and order of responses for various scenarios andfor different selection algorithms within the same scenario. Please note that the figureshows that some responses were selected twice. For example, the response of restart-ing the misbehaving system (indexed with number 19, see Table 32), was selected twice.However, it is important to clarify that the response was selected for different systems.In other words, the first restart is related to the camera, while the second is for the ac-celeration control. In addition, as expected and shown in Figure 52(a) and Figure 52(b),the LP method with maximum benefit starts at very high benefits. Similarly, the LP withminimum response costs starts at a very low cost and more expensive responses are notselected until later stages, as shown in Figure52(c) and Figure 52(d). Notably, the LP withmaximum benefit operates independently of the cost. However, it always ensures thatthe cost of the response is less than the impact of the intrusion (see Equation 13).
The reason for the arbitrary behavior is that Linear Programming only follows one op-timization function and just satisfies the constraints, but does not sort by constraints.Similarly, LP with minimum cost delivers arbitrary values with respect to the benefit be-cause it only considers cost metrics in its optimization. While the LP with the minimumcost provides more conservative solutions, the LP with maximum benefit suggests moreoffensive solutions. In a real-world scenario, LP withminimum costmight requiremultipleresponses since its benefits are arbitrarily sorted, while LP with maximum benefit mightrequire more iterations of the "inner loop" since the preconditions for more offensiveresponses might not be fulfilled.
The adapted SAWmethod exhibits a similar arbitrary behavior as shown in Figure 52(e)and Figure 52(f). However, it is noticeable that adapted SAW may select responses witha cost higher than the impact of the intrusion (see Figure 52(f)). Given that the adaptedSAW method does not consider constraints, it is an unattractive solution to use any SAWmethod in an automatic IRS.

118

Figure 52: Evaluation of the response benefit and cost for Scenario 1 (left) and Scenario 2 (right)
using LP with maximum benefit (top), LP with minimum cost (middle), and adapted SAW (bottom)

Time of Response Selection
To evaluate the time required for selecting a response from a given response list using theselection algorithms, we utilized the previously describedmethodwhere the inner loop ofthe IRS repeats multiple times. It is important to note that the generation of the responseset occurs only once for an individual intrusion. The time required for list generation isindependent of the selection algorithm, measuring at 4.32 ms for scenario 1 and 3.82 msfor scenario 2. The difference in the measured time between the scenarios is due to thevariation in number of possible responses.Figure 53 illustrates the time consumed by the three selection algorithms during the

119

Figure 53: Evaluation of consumed time for response selection using the three selection algorithms
for both scenarios

Table 35: Memory consumption of the IRS in kB using static evaluation.

LP with Max Ben-efit LP with Min Cost Adapted SAW
Scenario 1 19308 19206 11296Scenario 2 19228 19344 11220

process of selecting different responses. Please note that the X-axis represents the orderof the response, not the index of the response. The figure indicates that the adapted SAWmethod consumes less time compared to the LPmethods. Specifically, the LPmethodwithmaximumbenefit typically consumesmore time due to the need formultiple iterations, asits offensive responsesmay notmeet necessary preconditions. Slightly less time is neededfor the LP method with minimum cost, although its conservative responses are selectedafter fewer precondition checks. Overall, all algorithms demonstrate good performanceon a resource-constrained embedded system.
Memory Consumption
To measure memory consumption, we utilized Python’s internal resourcemodule [227].Since some of the optimal selection algorithms rely on third-party libraries, the assess-ment of memory consumption includes the memory allocated for these functionalitiesas well. The results are presented in Table 35. The results show that both LP with max-imum benefit and LP with minimum cost methods consume nearly the same amount ofmemory, while the adapted SAWmethod exhibits considerably lower memory consump-tion. This difference can be attributed to the external libraries PuLP and the GNU Linear
Programming Kit, which require more memory due to their complex data structuresand solving methods. Nevertheless, all three selection algorithms exhibit low memoryconsumption, making them suitable for use in resource-constrained embedded hardwaresystems.
Dynamic Evaluation
The dynamic evaluation concentrates on two key aspects: response and threat impact pa-rameters adaptation (refer to 4.2.2) and the inclusion of velocity considerations (as shown

120

Figure 54: Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the
responses selected over five iterations using the three selection algorithms, assuming the responses
were consistently considered successful.

Figure 55: Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the
responses selected over five iterations using the three selection algorithms, assuming the responses
were consistently considered unsuccessful.

in Equation 18). When it comes to parameters adaptation, response quality is assessedbased on their cost and benefit. In terms of velocity, we evaluate response variation.These assessments are conducted for both scenarios 1 and 2. By testing all three imple-mented optimal selection algorithms, we can compare their dynamic behavior.
121

4.2.7.1 Parameters adaption To assess the impact of changing parameters, we conductedtwo repetitions of each scenario, each comprising five iterations of the outer loop. In oneset of iterations for each scenario, we consistently deemed the responses as successful,while in the other set of five iterations, the responses were uniformly considered unsuc-cessful. The benefits and costs of the five optimally selected responses for both scenarios,as determinedby the three selection algorithms, under the assumption that the responseswere always successful, are presented in Figure 54. Correspondingly, the results under theassumption that the responses were consistently unsuccessful are displayed in Figure 55.
In consistently successful attacks, we observed that parameter weights change withinthe range of ±20% (we have selected rmin = 0.8 and rmax = 1.2). The purpose of thesechanges was to reduce response predictability. In both scenarios, changes in responsebenefitwere evident. However, in the first scenario, all three algorithms retained the sameresponse as shown in Figures 54(a), 54(b), and 54(c). This was changed in the second sce-nario, where responses were altered for the LP with maximum benefit and adaptive SAWalgorithms as shown in Figures 54(d), and 54(f). The reason for the absence of changesin the selected responses in the first scenario when using LP with maximum benefits oradapted SAW algorithms can be attributed to the specific response chosen: transitioningto a safe mode (indexed with 17). This response had very high benefit values, as deter-mined through the initial evaluation process, making minor variations of ±20% inconse-quential to the overall result. Consequently, minor variations of ±20% did not affect theoverall result, as the next possible response had significantly lower benefit values. To avoidsuch a constant behavior, a more substantial modification of the response parameters orthe use of an asymmetric window for the prefactor, with a higher probability of negativevalues, can be implemented. Notably, the LP method with minimum cost (Figure 54(b)and 54(e) did not consider response benefits in its optimization function, rendering mod-ifications to response benefit irrelevant. This method-related limitation persisted acrossboth simulated scenarios.
In the case of consistently unsuccessful attacks, we observe more substantial varia-tions in the selected responses compared to the previous case (see Figure 55). This be-havior is expected, as the parameter adaptation in a non-successful case involves higherorders of magnitude, as shown in Equation 17, compared to the successful case. Simi-lar to the previous analysis, the LP method with minimum cost optimization consistentlygenerates the same response due to the exclusion of response benefit in the optimiza-tion process, as shown in Figures 55(b) and 55(e). Conversely, LP with maximum benefitoptimization aligns with expectations. Although the initial response is similar to the suc-cessful case, subsequent responses exhibit lower benefits (Figures 55(a) and 55(d)) andhigher costs as a side effect. Notably, response index 26 (killing the process) appearedtwice in Figures 55(a) and 55(c), each referring to different components (i.e., camera andacceleration control). The adapted SAW method consistently produces varying resultswith less distinct trends in benefit and cost when compared to LP with maximum benefit(Figures 55(c) and 55(f)). This observed behavior holds true for both scenarios 1 and 2, un-derscoring the expected functionality of parameter adaptation for non-successful cases.
In conclusion, this assessment of dynamic parameter adaptation confirms that LP withmaximum benefit and the adapted SAW methods perform effectively with adjusted pa-rameters, rendering the results valid for both test cases. On the other hand, the LPmethodwithminimum cost optimization falls short in its capacity to respond to parameter shifts inresponse benefit values. Consequently, this method appears less appealing for identifyingoptimal responses in autonomous IRS.

122

Table 36: Impact of the velocity for the evaluated scenarios, using Equation 3.

Impact (unitless)

0 km/h 50 km/h 100 km/h

Scenario 1 200 210 300
Scenario 2 120 130 220

4.2.7.2 Inclusion of Velocity Considerations The second key aspect of dynamic evalua-tion involves assessing the influence of vehicle velocity on the selected responses. In ourcurrent prototype system, the environmental parameter E is treated similarly to otherHEAVENS parameters in Equation 3, as their respective weights w are either one or zero.As we alter the velocity, the environmental parameter for an intrusion takes on differentvalues, as indicated in Equation 18. Therefore, intrusion’s impact is more significant athigher velocities. For this test, both scenario one and two are assessed at three veloci-ties: 0, 50, and 100 km/h, using all three implemented algorithms, with each evaluationbeginning with the default data-set.
While the intrusion impact calculation in Table 36 functions as expected, each algo-rithm consistently selects the same response within each scenario, regardless of the ve-locity. This behavior can be attributed to the high impact values in the two evaluatedscenarios. In cases of less severe intrusions or during the early stages of a stepping-stoneattack, where the HEAVENS parameters result in lower values, the velocity’s impact be-comes relatively more substantial, thus leading to varying results. Nonetheless, it’s im-portant to emphasize that the proposed IRS architecture is adaptable since the individualweights w for HEAVENS parameters can be customized as per Equation 3. This customiza-tion minimizes the over-representation of static HEAVENS parameters, enabling the ve-locity to exert a more pronounced influence on the selected response.

Final Remarks
The evaluation of the developed IRS reveals the advantages and drawbacks of each selec-tion method. The adapted SAW method is limited by its inability to consider constraints.Consequently, it is not feasible to employ this method in a fully automated IRS. On theother hand, LP with minimum cost consistently favors constant responses and is, there-fore, unsuitable for optimal response identification. Despite its successful application inexisting research [110, 112], the results demonstrate suboptimal behavior for the automo-tive use case. Nevertheless, it is well-suited for proposing follow-up responses once theprimary intrusion has been mitigated. These follow-up responses can enhance securityby alerting a SOC and providing information to the car manufacturer, ultimately leadingto updated software. In contrast, the LP method with maximum benefit, excels in all met-rics evaluated for an automotive IRS. Since it offers responses with high benefits from theoutset, it is well-suited to respond to the primary intrusion.
4.2.8 Conclusion and Outlook
Modern vehicles’ intricate architecture and advanced connectivity present unique intru-sion challenges. While automotive security research has traditionally emphasized IDSs asa secondary defense layer, the development of vehicle IRS is in its early stages, drawing in-spiration from related industries. To delve into the development of an automotive IRS, wesought answers to three key questions: defining potential responses, outlining response

123

evaluation criteria, and optimizing response selection. Initially, we categorized automo-tive intrusions and stepping-stone attacks into five distinct categories to create a moreversatile intrusion model. Similarly, we classified responses, creating a formal descriptionfor both intrusions and responses. Additionally, we investigated necessary adjustmentsto existing risk assessment models to support response evaluation. Furthermore, we con-ducted a comprehensive comparison of various optimal selection algorithms, highlightingthe adaptability of the SAW method and Linear Programming (LP) with various optimiza-tions for IRS integration. Although other algorithm families may gain relevance in thefuture, they currently face limitations in the automotive context. In addition to thesefindings, we proposed an IRS architecture that accommodates the distributed nature ofvehicles and addresses automotive-specific constraints. Evaluation in real-world scenar-ios has led to the development of a novel vehicular IRS, demonstrating its potential forintegration into modern distributed vehicle architectures and enhancing overall security.While the focus of the paper is on the analysis and design of the IRS, the implementa-tion of the external architecture and the response executionmodules on the local engineson each ECU is still a challenge towards an IRS as a system. To test such an overall IRSsystem, real-world data sets, including both normal operation and attack scenarios, areneeded. Extensive evaluation in Software-in-the-Loop or Hardware-in-the-Loop testbedscan extend the existing evaluations of algorithms and the overall system. With respect tothe secure communication of intrusions and responses, further research and standardiza-tion are needed to be performed in order to ensure that the developed IRS does not onlyreply in an adequatemanner but also distributes its responses. In this direction, leveragingexisting efforts such as [124, 193] by extending them towards establishing a standardizedmethod for securely exchanging the proposed responseswithin the vehicle andwith othervehicles would provide a solid foundation, as these existing standards and guidelines al-ready offer valuable insights. Also, it is important to note that the functionality of ourproposed system depends on the availability of information about the attack, such as itssource, destination, and type, which needs to be provided by the IDS. This information canbe obtained by integrating existing research approaches, as demonstrated in [66,129]. Fi-nally, the modular architecture of REACT allows an easy extension towards more complexvehicle architectures and new intrusions or responses. Additionally it allows the integra-tion of new selection algorithms in the future to adapt to possible changed needs.
4.3 Summary
Within this section, we developed methods for fingerprinting, debugging and intrusionresponse in AD systems. The ADAssure methodology leverages vehicle dynamics data forautomated andmanual analysis of indicators of activity of cyber attack. ADAssure demon-strated that indicators of attack could be found through vehicle dynamics data and thatassertions on the system could be generated. These assertions can aid in the improve-ment of the design of the control system software. The analysis of IRS techniques forautomotive consequently demonstrates the difficulty in finding an optimal solution for areal-time, safety-critical system with timing and resource constraints. Both analyses high-light the complexity of development of cyber defensive mechanisms given the vast dataecosystem and system-of-system environment. Within the next sectionwewill converselyexplore the development of tools for cybersecurity testing of AD software.

124

5 Tools for Autonomous Driving Software Cybersecurity Test-
ing

5.1 Cybersecurity Test Range for Autonomous Vehicles
AV shuttles for public transportation are being piloted in European cities [121]. Cybersecu-rity of AV shuttles is of predominant importance for the safety of passengers and pedes-trians in the traffic environment. Digitisation of vehicles and the transitioning to intelli-gent control by algorithms have exposed vulnerabilities to traditional cyber attacks suchas ransomware, distributed denial of service, and new attack surfaces such as adversarialmachine learning and sensor manipulation [43, 220, 223, 280]. Recent examples [7, 11] ofsoftware failures of semi-autonomous vehicles resulting in fatalities of passengers haveshown the lethal potentiality of cyber attacks. There are many challenges to securing AVshuttles against cyber attacks.Cyber ranges are popular tools to experiment with edge and corner cybersecurity testcases and training for skills development and situational awareness of cybersecurity inci-dent response. However, there is a lack of evaluation of cyber range technologies for AVcybersecurity and knowledge as to how cyber-physical systems can translate to supportreal-world, operational AV shuttles.To address the challenges of AV cybersecurity, cybersecurity testing platforms for cyber-physical systems and methods for testing and training are required. In this research weevaluate the Massachusetts Institute of Technology (MIT) Duckietown, low-cost, small-factor, cyber-physical AV test bed to support cybersecurity testing of a real-world AV Shut-tle, operating in Tallinn, Estonia. The purpose is to understand how a cyber-physical testbed can be used for cybersecurity testing of AV shuttles and how this can transform cy-ber ranges and training for AV cybersecurity. The main activities of this research are thefollowing:

1. We investigate the utility of a cyber-physical test bed for AV shuttles to support areal-world, operational AV shuttle.
2. We demonstrate, through a series of practical cybersecurity test scenarios, that alow-cost, cyber-physical test bed can be used to test the general cybersecurity ofan AV shuttle and improve issues with the architecture and training for situationalawareness of operators.
3. We outline recommendations how a cyber-physical test bed can be used to validatecybersecurity edge and corner cases.

5.1.1 Relation to Existing Work
Cyber-physical test beds for AVs have featured in numerous studies. However, the relatedwork is focused on the design of the test bed and there are few works that include con-siderations for cybersecurity testing and training.Three studies are prominent in the related literature for their focus on designing low-cost cyber-physical test beds for automotive.Axelsson et al. created a vehicle test bed for security evaluation of cyber physical sys-tem. The test bed was based on a small-factor mobile vehicle which was customised tosupport AUTOSAR, a software framework for automotive. The vehicle test bed, developedin 2014, demonstrated that a small-factor device could provide a solution to emulate theprotocols and features of a full-factor real-life vehicle. The test bed was not autonomousand relied on remote control by human operator [21].

125

Tian developed a low-cost cyber-physical AV for research of neural networks. The re-search involved creating a code base for a line following car in a low-noise, controlled,test environment. The study developed the environment which could have applicationsfor test bed and cyber range capability. However, as this was not the primary focus of thestudy, the translation of the cyber-physical AV for testing was not explored [70].Bhadani et al. created a Cognitive and Autonomous Test (CAT) Vehicle test bed to eval-uate AVs. The research problem highlighted in the study was the cost, time and risks ofreal-world testing and the problems translating test cases from simulators to real-worldenvironments. The study designs and builds a hybrid virtual-physical test bed that incor-porates the body physics of a real world vehicle with virtualised sensors and softwareplatforms. ROS is used as the middleware platform. The evaluation of the platform wasconducted through an educational programwhere students used extracted data from theCAT vehicle to improve object detection and tracking. The studywas focused on the designof the vehicle and not cybersecurity, testing or training [26].Zelle et al. and Santos & Schoop extended the design of a test bed for AVs to includea framework for cybersecurity testing of AVs. Both of these studies focused on test casesgenerated from either formal methods or system analysis [67, 329]. Zelle et al. built a se-curity test platform for AVs using small-factor cyber-physical systems. The methods usedin designing the platform comprised eliciting an attack model of cybersecurity attacksagainst autonomous vehicles. Based on this attack model the test bed was designed. Thetest bed is innovative, it includes most of the diverse range of sensors used for perceptionas well as in-vehicular networks and infotainment systems. The contribution is closest tothis work. The main differentiation is that this study provided a practical assessment ofthe test bed and analysed testing and training methods that a cyber-physical AV test bedcould support [329].Santos & Schoop developed a framework for cybersecurity testing of AVs and eval-uated its efficiency through investigation of the survivability of autonomous vehicles af-ter a cyber attack to the vehicles sensors. Their framework consisted of developing testcases from formal methods and a tool to auto-generate test cases. Their practical evalua-tion involved the security testing of two sensors; camera and LiDAR. An open-source au-tonomous driving simulator, CARLA, was used as the experimental testing environment.The authors tool for automatic test case generation only supports CARLA. Their study ac-knowledges the limitations of this approach, the attack to the sensors was delivered bymanual scripts and assumed the attackers could manipulate the sensors perfectly eachtime. The findings are limited to the CARLA environment and the simulation environmenttesting could not replicate a real-world physical attack or the operational driving domainof the vehicle [67].
5.1.2 AV Shuttle Cybersecurity ProgramTo select a low-cost, cyber-physical test bed to evaluate for AV shuttle cybersecurity, webegin by providing an overview of the Tallinn, Estonia, iseAuto, a real-world, operationalAV shuttle.

AV shuttles are a type of AV used for public transportation in predominantly urban
environments. AV shuttles can accommodate up to 15 passengers and are limited is speedto approximately 25 km/h. Table 37 lists a few of the different models of operational AVshuttles. There are thousands of AV shuttles currently operating around the world [121].Figure 56 depicts a public transport AV shuttle.

126

Table 37: AV Shuttles for Public Transportation [121]

AV Shuttle Location EnvironmentNavya Arma Parc Olympique Lyonnais,France Public Road
EasyMile EZ10 Airport Velizy-Villacoublay,Paris, France Government Prop-ertyiseAuto Tallinn, Estonia Private RoadBaidu Apollo Software Park Xiamen,China Public Road
Local Motors Olli Goodyear, Colmar-Berg,Luxembourg Private Road

Figure 56: iseAuto Public transport AV Shuttle [16]

AV Shuttles use either open-source or proprietary software designed for AVs. ROS is oneof the key open-source systems. ROS is an open-sourcemiddleware that provides supportfor hardware abstraction, low-level device control, message-passing between processes,and package management. ROS is popularly used as it integrates with Autoware, a largeopen-source research and development community that provides a software platformfor autonomous driving. The Autoware platform provides modules for self-driving, theseinclude localisation, detection, prediction, planning and control [?]. These modules areessential for the vehicle to understand where it is located in the driving environment,map the route it must drive and detect the objects in the driving environment such aspedestrians. Furthermore, the control module is crucial for the vehicle to coordinate theconditions under which the control of the vehicle will be maintained and important deci-sions will be made, such as when control of the vehicle will be passed back to the humanoperator.
The AV shuttle architecture integrates this software ecosystem with advanced hard-ware technology and sensors: LiDAR, ultrasonic radar, camera and GNSS.
AVs use teleoperation. Teleoperation is the remote monitoring and controlling of theAV by a human operator. In the real-world vehicle used in this study, the teleoperation isa software module of the ROS, enabling communication between the on-board computer

127

and a remote teleoperation centre located in a building along the private road environ-ment.
AV Shuttles are densely interconnected. The internal self-driving vehicle network con-sists of layers of communicating devices from the embedded components of the vehicle,including the ECUs using the CAN Bus protocol, to the IP connected sensors. The vehiclecommunicates with smart road-sign-units (RSUs) and internet-connected devices, whichis termed V2X, and with other vehicles, known as V2V.
The AV shuttles autonomous driving cognition and sensonics are tested in simulators

and cyber-physical test beds. Popular simulators include; Apollo Baidu, LGSVL, CARLA andROS Gazebo [241]. Simulators consist of a 3D generated driving environment, normallyfrom the maps generated by LiDAR sensor. The simulated AV can take as input the sameconfigurations used in the ROS software of the real-world vehicle and similar sensor soft-ware profiles. Cyber-physical test beds can be either small-factor replicas or hardware-in-the-loop test benches. Cyber-physical test beds allow the same features and function-alities of the simulated environment with the additional benefit of providing testing ofphysical interfaces and the dynamic of real-world physical conditions.In 2015, researches demonstrated that the in-vehicle network, Controller Area Net-work (CAN) Bus, of a Jeep Cherokee could be exploited through malware and remotecode injection, to stop the brakes of the vehicle [55]. This event precipitated the increasein focus on testing methods and test platforms for CAN Bus and connected vehicle tech-nologies; communication interfaces and infotainment systems. This increase in researchactivity has lead to an increasing amount of vulnerabilities found in connected vehicles(Table 38).
Table 38: Examples of Cyber Attacks on Connected Vehicles

Vehicle Cyber ThreatTesla Model S Spoof Passive keyless entry to take advantage ofweak cryptography, lack of mutual authenticationfor challenge-response and lack of firmware protec-tion [313].Malicious firmware with linux kernel exploitation for theConnMan open-source internet connection manager al-lows WiFi of the Tesla to be exploited to allow remoteconnections [307].Jeep Cherokee 2014 Malware on Infotainment system to allow remote rootprivileges and pivot into CAN Bus network [55].KIA Reverse-engineered Android OS Infotainment system.Found vulnerabilities to allow remote root privi-leges [82].

There has been growing research in cybersecurity vulnerabilities of autonomous driv-ing. These mainly focus on adversarial machine learning that aims to exploit weaknessesin the autonomous driving cognition, fuzzing of ROS and other middleware software, andnetwork interfaces used for V2V and V2X communication (Table 39). Most of this researchis conducted in simulators or on isolated systems and components and very few of thetesting methods relate to real-world operational vehicles [43, 195,220,223,230,280]. Anexhaustive list of vulnerabilities of connected vehicles and AVs can be found here [148]
128

Table 39: Examples of Cyber Attacks on AVs

Attack Surface Cyber ThreatAutonomous Cogni-tion Tamper with RSU Stop Sign to manipulate autonomouscognition [267].Tamper with lane markings to manipulate lane-keepingsystem(LKAS) [249].Spoofed images in driving environment to manipulateobject-detection [210].Sensors Jam LiDAR point cloud sensor with laser [35].Tamper with sensor data to manipulate navigationpath [61].System Spoofing of ROS Master and interception of ROS mes-sages [130]Malware in firmware update [308]Fuzzing of AV middleware [103].Network Intercept and spoof RSU messages [223]

Despite commonly used regression testingmethods and standards for cyber assurancetesting of AVs, the vulnerabilities of AV systems continue grow.
Public transportation AV shuttles undergo limited testing for cybersecurity, this is dueto many reasons. Firstly, cybersecurity testing on real-world proving grounds with op-erational vehicles is expensive and time-consuming, requiring extensive labour effort inthe setup, execution and safety monitoring of the tests [297]. Secondly, there is a reluc-tance to test cybersecurity test cases that could damage the vehicle. This is mainly due tothe cost and time involved in rebuilding and re-configuring vehicular systems and compo-nents. Thirdly, the AV shuttle architecture is a distributed systems architecture and dueto lack of testing there is a gap in understanding how cyber attacks cause cascading af-fects and how, for instance, malware could propagate throughout the system. Fourthly,there is a lack of investigation of novel testing methods and techniques for cybersecurity.These include software simulators and cyber-physical test beds commonly used for test-ing autonomous driving cognition. Lastly, there is lack of training of teleoperation, remotecontrol vehicle operators for situational awareness for cybersecurity. As AV shuttles relyon teleoperation operators to override the autonomous cognition in emergency situationsand make manual driving decisions, their awareness as to how cyber attacks can impactsituational awareness is critical for safe driving operation.
Flexible testing environments that allow agile testing of edge and corner cyberseecu-rity test scenarios would help assist in identifying vulnerabilities of the AV system architec-ture. Whilst simulators and small-factor cyber-physical test beds are used for testing andimproving autonomous driving algorithms there has been limited practical exploration ofthese test beds for cybersecurity testing.
Test beds such as the MIT DuckieTown, provide a low-cost, small-factor environmentaccessible to autonomous self-driving vehicle developers andquality assurance testers [278].These environments, which utilise the same software andnetwork interfaces as AutonomousVehicle (AV) Shuttles have the potential to be used for cybersecurity testing and research.

129

5.1.3 Cybersecurity Test Beds for AV ShuttlesKey factors which influence the design and usage of test beds to support the operationalAV shuttle include cost, complexity and fidelity of the test bed to the operational system.
CostTo support agile testing and cybersecurity test cases that impart physical damage on theAV, the cost of the test bed needs to be as limited as possible. The low-cost requirementhas two intended beneficiaries. Firstly, a low-cost agile test bed can be given to studentsand researchers in innovative testing formats such as crowd sourcing. This enables awiderscope of testing for minimal cost. Secondly, AV shuttle programs for public transportationdo not have exhaustive resources for testing in comparison to the major original equip-ment manufacturers. Therefore, low cost test beds are required to test edge and cornercases and prioritise test cases for testing on the real-world vehicle.
ComplexityAV shuttles are a complex distributed system architecture, it is essential that the test bedsupport observation of distributed system interaction whilst limiting the complexity toallow rebuilding of damaged systems. For example, allowing a clean rebuilding of a soft-ware or hardware system infected by malware. This agility will allow repeatable testing ofcybersecurity test cases and enable dynamic testing such as crowdsourced vulnerabilityanalysis and training such as capture-the-flag style learning activities.
Fidelity to Operational VehicleTo evaluate cybersecurity and situational awareness there needs to be a level of abstrac-tion of the operational vehicle architecture. An evaluation of the real-world AV shuttleconsidered the AI & Drive systems, sensonics and the network connectivity with the tele-operation as key features of the autonomous driving architecture to emulate in a test bed.
Test Bed AnalysisA comparison of test beds used for autonomous driving and cybersecurity research foundthe cyber-physical test bed to be an optimal platform for evaluation (Table 40). Advan-tages of the cyber-physical system are the low cost and agile, modular architecture whichcan allow sensors and systems to be added or removed. Due to the lack of evaluationof cyber-physical test beds to support cybersecurity testing their fidelity to real-world,operational system is yet to be determined, and will be explored in this study. Whilst real-world proving grounds offer the highest fidelity, they come with a considerable cost dueto resources required to engineer tests with real vehicles and manage the safety risks ofsuch tests.

Table 40: Comparison of Test Bed Architectures to support Cybersecurity

Testing Considera-
tions

Simulation Cyber-
Physical

Real-World Proving
GroundCost Low Low HighComplexity Low Medium HighFidelity Medium Not evaluated High

Table 41 presents an evaluation of the test bed architectures to support testing for the
130

cyber attacks listed in Table 38 and Table 39.
Table 41: Comparison of Test Bed Architectures to support AV Shuttle cybersecurity Test Cases

Cyber Threat Test
Cases

Simulation Cyber-
Physical

Real-World Proving
GroundHardware and Com-pute Yes Yes Yes

Connected Vehicle Yes Yes YesSensor and Percep-tion Yes Yes Yes
Physical Access No Yes YesDamage Incurring No Yes YesEnvironmental Per-turbations No Yes Yes

AV Shuttle Cyber Range for CybersecurityTheMIT CSAIL Duckietown is a small-factor test bed used for evaluating autonomous driv-ing software modules, algorithms and education. Duckietown consists of a driving envi-ronment (Figure 57a) and anAV, called, DuckieBot (Figure 57b).The cost of the componentsto build the MIT Duckietown test bed is approximately =C400.

(a) DuckieTown - Cyber-Physical Test Bed (b) Duckiebot - AV Cyber-Physical Device

Figure 57: MIT DuckieTown Self-Driving TestBed

The DuckieBot uses a 5 mega pixel Raspberry Pi camera for sensing. The hardware forthe AI and Drive Algorithm is built on Raspberry Pi Model 3B hardware. The software plat-form is built upon Docker utilising ROS Kinetic. A 32GB SD card is used for local on-boardstorage and a 100Gb USB drive can be inserted in the Raspberry Pi to allow more storagefor logging. A 5 volt, 10400mAh, battery is used to power the DuckieBot. Actuation is per-formed by the motor driver which connects to servo motors. The DuckieBot is calibratedto operate in the DuckieTown driving environment. This consists of a floor layer with roadmarkings, conventional to the standard markings of real-world traffic.Table 42 represents detailed analysis of the DuckieBot with the iseAuto AV shuttle,operating in Tallinn, Estonia.
131

Table 42: Feature Comparison of Test Bed and iseAuto AV Shuttle

DuckieBot iseAuto AV ShuttleROS Kinetic Kame ROS Kinetic KameLinux Network Interfaces and 4GCellular Network Linux Network Interfaces and4G/5G Cellular Connectivity (*V2Xis yet to be added as a feature)Camera Sensing Camera, LiDAR, Ultrasonic Radar,GNSSActuation, motor driver controlsservo motors Actuation, Drive Controller controlsCAR ECUOn-board Control PC (ARM proces-sor) On-board Control PC (ARM proces-sor) different hardware specifica-tionsTeleoperation - Mission ControlSystem Teleoperation - Mission ControlSystem

The DuckieBot is an optimal test bed for experimentation as it uses the containerisedarchitecture of Docker. This allows software packages for sensors, hardware and AD tobe centralised in a configurable system. This enables packages to be added or removeddepending on the test case and for new sensors and hardware to be added easily. Theother major advantage is that the DuckieBot is an actively supported open-source projectand new AD algorithms are published regularly. This helps to ensure that test cases aretested against the newest available AD algorithms.
5.1.4 Cybersecurity Test Scenarios for AV Shuttles
Test Scenario Generation ProcessSelected use-cases are used to evaluate the usefulness of the cyber-physical range. Togenerate the cyber test scenarios we asked experts in AV cybersecurity from vehicle man-ufacturers and system designers to detail edge and corner cybersecurity test cases thatthey would want a AV cybersecurity test bed to support. The experts represented or-ganisations that develop autonomous robots for logistics, autonomous driving assistancesystems and AV shuttle operators. Table 43 lists illustrates our chosen demonstration use-cases.

132

Table 43: Security Test Case Scenarios

Test Case DescriptionScenario 1 (S01) An external threat actor spoofs the roadmarkingsto manipulate the driving logic to veer the vehicleoff the road.Scenario 2 (S02) An external threat actor tampers with the roadmarkings tomanipulate the drive logic to veer thevehicle off the road.Scenario 3 (S03) An external threat actor tampers with the camerasensor using a laser pointer to blind or shield it’sperception to manipulate the drive logic to veerthe vehicle off the road.Scenario 4 (S04) An external threat actor spoofs the RSU to ma-nipulate the drive logic to veer the vehicle off theroad.Scenario 5 (S05) An innocent maintenance engineer executes amalicious cryptocurrency or ransomware mal-ware hiding as a firmware update for a vehicle sys-tem.Scenario 6 (S06) An external threat actor eavesdrops on the ROSvehicular messaging system for information gath-eringScenario 7 (S07) An external threat actor attacker conducts adenial-of-service of the teleoperation communi-cation link with the AV.Scenario 8 (S08) An external threat actor uses a smoke gun to per-turb the camera sensor vision and alter the drivingcourse of the vehicle

133

Scenarios
The aim of the test scenarios is to understand the utility of cybersecurity testing in an AVcyber-physical testbed environment to the real-world AV shuttle. The verification of thetest results does not focus on a binary, yes/no conclusion, rather, a deeper analysis ofwhether the behaviour of the AV system observed during the cybersecurity testing can beused to identify vulnerabilities of the real-world AV shuttle architecture to cyber attacks.All of the scenarios can be viewed at the YouTube channel thatwas created to demonstratethe AV cyber range: https://tinyurl.com/2xxvvkzd
S01 - Projected Road Markings
Problem: The projector attack consists of an attacker crafting a spoof image to be pro-jected onto the traffic environment. The aim for the attacker is to fool the autonomousdrive cognition to accept the spoofed image as genuine and alter the driving behaviour.An example would be a project of a lanemarking on the road to alter the course of the AV.The projection attack experiments as detailed in Nassi et al. [210], used trial-and-error as amethod of testing. The attack was trialled on real-world vehicles in a private campus envi-ronment. The testing environment was tightly controlled for safety reasons and the setupof the test took considerable time and effort. In DuckieTown, this attack can be testedand repeated using as many diverse methods as possible. The small, cyber-physical test-ing environment allowed for agility and repeatability and enabled replication of a cyberthreat identified in a paper to test the validity of the results to our Av shuttle.Whilst a spoofing attack using projection is a novel and interesting method tomanipu-late an autonomous vehicle it is unlikely or has low probability of success. The projectionmust contend with natural light, which means the attack must be undertaken at night.DuckieTown can be used for situational awareness for projections and spoofed imagesin the training of teleoperation operators. They must understand that these attacks canoccur and have the ability to confuse the human operator into thinking the autonomouscognition has failed to detect a lane marking.

Scenario: An external threat actor spoofs the road markings to manipulate the drivelogic to veer the vehicle off the road.
Attack Sequence:

1. Attacker observes the autonomous self-driving vehicle to understand how the au-tonomous drive cognition makes decisions.
2. Attacker crafts a spoofed image of a lane marking for projection on the driving en-vironment.
3. Attacker positions a dronewith a projector attached to it, in proximity to the vehicleand uses a remote control to initiate the projection attack.
Results: The spoofed projection attacks were unable to alter the driving actions of theDuckieBot. Figure 58a shows the faint image of the phantom spoofed yellow line whichis barely visible due to the bright profile of the driving environment. Figure 58b visiblyshows the spoofed line marking, due to a larger spoofed image being projected by theattacker. The figure 58b image, from the DuckieBot camera shows that the autonomousdrive cognition is detecting the edges and texture of the yellow lines andwhite boundariesbut is not detecting the spoofed projection image. This is due to the lack of edges, textureand geometry of the spoofed projection image.Multiple diverse attack methods were trialled, the spoofed projection images wereleft projecting on the road surface for 10 minutes, the size of the images were increased,

134

the definition of the images increased, projection on different sections of the floor anddifferent environmental light. The DuckieBot was resilient to the projected road markingsattack and the autonomous drive cognition was not manipulated.

(a) Low Noise Signature - Projected Lane Marking (b) High-Noise Signature Projected Lane Marking

Figure 58: Scenario 1 - Projected Road Markings Attack

S02 - Tampered Lane Markings
Problem: Although this threat seems simplistic in the experimental test bed environment,the implications for a real-world operational vehicle are stark. An attacker can use a 3Dprinter to print a tampered road patch and place it on the road markings of a highway. Ifthis test had occurred on an autonomous vehicle travelling at 40 mph it would have re-sulted in physical damage to the AV. This attack shows the usefulness of the cyber-physicalAV. The cyber-physical AV enabled this attack to be experimented repeatably andwewereable to try different lane marking manipulations. This is an improvement on the methodsused by Sato et al. [249] where they used a simulation for testing and this simulation envi-ronmentwasn’t able to replicate the role of the teleoperation or camera sensing. Throughtesting this attack in the DuckieTown, we can see that the teleoperation operator mustmaintain situational awareness of the road environment if there have been any manip-ulations by a threat actor or environmental damage. In translating this scenario to thereal-world AV wewere able to detect that the operational vehicle would be susceptible tothis same attack. From this experiment, a greater examination of the sensing and detec-tion algorithms of the real-world vehicle was conducted and updates to the multi-sensorfusion were made to mitigate the risk of this attack.

Scenario: An external threat actor tampers with the road markings to manipulate thedrive logic to veer the vehicle off the road
Attack Sequence:

1. Attacker observes the autonomous self-driving vehicle to understand how the au-tonomous driving cognition makes decisions.
2. Attacker, using the understanding of the drive control algorithm, perturbs the roadmarkings in the DuckieTown environment.
Result: Perturbation of a road marking can manipulate the drive algorithm to causethe autonomous self-driving vehicle to veer off the intended path of travel.In the first experiment the attacker tampered with the yellow lane markers to manip-ulate the autonomous self-driving vehicle to drive off the road. The curve road part was

135

changed to a straight trajectory and the angle of the lane borders (white lines) were re-duced to lessen thewidth of the road. As Figure 59b demonstrates, the change to the roadmarkings is demonstrable in the DuckieBot camera sensor footage, from the expectedroad markings exhibited in Figure 59a. The first experiment was successful in manipulat-ing the autonomous drive cognition of the DuckieBot, however, the DuckieBot autonomyis programmed to firstly respect the lane boundaries. The DuckieBot followed the tam-pered yellow line until it detected the lane boundary and then adjusted it’s travel path tothe correct route.

(a) Normal Lane Markings (b) Manipulated Lane Marking

Figure 59: Scenario 2 - Tampered Lane Marking Attack

In the second and third the attacker extended the yellow lane markings further intothe lane boundaries. The DuckieBot still respected the boundaries and corrected the pathof travel.In the fourth and fifth experiment the attacker removed the lane boundaries and ex-tended the yellow lane markings, as shown in Figure 60 . The attack was successful andthe DuckieBot veered off the DuckieTown environment and was unable to recover.

Figure 60: Extended Manipulated Lane Marking

S05 - Firmware update compromise
Problem:Malware in a distributed systemprovides interesting observations, an autonomousvehicle could lose access to a secure network and connect to a more vulnerable networkwhichwould allowmalware to propagatemore extensively. In testing the findings ofWeiss

136

et al. [308], we were able, in DuckieTown, use real malware and observe how it propa-gates in an AV system. We were able to clean the system and repeat the attack to observeany differences in behaviour. In translating the results of the malware attack to the real-world AV shuttle, the AV engineerswere unaware of the risks posed in connectingwirelessnetworks in the transit environment. There are many applications for this range scenariofor training. Firstly, this scenario would be useful to test incident response to malware inAVs. Secondly, it would be beneficial for the engineers to understand the risks posed by alack of validation of firmware updates and how malware can spread within a distributedsystem.
Scenario: An innocent maintenance engineer executes a malicious cryptocurrency orransomwaremalware hiding as a firmware update for a vehicle system created by an angrymechanic/insider.
Attack Sequence:

1. Angry Mechanic uploads malware from dark web or publically available repository.
2. Malware script is packaged as a bash script that is labelled "update".
3. Maintenance engineer initiates "update" script with intention of update AV shuttlefirmware.

Result: The "update" firmware was executed by the innocent maintenance engineer. Theupdate firmware contained a bash script which executed a cryptomining program. Onceinfected on a host computer the malware installs several libraries and processes for it’soperation and then tries to install zmap (net-work scanner) and ssh pass (utility for es-tablishing SSH connections). It uses zmap, in an infinite loop,to discover then networkand find embedded devices with port 22 (SSH) open. If these are found, it connects tothe device using ssh with default passwords. It then changes the configuration settings ofthe device to allow a connection to a command and control node used for cryptomining.On the DuckieBot, the malware installed it’s libraries and zmap and ssh pass and begana zmap scan of the network. The DuckieBot was on a private 4G network that also hadanother AV connected. As these devices do not use default passwords it was unable to es-tablish a connection to them. The zmap scans only marginally impacted the performanceof the network of the DuckieBot. The zmap scan was sending 50,000 packets to the tar-get device, but these are only looking for open port 22. An interesting event happenedduring the experiment. The 4G cellular private network lost connection during the mal-ware execution and the DuckieBot switched over to an open wireless network connection(controlled by us). The zmap process then started to scan the network for open embed-ded devices. The malware attack was attempted again and this time the wireless campusnetwork was removed. The malware behaved in the same manner and was unsuccessfulin brute forcing the DuckieBot.
S06 - Eavesdropping of AV Shuttle operations
Problem: ROS is highly insecure. The version that the DuckieBot is running is the sameas the vehicles used by real-world AV Shuttles. There is no authentication and securecommunication of the ROSMaster. The ROSMaster also uses HTTP so it is vulnerable to anumber of other malicious web application attacks. The AV testing environment enabledus to test on a real-time system to understand dynamically the information that can begathered from reading ROS messages and the possibilities of how this information canbe used to develop an attack on the vehicle platform. In translation of this to our real-world AV, the mitigating action is to filter the ROS port with a firewall rule. However, if the

137

attacker gains access to the internal network of the AV system there is little possibility toprevent this attack other than to upgrade to the latest version of ROS, ROS2, which is stillunder development.
Scenario: An external threat actor eavesdrops on the ROS vehicular messaging system forinformation gathering.
Attack Sequence: For this attack, the attacker needs to be on the same network as thevehicle.

1. Attacker scans the network and identifies the vehicle
2. Attacker eavesdrops on the ROS communication by spoofing the ROS Master.

Result: The attacker was able to spoof the ROS Master easily and read the ROS mes-sages which are used for AV operations. The attacker was able to generate a ROS graphthat showed all of the communication ROS messages (picture not shown/included foranonymity reasons). From this, the attacker could develop a diverse range of attacks suchas injection of ROS commands to manipulate a ROS node and replay attacks.
S07 - DDoS Teleoperation Network
Problem: The DDoS attack is an important scenario to replicate in a cyber range due to theloss of control of the teleoperation operator to safely stop the vehicle. This scenario wasinteresting for the real-world AV shuttle teleoperation staff. When the DDoS attack wasconducted the teleoperation console froze and only when the network was re-establisheddid they see that the AV had crashed. This scenario is important for situational awarenesstraining.

Scenario: An external threat actor conducts a denial of service of the short-rangewire-less network of the autonomous self-driving vehicle.
Attack Sequence:

1. Attacker scans wireless and cellular networks of the vehicle using scanning softwaresuch as nmap or airmagnet.
2. Attacker finds theWiFi access point connecting to the human operator console andautonomous self-driving vehicle.
3. Attacker De-authenticates the devices connected to the WiFi access point.
Result: A scan of all wireless networkswas conducted on the attackers PC. The attackerused a wireless scanning device that can be considered a malicious access point that actsas a man-in-the-middle between the wireless network and the client device. It can scan,capture traffic and execute a number of attacks such as capturing passwords of insecurenetwork protocols.The deauthentication attack was attempted twice. Both attempts were successful.Figure 61a shows the teleoperation console after it loses access to the network connec-tion with the DuckieBot and the DuckieBot accelerates off the road. Figure 61b showsthe DuckieBot impacting the wall when it loses connectivity. The DuckieBot continues toaccelerate on hitting the wall.

S08 - Smoke machine sensor perturbation
Problem: The expert from the autonomous robotics for logistics organisation requestedthis test case as they wanted to see environmental impacts on the cyber-physical system

138

(a) Camera Sensor Vision - DDoS Attack Crash (b) DuckieBot crashed after DDoS

Figure 61: Scenario 7 - DDoS Teleoperation Network

and how they can relate to their real-world autonomous systems. The test case demon-strated the utility of cyber-physical AV test bed in being able to simulate diverse environ-ment conditions. Based on the results of the test case it may be possible to include safetytesting in the scope of the test bed.
Scenario: An external threat actor uses a smokemachine to perturb the camera sensorvision and alter the driving course of the vehicle.

Attack Sequence:

1. A 400w smoke machine is placed next to the environment. The smoke machine isfilled with special liquid and then activated using the command controller. Smokeenvelops the driving environment.
Result: The experiments were conducted under three different lighting conditions:controlled lights, natural light, controlled dark lighting. In all lighting conditions the smokewas able to perturb the camera sensor to alter the driving path of the DuckieBot to crashout of the road environment.The initial experimental tests, which were unsuccessful in altering the DuckieBot path,showed that the most important variables were the denseness of the smoke and the abil-ity of the smoke to linger in the air to envelop the camera. The first three smoke experi-mental tests demonstrated the autonomous driving cognition being lost due to the smokehazard, however, as the smoke stream was momentary, the detection of the lane mark-ings were recovered in time to navigate accurately. Figure 62a shows the lane detectionfunctioning, and Figure62b shows the smoke perturbing the lane detection of the lanemarkings.

5.1.5 Discussion
The MIT DuckieTown cyber-physical AV shuttle test bed demonstrated it’s use in validat-ing the viability of proof-of-concept attacks such as that of the projector attack and thespoofed lane keeping assistance. The test bed enabled agility and repeatably of testingwhich facilitated greater understanding of the complexity of implementation of cyber at-tacks on AVs as well as the challenges for situational awareness for AV operators. A clearrepresentation is the projector attack which demonstrated that it was very difficult for the

139

(a) Lane Detection (b) Smoke Perturbed Lane Detection

Figure 62: Scenario 8 - Smoke machine sensor perturbation

adversary to accomplish due to the lighting, projection and camera angle requirements.TheWiFi test case provided insights into possibilities for interoperability and human oper-ator research. The vulnerabilities of the network interface, exploited in the cybersecuritytest case, impacted the vehicle behaviour and human control.The results of the testingwere provided to the iseAuto, real-world AV Shuttle program.Based on the results analysis, the AV shuttle operator identified a number of vulnerabili-ties in the AV shuttle architecture. This resulted in the updating of the network package tostop the vehicle in the event of network unavailability or outage. Furthermore, the resultshelped to educate the teleoperation AV shuttle operators about some of the scenariosthey could encounter from an adversarial actor in the driving environment and based onthis it assisted in initiating a discussion on what decisions the operator would make whenfaced with a scenario such as the projection attack or environmental perturbations.The feedback from the iseAuto concluded that the cyber-physical test bed offered aplatform for which they could test corner and edge cases that would be out-of-scope ofthe real-world vehicle due to cost and risk impacts. It helped the iseAuto AV shuttle pro-gram in understanding how their AV Shuttle could be impacted by cyber attacks and withprioritising which attacks were most likely and require further testing on the real AV shut-tle.
5.2 ADSecLang - A Domain Specific Language for Cybersecurity Testing of

Autonomous Vehicles
Vulnerability testing of AD to cyber attacks is a burgeoning field of research. Initial con-tributions to this field have focused on novel vulnerability discovery utilising penetrationtesting methods [92] [33] and fuzzing [154, 298]. However, there exists a gap betweenthis novel, experimental work and the practical implementation of testing to validate theoperational readiness of real-world AD systems. Real-world, operational AV testing re-quires a more rigid approach centered on a structured testing methodology aligned tocomposite vehicle development and test validation processes. For safety validation test-ing, domain-specific languages for safety scenario generation, such as SCENIC [81] andASAM OpenSCENARIO [45], provide a systematic expression that enables a common tax-onomy, traceability of testing processes and repeatability and automation of testing forscalability. Yet, there exists a sparsity of research on the development of a domain-specificlanguage for cybersecurity testing of AD systems. One of the primary benefits of the de-

140

Threat
Libraries

System
Data

Experts

Stds. &
Reg.

UN 155
 ISO21434

Data

Knowledge

Sources

Pa
ra

m
et

er
s

Abstract
Threat

Scenarios

ADSecLang Scenario Based Abstraction

Logical
Threat

Scenarios

Pa
ra

m
et

er
s

C
on

st
ra

in
ts

D
is

tri
bu

tio
ns

Concrete
Threat

Scenarios

Pa
ra

m
et

er
Va

lu
es

C
on

st
ra

in
ts

Test Cases

Threat Scenario

Test Requirements

Figure 63: ADSecLang: scenario-based abstraction view.

velopment of a domain-specific language for cybersecurity is that it can simplify the taskof writing scenarios for security by providing a concise syntax. In addition, the lack of adomain-specific taxonomy for cybersecurity testing of AD systems further challenges thedevelopment and evaluation of AD security testing tools, processes, and methods.The aim of exploring this problem is to develop such a language, which we call ADSe-cLang. ADSecLang acts as an intermediary layer in the testing process, which constructsscenarios for cybersecurity through the translation of functional threat descriptions toconcrete test cases. Figure 63 depicts the scenario-based abstraction of ADSecLang, whichrepresents the incremental and iterative definition of the threat scenario. First, the ab-stract description of the threat scenario originates from adversarial analysis, which canleverage sources such as threat libraries, system data, and other knowledge-base repos-itories. Second, a logical, syntactical expression of the threat scenario is created using ataxonomy. Finally, the technical description of the threat scenario is integrated within theAD simulation testing platform. ADSecLang aims to contribute greater intuition throughreadable, concise syntax for the development of adversarial agents in simulation testingthat would otherwise require complex expressions and constraints. ADSecLang requiresthe tester to consider all elements of the threat model from attacker tools to desiredattack outcomes at both an abstract and parameterised level of abstraction. To demon-strate the utility of ADSecLang, we initially focus on semantic AI security and we evaluatethe language to support two use-case scenarios of a camera manipulation attack.
5.2.1 ADSecLang: The Proposed Solution
This section introduces the attack taxonomy used to support the development of ADSe-cLang andpresents the cybersecurity testing frameworkwhereADSecLang canbe adopted.
Attack Taxonomy

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- DoS
- Elevation of Privilege
- ...

Attack Tuple

Action Impact

Method Preconditions

- System State
- Vulnerabilities
- Attacker's Tool
- Attacker's Knowledge
- Attacker's Capability
- Level of Privilege
-

Influenced Asset Influence

- Sensors
- ECUs
- ...

- Raw Data
- Luminance
- Velocity
- Acceleration
- Direction
- Position
- ...

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- DoS
- Elevation of Privilege
- ...

- System State
- Vulnerabilities
- Attacker's Tool
- Attacker's Knowledge
- Attacker's Capability
- Level of Privilege
-

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- DoS
- Elevation of Privilege
- ...

- AD SUT Condtitons
 - System State
 - Vulnerabilities
- Attackers Conditions
 - Tool
 - Knowledge
 -

Figure 64: Attack Taxonomy - Detailed Description.

The attack taxonomy of ADSecLang (as shown in Figure 64) categorizes cyber attacks
141

into two domains: Action and Impact.
Actionrepresents the execution of an attack method. The success of an action depends on thefulfillment of one or more preconditions. As a result, we subdivide the Action domaininto two sub-domains: Method and Preconditions. TheMethod is defined as the threattechnique. This threat description can be derived from a functional description such asSTRIDE, Attack Trees, or a textual interpretation. Preconditions are a set of conditionsthat must be met to execute an attack. These preconditions must be inherent attributesthat already exist and are not generated by the execution of the attack. The preconditionscan be further divided into two categories: conditions on the AD System-Under-Test (SUT)and conditions on the attacker.

• AD SUT Conditions are categorized into requirements for the state of the testedsystem and vulnerabilities within the system. System state conditions refer to therequirement that the target system must be in a specific state (such as a particu-lar version of an operating system, system software/application, or a specific hard-ware/software state, such as firmware update status) for the attack to be executed.System vulnerabilities refer to exploitable weaknesses in the system’s design andoperation.
• Attacker Conditions can be further segmented into three types: attack tools, at-tacker knowledge (capabilities, skills), and the level of privileges that an attacker canobtain. The tools and knowledge of the attacker help to profile the type of threatactor capable of conducting the attack. The level of privileges refers to the permis-sions needed to access or manipulate target system assets. An example would bepermission to run processes on the target or existing access to the target asset tomanipulate data.
Some attack methods can only be executed successfully when multiple preconditionsaremet simultaneously. Such conditionswill be groupedwithin braces {}. For example, theprecondition [{A, B}, C] can be interpreted as ‘A and B must be met simultaneously,or C must be met’. To encompass the requirement for multiple preconditions, we definean Action Group:

1 action: [method , preconditions]
2 method: [category , description]
3 preconditions: [precond1 , precond2 , ...]
4 precond1: [category , description]
5 precond2: [category , description]

ImpactExecuting an Action will introduce one or more Impacts into the system. In other stud-ies [43], these impacts are also denoted as consequence and effect. Although Impactsrepresent the outcomes and effects of attacks, they can also serve as preconditions forsubsequent attacks. Consequently, some researchers [164] have alternatively referred tothem as post-conditions. In our taxonomy, the utilization of Impact aims to identify thedirect consequences of an Action, which may additionally serve as preconditions for fur-ther attacks. The term ’goal’ in the attack model represents the ultimate impact. Thedimension of Impact can be subdivided into two sub-dimensions, namely Influenced As-
sets and Influence, which serve to identify the assets directly affected by the Action and

142

Attack
Description File Attack Model

Interpreter

Image Pre-
processing

Monocular
Camera

Vehicle
Configuration

File Image encoder
based on CNN

Measurement
Encoder based

on MLP

Trajectory-
Guided Control

Prediction
PID Control Result

Evaluation
Current Speed

Navigation
Information

Scenario
Generator

World
Generator

Environment
and Vehicle
Interpreters

Environment
Configuration

File

Fake Data
Injection

Fake Image
Data

Wrong Image
Feature Map

Unexpected
Vehicle

Behaviour

Raw
Sensor
Data

Measurement
Feature

Pre-trained End-to-End Autonomous Driving Agent

Figure 65: ADSecLang Cybersecurity Testing Workflow - Camera Attack.

ascertain the direct impact incurred on these assets. Influenced Assets can be character-ized by their respective category and name. For example, the sensor category can includecameras, radars, LiDAR, GPS, or any other AD sensor. The electronic control unit (ECU) cat-egory comprises brake control ECUs, engine control ECUs, tire pressure monitoring ECUs,or any other vehicular ECU. Influence can be specified as its Parameter and Value, denot-ing the specific parameter influenced by the attack and the corresponding altered value,respectively. For instance, if we aim to adjust the brightness of an image captured bya camera, we should specify the parameter as luminance and set its value to 300% (in-dicating that the brightness has been increased to 300% of the original brightness). Toachieve the scalability of ADSecLang, users can add new parameters and a value range inthe property configuration file. The Impact Group is defined as follows:
1 impact: [influenced_asset , influence]
2 influenced_asset: [category , name]
3 influence: [parameter , value]

5.2.2 Semantics of ADSecLang
The safety scenario domain-specific languages are based on scenario abstractionmethod-ologies such as the Pegasus method [45], which segments three levels of abstraction ofthe scenario: 1) abstract, 2) logistic, and 3) concrete. For example, an abstract scenariocould be described as: ’A malicious actor motivated to cause a safety violation using a
laser beam device targeted at a car’. The logical scenario might be: ’A malicious actor us-
ing a laser beam device projecting a luminance of approximately 100 to 300%with a pulse
width of 0 to 1’. Finally, the concrete scenario would specify: ’A malicious actor using a
laser beam device projecting 300% luminance with a pulse width of 1’. Within ADSecLang,the abstract describes the cyber threat scenario according to local parameters. The logicalcyber threat scenario extends this description by adding parameter value ranges. Finally,the concrete scenario description contains the set parameter values, whichwill be utilizedas the scenario implementation within the AD simulation testing platform. ADSecLang isdesigned as an extension of the safety scenario languages [45,81], using the same abstrac-tion method, language semantics and syntax. ADSecLang provides an extension to theseareas for cybersecurity.
Compilation of ADSecLang
Compilation of ADSecLang involves three configuration files. Each file contains varioususer-defined parameters:

• Environment Configuration File: This file provides adjustable parameters for scenegeneration, including town, weather, and traffic density. It also allows users to de-fine constraints on these parameters for scene sampling.
143

• Vehicle Configuration File: This file allows the user to define the parameters of theautonomous vehicle; these include the sensors required, the location of the sensorsin the vehicle, the type of sensors, the data to be recorded, and the frequency ofrecording.
• Attack Description File: This file is formatted in the YAML syntax and allows users todefine the attack model.
The first two configuration files are relatively simple: the Environment Configuration

File and the Vehicle Configuration File. The environment and vehicle configurations storedin their respective configuration files are read as parameters for generating the drivingsimulation world and transferred to the world generator. The Attack Description File is amore complicated design which has two functions:
• The attack description file is utilized to extract the parameters, which are then trans-lated into concrete code implementation for data processing based on the corre-sponding attack parameters.
• It is also responsible for connecting the simulation environment, attack code, andautonomous driving system. The attack description file defines the input and outputinterfaces of the attack code. The input interface connects real-time data capturedby sensors in the rendering engine in a simulation environment, such as imagescaptured by camera sensors or status information of ECUs. The output interfacesends malicious data generated by attacks to the target AD solution.

Cybersecurity Testing Framework
Architecture
The proposed cybersecurity testing framework has diverse modules for environmental,vehicle, and attack configuration, simulation test, and result evaluation (Figure 65). Thefunctions and roles of these modules are as follows:

• Environment and Vehicle Interpreter: Reads the environment and vehicle configura-tion stored in their respective configuration files as a parameter for generating theworld.
• Attack Model Interpreter: We read the attack description file as attack parameters.We have defined input and output interfaces for the attack model. The input in-terface obtains images captured by sensors in the real-time rendering engine andcompletes the data processing corresponding to the attack parameters read by theinterpreter in the specific implementation code of the interface. The specific imple-mentation of the output interface is to send the output of the attack model to theuser’s chosen autonomous driving solution.
• World Generator: Initialise the world based on the environment and entity parame-ters read by the environment interpreter, including object properties and attributedistribution functions. The world generator randomly samples from the distribu-tion function whenever it is called. By reading the sampling results of the worldinitializer, a specific world is generated in the real-time rendering engine accordingto certain steps. The generated world contains at least one vehicle and one camerasensor and exposes the calling interfaces of the vehicle and sensors to the attackmodel.

144

• Scenario generation and result evaluation: We use a CARLA plugin called CARLALeaderboard [39] to provide us with scenario generation and evaluation of drivingviolations. Violation testing includes route completion testing, collision testing, redlight running testing, stop running testing, lane crossing testing, proxy blocking test-ing, and timeout testing.
Cybersecurity Testing Workflow
The overall workflow of the system is shown in Figure 65. The attack target system illus-trated here is an end-to-end autonomous driving system based on a monocular camera.The target asset in the vehicle of the attack is the monocular front RGB camera.The workflow is initiated by storing the predefined environment configuration, objectproperties, and attack description in configuration files. Execution of theWorld Generatoruses the Environment and Vehicle Interpreter to read the environment information. Sub-sequently, each time the scenario is generated, sampling is carried out according to thepredetermined process, and the sampling results are converted into the parameterizedform we designed and then handed over to the World Generator. The World Genera-
tor first initializes the basic configuration of the real-time rendering engine and creates aspecific world in the it, step by step, based on the obtained parameters. Once the worldis created, the Scenario Generator starts generating test scenarios based on the presetparameters. Subsequently, the Attack Model Interpreter retrieves the attack informationfrom the Attack Description File and injects the manipulated data to the end-to-end ADsystem based on the parameters specified by the attack model. Finally, the Results Eval-
uation checks conformity of the AV to safety metrics, as aforementioned, as part of theCARLA Leaderboard [39]. Through conducting multiple iterations of the testing workflowit is possible to evaluate the effectiveness of the attack model.
5.2.3 Evaluation Case Studies
This section examines the use of ADSecLang for supporting the security testing of AV sys-tems. It includes a description of the experimental setup (Sec. 5.2.3) and an analysis of re-sults derived from two attack scenarios (Sec. 5.2.3 and 5.2.3). The goal of the experimentsis to assess the ability of ADSecLang to generate attack test cases capable of identifyingvulnerabilities in AD systems.
Experimental Setup
The experiments were run on a desktop computer with 12th Gen Intel(R) Core(TM) i3-12100F 4-Core Processor, NVIDIA GeForce GTX 1070Ti GPU, and 16 GB RAM. The use-casescenario testing is conducted on the simulator CARLA 0.9.10. The AD solution tested inthe following experiments is a trajectory-guided end-to-end AD solution [315]. This ADsolution achieves a new state-of-the-art performance on the CARLA AD Leaderboard [39],in which they rank first in terms of the Driving Score and Infraction Penalty using only asingle camera as input. The image captured by the camera has a resolution of 900×256pixels, and the field of view is maximized at 100 degree.
Attack Case I - Strong Light Exposure Attack
Attack Design
State-of-the-art camera attacks [324] have shown that strong white LED light directed atthe camera sensor will result in significantly higher hue values and cause the entire imageto be completely white. This results in the camera being unable to capture any visual in-formation. This attack is based on the fact that CMOS/CCD sensors can be interfered with

145

by malicious optical inputs and will produce unrecognizable images. The broken imagewill further affect the victim AV’s decision control. As a result, it will cause uncertainties,which may lead the victim’s AV to deviate or emergency brake, both of which can lead toa collision and/or other safety violations. Common methods of attacking camera devicesare lasers or LEDs. The Strong Light Exposure Attack interferes with the camera’s auto-matic exposure control. Under laser irradiation, the surface temperature will rise rapidlydue to the non-uniform temperature field. Avalanche breakdown of semiconductor ma-terials will cause irreversible damage to optoelectronic devices. Whilst we cannot achievethe physical effects of a targeted light on the camera sensor in a virtual simulator, we canmodify the data to simulate the profile of the cyber-physical attack.
ADSecLang Attack Configuration
The concrete scenario using the ADSecLang attack interpreter file is provided below.

1 attack_name: strong light exposure attack
2 attack_target: monocular camera -based end -to -end autonomous

driving system
3 attack_goal: safety hazard
4 action: [method , preconditions]
5 method: [tampering , modifying the data captured in

the asset]
6 preconditions: [{ precond1 AND precond2 AND

precond3 }]
7 precond1: [attacker ’s knowledge , the attacker

knows the basic information about the cameras on
the victim ’s autonomous driving vehicle]

8 precond2: [attack tool , strong LED light]
9 precond3: [attacker ’s capability , attackers can

shine LED light at AV camera sensor]
10 impact: [influenced_asset , influence]
11 influenced_asset: [sensor , rgb_camera_front]
12 influence: [luminance , 300%]

The attack description YAML file is translated using the attack interpreter within thesimulation platform.
1 if(config[’attack name’]=="Strong light exposure attack"

):
2 percentage = config[’impact ’][’influence ’][’luminance ’]
3 file.write(’ data = cv2.cvtColor(data , cv2.

COLOR_RGB2YUV)\n’)
4 file.write(’ h = data.shape [0]\n’)
5 file.write(’ w = data.shape [1]\n’)
6 file.write(’ for i in range(h):\n’)
7 file.write(’ for j in range(w):\n’)
8 file.write(’ y = data[i][j][0]* ’+str(float(

percentage [:-1]) / 100.0)+’\n’)
9 file.write(’ if y > 255:\n’)
10 file.write(’ y = 255\n’)
11 file.write(’ data[i][j][0] = int(y)\n’)
12 file.write(’ data = cv2.cvtColor(data , cv2.

COLOR_YUV2RGB)\n’)

146

(a) Before (b) After

Figure 66: Camera view of attack case 1: before (a) and after (b) the implementation of the Strong
Light Exposure Attack.

Table 44: Evaluation result of attack case 1.

Criterion Result Value
RouteCompletionTest FAILURE 8.06 %
OutsideRouteLanesTest FAILURE 11.79 %
CollisionTest SUCCESS 0 times
RunningRedLightTest SUCCESS 1 times
RunningStopTest SUCCESS 0 times
InRouteTest SUCCESS
AgentBlockedTest SUCCESS
Timeout SUCCESS

Results
From the comparison of Figure 66a and Figure 66b, we can see that the Strong Light Ex-posure Attack was successfully implemented. On initiation of the malicious change to theluminance, the monocular camera perception fails to identify the lane lines in the field ofview. As a result, the victim AV veered off the lane onto the sidewalk, entering the off-road section of the driving environment. It lost perception and traversed the oncominglane after being subjected to the Strong Light Exposure Attack. This immediately triggeredthe failure of the Outside Route Test and the Route Completion Test, terminating the sim-ulation, as presented in Table 44.
Attack Case II - Laser Beam
Attack Design
Adversarial machine learning (ML), as a form of cyber attack, involves designing a targetednumerical vector to make ML models misjudge and cause system failures and crashes.In this attack test case, the laser construction process is determined by several local-parameters: intercept, injection Angle, wavelength, and laser width. This laser attack isexecuted by randomly selecting a parameter and generating adversarial samples. If theconfidence level of the classification is reduced, the current parameter settings are re-tained, which is often similar to the greedy strategy. After adding a laser beam projectionto an image, the image pixels change, which in turn affected the results of the classifier.This adversarial attack, when applied to AD, can target the recognition of traffic lights,speed limit signs, and stop signs. Shining a laser on a stop sign can cause the AD systemto fail to identify it correctly, leading to a violation of the required safety condition to stopthe vehicle. Also, shining a laser on a traffic light can also create color spoofing attacks. Ex-perimentation with laser beam attacks has shown that if the laser covers the entire trafficlight, regardless of its color, the accuracy of detecting red or green lights is hardly affected.

147

However, if the laser only shines on one traffic light, there will be a significant decreasein the recognition of the traffic light [71]. However, in our testing, we found that if we usethis greedy strategy to search for the optimal parameters for 4000 cycles, the generationof adversarial samples is very slow, and it is impossible to inject adversarial samples intothe AD test in real time. Therefore, we generate a laser that can make target recognitionineffective and recognise it as another object, by inputting images captured by the cam-era into an adversarial sample generation program. We then inject this laser in real-timein the AD test scenario. As in the previous case, we assume that the attacker can findappropriate attack scenarios and not be detected by others in advance. For example, theattacker can deploy multiple infrared light sources next to the road where the attacker’svehicle must pass or on a drone.
ADSecLang ConfigurationThe cyber threat scenario description using the ADSecLang is provided below.

1 attack_name: laser beam attack
2 attack_target: monocular camera -based end -to -end autonomous

driving system
3 attack_goal: safety hazard
4 action: [method , preconditions]
5 method: [spoofing , shooting laser on the camera]
6 preconditions: [{precond1 , precond2 , precond3 }]
7 precond1: [attack tool , laser pointer]
8 precond2: [attacker ’s knowledge , machine learning

adversarial sample generation technology]
9 precond3: [attacker ’s capability , attackers can aim

lasers at camera sensors on the roadside]
10 impact: [influenced asset , influence]
11 influenced_asset: [sensor , rgb_camera_front]
12 influence: [raw_data , spoofed data]

The attack description YAML file is translated using the attack interpreter within thesimulation platform.
1 if(config[’attack name’]=="Laser beam attack"):
2 file.write(’ laser_pattern = cv2.imread ("

laser_for_carriage.png")\n’)
3 file.write(’ if laser_pattern is None:\n’)
4 file.write(’ print ("read image fail !!")\n’)
5 file.write(’ return 0\n’)
6 file.write(’ laser_pattern = cv2.cvtColor(laser_pattern ,

cv2.COLOR_BGR2RGB)\n’)
7 file.write(’ data = data.astype(np.float32)\n’)
8 file.write(’ laser_pattern = laser_pattern.astype(np.

float32)\n’)
9 file.write(’ data = cv2.addWeighted(data , 1.0 ,

laser_pattern , 1.0 , 0)\n’)
10 file.write(’ data = np.clip(data , 0.0, 255.0).astype ("

uint8")\n’)

ResultsFrom the comparison of Figure 67, we can see that the laser beam attack was success-fully implemented in the AD simulation. The attack achieved its objective of inducing AV
148

(a) Before (b) Generated Laser (c) After

Figure 67: Camera view of test case 2: (a) before the attack, (b) the generated laser beam, and (c)
after applying the attack.

Table 45: Evaluation result of attack case 2.

Criterion Result Value
RouteCompletionTest FAILURE 71.3 %
OutsideRouteLanesTest SUCCESS 0 %
CollisionTest SUCCESS 0 times
RunningRedLightTest FAILURE 1 times
RunningStopTest SUCCESS 0 times
InRouteTest SUCCESS
AgentBlockedTest SUCCESS
Timeout FAILURE

behaviour to violate a safety condition. As shown in Table 45, the vehicle completed ap-prox. 70% of the route (Route Completion Test) and violated a safety condition by drivingthrough a red light (Running Red Light Test). The result of the laser attack demonstratedthat the laser beam was able to perturb the AD solutions perception of the traffic light,thus causing the victim AV to run a red light.
Future work for the development of ADSecLang will be to extend the language to en-compassmore diverse semantic cybersecurity scenarios and evaluate the utility of the lan-guage to support system-level attack scenarios (Buffer Overflow, Denial-of-Service, Net-work Attacks, etc.). We further aim to improve the results evaluation module. Metrics forAD testing predominantly focus on safety impacts, however, we would consider it neces-sary to define metrics that assist in directly evaluating the security of the system undertest. Whilst this has proven a difficult challenge, the contemporaneous work on bench-marking for machine learning security and cybersecurity assurance levels (CALs) for au-tomotive systems as conducted by the autonomous vehicle cybersecurity standardisationbodies provides some guidance how to achieve this. We further see the importance ofintegrating the language within a common AD cybersecurity testing evaluation platform,such as Simutack [79], for an open-source release.

5.2.4 Relation to Existing Work
ADSecLang distinguishes itself from the state-of-the-art as it is the only domain-specificlanguage, to our knowledge, for AD cybersecurity testing and it is designed to integratewithin a software simulation testing environment for AD systems. Furthermore, the lan-guage has been designed to be agnostic to AD solutions or sensor technology and adapt-able to accommodate diverse threat scenarios. SCENIC has been utilized to develop driv-ing scenarios for cybersecurity testing. Salgado et al. [247] used the abstract and concretescenario composition of SCENIC to create a scenario of amalicious leading vehicle in a con-

149

voy to test the robustness of cruise control and collision avoidance. This scenario demon-strates the effect if an attack had already succeeded, whereas the aim of ADSecLang is toincorporate the technical method of attack to assess the performance.Formore conventional threatmodeling, VehicleLang [145] andALLIA (Agnostic Domain
Specific Language for Implementing Attacks in an Automotive Use Case) [312] are the twomost prominent studies for legacy automotive architectures. Both of these solutions arefocused on modeling cyber threats to connected vehicular systems and focus their casestudy evaluations on vehicular communication protocols and connected components. Ve-
hicleLang provides a conceptual contribution, which is the generation of text-based testcaseswhose feasibility can be validated by expert opinion. ALLIA extends this work by pro-viding a technical implementation, which transforms the text-based test case generationinto a technical test case implementation.
5.3 SenseFuzz
Fuzz testing of AD software aims to use unsanitised and invalid input to trigger exceptionalor abnormal behavior of the driving logic. AD fuzzers are designed in a disparate manner,seeding input from either the sensor data, vehicle dynamics data, scenario and simulatorconfiguration. EnFuzz [48] demonstrated that a collective framework could ensemble di-verse fuzzers exhibiting different fuzzing techniques to obtain deeper penetration of onespecific type of target, in this instance, application software. As the architecture of ADsoftware relies on a mixture of different sensor technologies and data sources, the inno-vation required of ensemble fuzzing for AD software is that the frameworkmust be exten-sible to allow different fuzzers for different targets and target groups. Our idea with thisresearch is to explore such a concept as an ensemble fuzzing framework for AD softwareand present our ideas on how this could be architected. To this end, we present FuzzSense(Figure 68), a conceptual architecture based on a modular, black-box, mutation-basedfuzzing framework.The architecture of FuzzSense is envisioned to integrate within the AD software simu-lation environment (CARLA, AWSIM, Apollo), allowing diverse fuzzing tools as plug-ins togenerate test cases, collect output data in a seed corpus, andmutate new inputs. Ourmo-tivation in presenting this work is to provoke discussion within the community on how ADsystems are fuzzed, establish community efforts for fuzzing and to gather initial feedbackon FuzzSense and understand potential improvements on the foundations of the design ofthe framework. This work is not a benchmarking study or a statistical evaluation of fuzzingperformance, as the motivation is purely to understand how the design of an overarchingfuzzing framework for AD software may be achieved. Therefore, to clearly state the aimsof this research, we have focused on the development of the initial concept of the ADensemble fuzzing framework, developed source code, and conducted an initial test case.

150

Figure 68: High-level Architecture all Components

5.3.1 FuzzSense
FuzzSense involves the following key components: the fuzzing broker, the fuzzing envi-ronment, and the repository. The interactions of these key components with the ADS andsimulator are displayed in Figure 69.

Fuzzing Broker The Fuzzing Broker is the central part of the FuzzSense framework,acting as an intermediary layer, facilitating communication between the simulator, ADS,and fuzzing environment. The fuzzing broker has full control over the exchanged sensordata and listens to data, such as steering commands.While the Fuzzing broker was described as an intermediary for the whole framework,it additionally functions as a controller, initiating and terminating the operations in theconnected Simulator and ADS. Depending on the used Fuzzers, Simulator, and ADS, theFuzzing Broker transforms the sensor data to the required formats of the endpoints.
Fuzzing Environment The Fuzzing Environment is the collection of the componentsresponsible for fuzzing and creating scenarios, manipulating the sensor data, interpretingthe results, and mutating parameters. This continues the idea of the modular architec-ture of the fuzzing framework. It also allows for the decomposition of other integratedmodules, as the Mutator is not required to be a part of the fuzzers.The Fuzzing Environment contains the following modules: orchestrator, mutator, sce-nario fuzzer, sensor fuzzer/s, and oracle and evaluation.

5.3.1.1 Orchestrator: The Fuzzing Environment is a composition of diverse componentswith unique tasks. The role of the orchestrator is to provide a central management func-tion to ensemble these diverse components to achieve the task of fuzzing the selectedtargets. The idea of a fuzzing orchestrator performing a central management role wasinspired by EnFuzz [48], which uses a similar design to integrate and manage diversefuzzing modules using diverse techniques. The Orchestrator possesses the intelligencein the Fuzzing environment. This is reached by always knowing the current status of thefuzzing campaign and its iterations, therefore, it can start fuzzing iterations, telling eachcomponent (Fuzzers, Oracle, Mutators, Fuzzing Broker) when they should perform whichof their tasks, monitor the components to understand their status to be able to efficiently
151

Figure 69: FuzzSense: High-level Architecture of Fuzzing Framework

start the next step with the required components. This requires the Orchestrator to useadapters to communicate to the APIs of the different fuzzing modules. As such, no inter-communication is required for different fuzzing modules; hence, this communication ismanaged centrally by the Orchestrator. The benefit of central management is that ex-pected new fuzzing modules can be integrated in less time and with less complexity. Fur-ther, it even allows decoupling the mutation of parameters and the fuzzers where theyare processed.
5.3.1.2 Mutator: The Mutator creates the parameters utilized by the scenario and sen-sor fuzzing modules. In the first round/s the Mutator is providing the fuzzers with theseeds but does no actual mutation on them. In this architecture, the Mutator is extractedfrom the scenario and sensor fuzzers. The aim is to allow the combination of differentmu-tation algorithms and fuzzers. Furthermore, it allows a closer synchronization betweenthe mutation of parameters when using multiple fuzzers. For the proof of concept, themutation is a brute-force/grid search iteration through parameters, where limits are ap-plied and derived from logical boundaries like the perception distance of the sensors.
5.3.1.3 Scenario Fuzzer: Scenario fuzzers use parameters of the driving scenario as theseed pool. These can include weather, pedestrians, and other vehicles. Mutations can bebuilt from the mission, weather, and scenario actors. Prominent scenario fuzzers includeonly the distinctmodule creating the scenarios based on parameters given by theMutator,which is called the Scenario Fuzzer in the FuzzSense architecture.

152

5.3.1.4 Sensor Data Fuzzers: Autonomous vehicles can use a range of sensor technolo-gies and different hardware and software configurations and can be positioned at differ-ent locations on the vehicle. In general, the sensor data of any of those sensors couldbe fuzzed. The idea motivating our ensemble fuzzing design is that a dedicated sensordata fuzzing plug-in is responsible for each sensor data stream that should be fuzzed. Theparameters provided by the Mutator can either be synchronized between several or bemutated individually.
5.3.1.5 Oracle and Evaluation: The Oracle and the Evaluation are giving further intelli-gence to the Fuzzing Environment. The Oracle and Evaluation component is responsiblefor creating ground truth, known commonly as the Golden Run. Afterward, every fuzzingiteration must be checked for possible findings, and thus, the Mutator must be providedwith an evaluation of the parameters. This framework does not suggest certain conditionsonce a finding is detected. The idea is to set this based on the subject of testing. For in-stance, it could be limited to deviations of the trajectory of the Golden Run or only focuson temporal aspects (speed of the vehicle, etc.) introduced by the fuzzing.

Repository In this architecture the repository enables the Fuzzing Environment towrite logs, store data and dependent on the communication allow the components toexchange data. When the modules exchange data using the repository, it allows a decou-pling and a simpler integration of new components, especially, because the orchestratoris handling the management centrally and thus modules do not need custom integrationswith all other required in the Fuzzing Environment.
5.3.2 Sensor Data Fuzzing
AD software relies on sensing data for situational awareness and to inform navigation andmotion-planning activities. FuzzSense is designed to apply manipulations to the sensordata stream before it reaches the downstream AD software. The initial version of thefuzzer manipulates pixels in the camera feed or points in the LiDAR feed. The fuzzer istriggered during a scenario simulation. For each future scenario, the fuzzing test case ismutated based on evaluation of the feedback. The delivery of the manipulation of thesensor data is achieved through the application of changing or adding data in the datastream based on the coordinates given by the fuzzing mask.

Fuzzing MaskThe fuzzingmask is created based on parameters given by the sensors and vehicle thatare to be tested. For the camera stream, which can be represented as a matrix with def-initions of each pixel’s coordinates, color, and sometimes the alpha channel, the fuzzing
mask provides a collection of coordinates for pixels that are changed in the camera stream.For LiDAR, the same concept is used to add points to the point cloud, and only the dis-tance is added. Our goal is to achieve several advantages with this approach. First, thesame mutation strategy for most parameters can be used. Second, the computation ofthe next data points to manipulate in the LiDAR data stream is independent of the actualpoint cloud data. This could potentially increase the performance. Third, by limiting thespace of possible manipulations in the search space, possible mutations of the parame-ters can be drastically reduced to the areas of interest (e.g., in front of the vehicle). Withina point cloud, points can be hidden behind others from the sensors perspective. The con-cept with the fuzzing mask prevents such cases so that no added points are shadowed byother added points (see Figure 70).The fuzzing mask F (Algorithm 2) is defined as a set of coordinates where the sensordata is manipulated F = {(xi,yi) | xi ∈ [0,W],yi ∈ [0,H]}. For the camera sensor, the

153

Figure 70: Fuzzing Mask for LiDAR.

location of the pixel, and for the LiDAR sensor corresponds to the coordinates of a per-pendicular plane in the pointcloud where each point is inserted. The third dimension forLiDAR is provided by the distance parameter between the LiDAR sensor and the plane.The coordinates are relative to width, height, and, for 3D data, the center of the plane.For the camera stream, they are taken from the metadata of the sensor stream, and forLiDAR, they are preset and could potentially be mutated.
Algorithm 2 Generate Fuzzing Mask F

Require: r f ,σ f ,X ,Y,W,H
0: (σx,σy)← (W ∗σ f ,H ∗σ f)0: r f ←W ∗H ∗ r f0: x = N (r f ,σx,X ,W)
0: y = N (r f ,σy,Y,H)
0: for i← 0 to r f −1 do
0: F ← add(x[i],y[i])
0: end for
0: return F =0
Let r f represent the fuzzing change ratio, defined as r f =

Nc
W×H . Where: Nc is thenumber of changed data points, W and H are the width and height of the fuzzing maskmatrix in discrete steps (e.g. pixels for the camera stream). The result is expressed as apercentage. Then, letσ f represent the standard deviation of themanipulated data points,computed as the deviation relative to width W and height H. Together, X and Y are thecoordinates of the center of the fuzzing mask and the means of the standard-deviation.

x and y are the vectors corresponding to the each x and y coordinate vector respectively.In line 3-4W and H ensure, that no coordinates outside of the fuzzing mask are created.Where in line 6 F is created by column stacking the x and y arrays with the calculatednormal-distributions.
154

5.3.3 Multi-Stage Approach
FuzzSense combinesmultiple stages during fuzzing. Each time the fuzzing setup is started,it is called a Fuzzing Campaign. Each of the scenarios running with different fuzzing pa-rameters is defined as a Fuzzing Iteration. This allows to better distinct between phasesand to have an easier understanding of the complete process and architecture. The aimof this process design choice is that the focus for the fuzzing campaign can be chosen withmore granularity as the multi-stages allows to provide intelligence to the iterations. Thelogic when to exit the inner iteration (sensor fuzzing iteration) can be set based on the aimof the fuzzing campaign. This is possible, because the inner and outer iteration (scenariofuzzing iteration) can be logically separated.

Fuzzing Campaign The Fuzzing Campaign defines thewhole duration of the fuzzer run-ning. A Fuzzing Campaign consists of one or many Fuzzing Iterations. To start a fuzzingcampaign, one or several seeds are required. Each seed contains starting values for eachparameter. While there is not any conditionmet, which qualifies the end of the campaign,new scenario fuzzing iterations are started. The campaign also could be stopped manu-ally. The final step is to stop all required services and store the results from the fuzzingcampaign to allow further investigations.
Fuzzing Iteration The Fuzzing Iteration defines one single scenario run. It starts withthe parameter mutation and ends once the scenario is stopped because of a failure orbecause it has successfully finished. The fuzzing of every single data frame is not callediteration. A here defined Fuzzing Iteration includes all those manipulated sensor dataframes throughout the whole scenario until it finishes or fails with a finding. As the mainfocus of the fuzzing is on the sensor data, the mutation for the scenario parameters isnot performed in every iteration. Thus, the same scenario is present throughout severaliterations. To distinguish also between those two, there can be Scenario Fuzzing Iterationsand Sensor Fuzzing Iterations. One Scenario Fuzzing Iteration consists of one or manySensor Fuzzing Iterations.

5.3.3.1 Scenario Fuzzing Iteration The ADS of the AVmust act within a scenario to allowrelations to its intended real-world use. A scenario defines not only the ego-vehicle itselfbut also the road, traffic signs, and signals, road conditions, environment, other actors,including their behavior, and the weather conditions. The Scenario Fuzzing Iteration is theouter iteration and contains all Sensor Fuzzing Iterations in the same scenario. It containsthe following steps:
Step 1: Mutate Scenario Parameters
Step 2: Create a Scenario and set it up in the simulator and ADS
Step 3: Create Golden Run
Step 4: Start Sensor Fuzzing Iterations
5.3.3.2 Sensor Fuzzing Iteration Within the same Scenario Fuzzing Iteration, the param-eters for the FuzzingMask should not be the same twice. However, within a new ScenarioFuzzing Iteration, the same parameters can be used again. Each sensor fuzzer takes theoriginal sensor data from the simulator and applies manipulations to the data stream be-fore it reaches the ADS. Thosemanipulations are single pixels in the camera feed or pointsin the LiDAR feed. In the current state, within one run, the planned drive of the vehicle, nomutations on the parameters are performed. This means the same fuzzing masks are ap-plied to the data streams from the start to the end of the drive. The mutator is only active

155

between runs. Therefore, compared to a plain simulation, the only computational over-head during a running simulation is the rerouting and manipulation of the sensor data. Itcontains the following steps:
Step 1: Mutate Sensor Parameters
Step 2: Set scenario up in simulator and ADS
Step 3: Create Fuzzing Masks
Step 4: Start scenario and manipulate sensor data streams
5.3.4 Experiment & Results
Experimental SetupThe evaluation of FuzzSense is conducted in AWSIM, a high-fidelity, digital-twin simulationenvironment. The target AD system uses the Autoware.Universe software framework. Asthis instantiation of the AD software uses the LiDAR sensor for perception and localisation,the sensor fuzzing module is configured to fuzz the LiDAR sensor. The evaluation wasconducted on a system running Ubuntu 22.04.03 LTS with 1 TB of storage, 32 GB of CPUmemory, 10 GB of GPU memory, a 12th Gen Intel® Core™ i7-12700KF processor, and aGeForce RTX 3080 Lite Hash Rate graphics card.
Results & DiscussionThe driving scenario consists of a planned navigation in an urban driving environment.We selected an urban environment since attacks can cause more severe effects within acongested operational driving domain. As the vehicle navigates through its planned tra-jectory, the sensor fuzzing plug-in of FuzzSense initiates its fuzzing mask, manipulatingthe parameters of the LiDAR 3D geometry. For this set of experiments, the parameterswere randomly set at x (0.4),y (0.5), the distance of the fuzzed LiDAR points (30m), andthe intensity 0.1. and dispersion (width 100, height 60). The experiments mutated thelocation and dispersion parameters. The fuzzing broker is fuzzing every frame. In the sim-ulation, the environment exhibits a performance of time of approx. 30 frames per secondor 33 milliseconds. Figure 71 displays the initiation of the fuzzing mask (the yellow boxis used for identification and does not represent the full mask) to the driving simulation.The fuzzing mask is applied at different distances from the vehicle and different locationswithin the environment. As shown in Figure 71, the fuzzingmask is located at an approach-ing distance to the vehicle of approx. 30 meters outside the lane does not produce anyunsafe changes in the vehicle the vehicle’s behavior.

Figure 71: Fuzzing Mask applied to the right edge of lane

Figure 72 displays the movement of the fuzzing mask to a more central location in thedriving environment. The fuzzing parameters for amount and dispersion are the same as
156

Figure 71 in both fuzzing iterations. The parameter for the distance is the same for both.The affect of the fuzzing mask displayed in Figure 72, is that the vehicle detects the fuzzed

Figure 72: Fuzzing Mask applied to central location of vehicle trajectory

LiDAR points as an obstacle (red wall) and plans a reduction in acceleration to observe theobstacle. This can be seen by the orange color in the planned trajectory.Figure 73 displays the fuzzing mask applied at a close distance and within the plannedtrajectory of the vehicle. The vehicle detects the fuzzing mask as an object in immediateproximity to the vehicle and therefore initiates a braking action. The vehicle is unableto recompute an alternative planned trajectory due to the fuzzed points presenting anobstacle across the road and therefore the vehicle is unable to progress.

Figure 73: Top down view of vehicle with fuzzing mask affecting planned navigation of the vehicle

The experiments provide initial feedback on the utility of FuzzSense. From observingthe behaviour of the AD software, displayed in Figures 72 and 73 we can discern thatsensor fuzzing is a useful exercise to find vulnerabilities of the AD software stack. Theresults indicate that the AD software is either unstable or can be influenced by insertedLiDAR points. We found that when the fuzzing mask was located on or near the plannedtrajectory of the vehicle, the perception algorithm was unable to filter the manipulatedpoints and instead, observed them as an obstacle. Further to this, when the fuzzing maskwas located in close proximity to the vehicle, it resulted in a complete stop of the vehicle.
5.3.5 Related WorkThe EnFuzz architecture [48] demonstrates the advantage of combining multiple fuzzerswhich use diverse techniques of fuzzing, to get a greater and deeper penetration of the

157

target. The EnFuzz design further inspired our adoption within FuzzSense of an orches-trator (monitor) for coordination. Our contribution is unique from EnFuzz as our focus isspecific to AD software and we incorporate in the design considerations for the diversityof AD technology and targets.Aforementioned, there are various fuzzers focused on disparate targets of the AD sys-tem. Popularly cited fuzzing tools include DeepRoad [333], DeepTest [281] which targetthe camera sensor and AV-Fuzzer [170], Auto-Fuzz [339] and DriveFuzz [154] which targetthe driving scenario. These fuzzers are not designed to operate concurrently with differ-ent fuzzers, but focus on a seed pool limited to there target. For the optimization of thesearch space reduction, these fuzzing tools mainly focus on driving quality and task per-formancemetrics as ameasure to direct themutations towardsmore promising scenarioswhere the ego-vehicle is more likely to struggle.Our work does not aim to compete with these fuzzers nor dowe seek to build on theredesigners. FuzzSense, is an overarching framework whose concept is based on enablingthe usage of the fuzzing tools as plug-ins in an integrated fuzzing environment. A futuretest case would be to use DeepRoad [333] and DriveFuzz [154] within FuzzSense to under-stand how diverse fuzzing techniques generate bugs.
5.3.6 Future Direction of FuzzSense
Future work, aims to experiment with FuzzSense utlising the modularity to benchmarkthe performance of different fuzzing plug-ins. Further, advancing the design of the fuzzingmask by adding support for further sensor types. As part of providing FuzzSense open-source, we also aim to actively gather community feedback and develop the frameworkfurther.
5.4 ADSecData Platform: Open-Source Data Platform for Autonomous

Driving Cybersecurity
AD softwaremust be secure, with decision control optimized to ensure robustness againstcyberattacks. A key challenge in achieving this goal is the lack of open-source data specif-ically for AD cybersecurity. Without available data, software designers do not have an im-mediate understanding of the considerations for secure design required to ensure robust-ness against cyber threats. In contrast, there are many open-source datasets for safetyvalidation, algorithm optimization, and sensor configuration. Popular examples includeKITTI [84], Waymo [274], Baidu Apolloscape [304], Argoverse [309] and NuScenes [32].Common datasets for safety validation have enabled platforms such as CARLA Leader-board [39] to establish challenges to benchmark solutions for perception and trajectoryplanning algorithms. The problem motivation that this research confronts is that AD cy-bersecurity doesn’t have a readily available source of open datasets available to advanceresearch and there is a lack of guidance on how to conduct cybersecurity research to gen-erate datasets for benchmarking.To confront this problem, we have developed ADSecData Platform, a consolidatedplatform that provides open-source AD data for cybersecurity. (See Figure. 74), ADSec-Data Platform consists of a data generation process, which is the method used to gener-ate datasets from simulation and real-world experiments. We validate the platform in acase study using the data generation method to create datasets based on an operationalautonomous vehicle (AV) program. We demonstrate the utility of our open-source plat-form to the community in advancing cybersecurity testing to measure and improve therobustness of autonomous driving systems to cyberattacks.To construct an AD cybersecurity open-source data platform, we used these guiding

158

Figure 74: ADSecData Platform - Data Generation Process.

questions to establish an understanding of the relationship of AD data to cybersecurity:
1. What data types generated by the AD systemare utilized for cyber attack test cases?

2. What is the utility of each data type to enhancing the cybersecurity of AD?

3. What type of metrics are available to benchmark AD algorithms from a cybersecu-
rity perspective and defense mechanisms?

5.4.1 Autonomous Vehicle Cybersecurity Data
The emerging field of automotive cybersecurity research over the last decade has focusedpredominantly on the CAN Bus protocol, connected vehicle protocols, electrical and em-bedded hardware (such as wireless controllers and Bluetooth), and in-vehicle softwaresystems (e.g., infotainment systems). To support the development of defensive technolo-gies and the secure design of communication protocols and software, numerous open-source datasets of automotive telemetry have been created. These datasets primarily ad-dress legacy and connected vehicle technologies, with a strong emphasis on the CAN Busprotocol. However, there is a significant lack of open-source cyber attack datasets specificto AD technology. Developing such datasets and promoting the exchange of open-sourcedata are critical steps toward advancing the still-maturing field of AD cybersecurity.
Autonomous Vehicle DataAD systems generate a vast amount of data from diverse hardware and system compo-nents. We classify ADdata into fourmajor sub-categories of data sources: sensing, system,

159

network, and vehicle dynamics. For each data source, we discuss its value for software de-velopment, cybersecurity, and its availability.
SensingSensing data is produced by advanced sensors in the AD system, including LiDAR, cameras,ultrasonic radar, and global navigation systems (GPS, GLONASS, Baidu, Galileo). This datais critical formapping the driving environment, perception, and localization. However, oneof the key challenges with sensor data is the high data rate generated by autonomousvehicles. Xu et al. [322] estimated that diverse sensors could generate approximately 4terabytes of data per day. The transmission of LiDAR and high-definition camera framesfrom on-board sensors to edge data logging servers further complicates data collection.Although compression techniques are available to optimize transmission efficiency, thereis limited understanding of how thesemethods impact cybersecurity research in computervision and perception.

Software Development Value: Sensing data is used by AD software designers totrain and optimise algorithms for SLAM, object detection and tracking, sensor fu-sion and semantic segmentation. One of the many examples of the progress in thisarea is the CARLA Autonomous Driving Leaderboard [39] which is platform used forthe development of AD agents.

Cybersecurity Value: Sensing data can be used to assess vulnerabilities of AD soft-ware to adversarial examples and also to generate new attack models for adversar-ial examples. Select examples include:
• LiDAR point cloud manipulation [35]
• Adversarial examples for camera perception neural networks. [76]
• Light manipulation attacks on camera hardware and driving objects (roadsigns etc.) [248]
• Fuzzing and parameter manipulation attacks against AD algorithms (ObjectDetection, Sensor Fusion) [92]
• GPS Spoofing cause uncertainties to trajectory planning algorithms. [136]

Defensive technologies can also be developed from sensing data, these include:
• Kalman filters and ML detection solutions to filter noise from data manipu-lation attacks. [135]
• Physical intrusion detection solutions which fingerprint patterns of noisefrom adversarial activity. [228]
• Improvements to the security of ML models to protect against ML evasion,training data poisoning attacks.

160

Data Availability: Open-Source cybersecurity datasets for sensing, of which thereare very few, predominantly focus on camera based perception and neural net-works for perception algorithms. Available datasets include:
• Natural Denoising Diffusion Attack (NDDA) dataset [252]
• SlowTrack: Camera based perception latency attack dataset [181]

System
System data consists of data from the on-board software systems of the AD system. Theseinclude the firmware, operating system, application software and real-time operating sys-tems used in the electronic/embedded components such as the electronic control units(ECUs) and micro electronic control units (MCUs).

Software Development Value: System data is used by software developers to de-bug errors and understand application performance and functionality. Crucial forAV developers is to understand the performance and reliability of the AD software(Autoware, Nvidia Drive, Apollo) andmiddleware (Robotic Operating System (ROS),Cyber RT).
Cybersecurity Value: System data is used for vulnerability and exploit analysis. Ac-tivities that are included in this description include, reverse engineering firmware,code analysis, taint-analysis and fuzz testing.
Data Availability: System datasets are generally available from the manufacturer.These are then used for vulnerability and exploit analysis. Cybersecurity datasetsare rare as the responsible disclosure process usually results in the removal andupdating of new software. An example of an cybersecurity system artifact are thefollowing:

• Kia OFFensivE Exploit (KOFFE) metaslpoit module [82]
• Mazda Infotainment USB attack [291]

Network
Network data consists of data produced from the AV internal and external network. CANBus is the network of predominance for in-vehicle communication between ECUs whichhandles critical real-time functions such as braking and steering actuation. Automotiveethernet is gaining in popularity and is mostly used for drive-by-wire communication.Other communication such as MOST is used for infotainment systems and LIN can befound in more upmarket vehicle classes. The difficulty in providing CAN (and most otherin-vehicle protocols) datasets is that CAN is used in a proprietary format by vehicle manu-facturers. To decipher the meaning of CAN messages, either the manufacturer diagnostictool is required or knowledge to reverse engineer CAN messages from investigation offirmware and system manuals.For legacy and connected vehicles great progress has beenmade and there exist manyavailable datasets and tools to help with the CANmessage extraction process [222] . How-ever, to our knowledge there exists no CAN cybersecurity specific datasets for AD tech-

161

nology. Reasons for this could be the enhanced commercial sensitivity of AD technology,more diverse range of AV manufacturers, implementation of encrypted messaging withCAN-FD, cutting-edge nature of AD technology. Other network concepts typical in ADarchitectures include Vehicle-to-vehicle (v2v) and vehicle-to-everything (v2x) which usewireless and cellular connectivity for connectivity. Different application layer protocolsare used for distinct purposes, these may include MQTT for vehicle on-board unit (OBU)to edge communication and Cooperative v2x (C-V2x) protocols that including basic safetymessages (BSM) for cooperative perception and intelligent feedback for decision-making.Cybersecurity research in this field is well-developed and there are many availablestudies which investigate attackmodels to the integrity of cooperative vehicularmessagesand availability of networks which support vehicle data processing and cooperative com-munication.
Software Development Value: For software developers, network datasets can as-sist in understanding system interconnection and latency of data flow through sit-uational awareness data to control actions decided by AD software and physicalprocesses made by actuation.
Cybersecurity Value: Network datasets are primarily used for defensive, intrusiondetection solutions. Network datasets also aid in developing new attack strategies(DDoS, Replay etc.) and fuzzing strategies to test the robustness of communicationarchitectures. Lately, as more CAN cybersecurity datasets are available, researchhas focussed onML andAI solutions for automated attack detection and fuzzing [8].Within AD architectures, network data is utilised to evaluate the security aspects ofcooperative driving such as message trust and authentication. Perhaps the great-est contribution of cybersecurity CAN datasets has been the increase in attentionbrought by attacks which demonstrate the feasibility of cyber attacks to manipu-late safety critical functions such as braking, steering and acceleration. Recognitionof these threats has seen the development of security within automotive softwarearchitectures (AUTOSAR Adaptive) and new zonal communication architectures forin-vehicle network communications.
Data Availability: Open-Source CAN hacking datasets exist for legacy and con-nected vehicles, a sample of this long list include:

• Car-Hacking-Dataset [258] [268]
• Survival Analysis Dataset [104]
• CAN-Train-And-Test Dataset [166] [165]
• CANet Dataset [106]
• CrySyS Dataset [83]
• CIC IoV 2024 Dataset [213]
• CAN-MIRGU Dataset* [229]

*The CAN-MIRGU dataset is generated from a vehicle with AD capabilities, how-
ever, these capabilities are not detailed due to privacy reasons and the AD functions
are deactivated for safety reasons.

162

For V2X and V2V selected datasets include:
• Simulated VANET Attack Dataset [125]
• Simulated VANET Attack Dataset [86]

Vehicle Dynamics
Vehicle dynamics data include body physical movement (lateral and longitudinal pose,yaw etc.), acceleration, braking, steering actuation. Vehicle dynamics is crucial for a soft-ware developer and cybersecurity engineer to understand how behaviour at a system-level affects the vehicle. Existing cyber attack research which focuses on vehicle dynam-ics, predominantly concern themselves with providing artifacts such as docker images ofthe attack simulation and the code-base for adversarial examples and fuzzing tools. Alimitation of this approach is that it requires of custom configuration of the attack in theuser environment and an understanding of the vehicle model and metrics engine for dataoutput, used in the original research.

Software Development Value: This data is crucial for control algorithm designersto assess the robustness of control and trajectory planning algorithms. Softwaredeveloper and control designers will use vehicle dynamics data for backsteppingand back-propagation of the AD control software.
Cybersecurity Value: Vehicle dynamics data enables a greater understanding of theaffect of cyber attacks to vehicle behavior. The utility of vehicle dynamics data in-cludes research and development of physical intrusion detection systems solutionsand root cause analysis.
Data Availability: We are not aware of any datasets for vehicle dynamics in thecontext of cybersecurity.

Gaps in Autonomous Vehicle Datasets
Our exploration of diverse AD data types and the usage in cybersecurity has identified anumber of limitations:

• Lack of a consolidated research data platform. Datasets are distributed acrossgithub accounts and research papers. There is a lack of consolidation of datasetsthat would enable security research across the AD technology stack.
• Siloed research. Defensive mechanisms are often developed based on a single datatype (e.g., CAN, Camera, etc.). The lack of availability of other data sources and anunderstanding of how this data impacts vehicle dynamics and propagates throughthe AD system results in the creation of defense mechanisms that lack system-levelvalidation.
• Lack of cybersecurity data: There is a lack of data for cybersecurity, and in someof the sub-categories explored, there is, to our knowledge, no data available. Theavailable datasets overwhelmingly consist of legacy and connected vehicles.

163

5.4.2 ADSecData Platform
In developing amethod for generation of cybersecurity data for AD systems, the significantchange from legacy vehicles is the focus on vehicle behaviour. As the vehicle is controlledby software and algorithms, it is important to understand the affect to the vehicle fromcyber activity and its implications for decision-control. In addition to attacks that directlytarget AD technologies such as advanced sensors, attacks to network and system com-ponents can have downstream affect on autonomous control. The ADSecData Platform(shown in Figure 74) follows a four-stage process for generating data.
Scenario Generation
Scenario-based testing (SBT) involves evaluating the performance of a module or the fullAD pipeline (perception, localization, planning, and decision-control) to perform its taskduring a specified driving scenario. Since the performance of algorithms can vary underdiverse scenarios, SBT has become the standardized approach for AD algorithm safetyvalidation and verification testing [116]. Cybersecurity represents an edge and corner casefor SBT. For the ADSecData methodology, we propose that scenario generation is a crucialstep for cybersecurity, as it is essential to understand whether the effect of a cyber attackon the vehicle differs based on the scenario. Since scenario libraries for AD cybersecuritytesting are not available, our methodology recommends using safety validation testinglibraries (such as ASAM OpenScenario, etc.) and customizing the scenarios with attackmodels.
Simulation/Test Environment
As the task of driving can encounter a vast number of diverse scenarios, simulation is theonly feasible mechanism to incorporate large-scale testing in an agile manner. Cyberse-curity testing should be aligned with safety validation testing, where the choice of testenvironment is based on evaluating the algorithm’s ability to perform tasks. This is partof a testing process that uses regression testing to map scenario test sets from simulationtest environments to real-world proving grounds. Within the ADSecData platform, we rec-ommend using low-fidelity test environments for large-scale testing of driving logic, high-fidelity test environments to include testing of advanced sensors (such as LiDAR, Camera,etc.), and real-world proving grounds. Another factor influencing the integrity of cyberse-curity data is the tendency of automotive cybersecurity practitioners to provide singulardatasets based on attack type. Due to the experimental nature of AD algorithms, suffi-cient tests need to be run to ensure that anomalous vehicle behavior is caused by cyberactivity and not system errors or a lack of optimization of the algorithm.Another key aspect of the simulation/test environment stage is defining metrics andconfiguring the format of output data. To quantify the impact of cyber activity on thevehicle, safety metrics and vehicle dynamic parameters are applied. Cybersecurity labelsinclude details such as the initiation of the attack during the scenario, attack parame-ters (e.g., sensor interference noise level, GPS positioning offset), and their correspondingweighting.
Analysis
The analysis stage involves interrogating the data to assess its integrity and accuracy, en-suring consistency with the experimentation performed. Popular tools, includingMATLABand Python, are used to plot data, visualize patterns, and analyze trends. For example, an-alyzing a dataset from the trajectory planning module could generate trajectory maps tovisualize the vehicle’s path and highlight any deviations from the reference path. Analysis

164

Table 46: Requirements for ADSecData

Category Requirement

Documentation •Dataset should be accompanied by general documentation de-scribing content and origin.
•Documentation should include description of the attacks in thedataset and how they were executed/recorded.
• Documentation should include description of the features(e.g., origin, meaning, range) and their physical context (e.g.,how vehicle speed, engine speed and gear are related).Labels • Each entry in the dataset may be given a label for identifyingwhether that entry is benign or an attack.Parseability, correct-ness and consistency • Data should be stored in an appropriate machine/humanread-able format (e.g., PCAP or CSV rather than SQL databases)
• All entries should be correctly formatted (e.g., no corrupt en-tries)
• use a single data format for all entriesAge, Size, Objective • Dataset should not be legacy (> 5 years old etc.) and consistof a balance between benign and cyber attack data.Completeness • Dataset should be complete in the sense that no key featuresor entries have been discarded.Transformation andanonymization • Data should not be irreversibly transformed (changing times-tamps etc.) and not be anonymised to the point that it bias’ de-tection mechanisms.Dataset and AttackRealism •Dataset should include diverse attacks and not bewholly basedon synthetic data.

is a crucial activity for identifying problems with the experimentation process and evalu-ating the quality of the data.
ADSecData

Data should be benchmarked for measurement and comparison. The benchmarks forautomotive cybersecurity datasets from Vahidi et al. [296] systematic evaluation of au-tomotive intrusion datasets serve as a good starting point. We utilise their requirementsfor data in development of the ADSecData Platform and data readiness labels. Table. 46provide the requirements for ADSecData datasets.
5.4.3 ADSecData Case Study

Target Autonomous Vehicle

The target vehicle is an AV for public transportation, that is an autonomous electric vehi-cle (AEV). The shuttle operates at Level 4 autonomy (high automation), meaning that itcan handle most driving tasks without human intervention in predefined areas, and it isequipped with advanced LiDAR, radar, cameras, and GPS systems to navigate safely andcarry out perception tasks in urban environment. Its software backbone is based on ROSand autoware controlling all the driving functionalities and implementing the driving dy-namic model of the vehicle.
165

Figure 75: Attack Case 1 Threat Model.

Figure 76: Attack Case 2 & 3 Threat Model.

ScenariosOur initial dataset consists of 4 attack cases conducted during diverse driving scenarios.
Attack Case 1 - LiDAR point-cloud manipulation: The LiDAR point-cloud manipulationattack, as shown in Figure 75, consists of an adversary with a LiDAR capable of injectingmalicious LiDAR point clouds into the LiDARs of the AV. This attack is conducted whilst theAV is attempting an overtaking maneuver.
Attack Case 2 - Position Offset: Attack Case 3 - Message Delay: The attacker createsa spoofed ROS topic which is able to deliver malicious input data of the Current_Pose(longitude, latitude, and velocity) to all the nodes of the local planning module. The datamanipulation is injected online/dynamically during the critical overtaking manoeuvre in-volving the AV and NPC (Non-playable character). Figure 76 displays the critical drivingscenario and the time frames in which the manipulated Current_Pose data is injectedinto the local planning pipeline cost estimation. The red dashed lines in Figure 76 repre-sent the roll-outs, and the green highlighted, denoting the selected motion-path.For the manipulation of the Current_Pose data, we introduce a deviation to lateraland longitudinal pose. For the lateral pose data, the sensitivity deviation introduced wasstructured as follows:
• Attack Case 2a: 0.16%
• Attack Case 2b: 0.33%
• Attack Case 2c: 0.5%

166

This range represents a slight perturbation of pose to a 1m deviation. The longitudinalpose data sensitivity deviation range was structured as follows:
• Attack Case 2d: 0.33%
• Attack Case 2e: 0.66%
• Attack Case 2f: 1.00%
This range is the same as the longitudinal deviation. The difference in percentagecomes from the difference in coordinate values of lateral and longitude. The lateral valueis almost double those of the longitudinal, and therefore the percentage is doubled.This attack scenario involves introducing a time-delay into the messages of the Cur-rent_Pose topic communicating to the nodes of the local planning module.We introduced a message delay when the AV passes 2m in front of the vehicle that itis passing in the lateral direction. We introduce 3 different time delays in the message:
• Attack Case 3a: 0.3 seconds
• Attack Case 3b: 0.6 seconds
• Attack Case 3c: 1.0 seconds
The message frequency is approximately 50hz, so this is a message every 20 millisec-onds. We chose the above range of deviation of time-delay as it enabled a spectrum of amessage from the delay from approximately 15, to 50 messages.
Attack Case 4 - GPS Spoofing: The attack model of GPS spoofing involves an adversaryusing a transmitter near the AV and interferes with the GPS signals being transmitted.

Simulation/Test Environment
Attack Case 1 was conducted in the high-fidelity CARLA simulator [69]. In this study, weuse Carla 0.9.13 as the high-fidelity simulator. Figure 77 illustrates the requirements for thehigh-fidelity simulator to conduct simulation testing, which are two components, the digi-tal twin of the target AV and the virtual replication of our target environment. These repli-cated components help us to gain more accurate results of the proposed platform [187].The AV digital twin is a 3D model of the target real-world world AV shuttle, designed inBlender, a graphical 3d modeling software, and imported and built in Unreal for deploy-ment in CARLA. This model uses the same dimension and sensor configuration (model,position, and orientation) from the real AV shuttle. The environment digital twin, in ourcase, is identical to the location where the vehicle operates.This simulation setup was implemented on a desktop computer with the followingconfiguration:

• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB
Attack Case 2 and 3 were conducted in a low-fidelity simulator. To accelerate the test-ing, we bypassed the sensing and detection nodes of the algorithm and focused on theplanning part by utilizing the low-fidelity simulation feature provided by Autoware.ai andOpenplanner. The low-fidelity simulation uses the open-planner 2.5 control algorithm. Itprovides simulated localization and detection data for the planning nodes and receives the

167

Figure 77: Architecture of the testing platform.

actuation commands to simulate the AV kinematics. This process runs faster due to thelow-detail environment required for the simulation and the lack of the process to simulatethe sensors.
Attack Case 4 datasetwas generated from the real-world vehicle. GPS spoofing activityoccurred during a point-in-time of a 3 month trial of AVs in a city in Northern Europe.

Analysis
The data output parameters were defined based on safety, vehicle dynamics and securitycriteria. A sample of these include, for safety criteria, mission success, violation, breakstatus, distance-to-collision. Vehicle dynamics included steer, yaw, lateral and longitu-dinal position. Security criteria includes 2 labels, is_attack denoting when the attack isoccurring and cyber_weight which denotes the level of sensor noise manipulation.
ADSecData
The 4 attack case scenarios datasets were generated as a .csv files. Each attack includes acorresponding benign (no attack) dataset to benchmark the stability of the AD algorithmsunder the given driving scenario. Attack Case 1 included over 1200 simulations. Attack
Case 2 and 3 included over 900 simulations collectively.
5.5 Discussion
The case study provides a starting point for the development of a common dataset for thecommunity to perform fair and reproducible evaluations of AD algorithms for cybersecu-rity and defensive mechanisms. The datasets generated from the 4 attack cases demon-strate the importance of following the 4 stage ADSecDatamethodwhere particular carefulconsideration is taken in the definition of data output parameters and experimental eval-uation analysis. For the development of ADSecData platform, community challenges anda roadmap are fundamental.
Community Challenges
These are the first tranche of community challenges that we recommend for the ADSec-Data platform:

168

Ch1 Performance and Accuracy of Semantic Fuzzing Tools

Ch2 Intrusion Detection of Semantic AD Sensor Attacks

Ch3 Robust Sensor Fusion Algorithms

Ch4 Robust and Resilient Trajectory Planning Algorithm

We see these challenges as of most immediate importance and value for the com-munity. Furthermore, we would like to see the community use ADSecData platform togenerate a seed corpus for guided semantic data fuzzing tools. As large language mod-els (LLMs) are gaining in popularity, another foreseeable use would be to apply LLMs toADSecData to generate scenarios for cybersecurity testing. As AD cybersecurity lacks acommon scenario library, generation of cybersecurity scenarios would help to close thisgap. Finally, IDS solutions for attacks to the AD sensors is essential to mitigate the risk tothe AD control. There needs to be more data to understand the profile of cyber attackscomparative to emergency, safety actions from edge and corner cases.
5.6 Future Roadmap of ADSecData
Short term aims of ADSecData platform are to addmore datasets from all 4 sub-categoriesof data types and different vehicle classes and increase the communities awareness ofthe platform. There will be a need to improve the development of both the front-endand back-end platform to enable secure data sharing and more intuitive user experience.Longer terms aims include a need to investigate metrics for intrusion detection solutionsfor AD,which is an AI-based system. TraditionallyMITRE ATT&CK is used for benchmarkingIDS solutions, and MITRE has a framework for AI, MITRE ATLAS. It would be interesting toevaluate how this would work in a practical use-case for AD.
5.7 Relation to Existing Work
There have been attempts by the community to build common infrastructure for AV cyber-security testing. PASS [115] and Simutack [79] are community simulation testing platforms.Whilst these platforms are valuable to the community and enable accessibility of simula-tion testing to researchers, the usage of community simulation testing platforms is limitedas real-world operators tend to use their own customised platforms. Furthermore, nei-ther of these studies focused on the data aspect of cybersecurity testing as part of theirscope. Lauinger et al. [167] developed an attack data generation framework for AVs. Ourwork enhances this contribution by integrating the concepts of scenario generation andsimulation and testing environments for data generation.

From a community data sharing perspective, there are initiatives such as Platform forInnovative use of Vehicle Open Telematics (PIVOT) [226], which is a U.S National ScienceFoundation project to create a open-source portal for vehicle telemetry data in the contextof cybersecurity. However, as of writing this portal was unavailable.
As aforementioned in Section. 5.4.1, there exists a diversity of datasets for legacy andconnected vehicles. There are also the studies of Vahidi et al. [296], Lampe &Meng [165]and Lee et al. [169] which evaluate cybersecurity data of legacy and connected vehiclesfor intrusion detection. However, to our knowledge, there are no existing contributionsthat focus on the autonomous technology stack of AVs.

169

5.8 Summary
Within this section, we provide the AD cybersecurity testing communitywith foundationalframeworks for the development of structured and fuzz testing. The ADSecLang frame-work proposes a methods-based approach to translation of attack models from conceptto technical implementation. FuzzSense proposes an Ensemble architecture which alignswith the complexity of the AD software ecosystem as it enable fuzzing of multiple testingtargets using diverse techniques. The investigation into the value of data to AD cyber-security testing uncovered a fundamental sparsity of available datasets for cybersecurityand a lack of knowledge as to the value of datasets and methods for their use to developdefensivemechanisms and offensive toolsets for testing. Datasets are of predominant im-portance to develop a seed corpus inwhich to advancemore effective test strategies. Witheach of these contributions we provide a foundational base for the research communityto build-upon.

170

6 Future Direction
AD software is transforming, utilising the advances in AI to control broader areas of the ve-hicular architecture such as connected interfaces and energy infrastructure (batteries andpower management). Further, LLMs extend the capability of AD to enable explainabilityof the automated driving actions and prediction of events in the driving environment. Fu-ture work is directed at developingmore robust software architectures to cyber attacks tosuit the needs of a complex distributed system environment with a code base of millionslines of code. An architectural approach is necessary as the contemporary focus to thedevelopment of defensive mechanisms centers on patching vulnerabilities resultant fromcyber attacks. The shortcoming of this approach is presumption that defense will outpaceinnovation of cyber attacks and due to the safety critical nature of AVs, a successful cy-ber attack has significant consequences for passenger safety. There are many areas whichoffer promising research directions:

• Development of software architectures for AVs which is based on security zoning toclassify areas as trusted and untrusted. Innovative transformation of in-vehiculararchitectures to include virtualisation of ECUs for resource sharing and enhancedsecurity configuration and management.
• Development of resilient and robust AD software to protect against semantic levelattacks.
• Development of secure protocols for intelligence battery management and powerconsumption.
• Secure connected protocols for vehicle-to-edge communication to enable resourcesharing between on-board and edge compute platforms.
Within the AD testing domain, a greater focus is required on automated testing meth-ods to enablemore efficient testing. As stated in the thesis, the lack of standardisedmeth-ods and tools for attack models and performance benchmarking result in considerablemanual effort to reverse-engineer available artifacts for further use. To advance the field,cybersecurity needs to provide open-source, community tools in the samemanner as thesoftware development and safety validation community.

171

7 Conclusion
AD software comprises a complex ecosystem required to support a real-time, safety crit-ical system. AD software must support diverse hardware and technology platforms, in-tegration of mechanical, analog components with digital systems and execution of mas-sive parallel tasks in a time-constrainedmanner. Whilst software designers are concernedabout the robustness of this software to safety validation use-cases, there is a sparsityof research which investigates the design of this software for security. This thesis inves-tigated the design of AD software from the security perspective and focused on 3 criticalareas of concern. First, vulnerabilities of AD software to cyber attacks. Second, the affectsof cyber attacks to AD software. Third, approaches to cybersecurity testing.
Vulnerabilities of AD software to cyber attacks: AD software is vulnerable to seman-tic and system-level cyber attacks. The results of the experimental testing demonstratethat malicious data injection, spoofing and jamming attacks on LiDAR, GNSS, sensing datatransmission and low-level sensors are successful in the discovery and exploit of vulner-abilities in modular and end-to-end AD software architectures. The modular architec-ture, exhibited in the real-world case study vehicle, iseAuto, reveals weaknesses of therobustness of its OpenPlanner planning software, NDT-matching based localisation soft-waremodule and decision-control softwaremodules. Aweakness in one softwaremodulepropagates through the AD pipeline, ultimately affecting the decision-control and result inunsafe driving actions. The results of cyber attacks targeted at the camera perception ofthe end-to-end architecture of Baidu Apollo demonstrate a lack of training for adversarialexamples. The attacks on AWSIM and Baidu Apollo illustrate the limitations of relianceon singular sources of sensor input data. The vulnerabilities discovered in this thesis inthe aforementioned software, were reasoned by AD software designers and safety val-idation engineers as due to a lack of cross validation of input data and mechanisms forresiliency and recovery. he thesis introduces REACT, a proposed architecture for intrusionresponse in automotive systems. REACT contains methodology for response evaluation,and various response selection methods. We evaluate REACT on 2 diverse attack casesof an adversarial sample targeted at the camera sensor and information disclosure of theinfotainment system. The results demonstrates that the LP and SAW algorithms used foroptimal selection of response had sub-optimal performance for automated intrusion re-sponse in automotive, however, presented encouraging results for proposing follow-upresponses to vehicle security operations centre for further action.

Affects of cyber attacks to AD software: One of the aims of this thesis was to developintuitive methods for security testing that would enable the ability to discern affects tothe vehicle from cyber attacks. The thesis developed a method for combined safety andcybersecurity testing which fused the metrics of safety validation which evaluated thevehicles conformance to safety regulations and passenger comfort with attack model pa-rameters. This approach, which was utilised consistently on the real-world vehicle casestudy, produced valuable insights such as the role of scenario-based testing and tempo-ral aspects in affecting the severity of cyber attack behaviour consequence. The vehicledemonstrated more acute affects to cyber attacks during specific driving maneuvers suchas overtaking of passing vehicle and during time periods when the vehicle was attempt-ing the cut-in. Experts reasoned this as being due to engagement of more operations ofthe software as lane position transitioning and obstacle avoidance are more prominentduring these maneuvers. Further, there is a greater need for precision and less tolerancefor edge and corner cases. In the thesis’ investigation of AD software debugging, vehicledynamics are added to the evaluation metrics to engage a more intensive analysis of therelationship between cyber attacks, AD software and vehicle behaviour. We found that at-
172

tacks to the localisation module could be traced to a vehicle dynamic affect, specifically, aGNSS spoofing and jamming attack resulted in an alteration of the vehicles yaw angle andmomentum, and its orientation as indicated from the position co-variance and altitude.Furthermore, these attacks triggered the OpenPlanner planning module to execute laneposition transitions with greater frequency. The thesis presented the ADAssure method,which involves analysis of the feedback from security testing to develop assertions on thebehaviour of the system characteristic with the system being cyber attack. These asser-tions can then be used for debugging and root-cause analysis. The analysis of low-levelsensor attacks, demonstrated how an attack at the system-level, an EMI attack, which al-tered the values of a steering sensor, could propagate through the sensing and actuationlayer through to the high-level control resulting in the sub-modules for the OpenPlannermodule, tasked with trajectory generation and waypoint following, generating decisionswith the downstream affect of unsafe vehicle behaviour. This analysis showed the benefitof the backstepping technique to pinpoint breakpoints in the software architecture werefailures were occurring.
Approaches to cybersecurity testing: Overwhelmingly, cybersecurity testing conductedby the research community uses off-the-shelf, open-source software which is not opti-mised to the driving maneuvers and operational environments for which it is tested. Oneof the primary innovations of this thesis is the development and usage of a testing tool-chain approachwhich utilised digital-twins containing the technology stack of a real-worldvehicle. The testing tool-chain approach was used to conduct agile and repeatable testingand regress test cases from a simulation environment to the real-world, physical vehicle.In the cyber test range evaluation, we explored the capability of a small factor testbedto support cybersecurity testing. We found that the small factor testbed could provideinsights into the vulnerability of the AD software to semantic-level attacks such as adver-sarial examples targeted at the camera perception and system-level attacks in the case ofa network DDoS on the teleoperation protocol and a SSH brute force attack. These diverseenvironments, digital-twin simulation, cyber-physical small factor testbed and real-worldvehicle, can be utilised to regress testing, with the simulation and small factor testbedoffering the benefits of agile and repeatable testing at minimal cost and effort. Anotherlimitation of the research community is the lack of knowledge as to the development ofattack models. With our contributions, ADSecLang and FuzzSense, we provide founda-tional frameworks for the development of community-driven structured adversarial test-ing and fuzz testing. ADSecLang contributes a method for the translation of attack modelsfrom concept to technical implementation. FuzzSense contributes a conceptual frame-work based on ensemble fuzzing, a modular approach where diverse testing targets anddiverse fuzzers can be utilised to gain a deeper penetration of the system. With both thesecontributions we presented initial results which demonstrated that these tools could beused to find vulnerabilities in the Baidu Apollo and AWSIM software frameworks. AD-SecData Platform further provides an initial contribution to enhancing testing methodsand tools through the collation and provision of AD cybersecurity datasets. The analysiscontained in this thesis found insufficient awareness of the community of the importanceof datasets and how data can be used to enhance testing tools, defensive mechanismsand guide efficient testing methods. ADSecData Platform provides a 4 phase data gener-ation process to generate datasets from testing. The initial ADSecData Platform providesdatasets and challenges for community participation.
Significance of thesis findings: The main contribution of this thesis is to study thedesign of AD software within the perspective of cyber attacks. We investigated this:
• via development of diverse attack models utilising a testing tool-chain to discover

173

vulnerabilities in software used in a real-world, operational vehicle.
• via creation of methods able to characterise the affects of cyber attacks to the soft-ware and vehicular system.
• via debugging and root-cause analysis of cyber attacks to pinpoint vulnerable areasof the software architecture and analysis of incident response capability.
• via development of platforms and toolsets for structured and fuzz testing.
We provide these contributions in the backdrop of a community-wide effort to ensurethe robustness and reliability of AVs to cyber threats. This thesis provides tangible artifactswhich include the ADSecLang & FuzzSense code and the datasets from the experimentsas collated by the ADSecData Platform.

174

References
[1] AWSIM. https://tier4.github.io/AWSIM/ - Accessed: 2024-01-06.
[2] Robot Operating System 2 - ROS 2 (Humble). https://docs.ros.org/en/

humble/index.html - Accessed: 2024-01-06.
[3] Euro NCAP Working Group on Automated Driving. Euro ncap’s first step to assessautomated driving systems. Technical report, European New Car Assessment Pro-gramme, 2019.
[4] T. 4. Autoware foundation. The Autoware Foundation, 2021. Accessed: 2024-03-15.
[5] Y. E. A. Zolfi, M. Kravchik and A. Shabtai. The translucent patch: A physical anduniversal attack on object detectors. In CVPR, 2021.
[6] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek. Generating adversarial drivingscenarios in high-fidelity simulators. In 2019 International Conference on Robotics

and Automation (ICRA), page 8271–8277. IEEE Press, 2019.
[7] A.Davies. Tesla’s latest autopilot death looks just like a prior crash. WIRED, 2019.
[8] N. Alkhatib, M. Mushtaq, H. Ghauch, and J.-L. Danger. Can-bert do it? con-troller area network intrusion detection system based on bert language model. In

2022 IEEE/ACS 19th International Conference on Computer Systems and Applica-
tions (AICCSA), pages 1–8, 2022.

[9] F. Alrefaei, A. Alzahrani, H. Song, and S. Alrefaei. A survey on the jamming andspoofing attacks on the unmanned aerial vehicle networks. In 2022 IEEE Interna-
tional IOT, Electronics andMechatronics Conference (IEMTRONICS), pages 1–7. IEEE,2022.

[10] R. Altawy and A. M. Youssef. Security, privacy, and safety aspects of civilian drones:A survey. ACM Trans. Cyber-Phys. Syst., 1(2), nov 2016.
[11] A.Marshall. Uber’s self-driving car just killed somebody. now what? WIRED, 2018.
[12] N. B. Anuar, M. Papadaki, S. Furnell, and N. Clarke. A Response Strategy Model forIntrusion Response Systems. In D. Gritzalis, S. Furnell, andM. Theoharidou, editors,

Information Security andPrivacy Research, pages 573–578, Berlin, Heidelberg, 2012.Springer Berlin Heidelberg.
[13] S. Anwar, J. Mohamad Zain, M. F. Zolkipli, Z. Inayat, S. Khan, B. Anthony, andV. Chang. From Intrusion Detection to an Intrusion Response System: Fundamen-tals, Requirements, and Future Directions. Algorithms, 10(2), 2017.
[14] S. Anwar, J. M. Zain, M. F. Zolkipli, Z. Inayat, A. N. Jabir, and J. B. Odili. Responseoption for attacks detected by intrusion detection system. In 2015 4th International

Conference on Software Engineering and Computer Systems (ICSECS), pages 195–200, 2015.
[15] ApolloAuto. Apollo, 2025. Accessed: 2024-03-17.
[16] Aripaev. Taltech is developing a av together with u.s university. Aripaev, 2019.Accessed: 2020-02-15.

175

kong,

[17] V. Au. Mainland china tech giant baidu applies to launchautonomous vehicle trials in hong kong. https://www.
scmp.com/news/hong-kong/transport/article/3286293/
mainland-china-tech-giant-baidu-applies-launch-autonomous-vehicle-
trials-hong-Nov. 2024. Accessed: 2025-04-05.

[18] Autolab. Av smart testbed, 2025. Accessed: 2024-03-17.
[19] AUTOSAR. Specification of intrusion detection system protocol. Technical report,AUTOSAR Consortium, 2020.
[20] AVL. Avl zalazone proving ground, 2025. Accessed: 2024-03-17.
[21] J. Axelsson, A. Kobetski, Z. Ni, S. Zhang, and E. Johansson. Moped: A mobile openplatform for experimental design of cyber-physical systems. In 2014 40th EUROMI-

CRO Conference on Software Engineering and Advanced Applications, pages 423–430, 2014.
[22] L. Baresi and D. A. Tamburri. Architecting artificial intelligence for autonomous cars:The openpilot framework. In B. Tekinerdogan, C. Trubiani, C. Tibermacine, P. Scan-durra, and C. E. Cuesta, editors, Software Architecture, pages 189–204, Cham, 2023.Springer Nature Switzerland.
[23] V. S. Barletta, D. Caivano, M. D. Vincentiis, A. Ragone, M. Scalera, and M. Á. S.Martín. V-soc4as: A vehicle-soc for improving automotive security. Algorithms,16(2):112, 2023.
[24] M. Bashendy, A. Tantawy, and A. Erradi. Intrusion response systems for cyber-physical systems: A comprehensive survey. Comput. Secur., 124(C), jan 2023.
[25] M. Bashendy, A. Tantawy, and A. Erradi. Intrusion response systems for cyber-physical systems: A comprehensive survey. Computers & Security, 124:102984,2023.
[26] R. K. Bhadani, J. Sprinkle, and M. Bunting. The cat vehicle testbed: A simulator withhardware in the loop for autonomous vehicle applications. In SCAV@CPSWeek,2018.
[27] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang. Attacking vision-based perception in end-to-end autonomous driving models. Journal of Systems

Architecture, 110, 2020.
[28] Bosch. Facts and figures about electronics and software in vehicles. Automotive

World, July, 2021.
[29] T. Bouyahia, N. Cuppens-Boulahia, F. Cuppens, and F. Autrel. Multi-Criteria Rec-ommender Approach for Supporting Intrusion Response System. In F. Cuppens,

L. Wang, N. Cuppens-Boulahia, N. Tawbi, and J. Garcia-Alfaro, editors, Foundations
and Practice of Security, pages 51–67, Cham, 2017. Springer International Publishing.

[30] C.-V. Briciu, I. Filip, and F. Heininger. A new trend in automotive software: Autosarconcept. In 2013 IEEE 8th International Symposium on Applied Computational In-
telligence and Informatics (SACI), pages 251–256, 2013.

176

[31] A. Buscemi, I. Turcanu, G. Castignani, A. Panchenko, T. Engel, and K. G. Shin. A surveyon controller area network reverse engineering. IEEE Communications Surveys and
Tutorials, 25(3):1445–1481, 2023.

[32] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Bal-dan, and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In
CVPR, 2020.

[33] Y. Cao, S. H. Bhupathiraju, P. Naghavi, T. Sugawara, Z. M. Mao, and S. Rampazzi. Youcan’t see me: Physical removal attacks on lidar-based autonomous vehicles drivingframeworks. In Proceedings of the 32ndUSENIX Conference on Security Symposium,2023.
[34] Y. Cao, C. Xiao, A. Anandkumar, D. Xu, and M. Pavone. Advdo: Realistic adversarialattacks for trajectory prediction. In Computer Vision – ECCV 2022: 17th European

Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part V, page 36–52,Berlin, Heidelberg, 2022. Springer-Verlag.
[35] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M.Mao. Adversarial sensor attack on lidar-based perception in autonomous driving.In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’19, page 2267–2281, New York, NY, USA, 2019. Association forComputing Machinery.
[36] Y. Cao, D. Xu, X.Weng, Z. Mao, A. Anandkumar, C. Xiao, andM. Pavone. Generalizeddecision transformer for offline heterogeneousmulti-agent reinforcement learning,2022. arXiv preprint arXiv:2208.00094.
[37] Y. Cao, D. Xu, X. Weng, Z. Mao, A. Anandkumar, C. Xiao, and M. Pavone. Robust tra-jectory prediction against adversarial attacks. In K. Liu, D. Kulic, and J. Ichnowski,editors, Proceedings of The 6th Conference on Robot Learning, volume 205 of Pro-

ceedings of Machine Learning Research, pages 128–137. PMLR, 14–18 Dec 2023.
[38] V. Cardellini, E. Casalicchio, S. Iannucci, M. Lucantonio, S. Mittal, D. Panigrahi, andA. Silvi. An Intrusion Response System utilizing Deep Q-Networks and System Par-titions. https://arxiv.org/abs/2202.08182, 2022.
[39] CARLA. Carla autonomous driving leaderboard. https://leaderboard.carla.

org/, 2024. Accessed: 2024-04-16.
[40] CARLA Simulation Project. Epic automotive and carla. https://carla.

readthedocs.io/en/0.9.9/tuto_A_epic_automotive_materials/, 2022.Accessed: 2022-01-11.
[41] K. K.-C. Chang, X. Liu, C.-W. Lin, C. Huang, and Q. Zhu. A safety-guaranteed frame-work for neural-network-based planners in connected vehicles under communica-tion disturbance. In 2023 Design, Automation & Test in Europe Conference & Exhi-

bition (DATE), 2023.
[42] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,A. Czeskis, F. Roesner, and T. Kohno. Comprehensive experimental analyses of au-tomotive attack surfaces. In 20th USENIX security symposium (USENIX Security 11),2011.

177

[43] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,A. Czeskis, F. Roesner, and T. Kohno. Comprehensive experimental analyses of auto-motive attack surfaces. In Proceedings of the 20th USENIX Conference on Security,SEC’11, page 6, USA, 2011. USENIX Association.
[44] B. Chen, X. Chen, Q. Wu, and L. Li. Adversarial evaluation of autonomous vehiclesin lane-change scenarios. IEEE Transactions on Intelligent Transportation Systems,23:10333–10342, 2020.
[45] H. Chen, H. Ren, R. Li, G. Yang, and S. Ma. Generating autonomous driving test sce-narios based on openscenario. In 2022 9th International Conference onDependable

Systems and Their Applications (DSA), 2022.
[46] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau. Shapeshifter: Robust physi-cal adversarial attack on faster r-cnn object detector. In M. Berlingerio, F. Bonchi,T. Gärtner, N. Hurley, and G. Ifrim, editors, Machine Learning and Knowledge Dis-

covery in Databases, pages 52–68, Cham, 2019. Springer International Publishing.
[47] X. Chen, C. Fu, F. Zheng, Y. Zhao, H. Li, P. Luo, and G.-J. Qi. A Unified Multi-ScenarioAttacking Network for Visual Object Tracking. Thirty-Fifth AAAI Conference on Arti-

ficial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Vir, pages 1097–1104, 2021.

[48] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su. {EnFuzz}:Ensemble fuzzing with seed synchronization among diverse fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1967–1983, 2019.

[49] R. Chevalier, D. Plaquin, C. Dalton, and G. Hiet. Survivor: A Fine-Grained IntrusionResponse and Recovery Approach for Commodity Operating Systems. In Proceed-
ings of the 35th Annual Computer Security Applications Conference, ACSAC ’19, page762–775, New York, NY, USA, 2019. Association for Computing Machinery.

[50] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for vehicle intrusiondetection. In 25th USENIX Security Symposium (USENIX Security 16), pages 911–927,2016.
[51] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and X. Deng. Detectingattacks against robotic vehicles: A control invariant approach. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS’18, page 801–816, New York, NY, USA, 2018. Association for Computing Machinery.
[52] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser. A review of motion planningfor highway autonomous driving. IEEE Transactions on Intelligent Transportation

Systems, 21(5):1826–1848, 2020.
[53] G. Costantino and I. Matteucci. Reversing kia motors head unit to discover andexploit software vulnerabilities. Journal of Computer Virology and Hacking Tech-

niques, 19(1):33–49, 2023.
[54] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou. A review on safety failures, se-curity attacks, and available countermeasures for autonomous vehicles. Ad Hoc

Networks, 90:101823, 2019.
178

[55] C. . C.Valasek. Remote exploitation of an unaltered passenger vehicle. 2015.
[56] H. Darweesh, E. Takeuchi, and K. Takeda. Openplanner 2.0: The portable opensource planner for autonomous driving applications. In 2021 IEEE Intelligent Vehi-

cles Symposium Workshops (IV Workshops), pages 313–318, 2021.
[57] H. Darweesh, E. Takeuchi, and K. Takeda. Openplanner 2.0: The portable opensource planner for autonomous driving applications. In 2021 IEEE Intelligent Vehi-

cles Symposium Workshops (IV Workshops), pages 313–318, 2021.
[58] H. Darweesh, E. Takeuchi, K. Takeda, Y. Ninomiya, A. Sujiwo, L. Y. M. Saiki, N. Akai,T. Tomizawa, and S. Kato. Open source integrated planner for autonomous naviga-tion in highly dynamic environments. J. Robotics Mechatronics, 29:668–684, 2017.
[59] S. Dasgupta, A. Ahmed, M. Rahman, and T. N. Bandi. Unveiling the stealthy threat:Analyzing slow drift gps spoofing attacks for autonomous vehicles in urban environ-ments and enabling the resilience, 2024.
[60] P. Dash, M. Karimibiuki, and K. Pattabiraman. Stealthy attacks against robotic ve-hicles protected by control-based intrusion detection techniques. Digital Threats,2(1), jan 2021.
[61] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart. Controlling UAVs withsensor input spoofing attacks. In 10th USENIX Workshop on Offensive Technologies

(WOOT 16), Austin, TX, Aug. 2016. USENIX Association.
[62] M. De Vincenzi, G. Costantino, I. Matteucci, F. Fenzl, C. Plappert, R. Rieke, andD. Zelle. A systematic review on security attacks and countermeasures in auto-motive ethernet. ACM Comput. Surv., 56(6), Jan. 2024.
[63] N. DeMarinis, S. Tellex, V. P. Kemerlis, G. Konidaris, and R. Fonseca. Scanning theinternet for ros: A view of security in robotics research. In 2019 International Con-

ference on Robotics and Automation (ICRA), pages 8514–8521, 2019.
[64] G. Deng, G. Xu, Y. Zhou, T. Zhang, and Y. Liu. On the (in)security of secure ros2.In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’22, page 739–753, New York, NY, USA, 2022. Association forComputing Machinery.
[65] L. Ding, Y. Wang, K. Yuan, M. Jiang, P. Wang, H. Huang, and Z. J. Wang. Towardsuniversal physical attacks on single object tracking. Proceedings of the AAAI Con-

ference on Artificial Intelligence, 35(2):1236–1245, May 2021.
[66] W. Ding, I. Alrashdi, H. Hawash, and M. Abdel-Basset. Deepsecdrive: An explain-able deep learning framework for real-time detection of cyberattack in in-vehiclenetworks. Information Sciences, 658:120057, 2024.
[67] E. dos Santos and D. Schoop. Towards a simulation-based framework for the secu-rity testing of autonomous vehicles. In 6th Embedded Security in Cars USA, page 15,June 2018.
[68] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urbandriving simulator. In S. Levine, V. Vanhoucke, and K. Goldberg, editors, Proceed-

ings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of
Machine Learning Research, pages 1–16. PMLR, 13–15 Nov 2017.

179

[69] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urbandriving simulator. In Proceedings of the 1st Annual Conference on Robot Learning,pages 1–16, 2017.
[70] D.Tian. Deep learning, self driving robotic car on a shoestring budget. 2019.
[71] R. Duan, X. Mao, A. K. Qin, Y. Chen, S. Ye, Y. He, and Y. Yang. Adversarial laser beam:Effective physical-world attack to dnns in a blink. In 2021 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 16057–16066, Los Alami-tos, CA, USA, jun 2021. IEEE Computer Society.
[72] Z. El-Rewini, K. Sadatsharan, D. F. Selvaraj, S. J. Plathottam, and P. Ranganathan.Cybersecurity challenges in vehicular communications. Vehicular Communications,23:100214, 2020.
[73] Electrive. Zf to test level 4 autonomous system in ger-many. https://www.electrive.com/2025/03/11/

zf-to-test-level-4-autonomous-system-in-germany/, Mar. 2025.Accessed: 2025-01-12.
[74] E. S. I. B. ESIB. Accident, loss of control with airbus a320-214 near tallinn airporton 28.02.2018. Safety Investigations. Investigation report ESIB: A2802118 EECAIRS:

EE0180. PDF document., 2019.
[75] European Union Agency for Cybersecurity. Enisa good practices for the securityof smart cars. Technical report, European Union Agency for Cybersecurity (ENISA),Greece, 2019.
[76] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,and D. Song. Robust physical-world attacks on deep learning visual classification.In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages1625–1634, 2018.
[77] Y. Feng, S. E. Huang, W. Wong, Q. A. Chen, Z. M. Mao, and H. X. Liu. On the cyber-security of traffic signal control system with connected vehicles. IEEE Transactions

on Intelligent Transportation Systems, pages 1–13, 2022.
[78] B. A. Fessi, S. BenAbdallah, M. Hamdi, and N. Boudriga. A new genetic algorithmapproach for intrusion response system in computer networks. In 2009 IEEE Sym-

posium on Computers and Communications, pages 342–347, 2009.
[79] A. Finkenzeller, A. Mathur, J. Lauinger, M. Hamad, and S. Steinhorst. Simutack - anattack simulation framework for connected and autonomous vehicles. In 2023 IEEE

97th Vehicular Technology Conference (VTC2023-Spring), 2023.
[80] P. C. Fishburn. Additive utilities with incomplete product sets: Application to prior-ities and assignments. Operations Research, 15(3):537–542, 1967.
[81] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A.Seshia. Scenic: A language for scenario specification and scene generation. In Pro-

ceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM Press, 2019.

[82] I. M. G. Costantino, M. De Vincenzi. A vehicle firmware security vulnerability: an iviexploitation. J Comput Virol Hack Tech, 20:681,696, 2024.
180

[83] A. Gazdag, R. Ferenc, and L. Buttyán. Crysys dataset of can traffic logs containingfabrication and masquerade attacks. Scientific Data, 10, 2023.
[84] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kittivision benchmark suite. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.
[85] A. Ghosal and M. Conti. Security issues and challenges in v2x: A survey. Computer

Networks, 169:107093, 2020.
[86] F. Gonçalves, B. Ribeiro, O. Gama, J. Santos, A. Costa, B. Dias, M. J. Nicolau,J. Macedo, and A. Santos. Synthesizing datasets with security threats for vehic-ular ad-hoc networks. In GLOBECOM 2020 - 2020 IEEE Global Communications

Conference, pages 1–6, 2020.
[87] J. Gu, M. Bellone, R. Sell, and A. Lind. Object segmentation for autonomous drivingusing iseauto data. Electronics, 11(7), 2022.
[88] D. Guo, Y. Wu, Y. Dai, P. Zhou, X. Lou, and R. Tan. Invisible optical adversarial stripeson traffic sign against autonomous vehicles. In Proceedings of the 22nd Annual

International Conference on Mobile Systems, Applications and Services, MOBISYS’24, page 534–546, New York, NY, USA, 2024. Association for ComputingMachinery.
[89] J. Guo, U. Kurup, and M. Shah. Is it safe to drive? an overview of factors, metrics,and datasets for driveability assessment in autonomous driving. IEEE Transactions

on Intelligent Transportation Systems, 21(8):3135–3151, 2020.
[90] J. Guo, L. Li, J. Wang, and K. Li. Cyber-physical system-based path tracking con-trol of autonomous vehicles under cyber-attacks. IEEE Transactions on Industrial

Informatics, 2023.
[91] Y. Guo, H. Zhang, Z. Li, F. Li, L. Fang, L. Yin, and J. Cao. Decision-Making for IntrusionResponse: Which, Where, in What Order, and How Long? In ICC 2020 - 2020 IEEE

International Conference on Communications (ICC), pages 1–6, 2020.
[92] R. S. Hallyburton, Y. Liu, Y. Cao, Z.M.Mao, andM. Pajic. Security analysis of Camera-LiDAR fusion against Black-Box attacks on autonomous vehicles. In 31st USENIX Se-

curity Symposium (USENIX Security 22), pages 1903–1920, Boston, MA, Aug. 2022.USENIX Association.
[93] M. Hamad, A. Finkenzeller, M. Kühr, A. Roberts, O. Maennel, V. Prevelakis, andS. Steinhorst. React: Autonomous intrusion response system for intelligent vehi-cles. Computers & Security, 145:104008, 2024.
[94] M. Hamad, A. Finkenzeller, H. Liu, J. Lauinger, V. Prevelakis, and S. Steinhorst.Seemqtt: Secure end-to-endmqtt-based communication for mobile iot systems us-ing secret sharing and trust delegation. IEEE Internet of Things Journal, 10(4):3384–3406, 2023.
[95] M. Hamad, Z. A. Hammadeh, S. Saidi, V. Prevelakis, and R. Ernst. Prediction of ab-normal temporal behavior in real-time systems. In Proceedings of the 33rd Annual

ACM Symposium on Applied Computing, pages 359–367, 2018.
181

[96] M. Hamad, M. Nolte, and V. Prevelakis. Towards Comprehensive Threat Modelingfor Vehicles. In the 1stWorkshop on Security andDependability of Critical Embedded
Real-Time Systems, 2016.

[97] M. Hamad and V. Prevelakis. SAVTA: A Hybrid Vehicular Threat Model: Overviewand Case Study. Information, 11(5), 2020.
[98] M. Hamad and S. Steinhorst. Security challenges in autonomous systems design,2023.
[99] M. Hamad, M. Tsantekidis, and V. Prevelakis. Red-Zone: Towards an Intrusion Re-sponse Framework for Intra-Vehicle System. In 5th International Conference on

Vehicle Technology and Intelligent Transport Systems (VEHITS), 2019.
[100] M. Hamad, M. Tsantekidis, and V. Prevelakis. Intrusion Response System for Vehi-cles: Challenges and Vision. In M. Helfert, C. Klein, B. Donnellan, and O. Gusikhin,editors, Smart Cities, Green Technologies and Intelligent Transport Systems, pages321–341, Cham, 2021. Springer International Publishing.
[101] A. Hamdi, M. Muller, and B. Ghanem. SADA: Semantic adversarial diagnostic at-tacks for autonomous applications. AAAI 2020 - 34th AAAI Conference on Artificial

Intelligence, pages 10901–10908, 2020.
[102] J. Han, M. Kamber, and J. Pei. 6 - mining frequent patterns, associations, and cor-relations: Basic concepts and methods. In DataMining (Third Edition), TheMorganKaufmann Series inDataManagement Systems, pages 243–278.Morgan Kaufmann,Boston, 2012.
[103] J. C. Han and Z. Q. Zhou. Metamorphic Fuzz Testing of Autonomous Vehicles, page380–385. Association for Computing Machinery, New York, NY, USA, 2020.
[104] M. L. Han, B. I. Kwak, and H. K. Kim. Anomaly intrusion detection method for ve-hicular networks based on survival analysis. Vehicular Communications, 14:52–63,2018.
[105] M. L. Han, B. I. Kwak, and H. K. Kim. Event-triggered interval-based anomaly detec-tion and attack identification methods for an in-vehicle network. IEEE Transactions

on Information Forensics and Security, 16:2941–2956, 2021.
[106] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer. Canet: An unsupervisedintrusion detection system for high dimensional can bus data. IEEE Access, 8:58194–58205, 2020.
[107] M. R. Heidari Iman, J. Raik, M. Jenihhin, G. Jervan, and T. Ghasempouri. An au-tomated method for mining high-quality assertion sets. Microprocessors and Mi-

crosystems, 97:104773, 2023.
[108] M. Heigl, L. Doerr, A. Almaini, D. Fiala, and M. Schram. Incident Reaction Based onIntrusion Detections’ Alert Analysis. In 2018 International Conference on Applied

Electronics (AE), pages 1–6, 2018.
[109] O. Henniger, A. Ruddle, H. Seudié, B. Weyl, M. Wolf, and T. Wollinger. Securingvehicular on-board it systems: The evita project. In VDI/VW Automotive Security

Conference, page 41, 2009.
182

[110] N. Herold. Incident Handling Systems with Automated Intrusion Response. Disser-tation, Technische Universität München, 2017.
[111] N. Herold, S.-A. Posselt, O. Hanka, and G. Carle. Anomaly detection for SOME/IPusing complex event processing. InNOMS2016 - 2016 IEEE/IFIPNetworkOperations

and Management Symposium, pages 1221–1226, 2016.
[112] N. Herold, M. Wachs, S.-A. Posselt, and G. Carle. An Optimal Metric-Aware Re-sponse Selection Strategy for Intrusion Response Systems. In F. Cuppens, L. Wang,N. Cuppens-Boulahia, N. Tawbi, and J. Garcia-Alfaro, editors, Foundations and Prac-

tice of Security, pages 68–84, Cham, 2017. Springer International Publishing.
[113] D. K. Hong, J. Kloosterman, Y. Jin, Y. Cao, Q. A. Chen, S. Mahlke, and Z. M.Mao. AVGuardian: Detecting and Mitigating Publish-Subscribe Overprivilege forAutonomous Vehicle Systems. Proceedings - 5th IEEE European Symposium on Se-

curity and Privacy, Euro S and P 2020, pages 445–459, 2020.
[114] S. Hu, Y. Zhang, S. Laha, A. Sharma, and H. Foroosh. CCA: Exploring the possibilityof contextual camouflage attack on object detection. Proceedings - International

Conference on Pattern Recognition, pages 7647–7654, 2020.
[115] Z. Hu, J. Shen, S. Guo, X. Zhang, Z. Zhong, Q. A. Chen, and K. Li. Pass: A system-drivenevaluation platform for autonomous driving safety and security. NDSS Workshop

on Automotive and Autonomous Vehicle Security (AutoSec), 2022.
[116] Y. Huai, Y. Chen, S. Almanee, T. Ngo, X. Liao, Z. Wan, Q. A. Chen, and J. Garcia.Doppelgänger test generation for revealing bugs in autonomous driving software.In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE),pages 2591–2603, 2023.
[117] K. Hughes, K. McLaughlin, and S. Sezer. Dynamic Countermeasure Knowledge forIntrusion Response Systems. In 2020 31st Irish Signals and Systems Conference

(ISSC), pages 1–6, 2020.
[118] S. Iannucci, O. D. Barba, V. Cardellini, and I. Banicescu. A performance evalua-tion of deep reinforcement learning for model-based intrusion response. In 2019

IEEE 4th InternationalWorkshops on Foundations and Applications of Self* Systems
(FAS*W), pages 158–163, 2019.

[119] S. Iannucci, E. Casalicchio, and M. Lucantonio. An Intrusion Response Approachfor Elastic Applications Based on Reinforcement Learning. In 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 01–10, 2021.

[120] S. Iannucci, A. Montemaggio, and B. Williams. Towards self-defense of non-stationary systems. In 2019 International Conference on Computing, Networking
and Communications (ICNC), pages 250–254, 2019.

[121] C. Iclodean, N. Cordos, and B. O. Varga. Autonomous shuttle bus for public trans-portation: A review. Energies, 13(11), 2020.
[122] I. in Estonia. Estonian auve tech achieves au-tonomous milestone in japan. https://estonia.ee/

estonian-auve-tech-achieves-autonomous-milestone-in-japan/,Dec. 2024. Accessed: 2025-04-05.
183

[123] International Organization for Standardization. ISO/SAE 21434: 2021: RoadVehicles:
Cybersecurity Engineering. ISO, 2021.

[124] International TelecommunicationUnion. Guidelines for an intrusion prevention sys-tem for connected vehicles - Recommendation ITU-T X.1377, 2022.
[125] S. Iqbal, P. Ball, M. H. Kamarudin, and A. Bradley. Simulating malicious attacks onvanets for connected and autonomous vehicle cybersecurity: A machine learningdataset. In 2022 13th International Symposium on Communication Systems, Net-

works and Digital Signal Processing (CSNDSP), pages 332–337, 2022.
[126] M.M. Islam, A. Lautenbach, C. Sandberg, and T. Olovsson. A risk assessment frame-work for automotive embedded systems. In Proceedings of the 2nd ACM Interna-

tional Workshop on Cyber-Physical System Security, pages 3–14, 2016.
[127] ISO/TC 22/SC 32 Electrical and electronic components and general system aspects.Iso 26262-1:2018 road vehicles — functional safety. Technical report, InternationalStandards Organization, 2018.
[128] E. F. J. Lu, H. Sibai and D. Forsyth. No need to worry about adversarial examples inobject detection in autonomous vehicles. In in CVPRWorkshop of Negative Results

in Computer Vision, 2017.
[129] S. Jeong, S. Lee, H. Lee, and H. K. Kim. X-canids: Signal-aware explainable intru-sion detection system for controller area network-based in-vehicle network. IEEE

Transactions on Vehicular Technology, 73(3):3230–3246, 2024.
[130] S.-Y. Jeong, I.-J. Choi, Y.-J. Kim, Y.-M. Shin, J.-H. Han, G.-H. Jung, and K.-G. Kim. Astudy on ros vulnerabilities and countermeasure. In Proceedings of the Companion

of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, HRI’17, page 147–148, New York, NY, USA, 2017. Association for Computing Machinery.
[131] S. Jha, S. Banerjee, T. Tsai, S. S. Hari, M. B. Sullivan, Z. T. Kalbarczyk, S. W. Keckler,and R. K. Iyer. Ml-based fault injection for autonomous vehicles: A case for bayesianfault injection. In 2019 49th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN), pages 112–124, Los Alamitos, CA, USA, jun 2019.IEEE Computer Society.
[132] S. Jha, S. Cui, S. Banerjee, J. Cyriac, T. Tsai, Z. Kalbarczyk, and R. K. Iyer. ML-DrivenMalware that Targets AV Safety. Proceedings - 50th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN 2020, pages 113–124, 2020.
[133] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu, and K. Fu. Poltergeist: Acousticadversarial machine learning against cameras and computer vision. Proceedings -

IEEE Symposium on Security and Privacy, 2021-May:160–175, 2021.
[134] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei. Fooling detectionalone is not enough: Adversarial attack against multiple object tracking. In ICLR,2020.
[135] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei. Fooling detectionalone is not enough: Adversarial attack against multiple object tracking. In Interna-

tional Conference on Learning Representations, 2020.
184

[136] R. Jiao, J. Bai, X. Liu, T. Sato, X. Yuan, Q. A. Chen, and Q. Zhu. Learning represen-tation for anomaly detection of vehicle trajectories. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 9699–9706, 2023.

[137] R. Jiao, H. Liang, T. Sato, J. Shen, Q. A. Chen, and Q. Zhu. End-to-end uncertainty-based mitigation of adversarial attacks to automated lane centering. In 2021 IEEE
Intelligent Vehicles Symposium (IV), 2021.

[138] P. Jing, Q. Tang, Y. Du, L. Xue, X. Luo, T. Wang, S. Nie, and S. Wu. Too good to besafe: Tricking lane detection in autonomous driving with crafted perturbations. In
30th USENIX Security Symposium (USENIX Security 21), pages 3237–3254. USENIXAssociation, Aug. 2021.

[139] H. J. Jo and W. Choi. A survey of attacks on controller area networks and corre-sponding countermeasures. IEEE Transactions on Intelligent Transportation Sys-
tems, 23(7):6123–6141, 2022.

[140] Z. Ju, H. Zhang, X. Li, X. Chen, J. Han, and M. Yang. A survey on attack detectionand resilience for connected and automated vehicles: From vehicle dynamics andcontrol perspective. IEEE Transactions on Intelligent Vehicles, 7(4):815–837, 2022.
[141] C. Jurewicz, A. Sobhani, J. Woolley, J. Dutschke, and B. Corben. Exploration of Ve-hicle Impact Speed – Injury Severity Relationships for Application in Safer Road De-sign. Transportation Research Procedia, 14:4247–4256, 2016.
[142] A. Karahasanovic, P. Kleberger, and M. Almgren. Adapting Threat Modeling Meth-ods for the Automotive Industry. In ej tryckt, 2017.
[143] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A. Mon-rroy, T. Ando, Y. Fujii, and T. Azumi. Autoware on board: Enabling autonomousvehicles with embedded systems. In 2018 ACM/IEEE 9th International Conference

on Cyber-Physical Systems (ICCPS), pages 287–296, 2018.
[144] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A. Mon-rroy, T. Ando, Y. Fujii, and T. Azumi. Autoware on board: Enabling autonomousvehicles with embedded systems. In ACM/IEEE International Conference on Cyber-

Physical Systems (ICCPS), pages 287–296. IEEE, 2018.
[145] S. Katsikeas, P. Johnsson, S. Hacks, and R. Lagerström. Vehiclelang: A probabilisticmodeling and simulation language formodern vehicle it infrastructures. Computers

Security, 117:102705, 2022.
[146] P. Kaur, S. Taghavi, Z. Tian, andW. Shi. A survey on simulators for testing self-drivingcars. In 2021 Fourth International Conference on Connected and Autonomous Driv-

ing (MetroCAD), pages 62–70, 2021.
[147] D. Kerr. Protesters stop waymo and cruise self-driving cars with only a traffic cone.

NPR, Aug. 2023. Accessed: 2025-04-05.
[148] S. K. Khan, N. Shiwakoti, P. Stasinopoulos, and Y. Chen. Cyber-attacks in the next-generation cars, mitigation techniques, anticipated readiness and future directions.

Accident Analysis Prevention, 148:105837, 2020.
185

[149] H. A. Kholidy, A. Erradi, S. Abdelwahed, and F. Baiardi. A risk mitigation approachfor autonomous cloud intrusion response system. Computing, 98(11):1111–1135, Nov2016.
[150] H. Kim, R. Bandyopadhyay, M. Ozmen, Z. Celik, A. Bianchi, Y. Kim, and D. Xu. Asystematic study of physical sensor attack hardness. In 2024 IEEE Symposium on

Security and Privacy (SP), pages 146–146, Los Alamitos, CA, USA, may 2024. IEEEComputer Society.
[151] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu. Pgfuzz: Policy-guided fuzzingfor robotic vehicles. In Proceedings of the Network and Distributed System Security

Symposium (NDSS), 2021.
[152] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim. Cybersecurity for autonomousvehicles: Review of attacks and defense. Computers & Security, 103:102150, 2021.
[153] S. Kim and T. Kim. Robofuzz: fuzzing robotic systems over robot operating system(ros) for finding correctness bugs. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, page 447–458, New York, NY, USA, 2022. Associationfor Computing Machinery.

[154] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim. Drivefuzz: Discoveringautonomous driving bugs through driving quality-guided fuzzing. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security (CSS
’22). ACM Press, 2022.

[155] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang, X. Deng, and D. Xu.RVFuzzer: Finding input validation bugs in robotic vehicles through Control-Guidedtesting. In 28th USENIX Security Symposium (USENIX Security 19), pages 425–442,Santa Clara, CA, Aug. 2019. USENIX Association.
[156] V. Klee and G. J. Minty. How good is the simplex algorithm? In Inequalities III (Proc.

Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory
of Theodore S. Motzkin), page 159–175, New York, 1972. Academic Press.

[157] M. Klischat and M. Althoff. Generating critical test scenarios for automated vehi-cles with evolutionary algorithms. In 2019 IEEE Intelligent Vehicles Symposium (IV),pages 2352–2358, 2019.
[158] M. Kneib and C. Huth. Scission: Signal characteristic-based sender identificationand intrusion detection in automotive networks. In Proceedings of the 2018 ACM

SIGSAC conference on computer and communications security, pages 787–800,2018.
[159] S. Köhler, G. Lovisotto, S. Birnbach, R. Baker, and I. Martinovic. They See Me Rollin: Inherent Vulnerability of the Rolling Shutter in CMOS Image Sensors. ACM Inter-

national Conference Proceeding Series, pages 399–413, 2021.
[160] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using genetic al-gorithms: A tutorial. Reliability engineering & system safety, 91(9):992–1007, 2006.

186

[161] Z. Kong, J. Guo, A. Li, and C. Liu. PhysGAN: Generating Physical-World-Resilient Ad-versarial Examples for Autonomous Driving. Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, pages 14242–14251,2020.

[162] M. Kühr, M. Hamad, P. MohajerAnsari, M. D. Pesé, and S. Steinhorst. Sok: Securityof the image processing pipeline in autonomous vehicles, 2024.
[163] L. Huang, C. Gao, Y. Zhou, C. Xie, A. L. Yuille, C. Zou, and N. Liu,. Universal physicalcamouflage attacks on object detectors. In in CVPR, 2020.
[164] H. S. Lallie, K. Debattista, and J. Bal. A review of attack graph and attack tree visualsyntax in cyber security. Computer Science Review, 2020.
[165] B. Lampe andW. Meng. can-train-and-test: A new can intrusion detection dataset.In 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), pages 1–7, 2023.
[166] B. Lampe and W. Meng. can-train-and-test: A curated can dataset for automotiveintrusion detection. Computers & Security, 140:103777, 2024.
[167] J. Lauinger, A. Finkenzeller, H. Lautebach, M. Hamad, and S. Steinhorst. Attack datageneration framework for autonomous vehicle sensors. In 2022 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), pages 128–131, 2022.
[168] A. Lautenbach,M. Almgren, and T.Olovsson. Proposing heavens 2.0–an automotiverisk assessment model. In Proceedings of the 5th ACM Computer Science in Cars

Symposium, pages 1–12, 2021.
[169] S. Lee, W. Choi, I. Kim, G. Lee, and D. H. Lee. A comprehensive analysis of datasetsfor automotive intrusion detection systems. Computers, Materials and Continua,76(3):3413–3442, 2023.
[170] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk, and R. Iyer. Av-fuzzer: Finding safety violations in autonomous driving systems. In 2020 IEEE 31st

International Symposium on Software Reliability Engineering (ISSRE), pages 25–36,2020.
[171] Y. Li, C. Wen, F. Juefei-Xu, and C. Feng. Fooling LiDAR Perception via AdversarialTrajectory Perturbation. pages 7878–7887, 2022.
[172] T. Limbasiya, K. Z. Teng, S. Chattopadhyay, and J. Zhou. A systematic survey of at-tack detection and prevention in connected and autonomous vehicles. Vehicular

Communications, 37:100515, 2022.
[173] X. Liu, R. Jiao, B. Zheng, D. Liang, and Q. Zhu. Safety-driven interactive planningfor neural network-based lane changing. In Proceedings of the 28th Asia and South

Pacific Design Automation Conference, ASPDAC ’23. Association for ComputingMa-chinery, 2023.
[174] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang. Trojaning attack onneural networks. In NDSS. The Internet Society, 2018.
[175] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar. Intrusion detection system forautomotive Controller Area Network (CAN) bus system: a review. EURASIP Journal

on Wireless Communications and Networking, 2019(1):184, Jul 2019.
187

[176] A. Lopes and A. Hutchison. Experimenting with Machine Learning in Auto-mated Intrusion Response. In I. Kotenko, C. Badica, V. Desnitsky, D. El Baz, andM. Ivanovic, editors, Intelligent Distributed Computing XIII, pages 505–514, Cham,2020. Springer International Publishing.
[177] G. Lou, Y. Deng, X. Zheng, M. Zhang, and T. Zhang. Testing of autonomous driv-ing systems: where are we and where should we go? In Proceedings of the 30th

ACM Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022, page 31–43, New York, NY, USA,2022. Association for Computing Machinery.

[178] G. Lovisotto, H. Turner, I. Sluganovic, M. Strohmeier, and I. Martinovic. SLAP: Im-proving physical adversarial examples with short-lived adversarial perturbations.
Proceedings of the 30th USENIX Security Symposium, pages 1865–1882, 2021.

[179] F. Luo, Y. Jiang, Z. Zhang, Y. Ren, and S. Hou. Threat Analysis and Risk Assessmentfor Connected Vehicles: A Survey. Security and Communication Networks, 2021,Sep 2021.
[180] M. Luo, A. C. Myers, and G. E. Suh. Stealthy tracking of autonomous vehicles withcache side channels. In 29th USENIX Security Symposium (USENIX Security 20),pages 859–876. USENIX Association, Aug. 2020.
[181] C. Ma, N. Wang, Q. A. Chen, and C. Shen. SlowTrack: Increasing the Latency ofCamera-Based Perception in Autonomous Driving Using Adversarial Examples. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages4062–4070, 2024.
[182] C. Ma, N. Wang, Q. A. Chen, and C. Shen. Slowtrack: Increasing the latency ofcamera-based perception in autonomous driving using adversarial examples. Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 38(5):4062–4070, Mar.2024.
[183] Y. Ma, J. Sharp, R. Wang, E. Fernandes, and X. Zhu. Sequential attacks on kalmanfilter-based forward collision warning systems. In AAAI Conference on Artificial In-

telligence, 2020.
[184] K. T. Y.Mahima,M. Ayoob, andG. Poravi. Adversarial Attacks andDefense Technolo-gies on Autonomous Vehicles: A Review. Applied Computer Systems, 26(2):96–106,2021.
[185] E. Malayjerdi, R. Sell, M. Malayjerdi, A. Udal, and M. Bellone. Practical path plan-ning techniques in overtaking for autonomous shuttles. Journal of Field Robotics,39(4):410–425, 2022.
[186] E. Malayjerdi, R. Sell, M. Malayjerdi, A. Udal, and M. Bellone. Practical path plan-ning techniques in overtaking for autonomous shuttles. Journal of Field Robotics,39(4):410–425, 2022.
[187] M. Malayjerdi, V. Kuts, R. Sell, T. Otto, and B. C. Baykara. Virtual simulations envi-ronment development for autonomous vehicles interaction. In ASME International

Mechanical Engineering Congress and Exposition. American Society of MechanicalEngineers, 2020.
188

[188] M. Malayjerdi, A. Roberts, O. Maennel, and E. Malayjerdi. Combined Safety andCybersecurity Testing Methodology for Autonomous Driving Algorithms, 2022.
[189] M. Malayjerdi, A. Roberts, O. M. Maennel, and E. Malayjerdi. Combined safety andcybersecurity testing methodology for autonomous driving algorithms. Proceed-

ings of the 6th ACM Computer Science in Cars Symposium, pages 1–10, 2022.
[190] M. Malayjerdi, A. Roberts, O. m. Maennel, and E. Malayjerdi. Combined safety andcybersecurity testing methodology for autonomous driving algorithms. In Proceed-

ings of the 6th ACM Computer Science in Cars Symposium, CSCS ’22, New York, NY,USA, 2022. Association for Computing Machinery.
[191] Y. Man, M. Li, and R. Gerdes. GhostImage: Remote perception attacks againstcamera-based image classification systems. RAID 2020 Proceedings - 23rd Interna-

tional Symposium on Research in Attacks, Intrusions and Defenses, pages 317–332,2020.
[192] S. F. Marksteiner, C. Schmittner, K. Christl, D. Nickovic, M. Sjödin, and M. Sirjani.From tara to test: Automated automotive cybersecurity test generation out ofthreat modeling. In Proceedings of the 7th ACM Computer Science in Cars Sym-

posium, CSCS ’23, New York, NY, USA, 2023. Association for Computing Machinery.
[193] G. Matthews and B. Feinstein. The Intrusion Detection Exchange Protocol (IDXP).RFC 4767, Mar. 2007.
[194] Mcity. Mcity, 2025. Accessed: 2024-03-17.
[195] S. Meryem and T. Mazri. Security study and challenges of connected autonomousvehicles. In Proceedings of the 4th International Conference on Smart City Applica-

tions, SCA ’19, New York, NY, USA, 2019. Association for Computing Machinery.
[196] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle.

Black Hat USA, 2015.
[197] C. Miller and C. Valasek. Remote Exploitation of an Unaltered Passenger Vehicle.

https://illmatics.com/Remote\%20Car\%20Hacking.pdf, 2015. Accessed:12.04.2022.
[198] R. Mit, Y. Zangvil, and D. Katalan. Analyzing tesla’s level 2 autonomous driving sys-tem under different gnss spoofing scenarios and implementing connected servicesfor authentication and reliability of gnss data. In Proceedings of the 33rd Interna-

tional Technical Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2020), pages 621–646, September 2020.

[199] S. Mitchell, M. O’Sullivan, and I. Dunning. PuLP: A Linear Programming Toolkit forPython. Department of Engineering Science, The University of Auckland, Auckland,
New Zealand, 2011.

[200] Mohammed Lamine Bouchouia, Jean-Philippe Monteuuis, Houda Labiod, Ons Je-lassi, Wafa Ben Jaballah , Jonathan Petit. A simulator for cooperative and auto-mated driving security. In Fourth International Workshop on Automotive and Au-
tonomous Vehicle Security (AutoSec), 2022.

189

[201] T. Mokhamed, F. M. Dakalbab, S. Abbas, andM. A. Talib. Security in robot operatingsystems (ros): analytical review study. In The 3rd International Conference on Dis-
tributed Sensing and Intelligent Systems (ICDSIS 2022), volume 2022, pages 79–94,2022.

[202] L. J. Moukahal, M. Zulkernine, and M. Soukup. Boosting grey-box fuzzing for con-nected autonomous vehicle systems. In 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security Companion (QRS-C), pages 516–527, 2021.

[203] J. Mulach. How a t-shirt stopped this autonomous car inits tracks. https://www.carexpert.com.au/car-news/
how-a-t-shirt-stopped-this-autonomous-car-in-its-tracks, May2024. Accessed: 2025-04-05.

[204] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem. Sim4cv: A photo-realisticsimulator for computer vision applications. Int. J. Comput. Vision, 126(9):902–919,sep 2018.
[205] F. Munir, S. Azam, M. I. Hussain, A. M. Sheri, and M. Jeon. Autonomous vehicle:The architecture aspect of self driving car. In Proceedings of the 2018 International

Conference on Sensors, Signal and Image Processing, SSIP ’18, page 1–5, New York,NY, USA, 2018. Association for Computing Machinery.
[206] K. K. Nakka and M. Salzmann. Indirect Local Attacks for Context-Aware SemanticSegmentation Networks. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12350LNCS:611–628, 2020.
[207] P. Narksri, H. Darweesh, E. Takeuchi, Y. Ninomiya, and K. Takeda. Occlusion-awaremotion planning with visibility maximization via active lateral position adjustment.

IEEE Access, 10:57759–57782, 2022.
[208] B. Nassi, R. Bitton, R. Masuoka, A. Shabtai, and Y. Elovici. Sok: Security and privacyin the age of commercial drones. In 2021 IEEE Symposium on Security and Privacy

(SP), pages 1434–1451, 2021.
[209] B. Nassi, Y.Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and Y. Elovici. Phantomof theADAS: Securing Advanced Driver-Assistance Systems from Split-Second PhantomAttacks. Proceedings of the ACM Conference on Computer and Communications

Security, pages 293–308, 2020.
[210] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and Y. Elovici. Phantom ofthe adas: Securing advanced driver-assistance systems from split-second phantomattacks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS ’20, page 293–308, New York, NY, USA, 2020. Associationfor Computing Machinery.
[211] P. Nespoli, D. Papamartzivanos, F. Gómez Mármol, and G. Kambourakis. Optimalcountermeasures selection against cyber attacks: A comprehensive survey on reac-tion frameworks. IEEE Communications Surveys & Tutorials, 20(2):1361–1396, 2018.
[212] F. Nesti, G. Rossolini, S. Nair, A. Biondi, and G. Buttazzo. Evaluating the Robustnessof Semantic Segmentation for Autonomous Driving against Real-World AdversarialPatch Attacks. Proceedings - 2022 IEEE/CVF Winter Conference on Applications of

Computer Vision, WACV 2022, pages 2826–2835, 2022.
190

[213] E. C. P. Neto, H. Taslimasa, S. Dadkhah, S. Iqbal, P. Xiong, T. Rahman, and A. A. Ghor-bani. Ciciov2024: Advancing realistic ids approaches against dos and spoofing at-tack in iov can bus. Internet of Things, 26:101209, 2024.
[214] N. News. Lyft to roll out robotaxis in atlanta. https://www.nbcnews.com/

tech/tech-news/lyft-roll-robotaxis-atlanta-rcna197479, Mar. 2025.Accessed: 2025-04-05.
[215] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake. Scalable end-to-endautonomous vehicle testing via rare-event simulation. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems, NIPS’18, page9849–9860, Red Hook, NY, USA, 2018. Curran Associates Inc.
[216] C. Olt. Establishing security operation centers for connected cars. ATZelectronics

worldwide, 14(5):40–43, 2019.
[217] S. Ossenbühl, J. Steinberger, and H. Baier. Towards Automated Incident Handling:How to Select an Appropriate Response against a Network-Based Attack? In 2015

Ninth International Conference on IT Security Incident Management & IT Forensics,pages 51–67, 2015.
[218] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero. A stealth, selective, link-layerdenial-of-service attack against automotive networks. In Detection of Intrusions

andMalware, and Vulnerability Assessment: 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings 14, pages 185–206. Springer, 2017.

[219] M. Papadaki, S. Furnell, B. Lines, and P. Reynolds. Operational Characteristics ofan Automated Intrusion Response System. In A. Lioy and D. Mazzocchi, editors,
Communications and Multimedia Security. Advanced Techniques for Network and
Data Protection, pages 65–75, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[220] S. Parkinson, P. Ward, K. Wilson, and J. Miller. Cyber threats facing autonomousand connected vehicles: Future challenges. IEEE Transactions on Intelligent Trans-
portation Systems, 18(11):2898–2915, 2017.

[221] K. Paul. The rebel group stopping self-driving cars in san francisco – one cone at atime. The Guardian, July 2023. Accessed: 2025-04-05.
[222] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and K. G. Shin. Librecan:Automated can message translator. In Proceedings of the 2019 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS ’19, page 2283–2300, NewYork, NY, USA, 2019. Association for Computing Machinery.
[223] J. Petit and S. E. Shladover. Potential cyberattacks on automated vehicles. IEEE

Transactions on Intelligent Transportation Systems, 16(2):546–556, 2015.
[224] Petter Solnør,Øystein Volden,Kristoffer Gryte,Slobodan Petrovic,Thor I. Fossen. Hi-jacking of unmanned surface vehicles: A demonstration of attacks and countermea-sures in the field. Journal of Field Robotics, pages 1–19, 2022.
[225] O. Pöllny, F. Kargl, and A. Held. Steering your car with electromagnetic fields. In

Proceedings of the 6th ACM Computer Science in Cars Symposium, CSCS ’22, NewYork, NY, USA, 2022. Association for Computing Machinery.
191

[226] P. Project. Platform for innovative use of vehicle open telematics. 2024.
[227] Python Software Foundation. resource — Resource usage information. https://

docs.python.org/3/library/resource.html, 2022. Accessed: 20.07.2022.
[228] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin. Savior: se-curing autonomous vehicles with robust physical invariants. In Proceedings of the

29th USENIX Conference on Security Symposium, SEC’20, USA, 2020. USENIX Asso-ciation.
[229] S. Rajapaksha, G. Madzudzo, H. Kalutarage, A. Petrovski, and M. O. Al-Kadri. Can-mirgu: A comprehensive can bus attack dataset from moving vehicles for intrusiondetection system evaluation. In Symposium on Vehicles Security and Privacy. Inter-

net Society, 2024.
[230] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin. The security of autonomous driving:Threats, defenses, and future directions. Proceedings of the IEEE, 108(2):357–372,2020.
[231] D. C. Richards. Relationship between speed and risk of fatal injury: pedestriansand car occupants. In Road Safety Web Publication, volume No. 16, London, 2010.Department for Transport.
[232] S. Rivera, A. K. Iannillo, and R. State. Discofuzzer: Discontinuity-based vulnerabilitydetector for robotic systems. July 2020.
[233] A. Roberts, J. Cheng, O. Maennel, M. Hamad, and S. Steinhorst. Adseclang: Adomain-specific language for cybersecurity testing of autonomous vehicles. In 2025

IEEE 101st Vehicular Technology Conference (VTC2025-Spring), pages 1–6, 2025.
[234] A. Roberts, M. R. H. Iman, M. Bellone, T. Ghasempouri, J. Raik, O. Maennel,M. Hamad, and S. Steinhorst. Adassure: Debugging methodology for autonomousdriving control algorithms. In 2024Design, Automation& Test in Europe Conference

& Exhibition (DATE), pages 1–6, 2024.
[235] A. Roberts, O. Maennel, and N. Snetkov. Cybersecurity test range for autonomousvehicle shuttles. 2021 IEEE European Symposiumon Security and PrivacyWorkshops

(EuroS PW), pages 239–248, 2021.
[236] A. Roberts, M. Malayjerdi, M. Bellone, O. Maennel, and E. Malayjerdi. Analysingadversarial threats to rule-based local-planning algorithms for autonomous driving.

Inaugural Symposium on Vehicle Security and Privacy (VehicleSec 2023) with NDSS,pages 1–8, 2023.
[237] A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Adsecdata platform: An open-source data platform for autonomous driv-ing cybersecurity. In 2025 IEEE 101st Vehicular Technology Conference (VTC2025-

Spring), pages 1–7, 2025.
[238] A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Analysis of autonomous driving software to low-level sensor cyber attacks.In 2025 IEEE/ACM 20th Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), pages 1–11, 2025.
192

[239] A. Roberts, S. Marksteiner, M. Soyturk, B. Yaman, and Y. Yang. A global survey ofstandardization and industry practices of automotive cybersecurity validation andverification testing processes and tools. SAE International Journal of Connected and
Automated Vehicles, 7, 11 2023.

[240] A. Roberts, L. Teply, M. Bellone, M. Pese, O. Maennel, M. Hamad, and S. Stein-horst. Fuzzsense: Towards a modular fuzzing framework for autonomous drivingsoftware. In arXiv, 2025.
[241] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise, G. Uhm,M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda, M. Reyes, D. Ze-lenkovsky, and S. Kim. Lgsvl simulator: A high fidelity simulator for autonomousdriving. In 2020 IEEE 23rd International Conference on Intelligent Transportation

Systems (ITSC), page 1–6. IEEE Press, 2020.
[242] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise, G. Uhm,M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda, M. Reyes, D. Ze-lenkovsky, and S. Kim. Lgsvl simulator: A high fidelity simulator for autonomousdriving. In 2020 IEEE 23rd International Conference on Intelligent Transportation

Systems (ITSC), pages 1–6, 2020.
[243] J. R. Rose, M. Swann, K. P. Grammatikakis, I. Koufos, G. Bendiab, S. Shiaeles, andN. Kolokotronis. Ideres: Intrusion detection and response system using machinelearning and attack graphs. Journal of Systems Architecture, 131:102722, 2022.
[244] L. A. Rosero, I. P. Gomes, J. A. R. da Silva, C. A. Przewodowski, D. F. Wolf, and F. S.Osório. Integrating modular pipelines with end-to-end learning: A hybrid approachfor robust and reliable autonomous driving systems. Sensors, 24(7), 2024.
[245] A. Rugo, C. A. Ardagna, and N. E. Ioini. A security review in the uavnet era: Threats,countermeasures, and gap analysis. ACM Comput. Surv., 55(1), jan 2022.
[246] SAE International. J3016 taxonomy and definitions for terms related to driving au-tomation systems for on-roadmotor vehicles. Technical report, Society of Automo-tive Engineers, 2021.
[247] I. F. Salgado, N. Quijano, D. J. Fremont, and A. A. Cardenas. Fuzzingmalicious drivingbehavior to find vulnerabilities in collision avoidance systems. In 2022 IEEE Euro-

pean Symposium on Security and Privacy Workshops (EuroS&PW), pages 368–375,2022.
[248] T. Sato, S. H. Bhupathiraju, M. Clifford, T. Sugawara, Q. A. Chen, and S. Rampazzi.Wip: Infrared laser reflection attack against traffic sign recognition systems. ISOC

Symposium on Vehicle Security and Privacy (VehicleSec).
[249] T. Sato, J. Shen, N.Wang, Y. Jia, X. Lin, andQ. A. Chen. Dirty road can attack: Securityof deep learning based automated lane centering under Physical-World attack. In

30th USENIX Security Symposium (USENIX Security 21), pages 3309–3326. USENIXAssociation, Aug. 2021.
[250] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen. Demo: Security of DeepLearning based Automated Lane Centering under Physical-World Attack. Proceed-

ings - 2021 IEEE Symposium on Security and Privacy Workshops, SPW 2021, page244, 2021.
193

[251] T. Sato, R. Suzuki, Y. Hayakawa, K. Ikeda, O. Sako, R. Nagata, R. Yoshida, Q. A. Chen,and K. Yoshioka. On the Realism of LiDAR Spoofing Attacks against AutonomousDriving Vehicle at High Speed and Long Distance. In ISOC Network and Distributed
System Security Symposium (NDSS), 2025.

[252] T. Sato, J. Yue, N. Chen, N. Wang, and Q. A. Chen. Intriguing Properties of DiffusionModels: An Empirical Study of the Natural Attack Capability in Text-to-Image Gen-erative Models. In Conference on Computer Vision and Pattern Recognition (CVPR),2024.
[253] A. Schrijver. The simplex method. In Theory of Linear and Integer Programming,pages 129–150, New York, 1998. John Wiley & Sons.
[254] R. Sell, M. Leier, A. Rassõlkin, and J.-P. Ernits. Self-driving car iseauto for researchand education. In 2018 19th International Conference on Research and Education

in Mechatronics (REM), pages 111–116, 2018.
[255] R. Sell, E. Malayjerdi, M.Malayjerdi, and B. C. Baykara. Safety toolkit for automatedvehicle shuttle -practical implementation of digital twin. In 2022 International Con-

ference on Connected Vehicle and Expo (ICCVE), pages 1–6, 2022.
[256] R. Sell, M. Malayjerdi, H. Pikner, R. Razdan, E. Malayjerdi, and M. Bellone. Open-source level 4 autonomous shuttle for last - mile mobility. In 2024 IEEE 29th In-

ternational Conference on Emerging Technologies and Factory Automation (ETFA),pages 01–06, 2024.
[257] V. Sembera. Iso/sae 21434: Setting the standard for connected cars’ cybersecurity.

Trend Micro Research, White Paper, 2020.
[258] E. Seo, H. M. Song, and H. K. Kim. Gids: Gan based intrusion detection system forin-vehicle network. In 2018 16th Annual Conference on Privacy, Security and Trust

(PST), pages 1–6, Aug 2018.
[259] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physicalsimulation for autonomous vehicles. InM. Hutter and R. Siegwart, editors, Field and

Service Robotics, pages 621–635, Cham, 2018. Springer International Publishing.
[260] M. Shahin, M. R. Heidari Iman, M. Kaushik, R. Sharma, T. Ghasempouri, and D. Dra-heim. Exploring factors in a crossroad dataset using cluster-based association rulemining. Procedia Computer Science, 2022.
[261] A. Shameli-Sendi, N. Ezzati-Jivan, M. Jabbarifar, and M. Dagenais. Intrusion Re-sponse Systems: Survey and Taxonomy. International Journal Computer Science

Network Security (IJCSNS), 12, 2012.
[262] J. Shen, Y. Luo, Z. Wan, and Q. A. Chen. Lateral-direction localization attack in high-level autonomous driving: Domain-specific defense opportunity via lane detection,2023.
[263] J. Shen, N. Wang, Z. Wan, Y. Luo, T. Sato, Z. Hu, X. Zhang, S. Guo, Z. Zhong, K. Li,Z. Zhao, C. Qiao, and Q. A. Chen. Sok: On the semantic ai security in autonomousdriving, 2024.

194

[264] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen. Drift with devil: Security of multi-sensorfusion based localization in high-level autonomous driving under GPS spoofing. Pro-
ceedings of the 29th USENIX Security Symposium, pages 931–948, 2020.

[265] L. Sherry, J. Shortle, G. Donohue, B. Berlin, and J. West. Autonomous systemsdesign, testing, and deployment: Lessons learned from the deployment of an au-tonomous shuttle bus. In 2020 Integrated Communications Navigation and Surveil-
lance Conference (ICNS), pages 5D1–1–5D1–14, 2020.

[266] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim. Rocking droneswith intentional sound noise on gyroscopic sensors. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 881–896, Washington, D.C., Aug. 2015. USENIXAssociation.

[267] D. Song, K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramèr, A. Prakash,and T. Kohno. Physical adversarial examples for object detectors. In 12th USENIX
Workshop on Offensive Technologies (WOOT 18), Baltimore, MD, Aug. 2018. USENIXAssociation.

[268] H. M. Song, J. Woo, and H. K. Kim. In-vehicle network intrusion detection usingdeep convolutional neural network. Vehicular Communications, 21:100198, 2020.
[269] S. Souissi, Serhrouchni, L. Sliman, and B. Charroux. Security Incident Response: To-wards a Novel Decision-Making System. In A. M. Madureira, A. Abraham, D. Gam-boa, and P. Novais, editors, Intelligent Systems Design and Applications. SpringerInternational Publishing, 2017.
[270] N. Stakhanova, S. Basu, and J. Wong. A taxonomy of intrusion response system.

International Journal of Information and Computer Security, 1:169–184, 2007.
[271] N. Stakhanova, C. Strasburg, S. Basu, and J. S. Wong. Towards cost-sensitive assess-ment of intrusion response selection. Journal of computer security, 20(2-3):169–198, 2012.
[272] C. Strasburg, N. Stakhanova, S. Basu, and J. S. Wong. A framework for cost sensitiveassessment of intrusion response selection. In 2009 33rd Annual IEEE international

computer software and applications conference, volume 1, pages 355–360. IEEE,2009.
[273] J. Sun, Y. Cao, Q. A. Chen, and Z. Morley Mao. Towards robust LiDAR-based percep-tion in autonomous driving: General black-box adversarial sensor attack and coun-termeasures. Proceedings of the 29th USENIX Security Symposium, pages 877–894,2020.
[274] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou,Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger,M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov. Scalabil-ity in perception for autonomous driving: Waymo open dataset. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June2020.
[275] Z. Sun, S. Balakrishnan, L. Su, A. Bhuyan, P. Wang, and C. Qiao. Who Is in Con-trol? Practical Physical Layer Attack and Defense for mmWave-Based Sensing inAutonomous Vehicles. IEEE Transactions on Information Forensics and Security,16:3199–3214, 2021.

195

[276] K. Tam and K. Jones. Cyber-risk assessment for autonomous ships. In 2018 In-
ternational Conference on Cyber Security and Protection of Digital Services (Cyber
Security), pages 1–8, 2018.

[277] K. Tang, J. S. Shen, and Q. A. Chen. Fooling perception via location: A case of region-of-interest attacks on traffic light detection in autonomous driving. NDSSWorkshop
on Automotive and Autonomous Vehicle Security (AutoSec).

[278] M. M. Tani, Jacopo et al. “Duckietown: An Innovative Way to Teach Autonomy.”Alimisis D. and e. Menegatti E. Duckietown: An innovative way to teach autonomy.In Educational Robotics in theMakers Era. Edurobotics 2016. Advances in Intelligent
Systems and Computing 560, pages 104–121. Springer International Publishing AG,2017.

[279] The Waymo Team. Waymo one is now open to every-one in san francisco. https://waymo.com/blog/2024/06/
waymo-one-is-now-open-to-everyone-in-san-francisco, June 2024.Accessed: 2025-04-05.

[280] V. L. Thing and J. Wu. Autonomous vehicle security: A taxonomy of attacks anddefences. In 2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 164–170,2016.

[281] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: automated testing of deep-neural-network-driven autonomous cars. In Proceedings of the 40th International Confer-
ence on Software Engineering, ICSE ’18, page 303–314, New York, NY, USA, 2018.Association for Computing Machinery.

[282] ToyotaInfoTech. Resistant automotive miniature network. Toyota Info Tech, 2024.
[283] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu. Walnut: Waging doubt onthe integrity of mems accelerometers with acoustic injection attacks. In 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), pages 3–18, 2017.
[284] T. Tsai, K. Yang, T. Y. Ho, and Y. Jin. Robust adversarial objects against deep learningmodels. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pages 954–962, 2020.
[285] K.-L. TSUI. An overview of taguchi method and newly developed statistical methodsfor robust design. IIE Transactions, 24(5):44–57, 1992.
[286] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer, and R. Urtasun. Ex-ploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving.(CoRL):1–12, 2021.
[287] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer, and R. Urtasun.Exploring adversarial robustness of multi-sensor perception systems in self driving.In 5th Annual Conference on Robot Learning, 2021.
[288] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer, and R. Urtasun.Exploring adversarial robustness of multi-sensor perception systems in self driving.In A. Faust, D. Hsu, and G. Neumann, editors, Proceedings of the 5th Conference on

196

Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages1013–1024. PMLR, 08–11 Nov 2022.
[289] Y. Tu, Z. Lin, I. Lee, and X. Hei. Injected and delivered: Fabricating implicit controlover actuation systems by spoofing inertial sensors. In 27th USENIX Security Sym-

posium (USENIX Security 18), pages 1545–1562, Baltimore, MD, Aug. 2018. USENIXAssociation.
[290] Y. Tu, V. S. Tida, Z. Pan, and X. Hei. Transduction shield: A low-complexity methodto detect and correct the effects of emi injection attacks on sensors. In Proceed-

ings of the 2021 ACM Asia Conference on Computer and Communications Security,ASIA CCS ’21, page 901–915, New York, NY, USA, 2021. Association for ComputingMachinery.
[291] Turla. Mazda getinfo attack. 2017.
[292] S. Ullah, M. A. Khan, J. Ahmad, S. S. Jamal, Z. e Huma, M. T. Hassan, N. Pitropakis,Arshad, and W. J. Buchanan. HDL-IDS: A Hybrid Deep Learning Architecture forIntrusion Detection in the Internet of Vehicles. Sensors, 22(4), 2022.
[293] S. Ullah, S. Shelly, A. Hassanzadeh, A. Nayak, and K. Hasan. On the Effectivenessof Intrusion Response Systems against Persistent Threats. In 2020 International

Conference on Computing, Networking and Communications (ICNC), pages 415–421,2020.
[294] N. United States National Transportation Safety Board. Investigation of lion airflight 610 and ethiopian airlines flight 302. Safety Recommendation Report NTSB

ASR1901. PDF document, 2019.
[295] Upstream. Upstream’s 2022 global automotive cybersecurity report, 2022.
[296] A. Vahidi, T. Rosenstatter, and N. I. Mowla. Systematic evaluation of automotiveintrusion detection datasets. In Proceedings of the 6th ACM Computer Science in

Cars Symposium, CSCS ’22, New York, NY, USA, 2022. Association for ComputingMachinery.
[297] N. Vinzenz and D. Oka. Integrating fuzz testing into the cyber- security validationstrategy. SAE Technical Paper, 01(0139), 2021.
[298] Z. Wan, J. Shen, J. Chuang, X. Xia, J. Garcia, J. Ma, and Q. A. Chen. Too Afraid toDrive: Systematic Discovery of Semantic DoS Vulnerability in Autonomous DrivingPlanning under Physical-World Attacks. InNetwork and Distributed System Security

(NDSS) Symposium, 2022, April 2022.
[299] B. Wang, Y. Sun, M. Sun, and X. Xu. Game-Theoretic Actor–Critic-Based IntrusionResponse Scheme (GTAC-IRS) for Wireless SDN-Based IoT Networks. IEEE Internet

of Things Journal, 8(3):1830–1845, 2021.
[300] C. Wang, X. Wang, H. Hu, and et al. On the application of cameras used in au-tonomous vehicles. Arch ComputationalMethods in Engineering, 29(5):4319–4339,2022.
[301] D. Wang, C. Li, S. Wen, Q. L. Han, S. Nepal, X. Zhang, and Y. Xiang. Daedalus: Break-ing Nonmaximum Suppression in Object Detection via Adversarial Examples. IEEE

Transactions on Cybernetics, pages 1–14, 2021.
197

[302] J. Wang, A. Liu, Z. Yin, S. Liu, S. Tang, and X. Liu. Dual Attention Suppression At-tack: Generate Adversarial Camouflage in Physical World. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages8561–8570, 2021.

[303] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun.Advsim: Generating safety-critical scenarios for self-driving vehicles. Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[304] P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang. The apolloscape opendataset for autonomous driving and its application. IEEE transactions on pattern
analysis and machine intelligence, 2019.

[305] W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu. I Can See the Light: Attacks onAutonomous Vehicles Using Invisible Lights. Proceedings of the ACM Conference
on Computer and Communications Security, pages 1930–1944, 2021.

[306] Y. Wang, Y. Wang, H. Qin, H. Ji, Y. Zhang, and J. Wang. A Systematic Risk AssessmentFramework of Automotive Cybersecurity. Automotive Innovation, 4(3):253–261,Aug 2021.
[307] B. T. Weinmann, R.P Schmotzle. Tbone. 2021.
[308] N. Weiss, M. Schrötter, and R. Hackenberg. On threat analysis and risk estima-tion of automotive ransomware. In Proceedings of the 3rd ACM Computer Science

in Cars Symposium, CSCS ’19, New York, NY, USA, 2019. Association for ComputingMachinery.
[309] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar,A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays. Argoverse 2: Next gen-eration datasets for self-driving perception and forecasting. In Proceedings of the

Neural Information Processing Systems Track onDatasets and Benchmarks (NeurIPS
Datasets and Benchmarks 2021), 2021.

[310] J. Wiseman. Gps interference map for Põlva, Estonia on january 10,2025. https://gpsjam.org/?lat=58.84802&lon=26.74200&z=5.2&date=
2025-01-10, note = Accessed: 2025-04-15, 2025.

[311] M. Wolf, A. Weimerskirch, and C. Paar. Security in automotive bus systems. In
Proceedings of the workshop on Embedded Security in Cars (ESCAR)’04, 2004.

[312] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf. An agnostic domain specificlanguage for implementing attacks in an automotive use case. In Proceedings of
the 16th International Conference on Availability, Reliability and Security (ARES).ACM Press, 2021.

[313] L. Wouters, E. Marin, T. Ashur, B. Gierlichs, and B. Preneel. Fast, furious and in-secure: Passive keyless entry and start systems in modern supercars. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2019, Issue 3:66–85,2019.

[314] S.Wright. Autonomous cars generatemore than 300 tb of data per year. Tech Blog,Tuxera, Finland, 2021.
198

[315] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao. Trajectory-guided control predictionfor end-to-end autonomous driving: A simple yet strong baseline. InNeurIPS, 2022.
[316] Z.Wu, S. N. Lim, L. S. Davis, and T. Goldstein. Making an Invisibility Cloak: RealWorldAdversarial Attacks onObject Detectors. Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 12349 LNCS:1–17, 2020.

[317] X. Zhu, X. Li, J. Li, Z. Wang, and X. Hu. Fooling thermal infrared pedestrian detectorsin real world using small bulbs. In in AAAI, 2021.
[318] S. Xia, M. Qiu, M. Liu, M. Zhong, and H. Zhao. AI Enhanced Automatic ResponseSystem for Resisting Network Threats. In M. Qiu, editor, Smart Computing and

Communication, pages 221–230, Cham, 2019. Springer International Publishing.
[319] C. Xiao, D. Yang, B. Li, J. Deng, and M. Liu. MeshAdv: Adversarial meshes for visualrecognition. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2019-June:6891–6900, 2019.
[320] C. Xu, W. Ding, W. Lyu, Z. Liu, S. Wang, Y. He, H. Hu, D. Zhao, and B. Li. Safebench:A benchmarking platform for safety evaluation of autonomous vehicles, 2022.
[321] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P. Y. Chen, Y. Wang, and X. Lin.Adversarial T-Shirt! Evading Person Detectors in a Physical World. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12350 LNCS:665–681, 2020.

[322] W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen. Internet of vehiclesin big data era. IEEE/CAA Journal of Automatica Sinica, 5(1):19–35, 2018.
[323] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen, M. Liu, and B. Li. In-visible for both camera and lidar: Security of multi-sensor fusion based perceptionin autonomous driving under physical-world attacks. In IEEE S&P, IEEE, 2021.
[324] C. Yan, W. Xu, and J. Liu. Can you trust autonomous vehicles: Contactless attacksagainst sensors of self-driving vehicle. Def Con, 2016.
[325] K. Yang, T. Tsai, H. Yu, M. Panoff, T.-Y. Ho, and Y. Jin. Robust roadside physical ad-versarial attack against deep learning in lidar perception modules. In Proceedings

of the 2021 ACM Asia Conference on Computer and Communications Security, ASIACCS ’21, page 349–362, New York, NY, USA, 2021. Association for Computing Ma-chinery.
[326] T. Yarygina and C. Otterstad. A Game of Microservices: Automated Intrusion Re-sponse. In S. Bonomi and E. Rivière, editors, Distributed Applications and Interop-

erable Systems, pages 169–177, Cham, 2018. Springer International Publishing.
[327] T. Yoshizawa, D. Singelée, J. T.Muehlberg, S. Delbruel, A. Taherkordi, D. Hughes, andB. Preneel. A survey of security and privacy issues in v2x communication systems.

ACM Comput. Surv., 55(9), Jan. 2023.
[328] M. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowl-

edge and Data Engineering, 2000.
199

[329] D. Zelle, R. Rieke, C. Plappert, C. Krauß, D. Levshun, and A. Chechulin. Sepad – se-curity evaluation platform for autonomous driving. In 2020 28th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing (PDP),pages 413–420, 2020.

[330] W. Zeng, M. Wu, P. Chen, Z. Cao, and S. Xie. Review of shared online hailing andautonomous taxi services. Transportmetrica B: Transport Dynamics, 11(1):486–509,2023.
[331] F. Zhang, H. A. D. E. Kodituwakku, J. W. Hines, and J. Coble. Multilayer data-drivencyber-attack detection system for industrial control systems based on network, sys-tem, and process data. IEEE Transactions on Industrial Informatics, 15(7):4362–4369, 2019.
[332] K. Z. Zhang. Applications and prospects of ai in autonomous cars - take tesla as anexample. In 2nd International Conference on Mechatronic Automation and Electri-

cal Engineering (ICMAEE 2024), volume 2024, pages 355–360, 2024.
[333] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad: Gan-based meta-morphic testing and input validation framework for autonomous driving systems.In Proceedings of the 33rd ACM/IEEE International Conference on Automated Soft-

ware Engineering, ASE ’18, page 132–142, New York, NY, USA, 2018. Association forComputing Machinery.
[334] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao. On adversarial robustnessof trajectory prediction for autonomous vehicles. IEEE/CVF Computer Vision and

Pattern Recognition Conference (CVPR).
[335] Y. Zhang, H. Foroosh, P. David, and B. Gong. CAMOU: Learning physical vehicle cam-ouflages to adversarially attack detectors in the wild. The International Conference

on Learning Representations (ICLR), 2019.
[336] Y. Zhang and K. Rasmussen. Detection of electromagnetic interference attacks onsensor systems. In 2020 IEEE Symposium on Security and Privacy (SP), pages 203–216, 2020.
[337] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen. Seeing isn’t believing:Towards more robust adversarial attack against real world object detectors. Pro-

ceedings of the ACM Conference on Computer and Communications Security, pages1989–2004, 2019.
[338] Zhisheng Hu, Junjie Shen, Shengjian Guo, Xinyang Zhang, Zhenyu Zhong , Qi Al-fred Chen, Kang Li. Pass: A system-driven evaluation platform for autonomousdriving safety and security. In Fourth International Workshop on Automotive and

Autonomous Vehicle Security (AutoSec), 2022.
[339] Z. Zhong, G. Kaiser, and B. Ray. Neural network guided evolutionary fuzzingfor finding traffic violations of autonomous vehicles. IEEE Trans. Softw. Eng.,49(4):1860–1875, Apr. 2023.
[340] S. D. E. C. L. ZhongyuanHau, Kenneth T Co. Object removal attacks on lidar-based 3dobject detectors. In Third International Workshop on Automotive and Autonomous

Vehicle Security (AutoSec), 2021.
200

[341] Y. Zhu, C. Miao, T. Zheng, F. Hajiaghajani, L. Su, and C. Qiao. Can We Use Arbi-trary Objects to Attack LiDAR Perception in Autonomous Driving? Proceedings of
the ACM Conference on Computer and Communications Security, pages 1945–1960,2021.

[342] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley. RRE: A Game-TheoreticIntrusion Response and Recovery Engine. IEEE Transactions on Parallel and Dis-
tributed Systems, 25(2):395–406, 2014.

[343] Zoox. The zoox robotaxi rolls into san francisco. https://zoox.com/journal/
zoox-robotaxi-in-san-francisco, Nov. 2024. Accessed: 2025-01-15.

201

List of Figures

1 Attacks on AV ride-hailing systems . 142 GNSS Jamming Activity within the Baltic States 10th January 2025 [310]. . . . 153 SAE J3016 Levels of Driving Automation [246]. 194 Perception Sensor Layout of Autonomous Vehicle for Public Transport [87]. 205 Autonomous Driving Architecture [244] . 216 Autoware Architecture [4] . 227 Autonomous Vehicle Technology Stack - Autoware [143] . 228 Apollo 10.0 Architecture [15] . 239 iseAuto autonomous shuttle [185] . 2310 Autonomous vehicle high-level functional architecture [256] 2411 ROS Graph of AV Shuttle During Overtaking Scenario . 2512 Intelligent driving software stack structure showingROSnodes/topics com-munication between essential elements. 2613 Localisation Algorithm Flow within AD System. 2614 OpenPlanner 2.5 Architecture [57] . 2715 Abstract Local Planning Algorithm Flow within AD System. 2716 How open-planner generates different trajectory to pass an object 2817 Architecture of the testing platform . 4818 Overtaking Scenario and parameters . 4819 Flow-graph of how each scenario is processed in the simulation platform . . 5020 Attack scheme . 5221 Safety results of 15 distinct scenarios . 5422 A Brake on Passing Lane safety violation . 5523 Test Results based on NPC Speed . 5524 Results based on Initial Relative Distance to NPC . 5625 Performance Results Comparing Cyber Vs Safety Test Cases. 5726 Scenario 10 - Cyber Attack Test Cases - Parameter Sensitivity 5827 Scenario 2 - Cyber Attack Test Cases - Parameter Sensitivity. 5928 Real-World AV Test - Safety Test Case . 6029 Real-World AV Test - Cyber Attack Test Case . 6130 Threat Model . 6431 Example of an overtaking simulation in the low-fidelity simulator, a) start-ing point of the overtaking b) middle of the mission, AV is on the oppositelane reaching the NPC c) AV cuts in . 6532 Overtaking Scenario and parameters . 6633 2D representation of the simulation of each test group. a) a successfulsafety test, b) a lateral attack case that led to a brake violation, c) a lon-gitudinal attack case that experienced a collision, and d) a message timedelay that causes a collision. for the attack cases a vertical line shows thestart and stop point of the attack . 6734 All simulation result based on the proposed safety criteria 6835 High-level architecture of Steering Angle Sensor Manipulation within ADSystem. 7336 Conceptualization of our approach, from attack to backstepping. 7437 Steering angle sensor attack. 7538 Game-engine view of three simulated scenarios representing the attackoccurrence place during the mission; 1) Straight-line 2) Overtake 3) Inter-section. 77
202

39 Flow-graph of how each scenario is processed in the simulation platform.. . 7840 Safety violation of simulated scenarios.. 8441 Correlation coefficients between violation metrics (horizontal axis) andnoise levels ([0, 0.01, 0.05, 0.1, 0.2]) for each scenario (vertical axis). Thevalues indicate the strength of the relationship between the likelihood ofeach violation and changes in noise levels. 8542 ComprehensiveADAssuremethodology overview that illustrates each stepof the process, from data collection to assertion creation, review of asser-tions, and debugging. 9043 Phases for Assertion Generation . 9044 The threat model used for conducting the attack cases. 9445 Lateral position offset attack vehicle parameters. 9646 Longitudinal position offset attack vehicle parameters. 9747 Delay message attack vehicle parameters.. 9848 On the left side, the current vehicle system shares attack information withthe VSOC but often has to wait for extended periods to receive necessarysecurity patches and updates. This waiting period puts the vehicle in amalicious status (red, diagonal lines). On the right side, the vehicle canselect and implement security solutions to avoid the long waiting time forsecurity patches and updates and return to normal status (green, crossdiagonal lines). 9949 Reference vehicle architecture with possible attack surfaces (orange). 10150 Classification of intrusion results and examples of attacks for each possibleintrusion result. 10251 Internal architecture of REACT. 11352 Evaluation of the response benefit and cost for Scenario 1 (left) and Sce-nario 2 (right) using LPwithmaximumbenefit (top), LPwithminimum cost(middle), and adapted SAW (bottom) . 11953 Evaluation of consumed time for response selection using the three selec-tion algorithms for both scenarios . 12054 Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bot-tom) for the responses selected over five iterations using the three se-lection algorithms, assuming the responses were consistently consideredsuccessful. 12155 Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bot-tom) for the responses selected over five iterations using the three se-lection algorithms, assuming the responses were consistently consideredunsuccessful. 12156 iseAuto Public transport AV Shuttle [16] . 12757 MIT DuckieTown Self-Driving TestBed . 13158 Scenario 1 - Projected Road Markings Attack . 13559 Scenario 2 - Tampered Lane Marking Attack . 13660 Extended Manipulated Lane Marking . 13661 Scenario 7 - DDoS Teleoperation Network . 13962 Scenario 8 - Smoke machine sensor perturbation . 14063 ADSecLang: scenario-based abstraction view. 14164 Attack Taxonomy - Detailed Description. 14165 ADSecLang Cybersecurity Testing Workflow - Camera Attack. 143
203

66 Camera view of attack case 1: before (a) and after (b) the implementationof the Strong Light Exposure Attack. 14767 Camera view of test case 2: (a) before the attack, (b) the generated laserbeam, and (c) after applying the attack. 14968 High-level Architecture all Components . 15169 FuzzSense: High-level Architecture of Fuzzing Framework. 15270 Fuzzing Mask for LiDAR.. 15471 Fuzzing Mask applied to the right edge of lane . 15672 Fuzzing Mask applied to central location of vehicle trajectory 15773 Top down view of vehicle with fuzzing mask affecting planned navigationof the vehicle . 15774 ADSecData Platform - Data Generation Process. 15975 Attack Case 1 Threat Model. 16676 Attack Case 2 & 3 Threat Model. 16677 Architecture of the testing platform. 168

204

List of Tables

1 Autonomous Vehicle Sensors . 242 Local-Planning Module. 283 Cyber Threats to camera perception and localisation . 314 Cyber Threats to LiDAR perception and localisation. 345 Cyber Threats to SONAR & RADAR . 366 Cyber Threats & IMU Sensor . 367 Cyber Threats to Sensor Fusion . 378 Cyber Threats to AI System Components . 399 Autonomous Driving Software Simulation Platforms. 4010 Autonomous Driving Cybersecurity Security Testing Platforms 4211 Fuzzing Tools for Autonomous Driving . 4412 Target scenarios definition. 4913 Safety Evaluation Criteria . 4914 Taguchi L’9 matrix for study of factor influence. 5115 Summary of the safety simulation. 5316 Results of Cyber Attack applied to Scenario 10 . 5617 Results of Cyber Attack applied to Scenario 2 . 5718 Result of the 3 real-world test cases . 5819 Target scenarios definition. 6620 Safety Evaluation Criteria . 6621 Summary of the Safety Simulation . 6822 Summary of the Attack Case 1: Position Offset Attack Simulation 6923 Summary of the Attack Case 1: Position Offset Longitudinal Deviation Sim-ulation . 7024 Summary of the Attack Case 2: White-Box Delay Simulation 7125 Safety Evaluation Criteria . 7826 Performance Evaluation Criteria. 7927 Summary of the Safety and Performance Evaluation - Straight Line Sce-nario. The first line is our baseline path where no attack was applied. 8028 Summary of the Safety and Performance Evaluation - Overtake Scenario.No attack was carried out in the baseline experiment. 8129 Summary of the Safety and Performance Evaluation - Intersection Sce-nario. No attack was carried out in the baseline experiment. 8230 AD System Data. 9431 ADAssure Assertion Generation phase results. 9432 Classification of generic responses to intrusion results. 10433 Comparison of the different response selection methods . 11034 IDS-related information and vehicle state parameters for both evaluationscenarios. 11735 Memory consumption of the IRS in kB using static evaluation. 12036 Impact of the velocity for the evaluated scenarios, using Equation 3.. 12337 AV Shuttles for Public Transportation [121]. 12738 Examples of Cyber Attacks on Connected Vehicles . 12839 Examples of Cyber Attacks on AVs . 12940 Comparison of Test Bed Architectures to support Cybersecurity 13041 Comparison of Test Bed Architectures to support AV Shuttle cybersecurityTest Cases . 13142 Feature Comparison of Test Bed and iseAuto AV Shuttle . 132
205

43 Security Test Case Scenarios . 13344 Evaluation result of attack case 1. 14745 Evaluation result of attack case 2. 14946 Requirements for ADSecData . 165

206

Acknowledgments
This research has been financially supported by European commission projects ECHO (No 830943), CitySCAPE (No 883321), IRIS (No 101021727), MariCybERA (Agreement No.: 952360) and also Erasmus + internship.I would firstly like to thank my opponents Prof. Dr. Iain Phillips (Loughbrough Uni-versity) and Asst. Prof. Monowar Hasan (Washington State University) for reviewing my thesis and attending the defence. I would like to thank Prof. Dr. Dirk Draheim for provid-ing the internal review and being on the defence committee. I would like to thank Assoc. Prof. Dr. Sven Nõmm for agreeing to be the defence committee chair. I would further like to thank Kristi Ainen, Elena Vaarmets and Katri Kadakas for the administrative support to publish the thesis dissertation and organise the defence.I would like to express my deepest gratitude to my supervisors Prof. Dr. Olaf Maennel, Dr.Ing. Mohammad Hamad and Prof. Dr. Raivo Sell. I expressly like to thank Prof. Dr. Olaf Maennel who has provided dedicated support and encouragement over the last 6 years. I would like to thank Prof. Dr. Sebastian Steinhorst and the staff and students of the Chair for Embedded Systems and Internet of Things at Technical University of Munich for hosting me for the last 2 years. I would further like to thank Dr.Ing. Mohammad Hamad for providing me the opportunity to collaborate with his research group and for being a great role model for young cybersecurity academics. Special thanks to Mohsen Malayjerdi and Mauro Bellone for the academic collaboration and their consistent support of my research. I would further like to thank Prof. Dr. Rain Ottis for his continual support and guidance throughout my PhD and career at TalTech.Lastly, I would like to thank my family, my uncle Brett for always supporting me, my mother for her unconditional love and my wife Vanessa for always being there for me, for being the sunshine in my day and her unconditional love.

207

Abstract
Cybersecurity Testing and Attack Propagation Analysis of Autonomous
Driving Software

Autonomous driving software needs to be robust and resilient to cyber attacks to en-sure the safety of passengers and road users. Software for highly automated vehicles inwhich driving actions are taken and supervised by software, are in developmental stage.Software developers and control system designers must contend with the complexity ofmassive parallel real-time system operations in a densely connected system-of-system en-vironment. As the software architecture of autonomous driving is developing, there area preponderance of challenges for cybersecurity. Software developers and control sys-tem designers require an understanding as to how cyber attacks discernibly propagatethroughout the autonomous driving architecture and affect the decision-making of thevehicle. Additionally, there is a need to explore methods for fingerprinting the effects ofcyber attacks and debugging failures of the autonomy caused by these attacks to pinpointvulnerabilities within the software. As autonomous driving systems are a dynamic, real-time system, it is imperative to explore options for intrusion response to cyber attacks, tomitigate or deter risks to safety. Furthermore, the development of testing tools to facili-tate agile and repeatable testing is of great importance. The objective of this thesis is todevelop new methods for cybersecurity testing of autonomous driving software. There-fore, new approaches to testing and evaluation, debugging, intrusion response and designof testing tools.
The thesis starts by developing a combined safety and cybersecurity testing method-ology. The methodology incorporates safety metrics (distance-to-collision, acceleration,braking, steering etc.), parameters for cybersecurity (attack weighting/density etc.) andsafety validation analysis to discern the effect to the autonomous driving software of cy-ber attacks. Utilising this approach to conduct experiments using a testing tool-chain,consisting of a digital-twin simulation testbed and a real-world testbed, vulnerabilities ofthe planning module for navigation and the localisation module used in a real-world au-tonomous driving system were found. Scenario-based testing, which focuses on an over-taking scenario, revealed the planning module was vulnerable to sensor manipulation at-tacks of the LiDAR and localisation sensors during the cut-in process, where the targetvehicle is executing the overtake of the passing vehicle. An attack triggered during thecut-in induces decision-making uncertainty which results in erratic, attempted overtak-ing and side collision to the passing vehicle. Electromagnetic interference attacks werealso conducted within a purpose-built hybrid testbed environment consisting of actua-tion processes and the high-level autonomous driving software. The evaluation of theelectromagnetic interference attacks demonstrated that an attack on the steering actua-tion sensor, with minimal noise, could propagate through the software architecture andexploit weakness in the sub-modules of the path planning software, consisting of trajec-tory generation and waypoint following. Attacks to the localisation software which wereconducted in a digital-twin simulation environment and also included a dataset from real-world GPS spoofing against an operational autonomous vehicle shuttle operating in thecity, revealed vulnerabilities in the design of the localisation module. During a GPS spoof-ing attack the autonomous vehicle shuttle lost localisation, and the localisation modulewas unable to hold a position in relative proximity on the map and this resulted in there-plotting of sub-optimal and unsafe trajectories. From this attack, the thesis developed,ADAssure, a methodology to debug autonomous driving software that utilises backstep-ping to pinpoint the root cause of failure. The ADAssure method comprises analysing

208

the vehicle dynamics data (steering angel, yaw angle, yaw derivative, acceleration etc.) incomparisonwith sensing data, to develop assertions of the system under attack. The eval-uation, using diverse localisation attacks, found three assertions consisting of displace-ment of yaw angle within a time threshold that challenges the physical limitations of thesteering model, multiple trajectory transitions with a steering angle of 180 degrees anddeviation of altitude and position co-variance which result in a spike in velocity. These as-sertions can be used within the domain application of an autonomous vehicle shuttle forpublic transportation, to detect vehicle dynamic changes characteristic of cyber activity.The thesis introduces REACT, a proposed architecture for intrusion response in automo-tive systems. REACT contains methodology for response evaluation, and various responseselectionmethods. We evaluate REACT on two diverse attack cases of an adversarial sam-ple targeted at the camera sensor and information disclosure of the infotainment system.The results demonstrates that the algorithms used for optimal selection of response hadsub-optimal performance for automated intrusion response in automotive, however, pre-sented encouraging results for proposing follow-up responses to vehicle security opera-tions centre for further action. The thesis further contributes tools for autonomous driv-ing cybersecurity testing. FuzzSense and ADSecLang are an initial proof-of-concept toolsfor fuzzing and structured cybersecurity testing. FuzzSense is a conceptual architecturefor fuzzing diverse layers of the autonomous driving software, the simulator, the drivingscenario and the sensor data. ADSecLang provides a domain specific language for cy-bersecurity testing of autonomous driving software. The results of the experimentationfor FuzzSense, fuzzing LiDAR sensing data, found vulnerabilities in the Autoware.Universesoftware. ADSecLang developed cyber attack scenarios for manipulation of camera sens-ing which revealed vulnerabilities in the camera-sensing based perception module de-signed for Apollo software. To further contribute to the community, the data of all ofthe experiments conducted in this research are made available in ADSecData Platform, aconceptual community data sharing environment developed in this thesis to enhance au-tonomous driving cybersecurity testing and product development. This thesis contributesnumerous diverse testing methods and validates their utility through experimentation ona real-world, operational vehicle.

209

Kokkuvõte
Autonoomse sõiduki juhtimistarkvara küberturvalisuse testimine ja rün-
nakute leviku analüüs
Autonoomse sõiduki juhtimistarkvara peab olema vastupidav küberrünnakutele, et tagada reisijate ja liiklejate ohutus. Tarkvara autonoomsetele sõidukitele, mille juhtimistoimin-guid teostab ja kontrollib tarkvara, on arendusjärgus. Insenerid peavad mõistma, kuidas küberrünnakud mõjutavad autonoomsete sõidukite tarkvara. Kuna autonoomsete sõidukite tarkvara arhitektuur on arengujärgus, siis on palju küberturvalisusega seotud väljakutsed. Tarkvaraarendajad ja juhtimissüsteemide disainerid peavad mõistma, kuidas küberrünnakutega kaasnevad mõjud levivad üle kogu arhitektuuri ja mõjutavad sõiduki otsuste tegemist. Lisaks, on vaja uurida meetodeid küberrünnakute mõjude hindamiseks ja nendest rünnakutest põhjustatud tõrgetest taastumiseks, et teha kindlaks tarkvara haavatavused. Kuna autonoomne sõiduki juhtimistarkvara on dünaamiline reaalajas tegutsev süsteem, on hädavajalik uurida võimalusi küberrünnakutele reageerimiseks, et leevendada või ära hoida ohutusega seotud riske. Lisaks on väga oluline testimisvahendite väljatöötamine, et hõlbustada testimist. Käesoleva lõputöö eesmärgiks on välja töötada uued meetodid autonoomse sõiduki juhtimistarkvara küberturvalisuse testimiseks. See sisaldab uusi lähenemisviise testimisele ja hindamisele, rünnakutele reageerimisele ja testimisvahendite disainile. Lõputöö algab kombineeritud ohutuse ja küberturvalisuse testimise metoodika väljatöötamisest. Metoodika sisaldab ohutusmõõdikuid, küberturvalisuse parameetreid ja ohutuse valideerimise analüüsi, et kindlaks teha küberrünnakute mõju autonoomse sõiduki juhtimistarkvarale. Kasutades seda lähenemisviisi eksperimentide läbiviimiseks testimisprotsessis, mis koosneb digitaalse kaksiku simulatsiooni keskkonnast ja reaalse maailma simulatsiooni keskkonnast, leiti haavatavused planeerimismoodulis ja lokaliseerimismoodulis. Stsenaariumipõhine testimine, mis keskendub möödasõidu stsenaariumile, näitas, et planeerimismoodul oli haavatav anduri manipulatsioonile. Anduri manipulatsioon põhjustab autonoomse sõiduki avarii. EMI rünnakuid testiti ka hübriid-testkeskkonnas. EMI rünnakute analüüs näitas, et planeerimismoodulil olid haavatavused. Rünnakud lokaliseerimistarkvarale, paljastasid haavatavused lokaliseerimismooduli disainis. GPS-signaali segamise rünnaku ajal kaotas autonoomne sõiduk GPS asukoha andmed. Sellest rünnakust lähtudes töötati välja ADAssure metoodika, mis kasutab tõrke algpõhjuse väljaselgitamiseks "alt üles" meetodit. ADAssure’i meetod hõlmab sõiduki andmete analüüsi, et töötada välja reeglid rünnatava süsteemi kohta. GPS-signaali segamise rünnaku analüüsi kaudu leiti 3 reeglit. Reegleid saab kasutada sõiduki turvalisemaks muutmiseks. Lõputöö tutvustab REACT-i - arhitektuuri küberintsidentidele reageerimiseks. REACT sisaldab küberintsidentidele reageerimise vastuse hindamise metoodikat. Hindame REACT-i, kasutades kahte rünnaku stsenaariumi. Tulemused näitavad, et REACT-i arhitektuuri kasutamine on kasulik. Lõputöö tutvustab kahte tööriista - FuzzSense ja ADSecLang - küberturvalisuse testimiseks. See lõputöö annab panuse arvukatesse erinevatesse testimismeetoditesse ja kinnitab nende kasulikkust.

210

Appendix I

Paper I
A. Roberts, L. Teply, M. Bellone, M.Pese, O. Maennel, M. Hamad, and S. Steinhorst. Fuz-zsense: Towards a modular fuzzing framework for autonomous driving software. In arXiv,2025.

211

FuzzSense: Towards A Modular Fuzzing
Framework for Autonomous Driving Software

Andrew Roberts∗
∗ FinEst Centre for Smart Cities,

Tallinn University of Technology

Lorenz Teply, Mohammad Hamad, Sebastian Steinhorst†
†Department of Computer Engineering,

Technical University of Munich

Mert D. Pesé‡
‡School of Computing,
Clemson University

Olaf Maennel§
§School of Computer and Mathematical Sciences,

The University of Adelaide

Abstract—Fuzz testing to find semantic control vulnerabilities
is an essential activity to evaluate the robustness of autonomous
driving (AD) software. Whilst there is a preponderance of
disparate fuzzing tools that target different parts of the test
environment, such as the scenario, sensors, and vehicle dynamics,
there is a lack of fuzzing strategies that ensemble these fuzzers
to enable concurrent fuzzing, utilizing diverse techniques and
targets. This research proposes FuzzSense, a modular, black-
box, mutation-based fuzzing framework that is architected to
ensemble diverse AD fuzzing tools. To validate the utility of
FuzzSense, a LiDAR sensor fuzzer was developed as a plug-
in, and the fuzzer was implemented in the new AD simulation
platform AWSIM and Autoware.Universe AD software platform.
The results demonstrated that FuzzSense was able to find vulner-
abilities in the new Autoware.Universe software. We contribute to
FuzzSense open-source with the aim of initiating a conversation
in the community on the design of AD-specific fuzzers and the
establishment of a community fuzzing framework to better target
the diverse technology base of autonomous vehicles.

I. INTRODUCTION

Fuzz testing of autonomous driving (AD) software aims
to use unsanitized and invalid input to trigger exceptional
or abnormal behavior of the driving logic. AD fuzzers are
designed in a disparate manner, seeding input from either
the sensor data, vehicle dynamics data, scenario and simu-
lator configuration. EnFuzz [1] demonstrated that a collective
framework could ensemble diverse fuzzers exhibiting different
fuzzing techniques to obtain deeper penetration of one specific
type of target, in this instance, application software. As the
architecture of AD software relies on a mixture of different
sensor technologies and data sources, the innovation required
of ensemble fuzzing for AD software is that the framework
must be extensible to allow different fuzzers for different
targets and target groups. Our idea with this research is to
explore such a concept as an ensemble fuzzing framework
for AD software and present our ideas on how this could
be architected. To this end, we present FuzzSense (Fig. 1),
a conceptual architecture based on a modular, black-box,
mutation-based fuzzing framework.

The architecture of FuzzSense is envisioned to integrate
within the AD software simulation environment (CARLA,
AWSIM, Apollo), allowing diverse fuzzing tools as plug-ins to
generate test cases, collect output data in a seed corpus, and

mutate new inputs. Our motivation in presenting this work
is to provoke discussion within the community on how AD
systems are fuzzed, establish community efforts for fuzzing
and to gather initial feedback on FuzzSense and understand
potential improvements on the foundations of the design of the
framework. This work is not a benchmarking study or a sta-
tistical evaluation of fuzzing performance, as the motivation is
purely to understand how the design of an overarching fuzzing
framework for AD software may be achieved. Therefore, to
clearly state the contributions of this work, we have focused
on the development of the initial concept of the AD ensemble
fuzzing framework, developed source code, and conducted an
initial test case.

Fig. 1. High-level Architecture all Components

At a more detailed level, our contributions are listed as the
following:

• We present FuzzSense, an ensemble fuzzing framework
for AD software.

• We develop a sensor fuzzing plugin for FuzzSense for the
LiDAR sensor from reverse engineering LiDAR sensor
configurations and applied it within AWSIM, which uses
more advanced LiDAR representation technology (Rings)
than popularly used CARLA.

• We demonstrate an initial test case of a FuzzSense
plug-in to find vulnerabilities in state-of-the-art Auto-
ware.Universe software.

• We provide FuzzSense open-source to the community to
utilize in fuzzing testing/research [FuzzSense].

1

ar
X

iv
:2

50
4.

10
71

7v
1

 [
cs

.C
R

]
 1

4
A

pr
 2

02
5

Fig. 2. FuzzSense: High-level Architecture of Fuzzing Framework

II. FUZZSENSE

FuzzSense involves the following key components: the
fuzzing broker, the fuzzing environment, and the repository.
The interactions of these key components with the ADS and
simulator are displayed in Fig. 2.

A. Fuzzing Broker

The Fuzzing Broker is the central part of the FuzzSense
framework, acting as an intermediary layer, facilitating com-
munication between the simulator, ADS, and fuzzing environ-
ment. The fuzzing broker has full control over the exchanged
sensor data and listens to data, such as steering commands.
While the Fuzzing broker was described as an intermediary for
the whole framework, it additionally functions as a controller,
initiating and terminating the operations in the connected Sim-
ulator and ADS. Depending on the used Fuzzers, Simulator,
and ADS, the Fuzzing Broker transforms the sensor data to
the required formats of the endpoints.

B. Fuzzing Environment

The Fuzzing Environment is the collection of the compo-
nents responsible for fuzzing and creating scenarios, manip-
ulating the sensor data, interpreting the results, and mutating
parameters. This continues the idea of the modular architecture
of the fuzzing framework. It also allows for the decomposition
of other integrated modules, as the Mutator is not required to
be a part of the fuzzers. The Fuzzing Environment contains
the following modules: orchestrator, mutator, scenario fuzzer,
sensor fuzzer/s, and oracle and evaluation.

a) Orchestrator:: The Fuzzing Environment is a compo-
sition of diverse components with unique tasks. The role of
the orchestrator is to provide a central management function
to ensemble these diverse components to achieve the task of
fuzzing the selected targets. The idea of a fuzzing orchestrator
performing a central management role was inspired by EnFuzz
[1], which uses a similar design to integrate and manage
diverse fuzzing modules using diverse techniques. The Orches-
trator possesses the intelligence in the Fuzzing environment.
This is reached by always knowing the current status of the

fuzzing campaign and its iterations, therefore, it can start
fuzzing iterations, telling each component (Fuzzers, Oracle,
Mutators, Fuzzing Broker) when they should perform which of
their tasks, monitor the components to understand their status
to be able to efficiently start the next step with the required
components. This requires the Orchestrator to use adapters to
communicate to the APIs of the different fuzzing modules. As
such, no inter-communication is required for different fuzzing
modules; hence, this communication is managed centrally by
the Orchestrator. The benefit of central management is that
expected new fuzzing modules can be integrated in less time
and with less complexity. Further, it even allows decoupling
the mutation of parameters and the fuzzers where they are
processed.

b) Mutator:: The Mutator creates the parameters utilized
by the scenario and sensor fuzzing modules. In the first round/s
the Mutator is providing the fuzzers with the seeds but does
no actual mutation on them. In this architecture, the Mutator
is extracted from the scenario and sensor fuzzers. The aim
is to allow the combination of different mutation algorithms
and fuzzers. Furthermore, it allows a closer synchronization
between the mutation of parameters when using multiple
fuzzers. For the proof of concept, the mutation is a brute-
force/grid search iteration through parameters, where limits are
applied and derived from logical boundaries like the perception
distance of the sensors.

c) Scenario Fuzzer:: Scenario fuzzers use parameters
of the driving scenario as the seed pool. These can include
weather, pedestrians, and other vehicles. Mutations can be
built from the mission, weather, and scenario actors. Prominent
scenario fuzzers include only the distinct module creating the
scenarios based on parameters given by the Mutator, which is
called the Scenario Fuzzer in the FuzzSense architecture.

d) Sensor Data Fuzzers:: Autonomous vehicles can use
a range of sensor technologies and different hardware and
software configurations and can be positioned at different
locations on the vehicle. In general, the sensor data of any
of those sensors could be fuzzed. The idea motivating our
ensemble fuzzing design is that a dedicated sensor data fuzzing
plug-in is responsible for each sensor data stream that should
be fuzzed. The parameters provided by the Mutator can either
be synchronized between several or be mutated individually.

e) Oracle and Evaluation:: The Oracle and the Evalu-
ation are giving further intelligence to the Fuzzing Environ-
ment. The Oracle and Evaluation component is responsible
for creating ground truth, known commonly as the Golden
Run. Afterward, every fuzzing iteration must be checked for
possible findings, and thus, the Mutator must be provided
with an evaluation of the parameters. This framework does
not suggest certain conditions once a finding is detected. The
idea is to set this based on the subject of testing. For instance,
it could be limited to deviations of the trajectory of the Golden
Run or only focus on temporal aspects (speed of the vehicle,
etc.) introduced by the fuzzing.

2

C. Repository

In this architecture the repository enables the Fuzzing
Environment to write logs, store data and dependent on the
communication allow the components to exchange data. When
the modules exchange data using the repository, it allows a
decoupling and a simpler integration of new components, es-
pecially, because the orchestrator is handling the management
centrally and thus modules do not need custom integrations
with all other required in the Fuzzing Environment.

III. SENSOR DATA FUZZING

AD software relies on sensing data for situational awareness
and to inform navigation and motion-planning activities. Fuz-
zSense is designed to apply manipulations to the sensor data
stream before it reaches the downstream AD software. The
initial version of the fuzzer manipulates pixels in the camera
feed or points in the LiDAR feed. The fuzzer is triggered dur-
ing a scenario simulation. For each future scenario, the fuzzing
test case is mutated based on evaluation of the feedback. The
delivery of the manipulation of the sensor data is achieved
through the application of changing or adding data in the data
stream based on the coordinates given by the fuzzing mask.

A. Fuzzing Mask

The fuzzing mask is created based on parameters given
by the sensors and vehicle that are to be tested. For the
camera stream, which can be represented as a matrix with
definitions of each pixel’s coordinates, color, and sometimes
the alpha channel, the fuzzing mask provides a collection of
coordinates for pixels that are changed in the camera stream.
For LiDAR, the same concept is used to add points to the
point cloud, and only the distance is added. Our goal is to
achieve several advantages with this approach. First, the same
mutation strategy for most parameters can be used. Second,
the computation of the next data points to manipulate in the
LiDAR data stream is independent of the actual point cloud
data. This could potentially increase the performance. Third,
by limiting the space of possible manipulations in the search
space, possible mutations of the parameters can be drastically
reduced to the areas of interest (e.g., in front of the vehicle).
Within a point cloud, points can be hidden behind others from
the sensors perspective. The concept with the fuzzing mask
prevents such cases so that no added points are shadowed by
other added points (see Fig. 3).

The fuzzing mask F(Algorithm 1) is defined as a set
of coordinates where the sensor data is manipulated F =
{(xi, yi) | xi ∈ [0,W], yi ∈ [0, H]}. For the camera
sensor, the location of the pixel, and for the LiDAR sensor
corresponds to the coordinates of a perpendicular plane in the
pointcloud where each point is inserted. The third dimension
for LiDAR is provided by the distance parameter between the
LiDAR sensor and the plane. The coordinates are relative to
width, height, and, for 3D data, the center of the plane. For the
camera stream, they are taken from the metadata of the sensor
stream, and for LiDAR, they are preset and could potentially
be mutated.

Fig. 3. Fuzzing Mask for LiDAR.

Algorithm 1 Generate Fuzzing Mask F
Require: rf , σf , X, Y,W,H

1: (σx, σy)← (W ∗ σf , H ∗ σf)
2: rf ←W ∗H ∗ rf
3: x = N (rf , σx, X,W)
4: y = N (rf , σy, Y,H)
5: for i← 0 to rf − 1 do
6: F ← add(x[i], y[i])
7: end for
8: return F

Let rf represent the fuzzing change ratio, defined as rf =
Nc

W×H . Where: Nc is the number of changed data points, W
and H are the width and height of the fuzzing mask matrix in
discrete steps (e.g. pixels for the camera stream). The result is
expressed as a percentage. Then, let σf represent the standard
deviation of the manipulated data points, computed as the
deviation relative to width W and height H . Together, X
and Y are the coordinates of the center of the fuzzing mask
and the means of the standard-deviation. x and y are the
vectors corresponding to the each x and y coordinate vector
respectively. In line 3-4 W and H ensure, that no coordinates
outside of the fuzzing mask are created. Where in line 6 F
is created by column stacking the x and y arrays with the
calculated normal-distributions.

B. Multi-Stage Approach

FuzzSense combines multiple stages during fuzzing. Each
time the fuzzing setup is started, it is called a Fuzzing
Campaign. Each of the scenarios running with different
fuzzing parameters is defined as a Fuzzing Iteration. This
allows to better distinct between phases and to have an easier
understanding of the complete process and architecture. The
aim of this process design choice is that the focus for the
fuzzing campaign can be chosen with more granularity as the
multi-stages allows to provide intelligence to the iterations.
The logic when to exit the inner iteration (sensor fuzzing
iteration) can be set based on the aim of the fuzzing campaign.
This is possible, because the inner and outer iteration (scenario
fuzzing iteration) can be logically separated.

3

1) Fuzzing Campaign: The Fuzzing Campaign defines the
whole duration of the fuzzer running. A Fuzzing Campaign
consists of one or many Fuzzing Iterations. To start a fuzzing
campaign, one or several seeds are required. Each seed con-
tains starting values for each parameter. While there is not
any condition met, which qualifies the end of the campaign,
new scenario fuzzing iterations are started. The campaign also
could be stopped manually. The final step is to stop all required
services and store the results from the fuzzing campaign to
allow further investigations.

2) Fuzzing Iteration: The Fuzzing Iteration defines one sin-
gle scenario run. It starts with the parameter mutation and ends
once the scenario is stopped because of a failure or because
it has successfully finished. The fuzzing of every single data
frame is not called iteration. A here defined Fuzzing Iteration
includes all those manipulated sensor data frames throughout
the whole scenario until it finishes or fails with a finding.
As the main focus of the fuzzing is on the sensor data, the
mutation for the scenario parameters is not performed in every
iteration. Thus, the same scenario is present throughout several
iterations. To distinguish also between those two, there can
be Scenario Fuzzing Iterations and Sensor Fuzzing Iterations.
One Scenario Fuzzing Iteration consists of one or many Sensor
Fuzzing Iterations.

a) Scenario Fuzzing Iteration: The ADS of the AV must
act within a scenario to allow relations to its intended real-
world use. A scenario defines not only the ego-vehicle itself
but also the road, traffic signs, and signals, road conditions,
environment, other actors, including their behavior, and the
weather conditions. The Scenario Fuzzing Iteration is the outer
iteration and contains all Sensor Fuzzing Iterations in the same
scenario. It contains the following steps:

Step 1:Mutate Scenario Parameters
Step 2:Create a Scenario and set it up in the simulator and

ADS
Step 3:Create Golden Run
Step 4:Start Sensor Fuzzing Iterations

b) Sensor Fuzzing Iteration: Within the same Scenario
Fuzzing Iteration, the parameters for the Fuzzing Mask should
not be the same twice. However, within a new Scenario
Fuzzing Iteration, the same parameters can be used again.
Each sensor fuzzer takes the original sensor data from the
simulator and applies manipulations to the data stream before
it reaches the ADS. Those manipulations are single pixels in
the camera feed or points in the LiDAR feed. In the current
state, within one run, the planned drive of the vehicle, no
mutations on the parameters are performed. This means the
same fuzzing masks are applied to the data streams from
the start to the end of the drive. The mutator is only active
between runs. Therefore, compared to a plain simulation, the
only computational overhead during a running simulation is
the rerouting and manipulation of the sensor data. It contains
the following steps:

Step 1:Mutate Sensor Parameters
Step 2:Set scenario up in simulator and ADS
Step 3:Create Fuzzing Masks

Step 4:Start scenario and manipulate sensor data streams

IV. EXPERIMENT & RESULTS

A. Experimental Setup

The evaluation of FuzzSense is conducted in AWSIM, a
high-fidelity, digital-twin simulation environment. The target
AD system uses the Autoware.Universe software framework.
As this instantiation of the AD software uses the LiDAR sensor
for perception and localisation, the sensor fuzzing module is
configured to fuzz the LiDAR sensor. The evaluation was
conducted on a system running Ubuntu 22.04.03 LTS with
1 TB of storage, 32 GB of CPU memory, 10 GB of GPU
memory, a 12th Gen Intel® Core™ i7-12700KF processor,
and a GeForce RTX 3080 Lite Hash Rate graphics card.

B. Results & Discussion

The driving scenario consists of a planned navigation in an
urban driving environment. We selected an urban environment
since attacks can cause more severe effects within a congested
operational driving domain. As the vehicle navigates through
its planned trajectory, the sensor fuzzing plug-in of FuzzSense
initiates its fuzzing mask, manipulating the parameters of
the LiDAR 3D geometry. For this set of experiments, the
parameters were randomly set at x (0.4),y (0.5), the distance
of the fuzzed LiDAR points (30m), and the intensity 0.1. and
dispersion (width 100, height 60). The experiments mutated
the location and dispersion parameters. The fuzzing broker
is fuzzing every frame. In the simulation, the environment
exhibits a performance of time of approx. 30 frames per second
or 33 milliseconds. Fig. 4 displays the initiation of the fuzzing
mask (the yellow box is used for identification and does not
represent the full mask) to the driving simulation. The fuzzing
mask is applied at different distances from the vehicle and
different locations within the environment. As shown in Fig. 4,
the fuzzing mask is located at an approaching distance to the
vehicle of approx. 30 meters outside the lane does not produce
any unsafe changes in the vehicle the vehicle’s behavior.

Fig. 4. Fuzzing Mask applied to the right edge of lane

Fig. 5 displays the movement of the fuzzing mask to a
more central location in the driving environment. The fuzzing

4

parameters for amount and dispersion are the same as Fig. 4
in both fuzzing iterations. The parameter for the distance is
the same for both. The affect of the fuzzing mask displayed

Fig. 5. Fuzzing Mask applied to central location of vehicle trajectory

in Fig. 5, is that the vehicle detects the fuzzed LiDAR points
as an obstacle (red wall) and plans a reduction in acceleration
to observe the obstacle. This can be seen by the orange color
in the planned trajectory.

Fig. 6 displays the fuzzing mask applied at a close distance
and within the planned trajectory of the vehicle. The vehicle
detects the fuzzing mask as an object in immediate proximity
to the vehicle and therefore initiates a braking action. The
vehicle is unable to recompute an alternative planned trajectory
due to the fuzzed points presenting an obstacle across the road
and therefore the vehicle is unable to progress.

Fig. 6. Top down view of vehicle with fuzzing mask affecting planned
navigation of the vehicle

The experiments provide initial feedback on the utility of
FuzzSense. From observing the behaviour of the AD software,
displayed in Figures 5 and 6 we can discern that sensor fuzzing

is a useful exercise to find vulnerabilities of the AD software
stack. The results indicate that the AD software is either
unstable or can be influenced by inserted LiDAR points. We
found that when the fuzzing mask was located on or near the
planned trajectory of the vehicle, the perception algorithm was
unable to filter the manipulated points and instead, observed
them as an obstacle. Further to this, when the fuzzing mask
was located in close proximity to the vehicle, it resulted in a
complete stop of the vehicle.

V. RELATED WORK

The EnFuzz architecture [1] demonstrates the advantage
of combining multiple fuzzers which use diverse techniques
of fuzzing, to get a greater and deeper penetration of the
target. The EnFuzz design further inspired our adoption within
FuzzSense of an orchestrator (monitor) for coordination. Our
contribution is unique from EnFuzz as our focus is specific to
AD software and we incorporate in the design considerations
for the diversity of AD technology and targets.

Aforementioned, there are various fuzzers focused on dis-
parate targets of the AD system. Popularly cited fuzzing tools
include DeepRoad [2], DeepTest [3] which target the camera
sensor and AV-Fuzzer [4], Auto-Fuzz [5] and DriveFuzz [6]
which target the driving scenario. These fuzzers are not de-
signed to operate concurrently with different fuzzers, but focus
on a seed pool limited to there target. For the optimization of
the search space reduction, these fuzzing tools mainly focus on
driving quality and task performance metrics as a measure to
direct the mutations towards more promising scenarios where
the ego-vehicle is more likely to struggle.

Our work does not aim to compete with these fuzzers nor
do we seek to build on there designers. FuzzSense, is an over-
arching framework whose concept is based on enabling the
usage of the fuzzing tools as plug-ins in an integrated fuzzing
environment. A future test case would be to use DeepRoad [2]
and DriveFuzz [6] within FuzzSense to understand how diverse
fuzzing techniques generate bugs.

VI. CONCLUSION & FUTURE WORK

In this work we presented our idea for the design of an
ensemble fuzzing framework for AD software, which we call
FuzzSense. FuzzSense is designed for vehicles with several
different sensors. The architecture consists of many different
modules which perform tasks fulfilling each a crucial part
in the execution of fuzzing and of the coordinating and
monitoring of those diverse fuzzing modules. We developed
a plug-in for fuzzing LiDAR point clouds and utilised to
find vulnerabilities in Autoware.Universe AD software. Fu-
ture work, aims to experiment with FuzzSense utlising the
modularity to benchmark the performance of different fuzzing
plug-ins. Further, advancing the design of the fuzzing mask
by adding support for further sensor types. As part of pro-
viding FuzzSense open-source, we also aim to actively gather
community feedback and develop the framework further.

5

REFERENCES

[1] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and
Z. Su, “{EnFuzz}: Ensemble fuzzing with seed synchronization among
diverse fuzzers,” in 28th USENIX Security Symposium (USENIX Security
19), pp. 1967–1983, 2019.

[2] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE ’18,
(New York, NY, USA), p. 132–142, Association for Computing Machin-
ery, 2018.

[3] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, (New York,
NY, USA), p. 303–314, Association for Computing Machinery, 2018.

[4] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous driving
systems,” in 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), pp. 25–36, 2020.

[5] Z. Zhong, G. Kaiser, and B. Ray, “Neural network guided evolutionary
fuzzing for finding traffic violations of autonomous vehicles,” IEEE Trans.
Softw. Eng., vol. 49, p. 1860–1875, Apr. 2023.

[6] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim, “Drivefuzz:
Discovering autonomous driving bugs through driving quality-guided
fuzzing,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’22, (New York, NY,
USA), p. 1753–1767, Association for Computing Machinery, 2022.

6

Appendix II

Paper II
A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Steinhorst.Adsecdata platform: An open-source data platform for autonomous driving cybersecu-rity. In 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), pages 1–7,2025.

219

ADSecData Platform: An Open-Source Data
Platform for Autonomous Driving Cybersecurity

Andrew Roberts1, Mohsen Malayjerdi1, Mauro Bellone1, Raivo Sell1, Olaf Maennel3, Mohammad Hamad2,
Sebastian Steinhorst2

1Tallinn University of Technology, Estonia
2Technical University of Munich, Germany

3University of Adelaide, Australia

Abstract—Autonomous driving (AD) software needs to be
secure, and its decision control must be robust against cyber
threats. The development of cybersecurity solutions for legacy
and connected vehicles has been supported by an array of open-
source datasets, mainly focused on the CAN Bus protocol. There
exists a lack of open-source cybersecurity data and community-
driven platforms that enable fair and reproducible evaluations of
AD algorithms from a cybersecurity perspective and defensive
mechanisms. This study addresses this problem by conducting
an in-depth analysis of the data ecosystem for AD cyberse-
curity and introducing an initial open-source data platform,
ADSecData. ADSecData offers the community a comprehensive
4-stage method for the creation of AD cybersecurity datasets,
along with an initial common dataset. We evaluate the utility
of ADSecData through a case study featuring diverse malicious
injection attacks, including GPS spoofing, LiDAR point-cloud
manipulation, and sensor interference. The results demonstrate
the viability of ADSecData in generating AD cybersecurity
datasets and supporting community research and development.

Index Terms—Security, Autonomous Driving

I. INTRODUCTION

AD software must be secure, with decision control op-
timized to ensure robustness against cyberattacks. A key
challenge in achieving this goal is the lack of open-source
data specifically for AD cybersecurity. Without available data,
software designers do not have an immediate understanding
of the considerations for secure design required to ensure
robustness against cyber threats. In contrast, there are many
open-source datasets for safety validation, algorithm opti-
mization, and sensor configuration. Popular examples include
KITTI [1], Waymo [2], Baidu Apolloscape [3], Argoverse [4]
and NuScenes [5]. Common datasets for safety validation
have enabled platforms such as CARLA Leaderboard [6] to
establish challenges to benchmark solutions for perception and
trajectory planning algorithms. The problem motivation that
this research confronts is that AD cybersecurity doesn’t have
a readily available source of open datasets available to advance
research and there is a lack of guidance on how to conduct
cybersecurity research to generate datasets for benchmarking.

To confront this problem, we present ADSecData Platform,
a consolidated platform that provides open-source AD data
for cybersecurity. As shown in Fig. 1, ADSecData Platform
consists of a data generation process, which is the method used
to generate datasets from simulation and real-world experi-
ments. We validate the platform in a case study using the data
generation method to create datasets based on an operational
autonomous vehicle (AV) program. We demonstrate the utility
of our open-source platform to the community in advancing
cybersecurity testing to measure and improve the robustness
of autonomous driving systems to cyberattacks.

Fig. 1: ADSecData Platform - Data Generation Process.

To construct an AD cybersecurity open-source data plat-
form, we used these guiding questions to establish an under-
standing of the relationship of AD data to cybersecurity:

1) What data types generated by the AD system are utilized
for cyber attack test cases?

2) What is the utility of each data type in enhancing the
cybersecurity of AD?

3) What metrics are available to benchmark AD algorithms
from a cybersecurity perspective and defense mecha-
nisms?

The major contributions of this research are the follows:
• We present an initial prototype of the ADSecData Plat-

form, an open-source platform designed to support AD
cybersecurity data.

• We offer detailed guidance on structuring cybersecurity
testing frameworks to facilitate the generation of datasets
for the research community.

• We contribute to the AD cybersecurity community by
providing an initial common dataset and defining key
challenges to focus future research and development
efforts.

II. AUTONOMOUS VEHICLE CYBERSECURITY DATA

The emerging field of automotive cybersecurity research
over the last decade has focused predominantly on the CAN
Bus protocol, connected vehicle protocols, electrical and em-
bedded hardware (such as wireless controllers and Bluetooth),

and in-vehicle software systems (e.g., infotainment systems).
To support the development of defensive technologies and
the secure design of communication protocols and software,
numerous open-source datasets of automotive telemetry have
been created. These datasets primarily address legacy and
connected vehicle technologies, with a strong emphasis on
the CAN Bus protocol. However, there is a significant lack of
open-source cyberattack datasets specific to AD technology.
Developing such datasets and promoting the exchange of
open-source data are critical steps toward advancing the still-
maturing field of AD cybersecurity.

A. Autonomous Vehicle Data
AD systems generate a vast amount of data from diverse

hardware and system components. We classify AD data into
four major sub-categories of data sources: sensing, system,
network, and vehicle dynamics. For each data source, we
discuss its value for software development, cybersecurity, and
its availability.

1) Sensing: Sensing data is produced by advanced sensors
in the AD system, including LiDAR, cameras, ultrasonic
radar, and global navigation systems (GPS, GLONASS, Baidu,
Galileo). This data is critical for mapping the driving environ-
ment, perception, and localization. However, one of the key
challenges with sensor data is the high data rate generated
by autonomous vehicles. Xu et al. [7] estimated that diverse
sensors could generate approximately four terabytes of data
per day. The transmission of LiDAR and high-definition cam-
era frames from onboard sensors to edge data logging servers
further complicates data collection. Although compression
techniques are available to optimize transmission efficiency,
there is limited understanding of how these methods impact
cybersecurity research in computer vision and perception.

Software Development Value: Sensing data is used by
AD software designers to train and optimize algorithms
for SLAM, object detection and tracking, sensor fusion,
and semantic segmentation. One of the many examples
of progress in this area is the CARLA Autonomous
Driving Leaderboard [6], which is a platform used for
the development of AD agents.

Cybersecurity Value: Sensing data can be used to
assess vulnerabilities of AD software to adversarial ex-
amples and generate new attack models for adversarial
examples. Select examples include:

• LiDAR point cloud manipulation [8]
• Adversarial examples for camera perception neural

networks. [9]
• Light manipulation attacks on camera hardware

and driving objects (road signs, etc.) [10]
• Fuzzing and parameter manipulation attacks

against AD algorithms (Object Detection, Sensor
Fusion) [11]

• GPS Spoofing causes uncertainties in trajectory
planning algorithms. [12]

Defensive technologies can also be developed from
sensing data, these include:

• Kalman filters and ML detection solutions to filter

noise from data manipulation attacks. [13]
• Physical intrusion detection solutions which fin-

gerprint patterns of noise from adversarial activ-
ity. [14]

• Improvements to the security of ML models to
protect against ML evasion and training data poi-
soning attacks.

Data Availability: Open-source cybersecurity datasets
for sensing, of which there are very few, predominantly
focus on camera-based perception and neural networks
for perception algorithms. Available datasets include:

• Natural Denoising Diffusion Attack (NDDA)
dataset [15]

• SlowTrack: Camera-based perception latency at-
tack dataset [16]

2) System: System data consists of data from the on-
board software systems of the AD system. These include
the firmware, operating system, application software, and
real-time operating systems used in the electronic/embedded
components such as the electronic control units (ECUs) and
microelectronic control units (MCUs).

Software Development Value: System data is used
by software developers to debug errors and understand
application performance and functionality. Crucial for
AV developers is to understand the performance and
reliability of the AD software (Autoware, Nvidia Drive,
Apollo) and middleware (Robotic Operating System
(ROS), Cyber RT).

Cybersecurity Value: System data is used for vulner-
ability and exploit analysis. Activities that are included
in this description include reverse engineering firmware,
code analysis, taint-analysis, and fuzz testing.

Data Availability: System datasets are generally avail-
able from the manufacturer. These are then used for vul-
nerability and exploit analysis. Cybersecurity datasets
are rare as the responsible disclosure process usually
results in the removal and updating of new software.
Examples of a cybersecurity system artifact are the
following:

• Kia OFFensivE Exploit (KOFFE) Metasploit mod-
ule [17]

• Mazda Infotainment USB attack [18]

3) Network: Network data consists of data produced from
the AV internal and external networks. CAN Bus is the net-
work that predominates in in-vehicle communication between
ECUs and handles critical real-time functions such as braking
and steering actuation. Automotive Ethernet is gaining in pop-
ularity and is mostly used for drive-by-wire communication.
Other communication, such as MOST, is used for infotainment
systems, and LIN can be found in more upmarket vehicle
classes. The difficulty in providing CAN (and most other in-
vehicle protocols) datasets is that CAN is used in a proprietary

format by vehicle manufacturers. To decipher the meaning
of CAN messages, either the manufacturer’s diagnostic tool
is required or knowledge to reverse engineer CAN messages
from the investigation of firmware and system manuals.

For legacy and connected vehicles, great progress has been
made, and there exist many available datasets and tools to help
with the CAN message extraction process [19]. However, to
our knowledge, no CAN cybersecurity-specific datasets exist
for AD technology. Reasons for this could be the enhanced
commercial sensitivity of AD technology, a more diverse
range of AV manufacturers, the implementation of encrypted
messaging with CAN-FD, and the cutting-edge nature of
AD technology. Other network concepts typical in AD ar-
chitectures include Vehicle-to-vehicle (v2v) and vehicle-to-
everything (v2x), which use wireless and cellular connectivity
for connectivity. Different application layer protocols are used
for distinct purposes, these may include MQTT for vehicle
on-board unit (OBU) to edge communication and Cooperative
v2x (C-V2x) protocols that including basic safety messages
(BSM) for cooperative perception and intelligent feedback for
decision-making.

Cybersecurity research in this field is well-developed, and
many available studies investigate attack models to the in-
tegrity of cooperative vehicular messages and the availability
of networks that support vehicle data processing and cooper-
ative communication.

Software Development Value: For software devel-
opers, network datasets can assist in understanding
system interconnection and latency of data flow through
situational awareness data to control actions decided by
AD software and physical processes made by actuation.

Cybersecurity Value: Network datasets are primar-
ily used for defensive intrusion detection solutions.
Network datasets also aid in developing new attack
strategies (DDoS, Replay, etc.) and fuzzing strategies
to test the robustness of communication architectures.
Lately, as more CAN cybersecurity datasets are avail-
able, research has focussed on ML and AI solutions
for automated attack detection and fuzzing [20]. Within
AD architectures, network data is utilized to evaluate
the security aspects of cooperative driving, such as
message trust and authentication. Perhaps the greatest
contribution of cybersecurity CAN datasets has been
the increase in attention brought by attacks, which
demonstrate the feasibility of cyber attacks to manip-
ulate safety-critical functions such as braking, steer-
ing, and acceleration. Recognition of these threats has
seen the development of security within automotive
software architectures (AUTOSAR Adaptive) and new
zonal communication architectures for in-vehicle net-
work communications.

Data Availability: Open-Source CAN hacking datasets
exist for legacy and connected vehicles, a sample of this
long list include:

• Car-Hacking-Dataset [21] [22]

• Survival Analysis Dataset [23]
• CAN-Train-And-Test Dataset [24] [25]
• CANet Dataset [26]
• CrySyS Dataset [27]
• CIC IoV 2024 Dataset [28]
• CAN-MIRGU Dataset* [29]

*The CAN-MIRGU dataset is generated from a vehicle
with AD capabilities, however, these capabilities are not
detailed due to privacy reasons and the AD functions
are deactivated for safety reasons. For V2X and V2V
selected datasets include:

• Simulated VANET Attack Dataset [30]
• Simulated VANET Attack Dataset [31]

4) Vehicle Dynamics: Vehicle dynamics data include body
physical movement (lateral and longitudinal pose, yaw, etc.),
acceleration, braking, and steering actuation. Vehicle dynamics
is crucial for a software developer and cybersecurity engineer
to understand how behavior at a system level affects the
vehicle. Existing cyber attack research, which focuses on ve-
hicle dynamics, predominantly concerns itself with providing
artifacts such as docker images of the attack simulation and
the code base for adversarial examples and fuzzing tools.
A limitation of this approach is that it requires a custom
configuration of the attack in the user environment and an
understanding of the vehicle model and metrics engine for
data output used in the original research.

Software Development Value: This data is crucial for
control algorithm designers to assess the robustness of
control and trajectory planning algorithms. Software
developers and control designers will use vehicle dy-
namics data for backstepping and back-propagation of
the AD control software.

Cybersecurity Value: Vehicle dynamics data enables a
greater understanding of the effect of cyber attacks on
vehicle behavior. The utility of vehicle dynamics data
includes research and development of physical intrusion
detection system solutions and root cause analysis.

Data Availability: We are not aware of any datasets for
vehicle dynamics in the context of cybersecurity.

B. Gaps in Autonomous Vehicle Datasets

Our exploration of diverse AD data types and their usage
in cybersecurity has identified a number of limitations:

• Lack of a consolidated research data platform.
Datasets are distributed across GitHub accounts and
research papers. There is a lack of consolidation of
datasets that would enable security research across the
AD technology stack.

• Siloed research. Defensive mechanisms are often devel-
oped based on a single data type (e.g., CAN, Camera,
etc.). The lack of availability of other data sources and an
understanding of how this data impacts vehicle dynamics
and propagates through the AD system results in the

creation of defense mechanisms that lack system-level
validation.

• Lack of cybersecurity data: There is a lack of data
for cybersecurity, and in some of the sub-categories
explored, there is, to our knowledge, no data available.
The available datasets overwhelmingly consist of legacy
and connected vehicles.

III. ADSECDATA PLATFORM

In developing a method for generating cybersecurity data
for AD systems, the significant change from legacy vehicles
is the focus on vehicle behavior. As the vehicle is controlled
by software and algorithms, it is important to understand the
effect of cyber activity on the vehicle and its implications for
decision control. In addition to attacks that directly target AD
technologies, such as advanced sensors, attacks on network
and system components can have a downstream effect on
autonomous control. The ADSecData Platform (shown in
Fig. 1) follows a four-stage process for generating data.

A. Scenario Generation

Scenario-based testing (SBT) involves evaluating the per-
formance of a module or the full AD pipeline (perception,
localization, planning, and decision-control) to perform its task
during a specified driving scenario. Since the performance of
algorithms can vary under diverse scenarios, SBT has become
the standardized approach for AD algorithm safety validation
and verification testing [32]. Cybersecurity represents an edge
and corner case for SBT. For the ADSecData methodology,
we propose that scenario generation is a crucial step for
cybersecurity, as it is essential to understand whether the
effect of a cyber attack on the vehicle differs based on the
scenario. Since scenario libraries for AD cybersecurity testing
are not available, our methodology recommends using safety
validation testing libraries (such as ASAM OpenScenario, etc.)
and customizing the scenarios with attack models.

B. Simulation/Test Environment

As the task of driving can encounter many diverse scenarios,
simulation is the only feasible mechanism to incorporate
large-scale testing agilely. Cybersecurity testing should be
aligned with safety validation testing, where the choice of
test environment is based on evaluating the algorithm’s ability
to perform tasks. This is part of a testing process that uses
regression testing to map scenario test sets from simulation test
environments to real-world proving grounds. Within the AD-
SecData platform, we recommend using low-fidelity test envi-
ronments for large-scale testing of driving logic, high-fidelity
test environments to include testing of advanced sensors (such
as LiDAR, Camera, etc.), and real-world proving grounds.
Another factor influencing the integrity of cybersecurity data
is the tendency of automotive cybersecurity practitioners to
provide singular datasets based on attack type. Due to the
experimental nature of AD algorithms, sufficient tests need to
be run to ensure that anomalous vehicle behavior is caused
by cyber activity and not system errors or a lack of algorithm
optimization.

Another key aspect of the simulation/test environment stage
is defining metrics and configuring the format of output data.
Safety metrics and vehicle dynamic parameters are applied

TABLE I: Requirements for ADSecData

Category Requirement

Documentation • Dataset should be accompanied by general documen-
tation describing content and origin.
• Documentation should include description of the
attacks in the dataset and how they were execut-
ed/recorded.
• Documentation should include description of the fea-
tures (e.g., origin, meaning, range) and their physical
context (e.g., how vehicle speed, engine speed and gear
are related).

Labels • Each entry in the dataset may be given a label for
identifying whether that entry is benign or an attack.

Parseability,
correctness and
consistency

• Data should be stored in an appropriate machine/hu-
manreadable format (e.g., PCAP or CSV rather than
SQL databases)
• All entries should be correctly formatted (e.g., no
corrupt entries)
• use a single data format for all entries

Age, Size, Objec-
tive

• Dataset should not be legacy (> 5 years old etc.) and
consist of a balance between benign and cyber attack
data.

Completeness • Dataset should be complete in the sense that no key
features or entries have been discarded.

Transformation and
anonymization

• Data should not be irreversibly transformed (chang-
ing timestamps etc.) and not be anonymised to the
point that it bias’ detection mechanisms.

Dataset and Attack
Realism

• Dataset should include diverse attacks and not be
wholly based on synthetic data.

to quantify the impact of cyber activity on the vehicle. Cy-
bersecurity labels include details such as the attack initiation
during the scenario, attack parameters (e.g., sensor interference
noise level, GPS positioning offset), and their corresponding
weighting.

C. Analysis
The analysis stage involves interrogating the data to assess

its integrity and accuracy, ensuring consistency with the ex-
perimentation performed. Popular tools, including MATLAB
and Python, are used to plot data, visualize patterns, and
analyze trends. For example, analyzing a dataset from the
trajectory planning module could generate trajectory maps to
visualize the vehicle’s path and highlight any deviations from
the reference path. Analysis is a crucial activity for identifying
problems with the experimentation process and evaluating the
data quality.

D. ADSecData
Data should be benchmarked for measurement and compar-

ison. The benchmarks for automotive cybersecurity datasets
from Vahidi et al. [33] systematic evaluation of automotive
intrusion datasets serve as a good starting point. We utilize
their data requirements to develop the ADSecData Platform
and data readiness labels. Table. I provide the requirements
for ADSecData datasets, the classification is provided in more
detail on the platform website.

IV. ADSECDATA CASE STUDY

A. Target Autonomous Vehicle
The target vehicle is an AV for public transportation, that

is an autonomous electric vehicle (AEV). The shuttle operates
at Level 4 autonomy (high automation), meaning that it can
handle most driving tasks without human intervention in
predefined areas, and it is equipped with advanced LiDAR,
radar, cameras, and GPS systems to navigate safely and carry
out perception tasks in an urban environment. Its software

Fig. 2: Attack Case 1 Threat Model.

Fig. 3: Attack Case 2 & 3 Threat Model.

backbone is based on ROS and Autoware, controlling all the
driving functionalities and implementing the driving dynamic
model of the vehicle.

B. Scenarios

Our initial dataset consists of 4 attack cases conducted
during diverse driving scenarios.

Attack Case 1 - LiDAR point-cloud manipulation: The
LiDAR point-cloud manipulation attack, as shown in Fig. 2,
consists of an adversary with a LiDAR capable of injecting
malicious LiDAR point clouds into the LiDARs of the AV.
This attack is conducted whilst the AV is attempting an
overtaking maneuver.

Attack Case 2 - Position Offset: Attack Case 3 - Message
Delay: The attacker creates a spoofed ROS topic which is
able to deliver malicious input data of the Current_Pose
(longitude, latitude, and velocity) to all the nodes of the local
planning module. The data manipulation is injected online/dy-
namically during the critical overtaking manoeuvre involving
the AV and NPC (Non-playable character). Figure 3 displays
the critical driving scenario and the time frames in which
the manipulated Current_Pose data is injected into the
local planning pipeline cost estimation. The red dashed lines
in Fig. 3 represent the roll-outs, and the green highlighted,
denoting the selected motion-path.

For the manipulation of the Current_Pose data, we
introduce a deviation to lateral and longitudinal pose. For
the lateral pose data, the sensitivity deviation introduced was
structured as follows:

• Attack Case 2a: 0.16%
• Attack Case 2b: 0.33%
• Attack Case 2c: 0.5%
This range represents a slight perturbation of pose to a

1m deviation. The longitudinal pose data sensitivity deviation
range was structured as follows:

• Attack Case 2d: 0.33%
• Attack Case 2e: 0.66%
• Attack Case 2f: 1.00%

Fig. 4: Architecture of the testing platform.

This range is the same as the longitudinal deviation. The
difference in percentage comes from the difference in coordi-
nate values of lateral and longitude. The lateral value is almost
double that of the longitudinal, and therefore, the percentage
is doubled.

This attack scenario involves introducing a time-delay into
the messages of the Current Pose topic communicating to the
nodes of the local planning module.

We introduced a message delay when the AV passes 2m in
front of the vehicle that it is passing in the lateral direction.
We introduce 3 different time delays in the message:

• Attack Case 3a: 0.3 seconds
• Attack Case 3b: 0.6 seconds
• Attack Case 3c: 1.0 seconds
The message frequency is approximately 50hz, so this is a

message every 20 milliseconds. We chose the above range of
deviation of time-delay as it enabled a spectrum of a message
from the delay from approximately 15, to 50 messages.

Attack Case 4 - GPS Spoofing: The attack model of GPS
spoofing involves an adversary using a transmitter near the AV
and interferes with the GPS signals being transmitted.

C. Simulation/Test Environment
Attack Case 1 was conducted in the high-fidelity CARLA

simulator [34]. In this study, we use Carla 0.9.13 as the
high-fidelity simulator. Figure 4 illustrates the requirements
for the high-fidelity simulator to conduct simulation testing,
which are two components, the digital twin of the target AV
and the virtual replication of our target environment. These
replicated components help us to gain more accurate results
of the proposed platform [35]. The AV digital twin is a 3D
model of the target real-world world AV shuttle, designed in
Blender, a graphical 3d modeling software, and imported and
built in Unreal for deployment in CARLA. This model uses
the same dimension and sensor configuration (model, position,
and orientation) from the real AV shuttle. The environment
digital twin, in our case, is identical to the location where the
vehicle operates.

This simulation setup was implemented on a desktop com-
puter with the following configuration:

• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB
Attack Case 2 and 3 were conducted in a low-fidelity

simulator. To accelerate the testing, we bypassed the sensing
and detection nodes of the algorithm and focused on the
planning part by utilizing the low-fidelity simulation feature

provided by Autoware.ai and Openplanner. The low-fidelity
simulation uses the open-planner 2.5 control algorithm. It pro-
vides simulated localization and detection data for the planning
nodes and receives the actuation commands to simulate the
AV kinematics. This process runs faster due to the low-detail
environment required for the simulation and the lack of the
process to simulate the sensors.

Attack Case 4 dataset was generated from the real-world
vehicle. GPS spoofing activity occurred during a point-in-time
of a 3 month trial of AVs in a city in Northern Europe.

D. Analysis
The data output parameters were defined based on safety,

vehicle dynamics and security criteria. A sample of these
includes safety criteria, mission success, violation, break sta-
tus, and distance-to-collision. Vehicle dynamics included steer,
yaw, lateral and longitudinal position. Security criteria include
2 labels, is attack denoting when the attack is occurring
and cyber weight, which denotes the level of sensor noise
manipulation.

E. ADSecData
The 4 attack case scenarios datasets were generated as a

.csv files. Each attack includes a corresponding benign (no
attack) dataset to benchmark the stability of the AD algorithms
under the given driving scenario. Attack Case 1 included
over 1200 simulations. Attack Case 2 and 3 included over
900 simulations collectively. The data is available at this
link: ADSecData Platform (To note: this website is abridged,
anonymised version)

V. DISCUSSION

The case study provides a starting point for the development
of a common dataset for the community to perform fair and
reproducible evaluations of AD algorithms for cybersecurity
and defensive mechanisms. The datasets generated from the
4 attack cases demonstrate the importance of following the 4
stage ADSecData method where particular careful considera-
tion is taken in the definition of data output parameters and
experimental evaluation analysis. For the development of the
ADSecData platform, community challenges, and a roadmap
are fundamental.

A. Community Challenges
These are the first tranche of community challenges that we

recommend for the ADSecData platform:
Ch1 Performance and Accuracy of Semantic Fuzzing Tools.
Ch2 Intrusion Detection of Semantic AD Sensor Attacks.
Ch3 Robust Sensor Fusion Algorithms.
Ch4 Robust and Resilient Trajectory Planning Algorithm.

We see these challenges as of most immediate importance
and value for the community. Furthermore, we would like to
see the community use the ADSecData platform to generate a
seed corpus for guided semantic data fuzzing tools. As large
language models (LLMs) are gaining in popularity, another
foreseeable use would be to apply LLMs to ADSecData to
generate scenarios for cybersecurity testing. As AD cyber-
security lacks a common scenario library, the generation of
cybersecurity scenarios would help to close this gap. Finally,
IDS solutions for attacks on the AD sensors are essential to
mitigate the risk to AD control. There needs to be more data to

understand the profile of cyber attacks compared to emergency
and safety actions from edge and corner cases.

B. Future Roadmap
The short-term aims of the ADSecData platform are to

add more datasets from all 4 sub-categories of data types
and different vehicle classes and increase the community’s
awareness of the platform. There will be a need to improve
the development of both the front-end and back-end platforms
to enable secure data sharing and a more intuitive user
experience. Longer-term aims include a need to investigate
metrics for intrusion detection solutions for AD, which is an
AI-based system. Traditionally, MITRE ATT&CK is used for
benchmarking IDS solutions, and MITRE has a framework for
AI, MITRE ATLAS. It would be interesting to evaluate how
this would work in a practical use-case for AD.

VI. RELATED WORK

There have been attempts by the community to build com-
mon infrastructure for AV cybersecurity testing. PASS [36] and
Simutack [37] are community simulation testing platforms.
Whilst these platforms are valuable to the community and
enable accessibility of simulation testing to researchers, the
usage of community simulation testing platforms is limited
as real-world operators tend to use their own customised
platforms. Furthermore, neither of these studies focused on
the data aspect of cybersecurity testing as part of their scope.
Lauinger et al. [38] developed an attack data generation
framework for AVs. Our work enhances this contribution by
integrating the concepts of scenario generation and simulation
and testing environments for data generation.

From a community data sharing perspective, there are
initiatives such as Platform for Innovative use of Vehicle Open
Telematics (PIVOT) [39], which is a U.S National Science
Foundation project to create a open-source portal for vehicle
telemetry data in the context of cybersecurity. However, as of
writing this portal was unavailable.

As aforementioned in Section. II, there exists a diversity of
datasets for legacy and connected vehicles. There are also the
studies of Vahidi et al. [33], Lampe & Meng [25] and Lee
et al. [40] which evaluate cybersecurity data of legacy and
connected vehicles for intrusion detection. However, to our
knowledge, there are no existing contributions that focus on
the autonomous technology stack of AVs.

VII. CONCLUSION

In this work, we present an open-source data platform
for AD cybersecurity, the ADSecData platform. Further, we
detail a 4-stage method for the generation of AD cybersecu-
rity datasets. We demonstrate the utility of the ADSecData
platform through the generation of open-source datasets for
four diverse AD cybersecurity attacks, which we provide to
the community. The ADSecData platform is available to the
community and will continue to develop according to the
challenges and roadmap presented in this study.

ACKNOWLEDGMENT

This work is partly supported by the Horizon Europe
projects CyberSecDome (Agreement No.: 101120779) &
XTRUST-6G (Agreement No.: 101192749) and the European
Union and Estonian Research Council via project TEM-TA5.

REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[2] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[3] P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The
apolloscape open dataset for autonomous driving and its application,”
IEEE transactions on pattern analysis and machine intelligence, 2019.

[4] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal,
B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr,
and J. Hays, “Argoverse 2: Next generation datasets for self-driving
perception and forecasting,” in Proceedings of the Neural Informa-
tion Processing Systems Track on Datasets and Benchmarks (NeurIPS
Datasets and Benchmarks 2021), 2021.

[5] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” in CVPR, 2020.

[6] CARLA, “Carla autonomous driving leaderboard,” 2024. [Online].
Available: https://leaderboard.carla.org/

[7] W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen,
“Internet of vehicles in big data era,” IEEE/CAA Journal of Automatica
Sinica, vol. 5, no. 1, pp. 19–35, 2018.

[8] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A.
Chen, K. Fu, and Z. M. Mao, “Adversarial sensor attack on lidar-based
perception in autonomous driving,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’19. Association for Computing Machinery, 2019.

[9] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1625–1634.

[10] T. Sato, S. H. Bhupathiraju, M. Clifford, T. Sugawara, Q. A.
Chen, and S. Rampazzi, “Wip: Infrared laser reflection attack
against traffic sign recognition systems,” ISOC Symposium on
Vehicle Security and Privacy (VehicleSec), 2023. [Online]. Available:
https://par.nsf.gov/biblio/10427118

[11] R. S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic,
“Security analysis of Camera-LiDAR fusion against Black-Box attacks
on autonomous vehicles,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 1903–1920. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/hallyburton

[12] R. Jiao, J. Bai, X. Liu, T. Sato, X. Yuan, Q. A. Chen, and Q. Zhu,
“Learning representation for anomaly detection of vehicle trajectories,”
in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2023, pp. 9699–9706.

[13] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong,
and T. Wei, “Fooling detection alone is not enough: Adversarial
attack against multiple object tracking,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=rJl31TNYPr

[14] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin,
“Savior: securing autonomous vehicles with robust physical invariants,”
in Proceedings of the 29th USENIX Conference on Security Symposium,
ser. SEC’20. USA: USENIX Association, 2020.

[15] T. Sato, J. Yue, N. Chen, N. Wang, and Q. A. Chen, “Intriguing
Properties of Diffusion Models: An Empirical Study of the Natural
Attack Capability in Text-to-Image Generative Models,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.

[16] C. Ma, N. Wang, Q. A. Chen, and C. Shen, “SlowTrack: Increasing
the Latency of Camera-Based Perception in Autonomous Driving Using
Adversarial Examples,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 5, 2024, pp. 4062–4070.

[17] I. M. G. Costantino, M. De Vincenzi, “A vehicle firmware security
vulnerability: an ivi exploitation.” J Comput Virol Hack Tech, vol. 20,
pp. 681,696, 2024.

[18] Turla, “Mazda getinfo attack,” 2017. [Online]. Available: https:
//github.com/shipcod3/mazda getInfo

[19] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen,
and K. G. Shin, “Librecan: Automated can message translator,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2283–2300. [Online].
Available: https://doi.org/10.1145/3319535.3363190

[20] N. Alkhatib, M. Mushtaq, H. Ghauch, and J.-L. Danger, “Can-bert do
it? controller area network intrusion detection system based on bert
language model,” in 2022 IEEE/ACS 19th International Conference on
Computer Systems and Applications (AICCSA), 2022, pp. 1–8.

[21] E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based intrusion detec-
tion system for in-vehicle network,” in 2018 16th Annual Conference
on Privacy, Security and Trust (PST), Aug 2018, pp. 1–6.

[22] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion
detection using deep convolutional neural network,” Vehicular Commu-
nications, vol. 21, p. 100198, 2020.

[23] M. L. Han, B. I. Kwak, and H. K. Kim, “Anomaly intrusion detection
method for vehicular networks based on survival analysis,” Vehicular
Communications, vol. 14, pp. 52–63, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214209618301189

[24] B. Lampe and W. Meng, “can-train-and-test: A curated can dataset
for automotive intrusion detection,” Computers & Security, vol. 140,
p. 103777, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404824000786

[25] ——, “can-train-and-test: A new can intrusion detection dataset,” in
2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall),
2023, pp. 1–7.

[26] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “Canet: An
unsupervised intrusion detection system for high dimensional can bus
data,” IEEE Access, vol. 8, pp. 58 194–58 205, 2020.

[27] A. Gazdag, R. Ferenc, and L. Buttyán, “Crysys dataset of can traffic logs
containing fabrication and masquerade attacks,” Scientific Data, vol. 10,
2023.

[28] E. C. P. Neto, H. Taslimasa, S. Dadkhah, S. Iqbal, P. Xiong,
T. Rahman, and A. A. Ghorbani, “Ciciov2024: Advancing realistic
ids approaches against dos and spoofing attack in iov can bus,”
Internet of Things, vol. 26, p. 101209, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660524001501

[29] S. Rajapaksha, G. Madzudzo, H. Kalutarage, A. Petrovski, and M. O.
Al-Kadri, “Can-mirgu: A comprehensive can bus attack dataset from
moving vehicles for intrusion detection system evaluation,” in Sympo-
sium on Vehicles Security and Privacy. Internet Society, 2024.

[30] S. Iqbal, P. Ball, M. H. Kamarudin, and A. Bradley, “Simulating
malicious attacks on vanets for connected and autonomous vehicle
cybersecurity: A machine learning dataset,” in 2022 13th International
Symposium on Communication Systems, Networks and Digital Signal
Processing (CSNDSP), 2022, pp. 332–337.

[31] F. Gonçalves, B. Ribeiro, O. Gama, J. Santos, A. Costa, B. Dias, M. J.
Nicolau, J. Macedo, and A. Santos, “Synthesizing datasets with security
threats for vehicular ad-hoc networks,” in GLOBECOM 2020 - 2020
IEEE Global Communications Conference, 2020, pp. 1–6.

[32] Y. Huai, Y. Chen, S. Almanee, T. Ngo, X. Liao, Z. Wan, Q. A. Chen,
and J. Garcia, “Doppelgänger test generation for revealing bugs in
autonomous driving software,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023, pp. 2591–2603.

[33] A. Vahidi, T. Rosenstatter, and N. I. Mowla, “Systematic evaluation
of automotive intrusion detection datasets,” in Proceedings of the 6th
ACM Computer Science in Cars Symposium, ser. CSCS ’22. New
York, NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3568160.3570226

[34] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[35] M. Malayjerdi, V. Kuts, R. Sell, T. Otto, and B. C. Baykara, “Virtual
simulations environment development for autonomous vehicles inter-
action,” in ASME International Mechanical Engineering Congress and
Exposition. American Society of Mechanical Engineers, 2020.

[36] Z. Hu, J. Shen, S. Guo, X. Zhang, Z. Zhong, Q. A. Chen, and
K. Li, “Pass: A system-driven evaluation platform for autonomous
driving safety and security,” NDSS Workshop on Automotive and
Autonomous Vehicle Security (AutoSec), 2025. [Online]. Available:
https://par.nsf.gov/biblio/10359464

[37] A. Finkenzeller, A. Mathur, J. Lauinger, M. Hamad, and S. Steinhorst,
“Simutack - an attack simulation framework for connected and au-
tonomous vehicles,” in 2023 IEEE 97th Vehicular Technology Confer-
ence (VTC2023-Spring), 2023, pp. 1–7.

[38] J. Lauinger, A. Finkenzeller, H. Lautebach, M. Hamad, and S. Steinhorst,
“Attack data generation framework for autonomous vehicle sensors,” in
2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2022, pp. 128–131.

[39] P. Project, “Platform for innovative use of vehicle open telematics,”
2024. [Online]. Available: https://pivot-auto.org/

[40] S. Lee, W. Choi, I. Kim, G. Lee, and D. H. Lee, “A comprehensive
analysis of datasets for automotive intrusion detection systems,”
Computers, Materials and Continua, vol. 76, no. 3, pp. 3413–
3442, 2023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1546221823000516

Appendix III

Paper III
A. Roberts, J. Cheng, O. Maennel, M. Hamad, and S. Steinhorst. Adseclang: A domain-specific language for cybersecurity testing of autonomous vehicles. In 2025 IEEE 101stVehicular Technology Conference (VTC2025-Spring), pages 1–6, 2025.

229

ADSecLang: A Domain-Specific Language for
Cybersecurity Testing of Autonomous Vehicles

Andrew Roberts1, Jingyue Cheng2, Olaf Maennel3, Mohammad Hamad2, Sebastian Steinhorst2
1FinEst Centre for Smart Cities, Estonia

2Technical University of Munich,Germany
3University of Adelaide, Australia

Abstract—Domain-specific languages for safety validation test-
ing have reduced the complexity of safety scenario generation and
enhanced the adoption of Autonomous Driving (AD) safety testing.
Yet, there is a lack of comparable solutions for cybersecurity
testing. In this work, we present ADSecLang, a domain-specific
language for cybersecurity testing of AD systems. ADSecLang
provides a concise syntax that enables the tester to construct
scenarios for AD cybersecurity straightforwardly that can be
implemented in an AD test simulation platform. The proposed
language is validated within the CARLA AD simulation plat-
form in a use-case scenario of two diverse AV camera sensor
manipulation attacks on a state-of-the-art trajectory-guided AD
solution. The results show that the language is able to support the
translation of threats from an abstract description to the technical
implementation of the attack test cases and that these test cases
could identify vulnerabilities in the target AD solution.

Index Terms—Autonomous Driving, Cybersecurity testing

I. INTRODUCTION

Vulnerability testing of autonomous driving (AD) to cyber
attacks is a burgeoning field of research. Initial contributions
to this field have focused on novel vulnerability discovery
utilising penetration testing methods [1] [2] and fuzzing [3], [4].
However, there exists a gap between this novel, experimental
work and the practical implementation of testing to validate
the operational readiness of real-world AD systems. Real-
world, operational AV testing requires a more rigid approach
centred on a structured testing methodology aligned to com-
posite vehicle development and test validation processes. For
safety validation testing, domain-specific languages for safety
scenario generation, such as SCENIC [5] and ASAM Open-
SCENARIO [6], provide a systematic expression that enables
a common taxonomy, traceability of testing processes and
repeatability and automation of testing for scalability. Yet, there
exists a sparsity of research on the development of a domain-
specific language for cybersecurity testing of AD systems.
One of the primary benefits of the development of a domain-
specific language for cybersecurity is that it can simplify the
task of writing scenarios for security by providing a concise
syntax. In addition, the lack of a domain-specific taxonomy
for cybersecurity testing of AD systems further challenges
the development and evaluation of AD security testing tools,
processes, and methods.

This paper aims to develop such a language, which we call
ADSecLang. ADSecLang acts as an intermediary layer in the
testing process, which constructs scenarios for cybersecurity
through the translation of functional threat descriptions to
concrete test cases. Figure 1 depicts the scenario-based ab-
straction of ADSecLang, which represents the incremental and
iterative definition of the threat scenario. Firstly, the abstract

Threat
Libraries

System
Data

Experts

Stds. &
Reg.

UN 155
 ISO21434

Data

Knowledge

Sources

Pa
ra

m
et

er
s

Abstract
Threat

Scenarios

ADSecLang Scenario Based Abstraction

Logical
Threat

Scenarios

Pa
ra

m
et

er
s

C
on

st
ra

in
ts

D
is

tri
bu

tio
ns

Concrete
Threat

Scenarios

Pa
ra

m
et

er
Va

lu
es

C
on

st
ra

in
ts

Test Cases

Threat Scenario

Test Requirements

Fig. 1: ADSecLang: scenario-based abstraction view.

description of the threat scenario originates from adversarial
analysis, which can leverage sources such as threat libraries,
system data, and other knowledge-base repositories. Secondly,
a logical, syntactical expression of the threat scenario is created
using a taxonomy. Finally, the technical description of the threat
scenario is integrated within the AD simulation testing plat-
form. ADSecLang aims to contribute greater intuition through
readable, concise syntax for the development of adversarial
agents in simulation testing that would otherwise require com-
plex expressions and constraints. ADSecLang requires the tester
to consider all elements of the threat model from attacker tools
to desired attack outcomes at both an abstract and parameterised
level of abstraction. To demonstrate the utility of ADSecLang,
we initially focus on semantic AI security and we evaluate
the language to support two use-case scenarios of a camera
manipulation attack. In summary, the main contributions of our
work are:

• We provide an Attack Taxonomy which provides common
knowledge for the construction of cybersecurity test sce-
narios (Sec. II-A).

• We present ADSecLang, a domain-specific language for
autonomous vehicle cybersecurity testing (Sec. II).

• We use ADSecLang to identify vulnerabilities in a state-of-
the-art trajectory-guided end-to-end AD solution (Sec. III).

II. ADSECLANG: THE PROPOSED SOLUTION

This section introduces the attack taxonomy used to support
the development of ADSecLang and presents the cybersecurity
testing framework where ADSecLang can be adopted.

A. Attack Taxonomy
The attack taxonomy of ADSecLang (as shown in Fig. 2)

categorizes cyber attacks into two domains: Action and Im-
pact.

1) Action: represents the execution of an attack method. The
success of an action depends on the fulfillment of one or more
preconditions. As a result, we subdivide the Action domain into
two sub-domains: Method and Preconditions. The Method

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- DoS
- Elevation of Privilege
- ...

Attack Tuple

Action Impact

Method Preconditions

- System State
- Vulnerabilities
- Attacker's Tool
- Attacker's Knowledge
- Attacker's Capability
- Level of Privilege
-

Influenced Asset Influence

- Sensors
- ECUs
- ...

- Raw Data
- Luminance
- Velocity
- Acceleration
- Direction
- Position
- ...

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- DoS
- Elevation of Privilege
- ...

- System State
- Vulnerabilities
- Attacker's Tool
- Attacker's Knowledge
- Attacker's Capability
- Level of Privilege
-

- Spoofing
- Tampering
- Repudiation
- Information Disclosure
- DoS
- Elevation of Privilege
- ...

- AD SUT Condtitons
 - System State
 - Vulnerabilities
- Attackers Conditions
 - Tool
 - Knowledge
 -

Fig. 2: Attack Taxonomy - Detailed Description.

is defined as the threat technique. This threat description can
be derived from a functional description such as STRIDE,
Attack Trees, or a textual interpretation. Preconditions are
a set of conditions that must be met to execute an attack.
These preconditions must be inherent attributes that already
exist and are not generated by the execution of the attack.
The preconditions can be further divided into two categories:
conditions on the AD System-Under-Test (SUT) and conditions
on the attacker.

• AD SUT Conditions are categorized into requirements for
the state of the tested system and vulnerabilities within the
system. System state conditions refer to the requirement
that the target system must be in a specific state (such
as a particular version of an operating system, system
software/application, or a specific hardware/software state,
such as firmware update status) for the attack to be
executed. System vulnerabilities refer to exploitable weak-
nesses in the system’s design and operation.

• Attacker Conditions can be further segmented into three
types: attack tools, attacker knowledge (capabilities,
skills), and the level of privileges that an attacker can
obtain. The tools and knowledge of the attacker help to
profile the type of threat actor capable of conducting the
attack. The level of privileges refers to the permissions
needed to access or manipulate target system assets. An
example would be permission to run processes on the
target or existing access to the target asset to manipulate
data.

Some attack methods can only be executed successfully
when multiple preconditions are met simultaneously. Such
conditions will be grouped within braces {}. For example, the
precondition [{A, B}, C] can be interpreted as ‘A and B
must be met simultaneously, or C must be met’. To encompass
the requirement for multiple preconditions, we define an Action
Group:

1 action: [method, preconditions]
2 method: [category, description]
3 preconditions: [precond1, precond2, ...]
4 precond1: [category, description]
5 precond2: [category, description]

2) Impact: Executing an Action will introduce one or more
Impacts into the system. In other studies [7], these impacts
are also denoted as consequence and effect. Although Impacts
represent the outcomes and effects of attacks, they can also
serve as preconditions for subsequent attacks. Consequently,
some researchers [8] have alternatively referred to them as

post-conditions. In our taxonomy, the utilization of Impact
aims to identify the direct consequences of an Action, which
may additionally serve as preconditions for further attacks. The
term ’goal’ in the attack model represents the ultimate impact.
The dimension of Impact can be subdivided into two sub-
dimensions, namely Influenced Assets and Influence, which
serve to identify the assets directly affected by the Action and
ascertain the direct impact incurred on these assets. Influenced
Assets can be characterized by their respective category and
name. For example, the sensor category can include cameras,
radars, LiDAR, GPS, or any other AD sensor. The electronic
control unit (ECU) category comprises brake control ECUs, en-
gine control ECUs, tire pressure monitoring ECUs, or any other
vehicular ECU. Influence can be specified as its Parameter and
Value, denoting the specific parameter influenced by the attack
and the corresponding altered value, respectively. For instance,
if we aim to adjust the brightness of an image captured by
a camera, we should specify the parameter as luminance and
set its value to 300% (indicating that the brightness has been
increased to 300% of the original brightness). To achieve the
scalability of ADSecLang, users can add new parameters and
a value range in the property configuration file. The Impact
Group is defined as follows:

1 impact: [influenced_asset, influence]
2 influenced_asset: [category, name]
3 influence: [parameter, value]

B. Semantics of ADSecLang
The safety scenario domain-specific languages are based

on scenario abstraction methodologies such as the Pegasus
method [6], which segments three levels of abstraction of the
scenario: 1) abstract, 2) logistic, and 3) concrete. For example,
an abstract scenario could be described as: ’A malicious actor
motivated to cause a safety violation using a laser beam device
targeted at a car’. The logical scenario might be: ’A malicious
actor using a laser beam device projecting a luminance of ap-
proximately 100 to 300% with a pulse width of 0 to 1’. Finally,
the concrete scenario would specify: ’A malicious actor using
a laser beam device projecting 300% luminance with a pulse
width of 1’. Within ADSecLang, the abstract describes the cyber
threat scenario according to local parameters. The logical cyber
threat scenario extends this description by adding parameter
value ranges. Finally, the concrete scenario description contains
the set parameter values, which will be utilized as the scenario
implementation within the AD simulation testing platform.
ADSecLang is designed as an extension of the safety scenario

Attack
Description File Attack Model

Interpreter

Image Pre-
processing

Monocular
Camera

Vehicle
Configuration

File Image encoder
based on CNN

Measurement
Encoder based

on MLP

Trajectory-
Guided Control

Prediction
PID Control Result

Evaluation
Current Speed

Navigation
Information

Scenario
Generator

World
Generator

Environment
and Vehicle
Interpreters

Environment
Configuration

File

Fake Data
Injection

Fake Image
Data

Wrong Image
Feature Map

Unexpected
Vehicle

Behaviour

Raw
Sensor
Data

Measurement
Feature

Pre-trained End-to-End Autonomous Driving Agent

Fig. 3: ADSecLang Cybersecurity Testing Workflow - Camera Attack.

languages [5], [6], using the same abstraction method, language
semantics and syntax. ADSecLang provides an extension to
these areas for cybersecurity.

C. Compilation of ADSecLang

Compilation of ADSecLang involves three configuration
files. Each file contains various user-defined parameters:

• Environment Configuration File: This file provides ad-
justable parameters for scene generation, including town,
weather, and traffic density. It also allows users to define
constraints on these parameters for scene sampling.

• Vehicle Configuration File: This file allows the user to
define the parameters of the autonomous vehicle; these
include the sensors required, the location of the sensors in
the vehicle, the type of sensors, the data to be recorded,
and the frequency of recording.

• Attack Description File: This file is formatted in the
YAML syntax and allows users to define the attack model.

The first two configuration files are relatively simple: the
Environment Configuration File and the Vehicle Configuration
File. The environment and vehicle configurations stored in
their respective configuration files are read as parameters for
generating the driving simulation world and transferred to
the world generator. The Attack Description File is a more
complicated design which has two functions:

• The attack description file is utilized to extract the param-
eters, which are then translated into concrete code imple-
mentation for data processing based on the corresponding
attack parameters.

• It is also responsible for connecting the simulation en-
vironment, attack code, and autonomous driving system.
The attack description file defines the input and output
interfaces of the attack code. The input interface connects
real-time data captured by sensors in the rendering engine
in a simulation environment, such as images captured by
camera sensors or status information of ECUs. The output
interface sends malicious data generated by attacks to the
target AD solution.

D. Cybersecurity Testing Framework

1) Architecture: The proposed cybersecurity testing frame-
work has diverse modules for environmental, vehicle, and attack
configuration, simulation test, and result evaluation (Fig. 3).
The functions and roles of these modules are as follows:

• Environment and Vehicle Interpreter: Reads the environ-
ment and vehicle configuration stored in their respective
configuration files as a parameter for generating the world.

• Attack Model Interpreter: We read the attack description
file as attack parameters. We have defined input and output
interfaces for the attack model. The input interface obtains
images captured by sensors in the real-time rendering
engine and completes the data processing corresponding
to the attack parameters read by the interpreter in the
specific implementation code of the interface. The specific
implementation of the output interface is to send the output
of the attack model to the user’s chosen autonomous
driving solution.

• World Generator: Initialise the world based on the envi-
ronment and entity parameters read by the environment
interpreter, including object properties and attribute distri-
bution functions. The world generator randomly samples
from the distribution function whenever it is called. By
reading the sampling results of the world initializer, a
specific world is generated in the real-time rendering
engine according to certain steps. The generated world
contains at least one vehicle and one camera sensor and
exposes the calling interfaces of the vehicle and sensors
to the attack model.

• Scenario generation and result evaluation: We use a
CARLA plugin called CARLA Leaderboard [9] to provide
us with scenario generation and evaluation of driving vio-
lations. Violation testing includes route completion testing,
collision testing, red light running testing, stop running
testing, lane crossing testing, proxy blocking testing, and
timeout testing.

2) Cybersecurity Testing Workflow: The overall workflow
of the system is shown in Fig. 3. The attack target system
illustrated here is an end-to-end autonomous driving system
based on a monocular camera. The target asset in the vehicle
of the attack is the monocular front RGB camera.

The workflow is initiated by storing the predefined environ-
ment configuration, object properties, and attack description in
configuration files. Execution of the World Generator uses the
Environment and Vehicle Interpreter to read the environment
information. Subsequently, each time the scenario is generated,
sampling is carried out according to the predetermined process,
and the sampling results are converted into the parameterized
form we designed and then handed over to the World Generator.
The World Generator first initializes the basic configuration of
the real-time rendering engine and creates a specific world in

the it, step by step, based on the obtained parameters. Once
the world is created, the Scenario Generator starts generating
test scenarios based on the preset parameters. Subsequently, the
Attack Model Interpreter retrieves the attack information from
the Attack Description File and injects the manipulated data to
the end-to-end AD system based on the parameters specified
by the attack model. Finally, the Results Evaluation checks
conformity of the AV to safety metrics, as aforementioned,
as part of the CARLA Leaderboard [9]. Through conducting
multiple iterations of the testing workflow it is possible to
evaluate the effectiveness of the attack model.

III. EVALUATION CASE STUDIES

This section examines the use of ADSecLang for supporting
the security testing of AV systems. It includes a description of
the experimental setup (Sec. III-A) and an analysis of results
derived from two attack scenarios (Sec. III-B and III-C). The
goal of the experiments is to assess the ability of ADSecLang to
generate attack test cases capable of identifying vulnerabilities
in AD systems.

A. Experimental Setup

The experiments were run on a desktop computer with 12th
Gen Intel(R) Core(TM) i3-12100F 4-Core Processor, NVIDIA
GeForce GTX 1070Ti GPU, and 16 GB RAM. The use-
case scenario testing is conducted on the simulator CARLA
0.9.10. The AD solution tested in the following experiments
is a trajectory-guided end-to-end AD solution [10]. This AD
solution achieves a new state-of-the-art performance on the
CARLA AD Leaderboard [9], in which they rank first in
terms of the Driving Score and Infraction Penalty using only
a single camera as input. The image captured by the camera
has a resolution of 900×256 pixels, and the field of view is
maximized at 100 degree.

B. Attack Case I - Strong Light Exposure Attack

1) Attack Design: State-of-the-art camera attacks [11] have
shown that strong white LED light directed at the camera
sensor will result in significantly higher hue values and cause
the entire image to be completely white. This results in the
camera being unable to capture any visual information. This
attack is based on the fact that CMOS/CCD sensors can be
interfered with by malicious optical inputs and will produce
unrecognizable images. The broken image will further affect
the victim AV’s decision control. As a result, it will cause
uncertainties, which may lead the victim’s AV to deviate or
emergency brake, both of which can lead to a collision and/or
other safety violations. Common methods of attacking camera
devices are lasers or LEDs. The Strong Light Exposure Attack
interferes with the camera’s automatic exposure control. Under
laser irradiation, the surface temperature will rise rapidly due
to the non-uniform temperature field. Avalanche breakdown
of semiconductor materials will cause irreversible damage to
optoelectronic devices. Whilst we cannot achieve the physical
effects of a targeted light on the camera sensor in a virtual
simulator, we can modify the data to simulate the profile of the
cyber-physical attack.

(a) Before (b) After

Fig. 4: Camera view of attack case 1: before (a) and after (b) the
implementation of the Strong Light Exposure Attack.

2) ADSecLang Attack Configuration: The concrete scenario
using the ADSecLang attack interpreter file is provided below.

1 attack_name: strong light exposure attack
2 attack_target: monocular camera-based end-to

-end autonomous driving system
3 attack_goal: safety hazard
4 action: [method, preconditions]
5 method: [tampering, modifying the

data captured in the asset]
6 preconditions: [{precond1 AND

precond2 AND precond3}]
7 precond1: [attacker’s knowledge,

the attacker knows the basic
information about the cameras on
the victim’s autonomous driving
vehicle]

8 precond2: [attack tool, strong LED
light]

9 precond3: [attacker’s capability,
attackers can shine LED light at
AV camera sensor]

10 impact: [influenced_asset, influence]
11 influenced_asset: [sensor,

rgb_camera_front]
12 influence: [luminance, 300%]

The attack description YAML file is translated using the
attack interpreter within the simulation platform.

1 if(config[’attack name’]=="Strong light
exposure attack"):

2 percentage = config[’impact’][’influence
’][’luminance’]

3 file.write(’ data = cv2.cvtColor(data
, cv2.COLOR_RGB2YUV)\n’)

4 file.write(’ h = data.shape[0]\n’)
5 file.write(’ w = data.shape[1]\n’)
6 file.write(’ for i in range(h):\n’)
7 file.write(’ for j in range(w):\n

’)
8 file.write(’ y = data[i][j

][0]*’+str(float(percentage[:-1]) /
100.0)+’\n’)

9 file.write(’ if y > 255:\n’)
10 file.write(’ y = 255\n’)
11 file.write(’ data[i][j][0] =

int(y)\n’)
12 file.write(’ data = cv2.cvtColor(data

, cv2.COLOR_YUV2RGB)\n’)

3) Results: From the comparison of Fig. 4a and Fig. 4b, we
can see that the Strong Light Exposure Attack was successfully
implemented. On initiation of the malicious change to the
luminance, the monocular camera perception fails to identify
the lane lines in the field of view. As a result, the victim
AV veered off the lane onto the sidewalk, entering the off-
road section of the driving environment. It lost perception and
traversed the oncoming lane after being subjected to the Strong
Light Exposure Attack. This immediately triggered the failure

TABLE I: Evaluation result of attack case 1.

Criterion Result Value

RouteCompletionTest FAILURE 8.06%
OutsideRouteLanesTest FAILURE 11.79%
CollisionTest SUCCESS 0 times
RunningRedLightTest SUCCESS 1 times
RunningStopTest SUCCESS 0 times
InRouteTest SUCCESS
AgentBlockedTest SUCCESS
Timeout SUCCESS

of the Outside Route Test and the Route Completion Test,
terminating the simulation, as presented in Table I.

C. Attack Case II - Laser Beam
1) Attack Design: Adversarial machine learning (ML), as a

form of cyber attack, involves designing a targeted numerical
vector to make ML models misjudge and cause system failures
and crashes. In this attack test case, the laser construction
process is determined by several local-parameters: intercept,
injection Angle, wavelength, and laser width. This laser attack
is executed by randomly selecting a parameter and generating
adversarial samples. If the confidence level of the classification
is reduced, the current parameter settings are retained, which is
often similar to the greedy strategy. After adding a laser beam
projection to an image, the image pixels change, which in turn
affected the results of the classifier. This adversarial attack,
when applied to AD, can target the recognition of traffic lights,
speed limit signs, and stop signs. Shining a laser on a stop
sign can cause the AD system to fail to identify it correctly,
leading to a violation of the required safety condition to stop
the vehicle. Also, shining a laser on a traffic light can also
create color spoofing attacks. Experimentation with laser beam
attacks has shown that if the laser covers the entire traffic
light, regardless of its color, the accuracy of detecting red
or green lights is hardly affected. However, if the laser only
shines on one traffic light, there will be a significant decrease
in the recognition of the traffic light [12]. However, in our
testing, we found that if we use this greedy strategy to search
for the optimal parameters for 4000 cycles, the generation of
adversarial samples is very slow, and it is impossible to inject
adversarial samples into the AD test in real time. Therefore,
we generate a laser that can make target recognition ineffective
and recognise it as another object, by inputting images captured
by the camera into an adversarial sample generation program.
We then inject this laser in real-time in the AD test scenario.
As in the previous case, we assume that the attacker can find
appropriate attack scenarios and not be detected by others in
advance. For example, the attacker can deploy multiple infrared
light sources next to the road where the attacker’s vehicle must
pass or on a drone.

2) ADSecLang Configuration: The cyber threat scenario
description using the ADSecLang is provided below.

1 attack_name: laser beam attack
2 attack_target: monocular camera-based end-to

-end autonomous driving system
3 attack_goal: safety hazard
4 action: [method, preconditions]
5 method: [spoofing, shooting laser on the

camera]
6 preconditions: [{precond1, precond2,

precond3}]
7 precond1: [attack tool, laser pointer]

TABLE II: Evaluation result of attack case 2.

Criterion Result Value

RouteCompletionTest FAILURE 71.3%
OutsideRouteLanesTest SUCCESS 0%
CollisionTest SUCCESS 0 times
RunningRedLightTest FAILURE 1 times
RunningStopTest SUCCESS 0 times
InRouteTest SUCCESS
AgentBlockedTest SUCCESS
Timeout FAILURE

8 precond2: [attacker’s knowledge, machine
learning adversarial sample generation
technology]

9 precond3: [attacker’s capability,
attackers can aim lasers at camera
sensors on the roadside]

10 impact: [influenced asset, influence]
11 influenced_asset: [sensor,

rgb_camera_front]
12 influence: [raw_data, spoofed data]

The attack description YAML file is translated using the
attack interpreter within the simulation platform.

1 if(config[’attack name’]=="Laser beam attack
"):

2 file.write(’ laser_pattern = cv2.imread("
laser_for_carriage.png")\n’)

3 file.write(’ if laser_pattern is None:\n’
)

4 file.write(’ print("read image fail
!!")\n’)

5 file.write(’ return 0\n’)
6 file.write(’ laser_pattern = cv2.cvtColor

(laser_pattern, cv2.COLOR_BGR2RGB)\n’)
7 file.write(’ data = data.astype(np.

float32)\n’)
8 file.write(’ laser_pattern =

laser_pattern.astype(np.float32)\n’)
9 file.write(’ data = cv2.addWeighted(data,

1.0 , laser_pattern, 1.0 , 0)\n’)
10 file.write(’ data = np.clip(data, 0.0,

255.0).astype("uint8")\n’)

3) Results: From the comparison of Fig. 5, we can see that
the laser beam attack was successfully implemented in the AD
simulation.

The attack achieved its objective of inducing AV behaviour
to violate a safety condition. As shown in Table II, the vehicle
completed approx. 70% of the route (Route Completion Test)
and violated a safety condition by driving through a red
light (Running Red Light Test). The result of the laser attack
demonstrated that the laser beam was able to perturb the AD
solutions perception of the traffic light, thus causing the victim
AV to run a red light.

IV. RELATED WORK

ADSecLang distinguishes itself from the state-of-the-art as
it is the only domain-specific language, to our knowledge, for
AD cybersecurity testing and it is designed to integrate within a
software simulation testing environment for AD systems. Fur-
thermore, the language has been designed to be agnostic to AD
solutions or sensor technology and adaptable to accommodate
diverse threat scenarios. SCENIC has been utilized to develop
driving scenarios for cybersecurity testing. Salgado et al. [13]

(a) Before (b) Generated Laser (c) After

Fig. 5: Camera view of test case 2: (a) before the attack, (b) the generated laser beam, and (c) after applying the attack.

used the abstract and concrete scenario composition of SCENIC
to create a scenario of a malicious leading vehicle in a convoy
to test the robustness of cruise control and collision avoidance.
This scenario demonstrates the effect if an attack had already
succeeded, whereas the aim of ADSecLang is to incorporate
the technical method of attack to assess the performance.

For more conventional threat modeling, VehicleLang [14] and
ALLIA (Agnostic Domain Specific Language for Implementing
Attacks in an Automotive Use Case) [15] are the two most
prominent studies for legacy automotive architectures. Both
of these solutions are focused on modeling cyber threats to
connected vehicular systems and focus their case study eval-
uations on vehicular communication protocols and connected
components. VehicleLang provides a conceptual contribution,
which is the generation of text-based test cases whose feasibil-
ity can be validated by expert opinion. ALLIA extends this work
by providing a technical implementation, which transforms
the text-based test case generation into a technical test case
implementation.

V. CONCLUSION

In this paper, we presented ADSecLang, a domain-specific
language for autonomous vehicle cybersecurity testing. As part
of the development of the language, we derived a taxonomy
for AD cyber attacks and used the taxonomy to translate
functional descriptions of threats to a domain-specific language
that can be interpreted in the AD simulation testing platform.
We demonstrated the feasibility and utility of ADSecLang to
support a use-case evaluation of diverse attack scenarios on the
camera sensor. The results demonstrated that ADSecLang was
successful in generating attacks that could find vulnerabilities
in a trajectory-guided end-to-end AD algorithm.

Future work for the development of ADSecLang will be
to extend the language to encompass more diverse semantic
cybersecurity scenarios and evaluate the utility of the language
to support system-level attack scenarios (Buffer Overflow,
Denial-of-Service, Network Attacks, etc.). We further aim to
improve the results evaluation module. Metrics for AD testing
predominantly focus on safety impacts, however, we would
consider it necessary to define metrics that assist in directly
evaluating the security of the system under test. Whilst this
has proven a difficult challenge, the contemporaneous work on
benchmarking for machine learning security and cybersecurity
assurance levels (CALs) for automotive systems as conducted
by the autonomous vehicle cybersecurity standardisation bodies
provides some guidance how to achieve this. We further see
the importance of integrating the language within a common
AD cybersecurity testing evaluation platform, such as Simutack
[16], for an open-source release.

ACKNOWLEDGMENT

This work is supported by the European Union-funded
project CyberSecDome (Agreement No.: 101120779) and also

co-funded by the European Union and Estonian Research
Council via project TEM-TA5.

REFERENCES

[1] R. S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic, “Se-
curity analysis of Camera-LiDAR fusion against Black-Box attacks on
autonomous vehicles,” in 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Aug. 2022.

[2] Y. Cao, S. H. Bhupathiraju, P. Naghavi, T. Sugawara, Z. M. Mao, and
S. Rampazzi, “You can’t see me: Physical removal attacks on lidar-based
autonomous vehicles driving frameworks,” in Proceedings of the 32nd
USENIX Conference on Security Symposium, 2023.

[3] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim, “Drivefuzz:
Discovering autonomous driving bugs through driving quality-guided
fuzzing,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CSS ’22). ACM Press, 2022.

[4] Z. Wan, J. Shen, J. Chuang, X. Xia, J. Garcia, J. Ma, and Q. A. Chen, “Too
Afraid to Drive: Systematic Discovery of Semantic DoS Vulnerability
in Autonomous Driving Planning under Physical-World Attacks,” in
Network and Distributed System Security (NDSS) Symposium, 2022.

[5] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: A language for scenario specifi-
cation and scene generation,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM Press, 2019.

[6] H. Chen, H. Ren, R. Li, G. Yang, and S. Ma, “Generating autonomous
driving test scenarios based on openscenario,” in 2022 9th International
Conference on Dependable Systems and Their Applications (DSA), 2022.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of
the 20th USENIX Conference on Security, 2011.

[8] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph and
attack tree visual syntax in cyber security,” Computer Science Review,
2020.

[9] CARLA, “Carla autonomous driving leaderboard.” [Online]. Available:
https://leaderboard.carla.org/

[10] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet strong
baseline,” in NeurIPS, 2022.

[11] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles:
Contactless attacks against sensors of self-driving vehicle,” Def Con,
2016.

[12] R. Duan, X. Mao, A. K. Qin, Y. Chen, S. Ye, Y. He, and
Y. Yang, “Adversarial laser beam: Effective physical-world attack to
dnns in a blink,” in 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2021, pp. 16 057–16 066. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01580

[13] I. F. Salgado, N. Quijano, D. J. Fremont, and A. A. Cardenas, “Fuzzing
malicious driving behavior to find vulnerabilities in collision avoidance
systems,” in 2022 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), 2022, pp. 368–375.

[14] S. Katsikeas, P. Johnsson, S. Hacks, and R. Lagerström,
“Vehiclelang: A probabilistic modeling and simulation lan-
guage for modern vehicle it infrastructures,” Computers &
Security, vol. 117, p. 102705, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404822001031

[15] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf, “An agnostic
domain specific language for implementing attacks in an automotive use
case,” in Proceedings of the 16th International Conference on Availability,
Reliability and Security (ARES). ACM Press, 2021.

[16] A. Finkenzeller, A. Mathur, J. Lauinger, M. Hamad, and S. Steinhorst,
“Simutack - an attack simulation framework for connected and au-
tonomous vehicles,” in 2023 IEEE 97th Vehicular Technology Conference
(VTC2023-Spring), 2023.

Appendix IV

Paper IV
A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Analysis of autonomous driving software to low-level sensor cyber attacks. In 2025IEEE/ACM 20th Symposium on Software Engineering for Adaptive and Self-Managing Sys-tems (SEAMS), pages 1–11, 2025.

237

Analysis of Autonomous Driving Software to
Low-Level Sensor Cyber Attacks

Andrew Roberts∗, Mohsen Malayjerdi†, Mauro Bellone∗, Mert†,
Olaf Maennel‡, Mohammad Hamad§, Sebastian Steinhorst§

∗ FinEst Centre for Smart Cities, Tallinn University of Technology
† Department of Mechanical and Industrial Engineering, Tallinn University of Technology

‡School of Computer and Mathematical Sciences, The University of Adelaide
§Department of Computer Engineering, Technical University of Munich

Abstract—Autonomous Vehicle (AV) architectures fuse legacy,
electromechanical components with advanced sensor technology
and digital controllers, governed by software. An open challenge
for the design of AVs are cyber threats such as Electromagnetic
Injection (EMI) attacks, to the low-level layer, comprising elec-
tromechanical components, which can propagate through to the
higher-level, intelligent control, affecting decision-making and the
safety of the vehicle. This study analyses the robustness of the
design of the software stack of a real-world AV to attacks on
the low-level actuation using the example of an EMI attack on
the steering angle sensor. To achieve this, we create a hybrid
testbed which combines the mathematical model of the low-
level sensor with the high-fidelity, intelligent control. We further
develop safety and performance metrics measured at the high-
level, which we use to generate a detailed view on the safety
and system performance of the software. We conduct diverse
EMI attacks on the target AV, within 3 diverse critical driving
scenarios, consisting of > 1000 simulations. The results indicate a
correlation between an increase in attack noise with an increase
in safety violations and failures to complete the mission of the AV.
Our results highlight the importance for AV software developers
of testing under diverse attack and driving scenarios, as each
scenario within our experimentation exhibits different behaviour
of the system and correlations to differing safety and system
performance indicators.

Index Terms—Security, Autonomous Driving

I. INTRODUCTION

Cyber attacks that manipulate input to physical processes
in cyber-physical systems present a fundamental challenge to
secure system design [1]. Within the domain of automotive
systems, transformation of legacy, analog architectures to
digitally connected and autonomous driving (AD) technologies
present new challenges. Legacy, analog automotive systems
were designed based on a principle of contained, isolated
system boundaries, restricting the flow of data within an analog
system and sub-system [2]. The AD system architecture trans-
forms this design, requiring the lower-level, analog control
of actuation processes (steering control, braking, acceleration,
etc.) to be open and connected to digital controllers so their
process signals can be translated to digital input for the higher-
level decision control [3].

There have been numerous real-world examples of semi-
autonomous control architectures enacting unsafe decisions
from erroneous sensing data from low-level actuation sen-
sors [4] [5]. The 2018 SmartLynx Airline incident demon-
strated that a physical disturbance from a maintenance activity
on the horizontal stabilising sensor caused the sensing input
to send erroneous data which propagated through to the
control systems for flight planning, stabilisation and safety.
The control systems initiated multiple concurrent actuation
decisions (horizontal stabilisation, acceleration, etc.) which

Fig. 1: High-level architecture of Steering Angle Sensor Manipulation
within AD System.

affected the safe operation of the flight [5]. Ultimately, manual
intervention to override the autonomous control resolved the
unsafe state of the flight.

Within the context of cyber threats, numerous studies have
proven the vulnerability of microelectronic sensors to elec-
tromagnetic interference (EMI) [6], [7], [8], acoustic sen-
sor [9] [10] and data manipulation attacks [11], [12], [13], [14].
Furthermore, the network that exchanges actuation signals,
the Control Area Network (CAN) Bus network, has been
shown to be inherently vulnerable to a diversity of man-in-
the-middle [15], [16] attacks. Yet, there is a lack of practical
investigation that extends this analysis of the propagation of
malicious data input within an AD system, where physical
processes are software-controlled and manual, and human
intervention is not available.

Our study is motivated to investigate how cyber attacks to
electromechanical components, in our case, a steering-angle
sensor, propagate through the AV system, affecting higher-
level decision-making. The aim of the study is to analyse
the design of a real-world AD vehicular system and assess
mechanisms to enhance the design of the architecture of AD
systems to be more robust and resilient. To achieve this, we,
investigate a real-world AV software ecosystem, analysing
the integration between the lower-level control, characterised
by electromechanical components, and the high-level control,
characterised by digital systems which support algorithmic
decision-making. We then investigate how malicious input
propagates within this ecosystem. Finally, we determine mech-
anisms for enhancing secure design.

To guide this research, we focus on the following research
questions:

RQ1 How does a manipulation to the electromechanical com-
ponent propagate through the AD software stack?

Fig. 2: Conceptualization of our approach, from attack to backstep-
ping.

RQ2 What dependencies exist between the AD control algo-
rithm and low-level control?

RQ3 Where in the architecture of the autonomous vehicle can
defensive mechanisms be placed to defend against control
invariants?

Contribution:
• This is the first study, to the best of our knowledge,

that conducts an analysis of a production, full-autonomy
(Level 4-5), AV system to cyber attacks to the lower-level
control.

• Amidst the pressing need to address the design of secure
digital critical-infrastructure systems in transportation, we
analyse the relationship between low-level, electrome-
chanical systems and high-level control software within
AV systems.

• The study provides recommendations for enhancing ro-
bustness and resiliency in the design of AV software.

II. APPROACH OVERVIEW

Our approach (see Fig. 2) is to, first, implement the sensor
interference attack model in our custom high-fidelity AD
test-bed environment. The test-bed environment contains the
software stack of our real-world vehicle and configurations
consistent with the real-world kinematics of the vehicle.

Second, from the results of the experiments, we assess the
impact of the cyber attacks utilising defined safety criteria.
Furthermore, we conduct a sensitivity analysis of the vehicle’s
dynamic parameters to identify the behavioural effect of the
malicious input and assist in pinpointing critical areas of the
AV software which are affected by the attack.

Thirdly, we conduct a bottom-up analysis, to ascertain what
happens to the high-level, decision-control, when malicious
data is injected into the low-level. The bottom-up analysis
details the relationship between inputs and outputs in the AV
software stack.

Fourth, the previous analysis enables backstepping at a
conceptual level to stabilize elements of the control model
that are susceptible to the sensor interference attack.

We justify the use of this approach as it enables us to
take an architectural view of the AV software stack. Existing
studies use methods that view the problem of manipulation
of low-level sensor input either within the context of a PID
control [6] [7] issue or solely focus on the autonomous con-
trol [12]. We believe that taking an architectural perspective,

where the interconnections and dependencies of the system are
encountered, enables the designer/s of the AV to gain more
insight into the functioning of the system under attack.

III. AUTONOMOUS VEHICLE SOFTWARE ARCHITECTURE

The aim of this section is to describe the entire software
stack of the autonomous vehicle platform from a bottom-up
perspective. Each layer of the stack will be detailed as to there
purpose/task and how they communicate.

A. Low-Level Control

Low-level control is at the base of our software stack,
having the task of giving actuators the right commands to
generate a desired behaviour. Analog controllers have the
function to follow a specific reference signal. It is clear
that such signals are measured by transducers and applied
to actuators as current or voltage signals to apply a torque
to a motor at the low level. The most common and well
known analog controller in automotive is the Engine Control
Unit (ECU), which regulates injection, speed, and other engine
parameters. Brake control modules are also very common and
control various aspects of the braking system, such as anti-
lock braking (ABS), electronic stability control (ESC), traction
control, and brake force distribution. Now, assuming that our
goal is to keep any value of cruise speed, a velocity regulator
works by receiving a measure of the current speed, comparing
it to the reference, and generating a control signal to accelerate
or brake accordingly. Low-level controllers typically work
on a simple control feedback loop involving some type of
linear system model (or a linearized one). The most common,
state-of-the-art, and well-established controller in automotive
is the PID (Proportional-Integral-Derivative) controller. They
are widespread in automotive for their simplicity, robustness,
usability, and real-time capabilities. A PID controller con-
tinuously calculates an error signal based on the difference
between a desired setpoint and the measured process variable
and then adjusts the control output accordingly. They use pro-
portional, integral, and derivative actions to regulate a vehicle’s
actions. The underlying equation is relatively easy, involving
three constants, proportional, integral, and derivative constants,
typically indicated as Kp, Ki, and Kd, to weigh each action
respectively. With reference to Fig. 3, PID controllers are at the
base of the ”drive controller” and ”steering controller” block.

Control theory provides a very stable mathematical theory
about analysis and synthesis of the controllers, thus how distur-
bance might affect the controller is, in principle, well known.
This work aims to provide insights on how the behaviour of
the controller might affect the decision-making blocks in a
real-world, operational AV.

B. Intermediate Layer/Master Controller

The role of the Master Controller is to parse analog input
to the digital network of the vehicle.

The Master Controller communicates with the low-level
control through the CAN bus. The low-level control section in
Fig. 3 shows all the basic components in our system, which
are connected to the master controller by three different CAN
busses:

• CAN1 is used to connect all safety-critical components,
such as brake systems and electric motors.

Fig. 3: Autonomous vehicle high-level functional architecture.

• CAN2 is used for redundancy over all the safety-critical
components.

• CAN3 is dedicated to low-priority body-related functions
such as door automation and lighting.

The master controller receives data from the low level
via CAN bus and forwards to the upper-layers via ethernet.
Then receives processed signals from the intelligent blocks
(the upper-layers) and generate the control commands for the
actuators, parsed via CAN bus. Basic data from low-level
sensors are processed here and forwarded to the upper layer,
this includes speed, acceleration, encoder positioning, voltage
and currents.

What this means is that an anomaly in the PID controller,
or in its feedback loop, is read here and propagate to the
upper layer as limited computation (ARM 32-bit Cortex M7
CPU) can be done at this level. The master controller directly
communicates with the upper levels (i.e. Autonomous Driving
Software) via ROS topics flowing over the ethernet connected
to the Ubuntu-based Autoware PC.

C. Autonomous Driving Platform
The real-world AD platform is fully implemented on a PC

featuring an AMD Ryzen Threadripper 1950X (16-core/32-
thread) CPU, 2 NVIDIA GeForce GTX 1080 Ti graphic
cards, and 64 GB of memory. The driving platform runs
the Autoware stack [17], over a ROS environment in the
Ubuntu 18.04 OS. Here is where the ROS master is run,
handling all topics/subscribers from/to the low level and from
the sensing level, but also to each algorithmic component run-
ning on concurrent threads and consuming the incoming data
flow while providing interpreted information. The intelligent
driving software stack includes several modules interpreting

information from bottom-up and top-down, referring to high-
level perception and low-level control. The main task is to
coordinate concurrent processes of sensing, localization, and
planning.

The important task of planning and decision-making is
assigned to the Open-Planner algorithm [18], which generates
a waypoint according to the information coming from the
sensors and forward this information to an intelligent control
block that generates the actual trajectory in consideration of
kinematic/dynamic model of our system. The planning algo-
rithm also generates alternative paths referred to as ”rollouts”
which serve as possible drivable trajectories. Each rollout is
a kinematically compliant path on which the vehicle could
be driving. The change from one rollout to another might
normally occur in case of maneuvers (such as overtaking,
obstacle avoidance, and intersection crossing), to optimize
energy efficiency, or in case of violation of any safety criteria.

This unit is ultimately responsible for the intelligent control
in our autonomous vehicle, from localization to planning,
perception and control.

Differently, with respect to the low-level controllers (such
as PIDs) that are limited to follow a reference point, the
intelligent controller decides the reference point to be sent
to the low level, and resets it at run time according to the
real behaviour of the vehicle. This block can be interpreted
as a wider feedback loop acting on a macro scale receiving
information from the environment and from the low level.
It is clear that, on a micro-scale, the PID controllers are
effective, and provide mathematical guarantees of convergence
and robustness to noise, while on a macro scale intelligent
controllers cannot provide similar guarantees. In case of attack,
misleading information, or any source of uncertainty, intelli-

Fig. 4: Intelligent driving software stack structure showing ROS
nodes/topics communication between essential elements.

TABLE I: Autonomous Vehicle Sensors.

Sensor Model

3D lidar (front) Velodyne Ultra puck VLP 32
3D lidar (rear) Velodyne VLP-16
2xSide lidar Robosense Bpearl
Safety lidar Ouster OS0-90 (Safety)
3xCamera Flir
GNSS Trimble BX992
Radar TI

gent controllers can generate catastrophic decisions, thus our
goal is to better understand how uncertainties from the low-
level can propagate to the high level generating wrong driving
actions.

D. Intelligent driving software stack
A part of the ROS nodes/topics running on the vehicle

are represented in Fig. 4. The software stack is mainly com-
posed of the following main components, sensing and percep-
tion, mapping, localization and motion planning. Perception
modules runs AI-based modules for detection, segmentation
and interpretation of traffic scenes. Localization and mission
planning receive constant feedback from vehicle and global
positioning to generate new control commands. We expect that
our attack, though not directly carried out on those modules,
would generate errors that propagate from the low level to the
localizer and trajectory-generator blocks.

1) Sensors: Sensors are connected to the AD platform
running AI-based models for identification, detection and seg-
mentation of objects and environmental information through
a Gigabit ethernet switch. Data flow is managed and synchro-
nized directly in the Autoware stack, sending data as ROS
topics to concurrent threads (nodes) running inference over
the AI-based deployed modules. Sensing information are used
for perception-related functionalities such as object detection,
segmentation and sensor fusion. Table I provides the list of
available sensors.

IV. ADVERSARIAL MODEL

The objective of the attacker is to cause the AV to take
unsafe driving actions resulting from manipulation of the
steering angle sensor.

Fig. 5: Steering angle sensor attack.

We assume the attackers cannot directly access the digitised
sensor readings. Instead, we assume that the attacker can
exploit vulnerabilities in the steering angle sensor using proven
techniques such as EMI, to affect the integrity of the sensor
data (analog signals on the signal conditioning path before
being digitised).

We assume that the attackers can physically place an EMI
device near the steering angle sensor and are capable of
crafting and transmitting interference to the sensor during the
navigation of the AV and thus transform the waveform of the
sensor output. We further assume that the attackers do not
possess an in-depth understanding of the voltage levels of the
steering sensor and therefore focus on injecting incremental
noise into the sensor.

We assume that the attackers can observe the operation
of the AV and control the attack in terms of initiation and
cessation of the attack during varied time periods or within
the frames of a critical driving manoeuvre.

V. ATTACK MODEL

The attack is conducted in the measurement of the input and
output of the PID controller for the steering angle (Fig. 5). The
key parameters that affect the success rate of the attack are:
duration, noise, attack trigger action.

Within our attack model, attacks are conducted with differ-
ing sensitivity levels of the steering angle sensor and durations
and are triggered at targeted points of the AV mission. We have
chosen a range of sensor attack noise levels (0.01, 0.05, 0.1,
0.2), rather than a specific target point. The study of Pöllny
et al. [6], which conducted EMI attacks on a sensor used in
an automotive electronic control unit (ECU), indicated that an
attacker does not need to set a specific value for the steering
angle attack, but simply to find the sufficiently high level of
noise that would alter system behaviour to the attacker goal.

Whilst, EMI attacks have been proven successful against
microelectronic components in [19] [12] [6] [11] [7] [8] [10],
the attacks are applied to the stand-alone sensor hardware
and application use-cases such as microphones, temperature
sensors, drones. The novelty of the attack model in our study
is the implementation of the attack to a fully-autonomous
vehicle that integrates low-level actuation with high-level AD
decision-making. This enables the ability to assess the affect
of the attack on the entire AV software stack. Furthermore,
the attack is conducted utilising scenario-specific testing. This
is of critical importance, as it is widely understood that the
performance of the AD decision-making layer differs based
on scenario-specific behaviour [12]. For the AD algorithms
may be better optimised for specific driving manoeuvres such
as overtaking, or operational driving domains (ODD) such as
busy intersections. Our attack is conducted in a simulation

test environment, as attacks at the physical, hardware-level
are proven, the gap in existing research, is how these inputs
propagate within the system and affect the decsion-making
within an autonomous system.

VI. EXPERIMENT

A. Experimental Setup
To conduct the attack and analyse the subsequent effects, we

developed an experimental test environment.This environment
consists of a simulation platform that fuses the low-level actu-
ation, simulated in MATLAB, with a high-fidelity simulation
of the AV software of our real-world vehicle, simulated in
CARLA. The simulation test environment provides an optimal
platform as it uses the same mathematical model of the
steering actuation sensor and the same software stack as the
real-world vehicle. Furthermore, the simulation environment
enables attack testing to be conducted in an agile manner,
whilst, removing the safety risk factors of testing the AV in
the physical road environment.

B. Attack Implementation
We chose to conduct the low-level attack on three diverse

scenarios (see Fig. 6): 1) Straight-line, 2) Overtaking ma-
noeuvre and, 3) Left-turning maneuver at intersection. These
scenarios were chosen as they are consistent with the most-
popularly tested driving scenarios according to the survey
of test methods and practices in [20]. As shown in Fig. 6,
the high-fidelity simulation view for the three scenarios is
conducted. The Straight-Line scenario shows that the EMI
attack is initiated after the vehicle traveled 20 meters, with two
different attack durations: 10 and 20 meters. For the overtaking
manoeuvre, the attack begins during the cut-in process and
lasts for 10 meters. Finally, in the intersection scenario, the
attack is launched as the vehicle enters the intersection and
persists for a distance of 10 meters.

To conduct our experiments, firstly, we conduct the scenario
with no-attack for 100 runs. This establishes a baseline of
the performance of the AV without attacks. From there, each
of the attacks with different noise levels and duration are
run 100 times. Overall, approx. 1900 simulation runs are
recorded, and as the high-fidelity simulation uses GPU and
CPU resources, this is a time-consuming process. Figure 7
presents the scenario flow used to integrate the attack into
the mission in CARLA. It outlines the sequence of behaviors
from the vehicle’s initialization and driving towards the goal
to executing an attack or stopping based on a distance trigger.
The attack is enabled based on a predefined condition. This
structured flow allows for precise control over when and
how the attack occurs during the scenario, ensuring consistent
testing of the AV’s response to disturbances.

C. Evaluation Criteria
Table II and III detail the safety and performance criteria

applied in our experiments, respectively. As we have diverse
scenarios which involve scenarios with ego vehicles, certain
criteria is only applicable to their corresponding scenario.
In this analysis, mission failure (NotF) and safety violations
(SafetyV) are distinct evaluation criteria used to assess the
performance and safety of the AV during the scenarios.

Mission failure (NotF) refers to instances where the vehicle
was unable to complete the mission. This typically occurs

Fig. 6: Game-engine view of three simulated scenarios representing
the attack occurrence place during the mission; 1) Straight-line 2)
Overtake 3) Intersection.

Fig. 7: Flow graph of how each scenario is processed in the
simulation platform.

due to critical events that prevent the AV from finishing its
task, such as collisions (VCol), localization loss (VNDTLs),
or sidewalk incursions (VSiIn). These violations are severe
enough to terminate the mission.

Safety violations (SafetyV), on the other hand, refer to any
breaches of safety that occur during the mission but do not
necessarily prevent the vehicle from completing it. A mission
may still be considered successful even if multiple safety
violations are recorded. Examples of these include deviation
to the center lane (VDTL), sharp braking (VBrD), localization
loss (VNDTLs), collisions (VCol), and violations of distance
to collision (VDTCVDTC). In these cases, while the AV may
exhibit unsafe behaviors or suboptimal performance, it is still
able to complete the mission.

Two critical safety metrics are sidewalk incursions (VSiIn)
and collisions (VCol), both representing severe safety hazards.
A sidewalk incursion indicates where the AV veered off its

TABLE II: Safety Evaluation Criteria.

Safety
Condition

Data
Label

Description Metric

Not Finished NotF Failure to finish the mission Pass/Fail

Sidewalk Incursion SiIn AV deviation
into pedestrian zone

Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Distance-to
-Collision

DTC Violation of the safe distance
between AV and NPC

AV within 0.5m
of other vehicle

Distance-to
-Centre Lane

DTL Violation of the safe distance
between AV and Centre Lane

AV within 0.4m
of centre lane

Break on
Driving Lane

BrD AV initiates emergency break
on driving lane

Pass/Fail

Localization NDTLs Localization Loss NDTerror > 1.0

Violation V Safety Violation

TABLE III: Performance Evaluation Criteria.

Performance
Criteria

Data
Label

Description Metric

Lane Transition RlOut AV executes multiple roll-out
transition

Pass/Fail

Localization NDT Localization
Performance

AV localization matching

Localization NDTer Mean localization pose error Localization error margin

Duration Dur Duration in seconds

Max NDT score MxNDTSr Max NDT score
during a mission

Smaller = Better

Path Deviation Dev2Ref Sum of deviation to the
reference path in sampled points

Smaller = Better

Max Lat Deviation MxLaDev Max lateral deviation
from original path

Smaller = Better

intended path and encroached into pedestrian zones, poten-
tially endangering people on sidewalks. Similarly, a collision
signifies an event where the AV collided with a nearby non-
player character (NPC) vehicle.

Another key performance indicator is the deviation to the
reference path (Dev2Ref), which measures how far the AV
strayed from its intended trajectory. It is important to note
that Dev2Ref is not the deviation at a single point; rather, it
represents the summation of the deviations at several reference
points along the planned path to the actual route traveled by
the AV. This cumulative nature of the metric results in larger
values, especially when the AV frequently deviates from the
intended trajectory.

VII. RESULTS

For each of the scenario’s, the results, as expressed in
Tables. IV, V, and VI demonstrate that increasing level of
noise and duration of the EMI attack impact the safety and
performance of the AV.

The manipulation of the steering sensor input at higher
noise levels affects the feedback loop for the calculation of
localisation, which results in the AV experiencing loss and
jumps of localisation. The NDT algorithm, used in the local-
isation algorithm, exhibits weakness in holding the position
of the AV during sensor manipulation, which is demonstrated
by loss of localisation, in attempting to re-correct, it incurs
jumps. The loss and jumps of the localization affect the
displacement of the AV. As such, the cost-based algorithm used
by the mission and motion planning module recalculates the
trajectories and chooses a new roll-out. The choice of a new
trajectory for the AV disrupts the flow of critical maneuvers
within the scenario, such as the cut-in process of overtaking,

TABLE IV: Summary of the Safety and Performance Evaluation -
Straight Line Scenario. The first line is our baseline path, where no
attack was applied.

SAFETY

Length Noise NotF SafetyV VSiIn VDTL VNDTLs VBrD

- baseline 0% 0% 0% 0% 0% 0%

10 m 0.01 0% 0% 0% 0% 0% 0%
10 m 0.05 10% 10% 0% 10% 0% 0%
10 m 0.1 12% 12% 0% 6% 6% 0%
10 m 0.2 30% 30% 2% 26% 12% 8%

20 m 0.01 0% 0% 0% 0% 0% 0%
20 m 0.05 34% 34% 2% 30% 8% 2%
20 m 0.1 34% 36% 4% 28% 18% 6%
20 m 0.2 42% 42% 6% 38% 14% 2%

PERFORMANCE

Length Noise Dur RlOut MxLaDev MxNDTSr

- baseline 57.6s 0 0.1m 11.9

10 m 0.01 59.9s 0 0.2m 11.9
10 m 0.05 61.5s 0.16 1.6m 12.0
10 m 0.1 65.5s 0.3 1.5m 12.5
10 m 0.2 71.8s 1.18 8.3m 25.5

20 m 0.01 70.2s 0 0.3m 14.2
20 m 0.05 75.6s 0.94 1.7m 25.5
20 m 0.1 82.6s 1.36 8.2m 46.9
20 m 0.2 85.6s 1.64 8.2m 35.0

smoothing of trajectory in keeping straight-line and turning at
the intersection.

A. Scenario 1: Straight-Line
Within the Straight-Line Scenario Safety Results (Ta-

ble. IV), safety violations begin to occur when 0.05 noise
is introduced into the sensor input, marking the threshold
where the AV system starts to struggle with maintaining safety.
At this noise level, a 10% safety violation rate provided by
lateral deviation violations was observed. As the noise level
and attack duration increase, the AV experiences a progressive
degradation in performance, culminating in the highest noise
level (0.2) and the longest attack duration (20 meters), which
results in a 42% safety violation rate and 38% lateral deviation
violation.

A key characteristic of the AV’s behavior in this scenario
is the Deviation-to-Centre-Lane. The noise is injected into the
steering sensor, and abrupt changes in the steering actuation
cause the vehicle’s control system to oscillate between making
corrections and following the desired path. Autoware’s motion
planner attempts to rectify the vehicle’s course, but the correc-
tions are often sub-optimal, resulting in the AV veering to a
dangerous proximity to the center line. This behavior indicates
a weakness in the resilience of the AV’s planning algorithm
when recovering from anomalous inputs, as the system fails
to regain optimal performance after the attack.

A more extreme example of dangerous trajectories, is where
the EMI injection causes the AV to lose localisation which,
cascades to affect the decision-making of the planning algo-
rithm. The attack localization loss, as indicated by the NDT
Error Value and NDT Score increasing, and the sharp variances
between autoware and simulator. This behaviour results in
the AV veering into the adjacent lane and hitting the side
curb, a behaviour characteristic of 6% of the runs within the
maximum noise and duration simulation set. Associated with
these safety violations are significant performance degradation.
In scenarios with low noise levels (0.01), the maximum lateral

TABLE V: Summary of the Safety and Performance Evaluation
- Overtake Scenario. No attack was carried out in the baseline
experiment.

SAFETY

Noise NotF SafetyV VSiIn VCol VNDTLs VDTC VBrD

baseline 0% 1% 0% 0% 0% 1% 0%

0.01 7% 18% 2% 3% 4% 14% 1%
0.05 16% 23% 8% 3% 11% 10% 2%
0.1 29% 40% 18% 2% 26% 14% 1%
0.2 33% 39% 23% 7% 28% 14% 2%

PERFORMANCE

Noise Dur RlOut DTC MxNDTSr NDTer S-NDTer

baseline 104.7s 8.2 0.4m 19.4 0.2m 0.1m

0.01 107.3s 7.8 0.2m 55.9 0.2m 0.2m
0.05 121.4s 8.9 0.2m 73.9 0.4m 0.5m
0.1 125.4s 10.0 0.2m 63.9 0.7m 0.9m
0.2 124.7s 10.2 0.2m 53.1 0.6m 0.8m

deviation is limited to around 0.2 meters. However, under max-
imum noise (0.2) and 20-meter duration conditions, the lateral
deviation increases dramatically to 8.2 meters, showcasing the
substantial impact of noise on the AV’s ability to maintain
its path. This severe lateral deviation illustrates the danger
posed by noise-induced errors in the vehicle’s steering and
localization systems.

Moreover, the RIOut metric—which tracks the average
number of local trajectory transitions during a mission—shows
a significant increase under high-noise conditions. This indi-
cates the motion planner’s growing uncertainty and inability to
maintain a stable trajectory. As the AV continuously switches
between trajectories, it struggles to converge on an optimal
path, leading to erratic driving behavior and further deviations.
Another factor exacerbating these challenges is the increased
mission duration under noise attacks. The AV, displaced from
its efficient path due to trajectory deviations and localization
errors, takes longer to complete the mission. In the 0.2 noise
/ 20-meter scenario, the mission duration extended by nearly
28 seconds compared to the no-attack baseline, reflecting the
inefficiency introduced by the noise attacks.

B. Scenario 2: Overtake Maneuver

In this experiment, the attack length was fixed at 10 meters
while varying the noise levels to assess their impact on the
vehicle’s performance and safety. In the no-attack scenario
(see Table. IV), the AV successfully completed the overtaking
maneuver with minimal disruptions. The mission failure rate
(NotF) was 0%, and a 1% violation of distance to collision
(VDTC) was recorded, indicating that in one case, the vehicle
exceeded the safe distance from nearby objects. Despite this,
there were no sidewalk incursions (VSiIn), collisions (VCol),
or localization loss (VNDTLs). The vehicle maintained a safe
average DTC of 0.4 meters. The mission duration was 104.7
seconds, with an NDT error of 0.2 and a standard deviation
of 0.1.

In the 0.01 noise scenario, VNotF increased to 7%, and by
the 0.2 noise level, it reached 33%. Similarly, VNDTLoss was
first observed at 0.01 noise (4%), growing to 28% in the 0.2
noise scenario. These results indicate that noise in the sensor
input significantly disrupts the vehicle’s ability to maintain
accurate localization, directly impacting mission success.

In the no-attack scenario, VSiIn and VCol were recorded
at 0%, reflecting ideal behavior where the AV stayed within
its designated path and successfully avoided NPCs during
overtaking. However, as noise levels increased, both metrics
worsened. In the 0.01 noise scenario, VSiIn rose to 2%, and
VCol to 3%, showing the system’s diminished capacity to
maintain lane discipline and avoid nearby vehicles. At the
highest noise level (0.2), sidewalk incursions increased to 23%,
while collisions reached 7%, a significant rise indicating the
AV’s inability to safely manage the overtaking maneuver under
heavy noise interference. These results suggest that sensor
noise not only disrupts the vehicle’s path but also critically
impacts its ability to avoid hazards that could lead to severe
accidents involving both pedestrians and other vehicles.

The VDTC , which reflects the rate at which the AV exceeded
safe distances from nearby objects, increased from 1% in the
no-attack case to 14% in the 0.2 noise scenario. This was
accompanied by a rise in sharp braking events as the AV’s
control system struggled to compensate for the noisy input,
leading to more frequent sudden stops. As the noise level
increased, the RollOut metric showed greater instability. In the
0.2 noise case, the RollOut metric increased from 8.2 (in the
no-attack scenario) to 10.2, indicating the planner’s increasing
uncertainty in maintaining a stable trajectory.

The mission duration increased as the noise level rose. In
the 0.2 noise scenario, the AV took 124.7 seconds to complete
the maneuver, an increase from 104.7 seconds in the no-
attack scenario. Additionally, the NDT error and its standard
deviation saw significant increases, with the NDTer rising
from 0.2 to 0.6 and the S-NDTer increasing from 0.1 to 0.8,
highlighting the degradation in localization performance under
noisy conditions.

C. Scenario 3: Intersection

In the intersection scenario, the attack length remained
unchanged at 10 m, while the noise levels varied to assess their
impact on the AV’s performance during this complex maneu-
ver. In the baseline scenario, the AV successfully navigated
the intersection without mission failure (0%) or significant
safety violations, aside from a small 3% VDTC . There were
no recorded VSiIn or VCol, and the AV maintained an average
DTC of 0.4 meters, with an NDTer of 0.1 and a minimal
deviation from the reference path of 20.4 meters. The overall
mission duration was 65.8 seconds, and the system performed
with only 2.2 RollOut changes, indicating a stable and efficient
planning process.

As noise levels increased, the NotF rate rose from 8% at
0.01 noise to 25% at 0.2 noise. Safety violations also saw a
sharp increase, particularly in terms of VNDTLs, which jumped
from 7% at 0.01 noise to 22% at 0.2 noise. This degradation in
localization directly impacted the AV’s ability to make timely
decisions and follow the intended trajectory, leading to more
dangerous driving behavior.

While sidewalk incursions and collisions were rare in the
baseline scenario, they became more frequent as noise levels
rose. At 0.2 noise, 4% of the runs resulted in VSiIn, and
4% in VCol with non-player characters (NPCs) within the
intersection. This behavior indicates a critical safety failure,
where the AV not only lost control of its lane discipline but
also failed to avoid NPCs and pedestrian zones.

TABLE VI: Summary of the Safety and Performance Evaluation
- Intersection Scenario. No attack was carried out in the baseline
experiment.

SAFETY

Noise NotF SafetyV VSiIn VCol VNDTLoss VDTC DTC

baseline 0% 3% 0% 0% 0% 3% 0.4m

0.01 8% 15% 0% 1% 7% 10% 0.2m
0.05 19% 27% 2% 3% 16% 13% 0.2m

0.1 23% 32% 6% 3% 19% 16% 0.2m
0.2 25% 28% 4% 4% 22% 7% 0.1m

PERFORMANCE

Noise Dur RlOut MxNDTSr NDTer S-NDTer Dev2Ref S-Dev2Ref

baseline 65.8s 2.2 38.5 0.1m 0.1m 20.4m 8.2m

0.01 70.5s 3.1 39.5 0.2m 0.2m 39.1m 98.8m
0.05 72.9s 3.9 40.9 0.4m 0.4m 63.6m 170.4m

0.1 74.2s 4.5 37.5 0.5m 0.5m 69.6m 147.5m
0.2 74.5s 4.1 39.1 0.4m 0.5m 77.9m 154.9m

The cumulative deviation remained relatively low in the
no-attack baseline scenario, indicating stable performance.
However, under the influence of noise, this deviation increased
significantly. For example, in the 0.2 noise scenario, the
Dev2Ref reached 77.9 meters, with a high standard deviation
of 154.9 meters, demonstrating the system’s growing insta-
bility under attack. The high standard deviation reflects the
inconsistency in the AV’s ability to maintain a predictable
trajectory, as deviations varied considerably at different points
along the path. The increasing Dev2Ref values show that the
AV struggled to recover from noise-induced errors, leading to
significant drift from the planned path.

The results show that the roll-out metric increased as noise
levels rose. In the 0.01 noise scenario, the roll-out increased
to 3.1, and by 0.2 noise, it rose to 4.1, indicating the planning
system’s growing uncertainty in selecting and maintaining a
stable path. The maximum NDT score also fluctuated, reaching
a high of 40.9 in the 0.05 noise scenario, highlighting the
deteriorating localization performance.

The NDT error and its standard deviation also increased
with higher noise levels. At 0.2 noise, the NDT error rose
to 0.4, with a standard deviation of 0.5, indicating significant
localization drift. This localization instability contributed to
unsafe driving behavior, as reflected in the increased VDTC

and collisions. The mission duration also increased with noise
levels, from 65.8 seconds in the baseline scenario to 74.5
seconds at 0.2 noise. This duration increase indicates the AV’s
struggle to efficiently navigate the intersection under attack, as
the planning algorithm and control systems were frequently
forced to adjust to counteract the noise-induced deviations.

D. Comparison Between Safety Violations and Simulated Sce-
nario

Figure 8 represents radar graphs that provide a clear visual
representation of the impact of noise attacks on the AV across
all different mission types: straight-line driving, overtaking,
and intersection maneuvers, with varying attack lengths (10
meters and 20 meters) for the straight-line scenario. By
comparing these radar graphs, we can discern how the attack
influences the AV in different maneuvers and understand
whether the vulnerability is related to the nature of each
maneuver.

In the straight-line scenario (Fig. 8 (a) and (b)), the radar
plots show a clear difference between the 10-meter and 20-

Fig. 8: Safety violation of simulated scenarios.

meter attack lengths. With the 10-meter attack (Figure (a)),
the VDTL and VNDTLs are relatively contained at noise levels
below 0.1, but they spike at 0.2 noise, indicating that longer
attack lengths exacerbate the vehicle’s struggle to maintain
its trajectory. By contrast, in the 20-meter attack scenario
(Figure (b)), the impact of noise is more pronounced across
all noise levels, with a higher percentage of NotF and signif-
icantly greater VDTL and VNDTLs values. This suggests that
the longer attack duration amplifies the system’s inability to
recover from perturbations in the steering sensor, causing the
AV to deviate further from the planned path.

In the overtaking scenario (Fig. 8 (c)), the radar plot high-
lights that this maneuver is particularly vulnerable to VNDTLs

and VDTC as noise levels increase. Even at 0.01 noise, the
AV shows a marked increase in these safety violations, and
by 0.2 noise, VNDTLs and VDTC reach critical levels. This
indicates that overtaking is a more complex and challenging
maneuver for the AV compared to straight-line driving, as
it requires the vehicle to safely execute lane changes and
avoid collisions with NPCs. The complexity of coordinating
between localization, path planning, and collision avoidance
makes the system more prone to safety violations when noise
is introduced.

In the intersection scenario (Fig. 8 (d)), the radar plot
demonstrates that this maneuver is less affected by VDTC

compared to the overtaking scenario, but the mission failure
rate and localization loss are notably higher. Even at 0.01
noise, NotF jumps to 8%, and VNDTLs reaches 7%, while at
0.2 noise, NotF reaches 25%, indicating a substantial failure
rate. The intersection maneuver places a high demand on the
AV’s localization and planning systems, as it requires precise
decision-making in a constrained environment with multiple
potential collision points. The increase in safety violations
with rising noise levels reflects the difficulty the AV faces
in maintaining control during complex navigation tasks in
intersections, where it must simultaneously monitor multiple

Fig. 9: Correlation coefficients between violation metrics (horizontal
axis) and noise levels ([0, 0.01, 0.05, 0.1, 0.2]) for each scenario
(vertical axis). The values indicate the strength of the relationship
between the likelihood of each violation and changes in noise levels.

potential threats and adjust its trajectory.
The vulnerability of the AV to noise attacks appears closely

tied to the nature of the maneuver. Straight-line driving is
less demanding in terms of control and localization, and as a
result, the AV is able to handle noise better—though longer
attack durations (as in Fig. 8 (b)) significantly increase the
risk of mission failure. In contrast, overtaking involves more
dynamic path changes and collision avoidance, making it more
susceptible to noise, as seen in the sharp rise in VDTC and
VNDTLs even at low noise levels. Intersection maneuvers also
present significant challenges, particularly due to the need for
precise localization and decision-making at multiple points,
resulting in higher mission failure rates and localization loss
as noise levels increase. These findings suggest that the more
complex the maneuver (i.e., those requiring more dynamic
control and interaction with external factors like NPCs or
intersection points), the more vulnerable the AV is to noise
attacks.

E. Violation to noise correlation analysis
The correlation heatmap shown in Fig. 9 reveals significant

insights into how different safety violations and performance
metrics are affected by noise levels across various maneuvers
and attack durations. Among all the maneuvers, straight-
line driving (10m attack) demonstrates the highest correlation
between noise levels and mission failure, with a coefficient
of 0.99, indicating that shorter attack duration in straight-line
driving are highly sensitive to noise. The overtake scenario
follows this with a correlation of 0.93. Both the intersection
and straight-line 20m scenarios show a correlation of 0.84
for mission failure, suggesting that longer attack duration and
intersection maneuvers are somewhat less sensitive to noise,
possibly due to the nature of the mission. Regarding sidewalk
incursions, longer attack duration in the straight-line (20m)
and overtake scenarios show the strongest correlations, at 0.98
and 0.96, respectively. In contrast, the intersection maneuver
displays the weakest correlation for sidewalk incursions, re-
flecting the controlled, slower nature of this maneuver.

When examining localization loss, straight-line 10m and
overtake show the highest correlations, 0.97 and 0.92, re-
spectively, indicating that these scenarios are most affected
by noise in terms of localization. The intersection scenario,

though still sensitive to noise (0.86), shows a somewhat
lower correlation, likely due to the AV’s reduced speed and
static behavior at stop points. Collision, on the other hand,
shows similarly strong correlations in overtaking (0.84) and
intersection (0.87) scenarios, but this metric is irrelevant in
straight-line driving, as there are no NPCs involved in those
maneuvers. The correlation for RollOut switches is also high-
est in straight-line 10m attacks (0.97), followed by straight-
line 20m and overtake, while intersections have the lowest
correlation (0.71) in this category. For NDTer, longer attack
durations in straight-line scenarios show the highest correlation
(0.92), while intersections and overtakes show lower values.

Overall, the straight-line (10m) and overtake scenarios ex-
hibit the highest sensitivity to noise across several metrics,
such as mission failure, sidewalk incursions, and localization
loss. Intersection scenarios, in contrast, show consistently
lower correlations, likely due to the nature of the maneuver,
where the vehicle slows down or stops, reducing the dynamic
impact of noise during attacks. This behavior at intersections
explains the weaker overall correlation with noise, as the AV
is generally at lower speeds and is less engaged in contin-
uous movement compared to the overtake and straight-line
scenarios. This highlights how the nature of each maneuver,
particularly its dynamic or static characteristics, influences the
vehicle’s vulnerability to noise-induced safety violations and
performance degradation.

VIII. DISCUSSION

Throughout the paper, we demonstrated that AD software
is sensitive to EMI attacks that can generate different levels of
safety violations from low-priority violations, from which the
vehicle can recover but resulting in suboptimal behaviour, to
severe violations causing collisions or endangering other road
users.

RQ1 How does a manipulation to the electromechan-
ical component propagate through the AD software
stack?

From our results, it emerges that an EMI attack at the
steering sensor level often causes SiIn, DTL, or DTC vi-
olations, which are the most commonly visible in Fig. 8.
To back-step this behaviour, to eventually debug such a
complex AD software stack in a general purpose approach,
developers will require an accurate analysis of each block in
terms of data input-output relation. In our case, we carried
out a back-step analysis at the ROS-topic level to identify
the nodes that subscribe to specific messages. Here, we
found out that the most probable user of steering sensor
data, thus generating violations, is the mission and motion
planning module, visible in Fig. 4, and composed of several
sub-blocks including op trajectory generator and
op waypoint follower, that represent the most probable
components generating wrong decisions. While at the low
level, PID controllers might be able to withstand noise to some
extent, intelligent controllers have shown inherent vulnerabil-
ity to this attack propagating from the low level up as raw
sensor data to the master controller and up to the ROS topics.

RQ2 What dependencies exist between the AD
control algorithm and low-level control?

High-level intelligent controllers trust digital data flowing
over the in-vehicle network communication level. The in-
terdependence of control algorithms resides in the feedback
loop reading data from the low level while the AD acts
in a hybrid deliberate/reactive robotic paradigm. In such a
paradigm, well studied in robotics, an AD reacts quickly upon
sensing without performing global-planning, which is typically
a computationally demanding task running concurrently. SiIn,
DTL, or DTC violations, which are the most commonly found
in our analysis, are a typical result of the reactive behaviour of
ADs. Similarly, the planner might generate unsafe trajectories
in case of localization data corruption such as NDTLs violation
or increase in NDTer margin. Eventually, the vehicle can
recover from some violation when the global-planner generates
a new waypoint, but this is not always guaranteed when some
stochasticity is involved in the process.

RQ3 Where in the architecture of the autonomous
vehicle can defensive mechanisms be placed to de-
fend against control invariants?

Strategies to detect and mitigate low-level sensor data input
manipulation focus on redundancy and multiple levels of data
integrity checks. To investigate this question we step through
each of the layers of the AV:

• Low-Level PID Controller: Integrity and plausibility
checking of the PID can mitigate but not stop the injection
of anomalous sensor input values. The PID has its own
robustness, which is mathematically proved, the PID
lacks the intelligence to interpret the meaning behind
the input data. Therefore, attacks which manipulate the
sensor input always have the possibility of traversing
the PID. It is also possible to implement analog filters
and hardware saturation, however, as mentioned, at this
level, there is no means to discern attack behaviour
which resembles regular signal/circuit specification and
its operating characteristic.

• Intermediate Layer: At this level, it is possible to con-
duct inspection of the CAN data. The master controller
has low-computational capacity. Therefore, implementa-
tion of mechanisms to interpret and provide intelligence
of the CAN data is limited. Data saturation and filtering
is possible at this level. However, filtering and saturation
strategies would be challenged to defend against an
adaptive sensor manipulation attack which searches for
the filtering and saturation parameters and develop a 1-
step or n-step attack which falls outside the range.

• High-Level Control Layer: A redundant, fall-back con-
troller has a cost in terms of financial, compute and
network resources, and cannot guarantee that an attack
would also aim to manipulate the redundant controller.
Furthermore, redundant controllers accessing the same
sensor data might generate the same unexpected be-
haviour.

Our recommendations, for this particular use case, is to
accurately model the sensor behaviour at the physical level
considering the physical world world we live in. In this

context, sensors, such as everything else, should obey Newton
(for motion) and Maxwell equations (for electromagnetism).
To detect sensor data anomaly our knowledge of the physical
model of the sensor can be utilised to predict variances to this
model. This would effectively detect a possible attack much
earlier and thus prevent DTC & DTL violations occurring in
the motion planning block. The validation of sensor data can
run in a concurrent process throwing exceptions in case of
unexpected levels of noise. The response action to an exception
need to be modelled on the level of risk.

IX. RELATED WORK

The closest work to our study is that of Berdich and
Groza [21], which conducted multiple injection attacks
(Fuzzing, Replay, DDoS) within the CAN Bus, targeted at
diverse low-level sensors (Steering, Braking, Advanced Driver
Assistance Systems (ADAS) ECU), within a cruise-control
vehicle architecture. The experiment is only conducted in
Simulink and the wider software stack including control prop-
erties and high-fidelity sensing of the vehicle are not included.
The experimentation is conducted on the basis of establishing
the feasibility of attack and model potential risk and safety
consequences. Similarly, Pöllny et al. [6] developed an EMI
attack using a helmholz coil which successfully manipulated a
sensor popular used in ADAS. The study which focused at the
low-level recommenced the possibility of plausibility check to
mitigate steering angle attacks. Within, automotive software,
studies of Garcia et al. [22] and Kim et al. [19] have discussed
the problem of attacks on the low-level control with software
developers, discovering issues with software implementation
and development of defensive mechanisms, however, the scope
of these studies did not include practical experimentation.

X. CONCLUSION

Our study analysed the robustness of a real-world AV to
attacks on the low-level actuation using the example of an EMI
attack on the steering angle sensor. We developed a hybrid
low-level sensor and high-fidelity simulation environment,
which we used to conduct approx. 1900 runs of diverse attack
and driving scenarios. Our results demonstrated that our real-
world AV is vulnerable to attacks on the low-level actuation.
The effects of these attacks demonstrate that manipulated
sensor input can propagate through to the higher-level control,
and, in our case, impact modules for AD such as localisation
and planning. Given the reactive nature of the AD to sensing,
once a malicious input is within the system, the vehicle is to
shown to react to this input with unsafe driving actions. Our
recommendation to designers of AV software is to accurately
model the sensor behaviour at a physical level and use this
knowledge to predict variances in the model. This would
provide the ability to detect a possible attack earlier and
prevent collisions and localisation loss.

ACKNOWLEDGMENT

This work is supported by the Horizon Europe project
CyberSecDome (Agreement No.: 101120779) and EU Horizon
2020 project MariCybERA (Agreement No.: 952360) and by
the European Commission through the H2020 teaming project
Finest Twins (Grant No. 856602).

REFERENCES

[1] F. Zhang, H. A. D. E. Kodituwakku, J. W. Hines, and J. Coble, “Mul-
tilayer data-driven cyber-attack detection system for industrial control
systems based on network, system, and process data,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 7, pp. 4362–4369, 2019.

[2] C.-V. Briciu, I. Filip, and F. Heininger, “A new trend in automotive
software: Autosar concept,” in 2013 IEEE 8th International Symposium
on Applied Computational Intelligence and Informatics (SACI), 2013,
pp. 251–256.

[3] F. Munir, S. Azam, M. I. Hussain, A. M. Sheri, and M. Jeon,
“Autonomous vehicle: The architecture aspect of self driving car,”
in Proceedings of the 2018 International Conference on Sensors,
Signal and Image Processing, ser. SSIP ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 1–5. [Online].
Available: https://doi.org/10.1145/3290589.3290599

[4] N. United States National Transportation Safety Board, “Investigation
of lion air flight 610 and ethiopian airlines flight 302,” Safety Recom-
mendation Report NTSB ASR1901. PDF document, 2019.

[5] E. S. I. B. ESIB, “Accident, loss of control with airbus a320-214 near
tallinn airport on 28.02.2018.” Safety Investigations. Investigation report
ESIB: A2802118 EECAIRS: EE0180. PDF document., 2019.

[6] O. Pöllny, F. Kargl, and A. Held, “Steering your car with
electromagnetic fields,” in Proceedings of the 6th ACM Computer
Science in Cars Symposium, ser. CSCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3568160.3570228

[7] Y. Tu, V. S. Tida, Z. Pan, and X. Hei, “Transduction shield: A
low-complexity method to detect and correct the effects of emi injection
attacks on sensors,” in Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
901–915. [Online]. Available: https://doi.org/10.1145/3433210.3453097

[8] Y. Zhang and K. Rasmussen, “Detection of electromagnetic interference
attacks on sensor systems,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 203–216.

[9] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered:
Fabricating implicit control over actuation systems by spoofing
inertial sensors,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018,
pp. 1545–1562. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/tu

[10] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks,” in 2017 IEEE European Symposium on Security and Privacy
(EuroS&P), 2017, pp. 3–18.

[11] P. Dash, M. Karimibiuki, and K. Pattabiraman, “Stealthy attacks
against robotic vehicles protected by control-based intrusion detection
techniques,” Digital Threats, vol. 2, no. 1, jan 2021. [Online]. Available:
https://doi.org/10.1145/3419474

[12] S. Jha, S. Banerjee, T. Tsai, S. S. Hari, M. B. Sullivan, Z. T.
Kalbarczyk, S. W. Keckler, and R. K. Iyer, “Ml-based fault injection
for autonomous vehicles: A case for bayesian fault injection,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2019, pp. 112–124. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/DSN.2019.00025

[13] L. J. Moukahal, M. Zulkernine, and M. Soukup, “Boosting grey-box
fuzzing for connected autonomous vehicle systems,” in 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), 2021, pp. 516–527.

[14] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 801–816.
[Online]. Available: https://doi.org/10.1145/3243734.3243752

[15] H. J. Jo and W. Choi, “A survey of attacks on controller area networks
and corresponding countermeasures,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 7, pp. 6123–6141, 2022.

[16] A. Buscemi, I. Turcanu, G. Castignani, A. Panchenko, T. Engel, and
K. G. Shin, “A survey on controller area network reverse engineering,”
IEEE Communications Surveys and Tutorials, vol. 25, no. 3, pp. 1445–
1481, 2023.

[17] S. K. T. U. of Tokyo), “Autoware: Ros-based oss
for urban self-driving mobility,” in ROSCon Vancouver
2017. Open Robotics, September 2017. [Online]. Available:
https://doi.org/10.36288/ROSCon2017-900813

[18] H. Darweesh, E. Takeuchi, and K. Takeda, “Openplanner 2.0: The
portable open source planner for autonomous driving applications,” in

2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops),
2021, pp. 313–318.

[19] H. Kim, R. Bandyopadhyay, M. Ozmen, Z. Celik, A. Bianchi,
Y. Kim, and D. Xu, “A systematic study of physical sensor attack
hardness,” in 2024 IEEE Symposium on Security and Privacy (SP).
Los Alamitos, CA, USA: IEEE Computer Society, may 2024, pp.
146–146. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SP54263.2024.00143

[20] G. Lou, Y. Deng, X. Zheng, M. Zhang, and T. Zhang, “Testing
of autonomous driving systems: where are we and where should
we go?” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 31–43. [Online].
Available: https://doi.org/10.1145/3540250.3549111

[21] A. Berdich and B. Groza, “Cyberattacks on adaptive cruise controls and
emergency braking systems: Adversary models, impact assessment, and
countermeasures,” IEEE Transactions on Reliability, vol. 73, no. 2, pp.
1216–1230, 2024.

[22] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, Chen, and
Q. Alfred, “A comprehensive study of autonomous vehicle bugs,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 385–396. [Online].
Available: https://doi.org/10.1145/3377811.3380397

Appendix V

Paper V
M. Hamad, A. Finkenzeller, M. Kühr, A. Roberts, O. Maennel, V. Prevelakis, and S. Stein-horst. React: Autonomous intrusion response system for intelligent vehicles. Computers& Security, 145:104008, 2024.

251

Computers & Security 145 (2024) 104008

Available online 23 July 2024
0167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

REACT: Autonomous intrusion response system for intelligent vehicles
Mohammad Hamad a,∗, Andreas Finkenzeller a, Michael Kühr a, Andrew Roberts c, Olaf Maennel d,
Vassilis Prevelakis b, Sebastian Steinhorst a

a Technical University of Munich, Munich, Germany
b Technical University of Braunschweig, Braunschweig, Germany
c Tallinn University of Technology, Tallinn, Estonia
d University of Adelaide, Adelaide, Australia

A R T I C L E I N F O

Keywords:
Security
Intrusion response system
Intelligent vehicle

A B S T R A C T

Autonomous and connected vehicles are rapidly evolving, integrating numerous technologies and software.
This progress, however, has made them appealing targets for cybersecurity attacks. As the risk of cyber
threats escalates with this advancement, the focus is shifting from solely preventing these attacks to also
mitigating their impact. Current solutions rely on vehicle security operation centers, where attack information
is analyzed before deciding on a response strategy. However, this process can be time-consuming and faces
scalability challenges, along with other issues stemming from vehicle connectivity. This paper proposes a
dynamic intrusion response system integrated within the vehicle. This system enables the vehicle to respond
to a variety of incidents almost instantly, thereby reducing the need for interaction with the vehicle security
operation center. The system offers a comprehensive list of potential responses, a methodology for response
evaluation, and various response selection methods. The proposed solution was implemented on an embedded
platform. Two distinct cyberattack use cases served as the basis for evaluating the system. The evaluation
highlights the system’s adaptability, its ability to respond swiftly, its minimal memory footprint, and its
capacity for dynamic system parameter adjustments. The proposed solution underscores the necessity and
feasibility of incorporating dynamic response mechanisms in smart vehicles. This is a crucial factor in ensuring
the safety and resilience of future smart mobility.

1. Introduction

In recent years, there has been remarkable progress in the devel-
opment of smart vehicles. Today’s vehicles resemble interconnected
networks on wheels, with numerous embedded computers, called Elec-
tronic Control Units (ECUs), linked through various types of networks,
hosting an extensive number of software components totaling over a
hundred million lines of code. Moreover, these networks incorporate
various intelligent sensors (such as cameras, LiDAR, radar, etc.) and
different connectivity technologies that enhance the vehicle’s ability
to perceive and interact with the surrounding environment, thus bol-
stering autonomy and minimizing the reliance on human intervention.
However, with the rise of connectivity and the softwarization of vehi-
cles, the vulnerability to cyberattacks targeting these systems has also
escalated (Upstream, 2022).

Recently, there has been a growing interest in addressing the se-
curity threats that may target smart vehicles. For instance, the ISO

∗ Corresponding author.
E-mail addresses: mohammad.hamad@tum.de (M. Hamad), andreas.finkenzeller@tum.de (A. Finkenzeller), michael.kuehr@tum.de (M. Kühr),

andrew.Roberts@taltech.ee (A. Roberts), olaf.maennel@adelaide.edu.au (O. Maennel), prevelakis@ida.ing.tu-bs.de (V. Prevelakis), sebastian.steinhorst@tum.de
(S. Steinhorst).

21434 (International Organization for Standardization, 2021) stan-
dard has been introduced, with a significant portion dedicated to the
development of threat analysis and risk assessment methodologies.
Moreover, the field of intrusion detection and prevention in the au-
tomotive domain has witnessed extensive research, leading to various
avenues for research (Kim et al., 2021). However, despite these efforts,
the number of attacks targeting smart vehicles continues to rise (Up-
stream, 2022). This is to be expected, as security is not absolute, and
we must acknowledge that complete prevention of all security threats
may not be attainable. Therefore, greater emphasis should be placed
on defining how the system should behave when confronted with such
unavoidable attacks.

The cybersecurity incident response is an integral aspect of security
management, as outlined in ISO/SAE 21434 within the operational and
maintenance clause (International Organization for Standardization,
2021). Based on the standard, this process aims to provide remedial

https://doi.org/10.1016/j.cose.2024.104008
Received 15 January 2024; Received in revised form 5 June 2024; Accepted 19 July 2024

Computers & Security 145 (2024) 104008

2

M. Hamad et al.

Fig. 1. On the left side, the current vehicle system shares attack information with the VSOC but often has to wait for extended periods to receive necessary security patches and
updates. This waiting period puts the vehicle in a malicious status (red, diagonal lines). On the right side, the vehicle can select and implement security solutions to avoid the
long waiting time for security patches and updates and return to normal status (green, cross diagonal lines).

actions and updates, which may involve post-development changes to
address security vulnerabilities. The process necessitates the vehicle to
share cybersecurity information about the vulnerability that triggered
the cybersecurity incident response. Being part of the ISO/SAE 21434,
it is now imperative that manufacturers comply with new regulations
by having a cybersecurity management system that oversees the cyber-
security activities and processes in the product life-cycle. To achieve
this, Vehicle Security Operation Centers (VSOCs) will be utilized to
support monitoring (Barletta et al., 2023; Sembera, 2020; Olt, 2019).
Such VSOCs will employ expert teams that continuously analyze data
collected from all connected vehicles, enabling automakers to swiftly
and efficiently address security incidents (Olt, 2019). Although it is
arguable that numerous tasks within a VSOC could be automated, the
challenge of scalability persists, especially considering the extensive
fleet of connected vehicles and the immense data volumes accumulated
by each vehicle, reaching terabytes (Wright, 2021). The transfer and
processing of such data turn out to be significant issues, particularly in
urban areas with hundreds of cars per vicinity, leading to bottlenecks.
Additionally, the connectivity itself could be an attractive target for
attackers. In this context, the integration of VSOCs into the smart vehi-
cle ecosystem demands solutions for addressing connectivity challenges
between vehicles and the VSOC, as well as managing privacy concerns
tied to shared data (Hamad and Steinhorst, 2023).

Finally, and more importantly, there is a need to ensure a near-real-
time response to security attacks. Taking into account the need for a
human in the loop, as well as the latency introduced by high-volume
shared data and communication between the vehicles and the VSOC,
achieving a near-real-time response seems unrealistic. This perspective
is supported by the European Union Agency for Cybersecurity (ENISA),
which has cautioned that responding to high-criticality attacks could
potentially take days or even weeks (ENISA, 2019). The scenario of
extended waiting presents a dilemma, with two options, each having its
own disadvantages. Allowing a vehicle to operate with a compromised
component due to extended waiting for a security update is far from the
ideal situation. Alternatively, suspending the compromised component
until the security update is received might not be the best course of
action either, particularly if the component plays a crucial role in
operations.

Contributions: Therefore, there is a need for vehicles to be equipped
with the capability to swiftly respond to cyberattacks. However, having
such a capability requires the answering of three main questions (see
Fig. 1): Q1: What are the possible responses that can be taken? Q2:
What factors need to be considered when evaluating these responses?
Q3: How to select one or more of these responses at the run-time based
on the responses’ evaluation? This paper aims to address these ques-
tions by investigating and categorizing potential responses according
to the impact of various cyber attacks to which each response aims to

react. Additionally, the paper presents a dynamic risk assessment and
cost evaluation for attacks and responses, utilizing given data such as
attack information and vehicle status. This assessment supports the se-
lection of suitable responses. Furthermore, the paper explores different
approaches for response selection, conducts comparisons, and identifies
those best suited for automotive systems. Lastly, the paper introduces
an intrusion response system, referred to as REACT, evaluates it using
two attack scenarios, and discusses both the quality of the responses it
generates and its overall efficiency. In summary, the main contributions
of this paper are as follows:

• We conduct a comprehensive review of existing intrusion re-
sponse strategies for IT systems and map them to automotive
systems, considering the unique characteristics of automotive
attacks and automotive system architectures (see Section 2).

• We propose a novel method for calculating the cost and response
benefits by extending existing risk assessment approaches specific
to automotive systems (see Section 3).

• We explore a range of algorithms for selecting appropriate re-
sponses, conduct comparative analyses, and identify the most
suitable algorithms for automotive systems, proposing their adop-
tion to enhance automotive security (see Section 4).

• We introduce REACT, a comprehensive automotive IRS, and pro-
vide an open-source prototype1 (see Section 5).

• We demonstrate the feasibility and applicability of the proposed
automotive IRS through evaluations using embedded platforms
and two attack scenarios. Findings indicate that the system can
adapt to different scenarios, makes response selections quickly
(average 30 ms for the worst-case algorithm), has low mem-
ory overhead, and dynamically adjusts system parameters (see
Section 6).

2. Response strategies

The purpose of this section is to address the first question (Q1)
about possible response strategies. To do so, it is critical to have a
deep understanding of the system as well as the potential attacks and
threats it may face. Therefore, this section introduces the design of
an automotive reference architecture, discusses the potential threats
that may arise, and provides a comprehensive summary of the different
response strategies that can be utilized to mitigate these attacks.

1 https://github.com/mohammadhamad/REACT.

Computers & Security 145 (2024) 104008

3

M. Hamad et al.

Fig. 2. Reference vehicle architecture with possible attack surfaces (orange).

2.1. Automotive reference architecture

In order to understand how IRS can be integrated into modern
vehicles and the potential responses they can provide, it is essential
to first understand their system architecture. Fig. 2 presents a generic,
realistic and comprehensive reference architecture that can be found
in modern vehicles. It is notable that a modern vehicle includes highly
interconnected subsystems. The figure also shows how modern vehicles
have many embedded devices, known as ECUs, which are distributed
allover the vehicle, communicating among themselves via different
types of networks such as CAN, Flexray and Ethernet. These ECUs
are grouped in different domains or zones based on the functionality
such as infotainment, Advanced Driver Assistance Systems (ADAS),
powertrains, etc. Besides ECUs, modern vehicles are equipped with
many sensors (e.g., cameras, LiDAR, etc.), advanced communication
technology for connecting with the external world, and diagnostic ports
(e.g., OBD-II) that collectively form a significant attack surface for
different types of attacks and threats (Checkoway et al., 2011). The un-
restricted or/and uncontrolled interaction among all those components
puts the whole system in danger. Attackers could launch a stepping-stone
attack (Ullah et al., 2020), where they compromise a non-critical ECU
with weaker security (e.g., the infotainment system), in order to gain
control of a more crucial one (e.g., engine control) (Miller and Valasek,
2015; Costantino and Matteucci, 2023). All these characteristics of the
vehicle architecture suggest that any proposed IRS should take into
account the constrained resources and the highly interconnected and
distributed nature of a vehicular system.

2.2. Threats and attacks

Threat Analysis and Risk Assessment (TARA), an essential com-
ponent of ISO 21434, is employed as a systematic way to identify
and assess cybersecurity threats and risks in the automotive industry,
facilitating the implementation of effective mitigation strategies. Since
TARA does not dictate a specific method to identify threats, various
methods have been proposed, such as STRIDE (Karahasanovic et al.,
2017), SAVTA (Hamad and Prevelakis, 2020), attack trees (Henniger
et al., 2009; Hamad et al., 2016), and many others (Luo et al., 2021).
Following the methodology of TARA, these methods provide a com-
prehensive list of threats and attacks that may target the vehicular
system and offer preventive measures. However, they do not address
the reactive measures required for an automotive IRS.

Using the list of threats and attacks to create a response for each
of them seems to be not ideal due to several challenges, including the

Fig. 3. Classification of intrusion results and examples of attacks for each possible
intrusion result.

large number of attacks and the requirements for precise information
about each attack, which must be provided by the Intrusion Detection
System (IDS). This challenge becomes evident when considering Zero-
Day attacks, where information about such attacks may not be available
to the IRS at the time of detection by the IDS. Even if an anomaly-based
IDS shares some information about the attack pattern with the IRS, a
response solely based on known attack patterns may not sufficiently
react to these Zero-Day attacks. Therefore, the most effective approach
is to enable the IRS to understand the situation it aims to respond to.
This involves focusing on the impact or outcome of different attacks
rather than solely on the attacks themselves.

To achieve that, we have developed a model, illustrated in Fig. 3,
which represents the actual results of intrusions collected from various
research works. The model encompasses five main attack outcomes,
each of which can result from multiple types of attacks. Examples of
these attacks are depicted in the outer nodes of Fig. 3. Also, to reflect
the outcome of stepping-stone attacks, the model links the different
outcomes to demonstrate that certain attacks may cause a series of
results. The five attack outcomes are:

• Falsify/Alter Information: Different attacks have the potential to
modify information on a bus or within an ECU. It is important
to note that not every alteration of information automatically
results in undesirable behavior. For instance, adversarial sam-
ples (Mahima et al., 2021), such as incorrect classifications of ob-
jects detected by a camera, may not necessarily lead to incorrect
behaviors.

• Falsify/Alter Timing: This outcome typically occurs as a result of
attacks targeting the communication buses of the vehicle (Wolf
et al., 2004; Lokman et al., 2019) or the real-time tasks on the
ECUs (Hamad et al., 2018).

• Information Disclosure: This outcome is the result of attacks, such
as spoofing, eavesdropping, and others, that aim to allow at-
tackers to gain unauthorized access to sensitive information ex-
changed during communication or stored within the ECUs (Cui
et al., 2019).

• System Unavailability: This outcome typically occurs as a result
of Denial of Service (DoS) attacks that aim to cause a loss of
availability for a specific component or subsystem in the ve-
hicle (Palanca et al., 2017). Such attacks can lead to severe
damage to the system, especially if they target high-critical com-
ponents (Alrefaei et al., 2022).

Computers & Security 145 (2024) 104008

4

M. Hamad et al.

Table 1
Classification of generic responses to intrusion results.

Intrusion result Response index. response

Falsify/Alter timing 1. Use of redundant information (Hamad et al., 2021), 2. Correction of timing (Papadaki et al., 2003; El-Rewini et al., 2020), 3. Force
additional authentication (Anwar et al., 2015), 4. Restart the device/system (Kholidy et al., 2016), 5. Change settings (Hughes et al.,
2020), 6. Redirect traffic (Hughes et al., 2020), 7. Re-initialization (Herold, 2017)

Falsify/Alter information 1. Use of redundant information (Reallocation) (Hamad et al., 2021), 3. Force additional authentication (Anwar et al., 2015), 4. Restart
the device/system (Kholidy et al., 2016), 8. Create a backup (Chevalier et al., 2019), 5. Change settings (Hughes et al., 2020), 7.
Re-initialization (Herold, 2017), 9. Correct protocol specification faults (Herold et al., 2016), 10. Split or merge functions (Yarygina and
Otterstad, 2018)

Information disclosure 11. Issue authentication challenges (Papadaki et al., 2003), 12. Re-enforce access control (Anuar et al., 2012), 3. Force additional
authentication (Anwar et al., 2015), 13. Introduce a honeypot (Anuar et al., 2012), 4. Restart the device/system (Kholidy et al., 2016),
14. Modify firewall (Hughes et al., 2020), 6. Redirect traffic (Hughes et al., 2020), 10. Split or merge functions (Yarygina and
Otterstad, 2018), 7. Re-initialization (Herold, 2017), 15. Network isolation (El-Rewini et al., 2020)

System unavailability 1. Use of redundant information (Reallocation) (Hamad et al., 2021), 12. Re-enforce access control (Anuar et al., 2012), 13. Introduce a
honeypot (Anuar et al., 2012), 4. Restart the device/system (source or destination) (Kholidy et al., 2016), 14. Modify firewall (Hughes
et al., 2020), 6. Redirect traffic (Hughes et al., 2020), 10. Split or merge functions (Yarygina and Otterstad, 2018), 7. Re-initialization
(Herold, 2017), 16. Limit resources of the attacker (Chevalier et al., 2019), 17. Safe mode (Hamad et al., 2019)

Falsify/Alter behavior 1. Use of redundant information (Reallocation) (Hamad et al., 2021), 18. Correction of behavior (Papadaki et al., 2003), 9. Correct
protocol specification faults (Herold et al., 2016), 3. Force additional authentication (Anwar et al., 2015), 19. Restart the miss-behaving
system (Kholidy et al., 2016), 5. Change settings (Hughes et al., 2020), 10. Split or merge functions (Yarygina and Otterstad, 2018), 7.
Re-initialization of the miss-behaving device (Herold, 2017), 17. Safe mode (Hamad et al., 2019), 8. Create a backup (Chevalier et al.,
2019)

General 20. Isolation (Hamad et al., 2021), 21. Limit communication of malicious system (Hamad et al., 2021), 22. Drop packets (Kholidy
et al., 2016), 23. Trace communication (Hamad et al., 2021), 24. Introduce additional logging (Anwar et al., 2015), 25. Block network
traffic (Anuar et al., 2012), 26. Kill process (Hamad et al., 2021), 27. Reduce trust level of the source (Hamad et al., 2021), 28.
Perform a security auditing (Hamad et al., 2019), 29. Request/Perform software update (Papadaki et al., 2003), 30. Notify Security
Operations Center (SOC)/administrator (Anwar et al., 2017; Anuar et al., 2012), 31. No action (Anwar et al., 2017), 32. Adapt
parameters for IDS (Heigl et al., 2018), 33. Warn/inform other ECUs (AUTOSAR, 2020; Hamad et al., 2021)

• Falsify/Alter behavior: This outcome is the result of tampering at-
tacks that specifically target the components, data, or parameters
of a system with the intention of altering the system’s intended be-
havior and achieving unauthorized or malicious outcomes (Miller
and Valasek, 2015). While this intrusion outcome may appear
similar to falsify/alter information, the key distinction is that in
falsify/alter information attacks, the goal is to tamper with the
information itself without the explicit method of changing the
system’s behavior, even though it may indirectly lead to such
changes.

2.3. Response possibilities

After classifying the outcome of the attack, it becomes easier to
determine which responses can be used to address that particular
outcome and handle the attacks that cause it. In order to do so, we
have examined typical responses discussed in both the automotive and
non-automotive domains. It should be noted that while some research
papers in the automotive domain have discussed the need for responses
to certain attacks, there is currently no comprehensive research that
lists and classifies all possible responses. Furthermore, it is important
to consider that some of the responses we collected were originally
designed for computer networks and may not be directly applicable
to automotive bus systems due to the lack of specific security mech-
anisms (El-Rewini et al., 2020). For example, response actions such as
IP address changes or port blocking (Anwar et al., 2015) are highly
specific to Ethernet and higher protocols such as IP, and therefore have
limited suitability for certain aspects of communication in vehicles.
To address this challenge, we have defined a list of generic responses
that are specific enough to be applied in an automotive IRS, while
also being adaptable to constrained and potentially insecure devices.
Table 1 provides an overview of the different responses based on the
identified attack outcomes. In addition, we have included a ‘‘General’’
category that encompasses responses applicable to all five categories.
For more detailed information about each response, please refer to the
respective sources cited in Table 1.

3. Dynamic cost and impact evaluation

In this section, we will address Q2 by outlining the key factors
required to enable the selection of the most effective response by
the IRS. These factors can be categorized into two groups: intrusion-
related factors, which pertain to the attack’s impact and risk, and
response-related factors, which concern the cost and benefit of the chosen
response.

3.1. Intrusion-related factors

3.1.1. Intrusion properties
For each detected intrusion, the following properties need to be

determined:

• Source of the intrusion: This represents the component from which
the attack was launched. Referring to the automotive reference
architecture depicted in Fig. 2, sources can include entities from
the attack surface as well as external attackers targeting any of
these components.

• Destination of the intrusion: The attacked entity can be described
as the destination of the intrusion. This could be ECUs, sensors,
or bus systems.

• Intrusion result: This refers to one of the outcomes that were previ-
ously defined in Section 2.2. Similar to the source and destination
of an intrusion, this information is also provided by an IDS.

• Intrusion impact : This information serves to depict the impact of
the intrusion on the system and is essential for evaluating the risks
during the attack.

3.1.2. Dynamic attack impact assessment
To assess the potential risks associated with an intrusion, it is

necessary to understand the impact of the attack and the likelihood of
its occurrence (International Organization for Standardization, 2021;
Lautenbach et al., 2021). To calculate the impact of the intrusion,
many methods were already adopted such as HEAVENS (Islam et al.,
2016). HEAVENS classifies the impact of a given threat based on four
metrics (Wang et al., 2021b; Luo et al., 2021):

Computers & Security 145 (2024) 104008

5

M. Hamad et al.

1. Safety impact, denoted as 𝑆 with 𝑆 ∈ {0, 10, 100, 1000}
2. Financial impact, denoted as 𝐹 with 𝐹 ∈ {0, 10, 100, 1000}
3. Operational impact, denoted as 𝑂 with 𝑂 ∈ {0, 1, 10, 100}
4. Privacy impact, denoted as 𝑃 with 𝑃 ∈ {0, 1, 10, 100}

In the original HEAVENS method, the overall impact 𝐼 is calculated
as a sum of the four single impacts as depicted in Eq. (1) (Wang et al.,
2021b).

𝐼 = 𝑆 + 𝐹 + 𝑂 + 𝑃 (1)

One issue with the impact calculation, as presented in Eq. (1), is the
overemphasis on safety and financial parameters. This skewed empha-
sis not only complicates the comparison and independent evaluation
of the four metrics but also renders it unsuitable for an automotive
IRS. In the automotive context, safety and operational considerations
typically outweigh financial and privacy-related aspects for most au-
tomotive functions. Considering the aforementioned issue, we propose
normalizing all possible values to 0, 1, 10, 100, representing no, low,
medium, or high impact for each of the four metrics in HEAVENS.

Another limitation of the current risk assessment methods, includ-
ing HEAVENS, is their failure to account for dynamic environmental
factors, such as run-time context, operational status, and the surround-
ing environment. This gap may arise because HEAVENS is primarily
applied during the design phase, making it somewhat oblivious to run-
time conditions. To address this challenge and enhance the method’s
applicability for use within automotive IRS, we introduce a new metric
termed ‘‘Environment’’, denoted as 𝐸. This metric, 𝐸, encompasses
dynamic factors that are crucial for assessing intrusion impact (Hamad
et al., 2021). Potential inputs that can be used to derive the envi-
ronmental parameter 𝐸 include vehicle speed, road conditions, the
proximity of nearby objects, and more. These parameters can exert
significant influence, as a single intrusion may yield different impacts
depending on physical and environmental considerations.

The final enhancement option for the HEAVENS method involves
the capability to dynamically adjust the assessment of intrusion impact.
Following a successful intrusion response, it may become evident that
the stored parameters for 𝑆, 𝐹 , 𝑂, 𝑃 , and 𝐸 require a different rep-
resentation. HEAVENS currently confines impact values to 0, 1, 10, 100,
and a simple adjustment to a new value could result in significant over-
representation. To address this issue, introducing weights for each of
the five evaluation metrics (𝑤𝑆 , 𝑤𝐹 , 𝑤𝑂, 𝑤𝑃 , and 𝑤𝐸) offers a valuable
mechanism for accommodating learning and adaptation processes. The
optimization proposals discussed earlier to transform the calculation of
intrusion impact using the HEAVENS method into a dynamic process
lead to Eq. (2).

𝐼 = 𝑤𝑆 ⋅ 𝑆 +𝑤𝐹 ⋅ 𝐹 +𝑤𝑂 ⋅ 𝑂 +𝑤𝑃 ⋅ 𝑃 +𝑤𝐸 ⋅ 𝐸 (2)

Utilizing dynamically adjusted static values for 𝑆, 𝐹 , 𝑂, and 𝑃 ,
each incorporating their respective weights, in addition to dynamically
acquired values for 𝐸 along with an adapted static weight. In cases
involving specific automotive architectures, the equation can also be
applied in a more granular fashion for particular assets. Initial values
for all these parameters can be established by security experts, drawing
upon their experiential knowledge.

The source and destination of the attack are employed to determine
the attack’s location, aiding in the calculation of the subsequent at-
tack likelihood, especially when considering step-stone attacks, across
various parts of the system. This assessment of attack likelihood, in
conjunction with the evaluation of attack impact, contributes to the
overall risk assessment.

3.2. Response-related factors

3.2.1. Response properties
Similar to the intrusion, each response will have five properties that

need to be identified:

• Actual action: They refer to the actual actions taken in the event of
an intrusion. These actions can be selected from those presented
in Table 1.

• Precondition: Some responses may require preconditions that must
be met. These preconditions can be expressed as Boolean expres-
sions and serve as prerequisites to trigger the response.

• Place of application: Refers to the location where the response will
be implemented. A response can be applied either at the source
entity of an intrusion, the destination, or at both locations.

• Stop condition: Refers to the condition for which the implemented
response should cease. This condition can be related to a specific
time (Lopes and Hutchison, 2020), the successful reestablishment
of security policies (Hamad et al., 2021), or the necessity for
persistent measures (Ullah et al., 2020).

• Cost and benefit of the response: Refers to the costs and benefits in-
curred when implementing a response to an intrusion or security
incident.

3.2.2. Dynamic response cost and benefit assessment
When considering the cost of responses, various methods were

employed to determine their value in IT systems (Shameli-Sendi et al.,
2012). These methods primarily rely on one of three models: a static
cost model that assigns a fixed cost value for each response, a static
evaluated cost model that calculates cost using a static function with
some adjustment possibilities, or dynamic evaluated cost models that
offer fully dynamic evaluation based on real-time data. Each model
varies in terms of simplicity, adaptability, and accuracy, catering to
different system requirements and scenarios.

Statically evaluated cost models provide a valid trade-off between
achievable implementation efforts, especially on constrained devices
similar to the ones used in automotive systems, and plausible re-
sults. These models maintain a static approach to calculating response
costs, even though the actual cost values may vary. Various met-
rics for calculating response costs are mentioned in current literature.
The first metric evaluates the impact of the response on availabil-
ity (Shameli-Sendi et al., 2012). Availability’s impact is represented as
𝐴 ∈ 0, 1, 10, 100, with 0 meaning negligible and 100 meaning severe
impact on availability, to ensure consistency with intrusion metrics.
The second metric, describing the response cost, assesses its effect on
the performance of the (sub)system (Shameli-Sendi et al., 2012), similar
to the deployment cost of countermeasures (Guo et al., 2020). This
metric is denoted as 𝑃𝑒𝑟𝑓 ∈ 0, 1, 10, 100, with 0 meaning negligible
impact on performance and 100 meaning severe impact on perfor-
mance, to maintain a uniform scale with the impact of the response
on availability.

To achieve results similar to the adapted HEAVENS method de-
scribed in Section 3.1, a comparable equation can be employed to
calculate the cost (𝑐) of a response. By adopting specific weights (𝑤𝐴
and 𝑤𝑃𝑒𝑟𝑓) for the impact on availability and performance along with
their actual values (𝐴 and 𝑃𝑒𝑟𝑓), the response cost can be computed as
shown in Eq. (3). This approach results in a highly adaptable method
for calculating the response cost. While the initial values for 𝐴 and
𝑃𝑒𝑟𝑓 can be manually determined, they can also be adjusted over time.
The specific weights offer a means to introduce a learning component
within the mathematical framework.

𝑐 = 𝑤𝐴 ⋅ 𝐴 +𝑤𝑃𝑒𝑟𝑓 ⋅ 𝑃𝑒𝑟𝑓 (3)

Likewise, the adapted HEAVENS method introduced in Section 3.1
can be repurposed for evaluating the benefit of a response, with the
exception of the environmental parameter 𝐸 and its associated weight
𝑤𝐸 . While HEAVENS assesses intrusion impact using four metrics, these
same metrics can be employed to quantify the benefits in these four
categories when assessing response value. By employing identical value
possibilities with 𝑆, 𝐹 ,𝑂, 𝑃 ∈ 0, 1, 10, 100, a corresponding benefit value

Computers & Security 145 (2024) 104008

6

M. Hamad et al.

can be determined. The calculation of the benefit (𝑏) for each response
option, as shown in Eq. (4), is derived from Eq. (2).

𝑏 = 𝑤𝑆 ⋅ 𝑆 +𝑤𝐹 ⋅ 𝐹 +𝑤𝑂 ⋅ 𝑂 +𝑤𝑃 ⋅ 𝑃 (4)

Compared to existing research (Stakhanova et al., 2007; Guo et al.,
2020), this repurposed HEAVENS method of Eq. (4) provides a more
holistic approach on evaluating the benefit of applied responses. For
each response option classified in Table 1, the cost calculated using
Eq. (3) and the benefit determined using Eq. (4) must be applied,
and preconditions must be established. Initial values for 𝑆, 𝐹 , 𝑂, 𝑃 ,
𝐴, and 𝑃𝑒𝑟𝑓 , along with their respective weights, can be assigned by
security experts and subsequently updated either manually or through
learning algorithms within an IRS. Similar to the impact calculation of
intrusions, these weights can be adjusted to improve the accuracy of
the model.

4. Optimal selection algorithms

In this section, we will address the third question Q3, by exploring
numerous potential methods for selecting response strategies (Sec-
tion 4.1), compare these approaches and provide a rationale for our
chosen strategy (Section 4.2), and describe how to adopt the selected
strategies (Section 4.3).

4.1. Possible algorithms

To determine the best method for selecting appropriate responses,
we explore various algorithms and solutions used in non-automotive
domains and compare them to identify the most suitable one that
can be implemented within the vehicle system. Several surveys, such
as Nespoli et al. (2018) and Bashendy et al. (2023a,b), provide valuable
insights into response selection approaches in non-automotive domains,
making them worth investigating for more comprehensive details.

4.1.1. SAW
SAW (Fishburn, 1967) is the simplest and most often used method.

The basic concept of this method is to find a preference value (𝑝)
for each possible response, and then select the response with the
highest preference value as the best option. To illustrate how this
method works, let us assume that we have 𝑛 possible responses ( =
{𝑟1, 𝑟2,… , 𝑟𝑛}) and 𝑚 criteria ( = {𝑐𝑟1, 𝑐𝑟2,… , 𝑐𝑟𝑚}) that will be
used as a reference for evaluating the responses. Each criterion will be
assigned a weight 𝑤𝑗 where ∑𝑚

𝑗=1 𝑤𝑗 = 1. To calculate the preference
values, a normalized decision matrix is first created, where each ele-
ment of the matrix is normalized based on the nature of the criterion,
whether it is a cost or benefit, as shown in Eq. (5).

𝛼𝑖𝑗 =
⎧⎪⎨⎪⎩

𝑣𝑖,𝑗
max𝑖(𝑣𝑖,𝑗)

, if criterion 𝑐𝑟𝑗 is a benefit
min𝑖(𝑣𝑖,𝑗)

𝑣𝑖,𝑗
, if criterion 𝑐𝑟𝑗 is a cost

(5)

where 𝑣𝑖,𝑗 is the performance value of the response 𝑟𝑖 when it is
evaluated in terms of criterion 𝑐𝑟𝑗 . The preference value (𝑝𝑖) of response
𝑟𝑖 is then obtained by calculating the weighted sum of the normalized
performance values using Eq. (6).

𝑝𝑖 =
𝑚∑
𝑗=1

𝑤𝑗 ⋅ 𝛼𝑖𝑗 (6)

Finally, the response 𝑟𝑖 with the highest preference value (𝑝𝑖) is consid-
ered as the best selection response.
4.1.2. Linear Programming (LP)

LP is a mathematical technique that can be employed to select
optimal responses (Herold et al., 2017). LP can be used to find the best
combination of responses that maximizes or minimizes a certain objec-
tive function. To illustrate the workings of this method, let us consider

a scenario where we have 𝑛 possible responses ( = 𝑟1, 𝑟2,… , 𝑟𝑛). The
optimization of the objective function can be as in Eq. (7).
𝑛∑
𝑖=1

𝑥𝑖𝑠𝑖 → max 𝑜𝑟min (7)

where 𝑥𝑖 represents a criterion related to the response 𝑟𝑖 and ⃖⃗𝑠 be a
vector of binary decision variables, where 𝑠𝑖 is equal to 1, it indicates
that the corresponding response 𝑟𝑖 ∈  will be executed. Conversely, if
𝑠𝑖 is equal to 0, it signifies that the response 𝑟𝑖 ∈  will not be executed.
The optimization problem typically includes constraints to ensure the
selection process adheres to specific conditions or limitations.

4.1.3. Game-theoretic algorithm
Another mathematical method to determine optimal responses

against cyber attacks is game-theoretic algorithms (Yarygina and Ot-
terstad, 2018; Zonouz et al., 2014; Wang et al., 2021a). In the game-
theoretic approach, the attacker and the IRS are modeled as two
players. Each player has a set of actions available to them, such as
different attack strategies  = {𝑎1, 𝑎2,… , 𝑎𝑘} for the attacker and
response strategies  = {𝑟1, 𝑟2,… , 𝑟𝑛} for the IRS. The goal of the IRS
is to select the optimal response to the attack at a given time. One way
to achieve that is by minimizing the maximum damage of the attack:
min𝑟𝑖∈(max𝑎𝑖∈(𝑈 (𝑟𝑖, 𝑎𝑖))) where 𝑈 (𝑟𝑖, 𝑎𝑖) represents the utility function
for the IRS when the attacker chooses attack 𝑎𝑖 and the IRS responds
with response 𝑟𝑖.

4.1.4. AI-based mechanisms
Many AI-based mechanisms were used to support the dynamic

selection of the response such as Genetic Algorithms (Fessi et al.,
2009), Convolutional Neural Networks (Xia et al., 2019), Supervised
machine learning (Souissi et al., 2017), Q-Learning (Iannucci et al.,
2019b), and many more (Rose et al., 2022). Using any of these AI
models usually requires many steps including data collection and pre-
processing, feature extracting, model training, and feedback loop to
improve the quality of the selected responses.

4.1.5. Other methods
There are alternative mathematical approaches to IRSs that are

not derived from general mathematical problems. One example is RE-
ASSESS (Ossenbühl et al., 2015) that uses human-evaluated metrics and
prior responses to select optimal responses. While it offers simplicity,
this reliance on human evaluation can lead to inaccurate assumptions.
Its mandatory learning behavior is unsuitable for automotive systems,
and it lacks the option for flexible learning to enhance responses,
requiring a well-established feedback loop. Another simpler approach
is the cost-sensitive generic framework (Stakhanova et al., 2012; Stras-
burg et al., 2009), which includes steps like defining operational costs,
ranking responses using a weighted sum method, and selecting the
best response with an intrusion matrix. However, its reliance on static
value assignments and sensitive parameters, typically defined by hu-
man experts, can make objective assessment challenging and results in
potentially harmful responses.

4.2. Comparison

Table 2 summarizes all the advantages and the drawbacks of the
five classes of response selection algorithms.

The primary advantage of SAW is its relative simplicity and uti-
lization of lightweight mathematical operators, making it suitable for
running on constrained devices with a polynomial run-time, without
requiring complex external libraries (Bouyahia et al., 2017). However,
the main drawback of SAW is the need for an adapted SAW method to
achieve more accurate results. This often leads to increased complexity
and longer run-time compared to the original SAW. Another drawback
is the dependency on subjective parameters such as specific weights.

Computers & Security 145 (2024) 104008

7

M. Hamad et al.

Table 2
Comparison of the different response selection methods.

Method Benefits Drawbacks

SAW + Simplicity and lightweight operators
+ Suitable for constrained devices
+ Polynomial run-time

- Adapted methods for accuracy increase complexity
- Reliance on subjective parameters

LP + Flexible structures
+ Typically polynomial run-time
+ Existing libraries for solvers

- Higher complexity for modeling and calculation
- Theoretically exponential run-time

Game-theoretic algorithms + System state consideration
+ Accurate system representation

- Very complex models
- Computational complexity
- Reliance on subjective parameters

AI-based solutions + Handle large amount of data
+ Fast response selection

- Uncertainty of the selected responses
- High resource requirements

Other methods + Simple mathematical models
+ Typically fast
+ Combination with other methods possible
+ Learning is possible

- Complexity raises with large systems
- Human influence has always subjective opinions

This dependency can result in highly variable outcomes that may not
accurately reflect the system state (Konak et al., 2006).

A major benefit of LP is its ability to formulate a single objective
function and multiple constraints, providing an accurate representation
of multi-objective optimization problems. However, compared to SAW,
LP requires complex implementation, resulting in increased computa-
tional complexity for large systems (Herold et al., 2017). The run-time
of the algorithm depends on the solving method employed, such as
the commonly used Simplex algorithm. While the Simplex algorithm
has polynomial run-time for ‘‘typical’’ problems (Schrijver, 1998), it
exhibits exponential worst-case run-time in theory (Klee and Minty,
1972).

The advantage of game-theoretic approaches lies in their considera-
tion of the system state, resulting in a highly accurate representation of
the system. Furthermore, game-theoretic approaches can be deployed
in a distributed manner, as highlighted in Zonouz et al. (2014). A major
drawback of this method is the use of highly complex models, which are
necessary to determine optimal moves in game-theoretic algorithms.
Solving such complex models often requires significant resources and
leads to large communication overhead (Zonouz et al., 2014), making
this approach unsuitable for constrained devices. Additionally, most
models in practice make assumptions or simplifications due to the
near-infinite number of possible system states (Yarygina and Otterstad,
2018; Zonouz et al., 2014; Wang et al., 2021a), as complete modeling
of all states is infeasible.

Using AI-based methods is still limited because of many issues
such as the high memory and computation requirements of some of
these methods (Iannucci et al., 2019a) and the unrealistic responses
that some models can produce (e.g., Genetic Algorithms). Addition-
ally, uncertainty surrounding the outputs of these models limits their
adoption. Finally, most of these methods rely on the availability of
datasets for model training. However, autonomous vehicles often op-
erate in dynamic and unpredictable environments. When the operating
environment significantly deviates from what the AI has learned, it
may encounter challenges in adapting effectively or making appropriate
decisions.

Finally, while the cost-sensitive generic framework and REASSESS
are simple and demonstrate promising in computer and network tech-
nologies, adapting them to a highly heterogeneous multi-bus archi-
tecture, like the vehicular reference architecture, presents significant
challenges.

After careful consideration of the factors discussed above, we have
chosen to explore the adapted SAW method, as well as LP with a focus
on both benefit maximization and cost minimization for the design of
an automotive IRS. The decision to focus on these two methods is based
on their relative simplicity, computational efficiency, and their ability

to accurately represent multi-objective optimization problems. The re-
maining algorithm families were assessed but are not pursued further
due to reasons such as increased complexity, resource requirements,
and limitations in modeling all possible system states.

4.3. Adopting of SAW and LP

4.3.1. Adopting of SAW
To adopt the SAW method for automotive IRSs, we first need to

define the criteria  that will be used to evaluate each response. For
this purpose, we can utilize the HEAVENS parameters, including the
cost of a response 𝑐 (see Eq. (3)) and the benefit of a response 𝑏 (see
Eq. (4)). However, using these two parameters still presents some issues
that need to be addressed in order to effectively use and adapt SAW
for valid results. The first problem arises when using these parameters
during the creation of the elements of the normalized decision matrix,
as depicted in Eq. (5). This problem originates from the fact that
our modified HEAVENS method allows values of 𝑣𝑖,𝑗 to be in the set
0, 1, 10, 100 for both criteria (i.e., 𝑐 and 𝑏). If max𝑖(𝑣𝑖,𝑗) = 0 applies,
Eq. (5) results in an illegal operation if the criterion is a benefit.
Similarly, if the criterion is a cost and 𝑣𝑎,𝑗 = 0, Eq. (5) also results in
an illegal operation. This issue can be circumvented by using a small
value greater than 0 instead of 0. The second problem does not stem
from a mathematical perspective but rather from the application of this
method in a fully automated IRS. Since the SAW method only considers
criteria  from the applicable response set , it does not take into
account the impact 𝐼 of an intrusion. As a result of this limitation, it
is possible that a response incurring high costs may be chosen even
for a minor intrusion. Although this is a significant challenge for the
application of SAW in IRSs, this drawback has not been addressed in
existing research.

To tackle this problem, it is mandatory to set the preference value
𝑝 (see Eq. (6)) into relation with the intrusion impact 𝐼 . For each asset
𝐴 of the vehicle reference architecture and each intrusion result ,
a normalized intrusion impact can be calculated. Such a normalized
intrusion impact must be calculated for each metric 𝑆, 𝐹 , 𝑂, 𝑃 and 𝐸
of the adapted HEAVENS method in Eq. (2). This behavior is formulated
in Eq. (8).

𝛼{𝑆,𝐹 ,𝑂,𝑃 ,𝐸},𝐴, =

⎧⎪⎨⎪⎩

𝑤{𝑆,𝐹 ,𝑂,𝑃 ,𝐸},𝐴, ⋅ 𝑣{𝑆,𝐹 ,𝑂,𝑃 ,𝐸},𝐴,∑
||(𝑤{𝑆,𝐹 ,𝑂,𝑃 ,𝐸},𝐴 ⋅ 𝑣{𝑆,𝐹 ,𝑂,𝑃 ,𝐸},𝐴)

, if ∑
||(𝑤{𝑆,𝐹 ,𝑂,𝑃 ,𝐸},𝐴 ⋅ 𝑣{𝑆,𝐹 ,𝑂,𝑃 ,𝐸},𝐴)

≠ 0
0, otherwise

(8)

Computers & Security 145 (2024) 104008

8

M. Hamad et al.

Similar to Eq. (6), a weighted sum must be calculated. But, since the
individual weights 𝑤 are already included in Eq. (8), a simple summa-
tion over all metrics 𝑆, 𝐹 ,𝑂, 𝑃 and 𝐸 of the adapted HEAVENS method
is sufficient. This sum will be set into relation with the preference
value of the responses from Eq. (6), such that the response 𝑟𝑖 with the
highest preference value 𝑝 will be used, which is below the sum of all
normalized HEAVENS values as depicted in Eq. (9).

best response = max

{
𝑝𝑖 ∣ 𝑝𝑖 < 𝜌 ⋅

∑
𝑙∈{𝑆,𝐹 ,𝑂,𝑃 ,𝐸}

𝛼𝑙,𝐴,
}

(9)

The parameter 𝜌 in Eq. (9) is a parameter to adjust larger deviations
in the order of magnitude between the sum of the normalized HEAVENS
and the preference value 𝑝.

4.3.2. Adopting of linear programming
The first step to adopt the LP is defining the objective function. For

the set of possible responses , it is possible to define two different
objective functions:

• The first option of an objective function follows the principle of
maximum benefit as depicted in Eq. (10). The goal is to solve
the binary decision vector ⃖⃗𝑠 to maximize the benefit 𝑏. Although
this can lead to very good solutions, it is possible that the best
executable response is not found immediately since preconditions
of identified responses are not satisfied.
||∑
𝑖=1

𝑠𝑖𝑏𝑖 → max (10)

• The second option of an objective function follows the mini-
mum cost principle and is comparable to existing IRSs (Herold
et al., 2017; Herold, 2017). Eq. (11) therefore leads to more
conservative responses since the cost 𝑐 will be minimized and the
benefit 𝑏 of a response is not considered. A drawback is that the
identified solution inside ⃖⃗𝑠 might not heal the system completely
and another try might be necessary.
||∑
𝑖=1

𝑠𝑖𝑐𝑖 → min (11)

For both objective functions from Eqs. (10) and (11) the same
constraints must be satisfied for a response to qualify for execution.
Existing constraints of IRSs using LP (Herold et al., 2017; Herold,
2017) are not suitable for an automotive IRS. Because of that, specific
constraints must be elaborated:

1. The cost 𝑐 of the response must be below the impact 𝐼 of the
detected intrusion (Herold et al., 2017). Eq. (12) depicts this first
constraint.
||∑
𝑖=1

𝑠𝑖𝑐𝑖 < 𝐼 (12)

2. Only one response can and must be executed as depicted in
Eq. (13).
||∑
𝑖=1

𝑠𝑖 = 1 (13)

It is additionally necessary that ⃖⃗𝑠 is a binary vector, leading to the
variable definition 𝑠𝑖 ∈ {0, 1}.

5. Proposed automotive IRS

In this section, we will discuss some design decisions regarding
REACT, our proposed automotive IRS (refer to Section 5.1) and detail
its components (refer to Section 5.2).

5.1. IRS deployment

Our proposed automotive IRS can be deployed in three different
locations:

• Central Gateway: The vehicle will have one IRS that receives
information from various ECUs. This central IRS will have a
comprehensive view and understanding of the entire system.
However, it is considered a single point of failure.

• Domain Gateway: The vehicle will have one IRS per domain gate-
way. Each one will be mainly responsible for the ECUs belonging
to that domain and will interact with other IRSs. Implementing
this solution requires the existence of an Intrusion Response
eXchange Protocol (IRXP) (Hamad et al., 2021).

• ECU: The vehicle will have one IRS per ECU. This IRS will be
primarily responsible for reacting to attacks related to its host
ECU. Simultaneously, it can exchange responses related to other
ECUs if needed. Choosing this option ensures the absence of
a single point of failure. However, deploying such a solution
requires that each ECU is capable of running the IRS, and it also
necessitates the existence and the support of an IRXP (Hamad
et al., 2021).

The architecture depicted in Fig. 4 illustrates the scenario where the
IRS is deployed in the central gateway. Any potential change would
be primarily associated with the source of certain information required
for the functionality of the IRS, whether it originates from the same
ECU (in the case of implementing the IRS per ECU) or from external
sources such as other ECUs or domains at the gateway. Regardless of
the chosen deployment location for the IRS, it necessitates the reception
and sharing of information with other components within the vehicle,
as outlined below:

• Attack Information: This information is provided by the IDS,
and as described in 3.1.1, it includes the source of the attack,
the destination, the intrusion result, and the impact of the at-
tack. Recent IDSs, such as Jeong et al. (2024) and Ding et al.
(2024), are capable of identifying the source and destination of
an intrusion using various technologies, such as CAN databases
(used by Jeong et al. (2024)) or ECU fingerprinting (Cho and
Shin, 2016; Kneib and Huth, 2018). The intrusion impact can
be calculated as described in 3.1.2. Additionally, the intrusion
result can be derived from the attack type, which existing IDSs,
such as Han et al. (2021), can provide. In our research, we
consider the IDS functionality as trusted, treating it as a black-
box that reliably detects intrusions without requiring additional
false-positive handling (Herold et al., 2016; Ullah et al., 2022).
In our architecture, we place the IDS in the domain gateway.
Consequently, a security sensor (Anwar et al., 2017) is needed
to monitor its portion of the environment for security-related
observations. This data is then reported to the domain-specific
gateway, which houses the domain IDS.

• Status Information: This includes information about the various
states of the vehicle and its surroundings. This data is collected
and aggregated from various vehicle sensors and shared with the
IRS.

• Response Information: This information can encompass the pre-
cise responses needed for specific ECUs or those that need to
be shared with the SOC. In our architecture, we assume the
presence of response agents located in each ECU. These agents
are responsible for receiving responses and deploying them within
the respective ECU.

It is crucial to mention the necessity of ensuring the security of this
data by implementing secure communication between the ECU, domain
gateway, and the IRS.

Computers & Security 145 (2024) 104008

9

M. Hamad et al.

Fig. 4. Internal architecture of REACT.

5.2. IRS component

The IRS consists of the following sub-components (as shown in
Fig. 4):

• Risk Evaluation Module: This module will be responsible for
assessing the impact of an intrusion. The component will re-
ceive information about the intrusion from the IDS as well as
information about the vehicle status.

• Response Set Generation: This module compiles a list of possible
responses, utilizing information obtained from both the IDS and
the risk evaluation module. Please note that not every response is
applicable to every type of intrusion result (refer to Table 1).

• Optimal Response Selection: This component integrates data from
all previous modules to determine the optimal response that
can be applied. Within this component, any of the algorithms
presented in Section 4.1 can be integrated.

• Precondition Checking: Given the limitations imposed by the sys-
tem architecture, where not all types of responses can be applied
(for example, in cases where a sensor is unavailable due to a
DoS attack, it may not always be possible to use a redundant
source of information from another sensor if such a backup sensor
does not exist), it is imperative to verify whether the selected
optimal response is applicable or if an alternative response must
be chosen. The Precondition Checking module receives the chosen
response and assesses its feasibility. If a response is found to be
inapplicable, a feedback loop is established with the previous
Optimal Selection Module. This inner loop is repeated until the
necessary preconditions for an individual response are met. The
order of the Optimal Response Selection and the Precondition
Checking is carefully evaluated and results in time benefits:

1. ‘‘Check-First-Then-Select’’: The logical order of first elim-
inating all inapplicable responses and subsequently se-
lecting the best response 𝑟 from the remaining available
options is illustrated by the timing behavior of Eq. (14).

𝑡 =

(||∑
𝑖=1

𝑡𝑐ℎ𝑒𝑐𝑘,𝑟𝑖

)
+ 𝑡𝑠𝑒𝑙𝑒𝑐𝑡,𝑟 + 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑒,𝑟 (14)

The time to select the optimal response 𝑡𝑠𝑒𝑙𝑒𝑐𝑡,𝑟 and the time
to execute the response 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑒,𝑟 are summed only once,
since the selected response will satisfy the preconditions.
In contrast, the time to check the preconditions 𝑡𝑐ℎ𝑒𝑐𝑘,𝑟 is
summed over the set of possible responses , since every
response’s precondition will be checked.

2. ‘‘Select-First-Then-Check’’: While a response may be ap-
plied with the probability 𝑝, it might also be that the
constraints are not satisfied with a probability (1 − 𝑝). This
leads to a timing behavior of Eq. (15).

𝑡 = 𝑡𝑠𝑒𝑙𝑒𝑐𝑡,𝑟1 + 𝑡𝑐ℎ𝑒𝑐𝑘,𝑟1 + 𝑝 ⋅ 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑒,𝑟1 + (1 − 𝑝)

⋅
||∑
𝑖=2

(
𝑡𝑠𝑒𝑙𝑒𝑐𝑡,𝑟𝑖 + 𝑡𝑐ℎ𝑒𝑐𝑘,𝑟𝑖

) (15)

While the first selected response must always be checked, it
is only executed with the probability 𝑝. If the preconditions
are not satisfied, the Inner Loop will be repeated maximum
|| − 1 times.

It is evident that for a certain number of responses approach-
ing infinity, Eqs. (14) and (15) yield the same runtime 𝑡 when
𝑝 = 0.5. For higher values of 𝑝, the runtime as per Eq. (15)
is even lower. This holds true even when 𝑡𝑠𝑒𝑙𝑒𝑐𝑡,𝑟 decreases, as
the number of possible responses decreases accordingly. Based
on these equations, the architecture depicted in Fig. 4 exhibits
a ‘‘Select-First-Then-Check’’ behavior.

• Response Execution: This component is responsible for transmit-
ting the chosen response initially to the domain-specific gate-
ways and subsequently to the respective ECUs for implementation
through their local response engines. After a predefined duration,
this component triggers the IDS to assess the effectiveness of the
applied response in mitigating the intrusion. By incorporating
this IDS-Feedback loop, the Outer Loop can be iterated multiple
times, each iteration involving a system re-evaluation. This con-
cept serves to counter persistent attacks or stepping-stone attacks
effectively. Furthermore, the feedback loop can be utilized to up-
date the parameters of the risk evaluation module for addressing
future intrusions.
An essential consideration in the IRS architecture shown in Fig. 4
is the implementation of termination criteria for the inner and
outer loop. The absence of such criteria could lead to an endless
loop, posing a risk to the stability of the entire IRS system. While
some prior research has addressed termination criteria (Hamad
et al., 2021; Shameli-Sendi et al., 2012), these methods often in-
volve complex evaluation techniques (Cardellini et al., 2022; Ian-
nucci et al., 2021) or rely on artificial intelligence support (Lopes
and Hutchison, 2020). However, the high computational require-
ments and intricate modeling approaches associated with these
methods are impractical for automotive infrastructure. To address
the challenge of preventing endless loops in both the inner and
outer loops, we employ two distinct methods.

1. Preventing Inner Endless Loops: To avoid an endless evalu-
ation of preconditions, we continuously reduce the possible
response set by eliminating non-applicable responses. Ad-
ditionally, we have introduced a special response, labeled
as ‘‘No Action’’ (indexed as 31), which will consistently
lead to the last possible response. This specific response
carries the highest cost, similar to the impact of an intru-
sion, but provides no benefit. These attributes ensure that
the inner loop never reaches a deadlock since ‘‘No Action’’
can always be applied.

2. Avoiding Outer Endless Loops: Once a response is ap-
plied, the system undergoes an analysis through the IDS-
Feedback mechanism to identify if a new stepping-stone
attack is detected or if the system is secure. In case a

Computers & Security 145 (2024) 104008

10

M. Hamad et al.

new stepping-stone attack is detected, the entire outer loop
illustrated in Fig. 4 reiterates. To prevent an endless loop
scenario when the same response is repeatedly applied,
we implement changes to the parameters of the applied
response based on the success of the response. The pa-
rameter adaptation differs between a successful and a non-
successful response. When the selected response is unsuc-
cessful, it indicates that the benefit values assigned to all
HEAVENS parameters may not be accurate. Consequently,
an adjustment is needed, resulting in a reduction of the
benefit values for all HEAVENS parameters in the previ-
ously applied response. This entails the assumption that the
relative order of each parameter remains unchanged; for
example, if the safety benefit held a higher value than the
financial benefit prior to the adjustment, it will continue to
do so afterward. This behavior is mathematically expressed
in Eq. (16).

∀𝑖 ∈ {𝑆, 𝐹 ,𝑂, 𝑃 } ∶

𝑖new(𝑖old) =
⎧⎪⎨⎪⎩

10, if 𝑖old = 100
1, if 𝑖old = 10
0, if 𝑖old = 1 or 𝑖old = 0

(16)

A similar parameter adaptation is required in case the
response was applied successfully. However, the param-
eters cannot simply be increased, as this could lead to
predictable responses. Predictable responses pose security
risks, as attackers can exploit this behavior (Bouyahia
et al., 2017). For that reason, two adaptations are made
if the response is successful to avoid predictable behavior:

– Original values are restored if the response was pre-
viously not successful and its values were adapted
according to Eq. (16).

– In a second step, the corresponding weights
𝑤𝑖∈𝑆,𝐹 ,𝑂,𝑃 are randomly adjusted using a prefactor
𝑟, where 𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥. This retains the original
order of magnitude of 𝑤𝑖 while introducing sufficient
variation through the multiplication 𝑟 ⋅𝑤𝑖 to generate
different results in the next iteration.

As previously mentioned, the parameters to calculate the
intrusion impact (Eq. (2)), the response cost (Eq. (3))
and the response benefit (Eq. (4)) rely on input by se-
curity experts. However, this input may not always be
optimal (Lautenbach et al., 2021). Consequently, this can
lead to the selection of an undesired response. Fortunately,
the outer loop provides a mechanism to compensate for
potentially incorrect parameters. In cases where responses
prove ineffective, the parameters are dynamically adapted
using Eq. (16).
Note that Eq. (16) presented earlier does not account for
the dynamic environmental parameter, denoted as 𝐸, and
its corresponding weight, 𝑤𝐸 . Further details and defi-
nitions are necessary to incorporate this parameter into
the adaptation process. These details should encompass
various aspects of the vehicle’s status and its surround-
ing environment. For simplicity, we have focused on the
vehicle’s velocity as a parameter that can help represent
the vehicle’s status. To determine a realistic rating for the
impact of vehicle speed, several factors must be taken into
account. Studies of traffic accidents have revealed that
the impact is influenced not only by the types of vehicles
involved but also by their positions at the potential crash
site (Jurewicz et al., 2016). Additionally, the age of the
passengers in the vehicles can affect the impact of injuries

Table 3
IDS-related information and vehicle state parameters for both evaluation scenarios.

Property Scenario 1 Scenario 2

Name Adversarial sample Information disclosure at
the infotainment system

Infected asset Front camera Infotainment gateway
Affected asset Acceleration control Infotainment gateway
Intrusion result Falsify/Alter behavior Information Disclosure
Dynamic parameter Velocity: 70 km/h Velocity: 0 km/h

in a traffic accident (Richards, 2010). Based on this re-
search, the approach presented in Eq. (17) is applied to the
parameter 𝐸 in the adapted HEAVENS method’s prototype
implementation (Jurewicz et al., 2016; Richards, 2010).

𝐸(𝑣) =

⎧⎪⎪⎨⎪⎪⎩

100, if 𝑣 ≥ 75 km∕h
10, if 50 km∕h ≤ 𝑣 < 75 km∕h
1, if 30 km∕h ≤ 𝑣 < 50 km∕h
0, if 0 km∕h ≤ 𝑣 < 30 km∕h

(17)

• Response Storage: Within this component, a repository is main-
tained containing a range of potential responses alongside their
associated metrics. These metrics can be updated through the
feedback mechanism or expanded with the inclusion of new
responses and parameters via an external connectivity interface.
When implementing this on specific hardware, it is crucial to
implement security measures to prevent unauthorized tampering
with the memory area.

Our proposed IRS architecture, featuring both an inner loop and an outer
loop, coupled with the incorporation of automotive-specific considera-
tions into the external architecture, introduces a novel paradigm in the
realm of fully automated IRSs. Note that there is already some related
work for each part of the IRS (such as the selection method), which
was covered in the previous sections. However, there is no system that
attempts to include all the aspects against which we can compare our
work.

6. Evaluation

6.1. Implementation, testbed, and use cases

The proposed IRS was implemented using the Python programming
language. To implement Linear Programming and the associated Sim-
plex algorithm, we utilized the PuLP library (Mitchell et al., 2011),
a well-established choice, along with the GNU Linear Programming Kit
as the solver. It is important to note that the adapted SAW method
remains independent of this decision, as it relies solely on standard
Python mathematical operators.

The testbed designed for evaluating the IRS incorporates an embed-
ded system setup to realistically emulate the automotive infrastructure.
To ensure this fidelity, our implementation was executed on a Rasp-
berry Pi 4 Model B Rev 1.2, a choice justified by the device’s ARM-
based quad-core processor running at 1.5GHz. This processing power
closely aligns with the high-performance chips commonly found in the
automotive industry.

The goal of the evaluation is to assess two key aspects of the
proposed IRS. Firstly, we aim to evaluate its proficiency in optimal
response selection, and secondly, we intend to measure various compu-
tational metrics, including memory consumption and the time required
to obtain optimal responses while using the three different selection
algorithms: LP with maximum benefit, LP with minimum cost, and
adapted SAW.

For our evaluation, we employed two representative intrusion sce-
narios inspired by real-world intrusions:

Computers & Security 145 (2024) 104008

11

M. Hamad et al.

1. Adversarial Sample: This scenario involves slight modifications
to the input data of a machine learning algorithm, resulting in
significantly different outputs from the original (Mahima et al.,
2021). Given the prevalent use of machine learning algorithms
in cameras for automated vehicles, they are vulnerable to ex-
ploitation via adversarial samples (Mahima et al., 2021). In
our evaluation, we exploited a front camera in a rural setting,
leading to an altered behavior in the acceleration control.

2. Information Disclosure at the Infotainment System: This scenario
draws inspiration from an actual attack on a vehicle, where an
information disclosure in the infotainment system served as the
initial step in a stepping-stone attack (Miller and Valasek, 2015).

The specific IDS parameters and vehicle states employed as input for
the scenarios are meticulously detailed in Table 3. Please remember
that in our prototype of the IRS, we consider only the velocity of the
attacked vehicle as an illustrative example of a vehicle’s status.

6.2. Results

In this section, we will present the results of testing our IRS us-
ing two prominent scenarios. We will evaluate response quality, re-
sponse selection time, memory consumption, and the adaptation of
response parameters for each of the three selection algorithms: LP with
maximum benefit, LP with minimum cost, and the adapted SAW.

6.2.1. Response quality
The objective of the response quality evaluation is to assess how dif-

ferent optimal selection algorithms prioritize responses and determine
the overall impact and benefit of the applied responses. To achieve
that, the precondition of each response is set to ‘rejected’ for every
proposed response. This ensures that the IRS will continue to suggest
responses from the list of possible responses. Each applied response
can have both positive and negative effects on the system, so the
cost and benefit values of the selected responses are presented. In this
evaluation, default parameters are utilized for each new test, ensuring
uniformity in the algorithm evaluation across various metrics.

Fig. 5 depicts the cost and benefit of all proposed responses in the
order they are applied by the respective algorithm for both scenarios.
The figure shows that our proposed IRS suggests a different number
and order of responses for various scenarios and for different selection
algorithms within the same scenario. Please note that the figure shows
that some responses were selected twice. For example, the response
of restarting the misbehaving system (indexed with number 19, see
Table 1), was selected twice. However, it is important to clarify that
the response was selected for different systems. In other words, the first
restart is related to the camera, while the second is for the acceleration
control. In addition, as expected and shown in Figs. 5(a) and 5(b), the
LP method with maximum benefit starts at very high benefits. Similarly,
the LP with minimum response costs starts at a very low cost and more
expensive responses are not selected until later stages, as shown in
Figs. 5(c) and 5(d). Notably, the LP with maximum benefit operates
independently of the cost. However, it always ensures that the cost of
the response is less than the impact of the intrusion (see Eq. (12)).

The reason for the arbitrary behavior is that Linear Programming
only follows one optimization function and just satisfies the constraints,
but does not sort by constraints. Similarly, LP with minimum cost deliv-
ers arbitrary values with respect to the benefit because it only considers
cost metrics in its optimization. While the LP with the minimum cost
provides more conservative solutions, the LP with maximum benefit
suggests more offensive solutions. In a real-world scenario, LP with
minimum cost might require multiple responses since its benefits are
arbitrarily sorted, while LP with maximum benefit might require more
iterations of the ‘‘inner loop’’ since the preconditions for more offensive
responses might not be fulfilled.

The adapted SAW method exhibits a similar arbitrary behavior as
shown in Figs. 5(e) and 5(f). However, it is noticeable that adapted

Table 4
Memory consumption of the IRS in kB using static evaluation.

LP with max benefit LP with min cost Adapted SAW

Scenario 1 19 308 19 206 11 296
Scenario 2 19 228 19 344 11 220

SAW may select responses with a cost higher than the impact of the
intrusion (see Fig. 5(f)). Given that the adapted SAW method does
not consider constraints, it is an unattractive solution to use any SAW
method in an automatic IRS.

6.2.2. Time of response selection
To evaluate the time required for selecting a response from a given

response list using the selection algorithms, we utilized the previously
described method where the inner loop of the IRS repeats multiple
times. It is important to note that the generation of the response set
occurs only once for an individual intrusion. The time required for
list generation is independent of the selection algorithm, measuring at
4.32ms for scenario 1 and 3.82ms for scenario 2. The difference in the
measured time between the scenarios is due to the variation in number
of possible responses.

Fig. 6 illustrates the time consumed by the three selection algo-
rithms during the process of selecting different responses. Please note
that the 𝑋-axis represents the order of the response, not the index
of the response. The figure indicates that the adapted SAW method
consumes less time compared to the LP methods. Specifically, the LP
method with maximum benefit typically consumes more time due to
the need for multiple iterations, as its offensive responses may not meet
necessary preconditions. Slightly less time is needed for the LP method
with minimum cost, although its conservative responses are selected
after fewer precondition checks. Overall, all algorithms demonstrate
good performance on a resource-constrained embedded system.

6.2.3. Memory consumption
To measure memory consumption, we utilized Python’s internal

resource module (Python Software Foundation, 2022). Since some
of the optimal selection algorithms rely on third-party libraries, the
assessment of memory consumption includes the memory allocated
for these functionalities as well. The results are presented in Table 4.
The results show that both LP with maximum benefit and LP with
minimum cost methods consume nearly the same amount of memory,
while the adapted SAW method exhibits considerably lower mem-
ory consumption. This difference can be attributed to the external
libraries PuLP and the GNU Linear Programming Kit, which
require more memory due to their complex data structures and solving
methods. Nevertheless, all three selection algorithms exhibit low mem-
ory consumption, making them suitable for use in resource-constrained
embedded hardware systems.

6.2.4. Dynamic evaluation
The dynamic evaluation concentrates on two key aspects: response

and threat impact parameters adaptation (refer to Section 3) and the
inclusion of velocity considerations (as shown in Eq. (17)). When it
comes to parameters adaptation, response quality is assessed based
on their cost and benefit. In terms of velocity, we evaluate response
variation. These assessments are conducted for both scenarios 1 and 2.
By testing all three implemented optimal selection algorithms, we can
compare their dynamic behavior.

Parameters adaption. To assess the impact of changing parameters,
we conducted two repetitions of each scenario, each comprising five
iterations of the outer loop. In one set of iterations for each scenario, we
consistently deemed the responses as successful, while in the other set
of five iterations, the responses were uniformly considered unsuccess-
ful. The benefits and costs of the five optimally selected responses for

Computers & Security 145 (2024) 104008

12

M. Hamad et al.

Fig. 5. Evaluation of the response benefit and cost for Scenario 1 (left) and Scenario 2 (right) using LP with maximum benefit (top), LP with minimum cost (middle), and adapted
SAW (bottom).

both scenarios, as determined by the three selection algorithms, under
the assumption that the responses were always successful, are presented
in Fig. 7. Correspondingly, the results under the assumption that the
responses were consistently unsuccessful are displayed in Fig. 8.

In consistently successful attacks, we observed that parameter
weights change within the range of ±20% (we have selected 𝑟𝑚𝑖𝑛 = 0.8
and 𝑟𝑚𝑎𝑥 = 1.2). The purpose of these changes was to reduce response
predictability. In both scenarios, changes in response benefit were

evident. However, in the first scenario, all three algorithms retained
the same response as shown in Figs. 7(a), 7(b), and 7(c). This was
changed in the second scenario, where responses were altered for the
LP with maximum benefit and adaptive SAW algorithms as shown
in Figs. 7(d) and 7(f). The reason for the absence of changes in the
selected responses in the first scenario when using LP with maximum
benefits or adapted SAW algorithms can be attributed to the specific
response chosen: transitioning to a safe mode (indexed with 17). This

Computers & Security 145 (2024) 104008

13

M. Hamad et al.

Fig. 6. Evaluation of consumed time for response selection using the three selection algorithms for both scenarios.

Fig. 7. Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the responses selected over five iterations using the three selection algorithms, assuming
the responses were consistently considered successful.

response had very high benefit values, as determined through the initial
evaluation process, making minor variations of ±20% inconsequential
to the overall result. Consequently, minor variations of ±20% did not
affect the overall result, as the next possible response had significantly
lower benefit values. To avoid such a constant behavior, a more
substantial modification of the response parameters or the use of an
asymmetric window for the prefactor, with a higher probability of
negative values, can be implemented. Notably, the LP method with
minimum cost (Figs. 7(b) and 7(e)) did not consider response bene-
fits in its optimization function, rendering modifications to response
benefit irrelevant. This method-related limitation persisted across both
simulated scenarios.

In the case of consistently unsuccessful attacks, we observe more
substantial variations in the selected responses compared to the pre-
vious case (see Fig. 8). This behavior is expected, as the parameter
adaptation in a non-successful case involves higher orders of magni-
tude, as shown in Eq. (16), compared to the successful case. Similar to

the previous analysis, the LP method with minimum cost optimization
consistently generates the same response due to the exclusion of re-
sponse benefit in the optimization process, as shown in Figs. 8(b) and
8(e). Conversely, LP with maximum benefit optimization aligns with
expectations. Although the initial response is similar to the successful
case, subsequent responses exhibit lower benefits (Figs. 8(a) and 8(d))
and higher costs as a side effect. Notably, response index 26 (killing
the process) appeared twice in Figs. 8(a) and 8(c), each referring
to different components (i.e., camera and acceleration control). The
adapted SAW method consistently produces varying results with less
distinct trends in benefit and cost when compared to LP with maximum
benefit (Figs. 8(c) and 8(f)). This observed behavior holds true for both
scenarios1 and 2, underscoring the expected functionality of parameter
adaptation for non-successful cases.

In conclusion, this assessment of dynamic parameter adaptation
confirms that LP with maximum benefit and the adapted SAW methods
perform effectively with adjusted parameters, rendering the results

Computers & Security 145 (2024) 104008

14

M. Hamad et al.

Fig. 8. Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the responses selected over five iterations using the three selection algorithms, assuming
the responses were consistently considered unsuccessful.

Table 5
Impact of the velocity for the evaluated scenarios, using Eq. (2).

Impact (unitless)

0 km/h 50 km/h 100 km/h

Scenario 1 200 210 300
Scenario 2 120 130 220

valid for both test cases. On the other hand, the LP method with
minimum cost optimization falls short in its capacity to respond to
parameter shifts in response benefit values. Consequently, this method
appears less appealing for identifying optimal responses in autonomous
IRS.

Inclusion of velocity considerations. The second key aspect of dynamic
evaluation involves assessing the influence of vehicle velocity on the
selected responses. In our current prototype system, the environmen-
tal parameter 𝐸 is treated similarly to other HEAVENS parameters
in Eq. (2), as their respective weights 𝑤 are either one or zero. As
we alter the velocity, the environmental parameter for an intrusion
takes on different values, as indicated in Eq. (17). Therefore, intrusion’s
impact is more significant at higher velocities. For this test, both
scenario one and two are assessed at three velocities: 0, 50, and 100
km/h, using all three implemented algorithms, with each evaluation
beginning with the default data-set.

While the intrusion impact calculation in Table 5 functions as
expected, each algorithm consistently selects the same response within
each scenario, regardless of the velocity. This behavior can be at-
tributed to the high impact values in the two evaluated scenarios. In
cases of less severe intrusions or during the early stages of a stepping-
stone attack, where the HEAVENS parameters result in lower values,
the velocity’s impact becomes relatively more substantial, thus leading
to varying results. Nonetheless, it is important to emphasize that the
proposed IRS architecture is adaptable since the individual weights
𝑤 for HEAVENS parameters can be customized as per Eq. (2). This
customization minimizes the over-representation of static HEAVENS
parameters, enabling the velocity to exert a more pronounced influence
on the selected response.

6.2.5. Final remarks
The evaluation of the developed IRS reveals the advantages and

drawbacks of each selection method. The adapted SAW method is
limited by its inability to consider constraints. Consequently, it is not
feasible to employ this method in a fully automated IRS. On the other
hand, LP with minimum cost consistently favors constant responses and
is, therefore, unsuitable for optimal response identification. Despite its
successful application in existing research (Herold et al., 2017; Herold,
2017), the results demonstrate suboptimal behavior for the automo-
tive use case. Nevertheless, it is well-suited for proposing follow-up
responses once the primary intrusion has been mitigated. These follow-
up responses can enhance security by alerting a SOC and providing
information to the car manufacturer, ultimately leading to updated
software. In contrast, the LP method with maximum benefit, excels in
all metrics evaluated for an automotive IRS. Since it offers responses
with high benefits from the outset, it is well-suited to respond to the
primary intrusion.

7. Conclusion and outlook

Modern vehicles’ intricate architecture and advanced connectivity
present unique intrusion challenges. While automotive security re-
search has traditionally emphasized IDSs as a secondary defense layer,
the development of vehicle IRS is in its early stages, drawing inspiration
from related industries. To delve into the development of an automotive
IRS, we sought answers to three key questions: defining potential re-
sponses, outlining response evaluation criteria, and optimizing response
selection. Initially, we categorized automotive intrusions and stepping-
stone attacks into five distinct categories to create a more versatile
intrusion model. Similarly, we classified responses, creating a formal
description for both intrusions and responses. Additionally, we inves-
tigated necessary adjustments to existing risk assessment models to
support response evaluation. Furthermore, we conducted a comprehen-
sive comparison of various optimal selection algorithms, highlighting
the adaptability of the SAW method and Linear Programming (LP)
with various optimizations for IRS integration. Although other algo-
rithm families may gain relevance in the future, they currently face

Computers & Security 145 (2024) 104008

15

M. Hamad et al.

limitations in the automotive context. In addition to these findings, we
proposed an IRS architecture that accommodates the distributed nature
of vehicles and addresses automotive-specific constraints. Evaluation in
real-world scenarios has led to the development of a novel vehicular
IRS, demonstrating its potential for integration into modern distributed
vehicle architectures and enhancing overall security.

While the focus of the paper is on the analysis and design of the
IRS, the implementation of the external architecture and the response
execution modules on the local engines on each ECU is still a challenge
towards an IRS as a system. To test such an overall IRS system, real-
world data sets, including both normal operation and attack scenarios,
are needed. Extensive evaluation in Software-in-the-Loop or Hardware-
in-the-Loop testbeds can extend the existing evaluations of algorithms
and the overall system. With respect to the secure communication
of intrusions and responses, further research and standardization are
needed to be performed in order to ensure that the developed IRS
does not only reply in an adequate manner but also distributes its
responses. In this direction, leveraging existing efforts such as Interna-
tional Telecommunication Union (2022) and Matthews and Feinstein
(2007) by extending them towards establishing a standardized method
for securely exchanging the proposed responses within the vehicle and
with other vehicles would provide a solid foundation, as these existing
standards and guidelines already offer valuable insights. Also, it is
important to note that the functionality of our proposed system depends
on the availability of information about the attack, such as its source,
destination, and type, which needs to be provided by the IDS. This in-
formation can be obtained by integrating existing research approaches,
as demonstrated in Jeong et al. (2024) and Ding et al. (2024). Finally,
the modular architecture of REACT allows an easy extension towards
more complex vehicle architectures and new intrusions or responses.
Additionally it allows the integration of new selection algorithms in
the future to adapt to possible changed needs.

CRediT authorship contribution statement

Mohammad Hamad: Writing – review & editing, Writing – origi-
nal draft, Supervision, Project administration, Methodology, Funding
acquisition, Conceptualization. Andreas Finkenzeller: Writing – re-
view & editing, Methodology. Michael Kühr: Software, Methodology,
Investigation, Conceptualization. Andrew Roberts: Writing – review
& editing, Writing – original draft, Validation. Olaf Maennel: Writ-
ing – review & editing, Writing – original draft, Validation. Vassilis
Prevelakis: Writing – review & editing, Validation, Methodology. Se-
bastian Steinhorst: Writing – review & editing, Supervision, Funding
acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Mohammad Hamad reports financial support was provided by Euro-
pean Union. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by the European Union-funded projects
CyberSecDome (Agreement No.: 101120779).

References

Alrefaei, F., Alzahrani, A., Song, H., Alrefaei, S., 2022. A survey on the jamming
and spoofing attacks on the unmanned aerial vehicle networks. In: 2022 IEEE
International IOT, Electronics and Mechatronics Conference. IEMTRONICS, IEEE,
pp. 1–7.

Anuar, N.B., Papadaki, M., Furnell, S., Clarke, N., 2012. A response strategy model for
intrusion response systems. In: Gritzalis, D., Furnell, S., Theoharidou, M. (Eds.),
Information Security and Privacy Research. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 573–578.

Anwar, S., Mohamad Zain, J., Zolkipli, M.F., Inayat, Z., Khan, S., Anthony, B.,
Chang, V., 2017. From intrusion detection to an intrusion response system:
Fundamentals, requirements, and future directions. Algorithms 10 (2), http://dx.
doi.org/10.3390/a10020039.

Anwar, S., Zain, J.M., Zolkipli, M.F., Inayat, Z., Jabir, A.N., Odili, J.B., 2015. Response
option for attacks detected by intrusion detection system. In: 2015 4th International
Conference on Software Engineering and Computer Systems. ICSECS, pp. 195–200.
http://dx.doi.org/10.1109/ICSECS.2015.7333109.

AUTOSAR, 2020. Specification of Intrusion Detection System Protocol. Technical Re-
port, AUTOSAR Consortium, URL: https://www.autosar.org/fileadmin/standards/
R20-11/FO/AUTOSAR_PRS_IntrusionDetectionSystem.pdf.

Barletta, V.S., Caivano, D., Vincentiis, M.D., Ragone, A., Scalera, M., Martín, M.Á.S.,
2023. V-soc4as: A vehicle-soc for improving automotive security. Algorithms 16
(2), 112.

Bashendy, M., Tantawy, A., Erradi, A., 2023a. Intrusion response systems for cyber-
physical systems: A comprehensive survey. Comput. Secur. 124 (C), http://dx.doi.
org/10.1016/j.cose.2022.102984.

Bashendy, M., Tantawy, A., Erradi, A., 2023b. Intrusion response systems for
cyber-physical systems: A comprehensive survey. Comput. Secur. 124, 102984.

Bouyahia, T., Cuppens-Boulahia, N., Cuppens, F., Autrel, F., 2017. Multi-criteria
recommender approach for supporting intrusion response system. In: Cuppens, F.,
Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (Eds.), Foundations
and Practice of Security. Springer International Publishing, Cham, pp. 51–67.

Cardellini, V., Casalicchio, E., Iannucci, S., Lucantonio, M., Mittal, S., Panigrahi, D.,
Silvi, A., 2022. An intrusion response system utilizing deep Q-networks and system
partitions. http://dx.doi.org/10.48550/ARXIV.2202.08182, https://arxiv.org/abs/
2202.08182.

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., 2011. Comprehensive experimental
analyses of automotive attack surfaces. In: 20th USENIX Security Symposium
(USENIX Security 11).

Chevalier, R., Plaquin, D., Dalton, C., Hiet, G., 2019. Survivor: A fine-grained intrusion
response and recovery approach for commodity operating systems. In: Proceedings
of the 35th Annual Computer Security Applications Conference. ACSAC ’19,
Association for Computing Machinery, New York, NY, USA, pp. 762–775. http:
//dx.doi.org/10.1145/3359789.3359792.

Cho, K.-T., Shin, K.G., 2016. Fingerprinting electronic control units for vehicle intru-
sion detection. In: 25th USENIX Security Symposium (USENIX Security 16). pp.
911–927.

Costantino, G., Matteucci, I., 2023. Reversing Kia motors head unit to discover and
exploit software vulnerabilities. J. Comput. Virol. Hacking Tech. 19 (1), 33–49.

Cui, J., Liew, L.S., Sabaliauskaite, G., Zhou, F., 2019. A review on safety failures,
security attacks, and available countermeasures for autonomous vehicles. Ad Hoc
Netw. 90, 101823.

Ding, W., Alrashdi, I., Hawash, H., Abdel-Basset, M., 2024. DeepSecDrive: An explain-
able deep learning framework for real-time detection of cyberattack in in-vehicle
networks. Inform. Sci. 658, 120057. http://dx.doi.org/10.1016/j.ins.2023.120057,
URL: https://www.sciencedirect.com/science/article/pii/S0020025523016432.

El-Rewini, Z., Sadatsharan, K., Selvaraj, D.F., Plathottam, S.J., Ranganathan, P., 2020.
Cybersecurity challenges in vehicular communications. Veh. Commun. 23, 100214.
http://dx.doi.org/10.1016/j.vehcom.2019.100214.

ENISA, 2019. ENISA Good Practices for the Security of Smart Cars. Technical Report,
European Union Agency for Cybersecurity (ENISA), Greece, URL: https://www.
enisa.europa.eu/publications/smart-cars.

Fessi, B.A., BenAbdallah, S., Hamdi, M., Boudriga, N., 2009. A new genetic algorithm
approach for intrusion response system in computer networks. In: 2009 IEEE
Symposium on Computers and Communications. pp. 342–347. http://dx.doi.org/
10.1109/ISCC.2009.5202379.

Fishburn, P.C., 1967. Additive utilities with incomplete product sets: Application to
priorities and assignments. Oper. Res. 15 (3), 537–542.

Guo, Y., Zhang, H., Li, Z., Li, F., Fang, L., Yin, L., Cao, J., 2020. Decision-making
for intrusion response: Which, where, in what order, and how long? In: ICC
2020 - 2020 IEEE International Conference on Communications. ICC, pp. 1–6.
http://dx.doi.org/10.1109/ICC40277.2020.9149083.

Hamad, M., Hammadeh, Z.A., Saidi, S., Prevelakis, V., Ernst, R., 2018. Prediction
of abnormal temporal behavior in real-time systems. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. pp. 359–367.

Hamad, M., Nolte, M., Prevelakis, V., 2016. Towards comprehensive threat modeling for
vehicles. In: The 1st Workshop on Security and Dependability of Critical Embedded
Real-Time Systems.

Computers & Security 145 (2024) 104008

16

M. Hamad et al.

Hamad, M., Prevelakis, V., 2020. SAVTA: A hybrid vehicular threat model: Overview
and case study. Information 11 (5), http://dx.doi.org/10.3390/info11050273.

Hamad, M., Steinhorst, S., 2023. Security challenges in autonomous systems design.
arXiv:2312.00018.

Hamad, M., Tsantekidis, M., Prevelakis, V., 2019. Red-Zone: Towards an intrusion
response framework for intra-vehicle system. In: 5th International Conference on
Vehicle Technology and Intelligent Transport Systems. VEHITS, http://dx.doi.org/
10.5220/0007715201480158.

Hamad, M., Tsantekidis, M., Prevelakis, V., 2021. Intrusion response system for vehicles:
Challenges and vision. In: Helfert, M., Klein, C., Donnellan, B., Gusikhin, O.
(Eds.), Smart Cities, Green Technologies and Intelligent Transport Systems. Springer
International Publishing, Cham, pp. 321–341.

Han, M.L., Kwak, B.I., Kim, H.K., 2021. Event-triggered interval-based anomaly detec-
tion and attack identification methods for an in-vehicle network. IEEE Trans. Inf.
Forensics Secur. 16, 2941–2956. http://dx.doi.org/10.1109/TIFS.2021.3069171.

Heigl, M., Doerr, L., Almaini, A., Fiala, D., Schram, M., 2018. Incident reaction based
on intrusion detections’ alert analysis. In: 2018 International Conference on Applied
Electronics. AE, pp. 1–6. http://dx.doi.org/10.23919/AE.2018.8501419.

Henniger, O., Ruddle, A., Seudié, H., Weyl, B., Wolf, M., Wollinger, T., 2009. Securing
vehicular on-board it systems: The evita project. In: VDI/VW Automotive Security
Conference. p. 41.

Herold, N., 2017. Incident Handling Systems with Automated Intrusion Response (Ph.D.
thesis). Technische Universität München.

Herold, N., Posselt, S.-A., Hanka, O., Carle, G., 2016. Anomaly detection for SOME/IP
using complex event processing. In: NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium. pp. 1221–1226. http://dx.doi.org/10.
1109/NOMS.2016.7502991.

Herold, N., Wachs, M., Posselt, S.-A., Carle, G., 2017. An optimal metric-aware
response selection strategy for intrusion response systems. In: Cuppens, F., Wang, L.,
Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (Eds.), Foundations and Practice
of Security. Springer International Publishing, Cham, pp. 68–84.

Hughes, K., McLaughlin, K., Sezer, S., 2020. Dynamic countermeasure knowledge for
intrusion response systems. In: 2020 31st Irish Signals and Systems Conference.
ISSC, pp. 1–6. http://dx.doi.org/10.1109/ISSC49989.2020.9180198.

Iannucci, S., Barba, O.D., Cardellini, V., Banicescu, I., 2019a. A performance evaluation
of deep reinforcement learning for model-based intrusion response. In: 2019 IEEE
4th International Workshops on Foundations and Applications of Self* Systems
(FAS*W). pp. 158–163. http://dx.doi.org/10.1109/FAS-W.2019.00047.

Iannucci, S., Casalicchio, E., Lucantonio, M., 2021. An intrusion response approach
for elastic applications based on reinforcement learning. In: 2021 IEEE Symposium
Series on Computational Intelligence. SSCI, pp. 01–10. http://dx.doi.org/10.1109/
SSCI50451.2021.9659882.

Iannucci, S., Montemaggio, A., Williams, B., 2019b. Towards self-defense of non-
stationary systems. In: 2019 International Conference on Computing, Networking
and Communications. ICNC, pp. 250–254. http://dx.doi.org/10.1109/ICCNC.2019.
8685487.

International Organization for Standardization, 2021. ISO/SAE 21434: 2021: Road
Vehicles: Cybersecurity Engineering. ISO.

International Telecommunication Union, 2022. Guidelines for an intrusion prevention
system for connected vehicles - recommendation ITU-T X.1377.

Islam, M.M., Lautenbach, A., Sandberg, C., Olovsson, T., 2016. A risk assessment
framework for automotive embedded systems. In: Proceedings of the 2nd ACM
International Workshop on Cyber-Physical System Security. pp. 3–14.

Jeong, S., Lee, S., Lee, H., Kim, H.K., 2024. X-CANIDS: Signal-aware explainable
intrusion detection system for controller area network-based in-vehicle network.
IEEE Trans. Veh. Technol. 73 (3), 3230–3246. http://dx.doi.org/10.1109/TVT.
2023.3327275.

Jurewicz, C., Sobhani, A., Woolley, J., Dutschke, J., Corben, B., 2016. Explo-
ration of vehicle impact speed – injury severity relationships for application in
safer road design. Transp. Res. Procedia 14, 4247–4256. http://dx.doi.org/10.
1016/j.trpro.2016.05.396, URL: https://www.sciencedirect.com/science/article/
pii/S2352146516304021.

Karahasanovic, A., Kleberger, P., Almgren, M., 2017. Adapting threat modeling methods
for the automotive industry. In: Ej Tryckt.

Kholidy, H.A., Erradi, A., Abdelwahed, S., Baiardi, F., 2016. A risk mitigation approach
for autonomous cloud intrusion response system. Computing 98 (11), 1111–1135.
http://dx.doi.org/10.1007/s00607-016-0495-8.

Kim, K., Kim, J.S., Jeong, S., Park, J.-H., Kim, H.K., 2021. Cybersecurity for autonomous
vehicles: Review of attacks and defense. Comput. Secur. 103, 102150.

Klee, V., Minty, G.J., 1972. How good is the simplex algorithm? In: Inequalities III
(Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; Dedicated To the
Memory of Theodore S. Motzkin). Academic Press, New York, pp. 159–175.

Kneib, M., Huth, C., 2018. Scission: Signal characteristic-based sender identification
and intrusion detection in automotive networks. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. pp. 787–800.

Konak, A., Coit, D.W., Smith, A.E., 2006. Multi-objective optimization using genetic
algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91 (9), 992–1007.

Lautenbach, A., Almgren, M., Olovsson, T., 2021. Proposing HEAVENS 2.0–an automo-
tive risk assessment model. In: Proceedings of the 5th ACM Computer Science in
Cars Symposium. pp. 1–12.

Lokman, S.-F., Othman, A.T., Abu-Bakar, M.-H., 2019. Intrusion detection system for
automotive controller area network (CAN) bus system: a review. EURASIP J.
Wireless Commun. Networking 2019 (1), 184. http://dx.doi.org/10.1186/s13638-
019-1484-3.

Lopes, A., Hutchison, A., 2020. Experimenting with machine learning in automated
intrusion response. In: Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., Ivanovic, M.
(Eds.), Intelligent Distributed Computing XIII. Springer International Publishing,
Cham, pp. 505–514.

Luo, F., Jiang, Y., Zhang, Z., Ren, Y., Hou, S., 2021. Threat analysis and risk assessment
for connected vehicles: A survey. Secur. Commun. Netw. 2021, http://dx.doi.org/
10.1155/2021/1263820.

Mahima, K.T.Y., Ayoob, M., Poravi, G., 2021. Adversarial attacks and defense tech-
nologies on autonomous vehicles: A review. Appl. Comput. Syst. 26 (2), 96–106.
http://dx.doi.org/10.2478/acss-2021-0012.

Matthews, G., Feinstein, B., 2007. The Intrusion Detection Exchange Protocol (IDXP).
RFC 4767, http://dx.doi.org/10.17487/RFC4767, URL: https://www.rfc-editor.
org/info/rfc4767.

Miller, C., Valasek, C., 2015. Remote exploitation of an unaltered passenger vehicle.
https://illmatics.com/Remote%20Car%20Hacking.pdf. (Accessed: 12 April 2022).

Mitchell, S., O’Sullivan, M., Dunning, I., 2011. PuLP: A Linear Programming Toolkit for
Python. Department of Engineering Science, the University of Auckland, Auckland,
New Zealand.

Nespoli, P., Papamartzivanos, D., Gómez Mármol, F., Kambourakis, G., 2018. Optimal
countermeasures selection against cyber attacks: A comprehensive survey on
reaction frameworks. IEEE Commun. Surv. Tutor. 20 (2), 1361–1396. http://dx.
doi.org/10.1109/COMST.2017.2781126.

Olt, C., 2019. Establishing security operation centers for connected cars. ATZelectron.
WorldWide 14 (5), 40–43.

Ossenbühl, S., Steinberger, J., Baier, H., 2015. Towards automated incident handling:
How to select an appropriate response against a network-based attack? In: 2015
Ninth International Conference on IT Security Incident Management & IT Forensics.
pp. 51–67. http://dx.doi.org/10.1109/IMF.2015.13.

Palanca, A., Evenchick, E., Maggi, F., Zanero, S., 2017. A stealth, selective, link-layer
denial-of-service attack against automotive networks. In: Detection of Intrusions
and Malware, and Vulnerability Assessment: 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings 14. Springer, pp. 185–206.

Papadaki, M., Furnell, S., Lines, B., Reynolds, P., 2003. Operational characteristics
of an automated intrusion response system. In: Lioy, A., Mazzocchi, D. (Eds.),
Communications and Multimedia Security. Advanced Techniques for Network and
Data Protection. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 65–75.

Python Software Foundation, 2022. Resource — Resource usage information. https:
//docs.python.org/3/library/resource.html. (Accessed: 20 July 2022).

Richards, D.C., 2010. Relationship between speed and risk of fatal injury: pedestrians
and car occupants. In: Road Safety Web Publication. Vol. 16, Department for
Transport, London.

Rose, J.R., Swann, M., Grammatikakis, K.P., Koufos, I., Bendiab, G., Shiaeles, S.,
Kolokotronis, N., 2022. IDERES: Intrusion detection and response system using
machine learning and attack graphs. J. Syst. Archit. 131, 102722.

Schrijver, A., 1998. The simplex method. In: Theory of Linear and Integer Programming.
John Wiley & Sons, New York, pp. 129–150.

Sembera, V., 2020. ISO/SAE 21434: Setting the Standard for Connected Cars’
Cybersecurity. White Paper, Trend Micro Research.

Shameli-Sendi, A., Ezzati-Jivan, N., Jabbarifar, M., Dagenais, M., 2012. Intrusion
response systems: Survey and taxonomy. Int. J. Comput. Sci. Netw. Secur. (IJCSNS)
12.

Souissi, S., Serhrouchni, Sliman, L., Charroux, B., 2017. Security incident response:
Towards a novel decision-making system. In: Madureira, A.M., Abraham, A.,
Gamboa, D., Novais, P. (Eds.), Intelligent Systems Design and Applications. Springer
International Publishing.

Stakhanova, N., Basu, S., Wong, J., 2007. A taxonomy of intrusion response system. Int.
J. Inf. Comput. Secur. 1, 169–184. http://dx.doi.org/10.1504/IJICS.2007.012248.

Stakhanova, N., Strasburg, C., Basu, S., Wong, J.S., 2012. Towards cost-sensitive
assessment of intrusion response selection. J. Comput. Secur. 20 (2–3), 169–198.

Strasburg, C., Stakhanova, N., Basu, S., Wong, J.S., 2009. A framework for cost sensitive
assessment of intrusion response selection. In: 2009 33rd Annual IEEE International
Computer Software and Applications Conference. Vol. 1, IEEE, pp. 355–360.

Ullah, S., Khan, M.A., Ahmad, J., Jamal, S.S., e Huma, Z., Hassan, M.T., Pitropakis, N.,
Arshad, Buchanan, W.J., 2022. HDL-IDS: A hybrid deep learning architecture for
intrusion detection in the internet of vehicles. Sensors 22 (4), http://dx.doi.org/
10.3390/s22041340.

Ullah, S., Shelly, S., Hassanzadeh, A., Nayak, A., Hasan, K., 2020. On the effectiveness
of intrusion response systems against persistent threats. In: 2020 International
Conference on Computing, Networking and Communications. ICNC, pp. 415–421.
http://dx.doi.org/10.1109/ICNC47757.2020.9049740.

Upstream, 2022. Upstream’s 2022 global automotive cybersecurity report. URL: https:
//upstream.auto/2022report/.

Wang, B., Sun, Y., Sun, M., Xu, X., 2021a. Game-theoretic actor–critic-based intrusion
response scheme (GTAC-IRS) for wireless SDN-based IoT networks. IEEE Internet
Things J. 8 (3), 1830–1845. http://dx.doi.org/10.1109/JIOT.2020.3015042.

Computers & Security 145 (2024) 104008

17

M. Hamad et al.

Wang, Y., Wang, Y., Qin, H., Ji, H., Zhang, Y., Wang, J., 2021b. A systematic
risk assessment framework of automotive cybersecurity. Automot. Innov. 4 (3),
253–261. http://dx.doi.org/10.1007/s42154-021-00140-6.

Wolf, M., Weimerskirch, A., Paar, C., 2004. Security in automotive bus systems. In:
Proceedings of the Workshop on Embedded Security in Cars (ESCAR)’04.

Wright, S., 2021. Autonomous Cars Generate More Than 300 TB of Data per Year. Tech
Blog, Tuxera, Finland, URL: https://www.tuxera.com/blog/autonomous-cars-300-
tb-of-data-per-year/.

Xia, S., Qiu, M., Liu, M., Zhong, M., Zhao, H., 2019. AI enhanced automatic response
system for resisting network threats. In: Qiu, M. (Ed.), Smart Computing and
Communication. Springer International Publishing, Cham, pp. 221–230.

Yarygina, T., Otterstad, C., 2018. A game of microservices: Automated intrusion re-
sponse. In: Bonomi, S., Rivière, E. (Eds.), Distributed Applications and Interoperable
Systems. Springer International Publishing, Cham, pp. 169–177.

Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M., 2014. RRE: A game-theoretic
intrusion response and recovery engine. IEEE Trans. Parallel Distrib. Syst. 25 (2),
395–406. http://dx.doi.org/10.1109/TPDS.2013.211.

Mohammad Hamad: He has been a research group leader with the Embedded Systems
and Internet of Things Group at the Faculty of Computer Engineering, Technical
University of Munich, Munich, Germany since 2020. He received his B.Eng. degree in
Software Engineering and Information Systems from Aleppo University, Aleppo, Syria,
in 2009. He also earned his Ph.D. (Dr.-Ing.) degree in Computer Engineering from the
Institute for Data Technology and Communication Networks, Technical University of
Braunschweig, Braunschweig, Germany, in 2020. His research interests lie in the area
of autonomous vehicles and IoT security.

Andreas Finkenzeller: He received the B.Sc. and M.Sc. degrees in electrical engineering
and computer science from Technical University Munich, Munich, Germany, in 2018
and 2021, respectively, where he is currently pursuing the Ph.D. degree with the
Embedded Systems and Internet of Things Group. His research interests include
embedded systems, secure communication, and IoT Security.

Michael Kühr: He received a B.Eng. degree in Electrical Engineering from the Baden-
Wuerttemberg Cooperative State University in Stuttgart, Germany, in 2017 and a
M.Sc. degree in Electrical Engineering and Information Technology from the Technical
University of Munich, Munich, Germany, in 2022. His research interest focuses on the
development and security of automated vehicles.

Andrew Roberts: He received the MCyberSecOps from the University of New South
Wales, Canberra, Australia, in 2018 and the M.Sc. degree in cybersecurity engineering
from Tallinn University of Technology in 2020. He is currently pursuing a Ph.D.
degree in information technology at the Tallinn University of Technology, Estonia. His
current research is focused on cybersecurity testing approaches to autonomous driving
algorithms and methods to improve the robustness of the design of autonomous systems
to cyber threats.

Olaf Maenne: He got his Ph.D. from the Technical University in Munich, studying
wide-area Computer Networks and Network security through active and passive
measurements and large-scale experiments. He has since then held faculty positions at
Loughborough University in England and Tallinn University of Technology (TalTech) in
Estonia, where he led the research at the Centre for Digital Forensics and Cybersecurity
and established a Centre for Maritime Cybersecurity in Estonia. Since 2023, he has been
with the University of Adelaide. His research interests have broadened over the years
to include cyber defense technical exercises and critical infrastructure protection. He
has been chairing numerous conferences, including ACM SIGCOMM in London in 2015
and the ACM Internet Measurement Conference (2017), and he is treasurer at ACM
SIGCOMM 2024 in Sydney.

Vassilis Prevelakis: He received the B.Sc. degree (Hons.) in mathematics and computer
science and the M.Sc. degree in computer science from the University of Kent,
Canterbury, U.K., in 1984 and 1986, respectively, and the Ph.D. degree in computer
science from the University of Geneva, Geneva, Switzerland, in 1996. He has worked in
various areas of security in Systems and Networks both in his current academic capacity
and as a freelance consultant. He is the Professor of Embedded Computer Security at the
Technical University of Braunschweig, Braunschweig, Germany. His current research
involves issues related to vehicular automation security, secure processors, security
aspects of software engineering, and auto-configuration issues in secure VPNs.

Sebastian Steinhorst: He received the M.Sc. (Dipl.-Inf.) and Ph.D. (Dr. phil. nat.)
degrees in computer science from Goethe University Frankfurt, Frankfurt, Germany, in
2005 and 2011, respectively. He is an Associate Professor at the Technical University
of Munich, Munich, Germany, where he leads the Embedded Systems and Internet of
Things Group, Department of Electrical and Computer Engineering. He was also a Co-
Program PI in the Electrification Suite and Test Lab of the research center TUMCREATE
in Singapore. Prof. Steinhorst’s research centers around design methodology and
hardware/software architecture co-design of secure distributed embedded systems for
use in IoT, automotive, and smart energy applications.

Appendix VI

Paper VI
A. Roberts, M. R. H. Iman, M. Bellone, T. Ghasempouri, J. Raik, O. Maennel, M. Hamad,and S. Steinhorst. Adassure: Debugging methodology for autonomous driving control al-gorithms. In 2024Design, Automation Test in EuropeConference Exhibition (DATE), pages1–6, 2024.

271

ADAssure: Debugging Methodology for
Autonomous Driving Control Algorithms

Andrew Roberts⋄∗, Mohammad Reza Heidari Iman⋄†, Mauro Bellone∗, Tara Ghasempouri†,
Jaan Raik†, Olaf Maennel‡, Mohammad Hamad§, Sebastian Steinhorst§

∗ FinEst Centre for Smart Cities, Tallinn University of Technology
† Department of Computer Systems, Tallinn University of Technology

‡School of Computer and Mathematical Sciences, The University of Adelaide
§Department of Computer Engineering, Technical University of Munich

Abstract—Autonomous driving (AD) system designers need
methods to efficiently debug vulnerabilities found in control
algorithms. Existing methods lack alignment to the requirements
of AD control designers to provide an analysis of the parameters
of the AD system and how they are affected by cyber-attacks.
We introduce ADAssure, a methodology for debugging AD con-
trol system algorithms that incorporates automated mechanisms
which support generation of assertions to guide the AD system
designer to identify vulnerabilities in the system. Our evalua-
tion of ADAssure on a real-world AD vehicular system using
diverse cyber-attacks developed a set of assertions that identified
weaknesses in the OpenPlanner 2.5 AD planning algorithm
and its constituent planning functions. Working with an AD
control system designer and safety validation engineer, the results
of ADAssure identified remediation of the AD control system,
which can support the implementation of a redundant observer
for data integrity checking and improvements to the planning
algorithm. The adoption of ADAssure improves autonomous
system design by providing a systematic approach to enhance
safety and reliability through the identification and mitigation of
vulnerabilities from corner cases.

Index Terms—Security, Autonomous Driving

I. INTRODUCTION

Autonomous driving (AD) vehicles are increasingly being
utilised for transportation on public roads. Waymo and Cruise
offer AD ride-hailing services in San Francisco, Apollo Baidu
in China, and numerous such services are operating in Europe.
Central to the wider-adoption of AD vehicles on public roads
is the security and safety of their control algorithms that enable
self-driving technology. AD control algorithms comprise a
complex code-base of interconnected modules that perform
tasks and sub-tasks that enable a vehicle to sense, perceive,
localise, and navigate in a driving environment. With the
increase in diversity of AD use-cases from valet parking to
public transportation in public traffic, the code base of AD
control algorithms will reputedly grow from 100-200 million
to billions of lines of code [1].

Within this complex environment, debugging the code for
logical errors arising from unexpected control behaviour is
a fundamental challenge [2]. AD system designers need to
pinpoint where in the control software weaknesses are, in order
to focus debugging efforts in an efficient manner. Existing
studies attempt to rectify unexpected AD control behaviour
at run-time through smoothing trajectories utilising neural
networks [3] [4] [5]. The applicability of these studies in real-
world AD programs are limited due to the highly dynamic
environment of autonomous driving and the probabilistic na-
ture of the algorithms for planning.

⋄ These authors contributed equally to this work.

Radar

Input Sensor Data

End-to-End Learning

Perception Localisation Planning ControlCamera

GPS /
IMU LiDAR Acceleration/Deceleration

Turning/Braking…

Autonomous Driving Control Algorithms Output Action

Cyber Attack Scenario

Corner Case Scenario
ADAssure Methodology

Assertion
Review and
Debugging

AD Data
Collection

Assertion
Generation

Or

Fig. 1: Comprehensive ADAssure methodology overview that illus-
trates each step of the process, from data collection to assertion
creation, review of assertions, and debugging.

Furthermore, in these studies, the analysis lacks the ex-
pertise from the algorithm designer and safety engineer to
inform on the nature of the behaviour of vehicle dynamics,
whether noise identified as irregular could be considered for
a control engineer within normal constraints, whether AD
behaviour could be considered a legitimate safety response
to an unexpected event and whether the parameters for which
the run-time solution is designed are appropriate for differing
class of vehicles with different dynamic profiles. We consider
the design phase to offer the most promising area of initial
investigation to improve the robustness of control algorithms,
which can be translated to real-world AD systems.

In this work, we propose ADAssure, a methodology for
debugging control algorithms during the design-time phase
of AD control software development (Fig. 1). ADAssure is
built upon the idea that the data of vehicle dynamics and
sensing of AD systems can be analysed for anomalous control
behaviour, which can then be transformed into assertions on
the AD control. We use association rules that enable us to mine
datasets of varying scales and fingerprint the pattern of anoma-
lous activity. These rules can be used to guide AD system
designers to focus on the debugging of the control algorithms.
To evaluate ADAssure, we focus on a control system algorithm
used in a real-world AD vehicular system providing ride-
hailing services. To summarise, the paper makes the following
contributions:

• We propose ADAssure, a methodology designed for de-
bugging AD control algorithms during the autonomous
system development’s design phase (see § II).

• To demonstrate our methodology’s feasibility, we applied
it to diverse datasets, revealing three new vulnerabilities
in Openplanner 2.5 AD, used in real-world vehicles.
(see § IV).

• We provide to the community our artifacts to enable
reproducibility and assist with developing efforts to im-

2024 Design, Automation & Test in Europe Conference (DATE 2024)
Special Initiative "Autonomous Systems Design"

979-8-3503-4859-0/DATE24/© 2024 EDAA
Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 15:59:48 UTC from IEEE Xplore. Restrictions apply.

Association Rule Mining Time Notation Attack DetectionDatasets

Benign

Malicious
Assertion

Review and
Debugging

Pre-
processing Mining Time

Notation
Temporal Association

Rules (Assertions)
Association

Rules

Fig. 2: Phases for Assertion Generation

prove AD control system design. These artifacts in-
clude simulation datasets and real-world AD system data
(ADAssure Datasets).

II. ADASSURE: METHODOLOGY

The development of ADAssure has three main motiva-
tions. First, it aims to provide AD system designers with
a methodology to identify and fix vulnerabilities that align
with the design of AD algorithms. Second, given the ever-
changing nature of the autonomous vehicle system, it strives to
establish a structured methodology that allows for consistent,
flexible, and repeatable testing. Third, it aims to support
unit testing, allowing testing of individual components of the
autonomous system in isolation from other dynamic factors
affecting autonomous control.

The foundations of the ADAssure methodology are based on
the analysis of the vehicle dynamics and sensing data to guide
the creation of assertions of the vulnerability of the AD control
algorithms. The analysis consists of a sensitivity analysis
of vehicle dynamics data (e.g., velocity, yaw, and steering
angle), sensor data (e.g., lateral and longitudinal movement),
and visualisation of the trajectory of the AD system. This
helps identify key parameters to build assertions of the AD
control algorithms. The AD control system designers can use
the assertions to identify and locate the vulnerabilities of
the control model and develop mechanisms to test and fix
the errors. The ADAssure methodology comprises three main
phases: AD Data Collection, Association Rule Generation, and
Assertion Review and Debugging. Next, we will explore each
phase in more depth.

A. Autonomous Driving Data Collection
This phase consists of generating data from the real-world

system or simulation environment. The benefit of a simulation
environment is that driving scenarios can be automated or
designed to test a specific condition, such as a cyber-attack
or a corner case. The data output is structured according to
established metrics. These can be vehicle dynamics parameters
(yaw angle, velocity, etc.), sensing data (position co-variance,
point-cloud, etc.), and safety parameters (distance-to-collision,
etc.). The AD data is outputted in a format that can be
interpreted by analytical tools, in our use-case, .csv format.

B. Association Rule Generation Phase
The goal of this phase is to process the data generated

from the previous phase and produce a set of association
rules that can be translated into assertions in the Assertion
Review and Debugging phase. This phase is comprised of
three primary steps (as shown in Fig. 2): a) Association
Rule Mining, b) Time Notation, and c) Attack Detection. The
association rule mining is applied to both benign and malicious
datasets, resulting in two distinct sets of association rules.

Algorithm 1: Association rule mining & time notation
1 Input: N , D
2 Output: next[N] = antecedent→ next[N]consequent,
before[N] = antecedent→ before[N]consequent
/* Initialization and Preprocessing */

3 R = antecedent→ consequent
4 forall f ∈ D do
5 D′ = MoveUp(f(N))

/* Mining */
6 R← apriori(D′)

/* Time Notation */
7 if (R.antecedent == (t ∈ D′)) and (R.consequent ==

(f ∈ D′)) then
8 next[N]← label(R)
9 if (R.antecedent == (f ∈ D′)) and (R.consequent ==

(t ∈ D′)) then
10 before[N]← label(R)

These rules are then processed through the Time Notation
step to incorporate temporal information, yielding temporal
association rules (assertions) in the form of next[N] and
before[N] patterns. We define next[N] type of rule in the
general form of X → next[N]Y . This rule indicates that
when X occurs, after N time instants, Y will occur. N is a
positive integer value. Moreover, we define before[N] rule in
the general form of X → before[N]Y . This rule demonstrates
that whenever X happens, Y should have occurred N time
instants before that. The ”Attack Detection” step compares
these temporal association rules, ultimately detecting attacks
and anomalies within the datasets. Subsequent sections provide
a more in-depth discussion of each step.

a) Association Rule Mining: This step primarily serves
two objectives: pre-processing the datasets and subsequently
mining association rules from the preprocessed data. To mine
the association rules, apriori algorithm [6] was adopted and
enhanced to mine temporal rules capable of detecting attacks at
various time instances during autonomous vehicle (AV) oper-
ation. Algorithm 1 presents the details of the Association Rule
Mining and Time Notation steps. In this algorithm, D denotes
the dataset and D′ is the preprocessed dataset, while f and t
represent the dataset’s features and target values. To prepare
the dataset for mining the next[N] and before[N] temporal
patterns, all the features of the dataset are moved N records
above its original position (Line 5). However, the target of the
dataset remains as it is. Afterwards, the apriori algorithm is
applied to the preprocessed dataset to mine a set of association
rules. The output of this phase is a set of association rules in
the general form of antecedent→ consequent that are ready
to be forwarded to the Time Notation step.

b) Time Notation: In this step, the method integrates
the concept of time into the association rules generated in
the association rule mining step, leading to a set of temporal
association rules. The method determines to which temporal
pattern (next[N] or before[N]) each extracted rule belongs
and subsequently assigns the corresponding time label to the
rule. If the antecedent value matches a target value in the
dataset, and the consequent value has already been moved
to another record in the dataset, the rule is labelled as a
next temporal association rule (Line 8). Otherwise, if the
antecedent of a rule mined in the association rule mining
step matches a dataset feature that has already been moved

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 15:59:48 UTC from IEEE Xplore. Restrictions apply.

to another record and the consequent of the rule matches the
target value of the dataset, we label this rule as a before
temporal association rule (Line 10). The mined rules are
in the forms of antecedent → next[N]consequent, and
antecedent → before[N]consequent, serving as assertions
for debugging the AD system.

c) Attack Detection: This step aims to identify rules
indicating attacks on the AV. We assume that the sets of
mined rules from the benign and malicious datasets should
be similar under normal conditions, without any AV attacks.
Any deviation between these rule sets signifies an anomaly
in the autonomous vehicle. Per this assumption, the temporal
association rules (assertions) mined during the time notation
phase are classified into two sets. The first category comprises
rules exclusively mined from the malicious dataset, lacking
counterparts in the benign dataset. Any rule extracted solely
from the malicious dataset, without a corresponding counter-
part in the benign dataset, signifies an attack. These rules
reveal abnormal behaviour in the malicious dataset, contrasting
with different behaviour observed in the corresponding time
instance of the benign dataset. Consequently, we classify
these as attacks. The second category comprises similar rules
mined from both benign and malicious datasets, but with
different minimum support (min_supp) and minimum con-
fidence (min_conf) values. The variations in these values
indicate that, while the mined rules are similar, abnormal
behaviours and anomalies exist between the datasets. The
apriori algorithm employs these two metrics (i.e., min_supp
and min_conf). The min_supp value is the threshold and a
minimum value that is chosen by the expert to decide whether
a rule occurs frequently in the dataset or not [7], [8]. The
min_conf is the minimum value that is chosen by the expert
and is an indication of how often a rule has been found to
be true [6], [9]. Increasing the min_supp value results in
fewer association rules that describe more general behaviour
of the autonomous vehicle, while decreasing the min_supp
value leads to rules covering rare behaviours (corner cases).
Similarly, raising the min_conf value produces fewer but
more valid rules. Valid rules refer to association rules that
will not be violated with different attack scenarios like corner
cases. These values in the ADAssure facilitate an effective
attack detection process. The second category of rules aids
the ADAssure in effectively identifying corner cases and the
attacks that rarely occur on the AV. These rare attacks exhibit
behaviour very similar to normal vehicle operation but are
malicious and can lead to AV failure.

C. Assertion Review and Debugging
Within this phase, the association rules generated from

the association rule mining are reviewed in conjunction with
an analysis of the control behaviour and individual data
parameters to develop assertions. Trajectory maps of the AD
system and graphs, which demonstrate the sensitivity of the
data parameters during benign and cyber-attack scenarios, are
compared to the anomalous behavioural patterns detected by
the association rule mining tool. Using expertise from the
algorithm designer and safety validation engineer assists in
understanding which parameters can uniquely demonstrate a
vulnerability of an algorithm within the system. From devel-
oping an assertion on the system’s vulnerability, the debugging
effort focuses on a control flow analysis. As the assertion as-

Fig. 3: Localisation Algorithm Flow within AD System.

sists in pinpointing the specific module, the static analysis can
focus on the control flow of the substituent functions within the
module. As an example of the importance of this pinpointing,
a local-planning module could have 15 diverse algorithms,
and within these, each could have multiple different methods
or functions. As the code of AD algorithms are differential
equations, debugging can suggest optimisations that enable
mitigation mechanisms against the identified vulnerabilities.

III. AUTONOMOUS DRIVING CONTROL ALGORITHM

To evaluate the methodology, we focus on an AD control
algorithm used in a real-world AD ride-hailing service. Within
the AD pipeline, there are four key modules: localisation,
perception, planning, and control. Within our study, we focus
on the localisation and planning modules.

A. Localisation Module
This module provides accurate information regarding the

position and orientation of the vehicle. Using a Normal Distri-
butions Transform (NDT) matching search algorithm, it iden-
tifies the best matching position based on sensor perception.
It uses input from the Inertial measurement unit (IMU) and
the point cloud generated by the LiDAR. Then, it attempts to
match the points from our current scan to a grid of probability
functions derived from the map. NDT matching algorithms
can also benefit from the GNSS sensor, which provides
initial rough estimates of localization on geo-referenced maps,
thereby avoiding any sudden errors in localization calculations
that may result in failures. Fig. 3 displays the flow of the
localisation algorithm within the AD system.

B. Planning Module
For the AD system to plan a mission, firstly, a global planner

generates a global reference path using a vector (road network)
map. The function of the global planner is to stipulate a
route between the starting position and goal position of the
mission on the road map. The local-planner generates smooth
and obstacle-free trajectories in the operational local domain
following the global route. The local-planner consists of
several modules (see Fig. 4); trajectory generation, trajectory
evaluation, intention and trajectory estimator, object-tracker
and behavior selection (decision making) [10]. The trajectory
generation module generates alternative tracks parallel to the
main path defined by the global planner. These tracks are
named roll-outs. The trajectory evaluation module assesses all
possible roll-outs and the data input from sensed-data of the
AV and makes a cost estimation. The behaviour selector will
lead the AV to motion on a roll-out based on the least-cost.

IV. EXPERIMENTATION AND RESULTS

To evaluate the impact of corner cases on AD system
behaviour using the ADAssure methodology, we use datasets
of corner cases from simulation and real-world driving from

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 15:59:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Abstract Local Planning Algorithm Flow within AD System.

the target AD system. The 1st corner case scenario dataset is
of three diverse cyber-security attacks on the AD system con-
ducted in a simulation environment. As our focus is the plan-
ning and localisation algorithms, we used a low-fidelity sim-
ulation provided by Autoware.AI and the OpenPlanner
2.5 planning algorithm. The 2nd corner case scenario dataset
is of a Global Positioning System (GPS) spoofing event that
occurred on the AD system during its operation on the roads
of a capital city.

A. AD Control System Datasets

a) Cyber-security Corner Case Dataset: Within this
dataset, three attacks were conducted on the target AD vehicu-
lar system, which is attempting an overtaking manoeuvre. The
three attacks are classified as: 1) Lateral Position Offset Attack
2) Longitudinal Position Offset Attack 3) Message Time-Delay.
In the lateral and longitudinal position offset attack, an attacker
injects malicious data input into the lateral or longitudinal
pose whilst the AD vehicular system is in the process of the
overtaking manoeuvre (Fig. 5). This attack could be conducted
through GPS spoofing or interception and manipulation of
the localisation sensor data. The attacker introduces a delay
into the current_pose (lateral and longitudinal) sensor
messages reaching the AD control pipeline for the message
time-delay. The malicious data is injected at around the 21m
mark of the AV journey (travelled distanced) to the 67m. Each
attack was conducted 300 times, accommodating a variation
of different attack parameters. The lateral and longitudinal
attacks introduced a deviation ranging from 0.16% to 1.0%,
which equates to around 20 cm to 1m. The message time-
delay introduced delays of 0.3%, 0.6%, 1.0% second, as a
message is transmitted every 20ms, this range represents a
delay of 15 to 50messages. In total, the dataset comprises
over 1500 scenario runs of attacks and benign safety cases.

b) GPS Spoofing Real-World AV Dataset: The AD ride-
hailing service transmits its sensor data via a logging node to
an edge server, which stores the AD System data in a database.

Fig. 5: The threat model used for conducting the attack cases.

TABLE I: AD System Data.

AD Data Type Description

AV X Longitudinal Position of the AD System as to the HD Map
AV Y Lateral Position of the AD System as to the HD Map
AV Steer Steering Angle of the AD System
AV Vel Velocity of the AD System
AV Yaw Orientation of the AD System based on its centre of gravity
Roll-out Num Current Lane according to the lane selector of the AD

Control Algorithm
DTC Distance to collision of the AD vehicular system to the

overtaking vehicle.
Position Co-
variance

GPS position co-variance

Altitude Altitude derived from the GPS

During its operations near the port area of the city, the AD
vehicle encountered a loss of localisation from a GPS spoofing
event which also affected other GPS-enabled platforms. This
GPS spoofing continued intermittently throughout the preced-
ing months. The dataset used in this study is from the logging
system of AD ride-hailing service.

c) AD System Data: The simulation and real-world
datasets were structured to output data as shown in Table I.

B. Experimental Results
To evaluate the ADAssure methodology, we chose six attack

types and their corresponding safety (benign) scenarios. These
attack types included each of the aforementioned attacks with
differing levels of noise (lateral and longitudinal position
offset, delay message).

a) Automated Analysis: Utilising the ADAssure method-
ology on the three types of attacks yields three distinct set of
assertions corresponding to each attack type. The results of
the assertion generation phase are presented in Table II. The
threshold for minimum support (min_supp) is set at 0.01 ,
while the minimum confidence (min_conf) threshold is 1
Notably, the method exhibits a swift execution time. Within
the 3 attacks of the cybersecurity corner case dataset, the
assertions identify two patterns of anomalous AD behaviour.
Firstly, extreme steering angles of 20◦ and −20◦ and sudden
lane transition. Secondly, multiple lane-transitions combined
with the extreme steering angle and sudden changes in ve-
hicular velocity. This behaviour can be seen to be the effect
of cyber activity on the smoothness of the initiation of the
overtaking manoeuvre which results in turbulent movements
and in some cases, a collision event. The assertions generated
from the GNSS spoofing dataset identified the changes to the
altitude and position co-variance. These were consistent with
dramatic change in the values of the GPS coordinates and the
resultant change in altitude.

b) Assertion Review and Debugging: The patterns iden-
tified in the association rules enables us to extrapolate that the
Yaw angle and angular velocity are good reference point to
show the effect of cyber-attacks. During the injection of the
position offset attacks, the vehicle’s orientation demonstrates
dramatic action; in some circumstances, the vehicle can be

TABLE II: ADAssure Assertion Generation phase results.

Dataset Assertion Execution Time

Name #Records Total #Next[N] #Before[N]

Longitude 412 5 3 2 1ns
Latitude 356 7 7 0 1ns
Delay 417 5 3 2 1ns
GNSS 16 5 4 1 1ns

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 15:59:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Lateral position offset attack vehicle parameters.

Fig. 7: Longitudinal position offset attack vehicle parameters.
seen to be essentially spinning. As displayed in Fig. 6, the
Lateral Position Offset Attack displays the Yaw (angle) of the
vehicle making sharp changes, of 15 deg/sec from 15 meters
mark of the AV journey. This vehicle dynamic behaviour is
a characteristic also seen in both the longitudinal position
offset (Fig. 7) and delay message attack (Fig. 8). The results
for the velocity parameter demonstrate that it only indicates
immediate collision of the vehicle, and it does not support
early identification of anomalous vehicle behaviour. Assertion
1 contends that the AD system should not allow movements
that challenge the physical limitations of the steering model.

Assertion 1: To determine the vulnerability of
the yaw angle and momentum, we can derive
the assertion: AV.displacement of yaw angle >
max yaw angle threshold && time < time threshold.

The roll-out transition, steer, and distance-to-collision pa-
rameters demonstrate identifiable change during a cyber-

Fig. 8: Delay message attack vehicle parameters.

attack. The manipulation of the lateral and longitudinal posi-
tion alters the vehicle position on the map and, therefore, has
the effect of inducing greater transitions between roll-outs,
which is the effective position of the vehicle on the road.
The frequency of transition impacts the smoothness of the
steering angle. From the distance-to-collision parameter, it is
noted that the effect of the attack is most prominent during
the overtaking maneuver and mostly during the cut-in process,
when the vehicle cuts-in front of the passing vehicle (NPC).
Assertion 2 contends that when the vehicle transitions across
multiple roll-outs and displays 180◦ steering and closes to
less than 0.5m to the passing vehicle, this represents affected
behaviour from the cyber attack.

Assertion 2: To identify vehicle dynamic changes
from cyber-attack: AV.x − NPC.x < distance threshold
&& AV.lane transition > max transition number &&
AV.steer angle /∈ [min, max] steer angle

Assertion 3 contends with activity seen in the longitudinal
position offset (Fig. 7) where the AV collides with the passing
vehicle and then accelerates to the previous set-point.

Assertion 3: To identify collisions we can derive the
assertion: |AV.vk −AV.vk+1| > threshold.

Assertion 3 could also be used to detect anomalies in GPS
data. The GNSS spoofing attack demonstrates a significant
deviation in the altitude and position co-variance parameters.
Assuming that velocity data comes from two sources, a wheel
sensor measurement and calculated by deriving the position
from GPS data, the two results should be close to each other.
In the case of a GNSS spoofing attack, the deviation in the
position co-variance would generate a spike in the velocity
(calculated by deriving the position in GPS data), and thus
violating assertion 3.

For our specific AD system, the threshold for assertion 1 is
15◦ yaw angle displacement within 1 s duration. Assertion 2
threshold is identified as a distance between AV and passing

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 15:59:48 UTC from IEEE Xplore. Restrictions apply.

vehicle as less than 0.5m, lane transition greater than 1 roll-out
and steering angle that is outside the bounds of 20 and −20◦.
It is important to note that these values are valid for a low-
speed AV ride-hailing service and for designers of different
classes of vehicles, it is required to calculate values consistent
with their specific application.

Solvable bugs come from several points in the controller;
a simple one is wrong or imprecise saturation values of the
control signal, which generates a high acceleration or a high
steering angle in the vehicle. This is clearly visible in Fig. 7
where a signal overshoot causes the vehicle to change lane
multiple times. Another example, clearly visible in Fig. 6,7& 8
is the lack of a fallback plan. There is a clear indication of
a collision as the vehicle speed suddenly drops to 0m s−1

and then quickly accelerates to the reference point, this is a
violation of Assertion 3. A robust controller should have a
fallback plan for such a case which indicates a bug in the
functional design of the controller. In such a case, the vehicle
should be aware of the fact that the global trajectory cannot
be followed anymore and switch to emergency mode.

The main reason for searching for unexpected be-
haviours is to debug the controller, with reference to
the experimental results, a violation of Assertion 1 can
be associated to a bug in the /ndt_pose module (see
Fig. 3), while a violation of Assertion 2 can be back-
propagated to the module /op_trajectory_evaluator.
A violation of assertion three can be backpropagated
to the modules of /op_trajectory_generator and
/op_behaviour_selector (see Fig. 3). To pinpoint
the violation of assertion 3 to a specific function, we ab-
stracted from the local planner algorithm and its substituent
lane rule algorithm, the getClosestWaypointNumber
method, which selects the next waypoint to follow in the
global trajectory and returned an exception to be handled as a
different driving behaviour (e.g., there was a crash, emergency
mode activated).

In the case of GNSS attack, the NDT localisation algorithm
doesn’t detect the deviation in position co-variance, and this
is due to the normal vector pointing in the same direction.
Debugging focuses on optimisation of the NDT localisation
using visual odometry for holding the local position at short-
distances until the source of the disturbance has been resolved.

V. RELATED WORK

Recent publications on anomaly detection in vehicular AD
control systems propose the usage of vehicle dynamics as
a key detection indicator for cyber-attacks [11] [12] [13].
Studies such as Guo et al. [14] emphasise the effect cyber-
attacks have on the trajectory of the AD system and the
noise of individual sensors. Mitigation mechanisms focus on
two diverse approaches 1) implementation of an observer
of AD vehicle state estimation which can inform an emer-
gency action (sensor switching etc.) [14] 2) implementation of
trajectory smoothing algorithm to correct unplanned vehicle
behaviour [12] [13]. However, these solutions for detection
and mitigation are developed based on assumptions of driving
environment and algorithm configuration and this limits the
scope of their applicability.

VI. CONCLUSION

Cyber-attacks present new challenges to the design of AD
algorithms. Designers need methods to debug vulnerabilities to
improve robustness. In this paper, we introduced ADAssure, a
methodology for debugging AD algorithms during the design
phase. The methodology consisted of three phases; 1) AD
Data collection 2) Assertion Rule Generation 3) Assertion
Review and Debugging. The concept of the methodology was
to develop association rules from mining AD data which can
be transformed into assertions on the vulnerability of the
system.

Our evaluation of ADAssure on diverse cyber-security
datasets from simulation and real-world revealed that the
ADAssure method could identify three assertions on the
vulnerability of the OpenPlanner 2.5 AD planning al-
gorithm. These assertions were able to guide an algorithm
designer and safety engineer to pinpoint the specific modules
in the planning algorithm for debugging.

ACKNOWLEDGMENT

This work has been supported by the European Commission
through the European Union’s Horizon 2020 Research and
Innovation Programme, under grant agreement No 101021727.

REFERENCES

[1] Bosch, “Facts and figures about electronics and software in vehicles,”
Automotive World, July, 2021.

[2] W. Zeng, M. Wu, P. Chen, Z. Cao, and S. Xie, “Review of shared online
hailing and autonomous taxi services,” Transportmetrica B: Transport
Dynamics, vol. 11, no. 1, pp. 486–509, 2023.

[3] K. K.-C. Chang, X. Liu, C.-W. Lin, C. Huang, and Q. Zhu, “A safety-
guaranteed framework for neural-network-based planners in connected
vehicles under communication disturbance,” in 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2023.

[4] R. Jiao, H. Liang, T. Sato, J. Shen, Q. A. Chen, and Q. Zhu, “End-to-
end uncertainty-based mitigation of adversarial attacks to automated lane
centering,” in 2021 IEEE Intelligent Vehicles Symposium (IV), 2021.

[5] X. Liu, R. Jiao, B. Zheng, D. Liang, and Q. Zhu, “Safety-driven interac-
tive planning for neural network-based lane changing,” in Proceedings
of the 28th Asia and South Pacific Design Automation Conference, ser.
ASPDAC ’23. Association for Computing Machinery, 2023.

[6] J. Han, M. Kamber, and J. Pei, “6 - mining frequent patterns, associ-
ations, and correlations: Basic concepts and methods,” in Data Mining
(Third Edition), ser. The Morgan Kaufmann Series in Data Management
Systems. Boston: Morgan Kaufmann, 2012, pp. 243–278.

[7] M. Zaki, “Scalable algorithms for association mining,” IEEE Transac-
tions on Knowledge and Data Engineering, 2000.

[8] M. R. Heidari Iman, J. Raik, M. Jenihhin, G. Jervan, and T. Ghasem-
pouri, “An automated method for mining high-quality assertion sets,”
Microprocessors and Microsystems, vol. 97, p. 104773, 2023.

[9] M. Shahin, M. R. Heidari Iman, M. Kaushik, R. Sharma, T. Ghasem-
pouri, and D. Draheim, “Exploring factors in a crossroad dataset using
cluster-based association rule mining,” Procedia Computer Science,
2022.

[10] H. Darweesh, E. Takeuchi, and K. Takeda, “Openplanner 2.0: The
portable open source planner for autonomous driving applications,” in
2021 IEEE Intelligent Vehicles Symposium Workshops, 2021.

[11] Z. Ju, H. Zhang, X. Li, X. Chen, J. Han, and M. Yang, “A survey on
attack detection and resilience for connected and automated vehicles:
From vehicle dynamics and control perspective,” IEEE Transactions on
Intelligent Vehicles, vol. 7, no. 4, pp. 815–837, 2022.

[12] Y. Ma, J. Sharp, R. Wang, E. Fernandes, and X. Zhu, “Sequential attacks
on kalman filter-based forward collision warning systems,” in AAAI
Conference on Artificial Intelligence, 2020.

[13] J. Shen, Y. Luo, Z. Wan, and Q. A. Chen, “Lateral-direction localiza-
tion attack in high-level autonomous driving: Domain-specific defense
opportunity via lane detection,” 2023.

[14] J. Guo, L. Li, J. Wang, and K. Li, “Cyber-physical system-based path
tracking control of autonomous vehicles under cyber-attacks,” IEEE
Transactions on Industrial Informatics, 2023.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 15:59:48 UTC from IEEE Xplore. Restrictions apply.

Appendix VII

Paper VII
A. Roberts, M. Malayjerdi, M. Bellone, O. Maennel, and E. Malayjerdi. Analysing adver-sarial threats to rule-based local-planning algorithms for autonomous driving. InauguralSymposium on Vehicle Security and Privacy (VehicleSec 2023) with NDSS, pages 1–8, 2023.

279

Analysing Adversarial Threats to Rule-Based
Local-Planning Algorithms for Autonomous Driving

Andrew Roberts
FinEst Centre for Smart Cities

Tallinn University of Technology
Andrew.Roberts@taltech.ee

Mohsen Malayjerdi
Department of Mechanical and Industrial Engineering

Tallinn University of Technology
Mohsen.Malayjerdi@taltech.ee

Mauro Bellone
FinEst Centre for Smart Cities

Tallinn University of Technology
mauro.bellone@taltech.ee

Olaf Maennel
School of Computer and Mathematical Sciences

The University of Adelaide
olaf.maennel@adelaide.edu.au

Ehsan Malayjerdi
Department of Mechanical and Industrial Engineering

Tallinn University of Technology
ehsan.malayjerdi@taltech.ee

Abstract—The safety and security of navigation and planning
algorithms are essential for the adoption of autonomous driving
in real-world operational environments. Adversarial threats to
local-planning algorithms are a developing field. Attacks have
primarily been targeted at trajectory prediction algorithms which
are used by the autonomous vehicle to predict the motion of
ego vehicles and other environmental objects to calculate a safe
planning route. This work extends the attack surface to focus
on a rule-based local-planning algorithm, specifically focusing on
the planning cost-based function, which is used to estimate the
safest and most efficient route. Targeting this algorithm, which is
used in a real-world, operational autonomous vehicle program,
we devise two attacks; 1) deviation to the lateral and longitudinal
pose values, and 2) time-delay of the sensed-data input messages
to the local-planning nodes. Using a low-fidelity simulation testing
environment, we conduct a sensitivity analysis using multiple
deviation range values and time-delay duration. We find that
the impact of adversarial attack cases is visible in the rate of
failure to complete the mission and in the occurrence of safety
violations. The cost-function is sensitive to deviations in lateral
and longitudinal pose and higher duration of message delay.
The result of the sensitivity analysis suggests minor deviations
of the pose (lateral, longitudinal) values as an optimal range for
the attackers search space. Options for mitigating such attacks
are that the AV should run a concurrent process executing a
concurrent planning instance for redundancy.

I. INTRODUCTION

Navigation and planning algorithms are essential for au-
tonomous driving (AD). For the self-driving vehicle to navi-
gate the road environment, the navigation and path-planning
algorithm must calculate a route that ensures safety for the
passenger and external environmental actors (pedestrians, other
vehicles and road users, etc.) and achievement of the journey
(mission). Initial studies of navigation and path planning algo-
rithms for AD have shown them to be vulnerable to adversarial
attacks that introduce uncertainties into the route calculation,

which causes downstream effects on the safe behavioural
control of the AV [2], [17], [3]. To improve the reliability
of navigation and planning algorithms, they need to be further
tested for uncertainties, and these methods are incorporated
into the architecture of autonomous driving.

There are a few studies that focus on adversarial attacks
on local-planning. These studies target machine learning algo-
rithms for local-planning modules such as trajectory prediction
(Trajectron++, Agentformer and GRIP++) [2], [17], [3]. The
predominant threat model adopted, focuses on developing
methods and tools of adversarial learning to understand the
trajectory prediction model of the target AV and then either
crafting malicious sensor data input or training other ego
AVs in the driving environment to interfere with the target
AVs predicted trajectory [15], [2], [17], [3]. The required
result of a successful adversarial attack is to cause the target
AV to generate a trajectory that is unsafe, inefficient, or
uncomfortable for passengers. In this work, we expand on the
target of attacks to a rule-based algorithm for local-planning,
and focus on the trajectory generation and estimation of an
AV. Our justification for focusing on rule-based algorithms
is that, whilst AI approximate reasoning algorithms seem to
be highly promising for the near future, an impediment to
current adoption is the lack of feedback in real-world driving
scenarios [5]. Rule-based algorithms for path-planning in robot
navigation and AD are well-established, and more ubiquitous
in real-world deployments.

A rule-based local-planning algorithm uses a cost function
to estimate the least-cost path. The cost function takes input
from immediately sensed-data; current pose, velocity etc.. The
cost estimation is based on a calculation of factors such as;
lateral collision, longitudinal collision, lane transition, central
deviation etc., and weighting is given to these factors based on
criteria such as safety and efficiency. By interpreting the cost-
function, used for trajectory generation and estimation, as part
of local-planning, an adversarial attack can be crafted which
affects the downstream behavioural control whose decisions
impact the safe driving state of the AV.

The main idea of this paper is that the white-box knowledge
of the cost estimation function of the rule-based local planning

Symposium on Vehicles Security and Privacy (VehicleSec) 2023
27 February 2023, San Diego, CA, USA
ISBN 1-891562-88-6
https://dx.doi.org/10.14722/vehiclesec.2023.23086
www.ndss-symposium.org

algorithm can be used to craft adversarial attacks by manipu-
lating factors inherent to the cost function. Evaluating white-
box generated attacks enable an understanding of the level
of stealth of the adversarial threat, and whether adversarial
manipulation by the cyber attack can be distinguished from
noise. Furthermore, these attacks will enable evaluation and
assessment of the optimisation of the algorithm to uncertainties
and the quality of decision-making.

The key questions this study engages are the following:

1) What is the sensitivity of the cost function to adver-
sarial data manipulation of key driving parameters?

2) How can an adversarial attack hide in the cost func-
tion from detection?

3) What optimisations of the rule-based algorithm can
be considered to mitigate against adversarial data
manipulation?

The problem area of this research, is centred on a local-
planning algorithm, open-planner 2.5, which is used in an AV
shuttle program that operates in real-world road conditions
in Europe [7]. As with the open-source software community,
development of vulnerability research and testing methods
proliferate across the ecosystem and are utilised and innovated
for diverse platforms. The aim of this study is to focus on
the vulnerability of the local-planning function of autonomous
driving and provide direction and guidance to the autonomous
driving security community to develop vulnerability testing
on diverse planners and algorithms. In a broader sense, this
research aims to understand how AD algorithms used in
real-world AD programs can be tested for adversarial threats
and validated to improve assurance for real-world operational
driving.

II. RULE-BASED LOCAL-PLANNING ALGORITHM

A. Open Planner 2.5 Local-Planner Overview

For the AV to plan a mission, firstly, a global planner
generates a global reference path using a vector (road network)
map. The function of the global planner is to stipulate the
starting position and goal position of the mission on the road
map. How to achieve this mission, for the AV to navigate
from the starting position to the mission goal, through a
smooth, obstacle free trajectory is the function of the local-
planner. The local-planner consists of several modules (see
Figure 1); trajectory generation, trajectory evaluation, intention
and trajectory estimator, object-tracker and behavior selection
(decision making) [7]. The trajectory generation module gen-
erates alternative tracks parallel to the main path defined by the
global planner. These tracks are named rollouts. The trajectory
evaluation module assesses all possible rollouts and the data
input from sensed-data of the AV and makes a cost estimation.
The behaviour selector will lead the AV to motion on a rollout
based on the least-cost.

Table I displays the input and outputs of each of the local-
planning modules (Note. intention and trajectory estimator and
object-tracker are not visible as they are not within the scope
of this study).

Fig. 1: OpenPlanner 2.5 Architecture [7]

TABLE I: Local-Planning Module
Node Input Output

Trajectory Generator Initial Pose Local Trajectories

Current Pose

Current Velocity

Lane Waypoints Array

Trajectory Evaluator Current Velocity Local Trajectory Cost

Current Pose

Local Trajectories

Lane Waypoints Array

Predicted Objects

Current Global Local IDS

Behavioural Selector Current Velocity Current Behaviour

Current Pose

Local Trajectory Cost

Local Weighted Trajectories

B. Local Planning Cost Function

The local motion planning algorithm generates a trajectory
(or a set of control commands for the AV) by minimizing a
cost function, within a workspace, that includes a set of design
parameters. The cost function constitutes the rules for motion-
planning which inform the decision-making for autonomous
driving.

The cost function is built on five factors and calculated in
the following Eq. 1:

C =




wcent

wtrans

wlongColl

wlatColl

wvis


 ·




Ccent

Ctrans

ClongColl

ClatColl

Cvis




T

(1)

where, Ccent is the cost associated to the central trajectory and
is designed to keep the vehicle in the central trajectory; Ctrans

is the transition cost that prevents the vehicle from jumping
between rollouts; ClongColl and ClatColl are the cost of the
longitudinal and lateral collision respectively, and finally Cvis

is the weight associated to the visibility [12]. Each of these
costs are weighted by their respective weighting factors wi [6].

2

III. THREAT MODEL

The attack targets the local planning cost function, with the
aim of inducing the trajectory evaluation to choose a motion-
planning route that is not optimal for safety, functionality of
the driving mission and comfort of the passengers. To achieve
this, the most direct mechanism to impact the cost function
is to manipulate, with adversarial data, the sensed-data input
that is inherent to local-planning. The Current Pose data is
the optimal target for this as it is the primary sensed-data for
localisation of the vehicle, containing the longitudinal, lateral
positioning and orientation of the AV. Whilst altering the pose
data of the vehicle has previously been conducted in other
studies [2], [17], [3], [15], in our attack we aim to explore
the sensitivity of our cost function to data manipulations and
conducting the attack during specific time-intervals.

For the threat model used in our study, we assume that
the attacker has access to the internal network of the AV
and is able to listen to control message communications and
collect data. This could be achieved through supply-chain
compromise of a library in the control software, insider threat
actor, or many of the vulnerabilities in existing communica-
tion frameworks for autonomous systems such as the robotic
operating system (ROS) [8]. Given the attacker has access
to the internal network, the question arises, why not change
the Lane ID or a driving parameter which would be more
simplistic and direct? We view these attacks as overt in nature
and likely to be detected, the compelling nature of adversarial
data manipulation is that the attack is difficult for AV safety
engineers to interpret between noise and an explicit cyber
threat. Another consideration are the external interfaces of the
vehicle localisation sensing, which generates the pose data.
It is a possibility that the pose data can be manipulated
by an external attack in the form of GPS spoofing or an
adversarial LiDAR, dependent on the sensor configuration used
for the localisation of the vehicle. The study focused on the
vulnerability of the planner and its search space, considering
localisation. We considered internal attacks to be important
due to the increase in attacks through software and hardware
supply-chains, and therefore the scope of the attacks within
the study highlighted this area.

A. Attack Case 1: Position Offset Attack

The attacker creates a spoofed ROS topic which is able to
deliver malicious input data of the Current Pose (longitude,
latitude, and velocity) to all the nodes of the local planning
module. The data manipulation is injected online/dynamically
during the critical overtaking manoeuvre involving the AV and
NPC (Non-playable character). Figure 2 displays the critical
driving scenario and the time frames in which the manipulated
Current Pose data is injected into the local planning pipeline
cost estimation. The red dashed lines in Figure 2 represent
the roll-outs, and the green highlighted, denoting the selected
motion-path.

For the manipulation of the Current Pose data, we intro-
duce a deviation to lateral and longitudinal pose.

For the lateral pose data, the sensitivity deviation intro-
duced was structured as follows:

• Attack Case 1a: 0.16%

Fig. 2: Threat Model

• Attack Case 1b: 0.33%

• Attack Case 1c: 0.5%

In designing the range of deviation, we considered state-
of-the-art attacks such as AdvDO attack [2], which noted two
requirements for developing adversarial threats to planning
algorithms:

1) Malicious data input needs to be feasible to the real,
physical constraints of the vehicle [2].

2) Malicious data input of the local-planning algorithm
should be close to the nominal trajectory [2].

Therefore, we chose a range from a slight perturbation of
pose to a 1m deviation.

The longitudinal pose data sensitivity deviation range was
structured as follows:

• Attack Case 1d: 0.33%

• Attack Case 1e: 0.66%

• Attack Case 1f: 1.00%

This range is the same as the longitudinal deviation.
The difference in percentage comes from the difference in
coordinate values of lateral and longitude. The lateral value
is almost double those of the longitudinal, and therefore the
percentage is doubled.

B. Attack Case 2: Message Time-Delay

For the second attack case, we inserted a time-delay into
the messages of the Current Pose topic communicating to the
nodes of the local planning module.

We introduced a message delay when the AV passes 2m
in front of the NPC (from the centre) in the lateral direction.
We introduce 3 different time delays in the message:

• Attack Case 2a: 0.3 seconds

• Attack Case 2b: 0.6 seconds

• Attack Case 2c: 1.0 seconds

The message frequency is approximately 50hz, so this is a
message every 20 milliseconds. We chose the above range of
deviation of time-delay as it enabled a spectrum of a message
from the delay from approximately 15, to 50 messages.

3

IV. EXPERIMENTAL SETUP

A. Test Environment and Configuration

In terms of conducting such experiments, simulation is the
best method among all testing methods for AVs. To accelerate
the testing, we bypassed the sensing and detection nodes of
the algorithm and focused on the planning part by utilizing
the low-fidelity simulation feature provided by Autoware.ai
and Openplanner. The low-fidelity simulation uses the open-
planner 2.5 control algorithm. It provides simulated localiza-
tion and detection data for the planning nodes and receives
the actuation commands to simulate the AV kinematics. This
process runs faster due to the low-detail environment required
for the simulation and the lack of the process to simulate the
sensors. Figure 3 displays the different frames of an overtaking
simulation in the simulator.

Fig. 3: Example of an overtaking simulation in the low-fidelity
simulator, a) starting point of the overtaking b) middle of the
mission, AV is on the opposite lane reaching the NPC c) AV
cuts in

Fig. 4: Target scenario, Dx and SNPC , define the initial
relative distance to the NPC and the constant NPC speed in
the scenario

1) Target Mission: Overtaking is one of the most chal-
lenging maneuvers for Avs [10]. In this research, we selected
this operation as the target scenario for studying the planning
algorithm under the cyber-attack. The scenario parameters in
Figure 4 are listed in Table II.

TABLE II: Target scenarios definition
Actor Speed (m/s) Dx(m) Goal

AV [0:6] 0 overtake the NPC safely
NPC 3 25 keep moving

2) Safety Evaluation Test: To assess the safety and reliabil-
ity of the planning algorithm in normal conditions (no attack),
we ran the scenario simulation 300 times to reach a meaningful
statistical population. Then, the planning algorithm behavior in
each case was evaluated with the local-planner performance
evaluation criteria (explained in the next section).

3) Attack Test Cases: Finally, the platform was used to
simulate the proposed adversarial data manipulations and time-
delay messaging, during the overtaking mission and monitor
the algorithm’s behavior. For each attack case, we ran the
simulation (with attack) 100 times. Overall, 900 simulations
were conducted for all attack cases.

B. Evaluation Criteria

For the evaluation, we used previously established safety
criterion [11] with evaluation criteria recommended by
SafeBench, a benchmarking framework for safety evaluation
of AD algorithms for critical driving scenarios [16]. Figure III
displays the metrics used for the performance evaluation.

TABLE III: Local-Planner Performance Evaluation Criteria
Condition Data

Label
Description Metric

Safety Violation V

Succeed Suce AV Successful complete
the mission

Pass/Fail

Not Finished NotF Failure to finish the mission Pass/Fail

Distance-to
-Collision

DTC Violation of the safe distance
between AV and NPC

AV within 0.5m
of other vehicle

Break on
Driving Lane

BrD AV initiates emergency break
on driving lane

Pass/Fail

Break on
Passing Lane

BrP AV initiates emergency break
on passing lane

Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Functionality

Avg. time spent
to complete route

TS The average time taken
to complete the mission

seconds

Comfort

Avg.
Acceleration

ACC Average acceleration of the AV m/s

Avg.
Steering Angle

YV Steering angle of the AV degrees

Freq. of
Lane Invasion

LI The number of times the AV
transitions to another rollout

numeric

V. RESULTS

After running 1200 simulations, all recorded data including
the AV and the NPC position and orientation were processed to
assess the simulations based on the evaluation criteria. We also
visualized the recorded data to study the violation and their
cause in each simulation as shown in Figure 5. Figure 5.a rep-
resents a safety run completed successfully. Next, (b) and (c)
display lateral and longitudinal attack cases which experienced
brake and collision safety violations respectively. Finally, (d)
shows a message time delay attack which is finished by a
collision. The asterisk signs in the AV trajectory show the point
where the Openplanner changes the rollout. Overall, all the
safety violation results for the whole experiment are presented
in Figure 6.

4

Fig. 5: 2D representation of the simulation of each test group.
a) a successful safety test, b) a lateral attack case that led to a
brake violation, c) a longitudinal attack case that experienced a
collision, and d) a message time delay that causes a collision.
for the attack cases a vertical line shows the start and stop
point of the attack

Fig. 6: All simulation result based on the proposed safety
criteria

For each of the attack test cases, we saw an increase in
safety violations of the AV compared to the normal safety test
case experiment. As the value of the deviation for lateral and
longitudinal values increased the number of successful mission
completions decreased. Although marginal, the greater number
of safety violations for the attacks on the Current Pose data
were observed in the lateral deviations. Given the importance
of lateral positioning to the overtaking manoeuvre, this can
be understood as any deviation increases the complexity of
executing the overtaking manoeuvre. In the 1f attack test case,
the highest value longitudinal change (approximately 1 meter)
led to a crash with curbside and not able to continue the
mission. This event was reported as a braking safety violation.

The time-delay messaging attack test case saw the only
result for mission not finished metric. Furthermore, the greater

the delay of the Current Pose data reaching the local-planning
nodes, the increased likelihood that a safety violation will
occur, and in the case of our experiments, the greater the
likelihood of a the most serious safety violation, collision.

Table IV demonstrates the results of the safety test ac-
cording to the performance evaluation criteria. The level of
safety violations are reflective of an algorithm which is in
development and being optimised for critical driving scenarios
such as overtaking.

TABLE IV: Summary of the Safety Simulation
Num. VCol VDTC VBrP VBrD VNotF VSuce

300 4.6% 8.6% 19% 6% 0% 51.6%

TS ACC Y V LI

mean 29.1 0.4 3.8 7.1

STD 6.7 0.2 2.2 4.6

min 21.9 0.2 1.8 2

max 42.3 1.3 21.7 25

Table V shows that for each deviation there is a high
number of safety violations in comparison to the safety test
case results. In regards to the sensitivity analysis, a smaller
deviation of around 20 to 25 cm can achieve the result that
the local-planning algorithm is only successful in generating
a trajectory that completes the mission in 24% of the total
test set. Furthermore, a small deviation in the lateral pose, can
achieve a higher number of collisions with an ego vehicle.
It may also be seen from the lane invasion and steering
angle results that small deviations to lateral pose result in a
fluctuation of the cost of different rollouts which cause greater
lane transitions as the cost function causes the AV to choose a
route based on minimum cost. The higher deviation results in
a higher occurrence of breaking activity and hitting the curb.
Furthermore, the higher deviation results in the AV being stuck
in the passing lane, this is due the dramatic change in lateral
pose. The 1 meter deviation attack case results in 0% success
of finishing the mission.

Table VI results of the longitudinal deviations also display
a high number of safety violations in comparison to the
safety test case results. Collision safety violation is highest
for the longitudinal deviation attack. This can be reasoned as
the longitudinal deviation does not experience the same high
volume of breaking passing lane safety violations, where the
vehicle gets stuck, as seen with the lateral pose deviation.
The higher deviation of longitudinal pose, results in increased
acceleration and this causes sharp breaking. This is indicated
with the 1f result, the 1 meter deviation attack case, which
displays a higher instance of breaking safety violation. The 1
meter deviation attack case results in 0% success of finishing
the mission.

Table VII demonstrates the shorter delay of local pose
data has minimal impact on the success of the mission and
safety violations. As the time duration of the message delay
is increased the impact to the reliability of the local-planning
algorithm is higher. Test 2c, which is the delay of Current Pose
data of 1.0 second, shows considerable increases in collisions
and decreases in the likelihood of the success of the mission.

5

TABLE V: Summary of the Attack Case 1: Position Offset
Attack Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce

1a 100 24% 11% 34% 7% 0% 24%

1b 100 5% 11% 81% 1% 0% 2%

1c 100 13% 11% 74% 2% 0% 0%

1a TS ACC Y V LI

mean 35.3 0.4 9 7.5

STD 7.4 0.2 7.5 5.4

min 21.9 0.2 1.9 1

max 42.4 1 23 23

1b TS ACC Y V LI

mean 41.4 0.4 9.5 4.8

STD 3.5 0.1 4.4 3

min 22.1 0.2 3.1 1

max 42.4 1.2 23.7 21

1c TS ACC Y V LI

mean 41.7 0.4 7.8 4.7

STD 1.7 0.1 1.2 2.7

min 32 0.3 4.3 1

max 42.3 1 9.8 15

TABLE VI: Summary of the Attack Case 1: Position Offset
Longitudinal Deviation Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce

1d 100 23% 16% 30% 7% 0% 24%

1e 100 58% 9% 25% 3% 0% 5%

1f 100 34% 14% 51% 1% 0% 0%

1d TS ACC Y V LI

mean 33.8 0.5 5.7 9.1

STD 7.6 0.3 4.9 5.4

min 18.1 0.2 1.7 2

max 43.2 1.4 23 27

1e TS ACC Y V LI

mean 32.2 0.6 6.7 10.5

STD 9.5 0.2 3.2 5

min 17.8 0.2 1.9 2

max 43.2 1.1 20.5 25

1f TS ACC Y V LI

mean 32.2 0.7 5.9 11.3

STD 7.9 0.2 2.5 4.7

min 18 0.3 2.7 2

max 43.2 1.4 22.1 26

The time-delay of the pose data to the local-planning nodes
results in a loss of localisation and the greater delay the greater
impact on the cost calculation which in turn causes uncertainty
for the behaviour selector/decision-making.

TABLE VII: Summary of the Attack Case 2: White-Box Delay
Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce

2a 100 20% 9% 16% 4% 0% 51%

2b 100 21% 8% 17% 7% 0% 47%

2c 100 41% 10% 14% 2% 4% 29%

2a TS ACC Y V LI

mean 29.3 0.4 4.2 7.6

STD 8.1 0.2 2.2 5.4

min 18.1 0.2 1.8 2

max 53 1.1 16.7 24

2b TS ACC Y V LI

mean 30.6 0.4 4.8 7.8

STD 8.6 0.3 3.7 4.8

min 22.9 0.2 1.8 2

max 58 1.1 23.8 21

2c TS ACC Y V LI

mean 32.9 0.4 7 8.3

STD 9.6 0.3 5.2 5

min 13 0.2 1.1 0

max 58.2 1.3 22.9 23

VI. DISCUSSION

The results of the test simulations demonstrated that the
cost function is sensitive to minor deviations of both the lateral
and longitudinal pose. The success rate of the mission is visibly
diminished when adding adversarial data manipulations to the
sensed-data input. The higher the deviation, the higher the
likelihood of mission failure. The minor deviation attacks,
where the deviation is a range of 20 to 25cm offer a good
starting point to mutate adversarial data for further attacks
based on this range. Whilst the higher range attacks conducted
in our experiments showed a higher rate of mission failure,
a deviation of 1 meter can be seen a noisy enough to be
observable. We also noticed such behaviour in a real-world AV
shuttle [14] and a manual emergency break had to be enacted
to prevent an emergency.

The time-delay attack demonstrated that minor delays
cause minimal impact on the success of the mission and the
occurrence of safety violations. Delays in sensed-data input
flowing to the local-planning modules of greater than 1 second
increase the rate of mission failure and safety violations. Given
that 1 message is broadcast every 20 milliseconds, 1 second
represents around 50 messages, and a delay of this magnitude
is also likely to be more observable.

For the attack to hide in the cost function, investigating
mutations for minor deviations of lateral and longitudinal
values in the range of 20 to 30 cm, offer an optimal target
range.

Mitigation of the adversarial deviation and time-delay
attack could include the implementation of a redundant driver.
This means that the AV should run a concurrent process
executing a concurrent planning instance. If the redundant

6

driver and the actual driving algorithm give different results,
then this could indicate that an attack might be happening.
In such a case, the AV could either stop safely awaiting
for human intervention or switch to the redundant driver to
complete its mission. The development of the architecture for
a redundant driving integrity checking function also needs to
consider isolation from the primary driving function so that an
attacker cannot also compromise both.

VII. RELATED WORK

As safety validation of AD algorithms is a critical field for
the adoption of AD in real-world environments, there is a focus
on testing the reliability of trajectory prediction and generation
to adversarial driving actors in the road environment. Wang et
al. [15], Abeysirigoonawardena, Dudek & Shkurti [1], Chen
et al. [4], Klischat et al. [9], and O’Kelly et al. [13] use
simulation environments to develop adversarial trained NPCs
whose driving actions cause safety violations of the trajectory
prediction of the targeted AV. These simulations are focused on
safety validation and are not focused on the exploitation of the
algorithm by adversarial threat actors, however, their methods
in generating adversarial examples and target parameters and
data values are of great use in developing adversarial cyber
threats.

On a practical level, involving the real-world operation
of AVs, there are few research studies into the robustness
of planning and navigation algorithms to adversarial threats.
Prominent among them are Zhang et al. [17], Cao et al. [3]
and Cao et al. [2]. These studies focus on the robustness of the
trajectory prediction, the ability of the AV to predict the trajec-
tory of another ego vehicle or environmental object (pedestrian,
animals etc.) and make driving decisions accordingly. The
attacks in these studies are targeted at deep-neural networks
(DNNs), and therefore focus on adversarial learning to develop
robust adversarial trajectories. In relation to our work, the
observations on ranges for deviation of lateral and longitudinal
values and the considerations for crafting adversarial data were
useful in developing our attack cases.

VIII. CONCLUSION

In this work, we conducted a sensitivity analysis of the
openplanner 2.5 rule-based planning algorithm to adversarial
data manipulation of lateral and longitude values and delayed
sensed-input messages to local-planning nodes. We evaluated
these attacks in a low-fidelity simulation test environment
using an overtaking manoeuvre critical driving scenario. The
results showed that the planning cost-function is sensitive to
adversarial data manipulation that introduces deviations to the
lateral and longitudinal values. These adversarial deviations
cause higher rates of failure to complete missions and cause
safety violations. For the message delay attack, limited delays
in the range up to approximately 0.6 seconds have a limited
impact on the trajectory calculation. Message delays for 1
second or greater cause a visible difference in the safety
violation rate and mission success. We opine that limited
deviations are an optimal area to explore further attacks and
in more diverse critical driving scenarios.

Through this work we proposed a class of stealthy attacks
on the local-planning function of AD. An area of future

research is the development of monitoring systems developed
around such basis of attacks. The results show the feasibility of
monitoring real-time properties of the messages propagations
and therefore post-mortem forensics might be able to deter-
mine the presence of an attacker causing safety violations of
AVs.

IX. ACKNOWLEDGEMENTS

This work has been supported by the European Com-
mission through the H2020 teaming project Finest Twins
(grant No. 856602) and European Union’s Horizon 2020
Research and Innovation Programme, under grant agreement
No 101021727.

REFERENCES

[1] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating
adversarial driving scenarios in high-fidelity simulators,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE
Press, 2019, p. 8271–8277. [Online]. Available: https://doi.org/10.1109/
ICRA.2019.8793740

[2] Y. Cao, C. Xiao, A. Anandkumar, D. Xu, and M. Pavone,
“Advdo: Realistic adversarial attacks for trajectory prediction,” in
Computer Vision – ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part V. Berlin,
Heidelberg: Springer-Verlag, 2022, p. 36–52. [Online]. Available:
https://doi.org/10.1007/978-3-031-20065-6 3

[3] Y. Cao, D. Xu, X. Weng, Z. Mao, A. Anandkumar, C. Xiao, and
M. Pavone. [Online]. Available: https://arxiv.org/abs/2208.00094

[4] B. Chen, X. Chen, Q. Wu, and L. Li, “Adversarial evaluation of
autonomous vehicles in lane-change scenarios,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, pp. 10 333–10 342, 2020.

[5] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826–1848,
2020.

[6] H. Darweesh, E. Takeuchi, K. Takeda, Y. Ninomiya, A. Sujiwo, L. Y. M.
Saiki, N. Akai, T. Tomizawa, and S. Kato, “Open source integrated
planner for autonomous navigation in highly dynamic environments,”
J. Robotics Mechatronics, vol. 29, pp. 668–684, 2017.

[7] H. Darweesh, E. Takeuchi, and K. Takeda, “Openplanner 2.0: The
portable open source planner for autonomous driving applications,” in
2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops),
2021, pp. 313–318.

[8] G. Deng, G. Xu, Y. Zhou, T. Zhang, and Y. Liu, “On the (in)security
of secure ros2,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 739–753.
[Online]. Available: https://doi.org/10.1145/3548606.3560681

[9] M. Klischat and M. Althoff, “Generating critical test scenarios for auto-
mated vehicles with evolutionary algorithms,” in 2019 IEEE Intelligent
Vehicles Symposium (IV), 2019, pp. 2352–2358.

[10] E. Malayjerdi, R. Sell, M. Malayjerdi, A. Udal, and M. Bellone, “Prac-
tical path planning techniques in overtaking for autonomous shuttles,”
Journal of Field Robotics, vol. 39, no. 4, pp. 410–425, 2022.

[11] M. Malayjerdi, A. Roberts, O. m. Maennel, and E. Malayjerdi,
“Combined safety and cybersecurity testing methodology for
autonomous driving algorithms,” in Proceedings of the 6th ACM
Computer Science in Cars Symposium, ser. CSCS ’22. New York,
NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3568160.3570235

[12] P. Narksri, H. Darweesh, E. Takeuchi, Y. Ninomiya, and K. Takeda,
“Occlusion-aware motion planning with visibility maximization via
active lateral position adjustment,” IEEE Access, vol. 10, pp. 57 759–
57 782, 2022.

7

[13] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake,
“Scalable end-to-end autonomous vehicle testing via rare-event simula-
tion,” in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, ser. NIPS’18. Red Hook, NY, USA:
Curran Associates Inc., 2018, p. 9849–9860.

[14] R. Sell, M. Leier, A. Rassõlkin, and J.-P. Ernits, “Self-driving car iseauto
for research and education,” in 2018 19th International Conference on
Research and Education in Mechatronics (REM), 2018, pp. 111–116.

[15] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren,
and R. Urtasun, “Advsim: Generating safety-critical scenarios for self-
driving vehicles,” Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2021.

[16] C. Xu, W. Ding, W. Lyu, Z. Liu, S. Wang, Y. He, H. Hu,
D. Zhao, and B. Li, “Safebench: A benchmarking platform for
safety evaluation of autonomous vehicles,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.09682

[17] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao, “On adversarial
robustness of trajectory prediction for autonomous vehicles,” IEEE/CVF
Computer Vision and Pattern Recognition Conference (CVPR). [Online].
Available: https://par.nsf.gov/biblio/10359466

8

Appendix VIII

Paper VIII
A. Roberts, S. Marksteiner, M. Soyturk, B. Yaman, and Y. Yang. A global survey of stan-dardization and industry practices of automotive cybersecurity validation and verificationtesting processes and tools. SAE International Journal of Connected and Automated Ve-hicles, 7, 11 2023

289

199

ARTICLE INFO
Article ID: 12-07-02-0013
© 2024 International Alliance
for Mobility Testing and
Standardization (IAMTS)
doi:10.4271/12-07-02-0013

History
Received: 07 Mar 2023
Revised: 25 Aug 2023
Accepted: 24 Oct 2023
e-Available: 16 Nov 2023

Keywords
Cybersecurity standards,
Validation and verification,
Cybersecurity testing, Best
Practices

Citation
Roberts, A., Marksteiner, S.,
Soyturk, M., Yaman, B. et al.,
“A Global Survey of
Standardization and
Industry Practices of
Automotive Cybersecurity
Validation and Verification
Testing Processes and
Tools,” SAE Int. J. of CAV
7(2):199–213, 2024,
doi:10.4271/12-07-02-0013.

ISSN: 2574-0741
e-ISSN: 2574-075X

A Global Survey of Standardization
and Industry Practices of
Automotive Cybersecurity
Validation and Verification Testing
Processes and Tools
Andrew Roberts,1 Stefan Marksteiner,2,6 Mujdat Soyturk,3 Berkay Yaman,4 and Yi Yang 5

1Tallinn University of Technology, Estonia
2AVL List GmbH, Austria
3Marmara Üniversitesi, Turkey
4BigTRI, Turkey
5AVL China, China
6Mälardalen University, Sweden

Abstract
The United Nation Economic Commission for Europe (UNECE) Regulation 155—Cybersecurity and
Cybersecurity Management System (UN R155) mandates the development of cybersecurity manage-
ment systems (CSMS) as part of a vehicle’s lifecycle. An inherent component of the CSMS is cyber-
security risk management and assessment. Validation and verification testing is a key activity for
measuring the effectiveness of risk management, and it is mandated by UN R155 for type approval.
Due to the focus of R155 and its suggested implementation guideline, ISO/SAE 21434:2021—Road
Vehicle Cybersecurity Engineering, mainly centering on the alignment of cybersecurity risk manage-
ment to the vehicle development lifecycle, there is a gap in knowledge of proscribed activities for
validation and verification testing. This research provides guidance on automotive cybersecurity
testing and verification by providing an overview of the state-of-the-art in relevant automotive
standards, outlining their transposition into national regulation and the currently used processes
and tools in the automotive industry. Through engagement with state-of-the-art literature and
workshops and surveys with industry groups, our study found that national regulatory authorities
are moving to enshrine UN R155 as part of their vehicle regulations, with differences of implementa-
tion based on regulatory culture and pre-existing approaches to vehicle regulation. Validation and
verification testing is developing aligned to UN R155 and ISO21434:2021; however, the testing
approaches currently used within industry utilize elements of traditional enterprise information
technology methods for penetration testing and toolsets. Electrical/electronic (E/E) components
such as embedded control units (ECUs) are considered the primary testing target; however, connected
and autonomous vehicle technologies are increasingly attracting more focus for testing.

© 2024 International Alliance for Mobility Testing and Standardization (IAMTS). Published by SAE International. This Open
Access article is published under the terms of the Creative Commons Attribution Non-Commercial, No Derivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium,
provided that the use is non-commercial, that no modifications or adaptations are made, and that the original author(s) and
the source are credited.

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

200 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024

1. Introduction

UNECE’s regulation 155 (UN R155) [1] requires a struc-
tured approach to cybersecurity engineering of auto-
motive systems, using a cybersecurity management

system. This regulation is mandatory for compliance with auto-
motive type approval within many of the most important auto-
motive markets including Europe, Korea, and Japan. Without
compliance to the UN R155, original equipment manufacturers
(OEMs) may currently not commission new models, and, from
mid-2024, will be restricted from selling to these markets.
Therefore, OEMs are motivated to comply with this regulation
due to the financial risk of losing market access due to noncom-
pliance. Closely related to UN R155 is the ISO/SAE 21434:2021—
Road Vehicles—Cybersecurity engineering, which is commonly
accepted as the guiding standard for automotive cybersecurity
[2]. UN R155 requires automotive manufacturers to have for
their automotive product a Cybersecurity Management System
(CSMS). The ISO/SAE 21434:2021 provides, so far, the only
global standardized approach for development of an automotive
CSMS (however, it is not explicitly mandatory that a CSMS
follows that standard). UN R155 and ISO/SAE 21434:2021
require the structured measures to be verified and documented
in a comprehensible and replicable manner using structured
testing procedures. However, the details of how to conduct
testing applicable to the requirements of UN R155 for type
approval and to the standard expected for automotive risk
management are mainly left to technical services, vendors, and
suppliers. The global standards (including ISO/SAE 21434:2021)
only recommend testing methodologies at a very high level (i.e.,
functional testing, vulnerability scanning, fuzz testing, penetra-
tion testing), and provide suggestions for test targets (e.g.,
checking for exposed debug interfaces, the presence of a secure
boot mechanism, usage of encryption in communications, etc.).
The complexity of vehicular systems, in conjunction with a
diverse ecosystem of standards and procedures make it infea-
sible to define a solid, standardized testing procedure that spans
over the whole (in-homogeneous) system and over the whole
life cycle. The development of standardized processes is further
challenged, as each large OEM has its own established proce-
dures and guidelines, partially stemming from internal design
and coding guidelines as well as from procedures from adjacent
domains such as functional safety testing. There also exists a
lack of literature that explores the state-of-the-art of automotive
cybersecurity testing and how the global standards are being
implemented regionally and how industry is developing its
cybersecurity testing programs. To confront these challenges,
the main idea of this research is to provide a starting point on
identifying test targets and testing methods from a global and
regional perspective, as well as exploring the usage and appli-
cability of such methods currently used in the automotive
industry. To this end, the contributions of this research are
as follows:

 • We conducted a state-of-the-art analysis of automotive
validation and verification testing (V&V) for global and
regional automotive cybersecurity standards
and regulations.

 • We conducted a survey of tools and practices commonly
used by manufacturers and admission bodies and
analyzed the development of cybersecurity test tools
and procedures.

 • We discussed the findings of the state-of-the-art and
survey and analyzed the progress of the adoption of
UN R155.

2. Methodology
The initial stage of the study focused on establishing the stan-
dards and regulatory environment for V&V testing of key
global automotive regions. The central questions used to guide
the research were:

 • RQ1 What is the state-of-the-art for automotive
cybersecurity V&V standards?

 • RQ2 How have these standardization approaches been
transposed to national regulation?

 • RQ3 What are the V&V testing processes, procedures,
and tools used by industry?

These questions enable the extrapolation of key areas of
interest for automotive cybersecurity V&V:

 • Are there variances between regions in the
implementation of regulation and national initiative
developed to improve V&V testing, and if so, why?

 • What are the key trends for V&V testing adopted in
industry? What can these trends tell us about the
evolving nature of V&V testing to meet
technology innovation?

To answer these research questions, analysis was conducted
on three data sources (see Table 1): (1) literature from govern-
ment authorities, industry, and standardization groups, (2)
expert knowledge derived from open-format workshops with
regional representatives from a global mobility testing industry
working group, and (3) an academic literature from key confer-
ences in the automotive cybersecurity field. The purpose of the
academic literature review is to provide a brief overview of the
key trends as they relate to ISO/SAE 21434:2021.

2.1.  Related Work
There have been numerous reviews of automotive cybersecu-
rity standardization during and after the drafting of ISO/SAE
21434:2021 and the UNECE Regulation R155. Macher et al. [3]
first review in 2019 found two predominant challenges of stan-
dardization of automotive cybersecurity testing. First, the
cross-relations between standards, guidance, recommenda-
tion, and regulation created a complex environment that was
difficult to interpret. Second, select automotive technologies
were governed by diverse standards. An example was given of
OBD-II interface, which is mentioned in hardware security
and certificate standardization documents. However, the

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024 201

certificate standardization was legacy and was written in 2006,
at which, advances in hardware security were not apparent.
The second standardization review by Schmittner and Macher
[4] in 2020 focused on the draft [5] of the ISO/SAE 21434:2021
standard. In addition to lauding the effort to contribute a
common framework and language for automotive cybersecu-
rity, shortcomings identified included ambiguity in descrip-
tions of processes and approaches and the difficulty in
providing a standardized context for diverse methods, guide-
lines, and best practices. Schober and Griessnig [6] mapped
the cross-relations of automotive cybersecurity regulations
(UNECE No. 155 and 156) and standards (ISO/SAE 21434:2021,
ISO PAS 5112, ISO 24089). As this study was written at the
initial release of ISO/SAE 21434:2021 and before UNECE R155
and 156, the national level initiatives to support innovations
for automotive cybersecurity testing were not captured.

3.  Global Regional
Perspectives on
Automotive Product
V&V Testing
Standardization and
Regulation

3.1.  Attack Automotive
Product V&V Testing
Standardization

As a standard released in 2021, ISO/SAE 21434:2021 [7] brings
a specification and a framework for cybersecurity risk manage-
ment in different phases of product lifecycle: concept, develop-
ment, production, operation, maintenance, and decommis-
sioning of electrical and electronic systems. While covering
the whole engineering process of road vehicles’ cybersecurity,

the standard also mentions cybersecurity testing by empha-
sizing its importance and providing a high-level guidance.
Worth noting, the document doesn’t provide a detailed
analysis for the testing methodologies, processes, and tools.
Further, the standard brings description and distinguishes
between the verification and validation. Because of the lack
of test-related details in ISO/SAE 21434:2021, WG11
(Cybersecurity working group) under ISO/TC22/SC32
(Committee of Electrical and Electronic Components and
General System Aspects) has proposed ISO PWI 8477, which
is a new standardization project for automotive cybersecurity
verification and validation. This project is intertwined with a
second project: “ISO/SAE PWI 8475: Road vehicles—
Cybersecurity Assurance Levels (CAL) and Target Attack
Feasibility (TAF),” which is targeted to define automotive
cybersecurity assurance levels (CALs) and target attack feasi-
bility (TAF), whereby the CALs are focused on engineering
assurance and the TAFs are on the expected strength of tech-
nical controls. However, there is not yet (as of June 2022) an
official standards project, any results are therefore pending.
The standards document SAE J3061_202112 (Cybersecurity
Guidebook for Cyber-Physical Vehicle Systems) [8] contains
an appendix regarding the existing security test tools. Another
initiative from SAE International, which is in progress, is the
J3061-2 (Security Testing Methods) [2]. The document has
been issued by the Vehicle Cybersecurity Systems Engineering
Committee with the aim of providing a detailed analysis on
the security testing methods on both hardware and software.

A global regulation initiative on automotive cybersecurity
is brought recently within an addendum to UNECE 1958 treaty
(Regulations 141-160), namely UNECE R. 155 [1] and 156 [9]
for automotive cybersecurity. These regulations have a direct
impact on OEMs and suppliers as the compliance to UNECE’s
homologation regulations are fundamental for the automotive
type approval process and product development for the market.
UNECE Regulation No. 155 (–legally binding document ECE/
TRANS/WP.29/2020/79 [10]) mandates the installment of a
CSMS as defined in ISO/SAE 21434:2021 [7] to ensure an
accompanying cybersecurity process to be executed during the
automotive system development lifecycle. In the document, the
OEM is required to verify the effectiveness of implemented
cybersecurity measures by testing and the approval authority
shall refuse the type approval if this cannot be demonstrated
including the adequateness of the testing procedures them-
selves. Lastly, the authority by itself shall also verify the effec-
tiveness of security measures by testing, especially concen-
trating on the high-risk samples. With the increased threads
on cybersecurity of automotive systems due to increased
complexity and connectivity; there are initiatives brought by
the governments for regulation and standardization. It is seen
that it is a general tendency by the governments to prepare the
industry for the regulations, with guideline documents on how
to properly implement and test the cybersecurity mechanisms
(e.g., [11] and [12]). While most of the regulation initiatives
across the governments regarding the V&V are still in similar
phases of preparation; there are some issuances of documents
regarding the type approval by the ministries of Korea and
China (see subsections Republic of Korea and China under

TABLE 1 Data sources for survey of standardization efforts for
automotive cybersecurity V&V testing.

Review Data source
Literature review
of national
standards and
regulations

 • Official government documents
(legislation, govt. department
documents)

 • Automotive and transportation reports
and standardization reports

 • Academic literature

Industry survey • Open format workshops with regional
representatives from EU, China, Japan,
and North America

 • Written survey with structured questions

Academic survey • Literature from automotive security
research in academia and standardization
body journals©

 In
te

rn
at

io
na

l A
lli

an
ce

 fo
r

M
ob

ili
ty

 T
es

ti
ng

 a
nd

St

an
da

rd
iz

at
io

n
(I

A
M

TS
)

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

202 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024

Section 3.3.1). In the U.S., the government encourages the
industry to collaborate with the regulation activities by
commenting on the documents published by the agencies.
Regarding the standardization, there are two remarkable initia-
tives brought by the national standardization organizations of
China and Japan, which brought some practical standards on
cybersecurity testing and verification (see Section 3.3.1).

3.2.  Automotive Academic
Survey of V&V

Current trends in academic literature focus on the
following areas:

 • Novel vulnerability testing of intelligent vehicular
technologies and autonomous, self-driving
control algorithms.

 • Methods for automating cybersecurity testing.

Novel attacks on intelligent vehicular and self-driving
technologies focus on the advanced hardware technologies
that support perception (LiDAR, camera, radar), localization
(LiDAR, GNSS), and vehicular communication [vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (v2x)]. Testing is
predominantly conducted in high-fidelity digital twin simula-
tion environments and progressively, real-world environments
and proving grounds. Tools common in testing of these
systems include adversarial neural networks that generate
malicious robust physical invariants to perturb object detec-
tion and semantic segmentation, fuzzers for protocol vulner-
ability assessment [13, 14], and, in intelligent vehicles, to send
malicious unsanitized sensor telemetry input to impact
LiDAR [1, 15], radar, and inertial measurement sensors [16,
17]. White-box testing tends to be more popular for testing of
neural networks due to the complexity of understanding the
impact of attacks of black-box testing and to optimize testing
based on knowledge of the learning model. Automation of
cybersecurity testing has focused on aligning fuzz testing
techniques with contemporary software development
processes. Fuzzing approaches are being developed, which
incorporate guidance of the ISO/SAE DIS 21434 to utilize
threat and risk assessment (TARA) and cybersecurity assur-
ance levels (CALs) to systematically identify and prioritize
attack vectors [18]. Novel methods for testing are being
explored on digital twin, digital replications of embedded
systems, to understand attack vectors and resultant impacts
in a safe, and repeatable and agile test environment [19, 20].

3.3.  National Regulatory and
Standardization
Approaches for
Automotive Product V&V
Testing

Each signatory of UNECE R155 is required to transpose this
regulation into national legislation. As approaches to

cybersecurity testing of critical infrastructure differ it is
important to understand how national governments are trans-
posing UNECE R155 into their respective ecosystems and
how they are supporting the introduction of regulations with
initiatives to assist industry and authorities. It is also observed
that, despite China is not a contracting party of the UNECE
WP.29 1958 Agreement [21] (hence not obliged to follow
UNECE R155); the national government perform similar
activities referring to ISO/SAE 21434:2021. In North America,
situation is different due to the performed system of self-
assessment in that region. Despite this, there are national
activities with respect to ISO/SAE 21434:2021.

To elucidate this, two components of national approaches
to automotive cybersecurity testing are analyzed: (1) gover-
nance and implementation of regulation and ISO21434:2021
and (2) national initiatives with regard to automotive
V&V testing.

3.3.1. Asia

China
Governance and Implementation of Regulation and
ISO/SAE 21434:2021 The Chinese market has seen an
emergence of self-driving and interconnected technologies
for vehicles. Due to this, the Chinese government ministries
are focused on developing policies for cybersecurity and data
security of intelligent and connected vehicles (ICVs). To
support these policies, corresponding standards committees
are developing national standards, of which the majority still
are in draft version. In particular, three ministries work in
the field of cybersecurity and data security of ICV: the
Ministry of Industry and Information Technology (MIIT)
and Cyberspace Administration of China (also called Office
of the Central Cyberspace Affairs Commission), and the
Ministry of Natural Resources.

In late 2021, the MIIT has published two notices [22, 23]
to address the security requirement of connected vehicles. In
these notices, it mandates that both cybersecurity and data
security of connected vehicle must be fully considered before
going to market. Building a complete vehicular security
standard system is also prescribed to all subdepartments,
organizations, and companies. Meanwhile, a mandatory
standard for vehicle cybersecurity and technical requirements
for vehicle cybersecurity has been issued [24]. Furthermore,
ISO/SAE 21434:2021 is being converted to Chinese national
standards as well.

National Initiatives With Regard to Automotive
Product V&V Testing For general technical security
requirements, the National Information Security
Standardization Technical Committee (NISSTC) released
GB/T 40861-2021 [25] on October of 2021, which involved the
security of software, electrical and electronic hardware, data,
onboard communication, and V2X communication.
Furthermore, the authenticity, confidentiality, integrity, avail-
ability, access control, anti-repudiation, auditability, and
preventability should be considered to the corresponding

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024 203

security system, if applicable. Compared to other standards,
this standard provides a more complete technical requirement
of in-vehicle security. Some standards released by NISSTC
focus on the technical requirements as well as test methods
of specified system and component. Standard GB/T 41578-
2022 [26] addresses in-vehicle charging system and corre-
sponding communication security. It further specifies detailed
test methods at hardware, software, data, and communication
aspects. GB/T 40856-2021 [27] concerns the security test
methods for hardware, communication, operation system,
application, and data. GB/T 40857-2021 [28] addresses
hardware, software, communication, and data security for
CAN gateway, ethernet gateway, and hybrid gateway. GB/T
40855-2021 [29] involves on-board terminals security,
communication security, and platform security in the scope.
With regard to different kinds of security, standards also
provide a few general best practices for testing. For hardware,
this includes checking for exposed debug interfaces and their
authentication mechanisms, the disclosure of the PCB wiring
and design, and for backdoors. For software, checks for secure
boot and software integrity, access control, logging mecha-
nisms, as well as vulnerability scans are recommended. The
data should be checked for susceptibility to tampering, confi-
dentiality on export, collecting after user approval, sensitive
information protection, effectiveness of its deletion, as well as
its security during transmission. Communication links should
prove their authentication, integrity confidentiality avail-
ability, and non-repudiation.

Japan

Governance and Implementation of Regulation and
ISO/SAE 21434:2021 Japanese METI (Ministry and
Economy, Trade and Industry) published a document about
cybersecurity measures for autonomous vehicles in 2018. This
document describes the schedule for implementing ISO/SAE
21434:2021. First, JASPAR (Japan Automotive Software
Platform and Architecture) collaborates with other countries
to establish the standard while suggesting rules and policies
that fit in Japanese automotive environment. While devel-
oping ISO/SAE 21434:2021, METI and MLIT (Ministry of
Land, Infrastructure, Transport and Tourism) create guide-
lines that describe requirements to develop and operate auto-
motive vehicles, with some governmental organizations such
as JASPAR. Besides, METI creates a more concrete guideline
for testing and validation/certification of autonomous vehicles
collaborating with organizations in industrial sector such as
IPA (Information Processing Agency). Until now, MLIT has
published guidelines for requirements of autonomous vehicle
development like [30] (Japanese). Also, IPA has published and
revised more practical guidelines such as [31]. This guideline
includes threat analysis and possible measures in a develop-
ment cycle, namely management, planning, development, and
operation. National standards are determined by organiza-
tions such as JAPSAR, based on the international standards.
The national standards describe requirements that the
industry must meet in the development process against
assumed security threats. Especially, they have formulated

evaluation guide for ECU and hardware/software vulnerabili-
ties. JASO TP-15002 guideline is an evaluation guideline for
automotive information security analysis. Japan Automotive
Software Platform and Architecture (JASPAR) is a collabora-
tion project of engineers from the automotive industry. The
aim of JASPAR is [32]: “identify common issues that will
be faced in the future in the car electronics sector, and then
undertake standardization initiatives aimed at resolving those
issues, creating common objectives across the entire
automotive industry.”

National Initiatives With Regard to Automotive
Product V&V Testing The JASPAR project provides refer-
ence architectures for secure design of automotive compo-
nents and verification testing. The standards are focused on
areas of cybersecurity of car electronics where there are gaps
in other available standards and areas that are a priority for
the Japanese automotive industry. These include software-
over-the-air updates, ECUs, CAN-FD, secure communication,
and vehicular messaging. JASPAR project details a list of stan-
dards applicable to cybersecurity testing of automotive
products: TD-CST-4—ECU Penetration Testing Guide
Version 1.0, ST-CST-1—ECU Vulnerability Test Requirements
Ver.1.1, STOTA-09—OTA Software Update Compliance Test
Specification OTA Master Ver.1.0, ST-OTA-10—OTA Software
Update Compliance Test Specification—Target ECU
Ver.1.0 [32].

Republic of Korea

Governance and Implementation of Regulation and
ISO/SAE 21434:2021 There are two main actors in Korea
for type approval and certification of vehicles Ministry of
Land and Infrastructure, Transport (MOLIT) and Korea
Automobile Testing & Research Institute (KATRI) [33]. There
are two regulations that pertain to the testing and evaluation
of automotive:

 • Korea Motor Vehicle Safety Standard (KMVSS)—
Technical Regulation

 • Korea Vehicle Management Act (Self-Certification
system and Safety Standards for Motor Vehicles)

In June 2020, MOLIT established the UNECE R155 inter-
national standards for automotive cybersecurity as the main
content for recommendations for ROK automotive manufac-
tures. The central component being that the automotive
manufacturer has a cybersecurity management system
(CSMS) and demonstrate that automotive cybersecurity is
managed accordingly. To integrate UNECE R155 local laws
and regulations will be amended as appropriate [33]. MOLIT
plans to issue the Automotive Cybersecurity law and safety/
security regulation in 2022. Until that time, they will have
published recommendations and guidelines to fill the gap
between the practice of automotive company and the require-
ments imposed by the registration such as Korea Motor
Vehicle Safety Standard (KMVSS) and Korea Vehicle
Management Act. The approach taken by MOLIT is to ease

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

204 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024

the new policy implementation and adoption recommenda-
tions step-by-step. Currently, the differences of UN R155 and
the ROK implementation are that ROK extends the R155 to
their self-certification approval in addition to type approval,
manufacturers obligation to report are focused on data
sharing between manufacturers, and administrative matters
(procedures, document, penalties) and matters relating to type
approval (CSMS certification, DETA data sharing) are yet to
be included in the implementation [33]. As one of the recom-
mendations, MOLIT announced guidelines for security of
autonomous vehicles on December 15, 2020. The guidelines
include (1) Ethical Guidelines for Self-Driving Vehicles, (2)
Automobile Cybersecurity Guidelines, and (3) Level 4
Autonomous Vehicle Manufacturing/Safety Guidelines,
which provide basic directions for ethics and safety [33].
Among that, Automobile Cybersecurity guidelines introduced
recommendations for security policy directions so that auto-
mobile manufacturers can develop a cybersecurity system in
preparation for the implementation of the security standards
to be issued in 2022 [34]. The recommendations proposed in
the guidelines are the following:

 • Security management such as a process for identifying,
evaluating, classifying, and managing security threats
must be established within the manufacturer’s
organization and share relevant information.

 • Vehicle security threat identification, evaluation, security
measures, and sufficient security-related pre-tests must
be performed. Note that security measures include
cyberattack detection and prevention measures, risk
monitoring support measures, data forensics support
measures for cyberattack analysis, and the like.

To support the implementation of R155 as part of
domestic regulations, MOLIT has planned to implement an
Automotive Cybersecurity Support and Response System.
This system consists of an automotive cybersecurity committee
to coordinate initiatives including the foundation of an auto-
motive security center. The role of the Automotive
Cybersecurity Support and Response System is to provide
cybersecurity test and evaluation and enforcement support,
support the private sector with the development of automotive
technologies, provide cybersecurity incident response, and
support for the automotive sector [33].

3.3.2. North America

United States of America

Governance and Implementation of Regulation and
ISO/SAE 21434:2021 In the U.S., National Highway Traffic
Safety Administration (NHTSA) is the responsible entity
under the U.S. Department of Transportation (U.S.DOT),
which issues Federal Motor Vehicle Safety Standards (FMVSS)
to regulate and standardize the requirements for the safety of
motor vehicles [35]. The agency undertakes the responsibility
of standardization and regulation of automotive cybersecurity
in the U.S. while conducting research in order to address the
challenges in the area [36]. To provide a comprehensive and

systematic standardization and regulation process, the agency
involves the industry in the regulation and standardization
process by encouraging the formation [37] of Auto-ISAC [38]
and receiving comments on the publications/reports that are
published by the agency [39]. Currently, there are no standards
or regulations for automotive cybersecurity testing and veri-
fication, which is brought by the NHTSA. However, in 2016,
the agency published a non-binding document describing
guidelines and best practices for automotive cybersecurity
[40], which is revised in 2020 concerning the ISO/SAE DIS
21434 draft standard and a draft version has been published
(2020 draft) [11]. According to the comments brought on the
draft, a pre-final version has been released in 2022 [41]. The
document refers ISO/SAE 21434:2021 and NIST’s
Cybersecurity Framework for standardizing the cybersecurity
development, maintaining, and testing process.

National Initiatives With Regard to Automotive
Product V&V Testing NHTSA conducts multifaceted
research on vehicle cybersecurity that leverages NIST’s cyber-
security framework [42] and aims to collaborate with the
industry to address the challenges in vehicle cybersecurity.
NHTSA’s best practices documents include recommendations
for automotive cybersecurity testing and documentation.
Those practices defined in [41] are as follows:

 • Cybersecurity testing, including penetration testing
should be implemented as a part of the
development process.

 • Qualified testers who have not been a part of the
development process should be included in the
testing phases.

 • Identified vulnerabilities during cybersecurity testing
should be analyzed; the vulnerability and how the
vulnerability is managed should be documented.

 • All commercial-off-the-shelf and open-source software
components used in vehicle ECUs should be evaluated
by the manufacturers in order to identify
the vulnerabilities.

For addressing the need for effective information sharing
across the industry, NHTSA encouraged the formation of the
Auto ISAC, a community established by partners from the
various domains of the industry. In collaboration with the
Alliance of Automobile Manufacturers (Auto Alliance) and
the Association of Global Automakers (Global Automakers),
the community published a set of best practices documents
on automotive cybersecurity [43]. One of these documents,
“Security Development Lifecycle,” covers the security needs
for the development process and distributes the testing process
into the phases of development as follows [44]:

 i. Design: This phase is where a high-level test plan can
be constructed, which identifies:

 • The best security verification methods (e.g., design
review, manual code review, automated code
analysis, component/unit testing, bench and
vehicle penetration testing).

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024 205

 • Needed testing tools including special build
components and infrastructure support.

 • An evidence sheet with details of software,
hardware level, date, pass/fail status, notes on
failures or unexpected behavior person running
the test and approver, and others as necessary.

ii. Implementation: Secure implementation requires
testing and verification in both hardware and
software levels. The methods for ensuring at the
hardware level:

 • Confirmation reviews or assessments

 • Penetration tests
At the software level:

 • Code reviews

 • Automated code analysis

 • Penetration testing

iii. Testing and Validation: This part defines the whole
process of testing through phases of the
development lifecycle:

1. Cybersecurity Testing: The actual testing process is
done during the implementation and post-
implementation phase, which evaluates the proper
working of safeguard mechanisms and identify
potential vulnerabilities that leads to residual
risk assessments.

2. Internal Cybersecurity Sign-off Process: The sign-
off process includes the testing process, which
verifies the system is secure enough to withstand
the previously assessed threats. This process
should include the overall test plan, performed
functional tests, penetration tests, source code
audits, and so forth.

3. Residual Risk Assessments: Residual risk
assessments can be done as a part of the
development lifecycle on a periodic basis as the
known residual risks evolve over time by the
discovery of new attack methods or cost reduction
due to newer/cheaper tools.

Canada

Governance and Implementation of Regulation and
ISO/SAE 21434:2021 In Transport Canada’s Vehicle
Cybersecurity Strategy, the Canadian Department of
Transport is responsible for monitoring the work of the
National Research Council Canada’s Automotive and Surface
Transportation Centre. The Automotive and Surface
Transportation Centre engages in research and testing related
to advanced vehicle technologies. Examples include examina-
tion of cybersecurity vulnerabilities in connected features,
mapping, and connectivity for automated driving. The testing
and evaluation of cybersecurity is closely tied to applicable
motor vehicle safety and data privacy legislation [45].

National Initiatives With Regard to Automotive
Product V&V Testing The Canada Vehicle Cybersecurity
Guidance [45] provides technology-neutral and non-prescrip-
tive guiding principles for the incorporation of cybersecurity
throughout the vehicle lifecycle. The guidance promotes the
importance of international standards such as ISO/SAE
21434:2021 and other related functional safety standards. The
guide provides a descriptive overview of the context of cyber-
attacks to vehicular systems and in particular that more
advanced attacks tend to be associated with “white-hat” cyber-
security research, while real-world, cyber-criminal threat
actors make use of the data-driven ecosystem of vehicular
technologies to comprise attacks on back-end systems and
systems that generate and store telemetry. To this end, the
guide recommends the implementation of layered security
controls (known as defense-in-depth), privacy protection, and
information protection procedures and testing of data security,
secure external vehicle communications, identity manage-
ment and access control, secure software development, secure
updates, and the extended vehicle environment. Cybersecurity
testing is recommended to be conducted throughout the
vehicle lifecycle. Penetration testing is mentioned as an essen-
tial part of security auditing. Cybersecurity testing and valida-
tion methods are not explicit in the guidance provided by
Transport Canada. Transport Canada provides tier 1 and 2
automotive suppliers with a self-assessment tool: the Vehicle
Cybersecurity Assessment Tool (VCAT). The VCAT is a self-
assessment questionnaire applicable for all vehicle types with
varying levels of connectivity and automated features. The
self-assessment questionnaire assists with evaluating the
cybersecurity performance and resilience of vehicles and
vehicular components. The VCAT will provide a score,
measuring cybersecurity posture, as well as recommendations
for mitigations [45].

3.3.3. Europe The European Union has a diverse range of
regulatory initiatives for cybersecurity of the digital market-
place, which impact upon automotive product development.
The EU Cybersecurity Act (CSA) is the predominant form of
regulation for cybersecurity in the EU market. Among the
range of important initiatives, the CSA establishes a frame-
work for certification of ICT products for cybersecurity called
the Common Criteria-based European Candidate Cyberse-
curity Certification scheme (EUCC). The aim of the scheme is
to enable, for the consumer, transparency and awareness of
the level of assurance for cybersecurity of a digital product.
The EUCC is still in development and its impact on the auto-
motive sector is yet to be detailed [46].

The EU Cyber Resilience Act (CRA) [47] is currently
being developed. This regulation will focus on providing
common cybersecurity rules for manufacturers and vendors
of tangible and intangible digital products and ancillary
services. The CRA regulation envisages a process for the
digital product cybersecurity assurance where essential
baseline security requirements are defined, which can
be applied selectively according to a risk management assess-
ment of a device’s intended use, considering the ecosystem or

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

206 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024

“operational environment” in which the device will be placed.
The products to be governed by the CRA include [47]:

 • Connected product: A finished product that is intended
to communicate directly or indirectly over the internet.

 • Finished product: A product usable for its intended
functions without being embedded or integrated into
any other product. Components of a device, such as a
processor or a sensor, should be outside the scope as
security functionalities need to be assessed holistically.

In the public submissions to the CRA regulation, automo-
tive industry bodies (European Automobile Manufacturers’
Association, European Association of Automotive Suppliers,
TÜV Association) pointed to other existing legislation as
impacting automotive cybersecurity [47]:

 • Type-approval: UN R155 and 156

 • Radio Equipment Directive (2014/53/EU) and its
delegated act (2022/30) (For Connected Vehicles)

 • NIS 2 Directive (2020/0359(COD))

As the EU CSA is in policy implementation phase and
the EU CRA is in policy conception phase, there is a sparsity
of detail as to how automotive technologies will be validated
and verified for cybersecurity.

Germany

Governance and Implementation of Regulation and
ISO/SAE 21434:2021 In Germany, the Federal Motor
Transport Authority (Kraftfahrt-Bundesamt—KBA) is
responsible for bringing UNECE R155 into national legislation
by issuing guidance and legally binding rules for application
and review of the regulation [48]. This application document
specifies testing verification procedures by document review,
as well as functional security and penetration testing of a
technical service (e.g., TÜV) under witness/supervision of a
neutral party (KBA or an authorized body).

National Initiatives With Regard to Automotive
Product V&V Testing As the EU CSA is in policy imple-
mentation phase and the EU CRA is in policy conception
phase, there is a sparsity of detail as to how automotive tech-
nologies will be validated and verified for cybersecurity.

Germany Governance and Implementation of
Regulation and ISO/SAE 21434:2021 In Germany, the
Federal Motor Transport Authority (Kraftfahrt–Bundesamt—
KBA) is responsible for bringing UNECE R155 into national
legislation by issuing guidance and legally binding rules for
application and review of the regulation [48]. This application
document specifies testing verification procedures by
document review, as well as functional security and penetra-
tion testing of a technical service (e.g., TÜV) under witness/
supervision of a neutral party (KBA or an authorized body).

National Initiatives With Regard to Automotive
Product V&V Testing The Quality Management Center

(QMC) of the German Association of the Automotive Industry
(Verband der Automobilindustrie—VDA) issued a supple-
ment to the process management specification Automotive
SPICE (Software Process Improvement and Capability
Determination), which conforms with ISO 15504 [7]. This
supplement, called Automotive SPICE for Cybersecurity
Engineering [49], defined a set of process steps dedicated to
cybersecurity engineering that is to be used in conjunction
with the current Automotive SPICE process; namely:

 • SEC.1 Cybersecurity Requirements Elicitation

 • SEC.2 Cybersecurity Implementation

 • SEC.3 Risk Treatment Verification

 • SEC.4 Risk Treatment Validation, and a new
management step

 • MAN.7 Cybersecurity Risk Management, as well as
expanding the acquisition step

 • ACQ.2 Supplier Request and Selection—In particular,
the risk treatment verification prescribes a specification
that is suitable to provide evidence for compliance with
the security requirements and the design
implementation and component integration is to
be tested using defined test cases (according to a
verification strategy that is derived from the
requirements and implementation). The corresponding
best practices provides hints on what to test:

 • Requirements-based testing and interface testing on
system and software level,

 • Check for any unspecified functionalities,

 • Resource consumption evaluation,

 • Control flow and data flow verification, and

 • Static analysis; for software: static code analysis, e.g.,
industry-recognized security-focused coding
standards. As well as some testing techniques (non-
exhaustive)

 • Network tests simulating attacks (non-authorized
commands, signals with wrong hash key, flooding the
connection with messages, etc.), and

 • Simulating brute force attacks,

 • Audits,

 • Inspections,

 • Peer reviews,

 • Walkthroughs,

 • Code reviews.

Test cases could be derived by:

 • Requirements analysis,

 • Building equivalence classes,

 • Testing edge cases (boundary values),

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024 207

 • Experience-based testing. The specification also proposes
to establish bidirectional traceability between the
verification activities and the system design.
Analogously, the risk treatment has to be validated,
which means the adequacy of the implemented measures
(whereas the verification assures the compliance of the
measures with the requirements). The validation includes
activities to also detect priorly unidentified
vulnerabilities (e.g., through penetration testing), while
the methodology is similar to the verification.

France

Governance and Implementation of Regulation and
ISO/SAE 21434:2021 In 2021, the French legislature incor-
porated UNECE R155 & 156. The regulatory environment in
France is conducive of close cooperation with the EU. The
Ministère de la Transition écologique et solidaire is the super-
vising authority responsible for vehicle type approval.
Association Française de Normalisation (AFNOR) is respon-
sible for automotive standardization, including cybersecurity
standards. The Agence nationale de la sécurité des systèmes
d’information (ANSSI) is the primary agency responsible for
cyber expertise and its role involves monitoring the cyber threat
landscape, raising awareness of the necessary protections
required in the digital environment of France through best
practices and standardization and providing technical advice
and assistance including cyber incident response through CERT
France (CERT-FR) [50]. Among numerous measures contained
in the Critical Information Infrastructure Law 2013, ANSSI
can impose technical and organizational requirements for
security and trigger audits. Recent domestic legislative updates
in France reflect the widespread adoption in the EU of the EU
Cybersecurity Act and other related measures [51].

National Initiatives With Regard to Automotive
Product V&V Testing The French Ministry of the Interior
(Ministère de l’Intérieur) issued a position paper on auto-
mated driving (L’automatisation des véhicules) [52] that
contains an annex covering cybersecurity (Annexe 9: la
Cybersécurité). Regarding testing, this annex contains the
notion to use risk analyses, compliance audits, and penetra-
tion tests. The ANSSI states in an analysis of contributions for
a—generic, but also including vehicles—cybersecurity certi-
fication scheme for the usage of static source code analysis
tools, vulnerability scanners, automation of configuration
audit, and protocol fuzzers for verification [53], which is,
however, a very high-level recommendation.

United Kingdom

Governance and Implementation of Regulation and
ISO/SAE 21434:2021 Department of Transportation (DfT)
and British Standardization Organization (BSI) are the main
entities in the United Kingdom toward the regulation and
standardization of the automotive cybersecurity, including
the cybersecurity for connected and autonomous vehicles
(CAVs). DfT accommodates a center called “Centre for
Connected and Autonomous Vehicles,” which serves also as

a part of Department for Business, Energy & Industrial
Strategy. The center conducts research and publishes docu-
ments regarding the safety and security of CAVs. The Centre
for the Protection of National Infrastructure (CPNI) is another
entity that contributed on the research for security of CAVs
[54]. In 2017, DfT, CPNI, and Centre for Connected and
Autonomous Vehicles published a guidance document [54],
which explained the cybersecurity needs of automotive
industry in eight principles. In 2021, BSI published a white-
paper [55], which defines the cybersecurity threat vectors for
connected vehicles and how to meet the compliance require-
ments defined by the ISO/SAE 21434:2021. The paper includes
an overview of ISO/SAE 21434:2021 and BSI’s E2E automotive
cybersecurity model, which is compliant to a set of interna-
tional standards including ISO/SAE 21434:2021.

BSI PAS 1885:2018 [12] is a standards document that
details the fundamental principles of cybersecurity across the
vehicle’s lifetime. The document provides principles that focus
on organizational management of cybersecurity risks,
management of the supply chain, third parties and subcon-
tractors, and recommendations for cybersecurity design,
resilience, and response measures. Principle 6, “The security
of all software is managed throughout its lifecycle,” prescribes
a list of recommendations for testing and evaluation of vehic-
ular software. In summary, the recommendations are:

 • Open source or third-party software should be reviewed
for vulnerabilities using formal code inspection reviews.
Automated tools should be used to analyze the structure
and security of the code.

 • Configuration and management control should include
evidence of testing, including test scenarios and results.
Also, unresolved test defects, deficiencies, and anomalies
should be documented.

 • Updates shall be tested.

There is also an effort put by the British government
toward the adaptation of CAVs. In 2019, the Centre for
Connected and Autonomous Vehicles has started a program,
called CAVPASS, in order to implement standardization,
testing, and monitoring processes to ensure the resilience of
CAVs against cyberattacks [56]. Zenzic is another organization
founded by the government and industry in order to embrace
the cybersecurity and safety challenges brought by the
Connected and Autonomous Mobility (CAM). The organiza-
tion published a feasibility report in 2020 [57], which stated
the outcomes of several projects. The report included a part
regarding the measurement and monitoring the cyber resil-
ience, mentioning the digital twin technology for validation,
assurance, and certification of CAVs.

4. Processes and Tools
Used in The Industry

In order to examine which processes and tools are used in the
industry, we issued questionnaires to experts in the field,

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

208 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024

consisting of members of OEMs, suppliers, and automotive
engineering companies. The questions targeted in collecting
common practices on what is to be tested (test targets), how
to test (standards usage, test types, and test derivation), and
how to support the testing (test tools).

4.1.  Test Targets
E/E components remain the predominant areas of focus for
SUT due their importance for functionality of the vehicle.
Due to the preponderance of connected vehicular technolo-
gies, communication protocols are an area of concentric
concern for cybersecurity testing. Emerging SUTs include the
end-to-end driving technology which supports autonomous-
assisted and autonomous driving. Third-party service
providers for verification and validation are popularly used
due to their existing experience of testing and certification,
alignment with ISO/SAE 21434:2021 and other standards
which emphasize the use of third parties for independent
verification and validation, and lack of available skills for
cybersecurity testing of automotive products. A majority of
respondents answered that they have an established interface
agreement for cybersecurity testing. Most OEMs follow a
document-based audition process in their verification and
validation agreement.

4.2.  Standards Utilization
Overwhelmingly, ISO/SAE 21434:2021 is used for cybersecu-
rity verification and validation. Respondents also mentioned
well-established, complimentary standards such as ISO/IEC
15408 (Common Criteria) and ISO/IEC 27034 (Application
Security Standards). The testing process for SUTs are mainly
conducted on a case-by-case basis. The limited use of test
matrix and standard test sets can be seen as due to a variety
of reasons including repeatable test processes cannot be ubiq-
uitously applied to diverse range of automotive technologies,
level of integration, and architecture requires testing to
be approached on a case-by-case basis, lack of development,
and adoption of testing metrics and criteria, cybersecurity
testing is still developing and there is a lack of adoption of
testing processes that support automation and repeatable
testing. OEMs conduct functional testing, vulnerability
scanning, penetration testing, and fuzz testing. All of these
test procedures are recommendations of ISO/SAE 21434:2021
and are essential as part of an automotive cybersecurity testing
program. Specifications coverage is the most popular method
to measure and maximize test coverage of the SUT. This aligns
with product development lifecycle and the focus on assurance
for the intended functionality of the automotive component.
Emerging methods include considerations for the require-
ments from UN R155.

4.3.  Types of Testing
Our survey results show that our respondents practice various
types of testing during different stages of their development

lifecycle. These are (1) fuzzing, (2) penetration testing, and (3)
functional testing. This section compiles these methods by
describing and referring to the phases of development that
each type of testing utilized. We also give further detail by
adding other methods that are applicable for automotive
cybersecurity testing, which are found in the literature. These
are (3) model-based security testing, (4) risk-based security
testing, and (6) vulnerability scanning.

Fuzzing: Fuzzing, or fuzz testing, refers to subjecting the
software system (or components individually) to a large
volume of invalid, unexpected, or random inputs that are
known as "fuzz.” By exposing the executable software to a
wide range of invalid data, vulnerabilities can be identified
that are not known previously. To generate a variety of inputs
that can lead the program to failure, which is a difficult process
to cover all cases, there are several techniques used. One of
them is to generate the input data based on the analysis of a
program’s coverage, behavior, and source code, another is to
implement mutation techniques on the generated data
according to the program’s feedback from the previously fed
data, or to randomly generate [58]. Fuzzing is conducted
during the development and testing phases of ECUs and info-
tainment systems to discover vulnerabilities, software bugs,
or unexpected behavior that may lead to failures.

Penetration Testing: Penetration testing is conducted to
assess the security of the hardware, software, and communica-
tion systems, by mimicking real-world security attacks on the
subject. It involves actively scanning and exploiting vulner-
abilities in the system with methods such as injection and
tampering to determine its susceptibility to unauthorized
access, data breaches, or malicious activities. Penetration
testing is performed during the entire development lifecycle
and before deployment to identify security flaws and mitigate
them before they can be exploited by attackers.

SAE J3061 and o ISO/SAE 21434 state the necessity of
penetration testing and it is included as part of the best prac-
tices document published by Auto ISAC [43]. Also, a recent
study [59] shows its wide usage among security testing types.
It is also seen that, among different knowledge levels, black-
box testing is the most preferred one for penetration testing.

Functional Security Testing: Focuses on evaluating the
security features and mechanisms of the system to ensure they
function as intended. It involves subjecting security proper-
ties, such as authentication, authorization, encryption, and
secure communication mechanisms to test and verify their
compliance with the security requirements and validate the
behavior. This type of testing is applicable by both software-
in-the-loop and hardware-in-the-loop testbeds, which may
be utilized throughout the development [60]. Functional
security testing can be conducted throughout the development
lifecycle and pre-deployment stage to verify and validate the
security features.

Model-based Security Testing: Model-based security
testing involves creating formal or semi-formal models of a
feature, and using these models to perform security analysis
and verification of conformity to requirements. Models can
be security properties (i.e., confidentiality, integrity, authen-
tication, etc.), vulnerabilities, and security safeguards that are

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024 209

being designed for the overall system, and also threats and
attacks to the system [61]. This type of testing helps identify
potential security weaknesses in the design and earlier phases
of the development lifecycle and enables engineers to mitigate
the vulnerabilities by designing robust features.

Risk-based Security Testing: Focuses on assessing the
security of a system based on the potential security risks and
their impact. This type of testing is based on threat analysis
and risk assessment (TARA) techniques to prioritize the most
critical assets, threats, and vulnerabilities for allocating
testing resources accordingly [59]. Risk-based security testing
considers the likelihood of an attack, its potential impact on
the system, and the value of the assets at risk. It is performed
throughout the development lifecycle to ensure most critical
security risks are addressed.

Vulnerability Scanning: This is a systematic process to
test the system for known vulnerabilities that can be exploited
by known threats. This type of testing can target the source
code by conducting either static or dynamic analysis to under-
stand whether the software poses vulnerabilities due to
memory usage or the interfaces for discovering unprotected
entries (i.e. port scanning) [60]. Automated tools and scripts
are used in this approach so that they can be implemented as
part of the DevOps cycle to conduct regular and repeatable
tests with each increment, during development, and after
deployment (i.e., for updated software).

Two-thirds of respondents confirmed that they utilize
functional testing and penetration testing within their veri-
fication and validation processes, which support the entire
automotive development lifecycle. Validation activities were
conducted close to the end of the product development phase
and before release for post-development and consisted of
analysis and testing. Verification activities were conducted
during the concept and product development phase and
consisted of review, analysis, and multiple rounds of penetra-
tion testing. One-third of respondents have not yet adopted
the cybersecurity verification and validation processes of the
ISO/SAE 21434:2021 standard.

4.4.  Test Derivation
There is a couple of ways to derive test cases from a performed
asset/security analysis: based on derived requirements from
a model (e.g., a TARA, cf. previous section) that could also
be subject to model checking; based on specifications (both
standards and vendor specifications), based on the structure
(i.e., the architecture—e.g., tests that verify the correctness of
a security gateway’s functioning), based on the experience of
the respective penetration tester (i.e., trusting the right test
cases to be designed to expert knowledge), or based on known
faults. The respondents roughly evenly perform requirements,
specification, and experience-based test derivation, while
structure-based tests are significantly less (one-third) used,
information is UNECE’s Regulation 155 (see above in the
respective section) [1]. In its Annex 5 it defines a catalogue of
countermeasures that can serve as requirements that might
be verified by testing. Regarding the testing methods, it is

equally proliferated to use white box (full access to informa-
tion about the SUT), black box (just the SUT “as is,” with no
additional information), and gray box (some information,
mainly handbooks, API documentation, etc.) approaches.
Only a minority (one-third) of the respondents claimed that
they use a baseline for testing. This means a minimum set of
tests generically issued to all of their SUTs, regardless of their
nature. The relative majority of those uses testing the require-
ment specification followed by using prepared test plans, test
cases, and test data and, lastly, testing the design specification
and predefined generic tests for the source code itself. One
specific test set mentioned is testing all wireless and wired
interfaces (e.g., OBD) for their susceptibility to act as an entry
vector into the vehicle.

4.5.  Test Tool Categories
Respondents use a diverse range of commercial-off-the-shelf
(COTS), open-source (OS), customized, and in-house (inter-
nally developed) tools in their penetration testing activities.
The results show a bias toward COTS and OS tools. The
respondents also identified a number of tools that were used
to test recent high-profile vulnerabilities such as Blueborne
(a well-known Bluetooth attack) and ROCA (cryptographic
weakness). With the emphasis ISO/SAE 21434:2021 places on
TARA, it is apparent that automotive cybersecurity testers are
agile in developing and utilizing toolsets to keep pace with
the dynamic threat environment. Table 2 categorizes specifi-
cally mentioned tools. When asked for specific tools during
the phases of an attack test—pre-attack (scanning, CAN
analysis, etc.), attack (exploit frameworks, etc.), and post-
attack (reporting, life cycle management)—respondents
answered with a variety of tools.

Table 3 provides an overview of some commonly used
tools, displaying the phase that are used in reconnaissance,
attack, or life cycle governance; the tool category (cf. Table 2);
and the area of testing (IP/web, wireless, and in-vehicle
networks as well as reverse engineering). In that context, IP
Network/web testing tools refer to tools originally used in
traditional IT testing, targeting network, and web-based inter-
faces. Currently, they are ordinarily used mainly to perform
tests in automotive ethernet or on targets that have interfaces
similar to traditional IT systems, e.g., infotainment head units
running on an Android operating system. Wireless
Automotive refers to tools to assess implementations of
wireless protocol stacks that are popular in the automotive
industry, most prominently Bluetooth and WiFi. In-vehicle
network (IVN) tools mainly refer to tools for testing CAN bus
and Automotive Ethernet environments. Lastly, reverse engi-
neering tools are used to scrutinize binaries of automotive
control systems and search for potential weaknesses inside
the code by following control flows. The other axis of the table
shows whether the tool is considered to be more in reconnais-
sance (information gathering) or attack (actual intrusion)
phase of cracking a system, as well as life cycle management
tools that support the security governance and help in
planning tests throughout a system’s life cycle.

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

210 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024

5. Discussion
The most influential document is arguably UNECE R155 for
its normative and legally binding character. This document
contains a list of requirements (in an annex) that could serve
as test targets. Further details are specified on a national level,
as is the details of the mandated CSMS. The specification of
such a system is found in ISO 21434:2021. Both documents,
however, specify testing requirements at a very high level.
Therefore, the ISO maintains ongoing efforts to specify test
classifications, as well as V&V procedures in more detail, giving
guidance for testing. As the UNECE must be adopted into
national regulations, the concrete embodiments differ.
Nonetheless, it is common that the level of detail is coarse,

leaving much room for interpretation open for implementers.
Regional standards are likewise high-level descriptive in
general, focusing on engineering process topics. An exception
are some standards specifically from the Asian area that give
fine-grained descriptions for test procedures for single compo-
nents. The research of regional standards showed no clear bias
in testing procedures by region, although the underspecification
leaves room for interpretation differences by both different
regional authorities and implementers. What is missing globally
is test implementation details for systems at vehicle level. The
reason, drawn out of expert interviews, is the early stage
maturity of the topic. First, details for many of the components
have to emerge, before they can be tied to high-level test proce-
dures at vehicle level. To perform testing and analysis, most

TABLE 3 Testing tools per attack phase, type, and category.

Phase Tool IP network/web
Wireless
automotive IVN

Reverse
engineering Tool category

Reconnaissance Nessus ✓ Vulnerability assessment

Nmap ✓ Vulnerability assessment

Dirbuster ✓ Fuzzing

Bluescanner ✓ Vulnerability assessment

Wireshark ✓ Protocol analysis

GNU Radio Companion ✓ Protocol analysis

Universal Radio Hacker ✓ Protocol analysis

CANoe ✓ Protocol analysis

Attack tools Ghidra ✓ Reverse engineering

Android Studio ✓ Reverse engineering

Aircrack Suite ✓ Vulnerability assessment

URH ✓ Reverse engineering

Volatility ✓ Reverse engineering

Genymotion ✓ Protocol analysis

IDA ✓ Reverse engineering

Burpsuite ✓ Web application

American Fuzzy Lop ✓ Fuzzing

LCM PTC Integrity ©
 In

te
rn

at
io

na
l A

lli
an

ce
 fo

r
M

ob
ili

ty
 T

es
ti

ng
 a

nd
 S

ta
nd

ar
di

za
ti

on
 (

IA
M

TS
)

TABLE 2 Tool categories.

Tool category Description Automotive test usage
Vulnerability
assessment

Enables performance of a scan of a device or information
system to discover vulnerability of the target system to
known vulnerabilities.

Nmap and Nessus could be used to find open
communication ports on an infotainment head unit
and its vulnerabilities.

Web application Enables analysis of the codebase of web applications and
mobile device applications.

Predominantly used in the testing of infotainment
systems and customer applications.

Reverse
engineering

Used for analyzing the binary code of the software to
identify vulnerabilities (due to memory usage, logic, etc.).
Tools such as IDA and Volatility (see Table 3) are used for
data extraction for analysis.

Protocol analysis Enables analysis of protocols to understand the
architecture and identify vulnerabilities.

Used for internal (CAN, LIN, MOST, FlexRay) and
external (Wireless, Radio, Bluetooth) networks.

Fuzzing Used to assess the security of a system to unsanitized
data input. This can be either randomized or targeted
unsanitized data input. It is popularly used in software
engineering to identify bugs in the codebase.

Fuzzing is used ubiquitously from the embedded
hardware ECUs to the infotainment system, mostly
through customized or in-house tools aligned with the
OEM software development processes. ©

 In
te

rn
at

io
na

l A
lli

a
nc

e
fo

r
M

ob
ili

ty
 T

es
ti

ng
 a

nd
 S

ta
nd

ar
di

za
ti

on

(I
A

M
TS

)

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024 211

players currently use general-purpose tools that are proliferated
in IT security testing (e.g., fuzzers, reverse engineering, and
protocol analysis tools), as well as specialized hard- and software
for automotive systems (particularly CAN buses). These tools
are used primarily in a manual testing process. There is few
automatic test generation and execution methodology for auto-
motive security (such as [62]). Apart from systems for supporting
the testing process by automating tasks (e.g., vulnerability
scanning) and embedding this in an automated toolchain, one
trend tends to be going toward model-based testing.

6.  Conclusion
This research provided an overview of international and regional
standards and found that the current state-of-the-art lacks
proscribed detail of V&V procedures that would enable align-
ment within different regions and industry. The developmental
nature of V&V testing was further highlighted by the industry
working group responses, which demonstrated that traditional
enterprise information technology and processes were used.
We see, however, that there is considerable development in this
area with industry identifying connected and autonomous
vehicle technologies as increasing in priority for testing and the
focus on developing toolsets for automotive cybersecurity
testing. Furthermore, we also see a concentration of effort by
national authorities to enshrine UN R.155 into the national
regulatory frameworks for vehicle regulation and advocate for
best practice guidelines such as those in ISO/SAE 21434.

As the UNECE regulation and its accompanying traits are
fairly new (first effective only in mid-2022), there is a significant
lack of experience on necessary test procedures. Practical advice
will emerge in greater detail when it could be clarified how the
legislation is actually handled. The same applies for standards,
as pivotal initiatives (e.g., from ISO) are still in a very early
project phase—with forthcoming of these endeavors more
detailed specifications can be given. Dedicated, automated tool-
chains will follow that trail, so far incipient stages are given.

Acknowledgements
This work has been supported by the European Commission
through the H2020 teaming project Finest Twins (grant No.
856602) and European Union’s Horizon 2020 Research and
Innovation Programme, under grant agreement No 883321
(CitySCAPE). The authors want to thank the International
Alliance for Mobility Testing and Standardization (IAMTS)
for their support while writing this article.

Contact Information
Stefan Marksteiner
Corresponding author
stefan.marksteiner@avl.com

References
 1. United Nations Economic and Social Council—Economic

Commission for Europe, “Cyber Security and Cyber Security
Management System,” Regulation 155, Brussels, 2021.

 2. SAE International, “J3061-2 (WIP) Security Testing
Methods,” accessed June 28, 2023, https://www.sae.org/
standards/content/j3061-2/; International Organization for
Standardization and Society of Automotive Engineers, “Road
Vehicles—Cybersecurity Engineering,” ISO/SAE Standard
21434:2021, 2021.

 3. Schmittner, C. and Macher, G., “Automotive Cybersecurity
Standards—Relation and Overview,” in Computer Safety,
Reliability, and Security: SAFECOMP 2019 Workshops,
ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku,
Finland, September 10, 2019, Proceedings, Romanovsky, A.,
Troubitsyna, E., Gashi, I., Schoitsch, E. et al. (Eds.) (Berlin,
Heidelberg: Springer-Verlag, 2019), 153-165, https://doi.
org/10.1007/978-3-030-26250-1_12.

 4. Macher, G., Schmittner, C., Veledar, O., and Brenner, E.,
“ISO/SAE DIS 21434 Automotive Cybersecurity Standard—
In a Nutshell,” in Computer Safety, Reliability, and Security.
SAFECOMP 2020 Workshops, Casimiro, A., Ortmeier, F.,
Schoitsch, E., Bitsch, F. et al. (Eds.) (Cham: Springer
International Publishing, 2020), 123-135.

 5. International Organization for Standardization and Society
of Automotive Engineers, “Road Vehicles—Cybersecurity
Engineering,” ISO/SAE Draft International Standard DIS
21434, 2021.

 6. Schober, T. and Griessnig, G., “Cybersecurity Regulations
and Standards in the Automotive Domain,” in Systems,
Software and Services Process Improvement (Communications
in Computer and Information Science), Yilmaz, M., Clarke,
P., Messnarz, R., and Wöran, B. (Eds.) (Cham: Springer
International Publishing, 2022), 530-539, https://doi.
org/10.1007/978-3-031-15559-8_38.

 7. International Organization for Standardization,
“Information Technology—Process Assessment—Part 5: An
Exemplar Software Life Cycle Process Assessment Model,”
ISO/IEC Standard 15504-5, 2012.

 8. Society of Automotive Engineers, “Cybersecurity Guidebook
for Cyber-Physical Vehicle Systems,” SAE Standard
J3061_202112, 2021.

 9. United Nations Economic and Social Council—Economic
Commission for Europe, “Software Update and Software
Update Management System,” Regulation 156,
Brussels, 2021.

 10. United Nations Economic and Social Council—Economic
Commission for Europe, “UN Regulation on Uniform
Provisions Concerning the Approval of Vehicles With
Regard to Cyber Security and of Their Cybersecurity
Management Systems,” Technical Report ECE/TRANS/
WP.29/2020/79, Brussels, 2020.

 11. National Highway Traffic Safety Administration,
“Cybersecurity Best Practices for the Safety of Modern
Vehicles (Draft Update 2020),” Draft Update of DOT HS 812
333, Washington, DC, 2020.

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

212 Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024

 12. British Standards Institution, “The Fundamental Principles
of Automotive Cyber Security—Specification,” BSI PAS
1885:2018, 2018.

 13. Hu, S., Chen, Q.A., Sun, J., Feng, Y. et al., “Automated
Discovery of Denial-of-Service Vulnerabilities in Connected
Vehicle Protocols,” in 30th USENIX Security Symposium
(USENIX Security 21), USENIX Association, Vancouver,
Canada, 2021, 3219-3236, https://www.usenix.org/
conference/usenixsecurity21/presentation/hu-shengtuo.

 14. Shen, J., Won, J.Y., Chen, Z., and Chen, Q.A., “Drift with
Devil: Security of Multi-Sensor Fusion Based Localization in
High-Level Autonomous Driving under GPS Spoofing,” in
Proceedings of the 29th USENIX Security Symposium (2020),
Boston, MA, 2020, 931-948.

 15. Sun, J., Cao, Y., Chen, Q.A., and Morley Mao, Z., “Towards
Robust LiDAR-Based Perception in Autonomous Driving:
General Black-Box Adversarial Sensor Attack and
Countermeasures,” in Proceedings of the 29th USENIX
Security Symposium (2020), Boston, MA, 2020, 877-894,
arXiv:2006.16974.

 16. Kim, H., Ozgur Ozmen, M., Bianchi, A., Berkay Celik, Z. et
al., “PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles,”
in Network and Distributed System Security Symposium
(NDSS), Virtual, 2021, 1-18, https://beerkay.github.io/papers/
Berkay2021PGFuzzNDSS.pdf.

 17. Kim, T., Kim, C.H., Rhee, J., Fei, F. et al., “RVFuzzer:
Finding Input Validation Bugs in Robotic Vehicles through
Control-Guided Testing,” in 28th USENIX Security
Symposium (USENIX Security 19), USENIX Association,
Santa Clara, CA, 2019, 425-442, https://www.usenix.org/
conference/usenixsecurity19/presentation/kim.

 18. Vinzenz, N. and Oka, D.K., “Integrating Fuzz Testing into the
Cybersecurity Validation Strategy,” SAE Technical Paper
2021-01-0139 (2021), doi:https://doi.org/10.4271/2021-01-0139.

 19. Ebrahimi, M. et al., “A Systematic Approach to Automotive
Security,” in Formal Methods, Lecture Notes in Computer
Science, Chechik, M., Katoen, J.-P., and Leucker, M. (Eds.)
(Cham: Springer International Publishing, 2023), 598-609,
doi:10.1007/978-3-031-27481-7_34.

 20. Oka, D., “Fuzz Testing Virtual ECUs as Part of the
Continuous Security Testing Process,” SAE Int. J. Transp.
Cyber. & Privacy 2, no. 2 (2020): 159-168, doi:https://doi.
org/10.4271/11-02-02-0014.

 21. United Nations Economic and Social Council—Economic
Commission for Europe, “Agreement Concerning the
Adoption of Harmonized Technical United Nations
Regulations for Wheeled Vehicles, Equipment and Parts
which can be Fitted and/or be Used on Wheeled Vehicles and
the Conditions for Reciprocal Recognition of Approvals
Granted on the Basis of these United Nations Regulations,”
ECE/TRANS/WP.29/343/Rev. 30, 2022, 43.

 22. The Ministry of Industry and Information Technology of
China (MIIT), “Opinions of the Ministry of Industry and
Information Technology on Strengthening the Management
of Smart Connected Automobile Manufactures and Product
Permit,” MIIT Equipment Industry 103, 2021.

 23. The Ministry of Industry and Information Technology of
China (MIIT), “Suggestions on Strengthening the Type
Approval Management of Intelligent & Connected Vehicle
Manufacturers and Products,” MIIT 5, 2021.

 24. National Technical Committee of Auto Standardization,
“General Technical Requirements for Vehicle Cybersecurity,”
GB/T 40861–2021, 2021.

 25. The Ministry of Industry and Information Technology of
China (MIIT), “Notice of the Ministry of Industry and
Information Technology on Strengthening the Cyber
Security and Data Security of Internet of Vehicles,” MIIT
Cybersecurity 134, 2021.

 26. The Ministry of Industry and Information Technology of
China (MIIT), “Security Technical Requirements for
Connected Vehicle Based on Public Telecommunication
Network,” YD/T 3737-2020, 2020.

 27. Chinese National Information Security Standardization
Technical Committee, “Information Security Technology—
Cybersecurity Technical Requirements for In-Vehicle
Network Equipment,” Technical Report, 2020.

 28. Chinese National Information Security Standardization
Technical Committee, “Technical Requirements for
Cybersecurity of Electric Vehicles Charging System (Draft
for Comments),” GB/T, 2020.

 29. Chinese National Automotive Standardization Technical
Committee, “Technical Requirements and Test Methods for
Cybersecurity of Remote Service and Management System
for Electric Vehicles,” GB/T, 2021.

 30. Japanese Ministry of Land, Infrastructure, Transport and
Tourism Automobile Bureau, “Safety Technical Guidelines
for Self-Driving Vehicles,” Technical Report, 2018.

 31. Information-Technology Promotion Agency, Japan,
“Approaches for Vehicle Information Security,” Technical
Report, 2013.

 32. Japan Automotive Software Platform and Architecture
(JASPAR), “About Us,” accessed November 10, 2023, https://
www.jaspar.jp/en/about_us.

 33. Ministry of Land, Infrastructure and Transportation,
“Approach of Republic of Korea Harmonizing the UN
Regulation No. 155,” Technical Report, 2021.

 34. ATIC, “Brief Analysis of the July 2022 Korean Regulatory
Updates,” Technical Report, 2022.

 35. National Highway Traffic Safety Administration,
“Understanding NHTSA’s Regulatory Tools,” Report,
Washington, DC, 2017.

 36. NHTSA, “Vehicle Cybersecurity,” accessed June 28, 2023,
https://www.nhtsa.gov/technology-innovation/vehicle-
cybersecurity.

 37. National Highway Traffic Safety Administration, “Report to
Congress: ‘Electronic Systems Performance in Passenger
Motor Vehicles’,” Technical Report, 2015.

 38. McCarthy, C., Harnett, K., Carter, A., and Hatipoglu, C.,
“Assessment of the Information Sharing and Analysis Center
Model,” Technical Report DOT HS 812 076, National
Highway Traffic Safety Administration, Washington,
DC, 2014.

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

© 2024 International Alliance for Mobility Testing and Standardization (IAMTS). Published by SAE International. This Open Access article is published under the terms
of the Creative Commons Attribution Non-Commercial, No Derivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, distribution,
and reproduction in any medium, provided that the use is non-commercial, that no modifications or adaptations are made, and that the original author(s) and the
source are credited.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies
solely with the author(s).

Roberts et al. / SAE Int. J. of CAV / Volume 7, Issue 2, 2024 213

 39. NHTSA, “NHTSA Seeks Comment on Cybersecurity Best
Practices for the Safety of Modern Vehicles,” accessed June 28,
2023, https://www.nhtsa.gov/press-releases/nhtsa-seeks-
comment-cybersecurity-best-practices-safety-modern-
vehicles.

 40. National Highway Traffic Safety Administration,
“Cybersecurity Best Practices for Modern Vehicles,”
Technical Report DOT HS 812 333, Washington, DC, 2016.

 41. National Highway Traffic Safety Administration,
“Cybersecurity Best Practices for the Safety of Modern
Vehicles,” Pre-Final, Washington, DC, 2022.

 42. National Institute of Standards and Technology, “Framework
for Improving Critical Infrastructure Cybersecurity,”
Technical Report, Gaithersburg, MD, 2018.

 43. Automotive Information Sharing and Analysis Center, “Best
Practices,” Technical Report, 2016.

 44. Automotive Information Sharing and Analysis Center, “Best
Practices—Security Development Lifecycle,” Technical
Report, 2020.

 45. Transport Canada, “Canada’s Vehicle Cyber Security
Guidance,” Technical Report T46-61/2020E, 2020.

 46. European Union, “The EU Cybersecurity Act,” Technical
Report, 2020.

 47. European Union, “Cybersecurity Resilience Act,” Technical
Report, 2022.

 48. Kraftfahrt-Bundesamt, “Application of the Rules for
Designation/Recognition for Technical Services (Categories
A, B, D),” Technical Report, 2021.

 49. VDA QMC Project Group 13, “Automotive SPICE—Process
Reference and Assessment Model for Cybersecurity
Engineering,” Core Specification 1.0, Quality Management
Center of the German Association of the Automotive
Industry, 2021.

50. Ministère de la Transition écologique et solidaire,
“Cybersecurity in France for Civil Aviation,” Technical
Report, Direction générale de l’Aviation civile, 2018.

 51. Agence nationale de la sécurité des systèmes d’ information,
“Cybersecurity Act,” accessed November 10, 2023, https://
www.ssi.gouv.fr/administration/reglementation/
cybersecurity-act/.

 52. Rocchi, J.-F., Bodino, P., De Tréglodé, H., Flury-Hérard, B.
et al., “L’automatisation Des Véhicules; Annexe No. 9: La

Cyber Sécurité. Inspection Generale de l’administration
16040-R,” Inspection generale de l’administration and
Conseil general de l’environnement et du developpement
durable, 2017.

 53. Agence nationale de la sécurité des systèmes d’information,
“Analyse Des Contributions Reçues Suite à l’appel à
Manifestation d’intérêt Sur La Certification de Sécurité de
Niveaux Substantiel et Élémentaire,” Technical Report, 2019.

 54. United Kingdom Department for Transport, “The Key
Principles of Cyber Security for Connected and Automated
Vehicles,” Technical Report, 2017.

 55. British Standards Institution, “Automotive Cybersecurity
Insights Paper,” BSI PAS, 2021.

 56. “Centre for Connected and Autonomous Vehicles,
“Connected and Automated Vehicles: Process for Assuring
Safety and Security (CAVPASS),” accessed June 28, 2023,
https://www.gov.uk/guidance/connected-and-automated-
vehicles-process-for-assuring-safety-and-security-cavpass.

 57. Zenzic, “Cyber Resilience in Connected and Automated
Mobility (CAM)—Cyber Feasibility Report,” 2020.

 58. Li, J., Zhao, B., and Zhang, C., “Fuzzing: A Survey,”
Cybersecurity 1, no. 1 (2018): 6, doi:https://doi.org/10.1186/
s42400-018-0002-y.

 59. Luo, F., Zhang, X., Yang, Z., Jiang, Y. et al., “Cybersecurity
Testing for Automotive Domain: A Survey,” Sensors 22, no.
23 (2022): 9211.

 60. Mahmood, S., Nguyen, H.N., and Shaikh, S.A., “Automotive
Cybersecurity Testing: Survey of Testbeds and Methods,” in:
Digital Transformation, Cyber Security and Resilience of
Modern Societies, Studies in Big Data, vol. 84, Tagarev, T.,
Atanassov, K.T., Kharchenko, V., and Kacprzyk, J. (Eds.) (2021),
Springer, Cham, https://doi.org/10.1007/978-3-030-65722-2_14.

 61. Felderer, M., Zech, P., Breu, R., Büchler, M. et al., “Model-
Based Security Testing: A Taxonomy and Systematic
Classification,” Software Testing Verification and Reliability
26, no. 2 (2015): 119-148, doi:10.1002/stvr.1580.

 62. Marksteiner, S., Bronfman, S., Wolf, M., and Lazebnik, E.,
“Using Cyber Digital Twins for Automated Automotive
Cybersecurity Testing,” in 2021 IEEE European Symposium
on Security and Privacy Workshops (EuroS PW), Vienna,
Austria, 2021, 123-128, doi:https://doi.org/10.1109/
EuroSPW54576.2021.00020.

Downloaded from SAE International by Tallinn University of Technology, Friday, June 13, 2025

Appendix IX

Paper IX
M. Malayjerdi, A. Roberts, O. M. Maennel, and E. Malayjerdi. Combined safety and cy-bersecurity testing methodology for autonomous driving algorithms. Proceedings of the6th ACM Computer Science in Cars Symposium, pages 1–10, 2022.

307

Combined Safety and Cybersecurity Testing Methodology for
Autonomous Driving Algorithms

Mohsen Malayjerdi
Department of Mechanical and Industrial Engineering

Tallinn University of Technology
Tallinn, Estonia

mohsen.malayjerdi@taltech.ee

Andrew Roberts
FinEst Centre for Smart Cities

Tallinn University of Technology
Tallinn, Estonia

andrew.roberts@taltech.ee

Olaf Maennel
Centre for Digital Forensics and Cybersecurity

Tallinn University of Technology
Tallinn, Estonia

olaf.maennel@taltech.ee

Ehsan Malayjerdi
Department of Mechanical and Industrial Engineering,

Tallinn University of Technology
Tallinn, Estonia

ehsan.malayjerdi@taltech.ee

ABSTRACT
Combined safety and cybersecurity testing are critical for assess-
ing the reliability and optimisation of autonomous driving (AD)
algorithms. However, safety and cybersecurity testing is often con-
ducted in isolation, leading to a lack of evaluation of the complex
system-of-system interactions which impact the reliability and op-
timisation of the AD algorithm. Concurrently, practical limitations
of testing include resource usage and time. This paper proposes a
methodology for combined safety and cybersecurity testing and
applies it to a real-world AV shuttle using digital twin, software-
in-the-loop (SiL) simulation and a real-world Autonomous Vehicle
(AV) test environment. The results of the safety and cybersecurity
tests and feedback from the AD algorithm designers demonstrate
that the methodology developed is useful for assessing the reliabil-
ity and optimisation of an AD algorithm in the development phase.
Furthermore, from the observed system-of-system interactions, key
relationships such as speed and attack parameters can be used to
optimise testing.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
automotive cybersecurity, safety testing, autonomous driving
ACM Reference Format:
Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel, and Ehsan Malayjerdi.
2022. Combined Safety and Cybersecurity Testing Methodology for Au-
tonomous Driving Algorithms. In Computer Science in Cars Symposium
(CSCS ’22), December 8, 2022, Ingolstadt, Germany. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3568160.3570235

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSCS ’22, December 8, 2022, Ingolstadt, Germany
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9786-5/22/12. . . $15.00
https://doi.org/10.1145/3568160.3570235

1 INTRODUCTION
Testing autonomous driving (AD) algorithms for performance un-
der safety test cases is a predominant focus for developers to assess
the reliability of the algorithm and for optimisation. AD algorithms
are also susceptible to manipulation from cyber threats which target
the advanced hardware technologies sensor telemetry which serves
as an essential input for perception, detection, and control deci-
sions [2, 12, 20]. Existing methods [3, 8] for testing are challenged
by the complexity of evaluating system-of-system interactions to
identify key relationships and parameters, and limitations of test-
ing inherent to real-world AV programs, resource usage and time.
The main idea of this paper is to establish a method for combined
safety and cybersecurity testing of developmental AD algorithms to
evaluate system-of-system interactions to identify and investigate
parameters that impact safety and the effect of cyber attacks, and to
develop future ideas for optimisation of testing. To this end, the pa-
per focuses on three research questions aligned with the challenges
of combined safety and cybersecurity for AD algorithms.

RQ1 How can AD algorithm designers evaluate the reliability
and optimisation of the AD algorithm to both safety and
cybersecurity test cases?

RQ2 Cybersecurity testing is predominantly conducted on well-
established AD algorithms. How can combined safety and
cybersecurity testing be conducted on a developing AD al-
gorithm?

RQ3 What key relations and parameters can we identify that can
optimise safety and cybersecurity testing?

To evaluate these research questions, we apply our methodology
to a developing AD algorithm in a digital twin, software-in-the-loop
(SiL) simulator and real-world AV testing environment. Cyberse-
curity testing and safety testing are often conducted separately,
reducing our understanding of the relationship between failures of
the algorithm caused under normal safety scenarios and failures
caused by the impact of cyber attacks. For AD algorithms in the
development stage, where the reliability and optimisation of the
AD algorithm to safety scenarios have not been established, this ex-
ploration of the relationship between safety and cybersecurity can
offer novel insights to improve the awareness of the AD algorithm
designer to shortcomings in the algorithm.

CSCS ’22, December 8, 2022, Ingolstadt, Germany Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel and Ehsan Malayjerdi

The major contributions of this paper are the following:
• Methodology for combined safety and cybersecurity testing
• Safety and cybersecurity test cases conducted on an AD
algorithm under development, and with feedback from the
AD algorithm designer

• An analysis of the combined safety and cybersecurity test
cases that identifies key relations and the sensitivity of pa-
rameters.

• All the code, our AV simulation configurations and research
data used in the combined safety and security testing will
be available for the research community on GitHub.

2 TARGET SYSTEM
2.1 Low-Speed AV Shuttle for Public

Transportation
The target AV for this study, iseAuto (see Fig. 1), is a real-world
AV shuttle for public transportation, operating in numerous EU
countries.

Figure 1: iseAuto autonomous shuttle

The shuttle was developed as part of a project at Tallinn Uni-
versity of Technology’s AV research group. The objective of this
project is to build an open-source AV shuttle that provides a smart
city test bed within the university campus, enabling different types
of urban mobility research. Currently, this SAE level 4 and 5 shuttle
is operating on the campus for experimental and study purposes.
iseAuto uses a multi-LiDAR sensor system for perception and locali-
sation. Two Velodyne LiDARs are mounted at the top front (VLP-32)
and the back (VLP-16) of the vehicle, in addition to two Robosense
RS-Bpearl at both sides (left and right), to decrease the sensor blind
zone around the car.

2.2 Autonomous Driving Algorithm
The AV uses Autoware.ai [11] autonomous software stack which is
an open-source AD software. This software enables us to employ
different algorithms for each main part of the autonomous system
including localization, sensing, detection, and navigation. Open-
Planner navigation planning algorithm.

In this study, we focused on OpenPlanner as one of the most
widely used path-planner modules in the AD software. In the latest
version of this algorithm, which is currently 2.5, the module has
become noticeably more advanced in terms of supporting various
high-definition map formats, predicting the trajectories of other
actors, and using a kinematics-based trajectory generator [5]. This

version is compatible with Autoware.ai 1.15. Open-planner com-
bines global and local planners that jointly utilize the road network
map to generate local waypoints based on a global route and man-
age discrete behaviours such as avoiding dynamic obstacles and
following traffic lights.

The local planner module generates tracks parallel to the main
path defined by the global planner. These tracks are named rollouts
(see Fig. 2). The trajectory evaluator assesses all possible rollouts
in case an obstacle blocks the path. Then, the behaviour selector
will lead the AV to the new safe rollout. Figure 2 shows how open-
planner selected rollout number 6 in order to pass the non-player
character (NPC). It also detects the curb lines and avoids those
rollouts which intersect the curbs.

The algorithm uses the output of the kf_contour_track algo-
rithms to consider all the perceived objects based on the LiDARs
point cloud in its local path planning. Earlier, the euclidean cluster-
ing algorithm received the filtered point cloud data and prepared
point clusters, which is the input of the kf_contour_track. This com-
bination of cluster and contour tracking is done in each sequence
for the open-planner to evaluate possible trajectories and create
the behaviour based on that. Figure 3 shows the diagram of how
the open-planner module works under the AD software package.

Figure 2: How open-planner generates different trajectory to
pass an object

3 COMBINED SAFETY AND CYBERSECURITY
TESTING METHODOLOGY FOR AD
ALGORITHMS

The architecture of the proposed combined testing methodology is
presented in Figure 3. Thismethod takes advantage of a high-fidelity
software in the loop (SiL) simulation [16] approach to validate
and verify the performance of a AD software under critical cyber
security conditions. This method consists of three main following
elements:

• Attack script: which simulates a critical security condition.
• High-fidelity simulator: It is a game engine environment that
provides the physics for modeling sensors and motion.

• AD software: It is the autonomous driving software that
controls the AV.

The combined safety and cybersecurity methodology consisted
of the following iterative steps:

• Scenario Selection
• Analysis of the scenario to extrapolate the safety eval-
uation criterion applicable

• Safety Test Case Setup
– Initialisation of the SiL high-fidelity simulator and config-
uration to the real-world AV

Combined Safety and Cybersecurity Testing Methodology for Autonomous Driving Algorithms CSCS ’22, December 8, 2022, Ingolstadt, Germany

Figure 3: Architecture of the testing platform

– Initial scenario testing using the safety test cases to assess
the reliability of the algorithm and the quality of the test
data

– Optimisation of the safety test cases to select a subset of
the scenario tests to assess the reliability of the algorithm

– Run of the safety test case scenarios
– Selection of distinct safety test case scenarios which pro-
vide most stable results in terms of success of mission and
safety violation

• Cybersecurity Test Case Setup
– Analysis of the scenario to determine cyber attack strategy
for test cases

– Development of the code for adversary generation in the
SITL high-fidelity simulator

– Selection of attack parameters
– Optimised the cybersecurity test cases
– Evaluate cybersecurity test cases in SiL high-fidelity sim-
ulator

– Real-World AV Testing for safety and cybersecurity
• Results Analysis
– Analysis of the performance of AD algorithm to safety
criteria

– Analysis of sensitivity of attack parameters and driving
parameters

3.1 Testing Environment
All tests are conducted in a virtual environment powered by the
“Unreal game engine” (Unreal) [4]. Carla simulator [6] is one of the
open-source high-fidelity vehicle simulators capable of connecting
to different AD software and scenario generator applications. In
this study, we use Carla 0.9.13 as the high-fidelity simulator. Fig-
ure 3 illustrates the requirements for the high-fidelity simulator to
conduct simulation testing which are two components, the digital
twin of our AV and the virtual replication of our target environment.
These replicated components help us to gain more accurate results
of the proposed platform [14]. The AV digital twin is a 3D model of
our real-world world AV shuttle, designed in Blender, a graphical
3d modelling software, and imported and built in Unreal for de-
ployment in Carla. This model uses the same dimension and sensor
configuration (model, position, and orientation) from the real AV
shuttle. The environment digital twin, in our case, is identical to
the location where we are testing and operating our shuttle, this

includes the urban details and vegetation. The next module in the
simulator is a scenario generator that produces the desired scenario
based on the user input specification. Finally, the simulator engine
generates sensor data from sensors, including LiDARs, cameras and
others and publishes it for other blocks (see Fig. 3 the simulator
block). Then, the AD software receives this data as raw LiDAR
point-cloud information and processes the data as mentioned in
the diagram (Figure 3).

This simulation setup was implemented on a desktop computer
with the following configuration:

• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB

3.2 Scenario Selection
To evaluate the combined safety and cybersecurity testing, we chose
a simple overtaking maneuver, which is one of the most safety
challenging operations [13]. Figure 4 shows the functional level of
the planned scenario. To generate a variety of distinct scenarios,
we opt for the initial relative distance to the NPC 𝐷𝑥 and the NPC
constant speed 𝑆𝑁𝑃𝐶 as the distinct scenario parameters.

Figure 4: 𝐷𝑥 and 𝑆𝑁𝑃𝐶 , define the initial relative distance to
the NPC and the constant NPC speed in each scenario

Table 1: Target scenarios definition

Actor Speed 𝐷𝑥 Goal
AV [0:6]𝑚/𝑠 0 (m) overtake the NPC safely
NPC [1 1.4 1.8 2.1 2.5] [15 20 25](m) keep moving

3.3 Safety Evaluation Criteria
In determining the evaluation criteria for AV safety we consid-
ered two conditions, 1) mission success and 2) safety violations. A
safety violation consists of a collision and dangerous driving be-
haviour. In determining which criteria to apply, we considered the
EuroNCAP [1] and ISO26262 [10] standards as well those used in
composite studies [3, 7, 8]. We derived that the safety goal of the AD
algorithm is to execute the overtaking mission without colliding or
interfering with other ego vehicles or objects and without exhibit-
ing driving behaviour which is dangerous to the AV passengers.
Table 2 details the safety criteria applied in our experiments.

3.4 Safety Test Case Setup
To evaluate the reliability and optimisation of the AD algorithm
for the overtaking manoeuvre, we, firstly, initiated a run of 50
distinct scenarios in the high-fidelity simulator, repeating 6 times.
Each scenario was repeated 6 times to ensure the reproducibility

CSCS ’22, December 8, 2022, Ingolstadt, Germany Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel and Ehsan Malayjerdi

Table 2: Safety Evaluation Criteria

Safety
Condition

Data
Label

Description Metric

Succeed Suce AV Successful complete
the mission

Pass/Fail

Not Finished NotF Failure to finish the mission Pass/Fail

Distance-to
-Collision

DTC Violation of the safe distance
between AV and NPC

AV within 0.5m
of other vehicle

Break on
Driving Lane

BrD AV initiates emergency break
on driving lane

Pass/Fail

Break on
Passing Lane

BrP AV initiates emergency break
on passing lane

Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Violation V Safety Violation

of the outcome. With the mentioned desktop configuration, it took
approximately 100 𝑠𝑒𝑐 for each scenario and, in total, 8.3 hours for
300 runs. The purpose of the first scenario run was to provide a
general overview of the performance of the algorithm. We targeted
a range of 1 to 3𝑚/𝑠 for the NPC speed and 15 to 30𝑚 for the initial
relative distance to the NPC for selecting the 50 distinct scenario
parameters. The results showed that the AD algorithm could not
safely overtake the NPC at an NPC speed higher than 2.5𝑚/𝑠 and
a distance (𝐷𝑥) of more than 25𝑚.

Although a high number of scenario variations shows better
coverage in the scenario space to find corner cases, it will lead
to an increase in the time duration of the runs. Furthermore, the
number of each scenario repetitions was not sufficient to statis-
tically explain the occurrence of each safety violation. Finally, it
is worth mentioning that, as our primary study focus is not just
the validation of the AV performance, we need to use an optimum
number of trials for both safety and cyber test cases. Due to this,
we limited the scenario parameters space to the intervals listed
in Table 1 that regressed the test set to 15 distinct cases in a full
factorial setup. This enabled us to repeat the simulation of these
test cases 50 times and apply the full set of safety criteria: collision,
DTC, break in passing lane, break in driving lane, failure to finish,
and mission success.

Each scenario is generated by the Carla scenario runner utilizing
the Python behaviour trees to handle series and parallel events in
the scenario. Figure 5 depicts the scenario scheme starting with
the main sequence behaviour. This series begins with transforming
the actors into the environment and finishes by destroying the
actor block. A parallel behaviour (Driving Toward Intersection) is
defined to run the attack and the scenario stop block while the NPC
follows the defined waypoint. For safety test case scenarios, the
attack block is skipped, and the scenario waits till the stop criteria
are satisfied.

3.5 Cyber Test Case Setup
To determine the cyber attack strategy for implementation in this
test scenario, we analysed the overtaking scenario and its appli-
cability to state-of-the-art attacks on AD algorithms. We selected

Figure 5: Flow-graph of how each scenario is processed in
the simulation platform

LiDAR spoofing as it is a realistic attack in the driving environ-
ment of our real-world AV shuttle [3] and its impact is relevant to
safety outcomes due to the likelihood that the manipulated driv-
ing behaviour will result in collisions, emergency breaking, and
lane violations [20]. Attacks on LiDAR perception predominantly
focus on spoofing LiDAR 3D point-clouds through the following
means: 1) injection of adversarial LiDAR 3D point cloud data to
add adversarial objects to the driving environment inducing a false
positive result of the AD perception [3, 17] 2) removal of LiDAR
3D point cloud data to perturb the ability of the perception algo-
rithm to detect objects in the driving environment, also known as
a false negative result [8, 9] 3) manipulating LiDAR 3D point cloud
data to obfuscate the true distance of environmental objects (Other
road vehicles, pedestrians, other road objects) from the AV, causing
the perception to fail translation 4) implementation of adversarial
mesh in the driving environment to introduce manipulated points
into the LiDAR 3D point cloud and create unpredictable percep-
tion events [19]. The aim of the attacker, in adversarial LiDAR
threat models, is to induce the victim AV to perform dangerous
driving maneuvers, which include; emergency breaking, collisions,
and exceeding the limits of the driving lanes. Variables that have
been shown to influence attack success include; angle of attack of
the adversarial point cloud vector, density of the spoofed points,
duration of the broadcast of spoofed points, distance of the point
cloud to the target [3, 8, 17, 20]. We implemented a variation of the
attack suggested by Yang et al. [20], where the adversary creates
an adversarial roadside object to inject spoofed, malicious LiDAR
point clouds into the target AV LiDAR. In our attack, an adversary
has configured a LiDAR on the roadside to inject malicious point
cloud data into the AV as it is conducting the overtaking manoeuvre.
Figure 6 demonstrates the implementation of our attack.

Using the knowledge gained from literature [8, 17, 20], the pa-
rameters we chose to generate our attack are: density of the LiDAR
point clouds, frequency (the publishing rate of the fake points), du-
ration of the adversarial point cloud broadcast, and location, which
is the relative location between the target vehicle and NPC. As
an infinite number in the range of each of the parameters can be
chosen, we decided to limit our testing to parameter values that
had demonstrated utility to investigate the impact of cyberattacks
on AD algorithms. For example, Hallyburton et al. [8] found that
the success of cyber attacks increased when spoofed point density
were over 80. Therefore we chose a range for spoof point density
from 50 to 300.

Combined Safety and Cybersecurity Testing Methodology for Autonomous Driving Algorithms CSCS ’22, December 8, 2022, Ingolstadt, Germany

3.5.1 Taguchi Analysis. In this study, we use the Taguchi method
for statistical evaluation [18] of the attack parameters effect on
each safety criterion. The number of tests with four parameters and
3 levels for each in full factorial mode would become unrealistic
to perform, noting that each experiment should repeat 50 times
(81x50 = 4050 distinct scenarios). A design of the experiment is
recommended in order to avoid full factorial tests and reduce the
number of tests without compromising accuracy [18].

A Taguchi design of experiment (DOE) technique [18] was ap-
plied to quantify the influence of four proposed attack parameters;
the false points (FP) density, the FP frequency, the attack duration,
and the attack location. In total, 9 experiments were designed with 3
different values for the four parameters. The analyses hence possess
four factors and three levels for the Taguchi L9 matrix. Table 3 lists
the configuration for each run conducted for cybersecurity tests.

Table 3: Taguchi L’9 matrix for study of factor influence

Num. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

1 50 5 3 3
2 50 7 6 6
3 50 10 9 9
4 150 5 6 9
5 150 7 9 3
6 150 10 3 6
7 300 5 9 6
8 300 7 3 9
9 300 10 6 3

[50 150 300] [5 7 10] [3 6 9] [3 6 9]

Figure 6 demonstrates the cyber attack setup within the overtak-
ing scenario (Please note, the Figure only depicts the overtaking
frame and not the entire overtaking sequence.). The proposed attack
model will start by generating spoof points from the designated
place on the roadside. At the starting point, 𝑃1, the AV has relative
distance to NPC that defines the attack location. After a specific
duration (Attack Duration), the AV reaches, 𝑃2. While the attacker
keeps the malicious LiDAR pointing toward the AVs front LiDAR.
Overall, the spoofed point direction changes from 𝜃1 to 𝜃2.

Figure 6: Attack scheme

Code was created for the generation of the adversarial LiDAR
fake points to be run in the digital twin, high-fidelity simulation
environment. This is available on the GitHub site [15].

4 RESULTS AND ANALYSIS
In this section, we present the results of the safety and cybersecurity
testing of the end-to-end AD algorithm. The purpose of the safety

test case results is to evaluate the reliability and optimisation of the
algorithm.

4.1 Safety Test Case
The aim of the testing is to assess the utility of the methodology to
evaluate the relationship between the reliability of the AD algorithm
to safety and the impact of cybersecurity. As the testing is based
on a real-world AV, we were motivated to establish what results
could be gained from an amount of tests that took into account the
requirements for CPU and GPU resources and the time involved in
running high-fidelity simulations. For instance, 50 distinct scenarios
run 3 times expends x amount of resources, and takes x amount
of time. Therefore, we, firstly, performed a baseline evaluation test
where we ran 50 distinct scenarios of the overtaking manoeuvre,
3 times. Each scenario is distinct based on changes to parameters
such as NPC speed and initial distance to NPC.

In our proposed simulation platform, we perform 15 distinct sce-
narios, run 50 times; in total, 750 consecutive simulation runs were
conducted. Table 4 shows the parameters of the distinct scenarios
evaluated against the safety criteria. Using our configuration for
testing, the AD algorithm shows the performance for the overtaking
manoeuvre with a success rate of 43.9% of the simulated scenarios,
whilst, 66.1% are safety violations.

In Figure 7 is the performance of the AD algorithm.

Table 4: Summary of the safety simulation

𝐷x 𝑆NPC 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 15 1 18% 22% 0% 10% 24% 26%
2 20 1 18% 40% 8% 6% 18% 10%
3 25 1 4% 20% 32% 8% 20% 16%
4 15 1.4 6% 32% 16% 2% 12% 32%
5 20 1.4 22% 26% 14% 6% 2% 30%
6 25 1.4 4% 12% 22% 8% 0% 54%
7 15 1.8 36% 34% 8% 2% 6% 14%
8 20 1.8 22% 12% 2% 2% 0% 62%
9 25 1.8 18% 6% 0% 4% 0% 72%
10 15 2.1 4% 0% 4% 2% 4% 86%
11 20 2.1 8% 10% 0% 0% 0% 82%
12 25 2.1 24% 0% 0% 4% 0% 72%
13 15 2.5 14% 6% 0% 6% 2% 72%
14 20 2.5 44% 22% 14% 0% 2% 18%
15 25 2.5 64% 18% 0% 0% 6% 12%

mean 20.4% 17.3% 8.0% 4.0% 6.4% 43.9%
STD 16.8% 2.3% 9.8% 3.2% 8.1% 28.3%
min 4% 0% 0% 0% 0% 10%
max 64% 40% 32% 10% 24% 86%

NPC speed is an important parameter as it influences the decision
control for the critical cut-in manoeuvre of the overtaking mission.
In the context of the results of the simulations, we can see that NPC
speed impacts certain safety criteria.

The first such relation that can be seen, is that more collisions
are caused at high speeds, > 2.1 𝑚/𝑠 . This can be the effect of a
poor trajectory evaluator that doesn’t consider the prediction of the
other actors motions in the process of the waypoint generation. In

CSCS ’22, December 8, 2022, Ingolstadt, Germany Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel and Ehsan Malayjerdi

Figure 7: The 15 distinct scenarios

most collision cases the AV tried to perform a cut-in while the NPC
collided from the right side. The probability of this safety violation
will be increased as the NPC speed increases.

NPC speed also impacts the likelihood of a DTC safety violation.
In the range of the NPC speed parameter, 1𝑚/𝑠 to 1.8𝑚/𝑠 , it can be
observed that AV Shuttle violates the safe distance to the NPC. This
can be due to the AV speed adjusting relative to the NPC speed and
the cut-in is attempted at low-speed, whilst acceleration is required
to safely attempt the cut-in. This low-speed cut-in firstly causes a
DTC violation and if the overtaking manoeuvre progresses it causes
a collision. DTC and collision correlate based on the relative speed.
A low-speed NPC will likely result in a DTC violation, whilst in a
higher-speed scenario, a collision is more likely to happen.

In the lowest speed range, 1 𝑚/𝑠 to 1.4 𝑚/𝑠 , it is more likely
that the AV will initiate an emergency break in the passing lane.
This is due to the relationship of the NPC speed to the AV Shuttle
speed. The emergency break on the passing lane at low speeds
is caused by a failure of the open-planner trajectory evaluator to
effectively plan the overtaking trajectory. Figure 8 demonstrates
the AV emergency break in the passing lane, for a scenario with an
NPC Speed of 1𝑚/𝑠 . The upper rectangle represents the AV and the
lower rectangle is the NPC. The two rectangles closest to the left
represent the frame that the first emergency break on the passing
lane safety violation occurs. The most right rectangles represent
the end of the mission. The AV speed and the acceleration verify
two hard brakes in the mission while it was in the passing lane. The
failure of the trajectory planning of the open-planner algorithm is
apparent.

The failure to finish the overtaking mission is most prominent
at the lowest speed, 1𝑚/𝑠 , this is due to the time the AV Shuttle
is taking to perform the cut-in process and therefore cannot enact
the overtaking manoeuvre within the simulation timeout which
is 40 𝑠 . It was observed that for the proposed configuration, for
the lower speed of the NPC, the open-planner trajectory evaluator
is not reliable as it suggests waypoints that are not within safe
navigation and this is due to the lack of firm decision-making of
which roll-out to choose. Ultimately, this causes collision and DTC
safety violations. Furthermore, the failure to finish the simulation

Figure 8: A Brake on Passing Lane safety violation

results, we see the low-speed delays in the overtaking manoeuvre
decision making which results in the breach of the 40 𝑠 time-out.

The success rate of the safety test cases increases as the NPC
drives from 1.4 to 2.1𝑚/𝑠 speed. This focal success point around
scenario 10 with an NPC speed of 2.1𝑚/𝑠 can be a sign of matching
the current configuration of perception and open-planner with the
scenario situation.

The safety metrics results are shown in Figure 10 based on the
initial relative distance from the AV to NPC. It shows that the rate
of collision safety violations for longer initial distances from NPC
slightly increased while the success rate decreased. This is the only
trend that can be identified from results for initial relative distance,
so it can be concluded that speed is a more determining parameter
for the safety testing of our AV.

Overall, the results in Figure 7 indicate that speed is a critical
parameter for our AV safety testing platform.

Figure 9: Test Results based on NPC Speed

Combined Safety and Cybersecurity Testing Methodology for Autonomous Driving Algorithms CSCS ’22, December 8, 2022, Ingolstadt, Germany

Figure 10: Results based on Initial Relative Distance to NPC

4.2 Cybersecurity Test Case
For the cybersecurity test cases we chose 2 of the 15 distinct sce-
narios (Figure 7). This was to allow a greater scale of testing to
be conducted on a select number of relevant scenarios. Scenario
10 was chosen as it demonstrated the most reliable performance,
in terms of the most successful overtaking manoeuvres. Scenario
2 was chosen as it demonstrated the least successful results for
overtaking. These two scenarios were run 50 times each, as had
been conducted with the safety scenario runs. Figure 11 shows the
performance of cybersecurity testing, conducted on scenario 2 and
scenario 10, in comparison to safety test cases.

Scenario 10 results reveal a discernible impact of the cyber attack.
The LiDAR spoofing attack causes an increase in safety violations,
prominently, in collisions and emergency breaking in the passing
lane. This is also a concurrent result of the Scenario 2 test cases.
Figure 3 shows the control level view, that incorporates sensor per-
ception and mission and motion-planning. In the safety violation
cases, we noticed that the euclidean clustering and kf_countour de-
tect the spoofed LiDAR injection as an object and this false positive
detection impacts the local-planning to force the AV to make the
cut-in, in the overtaking manoeuvre process. Specifically, as the
placement of the adversarial LiDAR device is on the left of the AV,
the roll-outs of the left-side are blocked by the trajectory-evaluator.
This forces the AV to veer right and attempt the cut-in process that
causes predominantly collision, DTC safety violations.

Cao et al. [3] and Hallyburton et al. [8] identify density of the
spoofed points to be one of the key variables affecting cyber attack
success rate. Figure 12 and figure 13 present the sensitivity of each
attack parameter according to the cyber attack test cases. From
evaluating the raw data of the test sets, and the sensitivity analysis
for the cyber attack test cases of scenario 10, we concur with these
assessments. We find the rate of collisions is influenced by the
density of the point cloud and the location of the attack. We can
also see the influence the point of attack and duration have on
causing a break on passing lane safety violation. As the duration of
transmitting of the LiDAR point clouds increases and the location
of the attack is further from the NPC, the likelihood of the AV
initiating its breaks is higher.

In comparison, Scenario 2 cyber attack test case results show that
safety violations are less sensitive to attack parameters. This can
be due to the difficulty in interpreting the impact of cybersecurity

on this scenario due to the already high rate of safety violations of
the algorithms exhibited in the safety test case.

Table 5: Results of Cyber Attack applied to Scenario 10

Num. 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 54% 20% 2% 0% 6% 18%
2 38% 38% 6% 2% 6% 10%
3 30% 28% 22% 2% 4% 14%
4 24% 28% 16% 6% 2% 24%
5 26% 16% 12% 6% 4% 36%
6 4% 4% 6% 4% 0% 82%
7 32% 14% 14% 6% 0% 34%
8 50% 24% 8% 2% 0% 16%
9 50% 30% 2% 2% 0% 16%

mean 34.2% 22.4% 9.8% 3.3% 2.4% 27.8%
std 15.9% 10.1% 6.7% 2.2% 2.6% 22.2%
min 4.0% 4.0% 2.0% 0.0% 0.0% 10.0%
max 54.0% 38.0% 22.0% 6.0% 6.0% 82.0%

Table 6: Results of Cyber Attack applied to Scenario 2

Num. 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 16% 34% 28% 8% 14% 0%
2 26% 34% 20% 0% 8% 12%
3 20% 42% 20% 4% 6% 8%
4 26% 34% 16% 0% 14% 10%
5 22% 36% 16% 0% 20% 6%
6 22% 32% 20% 0% 18% 8%
7 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0%

mean 14.7% 23.6% 13.3% 1.3% 8.9% 4.9%
std 11.4% 17.9% 10.6% 2.8% 7.9% 4.9%
min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
max 26.0% 42.0% 28.0% 8.0% 20.0% 12.0%

4.3 Real-World AV Testing
The real-world AV testing was conducted on a private road en-
vironment using our AV Shuttle, and an NPC vehicle (turquoise
Mitsubishi iMIEV). The NPC vehicle is stationary during the tests
as a safety assessment deemed it was too dangerous to conduct the
experiment with a moving vehicle. This is due to the experiment
being within a road environment where pedestrians and other ve-
hicles are present. We conducted 3 test cases; a safety test case,
cybersecurity test case and an optimised cybersecurity test case.
The first test was an overtaking safety scenario. Two repetitions
of the safety test case were conducted. The first test demonstrated
a successful execution of the overtaking mission. The second test
resulted in a DTC safety violation. The AV motioned to within
0.42𝑚 of the NPC. The DTC violation is evident in Frame 3 of Fig-
ure 14, which details the second overtaking safety test case. Frame 4
demonstrates the eventual overtake after the DTC safety violation.
Whilst the number of repetitions in the real-world pale in com-
parison to those conducted in the simulator, the real-world results

CSCS ’22, December 8, 2022, Ingolstadt, Germany Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel and Ehsan Malayjerdi

Figure 11: Performance Results Comparing Cyber Vs Safety Test Cases

Figure 12: Scenario 10 - Cyber Attack Test Cases - Parameter
Sensitivity

Table 7: Result of the 3 real-world test cases

Test Type Num. of repeats success Safety Violations
Safety Tests 2 1 1 DTC=0.42𝑚
Cyber Tests 2 1 1 DTC=0.38𝑚
Optimised Cyber Tests 1 0 1 DTC=0.32𝑚

concur with simulation results, that the AD algorithm does not
have enough reliability for the deployment in real-world missions.

The cybersecurity test was conducted 3 times. Table 7 lists all the
real-word experiments and their results. The first cybersecurity test
demonstrated no impact from the spoofed LiDAR points and the
overtaking manoeuvre was successful. The second cybersecurity
test resulted in a DTC violation, the AV motioned to within 0.38𝑚
of the NPC. After these two tests, we optimised the target angle of
the spoofed points in relation to the attack scheme in Figure 6, to
reduce the attack starting angle of 𝜃1. We did this because during the
real-world test we observed that the reduced angle would provide

Figure 13: Scenario 2 - Cyber Attack Test Cases - Parameter
Sensitivity

assist the spoofed points to be closer to the AV trajectory and would
cause the AV to detour from its intended route. It can be seen that
this did work as the DTC decreased to 0.32𝑚. Figure 15 depicts the
real-world cybersecurity test. Frame 2 represents the moment the
attack was generated and perceived by the AD algorithm.

The videos and images related to the real-world tests are found
on GitHub site.

5 DISCUSSION
From the analysis of the results we interpreted that different safety
violations are connected to different modules of the AD algorithm.

Perception Module) We interpreted the cause of safety violations
of the emergency break in the passing lane and emergency break in
the driving lane to be related to the quality of the ground filtration.
As we observed, ground filtering outcome changes during the AV
maneuvers (turns) because the shuttle body is tilted because of
suspension and this results in the lidar reference frame orientation

Combined Safety and Cybersecurity Testing Methodology for Autonomous Driving Algorithms CSCS ’22, December 8, 2022, Ingolstadt, Germany

Figure 14: Real-World AV Test - Safety Test Case

Figure 15: Real-World AV Test - Cyber Attack Test Case

changing. Then some part of the ground point cloud as an unfiltered
perception can be seen in the detection algorithms as an obstacle.
This fake sudden obstacle might stop the AV during the motion.
The spoofed LiDAR point cloud threat model is likely to make this
condition worse. Optimisations for this: New body designs to rectify
or limit the issues of LiDAR with the physics of the AV Shuttle are
being developed. To focus specifically on these corner and edge
cases and look at optimisation of the filtering of the perception
algorithm. The latter recommendation is complicated by the fact
it may include trade-offs; if the LiDAR perception algorithm is
specifically tuned for this corner/edge case it could lead to over-
filtration in normal driving scenarios, therefore this is one of the
optimisation options to resolve the perception for the algorithm.

Open-Planner Module)We interpret the cause of safety violations
for DTC and collision as due to an issue of the open-planner in
predicting the trajectory of the NPC during the process of perform-
ing a cut-in, in front of the NPC. The optimisation would involve
incorporation of features that would enable the prediction of the
trajectory of the NPC and for perception improve the perception
of the side-lidar to accurately perceive the NPC. We found that
optimising all the perception and open-planner parameters for our
shuttle model would significantly improve the reliability of the AD
algorithm.

5.1 Open-Planner Developer Feedback
We sent a presentation of our results to the developers of the open-
planner AD algorithm. In response, they acknowledged that it
is a developing algorithm and we are engaged in more detailed
discussions with them on how to optimise the algorithm. They
also announced they are transitioning from Autoware.ai to Auto-
ware.universe which is a more developed and advanced platform.
Amongst their responses, they also pointed to the novelty of re-
ceiving feedback on the reliability of cybersecurity test cases in
addition to safety test cases.

6 RELATEDWORK
The closest contributions to our work are Yang et al. [20], Hally-
burton et al. [8], Cao et al. [3] and Zhu et al. [21]. Each of these
papers utilises a LiDAR spoofing threat model that varies based
on the method for delivering the attack, adversarial generation
and the type AD algorithm. Hallyburton et al. [8] target camera
and LiDAR sensor fusion. They identify a blind spot between the
camera and LiDAR sensor at the rear of the target AV. They use a
malicious, 3D LiDAR point cloud array to inject malicious spoof
points into the rear angle of the target AV. The attack was tested in a
high-fidelity simulation and real-world against multiple perception
algorithms. The results revealed a high rate of success utilising this
attack. Cao et al [3], Yang et al [20], and Zhu et al [21] developed
LiDAR spoofing attacks based on a threat model of a malicious
LiDAR 3D point cloud injection in the road environment and by
the roadside. Each of these contributions demonstrated that cyber
attack results from AV simulation testing can be used to identify
key parameters such as point cloud density, attack location and
duration and that these parameters can be optimised to test the
robustness of perception algorithms. We chose to extend from the
related literature, in our work, in three areas; simulation testing
configuration, safety criteria evaluation and target AD algorithm
is in the developmental phase and is used within a real-world AV
program. A feature of the selected work is that simulation testing
often selected only one frame or a limited amount of frames and
therefore the full driving mission was not observed. Whilst this is
useful for reducing testing resource usage, running massive scale
of tests and applicable to the scope of their work, as our study eval-
uates the end-to-end AD algorithm and combines safety, our study
focused on conducting simulation testing for the entire driving
mission. Secondly, the evaluation of cyber attacks focused on attack
success rate and attack parameters whilst the safety impact on the
AV as a result of cyber attacks was not as clearly elaborated. In our
study, we evaluate the cyber attack test cases with the same criteria

CSCS ’22, December 8, 2022, Ingolstadt, Germany Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel and Ehsan Malayjerdi

as the safety case to derive the category of safety violation. Lastly,
most of the simulations use default AV configurations and evaluate
well-established algorithms. Our study uses a simulator configured
for a real-world AV and evaluates an AD algorithm in the devel-
opmental stage where reliability and optimisation are required to
be assessed under safety, non-cyber test cases before the impact of
cyber attacks can be understood.

7 CONCLUSION
We developed a combined methodology for safety and cybersecu-
rity utilising a digital twin, high-fidelity simulation environment
and a real-world AV shuttle for public transportation. We evaluated
our approach on a developing AD algorithm consisting of open-
planner, as the mission and motion-planning module. We evaluated
the reliability of the AD algorithm on an overtaking scenario using
test cases for safety and cybersecurity based on a LiDAR spoofing
attack. The combined safety and cybersecurity testing enabled us
to assess the outcome of the cyber attack in comparison to the
ground truth of the reliability of the AD algorithm established in
the safety testing. This clearly demonstrated the effect of cyber-
attacks regardless of the reliability of the algorithm. We were also
able to assess, from the performance of the AD algorithm, that the
algorithm is not optimised for the overtaking manoeuvre. In our
research, we discovered several sensitive parameters that play a
significant role in the safety outcome of the AV and the success
rate of the cyber attack. Furthermore, we provided the results of
our testing platform to the designer of the open-planner algorithm.
Based on their feedback a process has been initiated to optimise the
AD algorithm. All test scripts and software resources including our
AV simulation configurations and research data used in the com-
bined safety and security testing will be available for the research
community on GitHub.

7.1 Future Work
Future work consists of diversifying the safety scenarios to include a
more complex and broader range of scenarios. Cybersecurity testing
will be evolved to develop black-box testing models. Furthermore,
we will continue to develop methods for optimising testing to factor
in real-world limitations such as resource usage and time.

ACKNOWLEDGMENTS
This research has received funding from the following grants: the
European Union’s Horizon 2020 Research and Innovation Pro-
gramme, under grant agreements No. 856602 and No 883321
(CityScape), and the European Regional Development Fund, co-
funded by the Estonian Ministry of Education and Research, under
grant agreement No 2014-2020.4.01.20-0289.

REFERENCES
[1] Euro NCAP Working Group on Automated Driving. 2019. Euro NCAP’s First

step to assess automated driving systems. Technical Report. European New Car
Assessment Programme.

[2] Adith Boloor, Karthik Garimella, Xin He, Christopher Gill, Yevgeniy Vorob-
eychik, and Xuan Zhang. 2020. Attacking vision-based perception in end-to-
end autonomous driving models. Journal of Systems Architecture 110 (2020).
https://doi.org/10.1016/j.sysarc.2020.101766 arXiv:1910.01907

[3] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Z. Morley Mao. 2019. Adversarial Sensor
Attack on LiDAR-Based Perception in Autonomous Driving. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security
(London, United Kingdom) (CCS ’19). Association for Computing Machinery,
New York, NY, USA, 2267–2281. https://doi.org/10.1145/3319535.3339815

[4] CARLA Simulation Project. 2022. Combined Safety and Cybersecurity Testing
Methodology for Autonomous Driving Algorithms. Technical Report. CARLA.

[5] Hatem Darweesh, Eijiro Takeuchi, and Kazuya Takeda. 2021. OpenPlanner 2.0:
The Portable Open Source Planner for Autonomous Driving Applications. In
2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops). 313–318.
https://doi.org/10.1109/IVWorkshops54471.2021.9669253

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1–16.

[7] Junyao Guo, Unmesh Kurup, and Mohak Shah. 2020. Is it Safe to Drive? An
Overview of Factors, Metrics, and Datasets for Driveability Assessment in Au-
tonomous Driving. IEEE Transactions on Intelligent Transportation Systems 21, 8
(2020), 3135–3151. https://doi.org/10.1109/TITS.2019.2926042

[8] R. Spencer Hallyburton, Yupei Liu, Yulong Cao, Z. MorleyMao, andMiroslav Pajic.
2022. Security Analysis of Camera-LiDAR Fusion Against Black-Box Attacks
on Autonomous Vehicles. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 1903–1920. https://www.usenix.org/
conference/usenixsecurity22/presentation/hallyburton

[9] Zhongyuan Hau, Kenneth T Co, Soteris Demetriou, and Emil C Lupu. 2021. Object
Removal Attacks on LiDAR-based 3D Object Detectors. In Third International
Workshop on Automotive and Autonomous Vehicle Security (AutoSec).

[10] ISO/TC 22/SC 32 Electrical and electronic components and general system aspects.
2018. ISO 26262-1:2018 Road vehicles — Functional safety. Technical Report.
International Standards Organization.

[11] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato
Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii,
and Takuya Azumi. 2018. Autoware on board: Enabling autonomous vehicles
with embedded systems. In ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS). IEEE, 287–296.

[12] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,
and X. Zhang. 2018. Trojaning Attack on Neural Networks. In NDSS.

[13] Ehsan Malayjerdi, Raivo Sell, Mohsen Malayjerdi, Andres Udal, and Mauro Bel-
lone. 2022. Practical path planning techniques in overtaking for autonomous
shuttles. Journal of Field Robotics 39, 4 (2022), 410–425.

[14] Mohsen Malayjerdi, Vladimir Kuts, Raivo Sell, Tauno Otto, and Barış Cem
Baykara. 2020. Virtual Simulations Environment Development for Autonomous
Vehicles Interaction. In ASME International Mechanical Engineering Congress and
Exposition. American Society of Mechanical Engineers.

[15] Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel, and Ehsan Malayjerdi. 2022.
Combined Safety and Cybersecurity Testing Methodology for Autonomous Driving
Algorithms. https://github.com/momala/Safety_Cyber_Testing.git

[16] Raivo Sell, Ehsan Malayjerdi, Mohsen Malayjerdi, and Baris Cem Baykara. 2022.
Safety Toolkit for Automated Vehicle Shuttle -Practical Implementation of Digital
Twin. In 2022 International Conference on Connected Vehicle and Expo (ICCVE).
1–6. https://doi.org/10.1109/ICCVE52871.2022.9742881

[17] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z. Morley Mao. 2020. Towards
robust LiDAR-based perception in autonomous driving: General black-box ad-
versarial sensor attack and countermeasures. Proceedings of the 29th USENIX
Security Symposium (2020), 877–894. arXiv:2006.16974

[18] KWOK-LEUNG TSUI. 1992. AN OVERVIEW OF TAGUCHI METHOD AND
NEWLY DEVELOPED STATISTICAL METHODS FOR ROBUST DESIGN. IIE
Transactions 24, 5 (1992), 44–57. https://doi.org/10.1080/07408179208964244
arXiv:https://doi.org/10.1080/07408179208964244

[19] James Tu, Huichen Li, Xinchen Yan, Mengye Ren, Yun Chen, Ming Liang, Eilyan
Bitar, Ersin Yumer, and Raquel Urtasun. 2021. Exploring Adversarial Robustness
of Multi-sensor Perception Systems in Self Driving. In 5th Annual Conference on
Robot Learning. https://openreview.net/forum?id=m5k1XdK5nI2

[20] Kaichen Yang, Tzungyu Tsai, Honggang Yu, Max Panoff, Tsung-Yi Ho, and Yier
Jin. 2021. Robust Roadside Physical Adversarial Attack Against Deep Learning
in Lidar Perception Modules. In Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security (Virtual Event, Hong Kong) (ASIA
CCS ’21). Association for Computing Machinery, New York, NY, USA, 349–362.
https://doi.org/10.1145/3433210.3453106

[21] Yi Zhu, Chenglin Miao, Tianhang Zheng, Foad Hajiaghajani, Lu Su, and Chun-
ming Qiao. 2021. Can We Use Arbitrary Objects to Attack LiDAR Perception in
Autonomous Driving? Proceedings of the ACM Conference on Computer and Com-
munications Security (2021), 1945–1960. https://doi.org/10.1145/3460120.3485377

Appendix X

Paper X
A. Roberts, O. Maennel, and N. Snetkov. Cybersecurity test range for autonomous vehicleshuttles. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW),pages 239–248, 2021.

319

Cybersecurity Test Range for Autonomous Vehicle Shuttles

Andrew Roberts, Olaf Maennel
School of IT, Department of Software Sciences

Tallinn University of Technology
Tallinn, Estonia

{andrew.roberts,olaf.maennel}@taltech.ee

Nikita Snetkov
Information Security Institute

Cybernetica AS
Tallinn, Estonia

nikita.snetkov@cyber.ee

Abstract—Autonomous vehicle (AV) shuttles for public trans-
portation are challenged by a lack of cybersecurity testing
and platforms to conduct testing. Real-world, operational
vehicles are expensive and operators are reluctant to test
cybersecurity test cases that could impart damage to the
systems. Furthermore, despite rigorous regression testing
methods used within the broader automotive industry, vul-
nerabilities of automotive systems are still being found by
creative edge and corner cases. To enable testing for edge and
corner cases for AV shuttles, we propose the integration of
cyber-physical test beds and ranges into the testing program
of real-world AV shuttles. We evaluated the Massachusetts
Institute of Technology (MIT) DuckieBot as the basis for
comprehensive cybersecurity vulnerability testing and show
how the results can be applied to the iseAuto, a real-world
AV shuttle operating in Tallinn, Estonia. The MIT DuckieBot
test bed is used to replicate the complexity and interactions
of relevant systems of the iseAuto AV shuttle. The practical
evaluation, involving cybersecurity edge and corner test cases
demonstrated that cyber-physical test beds and ranges can
support agile, repeatable cybersecurity testing that is low-
cost and is conducted in a controlled and safe environment.

Index Terms—automotive cybersecurity, autonomous vehicle
shuttles, cybersecurity testing, cybersecurity test bed, au-
tonomous vehicle cyber range

1. Introduction

Autonomous vehicle (AV) shuttles for public trans-
portation are being piloted in European cities [1]. Cy-
bersecurity of AV shuttles is of predominant importance
for the safety of passengers and pedestrians in the traffic
environment. Digitisation of vehicles and the transition-
ing to intelligent control by algorithms have exposed
vulnerabilities to traditional cyber attacks such as ran-
somware, distributed denial of service, and new attack
surfaces such as adversarial machine learning and sensor
manipulation [2]–[5]. Recent examples [6], [7] of software
failures of semi-autonomous vehicles resulting in fatalities
of passengers have shown the lethal potentiality of cyber
attacks. There are many challenges to securing AV shuttles
against cyber attacks.

Cyber ranges are popular tools to experiment with
edge and corner cybersecurity test cases and training for
skills development and situational awareness of cybersecu-

rity incident response. However, there is a lack of evalua-
tion of cyber range technologies for AV cybersecurity and
knowledge as to how cyber-physical systems can translate
to support real-world, operational AV shuttles.

To address the challenges of AV cybersecurity, cyber-
security testing platforms for cyber-physical systems and
methods for testing and training are required. In this paper
we evaluate the Massachusetts Institute of Technology
(MIT) Duckietown, low-cost, small-factor, cyber-physical
AV test bed to support cybersecurity testing of a real-world
AV Shuttle, operating in Tallinn, Estonia. The purpose is
to understand how a cyber-physical test bed can be used
for cybersecurity testing of AV shuttles and how this can
transform cyber ranges and training for AV cybersecurity.
Our main contributions are as follows:

1) We show the utility of a cyber-physical test bed
for AV shuttles to support a real-world, opera-
tional AV shuttle.

2) We demonstrate, through a series of practical cy-
bersecurity test scenarios, that a low-cost, cyber-
physical test bed can be used to test the general
cybersecurity of an AV shuttle and improve issues
with the architecture and training for situational
awareness of operators.

3) We outline recommendations how a cyber-
physical test bed can be used to validate cyber-
security edge and corner cases.

2. Related Work

Cyber-physical test beds for AVs have featured in
numerous studies. However, the related work is focused
on the design of the test bed and there are few works
that include considerations for cybersecurity testing and
training.

Three studies are prominent in the related literature
for their focus on designing low-cost cyber-physical test
beds for automotive.

Axelsson et al. created a vehicle test bed for secu-
rity evaluation of cyber physical system. The test bed
was based on a small-factor mobile vehicle which was
customised to support AUTOSAR, a software framework
for automotive. The vehicle test bed, developed in 2014,
demonstrated that a small-factor device could provide a
solution to emulate the protocols and features of a full-
factor real-life vehicle. The test bed was not autonomous
and relied on remote control by human operator [29].

239

2021 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2021, Andrew Roberts. Under license to IEEE.
DOI 10.1109/EuroSPW54576.2021.00031

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

W
or

ks
ho

ps
 (E

ur
oS

&
PW

) |
 9

78
-1

-6
65

4-
10

12
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

Eu
ro

SP
W

54
57

6.
20

21
.0

00
31

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

Tian developed a low-cost cyber-physical AV for re-
search of neural networks. The research involved creating
a code base for a line following car in a low-noise,
controlled, test environment. The study developed the
environment which could have applications for test bed
and cyber range capability. However, as this was not the
primary focus of the study, the translation of the cyber-
physical AV for testing was not explored [30].

Bhadani et al. created a Cognitive and Autonomous
Test (CAT) Vehicle test bed to evaluate AVs. The research
problem highlighted in the study was the cost, time and
risks of real-world testing and the problems translating
test cases from simulators to real-world environments. The
study designs and builds a hybrid virtual-physical test bed
that incorporates the body physics of a real world vehicle
with virtualised sensors and software platforms. ROS is
used as the middleware platform. The evaluation of the
platform was conducted through an educational program
where students used extracted data from the CAT vehicle
to improve object detection and tracking. The study was
focused on the design of the vehicle and not cybersecurity,
testing or training [32].

Zelle et al. and Santos & Schoop extended the design
of a test bed for AVs to include a framework for cyber-
security testing of AVs. Both of these studies focused on
test cases generated from either formal methods or system
analysis [31], [33]. Zelle et al. built a security test plat-
form for AVs using small-factor cyber-physical systems.
The methods used in designing the platform comprised
eliciting an attack model of cybersecurity attacks against
autonomous vehicles. Based on this attack model the test
bed was designed. The test bed is innovative, it includes
most of the diverse range of sensors used for perception as
well as in-vehicular networks and infotainment systems.
The contribution is closest to this work. The main differ-
entiation is that this study provided a practical assessment
of the test bed and analysed testing and training methods
that a cyber-physical AV test bed could support [31].

Santos & Schoop developed a framework for cy-
bersecurity testing of AVs and evaluated its efficiency
through investigation of the survivability of autonomous
vehicles after a cyber attack to the vehicles sensors. Their
framework consisted of developing test cases from formal
methods and a tool to auto-generate test cases. Their
practical evaluation involved the security testing of two
sensors; camera and LiDAR. An open-source autonomous
driving simulator, CARLA, was used as the experimental
testing environment. The authors tool for automatic test
case generation only supports CARLA. Their study ac-
knowledges the limitations of this approach, the attack to
the sensors was delivered by manual scripts and assumed
the attackers could manipulate the sensors perfectly each
time. The findings are limited to the CARLA environment
and the simulation environment testing could not replicate
a real-world physical attack or the operational driving
domain of the vehicle [33].

3. AV Shuttle Cybersecurity Program

To select a low-cost, cyber-physical test bed to eval-
uate for AV shuttle cybersecurity, we begin by providing
an overview of the Tallinn, Estonia, iseAuto, a real-world,
operational AV shuttle.

AV shuttles are a type of AV used for public transporta-
tion in predominantly urban environments. AV shuttles
can accommodate up to 15 passengers and are limited
is speed to approximately 25 km/h. Table 1 lists a few of
the different models of operational AV shuttles. There are
thousands of AV shuttles currently operating around the
world [1]. Figure 1 depicts a public transport AV shuttle.

TABLE 1. AV SHUTTLES FOR PUBLIC TRANSPORTATION [1]

AV Shuttle Location Environment
Navya Arma Parc Olympique Lyonnais,

France
Public Road

EasyMile EZ10 Airport Velizy-Villacoublay,
Paris, France

Government
Property

iseAuto Tallinn, Estonia Private Road
Baidu Apollo Software Park Xiamen, China Public Road
Local Motors
Olli

Goodyear, Colmar-Berg, Lux-
embourg

Private Road

Figure 1. iseAuto Public transport AV Shuttle [8]

AV Shuttles use either open-source or proprietary
software designed for AVs. The Robotic Operating Sys-
tem (ROS) is one of the key open-source systems. ROS
is an open-source middleware that provides support for
hardware abstraction, low-level device control, message-
passing between processes, and package management.
ROS is popularly used as it integrates with Autoware, a
large open-source research and development community
that provides a software platform for autonomous driv-
ing. The Autoware platform provides modules for self-
driving, these include localisation, detection, prediction,
planning and control [9]. These modules are essential for
the vehicle to understand where it is located in the driving
environment, map the route it must drive and detect the
objects in the driving environment such as pedestrians.
Furthermore, the control module is crucial for the vehicle
to coordinate the conditions under which the control of
the vehicle will be maintained and important decisions
will be made, such as when control of the vehicle will be
passed back to the human operator.

The AV shuttle architecture integrates this software
ecosystem with advanced hardware technology and sen-
sors: light detection and ranging (LiDAR), ultrasonic
radar, camera and global navigation satellite system
(GNSS). AV Shuttles mainly operate in Level 3 and 4
autonomy mode. SAE J3016 taxonomy and definitions of
autonomy [10] classifies level 3 and level 4 as follows:

• Level 3 (Conditional Driving Automation): Driver
does not have to monitor the system at all times,
must always be in a position to resume control.

240

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

System has longitudinal and lateral control in a
specific case. System recognised the performance
limits and request driver to resume control within
a sufficient time margin [10].

• Level 4 (High Driving Automation): Driver is not
required during the defined use case. The system
can cope with all situations automatically in a
defined use case [10].

AVs use teleoperation. Teleoperation is the remote
monitoring and controlling of the AV by a human op-
erator. In the real-world vehicle used in this study, the
teleoperation is a software module of the ROS, enabling
communication between the on-board computer and a
remote teleoperation centre located in a building along
the private road environment.

AV Shuttles are densely interconnected. The internal
self-driving vehicle network consists of layers of commu-
nicating devices from the embedded components of the ve-
hicle, including the electronic control units (ECUs) using
the CAN Bus protocol, to the IP connected sensors. The
vehicle communicates with smart road-sign-units (RSUs)
and internet-connected devices, which is termed vehicle-
to-everything (V2X), and with other vehicles, known as
vehicle-to-vehicle (V2V).

The AV shuttles autonomous driving cognition and
sensonics are tested in simulators and cyber-physical test
beds. Popular simulators include; Apollo Baidu, Autoware
lgsvl, CARLA and ROS Gazebo [11]. Simulators consist
of a 3D generated driving environment, normally from
the maps generated by LiDAR sensor. The simulated AV
can take as input the same configurations used in the
ROS software of the real-world vehicle and similar sensor
software profiles. Cyber-physical test beds can be either
small-factor replicas or hardware-in-the-loop test benches.
Cyber-physical test beds allow the same features and
functionalities of the simulated environment with the ad-
ditional benefit of providing testing of physical interfaces
and the dynamic of real-world physical conditions.

In 2015, researches demonstrated that the in-vehicle
network, Controller Area Network (CAN) Bus, of a Jeep
Cherokee could be exploited through malware and remote
code injection, to stop the brakes of the vehicle [12]. This
event precipitated the increase in focus on testing methods
and test platforms for CAN Bus and connected vehicle
technologies; communication interfaces and infotainment
systems. This increase in research activity has lead to an
increasing amount of vulnerabilities found in connected
vehicles (Table 2).

There has been growing research in cybersecurity
vulnerabilities of autonomous driving. These mainly fo-
cus on adversarial machine learning that aims to exploit
weaknesses in the autonomous driving cognition, fuzzing
of ROS and other middleware software, and network inter-
faces used for V2V and V2X communication (Table 3).
Most of this research is conducted in simulators or on
isolated systems and components and very few of the test-
ing methods relate to real-world operational vehicles [2]–
[5], [16], [17]. An exhaustive list of vulnerabilities of
connected vehicles and AVs can be found here [18]

Despite commonly used regression testing methods
and standards for cyber assurance testing of AVs, the
vulnerabilities of AV systems continue grow.

TABLE 2. EXAMPLES OF CYBER ATTACKS ON CONNECTED
VEHICLES

Vehicle Cyber Threat
Tesla Model S Spoof Passive keyless entry to take advan-

tage of weak cryptography, lack of mutual
authentication for challenge-response and
lack of firmware protection [13].
Malicious firmware with linux kernel ex-
ploitation for the ConnMan open-source in-
ternet connection manager allows WiFi of
the Tesla to be exploited to allow remote
connections [14].

Jeep Cherokee
2014

Malware on Infotainment system to allow
remote root privileges and pivot into CAN
Bus network [12].

KIA Reverse-engineered Android OS Infotain-
ment system. Found vulnerabilities to allow
remote root privileges [15].

TABLE 3. EXAMPLES OF CYBER ATTACKS ON AVS

Attack Surface Cyber Threat
Autonomous
Cognition

Tamper with RSU Stop Sign to manipulate
autonomous cognition [19].
Tamper with lane markings to manipulate
lane-keeping system(LKAS) [20].
Spoofed images in driving environment to
manipulate object-detection [21].

Sensors Jam LiDAR point cloud sensor with
laser [22].
Tamper with sensor data to manipulate nav-
igation path [23].

System Spoofing of ROS Master and interception of
ROS messages [24]
Malware in firmware update [25]
Fuzzing of AV middleware [26].

Network Intercept and spoof RSU messages [2]

Public transportation AV shuttles undergo limited test-
ing for cybersecurity, this is due to many reasons. Firstly,
cybersecurity testing on real-world proving grounds with
operational vehicles is expensive and time-consuming,
requiring extensive labour effort in the setup, execution
and safety monitoring of the tests [27]. Secondly, there
is a reluctance to test cybersecurity test cases that could
damage the vehicle. This is mainly due to the cost and
time involved in rebuilding and re-configuring vehicular
systems and components. Thirdly, the AV shuttle archi-
tecture is a distributed systems architecture and due to
lack of testing there is a gap in understanding how cyber
attacks cause cascading affects and how, for instance,
malware could propagate throughout the system. Fourthly,
there is a lack of investigation of novel testing methods
and techniques for cybersecurity. These include software
simulators and cyber-physical test beds commonly used
for testing autonomous driving cognition. Lastly, there is
lack of training of teleoperation, remote control vehicle
operators for situational awareness for cybersecurity. As
AV shuttles rely on teleoperation operators to override the
autonomous cognition in emergency situations and make
manual driving decisions, their awareness as to how cyber
attacks can impact situational awareness is critical for safe
driving operation.

Flexible testing environments that allow agile testing
of edge and corner cyberseecurity test scenarios would
help assist in identifying vulnerabilities of the AV system
architecture. Whilst simulators and small-factor cyber-

241

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

physical test beds are used for testing and improving
autonomous driving algorithms there has been limited
practical exploration of these test beds for cybersecurity
testing.

Test beds such as the MIT DuckieTown, provide
a low-cost, small-factor environment accessible to au-
tonomous self-driving vehicle developers and quality as-
surance testers [28]. These environments, which utilise
the same software and network interfaces as Autonomous
Vehicle (AV) Shuttles have the potential to be used for
cybersecurity testing and research.

4. Cybersecurity Test Beds for AV Shuttles

4.1. Test Bed Requirements

Key factors which influence the design and usage of
test beds to support the operational AV shuttle include
cost, complexity and fidelity of the test bed to the opera-
tional system.

4.1.1. Cost. To support agile testing and cybersecurity
test cases that impart physical damage on the AV, the
cost of the test bed needs to be as limited as possible.
The low-cost requirement has two intended beneficiaries.
Firstly, a low-cost agile test bed can be given to students
and researchers in innovative testing formats such as
crowd sourcing. This enables a wider scope of testing for
minimal cost. Secondly, AV shuttle programs for public
transportation do not have exhaustive resources for testing
in comparison to the major original equipment manufac-
turers. Therefore, low cost test beds are required to test
edge and corner cases and prioritise test cases for testing
on the real-world vehicle.

4.1.2. Complexity. AV shuttles are a complex distributed
system architecture, it is essential that the test bed sup-
port observation of distributed system interaction whilst
limiting the complexity to allow rebuilding of damaged
systems. For example, allowing a clean rebuilding of a
software or hardware system infected by malware. This
agility will allow repeatable testing of cybersecurity test
cases and enable dynamic testing such as crowdsourced
vulnerability analysis and training such as capture-the-flag
style learning activities.

4.1.3. Fidelity to Operational Vehicle. To evaluate cy-
bersecurity and situational awareness there needs to be a
level of abstraction of the operational vehicle architecture.
An evaluation of the real-world AV shuttle considered
the AI & Drive systems, sensonics and the network con-
nectivity with the teleoperation as key features of the
autonomous driving architecture to emulate in a test bed.

4.2. Test Bed Analysis

A comparison of test beds used for autonomous driv-
ing and cybersecurity research found the cyber-physical
test bed to be an optimal platform for evaluation (Table 4).
Advantages of the cyber-physical system are the low cost
and agile, modular architecture which can allow sensors
and systems to be added or removed. Due to the lack

of evaluation of cyber-physical test beds to support cy-
bersecurity testing their fidelity to real-world, operational
system is yet to be determined, and will be explored in
this study.

TABLE 4. COMPARISON OF TEST BED ARCHITECTURES TO SUPPORT
CYBERSECURITY

Testing Consider-
ations

Simulation Cyber-
Physical

Real-World Prov-
ing Ground

Cost Low Low Medium
Complexity Low Medium High
Fidelity Low Not

evaluated
High

Table 5 presents an evaluation of the test bed archi-
tectures to support testing for the cyber attacks listed in
Table 2 and Table 3.

TABLE 5. COMPARISON OF TEST BED ARCHITECTURES TO SUPPORT
AV SHUTTLE CYBERSECURITY TEST CASES

Cyber Threat Test
Cases

Simulation Cyber-
Physical

Real-World
Proving
Ground

Hardware and Com-
pute

Yes Yes Yes

Connected Vehicle Yes Yes Yes
Sensor and Percep-
tion

Yes Yes Yes

Physical Access No Yes Yes
Damage Incurring No Yes Yes
Environmental
Perturbations

No Yes Yes

4.3. AV Shuttle Cyber Range for Cybersecurity

The MIT CSAIL Duckietown is a small-factor test bed
used for evaluating autonomous driving software modules,
algorithms and education. Duckietown consists of a driv-
ing environment (Figure 2) and an AV, called, DuckieBot
(Figure 3).The cost of the components to build the MIT
Duckietown test bed is approximately C400.

Figure 2. DuckieTown - Cyber-Physical Test Bed

The DuckieBot uses a 5 mega pixel Raspberry Pi
camera for sensing. The hardware for the AI and Drive
Algorithm is built on Raspberry Pi Model 3B hardware.
The software platform is built upon Docker utilising ROS
Kinetic. A 32GB SD card is used for local on-board
storage and a 100Gb USB drive can be inserted in the
Raspberry Pi to allow more storage for logging. A 5 volt,
10400 mAh, battery is used to power the DuckieBot. Ac-
tuation is performed by the motor driver which connects to

242

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Duckiebot - AV Cyber-Physical Device

servo motors. The DuckieBot is calibrated to operate in the
DuckieTown driving environment. This consists of a floor
layer with road markings, conventional to the standard
markings of real-world traffic.

Table 6 represents detailed analysis of the DuckieBot
with the iseAuto AV shuttle, operating in Tallinn, Estonia.

TABLE 6. FEATURE COMPARISON OF TEST BED AND ISEAUTO AV
SHUTTLE

DuckieBot iseAuto AV Shuttle
ROS Kinetic Kame ROS Kinetic Kame
Linux Network Interfaces and
4G Cellular Network

Linux Network Interfaces and
4G/5G Cellular Connectivity
(*V2X is yet to be added as
a feature)

Camera Sensing Camera, LiDAR, Ultrasonic
Radar, GNSS

Actuation, motor driver con-
trols servo motors

Actuation, Drive Controller
controls CAR ECU

On-board Control PC (ARM
processor)

On-board Control PC (ARM
processor) different hardware
specifications

Teleoperation - Mission Con-
trol System

Teleoperation - Mission Con-
trol System

The DuckieBot is an optimal test bed for experimen-
tation as it uses the containerised architecture of Docker.
This allows software packages for sensors, hardware and
AD to be centralised in a configurable system. This en-
ables packages to be added or removed depending on the
test case and for new sensors and hardware to be added
easily. The other major advantage is that the DuckieBot
is an actively supported open-source project and new AD
algorithms are published regularly. This helps to ensure
that test cases are tested against the newest available AD
algorithms.

5. Cybersecurity Test Scenarios for AV Shut-
tles

5.1. Test Scenario Generation Process

Some example use-cases are used to evaluate the
usefulness of the cyber-physical range. To generate the
cyber test scenarios we asked experts in AV cybersecurity
from vehicle manufacturers and system designers to detail
edge and corner cybersecurity test cases that they would
want a AV cybersecurity test bed to support. The experts
represented organisations that develop autonomous robots
for logistics, autonomous driving assistance systems and
AV shuttle operators. Table 7 lists illustrates our chosen
demonstration use-cases.

TABLE 7. SECURITY TEST CASE SCENARIOS

Test Case
Scenario 1 (S01) An external threat actor spoofs the road

markings to manipulate the driving logic to
veer the vehicle off the road.

Scenario 2 (S02) An external threat actor tampers with the
road markings to manipulate the drive logic
to veer the vehicle off the road.

Scenario 3 (S03) An external threat actor tampers with the
camera sensor using a laser pointer to blind
or shield it’s perception to manipulate the
drive logic to veer the vehicle off the road.

Scenario 4 (S04) An external threat actor spoofs the RSU
to manipulate the drive logic to veer the
vehicle off the road.

Scenario 5 (S05) An innocent maintenance engineer executes
a malicious cryptocurrency or ransomware
malware hiding as a firmware update for a
vehicle system.

Scenario 6 (S06) An external threat actor eavesdrops on the
ROS vehicular messaging system for infor-
mation gathering

Scenario 7 (S07) An external threat actor attacker conducts a
denial-of-service of the teleoperation com-
munication link with the AV.

Scenario 8 (S08) An external threat actor uses a smoke gun
to perturb the camera sensor vision and alter
the driving course of the vehicle

5.2. Scenarios

In this section, we detail a few of the test scenar-
ios. The aim of the test scenarios is to understand the
utility of cybersecurity testing in an AV cyber-physical
testbed environment to the real-world AV shuttle. The
verification of the test results does not focus on a binary,
yes/no conclusion, rather, a deeper analysis of whether
the behaviour of the AV system observed during the
cybersecurity testing can be used to identify vulnerabilities
of the real-world AV shuttle architecture to cyber attacks.
All of the scenarios can be viewed at the YouTube channel
that was created to demonstrate the AV cyber range:
https://tinyurl.com/2xxvvkzd [34]

5.2.1. S01 - Projected Road Markings. Problem: The
projector attack consists of an attacker crafting a spoof
image to be projected onto the traffic environment. The
aim for the attacker is to fool the autonomous drive
cognition to accept the spoofed image as genuine and alter
the driving behaviour. An example would be a project
of a lane marking on the road to alter the course of
the AV. The projection attack experiments as detailed in
Nassi et al. [21], used trial-and-error as a method of
testing. The attack was trialled on real-world vehicles in a
private campus environment. The testing environment was
tightly controlled for safety reasons and the setup of the
test took considerable time and effort. In DuckieTown,
this attack can be tested and repeated using as many
diverse methods as possible. The small, cyber-physical
testing environment allowed for agility and repeatability
and enabled replication of a cyber threat identified in a
paper to test the validity of the results to our Av shuttle.

Whilst a spoofing attack using projection is a novel
and interesting method to manipulate an autonomous ve-
hicle it is unlikely or has low probability of success. The
projection must contend with natural light, which means

243

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

the attack must be undertaken at night. DuckieTown can
be used for situational awareness for projections and
spoofed images in the training of teleoperation operators.
They must understand that these attacks can occur and
have the ability to confuse the human operator into think-
ing the autonomous cognition has failed to detect a lane
marking.

Scenario: An external threat actor spoofs the road
markings to manipulate the drive logic to veer the vehicle
off the road.

Attack Sequence:

1) Attacker observes the autonomous self-driving
vehicle to understand how the autonomous drive
cognition makes decisions.

2) Attacker crafts a spoofed image of a lane marking
for projection on the driving environment.

3) Attacker positions a drone with a projector at-
tached to it, in proximity to the vehicle and uses
a remote control to initiate the projection attack.

Results: The spoofed projection attacks were unable
to alter the driving actions of the DuckieBot. Figure 4
shows the faint image of the phantom spoofed yellow
line which is barely visible due to the bright profile
of the driving environment. Figure 5 visibly shows the
spoofed line marking, due to a larger spoofed image
being projected by the attacker. The figure 5 image, from
the DuckieBot camera shows that the autonomous drive
cognition is detecting the edges and texture of the yellow
lines and white boundaries but is not detecting the spoofed
projection image. This is due to the lack of edges, texture
and geometry of the spoofed projection image.

Multiple diverse attack methods were trialled, the
spoofed projection images were left projecting on the
road surface for 10 minutes, the size of the images
were increased, the definition of the images increased,
projection on different sections of the floor and different
environmental light. The DuckieBot was resilient to the
projected road markings attack and the autonomous drive
cognition was not manipulated.

Figure 4. Scenario 1 - Projected Lane Marking

5.2.2. S02 - Tampered Lane Markings. Problem: Al-
though this threat seems simplistic in the experimental
test bed environment, the implications for a real-world
operational vehicle are stark. An attacker can use a 3D
printer to print a tampered road patch and place it on the
road markings of a highway. If this test had occurred on an

Figure 5. Scenario 1 - Projected Lane Marking

autonomous vehicle travelling at 40 mph it would have re-
sulted in physical damage to the AV. This attack shows the
usefulness of the cyber-physical AV. The cyber-physical
AV enabled this attack to be experimented repeatably and
we were able to try different lane marking manipulations.
This is an improvement on the methods used by Sato et
al. [20] where they used a simulation for testing and this
simulation environment wasn’t able to replicate the role of
the teleoperation or camera sensing. Through testing this
attack in the DuckieTown, we can see that the teleoper-
ation operator must maintain situational awareness of the
road environment if there have been any manipulations
by a threat actor or environmental damage. In translating
this scenario to the real-world AV we were able to detect
that the operational vehicle would be susceptible to this
same attack. From this experiment, a greater examination
of the sensing and detection algorithms of the real-world
vehicle was conducted and updates to the multi-sensor
fusion were made to mitigate the risk of this attack.

Scenario: An external threat actor tampers with the
road markings to manipulate the drive logic to veer the
vehicle off the road

Attack Sequence:

1) Attacker observes the autonomous self-driving
vehicle to understand how the autonomous driv-
ing cognition makes decisions.

2) Attacker, using the understanding of the drive
control algorithm, perturbs the road markings in
the DuckieTown environment.

Results: Perturbation of a road marking can manip-
ulate the drive algorithm to cause the autonomous self-
driving vehicle to veer off the intended path of travel.

In the first experiment the attacker tampered with the
yellow lane markers to manipulate the autonomous self-
driving vehicle to drive off the road. The curve road
part was changed to a straight trajectory and the an-
gle of the lane borders (white lines) were reduced to
lessen the width of the road. As Figure 7 demonstrates,
the change to the road markings is demonstrable in the
DuckieBot camera sensor footage, from the expected road
markings exhibited in Figure 6. The first experiment was
successful in manipulating the autonomous drive cognition
of the DuckieBot, however, the DuckieBot autonomy is
programmed to firstly respect the lane boundaries. The
DuckieBot followed the tampered yellow line until it
detected the lane boundary and then adjusted it’s travel
path to the correct route.

244

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Normal Lane Markings

Figure 7. Manipulated Lane Marking

In the second and third the attacker extended the
yellow lane markings further into the lane boundaries. The
DuckieBot still respected the boundaries and corrected the
path of travel.

In the fourth and fifth experiment the attacker removed
the lane boundaries and extended the yellow lane mark-
ings, as shown in Figure 8 . The attack was successful and
the DuckieBot veered off the DuckieTown environment
and was unable to recover.

Figure 8. Extended Manipulated Lane Marking

5.2.3. S05 - Firmware update compromise. Problem:
Malware in a distributed system provides interesting ob-
servations, an autonomous vehicle could lose access to a
secure network and connect to a more vulnerable network
which would allow malware to propagate more exten-
sively. In testing the findings of Weiss et al. [25], we were
able, in DuckieTown, use real malware and observe how
it propagates in an AV system. We were able to clean the
system and repeat the attack to observe any differences in
behaviour. In translating the results of the malware attack
to the real-world AV shuttle, the AV engineers were un-
aware of the risks posed in connecting wireless networks
in the transit environment. There are many applications
for this range scenario for training. Firstly, this scenario
would be useful to test incident response to malware in
AVs. Secondly, it would be beneficial for the engineers
to understand the risks posed by a lack of validation of

firmware updates and how malware can spread within a
distributed system.

Scenario: An innocent maintenance engineer executes
a malicious cryptocurrency or ransomware malware hiding
as a firmware update for a vehicle system created by an
angry mechanic/insider.

Attack Sequence:

1) Angry Mechanic uploads malware from dark web
or publically available repository.

2) Malware script is packaged as a bash script that
is labelled ”update”.

3) Maintenance engineer initiates ”update” script
with intention of update AV shuttle firmware.

Results: The ”update” firmware was executed by the inno-
cent maintenance engineer. The update firmware contained
a bash script which executed a cryptomining program.
Once infected on a host computer the malware installs
several libraries and processes for it’s operation and then
tries to install zmap (net-work scanner) and ssh pass
(utility for establishing SSH connections). It uses zmap,
in an infinite loop,to discover then network and find
embedded devices with port 22 (SSH) open. If these are
found, it connects to the device using ssh with default
passwords. It then changes the configuration settings of
the device to allow a connection to a command and
control node used for cryptomining. On the DuckieBot,
the malware installed it’s libraries and zmap and ssh pass
and began a zmap scan of the network. The DuckieBot
was on a private 4G network that also had another AV
connected. As these devices do not use default passwords
it was unable to establish a connection to them. The zmap
scans only marginally impacted the performance of the
network of the DuckieBot. The zmap scan was sending
50,000 packets to the target device, but these are only
looking for open port 22. An interesting event happened
during the experiment. The 4G cellular private network
lost connection during the malware execution and the
DuckieBot switched over to an open wireless network
connection (controlled by us). The zmap process then
started to scan the network for open embedded devices.
The malware attack was attempted again and this time
the wireless campus network was removed. The malware
behaved in the same manner and was unsuccessful in brute
forcing the DuckieBot.

5.2.4. S06 - Eavesdropping of AV Shuttle operations.
Problem: ROS is highly insecure. The version that the
DuckieBot is running is the same as the vehicles used
by real-world AV Shuttles. There is no authentication
and secure communication of the ROS Master. The ROS
Master also uses HTTP so it is vulnerable to a number of
other malicious web application attacks. The AV testing
environment enabled us to test on a real-time system
to understand dynamically the information that can be
gathered from reading ROS messages and the possibilities
of how this information can be used to develop an attack
on the vehicle platform. In translation of this to our real-
world AV, the mitigating action is to filter the ROS port
with a firewall rule. However, if the attacker gains access
to the internal network of the AV system there is little
possibility to prevent this attack other than to upgrade

245

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

to the latest version of ROS, ROS2, which is still under
development.

Scenario: An external threat actor eavesdrops on the
ROS vehicular messaging system for information gather-
ing.
Attack Sequence: For this attack, the attacker needs to
be on the same network as the vehicle.

1) Attacker scans the network and identifies the
vehicle

2) Attacker eavesdrops on the ROS communication
by spoofing the ROS Master.

Result: The attacker was able to spoof the ROS Master
easily and read the ROS messages which are used for AV
operations. The attacker was able to generate a ROS graph
that showed all of the communication ROS messages
(picture not shown/included for anonymity reasons). From
this, the attacker could develop a diverse range of attacks
such as injection of ROS commands to manipulate a ROS
node and replay attacks.

5.2.5. S07 - DDoS Teleoperation Network. Problem:
The DDoS attack is an important scenario to replicate in
a cyber range due to the loss of control of the teleoperation
operator to safely stop the vehicle. This scenario was
interesting for the real-world AV shuttle teleoperation
staff. When the DDoS attack was conducted the teleop-
eration console froze and only when the network was re-
established did they see that the AV had crashed. This
scenario is important for situational awareness training.

Scenario: An external threat actor conducts a denial
of service of the short-range wireless network of the
autonomous self-driving vehicle.
Attack Sequence:

1) Attacker scans wireless and cellular networks of
the vehicle using scanning software such as nmap
or airmagnet.

2) Attacker finds the WiFi access point connecting
to the human operator console and autonomous
self-driving vehicle.

3) Attacker De-authenticates the devices connected
to the WiFi access point.

Results: A scan of all wireless networks was con-
ducted on the attackers PC. The attacker used a wireless
scanning device that can be considered a malicious access
point that acts as a man-in-the-middle between the wire-
less network and the client device. It can scan, capture
traffic and execute a number of attacks such as capturing
passwords of insecure network protocols.

The deauthentication attack was attempted twice. Both
attempts were successful. Figure 9 shows the teleoperation
console after it loses access to the network connection
with the DuckieBot and the DuckieBot accelerates off the
road. Figure 10 shows the DuckieBot impacting the wall
when it loses connectivity. The DuckieBot continues to
accelerate on hitting the wall.

5.2.6. S08 - Smoke machine sensor perturbation.
Problem: The expert from the autonomous robotics for lo-
gistics organisation requested this test case as they wanted
to see environmental impacts on the cyber-physical system
and how they can relate to their real-world autonomous

Figure 9. Camera Sensor Vision - DDoS Attack Crash

Figure 10. DuckieBot crashed after DDoS

systems. The test case demonstrated the utility of cyber-
physical AV test bed in being able to simulate diverse
environment conditions. Based on the results of the test
case it may be possible to include safety testing in the
scope of the test bed.

Scenario: An external threat actor uses a smoke ma-
chine to perturb the camera sensor vision and alter the
driving course of the vehicle.
Attack Sequence:

1) A 400w smoke machine is placed next to the
environment. The smoke machine is filled with
special liquid and then activated using the com-
mand controller. Smoke envelops the driving en-
vironment.

Results: The experiments were conducted under three
different lighting conditions: controlled lights, natural
light, controlled dark lighting. In all lighting conditions
the smoke was able to perturb the camera sensor to alter
the driving path of the DuckieBot to crash out of the road
environment.

The initial experimental tests, which were unsuccess-
ful in altering the DuckieBot path, showed that the most
important variables were the denseness of the smoke and
the ability of the smoke to linger in the air to envelop
the camera. The first three smoke experimental tests
demonstrated the autonomous driving cognition being lost
due to the smoke hazard, however, as the smoke stream
was momentary, the detection of the lane markings were
recovered in time to navigate accurately. Figure 11 shows
the lane detection functioning, and Figure12 shows the
smoke perturbing the lane detection of the lane markings.

246

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

Figure 11. Lane Detection

Figure 12. Smoke Perturbed Lane Detection

6. Discussion

The MIT DuckieTown cyber-physical AV shuttle test
bed demonstrated it’s use in validating the viability of
proof-of-concept attacks such as that of the projector at-
tack and the spoofed lane keeping assistance. The test bed
enabled agility and repeatably of testing which facilitated
greater understanding of the complexity of implementa-
tion of cyber attacks on AVs as well as the challenges for
situational awareness for AV operators. A clear represen-
tation is the projector attack which demonstrated that it
was very difficult for the adversary to accomplish due to
the lighting, projection and camera angle requirements.
The WiFi test case provided insights into possibilities
for interoperability and human operator research. The
vulnerabilities of the network interface, exploited in the
cybersecurity test case, impacted the vehicle behaviour
and human control.

The results of the testing were provided to the iseAuto,
real-world AV Shuttle program. Based on the results
analysis, the AV shuttle operator identified a number of
vulnerabilities in the AV shuttle architecture. This resulted
in the updating of the network package to stop the vehicle
in the event of network unavailability or outage. Fur-
thermore, the results helped to educate the teleoperation
AV shuttle operators about some of the scenarios they
could encounter from an adversarial actor in the driving
environment and based on this it assisted in initiating a
discussion on what decisions the operator would make
when faced with a scenario such as the projection attack
or environmental perturbations.

The feedback from the iseAuto concluded that the
cyber-physical test bed offered a platform for which they
could test corner and edge cases that would be out-of-
scope of the real-world vehicle due to cost and risk

impacts. It helped the iseAuto AV shuttle program in
understanding how their AV Shuttle could be impacted
by cyber attacks and with prioritising which attacks were
most likely and require further testing on the real AV
shuttle.

7. Conclusion

We demonstrated that cyber-physical test beds for
AVs could be used to test edge and corner cybersecurity
test cases. The results of these tests had applicability
for the real-world, operational AV shuttle. Firstly, they
identified areas in the AV architecture where a cyber
threat actor could exploit vulnerabilities. Secondly, they
identified areas where training could be conducted to
improve situational awareness. We also demonstrated that
the cyber-physical AV test bed offers advantages such as
agile, repeatable testing which can be conducted safely,
efficiently and at low-cost. As AV shuttles are challenged
from a lack of cybersecurity testing, the cyber-physical
test bed provides platform that can be used to improve
AV cybersecurity.

8. Future Work

Future work concerns extending the use of the AV
cyber-physical test bed to support innovative training and
testing methods. The AV cyber-physical test bed will be
transformed to integrate with a federated cyber range.
The aim will be to extend the availability of the cyber-
physical AV cyber range to a wider audience and evalu-
ate its performance in a large cyber range environment.
The integrated cyber range will then be tested using
crowdsourced security testing methods. As AV shuttles
are developed in open-source communities such as the
Autoware Foundation, the crowdsourced security testing
offers a method that can be leveraged to include AV en-
gineers in the process of cybersecurity testing. Evaluation
of the crowdsourced method to produce improved testing
outcomes, training and awareness of cybersecurity will
produce valuable insights for AV shuttle cybersecurity.

Acknowledgements

This work was partially supported by the European
Commission through the H2020 project Finest Twins
(grant No. 856602) and the ECHO project (grant agree-
ment no 830943).

References

[1] Calin Iclodean, Nicolae Cordos, and Bogdan Ovidiu Varga.
2020. Autonomous Shuttle Bus for Public Transportation: A Re-
view.Energies13, 11 (2020). https://doi.org/10.3390/en13112917

[2] Jonathan Petit and Steven Shladover. Potential cyberattacks on au-
tomated vehicles.Intelligent Transportation Systems, IEEE Trans-
actions on, PP:1–11, 09 2014

[3] S. Parkinson, P. Ward, K. Wilson, and J. Miller. Cyber
threats facing autonomous and connected vehicles: Future chal-
lenges.IEEE Transactions on Intelligent Transportation Systems,
18(11):2898–2915, Nov 2017.

247

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

[4] Stephen Checkoway,Damon McCoy,Brian Kantor,Danny Ander-
son,Hovav Shacham,Stefan Savage, Karl Koscher, Alexei Czeskis,
Franziska Roesner, and Tadayoshi Kohno.Comprehensive experi-
mental analyses of automotive attack surfaces. In Proceedings of
the 20th USENIX Conference on Security, SEC’11, page 6, USA,
2011. USENIX Association.

[5] V. L. L. Thing and J. Wu. Autonomous vehicle security: A taxon-
omy of attacks and defences. In2016 IEEE International Confer-
ence on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (Smart Data),
pages 164–170,Dec 2016.

[6] A.Davies (2019, May.).Tesla’s Latest Autopilot Death Looks
Just Like a Prior Crash, WIRED Magazine.Accessed 20
March,2020.[Online].Available:https://www.wired.com/story/teslas-
latest-autopilot-death-looks-like-prior-crash/.

[7] A.Marshall (2018, Mar.). Uber’s Self-Driving Car Just Killed
Somebody. Now What?,WIRED Magazine. Accessed 20 May,
2020. [Online]. Available:https://www.wired.com/story/uber-self-
driving-car-crash-arizona-pedestrian/

[8] Aripaev, TalTech is developing a AV together with U.S uni-
versity, 2019. Accessed on: 5 May 2021. [Online]. Avail-
able:https://www.toostusuudised.ee/uudised/2019/04/10

[9] Autoware foundation, The Autoware Foundation. 2021. Accessed
on: 10 May 2021. [Online]. Available: https://www.autoware.org/

[10] SAE International. SAE J3016 - Levels of Driving Au-
tomation. Accessed on 10 May 2021. [Online]. Available:
https://www.sae.org/standards/content/j3016

[11] G. Rong et al., ”LGSVL Simulator: A High Fidelity Simulator for
Autonomous Driving,” 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), 2020, pp. 1-6, doi:
10.1109/ITSC45102.2020.9294422.

[12] C.Miller & C.Valasek (2015, Aug.). Remote Exploitation of an
Unaltered Passenger Vehicle. Accessed 20 June, 2020. [Online].
Available: http://illmatics.com/Remote%20Car%20Hacking.pdf

[13] Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs,
and Bart Preneel. 2019. Fast, Furious and Insecure: Passive Keyless
Entry and Start Systems in Modern Super cars.IACR Transactions
on Cryptographic Hardware and Embedded Systems2019, Issue 3
(2019), 66–85. https://doi.org/10.13154/tches.v2019.i3.66-85

[14] Weinmann, R.P & Schmotzle, B, TBONE, 28 April 2021. Accessed
on: 10 May 2021. [Online]. Available: https://kunnamon.io/tbone/

[15] Costantino, G & Matteucci, I.KOFFEE - Kia OFFensivE Ex-
ploit, 2020. Accessed on: 10 May 2021. [Online]. Available:
https://www-old.iit.cnr.it/node/59491

[16] Sghiri Meryem and Tomader Mazri. Security study and challenges
of connected autonomous vehicles. In Proceedings of the 4th
International Conference on Smart City Applications, SCA ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

[17] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin. The secu-
rity of autonomous driving:Threats, defenses, and future direc-
tions.Proceedings of the IEEE, 108(2):357–372,2020.

[18] Shah Khalid Khan, Nirajan Shiwakoti, Peter Stasinopoulos,
and Yilun Chen. 2020.Cyber-attacks in the next-generation
cars, mitigation techniques, anticipated readiness and future
directions.Accident Analysis Prevention148 (2020), 105837.
https://doi.org/10.1016/j.aap.2020.105837

[19] Kevin Eykholt,Ivan Evtimov, Earlence Fernandes, Bo Li, Amir
Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and
Dawn Song. Robust physical-world attacks on deep learning visual
classification. In2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City,UT,USA,June18-
22,2018,pages1625–1634. IEEE Computer Society, 2018

[20] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue Lin,
and Qi Alfred Chen.Security of deep learning based lane keeping
system under physical-world adversarial attack, 03 2020.

[21] Ben Nassi, Yisroel Mirsky, Dudi Nassi, Raz Ben-Netanel, Oleg
Drokin, and Yuval Elovici. 2020. Phantom of the ADAS: Securing
Advanced Driver Assistance Systems from Split-Second Phantom
Attacks. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security(Virtual Event,USA)(CCS
’20). Association for Computing Machinery, New York, NY,
USA,293–308. https://doi.org/10.1145/3372297.3423359

[22] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won
Park, Sara Rampazzi,Qi Alfred Chen, Kevin Fu, and Z. Morley
Mao. Adversarial sensor attack on lidar-based perception in au-
tonomous driving. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’19, page
2267–2281,New York, NY, USA, 2019. Association for Computing
Machinery.

[23] Drew Davidson, Hao Wu, Rob Jellinek, Vikas Singh, and Thomas
Ristenpart. Control-ling uavs with sensor input spoofing attacks.
In10th USENIX Workshop on Offensive Technologies (WOOT 16),
Austin, TX, August 2016. USENIX Association.

[24] Se-Yeon Jeong, I-Ju Choi, Yeong-Jin Kim, Yong-Min Shin, Jeong-
Hun Han, Goo-HongJung, and Kyoung-Gon Kim. A study on ros
vulnerabilities and countermeasure. In Proceedings of the Compan-
ion of the 2017 ACM/IEEE International Conference on Human
Robot Interaction, HRI’17, page147–148, NewYork, NY, USA,
2017. Association for Computing Machinery.

[25] Nils Weiss, Markus Schrötter, and Rudolf Hackenberg. On threat
analysis and risk estimation of automotive ransomware. In ACM
Computer Science in Cars Symposium,CSCS ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[26] Jia Cheng Han and Zhi Quan Zhou. 2020. Metamorphic
Fuzz Testing of Autonomous Vehicles. In Proceedings of the
IEEE/ACM 42nd International Confer-ence on Software Engineer-
ing Workshops(Seoul, Republic of Korea)(ICSEW’20).Association
for Computing Machinery, New York, NY, USA, 380–385.
https://doi.org/10.1145/3387940.3392252

[27] Vinzenz, N. and Oka, D., ”Integrating Fuzz Testing into the Cyber-
security Validation Strategy,” SAE Technical Paper 2021-01-0139,
2021, https://doi.org/10.4271/2021-01-0139.

[28] Jacopo Tani, Liam Paull, Maria T. Zuber, Daniela Rus, Jonathan
How, John Leonard,and Andrea Censi. Duckietown: An innovative
way to teach autonomy. In Dimitris Alimisis, Michele Moro, and
Emanuele Menegatti, editors,Educational Robotics in the Makers
Era, pages 104–121, Cham, 2017. Springer International Publish-
ing.

[29] Axelsson, A. Kobetski, Z. Ni, S. Zhang, and E. Johansson. Moped:
A mobile open platform for experimental design of cyber-physical
systems. In 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 423–430, 2014.

[30] D.Tian(2019,April.).Deep Learning, Self Driving Robotic
Car on a Shoestring Budget.Accessed 20 March, 2020.
[Online]. Available:https://towardsdatascience.com/deeppicar-
part-1-102e03c83f2c

[31] D.Zelle, R.Rieke, C.Plappert, C.Krauß, D.Levshun, and
A.Chechulin. Sepad security evaluation platform for
autonomous driving. In 2020 28th Euromicro International
Conferenceon Parallel, Distributed and Network Based Processing
(PDP),pages413–420, 2020.

[32] Rahul Bhadani, Jonathan Sprinkle, and Matthew Bunting. The CAT
Vehicle Test bed:A Simulator with Hardware in the Loop for Au-
tonomous Vehicle Applications. In Proceedings 2nd International
Workshop on Safe Control of Autonomous Vehicles(SCAV94
2018), Porto, Portugal, Electronic Proceedings in Theoretical Com-
puter Science, volume 269, 04/2018 2018.

[33] Eduardo dos Santos and Dominik Schoop. 2018. Towards
a Simulation-based Framework for the Security Testing of
Autonomous Vehicles. In 6th Embedded Security in Cars
USA(Ypsilanti, MI, USA). 15.

[34] Andrew Roberts. 2021. Self-Driving Vehicle Security
Test Bed. Accessed 20 March. 2021. [Online]. Available:
https://www.youtube.com/channel/UC7cXB9DSG6UCQAYHw4vk
rSQ/videos

248

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 13,2025 at 16:07:42 UTC from IEEE Xplore. Restrictions apply.

Curriculum Vitae
1. Personal DataName Andrew James RobertsDate of Birth 26 July 1989Nationality Australia
2. Contact InformationEmail Andrew.Roberts@taltech.ee
3. Education2020 - Present PhD Student (Cybersecurity).Tallinn University of Technology, Estonia.2018 - 2020 Master of Science (Cybersecurity).Tallinn University of Technology, Estonia.2016 - 2018 Master of Cybersecurity Operations.University of New South Wales, Canberra, Australia.2007 - 2011 Bachelor of Information Technology/Bachelor of Arts.Queensland University of Technology, Brisbane, Australia.
4. Professional Employment2019 - Present Early Stage ResearcherTallinn University of Technology
5. Language CompetenceEnglish native
6. Field of Research

• 4.7. Information and Communications Technologies
• 4.8 Electrical Engineering and Electronics

7. Scientific Papers

• A. Roberts, L. Teply, M. Bellone, M. Pese, O. Maennel, M. Hamad, and S. Stein-horst. Fuzzsense: Towards a modular fuzzing framework for autonomous drivingsoftware.In arXiv, 2025.
• A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Adsecdata platform: An open-source data platform for autonomous driv-ing cybersecurity. In 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), pages 1–7, 2025.
• A. Roberts, J. Cheng, O.Maennel,M.Hamad, and S. Steinhorst. Adseclang: A domain-specific language for cybersecurity testing of autonomous vehicles. In 2025 IEEE101st Vehicular Technology Conference (VTC2025-Spring), pages 1–6, 2025.
• A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Analysis of autonomous driving software to low-level sensor cyber attacks.In 2025 IEEE/ACM 20th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 1–11, 2025.

331

• M. Hamad, A. Finkenzeller, M. Kühr, A. Roberts, O. Maennel, V. Prevelakis, and S.Steinhorst. React: Autonomous intrusion response system for intelligent vehicles.Computers Security, 145:104008, 2024.
• A. Roberts, M. R. H. Iman, M. Bellone, T. Ghasempouri, J. Raik, O. Maennel, M.Hamad, and S. Steinhorst. Adassure: Debuggingmethodology for autonomous driv-ing control algorithms. In 2024 Design, Automation Test in Europe Conference Ex-hibition (DATE), pages 1–6, 2024.
• A. Roberts, M. Malayjerdi, M. Bellone, O. Maennel, and E. Malayjerdi. Analysingadversarial threats to rule-based local-planning algorithms for autonomous driving.Inaugural Symposium on Vehicle Security and Privacy (VehicleSec 2023) with NDSS,pages 1–8, 2023.
• A. Roberts, S. Marksteiner, M. Soyturk, B. Yaman, and Y. Yang. A global survey ofstandardization and industry practices of automotive cybersecurity validation andverification testing processes and tools. SAE International Journal of Connected andAutomated Vehicles, 7, 11 2023.
• M. Malayjerdi, A. Roberts, O. M. Maennel, and E. Malayjerdi. Combined safety andcybersecurity testing methodology for autonomous driving algorithms. Proceed-ings of the 6th ACM Computer Science in Cars Symposium, pages 1–10, 2022.
• A. Roberts, O. Maennel, and N. Snetkov. Cybersecurity test range for autonomousvehicle shuttles. 2021 IEEE European Symposium on Security and Privacy Work-shops (EuroSPW), pages 239–248, 2021.

332

Elulookirjeldus
1. IsikuandmedNimi Andrew James RobertsSünniaeg 26 July 1989Kodakondsus Austraalia
2. KontaktandmedE-Post Andrew.Roberts@taltech.ee
3. Haridus2020 -... PhD tudeng (Cybersecurity).Tallinna Tehnikaülikool, Eesti2018 - 2020 Master of Science (Küberkaitse).Tallinna Tehnikaülikool, Eesti2016 - 2018 Master of Cybersecurity Operations.University of New South Wales, Canberra, Austraalia.2007 - 2011 Bachelor of Information Technology/Bachelor of Arts.Queensland University of Technology, Brisbane, Austraalia.
4. Teenistuskäik2019 -... Doktorant-nooremteadurTallinna Tehnikaülikool
5. KeelteoskusInglise emakeel
6. Teadustöö põhisuunad

• 4.7 Info-ja kommunikatsioonitehnoloogia
• 4.8 Elektrotehnika ja elektroonika

7. Akadeemilised Artiklid

• A. Roberts, L. Teply, M. Bellone, M. Pese, O. Maennel, M. Hamad, and S. Stein-horst. Fuzzsense: Towards a modular fuzzing framework for autonomous drivingsoftware.In arXiv, 2025.
• A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Adsecdata platform: An open-source data platform for autonomous driv-ing cybersecurity. In 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), pages 1–7, 2025.
• A. Roberts, J. Cheng, O.Maennel,M.Hamad, and S. Steinhorst. Adseclang: A domain-specific language for cybersecurity testing of autonomous vehicles. In 2025 IEEE101st Vehicular Technology Conference (VTC2025-Spring), pages 1–6, 2025.
• A. Roberts, M. Malayjerdi, M. Bellone, R. Sell, O. Maennel, M. Hamad, and S. Stein-horst. Analysis of autonomous driving software to low-level sensor cyber attacks.In 2025 IEEE/ACM 20th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 1–11, 2025.

333

• M. Hamad, A. Finkenzeller, M. Kühr, A. Roberts, O. Maennel, V. Prevelakis, and S.Steinhorst. React: Autonomous intrusion response system for intelligent vehicles.Computers Security, 145:104008, 2024.
• A. Roberts, M. R. H. Iman, M. Bellone, T. Ghasempouri, J. Raik, O. Maennel, M.Hamad, and S. Steinhorst. Adassure: Debuggingmethodology for autonomous driv-ing control algorithms. In 2024 Design, Automation Test in Europe Conference Ex-hibition (DATE), pages 1–6, 2024.
• A. Roberts, M. Malayjerdi, M. Bellone, O. Maennel, and E. Malayjerdi. Analysingadversarial threats to rule-based local-planning algorithms for autonomous driving.Inaugural Symposium on Vehicle Security and Privacy (VehicleSec 2023) with NDSS,pages 1–8, 2023.
• A. Roberts, S. Marksteiner, M. Soyturk, B. Yaman, and Y. Yang. A global survey ofstandardization and industry practices of automotive cybersecurity validation andverification testing processes and tools. SAE International Journal of Connected andAutomated Vehicles, 7, 11 2023.
• M. Malayjerdi, A. Roberts, O. M. Maennel, and E. Malayjerdi. Combined safety andcybersecurity testing methodology for autonomous driving algorithms. Proceed-ings of the 6th ACM Computer Science in Cars Symposium, pages 1–10, 2022.
• A. Roberts, O. Maennel, and N. Snetkov. Cybersecurity test range for autonomousvehicle shuttles. 2021 IEEE European Symposium on Security and Privacy Work-shops (EuroSPW), pages 239–248, 2021.

334

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-318-9 (PDF)

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

