
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Rim Puks 182558

LOW LEVEL CONTROLLER SOFTWARE
FOR CLEVERON PACKAGE DELIVERY

ROBOT

Master’s thesis

Supervisor: Peeter Ellervee

PhD

Co-Supervisor: Martin Appo

MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Rim Puks 182558

CLEVERONI PAKIVEOROBOTI
MADALAMA TASEME KONTROLLERI

TARKVARA

Magistritöö

Juhendaja: Peeter Ellervee

PhD

Kaasjuhendaja: Martin Appo

MSc

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Rim Puks

18.05.2020

Tallinn 2020

Abstract

Cleveron AS is developing a remote controlled vehicle robot. This thesis focuses on the

lower level controller for the new protoype of this robot. The requirements for the new

controller were defined and STM32F767ZI on Nucleo-144 board was selected. Program

code was developed for it using FreeRTOS framework and HAL library. CAN

communication with the higher level controller was implemented to receive commands

and send feedback. The robot can be controlled over CAN bus and by Radio Control

transmitter. The software controls the steering, driving and braking motors as well as

the lights. The finished software was tested on the robot by driving around on a test

course.

This thesis is written in English and is 57 pages long, including 6 chapters, 30 figures

and 4 tables.

4

Annotatsioon

Cleveroni pakiveoroboti madalama taseme kontrolleri tarkvara

Cleveron AS on Viljandis asuv ettevõte, mis tegeleb pakirobotite tootmise ja

arendusega. Viimased aastad on Cleveron arendanud sõitjata pakiveorobotit. Käesolev

lõputöö tegeleb selle roboti uuele prototüübile madala kihi kontrolleri lahenduse

arendamisega.

Magistritööd alustati uue kontrolleri nõuete kaardistamisega. Määrati vajaminevad

perifeeriad ning nõuded jõudlusele ja skaleeritavusele. Nõuete analüüsi tulemusena

osutus sobivaimaks STM32F767ZI Nucleo-144 arendusplaadil.

Kontrolleri tarkvararaamistik põhineb FreeRTOS-il. Tegemist on enamlevinud

reaalajaoperatsioonisüsteemiga. FreeRTOS lihtsustab protsesside ajastamist ja

soodustab tarkvara modulaarsust ja skaleeritavust.

Töö käigus arendati välja alumise kihi kontrolleri kahepoolne suhtlus ülemise kihiga üle

CAN-i siini. Suhtluse organiseerimiseks loodi DBC fail mis defineerib erinevate CAN-i

sõnumite sisu. Kasutades Python3-el põhinevat konverterit tekitati DBC failist C keele

struktuurid ja definitsioonid.

Loodi ka alternatiivne roboti kontrollimise viis läbi raadiosidepuldi. Sellega saab

operaator robotit manööverdada, kui seda ei saa või ei ole mugav üle CAN-i teha.

Raadioside puldiga valitakse kanal, millega robotit juhitakse, kas CAN-i või raadioside

kaudu.

Tarkvara realiseerib vastuvõetud käsklused juhtides rooli- ja veomootoreid, hüdropiduri

ja avariipiduri ajameid ning roboti tulesid.

Testimiseks tarkvaraarenduse ajal kasutati projektimeeskonna poolt arendatud testplaati.

Hiljem testitit programmikoodi ka valminud robotil nii pukkide peal kui testrajal.

5

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 57 leheküljel, 6 peatükki, 30

joonist, 4 tabelit.

6

List of abbreviations and terms

TalTech Tallinn University of Technology

MCU Microcontroller

RC Radio Control

ISR Interrupt Service Routine

DMA Direct Memory Access

FIFO First In First Out

UART Universal asynchronous receiver-transmitter

USART Universal synchronous and asynchronous receiver-transmitter

CMSIS Cortex Microcontroller Software Interface Standard

SPI Serial Peripheral Interface

DAC Digital-to-Analog Converter

I2C Inter-Integrated Circuit

HAL Hardware Abstraction Layer

CAN Controller Area Network

DLC Data Length Code

DBC CAN Database

API Application Programming Interface

7

Table of Contents

1 Introduction...12

2 Background and planning..15

2.1 Requirements..15

2.2 Choosing the controller...17

2.3 RTOS..19

2.4 CubeMX configuration software..20

2.5 Debugging...22

3 Control software..27

3.1 Steering motor control implementation..28

3.2 Driving motors control implementation...30

3.3 Hydraulic brake implementation..31

3.4 Lights implementation..32

4 Communications software...33

4.1 Switching between CAN and RC control...33

4.2 Radio control implementation..34

4.3 Communication with higher level computer over CAN.......................................40

4.4 DBC file..48

5 Testing and analysis...51

5.1 Real life testing...51

5.2 Processor usage...54

5.3 Risk analysis...55

5.4 Future plans...56

6 Summary..57

 References..58

8

List of Figures

 Figure 1: Prototype "Albert"...13

 Figure 2: Nucleo-F767ZI[17]...18

 Figure 3: CubeMX page of STM32CubeIDE...21

 Figure 4: Embedded ST-LINK/V2-1 debugger/programmer...23

 Figure 5: FreeRTOS debugger plugin[8]..23

 Figure 6: Debugging I2C with Rigol oscilloscope...24

 Figure 7: Kvaser Leaf Light v2 [26]...25

 Figure 8: Sending and receiving messages with CanKing...25

 Figure 9: Hobby servo control [21]..28

 Figure 10: Steering servo control algorithm...29

 Figure 11: DAC I2C frame...30

 Figure 12: MS-Byte and LS-Byte of DMA I2C frame [14]...31

Figure 13: Hydrobrake duty cycle pseudocode...32

 Figure 14: Movement commands multiplexer..34

Figure 15. Oscilloscope capture of IBUS frame..35

 Figure 16. Screenshot of UART buffer contents during misalignment..........................38

 Figure 17: IBUS receive algorithm..40

 Figure 18: CAN frame..41

 Figure 19: Nominal bit time[38]...43

 Figure 20: CAN bit time table [9]..44

 Figure 21: CAN Rx thread algorithm...45

 Figure 22: CAN Tx thread..46

Figure 23: Error flags struct...47

 Figure 24: DBC message definition example...48

 Figure 25: CAN message packing and unpacking..50

Figure 26: DBC wheel speed report struct..50

Figure 27: Beginning of main function...52

 Figure 28: Robot on the test track..53

9

 Figure 29: Remote control station..53

 Figure 30: Thread runtime analysis..54

10

List of Tables

Table 1: Threads and their priorities and frequencies...27

Table 2: Driving motors controller interface...30

Table 3. IBUS frame..36

Table 4: Risks and mitigation options...55

11

1 Introduction

The author of this thesis is employed in Cleveron AS. Cleveron is a package robot

development and manufacturing company located in Viljandi, Estonia. In the recent

years, Cleveron has been developing a package delivery vehicle robot. The goal of the

robot is to deliver packages to clients without the need for a human driver. In the later

stages of the product development, this robot would act autonomously. That would

allow logistic companies to save on labor costs.

Cleveron AS first introduced the idea for a new package delivery robot in Robotex 2018

[27] . Since then, the development has gained media attention on multiple occasions

[12] , [11] .

A new prototype for this robot, called Albert, is built on the spring of 2020. New

hardware and software developments are tested on it. The author of this thesis is a

member of the software team for this project and focuses his work on the low level

controller of the robot.

Despite the fact, that the robot will be smaller in scale compared to regular cars, it will

still use the same driveways. Due to this, the vehicle robot will have to abide by the

same traffic laws as cars. In hardware aspects it means that the robot has to have turn

signals, braking lights and low beams. Also, its braking capabilities will have to be

similar to normal cars. Due to safety reasons the maximum speed of the prototype is

planned to be slowly increased during testing. At first, it will be around 20 km/h.

During the development of the robot, there will always be an safety operator driving

behind it, ready to press the emergency stop button. The operator will also have a RC

(Radio Control) remote allowing it to take over the control if needed.

12

Main controlling method of this prototype will be teleoperation using commercial 4G

network. There are two controllers on the robot. One is a computer for higher level

tasks, like camera image processing and communication with the teleoperation control

station. The other, lower level controller, will receive commands from the higher or RC

remote. It will control motors, lights and sensors and also provide feedback to the

higher level controller.

Cleveron has developed multiple prototypes for this robot over the course of two years.

Each one has been more complex than the previous. Prototypes this far have been using

Arduino Mega 2560 development board as a low level controller [5] . The advantage of

using an Arduino board is that it has allowed to quickly test out different components.

Arduino has provided an extensive framework that makes programming the controller

easier. It also has libraries for most of the hobbyist electronic components, for example

Digital-Analog Converters and stepper motors. Due to the increasing complexity of the

project, using Arduino Mega 2560 as a low level controller has become difficult. For

13

Figure 1: Prototype "Albert"

this reason, it has been decided to move to a new and more powerful controller on

Albert.

Albert is part of the Cleveron AS project to develop a new product and due to this, some

information about the project is confidential. To protect Cleveron business intrests, all

confidential information is moved to the appendixes part of the thesis and will not be

published with the main part. Due to the contracts with the higher level controller

provider, information about it is omitted from both public and the confidential part.

Task

The goal of this thesis is selecting a new low level controller and developing its

software. The controller must be able to:

• Run a Real Time Operating System

• Receive commands and send feedback over CAN.

• Receive commands from a RC transmitter.

• Control driving, steering and braking actuators.

• Control the vehicle lights.

Results

After defining the requirements, STM32F767ZI on Nucleo - 144 board was selected as

the controller for the new prototype. Software was developed, that fulfills all of the

functionality stated in the “Task” section. The program code was tested with the robot

on stands and on the test track.

14

2 Background and planning

In this chapter the background research and the planning phase of the project is

described. First part focuses on gathering the requirements for the controller, second

part is about controller selection, third part is about Real Time Operating System and

the fourth about different debugging tools used in the project.

2.1 Requirements

Before the new controller solution can be selected, the requirements to it have to be

defined. This means the number of available GPIO pins, number of peripherals and

other specifications.

Since the other components used in the robot are considered confidential, the list of

them is moved to Error: Reference source not found and is not part of the publically

available version of this thesis.

In the previous prototypes, the communication between the higher and lower level

controller has been implemented over Ethernet. For this purpose, Arduino Mega 2560

was equipped with an Arduino Ethernet shield [3] . With the new prototype, it is

planned to use CAN (Controller Area Network) for communication between controllers.

CAN offers very reliable and relatively high speed connection. It lacks the high

throughput of Ethernet, but that is not needed here. CAN also makes it very easy to add

new devices to the network. To connect to the CAN bus, the new controller hardware

must have a CAN peripheral.

The Arduino based prototypes have used the “millis” library for timing. This allows for

rudimentary real time operations but becomes difficult and error-prone with more

complex systems. It is planned, that the new controller will be running a Real Time

Operating System (RTOS). This will make timing the tasks easier and will also provide

15

scalability to the project. Since RTOS requires more processing power, it is required

that the new controller should have a 32 bit architecture.

Migrating from one software platform (Arduino) to another uses company resources,

mainly developer work time. With this in mind, scalabilty is an important keyword.

Another platform should be chosen as such that new migration would not be necessary

in the future. In this sense, it is recommended that the chosen framework/controller

would allow upgrading to more powerful (or if needed - less powerful) options without

changing the program code.

Due to the rapid development of the project, it is decided that the controller should be

available on a development board, removing a need to build a PCB around a

microcontroller. This will allow to start developing instantly. The PCB can always be

developed in the later stages of the development.

The lower level controller will be powered by the robot battery that also has to power

the high level controller and the motors. Since in comparison, the power consumption of

the low level controller is marginal, there are no power requirements for the controller.

Same principle applies to the controller price, but it is still required that the cost would

be under 100€.

It is required that the controller would also have at least one additional I2C, two SPI, 2

UART peripherals and 10 GPIO pins in case more sensors or actuators are to be

installed to the robot. For example, devices like SPI based encoder and I2C based

ultrasound distance sensors are planned to be added to the robot in the later

development stage.

The number of different microcontrollers is vast. To narrow down the number of

possible options, and thus make deciding easier, it was chosen that the controller should

have a ARM Cortex-M family microprocessor. ARM is a world leading microprocessor

developer and is implemented in a wide array of microcontrollers. Cortex-M family is

meant specifically for low power and low cost embedded systems [6] . Other Cortex

families are unnecessarily powerful and complex for our application.

16

2.1.1 Requirements summary

Summarizing this chapter and the component requirements stated in the appendixes, the

requirements for the controller are:

• At least 21 GPIO pins.

• At least 2 I2C peripherals

• At least 2 SPI peripherals

• CAN peripheral

• 3 UART peripherals

• 2 hardware timers

• Cost is less than 100€

• Company provides other options with the same software framework.

• Available on developer board

• RTOS capable

• 32 bit architecture

• ARM Cortex-M family processor

2.2 Choosing the controller

There exists many different microcontroller families that implement ARM Cortex-M.

Most of them offer developer boards that match the requirements stated above.

Microchip has the SAM based Xplained series [28] , STMicroelectronics has the

STM32 based Nucleo and Discovery series [35] , NXP has the LPC based LPCXpresso

boards [31] and Texas Instruments has TIVA LaunchPAD series [39] . This means

there is not a single best choice.

17

Eventually, STMicroelectronics STM32 Nucleo line was selected. Nucleo boards are

reasonably priced and they come with an integrated debugger/programmer. The author

and other engineers in Cleveron AS have had experience with them. STM32 has HAL

(Hardware Abstraction Layer) software library that simplifies moving from one STM32

microcontroller to another, since the code does not need to be changed. Also, there is a

configuration software CubeMX, that makes initial setup and configuration much easier

since it generates all the code that is needed [35] .

Since the price difference between Nucleo boards is small and power consumption is

not a priority, Nucleo-144 type with STM32-F767ZI microcontroller was chosen. It is

one of the more powerful Nucleo boards with more available flash memory. The board

can be seen below on Figure 2.

Once the controller board was selected, the mechatronic engineers of the project team

started building a PCB around Nucleo-F767ZI to make everything more compact. A

short description of it can be found in the restricted access Error: Reference source not

foundError: Reference source not found.

18

Figure 2: Nucleo-F767ZI[17]

2.3 RTOS

The central part of this robots embedded software will be the Real Time Operating

System. The main advantage of RTOS is that it allows better timing of tasks and more

scalability for the software.

“An operating system is a computer program that supports a computer’s basic functions,

and provides services to other programs (or applications) that run on the computer.”[2]

What turns an OS into RTOS is a predictable (deterministic) execution pattern. RTOS

must conform to real time requirements. “A real time requirement is one that specifies

that the embedded system must respond to a certain event within a strictly defined time

(the deadline).”[2]

2.3.1 FreeRTOS

Even though there are many different Real Time Operating Systems in the market,

FreeRTOS is the most polular. It supports a wide range of devices, is open-source and

free. It includes a kernel and different libraries for a wide array of use cases[19] .

FreeRTOS is included in STM32CubeMx configuration tool, so installing it has been

made simple. Enabling it in CubeMX auto-generates all the necessary files.

It is owned by Amazon and distributed under MIT open source licence. MIT open

source licence allows re-licensing the software under new licence [29] . This means the

robot application does not have to be open-source as would be with the GNU General

Public Licence, that is very common with open-source software [20] .

2.3.2 CMSIS-RTOS

When CubeMX includes FreeRTOS middleware, it adds a CMSIS-RTOS API layer.

This means the user will not use FreeRTOS default API but the one provided by

CMSIS. CMSIS stands for Cortex Microcontroller Software Interface Standard. It is an

abstraction layer created for ARM Cortex microcontrollers [13] . STM32 CubeMx auto-

generated code expects the user to use CMSIS-RTOS v1 or v2 API. While testing both

CMSIS versions, it was discovered, that semaphores fail to work correctly when using

CMSIS v2. Due to that, CMSIS v1 is used in this project.

19

2.3.3 RTOS preemptive vs cooperative

The scheduler of FreeRTOS can be configured to be in preemptive or cooperative (non-

preemptive) mode. The scheduler is the piece of software of the operating system that

decides which task gets processor time and when [36] .

Preemptive mode means that each task gets a time slice. “Context gets switched when:

• Time slice has passed

• Task with higher priority has come

• Task goes to BLOCKED state (i.e. by call osDelay() function)

• Task goes to READY state (i.e. by call osThreadYield() function)” [36]

Cooperative mode means that there are no time slices and the tasks are not preempted

by higher priorty tasks. “Context gets switched ONLY when RUNNING task

• goes to BLOCKED state (i.e. by call osDelay() function) or

• goes to READY state (i.e. by call osThreadYield() function) or

• is put into SUSPEND mode by the system (other task)” [36]

STM32 FreeRTOS MOOC (Massive Open Online Course) recommends using non-

preemptive (cooperative) RTOS mode if possible [36] . That is due to more transparent

time management, since all threads switch states at known positions. It also means that

the program code will not have to deal with so many race conditions. But when using

cooperative mode, the programmer has to assure that all of the processes are short

enough that no threads would starve.

2.4 CubeMX configuration software

STM32 CubeMX is a graphical tool that makes initializing and configuring a STM32

project much easier. User can configure all the necessary MCU peripherals from drop

down menus. It also shows the programmer which pins are already in use. Once the

20

configuration part is done, CubeMX auto-generates a project. The user can return to the

configuration screen at any time to re-configure.

But using CubeMx can be error-prone, since it still requires an understanding about the

microcontroller for correct configuration. Most flags and configuration options are not

explained so it is necessary to consult to the manual of the microcontroller while

configuring. For example, the author had some problems with implementing UART for

RC receiver. From debugging view, it seemed like UART peripheral sometimes failed

to receive data. And after the first breakpoint, it always failed. Eventually, it was

discovered, that the STM32CubeMx set the UART overflow error flag as default. This

blocked UART if overflow was detected until the overflow flag was cleared. Since RC

receiver constantly sends data over UART then sometimes the overflow happened

before program code had a chance to set up UART receive. The overflow also happened

every time the MCU was paused, as when in a breakpoint.

21

Figure 3: CubeMX page of STM32CubeIDE

2.5 Debugging

An important part of developing is debugging, the act of finding and fixing errors in

software. In this chapter, the software and hardware equipment used for debugging this

project is described.

As stated before, the previous prototypes were based on Arduino boards. With Arduino,

the main debugging methods used were sending data to serial port over UART and

manipulating GPIO pins to light up LEDs or observe them with an oscilloscope/logic

analyzer. Arduino Mega 2560 has JTAG interface and can be connected with a

debugger to allow breakpoints and stepping through instructions [7] . But this option

was not used since the debugger had not been acquired and the program was simple

enough.

2.5.1 Nucleo-F757ZI debugging options

When working with Nucleo-F767ZI board, similar debugging options as with Arduino

are available. It is possible to send data over serial line and observe it from PC with a

serial monitor software. Also, unused GPIO outputs can be manipulated to signal events

and read with oscilloscope or logic analyzer. While Arduino Mega 2560 requires an

external debugger for connecting to JTAG interface, Nucleo-F767ZI has an embedded

debugger/programmer ST-LINK/V2-1 [Figure 4]. If necessary, it can be broken off and

used as an external debugger/programmer for other STM32 devices. With a debugger, it

is possible to insert breakpoints, step through the instructions, see variable and register

values and change them.

22

2.5.2 FreeRTOS debugger plugin

The debugging options described in the last section did not have any RTOS specific

capabilities. For this, a FreeRTOS debugger plugin was installed to the

STM32CubeIDE program. When the program was paused it allowed to observe the

stack usage of each thread, making sure that stack overflow would not happen. Also, it

was possible to observe in what states the threads were and how much of the total

runtime did they take.

23

Figure 4: Embedded ST-LINK/V2-1 debugger/programmer

Figure 5: FreeRTOS debugger plugin[8]

The debugger plugin was developed by NXP and was installed here with the guide

“Better FreeRTOS Debugging in Eclipse” provided by Erich Styger [8] . The plugin is

for FreeRTOS and works on different ARM based MCUs.

2.5.3 Rigol digital oscilloscope

Rigol MSO2302A digital oscilloscope was used extensively during the development

process to debug. The main features used were the logic analyzer and decoder. Logic

analyzer allowed connecting up to 16 digital inputs. Decoder allowed decoding I2C,

UART and CAN messages to confirm correct outputs as seen on Figure 6.

24

Figure 6: Debugging I2C with Rigol oscilloscope

2.5.4 Kvaser Leaf Light v2 and Kvaser CanKing

Kvaser Leaf Light v2 is a CAN interface for USB. It allows connecting a computer to

CAN network. It supports both 11 bit and 29 bit identifiers and manages speeds up to 1

Mbit/s [26] .

Kvaser CanKing is a software for interacting with CAN bus with products like Kvaser

Leaf Light v2. It allows sending and receiving CAN and Extended CAN messages,

logging to a file, generating traffic and formating messages [25] .

25

Figure 7: Kvaser Leaf Light v2 [26]

Figure 8: Sending and receiving messages with CanKing

Kvaser Leaf Light v2 was used with CanKing software to debug and test CAN bus and

the DBC file [DBC file]. It allowed sending commands to robot and checking feedback.

CanKing also allowed to confirm if the DBC file was correct and also if encoding and

decoding was working as intended.

26

3 Control software

In this chapter the control software architecture and development is described. As stated

before, the FreeRTOS framework is used for the software. Control of the different

components are separated into threads. Threads are called tasks in the FreeRTOS

environment, both names are used in this thesis.

Threads are created in the CubeMx FreeRTOS page. The code generation option is set

to “extern”, meaning the code generator only creates the declaration and not definition.

It is also possible to set it as “weak”. This would generate thread function definition

with “weak” attribute into main.c file. If the linker finds any other definitions for this

function it would use the non-weak definition.

For more modular approach, each thread has its own source file. The main.c is only

used for peripheral configuration and has very little not auto-generated code. The

different threads and their priorities and frequencies can be seen in Table 1.

27

Table 1: Threads and their priorities and frequencies

Thread Priority Frequency

IBUS thread (for RC control) Real time When a complete IBUS frame
has arrived. ~142 Hz

CAN RX thread Real time When a new CAN bus message
has arrived.

Steering thread High 100 Hz

Driving thread High 100 Hz

Hydraulic brake thread High 100 Hz

CAN TX thread Normal 50 Hz (Between full sets of
reports)

Lights thread Low 20 Hz

3.1 Steering motor control implementation

The steering motor installed to this robot is controlled the same way as a hobby servo.

This made testing convenient since it could be done with a small hobby servo.

3.1.1 Hobby servo control

Hobby servos are mainly used in remote controlled cars, boats and airplanes. They are

also popular with Arduino projects since it is easy to control them using MCU timers.

The hobby servo is controlled using 50 Hz PWM. The position of the motor is

determined by the length of the pulse as can be seen in Figure 9. Having a duty cycle

5% (1 ms) will turn the motor full clockwise. With 10% (2 ms) the motor will turn full

counterclockwise and with 7,5% duty cycle (1,5 ms) it will be in the center position. All

the positions between can also be achived by sending a duty cycle higher than 5% and

lower than 10% [21] .

28

Figure 9: Hobby servo control [21]

In this application, the minimum and maximum positions of the servo are configurable.

The algorithm for setting the PWM servo can be seen in Figure 10. The thread reads the

steering value from a global steering command variable, converts it to servo PWM and

then blocks itself for a specified time.

29

Figure 10: Steering servo control
algorithm

3.2 Driving motors control implementation

The driving motor drivers of the robot are controlled with analog voltage and GPIO

pins. In the current implementation, all 4 motor controllers receive the same commands,

so the wheels will move with the same speed. Two analog and three digital signals get

sent to the motor controller. The first analog signal controls the torque of the motor and

the second controls the regenerative braking. There is a digital signal for enabling the

controller in general and specifying the motor direction. The summary of the interface

can be seen in Table 2.

Table 2: Driving motors controller interface

Signal Description Physical characteristic

Throttle Controls the strenght of driving motors
throttle

Analog voltage from 0
to 5 V

Brake Controls the strenght of driving motors
regenrative braking

Analog voltage from 0
to 5 V

Motors_Forward Enables moving motors forward GPIO input

Motors_Reverse Enables moving motors backward GPIO input

Motors_Enable Enables the motors GPIO input

The analog voltage is supplied by an external 4 channel Digital-to-Analog Converter

(DAC) Texas Instruments DAC6574 [14] . The microcontroller uses I2C to send

commands to the DAC.

3.2.1 I2C message format

The DAC module expects I2C messages to be in a format defined in the product

datasheet. The format can be observed in Figure 11.

30

Figure 11: DAC I2C frame

The STM32 I2C peripheral handles the details such as start and stop conditions and

acknowledge bits (A). HAL library handles configuring and communication with the

I2C peripheral, so the user only has to call the HAL API function declared below.

HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef * hi2c,
uint16_t DevAddress, uint8_t * pData, uint16_t Size);

As can be seen from the declaration, the function requires 4 parameters. The handle to

the I2C peripheral, the I2C address of the DAC, a pointer to the unsigned integer buffer

that holds the data to be transferred and the size of that buffer.

To conform to the I2C frame defined in the datasheet (Figure 11), the first member of

the transfer buffer must be the Control byte. That byte specifies the operation mode (in

this application only the normal mode is used) and the DAC channel to be updated.

The next 2 bytes are data bytes. The DAC has 10 bit resolution and the bytes have to be

shifted as specified in the manual (Figure 12).

3.3 Hydraulic brake implementation

PWM is used to control the strength of the hydraulic brake. The hydraulic brake is

activated if the global brake command variable CMD_brake_value passes a threshold.

In the current implementation, this threshhold is 50% of the maximum

CMD_brake_value. The hydraulic brake strength then rises in linear manner with the

31

Figure 12: MS-Byte and LS-Byte of DMA
I2C frame [14]

brake value, with 100% brake value corresponding to 100% hydraulic brake value.

Pseudocode in Figure 13 descibes how the hydrobrake duty cycle gets calculated.

3.4 Lights implementation

The lights thread implementation is relatively simple. Thread goes through if-else

statements for brake, reverse and error lights. If brake command is over 10%, brake

lights are activated. If the robot is in reverse gear, reverse lights get activated. And if

any of the current error flags is up, error LED is activated. Other lights get activated by

CAN commands directly in the callback functions.

32

if(CMD_brake_value > hydrobrake_threshold)

{

hydrobrake_duty_cycle = (CMD_brake_value -hydrobrake_threshold)/
(1.0 - hydrobrake_threshold)

}

else

{

hydrobrake_duty_cycle = 0

}

Figure 13: Hydrobrake duty cycle pseudocode

4 Communications software

This chapter covers the communication part of the software. The lower level controller

receives commands from 2 channels: RC transmitter and CAN bus. The latter is also

used to send feedback about the robot state. In this thesis, RC is often referred to as

IBUS, after the protocol the RC receiver uses to transmit data to MCU.

4.1 Switching between CAN and RC control

Since the robot movement can be controlled by two different methods, switching

between them is required. It was decided that this should be done using the RC

transmitter, since the robot prototype should always be supervised by a human operator.

And this would allow the human to quickly switch to manual control in case something

goes wrong.

The control scheme shown in Figure 14 is proposed. The control mode can be chosen

from a switch on RC transmitter. This controls the multiplexer to select the correct

input. Full stop state was added as an additional input for safety. If this command is

multiplexed forward, the robot will come to a stop. This allows for safer parking, since

the robot will not move when the operator accidentally touches the joysticks. The full

stop mode also activates the emergency brake. Other control modes turn the emergency

brake off.

33

The control scheme is implemented using C pointers. When the IBUS thread parses the

data from the RC transmitter, it changes the value of the pointer if the control mode has

been changed.

4.2 Radio control implementation

The description of the RC receiver and transmitter used for controlling the robot can be

found in Error: Reference source not found. The receiver uses IBUS protocol to send

data. Due to that, the thread is also named after IBUS.

4.2.1 IBUS protocol

IBUS is developed by a chinese hobby RC component manufacturer and developer

Flysky[33] . There is no official IBUS reference manual freely available but the

protocol is described in multiple technical enthusiast blog posts [22] ,[23] . There is an

Arduino library for decoding IBUS protocol that was used with the previous Arduino

based prototypes of the robot [4] . The author also used this library as reference for

developing the decoder software for STM32.

34

Figure 14: Movement commands multiplexer

The RC receiver sends one IBUS frame every 7,7 ms. The length of the IBUS frame is

32 bytes. The RC receiver sends with baudrate 115200. One UART frame consists of

one start bit, 8 data bits, no parity bit and one stop bit (shorthand notation: 8N1). That

means 10 bits per one UART frame. Since one IBUS frame consists of 32 bytes, it takes

around 3 ms to receive one frame of information.

32⋅10⋅(1/115200)≈3ms

This timing was verified using oscilloscope as can be seen from ΔX in Figure 15.

The contents of an IBUS frame are described in Table 3. First two bytes are always 32

and 64. That is used in the program code to detect the start of the frame, and align frame

and buffer if needed (see 4.2.3). All the following data is two byte integers in little

endian order. Joystick values can be all integers between 1000 and 2000. With 1000 in

one side, 2000 in the other and 1500 in the middle. Switches have discreet values. First

and fourth have 2 possible positions marked by 1000 and 2000. Second and third have 3

positions, marked as 1000, 1500 and 2000. Some channels of the frame are not

configured from the RC transmitter, so their content will always be 1500. The frame

ends with CRC value, that is calculated by subtracting all the byte values (not including

CRC) of the frame from 0xFFFF.

35

Figure 15. Oscilloscope capture of IBUS frame.

Table 3. IBUS frame

Byte Content(in decimal) Description

0 Always 32 Length of frame

1 Always 64 Command code

2:3 1000-2000 Right joystick horizontal

4:5 1000-2000 Left joystick vertical

6:7 1000-2000 Right joystick vertical

8:9 1000-2000 Left joystick horizontal

10:11 Always 1500 Not used

12:13 1000 or 2000 First switch

14:15 1000, 1500 or 2000 Third switch

16:17 1000, 1500 or 2000 Second switch

18:19 1000 or 2000 Fourth switch

20:21 Always 1500 Not used

22:23 Always 1500 Not used

24:25 Always 1500 Not used

26:27 Always 1500 Not used

28:29 Always 1500 Not used

30:31 0xFFFF – all previous bytes CRC value

4.2.2 Different UART reading methods

The HAL API provides methods for 3 different UART operation modes [15] :

• The polling mode that blocks the processor. The function returns when a

specified number of bytes has been received or a timeout has been reached.

• Interrupt mode where UART peripheral generates an interrupt when a new byte

has been received. Processor then moves the received data to specified buffer. A

callback function can be customised that gets executed when user specified

number of bytes have been received.

• DMA (Direct Memory Access) mode that is similar to the interrupt mode.

When UART peripheral has received a new character, it signals the DMA

controller to move the byte to a specified buffer. When a specified number of

36

bytes have been received, the DMA controller raises an interrupt flag, that calls

a callback function the user can customise.

For this application, the polling and blocking option can not be used. The MCU would

be blocked 3ms/7ms*100% = 43% of the time. This means the choice is between

interrupt and DMA modes.

The advantage of the DMA would be that the processor would not need to transfer

individual bytes from UART to memory, but it will still need to process the data

received. To measure the advantage of using DMA, program code for reading 32 bytes

from RC receiver using the interrupt mode was created. Then the UART ISR (Interrupt

Service Routine) was modified so that a GPIO pin would be set at the beginning of the

ISR and reset at the end. That pin was then observed with oscilloscope along with the

UART data coming from RC receiver. It was measured that the ISR transferring one

byte from peripheral to buffer took 3 microseconds. An IBUS frame is 32 bytes and

one frame is transferred every 7,66 ms.

(32⋅0,003 [ms])/7,66[ms]⋅100%=1,25 %

This means using DMA mode instead of interrupt mode only saves around 1,25% of

processor time. This is measured with MCU clock speed 96 MHz and will be smaller

with higher clock frequencies. The measured time is also slightly affected by the time it

takes for the MCU to toggle the GPIO pin.

Even though the advantage gained from using DMA mode is only around 1% of

processor time, this mode was still chosen since implementing it with HAL methods

was simple.

4.2.3 IBUS misalignment problem

The RC receiver sends IBUS frames over UART periodically, without checking if they

are received. That proves to be a problem when 32 bytes are received during one DMA

transfer. Since UART line is active 43% of the time, there is a high probability that the

DMA transfer is started during this window. This leads to DMA transferring the end of

one IBUS frame and the beginning of the other. This can be observed in the UART

37

receive buffer where the two start bytes (32 and 64) are not in the beginning of the

buffer as seen in Figure 16.

Three different solutions for this problem were proposed:

• Ignoring the fact that some of the data is from the previous frame. 7 ms delay is

not detectable when controlling the robot with RC. Using the two start bytes to

find the beginning of the frame and process data, jumping up to the beginning of

the buffer when the end is reached. This is the easiest solution to implement, but

creates a multitude of problems. The CRC value can not be used, since some of

the data is from a different frame. The buffer end can split a 16bit integer in half,

meaning its high byte and low byte would be from different frames.

• Reading one byte at a time from UART peripheral. Implementing a FIFO buffer,

that the ISR of UART would fill and the IBUS thread would empty. Activating

IBUS thread periodically to process any data in the FIFO. Updating the global

values only once CRC has been verified. This approach would be similar to the

38

Figure 16. Screenshot of UART buffer contents during misalignment

Arduino IBUS library used in previous prototypes [4] . It is more complex to

implement than the previous one, but would avoid faulty data.

• Realign buffer when misalignment is detected (using the two start bytes). This

would mean discarding the currently active frame, but all the next ones would be

valid. Since it is much more frequent for misalignment to happen during startup

than the working state of the robot, the alignment process usually needs to be

done once. This approach also allows the DMA to signal the IBUS thread to

process the data immediately after the transfer is complete.

It was decided to use the realign method, since it allows for immediate response after

CRC has been received. Also, it means that the thread does not have to be activated

while frame is still being transferred. Realignment was implemented using the line

IDLE interrupt of the UART peripheral. The interrupt would only be activated when

realignment is needed. The ISR will then abort the ongoing DMA transfer and relaunch

it. After relaunch, the two start bytes will be at the beginning of the buffer.

4.2.4 IBUS receive algorithm

As a conclusion to previous chapters an algorithm and program code was created for the

task responsible for receiving and processing IBUS data, as seen in Figure 17. The

IBUS task enables UART idle line interrupt and then uses the osSignalWait function.

This suspends the thread until the osSignalSet is called from some other thread or

interrupt. The UART idle line interrupt is responsible for launching DMA transfer

between UART and IBUS buffer. It also disables itself, so the interrupt will not be

called again until realignment is needed. Once DMA transfer is complete, the callback

function signals the IBUS task to process the buffer. The IBUS task then checks the

buffer for valid start bytes and correct CRC value. If this fails, UART line idle interrupt

is enabled for realigning the buffer. If buffer validation is successful, the RC values

(decimal numbers from 1000 to 2000) are converted to vehicle commands (i.e. vehicle

brake command from 0.0 to 1.0). After this a new DMA transfer for 32 bytes is started

and the IBUS task once again waits for signal to start processing.

39

4.3 Communication with higher level computer over CAN

The main method of robot control is planned to be over CAN interface. “The Controller

Area Network (CAN) is a serial communication bus designed for robust and flexible

performance in harsh environments, and particularly for industrial and automotive

applications.” [24]

40

Figure 17: IBUS receive algorithm

In CAN network, all messages are broadcasted to all nodes. Each message has a fixed

ID number that defines its contents. Message ID is also used to set message priorities. A

smaller number ID has priority over a larger number. Nodes filter out messages that are

relevant to them. When 2 nodes try to broadcast a message in the same time, the

controller whose message has lower priority backs down [24] .

To make the bus more reliable, CAN uses differential signaling. This means that the

current logic state is determined by the voltage difference of the two bus lines called

CAN HIGH (CANH) and CAN LOW (CANL). A logic “0” drives the bus into

dominant state, meaning the differential voltage is above the threshold. And logic “1”

drives it to recessive state, where the voltage difference between CANH and CANL is

below the threshold. Managing the differential voltage of CANH and CANL is done by

a CAN translator. The MCU uses CanTx and CanRx lines to communicate with the

translator [24] .

The structure of the CAN frame can be seen on Figure 18. The frame starts with a Start-

Of-Frame bit. After this comes identifier field that contains the message ID. Next is

Remote Transmission Request bit, that states if the sending node requests data from

another node. The Identifier Extension (IDE) bit shows if this is a regular identifier or

an extended identifier CAN frame. Extended identifier is not used in this work and so is

not shown. R0 bit is reserved and not used. The Data Length Code (DLC) shows how

many bytes of data there is in the data field [24] . Next comes the Cyclic Redundancy

Check (CRC) checksum for detecting errors. If everything worked correctly then the

receiving node/nodes will write a dominant bit as the first Acknowledge (ACK) bit, the

second one is a delimiter bit. The frame ends with 7 recessive bits called End-Of-

Frame(EOF)[24] . The identifier, DLC code and data field are colored, since they are

more important in the sense of this thesis.

41

Figure 18: CAN frame

The disadvantages of CAN are its complexity and its relatively low data throughput. A

single CAN frame only contains maximum 8 bytes of data.

4.3.1 HAL CAN driver initialization

Compared to the other communication peripherals, like UART, I2C and SPI, CAN is

much harder to set up. There is a confusingly wide array of configuration options and

corresponding HAL driver is also much more complex. To add to the confusion, a new

HAL CAN driver with a new API was implemented a few years ago. There is very little

documentation and examples about this new driver online. In the time of writing this

thesis, the HAL user manual has not been updated with the new API functions [15] .

Most posts in technical forums pointed to a single slideshow [30] and to the comments

in CubeMx auto-generated C files for help on managing the API.

Before CAN peripheral can be used, it has to be initialized. In this application all

configuration options except automatic bus-off management were left to their default

disabeled state. Automatic bus-off management means that the CAN peripheral will try

to automatically return to working state after some error has disabled it. Without it, this

has to be done manually in software [38] .

4.3.2 Bit timing

An important part of initialization is setting up the baudrate of the CAN peripheral. The

baudrate of this CAN bus is required to be 500 kB/s by the higher level controller. The

time to send one bit is called nominal bit time. The relation between baudrate and

nominal bit time can be seen below.

baudrate=1 /(nominal bit time)

Nominal bit time can be divided into 3 segments as can be seen in Figure 19. Each of

those segments consist of one or multiple time quantas. A time quanta is a fixed length

of time, derived from MCU clock using prescalers. The first segment is the

synchronization segment where the bit change is expected to happen. This is always

with the length of one time quanta. The second segment defines the location of the

sample point. Even though the number of time quantas it contains is configured by the

42

programmer, it can be automatically changed by hardware to compensate for phase

drifts. The sample point is when the CAN controller samples the bit and is usually

shown in percentage of nominal bit time. The third segment is the last part of the

nominal bit time and can also be automatically changed by the hardware.

The CAN configuration tool in CubeMx expects the programmer to configure the

following values: number of time quanta in segment 1 and 2, prescaler and

resynchronization jump width (SJW). The recommended SJW is one time quanta [9] .

To calculate the remaining values, online CAN bit time calculator is used [9] . The

calculator expects the clock rate and sample point position as inputs. The CAN

controller receives the Advanced Peripheral Bus (APB) clock. The prescaler for APB

clock is currently set to 2 and the main clock of the MCU is set to 96 MHz. That means

the incoming clock rate for CAN peripheral is 96/2 = 48 MHz. The recommended

sample point is 87,5% [9] . With those inputs, the calculator generates a table listing

different baudrates and recommended prescalers and segment lenghts to achive them.

The table can be seen on Figure 20 with recommended configurations highlighted as

yellow. With baud rate 500 kbit/s, the recommended prescaler is 6, length of segment 1

is 13 time quantas and length of segment 2 is 2 time quantas.

43

Figure 19: Nominal bit time[38]

4.3.3 CAN message filter

After CAN peripheral initialization, the programmer has to configure the hardware

filter. This will allow to choose which messages will be received and which ones will be

blocked based on message ID. The filtering will happen on CAN peripheral level,

meaning processor time will not be wasted. Since the current implementation only has 2

CAN nodes, no messages are filtered. The filter still has to be initialized to define which

CAN receive FIFO is used.

Only the initialization part of setting up the communication is auto-generated. This

means that programmer has to write his/her own program code for configuring the filter

and for the processes described in the next section. The HAL CAN driver API used for

this is described in the HAL CAN driver source file.

4.3.4 CAN Rx thread

CAN Rx thread is responsible for reading messages from CAN bus. CAN peripheral has

two recive FIFOs to store incoming messages. Both FIFOs have room for 3 complete

messages. The FIFO used is defined in the filter configuration[38] .

The algorithm for CAN Rx thread can be seen in Figure 21. Receiving CAN messages

is implemented using interrupts. The Rx thread activates the interrupts and then waits

for the operating system signal. While waiting, the thread will not be scheduled. If a

message arrives into the CAN Rx FIFO, the message pending ISR is launched. This first

44

Figure 20: CAN bit time table [9]

disables the interrupt so it would not be called again before needed. And then gives the

OS signal to the CAN Rx thread to get the message from the FIFO. The message

pending interrupt is re-activated. The FIFO is then emptied and message ID specific

callback functions are launched. Callback functions use structures and functions from

the DBC converter to unpack and decode the data. Once the FIFO is empty, the thread

goes back to waiting for the OS signal.

4.3.5 CAN Tx thread

CAN Tx thread is responsible for sending reports (feedback) over CAN bus. In the

current implementation the higher level controller expects reports with ~50 Hz

frequency. This means that there should be a 20 ms delay after the last message is sent.

45

Figure 21: CAN Rx thread algorithm

In the current implementation, there are 5 different reports to send: lights, speed,

steering, gear and error flags. It is expected that this number will increase as

development progresses. CAN peripheral provides 3 transmit mailboxes to set up

messages for sending [38] . If the traffic on the CAN bus is high and the priorities of the

messages in mailboxes are low, then it might take time before they get sent. This means

that the thread should yield the CPU when it has no empty mailboxes.

The algorithm of CAN Tx thread can be seen in Figure 22. The report list is

implemented as an array of function pointers, where each function packs and encodes

the report according to the DBC file and then inserts it into a mailbox for sending.

46

Figure 22: CAN Tx thread

4.3.6 Error report

Along with other reports, an error report is sent over CAN. This message contains

information about the erroneous states STM32 controller. It allows to quickly debug the

STM32 system if any problems arise.

In the program code, the error flags are grouped together as a struct. To save memory

space, the struct was implemented with a C data structure called bit field. The problem

with the bit field was that to check if any of the flags were up, it was necessary to for-

loop through them all. That is why it was made part of an union. This allowed checking

all of them together using the “raw” value in a single “If” statement. This was used with

the Error LED to signal robot operator that something was wrong. The struct can be

seen on Figure 23.

The flags were set when the error happened. If it was possible for a system to recover

from it, for example IBUS misalignement error, the error flag was reset on the occasion.

47

union{

struct

{

uint8_t cubemx_error_handler_activated : 1;

uint8_t can_filter_config_failed : 1;

uint8_t can_start_failed : 1;

uint8_t can_rx_activate_notification_failed : 1;

uint8_t can_rx_deactivate_notification_failed : 1;

uint8_t can_rx_get_msg_failed : 1;

uint8_t can_tx_add_msg_failed : 1;

uint8_t driving_motors_send_value_overflow : 1;

uint8_t driving_motors_send_to_dac_failed : 1;

uint8_t ibus_uart_abort_failed : 1;

uint8_t ibus_dma_restart_failed : 1;

uint8_t ibus_signal_timeout : 1;

uint8_t ibus_buffer_misaligned : 1;

uint8_t ibus_buffer_crc_mismatch : 1;

} ;

uint64_t raw_data;

}error_flags;

Figure 23: Error flags struct

4.4 DBC file

CAN database (DBC) file is used to describe the data over CAN bus. This allows

defining the messages and signals across the bus so that all devices would encode and

decode the raw data same way. A custom DBC file was created for this project by the

author. It can be observed in the restricted Error: Reference source not found.

4.4.1 DBC file format

The DBC file can be used to describe all aspects of the CAN bus. But in this

application, it is only used to define the messages and signals they contain. In Figure 24

can be seen a message that contains two signals. The parts highlighted with red are

syntax elements. A message definition starts with “BO_”. Then follows the message id,

the name of the message and its size in bytes (DLC). The last part is message

transmitter. If this is used, the nodes have to be defined in an another part of the DBC

file. If it is not used, it has to be left to “Vector__XXX” [10] .

The second and third lines in Figure 24 are for defining signals. They have to start with

“SG_”. Next comes the signal name. The start bit is used to define on which bit of the

message does the signal start on. Then comes the size of the signal in bits. The “1” after

the “@” sign signals the byte order: “1” stands for litte-endian and “0” for big-endian.

The “+” symbol indicates that this signal is of type unsigned. Minus sign would mean

type signed. Next comes the factor and offset parameters. These values allow converting

between the raw value used in the transfer and physical value representing actual states.

48

Figure 24: DBC message definition example

This allows for more resolution and transferring floating point values. The formulas to

transform them are as following:

physical=(raw∗factor)+offset

raw=(physical−offset)÷factor

Enclosed in the square brackets are the minimum and maximum physical value of the

signal. The physical value gets constrained between them. If they are both 0, no

constraining is done. Next comes the unit of measure. For example, this could be

“kmph” meaning kilometers per hour. If the signal has no unit, then just quotes are

used. The last part is the receiver of the signal and is analogous to the transmitter part of

the message definition.

4.4.2 DBC to C converter

The STM32 HAL library has no support for DBC files, so this functionality must be

found elsewhere. Converter programs were researched that would generate C structures

and functions from the DBC file. While testing different converters, the author found

two that were easy to use and parsed the project specific DBC file. “dbcc” program by

GitHub user Howerj [1] and Python3 module “cantools” [32] . The dbcc program had

two shortcomings. Firstly, it included the message ID into function names. That meant

that when message ID was changed in the DBC file (to adjust message priorities),

program code would have to be corrected as well. Secondly, the program did not

generate definitions for message ID-s and Data Length Codes, meaning that the user had

to create them manually. The Pyhton3 based “cantools” did not have those problems.

The generated C code provides message specific structs and functions to pack/unpack

and encode/decode the CAN messages and signals. The process is illustrated in Figure

25. To send a message, first a message struct is created that has to be filled with

encoded signal values. An example of the struct can be seen in Figure 26. Encoding the

signal means converting it from the physical value (variable type floating point) to the

raw value (variable type integer) using factor and offset as described in the DBC file

format chapter. If factor and offset is not used, then the signal does not have to be

encoded. The filled struct is then inserted into the packing function that creates an

49

unsigned integer array with the length of the DLC code of the message. The HAL

function for CAN transmit is then called and given the array as a parameter.

50

struct albert_dbc_wheel_speed_report_t {

 /**

 * Range: -

 * Scale: 0.01

 * Offset: 0

 */

 int16_t left_wheel_speed_report;

 /**

 * Range: -

 * Scale: 0.01

 * Offset: 0

 */

 int16_t right_wheel_speed_report;

};

Figure 26: DBC wheel speed report struct

Figure 25: CAN message packing and unpacking

5 Testing and analysis

This chapter focuses on the testing and analysis part of the development. It describes the

real life testing and its results. Also analysis is done on the processor usage, risks and

future plans.

5.1 Real life testing

The program code was tested on the test rig during development. Once the software was

mature enough, testing was performed on the robot prototype.

5.1.1 FreeRTOS power bug

During the first time the program code was tested on the real robot, a weird phenomen

was found. Each time the power was cycled on the entire robot, the MCU failed to

initialize. If reset button on the Nucleo board was then pressed, the MCU booted up

normally. The problem was reproduced with a simple FreeRTOS program code that had

only one thread and blinked an onboard LED. The blink code without FreeRTOS

middleware did not have this problem. That pointed towards a problem in the

FreeRTOS layer. After some testing, it was managed to fix the problem, by inserting an

one second delay after HAL_Init() and before SystemClock_Config() as can be seen in

Figure 27. The author speculates, that the power was not stable enough during the

system clock initialization part if done immediately.

51

5.1.2 First trial run

After removing minor bugs, the prototype was ready for the first trial run. Both control

over RC and CAN bus were tested. All parts of the software were working as intended.

With RC, manouvering on higher speeds was difficult due to the small size of the

joysticks. With remote control over CAN, this was not an issue, since a steering wheel

was used.

On Figure 28, the Albert prototype can be observed driving on the test track. On Figure

29 an operator can be seen controlling the robot remotely.

52

int main(void)

{

 /* Reset of all peripherals, Initializes the Flash interface and the
Systick. */

 HAL_Init();

 /* USER CODE BEGIN Init */

 HAL_Delay(1000); //Delay to fix the power cycle bug,

 /* USER CODE END Init */

 /* Configure the system clock */

 SystemClock_Config();

 /* Initialize all configured peripherals */

 MX_GPIO_Init();

 MX_DMA_Init();

 // . . .

Figure 27: Beginning of main function

During the testing, it was observed that the moving speed of the steering servo motor is

too sluggish for convenient operation. To fix this problem, it was proposed that the

53

Figure 29: Remote control station

Figure 28: Robot on the test track

motor would be given “boosted” setpoints. The error between the current value and the

set value would be added to the set value, thus increasing the and making the steering

servo move faster. For example, if the motor has to move the wheels The actual

implementation of this feature was tasked to another team member, so it will not be

covered in this thesis.

5.2 Processor usage

The FreeRTOS debugger was used to analyse the stack usage and runtime of the

threads. As can be seen on Figure 30, the stack usage of CAN_tx_task is reaching the

allocated 504 byte limit. This limit was increased manually in the CubeMx FreeRTOS

configuration to ensure that stack overflow would not happen.

The runtime analysis shows that the processor spends 83% of the time in IDLE task,

meaning the software only uses ~17% of the processor time. This shows that the

software has room for scalability. It can also be seen that driving task takes a significant

portion of the software runtime. This is since the current implementation does not use

the osDelay function and rather sends the I2C command to the DAC as often as

possible.

Even though the program code only uses around 1/5 of the processor power, it is still

easy to starve low priority threads with sub-optimal program code. For example, the

54

Figure 30: Thread runtime analysis

CAN TX thread algorithm states, that if no mailboxes are free, the thread should yield

processor time. But in case the CAN bus cable is disconnected, no mailboxes are ever

freed. Once the thread yields, the scheduler checks for the highes priority thread that is

in ready state. If no higher priority threads are ready, CAN TX thread gets the processor

time again to check for mailboxes. Since the lights thread has lower priority than the

CAN TX thread, it is starved and never run.

5.3 Risk analysis

The robot prototype is large enough to damage itself, property and people in case of an

accident. For this reason, possible risks are defined and options to mitigate them are

proposed. In addition to software mitigation options proposed here, there should always

be a safety operator near the robot, ready to press the remote killswitch.

55

Table 4: Risks and mitigation options

Risk Mitigation

RC receiver gets disconnected from MCU When IBUS thread receives a timeout it
switches the robot to STOP mode.

CAN wire gets disconnected If CAN RX thread receives a timeout it
switches the robot to STOP mode.

RC transmitter goes out of range Receiver can be programmed with failsafe
values, that get sent to MCU in this
occasion.

Driving thread fails to send new values to
DAC over I2C.

When thread reaches timeout, it switches
the robot to STOP mode. This sends a
disable signal directly to motor controllers.

Hydraulic brake fails to work. The pressure of the hydrobrake should be
measured and if it does not increase, the
robot is switched to STOP mode,
activating the emergency brake.

Emergency brake fails to work. Hydraulic brake can be used to bring the
robot to stop.

Steering motor fails to work Encoder should be installed that allows to
monitor the real steering angle of the
robot.

5.4 Future plans

In this chapter, development options are proposed for the future. These are the ideas of

the author for improvement, that did not fit into the scope of this thesis.

• Code security In case a third party gets physical access to the MCU, STM

offers some ways to block using JTAG maliciously. It is possible to protect

agains unauthorized readout and accidental or malicious write/erase operations.

• Non-volatile changeable configuration Saving configuration into EEPROM

so that reprogramming would not reset it. Also, it will not be necessary to

reflash the MCU to change configuration.

• Watchdog In case the software crashes, the watchdog would reset the

controller.

56

6 Summary

During the work on this thesis, a new controller for the Cleveron package delivery robot

prototype Albert was chosen. After the selection, software for it was developed.

STM32-F767ZI based Nucleo-144 board was chosen as the new controller for the robot.

The board featured sufficient number of GPIO pins and I2C, CAN, SPI and UART

peripherals. STMicroelectronics also provides CubeMX tool that simplifies the

configuration and initialization by auto-generating code.

Software framework was based on FreeRTOS and HAL. Real Time Operating System

allows for better timing and more efficient CPU use. STM32 HAL library made

programming easier by providing an easy to use API for controlling the peripherals.

Program code was created to allow the robot to receive commands and send feedback

over CAN bus. For better management of the bus, CAN database file (DBC) was

created. An external DBC to C converter was chosen to generate C structures and

functions. Those were then implemented into robot program code.

An IBUS driver was written to receive and translate Radio Control transmitter data. RC

remote is used for maneuvering the robot when it is too dangerous or inconvenient to do

it over CAN. RC remote is used to control which movement commands the robot acts

on, CAN or RC.

Software was created to control driving, steering and braking motors. Also to control

the lights of the robot.

During the development, test rig was used to test the program code. Finished code was

tested on the real robot. First on the stands and then on the test course. Even though the

software worked as intended, testing revealed multiple aspects where the software could

be improved.

57

References

[1] “dbcc” DBC to C converter [WWW] https://github.com/howerj/dbcc (21.04.2020)

[2] About RTOS [WWW] https://www.freertos.org/about-RTOS.html (14.04.2020)

[3] Arduino Ethernet Shield V1 [WWW]
https://www.arduino.cc/en/Main/ArduinoEthernetShieldV1 (23.02.2020)

[4] Arduino IBUS decoder [WWW] https://github.com/bmellink/IBusBM (13.02.2020)

[5] Arduino Mega 2560 [WWW] https://store.arduino.cc/arduino-mega-2560-rev3
(23.02.2020)

[6] ARM Processors [WWW] https://www.arm.com/products/silicon-ip-cpu (12.04.2020)

[7] Atmel Atmega640/V-1280/V-1281/V-2560/V-2561/V : Datasheet. Atmel Corporation,
2014.

[8] Better FreeRTOS Debugging in Eclipse [WWW]
https://mcuoneclipse.com/2017/03/18/better-freertos-debugging-in-eclipse/ (05.04.2020)

[9] CAN bit time calculator [WWW] http://www.bittiming.can-wiki.info/ (19.04.2020)

[10] CAN DBC file format [WWW]
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.
pdf (19.04.2020)

[11] Cleveron is developing a self driving delivery robot [WWW]
https://www.ituudised.ee/uudised/2019/03/29/cleveron-arendab-isesoitvat-kullerrobotit
(10.05.2020)

[12] Cleveron testing in Viljandi [WWW] https://sakala.postimees.ee/6827445/cleveron-
katsetab-meie-teedel-kaugjuhitavat-autot (10.05.2020)

[13] CMSIS overview [WWW] https://developer.arm.com/tools-and-software/embedded/cmsis
(23.02.2020)

[14] DAC6574 datasheet [WWW] http://www.ti.com/lit/ds/symlink/dac6574.pdf (22.03.2020)

[15] Description of STM32F7 HAL and Low-layer drivers : User Manual. UM1905,
STMicroelectronics, 2017.

[16] Farnell Nucleo-F767ZI page [WWW] https://ee.farnell.com/stmicroelectronics/nucleo-
f767zi/dev-board-nucleo-32-mcu/dp/2546569?ost=nucleo-f767zi&ddkey=https%3Aet-
EE%2FElement14_Estonia%2Fsearch (14.04.2020)

[17] Farnell Nucleo-F767ZI store page [WWW]
https://uk.farnell.com/stmicroelectronics/nucleo-f767zi/dev-board-nucleo-32-mcu/dp/
2546569 (11.05.2020)

[18] Farnell webpage [WWW] https://ee.farnell.com/ (12.04.2020)

58

https://ee.farnell.com/
https://uk.farnell.com/stmicroelectronics/nucleo-f767zi/dev-board-nucleo-32-mcu/dp/2546569
https://uk.farnell.com/stmicroelectronics/nucleo-f767zi/dev-board-nucleo-32-mcu/dp/2546569
https://ee.farnell.com/stmicroelectronics/nucleo-f767zi/dev-board-nucleo-32-mcu/dp/2546569?ost=nucleo-f767zi&ddkey=https%3Aet-EE%2FElement14_Estonia%2Fsearch
https://ee.farnell.com/stmicroelectronics/nucleo-f767zi/dev-board-nucleo-32-mcu/dp/2546569?ost=nucleo-f767zi&ddkey=https%3Aet-EE%2FElement14_Estonia%2Fsearch
https://ee.farnell.com/stmicroelectronics/nucleo-f767zi/dev-board-nucleo-32-mcu/dp/2546569?ost=nucleo-f767zi&ddkey=https%3Aet-EE%2FElement14_Estonia%2Fsearch
http://www.ti.com/lit/ds/symlink/dac6574.pdf
https://developer.arm.com/tools-and-software/embedded/cmsis
https://sakala.postimees.ee/6827445/cleveron-katsetab-meie-teedel-kaugjuhitavat-autot
https://sakala.postimees.ee/6827445/cleveron-katsetab-meie-teedel-kaugjuhitavat-autot
https://www.ituudised.ee/uudised/2019/03/29/cleveron-arendab-isesoitvat-kullerrobotit
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
http://www.bittiming.can-wiki.info/
https://mcuoneclipse.com/2017/03/18/better-freertos-debugging-in-eclipse/
https://www.arm.com/products/silicon-ip-cpu
https://store.arduino.cc/arduino-mega-2560-rev3
https://github.com/bmellink/IBusBM
https://www.arduino.cc/en/Main/ArduinoEthernetShieldV1
https://www.freertos.org/about-RTOS.html
https://github.com/howerj/dbcc

[19] FreeRTOS info page [WWW] https://www.freertos.org/RTOS.html (23.02.2020)

[20] GNU General Public Licence [WWW] https://www.gnu.org/licenses/gpl-3.0.en.html
(14.04.2020)

[21] Hobby servo control [WWW] https://learn.sparkfun.com/tutorials/hobby-servo-tutorial/all
(22.03.2020)

[22] IBUS protocol 1 [WWW] https://basejunction.wordpress.com/2015/08/23/en-flysky-i6-
14-channels-part1/ (13.02.2020)

[23] IBUS protocol 2 [WWW] https://github.com/betaflight/betaflight/wiki/Single-wire-
FlySky-(IBus)-telemetry (13.02.2020)

[24] Introduction to CAN [WWW]
https://www.allaboutcircuits.com/technical-articles/introduction-to-can-controller-area-
network/ (02.04.2020)

[25] Kvaser CanKing [WWW] https://www.kvaser.com/software/kvaser-canking/ (03.04.2020)

[26] Kvaser Leaf Light v2 product page [WWW] https://www.kvaser.com/product/kvaser-leaf-
light-hs-v2/ (03.04.2020)

[27] Lotte courier robot [WWW] https://digi.geenius.ee/rubriik/uudis/esimest-korda-
avalikkuse-ees-cleveron-toob-valja-kullerroboti-mis-toob-saadetised-sulle-koju-katte/
(10.05.2020)

[28] Microchip Xplained series [WWW]
https://www.microchip.com/development-tools/xplained-boards (12.04.2020)

[29] MIT licence description [WWW] https://writing.kemitchell.com/2016/09/21/MIT-
License-Line-by-Line.html (23.02.2020)

[30] New HAL CAN driver [WWW]
https://st--c.eu10.content.force.com/sfc/dist/version/download/?
oid=00Db0000000YtG6&ids=0680X000006HxTW&d=%2Fa%2F0X0000000ayX
%2F88jLLXCT3K5cAKBDLIwfRvrqV8wrr5Rvq0_amyQl1dk&asPdf=false
(01.04.2020)

[31] NXP LPCXpresso boards [WWW]
https://www.nxp.com/design/development-boards/lpcxpresso-boards:LPCXPRESSO-
BOARDS (12.04.2020)

[32] Python3 cantools [WWW] https://pypi.org/project/cantools/ (21.04.2020)

[33] RC control protocols [WWW] https://www.dronetrest.com/t/rc-radio-control-protocols-
explained-pwm-ppm-pcm-sbus-ibus-dsmx-dsm2/1357 (13.02.2020)

[34] Runtime statistics with FreeRTOS [WWW] http://blog.atollic.com/visualizing-run-time-
statistics-using-freertos (05.04.2020)

[35] ST Nucleo and Discovery boards [WWW] https://www.st.com/en/evaluation-tools/stm32-
mcu-mpu-eval-tools.html (12.04.2020)

[36] STM32 FreeRTOS MOOC [WWW]
https://drive.google.com/drive/folders/1vj2MYBeFF7nZz2WIb9_njcO7tiFsoqsg
(10.04.2020)

59

https://www.gnu.org/licenses/gpl-3.0.en.html
https://drive.google.com/drive/folders/1vj2MYBeFF7nZz2WIb9_njcO7tiFsoqsg
https://www.st.com/en/evaluation-tools/stm32-mcu-mpu-eval-tools.html
https://www.st.com/en/evaluation-tools/stm32-mcu-mpu-eval-tools.html
http://blog.atollic.com/visualizing-run-time-statistics-using-freertos
http://blog.atollic.com/visualizing-run-time-statistics-using-freertos
https://www.dronetrest.com/t/rc-radio-control-protocols-explained-pwm-ppm-pcm-sbus-ibus-dsmx-dsm2/1357
https://www.dronetrest.com/t/rc-radio-control-protocols-explained-pwm-ppm-pcm-sbus-ibus-dsmx-dsm2/1357
https://pypi.org/project/cantools/
https://www.nxp.com/design/development-boards/lpcxpresso-boards:LPCXPRESSO-BOARDS
https://www.nxp.com/design/development-boards/lpcxpresso-boards:LPCXPRESSO-BOARDS
https://st--c.eu10.content.force.com/sfc/dist/version/download/?oid=00Db0000000YtG6&ids=0680X000006HxTW&d=%2Fa%2F0X0000000ayX%2F88jLLXCT3K5cAKBDLIwfRvrqV8wrr5Rvq0_amyQl1dk&asPdf=false
https://st--c.eu10.content.force.com/sfc/dist/version/download/?oid=00Db0000000YtG6&ids=0680X000006HxTW&d=%2Fa%2F0X0000000ayX%2F88jLLXCT3K5cAKBDLIwfRvrqV8wrr5Rvq0_amyQl1dk&asPdf=false
https://st--c.eu10.content.force.com/sfc/dist/version/download/?oid=00Db0000000YtG6&ids=0680X000006HxTW&d=%2Fa%2F0X0000000ayX%2F88jLLXCT3K5cAKBDLIwfRvrqV8wrr5Rvq0_amyQl1dk&asPdf=false
https://st--c.eu10.content.force.com/sfc/dist/version/download/?oid=00Db0000000YtG6&ids=0680X000006HxTW&d=%2Fa%2F0X0000000ayX%2F88jLLXCT3K5cAKBDLIwfRvrqV8wrr5Rvq0_amyQl1dk&asPdf=false
https://writing.kemitchell.com/2016/09/21/MIT-License-Line-by-Line.html
https://writing.kemitchell.com/2016/09/21/MIT-License-Line-by-Line.html
https://www.microchip.com/development-tools/xplained-boards
https://digi.geenius.ee/rubriik/uudis/esimest-korda-avalikkuse-ees-cleveron-toob-valja-kullerroboti-mis-toob-saadetised-sulle-koju-katte/
https://digi.geenius.ee/rubriik/uudis/esimest-korda-avalikkuse-ees-cleveron-toob-valja-kullerroboti-mis-toob-saadetised-sulle-koju-katte/
https://www.kvaser.com/product/kvaser-leaf-light-hs-v2/
https://www.kvaser.com/product/kvaser-leaf-light-hs-v2/
https://www.kvaser.com/software/kvaser-canking/
https://www.allaboutcircuits.com/technical-articles/introduction-to-can-controller-area-network/
https://www.allaboutcircuits.com/technical-articles/introduction-to-can-controller-area-network/
https://github.com/betaflight/betaflight/wiki/Single-wire-FlySky-(IBus)-telemetry
https://github.com/betaflight/betaflight/wiki/Single-wire-FlySky-(IBus)-telemetry
https://basejunction.wordpress.com/2015/08/23/en-flysky-i6-14-channels-part1/
https://basejunction.wordpress.com/2015/08/23/en-flysky-i6-14-channels-part1/
https://learn.sparkfun.com/tutorials/hobby-servo-tutorial/all
https://www.freertos.org/RTOS.html

[37] STM32 Nucleo-144 boards : User manual. UM1974, STMicroelectronics, 2017.

[38] STM32F76xxx and STM32F77xxx advanced Arm®-based 32-bit MCUs : Reference
Manual. RM0410, STMicroelectronics, 2018.

[39] TI Launchpad [WWW]
http://www.ti.com/design-resources/embedded-development/hardware-kits-boards.html
(12.04.2020)

60

http://www.ti.com/design-resources/embedded-development/hardware-kits-boards.html

	1 Introduction 12
	2 Background and planning 15
	2.1 Requirements 15
	2.2 Choosing the controller 17
	2.3 RTOS 19
	2.4 CubeMX configuration software 20
	2.5 Debugging 22

	3 Control software 27
	3.1 Steering motor control implementation 28
	3.2 Driving motors control implementation 30
	3.3 Hydraulic brake implementation 31
	3.4 Lights implementation 32

	4 Communications software 33
	4.1 Switching between CAN and RC control 33
	4.2 Radio control implementation 34
	4.3 Communication with higher level computer over CAN 40
	4.4 DBC file 48

	5 Testing and analysis 51
	5.1 Real life testing 51
	5.2 Processor usage 54
	5.3 Risk analysis 55
	5.4 Future plans 56

	6 Summary 57
	References 58
	1 Introduction
	2 Background and planning
	2.1 Requirements
	2.1.1 Requirements summary

	2.2 Choosing the controller
	2.3 RTOS
	2.3.1 FreeRTOS
	2.3.2 CMSIS-RTOS
	2.3.3 RTOS preemptive vs cooperative

	2.4 CubeMX configuration software
	2.5 Debugging
	2.5.1 Nucleo-F757ZI debugging options
	2.5.2 FreeRTOS debugger plugin
	2.5.3 Rigol digital oscilloscope
	2.5.4 Kvaser Leaf Light v2 and Kvaser CanKing

	3 Control software
	3.1 Steering motor control implementation
	3.1.1 Hobby servo control

	3.2 Driving motors control implementation
	3.2.1 I2C message format

	3.3 Hydraulic brake implementation
	3.4 Lights implementation

	4 Communications software
	4.1 Switching between CAN and RC control
	4.2 Radio control implementation
	4.2.1 IBUS protocol
	4.2.2 Different UART reading methods
	4.2.3 IBUS misalignment problem
	4.2.4 IBUS receive algorithm

	4.3 Communication with higher level computer over CAN
	4.3.1 HAL CAN driver initialization
	4.3.2 Bit timing
	4.3.3 CAN message filter
	4.3.4 CAN Rx thread
	4.3.5 CAN Tx thread
	4.3.6 Error report

	4.4 DBC file
	4.4.1 DBC file format
	4.4.2 DBC to C converter

	5 Testing and analysis
	5.1 Real life testing
	5.1.1 FreeRTOS power bug
	5.1.2 First trial run

	5.2 Processor usage
	5.3 Risk analysis
	5.4 Future plans

	6 Summary
	References

