
TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technologies 

Rim Puks 182558 

LOW LEVEL CONTROLLER SOFTWARE
FOR CLEVERON PACKAGE DELIVERY

ROBOT

Master’s thesis 

Supervisor: Peeter Ellervee

PhD

Co-Supervisor: Martin Appo

MSc

Tallinn 2020



TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Rim Puks 182558

CLEVERONI PAKIVEOROBOTI
MADALAMA TASEME KONTROLLERI

TARKVARA

Magistritöö

Juhendaja: Peeter Ellervee

PhD

Kaasjuhendaja: Martin Appo

MSc

Tallinn 2020



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else. 

Author: Rim Puks

18.05.2020

Tallinn 2020



Abstract

Cleveron AS is developing a remote controlled vehicle robot. This thesis focuses on the

lower level controller for the new protoype of this robot. The requirements for the new

controller were defined and STM32F767ZI on Nucleo-144 board was selected. Program

code  was  developed  for  it  using  FreeRTOS  framework  and  HAL  library.  CAN

communication with the higher level controller was implemented to receive commands

and send feedback. The robot can be controlled over CAN bus and by Radio Control

transmitter.  The software controls the steering, driving and braking motors as well as

the lights. The finished software was tested on the robot by driving around on a test

course.

This thesis is written in English and is 57 pages long, including 6 chapters, 30 figures

and 4 tables. 
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Annotatsioon

Cleveroni pakiveoroboti madalama taseme kontrolleri tarkvara

Cleveron  AS  on  Viljandis  asuv  ettevõte,  mis  tegeleb  pakirobotite  tootmise  ja

arendusega. Viimased aastad on Cleveron arendanud sõitjata pakiveorobotit. Käesolev

lõputöö  tegeleb  selle  roboti  uuele  prototüübile  madala  kihi  kontrolleri  lahenduse

arendamisega.

Magistritööd  alustati  uue  kontrolleri  nõuete  kaardistamisega.  Määrati  vajaminevad

perifeeriad  ning  nõuded  jõudlusele  ja  skaleeritavusele.  Nõuete  analüüsi  tulemusena

osutus sobivaimaks STM32F767ZI Nucleo-144 arendusplaadil.

Kontrolleri  tarkvararaamistik  põhineb  FreeRTOS-il.  Tegemist  on  enamlevinud

reaalajaoperatsioonisüsteemiga.  FreeRTOS  lihtsustab  protsesside  ajastamist  ja

soodustab tarkvara modulaarsust ja skaleeritavust.

Töö käigus arendati välja alumise kihi kontrolleri kahepoolne suhtlus ülemise kihiga üle

CAN-i siini. Suhtluse organiseerimiseks loodi DBC fail mis defineerib erinevate CAN-i

sõnumite sisu. Kasutades Python3-el põhinevat konverterit tekitati DBC failist C keele

struktuurid ja definitsioonid.

Loodi  ka  alternatiivne  roboti  kontrollimise  viis  läbi  raadiosidepuldi.  Sellega  saab

operaator  robotit  manööverdada,  kui  seda  ei  saa  või  ei  ole  mugav üle  CAN-i  teha.

Raadioside puldiga valitakse kanal, millega robotit juhitakse, kas CAN-i või raadioside

kaudu.

Tarkvara realiseerib vastuvõetud käsklused juhtides rooli- ja veomootoreid, hüdropiduri

ja avariipiduri ajameid ning roboti tulesid.

Testimiseks tarkvaraarenduse ajal kasutati projektimeeskonna poolt arendatud testplaati.

Hiljem testitit programmikoodi ka valminud robotil nii pukkide peal kui testrajal.
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Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 57 leheküljel, 6 peatükki, 30

joonist, 4 tabelit. 
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List of abbreviations and terms

TalTech Tallinn University of Technology

MCU Microcontroller

RC Radio Control

ISR Interrupt Service Routine

DMA Direct Memory Access

FIFO First In First Out

UART Universal asynchronous receiver-transmitter

USART Universal synchronous and asynchronous receiver-transmitter

CMSIS Cortex Microcontroller Software Interface Standard

SPI Serial Peripheral Interface

DAC Digital-to-Analog Converter

I2C Inter-Integrated Circuit

HAL Hardware Abstraction Layer

CAN Controller Area Network

DLC Data Length Code

DBC CAN Database

API Application Programming Interface

7



Table of Contents

1  Introduction.................................................................................................................12

2  Background and planning............................................................................................15

2.1  Requirements........................................................................................................15

2.2  Choosing the controller.........................................................................................17

2.3  RTOS....................................................................................................................19

2.4  CubeMX configuration software..........................................................................20

2.5  Debugging.............................................................................................................22

3  Control software..........................................................................................................27

3.1  Steering motor control implementation................................................................28

3.2  Driving motors control implementation...............................................................30

3.3  Hydraulic brake implementation..........................................................................31

3.4  Lights implementation..........................................................................................32

4  Communications software...........................................................................................33

4.1  Switching between CAN and RC control.............................................................33

4.2  Radio control implementation..............................................................................34

4.3  Communication with higher level computer over CAN.......................................40

4.4  DBC file................................................................................................................48

5  Testing and analysis.....................................................................................................51

5.1  Real life testing.....................................................................................................51

5.2  Processor usage.....................................................................................................54

5.3  Risk analysis.........................................................................................................55

5.4  Future plans...........................................................................................................56

6  Summary......................................................................................................................57

 References......................................................................................................................58

8



List of Figures

 Figure 1: Prototype "Albert"...........................................................................................13

 Figure 2: Nucleo-F767ZI[17].........................................................................................18

 Figure 3: CubeMX page of STM32CubeIDE.................................................................21

 Figure 4: Embedded ST-LINK/V2-1 debugger/programmer.........................................23

 Figure 5: FreeRTOS debugger plugin[8]........................................................................23

 Figure 6: Debugging I2C with Rigol oscilloscope.........................................................24

 Figure 7: Kvaser Leaf Light v2 [26]...............................................................................25

 Figure 8: Sending and receiving messages with CanKing.............................................25

 Figure 9: Hobby servo control [21]................................................................................28

 Figure 10: Steering servo control algorithm...................................................................29

 Figure 11: DAC I2C frame.............................................................................................30

 Figure 12: MS-Byte and LS-Byte of DMA I2C frame [14]...........................................31

Figure 13: Hydrobrake duty cycle pseudocode...............................................................32

 Figure 14: Movement commands multiplexer................................................................34

Figure 15. Oscilloscope capture of IBUS frame..............................................................35

 Figure 16. Screenshot of UART buffer contents during misalignment..........................38

 Figure 17: IBUS receive algorithm................................................................................40

 Figure 18: CAN frame....................................................................................................41

 Figure 19: Nominal bit time[38].....................................................................................43

 Figure 20: CAN bit time table [9]..................................................................................44

 Figure 21: CAN Rx thread algorithm.............................................................................45

 Figure 22: CAN Tx thread..............................................................................................46

Figure 23: Error flags struct.............................................................................................47

 Figure 24: DBC message definition example.................................................................48

 Figure 25: CAN message packing and unpacking..........................................................50

Figure 26: DBC wheel speed report struct......................................................................50

Figure 27: Beginning of main function...........................................................................52

 Figure 28: Robot on the test track..................................................................................53

9



 Figure 29: Remote control station..................................................................................53

 Figure 30: Thread runtime analysis................................................................................54

10



List of Tables

Table 1: Threads and their priorities and frequencies.....................................................27

Table 2: Driving motors controller interface...................................................................30

Table 3. IBUS frame........................................................................................................36

Table 4: Risks and mitigation options.............................................................................55

11



1 Introduction

The author of this  thesis  is  employed in Cleveron AS. Cleveron is a package robot

development  and manufacturing  company located  in  Viljandi,  Estonia.  In the recent

years, Cleveron has been developing a package delivery vehicle robot. The goal of the

robot is to deliver packages to clients without the need for a human driver. In the later

stages  of  the  product  development,  this  robot  would act  autonomously.  That  would

allow logistic companies to save on labor costs. 

Cleveron AS first introduced the idea for a new package delivery robot in Robotex 2018

[27]  . Since then, the development has gained media attention on multiple occasions

[12] , [11] . 

A new prototype  for  this  robot,  called  Albert,  is  built  on the  spring  of  2020.  New

hardware and software developments  are  tested on it.  The author  of this  thesis  is  a

member of the software team for this project and focuses his work on the low level

controller of the robot.

Despite the fact, that the robot will be smaller in scale compared to regular cars, it will

still use the same driveways. Due to this, the vehicle robot will have to abide by the

same traffic laws as cars. In hardware aspects it means that the robot has to have turn

signals,  braking lights and low beams. Also, its  braking capabilities will  have to be

similar to normal cars. Due to safety reasons the maximum speed of the prototype is

planned  to  be  slowly  increased  during  testing.  At  first,  it  will  be  around  20 km/h.

During the development of the robot, there will always be an safety operator driving

behind it, ready to press the emergency stop button. The operator will also have a RC

(Radio Control) remote allowing it to take over the control if needed.
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Main controlling method of this prototype will be teleoperation using commercial 4G

network. There are two controllers on the robot. One is a computer for higher level

tasks, like camera image processing and communication with the teleoperation control

station. The other, lower level controller, will receive commands from the higher or RC

remote.  It  will  control  motors,  lights  and sensors  and also  provide  feedback to  the

higher level controller.

Cleveron has developed multiple prototypes for this robot over the course of two years.

Each one has been more complex than the previous. Prototypes this far have been using

Arduino Mega 2560 development board as a low level controller [5] . The advantage of

using an Arduino board is that it has allowed to quickly test out different components.

Arduino has provided an extensive framework that makes programming the controller

easier. It also has libraries for most of the hobbyist electronic components, for example

Digital-Analog Converters and stepper motors. Due to the increasing complexity of the

project, using Arduino Mega 2560 as a low level controller has become difficult. For
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this reason, it  has been decided to move to a new and more powerful controller  on

Albert.

Albert is part of the Cleveron AS project to develop a new product and due to this, some

information about the project is confidential. To protect Cleveron business intrests, all

confidential information is moved to the appendixes part of the thesis and will not be

published with  the  main  part.  Due  to  the  contracts  with  the  higher  level  controller

provider, information about it is omitted from both public and the confidential part.

Task

The  goal  of  this  thesis  is  selecting  a  new  low  level  controller  and  developing  its

software. The controller must be able to:

• Run a Real Time Operating System

• Receive commands and send feedback over CAN.

• Receive commands from a RC transmitter.

• Control driving, steering and braking actuators.

• Control the vehicle lights.

Results

After defining the requirements, STM32F767ZI on Nucleo - 144 board was selected as

the controller  for the new prototype.  Software was developed, that fulfills  all  of the

functionality stated in the “Task” section. The program code was tested with the robot

on stands and on the test track.
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2 Background and planning

In  this  chapter  the  background  research  and  the  planning  phase  of  the  project  is

described. First part focuses on gathering the requirements for the controller, second

part is about controller selection, third part is about Real Time Operating System and

the fourth about different debugging tools used in the project.

2.1 Requirements

Before the new controller solution can be selected, the requirements to it have to be

defined. This means the number of available  GPIO pins, number of peripherals  and

other specifications.

Since the other components used in the robot are considered confidential,  the list  of

them is moved to  Error: Reference source not found and is not part of the publically

available version of this thesis.

In  the  previous  prototypes,  the  communication  between  the  higher  and  lower  level

controller has been implemented over Ethernet. For this purpose, Arduino Mega 2560

was  equipped  with  an  Arduino  Ethernet  shield  [3]  .  With  the  new prototype,  it  is

planned to use CAN (Controller Area Network) for communication between controllers.

CAN  offers  very  reliable  and  relatively  high  speed  connection.  It  lacks  the  high

throughput of Ethernet, but that is not needed here. CAN also makes it very easy to add

new devices to the network. To connect to the CAN bus, the new controller hardware

must have a CAN peripheral.

The Arduino based prototypes have used the “millis” library for timing. This allows for

rudimentary  real  time  operations  but  becomes  difficult  and  error-prone  with  more

complex systems. It is planned, that the new controller  will be running a Real Time

Operating System (RTOS). This will make timing the tasks easier and will also provide
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scalability to the project. Since RTOS requires more processing power, it is required

that the new controller should have a 32 bit architecture.

Migrating from one software platform (Arduino) to another uses company resources,

mainly developer work time. With this in mind, scalabilty is an important  keyword.

Another platform should be chosen as such that new migration would not be necessary

in the future.  In this  sense, it  is recommended that  the chosen framework/controller

would allow upgrading to more powerful (or if needed - less powerful) options without

changing the program code.

Due to the rapid development of the project, it is decided that the controller should be

available  on  a  development  board,  removing  a  need  to  build  a  PCB  around  a

microcontroller. This will allow to start developing instantly. The PCB can always be

developed in the later stages of the development.

The lower level controller will be powered by the robot battery that also has to power

the high level controller and the motors. Since in comparison, the power consumption of

the low level controller is marginal, there are no power requirements for the controller.

Same principle applies to the controller price, but it is still required that the cost would

be under 100€.

It is required that the controller would also have at least one additional I2C, two SPI, 2

UART peripherals  and  10  GPIO pins  in  case  more  sensors  or  actuators  are  to  be

installed  to  the  robot.  For  example,  devices  like  SPI based  encoder  and I2C based

ultrasound  distance  sensors  are  planned  to  be  added  to  the  robot  in  the  later

development stage.

The  number  of  different  microcontrollers  is  vast.  To  narrow  down  the  number  of

possible options, and thus make deciding easier, it was chosen that the controller should

have a ARM Cortex-M family microprocessor. ARM is a world leading microprocessor

developer and is implemented in a wide array of microcontrollers. Cortex-M family is

meant specifically for low power and low cost embedded systems  [6]  . Other Cortex

families are unnecessarily powerful and complex for our application.
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2.1.1 Requirements summary

Summarizing this chapter and the component requirements stated in the appendixes, the

requirements for the controller are:

• At least 21 GPIO pins.

• At least 2 I2C peripherals

• At least 2 SPI peripherals

• CAN peripheral

• 3 UART peripherals

• 2 hardware timers

• Cost is less than 100€

• Company provides other options with the same software framework.

• Available on developer board

• RTOS capable

• 32 bit architecture

• ARM Cortex-M family processor

2.2 Choosing the controller

There exists many different microcontroller families that implement ARM Cortex-M.

Most  of  them  offer  developer  boards  that  match  the  requirements  stated  above.

Microchip  has  the  SAM  based  Xplained  series  [28]  ,  STMicroelectronics  has  the

STM32 based Nucleo and Discovery series [35] , NXP has the LPC based LPCXpresso

boards  [31]   and Texas Instruments has TIVA LaunchPAD series  [39]  . This means

there is not a single best choice.
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Eventually,  STMicroelectronics STM32 Nucleo line was selected.  Nucleo boards are

reasonably priced and they come with an integrated debugger/programmer. The author

and other engineers in Cleveron AS have had experience with them. STM32 has HAL

(Hardware Abstraction Layer) software library that simplifies moving from one STM32

microcontroller to another, since the code does not need to be changed. Also, there is a

configuration software CubeMX, that makes initial setup and configuration much easier

since it generates all the code that is needed [35] .

Since the price difference between Nucleo boards is small and power consumption is

not a priority, Nucleo-144 type with STM32-F767ZI microcontroller was chosen. It is

one of the more powerful Nucleo boards with more available flash memory. The board

can be seen below on Figure 2.

Once the controller board was selected, the mechatronic engineers of the project team

started building a PCB around Nucleo-F767ZI to make everything more compact.  A

short description of it can be found in the restricted access Error: Reference source not

foundError: Reference source not found.
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2.3 RTOS

The central  part  of this  robots embedded software will  be the Real Time Operating

System. The main advantage of RTOS is that it allows better timing of tasks and more

scalability for the software.

“An operating system is a computer program that supports a computer’s basic functions,

and provides services to other programs (or applications) that run on the computer.”[2] 

What turns an OS into RTOS is a predictable (deterministic) execution pattern. RTOS

must conform to real time requirements. “A real time requirement is one that specifies

that the embedded system must respond to a certain event within a strictly defined time

(the deadline).”[2] 

2.3.1 FreeRTOS

Even though there  are  many different  Real  Time Operating  Systems in the  market,

FreeRTOS is the most polular. It supports a wide range of devices, is open-source and

free.  It  includes  a  kernel  and different  libraries  for  a  wide  array of  use cases[19]  .

FreeRTOS is included in STM32CubeMx configuration tool, so installing it has been

made simple. Enabling it in CubeMX auto-generates all the necessary files.

It  is  owned by Amazon and distributed  under  MIT open source  licence.  MIT open

source licence allows re-licensing the software under new licence [29] . This means the

robot application does not have to be open-source as would be with the GNU General

Public Licence, that is very common with open-source software [20] .

2.3.2  CMSIS-RTOS

When CubeMX includes FreeRTOS middleware,  it  adds a CMSIS-RTOS API layer.

This  means  the  user  will  not  use  FreeRTOS  default  API  but  the  one  provided  by

CMSIS. CMSIS stands for Cortex Microcontroller Software Interface Standard. It is an

abstraction layer created for ARM Cortex microcontrollers [13] . STM32 CubeMx auto-

generated code expects the user to use CMSIS-RTOS v1 or v2 API. While testing both

CMSIS versions, it was discovered, that semaphores fail to work correctly when using

CMSIS v2. Due to that, CMSIS v1 is used in this project.
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2.3.3 RTOS preemptive vs cooperative

The scheduler of FreeRTOS can be configured to be in preemptive or cooperative (non-

preemptive) mode. The scheduler is the piece of software of the operating system that

decides which task gets processor time and when [36] .

Preemptive mode means that each task gets a time slice. “Context gets switched when:

• Time slice has passed

• Task with higher priority has come

• Task goes to BLOCKED state (i.e. by call osDelay() function)

• Task goes to READY state (i.e. by call osThreadYield() function)” [36] 

Cooperative mode means that there are no time slices and the tasks are not preempted

by higher priorty tasks. “Context gets switched ONLY when RUNNING task

• goes to BLOCKED state (i.e. by call osDelay() function) or

• goes to READY state (i.e. by call osThreadYield() function) or

• is put into SUSPEND mode by the system (other task)” [36] 

STM32 FreeRTOS MOOC (Massive  Open Online  Course)  recommends  using  non-

preemptive (cooperative) RTOS mode if possible [36] . That is due to more transparent

time management, since all threads switch states at known positions. It also means that

the program code will not have to deal with so many race conditions. But when using

cooperative  mode,  the  programmer  has  to  assure that  all  of  the processes  are  short

enough that no threads would starve.

2.4 CubeMX configuration software

STM32 CubeMX is a graphical tool that makes initializing and configuring a STM32

project much easier. User can configure all the necessary MCU peripherals from drop

down menus. It also shows the programmer which pins are already in use. Once the

20



configuration part is done, CubeMX auto-generates a project. The user can return to the

configuration  screen at any time to re-configure.

But using CubeMx can be error-prone, since it still requires an understanding about the

microcontroller for correct configuration. Most flags and configuration options are not

explained  so  it  is  necessary  to  consult  to  the  manual  of  the  microcontroller  while

configuring. For example, the author had some problems with implementing UART for

RC receiver. From debugging view, it seemed like UART peripheral sometimes failed

to  receive  data.  And  after  the  first  breakpoint,  it  always  failed.  Eventually,  it  was

discovered, that the STM32CubeMx set the UART overflow error flag as default. This

blocked UART if overflow was detected until the overflow flag was cleared. Since RC

receiver  constantly  sends  data  over  UART then  sometimes  the  overflow  happened

before program code had a chance to set up UART receive. The overflow also happened

every time the MCU was paused, as when in a breakpoint.
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2.5 Debugging

An important part of developing is debugging, the act of finding and fixing errors in

software. In this chapter, the software and hardware equipment used for debugging this

project is described.

As stated before, the previous prototypes were based on Arduino boards. With Arduino,

the main debugging methods used were sending data to serial  port  over UART and

manipulating GPIO pins to light up LEDs or observe them with an oscilloscope/logic

analyzer.  Arduino  Mega  2560  has  JTAG  interface  and  can  be  connected  with  a

debugger to allow breakpoints and stepping through instructions  [7]  . But this option

was not used since the debugger had not been acquired and the program was simple

enough.

2.5.1 Nucleo-F757ZI debugging options

When working with Nucleo-F767ZI board, similar debugging options as with Arduino

are available. It is possible to send data over serial line and observe it from PC with a

serial monitor software. Also, unused GPIO outputs can be manipulated to signal events

and read with oscilloscope or logic analyzer. While Arduino Mega 2560 requires an

external debugger for connecting to JTAG interface, Nucleo-F767ZI has an embedded

debugger/programmer ST-LINK/V2-1 [Figure 4]. If necessary, it can be broken off and

used as an external debugger/programmer for other STM32 devices. With a debugger, it

is possible to insert breakpoints, step through the instructions, see variable and register

values and change them. 
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2.5.2 FreeRTOS debugger plugin

The debugging options described in the last section did not have any RTOS specific

capabilities.  For  this,  a  FreeRTOS  debugger  plugin  was  installed  to  the

STM32CubeIDE program. When the program was paused it  allowed to observe the

stack usage of each thread, making sure that stack overflow would not happen. Also, it

was possible  to observe in what  states the threads were and how much of the total

runtime did they take.
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Figure 4: Embedded ST-LINK/V2-1 debugger/programmer

Figure 5: FreeRTOS debugger plugin[8] 



The debugger plugin was developed by NXP and was installed here with the guide

“Better FreeRTOS Debugging in Eclipse” provided by Erich Styger [8] . The plugin is

for FreeRTOS and works on different ARM based MCUs. 

2.5.3 Rigol digital oscilloscope

Rigol MSO2302A digital  oscilloscope was used extensively during the development

process to debug. The main features used were the logic analyzer and decoder. Logic

analyzer allowed connecting up to 16 digital  inputs. Decoder allowed decoding I2C,

UART and CAN messages to confirm correct outputs as seen on Figure 6.
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2.5.4 Kvaser Leaf Light v2 and Kvaser CanKing

Kvaser Leaf Light v2 is a CAN interface for USB. It allows connecting a computer to

CAN network. It supports both 11 bit and 29 bit identifiers and manages speeds up to 1

Mbit/s [26] .

Kvaser CanKing is a software for interacting with CAN bus with products like Kvaser

Leaf  Light  v2.  It  allows sending and receiving CAN and Extended CAN messages,

logging to a file, generating traffic and formating messages [25] .
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Figure 7: Kvaser Leaf Light v2 [26] 

Figure 8: Sending and receiving messages with CanKing



Kvaser Leaf Light v2 was used with CanKing software to debug and test CAN bus and

the DBC file [DBC file]. It allowed sending commands to robot and checking feedback.

CanKing also allowed to confirm if the DBC file was correct and also if encoding and

decoding was working as intended. 
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3 Control software

In this chapter the control software architecture and development is described. As stated

before,  the  FreeRTOS framework is  used for  the  software.  Control  of  the  different

components  are  separated  into  threads.  Threads  are  called  tasks  in  the  FreeRTOS

environment, both names are used in this thesis.

Threads are created in the CubeMx FreeRTOS page. The code generation option is set

to “extern”, meaning the code generator only creates the declaration and not definition.

It is also possible to set it as “weak”. This would generate thread function definition

with “weak” attribute into main.c file. If the linker finds any other definitions for this

function it would use the non-weak definition.

For more modular approach, each thread has its own source file. The main.c is only

used  for  peripheral  configuration  and  has  very  little  not  auto-generated  code.  The

different threads and their priorities and frequencies can be seen in Table 1.
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Table 1: Threads and their priorities and frequencies

Thread Priority Frequency

IBUS thread (for RC control) Real time When  a  complete  IBUS  frame
has arrived. ~142 Hz

CAN RX thread Real time When a new CAN bus message
has arrived.

Steering thread High 100 Hz

Driving thread High 100 Hz

Hydraulic brake thread High 100 Hz

CAN TX thread Normal 50  Hz  (Between  full  sets  of
reports)

Lights thread Low 20 Hz



3.1 Steering motor control implementation

The steering motor installed to this robot is controlled the same way as a hobby servo.

This made testing convenient since it could be done with a small hobby servo.

3.1.1 Hobby servo control

Hobby servos are mainly used in remote controlled cars, boats and airplanes. They are

also popular with Arduino projects since it is easy to control them using MCU timers.

The  hobby  servo  is  controlled  using  50  Hz  PWM.  The  position  of  the  motor  is

determined by the length of the pulse as can be seen in Figure 9. Having a duty cycle

5% (1 ms) will turn the motor full clockwise. With 10% (2 ms) the motor will turn full

counterclockwise and with 7,5% duty cycle (1,5 ms) it will be in the center position. All

the positions between can also be achived by sending a duty cycle higher than 5% and

lower than 10% [21] .
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Figure 9: Hobby servo control [21]  



In this application, the minimum and maximum positions of the servo are configurable.

The algorithm for setting the PWM servo can be seen in Figure 10. The thread reads the

steering value from a global steering command variable, converts it to servo PWM and

then blocks itself for a specified time.
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Figure 10: Steering servo control
algorithm



3.2 Driving motors control implementation

The driving motor drivers of the robot are controlled with analog voltage and GPIO

pins. In the current implementation, all 4 motor controllers receive the same commands,

so the wheels will move with the same speed. Two analog and three digital signals get

sent to the motor controller. The first analog signal controls the torque of the motor and

the second controls the regenerative braking. There is a digital signal for enabling the

controller in general and specifying the motor direction. The summary of the interface

can be seen in Table 2.

Table 2: Driving motors controller interface

Signal Description Physical characteristic

Throttle Controls the strenght of driving motors
throttle

Analog  voltage  from  0
to 5 V

Brake Controls the strenght of driving motors
regenrative braking

Analog  voltage  from  0
to 5 V

Motors_Forward Enables moving motors forward GPIO input

Motors_Reverse Enables moving motors backward GPIO input

Motors_Enable Enables the motors GPIO input

The analog voltage is supplied by an external 4 channel Digital-to-Analog Converter

(DAC)  Texas  Instruments  DAC6574  [14]  .  The  microcontroller  uses  I2C  to  send

commands to the DAC.

3.2.1 I2C message format

The  DAC module  expects  I2C messages  to  be  in  a  format  defined  in  the  product

datasheet. The format can be observed in Figure 11. 
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Figure 11: DAC I2C frame



The STM32 I2C peripheral handles the details such as start and stop conditions and

acknowledge bits (A). HAL library handles configuring and communication with the

I2C peripheral, so the user only has to call the HAL API function declared below.

HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef * hi2c,
uint16_t DevAddress, uint8_t * pData, uint16_t Size);

As can be seen from the declaration, the function requires 4 parameters. The handle to

the I2C peripheral, the I2C address of the DAC, a pointer to the unsigned integer buffer

that holds the data to be transferred and the size of that buffer.

To conform to the I2C frame defined in the datasheet (Figure 11), the first member of

the transfer buffer must be the Control byte. That byte specifies the operation mode (in

this application only the normal mode is used) and the DAC channel to be updated.

The next 2 bytes are data bytes. The DAC has 10 bit resolution and the bytes have to be

shifted as specified in the manual (Figure 12).

3.3 Hydraulic brake implementation

PWM is used to control the strength of the hydraulic  brake.  The hydraulic brake is

activated if the global brake command variable CMD_brake_value passes a threshold.

In  the  current  implementation,  this  threshhold  is  50%  of  the  maximum

CMD_brake_value. The hydraulic brake strength then rises in linear manner with the
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Figure 12: MS-Byte and LS-Byte of DMA
I2C frame [14] 



brake  value,  with  100% brake  value  corresponding to  100% hydraulic  brake  value.

Pseudocode in Figure 13 descibes how the hydrobrake duty cycle gets calculated. 

3.4 Lights implementation

The  lights  thread  implementation  is  relatively  simple.  Thread  goes  through  if-else

statements for brake, reverse and error lights. If brake command is over 10%, brake

lights are activated. If the robot is in reverse gear, reverse lights get activated. And if

any of the current error flags is up, error LED is activated. Other lights get activated by

CAN commands directly in the callback functions.
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if(CMD_brake_value > hydrobrake_threshold)

{

hydrobrake_duty_cycle = (CMD_brake_value -hydrobrake_threshold)/
(1.0 - hydrobrake_threshold)

}

else

{

hydrobrake_duty_cycle = 0

}

Figure 13: Hydrobrake duty cycle pseudocode



4 Communications software

This chapter covers the communication part of the software. The lower level controller

receives commands from 2 channels: RC transmitter and CAN bus. The latter is also

used to send feedback about the robot state. In this thesis, RC is often referred to as

IBUS, after the protocol the RC receiver uses to transmit data to MCU.

4.1 Switching between CAN and RC control

Since  the  robot  movement  can  be  controlled  by  two  different  methods,  switching

between  them  is  required.  It  was  decided  that  this  should  be  done  using  the  RC

transmitter, since the robot prototype should always be supervised by a human operator.

And this would allow the human to quickly switch to manual control in case something

goes wrong.

The control scheme shown in Figure 14 is proposed. The control mode can be chosen

from a switch on RC transmitter.  This  controls the multiplexer  to select  the correct

input. Full stop state was added as an additional input for safety. If this command is

multiplexed forward, the robot will come to a stop. This allows for safer parking, since

the robot will not move when the operator accidentally touches the joysticks. The full

stop mode also activates the emergency brake. Other control modes turn the emergency

brake off.
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The control scheme is implemented using C pointers. When the IBUS thread parses the

data from the RC transmitter, it changes the value of the pointer if the control mode has

been changed.

4.2 Radio control implementation

The description of the RC receiver and transmitter used for controlling the robot can be

found in  Error: Reference source not found. The receiver uses IBUS protocol to send

data. Due to that, the thread is also named after IBUS.

4.2.1 IBUS protocol

IBUS is  developed by a  chinese  hobby RC component  manufacturer  and developer

Flysky[33]  .  There  is  no  official  IBUS  reference  manual  freely  available  but  the

protocol is described in multiple technical enthusiast blog posts [22] ,[23] . There is an

Arduino  library for decoding IBUS protocol that  was used with the previous Arduino

based prototypes of the robot  [4]  . The author also used this  library as reference for

developing the decoder software for STM32.
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Figure 14: Movement commands multiplexer



The RC receiver sends one IBUS frame every 7,7 ms. The length of the IBUS frame is

32 bytes. The RC receiver sends with baudrate 115200. One UART frame consists of

one start bit, 8 data bits, no parity bit and one stop bit (shorthand notation: 8N1). That

means 10 bits per one UART frame. Since one IBUS frame consists of 32 bytes, it takes

around 3 ms to receive one frame of information.

32⋅10⋅(1/115200)≈3ms

This timing was verified using oscilloscope as can be seen from ΔX in Figure 15.

The contents of an IBUS frame are described in Table 3. First two bytes are always 32

and 64. That is used in the program code to detect the start of the frame, and align frame

and buffer if needed (see  4.2.3). All the following data is two byte integers in little

endian order. Joystick values can be all integers between 1000 and 2000. With 1000 in

one side, 2000 in the other and 1500 in the middle. Switches have discreet values. First

and fourth have 2 possible positions marked by 1000 and 2000. Second and third have 3

positions,  marked  as  1000,  1500  and  2000.  Some  channels  of  the  frame  are  not

configured from the RC transmitter, so their content will always be 1500. The frame

ends with CRC value, that is calculated by subtracting all the byte values (not including

CRC) of the frame from 0xFFFF.
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Figure 15. Oscilloscope capture of IBUS frame.



Table 3. IBUS frame

Byte Content(in decimal) Description

0 Always 32 Length of frame

1 Always 64 Command code

2:3 1000-2000 Right joystick horizontal

4:5 1000-2000 Left joystick vertical

6:7 1000-2000 Right joystick vertical

8:9 1000-2000 Left joystick horizontal

10:11 Always 1500 Not used

12:13 1000 or 2000 First switch

14:15 1000, 1500 or 2000 Third switch

16:17 1000, 1500 or 2000 Second switch

18:19 1000 or 2000 Fourth switch

20:21 Always 1500 Not used

22:23 Always 1500 Not used

24:25 Always 1500 Not used

26:27 Always 1500 Not used

28:29 Always 1500 Not used

30:31 0xFFFF – all previous bytes CRC value

4.2.2 Different UART reading methods

The HAL API provides methods for 3 different UART operation modes [15] :

• The  polling  mode  that  blocks  the  processor.  The  function  returns  when  a

specified number of bytes has been received or a timeout has been reached.

• Interrupt mode where UART peripheral generates an interrupt when a new byte

has been received. Processor then moves the received data to specified buffer. A

callback  function  can  be  customised that  gets  executed  when user  specified

number of bytes have been received.

• DMA (Direct  Memory  Access)  mode  that  is  similar  to  the  interrupt  mode.

When  UART peripheral  has  received  a  new character,  it  signals  the  DMA

controller to move the byte to a specified buffer. When a specified number of
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bytes have been received, the DMA controller raises an interrupt flag, that calls

a callback function the user can customise.

For this application, the polling and blocking option can not be used. The MCU would

be  blocked  3ms/7ms*100% = 43% of  the  time.  This  means  the  choice  is  between

interrupt and DMA modes. 

The advantage of the DMA would be that the processor would not need to transfer

individual  bytes  from UART to  memory,  but  it  will  still  need  to  process  the  data

received. To measure the advantage of using DMA, program code for reading 32 bytes

from RC receiver using the interrupt mode was created. Then the UART ISR (Interrupt

Service Routine) was modified so that a GPIO pin would be set at the beginning of the

ISR and reset at the end. That pin was then observed with oscilloscope along with the

UART data coming from RC receiver. It was measured that the ISR transferring one

byte from peripheral to buffer took 3 microseconds.  An IBUS frame is 32 bytes and

one frame is transferred every 7,66 ms.

(32⋅0,003 [ms])/7,66[ms]⋅100%=1,25 %

This means using DMA mode instead of interrupt mode only saves around 1,25% of

processor time. This is measured with MCU clock speed 96 MHz and will be smaller

with higher clock frequencies. The measured time is also slightly affected by the time it

takes for the MCU to toggle the GPIO pin.

Even  though  the  advantage  gained  from  using  DMA  mode  is  only  around  1% of

processor time, this mode was still chosen since implementing it with HAL methods

was simple.

4.2.3 IBUS misalignment problem

The RC receiver sends IBUS frames over UART periodically, without checking if they

are received. That proves to be a problem when 32 bytes are received during one DMA

transfer. Since UART line is active 43% of the time, there is a high probability that the

DMA transfer is started during this window. This leads to DMA transferring the end of

one IBUS frame and the beginning of the other. This can be observed in the UART
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receive buffer where the two start bytes (32 and 64) are not in the beginning of the

buffer as seen in Figure 16.  

 

Three different solutions for this problem were proposed:

• Ignoring the fact that some of the data is from the previous frame. 7 ms delay is

not detectable when controlling the robot with RC. Using the two start bytes to

find the beginning of the frame and process data, jumping up to the beginning of

the buffer when the end is reached. This is the easiest solution to implement, but

creates a multitude of problems. The CRC value can not be used, since some of

the data is from a different frame. The buffer end can split a 16bit integer in half,

meaning its high byte and low byte would be from different frames.

• Reading one byte at a time from UART peripheral. Implementing a FIFO buffer,

that the ISR of UART would fill and the IBUS thread would empty. Activating

IBUS thread periodically to process any data in the FIFO. Updating the global

values only once CRC has been verified. This approach would be similar to the
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Figure 16. Screenshot of UART buffer contents during misalignment



Arduino IBUS library used in previous prototypes  [4]  . It is more complex to

implement than the previous one, but would avoid faulty data.

• Realign buffer when misalignment is detected (using the two start bytes). This

would mean discarding the currently active frame, but all the next ones would be

valid. Since it is much more frequent for misalignment to happen during startup

than the working state of the robot, the alignment process usually needs to be

done once. This approach also allows the DMA to signal the IBUS thread to

process the data immediately after the transfer is complete.

It was decided to use the realign method, since it allows for immediate response after

CRC has been received. Also, it means that the thread does not have to be activated

while  frame is  still  being  transferred.  Realignment  was  implemented  using  the  line

IDLE interrupt of the UART peripheral. The interrupt would only be activated when

realignment is needed. The ISR will then abort the ongoing DMA transfer and relaunch

it. After relaunch, the two start bytes will be at the beginning of the buffer.

4.2.4 IBUS receive algorithm

As a conclusion to previous chapters an algorithm and program code was created for the

task responsible  for receiving and processing IBUS data,  as seen in  Figure 17.  The

IBUS task enables UART idle line interrupt and then uses the osSignalWait function.

This  suspends the  thread  until  the  osSignalSet  is  called  from some other  thread  or

interrupt.  The  UART idle  line  interrupt  is  responsible  for  launching  DMA transfer

between UART and IBUS buffer. It also disables itself,  so the interrupt will not be

called again until realignment is needed. Once DMA transfer is complete, the callback

function signals the IBUS task to process the buffer. The IBUS task then checks the

buffer for valid start bytes and correct CRC value. If this fails, UART line idle interrupt

is enabled for realigning the buffer. If buffer validation is successful, the RC values

(decimal numbers from 1000 to 2000) are converted to vehicle commands ( i.e. vehicle

brake command from 0.0 to 1.0). After this a new DMA transfer for 32 bytes is started

and the IBUS task once again waits for signal to start processing.
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4.3 Communication with higher level computer over CAN

The main method of robot control is planned to be over CAN interface. “The Controller

Area Network (CAN) is a serial communication bus designed for robust and flexible

performance  in  harsh  environments,  and  particularly  for  industrial  and  automotive

applications.” [24] 
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Figure 17: IBUS receive algorithm



In CAN network, all messages are broadcasted to all nodes. Each message has a fixed

ID number that defines its contents. Message ID is also used to set message priorities. A

smaller number ID has priority over a larger number. Nodes filter out messages that are

relevant  to  them.  When 2  nodes  try  to  broadcast  a  message  in  the  same time,  the

controller whose message has lower priority backs down [24] .

To make the bus more reliable, CAN uses differential signaling. This means that the

current logic state is determined by the voltage difference of the two bus lines called

CAN  HIGH  (CANH)  and  CAN  LOW  (CANL).  A  logic  “0”  drives  the  bus  into

dominant state, meaning the differential voltage is above the threshold. And logic “1”

drives it to recessive state, where the voltage difference between CANH and CANL is

below the threshold. Managing the differential voltage of CANH and CANL is done by

a CAN translator.  The MCU uses CanTx and CanRx lines to communicate with the

translator [24] .

The structure of the CAN frame can be seen on Figure 18. The frame starts with a Start-

Of-Frame bit.  After this comes identifier  field that contains the message ID. Next is

Remote Transmission Request bit,  that states if the sending node requests data from

another node. The Identifier Extension (IDE) bit shows if this is a regular identifier or

an extended identifier CAN frame. Extended identifier is not used in this work and so is

not shown. R0 bit is reserved and not used. The Data Length Code (DLC) shows how

many bytes of data there is in the data field [24] . Next comes the Cyclic Redundancy

Check (CRC) checksum for detecting errors. If everything worked correctly then the

receiving node/nodes will write a dominant bit as the first Acknowledge (ACK) bit, the

second one  is  a  delimiter  bit.  The  frame ends with 7 recessive  bits  called  End-Of-

Frame(EOF)[24]  . The identifier, DLC code and data field are colored, since they are

more important in the sense of this thesis.
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Figure 18: CAN frame



The disadvantages of CAN are its complexity and its relatively low data throughput. A

single CAN frame only contains maximum 8 bytes of data.

4.3.1 HAL CAN driver initialization

Compared to the other communication peripherals, like UART, I2C and SPI, CAN is

much harder to set up. There is a confusingly wide array of configuration options and

corresponding HAL driver is also much more complex. To add to the confusion, a new

HAL CAN driver with a new API was implemented a few years ago. There is very little

documentation and examples about this new driver online. In the time of writing this

thesis, the HAL user manual has not been updated with the new API functions  [15]  .

Most posts in technical forums pointed to a single slideshow [30]  and to the comments

in CubeMx auto-generated C files for help on managing the API.

Before CAN peripheral can be used, it has to be initialized. In  this  application  all

configuration options except automatic bus-off management were left to their default

disabeled state. Automatic bus-off management means that the CAN peripheral will try

to automatically return to working state after some error has disabled it. Without it, this

has to be done manually in software [38] .

4.3.2 Bit timing

An important part of initialization is setting up the baudrate of the CAN peripheral. The

baudrate of this CAN bus is required to be 500 kB/s by the higher level controller. The

time to send one  bit  is  called  nominal  bit  time.  The relation  between baudrate  and

nominal bit time can be seen below. 

baudrate=1 /(nominal bit time)

Nominal bit time can be divided into 3 segments as can be seen in Figure 19. Each of

those segments consist of one or multiple time quantas. A time quanta is a fixed length

of  time,  derived  from  MCU  clock  using  prescalers.  The  first  segment  is  the

synchronization segment where the bit change is expected to happen. This is always

with the length of one time quanta.  The second segment defines the location of the

sample point. Even though the number of time quantas it contains is configured by the
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programmer,  it  can be automatically  changed by hardware to compensate  for  phase

drifts.  The sample point is  when the CAN controller  samples  the bit  and is  usually

shown in percentage  of  nominal  bit  time.  The third segment  is  the last  part  of  the

nominal bit time and can also be automatically changed by the hardware.

The  CAN  configuration  tool  in  CubeMx expects  the  programmer  to  configure  the

following  values:  number  of  time  quanta  in  segment  1  and  2,  prescaler  and

resynchronization jump width (SJW). The recommended SJW is one time quanta [9] .

To calculate the remaining values,  online CAN bit  time calculator is used  [9]  .  The

calculator  expects  the  clock  rate  and  sample  point  position  as  inputs.  The  CAN

controller receives the Advanced Peripheral Bus (APB) clock. The prescaler for APB

clock is currently set to 2 and the main clock of the MCU is set to 96 MHz. That means

the incoming clock rate  for  CAN peripheral  is  96/2 = 48 MHz.  The recommended

sample point is 87,5% [9]  . With those inputs, the calculator generates a table listing

different baudrates and recommended prescalers and segment lenghts to achive them.

The table can be seen on  Figure 20 with recommended configurations highlighted as

yellow. With baud rate 500 kbit/s, the recommended prescaler is 6, length of segment 1

is 13 time quantas and length of segment 2 is 2 time quantas.
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4.3.3 CAN message filter

After  CAN peripheral  initialization,  the  programmer  has  to  configure  the  hardware

filter. This will allow to choose which messages will be received and which ones will be

blocked  based on message  ID.  The  filtering  will  happen  on  CAN peripheral  level,

meaning processor time will not be wasted. Since the current implementation only has 2

CAN nodes, no messages are filtered. The filter still has to be initialized to define which

CAN receive FIFO is used.

Only  the  initialization  part  of  setting  up the communication  is  auto-generated.  This

means that programmer has to write his/her own program code for configuring the filter

and for the processes described in the next section. The HAL CAN driver API used for

this is described in the HAL CAN driver source file.

4.3.4 CAN Rx thread

CAN Rx thread is responsible for reading messages from CAN bus. CAN peripheral has

two recive FIFOs to store incoming messages. Both FIFOs have  room  for  3  complete

messages. The FIFO used is defined in the filter configuration[38] . 

The algorithm for CAN Rx thread can be seen in Figure 21. Receiving CAN messages

is implemented using interrupts. The Rx thread activates the interrupts and then waits

for the operating system signal. While waiting, the thread will not be scheduled. If a

message arrives into the CAN Rx FIFO, the message pending ISR is launched. This first
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Figure 20: CAN bit time table [9] 



disables the interrupt so it would not be called again before needed. And then gives the

OS signal  to  the CAN Rx thread  to  get  the  message  from the  FIFO. The message

pending interrupt is re-activated.  The FIFO is then emptied and message ID specific

callback functions are launched. Callback functions use structures and functions from

the DBC converter to unpack and decode the data. Once the FIFO is empty, the thread

goes back to waiting for the OS signal.

4.3.5 CAN Tx thread

CAN Tx thread is responsible for sending reports (feedback)  over CAN bus.  In the

current  implementation  the  higher  level  controller  expects  reports  with  ~50  Hz

frequency. This means that there should be a 20 ms delay after the last message is sent.
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Figure 21: CAN Rx thread algorithm



In  the  current  implementation,  there  are  5  different  reports  to  send:  lights,  speed,

steering,  gear  and  error  flags.  It  is  expected  that  this  number  will  increase  as

development  progresses.  CAN  peripheral  provides  3  transmit  mailboxes  to  set  up

messages for sending [38] . If the traffic on the CAN bus is high and the priorities of the

messages in mailboxes are low, then it might take time before they get sent. This means

that the thread should yield the CPU when it has no empty mailboxes.

The  algorithm  of  CAN  Tx  thread  can  be  seen  in  Figure  22.  The  report  list  is

implemented as an array of function pointers, where each function packs and encodes

the report according to the DBC file and then inserts it into a mailbox for sending.
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Figure 22: CAN Tx thread



4.3.6 Error report

Along with other  reports,  an error  report  is  sent  over  CAN. This  message  contains

information about the erroneous states STM32 controller. It allows to quickly debug the

STM32 system if any problems arise.

In the program code, the error flags are grouped together as a struct. To save memory

space, the struct was implemented with a C data structure called bit field. The problem

with the bit field was that to check if any of the flags were up, it was necessary to for-

loop through them all. That is why it was made part of an union. This allowed checking

all of them together using the “raw” value in a single “If” statement. This was used with

the Error LED to signal robot operator that something was wrong. The struct can be

seen on Figure 23.

The flags were set when the error happened. If it was possible for a system to recover

from it, for example IBUS misalignement error, the error flag was reset on the occasion.
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union{

struct

{

uint8_t cubemx_error_handler_activated : 1;

uint8_t can_filter_config_failed : 1;

uint8_t can_start_failed : 1;

uint8_t can_rx_activate_notification_failed : 1;

uint8_t can_rx_deactivate_notification_failed : 1;

uint8_t can_rx_get_msg_failed : 1;

uint8_t can_tx_add_msg_failed : 1;

uint8_t driving_motors_send_value_overflow : 1;

uint8_t driving_motors_send_to_dac_failed : 1;

uint8_t ibus_uart_abort_failed : 1;

uint8_t ibus_dma_restart_failed : 1;

uint8_t ibus_signal_timeout : 1;

uint8_t ibus_buffer_misaligned : 1;

uint8_t ibus_buffer_crc_mismatch : 1;

} ;

uint64_t raw_data;

}error_flags;

Figure 23: Error flags struct



4.4 DBC file

CAN database  (DBC) file  is  used  to  describe  the  data  over  CAN bus.  This  allows

defining the messages and signals across the bus so that all devices would encode and

decode the raw data same way. A custom DBC file was created for this project by the

author. It can be observed in the restricted Error: Reference source not found. 

4.4.1 DBC file format

The  DBC  file  can  be  used  to  describe  all  aspects  of  the  CAN  bus.  But  in  this

application, it is only used to define the messages and signals they contain. In Figure 24

can be seen a message that contains two signals. The parts highlighted with red are

syntax elements. A message definition starts with “BO_”. Then follows the message id,

the  name  of  the  message  and  its  size  in  bytes  (DLC).  The  last  part  is  message

transmitter. If this is used, the nodes have to be defined in an another part of the DBC

file. If it is not used, it has to be left to “Vector__XXX” [10] .

The second and third lines in Figure 24 are for defining signals. They have to start with

“SG_”. Next comes the signal name. The start bit is used to define on which bit of the

message does the signal start on. Then comes the size of the signal in bits. The “1” after

the “@” sign signals the byte order: “1” stands for litte-endian and “0” for big-endian.

The “+” symbol indicates that this signal is of type unsigned. Minus sign would mean

type signed. Next comes the factor and offset parameters. These values allow converting

between the raw value used in the transfer and physical value representing actual states.
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Figure 24: DBC message definition example



This allows for more resolution and transferring floating point values. The formulas to

transform them are as following:

physical=(raw∗factor )+offset

raw=( physical−offset)÷factor

Enclosed in the square brackets are the minimum and maximum physical value of the

signal.  The  physical  value  gets  constrained  between  them.  If  they  are  both  0,  no

constraining  is  done.  Next  comes  the  unit  of  measure.  For  example,  this  could  be

“kmph” meaning kilometers per hour. If the signal has no unit,  then just quotes are

used. The last part is the receiver of the signal and is analogous to the transmitter part of

the message definition.

4.4.2  DBC to C converter

The STM32 HAL library has no support for DBC files, so this functionality must be

found elsewhere. Converter programs were researched that would generate C structures

and functions from the DBC file. While testing different converters, the author found

two that were easy to use and parsed the project specific DBC file. “dbcc” program by

GitHub user Howerj [1]  and Python3 module “cantools” [32] . The dbcc program had

two shortcomings. Firstly, it included the message ID into function names. That meant

that  when message  ID was  changed  in  the  DBC file  (to  adjust  message  priorities),

program code  would  have  to  be  corrected  as  well.  Secondly,  the  program did  not

generate definitions for message ID-s and Data Length Codes, meaning that the user had

to create them manually. The Pyhton3 based “cantools” did not have those problems.

The generated C code provides message specific structs and functions to pack/unpack

and encode/decode the CAN messages and signals. The process is illustrated in Figure

25.  To send a  message,  first  a  message  struct  is  created  that  has  to  be  filled  with

encoded signal values. An example of the struct can be seen in Figure 26. Encoding the

signal means converting it from the physical value (variable type floating point) to the

raw value (variable type integer) using factor and offset as described in the  DBC file

format chapter.  If factor and offset  is not used, then the signal does not have to be

encoded.  The filled  struct  is  then  inserted into  the  packing function  that  creates  an
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unsigned integer  array with the length  of the DLC code of the message.  The HAL

function for CAN transmit is then called and given the array as a parameter.
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struct albert_dbc_wheel_speed_report_t {

    /**

     * Range: -

     * Scale: 0.01

     * Offset: 0

     */

    int16_t left_wheel_speed_report;

    /**

     * Range: -

     * Scale: 0.01

     * Offset: 0

     */

    int16_t right_wheel_speed_report;

};

Figure 26: DBC wheel speed report struct

Figure 25: CAN message packing and unpacking



5 Testing and analysis

This chapter focuses on the testing and analysis part of the development. It describes the

real life testing and its results. Also analysis is done on the processor usage, risks and

future plans.

5.1 Real life testing

The program code was tested on the test rig during development. Once the software was

mature enough, testing was performed on the robot prototype.

5.1.1 FreeRTOS power bug

During the first time the program code was tested on the real robot, a weird phenomen

was found. Each time the power was cycled on the entire robot, the MCU failed to

initialize. If reset button on the Nucleo board was then pressed, the MCU booted up

normally. The problem was reproduced with a simple FreeRTOS program code that had

only  one  thread  and  blinked  an  onboard  LED.  The  blink  code  without  FreeRTOS

middleware  did  not  have  this  problem.  That  pointed  towards  a  problem  in  the

FreeRTOS layer. After some testing, it was managed to fix the problem, by inserting an

one second delay after HAL_Init() and before SystemClock_Config() as can be seen in

Figure 27.  The author  speculates,  that  the  power was not  stable  enough during the

system clock initialization part if done immediately.
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5.1.2 First trial run

After removing minor bugs, the prototype was ready for the first trial run. Both control

over RC and CAN bus were tested. All parts of the software were working as intended.

With  RC, manouvering  on higher  speeds  was difficult  due  to  the  small  size of  the

joysticks. With remote control over CAN, this was not an issue, since a steering wheel

was used.

On Figure 28, the Albert prototype can be observed driving on the test track.  On Figure

29 an operator can be seen controlling the robot remotely.
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int main(void)

{

  /* Reset of all peripherals, Initializes the Flash interface and the
Systick. */

  HAL_Init();

  /* USER CODE BEGIN Init */

  HAL_Delay(1000); //Delay to fix the power cycle bug,

  /* USER CODE END Init */

  /* Configure the system clock */

  SystemClock_Config();

  /* Initialize all configured peripherals */

  MX_GPIO_Init();

  MX_DMA_Init();

  // . . .

Figure 27: Beginning of main function



During the testing, it was observed that the moving speed of the steering servo motor is

too sluggish for convenient operation.  To fix this problem, it  was proposed that the
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Figure 29: Remote control station

Figure 28: Robot on the test track



motor would be given “boosted” setpoints. The error between the current value and the

set value would be added to the set value, thus increasing the and making the steering

servo  move  faster.  For  example,  if  the  motor  has  to  move  the  wheels  The  actual

implementation of this feature was tasked to another team member, so it will not be

covered in  this thesis.

5.2 Processor usage

The  FreeRTOS  debugger  was  used  to  analyse  the  stack  usage  and  runtime  of  the

threads. As can be seen on Figure 30, the stack usage of CAN_tx_task is reaching the

allocated 504 byte limit. This limit was increased manually in the CubeMx FreeRTOS

configuration to ensure that stack overflow would not happen.

The runtime analysis shows that the processor spends 83% of the time in IDLE task,

meaning  the  software  only  uses  ~17% of  the  processor  time.  This  shows  that  the

software has room for scalability. It can also be seen that driving task takes a significant

portion of the software runtime. This is since the current implementation does not use

the  osDelay  function  and  rather  sends  the  I2C  command  to  the  DAC as  often  as

possible.

Even though the program code only uses around 1/5 of the processor power, it is still

easy to starve low priority threads with sub-optimal program code. For example, the
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Figure 30: Thread runtime analysis



CAN TX thread algorithm states, that if no mailboxes are free, the thread should yield

processor time. But in case the CAN bus cable is disconnected, no mailboxes are ever

freed. Once the thread yields, the scheduler checks for the highes priority thread that is

in ready state. If no higher priority threads are ready, CAN TX thread gets the processor

time again to check for mailboxes. Since the lights thread has lower priority than the

CAN TX thread, it is starved and never run.

5.3 Risk analysis

The robot prototype is large enough to damage itself, property and people in case of an

accident. For this reason, possible risks  are defined and options to mitigate them are

proposed. In addition to software mitigation options proposed here, there should always

be a safety operator near the robot, ready to press the remote killswitch.
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Table 4: Risks and mitigation options

Risk Mitigation

RC receiver gets disconnected from MCU When IBUS thread  receives  a  timeout  it
switches the robot to STOP mode.

CAN wire gets disconnected If  CAN RX thread  receives  a  timeout  it
switches the robot to STOP mode.

RC transmitter goes out of range Receiver can be programmed with failsafe
values,  that  get  sent  to  MCU  in  this
occasion. 

Driving thread fails to send new values to
DAC over I2C.

When thread reaches timeout,  it  switches
the  robot  to  STOP  mode.  This  sends  a
disable signal directly to motor controllers.

Hydraulic brake fails to work. The pressure of the hydrobrake should be
measured and if  it  does not increase,  the
robot  is  switched  to  STOP  mode,
activating the emergency brake.

Emergency brake fails to work. Hydraulic brake can be used to bring the
robot to stop.

Steering motor fails to work Encoder should be installed that allows to
monitor  the  real  steering  angle  of  the
robot.



5.4 Future plans

In this chapter, development options are proposed for the future. These are the ideas of

the author for improvement, that did not fit into the scope of this thesis.

• Code security  In case a third party gets physical access to the MCU,  STM

offers some ways to block using JTAG maliciously. It is possible to protect

agains unauthorized readout and accidental or malicious write/erase operations.

• Non-volatile changeable configuration  Saving configuration into EEPROM

so that  reprogramming would not  reset  it.  Also,  it  will  not  be necessary to

reflash the MCU to change configuration.

•  Watchdog  In  case  the  software  crashes,  the  watchdog  would  reset  the

controller.
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6 Summary

During the work on this thesis, a new controller for the Cleveron package delivery robot

prototype Albert was chosen. After the selection, software for it was developed.

STM32-F767ZI based Nucleo-144 board was chosen as the new controller for the robot.

The board featured sufficient number of GPIO pins and I2C, CAN, SPI and UART

peripherals.  STMicroelectronics  also  provides  CubeMX  tool  that  simplifies  the

configuration and initialization by auto-generating code.

Software framework was based on FreeRTOS and HAL. Real Time Operating System

allows  for  better  timing  and  more  efficient  CPU  use.  STM32  HAL  library  made

programming easier by providing an easy to use API for controlling the peripherals. 

Program code was created to allow the robot to receive commands and send feedback

over  CAN bus.  For  better  management  of  the  bus,  CAN database  file  (DBC)  was

created.  An external  DBC to  C converter  was  chosen to  generate  C structures  and

functions. Those were then implemented into robot program code.

An IBUS driver was written to receive and translate Radio Control transmitter data. RC

remote is used for maneuvering the robot when it is too dangerous or inconvenient to do

it over CAN. RC remote is used to control which movement commands the robot acts

on, CAN or RC.

Software was created to control driving, steering and braking motors. Also to control

the lights of the robot.

During the development, test rig was used to test the program code. Finished code was

tested on the real robot. First on the stands and then on the test course. Even though the

software worked as intended, testing revealed multiple aspects where the software could

be improved.
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