
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Leonid Peskov 212957IAAB

Streamlining Network Operations:
Implementing Automated Deployment and
Monitoring in a Multi-Vendor Environment

Bachelor's thesis

Supervisor: Mohammad Tariq
Meeran (PhD)

Co-Supervisor: Siim Vene (MSc)

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

INFOTEHNOLOOGIA TEADUSKOND

Leonid Peskov 212957IAAB

Võrguoperatsioonide ühtlustamine:
Automaatne juurutamine ja järelevalve mitme

tootja keskkonnas

Bakalaureusetöö

Juhendaja: Mohammad Tariq
Meeran (PhD)

Kaasjuhendaja Siim Vene (MSc)

Tallinn 2024

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Leonid Peskov

3

Abstract

In the rapidly evolving landscape of network operations, manual processes for

deployment and monitoring have become increasingly untenable. Company X, a

hypothetical entity operating within this dynamic environment, faces challenges

attributed to the inefficiencies and error-prone nature of manual network management -

particularly within its multi-vendor network infrastructure. This bachelor thesis tries to

meet these burning requirements for automation in network operations towards more

efficiency, minimised operational risks, and assurance in rapid adaptability of changing

network demands.

This research will delve into the integration of Continuous Integration/Continuous

Deployment (CI/CD) practices in network operations using automation tools that

include Ansible for configuration management, monitoring using Prometheus and

Grafana, and orchestration of the CI/CD pipeline with GitHub Actions and Jenkins.

This approach should be meant for the simplification of network management processes

by bringing down manual intervention and, above all, allow a quick response to network

conditions across a multi-vendor landscape.

This thesis is based on a thorough literature review supported by empirical research in

the form of development and testing of a prototype system. The success of the system

was tested in a simulation multi-vendor network environment for deployment

efficiency, accuracy of monitoring, and general responsiveness towards different

devices on a network.

The output of the work was a sophisticated automated system of deployment and

observation of change implementation in the network with a possibility to substantially

mitigate the problems that companies such as Company X have. This thesis will outline

how the process of development was followed, challenges to be faced along the way,

and, at the end, establish the successful implementation of an automated NetOps

solution. This thesis is written in English and is 83 pages long, with 30 figures and 3

tables.

4

Annotatsioon

Kiiresti arenevas võrguoperatsioonide maastikus on manuaalsed kasutuselevõtu- ja

seireprotsessid muutunud üha enam vastuvõetamatuks. Ettevõte X, hüpoteetiline

ettevõte, mis tegutseb selles dünaamilises keskkonnas, seisab silmitsi väljakutsetega,

mis on tingitud võrgu käsitsi haldamise ebatõhususest ja vigade esinemisest - eriti tema

mitme tootja võrguinfrastruktuuris. Käesoleva lõputööga püütakse vastata nendele

põletavatele nõudmistele automatiseerida võrguoperatsioone, et suurendada tõhusust,

minimiseerida tegevusriske ja tagada kiire kohanemisvõime muutuvate võrgu

nõudmistega.

See bakalaureusetöö käsitleb pideva integratsiooni ja pideva kasutuselevõtu (CI/CD)

tavade integreerimist võrguoperatsioonidesse, kasutades selleks automatiseerimise

vahendeid, mille hulka kuuluvad Ansible konfiguratsiooni haldamiseks, järelevalve

Prometheus ja Grafana abil ning CI/CD-putke orkestreerimine GitHub Actions ja

Jenkinsi abil. See lähenemisviis peaks olema mõeldud võrgu haldamise protsesside

lihtsustamiseks, vähendades käsitsi sekkumist, ja eelkõige võimaldama kiiret

reageerimist võrgu oludele mitme tootja maastikul.

Käesolev lõputöö põhineb põhjalikul kirjanduse ülevaatusel, mida toetavad empiirilised

uuringud prototüüp süsteemi väljatöötamise ja testimise näol. Süsteemi edukust testiti

simulatsiooniga mitme tootja võrgukeskkonnas, et kontrollida kasutuselevõtu tõhusust,

jälgimise täpsust ja üldist reageerimisvõimet võrgu erinevate seadmete suhtes.

Töö väljundiks oli keerukas automatiseeritud süsteem, mis võimaldab muudatuste

rakendamise ja jälgimise keerukust võrgus oluliselt leevendada probleeme, mis on

sellistel ettevõtetel nagu ettevõte X. Käesolevas lõputöös kirjeldatakse, kuidas järgiti

arendusprotsessi, väljakutseid, millega tuli selle käigus silmitsi seista, ja lõpuks tehakse

kindlaks automatiseeritud NetOps-lahenduse edukas rakendamine. Käesolev lõputöö on

kirjutatud inglise keeles ja on 83 lehekülge pikk ning sisaldab 30 joonist ja 3 tabelit.

5

List of abbreviations and terms

AI Artificial intelligence

CI/CD Continuous Integration and Continuous Deployment

CLI Command Line Interface

MIB Management Information Base

ML Machine learning

NAT Network Address Translation

NetDevOps A blend of Network, Development, and IT Operations

NetOps Network Operations

NetSecOps Collaboration between network operations (NetOps) and
security operations (SecOps) teams

OID Object identifier

SDN Software-Defined Networking

SNMP Simple Network Management Protocol

SNMP Simple Network Management Protocol

TCO Total Cost of Ownership

YAML Yet Another Markup Language

6

Table of contents

1 Introduction...11
1.1 Problem Statement... 11
1.2 Goal of the Thesis.. 12
1.3 Objectives of the Research...12
1.4 Research Questions.. 12

2 Literature review...13
2.1 Overview of Network Operations (NetOps).. 13
2.2 Challenges in Manual Network Deployment and Monitoring...14
2.3 DevOps Integration in Network Management... 15
2.4 Review of Network Automation Tools and Techniques.. 17

2.4.1 Ansible for Network Configuration and Automation...17
2.4.2 GitHub Actions for Continuous Integration and Deployment............................... 18
2.4.3 Prometheus and Grafana for Network Monitoring...19

2.5 Continuous Integration and Continuous Deployment (CI/CD) in NetOps...................... 19
2.6 Best Practices in Automated Network Operations...21

2.6.1 Network Automation and Virtualization.. 22
2.6.2 NetSecOps Integration..22
2.6.3 Embracing Cloud and Consolidation..22
2.6.4 Continuous Improvement and Innovation.. 22

3 Methodology..24
3.1 Research Method..24
3.2 Data Collection.. 24
3.3 Testing Environment.. 25

4 Experimental Design... 26
4.1 Requirements... 26
4.2 Tool Selection and Rationale... 28
4.3 Network Environment and Topology Overview.. 30
4.4 Automation Strategy.. 33

4.4.1 Ansible Setup and Configuration... 33
4.4.2 Monitoring with Prometheus and Grafana... 33
4.4.3 CI/CD with GitHub Actions and Jenkins... 34

5 Implementation..36
5.1 Project Structure and Setup..36
5.2 Ansible Implementation...40

5.2.1 Initialization (Init Role)..40
5.2.2 Prometheus, Grafana, and SNMP Exporter (Monitoring Roles)............................41
5.2.3 Network Device Configuration (Cisco, Juniper, Mikrotik Roles)..........................44
5.2.4 Network Infrastructure Configuration (Master Playbook: infra.yaml)................. 45

7

5.3 Continuous Integration/Continuous Deployment (CI/CD).. 47
5.3.1 Continuous Integration (CI)... 47
5.3.2 Continuous Deployment (CD)..50

5.4 Monitoring Setup... 52
5.4.1 Prometheus Configuration..52
5.4.2 SNMP Configuration Generation... 53
5.4.3 Grafana Dashboards and Configuration... 53

6 Test Scenario: Implementing Network Changes through the CI/CD Pipeline.......................... 55
6.1 Scenario Overview...55
6.2 Step 1: Initiating the Change..55
6.3 Step 2: Continuous Integration Process... 56
6.4 Step 3: Continuous Deployment.. 59
6.5 Step 4: Post-Deployment Verification..61

7 Results and discussion... 63
7.1 Addressing Research Questions...63
7.2 Achievement of Objectives and Observations:..64
7.3 Conclusions and Future Directions.. 65

References.. 66
Appendix 1 - Configuration Details for the Prometheus Role... 69
Appendix 2 - Detailed Ansible Tasks for Grafana Setup... 70
Appendix 3 - Detailed Ansible Tasks for SNMP Exporter Setup.. 72
Appendix 4 - Detailed Ansible Tasks for Cisco Role...74
Appendix 5 - Detailed Ansible Tasks for Juniper Role.. 75
Appendix 6 - Detailed Ansible tasks for Mikrotik Role...76
Appendix 7 - Detailed GitHub CI Workflows..78
Appendix 8 - Detailed Configuration of Dynamic Prometheus... 80
Appendix 9 - Detailed Grafana Data Source Configuration...82
Appendix 10 – Non-exclusive licence for reproduction and publication of a graduation thesis..83

8

List of figures

Figure 1. Example of CI/CD pipeline in NetOps (Source:[10])...21
Figure 2. Company X’s Multi-Vendor Network Topology for Automation Testing.................... 30
Figure 3. Ansible configuration file... 37
Figure 4. Ansible Inventory file... 38
Figure 5. Ansible Group Variables file...39
Figure 6. Ansible init role...40
Figure 7. Master playbook infra.yaml.. 46
Figure 8. Continuous Integration Workflow Diagram for Network Automation.........................49
Figure 9. Continuous Deployment Process Diagram... 51
Figure 10. Active Monitoring Targets in Prometheus.. 53
Figure 11. Grafana Mikrotik Dashboard.. 54
Figure 12. Git commit summary...56
Figure 13. GitHub Actions CI Workflow for Syntax and Lint checks... 57
Figure 14. GitHub Actions CI Workflow for Multi-Vendor Configuration Validation................57
Figure 15. Results of CI workflows..58
Figure 16. Webhook Response for Development Branch Commit.. 58
Figure 17. Jenkins Job Triggered by Master Branch Commit..59
Figure 18. Jenkins job in progress.. 60
Figure 19. Jenkins Console Output - Ansible Playbook Execution... 61
Figure 20. VLAN Implementation Status Post-Deployment..62
Figure 21. Prometheus Role Ansible Tasks..69
Figure 22. Grafana Role Ansible Tasks..71
Figure 23. SNMP-Exporter Role Ansible Tasks...73
Figure 24. Cisco Role Ansible Task... 74
Figure 25. Juniper Role Ansible Task...75
Figure 26. Mikrotik Role Ansible Task.. 77
Figure 27. Workflow for Ansible Syntax and structure checks..78
Figure 28. Workflow for Batfish Network Configuration Analysis... 79
Figure 29. Dynamic Prometheus Configuration...81
Figure 30. Dynamic Grafana Data Source Configuration.. 82

9

List of tables

Table 1. Rational of selected tools..28
Table 2. Company X Network Devices and Roles... 31
Table 3. Key Metrics for Network Monitoring with Prometheus and Grafana............................ 33

10

1 Introduction

Network operations (NetOps) are a methodical approach of maintaining and ensuring

effectiveness of the modern IT infrastructures. Today, when network complexities and

fragmentation of vendors keep increasing every day, traditional manual processes are

becoming unsustainable for deploying and monitoring changes to the network. Besides

overall slowing down of response times toward network demands, such manual

procedures pose errors and inefficiency risks, arising from being manually processed

over networks.

All this, in the end, will result in greater operational bottlenecks for companies

operating in such environments, including our hypothetical "Company X." Such

challenges will definitely give rise to greater downtimes, which in turn always mean

delays in responding to network-related issues and also failing to match up with the

demands of this ever-growing dynamism related to modern network infrastructures.

This, in return, is reflected in the quality of the service provided to the customer with

increased operational costs and the consumption of resources.

A shift toward NetOps automation is mission-critical to deliver against these challenges,

offering the promise of greater efficiency, accuracy, and agility in network management.

Automation enables the possibility of quick deployment and exact observation

regarding changes in network services while it reduces manual invasion of task

execution and reacts proactively upon the conditions that are characteristic of a network.

1.1 Problem Statement

Company X operates in a demanding multi-vendor network environment where an

environment that dwelled upon manual deployment and monitoring till now has been

represented as the organisation's response to the challenge, causing inefficiencies,

operational risks, and loss of productivity. Such processes still remain without an

11

automated tool, making it even harder for Company X to rapidly adapt its service

offerings and address emerging network demands.

1.2 Goal of the Thesis

This thesis mainly aims to design and implement an automatic deployment and

monitoring system for all changes being done manually over the network at Company

X. To decrease manual intervention, increase operational efficiency, and find that the

system is geared up to respond quickly to changing network conditions. It is going to be

developed in a multi-vendor environment with views of compatibility and integrability

under security policies and requirements for Company X scalability.

1.3 Objectives of the Research

● To explore and evaluate existing technologies and methodologies for automating

NetOps.

● To design an automated deployment and monitoring system that meets the

specific needs of Company X.

● To implement and validate the effectiveness of the proposed system in a

simulated multi-vendor network environment.

1.4 Research Questions

● What are the current challenges in manual network deployment and monitoring

processes?

● How can automation transform NetOps to meet the demands of modern network

infrastructures?

● What would constitute an effective automated deployment and monitoring

system for a multi-vendor environment like Company X's?

12

2 Literature review

With the rapidly changing landscape of network operations, enterprises and

organisations face the critical challenge of maintaining reliable, scalable and efficient IT

infrastructures.

The requirement for agility and responsiveness in the management of networks has

increasingly followed the most paradigmatic shift toward automation and integration.

This section presents a review and analysis on the intersection of NetOps and DevOps

principles, focusing on the role that Continuous Integration and Continuous Deployment

(CI/CD) play in transforming network management.

It revisits the challenges of manual network deployment and monitoring, the role of

DevOps in managing networks, and introduces new tools and methods for network

automation. The review explores monitoring approaches and the best practices of

automated network operations, shaping the development of a comprehensive, high-level

network DevOps infrastructure. This analysis, based on modern literature, aims to offer

insights on optimising network performance and reliability, crucial for supporting the

dynamic needs of modern digital businesses.

2.1 Overview of Network Operations (NetOps)

The evolution of Network Operations (NetOps) was a response to the increasing

complexity and dynamic requirements of today's network infrastructures.

Conventionally, managing networks was straightforward, but with the arrival of new

complex technologies like software-defined networking (SDN) and cloud-based

services, the approach for network operation should have been changed. These modern

infrastructures are characterised by their fluidity and the dynamic tempo at which

changes need to be deployed, often stretching the capabilities of manual management

methods to their limits [1] .

The primary challenge has been the balancing act between maintaining high service

levels and adapting to the expanding scale and complexity of network environments.

13

Most of the changes in the network were all brought in by hand, in so doing, bringing a

lot of unsafe conditions, including waste of time taken through deployment, high

susceptibility to errors, and non-maintenance of constantly changing compliance with

security standards [1]. Mostly, they happen to be slow operations, time-consuming and

executed with a lot of human inaccuracy error and are definitely not meant to be

sustainable in the long run.

Moreover, there was pretty much a relatively new layer of complexity that sliced

through the transition toward software-defined infrastructures. It, therefore, demanded

more agile and flexible network operations that would transit with the pace at which the

environment changes. This necessity for agility underscores the importance of

streamlining operations, especially in multi-vendor environments, to manage

complexity efficiently.

Much of the evolution within NetOps has followed radical solutions to some of the most

perennial challenges within the dynamic operating environment. Historicized

integration of advanced analytics automated and machine learning environments within

NetOps and network management practices shall entail exceedingly highly advanced

technological framework that shall drive operational efficiencies up, drive down the

total cost of ownership (TCO), and improve maintained or enhanced service level

despite the modern character towards which network infrastructures are increasingly

coming to be characterised [1]. Such technologies will assist the organisation to achieve

a more proactive and predictive approach towards managing the network, ensuring a

resilient and secure network that caters to the dynamic business needs.

The move, which is very important, underscores a recognition of the role that modern

enterprises play in the execution of efficient, scalable, and automated network

operations. It embodies the will to push back against rather traditional challenges and

the impetus to take opportunities thrown up by digital network transformations [1].

2.2 Challenges in Manual Network Deployment and Monitoring

The urgent need for radical improvement in outdated network deployment and

monitoring practices is underscored by the inefficiencies and vulnerabilities of manual

operations. Legacy networks, predominantly CLI-based and inflexible, are ill-equipped

to meet the dynamic demands of modern digital environments. Shah and Dubaria (2019)

14

emphasise the necessity of embracing programmability and automation in network

operations to enhance flexibility, reliability, and speed, thus overcoming the limitations

of manual processes [2].

In 2019, Shah and Dubaira quoted the McKinsey research, saying that 95% of the

changes within the network are still done manually, leading to 70% policy violations

due to human mistakes [2]. This alone speaks of inefficiencies in operations and even

more for inefficiencies in the financial aspect, as already $60 billion was spent just on

labour and tools for network operations [3]. Furthermore, the average time to resolve

network issues can extend up to 5 hours, severely impacting network uptime and, by

extension, business operations [2]. The transition to automation emerges as a pivotal

strategy for streamlining deployment and monitoring processes across diverse vendor

systems, addressing these inefficiencies head-on.

The main challenge in the manual deployment and monitoring through the network is

human error. In one of the studies by Cisco, it is indicated that 74% of operators suggest

that network changes have a great impact on business, while 97% of them attribute the

outages to human errors [2][4]. These errors cause downtime and also are responsible

for 22% of all unplanned outages [2][4]. It's high time urgent solutions, such as

automation and programmability, that reduce manual intervention and promise time

savings, reduced manual work, and minimised human errors are implemented.

The advent of NetDevOps signifies a pivotal shift towards addressing these challenges

by infusing network engineering and operations with DevOps principles. This approach

ensures the deployment of a version-controlled infrastructure through automated

processes. Moreover, adopting Infrastructure as Code (IaaC) and Network as a Code

(NaaC) principles facilitates viewing network configurations and devices akin to

software. This perspective enables version control and automated provisioning, further

distancing network operations from manual configurations and enhancing network

adaptability and efficiency [2].

2.3 DevOps Integration in Network Management

The transformation of DevOps practices with network management will prove to be an

evolutionary step toward a foundational shift to a highly agile, effective, and resilient

network infrastructure. This is a very complicated transformation and cultural change

15

towards collaboration and, most importantly, rapid iteration, based on automation and

continuous integration. For instance, the Juniper Network’s report notes that 75% of

Communications Service Providers, 71% of Enterprises, and 78% of Cloud Providers

have adopted some form of network automation, underscoring the widespread

recognition of DevOps' role in enhancing network operations' agility and efficiency [7].

A key component of this automation is the use of scripting tools, like Python, or the

built-from-scratch automation tool that has scripting languages at its very core, like

Ansible, which must be developed to effectively configure devices and adapt to the

dynamic needs of networks. These tools have been instrumental in reducing repetitive

tasks and scaling operational efficiency across diverse networking environments, as

highlighted by the Juniper Networks’s report's findings that reducing hard and repetitive

work is the top driver for network automation across sectors [7].

The transition from manual configurations to automated scripts requires a deep

understanding of network protocols, device APIs, and the specific requirements of the

network architecture. Furthermore, integrating these automated scripts into a continuous

deployment pipeline introduces additional layers of complexity, such as version control,

testing, and rollback mechanisms, which are critical for maintaining network stability

and security [5].

The implementation of DevOps in the management of networks is not a new

technological shift but a radical cultural shift. This cultural shift necessitates a change in

skill sets for network professionals, requiring a broader understanding of programming,

software lifecycle processes, and agile methodologies. The move away from traditional

network management strategies emphasises the need for a new approach to network

lifecycle management [6]. Organisations that have embraced this shift, as the Juniper

Network’s report suggests, are not only meeting but exceeding their operational

performance goals, further validating the strategic value of integrating DevOps into

network management [7]. Integrating DevOps principles not only fosters collaboration

but also significantly contributes to streamlining operations in complex multi-vendor

environments by simplifying management tasks and enhancing operational efficiency.

On the other hand, integrating DevOps in network management would need shaking up

to the debris of the existing toolset and processes [6]. Traditional methods are often

inadequate for supporting the agile, iterative processes at the core of DevOps.

16

Organisations may need to adapt their current tools or adopt new ones that are more

aligned with automation and collaboration principles [6].

This will also require the redefinition of other processes, such as changes moved from

the change approval process to the incident response process, redefinition of the

network management processes, in line with the increased speed of change and

dependency on automatically-driven systems. While all this needs redefinition, it

touches not only the technological gyrations but makes the changes in the governance,

risk management, and compliance processes, adding layers to the complexity of

DevOps integration saga.

The very idea of confluence between network operations and DevOps translates into

something much more and well beyond the adoption of a package full of automation

scripts. It is a question of cultural change, collaboration, and continuous improvement

by raising the majority of the staff—from the network to be very agile and responsive.

This includes changes in tools and processes to support a much more agile and

responsive network infrastructure. In such complexities and challenges, the strengths in

efficiency, flexibility, and security actually make the journey toward integration in

DevOps a strategic initiative for any organisation aiming at differentiation in today's

modern landscape of contemporary network operations.

2.4 Review of Network Automation Tools and Techniques

This section delves into the practical application, benefits, and impact of leveraging key

tools such as Ansible, GitHub Actions, Prometheus, and Grafana for network

automation.

2.4.1 Ansible for Network Configuration and Automation

Ansible is a powerful and flexible automation tool that, if not revolutionary, has sparked

new life in the way network operations are conducted. Some of its strong points that it

has provided at the disposal of network administrators lie in automatically configuring,

deploying, and managing instances in various environments. It gives a simple

human-readable syntax which allows running the most routine task even without agents

and authoring custom scripts.

17

A notable use case is the automation of configuration changes across multiple devices.

Through Ansible's playbooks, network operators can implement changes uniformly,

ensuring consistency and reducing the potential for human error. The tool supports a

range of modules for different network hardware, enabling seamless integration in

multi-vendor environments [8][9]. This versatility is crucial for streamlining network

operations, ensuring uniform configuration and automation practices across different

vendor products.

The adoption of Ansible in network operations significantly minimises the time and

effort associated with manual configurations. Organisations report improvements in

deployment speed, operational efficiency, and a reduction in downtime. The automation

of routine tasks frees up valuable resources, allowing teams to focus on more strategic

initiatives [10].

2.4.2 GitHub Actions for Continuous Integration and Deployment

GitHub Actions significantly boost CI/CD pipelines through delivering automation at

different stages of build, testing, and deployment with the help of the automated

software development lifecycle. For the matter, in network automation, that can easily

kick off Ansible playbooks in deploying network configurations following code changes

in the GitHub repository.

Combining Github Actions with Ansible for network configuration updates,

automatically sets up a workflow whereby changes in code get added into the network

deployment activity, depending on a set of predetermined conditions. But after the

integration of the same, any change within your network code automatically releases

and propagates through your infrastructure to bring things up to the current state. Such

automated workflows are essential for streamlining the deployment process in

multi-vendor environments, ensuring that changes are efficiently rolled out across

different systems.

This brings a proactive approach to network management, surely reducing the time of

the deployment cycle, instilling more reliability when it comes to changes within the

network, and supporting more agile ways of response to the needs of the network.

18

2.4.3 Prometheus and Grafana for Network Monitoring

Prometheus and Grafana can build a powerful combination for monitoring network

performance and visualising metrics. Prometheus collects and stores metrics as time

series data, which Grafana then visualises through interactive dashboards.

By monitoring a range of metrics, such as network throughput, latency, and error rates,

Prometheus provides the data needed to assess network health. Grafana allows operators

to visualise these metrics in real-time, offering insights into network performance and

identifying potential issues before they escalate [14]. The integration of these tools into

network operations is key to streamlining monitoring efforts, providing a unified view

of performance across a multi-vendor landscape.

Integration of Prometheus and Grafana with network operations gives an opportunity to

a system administrator toward full-scale infrastructure monitoring. In such a setup, it

comes to rescue not only for maintaining good network performance but sustaining

decision-making under a pool of data-driven insights. It identifies and corrects an issue

swiftly, and with that, better network uptime brings a rise in the quality of services

provided.

2.5 Continuous Integration and Continuous Deployment (CI/CD) in

NetOps

Continuous Integration and Continuous Deployment (CI/CD) stand as pivotal

frameworks within the domain of Network Operations (NetOps), facilitating a paradigm

shift towards automation and efficiency in managing network configurations and

deployments. This transformative approach, leveraging CI/CD pipelines, significantly

enhances the agility and reliability of network infrastructure, aligning closely with the

dynamic needs of modern digital enterprises. The adoption of CI/CD practices plays a

pivotal role in streamlining network changes and deployments, ensuring consistent

application across a complex multi-vendor environment with minimal human

intervention.

Major emphasis of CI/CD in NetOps lies in automation of the process of integration of

new or changed network configurations and ensuring their deployment across a

multi-vendor environment with minimal human intervention. Such automation goes

19

through the whole cycle of network management, from its development, through

testing, up to production, which enables adjustment to the call of the network and

change of operational efficiency.

In such scenarios, Continuous Integration (CI) in NetOps would translate to an

automatic test of the setup as soon as the developer commits the file. In case the same

set of rules get instant alerts for every commit, such an issue is captured and rectified

way earlier in the development lifecycle than the time the actual deployment would take

place, promoting early notice that disturbances would not be at a large scale. This is

noted further in the shift to automation of configuration testing, as again reinforced

through documents such as "NetDevOps: A New Era Towards Networking & DevOps"

and Red Hat on this guide to network automation in the current integrated network

automation move [2][10].

Continuous Deployment takes the process forward by one step after Continuous

Integration. The term refers to the process of incrementally deploying network changes

to the production environment automatically, having released these changes shortly after

they have passed all necessary tests. This directly ensures that the changed and tested

configurations are forever running in the network. Several important tools required for

such a process, like Ansible, which provides network automation operations in different

environments, have been described in both documents. Therefore, the use of Ansible in

the automation of deployment processes is very much in line with industry-changing

Infrastructure as Code (IaC) whereby network configurations will now come under one

system of management and deployment that is code-driven [2][10].

CI/CD in a NetOps environment is built on various tools and different applications,

which are most likely inquisitive in character since they are set to automate the

management life cycle of various beacons around an organisational framework. For

example, the likes of Ansible are fond of strong frameworks when it comes to the

automation of configuration, deployment, and testing of networks. Another example is

the further integration of CI/CD pipelines, which allows for version control like Git and

eventually a more manageable and collaborative workable way of controlling every

change brought in. Additionally, visualisation will be done on the running monitoring as

part of the CI/CD pipeline, which includes tools like Prometheus and Grafana. This, in

20

turn, will give real-time validation of the performance gain for the deployed network

[10].

Figure 1. Example of CI/CD pipeline in NetOps (Source:[10])

Adoption of CI/CD in NetOps comes with numerous benefits: reduction in the presence

of manually prone errors, betterment of compliance, zoom-in time for the response. It

also proposes a set of challenges such as changing the culture demands on

organisations, upskilling of members in terms of new automation practices and tools

within network teams, and the problems burgeoning in managing CI/CD pipelines in

such a multi-vendor realm. This means that the effective approach is, in turn, strategic

in the sense of it being strong stakeholders buy-in, constant learning, and the right

choice of available tool sets that will be in tune with setting organisational network

architecture and operational goals.

2.6 Best Practices in Automated Network Operations

The continued evolution of network operations, raising the level of automation and

integration with secure practices, has equally driven adoption of several best practices

that support not only enhanced efficiency but also security and resilience. These modern

best practices bring up technologies and methodologies to be used. Embracing these

practices is essential for streamlining automated network operations, particularly in

multi-vendor environments, where the coordination of different technologies and

security protocols is paramount.

21

2.6.1 Network Automation and Virtualization

As network environments become increasingly complex, the role of automation and

virtualization technologies becomes crucial. Such packet elaboration and the killing of

the costs will be found easiest in Intent-based Networking (IBN), Network Functions

Virtualization (NFV), Application Virtual Networks (AVNs), or Software-defined

Networking (SDN), amongst the myriad of plenty found here. All will offer

technologies that will allow them to automate actions that hold human errors in check,

and double the responses. Flexibility, as required, also helps further bring in the needed

scalability for improved resource management, and enhanced security [11].

2.6.2 NetSecOps Integration

The integration of network and security operations, known as NetSecOps, emphasises

the importance of continuous monitoring, efficient threat intelligence, and automated

incident response. Tools for intrusion detection and prevention, vulnerability scanning,

and the use of AI and ML for threat detection are pivotal in this approach. Developing

clear incident response plans and fostering a culture of security awareness throughout

the organisation are recommended to bolster network resilience [12].

2.6.3 Embracing Cloud and Consolidation

This architectural shift to cloud-enabled applications demands an equally strategic shift

for network teams to leverage the full benefits of cloud technology. One would argue it

moves within the fold of DevOps and security teams, but very clearly, many efficiencies

will continue being managed in complex and distributed environments in the process.

That is precisely how such an integrated approach is going to streamline operations and

best security practices in accordance with digital transformation initiatives set out by

organisations [13].

2.6.4 Continuous Improvement and Innovation

Adopting new technologies such as machine learning for network management must be

performed in order to automate processes such as root causes of analysis for improved

network operations. They must be network team practices that are aligned in seeing to

the achievement of the strategic needs of business organisations with a specific intent

laid on how the network is used in meeting the business objectives. Continuous

22

innovation around continuous improvement must not only be directed in the adoption of

new technologies but at having the right new technologies adopted in consideration of

the strategic needs that the business has [13].

23

3 Methodology

This section outlines the methodology that was included over the research work for

touching on how to develop, deploy, and evaluate an automated network operations

(NetOps) system in a multi-vendor environment.

3.1 Research Method

The methodology encompasses both analytical and empirical research approaches to

provide a robust foundation for the study.

Analytical Review: This will contain relevant literature explaining the current

landscape for automation of operations in the network, CI/CD practices in NetOps, and

strategies for monitoring. Author brings in an overview of some current case studies,

scholarly articles, and industry reports that were exploring practices, challenges, and the

current use of tools in network automation.

Empirical Research: Empirical methods will be applied through the development and

deployment of a prototype system. This includes the data collection of the efficiency

and performance over the responsiveness of the system to various network devices in a

simulated multi-vendor environment. The empirical study will test the prototype against

predefined functional and security requirements of a hypothetical organisation, referred

to as "Company X".

3.2 Data Collection

Data will be gathered through multiple sources to ensure a comprehensive analysis:

Primary Data Collection: Direct interaction within the operational network

environments through simulations reflecting real life and multi-vendor settings. This

may be done through a controlled laboratory environment where the network changes

are deployed and monitored by the system to be developed.

Interviews and Surveys: Conducting structured interviews with IT professionals and

network administrators to gather insights into current challenges, practices, and

perceptions towards automation in network operations.

24

Secondary Data Collection: Reviewing academic literature, industry reports, and

documentation on tools like Ansible, Prometheus, Grafana, and GitHub Actions to

gather secondary data on network automation trends, tools effectiveness, and

implementation strategies.

3.3 Testing Environment

The research will apply a simulated network environment that will emulate a

multi-vendor network setup in ascertaining that it is applicable in real setups. This

testing environment will involve:

Multi-Vendor Network Emulation: A network consisting of different vendor

hardware and software is used to test developed automation tools and processes for

compatibility and interoperability.

CI/CD Pipeline Implementation: Implement CI/CD (Continuous

Integration/Continuous Deployment) using GitHub Actions and Jenkins workflows for

the automation in testing and deploying the changes for network configurations.

Monitor and Measure: Use Prometheus and Grafana for real-time monitoring and

visualisation of performance network metrics, in order to ensure that changes deployed

produce the desired effect without newly introducing the issues.

This framework methodically aims to develop and further rigorously evaluate an

automated system designed specifically for streamlining network operations in the

complex, multi-vendor landscape, so as to address the identified inefficiencies and

operational challenges within the operational context of Company X.

25

4 Experimental Design

The experimental design, crucial for validating the system automation before its

real-world application into Company X, ensures that any deployments or monitoring

adjustments are tested in a controlled, non-disruptive manner. This section details the

tools and environment utilised to achieve these objectives, highlighting the technical

resources that support the testing and implementation phases.

4.1 Requirements

The push to operationalize the Network in an ideal multi-vendor environment puts in

mind the operation under very sensitive tools and strategies. This further demands a

solution which is not only effective and efficient in the process of installation but which

considers functional flexibility and security of hardware and software-driven diversity

environments. The following requirements have been identified as critical to the success

of this project for Company X:

Open-Source and Self-Hosted Solutions: Where possible, preferred tools ideally

should maintain some element of being open source in nature and self-hosted for high

adaptability and low cost of use. It conforms to the highest philosophy in regards to

controlling the operations environment of the network. Further taylorization is also

possible to ensure no vendor lock-in. Open source software tools typically benefit from

robust community support, which offers a wealth of knowledge and resources that drive

innovation and problem-solving.

Compatibility with Diverse Network Device Operating Systems and Models: Given

the multi-vendor nature of the network environment in Company X, it is essential that

the chosen solutions offer broad compatibility across different device operating systems

and models. This ensures that the automation and monitoring systems can be universally

applied, reducing the need for device-specific configurations and simplifying the

management process.

High Performance with Minimal Resource Consumption: The tools must be capable

of high-performance operations without imposing significant resource demands on the

network infrastructure of Company X. Efficiency in counting the major chances of

26

development will allow the execution system to serve extensive networks without

compounding in performance. Such solutions, walking this tightrope, produce a network

that is more responsive, catering as lightly as necessary to the requirements of a modern

digital infrastructure.

Comprehensive Community Support and Documentation: Robust community

support and comprehensive documentation are invaluable for the rapid deployment,

troubleshooting, and evolution of the network operations system that we have in

Company X. A vibrant community can offer insights, best practices, and innovative

solutions to emerging challenges. Documentation, on the other hand, is essential for

onboarding, training, and ensuring that the system can be effectively maintained and

scaled over time.

27

4.2 Tool Selection and Rationale

Critically, the choice of the tools to be used in automation of the network functions was

hinged on deducing whether they can meet some criteria seen as critical in their

selection, such as working in multi-vendor environments, efficiency, or safety. After an

in-depth evaluation, Ansible, Prometheus, Grafana, GitHub Actions, Jenkins and Ngrok

were chosen for their specific strengths in deployment automation, real-time

monitoring, and CI/CD processes, respectively.

The table below summarises the key features and considerations that led to the selection

of these tools:

Table 1. Rational of selected tools

Tool Key Feature Benefit

Ansible Agentless architecture Simplifies deployment

across devices

Wide support for network devices Ensures compatibility in

multi-vendor setups

Prometheus Time series data collection Facilitates real-time

monitoring

Powerful querying capabilities Enables detailed analysis

Grafana Interactive dashboards Enhances data

visualisation

Integration with Prometheus Streamlines monitoring

setup

GitHub Actions CI/CD integration with GitHub Automates deployment

and testing workflows

Direct integration in source control Simplifies management of

CI/CD pipelines

Jenkins Automation server for orchestrating Continuous Integration

28

complex workflows and Deployment by

automating the execution

of Ansible playbooks and

other tasks upon code

commits

Ngrok Secure tunnelling to expose a local

server behind NATs and firewalls to

the public internet over secure

tunnels.

Enables secure triggering

of automation workflows

in Jenkins from GitHub

without exposing the

Jenkins server to potential

security risks

SNMP Exporter Translates SNMP metrics into

Prometheus format, leveraging

SNMP for network device

monitoring

Enhances network

visibility and proactive

management by

integrating SNMP metrics

with Prometheus for

diverse device monitoring

Batfish Simulates network behaviour for

pre-deployment testing of

configuration changes.

Reduces downtime and

security risks by verifying

changes against policies

and detecting errors before

application, enhancing

network reliability and

security

These bundle of tools work together in such a way that they combine to give a

homogeneous, effective solution towards the handling, automating deployment and

monitoring of very complex multi-vendor network environments, hence making the

system to be robust and very flexible in the handling of such dynamic networking

environments.

29

4.3 Network Environment and Topology Overview

This section presents an overview of the network topology where the automation

strategy was tested. The topology, as illustrated in Figure 2, consists of a diverse set of

networking equipment, indicative of a typical multi-vendor environment.

The complexity and diversity of the network topology under consideration are captured

in Figure 2, which presents Company X’s multi-vendor network topology utilised for

automation testing:

Figure 2. Company X’s Multi-Vendor Network Topology for Automation Testing

The network infrastructure includes devices from Cisco, MikroTik, and Juniper, which

are widely used in industry settings and offer a representative sample for testing

automation scripts and monitoring solutions. Detailed information about these devices,

including their roles and specific models, is provided in Table 2, 'Company X Network

Devices and Roles'. This table outlines the diverse hardware involved in the setup and

plays a critical role in illustrating the multi-vendor environment that our system

supports.

30

Table 2. Company X Network Devices and Roles

Device Type Model IP Addresses Role

Control Server HP - EliteDesk 5 10.0.10.252/24 Central

management node

for network

automation,

running Jenkins

Server, Ansible,

Prometheus, and

Grafana

MikroTik Routers Mikrotik -

3011UiAS

10.0.0.2/24

10.0.10.2/24

10.0.20.2/24

10.0.30.2/24

Main router on the

setup with VRRP

ability to provide

redundant routing

between subnets

and connection

with the network.

Mikrotik -

hAP-ax2

10.0.0.3/24

10.0.10.3/24

10.0.20.3/24

10.0.30.3/24

Redundant router

on the setup with

VRRP ability to

provide redundant

routing between

subnets and

connection with

network.

Cisco Switches Cisco -

WS-C2960X-24TS

-L

10.0.10.10/24 Access layer

connectivity,

VLAN

segmentation

Cisco - 10.0.10.11/24

31

WS-C2960S-48TS-

L

Cisco -

WS-C2960S-48TC

-L

10.0.10.12/24

Cisco -

WS-C2960X-24TS

-L

10.0.10.13/24

Juniper Router (is

being used as

switch)

Juniper SRX100 10.0.10.9/24 Juniper router,

which is used as a

switch, to provide

ability to test

JunosOs

automatization

setups

32

4.4 Automation Strategy

The automation strategy designed to enhance network operations across Company X’s

multi-vendor environment will utilise a sophisticated setup involving Ansible for

configuration management, Prometheus and Grafana for monitoring, and GitHub

Actions with Jenkins for orchestrating continuous integration and deployment (CI/CD)

workflows.

4.4.1 Ansible Setup and Configuration

The framework will leverage an organised directory structure within the Ansible

environment, defining the roles among such include: cisco, juniper, mikrotik to

handle the network device configurations. The master orchestrator is an infra.yaml

playbook which will set up the environment and initialise with the network

infrastructure based on roles encapsulating provided device responsibilities like

backups, configurations and updates.

4.4.2 Monitoring with Prometheus and Grafana

Monitoring operations will be achieved with Prometheus, which in this case will scrape

and store the network's metrics, and with Grafana, which will visualise by the help of

custom dashboards. This combination facilitates real-time network monitoring, focusing

on key metrics essential for maintaining optimal network performance.

The specific metrics to be collected via SNMP are described in Table 3.

Table 3. Key Metrics for Network Monitoring with Prometheus and Grafana

Metric Category Description

Device Availability Refers to the up/down status of all network devices meant to

be connected, and so describable as enabling real-time

notifications for outages on a network

Interface Metrics Network interface metrics show the throughput, packet loss,

errors, and discards occurring on the network interface to

monitor the efficiency and integrity of the transmitted data

Device Health Monitor the CPU utilisation, memory consumption, and

33

temperature to prevent overuse and overheating

Network Latency Measures the time data takes to travel from source to

destination, crucial for identifying network congestion.

Bandwidth Utilisation It entails the amount of bandwidth that has been utilised,

basically within a given timeframe, so that proper capacity

planning can be carried out, which is necessary to avoid

network congestion

These types of metrics are very important in ensuring that the Network Operations team

picks the performance problems and resolves them in the least time possible in the best

possible way, which ensures the network remains healthy and reliable.

4.4.3 CI/CD with GitHub Actions and Jenkins

GitHub Actions enables the automatic validation and integration of code changes

within the network automation framework in Continuous Integration. Below are some

of the responsibilities carried out by GitHub Actions when changes have been pushed to

the repository:

● Validate the code: During the runtime it will check for syntax, integrity, quality,

and best practices in all YAML files and Ansible playbooks.

● Review and Approve: Enforced manually to branch protections, which include

rules requiring changes to go through human review and approval from the

NetOps team after compliance and oversight has occurred.

● Feedback Loop: Sends notifications of code status and changes, ensuring

transparency and traceability of edits.

Jenkins plays a paramount role in the continuous deployment process, orchestrating the

whole deployment pipeline from code integration with GitHub actions, up to

deployment configurations through network infrastructure. Jenkins will be taking the

deployment pipeline process ahead by executing a series of major activities, such as:

● Retrieve Changes: Auto-fetch validated and approved code changes from

GitHub to make sure that the deployment process is being worked upon with

updated and approved codebase.

34

● Automated deployment: It will use Ansible playbooks in the process of

applying the network configurations across the defined inventory to guarantee a

systematic and reliable deployment of configurations across the network. This

involves deployment of monitoring setups to keep the monitoring infrastructure

in line with the network state.

● Monitoring and Notifications: Monitors deployments by logging the status of

every task running. Provides a real-time feedback mechanism through the

deployment process - such as success notifications or failure alerts, among

others - to raise visibility during operations.

● Post-Deployment Verification: Optionally, Jenkins can trigger scripts or

playbooks that verify the successful application of configurations on network

devices, ensuring the expected changes are correctly implemented.

This CI/CD framework, leveraging both GitHub Actions for integration and Jenkins for

deployment, providing an effective, open, resilient system for the management of setup

management in network configuration and monitoring.

35

5 Implementation

This chapter focuses on the practical implementation part of the theoretical concepts

that have been discussed in the sections above. It details the project’s setup, including

the directory structure and configuration settings, and describes how these elements

support the implementation of network automation across multiple vendor devices. The

focus is on the practical steps taken to translate “Experimental Design” into a functional

system within Company X’s network environment.

5.1 Project Structure and Setup

The project’s directory structure was organised to facilitate clarity and ease of access to

the various components essential for network automation. At the core of the project is

the ‘ansible’ directory, which houses the configuration files, inventory, and roles

designed to manage different network devices across vendors such as Cisco, Juniper,

and MikroTik.

Ansible Configuration (ansible.cfg): Configured to optimise Ansible's operation

within the project, including setting the inventory path and disabling host key checking

to streamline playbook runs.

36

For clarity on the Ansible configuration employed in the project, Figure 3 showcases

the ansible configuration file:

Figure 3. Ansible configuration file

37

Inventory (inventory.ini): Defines the network devices under management,

categorised by vendor, and specifies connection parameters to enable Ansible to

communicate with each device securely and efficiently.

The structure of the Ansible inventory, which organises the network devices, is detailed

in Figure 4:

Figure 4. Ansible Inventory file

38

Group Variables (group_vars/all.yaml): Contains variables applicable to all hosts,

including sensitive information such as passwords encrypted using Ansible Vault for

enhanced security.

To provide context on the grouping of variables used across all hosts, Figure 5 depicts

the Ansible group variables file:

Figure 5. Ansible Group Variables file

39

5.2 Ansible Implementation

This section delves into the implementation of Ansible, detailing how it automates

network configuration and deployment across the multi-vendor environment. Ansible

plays a main role in the designed system, managing the configuration files, inventory

updates, and the execution of roles that ensure consistent and efficient network

operations.

5.2.1 Initialization (Init Role)

The initialization role is crucial as it prepares the environment for further automation

tasks. It ensures that all necessary system packages and Python libraries are installed

and updated on the control node. This step is fundamental to avoid potential issues

during the automation process.

System Update and Package Installation: Updates the system's package list and

install essential packages, such as python3-pip and sshpass. These packages are

necessary for Ansible to communicate with network devices and manage Python

dependencies.

Python Library Installation: Install Python libraries like paramiko and ncclient.

Paramiko is used for SSH connections to network devices, and ncclient is utilised for

managing network configurations via NETCONF.

The initial role in setting up the environment is outlined in Figure 6, showcasing the

Ansible init role tasks:

Figure 6. Ansible init role

40

5.2.2 Prometheus, Grafana, and SNMP Exporter (Monitoring Roles)

These roles are tasked with setting up the monitoring stack. Prometheus collects metrics

from network devices, Grafana provides visualisation dashboards, and SNMP Exporter

gathers SNMP metrics for Prometheus. These tools together enable a comprehensive

view of the network's performance and health.

Prometheus Role

Prometheus is the open-source monitoring and alerting toolkit that plays a big role in

the world of monitoring. It stores metrics from configured targets at configured

intervals. The role of Prometheus in this setup involves several key tasks:

● Installation and Setup: Prometheus is installed and updated using the system's

package manager, ensuring the latest version is deployed for optimal

performance and security.

● Service Management: The Prometheus service is started and enabled to launch

at boot, ensuring continuous monitoring without manual intervention.

● Configuration Management: Custom templates (prometheus.yml.j2 and

prometheus_defaults.j2) are deployed to configure Prometheus according to the

network's specific monitoring needs. This includes defining scrape targets,

metrics path, and scrape intervals, tailored to gather relevant data from the

network devices.

● Reload Configuration: Changes to Prometheus's configuration files trigger a

service restart, applying new settings without downtime.

Prometheus' role in delineating the essential tasks for its setup, service management,

and dynamic configuration for effective network monitoring is presented in Appendix 1.

41

Grafana Role

Grafana offers powerful visualisation tools for the metrics collected by Prometheus,

enhancing data interpretation through customizable dashboards. In this setup Grafana

main tasks include:

● Repository Setup and Grafana Installation: Grafana's official repository is

added to the system, and the software is installed, ensuring access to the latest

features and fixes.

● Configuration Customization: A custom grafana.ini configuration file is

deployed to tailor Grafana settings, including security options, data source

configurations, and general settings that optimize performance and user

experience.

● Data Source and Dashboard Provisioning: Default data source and dashboard

configurations are established using templates (sample.yaml.j2,

dashboard.yaml.j2) and JSON files (mikrotik.json, juniper.json, cisco),

automating the integration with Prometheus and the setup of network-specific

monitoring views.

● Service Management: The Grafana service is enabled and started, ensuring its

availability for user access and interaction.

Appendix 2 depicts the Ansible tasks for Grafana’s setup, detailing the automated steps

from installation to dashboard provisioning, vital for visualising network metrics.

42

SNMP Exporter Role

SNMP Exporter exposes the capability of Prometheus to collect metrics from devices,

using the Simple Network Management Protocol (SNMP), a critical component for

comprehensive network monitoring. This role encompasses:

● Binary Management: The SNMP Exporter binary is downloaded, extracted,

and made executable, placed in a designated directory for operational readiness.

● Configuration Template Deployment: A customised SNMP configuration

(snmp.yml.j2) is applied, defining which metrics to collect from network

devices, tailored to the specifics of the monitored environment.

● Service Creation and Management: A systemd service file for the SNMP

Exporter is created and deployed, ensuring the exporter is properly managed by

the system's service manager, including starting at boot and maintaining runtime

consistency.

● Cleanup and Security: Post-installation cleanup is performed to remove

temporary files, and permissions are set to secure the SNMP Exporter's

operational environment, aligning with best practices for system security.

Appendix 3 outlines the SNMP Exporter role, highlighting the automated steps for

downloading, configuring, and securing the SNMP Exporter for Prometheus:

43

5.2.3 Network Device Configuration (Cisco, Juniper, Mikrotik Roles)

Cisco Role

Backup Configuration: Backs up the current configuration of Cisco devices as a safety

measure before applying any changes.

Configuration Deployment: Applies new configurations to Cisco routers and switches

from Jinja2 templates, tailored to Company X's network architecture.

Configuration Verification: Notifies the system to save the running configuration to

the startup configuration, ensuring changes persist after a reboot.

To illustrate the Ansible tasks used for the Cisco role, focusing on backup, deployment,

and verification processes, Appendix 4 provides a detailed view.

Juniper Role

NETCONF Check and Activation: Verifies if NETCONF is enabled on Juniper

devices and activates it if necessary, facilitating remote management.

Configuration Management: Similar to the Cisco role, it backs up configurations and

applies new settings using Jinja2 templates. The role also sets the connection method to

NETCONF, optimised for Juniper devices.

The process of ensuring NETCONF is enabled on Juniper devices and applying

configuration changes is depicted in Appendix 5, highlighting the steps involved in the

Juniper role.

44

MikroTik Role

The MikroTik role is designed to automate the configuration management of MikroTik

routers and switches. This role encompasses several key tasks:

Backup Current Configuration: Creates a binary backup of the MikroTik device's

current configuration, ensuring that a recovery point is available in case of

misconfiguration or other issues.

Export Configuration to .rsc File: Exports the current configuration to a readable .rsc

script file, facilitating version control and review of the configurations applied to the

devices.

Manual Copy of Backup and Export Files: Utilises sshpass and scp commands to

securely transfer the binary backup and exported configuration files from the MikroTik

device to the control node. This step is essential for maintaining a repository of device

configurations for audit and compliance purposes.

Generate Configuration Script from Template: Leverages Ansible's templating

capabilities to generate device-specific configuration scripts from Jinja2 templates. This

allows for dynamic creation of configurations based on variables defined in Ansible's

inventory and group_vars, ensuring that configurations are tailored to the specific needs

of Company X.

Upload and Apply Configuration Script: Securely uploads the generated

configuration script to the MikroTik device and applies it using RouterOS commands.

This step transforms the templated configuration into the active configuration on the

device.

Cleanup of Temporary Files: Ensures that temporary configuration scripts are

removed from the control node after they have been successfully applied to the

MikroTik device, maintaining a clean working environment.

For the MikroTik role, Appendix 6 visualises the sequence of tasks from backing up

configurations to applying changes, demonstrating the comprehensive approach taken

for MikroTik devices.

45

5.2.4 Network Infrastructure Configuration (Master Playbook: infra.yaml)

The master infra.yaml playbook serves as the cornerstone for automating the

configuration process within Company X's network, delineating the workflow into

distinct, well-organised phases.

Initial Setup: This phase focuses on preparing the control node (localhost) where

Ansible executes. It's pivotal for establishing a solid foundation for the subsequent

tasks, ensuring all necessary tools and libraries are in place.

Monitoring Environment Setup: Following the initial preparation, the playbook

transitions to configuring the monitoring stack. This critical phase aims to equip

Company X with robust monitoring capabilities, enabling proactive network

management.

Network Devices Configuration: The final phase is when the playbook applies

configurations to the network devices from different vendors. This is the heart of the

automation process, where the network's operational parameters are defined and

implemented.

Figure 7. Master playbook infra.yaml

46

5.3 Continuous Integration/Continuous Deployment (CI/CD)

This section involves putting into practice the concepts of Continuous Integration (CI)

and Continuous Deployment (CD). This part will delve into how CI/CD is applied to

make the reliability and efficiency of the network change enhanced over the

infrastructure at Company X. It details the specific tools and workflows used.

5.3.1 Continuous Integration (CI)

Continuous Integration (CI) is an important part of the automated deployment and

monitoring system in this project. This is achieved by ensuring all the changes applied

to the network configuration are syntactically correct, conforming to the best practices

and do not introduce errors, using GitHub Actions and Batfish before the commits are

merged into the master branch and deployed.

GitHub Workflows and Branch Protection Rules

GitHub Actions is used to automate the CI process. The above automation is realised

through two major workflows: "Network CI - Ansible Syntax and structure checks" and

"Network CI - Multi-Vendor Configuration Syntax Check.

The first workflow tests the Ansible playbook and YAML file syntax to follow

convention and be error-free. It depicts the steps for setting Python up, the installation

of dependencies (Ansible, ansible-lint, yamllint), and doing checks on syntax, linting,

and YAML. For a detailed depiction of the workflow used for Ansible syntax and

structure checks, please see Figure 27 in Appendix 7.

The second workflow, essential in the validation of multi vendor network

configurations, leverages Batfish. This step is designed to analyse the rendered network

configurations for different vendors, checking for errors or potential issues that could

impact the network's functionality or security. For a detailed depiction of the workflow

used for Barfish network configuration analysis, please see Figure 28 in Appendix 7.

To maintain the integrity of the master branch and ensure that only validated changes

are merged, branch protection rules are implemented. These rules require that changes

undergo review and approval by the NetOps team or designated code owners. This

approach guarantees that all modifications are scrutinised, further enhancing the

reliability of the network automation process.

47

Batfish Analysis

Batfish was integrated as a central to the CI process, ensuring that it is also doubled in

power as an effective network configuration analysis tool. It ensures the automatic

verification of the configurations, which has to meet the sought after policies and be

ready for expected behaviour after deployment. For that, the author wrote a special

script in Python. It is designed to expand Batfish analysis capabilities using Jinja2

templates for multi-vendor device-type configuration files with caution.

The analysis conducted by Batfish extends to a variety of configuration aspects, offering

an in-depth assessment of:

● Node Properties: Basic configuration elements, ensuring nodes are correctly

identified within the network.

● Interface Properties: Verifying the correct setup of interface-level attributes.

● BGP and OSPF Process Configurations: Reviewing the critical routing

protocol configurations for correctness and compliance with network design.

● VLAN Properties: Confirming VLAN assignments and configurations against

the network's segmentation strategy.

In addition, Batfish can help detect human error by finding the configuration mistakes,

discovering potential security vulnerabilities, and confirming conformance to the

organisation's policies. For instance, Batfish checks for proper validation within the

HSRP Properties in high-availability setups, maps IP Owners for proper address

allocations, and analyses Named Structures like access-lists for proper referencing and

definition. It also brings out Unused Structures, which maybe are no longer required,

making it very easy for the network to operate and thus easy to emanate to network

outages.

By integrating Batfish into the CI pipeline, the project removes a barrier that was

possibly stopping pre-merge problems from reaching discovery further upstream in

development cycles. Such proactivity is of paramount importance for the network to be

kept and operated in accordance with the organisational policies and operational

requirements that demand resiliency and security without introducing disturbances in

the production environment.

48

The diagram displayed on the Figure 8 below provides a visual representation of the

Continuous Integration workflow, mapping the journey from code push or pull request

creation by a developer, through the various automated checks, to the eventual merging

of code into the master branch upon successful completion and review.

Figure 8. Continuous Integration Workflow Diagram for Network Automation

49

5.3.2 Continuous Deployment (CD)

The Continuous Deployment (CD) process in this project is meticulously designed to

automate the deployment of validated changes from the repository to the production

environment. This way, the CD pipeline is configured so that any change that has been

made in the master branch is deployed into the production environment automatically

and securely without human intervention. The following flow chart will explain the

operation process of the CD pipeline.

Jenkins: The Automation Core

Jenkins orchestrates the deployment process itself, interfacing directly with GitHub to

pull the latest changes and managing deployment workflow. Its widely built plug-in

ecosystem allows interfacing smoothly for both GitHub as source control and Ansible

for deployment automation.

GitHub: Source Control Integration

The CD pipeline initiates in GitHub, where there is source code kept together with the

configuration files. Integration with Jenkins takes place by the use of webhooks, one of

the attributes in GitHub. They are automatically invoked when changes to the master

are merged, hence triggering deployment.

ngrok: Secure Connectivity

Ngrok plays a critical role in securely exposing the Jenkins server to the internet,

making it accessible to receive webhook notifications from GitHub. This is especially

crucial when Jenkins is running in a secure or local environment, allowing for real-time,

automated triggers without compromising security.

Ansible: Configuration and Deployment

Ansible is tasked with automating the deployment and application of network

configurations. It translates the changes from GitHub into actionable updates across the

network, ensuring that the deployments are consistent, repeatable, and scalable, thanks

to its agentless architecture and idempotent operations.

50

To better visualise the CD process described, a flowchart in Figure 9 is provided below.

It illustrates the sequence from the initiation of a change in the GitHub repository,

through the Jenkins automation sequence, to the final deployment facilitated by Ansible.

Figure 9. Continuous Deployment Process Diagram

This diagram that is shown in Figure 9 elucidates the step-by-step process of the CD

pipeline, capturing the intricacies of each component’s role and their interconnections.

51

5.4 Monitoring Setup

The monitoring setup for this project leverages the dynamic configuration capabilities

of Prometheus and the visual excellence of Grafana to ensure scalability and flexibility

in a multi-vendor network environment. Using Ansible, the deployment of these

monitoring tools, ensuring that our monitoring infrastructure can scale with our

network.

5.4.1 Prometheus Configuration

Utilising the prometheus.yml.j2 template, Prometheus is configured to dynamically

scrape metrics from network devices across various vendors, including Cisco, Juniper,

and Mikrotik. This approach fosters scalability, as adding new devices to the inventory

automatically updates Prometheus's scraping targets without manual intervention.

For a detailed view of the dynamic Prometheus configuration setup, please refer to

Figure 18 in Appendix 8. This template demonstrates the use of Jinja2 to dynamically

generate job configurations for each host within the Ansible inventory, grouped by

vendor. This method allows Prometheus to scrape SNMP metrics tailored to the MIBs

supported by each vendor, enhancing the monitoring granularity and relevance.

Directly following the dynamic configuration outlined in Appendix 8 - Figure 19,

Figure 10 is a screenshot of the Prometheus targets interface, exemplifying the active

and up-to-date status of various network devices. This visual confirmation affirms the

successful application of the prometheus.yml.j2 template, demonstrating Prometheus's

capability to dynamically scrape and monitor metrics from multiple devices in a

multi-vendor environment.

52

Figure 10. Active Monitoring Targets in Prometheus

5.4.2 SNMP Configuration Generation

The SNMP configuration was carefully crafted using the SNMP Exporter Config

Generator, a tool that parses MIBs with NetSNMP and produces configurations for the

SNMP exporter. This step was pivotal in ensuring that the SNMP Exporter could

understand and translate SNMP data from the devices into Prometheus metrics, based

on OIDs and MIBs obtained from vendors' official documentation.

The process involved building the generator from source and generating device-specific

SNMP configurations for. This step is crucial for translating SNMP data from network

devices into metrics that Prometheus can understand and store.

5.4.3 Grafana Dashboards and Configuration

Grafana was configured to serve as the visual interface for monitoring, with dashboards

created for each device type - Cisco, Juniper, and Mikrotik - tailored to the specific

metrics relevant to each vendor. These dashboards (mikrotik.json, cisco.json,

juniper.json) were integrated into the Ansible playbook, ensuring they are

automatically deployed and updated alongside the monitoring infrastructure.

The grafana.ini configuration was adjusted to fit the custom setup, including

modifications to the default port to prevent conflicts with other services. Furthermore, a

sample.yaml file was used to define data sources and deletion policies within Grafana,

53

ensuring Prometheus is correctly linked as the primary data source for the dashboards.

Detailed configurations for the Grafana data source setup can be found in Appendix 9,

Figure 30

To exemplify the practical application of the configuration, Figure 11 provides a

snapshot of a Grafana dashboard created for MikroTik devices, showcasing the ability

to monitor and visualise key metrics such as temperature, voltage, interface status in

real-time and others:

Figure 11. Grafana Mikrotik Dashboard

54

6 Test Scenario: Implementing Network Changes through the

CI/CD Pipeline

This test scenario demonstrates the practical application of the Continuous Integration

and Continuous Deployment (CI/CD) pipeline developed for Company X. It illustrates

the workflow involved in identifying, updating, and deploying network configurations

to address both security enhancements and operational needs. By following a real-life

inspired scenario, this section aims to showcase the efficiency, security, and agility of

the CI/CD pipeline in handling dynamic network changes across diverse network

devices.

6.1 Scenario Overview

In this scenario, a NetOps engineer at "Company X" would identify the need to update

network configurations, the update would include enhancing the configuration of the

network for both security requirements and new operational needs. The required

changes were a variety of them, from updating VLANs to firewall rules, in

configurations of Mikrotik and Cisco routers. This scenario will follow the workflow

right from the initiation of a change by the engineer to the deployment and will,

therefore, demonstrate how a CI/CD pipeline implemented within the project ensures

efficiency, security, and agility.

6.2 Step 1: Initiating the Change

The NetOps engineer prepares the network changes in a local development

environment. After testing the changes locally, they are ready to be pushed to the

repository. The changes include:

Cisco Switch Configurations: Adjustments in VLAN settings and SSH configurations

across multiple switches to enhance network segmentation and security.

Mikrotik Router Configurations: Updates to firewall rules, DHCP settings, and the

addition of new VLANs for improved network management and security.

55

The engineer commits the changes to a new branch off the development branch,

ensuring they follow best practices for version control and peer review. Following

Figure 12 shows Git commit summary.

Figure 12. Git commit summary

6.3 Step 2: Continuous Integration Process

Once the changes are pushed to the remote repository, GitHub Actions trigger the

automated CI processes. It includes:

Validation of syntax and configuration: Automated processes validate the syntax of

the Ansible playbook and configuration files for Cisco and Mikrotik devices. For a

visual representation of these syntax and lint checks, refer to Figure 13: GitHub Actions

CI Workflow for Syntax and Lint checks.

56

Figure 13. GitHub Actions CI Workflow for Syntax and Lint checks

Automated Testing with Batfish: The network configurations are tested against a

virtual network model to ensure they don't introduce any connectivity or security issues.

Figure 14: GitHub Actions CI Workflow for Multi-Vendor Configuration Validation

provides a detailed view of this testing process.

Figure 14. GitHub Actions CI Workflow for Multi-Vendor Configuration Validation

And the following Figure 15 captures the results of the CI checks performed on the

multi-vendor network configuration updates, verifying successful validation and

readiness for deployment.

57

Figure 15. Results of CI workflows

As part of the continuous integration process, the NetOps engineer's push to the

development branch initiates a series of events. GitHub webhooks are HTTP callbacks

that react to events in the GitHub repository. When the engineer commits changes to a

branch, a webhook sends a POST request to a pre-configured URL, which in this

scenario is the Jenkins server.

However, since Jenkins is very commonly secured within a private network, ngrok does

serve as a secure tunnel to the Jenkins server. It exposes local servers behind NATs and

firewalls to the public internet over secure tunnels. It would actually reach Jenkins

through ngrok on a webhook without directly exposing it to the public internet.

Figure 16. Webhook Response for Development Branch Commit

58

The Figure 16 illustrates the webhook response from GitHub after the engineer’s

commit to the development branch. It clearly shows that the job named

"network-automation" is not triggered (triggered: false). The reason is that it's

configured to be triggered only if the commit is made to the master branch. This is a

security measure to prevent unauthorised changes from being deployed without proper

review and testing.

6.4 Step 3: Continuous Deployment

After passing CI checks, the changes are reviewed and merged into the master branch.

At this point the webhook interaction becomes crucial once again. The merge triggers

another POST request from GitHub to Jenkins via ngrok. This time, since the commit is

on the master branch, Jenkins recognizes the event as a deployment trigger.

Figure 17. Jenkins Job Triggered by Master Branch Commit

59

Figure 17 here shows the webhook's payload, specifically indicating a true value for

"triggered", confirming that Jenkins has acknowledged the event and has queued the

job to roll out the changes to the production environment.

Subsequent to the webhook reception, Jenkins executes a pre-configured job. The first

step of this job is to synchronise the Jenkins workspace with the master branch,

ensuring the latest committed changes are ready for deployment. Figure 28 illustrates

this step, showing the Jenkins job in progress as it prepares to deploy the new

configurations.

Figure 18. Jenkins job in progress

After the deployment job is initiated, Jenkins executes the Ansible playbook, which is a

crucial step in the deployment process. The playbook contains a set of tasks that are run

on the network devices to apply the new configurations. Each task in the playbook is

designed to be idempotent, meaning that it only makes changes if the desired state does

not match the current state. This ensures that the network configuration is always in the

expected state after the playbook runs.

60

Figure 19. Jenkins Console Output - Ansible Playbook Execution

Figure 19. displays the results of the Ansible playbook execution. This output is a

testament to the power of automation within the CI/CD pipeline. As shown in Figure

19, tasks are executed across various network devices, with a summary indicating the

number of changes applied and confirming the successful completion of the job with no

failures. This final step ensures that the intended changes are correctly implemented in

the production environment.

The job's completion marks the end of the Continuous Deployment phase. At this point,

the NetOps team can be confident that the new network configurations are live. Any

adjustments made to VLAN settings, firewall rules, or other network parameters are

now active, shaping the traffic and security posture as per the committed changes.

6.5 Step 4: Post-Deployment Verification

The post-deployment verification step is critical to ensure the applied changes reflect

the expected state of the network. In this case, the verification focuses on confirming

that new VLAN configurations have been successfully implemented across the network.

Verification Process:

VLAN Status Check: Review the VLAN configurations to ensure that new VLANs are

active and operational as per the deployment plan.

61

Monitoring System Check: Inspect the monitoring dashboard to verify that it reflects

the current operational status of the VLANs, with all newly implemented VLANs

showing 'UP' status.

Non-Operational VLANs: Confirm that VLANs that are meant to remain

non-operational are indeed not active, ensuring they are correctly excluded from the

active network configuration.

Figure 20. VLAN Implementation Status Post-Deployment

The attached Figure 20 demonstrates the successful addition of the VLANs with their

status displayed as 'UP' in the network monitoring dashboard, except for those VLANs

that are intentionally set to a non-operational state. This visual evidence from the

monitoring tool confirms that the network changes have been properly implemented and

are functioning as expected.

62

7 Results and discussion

This thesis embarked on the development of the automated system of deploying and

monitoring changes within the network in a multi-vendor environment of "Company X"

in an aim to achieve the least manual intervention in taking into consideration the

benefit of operational efficiency and rapid adaptability of the network. In light of the

above, the following results are discussed in light of the first research questions and

objectives in general, with particular regard to the challenges and limitations.

7.1 Addressing Research Questions

Challenges in Manual Network Deployment and Monitoring Processes: The

research further ascertains that manual operations are, to say the least, inefficient in

nature and have a high susceptibility to errors. This means they are unable to react in a

timely manner to the demand hence made on the network. These, among other factors,

contribute highly to operational bottlenecks, hence heightening downtimes and

increasing operational cost.

Transformation through Automation: Automation emerged as a pivotal solution,

enabling quicker deployments, more accurate monitoring, and a reduction in manual

errors. The CI/CD pipeline thus brought in an agile way for better management with

dynamic and efficient strategies in network configurations and monitoring which would

be aligned with the requirement of agile contemporary network infrastructures.

Constituting an Effective Automated System: An effective automation system was

realised by integrating Ansible for automation, alongside Prometheus and Grafana for

monitoring, and GitHub Actions with Jenkins for CI/CD workflows. This setup ensured

compatibility across multi-vendor devices and scalability to accommodate network

growth, establishing a robust framework for ongoing optimization.

63

7.2 Achievement of Objectives and Observations:

Technological Exploration and Evaluation: Incorporating Jenkins and GitHub

Actions significantly enriched the project’s CI/CD pipeline. While Jenkins was

instrumental in automating the continuous deployment (CD) aspect, ensuring the

execution of Ansible playbooks and other tasks upon code commits, GitHub Actions

played a pivotal role in the continuous integration (CI) phase. It automated deployment

and testing workflows directly within the GitHub repository, simplifying the

management of CI pipelines and enhancing source control integration. Together, these

tools created a robust automation flow that was critical for the project's success. Ngrok’s

secure tunnelling capabilities enabled seamless and secure interactions between GitHub

Actions and the Jenkins server, mitigating potential security risks. Additionally, the

SNMP Exporter and Batfish further supported the project by enhancing network

visibility and providing a pre-deployment testing mechanism, respectively, which

contributed to the comprehensive monitoring and testing capabilities in a multi-vendor

environment.

Design and Implementation Challenges: The thesis successfully designed and

implemented a tailored automated deployment and monitoring system. However,

simulating a multi-vendor network environment posed significant challenges due to the

complexity of accurately representing diverse network devices and the restrictions

imposed by commercial licensing. The lack of vendor-provided simulation models or

virtual images, coupled with licensing restrictions, made it difficult to create a fully

representative virtual staging environment. This limitation underscored the complexity

of deploying and monitoring in a real-world multi-vendor context.

Validation of Effectiveness Amidst Limitations: Despite these challenges, the

system's effectiveness in reducing manual intervention and operational risks was

validated. A noteworthy limitation was the automation of Mikrotik devices, where the

lack of comprehensive Ansible modules necessitated reliance on less efficient methods,

such as extensive use of the Ansible shell module. This aspect highlighted the need for

more sophisticated tool support for certain vendors within the automation framework.

64

7.3 Conclusions and Future Directions

The automation of network operations at Company X has effectively met the thesis's

goals, overcoming identified challenges to foster more efficient, reliable, and agile

network operations. The solution in place is also scalable and adaptive, therefore

guaranteeing that it can be expanded with the growth of the network and

implementation in the future.

However, the limitations encountered, particularly the challenge of simulating a

comprehensive multi-vendor environment and the specific issues with automating

Mikrotik devices, point to areas needing further development and refinement. Future

research could focus on overcoming these limitations through the development of more

advanced simulation tools or exploring partnerships with vendors to ease licensing

restrictions for educational and testing purposes. Additionally, enhancing the

automation framework to include broader vendor support and integrating AI and ML for

predictive analytics could significantly advance the field of network operations.

In summary, this thesis has provided critical insights into practical solutions for

automation of network operations in a multi-vendor environment and lights the paths

for organisations targeting modernization of their network operations. The

methodologies and systems developed here lay a print foundation for innovative

efficiency to be emulated in the management of the network.

65

References

[1] Broadcom Academy, "Fujitsu Central Europe Reduces TCO by 75% with Expanded

'Human-Centric' Approach to NetOps," in Broadcom Network Operations Case Studies,

Broadcom, 2023. [Online]. Available:

https://academy.broadcom.com/network-operations/fujitsu-netops-case-study

[2] Jay Ashok Shah and Dushyant Dubaria, "NetDevOps: A New Era Towards

Networking & DevOps," [Online]. Available:

https://ieeexplore.ieee.org/document/8992969. [Accessed 10 March 2024].

[3] Kyle Rankin, DevOps Troubleshooting: Linux Server Best Practices, 1st ed.,

Addison-Wesley Professional, 2013.3

[4] Cisco DevNet, "Various Cisco Blogs on Cisco Live," [Online]. Available:

https://blogs.cisco.com/tag/cisco-live. [Accessed 10 March 2024].

[5] Aladhami, Mahmood Mazin, Ruhani Ab Rahman, Murizah Kassim, and Abd Razak

Mahmud, "Performance Analysis on Network Automation Interaction with Network

Devices Using Python," in Proceedings of the 2021 IEEE 11th Symposium on

Computer Applications & Industrial Electronics (ISCAIE), IEEE, 2021, doi:

10.1109/ISCAIE51753.2021.9431823. [Online]. Available:

https://ieeexplore.ieee.org/document/9431823. [Accessed 11 March 2024].

[6] Caroline Chappell, "DevOps for Network Engineers: The Implications for Network

Automation," in DevOps for NetEng White Paper, prepared by Heavy Reading on

behalf of Cisco, June 2016. [Online]. Available:

https://community.cisco.com/t5/crosswork-automation-hub-knowledge-articles/devops-f

or-neteng-white-paper/ta-p/3642983. [Accessed 11 March 2024].

[7] Juniper Networks, "The 2020 State of Network Automation: The Annual Report on

Key Network Automation Trends," 2020. [Online]. Available:

https://www.juniper.net/us/en/forms/2020-state-of-network-automation-report.html.

[Accessed 11 March 2024].

66

https://academy.broadcom.com/network-operations/fujitsu-netops-case-study
https://ieeexplore.ieee.org/document/8992969
https://blogs.cisco.com/tag/cisco-live
https://ieeexplore.ieee.org/document/9431823
https://community.cisco.com/t5/crosswork-automation-hub-knowledge-articles/devops-for-neteng-white-paper/ta-p/3642983
https://community.cisco.com/t5/crosswork-automation-hub-knowledge-articles/devops-for-neteng-white-paper/ta-p/3642983
https://www.juniper.net/us/en/forms/2020-state-of-network-automation-report.html

[8] Red Hat, "Ansible Network Automation," [Online]. Available:

https://www.redhat.com/en/technologies/management/ansible/network-automation.

[Accessed 12 March 2024].

[9] Ansible by Red Hat, "Network MOPs as Automated Workflows," [Online].

Available: https://www.ansible.com/blog/network-mops-as-automated-workflows.

[Accessed 12 March 2024].

[10] Red Hat, "Red Hat Advances Enterprise and Network Automation with New

Ansible Offerings," [Online]. Available:

https://www.ansible.com/press-center/press-releases/red-hat-advances-enterprise-and-ne

twork-automation-new-ansible-offerings. [Accessed 12 March 2024].

[11] Broadcom Academy, "Network Automation: Top Use Cases and Benefits,"

[Online]. Available:

https://academy.broadcom.com/blog/network-operations/network-automation-top-use-c

ases-and-benefits. [Accessed 13 March 2024].

[12] TechTarget, "NetSecOps Best Practices for Network Engineers," 07 Feb 2024.

[Online]. Available:

https://www.techtarget.com/searchnetworking/tip/NetSecOps-best-practices-for-networ

k-engineers. [Accessed 13 March 2024].

[13] Deanna Darah, "Challenges & Best Practices for Network Operations

Management," in SearchNetworking, TechTarget, 21 June 2022. [Online]. Available:

https://www.techtarget.com/searchnetworking/feature/Challenges-best-practices-for-net

work-operations-management. [Accessed 13 March 2024].

[14] Grafana Labs, "Intro to Prometheus," in Grafana Documentation, Grafana Labs.

[Online]. Available:

https://grafana.com/docs/grafana/latest/fundamentals/intro-to-prometheus/. [Accessed

22 March 2024].

[15] GitHub, "GitHub Actions," [Online]. Available: https://github.com/features/actions.

[Accessed 17 April 2024].

67

https://www.redhat.com/en/technologies/management/ansible/network-automation
https://www.ansible.com/blog/network-mops-as-automated-workflows
https://www.ansible.com/press-center/press-releases/red-hat-advances-enterprise-and-network-automation-new-ansible-offerings
https://www.ansible.com/press-center/press-releases/red-hat-advances-enterprise-and-network-automation-new-ansible-offerings
https://academy.broadcom.com/blog/network-operations/network-automation-top-use-cases-and-benefits
https://academy.broadcom.com/blog/network-operations/network-automation-top-use-cases-and-benefits
https://www.techtarget.com/searchnetworking/tip/NetSecOps-best-practices-for-network-engineers
https://www.techtarget.com/searchnetworking/tip/NetSecOps-best-practices-for-network-engineers
https://www.techtarget.com/searchnetworking/feature/Challenges-best-practices-for-network-operations-management
https://www.techtarget.com/searchnetworking/feature/Challenges-best-practices-for-network-operations-management
https://grafana.com/docs/grafana/latest/fundamentals/intro-to-prometheus/
https://github.com/features/actions

[16] Jenkins, "Jenkins," [Online]. Available: https://www.jenkins.io/. [Accessed 17

April 2024].

68

https://www.jenkins.io/

Appendix 1 - Configuration Details for the Prometheus Role

- name: Install Prometheus
ansible.builtin.apt:
name: prometheus
state: present
update_cache: true

- name: Start and enable Prometheus
ansible.builtin.service:
name: prometheus
state: started
enabled: true

- name: Configure Prometheus
ansible.builtin.template:
src: prometheus.yml.j2
dest: /etc/prometheus/prometheus.yml
mode: '0644'

notify:
- Restart Prometheus

- name: Adjust Prometheus default configuration
ansible.builtin.template:
src: prometheus_defaults.j2
dest: /etc/default/prometheus
mode: '0644'

notify:
- Restart Prometheus

Figure 21. Prometheus Role Ansible Tasks

69

Appendix 2 - Detailed Ansible Tasks for Grafana Setup

- name: Import Grafana GPG key
ansible.builtin.apt_key:
url: "https://packages.grafana.com/gpg.key"
state: present

- name: Add Grafana repository
ansible.builtin.apt_repository:
repo: "deb https://packages.grafana.com/oss/deb stable main"
state: present

- name: Install Grafana
ansible.builtin.apt:
name: grafana
state: present
update_cache: true

- name: Deploy custom grafana.ini configuration
ansible.builtin.template:
src: grafana.ini.j2
dest: /etc/grafana/grafana.ini
mode: '0644'

notify: Restart Grafana

- name: Setup Default datasource
ansible.builtin.template:
src: sample.yaml.j2
dest: /etc/grafana/provisioning/datasources/sample.yaml

notify: Restart Grafana

- name: Copy conf for dashboards
ansible.builtin.template:
src: dashboard.yaml.j2
dest: /etc/grafana/provisioning/dashboards/sample.yaml

- name: Setup dashboard Mikrotik
ansible.builtin.copy:
src: mikrotik.json
dest: /etc/grafana/provisioning/dashboards/mikrotik.json

notify: Restart Grafana

- name: Setup dashboard Juniper
ansible.builtin.copy:
src: juniper.json
dest: /etc/grafana/provisioning/dashboards/juniper.json

notify: Restart Grafana

- name: Setup dashboard Cisco
ansible.builtin.copy:
src: cisco.json
dest: /etc/grafana/provisioning/dashboards/cisco.json

notify: Restart Grafana

70

- name: Start and enable Grafana service
ansible.builtin.systemd:
name: grafana-server
state: started
enabled: true

Figure 22. Grafana Role Ansible Tasks

71

Appendix 3 - Detailed Ansible Tasks for SNMP Exporter

Setup

- name: Download SNMP Exporter binary
ansible.builtin.get_url:

url:
"https://github.com/prometheus/snmp_exporter/releases/download/v0.25.0
/snmp_exporter-0.25.0.linux-amd64.tar.gz"

dest: "/tmp/snmp_exporter.tar.gz"
mode: '0644'

- name: Extract SNMP Exporter binary
ansible.builtin.unarchive:
src: "/tmp/snmp_exporter.tar.gz"
dest: "/opt"
remote_src: true
creates: "/opt/snmp_exporter-0.25.0.linux-amd64/snmp_exporter"

- name: Ensure SNMP Exporter binary is executable
ansible.builtin.file:
path: "/opt/snmp_exporter-0.25.0.linux-amd64/snmp_exporter"
mode: '0755'

- name: Copy SNMP Exporter configuration
ansible.builtin.template:
src: "{{ role_path }}/templates/snmp.yml.j2"
dest: "/opt/snmp_exporter-0.25.0.linux-amd64/snmp.yml"
mode: '0644'

- name: Create SNMP Exporter systemd service file
ansible.builtin.template:
src: "{{ role_path }}/templates/snmp_exporter.service.j2"
dest: "/etc/systemd/system/snmp_exporter.service"
mode: '0644'

- name: Reload systemd daemon
ansible.builtin.systemd:
daemon_reload: true

- name: Enable and start SNMP Exporter service
ansible.builtin.service:
name: snmp_exporter
state: started
enabled: true

- name: Set permissions for SNMP Exporter directory
ansible.builtin.file:
path: "/opt/snmp_exporter-0.25.0.linux-amd64"
state: directory
mode: '0755'
recurse: true

72

when: ansible_facts['distribution'] == 'Ubuntu'

- name: Remove downloaded SNMP Exporter tar.gz file
ansible.builtin.file:
path: "/tmp/snmp_exporter.tar.gz"
state: absent

Figure 23. SNMP-Exporter Role Ansible Tasks

73

Appendix 4 - Detailed Ansible Tasks for Cisco Role

- name: Backup current configuration

cisco.ios.ios_config:

backup: true

when: vendor == 'cisco'

register: backup_config

- name: Apply complete configuration to Cisco routers

cisco.ios.ios_config:

src: "templates/router/{{ config_id }}.j2"

save_when: modified

when: vendor == 'cisco' and device_type == 'router'

notify: Save running config to startup config (Cisco)

- name: Apply complete configuration to Cisco switches

cisco.ios.ios_config:

src: "templates/switch/{{ config_id }}.j2"

save_when: modified

when: vendor == 'cisco' and device_type == 'switch'

notify: Save running config to startup config (Cisco)

Figure 24. Cisco Role Ansible Task

74

Appendix 5 - Detailed Ansible Tasks for Juniper Role

- name: Check if NETCONF is enabled on Juniper devices
junipernetworks.junos.junos_command:
commands:
- show configuration system services | match netconf

register: netconf_check
when: vendor == 'juniper'

- name: Enable NETCONF if not already enabled (CLI)
junipernetworks.junos.junos_netconf:
netconf: true

when:
- netconf_check is defined
- netconf_check.stdout_lines is defined
- netconf_check.stdout_lines | join('') | regex_search('netconf')

is none
- vendor == 'juniper'

- name: Set connection method to NETCONF for Juniper devices
ansible.builtin.set_fact:
ansible_connection: "ansible.netcommon.netconf"
ansible_port: "{{ netconf_port }}"
ansible_become: false

when: vendor == 'juniper'

- name: Backup current configuration on Juniper devices (NETCONF)
junipernetworks.junos.junos_config:
backup: true

when: vendor == 'juniper'

- name: Apply configuration to Juniper routers (NETCONF)
junipernetworks.junos.junos_config:
src: "templates/router/{{ config_id }}.j2"

when: vendor == 'juniper' and device_type == 'router'
notify: Save configuration on Juniper devices

- name: Apply configuration to Juniper switches (NETCONF)
junipernetworks.junos.junos_config:
src: "templates/switch/{{ config_id }}.j2"

when: vendor == 'juniper' and device_type == 'switch'
notify: Save configuration on Juniper devices

Figure 25. Juniper Role Ansible Task

75

Appendix 6 - Detailed Ansible tasks for Mikrotik Role

- name: Backup current configuration on MikroTik device
community.routeros.command:
commands:
- "/system backup save name={{ inventory_hostname }}_backup"

when: vendor == 'mikrotik'
register: backup_config

- name: Export configuration to an .rsc file
community.routeros.command:
commands:
- "/export file={{ inventory_hostname }}_backup"

when: vendor == 'mikrotik'
register: export_config

- name: Manually copy the binary backup file from MikroTik device
ansible.builtin.shell: >
sshpass -p '{{ ansible_ssh_pass }}' scp -o

StrictHostKeyChecking=no
ssh@{{ ansible_host }}:{{ inventory_hostname }}_backup.backup
{{ playbook_dir }}/roles/mikrotik/backup/{{ inventory_hostname

}}_binary_backup.backup
changed_when: false
become: false
delegate_to: localhost
when: vendor == 'mikrotik'

- name: Manually copy the configuration export file from MikroTik
device
ansible.builtin.shell: >
sshpass -p '{{ ansible_ssh_pass }}' scp -o

StrictHostKeyChecking=no
ssh@{{ ansible_host }}:{{ inventory_hostname }}_backup.rsc
{{ playbook_dir }}/roles/mikrotik/backup/{{ inventory_hostname

}}_config_backup.rsc
changed_when: false
become: false
delegate_to: localhost
when: vendor == 'mikrotik'

- name: Generate MikroTik configuration script from template
ansible.builtin.template:
src: "router/{{ config_id }}.j2"
dest: "{{ playbook_dir }}/roles/mikrotik/temp/{{

inventory_hostname }}_config.rsc"
mode: '0644'

delegate_to: localhost
when: vendor == 'mikrotik'

- name: Upload configuration script to MikroTik device via SCP
ansible.builtin.shell: >

76

sshpass -p '{{ ansible_ssh_pass }}' scp -o
StrictHostKeyChecking=no

{{ playbook_dir }}/roles/mikrotik/temp/{{ inventory_hostname
}}_config.rsc

ssh@{{ ansible_host }}:/
changed_when: false
become: false
delegate_to: localhost
when: vendor == 'mikrotik'

- name: Apply configuration script on MikroTik device
community.routeros.command:
commands:
- "/import file-name={{ inventory_hostname }}_config.rsc"

when: vendor == 'mikrotik'

- name: Remove temporary configuration scripts
ansible.builtin.file:
path: "{{ playbook_dir }}/roles/mikrotik/temp/{{

inventory_hostname }}_config.rsc"
state: absent

delegate_to: localhost
when: vendor == 'mikrotik'

Figure 26. Mikrotik Role Ansible Task

77

Appendix 7 - Detailed GitHub CI Workflows

Figure 27. Workflow for Ansible Syntax and structure checks

78

Figure 28. Workflow for Batfish Network Configuration Analysis

79

Appendix 8 - Detailed Configuration of Dynamic Prometheus

global:
scrape_interval: 60s

scrape_configs:
{% for host in groups['cisco'] %}
- job_name: 'snmp_cisco_{{ host }}'
scrape_interval: 60s
metrics_path: /snmp
params:
module: [if_mib]

static_configs:
- targets:
- "{{ hostvars[host].ansible_host }}"

relabel_configs:
- source_labels: [__address__]
target_label: __param_target

- source_labels: [__param_target]
target_label: instance

- target_label: __address__
replacement: {{ snmp_exporter_server }}:9116 # SNMP

Exporter's address
{% endfor %}

{% for host in groups['juniper'] %}
- job_name: 'snmp_juniper_JunMib_{{ host }}'
scrape_interval: 60s
metrics_path: /snmp
params:
module: [juniper_operating]

static_configs:
- targets:
- "{{ hostvars[host].ansible_host }}"

relabel_configs:
- source_labels: [__address__]
target_label: __param_target

- source_labels: [__param_target]
target_label: instance

- target_label: __address__
replacement: {{ snmp_exporter_server }}:9116 # SNMP

Exporter's address
{% endfor %}

{% for host in groups['mikrotik'] %}
- job_name: 'snmp_mikrotik_{{ host }}'
scrape_interval: 60s
metrics_path: /snmp
params:
module: [mikrotik]

static_configs:
- targets:

80

- "{{ hostvars[host].ansible_host }}"
relabel_configs:
- source_labels: [__address__]
target_label: __param_target

- source_labels: [__param_target]
target_label: instance

- target_label: __address__
replacement: {{ snmp_exporter_server }}:9116 # SNMP

Exporter's address
{% endfor %}

{% for host in groups['mikrotik'] %}
- job_name: 'snmp_mikrotik_if_mib_{{ host }}'
scrape_interval: 60s
metrics_path: /snmp
params:
module: [if_mib]

static_configs:
- targets:
- "{{ hostvars[host].ansible_host }}"

relabel_configs:
- source_labels: [__address__]
target_label: __param_target

- source_labels: [__param_target]
target_label: instance

- target_label: __address__
replacement: {{ snmp_exporter_server }}:9116 # SNMP

Exporter's address
{% endfor %}

Figure 29. Dynamic Prometheus Configuration

81

Appendix 9 - Detailed Grafana Data Source Configuration

apiVersion: 1

deleteDatasources:
- name: Prometheus
orgId: 1

datasources:
- name: Prometheus
type: prometheus
access: proxy
orgId: 1
url: http://{{ prometheus_server }}:{{ prometheus_port }}
password:
user:
database:
basicAuth: false
basicAuthUser:
basicAuthPassword:
withCredentials:
isDefault: true

version: 1
editable: true

Figure 30. Dynamic Grafana Data Source Configuration

82

Appendix 10 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Leonid Peskov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Streamlining Network Operations: Implementing Automated Deployment

and Monitoring in a Multi-Vendor Environment”, supervised by Mohammad Tariq

Meeran

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the

non-exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

09.05.2024

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis that has

been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based on the joint

creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to reproduce and

publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid for the period.

83

