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Introduction
Despite comprising roughly 85% of all matter in the cosmos, the nature and distributionof dark matter (DM) remains one of the most profound open questions in physics andastronomy. From the rotation curves of spiral galaxies to the temperature anisotropiesof the cosmic microwave background, phenomena on scales spanning ten orders of mag-nitude insist on the presence of a non-luminous gravitating component of the Universe.While numerous direct and indirect particle detection experiments and collider searchescontinue to test the possible particle candidates, only cosmological and astrophysical ob-servations have provided positive evidence for the existence of DM to date, making theUniverse itself our best DM detector.In the past 30 years, evidence gathered across cosmological scales has established astandard cold dark matter (CDM) paradigm, which predicts hierarchical structure forma-tion: large DM halos grow through the merger and accretion of smaller subhalos. Withinthis framework, galaxies such as the Milky Way (MW) are expected to be embedded inmassiveDMhalos that are composedof both a dominant smooth component and a swarmof smaller subhalos. The latter are gravitationally bound DM clumps that survive as satel-lites of the host halo.Characterizing both components of galactic DM halos is essential. The properties ofboth the smooth halo and its substructure offer crucial indirect avenues for probing thefundamental nature of DM. Accurately mapping the large-scale distribution of DM pro-vides constraints on the total mass and density profile of the Galaxy. Additionally, detect-ing DM subhalos and characterizing their abundance can discriminate between differentpossible DM models, including warm, fuzzy, or self-interacting DM.In recent years, astronomy has entered a transformative “big data” era, owing to vastand increasingly precise datasets from observations. In particular, the Gaia mission hasrevolutionized Galactic astronomy by delivering sub-milliarcsecond astrometry and kine-matics for more than a billion stars. With these data products at our disposal, theMWhasbecome a dynamical laboratory of unprecedented fidelity, revealing previously unseenbaryonic substructures and enabling detailed, kinematics-based searches for DM throughthe motions of luminous tracers.Thewealth of high-quality data, combinedwith advances in themachine learning (ML)methods, offers new and exciting opportunities to study DM in the Galaxy using data-driven techniques that leverage the statistical power of both modern observational sur-veys and simulations. With the above in mind, the following thesis explores both thesmooth and clumpy aspects of the MWDM halo using traditional statistical and novel MLmethods.This thesis is organized as follows. Section 1 introduces the general DM problem andoutlines the narrative of the standard cosmological model. In Section 2, the overall scopeand objectives of the current thesis are outlined. Section 3 discusses how the MW servesas a natural laboratory for DM studies, and introduces the observational data (Gaia) andcosmological simulations used throughout this work. Section 4 presents the analysis andresults from modeling the MW’s disk kinematics and constraining the smooth DM halo(Publication II). Section 5 explores the use of ML methods to investigate DM substructureusing MW-like and idealized N-body simulations (Publications I & III).
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1 Dark matter in the ΛCDM paradigm
Evidence accumulated in observational astronomy over the past century suggests a largegap in our understanding regarding the matter composition of the world around us. Inde-pendent observations at different scales in the Universe point to the existence of invisiblematter, so-called DM, which is separate from its visible baryonic counterpart. While thelatter has been extensively studied and is well-described by the Standard Model of parti-cle physics (SM), the fundamental nature of the former remains a mystery. As such, thecollective effort to uncover the true nature and origin of DM is one of the largest endeav-ors spanning cosmology, astrophysics, and particle physics today. The following chapteraims to offer a brief overview of the current cosmological view of the Universe and therole of DM in it.
1.1 Historical context
One of the first observations hinting at unseen mass in the Universe dates back to the1930s, when F. Zwicky analysed the velocities of galaxies in the Coma cluster [4, 5]. Acomparison of the mass from visible matter and the velocity dispersion of galaxies re-vealed a discrepancy, which was attributed to unseenmatter. Though a similar conclusionwas reached in later analyses of other galaxy clusters [6, 7], at the time, the DM hypothe-sis had not been formulated as a fundamental problem, and the results simply remainedcuriosities [8].It was in the second part of the 20th century that key pieces of evidence started to fittogether, revealing a missing mass problem in the Universe. The discovery of the 21-cm(HI) emission line [9] of hydrogen made it possible to trace the abundant neutral hydro-gen in the MW and other nearby galaxies. As a consequence, velocity measurements ofHI lines led to the extension of rotation curves of nearby galaxies far beyond the opticaldisk. Rotation curves depict the rotational velocities of stars (or gas) with respect to thegalactocentric distance. Since the square of the orbital velocity of a star on a circular or-bit at radius R is proportional to the mass enclosed inside said radius, the resultant curveencodes information about the underlying mass distribution in the system. In the caseof galaxies, the expectation was that the curve would exhibit a Keplerian drop-off of theform v(R) ∝ R−1/2, judging by the total amount of visible matter. In 1970, two importantstudies emerged with one measuring rotation curves of M31 [10], and the other those ofM33 and NGC 300 [11]. These studies revealed that the curves remain flat up to largedistances, suggesting the existence of large amounts of unseen mass in the outer parts ofgalaxies.The puzzling results from rotation curve studies and galaxy cluster velocity measure-ments were first considered part of the same story by authors in [12] and [13] who putthe observations into a larger cosmological context. The authors of [13] specifically con-sidered the existence of a massive corona around galaxies as an explanation for the massdiscrepancies observed in galaxy clusters. Furthermore, the studies pointed out that theobserved mass density of galaxies is insufficient to produce a flat or closed (κ ≥ 0) uni-verse, that is, one where the dimensionless density parameter Ω ≥ 1. Here, Ω = ρ/ρccompares the observed density in the universe to its critical density1 (ρc), and is relatedto the spatial curvature index κ . The values of the spatial curvature index describe eitheran open (κ < 0), flat (κ = 0), or closed (κ > 0) universe [14].The considerations outlined above elevated the importance of the search for missingmass in the Universe. Thus, the different sources of evidence pointing to large amounts

1The critical density is defined as the energy density needed to produce a spatially flat universe.
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of unseen matter in and around galaxies went from mere unrelated discrepancies intoheralding a paradigmatic shift in our view of the Universe. It was then at the confluenceof radio astronomy and extra-galactic cosmology that the stage was finally set for the DMproblem to be established in the larger scientific community. 2
1.2 Observational evidence
Currently, the evidence for DM is inferred from numerous independent phenomena atdifferent cosmic scales. Based mainly on the review in [16], the following section offers abrief overview of the observational landscape of DM today, but is by nomeans exhaustivedue to the diverse and rapidly evolving nature of the field.
1.2.1 Galactic rotation curvesAs alluded to in the previous section, measurements of galactic rotation curves have his-torically played a pivotal role in establishing the DM problem. Observations consistentlyhave shown that orbital velocities of stars in disk galaxies remain roughly constant outto larger radii, which is in contrast to the expectation from Newtonian dynamics if onlyvisible matter is accounted for. These flat rotation curves imply the existence of a darkcomponent to galaxies that contributes significantly to their total mass beyond the opti-cal disk [10].In the MW, rotation curve measurements offer a direct tracer of the underlying massdistribution, including its DM halo. Precise measurements are made possible by modernstellar surveys, most notably Gaia [17], which provide full 6D phase-space data for millionsof stars in our Galaxy (see also Section 3.1). As a result, the MW’s rotation curve remainsan active topic of research, offering insights into both the visible and dark components ofthe Galaxy.The circular velocity vc(R), which tracks the orbital speed of a star in a perfectly circularorbit at Galactocentric radius R, is related to the galactic gravitational potential under theassumption of axisymmetry through the following relation

∂Φ

∂R
=

v2
c

R
, (1)

whereR is the orbital radius of the star. Assuming a spherical potential ofΦ(R) =−GM/Rand taking the derivative with respect to R, the circular velocity is easily derived as
vc(R) =

√
GM(R)

R
, (2)

where M(R) is the total enclosed mass. In disk galaxies like the MW, stars in the planeof the disk are on nearly circular orbits, where vc encodes information about the axisym-metric component of the potential.Figure 1 compiles recent measurements of the MW’s rotation curve, highlighting theexistence of an extended DM halo [18]. In particular, the near-flatness of the profile in theouter Galaxy cannot be explained by baryons alone. Quantitatively, rotation curve studiessuggest that DM accounts for approximately 80-90% of the MW’s total mass [16].One part of this thesis presents a new inference of the circular velocity curve (also seenin Fig. 1) based on Gaia data, using a Bayesian framework that self-consistently marginal-izes over systematic uncertainties. The analysis also allows estimation of the local DM
2The history of the DMhypothesis is a fascinating one. Although the currentwork does not coverit in explicit detail, the interested reader can find a thorough review in both [8] and [15].
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Figure 1: Compilation of circular velocity curve measurements for the MW, as presented in [18].

density and enclosed mass within the solar circle, further strengthening evidence for adominant DM component in the Galaxy (see Section 4.2 for details).
1.2.2 Galaxy clusters
Galaxy clusters are large cosmic structures that generally contain hundreds to thousandsof galaxies and are the most massive gravitationally bound structures in the Universe [14].As was already pointed out in Section 1.1, the first clues for DM originate from studiesinferring the total mass of these structures by means of the virial theorem.In addition to galaxies, these large structures contain a considerable amount of hotintragalactic gas, which due to gravity, has been accelerated to high velocities. The ther-mal radiation emitted by the gas is observable with X-ray telescopes and can be used toestimate the baryon fraction fb = Ωb/Ωm, assuming that galaxy clusters provide a repre-sentative sample of the Universe [19]. Studies using this method have resulted in a baryonfraction of e.g. fb = 0.144±0.005 [20].Mass measurements from observations of intragalactic gas in galaxy clusters are alsocomplemented by gravitational lensing methods. Gravitational lensing is a phenomenonthat occurs as a massive object in the foreground (e.g., a galaxy cluster) distorts the imageof a highly luminous background object, such as a quasar. The amount of lensing can beused to then infer the mass of the object responsible for the distortion.It is at the interface of these two methods that perhaps one of the most visibly re-markable signs of DM has been detected in the Bullet cluster, shown in Fig 2.
1.2.3 Large scale structure
The large-scale distribution of matter in the Universe provides powerful evidence for theexistence of DM. On scales of tens to hundreds of megaparsecs, galaxies are not ran-domly distributed. They form a complex system of clusters, filaments, and voids, which isreferred to as the cosmic web.Comprehensive galaxy redshift surveys such as CfA2, 2dFGRS, and SDSS have mappedthe distribution of galaxies across large volumes of the Universe. The statistical proper-ties of this distribution show remarkable agreement with predictions from ΛCDM (see
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Figure 2: An image of the Bullet Cluster (1E 0657-56), which shows two galaxy clusters that havecollided and passed through each other. The hot intracluster gas, observed in X-rays, is shown in pinkand represents the bulk of the normal baryonic matter. The dominant mass component is mappedin blue from measurements of gravitational lensing. The image illustrates that the baryonic gashas slowed down due to EM interactions during the collision, while the DM component has passedthrough largely unaffected. Credit: NASA/CXC/CfA/M.Markevitch (X-ray), NASA/STScI, Magellan/U.Arizona/D. Clowe (optical and lensing map), ESO WFI (lensing map) [21].

Section 1.3) simulations. These properties are quantified with the matter power spec-trum P(k), whose shape and amplitude are key observables that quantify the variance ofmatter density fluctuations as a function of scale k.
Figure 3 shows a compilation of the measurements of P(k) from different cosmolog-ical probes. These measurements constrain the matter content of the Universe and thecosmological concordance model, which implies the existence of DM. They are consistentwith a Universe composed of about 85% non-baryonic DM. The agreement between ob-served and simulated large-scale structure strongly supports the ΛCDM framework, andtherefore the existence of DM in general. In addition, combining this evidencewith cosmicmicrowave background (CMB) anisotropymeasurements has led to constraints on cosmo-logical parameters, which point to the existence of DM in order to explain the observedclustering.

1.2.4 The cosmic microwave background
The CMB is the relic radiation left over from the Big Bang, emitted during the recombina-tion epoch at redshift z≈ 1100. Before this time, the Universe was in a state of hot plasmawhere the photons were frequently interacting with matter. Once the Universe cooledenough for photon energies to fall below the hydrogen binding energy (E ≈ 13.6eV), theprocess e−+ p+ ↔ H + γ went out of equilibrium and photons decoupled from matter.No longer able to ionize neutral hydrogen atoms, the photons were finally able to propa-
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Figure 3: Matter power spectrum from various cosmological probes at redshift z = 0 as shown in[22].

gate freely through space and be captured in our telescopes, providing us with a snapshotof the very early Universe and its properties.Since the CMB photons have been traversing the Universe ever since the epoch ofrecombination, their average temperature today is observed to be 2.725K (correspond-ing to an energy of 6.344× 10−4 eV) due to redshifting from the expansion of the Uni-verse [14]. In terms of wavelength, this energy corresponds to approximately 2 mm, plac-ing it in themicrowave range of the electromagnetic (EM) spectrum. Itwas first discoveredin 1965 [23], during the early era of radio astronomy.Precise CMBmeasurements bymodern telescopes, such as theWMAP Telescope [24],or its successor Planck [22], reveal that early Universe was only nearly homogeneous withobserved anisotropies present in the temperature having a typical amplitude of ∆T/T ≈
10−5. These fluctuations in the CMB temperature are a reflection of the primordial den-sity perturbations in the Universe before recombination. Perturbations in the baryonicdensity can only start growing after decoupling from photons, meaning that the observedfluctuations in the CMB would have to be considerably larger in order to produce thestructures in the Universe today [19]. The fact that the temperature perturbations areso small suggests the existence of non-baryonic DM in the early Universe, which wouldprovide the necessary amplification to these perturbations.
1.3 The standard model of cosmology (ΛCDM)
Rapid progress in N-body cosmological simulations, coupled with a large body of observa-tional evidence spanning disparate scales, has led to a standard model of cosmology. Thistheoretical framework of the Universe has been the cornerstone of cosmological studiesfor the past 30 years. It describes a spatially flat Universe whose energy budget is dom-inated by a cosmological constant (Λ) and assumes that all DM is cold (known as CDM),
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Figure 4: The cosmic microwave background. The red and blue spots reflect temperature fluctua-tions in the CMB, which are on the order of 10−5 K. Image: ©ESA and the Planck Collaboration [22].

which is why it is also called the ΛCDM model. Generally, this model is parametrized bythe Hubble constant (H0) and the dimensionless density parameters of the different con-stituents of the Universe. The former is a measure of the current expansion rate of theUniverse, and when coupled with Hubble’s law (v = H0r), gives the recessional velocity ofobjects in the Universe at a particular distance from the observer. The latter summarizesthe total energy budget of the universe, normalized to unity via the following equation
Ωtotal = Ωm +ΩΛ +Ωk = 1, (3)

where ΩΛ corresponds to cosmological density of dark energy and Ωm to the densityof matter. Ωk is related to the curvature of the Universe with a value of 0 signifying a flatuniverse, that is κ = 0. Precise CMB measurements by the the Planck Collaboration [25]have resulted in the following values:
H0 = 67.66±0.42 km/s/Mpc,

Ωm = 0.3111±0.0056,

ΩDMh2 = 0.11933±0.00091,

Ωbh2 = 0.02242±0.00014,
ΩΛ = 0.6889±0.0056,
Ωk = 0.0007±0.0037,

(4)

where the total energy density in matter is split into the density in baryons (Ωb) andDM (ΩDM), with the reduced Hubble parameter defined as h = H0/(100km/s/Mpc).Under the ΛCDM paradigm, it is expected that all of DM in the universe is "cold". Thatis, it consists of collisionless, classical particles that had negligible thermal velocities earlyon in the Universe [16]. Furthermore, CDM particles are expected to be massive, stableover billions of years, and interact with SM particles mainly through gravity.The most common theory is that DM originates from the very early Universe. At atimewhen the Universe was in a very hot and dense state, DMwas in thermal equilibriumwith the photon-baryon plasma through interactions of SM particles. When the Universeexpanded, it cooled, causing DM to decouple from SM particles and its density to freeze
18



out. The leftover DM density (ΩDM) is what we observe in the Universe today and isreferred to as the relic or cosmological density [16].The success of the CDMmodel in describing the Universe at large scales has led to theadoption of themodel in thewider community. It is the default basis for cosmological sim-ulations which model the gravitational interplay between baryons and DM [26]. In fact,much of the current understanding of galaxy formation and structure formation can be at-tributed to these simulations, which reveal a bottom-up scenario [27]. In this bottom-upscenario, tiny inflationary density fluctuations (with amplitudes of order 10−5) provide theseeds that CDM amplifies into the first bound structures. Today’s measurements of theCMB offer a snapshot of these primordial perturbations at recombination. When evolvedforward under ΛCDM initial conditions, these inhomogeneities eventually reproduce thestatistical clustering of galaxies and the baryon-acoustic features seen across cosmic sur-veys to remarkable precision.Despite its successes, ΛCDM faces a number of small-scale challenges (e.g., missingsatellites, core–cusp, “too-big-to-fail”) that must be tested, in part, by probing the darksector at sub-galactic scales [28, 27]. Therefore, to fully validate CDM as the true DMmodel, meaningful limitsmust be placed on its predictions for theminimumhalomass, in-ternal density profiles, and substructure abundance. However, making robust sub-galactictests of ΛCDM is hampered by the limited sensitivity of current observations at the afore-mentioned scales [28, 29]. To this end, theoretical predictions of small-scale dark sub-structure are also inconclusive due to difficulties in modeling baryonic processes relevantto galaxy formation (e.g., stellar feedback and gas dynamics) and the finite mass and spa-tial resolution of simulations that attempt to capture these effects [26].
1.4 Extensions to CDM
In the context of structure formation, the CDMmodel is only partially constrained by ob-servations [27]. On very large scales, DM is expected to behave as CDM with general as-sumptions of its properties confirmed by cosmological probes on different physical scales(as is seen in Fig. 3). It is at the smaller, galactic and sub-galactic scales that the door isstill open for alternative models of DM.This is succinctly summarized by the dimensionless linear power spectrum (∆2(k)),shown in Fig. 5, and taken from [30]. It characterizes the variance of DM density fluctu-ations as a function of wavenumber in log k intervals and provides an intuitive sense ofhow much structure is expected at different physical scales in the Universe, with smallerwavenumbers corresponding to larger scales and vice versa.For k ≪ 1, that is at galaxy cluster scales and above, DM density perturbations are inthe linear regime and are described by linear perturbation theory wheremodes evolve in-dependently of each other [27]. However, at k ≫ 1 DM clustering is expected to be highlynon-linear where structure formation takes place hierarchically in a bottom-up scenario(small structures collapse first). In a vanilla ΛCDM Universe, the power spectrum keepsrisingwell below the sub-galacticmass limit whereM ≪ 1010 M⊙ (shaded region in Fig. 5),forecasting the existence of DM substructures to arbitrarily lowmass scales [31, 28]. At thesame time, alternative DMmodels, such asWDMand ADM, exhibit a cutoff in their powerspectra, suppressing structure formation. The corresponding physical scale k and mecha-nism for this cutoff is model-dependent and is ultimately a function of the particle natureof DM [27]. These alternative models therefore behave as CDM on very large scales butexhibit deviations at smaller, observationally challenging, scales. Finding evidence, whichcan reliably either confirm or reject DM clustering in the sub-galactic regime, is an im-portant test of the CDM paradigm, providing valuable input in constraining possible DM
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Figure 5: Dimensionless DM power spectra computed for different DM models: CDM, warm darkmatter (WDM), and an example of atomic dark matter (ADM), which here represents a self-interacting dark matter (SIDM) scenario. For reference, the mass of the MW is≈ 1012 M⊙. Adaptedfrom [30].

models.

20



2 Aims of the study
While astrophysical and cosmological observations over the past century have establishedthe ΛCDM paradigm as the standard framework for describing the large-scale structureof the Universe, the behaviour of DM on sub-galactic scales remains poorly understood.Constraining the properties of galactic DM halos (their shape, density profile, and sub-structure) is crucial for testing the predictions of ΛCDM and for indirectly inferring theproperties of the DM particle.This thesis contributes to these efforts by studying the DM halo of the MW, focusingon both its smooth component as well as its substructure. At the same time, using bothBayesian inference and state-of-the-art ML methods, this work aims to leverage the in-creasing abundance of both observational and simulation data to develop new scalablecomputational tools for DM studies within our Galaxy.The specific aims of this thesis are:

1. Determine the circular velocity curve and local DM density of the MW using GaiaDR3 data, addressing the shift from statistical to systematic limitations in Galac-tic dynamics through a GPU-accelerated Bayesian framework that self-consistentlypropagates key uncertainties related to the Sun’s orbital parameters and tracermor-phology (Pub. II)
2. Extend existing DM subhalo detection methodologies by developing ML-based ap-proaches that search for DM substructure through stellar phase-space perturba-tions (Pub. I & III)
3. Evaluate the performance and limitations of deep learning (DL)models for detectingDM subhalos in simulatedMW-like galaxies and their correspondingmock Gaia DR2surveys (Pub. I)
4. Assess the detectability of individual DM subhalos through stellar wakes using con-trolled wind-tunnel N-body simulations and DL methods (Pub. III)
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3 The Milky Way as a dark matter laboratory
In contemporary theories of structure formation, galaxies are thought to formwithinmas-sive DM halos [27], implying that our own MW is also embedded in such a halo. Studyingthe distribution and substructure of DM on sub-galactic scales is a significant challenge,since the presence of DM can only be inferred from its gravitational effects on visible mat-ter. That is, we are left to study it indirectly by analyzing the distribution and kinematicsof stars. As both galactic and extragalactic astronomy are currently on the precipice ofa true ’big data’ era, boasting an abundance of observational data from current and ex-pected surveys, the MW is increasingly becoming an excellent laboratory for DM studies.In the following sections, data sources relevant to thework presented in this thesis arediscussed. Specifically, a brief description of the Gaiamission and its data contents is given(relevant to Publications I & II), as well as an introduction to MW-like galaxy simulationsand cosmological simulations in general (relevant to Publications I & III).
3.1 The Gaia era
Naturally, the reliability of any DM inference analysis in the Galaxy is contingent on theamount and precision of available data regarding stellar positions and velocities. A promi-nent herald of the newdata-driven age in galactic astronomy is the European SpaceAgency(ESA) Gaia mission [17]. Gaia is a space-based observatory whose primary scientific goalis to map the stars in the MW in unprecedented volume and precision. Being a successorto the ESA Hipparcos mission [32] (1989 - 1993), it has already surpassed its predecessor’scatalog volume by a factor of 104, with the total number of sources in Gaia DR3 beingapproximately 1.8 billion.As of March 2025, the Gaia spacecraft has concluded its operations, with three majordata releases (DRs) having been published during its active period by the Gaia Data Pro-cessing and Analysis Consortium. Though observations are no longer being carried out,the Gaia mission is expected to see yet two more releases: DR4 in 2026, and a final DRin 2030. Figure 6 shows an edge-on illustration of the MW based on Gaia data collectedso far (as of January 2025). A notable feature in Fig. 6 is a warp in the galactic disk, thediscovery of which was made possible by Gaia.

Figure 6: An edge-on depiction of the MW based on the Gaia data collected so far. Adapted from:ESA/Gaia/DPAC, Stefan Payne-Wardenaar

3.1.1 Gaia spacecraft
The Gaia space telescope was launched in 2013 from the French Guiana spaceport andstarted its survey in 2014 after having reached the L2 Lagrange point. Figure 7 depicts the
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Gaia space telescope and its main constituents. Its payloadmodule (second from the top)consists of three key instruments: an astrometric instrument, a photometric instrument,and the Radial Velocity Spectrometer (RVS).The astrometric instrumentmeasures stellar positions, parallaxes, and propermotionswith unprecedented precision. Unlike Hipparcos, which relied on a predefined input cat-alog [17], Gaia scans the entire sky autonomously and detects minute shifts in stellar po-sitions as it orbits the Sun at the L2 Lagrange point. Table 1 lists the median uncertaintiesfor various astrometric parameters in Gaia DR3 as a function of G magnitude [33]. Forcontext, the median positional precision for bright stars in the Hipparcos catalog was ap-proximately 0.7 mas [34], whereas Gaia achieved a precision between 0.01 and 0.02 mas,an improvement by a factor of 35-70. Similar gains are seen in parallax measurements.Hipparcos had an uncertainty of≈ 1 mas [34], while Gaia’s typical parallax uncertainty atthe bright end is between 0.01 and 0.02 mas.The photometric instrument provides low-resolution photometry information acrossthe blue (BP) and red (RP) bands, which enables the estimation of different stellar param-eters such as effective temperature and surface gravity.The RVS instrument uses the Doppler shift to measure the radial velocities vr of stars.At launch, radial velocity standard errors were expected to achieve precision levels of
1km/s for sources with GRV S ≈ 11− 12mag and 15km/s for stars at the fainter of thespectroscopicmeasurements (GRV S ≈ 15−16mag) [17]. InGaiaDR3, a precision of 1.3km/sat GRV S ≈ 12mag and 6.4km/s at GRV S ≈ 14mag is reported, meeting or even surpass-ing initial expectation, specifically at the fainter end [35]. Already in Gaia DR2, the radialvelocity precision for bright stars (GRV S ≈ 4−8mag) was around 300m/s [36].The astrometric and RVS data from Gaia were fundamental to the analysis in Publica-tion II, which relies on precise stellar position and velocity measurements to reconstructthe 3D velocity field of the stellar disk.
Table 1: Median uncertainties in Gaia EDR3 astrometric parameters by G magnitude as seen in [33].

GMagnitude PositionUncertainty [mas] ParallaxUncertainty [mas] Proper MotionUncertainty [mas/yr]
<15 0.01–0.02 0.02–0.03 0.02–0.0317 0.05 0.07 0.0720 0.4 0.5 0.521 1.0 1.3 1.4

3.1.2 Mapping the Galaxy with Gaia
In order to map the structure and dynamics in the Galaxy, it is important to determinethe full six-dimensional phase-space information (positions and velocities) for individualstars.Gaia adopted the International Celestial Reference System (ICRS) and equatorial coor-dinates to specify a star’s position on the celestial sphere according to its right ascension(α) and declination (δ ). However, to recover the 3D spatial distribution, these angularpositions must be coupled with distance measurements. One possibility is to derive thedistance from the parallax (ϖ ) as measured by Gaia’s astrometric instrument. While theinverse parallax d = 1/ϖ can be reliable for nearby stars with low uncertainties, it is gen-erally considered a noisy estimate for more distant stars [38]. This is because the previousinvolves a nonlinear transformation, where a small uncertainty in a star’s parallax can in-versely be interpreted as a large uncertainty in its heliocentric distance [39].
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Figure 7: Exploded diagram of the Gaia spacecraft illustrating its primary components from top tobottom: thermal tent, payload module, service module, propellant systems, phased-array antenna,and deployable sunshield assembly with solar arrays. Credit: ESA/ATG medialab [37, 17]

Due to these limitations, several complementary distance catalogs have been derivedfrom Gaia data. Examples of these catalogs include the General Stellar Parametrizer fromPhotometry (GSP-Phot) distances [40] and ’photogeometric’ distances from [39], whichuse Bayesian methods to reconstruct stellar distances by leveraging both the astrometryand photometry information provided by Gaia. Nonetheless, these distances remain sen-sitive to the quality of parallax measurements, leading to under- or overestimation biasesfor distant stars. In Publication II, we studied how the adoption of either distance typeaffects the reconstruction of the final circular velocity curve.
The movements of stars on the celestial sphere are described by the proper motionsin right ascension (µα ) and declination (µδ ), with units of [mas/yr]. The final kinematicobservable required to reconstruct full 3D velocities is the line-of-sight or radial velocity(vr). This is obtained by Gaia’s spectroscopic instruments for only a subset of all observedstars. For instance, Gaia DR3 contains radial velocitymeasurements for ca. 33million starscompared to the total of 1.8 billion observed stars.
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All Gaia astrometry is reported in a reference frame which is fixed by observing ex-tragalactic (> 50Mpc) quasi-stellar objects (QSOs). These objects are located at vast dis-tances from the Solar system, and, therefore, they are assumed to be effectively stationaryon the celestial sphere. While far away, a typical QSO (e.g., a quasar) is extremely lumi-nous, making it observable by Gaia. The latest realization of this reference frame is theGaia Celestial Reference Frame (Gaia-CRF) 3, which is used in both Gaia Early Data Re-lease 3 (EDR3) and DR3, and is defined based on observations of approximately 1.6 millionQSO-like sources [41].When reconstructing the 3D positions and velocities of theMW stars, it is useful to im-plement a change of reference from the heliocentric ICRS to a Galactocentric frame withthe Galactic Center (GC) as the point of origin3. For illustration, Fig. 8 shows the sampleused in Publication II in both galactic coordinates (as viewed from the solar location) aswell as in Galactocentric Cartesian coordinates. Transforming Gaia’s spherical astrometricdata to Cartesian or cylindrical Galactocentric coordinates requires a sequence of rota-tions and translations that account for the Sun’s position and velocity within the Galaxy.In the context of this thesis, transformations, along with propagation of the associatedmeasurement uncertainties via Gaia provided covariance information, were carried outwith the gaia-tools Python package4.
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Figure 8: Sample of stars as used and depicted in Publication II. Left: stars are shown in galacticcoordinates (l, b) in a heliocentric frame of reference. Right: the same sample is depicted in Galac-tocentric coordinates (x, y) with the location of the Sun shown on the dashed line at 8.277 kpc.

3.2 Milky Way-like galaxy simulations
Besides stellar surveys like Gaia, cosmological simulations play a crucial role in inform-ing theories of structure and galaxy formation. Starting from ΛCDM initial conditions,these simulations model the evolution of DM, dark energy, and ordinary matter over anenormous range of physical scales. Even though the detailed nature of the first two isstill unknown, their general properties, as they are understood in the context of ΛCDM,can be leveraged to reliably predict their behaviour [26]. Despite the lack of knowledgeabout what DM is composed of exactly and limited computational resources of the time,cosmological N-body simulations established that DMmust behave as CDM on very largescales already in the 1980s [27].

3The Galactocentric transformation is not described in detail in the current thesis, but the inter-ested reader can find a brief overview in Section 3.1.7 of the Gaia DR2 documentation [42].4The code is hosted on GitHub and can be accessed from https://github.com/HEP-KBFI/
gaia-tools
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Today, the landscape of cosmological simulations is diverse, with simulation suitesdiffering in their use of physics models, numerical methods, and initial condition imple-mentations [43]. Advancements in computational hardware and algorithms have also re-sulted in substantial increases in resolution, being able to simulate trillions of particles ata time [26, 44], compared to O(103−4) particles possible in the 1980s [45]. Based on thetype of initial conditions and simulated constituents, we can roughly divide this landscapeinto four major sections (see Fig. 9) [26].
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Figure 9: The landscape of contemporary cosmological simulations, as illustrated in [26], can bebroadly categorized along two axes. First, by their physical constituents: dark matter-only (DMO)simulations and hydrodynamical simulations that include both DM and baryonic physics (left andright, respectively). Second, by their initial conditions: either zoom-in simulations focusing on spe-cific regions of interest, or large periodic box simulations that model a cosmological volume of theuniverse at fixed resolution (top and bottom, respectively).

In terms of the initial conditions, simulations generally divide into "zoom-in" and largebox (or volume) simulations. With zoom-in initial conditions [46], DMhalos and the galaxy(or galaxies) therein are resolved in greater detail, resulting from an enhanced resolutionof stars, gas and DM. The region of interest itself is surrounded by a low-resolution back-ground to reduce computational costwhile still preserving large-scale gravitational effects.In contrast, large box simulations employ uniformly sampled initial conditions across amuch larger cosmological volume. This allows for the statistical study of galaxy formationand evolution across a wide range of scales, but typically at the expense of resolution,
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meaning individual galaxies and their substructures are less well-resolved compared tozoom-in simulations.Likewise, the particle content can be divided into DMON-body simulations and hydro-dynamical simulations, which include both DM and baryons. As the name suggests, thefirst have been used to study the large-scale distribution of DM, as well as the structure ofDM halos [26]. The latter also includes baryonic effects by modelling astrophysical gasesas inviscid ideal gases that obey the Euler equations. This treatment is accompanied byvarious sub-resolution approaches tomodel different baryonic effects such as gas cooling,stellar feedback, star formation, and so on. The hydrodynamical treatment of this gas isnumerically expensive, with different numerical discretization schemes having been de-veloped over the years. The specifics of these codes and the baryonic models are beyondthe scope of this thesis, but the interested reader can find a more thorough overviewin [26] and [27].Although baryonic matter makes up roughly 5% of the energy budget of the Universe,this component is essential in reconstructing realistic properties of the visible matter ingalaxies [26, 47]. Furthermore, on small scales, interactions between baryons and DMmodify the inner structures of DM halos and the halo mass function [48, 49], further em-phasizing the importance of understanding this interplay. As alluded to in Section 1, theinterdependence between baryons and DM in sub-galactic environments is still ratherpoorly understood. This limited understanding is one of the key reasons why the core-cusp problem remains unresolved within the ΛCDM framework. This is a long-standingdiscrepancy between the steep central density profiles predicted by DMO simulations andthe flatter, cored profiles observed in dwarf galaxies [28]. While hydrodynamical simula-tions that incorporate baryonic feedback, such as supernova-driven outflows, have shownnon-trivial results in alleviating this tension [27], the effectiveness of suchmechanisms ap-pears to be highly sensitive to assumptions about star formation, feedback efficiency, andresolution. As a result, the robustness of baryonic solutions to the core-cusp problem isstill actively debated [28], highlighting the relevance of modern, high-resolution simula-tions and novel subgrid physics models.
3.2.1 Latte galaxies
The analysis in Publication I was based on high-resolution cosmological simulations fromthe Feedback In Realistic Environments (FIRE) project [47, 50]. The FIRE simulationsmodelgalaxy formation in a ΛCDM cosmology while incorporating a state-of-the-art physicsmodel to treat stellar feedback mechanisms in the interstellar medium (ISM).We specifically utilized the Latte suite [47]5, which is a set of zoom-in hydrodynami-cal simulations within the FIRE-2 framework. The galaxies in the Latte suite were simu-lated from a set of isolated MW-mass halos at z = 0 with the mass required to be in therange M200 = 1− 2× 1012M⊙. The isolation of the halos was satisfied by requiring thatno neighbouring halos of similar mass were within at least 5×R200 or around 3Mpc [49].This selection of halos was made solely on the mass and isolation criteria, ignoring anyinformation regarding their formation histories or subhalo populations.Each simulation in the Latte suite was run using the GIZMO code in meshless finitemass mode, with mass resolutions of mDM = 3.5× 104 M⊙ for DM particles and mgas =
7.1×103 M⊙ for initial gas particles. Gravitational softening lengths were set to 20 pc forDM and 4 pc for stars, while the gas softening was adaptive with a minimum of 1 pc. InPublication I, we used snapshots at z = 0 from three MW analogues, named m12f, m12i,

5The Latte suite is publicly available via the Flatiron Institute website: https://flathub.
flatironinstitute.org/fire.

27

https://flathub.flatironinstitute.org/fire
https://flathub.flatironinstitute.org/fire


and m12m. The key properties of these MW-like galaxies are listed in Table 2.
Table 2: Properties of the Latte FIRE-2 galaxies m12f, m12i and m12m, which were used in this thesis.Table data is from [50].

Galaxy Mvir
halo [1012 M⊙] M∗ [1010 M⊙] mDM [M⊙] mgas [M⊙]m12f 1.6 8.0 3.5×104 7.1×103

m12i 1.2 6.5 3.5×104 7.1×103

m12m 1.5 12.0 3.5×104 7.1×103

The Latte galaxies are recognized for their realism as they exhibit similar characteristicsof theMWand the Local Group region in general. Notably, authors in [47] have shown thatthe observed dwarf galaxy population in theGalactic neighbourhood is in good agreementwith those seen in the FIRE simulated analogues. Moreover, the simulations are also inagreement with different properties of the MW, including its stellar mass [50], disk mor-phology [51], and properties of the stellar halo [52]. For instance, in an ongoing work byBenito et al. (in preparation), we analyse the chemical bimodality of the simulated Romeogalaxy and find that its chemically selected disk components closely resemble those ob-served in the MW disk.Beyond direct comparisons with current observations, the Latte galaxies have alsobeen used to make predictions of the distribution and properties of DM subhalos in MW-mass galaxies [49, 53]. While these are important for interpreting the satellite populationsof MW-like galaxies and testing the predictions of ΛCDM on small scales, the work in thecurrent thesis utilized the simulations as a testing ground for developing and testing DMsubhalo inference approaches.
3.2.2 Synthetic Gaia surveysIn addition to the MW-like galaxy simulations themselves, mock stellar surveys are use-ful tools to troubleshoot both new and existing DM inference methods before applicationto observations. Mock stellar surveys simulate stellar phase-space distributions, oftentailored to closely replicate the structure, limitations, and uncertainties of specific obser-vational surveys. For instance, by accounting for the expected observational noise from aspecific instrument, one can evaluate the sensitivity and reliability of a developed infer-ence method against realistic observational conditions. Below, largely based on the workby [54], is a description of Gaia-like mock stellar surveys utilized in Publication I.Motivated by the advent of the Gaia mission, Sanderson et al. [54] developed the
ananke framework with which data from the FIRE-2 simulated galaxies (introduced in theprevious section) can be transformed into synthetic stellar phase-space surveys. Specifi-cally, they have used the Latte suite of FIRE-2 galaxies (m12f, m12i, and m12m) to generatesynthetic Gaia-like catalogs.This was done by assuming local standards of rest (LSRs)6 in the simulations, which canbe thought of as different observational viewpoints inside the simulated galaxies that arethe samedistance from theGCs as the Sun is in theMW(≈ 8.2kpc). The initial catalogs aregenerated by sampling stellar populations from star particles. The synthetic stars are givenrealistic stellar properties (mass, metallicities, absolute Gaia brightness, etc.) according toan initial mass function (IMF) and model isochrones.

6Formally, the local standard of rest is generally assumed to be a reference frame where stars inthe Solar vicinity are moving around the GC on a circular orbit and thus individual stellar velocitiesare composed of both the velocity of the LSR and their peculiar velocities with respect to the LSRas: V⊙ =VLSR +Vpec.
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The IMF is an empirically derived law which characterizes the number of stars born ina star-forming region given a certain mass interval [14]. For stellar masses > 1M⊙ this isgenerally defined as a power-law
ξ (M) ∝ M−β , (5)

where β is a dimensionless power-law index. What this relation implies is that in a givenstar formation region, the formation of low-mass stars is favored. In the ananke frame-work, the IMF of [55] is used, but another commonly used IMF is the Chabrier mass func-tion [14, 56].Isochrones are curves on the Hertzsprung-Russell (HR) diagram, which, derived fromstellar evolution theory, reflect the observable properties of stars (their position on theHR diagram) of different masses but the same age and metallicity [57]. They can be usedto assign realistic photometric and spectroscopic properties to synthetic stars based ontheir age and chemical composition.The phase-space parameters, which are the positions x,y,z and velocities vx,vy,vzare assigned by statistically sampling a phase-space distribution kernel (1D) centered onthe parent particle. Although the procedure described above results in relatively realis-tic galaxy surveys, the smoothing lengths adopted during the 6D phase-space parametergeneration can induce nonphysical effects and be troublesomewhen studying small-scaleeffects from dark subhalos.The way in which extinction models are applied to the generated catalog represents aleap forward compared to previous mock catalogs. Dust extinction is the attenuation ofstellar light as it passes through interstellar dust, primarily affecting the observed bright-ness and color of stars [58]. Dust grains scatter and absorb light with a shorter wavelengthmore than photons with longer wavelengths, and therefore, stars observed through in-terstellar dust appear dimmer and redder. Modeling dust extinction is crucial in creatingrealistic mock surveys, as it directly influences the observed stellar distributions. If notaccounted for appropriately, it can significantly bias derived astrophysical parameters. Insynthetic Gaia, instead of applying the empirically derived extinction map of the MW, gasevolution and distribution are tracked inside the galaxies, and dust maps are created in amore self-consistent manner. This is because the observed dust pattern of theMW repre-sents a specific galaxy formation history that is different from the simulated galaxies andwould introduce biases if haphazardly applied to the simulations. Thus, by estimating theextinction in each particular simulated galaxy, it prevents the introduction of nonphysicalartifacts by preserving the correlations between dust extinction and regions of active starformation.In addition to extinction maps, additional realism is achieved by incorporating Gaia-like observational characteristics. Observational uncertainties are convolved into the sim-ulated true values of astrometric and kinematic properties with a realistic error model,which captures various instrumental limitations. Also, the Gaia selection function is ac-counted for by including only stars whose apparent brightness (accounting for extinction)falls into the range 3 < G < 21. These imperfections certainly add a note of realism tothese catalogs, which can be seen in Fig. 10.In each of the Latte galaxies, three distinct LSRs were used to generate mock GaiaDR2 observations, therefore producing a total number of nine synthetic surveys over allthree galaxies. The number of mock stars in the entirety of this dataset, after assumingmagnitude limit and extinction effects, is close to 4.3×1010 [54]. This number representsthe overall number of synthetic stars that would be observablewith a Gaia-like instrument(assuming its selection function) in the specified LSRs locations.
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Figure 10: Aitoff projection of a synthetic survey from a particular LSR in the galaxy m12i as shownin [54].

The work in Publication I used the synthetic Gaia DR2 survey to study the detectabilityof dark subhalo-induced phase-space perturbations in a Gaia-like observational setting.The data used in the aforementioned study is publicly available on the FIREwebsite7 alongwith a newer ananke dataset designed to mimic the contents of Gaia DR3.

7Data can be accessed on the FIRE website: https://fire.northwestern.edu/ananke/.
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4 The smooth dark matter halo (Pub. II)
In contemporary structure formation theories, extended DM halos around galaxies arethought to be ubiquitous, providing the necessary gravitational anchors in which subse-quent galaxy formation takes place [59]. Constraining the configuration of the MW DMhalo is important for various reasons. For instance, the shape of the halo encodes infor-mation about the dynamical history of the MW [27], and is thus important for studies ofGalactic archaeology. Also, since the properties and substructure of DM halos depend onthe nature of DM [27], their study opens a window to probe the fundamental propertiesof DM.

The total DM halo of theMW is expected to consist of a dominant smooth componentand a population of bound substructures known as subhalos. In this section, we focus onthe study of the smooth component, the concept of which is introduced in Section 4.1.In Section 4.2, we summarize the methodology adopted in Publication II to constrain thecircular velocity profile of the MW using the kinematics of red giant branch (RGB) stars.Section 4.3 summarizes the results from Publication II, where precise measurements andmodeling of this velocity curve resulted in a robust estimate of the DM distribution nearthe Solar neighbourhood.
4.1 The smooth component
In the ΛCDM cosmological paradigm, galaxies such as the MW reside within massive DMhalos, which provide the gravitational potential which governs the dynamics of visiblematter (stars, gas, etc.), extending much further out than the visible stellar disk. Its pre-cise and accurate distribution is therefore essential for understanding the dynamics andmass content of the MW [60]. Although the Galactic DM halo is also expected to exhibitsubstructure in the form of subhalos (see Section 5.1), the majority of the mass in DM(85 – 95% [27, 61]) is thought to be contained within a relatively smoothly distributedDM component [62]. This smooth component forms through mergers with other halos,which fall into the host galaxy, are tidally disrupted, and in time virialize within the parenthalo [63, 61, 62].

Characterizing the MW DM halo is important since much of our understanding of thenature of DM and galaxy formation theories is reliant on the properties of DM halos [62].For instance, the density profile of DMhalos predicted byN-body numerical simulations inthe CDM scenario, such as the Navarro-Frenk-White (NFW) profile and other generalizedforms, consistently suggests steeply rising densities toward halo centers. Constraining theMW DM halo can serve as a test of ΛCDM, with deviations from the expected shape orsubstructure potentially pointing to extensions beyond the standard CDM framework [27].
Predictions about the CDM halo density profile often originate from DMO simula-tions [60]. In order to compare with observations, it is also important to factor in theeffect of baryons. Cosmological simulations of galaxy formation have shown that the in-clusion of baryonic processes can modify the inner structure of DM halos and alleviatesome of the long-standing tensions in ΛCDM, such as the core-cusp problem. As alludedto in Section 3.2, simulating baryonic effects is easier said than done, as limitations in avail-able resolution require the use of sub-grid models. Although empirically motivated, thesemodels are not derived from first principles and can introduce systematic uncertainties.To complicate matters further, modifications to DM density profiles can also result fromspecific mechanisms of alternative DM models. For instance, in SIDM, interactions be-tween DM particles in the presence of baryons can lead to the thermalization of the innerhalo and creation of a DM core [64]. This is depicted in Fig. 11, where the density of a SIDM
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Figure 11: Spherically averaged density profiles for CDM,WDM, and SIDM as shown in [27]. Notably,CDM and WDM result in a cuspy density profile, whereas SIDM exhibits a core-like behavior at theinner radii.

starts to plateau at a certain distance from the center of the halo, whereas the density ofCDM andWDM exhibits a cuspy behaviour. It is therefore not exactly clear which physicalmechanisms are dominant in shaping the inner regions of galactic DM density profiles, asit can be from baryons, unknown DM physics, or a combination of both.
4.2 The circular velocity curve of the Milky Way (Pub. II)
An important tool for constraining theMW’s smooth halo properties is the circular velocitycurve, which reflects the total gravitational potential of the Galaxy (see Section 1). Precisemeasurements of this curve (either from stellar motions or other dynamical tracers) allowus to reconstruct the MW’s gravitational potential and, by incorporating the contributionof baryons, gain information about the underlying DM distribution.

In Publication II, we developed a Bayesian inference approach to derive the circularvelocity curve of the MW. This procedure included a careful quantification of various sys-tematic uncertainties, such as those stemming from the Sun’s Galactocentric distance andthe spatial-kinematicmorphology of the stellar tracers. By combining the latter with prop-agated measurement uncertainties, we were able to obtain a robust measurement of theMW’s circular velocity profile.
4.2.1 Data and kinematic model overview
The study used a sample of ≈ 0.6 million stars on the RGB from Gaia DR3 [65]. Gaia DR3is based on 34 months of data collection from 2014 to 2017 and contains astrometric pa-rameters (positions, parallaxes, proper motions) for approximately 1.8 billion stars. Radialvelocity measurements, which are essential for the full 6D phase-space reconstruction,are available for about 33 million stars.
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RGB stars are warm tracers that are often used to constrain the dynamics of the stellardisk (e.g., [66, 67, 68]) as they have many benefits. For instance, their high luminosityallows them to be observed to large distances [59]. Also, as these are generally old stars,they are less sensitive to non-axisymmetric perturbations and can be used to study theaxisymmetric component of the Galactic potential [67], which was the intent of this work.When adopting the standard assumption that the MW is in a steady state, this allows oneto neglect the time derivative in the collisonless Boltzmann equation (CBE), i.e., ∂ f/∂ t =
0 [59]. In adherence to this, wewant to use equilibrium tracers, that is, stellar populationsthat are dynamically well mixed, which is generally not the case for young stars [69].A practical method for connecting stellar kinematics to the underlying gravitationalpotential is the Jeans formalism. This formalism stems from the CBE, which describes theevolution of the phase-space distribution function in a collisionless system [59]. Integrat-ing the CBE over velocity results in the Jeans equations. The key advantage of the Jeansformalism lies in computational speed and the fact that it does not require knowledgeabout the detailed shape of the distribution function, only its low-order moments [69].The limitation to this approach is that the data must be binned in space in order to esti-mate those moments. In this study, we divided our stellar sample into eight radial bins inGalactocentric R with a width of 1 kpc for all bins except the last one, which was widened(2 kpc) to improve the statistical significance.All of the stars in the final sample included their 6D phase-space coordinates: rightascension (α), declination (δ ), parallax (ϖ ) or other distance estimate, proper motions(µα and µδ ), and radial velocity (vr). The previous parameters, coupled with the Sun’sgalactocentric distance and orbital parameters, were used to transform the sample intoa Galactocentric frame of reference and cylindrical coordinates. While this transforma-tion provides a more intuitive overview of the phase-space distribution of the sample8, itwas also key in order to perform subsequent dynamical modelling with the radial Jeansequation.Themean rotational velocity of warm stellar tracers is known to lag behind their actualcircular velocity, which is a result of accumulated gravitational interactions between starsas they orbit the Galaxy [59]. In this case, the rotational velocity (vφ ) of a particular starcan be modeled as

vφ = vc − va, (6)
where vc is the circular velocity and va represents the asymmetric drift. Estimating themagnitude of the drift is an important step when inferring the axisymmetric componentof the Galactic potential. The asymmetric drift inside each bin can be computed from theradial Jeans equation when combined with Eq. 6. This results in the following relation9

va =
σ∗2

R
vc + vφ

[
σ∗2

φ

σ∗2
R

−1+R
(

1
hr

+
2

hσ

)]
, (7)

where vc and vφ are the circular velocity and themean rotational velocity, respectively.The terms σ∗
R and σ∗2

φ
are the diagonal components from the velocity-dispersion tensor,which can be computed from the data as the variance of the Galactocentric radial and az-imuthal velocity [59]. Finally, hr and hσ describe the spatial and kinematic morphology of

8After all, it is considerably easier to visualize disc dynamics from a bird’s eye view of the Galaxyrather than from a viewpoint inside the disc.9As it is not repeated in this thesis, see Section 3.1 in Publication II for a full explanation of thisderivation.
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the tracer sample. The first is the scale radius of the disc and relates to the radial numberdensity distribution of stars. The second is the scale length of radial velocity dispersion.
4.2.2 Bayesian inference pipeline
We used the axisymmetric kinematic model to derive the circular velocities in each radialbin by using a Bayesian inference approach. That is, instead of plugging the numbers intothe radial Jeans equation, we used a Markov chain Monte Carlo (MCMC) algorithm tosample the posterior of the circular velocity vc,i in each i-th bin. Specifically, the MCMCsamples the posterior probability distribution p(θ |D) of a set of parameters θ , which inthe context of this study included the circular velocities vc,i as well as hr, hσ and R0.The upside of this approach is that the nuisance parameters hr, hσ , and R0 (hereafterdenoted as θnuis) are now free parameters of the model. However, it is important to notethat the motivation behind this inclusion was not to constrain the respective values of
θnuis, but to propagate their uncertainties into the posterior distributions inside the binsand, by extension, into the circular velocity curve itself. This was achieved bymarginalizingoverθnuis, that is, allowing theirwalkers to explore the entire prior ranges during sampling,thus modifying the width of the circular velocity posterior distributions. In order to coverthe range of values usually found in the literature, we opted for the following naive priorsfor θnuis:

R0 ∈ [7.8−8.5]kpc
hr ∈ [2.0−4.0]kpc

hσ ∈ [20.0−22.0]kpc.
(8)

The MCMC algorithm itself was implemented by using the Python library emcee [70],which is the backbone of the developed pipeline. During each iteration, the samplerproduces an updated set of parameters with which to compute the likelihood function
p(D|θ). This also means that during each such step, the Gaia data in each radial binwas repeatedly transformed from ICRS to the Galactocentric frame. This is because R0,which is the Sun’s Galactocentric distance, changes during each cycle as it was included inour nuisance parameters. This parameter is critical in the transformation procedure, andwhen it is updated, somust the positions and velocities inside the bins. In addition to this,the covariance matrix of each star also had to be propagated again according to the newparameter values. This is because the covariance information was used to recompute theweighted error of the rotational velocity inside each bin via bootstrapping.The computational cost of all the individual routines that made up the likelihood com-putation at each step was severe. This led to comprehensive code optimizations, maxi-mally utilizing any useful NumPy features (e.g., broadcasting) to speed up computationallyexpensive parts of the code. Though this resulted in non-trivial improvements, we furtherimprovised by adopting graphics processing units (GPUs) to take care of the ’heavy lifting’in the pipeline. This was achieved by utilizing the CuPy library [71], which is essentially aGPU equivalent of NumPy. Figure 12 depicts a rudimentary scheme of the final workflowfor computing the likelihood at each step of the MCMC.In the end, a total of 6 GPUs and 12 central processing unit (CPU) cores (2 per GPU)were used to run the MCMC for a full duration of 10 000 steps. In order to avoid poten-tial bottlenecks resulting from transferring large amounts of data to and from individualGPUs, the raw Gaia data was pre-loaded onto each device before the start of the fitting.Instead, during MCMC sampling, model parameters were transferred from the CPUs totheir assigned GPU device, and after completing the Galactocentric transformation, stel-lar data was transferred back to the CPUs to continue the likelihood computation. Paral-
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Figure 12: Illustration of a single likelihood computation step as implemented in Publication II.

lelization of the Bayesian inference pipeline across multiple CPUs and GPUs was critical tothe success of this study, providing a 164-fold computational time decrease as comparedto running on a single CPU.
4.3 Results and discussion
Modern surveys such as Gaia offer data with unprecedented precision and abundance.This means that as statistical uncertainties have decreased significantly, model systemat-ics are becoming dominant sources of uncertainty and must be accounted for in a self-consistent manner.The circular velocity obtained fromGaia DR3 as part of this study is presented in Fig. 13.Inside each bin (depicted as the dashed vertical lines in gray), the black point depicts themedian of the posterior probability, with error bars denoting the 16th and 84th percentilevalues. The profile spans Galactocentric radii between 5 and 14 kpc. The general flatnessof the rotation curve is a key observational signature indicating that themass of theGalaxydoes not consist solely of luminous matter, pointing to the existence of an extended darkcomponent. As was mentioned in Section 1, this behavior has long been interpreted asevidence for the presence of a massive DM halo. An important caveat here is that we ob-serve a flat slope of 0.4±0.6kms−1kpc−1 if we consider all radial bins. By removing theinner two bins, we found a slightly decreasing slope of−1.1±0.3kms−1kpc−1. The slopeof the rotation curve is therefore sensitive to the Galactocentric radii included in the anal-ysis. More importantly, we confirmed that the shape of the rotation curve (particularly atouter radii) is also very sensitive to systematic biases in stellar distances. We saw that theslope changes significantly depending on the strictness of parallax quality cuts imposedon the sample and whether GSP-Phot or ’photogeo’ distances are used.Our Bayesian inference approach, combined with rigorous error propagation, resulted
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in robust constraints on vc(R) that reflect both measurement and model uncertainties.When compared with other recent analyses, our velocity curve falls well within the rangeof other published measurements. This is particularly due to our large error bars frommarginalizing over nuisance parameters. A key finding of this work was that uncertainty inthe Galactocentric distance R0 has a non-negligible impact on the inferred rotation curve.Because R0 enters both the transformation to Galactocentric coordinates and the compu-tation of the azimuthal velocity, even small shifts propagate non-trivially into the inferredcircular velocity.Finally, the computational infrastructure developed for this work enabled us to ex-plore parameter posterior distributions efficiently despite the computational complex-ity of coordinate transformations and velocity uncertainty propagation. The inclusion ofGPU-acceleration techniques into the MCMC pipeline was crucial in obtaining statisticallyconverged results and ensuring our circular velocity profile is both precise and physicallyinterpretable.
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Figure 13: The circular velocity curve as obtained and shown in Publication II.

4.3.1 Dark matter density profileConsistent with ΛCDM and rotation curve observations of other galaxies, the flatness oftheMW’s circular velocity curve derived in this work (Fig. 13) offers strong evidence for thepresence of an extended DMhalo. While the total gravitational potential is constrained bythe stellar kinematics, subtracting the baryonic contributions (bulge, disk, and gas) allowsus to infer the DM component (see Fig. 14).

Figure 14: Illustration of the data analysis pipeline in Publication II.

The baryonic components weremodeled by adopting an ensemble of density profiles,as compiled in [60], to incorporate uncertainties in the spatial distribution of stellar and
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gas components. In addition, the uncertainty in the total mass within the baryonic com-ponents was accounted for by normalizing the profiles. For the stellar bulge, microlens-ing measurements towards the Galactic center were used, while the stellar disk was cali-brated via the stellar surface density at the Solar position. The density of the smooth DMhalowasmodeled by a generalized NFWprofile. Observed andmodel-predicted velocitieswere then compared following the Bayesian analysis of [72].The procedure described above allowed us to propagate numerous systematic uncer-tainties into the final estimate of the DM mass within the inner Galaxy R < 14kpc:
log10 [MDM(R < 14kpc)/M⊙] = 11.2+2.0

−2.3. (9)
Wewere also able to estimate the local DMdensityρDM(R0) near the Solar radius. His-torically, measuring the local DM density near the Solar system has been difficult [60, 69].Generally, two types of these measurements exist, which are referred to as either globalor local measurements [69, 19]. The first uses rotation curve (or other mass tracer) infor-mation to model the entire mass distribution of the Galaxy, given its different luminouscomponents and the dark component. Results from global measures usually have verysmall statistical errors, although they are prone to significant systematic errors resultingfrom strong assumptions about the shape of theDMhalo (including assumptions of spher-ical symmetry and equilibrium) [69]. In contrast, local measures, which are derived fromvertical kinematics of stars near the Sun, have larger errors due to including fewer as-sumptions [69].In our study, the local spherically averaged DM density at the Solar radius (R0 = 8.277kpc) was found to be

ρDM(R0) =
(
0.41+0.10

−0.09
)

GeV/cm3 =
(
0.011+0.003

−0.002
)

M⊙/pc3. (10)
Figure 15 shows recent results from different global and local measures of ρDM, where theresult from Publication II is depicted as the horizontal purple band. Our obtained valuefor ρDM is in good agreement with other recent estimates of the same type.
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Figure 15: Estimates of the local DM density at the solar radius from a variety of studies. Purpleerror bars correspond to global methods, with dark purple indicating rotation curve-based analysesand lighter purple representing other global approaches. Yellow error bars show results from localmethods, which typically rely on vertical kinematics of stars near the Sun. The horizontal purpleband shows the result obtained in this thesis. Adapted from [73].
The different local DM density ρDM estimates encode information about the localshape of the MW’s DM halo [69], which in turn has the power to inform on galaxy for-mation theories and probe the merger history of the Galaxy. Specifically, an account of
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both local and global DM density measures can tell us whether the inner DM halo of theMW is prolate or oblate (see e.g., Fig. 1 in [69]). Furthermore, measurements of ρDMare critical for interpreting results from terrestrial direct detection searches. These areendeavors which aim to detect the scattering of DM from SM particles. An importantequation describing this process is the expected recoil rate, which connects the inter-actions cross section (σDM) and mass (mDM) of the DM particle and the amount of DMpresent in the detector (ρDM). Since σDM/mDM is degenerate with respect to ρDM, thelatter has to come from an independent measure [69]. Our findings help refine this keyastrophysical input by using a self-consistent dynamical modeling pipeline that includesboth observational and systematic uncertainties.
4.3.2 Data products and developed softwareTo ensure full reproducibility, both the developed code and the input dataset used in thecircular velocity curve estimation have been made publicly available. The RGB sample ofnearly 0.6million stars was uploaded to Zenodo10. Each entry retains its unique Gaia iden-tifier (source_id), along with the star’s position and proper motion in the ICRS referenceframe, as provided in Gaia DR3. In addition, the dataset includes all quantities necessaryfor the Galactocentric transformation and subsequent uncertainty propagation. These in-clude distance estimates, radial velocities, along with the measurement uncertainties ofall astrometric and spectroscopic parameters and their correlation coefficients.The full codebase thatwas used to transform theRGB sample and run theGPU-acceleratedsampling via emcee is maintained in a GitHub repository11. The first version of this Pythonpackage was developed as part of the work in [74] and significantly extended through-out the work presented here. The improved implementation enabled the efficient andscalable transformation of Gaia stellar data, forming a critical component of the inferencepipeline as well as a standalone result of the work itself.
4.3.3 Future outlookThis study was based on the radial Jeans equation by assuming a steady state of the MWand an axisymmetric Galactic potential. In addition to this, the disk was also expectedto be symmetric with respect to the Galactic plane by omitting partial derivatives withrespect to z in the Jeans equation. This simplification was not expected to change theresults of the current study as our sample was chosen to be near the disk (|z|< 0.2kpc),effectively minimizing any gradients in the vertical direction. In future studies, it wouldbe interesting to improve our methodology by relaxing the assumptions in this study andalso considering non-axisymmetric perturbations in different layers of the disk.Future Gaia DRs (e.g., DR4) and the Large Synoptic Survey Telescope (LSST) will alsoprovide additional data with which to increase the fidelity of the current study. In com-parison to the data source used in this study, Gaia DR4 will contain 500 TB of data incomparison to the total data volume of 10 TB in Gaia DR3 [75]. Additional radial veloc-ity measurements will certainly help in mapping the disk near the Solar vicinity in higherdetail as well as extending the rotation curve to larger Galactocentric radii and, in thedirection perpendicular to the disk, to higher |z|.

10https://zenodo.org/records/801401111https://github.com/HEP-KBFI/gaia-tools
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5 The substructure of dark matter halos (Pub. I & III)
In Section 4, we saw how the circular velocity curve can be used to constrain propertiesrelated to the smooth component of the MW DM halo. In this section, we turn our focustoML-based studies regarding the substructure of DM halos, which utilize both simulatedMW analogues from the FIRE project and idealised N-body simulations performed in thecomputing cluster of the National Institute of Chemical Physics and Biophysics in Estonia.Sections 5.1, 5.2, and 5.3 outline the theoretical andmethodological context of both stud-ies presented in the current section. In Section 5.4, a study of the statistical imprint ofsubhalos on the visible galactic structure using MW-like simulations is introduced (Pub-lication I). Following, Section 5.5 describes the formation and detection efforts of stellarwakes using wind tunnel simulations as investigated with ML models trained to recog-nize wake signatures in image-like datasets (Publication III). Finally, the results from bothpublications are summarized in Section 5.6.
5.1 Dark matter subhalos
In theΛCDM cosmologicalmodel, structure formation takes place hierarchically in a bottom-up scenario: small DM halos form first and merge to build larger systems. While manyDM halos are expected to be disrupted during this process, a significant population ispredicted to survive [49] within the virial radius of the larger halo, becoming DM subha-los. These subhalos are gravitationally bound overdensities that orbit within the larger,smooth host halo (see Section 4) and represent one of the most important predictionsof the CDM model [27]. Figure 16 shows an illustration of a subhalo merger tree, wheresmaller subhalos start to combine at higher redshift (corresponding to earlier times) andover time merge together to form a large host halo.The absence of reliable observations of the matter power spectrum on sub-galacticscales allows several other possible models in place of CDM (see Section 1). Currently pro-posed alternative DMmodels in the literature (e.g., WDM, SIDM) behave similarly to CDMon cosmological scales but exhibit a cutoff in the power spectrum at smaller scales. Themicrophysical properties of any DM particle candidate model translate into predictionsregarding the amount of subhalos expected at all spatial scales.Generally, the abundance of subhalos is characterised by the subhalo mass function(SHMF), which describes the number of DM subhalos per unit mass. In CDM, the SHMFcontinues as a power law toward low masses, predicting an increasingly large numberof subhalos [28]. However, this is not the case in alternative DM models where subhaloformation is suppressed due to cutoffs in their power spectra induced by model-specificmechanisms (see Section 1). Following the analytic formalism in [77], Fig. 17 shows theSHMF assuming three different DM scenarios: CDM, WDM, and fuzzy dark matter (FDM).Crucially, it demonstrates that key properties of the DM particle (e.g., its mass) have sig-nificant effects on its ability to cluster at small scales and therefore modify the shape ofthe SHMF. Constraining the SHMF in the sub-galactic regime is therefore an indirect wayto study the nature of DM and an important test of the CDM model.
5.2 Dark subhalo detection efforts
Cosmological N-body simulations have shown that the abundance of CDM subhalos is ex-pected to increase significantly toward lower masses, following a power-law distribution.In CDM, subhalos can span a broad range of masses (down to Earth-mass [29, 27]) andare distributed throughout the galactic DM halo [31]. Although more massive subhalos(> 108 M⊙) may host satellite galaxies, below this mass, the vast majority are expected
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Figure 16: Hierarchy of subhalos, adapted from [76]. It depicts how small subhalos start to merge atearlier times (z4) and finally end up as part of a large host halo at z0.

to be devoid of baryonic content. This is thought to be a result of both their shallow grav-itational potentials (i.e., their low masses) and reionization effects [78, 79]. The lattercauses gas to heat up and evaporate from low-mass halos, significantly suppressing starformation due to insufficient gas retention.
Low-mass DM subhalos, which do not harbor any stars (i.e., dark subhalos), are there-fore extremely challenging to detect with traditional observational methods, which relyon emitted or reflected EM radiation. Instead, the presence and dynamics of dark subha-los can only be inferred indirectly through the subtle gravitational interactions with thesurrounding stellar medium. This is in contrast to studies of the smooth component (seeSection 4), where themotions of stars (and gas) are strongly governed by the gravitationalpotential of the MW DM halo. Despite the challenges, several promising sub-galactic andextra-galactic probes have been proposed to constrain the low-mass end of the SHMFindirectly.
A promising direction among these probes is the search for gaps and kinematic distur-bances in cold stellar streams [80, 81, 82]. This approach relies on the fact that stars instreams are organized into coherent elongated structures. As a subhalo passes a nearbystream, it perturbs its structure and is able to produce a gap in its density. The geometryandmagnitude of this disturbance can then be used to infer the presence andmass of thesuspected perturber. The advent of Gaia has provided a major boost to these detectionmethods, as it has facilitated the identification of both new streams and additional starsin previously known streams, thereby improving the resolution of likely perturbations.Notable examples of this detection approach include studies of the GD-1 stream [83, 84],where a subhalo with a mass of 5×106 M⊙ has been suggested as a plausible culprit for
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Figure 17: Analytic form of the SHMF for CDM (dashed), WDM (orange), and FDM (blue), followingthe work of [77]. The plot shows the expected number of subhalos per unit mass for each DMmodel.At the higher end of subhalo masses, the models predict similar abundances, making them obser-vationally indistinguishable. At lower masses, the SHMF curves diverge due to model-dependentcutoffs in their power spectra. Due to having non-negligible thermal velocities, small-scale structureis suppressed for WDM through free-streaming. In the case of FDM, which is an ultralight bosonicDMmodel with a de Broglie wavelength λ ∼ kpc, formation of subhalos is suppressed due to quan-tum pressure effects.

perturbations in the stream.Another proposed method involves pulsar timing arrays (PTAs). These are used todetect subhalos through subtle timing residuals in the arrival times of pulses from mil-lisecond pulsars [85]. Specifically, depending on the transit of the subhalo with respect toEarth, the gravitational field of the perturber is expected to either advance or delay thepulses, thus modifying the observed frequency of the pulsar [86].The previous two subhalo detection efforts are viable within our own Galaxy. OutsidetheMW, strong gravitational lensing (briefly introduced in Section 1) offers a third avenue.Instead of detecting subhalos individually, collective subhalo-induced perturbations canbe inferred by analysing the shape of gravitational lenses [87]. That is, the populationof subhalos inside a host halo imprints a deformation in the shape of the lens, which istreated as the residual of the main lens model.In recent years, studies of DM subhalo inference in gravitational lenses have seenwidespread adoption of ML approaches. For instance, [88] used a convolutional neuralnetwork (CNN) to determine whether an image contained DM substructure as part of abinary classification task. In [87], the authors employed a U-net architecture as part of animage segmentation task and found their method to be able to detect subhaloes of mass
> 108.5 M⊙ in the lensed images. In contrast to the latter examples, [89] studied anddemonstrated the non-trivial performance of unsupervised ML methods by showing thatthe reconstruction loss of lenses with and without substructure has noticeably differentdistributions.
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Similarly to the lensing-based approaches above, the dark subhalo detection studiespresented in this thesis also leverage DL methods. Contextually, they are more alignedwith other sub-galactic searches (e.g., PTAs, stellar streams) as they are targeted towardsGaia (or even LSST) data applications. By also keeping in mind DRs yet to come, the aim ofthe current thesis is to broaden the scope of these existing methods by laying the ground-work for future ML-based subhalo detection endeavors in the MW.
5.3 Deep learning
The abundance of data from current and future surveys encourages the adoption of noveldata-drivenmethods as astronomical datasets aremoving towards the exabyte-scale [90].ML, and particularly DL, has become indispensable in modern astronomy, offering pow-erful tools to manage large datasets, extract subtle signals, and discover previously un-detected structures in noisy, complex data. This section provides a brief overview of MLconcepts, which underpin the analyses presented in both Publications I & III.
5.3.1 Rise of deep learning
The recent surge in the adoption of DL across multiple fields of research is attributable toseveral key developments. Based mainly on both [91, 92], we can summarize these withinthe following categories:
Algorithms Historically, deep neural networks were notoriously challenging to train dueto the vanishing gradient problem12, resulting in shallow neural networks with onlya few layers. The issue therein lay in inefficient gradient backpropagation, which isneeded to compute the updates to themodel weights, allowing themodel to learn.Advances in optimization algorithms such as RMSProp [93] and Adam [94] drasti-cally improved training efficiency, enabling deeper architectures andmore accuratemodels. These developmentswere further complemented by both better activationfunctions for neural layers and improved weight-initialization schemes [92].
Hardware The advent of GPUs has greatly accelerated DL research. Initially, GPUs founduse primarily in the gaming industry, where they were developed to render com-puter game graphics [92]. Driven by market demand, investment from companieslike Nvidia and AMD made GPUs efficient and abundantly available, facilitating theuse of GPUs for general-purpose computation. In contrast to CPUs, GPUs can per-form amassive number of computations in parallel, giving themmuch higher band-width. This enables the training of very large models in a reasonable amount oftime and facilitates increased model complexity and scalability. Indeed, modernhigh-performance computing clusters are designed with this GPU-acceleration inmind. For instance, the LUMI-G hardware partition in the LUMI supercomputer lo-cated in Finland has 2978 compute nodes with 4 GPUs each [95].
Software The development of open source, high-level software libraries and applicationprogramming interfaces (APIs) has lowered the barrier for entry. The most popularDL libraries used today (Tensorflow [96], Keras [97], PyTorch [98]) require a rela-tively low level background in programming, making them more user-friendly forresearchers outside of computer science.

12This problem occurs when the gradients of the loss function are washed out as they are prop-agated backwards through the layers of the model, inhibiting effective weight updates in earlierlayers.
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Data DLmodels thrive on data. Nowadays, data is becoming ever-abundant, withmassivemulti-dimensional datasets emerging in both academia and industry alike. Specifi-cally in astronomy, we are seeing a significant increase in available data from current(e.g., Gaia [17], SDSS [99], APOGEE [100]) and future surveys (e.g., LSST [101], Eu-clid [102]). Owing to their data-intensive nature, training DL models has becomeincreasingly easier, as modern infrastructure enables the distribution and use oflarge datasets in ways that were not feasible in the pre-Internet era.
5.3.2 Architecture of deep neural networks
At the heart of DLmethods employed in this thesis lies the artificial neural network (ANN).The interest in ANNs in astronomy can be traced back 30 years (e.g., [103, 104]), althoughat the time, the methods were subject to intense skepticism [105]. One of the early suc-cesses of ANNs in astronomy is attributed to works regarding photometric redshift esti-mation [106]. Today, neural networks are being explored to solve problems on variousastrophysical scales. These include, for instance, the inference of stellar ages from pho-tometry [107], the detection and classification of strong gravitational lenses [88, 108, 109,89, 110], galaxy image generation [111, 112], DM inference in the MW [113], and DM distri-bution reconstruction in cosmological simulations [114, 115]13.The ANN is quite a robust algorithm due to the universal approximation theorem,which states that any sufficiently large network can approximate any continuous func-tion to arbitrary precision [91]. In practice, the ANN is a group of interconnected nodes,through which data is propagated using individual chains of tensor operations. At eachnode, an affine transformation is applied to the input value along with an activation func-tion as [91]

y⃗ = σ(Wx⃗+ b⃗), (11)
where W is a tensor containing the model weights and b⃗ is the bias tensor. Naturally, x⃗refers to the input and y⃗ to the node output. The activation function σ is used to capturenonlinear patterns in the input data. Common choices include the rectified linear unit(ReLU), sigmoid, hyperbolic tangent (tanh), each with different characteristics in terms ofgradient behavior and expressivity [91].Figure 18 depicts a very simple case of a neural network, organized into four fully con-nected (or dense) layers: input, output, and two hidden layers between them. The num-ber of hidden layers generally refers to the depth of themodel, which is considered "deep"if it includes multiple hidden layers that perform non-linear feature transformations [117].The input layer defines the expected dimensionality of the data samples. The set of vari-ables that make up the input vector is generally referred to as the input features. Forexample, in Fig. 18, the input would be a vector composed of 6 features, which could bethe 3D coordinates (x,y,z) and 3D velocities (vx,vy,vz) of a single star. The final predictionof the network is given at the output layer. In the example of Fig. 18, all values propagatedthrough the model are coalesced into a single value, which, depending on the problem athand, could either be a probability of a star belonging to a particular class (classification)or a continuous value (regression).Through iterative training, the ANN is able to learn complex patterns in the data byupdating the model weight tensors, which contain the "knowledge" of the model [92].This is done by coupling the training process with a feedback mechanism in the form of

13In reality, the landscape of ML applications in astronomy is becoming increasingly diverse. Theinterested reader can find a thorough overview of important developments in either [105] or [116].
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Figure 18: Schematic of a fully connected (dense) deep neural network. Each node in a layer isconnected to every node in the subsequent layer. The network expects a 6-dimensional input vector,propagates it through two hidden layers with 8 neurons each, and produces a single scalar outputat the final layer.

a loss function14. The loss function quantifies the success of a given model by computingthe distance between predicted and true target values. While the true targets are used tocompute the loss function after each forward pass, they are never exposed to the modelduring training [91].An important property of the tensor operation chains inMLmodels is their differentia-bility. The derivatives are computed automatically by the model so that only the forwardpass of the algorithm needs to be defined. This enables the model to use the chain rule tocompute the gradient of the loss function with respect to the model parameters, whichis in turn used by the optimizer to efficiently update the model weights. This process isknown as backpropagation, and it is how the model is able to learn by iteratively tuningits weights to minimize the loss function and thus improve prediction performance.
5.3.3 Learning types
Depending on the availability and structure of the data, DL models can be trained usingdifferent learning paradigms. The most commonly used types are supervised and unsu-pervised learning, both of which are employed in this thesis.In supervised learning, the model learns from input-output pairs, where each datapoint is associated with a known target value or label. The goal is to minimize a loss func-tion that quantifies the discrepancy between themodel’s predictions and true labels. Thisapproach is used in both Publications I & III, where labels of the training data are used ex-plicitly to distinguish signal from background.In unsupervised learning, the learning objective is defined in a way that does not re-quire a labeled dataset. Instead, the model learns from the input data itself. In this thesis,

14Also known as an objective function.
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unsupervised learning is employed in Publication I in the form of an autoencoder (AE),which is trained to reconstruct the phase-space vectors of unperturbed stars in the Lattegalaxies (see also section 5.4).Though not considered in the current thesis, other learning paradigms, such as semi-supervised and contrastive learning, have become increasingly popular in recent years [105].These approaches lie between the fully supervised and unsupervised ends of the spec-trum.
5.3.4 HyperparametersDL models depend not only on the structure of the network itself, but also on a varietyof tunable parameters known as hyperparameters. These parameters control how themodel learns and generalizes. Unlike the internal weights of the network, these must beset before training and are usually chosen through experimentation or prior knowledge.In DL models, some of the most common hyperparameters are:
Learning rate This controls the magnitude of parameter updates at each training step. Ifset too low, the model may converge very slowly or get stuck in a suboptimal state.If set too high, training can become unstable, and the model may fail to convergeor overshoot optimal solutions.
Batch size This defines the number of samples processed before the network updates itsinternal parameters.
Elements of the network architecture For instance, number of hidden layers, number ofunits (neurons) per layer, choice of activation function.
Number of epochs The number of full passes (iterations) through the training data.
Regularization techniques Regularization plays an important role in ensuring model gen-eralizability. In order tomitigate overfitting, techniques such as dropout, early stop-ping, and input normalization can be applied where appropriate.

Choosing appropriate hyperparameters is often an empirical process. In this thesis,hyperparameters were selected either through small experiments (Publication I) or theRandomSearch algorithm in the KerasTuner framework [118].
5.3.5 Evaluation and performance metricsEvaluating the performance of anMLmodel requires appropriatemetrics that reflect howwell the model is able to differentiate between target and background samples. In thisthesis, both supervised and unsupervisedmethods were used. Each approach has its ownevaluation context, but a common set of performance metrics is used throughout.Themainmetrics used in theworks described in the current thesis are the true positiverate (TPR) and the false positive rate (FPR). The first is also known as sensitivity, and itrecords the fraction of samples that are correctly identified as signal. We can define it as:

T PR =
T P

T P+FN
, (12)

where TP is the number of true positives and FN the number of false negatives.The second metric describes the mislabeling of background samples as signal. It isdefined as:
FPR =

FP
T N +FP

, (13)
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where FP refers to the number of false positives and TN the number of true negatives.When evaluating these quantities over all possible thresholds, their relationship is sum-marized by the receiver operating characteristic (ROC) curve. The ROC curve provides aglobal summary of the model’s power in separating background and signal samples.
Using the integral of the ROC curve, we can assign a single score to a particular modeldenoted as the area under the curve (AUC). A model that is able to perfectly identifyall signal samples with no false positives will exhibit an AUC of 0. In contrast, an AUC of0.5 shows that themodel is essentially random guessing and has no discriminative power.When discussing results of Publication III, the area over the curve (AOC) is also used, whichis essentially equivalent to AUC through AOC = 1−AUC.
In the case of unsupervised approaches (such as the AE in Publication I), the model isnot optimized on a classification score directly. Rather, a reconstruction loss is minimizedduring training, and samples with different loss distributions are considered as anomalies.Although no labels are used in this training scenario, the reconstruction loss can still beused to construct ROC curves, reflecting the separability of designated background andsignal distributions.

5.4 Effects of subhalos in MW-like simulations (Pub. I)

5.4.1 Motivation and scientific context

The perturbations induced by moving dark subhalos in the stellar phase-space are ex-pected to be very subtle. It is clear that all such detection efforts depend on the availabil-ity of precise data across large volumes. After all, subhalos are expected to have arbitraryorbits and velocities and thus could be anywhere in the Galaxy. In addition to this, even ifone knew the exact position of a particular dark subhalo, themagnitude of its gravitationaleffects could well be below the error limit of the telescope.
Fortunately, with the advent of Gaia, stellar measurements are becoming increasinglyabundant and reliable, motivating data-driven searches of DM substructure in the Galaxy.However, due to the invisible nature of dark subhalos (no bound stars), the interpretationof likely DM signals from low-mass subhalos is hindered significantly as it is difficult toseparate perturbations resulting from subhalos fromother baryonic structures (e.g., spiralarms, giant molecular clouds, moving groups, etc.).
In this regard, realisticMW-like simulations (e.g., Latte) offer a controlled environmentto test potential detection strategies. Since the real values of all star and DM particles areknown precisely and at all times, this enables two capabilities. First, the information canbe used to train ML models to learn DM subhalo-induced signals from the data. Sec-ond, since the positions of subhalos are known, the results can be validated in a relativelystraightforward manner.
With the above in mind, the aim of this study was to inspect whether it is possibleto detect these phase-space perturbations on a statistical basis in state-of-the-art galaxysimulations using DL techniques. Themain body of this analysis was divided into twomainparts. First, sensitivity to perturbations was studied in the Latte galaxies, representing anideal setting, that is, without any observational effects. After this, we turned our focus toa more difficult task and studied how well we are able to infer the presence of subhalosin Gaia-like mock catalogs. Since the latter includes expected observational effects (e.g.,measurement uncertainties, missing radial velocities, stellar extinction, observational ref-erence frames), we could then compare the detection performance between the perfect,idealized situation with a more realistic expectation.
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5.4.2 Subhalo identification and dataset preparation
In this study, we used the galaxies m12f, m12i, and m12m from the Latte suite of MW ana-logues and their Gaia DR2 mock catalogues, introduced in Section 3.2.1 and Section 3.2.2of this thesis, respectively. Inside each galaxy, DMsubhaloswere identifiedwith theAmigaHalo Finder (AHF) code [119], which was run only on DMparticles. Subsequently, subhalosthat were included in the analysis were required to satisfy the following mass condition:

3×106 < Msub/M⊙ < 4×108. (14)
This lower bound of this range is motivated by two key considerations. First, perturba-tions of subhalos withmasses lower than 3×106 M⊙ result in velocity changes that are onthe order of 10−3 km/s [120]. Secondly, according to [49], subhalos below this bound arenot reliably resolved in the simulations [49]. In a study such as this, where we analyse thestellar content of galaxies on a star-by-star basis, the effects from subhalos lighter thanour adopted limit would most likely not change the final result.The higher bound of included subhalo masses is enforced by restraining our analysisto within 100 kpc from the GCs. This minimizes the risk of involving stars associated withdwarf galaxies, the detection ofwhichwas notwithin the scope of thiswork. Furthermore,we excluded any candidate dwarf galaxy halos whose associated star velocities are belowthe escape velocity.After identifying the subhalos, the stars from both the idealised Latte and Anankeframework were divided into background and signal stars based on the distance to therespective subhalos. This was done by computing the Euclidean distance of each star par-ticle to the nearest subhalo, where stars closer than 1 kpcwere considered halo-associatedand the rest background.Specifically for the Gaia DR2-like mock catalogues, we removed the stellar disc of allgalaxies by imposing a cut on the vertical coordinate and requiring that |z|> 5 kpc. Whileit is certainly true that this cut omits perturbations from baryonic components (e.g., spiralarms) from the analysis, the real reasonwas due to the excessive data volumewithin thesedatasets (see Section 3.2.2). In the end, the combined number of stars across all galaxieswas on the order of 107 and 109 for the Latte and Ananke datasets, respectively.

5.4.3 ML methodology
In order to study the gravitational effects of dark subhalos identified in the Latte galaxies,we used the 6D phase-space parameters of the signal and background stars. The featurevector of a particular star is then defined as X ∈ R6 consisting of their galactocentric co-ordinates (x,y,z) and the velocities in these respective directions (vx,vy,vz).Specifically, we adopted an anomaly detection approach by implementing a simple AEnetwork, which learns the phase-space distribution of background samples via a lower-dimensional manifold. This can be done by designing a neural network consisting of twoparts: an encoder and a decoder.

E(X)→ z ∈ RD

D(z)→ X′ ∈ R6 (15)
In Eq. 15,E(X) is the encoder, which embeds the input features of training samples to alatent spacewith lower dimensionality. The decoderD(z) then reconstructs the data backto original dimensionality such that D(E(X)) → X′. Then, by defining the loss functionbetween the original X and reconstructed feature vector X′ as
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Lb(Xi) = ∥Xi −D(E(Xi))∥ , (16)
and training the AE only on background stars, we can use the reconstruction loss

Lb(Xi) as an empirical discriminator between background (Xbkg) and signal (Xsig) stars.Simply put, as themodel learns to reconstruct the phase-space parameters of backgroundstars, it is expected to have a harder time reconstructing signal stars as they are not in-volved during the training. In an ideal scenario, the distribution of Lb(Xsig) is perfectlyseparable from Lb(Xbkg).Figure 19 depicts the AE architecture adopted in this study. Notably, both the encoderand decoder were implemented as feedforward networks containing two hidden layerswith 128 neurons per layer. Through experimentation, we found that a latent space of
D = 3 results in the best model performance. For each hidden layer, we adopted thescaled exponential linear unit (SELU) activation function [121].
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Figure 19: Architecture of the AE implemented in Publication III. The first layer expects a 6D inputvector representing stellar phase-space features, which is then processed by an encoder (E(X)) withtwo hidden layers of 128 units each. The input is then compressed into a 3D latent space. The decoder(D(z)) mirrors the encoder, expanding the latent vector back to the previous dimensionality. Finally,the output layer reconstructs the original input, which is then used to compute the reconstructionloss.

With the purpose of cross-checking the performance of the AE,we also implemented abinary classifier which was applied to the same set of features. In contrast to the anomalydetection approach, this model used the signal and background labels of stars explicitly.Similar ML models were used when analyzing the synthetic Gaia datasets, with mi-nor changes made to the models resulting from the different training dataset formats be-tween the two scenarios. For one, the synthetic Gaia stars were divided into patches withHealpy [122] in order to transform the dataset into a more manageable format. Further-
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more, the shape of the synthetic Gaia dataset was different, consisting of the astrometricand spectroscopic observables that are usually provided in Gaia data: the parallax, rightascension, and declination with respect to the pixel center, proper motions in the rightascension and declination, and radial velocities. With each of these observables beingalso accompanied by its measurement uncertainty, it raised the total number of featuresper star particle to 12 (in contrast to 6 in Latte).In order to avoid data leakage and maximize generalization to datasets unseen duringtraining, we separated the galaxies by training on m12m, validating on m12i, and using
m12f solely for testing in both Latte and synthetic Gaia scenarios. In the synthetic surveys,we therefore assigned all three LSR realizations of m12m to the training set, those of m12ito the validation set, and m12f LSRs to the testing set.The ML models outlined above form the basis of the dark subhalo detection exper-iments conducted within the Latte MW analogues. The performance of the supervisedand unsupervised approaches from this work is presented and discussed in Section 5.6.1.
5.5 Detection of stellar wakes (Pub. III)
5.5.1 Stellar wake phenomena
In addition to the dark subhalo detection methods introduced in Section 5.2 and the oneoutlined in the previous section, another promising avenue to look for low-mass subhalosis stellarwakes. These are localized phase-space perturbations imprinted in stellar popula-tions from the passage of a heavy object. This phenomenon is closely related to dynamicalfriction [123], which is induced when amassive perturber moves through a homogeneousdensity field. As its gravity accelerates matter toward it, a region of enhanced densityforms along the trajectory of the perturber, causing it to lose momentum over time. Thiseffect has played a particularly significant role in studies of infalling satellites [124]. Re-cently, a popular testbed for stellar wake studies has beenMW’s largest satellite, the LargeMagellanic Cloud (LMC) (e.g., [125, 126, 127, 128]). While studies such as [127] have mod-eled and visualized the LMC wake in N-body simulations, the first observation of a wakebehind the LMC was described in [125].Another important study in the context of stellar wakes has been [129], where the au-thors developed an analytic formalism to model perturbations in the stellar phase-spacedistribution. In contrast to studies looking at largeMWsatellites (e.g., LMC), this particularframework was aimed at detecting DM substructure in the form of low-mass subhalos.Inspired by the works in both [127] and [129], the aim of the current study was tosimulate stellar wakes induced by dark subhalos in a sub-galactic setting. In contrast towhat was done in [127], we simulated wakes from low-mass subhalos with no gravitation-ally bound stellar counterpart. Furthermore, instead of an analytic approach (such as theone in [129]), we focused on the detection of dark subhalos from an ML perspective. Atthe time of writing, and to the best of our knowledge, a study regarding the detection ofstellar wakes using DL methods has never been carried out before, making Publication IIIa first of its kind.
5.5.2 Wind tunnel simulations
Unlike those utilized in the study of Publication I, the simulations in Publication III wereperformed from the groundup. This allowedus to isolate and experimentwith the subhalo-induced signal in an idealized and controlled setting. Along with the ML analysis, the sim-ulations themselves constituted both a major part and result of this study, with their ex-ecution requiring careful planning and substantial computational power. Furthermore,considerable time was spent designing the setup and confirming the validity of the simu-
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lation outputs.Using the N-body gravity code PKDGRAV3 [44, 130], we simulated a periodic box witha side length of L = 120kpc which contained a moving perturber along with backgroundDM and star particles. Although initial experimentation was done using a point mass, inthe end, an extended potential was adopted to model the perturber. In the interest ofcomparing our results with those from [129], the subhalo was given a Plummer densityprofile as given by
ρ(r) =

3Msh

4πRs
3 (1+

r2

Rs
2 )

−5/2, (17)
where r is the distance from the center of the halo, Rs the scale radius, and Msh the totalmass of the subhalo. The scale radius describes the characteristic length scale of the halodensity and was computed as in [129, 131]

Rs = 1.62kpc×
(

Msh

108 M⊙

)1/2

. (18)
In Figure 20, the scale radius for a subhalo of mass Msh = 5× 108 M⊙ is depicted as thesmall circle in the middle of the box.
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Figure 20: A depiction of the simulation setup in Publication III. Upper panel: The dark subhalo,situated in the middle of the box, is moving in the +X direction. The stellar wake is seen behindthe direction of movement as the overdensity, whose half-max response is enclosed in the dashedellipse. Lower panel: The radial density profile (along X) of the upper, middle, and lower regionsdefined in the Y-coordinate, corresponding to the orange, blue, and green lines, respectively.

So as to avoid unnecessary work which would result from simulating a moving ex-
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tended potential, it was instead fixed at the box coordinates X ,Y,Z = (0,0,0), with back-ground particles given a corresponding velocity boost in the -X direction to mimic thehalo movement. While this means that the simulation actually takes place in the refer-ence frame of the perturber, which experiences a wind15 of stellar and DM particles, it istantamount to a box-frame setting where the perturber is moving in the +X direction (seeFig. 20). Themagnitude of the velocity boost was derived from both considerations of thecircular velocity given the MWmass enclosed in a sphere with R < 30kpc, and from whatis reported in FIRE-2 simulations for subhalos with> 107 M⊙.The background particles were given velocities and mass values to mimic the condi-tions in the MW stellar halo at a specific galactocentric distance. We focused our de-tection efforts on the galactic stellar halo. This was in part due to the stellar halo beingsignificantly easier to simulate than other components of the Galaxy. In any case, subhalo-induced signals in the stellar halo are expected to bemore prominent than in e.g., the disc,which contains a myriad of baryonic structures, the effects of which would be challengingto differentiate from subhalos.In the primary analysis of this study, we generated background initial conditions thatmimic the stellar halo at a galactocentric distance of 30 kpc. In order to simulate themassdensities expected at this distance, DM and star particles were assigned an appropriatemass of MDM ≈ 1.3×104 M⊙ and Mstar ≈ 1.3M⊙, respectively. Later on, to test the ro-bustness of the trained model, we also simulated the stellar halo at 50 kpc from the GCand modified the background parameters accordingly. Table 3 and Table 4 summarize im-portant kinematic and mass parameters that were used to mimic the stellar halo in bothof these scenarios.
Table 3: Velocity parameters of the subhalo and background particles adopted in the wind tunnelN-body simulations for two selected galactocentric distances in the stellar halo.

r [kpc] σDM [km/s] σstar [km/s] Vsh [km/s]
30 200 95 225
50 180 90 200

Table 4: Mass parameters of background DM and star particles adopted in the wind tunnel N-bodysimulations for two selected galactocentric distances in the stellar halo.
r [kpc] ρDM [M⊙/kpc3] NDM ρstar [M⊙/kpc3] Nstar

30 106 5123 102 5123

50 105.5 5123 10 5123

5.5.3 Dataset generation
Wesimulated subhaloswith three differentmasses: 5×107 M⊙, 108 M⊙, 5×108 M⊙. Thismass range is consistent with that considered in the analysis described in Section 5.4, andsimilar reasoning was used. The detectability of subhalos with lower masses is not mo-tivated by the current precision of observations, while more massive subhalos approach

15Hence why they are ’wind tunnel’ simulations.
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the regime of dwarf galaxies and were therefore outside the scope of this work. In thisparticular study, the lower mass threshold was increased to 5×107 M⊙ after comparingthe strength of the density response to the expected noise in our simulations. We con-cluded that the detection of subhalos lighter than thismass is unrealistic given our currentsetup.
From each simulation snapshot, 100 data samples were generated. This was done bysampling 1% of stars without replacement, corresponding to about 1.3M stars per sample.On the one hand, this procedure was intended as a heuristic to mimic the limited avail-ability of observations in the stellar halo.16 On the other hand, this allowed us to generatemore training samples, which we were in a definite lack of due to the considerable com-putational challenge from running the simulations and generating datasets.
After sampling, star particles were binned along X- and Y-coordinates into image-likedata samples in the form of 2D histogramswith 32 pixels (bins) per side and 4 channels persample. The channels referred to adopted training features describing the overdensity (ρ̄),mean velocity on the X-Y plane (Vxy), velocity dispersion (σxy), and velocity field divergence(∇V⃗xy) in the box.From considerations of dynamical friction, overdensity was the most obvious observ-able with which we expected to see a collective response in the background stellar distri-bution. The overdensity inside each bin was computed with the following equation:

¯ρi, j =
ρi, j

ρ̂
−1, (19)

where ρi, j is the stellar mass density in a particular bin on the X-Y plane and ρ̂ is theaverage mass density in the simulation box.
In the study of [127], it is also shown that the wake response to the perturber is seennot only in spatial but also in kinematic features. This is why, in addition to overdensity,we also implemented the selection of kinematic features in order to bothmaximizemodelperformance and also to study the relative effectiveness between all adopted features.
The simulation box we implemented as part of this study was big (120 kpc along eachaxis), which is why we also split it into 3 different layers to inspect sensitivity in simulatedregions not containing the perturber. These were the upper layer (Y ∈ [20,60]kpc) andthe lower layer (Y ∈ [−60,−20]kpc). This resulted in a dataset dimensionality of (N, 32,32, 12), where N is the total number of samples, 32 the number of bins per axis17, and 12containing the training features (4 per layer).
In total, 48 unique random seeds were used to generate stellar wake simulations foreach target mass and background scenario, resulting in 192 final simulations. The pro-cess was computationally expensive, with each simulation taking approximately 1.5 hoursto complete. Afterwards, all simulation snapshots were post-processed and convertedinto an appropriate shape and format for training purposes, resulting in a total of 19200samples across all target mass scenarios. The final ML dataset, containing stellar wakeexamples from three distinct subhalo masses as well as a background case (no subhalo),was compiled and uploaded to Zenodo.18

16Every snapshot contained 5123 star particles, which, in the case of the stellar halo, is an amountone would not expect from current stellar surveys.17We also experimented with different binning schemes (e.g., 16 or 64 bins), but noticed no sig-nificant impact on final performance.18https://zenodo.org/records/12721089
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5.5.4 ML methodology
In Publication III, the detection performanceof stellarwakeswas explored as a two-prongedclassification task using physics-informed 2D histograms. The first part of this was formu-lated as a binary classification problem by asking whether there is a subhalo in the image.The second part was treated as a multiclass classification, focused on predicting the massof the subhalo in the image.

In both ML scenarios, the entire simulated dataset was divided among training, val-idation, and testing using a 50%, 33%, and 17% split. In the case of the binary classifier,this corresponded to 4800, 3200, and 1600 samples, whereas for themulticlass classifier,this corresponded to 7200, 4800, and 2400 samples, respectively. The total number ofsamples included during training is greater for the latter because training was done on allsignal targets simultaneously, with the background being excluded. In contrast, the binaryclassifier was trained by using all samples of a particular target mass case and background(no subhalo) samples.
Training and evaluation were repeated 30 times to capture the variance in model per-formance. Instead of a fixed number of epochs, we used early stopping with a patience of5 epochs to automatically halt training when the validation loss stopped improving. At thestart of each run, data samples derived from simulation snapshots were assigned to train-ing, validation, and testing by considering a random permutation of the initial conditions’seed numbers used in simulations. During this procedure, care was taken to avoid dataleakage and not to include samples originating from the same simulation seed in multipleML datasets at the same time. That is, every time a model was trained, the following re-lation was expected to hold ktrain ∩ lval ∩mtest = /0, where k, l, and m refer to simulationseed numbers.
The exact network architecture was based on hypertuning by leveraging the Random-Search algorithm of KerasTuner [118]. In hypertuning, different hyperparameters are de-fined as variables in a specific range. The RandomSearch algorithm then iteratively sam-ples random values for the model architecture and evaluates it after training. The advan-tage of this is that it is automated, thus enabling the exploration of a wider range of allpossible settings by using the final validation loss to find the best model. In comparisonto doing this hyperparameter scan manually, it is also considerably faster.
Since the basis of our ML analysis consisted of image datasets, instead of a regularfeedforward neural network, we opted for a model architecture inspired by the CNN. Thereason for this is that standard fully connected networks exhibit a scaling issue when deal-ing with image-like datasets, as the number of model parameters required to propagatethe data is already very large at the input layer, becoming increasingly so through the hid-den layers [105]. Given the small size of ourML dataset (19 200 samples), we further optedfor Harmonic layers [132] in lieu of conventional convolutional layers. Using the discretediscrete cosine transform (DCT), these layers transport the problem from the spatial tothe frequency domain. Instead of learning filters to extract spatial correlation, the modelthen learns the individual weights for the DCT filters. For low volume ML datasets, theHarmonic layer is reported to perform better than the traditional CNN [133]. We experi-mented with both types of layers and found this to be the case.

5.6 Results and discussion
In this section, results from the ML-based subhalo detection methods presented in Publi-cations I & III are summarized. Additionally, we discuss potential improvements to thesemethods and directions for future studies.
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Figure 21: Training (dotted) and validation (solid) loss with respect to training epoch for both thebinary classifier (left) andmultiplemass hypothesis (right) scenarios, as shown in Publication III. Eachmodel is trained and evaluated 30 times, resulting in an ensemble of loss curves for a particularmasstest scenario. Left: Yellow, green, and blue lines show the loss for the three different mass scenarios
5×107 M⊙, 108 M⊙, 5×108 M⊙, respectively. Right: In the multiple mass hypothesis case, trainingis done on all mass target cases simultaneously, with the blue dotted line showing the training andgreen solid line the validation loss.

5.6.1 Subhalo perturbations in MW-like simulations
In Publication I, we implemented an AE neural network to detect phase-space anomaliesin MW-like galaxies on a statistical basis. Specifically, in this setup, the reconstructionloss (Lb(Xi)) between input X and reconstructed features X′ was used as an empiricaldiscriminator between signal and background star samples. Figure 22 (left panel) shows
Lb(Xi) distributions for both subhalo-associated (signal) and background star particles inthe m12f galaxy. It shows that star particles that are near subhalos exhibit, on average,a larger reconstruction loss than the background stars on which the model was trained,and thus the two populations are separable according to this metric. In order to checkthe robustness of this result, we compared performance when the model is trained in asetting where signal stars are chosen randomly from the dataset (right panel in Fig. 22). Asexpected, adopting a fake signal resulted in Lb(Xi) distributions that are indistinguishablefrom each other.The overall performance of the anomaly detection approach in Latte galaxies is shownin Fig. 23. It summarizes themodel sensitivity at all possible thresholds (See Section 5.3.5)in the form of ROC curves. With an AUC of 0.07 (AOC=0.93), we saw that in the idealizedLatte scenario, the AE exhibits exceptional discriminative and generalization performance,being able to detect subhalo-associated star particles never used during training. In con-trast, the supervised binary classifier model, which was trained explicitly on signal sam-ples, showed performance that is trivial and not significantly better than random choice(AUC=0.48). Due to the strong class imbalance present in these datasets, this result wasnot entirely unexpected.The unsupervised and supervised detection methods (described in Section 5.4) werealso employed on the synthetic Gaia DR2 survey data. Unlike in the idealized Latte set-ting, these datasets include Gaia-like observational phase-space parameters and effects(see also Section 3.2.2). As before, the performance of both models in the mock sur-vey scenario is summarized via ROC curves in Fig. 24. Since authors in [54] also report
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Figure 22: Reconstruction loss (Lb) distributions for signal (blue) and background (orange) stars inthe m12f galaxy, as shown in Publication I. As a sanity check, the test dataset results, trained onthe real signal (left), were compared with loss distributions from a model optimized on a fake signal(right).

underlying true values for mock observations, we were able to study how observationaleffects impact our final performance. For both ML scenarios, performance is depictedas three separate curves after having adopted either true values (thick solid line), error-convolved values (thin solid line), or error-convolved values withmeasurement uncertain-ties (dashed line).In the synthetic Gaia scenario, we sawa significant reduction in detection performancefor the anomaly detection approach (AUC=0.49), whereas the binary classification ap-proach outperformed the AE with an AUC of 0.37. For both ML models, performance wasseen to be increasing when using the true values of themock observations, highlighted byperformance differences from baseline of≈ 32% and≈ 17%, respectively. Despite usingobservational values that are known exactly, results did not improve to the level seen inthe idealized Latte scenario.
5.6.2 Detection performance of stellar wakes
The methodology in Publication I was aimed at detecting stellar phase-space perturba-tions on a star-by-star basis given a population of subhalos in the simulated galaxies. Incontrast, Publication III represents a shift to a study of signals induced by individual darksubhalos based on characteristic stellar wake patterns found in groups of stars.In this study, the ML datasets consisted of image-like samples encoding both spatialand kinematic features, computed to capture the stellar wake signal within the simulatedstellar phase-space (see Section 5.5.3). As it was not known a priori which of the con-sidered features would be most effective, we performed a series of experiments to de-termine their individual constraining power using the largest subhalo mass considered inthis study – 5×108 M⊙. In addition to this, we also inspected model performance whenGaussian smoothing is applied to the features before training. The results of this experi-mentation are summarized in Fig. 25, which displays the performance of the binary classi-fier trained on each of the four features separately in both smoothed and non-smoothedscenarios. Gaussian smoothing with a kernel size of σ = 3 substantially improved the per-formance for each feature. Among individual features, the most to least effective ranking
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Figure 23: Supervised (orange) and unsupervised (blue) approach performance for the m12f galaxyin ideal conditions, as shown in Publication I. While the supervised model is comparable to randomselection (dashed line), the unsupervised model showed excellent performance with an AUC of 0.07(or AOC = 0.93).

was as follows: overdensity and velocity field divergence (⟨AOC⟩= 0.99), mean velocity(⟨AOC⟩= 0.95), and velocity dispersion (⟨AOC⟩= 0.83).In addition to individual feature performance, we also experimented with differentfeature combinations. Interestingly, adding mean velocity and its dispersion did not im-prove model performance beyond what was already achieved using overdensity and ve-locity divergence.For assessing the detection performance of dark subhalos with different masses, weadopted the feature combination of ρ̄ and∇V⃗xy for both the binary classification andmul-tiple mass hypothesis scenarios. Figure 26 summarizes the results of the former wherethe different ROC curves show the performance for subhalo masses of 5× 107 M⊙ (yel-low), 108 M⊙ (green), and 5× 108 M⊙ (blue). The width of each ROC curve displays itsstandard deviation across 30 runs (see also Section 5.5.4). For subhalos with a mass of
5×108 M⊙, we saw near-perfect classification with a TPR and FPR of 99% and 1%, respec-tively. For the intermediate (⟨AOC⟩= 0.77) and lowest mass (⟨AOC⟩= 0.53) targets, wesaw a reduction in model performance, achieving a (TPR, FPR) of (74%, 35%) and (60%,41%), respectively.Similar resultswere seen in themultiplemass hypothesis scenario, the results ofwhichare summarized by the confusion matrix in Fig. 27. In contrast to the binary classificationtask, the model here was trained only on the signal samples. Instead of a single probabil-ity, three scores were predicted for each sample, representing probabilities of belongingto a particular mass bin. Again, the model had very little difficulty recognizing samplescontaining the very massive subhalo 5×108 M⊙, exhibiting trivial scatter in its prediction(σ ≈ 10). For low and intermediate mass targets, the model showed less constrainingpower and tended to confuse between predicting 108 M⊙ and 5×107 M⊙ subhalos. While

56



0.0 0.2 0.4 0.6 0.8 1.0
TPR

0.0

0.2

0.4

0.6

0.8

1.0FP
R

m12f, synthetic Gaia
random, AUC=0.5

unsupervised anomaly detection
true, AUC=0.42
err.-conv., AUC=0.45
err.-conv. + unc., AUC=0.49

supervised classifier
true, AUC=0.28
err.-conv., AUC=0.37
err.-conv. + unc., AUC=0.37

Figure 24: Synthetic Gaia dataset performance of supervised (orange) and unsupervised (blue) mod-els as shown in Publication I. Solid, thick lines depict results when training and evaluation are doneon true mock observations. Solid thin lines reflect the performance of either model when adopt-ing stellar phase-space observables, which are convolved with a simple Gaia DR2-like error model.Dashed lines show the same as the previous, with observational uncertainties also considered dur-ing training and evaluation.

this is evident from larger numbers in the off-diagonal elements, it is also seen from thesignificantly larger scatter in both off- and on-diagonal components (σ ≈ 45).
5.6.3 Limitations & future outlook
In Sections 5.6.1 and 5.6.2, main results from the ML-based dark subhalo detection stud-ies were presented. Despite promising results, several limitations currently constrain thegeneralizability and sensitivity of these methods. In the following, key caveats of Publica-tions I & III are summarized, and directions are proposed for future improvements.

In Publication I, we excluded the disk from the synthetic Gaia catalog due to computa-tional constraints. Including disk stars in future analyses may, on the one hand, introduceadditional noise due to baryonic substructure (e.g., spiral arms, bar), but, on the otherhand, it also provides access to better stellar statistics and an opportunity to test the ro-bustness of the detection method in a more complex environment. With improved com-putational resources and optimized data handling, the inclusion of the disk in this analysiscould become tractable.
A dominant factor limiting the anomaly detection sensitivity in synthetic surveys wasconcluded to be the smearing introduced during the synthetic star sampling process inAnanke. As synthetic stars are generated from a 1D kernel, a smearing scale on the orderof 0.7 kpc is introduced. This effect is also present in the velocity distributions of generatedstars with a smearing which is approximately 10 km/s. As it stands, the magnitude of thissmoothing in stellar kinematics is large enough to wash out phase-space substructure,especially at the scales relevant to low-mass subhalo (≲ 108 M⊙) detection.
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Figure 25: Binary classifier performance for all training features as adopted and shown in Publica-tion III. Each curve represents 30 training andmodel prediction runs for dark subhalos with amass of
5×108 M⊙. The dashed curve shows performance for overdensity (red), velocity divergence in theX-Y plane (yellow), mean velocity in the X-Y plane (green), velocity dispersion (blue), when no Gaus-sian smoothing is applied prior to training. Solid lines show the same, but with smoothing appliedto features before training. We saw significant improvement in model performance in all analyzedfeatures compared to their non-smoothed counterparts.

Lastly, the labeling of signal stars was based on spatial proximity (< 1 kpc) to respec-tive subhalos. As we saw from our study of stellar wakes, the perturbations from sub-halos can potentially reach stars at much greater distances than originally considered inthis study. Furthermore, it would also be worthwhile to consider additional signal criteriabased on kinematics (e.g., velocity perturbations) instead of spatial proximity alone. Morephysically motivated labeling could boost training statistics in the synthetic catalogs andtherefore improve model performance.
The work in Publication III was constrained by the limited availability of wake simu-lations due to the high computational cost of generating training data. As such, only ahandful of subhalo masses and configurations were explored. From dedicated ablationstudies, where we systematically modulated the amount of training data, we confirmedthat the results improvewith increased data availability, and no performance plateauwithour current dataset can be observed. Given a larger training dataset, it would also allow usto explore additional ML models with objectives beyond classification (e.g., regression).
In terms of the stellar wakes themselves, several theoretical questions remain. For in-stance, we observed the spatial extent of the stellar wakes to be far larger than expectedfrom analytic estimates (e.g., [129]). While it has been shown by [127] that the inclusionof self-gravity between simulated particles significantly (order of 10%) enhances the wakeresponse, our experiments have shown that this effect alone cannot account for the enor-
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Figure 26: Binary classifier performance for subhalos of masses 5× 107 M⊙, 108 M⊙, 5× 108 M⊙shownas the yellow, green, and blue bands, respectively. Thewidth of each band depicts its standarddeviation, which was computed after training and evaluating each mass target case scenario 30times.

mity of the response. In addition to self-gravity, anothermajor factor that could contributeto this is the integration time of the simulation. To a lesser extent, the choice of subhalopotential (e.g., Einasto, NFW, Plummer), ambient density, and velocity dispersion formedby background particles (stellar and DM), also modifies the characteristics of the wake,though none individual appear sufficient to explain the discrepancy. In reality, the unex-pectedly large spatial extent of the wakes could stem from a combination of these effectsor from other factors yet to be considered. Since the root cause remains unclear, a ded-icated study could be useful to disentangle their individual contributions and clarify theorigin of this discrepancy.
5.6.4 Towards observations
Both the anomaly and wake detection methods stand to benefit from next-generationsurveys like LSST and Euclid. These will not only increase the number of observable halostars but also providemore precise phase-spacemeasurements and greater radial velocitycoverage. Preparing methods for batch analyses of such data streams is an importantnext step. However, applying ML methods to real observations to constrain the SHMF isa challenging task, which calls for careful planning both in terms of the available trainingdata and the broader methodological approach.The synthetic Gaia DR2-like surveys used in Publication I rely on the Ananke frame-work [54], which adopts a simple error model specific to Gaia DR2. These mock catalogsomit stars that fall outside Gaia’s magnitude limit of ≈ 20.7mag. Since the completionof Publication I, newer synthetic Gaia DR3 surveys [134] have become available within
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Figure 27: Confusion matrix summarizing the performance from the multiple mass hypothesis ap-proach, as shown in Publication III. Best performance is seen for the heaviest mass test scenario(5×108 M⊙), while the model had difficulty differentiating between the intermediate (108 M⊙) andlow-mass 5×107 M⊙ test samples.

Ananke. Notably, Gaia DR3 includes approximately 5 times more radial velocity measure-ments than the previous DRs. Given that the completeness of radial velocities was not thelimiting factor of the study, the improvements from additional line-of-sight velocities areexpected to be minimal. However, exploring the reduced observational errors remains anopen question.In anticipation of future stellar surveys with much deeper observational depths, aninteresting follow-up study to Publication I would be to assess the impact of magnitudecuts and observational depth on subhalo detection performance. For instance, LSST isexpected to reach a magnitude depth of ≈ 27.5mag [101], which means it will be ableto observe faint stars that are inaccessible to Gaia. It will also be able to observe starswith greater Heliocentric distances and will result in a much more detailed view of theMW stellar halo. Since the latter component was the focus of subhalo detection in thesynthetic observations, it would be interesting to see how our method would fare in acombined Gaia-LSST observational framework.In addition, the optimal methodology for detecting subhalo signals remains uncertain.The gravitational imprint left by subhalos is inherently weak and diffuse, particularly in thelow-mass regime of interest. Currently, the two ML-based studies introduced in this sec-tion are methodologically distinct. One focuses on the statistical detection of individualsubhalo-induced perturbations on a star-by-star basis (Publication I) and the other on co-herent wake signatures from individual subhalos (Publication III). If the final goal is bothdetection and mass estimation of dark subhalos, then the approach of Publication I canbe regarded as a preliminary tool, rather than a complete solution.Given their complementary strengths, the two approaches could be integrated intoa hybrid method operating across both spatially localized and extended subhalo signals.For instance, one could use anomaly detection to flag potential regions of interest, whichwould then be followed by wake-based modeling and pattern recognition to verify co-
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herent features. Alternatively, the methodology of Publication I could be extended frompoint-based to group-based anomaly detection, potentially allowing for the identificationof spatially correlated stellar wake responses to unseen perturbers.
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Summary
The overarching aim of this thesis was divided into four major objectives (see Section 2),all of which were successfully achieved. Collectively, these objejctives tackled the twoprimary aspects of the MWDM halo - the smooth, virialised component and its substruc-ture. Taken together, the analyses of the smooth halo and its substructure provide com-plementary insights into the distribution and clustering of DM in the MW. The smoothcomponent constrains the gravitational potential of the Galaxy as a whole, while studiesof substructure test predictions of the CDM paradigm on smaller scales.Addressing the first aim of this thesis, we used Gaia DR3 data and an axisymmetricJeans model within a Bayesian framework to derive the circular velocity curve of theMW. A key aspect of this study was the self-consistent treatment of various systematicuncertainties in the Sun’s Galactocentric distance and parameters reflecting the spatial-kinematic morphology of the tracer sample. This approach enabled the derivation of a ro-bust estimate for the local DMdensity at the Solar circle, ρDM(R0)=

(
0.41+0.10

−0.09

)
GeV/cm3=(

0.011+0.003
−0.002

)
M⊙/pc3, which is in good agreement with recent literature. Alongside themain scientific results, a significant part of this work involved developing gaia-tools, aPython repository that handles reference frame transformations and Gaia measurementerror propagation effectively. Notably, the final circular velocity curve fit in this work wasmade computationally tractable by leveraging GPU acceleration.The second major goal of this thesis was reached by exploring the detectability of DMsubstructure within the MW by developing ML-based approaches in both zoom-in hy-drodynamical simulations of MW-mass galaxies and idealised N-body wind tunnel experi-ments. MLmethods, togetherwith the era of big astronomical data, are rapidly transform-ing how we approach data-driven problems in Galactic dynamics and DM inference. Thisthesis presented two complementary ML pipelines for subhalo detection, which can beconsidered proof-of-concept frameworks. While their current sensitivity is limited due todifferent factors (resolution limits, limited signal stars, observational uncertainties, etc.),they lay the groundwork formore sophisticated approaches that can be explored in futurestudies. Developing and stress-testing these methods in advance of next-generation datastreams is essential. Modern galaxy simulations and synthetic stellar surveys provide valu-able testbeds for this purpose, allowing us to explore detection limits, study systematiceffects, and in this way guide future detection strategies.As part of the third aim, we employed an AE neural network to study whether orbit-ing dark subhalos leave a detectable imprint in the phase-space distributions of stellarhalo stars in MW-like simulated galaxies. While we found excellent performance whenusing the raw simulated galaxies, the separability of background and signal stars was sig-nificantly hindered in the mock Gaia DR2 surveys derived from them. The reason for thisreduction in performance was concluded to be mainly from unphysical numerical effectsstemming from the mock data generation procedure, and to a lesser extent, from variousGaia-like observational effects.Building on the previous work, the fourth aim was realised by implementing an iso-lated and controlled simulation setup with which we were able to study the effects ofindividual subhalos on the stellar phase-space in greater detail. We simulated movingdark subhalos in the MW stellar halo with the following masses: 5× 107 M⊙, 108 M⊙,

5×108 M⊙. Importantly, this work treated the subhalo-induced signal as a collective ef-fect in populations of stars instead of a star-by-star approach adopted in the previousstudy. We used a CNN-inspired ML approach to study the detectability of stellar wakesin image-like datasets. Although severely limited by the size of training data (≈ 104 sam-ples), we found non-trivial sensitivity down to a subhalo mass of 5×107 M⊙ by sampling
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just 1% of the stars in the stellar halo. This demonstrates the potential of ML- and stellarwakes-based probes of the SHMF.The tools and results of this thesis contribute to the broader effort to constrain the na-ture of DM through its gravitational imprint in our Galaxy. Looking ahead, the approachesoutlined in this thesis will benefit significantly from upcoming Gaia releases and othersurveys such as LSST, which will, among other advantages, extend the available phase-space information to greater heliocentric distances. With the combination of additionalobservations, high-fidelity simulations, and next-generationMLmethods, the approachesdeveloped in this thesis can be further refined and extended to achievemore sensitive androbust constraints on the distribution of DM in the MW.
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Abstract
Probing theMilkyWay’s Dark Matter Halo in the Gaia andMa-
chine Learning Era
According to the current theory of structure formation, galaxies reside within massivedark matter (DM) halos. Despite compelling evidence from cosmological and astrophys-ical observations, the fundamental nature of DM remains poorly understood. Since theproperties of DM halos are a function of the microphysical nature of DM, characteris-ing them can help test the validity of ΛCDM and narrow down proposed alternative DMmodels. This thesis focuses on two key aspects of the Milky Way’s (MW) DM halo: (i) thesmooth, virialised halo component that dominates the overall gravitational potential, and(ii) the substructure of the host halo comprised of a population of smaller dark subhalos,whose detection efforts remain challenging as these structures are not expected to hostany stars.To characterize the smooth halo, the circular velocity curve of the MW was recon-structed using a sample of red giant branch stars from Gaia DR3, spanning Galactocentricradii between 5 and 14 kpc. A key novelty of this study was the use of a Bayesian frame-work that marginalizes over major systematic uncertainties, including the Sun’s galacto-centric distance and spatial-kinematic morphology of the tracer sample. The resultingcircular velocity curve is consistent with a flat profile, with an estimated circular velocityat the Solar circle (R0 = 8.277kpc) of 233± 7km/s. The local DM density inferred withthis approach is ρDM(R0) =

(
0.41+0.10

−0.09

)
GeV/cm3 =

(
0.011+0.003

−0.002

)
M⊙/pc3.In addition to the above, this thesis covers two studies regarding the viability of ma-chine learning-based approaches to probe the low-mass endof the subhalomass function.The first employed an anomaly detection approach on high-resolutionMW-like cosmolog-ical simulations and synthetic Gaia datasets derived from them to assess the statistical im-print of subhalos in realistic stellar halos. The second study made use of idealised N-bodysimulations and supervised deep learning techniques to detect stellar wakes induced byindividual subhalos. Although various limitations currently hinder detection in MW-likesimulations, we found that DM subhalos leave a detectable imprint in the phase-space ofhalo stars. When looking at stellar wakes in a controlled environment, we saw that weare able to achieve non-trivial detection performance for subhalos with masses as low as

5×107 M⊙, while being severely limited by the amount of available training data.In summary, the results of this doctoral thesis contribute to the current understand-ing of the MW’s DM distribution. While keeping in mind the comprehensive datasetsproduced from current and future stellar surveys, the machine learning approaches de-veloped in this work provide a foundation for future searches for DM substructure in theGalaxy. By extension, they constitute the first initial steps to use stellar wakes as probesof the particle nature of DM.
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Kokkuvõte
Linnutee galaktika tumeaine halo uurimine Gaia ja masinõppe
ajastul
Tänapäevase struktuuritekke teooria kohaselt paiknevad galaktikadmassiivsete tumeainehalode sees, mille omadused sõltuvad suuresti tumeaine mikrofüüsikalisest iseloomust.Vaatamata tugevale kosmoloogilisele ja astrofüüsikalisele tõendusmaterjalile ei ole tume-aine fundamentaalne olemus galaktilisel ja subgalaktilisel skaalal üheselt mõistetud. Tu-meaine halode täpne karakteriseerimine aitab seetõttu kontrollida ΛCDM kosmoloogilisemudeli kehtivust ning piirata pakutud tumeainet mudelite valikut.Käesolev doktoritöö keskendub Linnutee tumeaine halo kahele põhikomponendile: (i)hajus halo komponent, mis laias laastus domineerib galaktika gravitatsioonipotentsiaalija (ii) halo alamstruktuur, mis koosneb väiksematest alamhalodest, mille tuvastamine onkeeruline, kuna need struktuurid ei sisalda tähti.Halo hajuskomponendi iseloomustamiseks rekonstrueeriti Linnutee ringkiiruste kõver,kasutades selleks Euroopa Kosmoseagentuuri kosmoseteleskoobi Gaia 3. andmeväljalaset(DR3). Andmetest selekteeriti punastest hiidudest koosnev valim, mis paikneb galaktot-sentrilises vahemikus 5–14 kpc. Valimi analüüsiks ning ringkiiruste tuletamiseks kasutatiuudset Bayesiaanlikku lähenemist, mis arvestab lisaks statistilistele ka tähepopulatsioo-niga seotud erinevaid süstemaatilisi määramatusi. Tulemuseks saadud ringkiiruste kõveron kooskõlaline lameda profiiliga, hinnanguline ringkiirus Päikese galaktotsentrilisel kau-gusel (R0 = 8.277kpc) on 233± 7km/s. Sellest tulenev lokaaline tumeaine tihedus on
ρDM(R0) =

(
0.41+0.10

−0.09

)
GeV/cm3 =

(
0.011+0.003

−0.002

)
M⊙/pc3.Lisaks eelnevale tutvustab doktoritöö kahte analüüsi, mis uurivad masinõppepõhis-te lähenemiste rakendatavust alamhalode massifunktsiooni madala massipiirkonna uuri-miseks. Esimene neist kasutas järelvalveta õppel baseeruvat anomaaliatuvastust, et hin-nata alamhalode gravitatsiooniliste mõjutuste statistilist jälge Linnuteele sarnaste galakti-kate tähtede halos. Selleks kasutati kõrglahutusega kosmoloogilisi simulatsioone ning nen-de põhjal loodud sünteetilisi Gaia andmestikke. Teine uuring tugines idealiseeritudN-kehasimulatsioonidele ja järelvalvegamasinõppele, et karakteriseerida ja tuvastada isoleeritudalamhalode põhjustatud häiritusi ümbritsevate tähtede faasiruumis – nn. tähejoomid. An-tud doktoritöö tulemused näitavad, et tänapäevastes Linnutee-sarnastes simulatsiooni-des on alamhalode detekteerimine raskendatud erinevate numbriliste ja vaatluslike efek-tide tõttu. Sellegipoolest, nägime, et alamhalode läheduses olevate tähtede faasiruumijaotus erineb tausta tähtede jaotusest. Idealiseeritud simulatsioone kasutades leidsime,et isegi mahult piiratud treeningandmestike kasutades saavutame individuaalsete alam-halode detekteerimisel massipiiriks ligikaudu 5×107 M⊙.Kokkuvõttes täiendavad antud doktoritöö tulemused olemasolevaid teadmisi Linnu-tee tumeaine jaotuse kohta. Pidades silmas tänavuste ja tulevaste vaatluslike andmestikemahukust, loovad töö käigus arendatudmasinõppemeetodid aluse edasisteks alamstruk-tuuri otsinguteks.
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a b s t r a c t

The abundance of dark matter subhalos orbiting a host galaxy is a generic prediction of the cosmo-
logical framework, and is a promising way to constrain the nature of dark matter. In this paper,
we investigate the use of machine learning-based tools to quantify the magnitude of phase-space
perturbations caused by the passage of dark matter subhalos. A simple binary classifier and an
anomaly detection model are proposed to estimate if stars or star particles close to dark matter
subhalos are statistically detectable in simulations. The simulated datasets are three Milky Way-like
galaxies and nine synthetic Gaia DR2 surveys derived from these. Firstly, we find that the anomaly
detection algorithm, trained on a simulated galaxy with full 6D kinematic observables and applied on
another galaxy, is nontrivially sensitive to the dark matter subhalo population. On the other hand,
the classification-based approach is not sufficiently sensitive due to the extremely low statistics of
signal stars for supervised training. Finally, the sensitivity of both algorithms in the Gaia-like surveys
is negligible. The enormous size of the Gaia dataset motivates the further development of scalable
and accurate data analysis methods that could be used to select potential regions of interest for dark
matter searches to ultimately constrain the Milky Way’s subhalo mass function, as well as simulations
where to study the sensitivity of such methods under different signal hypotheses.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Dark matter (DM) represents roughly 84% of the matter con-
tent in the Universe (Aghanim et al., 2020). However, unveiling
its nature has proven a difficult endeavour, and none of the
proposed candidates (from several extensions of the Standard
Model to primordial black holes) have yet been detected. Cold
DM is expected to form subhalos with masses many orders of
magnitude below 108 M⊙ (Blumenthal et al., 1984), which is
roughly the mass above which galaxies can form (Kitayama and
Yoshida, 2005; Read et al., 2006). The abundance of subhalos
is dependent on the nature of DM. This dependency can be
explained, on the one hand, by the effect of the properties of
the DM on the linear matter power spectrum. If for cold DM
the minimum halo mass might be as small as 10−12 M⊙ (Zybin
et al., 1999; Bringmann, 2009), microscopic properties of the
DM particle, e.g. non-negligible thermal velocities or quantum
pressure, introduce a cut-off at the small scales in alternative DM
scenarios. On the other hand, the nature of DM, e.g. thermal ve-
locities or self-interactions, further impacts the non-linear growth

∗ Corresponding author.
E-mail address: sven.poder@kbfi.ee (S. Põder).

of structures (Schneider et al., 2012; Vogelsberger et al., 2016).
Detecting a dark subhalo would be the first direct evidence of
DM clustering at small scales. Furthermore, constraints on the
subhalo abundance would provide valuable information about the
particle nature of DM.

Subhalos with masses lower than 108 M⊙ are unable to form
stars and remain dark (Kitayama and Yoshida, 2005; Read et al.,
2006), thus hindering their detection. Strategies that aim to de-
tect dark subhalos rely on measuring their gravitational signa-
tures via stellar dynamics (Ibata et al., 2002; Yoon et al., 2011;
Carlberg, 2012; Bovy et al., 2017; Banik et al., 2018; Bonaca
et al., 2019; Benito et al., 2020; Feldmann and Spolyar, 2015;
Buschmann et al., 2018), gravitational lensing (Hezaveh et al.,
2016; Van Tilburg et al., 2018; Díaz Rivero et al., 2018; Gilman
et al., 2019; Brehmer et al., 2019; Vattis et al., 2020) or pulsar
timing (Siegel et al., 2007; Baghram et al., 2011; Clark et al.,
2016; Kashiyama and Oguri, 2018; Delos and Linden, 2022) and,
in the case of several DM candidates, e.g. Weakly Interacting
Massive Particles (WIMPs), on detecting the flux of final stable
particles produced by DM annihilation or decay (e.g. Buckley
and Hooper (2010), Ackermann et al. (2012), Zechlin and Horns
(2012), Moliné et al. (2017), Coronado-Blázquez et al. (2019b),
Calore et al. (2019), Coronado-Blázquez et al. (2019a, 2021) and
Mirabal and Bonaca (2021)). The goal of searches based on stellar

https://doi.org/10.1016/j.ascom.2022.100667
2213-1337/© 2022 Elsevier B.V. All rights reserved.
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dynamics is to detect perturbations in the phase-space distribu-
tion of Milky Way (MW) stars induced by gravitational effects of
passing subhalos. We can look for these perturbations in stellar
streams (Ibata et al., 2002; Yoon et al., 2011; Carlberg, 2012; Bovy
et al., 2017; Banik et al., 2018; Bonaca et al., 2019) and in the
disk or the halo stars (Feldmann and Spolyar, 2015; Buschmann
et al., 2018). In the present work we investigate the usage of an
anomaly detection and classification algorithms in the search for
the imprint caused in halo stars by passing substructures. In this
way, we exploit the increasing size of observational datasets and
state-of-the-art techniques in deep learning.

In recent years, deep learning techniques have been applied
in the search for substructures in our Galaxy (Ostdiek et al.,
2020; Necib et al., 2020; Shih et al., 2021a). These detection
methods assume that stars in the MW sharing a common ori-
gin should cluster in orbital properties and/or composition. Our
search differs in that we aim to identify stars that, regardless of
their origin, have their distribution in phase-space perturbed by
the passage of a dark matter subhalo. For any identified star, it
must be possible to test the halo hypothesis independently of the
methodology used to select the candidates. One possibility could
be to preselect the stars using a ML-based classifier, followed by
detailed hypothesis tests using e.g. the orbital arc method (Kipper
et al., 2020, 2021) or the stellar wakes technique (Buschmann
et al., 2018).

The raw data that we used, which are described in Section 2,
are three MW-like galaxies from the Latte suite of FIRE-2 simu-
lations (Wetzel et al., 2016) and nine synthetic Gaia DR2 surveys
generated from the simulated galaxies by means of the Ananke
framework (Sanderson et al., 2020). First, we processed the syn-
thetic Gaia datasets to correlate the position of stars and the
dark subhalos, which were previously identified in the simu-
lated galaxies. In Section 3, we estimate the detectability of
the subhalo-associated stars using deep learning techniques. We
conclude in Section 5.

2. Datasets

As our raw data, we used three MW-like galaxies from the
Latte suite of FIRE-2 simulations (Wetzel et al., 2016; Garrison-
Kimmel et al., 2017; Hopkins et al., 2018) (dubbed m12f, m12i
and m12m) and nine synthetic Gaia DR2 surveys (Sanderson et al.,
2020). This section describes these datasets and the processing
we performed on them.

2.1. Milky way-like galaxies

We used the simulation snapshots at z = 0 of three MW-
like galaxies,1 namely m12f, m12i and m12m (Wetzel et al., 2016;
Garrison-Kimmel et al., 2017; Hopkins et al., 2018). In the follow-
ing we briefly describe how these MW analogues were obtained.
For a complete description of this and the details of the N-body
simulations we refer the interested reader to Wetzel et al. (2016)
and references therein. The MW analogues were first identified
in a DM-only cosmological simulation requiring that at z =

0: (i) their virial mass is in the range of M200 = [1 − 2] ×

1012 M⊙
2 (which agrees with recent measurements (Wang et al.,

2020; Karukes et al., 2020; Shen et al., 2021)) and (ii) there is
no neighboring halo of similar mass within 5R200. Three halos
selected in this manner were then simulated using the zoom-in
technique (Oñorbe et al., 2014). Simulations were run using the
Gizmo gravity plus hydrodynamics code in meshless finite-mass

1 Taken from https://girder.hub.yt/#collection/5b0427b2e9914800018237da.
2 Virial mass and virial radius follow the relation M200 =

4π
3 200ρmR3

200 , with
ρm the average matter density of the Universe.

(MFM) mode (Hopkins, 2015) and the FIRE-2 baryonic physics
model (Hopkins et al., 2018). Dark matter particles in the zoom-
in simulation have a mass of mDM = 3.5 × 104 M⊙, and the
initial gas or star particle mass is mgas = 7.1 × 103 M⊙. Dark
matter and stars have gravitational softening lengths ϵDM = 20 pc
and ϵstar = 4 pc, respectively. The softening length of the gas is
adaptive, and reaches a minimum value of ϵgas,min = 1 pc.

We identified DM subhalos in snapshots at z = 0 of the MW-
like galaxies using the Amiga Halo Finder (AHF) code (Knollmann
and Knebe, 2009). The AHF algorithm identifies bound DM struc-
tures by hierarchically clustering 3D positions of DM particles in
the simulation. Following Garrison-Kimmel et al. (2017), AHF was
run only on DM particles. We selected subhalos with more than
85 DM particles (corresponding to subhalos with masses MDM

sh >

3×106 M⊙) since those substructures are reliably resolved in the
simulation (Garrison-Kimmel et al., 2017). However, the MW is
expected to have a population of subhalos with lower masses.
The velocity changes in stars due to the gravitational encounter
with a dark subhalo with a mass of 105 M⊙ are of the order
of 10−3 km/s (Feldmann and Spolyar, 2015), which are well
below the statistical uncertainties in observations of MW halo
stars. Therefore, we argue that subhalos with masses smaller than
3× 106 M⊙ have a negligible impact on the current investigation
of the feasibility of two simple algorithms that search for per-
turbations in each star independently of each other. Nonetheless,
we leave a thorough investigation of the detection of subhalos
unresolved in the simulation for a follow-up work.

Approximately ≃103 subhalos3 for each MW-like galaxy re-
main as potentially observable. Fig. 1 shows the cumulative sub-
halo mass function normalized by the virial mass of the host halo
(left panel) and the radial distribution of the subhalo population
normalized by the virial radius (right panel). The virial masses
are MDM

vir = 1.1 × 1012 M⊙, 0.8 × 1012 M⊙ and 1.0 × 1012 M⊙

for m12f, m12i and m12m, respectively.4 In Fig. 2 we show the
mass of the subhalos as a function of their galactocentric distance
for m12f, m12i and m12m. It should be noted that no subhalos
are identified below 14 kpc from the center of the galaxies, as
previously noted in Garrison-Kimmel et al. (2017). Furthermore,
97%, 91% and 94% of the subhalos below 50 kpc for m12f, m12i
and m12m, respectively, have masses lower than 1× 107 M⊙. The
most massive subhalo below 50 kpc is identified at 20 kpc with
MDM

sh = 3 × 107 M⊙ for m12f, at 43 kpc with MDM
sh = 4 × 107 M⊙

for m12i and at 43 kpc with MDM
sh = 2 × 108 M⊙ for m12m. The

depletion of the most massive dark subhalos in the inner 50 kpc
of the MW-like galaxies conditions the ability to identify stars in
the stellar halo which have been perturbed by the passage of a
dark matter subhalo using the deep-learning techniques explored
in this study.

2.2. Synthetic gaia surveys

The nine synthetic Gaia DR2 surveys were generated by ap-
plying the Ananke framework (Sanderson et al., 2020) to the
three MW-like galaxies. Per simulated galaxy, three synthetic
surveys were generated by adopting three local standards of rest
(LSRs). Each synthetic survey contains approximately a billion
mock stellar observations resembling Gaia DR2. We restrict our
attention to stellar halo stars, applying a selection in true vertical
distances |z| > 5 kpc. In this way, we remove disk stars that
could suffer from disturbances induced, for example, by spiral
arms, the Galactic bar or giant molecular clouds. We would like

3 AHF identifies 1298, 1001 and 1281 subhalos with NDM > 85 for m12f,
m12i and m12m, respectively.
4 In our work we have used the virial mass definition given by Mvir =

4π
3 178ρcritR3

vir , with ρcrit the critical density of the Universe at z = 0.
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Fig. 1. The subhalo mass function scaled to the host halo virial mass (left) and the radial distribution of the subhalo population (right) for the three MW-like galaxies
used in this work.

Fig. 2. Subhalo mass as a function of galactocentric distance. Each dot corresponds to a subhalo as identified by AHF for m12f (left), m12i (middle) and m12m (right)
galaxies.

Table 1
Summary statistics of synthetic Gaia DR2 reduced catalogs used in this work (see text for more details).

Stars with |z| > 5 kpc With vr [%] Halo-associated stars [%] Halo-associated stars with vr [%] Subhalos with associated stars

m12f
LSR0 216,446,024 0.42% 0.0291% 0.35% 73
LSR1 182,538,592 0.44% 0.0291% 0.32% 76
LSR2 204,017,261 0.44% 0.0306% 0.35% 71

m12i
LSR0 139,167,343 0.45% 0.0019% 0.41% 63
LSR1 132,655,442 0.46% 0.0017% 0.41% 61
LSR2 131,474,668 0.48% 0.0010% 0.23% 67

m12m
LSR0 170,255,144 0.47% 0.0013% 0.09% 67
LSR1 156,093,757 0.47% 0.0016% 0.12% 71
LSR2 161,369,511 0.47% 0.0013% 0.19% 68

to highlight that the disk was primarily excluded because the
data volume was too large to cope with at this stage. Notice that
this problem, however, does not affect the MW-like simulations
where the number of star particles per galaxy is of the order of
107. It is not clear how our results would be affected if we were to
include the disk in our analysis of the synthetic survey, and it is a
question that we plan to address in a follow-up. After removing
the disk, we are left with O(108) mock stars for each LSR for
the subsequent analysis. This reduced dataset consists of nearly
2 billion observed stars for the three different MW-like galaxies,
three LSRs for each, correlated with potentially observable DM
subhalo locations. Table 1 summarizes some statistics of this
dataset.

Stars are tagged as halo-associated if their true distance to
the central position of a subhalo is lower than 1 kpc. It is to be

noticed that these halo-associated stars might not be bound to
the subhalos (see next section). Fig. 3 shows the total number
of stars associated to a subhalo as a function of the subhalo’s
mass for each LSR and each simulated galaxy. Within each galaxy,
less than ∼10% of the subhalos contain associated stars, and 66%,
84% and 75% of this fraction contain less than 10 associated stars
for m12f, m12i and m12m galaxies, respectively. Furthermore,
approximately 40% of the halos that have associated stars contain
only one star. The m12f galaxy has a larger percentage of subhalos
which are associated to more than 100 stars compared to that of
m12i or m12f galaxies. This is because the former galaxy has a
larger fraction of subhalos below 30 kpc. We plot the projected
stellar number densities for LSR 0 in Fig. 4, along with the halo
locations and halo-associated observed stars.

3
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Fig. 3. Number of stars associated to a particular subhalo as a function of its mass for m12f (left), m12i (middle) and m12m (right) galaxies.

Fig. 4. Projected stellar number densities in the synthetic Gaia datasets in true galactocentric coordinates for the three MW-like galaxies, namely m12f (top row),
m12i (middle row) and m12m (bottom row) for LSR0. The halo locations are shown in black, with the size of the markers being proportional to the halo’s virial
radius, while the regions with halo-associated observed stars are shown in red. The Sun’s position for each case is (x, y, z) = (0, 8.2 kpc, 0).

3. Deep learning search of subhalo-associated stars

Dark subhalos perturb the positions and velocities of nearby
stars. We wish to estimate if these kinematic imprints are de-
tectable in MW-like galaxies and in synthetic Gaia data that
accounts for observational uncertainties. Let us assume, without

loss of generality, that the properties X of each star particle
(or observed star) are drawn from the probability distribution
p(X|sig) or p(X|bkg) if the star particle (observed star) has or has
not been affected, respectively, by a dark subhalo at a given time
in the Latte (Ananke) simulation. Then, if the probabilities are
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Fig. 5. Relative reconstruction loss with respect to the first epoch for the training (m12m) and validation (m12i) datasets based on the anomaly detection model over
the training epochs. By construction, we expect the loss in m12m to decrease as the model fits the samples. The training is performed on star particles excluding the
subhalo-associated particles (left) and by excluding the same number of random particles (right) as a check. A.u. stands for arbitrary units of the loss function. We
note that the underlying signal distribution of the training and validation datasets are different, thus the numerical values of the loss functions are not necessarily
directly comparable between the training and validation datasets. We observe no significant overtraining on the validation dataset.

known, the likelihood ratio p(X|sig)/p(X|bkg) is the optimal dis-
criminator between the two hypotheses for a given observation
according to the Neyman–Pearson lemma (Neyman and Pearson,
1992). These probabilities are not known, however, and we only
have simulated examples of either halo-associated or background
star particles (observed stars). In the following, we investigate the
possibility of using machine learning to define an approximate
discriminator between the two hypotheses, and thus quantify the
difference between the halo-associated stars and the background.

3.1. Detectability

As a starting point, we first focus on the Latte simulations,
where for each star particle, the full six-dimensional phase-space
coordinates, namely the three-dimensional Galactocentric Carte-
sian positions and velocities, are known. Unlike for the synthetic
Gaia dataset, the disk is not excluded at this stage. In addition,
here we only consider subhalos with galactocentric distances less
than 100 kpc. We are then left with subhalos with masses smaller
than 4×108 M⊙, which reduces the probability of including stars
associated with the halo of dwarf galaxies. This cut in radius,
or equivalently in mass, does not strictly mean that luminous
halos are excluded from our catalogue. For this reason, we have
identified candidate dwarf galaxies as those subhalos that have
more than one signal star with a relative velocity with respect
to the subhalo smaller than the subhalo’s escape velocity. In
this manner we have identified 4, 6 and 9 subhalos for m12f,
m12i and m12m, respectively. By removing these subhalos in the
analyses presented in this section, our results are quantitatively
the same.

For each star particle, we compute the Euclidean distance
to the nearest dark subhalo d, and if it is below a threshold
d < dmax = 1 kpc, we identify the star particle as a halo-
associated or signal particle. We then use an anomaly detection
approach to estimate the strength of the subhalo signal (Baldi
and Hornik, 1989; Sakurada and Yairi, 2014). For this purpose,
the background-only likelihood Lb(X) ≃ p(X|bkg) is indirectly
approximated using a so-called autoencoder neural network, and
deviations from the background-only distribution are quantified.

Each star particle is characterized by the feature vector X con-
taining its three-dimensional position and velocity, i.e. (x, y, z, vx,

vy, vz). Let us define an encoder E(X) and a decoder D(z) as

E(X) → z ∈ RD and (1)

D(z) → X′
∈ R6, (2)

respectively, such that D(E(X)) → X′ approximates X for any
given input via a lower-dimensional D < 6 representation.
Both the encoder and decoder are implemented as feedforward
neural networks, optimized by tuning the weights using only the
background examples as follows:

D, E = argmin
D,E

∑
i∈bkg

∥Xi − D(E(Xi))∥ . (3)

The neural network model parameters, such as the num-
ber of layers and neurons in each layer, the size of the lower-
dimensional representation and the activation function, are cho-
sen based on a small number of experiments rather than through
a systematic hyperparameter optimization, which is left for a fu-
ture study. We use two layers with 128 neurons for the encoder,
the latent space D = 3, and two layers for the decoder, with again
128 neurons per layer. We use the scaled exponential linear unit
(SELU) activation function for the hidden layers (Klambauer et al.,
2017).

By construction, the encoder–decoder will tend to reconstruct
well the background-like samples that it was optimized on. On
the other hand, for any other X that is not distributed as p(X|bkg),
we would expect on average higher values for the reconstruc-
tion loss Lb(Xi) = ∥Xi − D(E(Xi))∥. Therefore, we can use the
distribution Lb(X), optimized only on the background particles,
as an empirical discriminator between the background and signal
samples. We have checked this approach by defining a fake signal
consisting of a random sub-population of stars irrespective of
the dark subhalo locations. In this case, no detectable difference
between the main sample and the random subpopulation of stars
is expected with this method.

We optimize the model on the m12m galaxy, while cross-
checking the performance on the m12i galaxy. This ensures that
the model is not simply memorizing the locations of the halos, as
the result in this case would not be generalizable to other galaxy
simulations. Training is carried out for 100 iterations (epochs)
over the full dataset using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of l = 10−4 and a minibatch size of 105

star particles. We show the evolution of the total reconstruction
loss over training epochs in Fig. 5 for both the real subhalo
signal (left panel) and the fake signal cases (right panel). We
observe that the model converges for the training dataset m12m
and exhibits in general stable behavior for the validation dataset
m12i.

Fig. 6 shows the Lb(Xi) distributions for the signal and back-
ground stars for the m12f dataset never used for training. It is
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Fig. 6. The distribution of the reconstruction loss Lb for the m12f galaxy that was never used in the training procedure. We show the distributions of the halo-
associated (signal) and the rest (background) of the star particles separately. On the left, the model was trained and evaluated with the subhalo-associated as the
signal, while on the right, a random set of stars was denoted as the signal as a check.

observed that for the real subhalo signal case (left panel), there is
a distinction between the distribution of halo-associated (signal)
and non-halo associated (background) stars, with the signal stars
having on average higher values of the reconstructed distribution.
No such distinction is observed for the model trained and tested
on the random subset (right panel), as would be expected.

We quantify the performance of the anomaly detection in
terms of the true positive and false positive rates. The true posi-
tive rate (TPR) gives the fraction of signal stars that are correctly
identified as signal particles at a particular threshold t (i.e. a given
value of Lb),

TPR(t) =
Nsig(Lb > t)

Nsig
. (4)

Contrary, the false positive rate (FPR) is the fraction of back-
ground stars that are incorrectly identified as signal, namely

FPR(t) =
Nbkg(Lb > t)

Nbkg
. (5)

Fig. 7 shows the FPR versus TPR while scanning over t for the
real (solid blue) and random (dashed black) signal cases. Using
the unsupervised anomaly detection model, we see that at a
TPR ≃ 80%, the FPR is ≃15% (i.e. 80% of the signal stars are
correctly identified while we misclassify 15% of the background
stars as signal), presenting a significant improvement over a
random selection.

We cross-check the anomaly detection approach against a
simple binary classifier, where the signal model is used explic-
itly, but which is thus limited by the available statistics for the
halo-associated stars. Contrary, in the anomaly-detection based
approach, the star labels based on the proximity to a dark subhalo
were only used to exclude the signal samples from the optimiza-
tion. The supervised classification model uses the signal sample
labels directly, i.e. the optimization target is the star label yi =

{0, 1} for background and signal stars, respectively. Thus, it can be
used to determine the upper limit detectability for this particular
signal model, assuming training statistics are not a limiting factor.

The binary star classification model is defined as a parametric
function using a deep neural network

Φ(Xi|w) → y′

i ∈ [0, 1], (6)

which can be optimized by tuning the weights w to minimize
a classification loss function. As before, the hyperparameters of
the neural network were chosen based on a manual optimization,
rather than a dedicated hyperparameter scan which is left for a
subsequent study. We use two hidden layers with 256 elements

each, the SELU activation function and dropout with a coefficient
of p = 0.3. The dropout regularization (Srivastava et al., 2014)
limits the amount of overtraining. Finally, we use the focal loss,
which is a modification of the binary cross entropy loss, originally
proposed for rare object detection in Lin et al. (2017), and is de-
fined as the following sum over the total number of star particles
Nstar in the dataset:

L =

Nstar∑
i=1

−yiα(1 − y′

i)
γ log(y′

i) − (1 − yi)(1 − α)y′γ

i log(1 − y′

i), (7)

where α and γ are empirical factors that adjust the weight of
easy-to-classify background-like examples in the loss. We choose
α = 0.25, γ = 2.0 based on the defaults introduced in Lin et al.
(2017). By this construction, the model output y′

i for star i is a
continuous value between 0 and 1 that can be interpreted as a
test statistic for the star being labeled as signal.

As before, we use m12m for the optimization, m12i for the
validation, while m12f is used for testing. As shown by the orange
line in Fig. 7, the supervised binary classifier has a performance
comparable to random selection on this dataset. The negligible
sensitivity of the classifier compared to the autoencoder is to
be expected due to the very low number of independent signal
stars (a few thousand stars per galaxy associated with less than
a hundred subhalos).

3.2. Feasibility in synthetic Gaia survey

In this section, we investigate if the halo-associated stars are
detectable in the synthetic Gaia surveys derived from the very
same simulations, that is, under the effects of extinction, partial
measurement of the radial velocity vr and measurement errors.
This is done by searching for dark subhalos on the reduced
synthetic surveys described in Section 2.2. The goal is again to
select candidate stars which are likely to be perturbed by a nearby
dark subhalo, such that they could potentially be further analyzed
with more detailed approaches. The search for dark subhalos in
the reduced Gaia-like catalogs differs from the previous section
on two fronts. On the one hand, the mock observed stars in
the synthetic Gaia datasets are divided into patches using the
hierarchical pixelization algorithm HEALPY (Zonca et al., 2019;
Górski et al., 2005) with a pixel level 6. This allows to process the
data in manageable subsets in a physically meaningful fashion. In
addition, as the halo-associated stars are located in well-defined,
localized regions in the sky, we avoid using the absolute right
ascension and declination coordinates to unfairly bias the model.
Instead, we compute the positional information with respect to
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Fig. 7. The true positive rate (horizontal axis) vs. the false positive rate (vertical
axis). The blue line depicts the classification performance when the reconstruc-
tion loss Lb is used as a discriminator between the signal and background
labels on the star particles from the m12f galaxy. The orange line shows the
binary classifier performance as evaluated on the same galaxy. By construction,
we observe no distinction for random stars, while the unsupervised model
distinguishes halo-associated stars from the background using a combination
of the position and velocity information. The bad performance of the supervised
classifier is expected as the number of signal stars is very low compared to the
background.

the pixel center. For a Gaia DR2-like dataset, a pixel can contain
up to ≃2 × 104 stars.

On the other hand, the input feature of each observed star is
different. For each synthetic dataset realization g ∈ {m12f, m12f,
m12m}, l ∈ {LSR0, LSR1, LSR2}, we then have a list of (star
observation, label) pairs

Dg,l = [(Xi, yi), . . . ].

Each stellar feature vector X consists of the following astrometric
observables:

• parallax p [mas],
• the right ascension with respect to the pixel center ∆α

[deg],
• the declination with respect to the pixel center ∆δ [deg],
• the proper motion in the right ascension direction (multi-

plied by cos δ) µ∗
α [mas/year],

• the proper motion in the declination µδ [mas/year] and
• the radial velocity vr [km/s].

These observables are available with estimated uncertainties, re-
sulting in 12 input features. Features which are not always mea-
sured, such as the radial velocities, are filled with a placeholder
value (numerically set to zero) for a consistent numerical treat-
ment in the neural network model.

The anomaly detection model was trained for 200 epochs,
while the classification model for 50 epochs. As before, we use
m12m for the optimization, m12i for the validation, while m12f is
used for testing. The training and testing is done on stars from all
three LSRs simultaneously. Overall, as summarized in Table 1, the
optimization, testing and final evaluation is carried out on nearly
1.5 billion mock stars, of which less than 0.01% are identified as
signal, resulting in extreme class imbalance as well as an overall
low number of independent signal samples.

Fig. 8. The true positive rate versus the false positive rate after evaluating
the anomaly-detection (blue) and binary classification (orange) models on the
synthetic Gaia dataset m12f. We compare the model sensitivity with true inputs
and error-convolved inputs with and without knowledge of the uncertainties.

The sensitivity of the anomaly detection and classifier meth-
ods for identifying halo-associated stars in the synthetic Gaia
dataset can be seen in Fig. 8. As for the Latte runs, the m12f
dataset was never used in the optimization. We observe that the
binary classification distinguishes between the halo-associated
and background stars at a non-negligible level, with a FPR of
≃35% at a TPR of ≃50%. On the other hand, the anomaly detec-
tion approach, where we only attempt to learn the background
distribution, does not differ significantly from a purely random
selection in the synthetic survey.

4. Discussion

Based on the results presented in the last section, we conclude
that the halo-associated star particles in the galaxy simulations
adopted in this study have a distinguishable distribution in 6-
dimensional phase-space (positions and momenta). The anomaly
detection method is able to correctly identify halo-associated
stars, where as the supervised binary classification does not per-
form well in the Latte simulations due to the very low signal
statistics. When going from the idealized simulation to the syn-
thetic survey, we observe, on the one hand, a mildly better
performance for the supervised binary classifier (AUC 0.48 →

0.37). On the other hand, the unsupervised anomaly detection
performs significantly worse (AUC 0.07 → 0.45).

It is important to note that even though the synthetic sur-
vey is derived from the Latte simulation, the results of both
cases are not comparable, as multiple experimental and obser-
vational effects affect the synthetic dataset. In particular, there
are the following two uncontrollable (at least for us) and random
phenomena involved. First, the synthetic survey performance is
limited by the sampling process that generates a population of
synthetic stars from each star particle in the simulation. Thus
introducing a smearing scale that might dilute the signal. Second,
you can get lucky (or unlucky) with the selection of LSRs. This
introduces an observational bias since, by chance, more or less
subhalos might be included in the footprint of the synthetic
survey. On top of these, there is firstly the effect of simulated
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data uncertainties and secondly the fact that in each synthetic
survey less than 0.5% of the stars have measured radial velocities
(see Table 1), thus reducing the kinematic data from 6 to 5
dimensions. Finally, in the synthetic survey, the stellar disc was
excluded in order to reduce the volume of data.

We studied the effect of simulated measurement errors and
the inclusion of radial velocities by redoing the synthetic Gaia
analysis using the true astrometric inputs. As seen in Fig. 8, the
performance improves when changing from error-convolved to
true values, but does not arrive to the one in the Latte simulation.
Therefore, neither data uncertainties nor the absence of measured
radial velocities have a major impact in driving the performance
difference between the Latte simulation and the synthetic sur-
veys. Furthermore, as also seen from Fig. 8, providing information
on the simulated uncertainties of the error-convolved values to
the model does not significantly affect the supervised classifica-
tion sensitivity, while it somewhat reduces the sensitivity of the
autoencoder-based anomaly detection approach. The latter may
be attributable to the increased difficulty of encoding 12 instead
of 6 inputs.

Note that the name ‘‘true inputs’’ is misleading, since each
synthetic star in phase-space has been sampled from a one-
dimensional kernel centered on the generating star particle in po-
sition and velocity space (Sanderson et al., 2020). We argue that
the main difference in performance might be caused by this sam-
pling process that introduces a smearing scale of the order of 0.7
kpc in position and roughly 10 km/s in velocity.5 Since the change
of a star’s velocity due to the encounter with a subhalo of mass
Msh scales as ∼0.5–1 km s−1

(
Msh/108 M⊙

)2/3 (Feldmann and
Spolyar, 2015) and kinematic perturbations are partially washed
out below the smearing scale, the sampling process causes signif-
icant changes in the phase-space distribution of synthetic stars.
It is therefore expected to dominate over the luck factor and the
removal of the stellar disk in explaining the difference in perfor-
mance between the idealized Latte simulation and the Gaia-like
surveys.

Finally, we would like to highlight that to thoroughly investi-
gate the above conclusion we need a set of dedicated simulations,
where each possible effect can be turned on in sequence and can
be easily disentangled. Given the scope of the additional studies
required, we are studying this in a follow-up paper.

5. Summary and conclusions

Machine learning (ML) techniques, either alone or combined
with classical methods, have been demonstrated to be helpful in
uncovering new structures in Gaia-scale datasets (e.g. Necib et al.
(2020)). Dark subhalos are among the most challenging substruc-
tures to search for. In this paper, we study the detectability of
dark subhalos by means of ML in three MW-like galaxies and in
nine synthetic Gaia DR2 surveys. Rather than attempting to pin-
point the exact subhalo locations and determine their properties,
we attempt to identify candidate stars that are likely to be close
to a subhalo on a statistical basis.

We have first correlated star particles in the simulated galaxies
and mock stars in the synthetic catalogs with the position of dark
subhalos found by the Amiga halo Finder (AHF). In Section 3.1 we
then tested the feasibility of an anomaly detection and a binary
classification algorithm against simulated galaxies to detect the
phase-space imprint in stellar halo stars of nearby subhalos. The
first algorithm builds a likelihood function of the background
star particles and is able to correctly identify 80% of signal stars

5 The smearing scales are defined as the standard deviation of the differences
between the position or velocity of each halo-associated synthetic star and that
of the parent star particle from which it was generated.

while misclassifying as signal 15% of background particles. On the
other hand, the binary classifier does not perform well due to
the very low signal statistics. We concluded that the distribution
function of the 6-dimensional phase-space coordinates of signal
and background star particles are distinguishable in the MW-like
galaxies used in this work. Therefore, on a statistical basis, posi-
tion and velocity information can be combined into a statistical
discriminator for the halo-associated signal.

Finally, we have tested the feasibility of our algorithms in Gaia
DR2-like surveys in Section 3.2. The anomaly detection approach
has no sensitivity to distinguish between signal and background
stars, while the binary classification algorithm is able to select
50% of signal stars while wrongly identifying 15% of background
stars as signal. Although the binary classification shows a mild
sensitivity, overall both approaches are of limited effectiveness
in the synthetic Gaia survey. Although the results above are not
directly comparable, our hypothesis is that the sampling process
that generates a population of synthetic stars from each star
particle mainly causes the difference in performance between the
Latte simulation and the synthetic surveys. A thorough investiga-
tion of this conclusion is left to future work, leaving the use of
ML-based tools as a new way to quantitatively study the effects
of dynamical perturbations of DM subhalos as the main message
of this paper.

A number of subsequent improvements to the methodology
are possible. In the above analysis, all the observed stars were
treated independently of each other. Local correlations, density or
clustering were not taken into account, which could potentially
limit the sensitivity of the method used so far. As an example,
novel approaches based on density-based clustering have been
employed for open clusters (Castro-Ginard et al., 2018) and may
be interesting to study here for dark subhalos. Clustering can
also be combined with unsupervised deep learning for anomaly
detection (Mikuni and Canelli, 2021). Another possible approach
is the direct search for overdensities by comparing signal and
sideband regions, which has been so far demonstrated for stellar
streams, but could potentially be studied also for dark subha-
los (Shih et al., 2021b). Furthermore, in order to understand the
potential sensitivity of the method, simulated datasets with a
known DM distribution were used. However, the halo distribution
in these is fixed, and the number of actual simulated halos in the
potentially visible region is limited. Additional simulated datasets
with a varying halo distribution could be helpful to establish
sensitivity dependence of a potential method on halo mass and
distance from the galactic center.

Finally, Rubin/LSST will provide a deeper map of the Galactic
stellar halo of the Milky Way compared to that of Gaia. For main-
sequence stars, Rubin/LSST is expected to achieve a tangential
velocity precision of O(10 km/s) up to Galactocentric distances
of 20–30 kpc, increasing up to ∼300 km/s at distances of roughly
60 kpc (Abell et al., 2009; Ivezić et al., 2019). For the MW-like
galaxies adopted in our analysis, we find dark subhalos with
masses ∼2 × 107 M⊙ (∼2 × 108 M⊙) within 20–30 kpc (60 kpc)
from the Galactic center. These subhalos induced velocity changes
in the neighboring stars of ∼0.5 km/s (∼2 km/s). Since these
velocities changes are below the kinematic precision expected to
be achieved with the Rubin/LSST, it will be a challenge to detect
the kinematic effect of subhalos with this upcoming telescope.
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ABSTRACT

Aims. Our goal is to calculate the circular velocity curve of the Milky Way, along with corresponding uncertainties that quantify
various sources of systematic uncertainty in a self-consistent manner.
Methods. The observed rotational velocities are described as circular velocities minus the asymmetric drift. The latter is described by
the radial axisymmetric Jeans equation. We thus reconstruct the circular velocity curve between Galactocentric distances from 5 kpc
to 14 kpc using a Bayesian inference approach. The estimated error bars quantify uncertainties in the Sun’s Galactocentric distance
and the spatial-kinematic morphology of the tracer stars. As tracers, we used a sample of roughly 0.6 million stars on the red giant
branch stars with six-dimensional phase-space coordinates from Gaia Data Release 3 (DR3). More than 99% of the sample is confined
to a quarter of the stellar disc with mean radial, rotational, and vertical velocity dispersions of (35 ± 18) km s−1, (25 ± 13) km s−1, and
(19 ± 9) km s−1, respectively.
Results. We find a circular velocity curve with a slope of 0.4 ± 0.6 km s−1 kpc−1, which is consistent with a flat curve within the
uncertainties. We further estimate a circular velocity at the Sun’s position of vc(R0) = 233 ± 7 km s−1 and that a region in the Sun’s
vicinity, characterised by a physical length scale of ∼1 kpc, moves with a bulk motion of VLSR = 7 ± 7 km s−1. Finally, we estimate
that the dark matter (DM) mass within 14 kpc is log10 MDM(R < 14 kpc)/M� =

(
11.2+2.0

−2.3

)
and the local spherically averaged DM

density is ρDM(R0) =
(
0.41+0.10

−0.09

)
GeV cm−3 =

(
0.011+0.003

−0.002

)
M� pc−3. In addition, the effect of biased distance estimates on our results

is assessed.

Key words. Galaxy: kinematics and dynamics – Galaxy: disk – methods: statistical

1. Introduction

The rotation of stars and gas in galactic discs has been exten-
sively used as a kinematical tracer of matter distribution of exter-
nal galaxies and our own Galaxy, the Milky Way (MW) (Kuzmin
2022). Several recent studies (Mróz et al. 2019; Eilers et al.
2019; Chrobáková et al. 2020; Ablimit et al. 2020; Khanna et al.
2023; Gaia Collaboration 2023; Wang et al. 2022; Zhou et al.
2023) have measured the stellar disc rotation in the MW using
stellar data from the Gaia satellite (Gaia Collaboration 2016).
These studies differ in the samples of stars used as a tracer
and/or in the methodology and assumptions employed. More-
over, some of the cited studies provided rotational (azimuthal)
velocities, whereas the others presented circular ones. The for-
mer are direct measurements and no underlying assumptions
are made with respect to the shape or time dependence of
the MW’s gravitational potential. On the other hand, circu-
lar velocities assume a stationary gravitational potential that
exhibits axial symmetry. Moreover, these are the velocities
that should be used to derive the total or dynamical mat-
ter distribution. The modelling assumptions can therefore bias

the determination of the total and dark matter content in
our Galaxy.

The amount of phase space data currently available is large,
and statistics is generally not the limiting factor for studies of the
dynamics of the MW stellar disc. The limiting factor is instead
systematic errors, such as the Sun’s Galactocentric distance or
the adoption of incorrect modelling assumptions. In this paper,
we present a Bayesian inference approach to estimate the circu-
lar velocity curve of our Galaxy that allows the straightforward
incorporation of systematic and statistical sources of uncertainty,
which are both treated as nuisance parameters. In this way, we
provide, for the first time, a circular velocity curve with errorbars
that self-consistently include uncertainties in the Sun’s Galacto-
centric distance and in the spatial-kinematic structure of the stel-
lar disc. Therefore, our uncertain knowledge about astrophysical
parameters is propagated through Bayes’ theorem to the deter-
mination of the circular velocity curve and, subsequently, to the
estimation of the dark matter density profile in our Galaxy. Tak-
ing into account the uncertainties about how dark matter is dis-
tributed in the MW is essential for interpreting the results of dark
matter particle searches (see e.g. Benito et al. 2017).

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Fig. 1. Bias in different distance estimates. Left: GSP-Phot heliocentric distances as a function of parallax inverse. The colour bar shows the
mean parallax quality inside each pixel. The quality cut used in this paper corresponds to log10 ($/σ$) > 1.301. Right: same but for photogeo
heliocentric distances by Bailer-Jones et al. (2021).

The Bayesian inference approach presented here is a flexible
method that models the observed rotational or azimuthal veloc-
ity at a given Galactocentric distance as the difference between
the circular velocity and the asymmetric drift component. The
latter velocity component is obtained from the stationary,
axisymmetric radial Jeans equation under the assumption of
symmetry above and below the Galactic plane. Observed and
modelled azimuthal velocities are then compared by means of
the Bayes theorem. The paper is divided as follows. Section 2
describes the data; Sect. 3 presents the Bayesian methodology.
The results are presented in Sect. 4, and we conclude in Sect. 5.

2. Data

2.1. Red giant branch stars

We used astrometric data and radial velocities from Gaia data
release 3 (DR3) for 665 660 stars in the red giant branch (RGB).
These stars are old and have relatively large velocity dispersion.
Thus, they are less susceptible to perturbations. They are also
bright enough to have measured radial velocities out to large
distances. Specifically, we used the same sample of almost six
million RGB stars as in Gaia Collaboration (2023) to which we
performed additional spatial and kinematic cuts.

In the following we briefly describe how the RGB sam-
ple was obtained and we refer readers to the original
paper Gaia Collaboration (2023) for a thorough description. Red
giants are identified as stars with effective temperatures between
3000 K and 5500 K and surface gravity satisfying the condition
log g < 3. Both stellar parameters are provided as data prod-
ucts in Gaia DR3 (Andrae et al. 2023). Using these first selec-
tion criteria, we obtained 11 576 957 sources. We then selected
RGB stars with good astrometric data as measured by the fidelity
parameter fa given in Rybizki et al. (2022) and we removed stars
with fa ≤ 0.5, thus remaining with 6 586 329 stars. After this,
we performed a cut in height above and below the Galactic
plane, |z| < 0.2 kpc (which removes ca. 4.5M stars), a cut in
Galactocentric distances 5 kpc < R < 14 kpc (removing ca. 84k
stars), and a cut in heliocentric velocity |u − u�| < 210 km s−11.
The latter cut removed roughly 28k stars. The z and veloc-
ity cuts are applied to remove halo stars (Helmi et al. 2018;
Thomas et al. 2019). The cut in height also avoids large den-

1 u� is defined in Eq. (1).

sity and velocity gradients in the z-coordinate, thus making the
derivatives with respect to z in the Jeans equation negligible (see
Eq. (3)). We note that the scale height of the thin disc is roughly
250 pc (Bland-Hawthorn & Gerhard 2016).

We used GSP-Phot distances (Andrae et al. 2023) instead of
the inverse of the parallax due to noisy parallax measurements.
As shown in the left panel of Fig. 1, the GSP-Phot distances are
significantly underestimated at large distances from the Sun (see
also Andrae et al. 2023; Fouesneau et al. 2023). This would lead
to artificially lower circular velocities and thus to a steeper slope
of the estimated circular velocity curve. To reduce this bias, we
imposed a tight constraint on the quality of the parallax measure-
ments, namely $/σ$ > 20. This cut-off removed approximately
1.3M stars and suppressed the systematic underestimation of the
distances, in fact leading to a slight overestimation. To assess the
dependence of our results on inaccurate distances, we further
performed the same analysis using a less stringent quality cut
on parallaxes and ‘photogeo’ distances from Bailer-Jones et al.
(2021; henceforth referred to as BJ21). Photogeo distances suf-
fer from underestimation when including measurements with
$/σ$ . 20 (see the right panel of Fig. 1). In the end, we are left
with a final sample of 665 660 stars which is shown in Fig. 2.

2.2. Galactocentric frame

2.2.1. Galactocentric transformation

We transformed RGB stars from a heliocentric to a Galacto-
centric reference frame. We used a right-handed Galactocentric
coordinate system (x, y, z), with the Sun located at negative
x, y pointing in the direction of the Galactic rotation and z
towards the North Galactic Pole. In order to define this new
frame and perform the transformation correctly, we assumed
solar orbital parameters (R0, z0, U�, V�, W�) from contempo-
rary literature. First, we treated the Galactocentric distance R0
as a nuisance parameter of the analysis in order to account for
uncertainties in its determination. In particular, we used a uni-
form prior range R0 ∈ [7.8−8.5] kpc that encompasses recent
estimates with their corresponding uncertainties (Do et al. 2019;
GRAVITY Collaboration 2021, 2019, 2020, 2022; Abuter et al.
2018; Leung et al. 2022). Our intention was not to constrain
the value of R0, but rather to show how the uncertainty in this
parameter, which is encoded in the prior, propagates into the
circular velocity curve. For this reason, we remained agnostic
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Fig. 2. Spatial distribution of the final red giants sample. Left: distribution in the Galactic longitude (`) and latitude (b) plane. The colour bar
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is located at (0, 0), the Sun is located at (−8.277, 0) and the rotation of the Galaxy is clockwise. We added dashed, black circles at 5 kpc,
R0 = 8.277 kpc, 12 kpc and 14 kpc to ease visualisation. For the transformation to Galactocentric coordinades, we adopt R0 = 8.277 kpc, z0 = 25 pc
and u� = (11.1, 251.5, 8.59) km s−1.

about the actual value of R0 and adopted a uniform distribu-
tion that encompasses the most recent R0 estimations within
2σ uncertainty. Second, for the height of the Sun over the
Galactic plane z0, we assumed a value of 25 pc (Jurić et al.
2008)2. The transformation from spherical coordinates in ICRS
to a Galactocentric Cartesian setting was done as described
in Johnson & Soderblom (1987) and Hobbs et al. (2018).

Finally, the radial velocity measurements from Gaia also
allow us to construct the full 3D space velocities and then
transform them to a new frame by using the Sun’s Galacto-
centric velocity. Under the assumption that Sg A∗ is at rest at
the Galactic centre, the y and z components of the total solar
velocity vector are derived from the proper motion of Sg A∗, as
measured in Reid & Brunthaler (2020), in combination with the
adopted value of R0. On the other hand, for the x-component of
the velocity, we adopted the value from Schönrich et al. (2010).
We have not corrected this value for the offset in radial velocity
between the radio-to-infrared reference frames determined by
the GRAVITY Collaboration (GRAVITY Collaboration 2019,
2020, 2021, 2022) as suggested in Drimmel & Poggio (2018).
There are many possible sources for this systematic offset
and, in any case, it is compatible with zero at the 2σ level
(GRAVITY Collaboration 2022). In this way, we obtain the fol-
lowing vector

u� =


U�
V�
W�

 =



11.1
251.5 ×

(
R0

8.277 kpc

)

8.59 ×
(

R0
8.277 kpc

)

 km s−1, (1)

where U�, V�, W� correspond to the velocity components in the
Galactocentric x, y, and z-directions, respectively. As U� cor-
responds to the radial motion of the Sun towards the Galactic
centre, we implicitly assumed that the LSR has no such motion.

Using Gaia measurements for right ascension, declination,
and radial velocity, and the GSP-Phot distances with a quality
parallax cut of $/σ$ > 20, we transformed the proper motions
and radial velocities first to Cartesian velocities in a similar way

2 By adopting an alternative Z0 value of 0 pc, the change in the central
circular velocities is smaller than 1%.

as was done in Johnson & Soderblom (1987) and Hobbs et al.
(2018). Finally, we switched to Galactocentric cylindrical coor-
dinates (R, φ, z, vR, vφ, vz).

The left panel of Fig. 3 shows the mean observed rota-
tional velocities in the Galactic plane. The right panel of the
same figure depicts the mean axisymmetric radial and azimuthal
velocity dispersions. Figure 4 shows the mean azimuthal and
radial velocities. In both figures uncertainties are calculated by
bootstrap resampling and are given by half the interval between
the 16th and 84th percentiles of the corresponding distribution.
As shown in the right panel of the last figure, the bulk motion
of the stars in the radial direction exhibits an oscillatory pat-
tern with an amplitude of roughly 5 km s−1. This was already
reported in Gaia DR2 (Gaia Collaboration 2018) and might be a
kinematic signature of the spiral arms or the result of interaction
with a perturber. We leave for future work a careful study of the
origin of this intriguing oscillation in the radial velocities.

2.2.2. Binning

We treated the Sun’s Galactocentric distance as a free parame-
ter in our analysis. Varying R0 translates into a variation of the
R coordinate of the RGB stars. For this reason, we distributed
the RGB sample in bins defined in the adimensional coordinate
x = R/R0. This mitigates the shift of the red giants’ R coordi-
nate when varying R0. Thus, for different R0 values, a given x
bin contains approximately the same stars (Benito et al. 2019).
Furthermore, we note that by marginalising over the azimuthal
coordinate φ, the rotational velocity in the Galactic disc is treated
as a purely radially dependent observable.

In total, we defined eight bins from x = 5/8.277 to x =
14/8.277 with a step of ∆x = 1/8.277. Observed rotational
(azimuthal) velocities inside each bin approximately follow a
Gaussian distribution as shown in Fig. 5. In this figure, we plot the
distribution of observed velocities inside two bins: the bin where
the distribution deviates most from a Gaussian and a randomly
selected bin. The rotational velocity inside each bin is defined by
the mean. The associated uncertainties are calculated by bootstrap
resamplings and are given by half the interval between the 16th
and 84th percentiles of the velocity distributions.
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3. Methodology

3.1. Axisymmetric kinematic model

Inside each radial bin, we modeled the mean rotational or
azimuthal velocity as

vφmodel = vc − va, (2)

where vc is the circular velocity or the velocity of a star mov-
ing in a circular orbit and va is the asymmetric drift. The lat-
ter accounts for the diffusion of stars in phase-space as the stars
orbit the Galaxy and streaming or bulk motions inside the disc.
Neglecting large scale non-axisymmetric features, the asymmet-
ric drift component can be obtained from the radial Jeans equa-
tion under the assumption that the MW is in a steady-state and
has an axisymmetric gravitational potential (Binney & Tremaine
2008). If we further expect the density distribution to be symmet-
ric with respect to the Galactic plane, the Jeans equation takes
the following form

R
ν

∂
(
νv2

R

)

∂R
+ R

∂vRvz

∂z
+ v2

R − v2
φ + v2

c = 0. (3)

Substituting v2
φ = σ∗2φ +(vφ)23 and assuming v2

R = σ∗2R , we further
obtain

σ∗2φ − σ∗2R −
R
ν

∂
(
νσ∗2R

)

∂R
− R

∂vRvz

∂z
= v2

c − (vφ)2. (4)

We have checked the latter assumption explicitly and observed
that the measured values of v2

R are at least two orders of magni-
tude larger than the measured vR

2.
In traditional approaches, circular velocities in radial bins are

calculated by plugging numbers into Eq. (4). Circular velocity
values between bins are correlated as the radial dependence of
the density profile and radial velocity dispersion are described

3 To avoid confusion between uncertainties and the components of
the velocity-dispersion tensor, we add the superscript ∗ to the latter as
in Gaia Collaboration (2023).
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by exponential functions. In the proposed new approach, we add
Eq. (2) to transform the problem into an inference procedure. In
this way, we can introduce free parameters such as scale lengths
of the exponential functions and/or the Sun’s Galactocentric dis-
tance R0. The fitting procedure introduces an additional correla-
tion between the bins. Nonetheless, we found that if we fix all
free parameters of the analysis (i.e. scale lengths and R0), the
traditional and new approaches give the same circular velocity
curve.

By expanding the difference of squares on the right hand side
and introducing Eq. (2), we arrive to the following expression for
the asymmetric drift

va =
σ∗2R

vc + vφ


σ∗2φ
σ∗2R

− 1 − ∂ ln ν
∂ ln R

− ∂ ln(σ∗2R )
∂ ln R

− R
σ∗2R

∂vRvz

∂z

 . (5)

The sum vc + vφ in the denominator is often approximated as
≈2vc (Binney & Tremaine 2008). Nonetheless, we leave it as it
is and estimate vφ as the mean rotational velocity inside each
bin. In addition to this, the diagonal components of the velocity-
dispersion tensor σ∗2φ and σ∗2R are also calculated directly from
the data, and they correspond to the variance of the azimuthal
and radial velocity in the bin respectively. For the 3rd component
inside the brackets of Eq. (5), the number density distribution ν
is described by an exponential profile, namely ν ∝ exp (−R/hR)
with hR the disc scale radius. Notice that in the 4th component
we describe σ∗R as σ∗R ∝ exp(−R/hσ), where hσ is the scale
length of the radial velocity dispersion. Finally, after taking the
derivatives with respect to ln R in (5), we are left with the fol-
lowing equation

va =
σ∗2R

vc + vφ


σ∗2φ
σ∗2R

− 1 + R
(

1
hr

+
2

hσ

) . (6)

We neglect the last term of (5) in our axisymmetric treatment
of the rotation curve derivation as vRvz ≈ 0. This is motivated
because the radial and vertical motions are expected to decou-
ple for circular orbits near the disc when the velocity ellipsoid is
aligned with the Galactic plane (Bovy, in prep.). In reality, how-
ever, this is not necessarily true (e.g. some general models are
provided by Tempel & Tenjes 2006; Kipper et al. 2016). In any
case, our cut in z-coordinate |z| < 0.2 kpc minimises gradients
in the vertical direction. Furthermore, the inclusion of this term
changes the final circular velocity at the percent level, as shown
in Eilers et al. (2019).

3.2. Circular velocity fitting

We used the axisymmetric kinematic model described in the pre-
vious section to derive the circular velocity vc, j in each radial bin
j. We approached this as a Bayesian inference problem, wherein
we used a Markov chain Monte Carlo (MCMC) algorithm to
sample the posterior probability of our model parameters θ,
namely the circular velocities {vc, j}, hR, hΘ and R0. According
to Bayes’ theorem, the posterior distribution of a set of model
parameters θ given a particular set of data D can be defined as

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (7)

where p(θ) is the prior distribution function that contains a
priori knowledge about the parameters, p(D) is the Bayesian
evidence which is an irrelevant normalisation constant in this

context. Moreover, the likelihood function takes the form

p(D|θ) = −
∏

j


1√

2πσvφ, j
2

exp



(
vφ, j − vφmodel, j(θ)

)2

σ2
vφ, j




, (8)

where j is iterated over R bins. We note that this equation
assumes that rotational and azimuthal velocities in each of the
bins are independent of each other. The terms vφ, j and σ2

vφ, j
are

obtained from the data and are the mean and variance of the
azimuthal velocity in the j-th bin respectively.

For the prior distribution in (7), we defined flat priors,
where the circular velocities are allowed within a range of
[−400, 400] km s−1. In addition to the velocities, we defined
naive priors for the scale length parameters hR = 3 ± 1 kpc and
hσ = 21± 1 so to encompass values in the literature (Eilers et al.
2019; Bland-Hawthorn & Gerhard 2016). As mentioned previ-
ously, the Galactocentric distance R0 was also treated as a free
parameter of the analysis and was given a uniform prior within
[7.8, 8.5] kpc. Since the solar Galactocentric velocities V� and
W� are scaled with R0 (see Eq. (1)), the chosen prior is reflected
both in the median value and error bar of the circular velocity in
a given bin.

Having defined our likelihood and prior functions to use in
the fitting, we set up our MCMC algorithm using the python
package emcee (Foreman-Mackey et al. 2013). The parameter
space of our model was explored using 48 independent walkers.
All in all, we used 13 parameters in the fitting, where the first ten
were circular velocities vc, j of the radial bins and the rest were
the Sun’s Galactocentric distance and the scale length terms.

By treating the Sun’s Galactocentric distance as a free
parameter of the analysis we were required to repeat the coor-
dinate and velocity transformation at each step in the MCMC. In
addition to this, we also had to propagate the covariance infor-
mation of each star resulting in each step of the MCMC being
computationally expensive. In order to bring down the iteration
time, we used numpy (Harris et al. 2020) and cupy (Okuta et al.
2017), which make it possible to implement the calculations on
both CPU and GPU in an efficient vectorised form.

The use of GPUs was particularly well motivated, since the
parameter and uncertainty propagation routines in our code con-
sist largely of matrix operations with relatively large arrays.
GPU-accelerated computing libraries (such as cupy) take advan-
tage of the fact that modern GPUs have significantly more
threads than a CPU and are thus better at parallelising cer-
tain computation routines than their CPU-counterparts. In the
end, both numpy and cupy were utilised simultaneously and
the MCMC routine easily parallelised across the available CPUs
and GPU devices where the most computationally demanding
aspects of the pipeline were handled by the latter. The full data
was analysed by using two CPU cores per GPU and with a total
of six GPUs the computation time for each step was brought
down to ≈11 s. This translates into a 6-fold speed increase when
compared to running the code with just a single GPU and a 164-
fold increase when running solely on CPUs. Using a single GPU
for the full dataset described in this work, quickly leads to either
out of memory issues or extremely long runtimes and thus it
must be noted that the feasibility of the analysis was heavily
dependent on the availability of multiple GPU devices and CPU
cores. Our RGB sample of roughly 0.6 million RGB stars and the
code used in our analysis can be found in zenodo4 and online5,
respectively.
4 https://zenodo.org/record/8014011
5 https://github.com/HEP-KBFI/gaia-tools
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Table 1. Measured circular velocities vc, also plotted in Fig. 6.

x R [kpc] vc [km s−1] σ−v [km s−1] σ+
v [km s−1] va [km s−1] σva [km s−1]

0.66 5.5 221.3 6.5 5.7 3.3 6.1
0.79 6.5 231.0 6.9 6.0 2.8 6.5
0.91 7.5 234.6 7.1 6.1 2.9 6.6
1.03 8.5 232.7 7.1 6.1 3.1 6.6
1.15 9.5 229.8 7.1 6.1 3.5 6.6
1.27 10.5 231.2 7.0 6.2 4.6 6.6
1.39 11.5 230.6 6.3 6.1 6.4 6.2
1.57 13.0 227.5 6.5 5.8 7.2 6.4

Notes. We quote the median of each x bin, as the fitting is done using this adimensional variable, and the corresponding R value is calculated for
R0 = 8.277 kpc (GRAVITY Collaboration 2022).

4. Results

4.1. Circular velocity curve

The circular velocity curve of our sample of RGB stars is sum-
marised in Table 1 and shown in Fig. 6. Inside each bin, we quote
the median of the 1D marginalised posterior probability distribu-
tion obtained in the MCMC fitting. For the error bars, we quote
the 16th and 84th percentile of the distribution. We would like to
highlight that, in the classical approach for calculating the circu-
lar velocity curve, circular velocities in radial bins are calculated
by plugging values into Eq. (4). In the proposed new approach,
we add a simple kinematic model (given by (2)) on top of the
Jeans equation, thus transforming the problem into an inference
procedure. This allows to introduce nuisance parameters, such
as the hR, hσ and R0, and propagate their corresponding uncer-
tainties (regardless of whether we have normal or non-normal
errors) into the final circular velocity curve via Bayes theorem.
The fitting procedure may, nonetheless, introduce additional cor-
relations between the radial bins. For this reason, we checked
that, if we fix the nuisance parameters R0, hR and hσ, the central
values of the circular velocities obtained with the new approach
(MCMC analysis) coincide with the values obtained by the clas-
sical or traditional technique.

In Fig. 6, we compare our result to others from the litera-
ture. Our circular velocity curve is in agreement with the one
estimated in Ablimit et al. (2020) using the 3D velocity vector
method on ∼103 classical Cepheids. However, for R > 8 kpc, we
obtain larger circular velocities than those calculated by the same
authors but using the proper motions of ∼600 classical Cepheids.
The former and latter samples have around 370 Cepheids in com-
mon and both results show that modelling assumptions and/or
tracer samples can induce differences in the estimated circu-
lar velocities of at least 10%. We note that these changes are
larger than the estimated uncertainties in this work, which are
in the .3% level. Our error bars include statistical uncertain-
ties, which are negligible owing to the large data sample. They
further include uncertainties in the spatial-kinematic morphol-
ogy of the tracer stars (scale radius of the density profile hR and
of the velocity distribution hσ) and in the Sun’s galactocentric
distance. Circular velocities show a mild sensitivity to hR, spe-
cially for values hR ≤ 2.5 kpc and, at least within the prior range
explored in our analysis, hσ and circular velocity central val-
ues are independent. On the contrary, the adopted value of R0
strongly affects the final circular velocities and it is the main
source of systematic uncertainties (from the ones studied in this
analysis).

In addition, our estimated circular velocities are also com-
patible with those obtained in Eilers et al. (2019), Wang et al.
(2022) and Zhou et al. (2023), due to our large uncertainties
compared to those estimated in these articles. If we fixed the
Sun’s galactocentric distance and total velocity in the azimuthal
direction to the values adopted in the former article, namely
R0 = 8.122 kpc and V� = 245.8 km s−1, the estimated error bars
on the circular velocities are reduced and our results are incom-
patible with Eilers et al. (2019) analysis at 1σ for our fiducial
distance estimates (see Sect. 4.4 for a comparison using the cir-
cular velocity curve obtained with other distance estimates). This
shows that R0 is the main source of uncertainty in the reconstruc-
tion of the circular velocity curve. Moreover, if for the fixed R0
case the prior range in the scale length hσ is increased by a fac-
tor of three, the results remain unchanged. In contrast, increas-
ing the prior range in the scale length hR by the same factor, the
median values decrease by less than 2% and the size of error bars
remains roughly the same.

The circular velocity curve in Wang et al. (2022) was
obtained by describing, by means of the radial axisymmetric
Jeans equation, the dynamics of all Gaia DR3 stars within the
region 160o < ` < 200◦ and |Z| < 3 kpc that have mea-
sured radial velocities. All stars are thus described by the same
asymmetric drift. However, younger stars are expected to have
a smaller asymmetric drift than an older population of stars. In
fact, Kawata et al. (2019) estimated va(R0) = 0.28 ± 0.20 km s−1

using young classical Cepheids, whether we obtain, as expected,
the central larger value va(R0) = 3±7 km s−1 for older RGB stars.
Figure 7 shows the asymmetric drift as a function of Galacto-
centric distance for R0 = 8.277 kpc. The asymmetric drift mildly
increases with distance to the Galactic centre with a slope of
0.59 ± 0.12 km s−1 kpc−1.

Our estimated value of the circular velocity at the Sun’s
position, namely 233 ± 7 km s−1, is compared in Table 2 with
other estimates from the literature. We found that the esti-
mated gradient of the curve is extremely sensitive to the radial
interval included in its inference. If we remove the first two
radial bins where the circular velocities increase, the obtained
value is −1.1 ± 0.3 km s−1 kpc−1, which points to a smooth
decrease of the circular velocities with Galactocentric distances.
If we rather include all radial bins, the estimated value of the
slope is 0.4 ± 0.6 km s−1 kpc−1, which describes a flat circular
velocity curve within the uncertainties. Mróz et al. (2019) and
Eilers et al. (2019) included all radial intervals for the determi-
nation of the slope, and found decreasing slopes that do not
agree with the latter value. This may point out to the presence
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Fig. 6. Circular velocity curve obtained from the MCMC. Grey dashed lines have been plotted to indicate the position of each radial bin. In black
(with circles) we show the circular velocities as obtained in this paper where the error bars correspond to the 16th and 84th percentile of the
circular velocity posterior distribution in a particular bin. We adopted R0 = 8.277 kpc to convert the adimensional coordinate x into Galactocentric
distance R.

Table 2. Circular velocity at the solar location vc(R0) as measured by different methods.

Source vc(R0) [km s−1] R0 [kpc]

This work 233 ± 7 8.277
Zhou et al. (2023) 234.04 ± 0.08(stat.) ± 1.36(sys.) 8.122 ± 0.031
Kipper et al. (2021) 228.4 ± 3.5 8.3
Eilers et al. (2019) 229.0 ± 0.2 8.122 ± 0.031
Kawata et al. (2019) 236 ± 3 8.2 ± 0.1
Bobylev (2017) 231 ± 6 8
Huang et al. (2016) 240 ± 6 8.34
Bovy et al. (2012) 218 ± 6 8.1+1.2

−0.1

Notes. In the last column, we quote the value of the Sun’s galactocentric distance that was adopted in each of the referenced articles.
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Fig. 7. Asymmetric drift profile. The black line shows the asymmet-
ric drift correction in each radial bin and the shaded region depicts its
propagated uncertainty. We note that the uncertainties are fully corre-
lated between the bins.

of systematic biases in the distance estimations, as described in
Sect. 4.4.

4.2. Smooth dark matter halo

In the region analysed in this article, mean radial velocities
are <5% of the azimuthal or rotational velocities. Accord-
ing to Chrobáková et al. (2020), when the ratio of radial to
azimuthal velocities is smaller than 10%, circular velocities
obtained through the radial axisymmetric and stationary Jeans
equation provide an unbiased estimator for the centrifugal veloc-
ities that balance the averaged radial gravitational force. Accord-
ing to this result, our circular velocity curve then provides an
unbiased estimation of the spherically averaged dynamical mass
distribution within 14 kpc. Although this conclusion will be
tested in an upcoming paper where we assess the effects of mod-
elling assumptions, such as the axial symmetry condition, and
the effect of Galactic substructure, using our current results we
estimate that the DM mass is
log10

[
MDM(R < 14 kpc)/M�

]
= 11.2+2.0

−2.3. (9)
Furthermore, we find that the local spherically averaged DM
density is

ρDM(R0) =
(
0.41+0.10

−0.09

)
GeV cm−3 =

(
0.011+0.003

−0.002

)
M� pc3. (10)
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These estimates were obtained by fitting the observed circu-
lar velocities to the velocities predicted by Newtonian grav-
ity for the baryonic components (stellar bulge, disc and gas)
and the DM halo. For each baryonic component we adopted
a set of three-dimensional density profiles, originally compiled
in Iocco et al. (2015). The stellar bulge mass is constrained by
microlensing towards the Galactic centre and the stellar disc is
normalised by the stellar surface density at the Sun’s position.
We describe the DM distribution using a generalised Navarro-
Frenk-White density profile Zhao (1996). We compare observed
and predicted velocities using the Bayesian prescription pre-
sented in Karukes et al. (2019, 2020). The estimates provided are
Bayesian model averages that include uncertainties in the Sun’s
Galactocentric distance, the three-dimensional density profile of
bulge and disc stars, and the stellar mass of the Galaxy.

We would like to highlight that our estimate of the local
DM density is compatible, within 1σ uncertainties, with recent
estimates of this quantity using the circular velocity curve
method (Eilers et al. 2019; Mróz et al. 2019; de Salas et al.
2019; Lin & Li 2019; Karukes et al. 2019; Sofue 2020). In
addition, it is compatible with local estimates using the ver-
tical Jeans equation (Salomon et al. 2020; Guo et al. 2020;
Nitschai et al. 2020) and with the most-recent local estimate
using a novel machine learning approach by Lim et al. (2023).
Thus reinforcing the conclusion about the spherical shape of the
inner ∼ 15 kpc of the DM halo, obtained by modelling stellar
streams (Koposov et al. 2010; Bowden et al. 2015) and the kine-
matics of halo stars Wegg et al. (2019).

4.3. The local standard of rest and the solar peculiar velocity

The total Galactocentric azimuthal velocity of the Sun can be
used to derive the solar peculiar velocity when we incorporate
knowledge about the circular velocity at its position. In particu-
lar, the total azimuthal velocity is often decomposed as

V� = vc(R0) + V�,LSR, (11)

where the last term is the Sun’s peculiar motion in the local
standard of rest (LSR). The treatment of the solar velocity as
shown in Eq. (11) assumes that the LSR moves in a circular
orbit about the Galactic centre and therefore, it coincides with
the rotational standard of rest (RSR) in which stars move on
circular orbits in the azimuthally averaged gravitational poten-
tial. However, in recent years it has been shown that the stellar
disc exhibits bulk motions at the kiloparsec scale (Bovy et al.
2015; Williams et al. 2013; Khanna et al. 2023). In the presence
of these large scale streaming motions, the LSR, which is defined
as the reference frame of a local population of stars with zero
velocity dispersion, might not coincide with the RSR. Consider-
ing this, the total azimuthal velocity of the Sun can be decom-
posed as (Drimmel & Poggio 2018)

V� = vc(R0) + VLSR + V�,LSR, (12)

where VLSR is the velocity of the LSR with respect to the
RSR. This difference of velocity between the LSR and RSR
might account for the discrepancy between locally-derived esti-
mations of the Sun’s peculiar motion (i.e. using the Ström-
berg relation) and globally-measured values using a sample of
tracers in a larger volume around the Sun. In fact, Bovy et al.
(2012) concluded that the LSR itself might not be on a circu-
lar orbit and it is rotating VLSR ≈ 12 km s−1 faster than the
actual RSR. This is in agreement with the recently reported
value in Khanna et al. (2023) of ≈10 km s−1. On the other
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Fig. 8. Circular velocity curve for different distances estimates as
explained in the main text. In the top panel, we show the results where
fixing the Sun’s galactocentric distance to R0 = 8.122 kpc and leaving
free the scale lengths of the radial spatial density and velocity disper-
sion of the tracer RGB sample. The orange band shows encompass the
estimated circular velocity curve in Eilers et al. (2019) within 1σ. The
results when additionally leaving R0 as a free parameter are shown in
the bottom panel.

hand, Bland-Hawthorn & Gerhard (2016) estimated VLSR = 0 ±
15 km s−1.

Assuming V�,LSR = 12.24 km s−1 as measured
in Schönrich et al. (2010) from the Hipparcos Catalogue,
we obtain VLSR = 7 ± 7 km s−1. Our estimate is still statisti-
cally compatible with zero streaming motion, but nevertheless
strengthens the hypothesis that a region around the Sun, with a
characteristic length scale of 1 kpc, exhibits a bulk motion in the
azimuthal direction of the order of 10 km s−1.

4.4. Cautionary tale about distances

Our study is based on GSP-Phot distances (Andrae et al. 2023),
which have been shown to systematically underestimate the dis-
tance beyond 2 kpc from the Sun (Fouesneau et al. 2023). This
bias is also shown in the left panel of Fig. 1, as the two-
dimensional distribution of the estimated distance versus inverse
parallax is not symmetric with respect to the 1:1 line, as expected
from a Gaussian noise model for parallax measurements, but is
more populated to the right of this line. Fouesneau et al. (2023)
find that imposing a cut-off in the quality of the parallax mea-
surement of $/σ$ > 10 yields reliable heliocentric distances up
to 10 kpc. And Andrae et al. (2023) point out that a strict paral-
lax quality cut-off of$/σ$ > 20 provides reliable distances. For
our sample of RGB stars, the first cut-off eliminates the system-
atic underestimation of the GSP-Phot distances, although a slight
overestimation of distances appears (see left panel of Fig. 1).
For this reason, as our fiducial run, we adopted the last strict
cut, which alleviates the mild overestimation. However, in this
section we describe how our results would change if we had
adopted the less stringent cut-off in parallax quality or rather
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Table 3. Summary of the results when having R0, hR and hσ as free parameters and adopting different distance estimates.

Distance estimate Slope (first 2 bins removed) [km s−1 kpc−1] ρ0 [GeV cm−3] MDM(R < 14 kpc) [M�] VLSR [km s−1]

BJ21 + $/σ$ > 5 −0.9 ± 0.3 (−1.58 ± 0.08) 0.37+0.08
−0.07 9.9+1.6

−1.9 7 ± 7
BJ21 + $/σ$ > 10 −0.3 ± 0.3 (−1.0 ± 0.3) 0.39+0.09

−0.08 10.8+2.0
−1.7 6 ± 7

GSP-Phot + $/σ$ > 10 0.6 ± 0.3 (0.2 ± 0.3) 0.43+0.07
−0.06 11.6+1.8

−2.0 6 ± 7
GSP-Phot + $/σ$ > 20 0.4 ± 0.6 (−1.1 ± 0.3) 0.41+0.10

−0.09 11.2+2.0
−2.3 7 ± 7

Notes. Namely, photogeo distances from Bailer-Jones et al. (2021) with a cut in parallax of $/σ$ > 5 and $/σ$ > 10, and GSP-Phot distances
with quality parallax cuts of $/σ$ > 10 and $/σ$ > 20 (fiducial case). The second column shows the estimated slope of the circular velocity
curve when a straight line is fitted to all bins (and in brackets the value obtained by eliminating the first two radial bins as the circular velocities
increase within ∼5−7 kpc), the local DM density and DM mass within 14 kpc are shown in the third and forth columns, respectively. We quote the
velocity of the LSR in the last column.

used photogeo distances from Bailer-Jones et al. (2021) (here-
inafter referred to as BJ distances).

A bias in distance estimates has a noticeable impact in the
results of our analysis. In particular, underestimated distances
lead to an overestimation of the circular velocity curve gradi-
ent, and thus to an underestimation of the DM content, and vice
versa in the case of overestimated distances. We note that the
bias in the estimated slope is more pronounced the greater the
actual slope. In order to assess the effect of biased distances, we
performed our MCMC analysis using four different distance esti-
mates: BJ distances with a cut-off of$/σ$ > 5 and$/σ$ > 10,
and GSP-Phot distances with $/σ$ > 10 and $/σ$ > 20. For
each of these distance estimates, the top panel of Fig. 8 shows
the resultant circular velocity curve while fixing the Sun’s galac-
tocentric distance and total velocity in the azimuthal direction to
the values adopted in Eilers et al. (2019), namely R0 = 8.122 kpc
and V� = 245.8 km s−1, and leaving hR and hσ free. The bottom
panel of the same figure depicts circular velocities while letting
R0 as an additional free parameter. From this figure, it is clear
that the inclusion of uncertainties in R0 makes the four circular
velocities compatible within uncertainties. Furthermore, as we
increase the cut-off in the parallax quality from 5 to 10 for BJ
distances, the declining of the curve becomes less steep, thus
increasing the DM mass of the Galaxy. On the other hand, by
increasing the cut-off from 10 to 20 for the GSP-Phot distances,
we are alleviating the mild overestimation of distances and the
positive gradient of the curves becomes shallower, reducing the
DM mass. Table 3 summarises these results.

5. Summary and conclusions

We estimated the circular velocity curve from 5 kpc to 14 kpc
from the Galactic centre using 665 660 RGB stars that are
approximately located in one quarter of the stellar disc with 6D
phase-space information as measured by Gaia DR3, and GSP-
Phot distance estimates. We determined the circular velocity
curve by describing observed rotational velocities, in adimen-
sional radial bins, as the difference between the circular velocity
and the asymmetric drift. The latter given by the stationary and
axisymmetric radial Jeans equations, under the further assump-
tion of reflection symmetry above and below the Galactic plane.
In the traditional approach, one simply plugs values into the
Jeans equation. In our approach, by describing the observed rota-
tional velocity as the circular velocity minus the asymmetric
drift, we transformed the problem into an inference procedure.
In particular, observed and model rotational velocities were fit-
ted using a Bayesian inference approach that incorporates sys-
tematic and statistical uncertainties as nuisance parameters. This

allowed us to propagate into the final results uncertainties of dif-
ferent nature. In particular, our relative uncertainties are ∼3%
and, apart from the statistics, account for uncertainties in the
Sun’s galactocentric distance (which is the main source of uncer-
tainty) and uncertainties in the spatial-kinematic morphology of
the stellar disc.

We studied the effect of biased distances on our results
and showed, as expected, that underestimated distances lead
to steeper (negative) slopes and thus to an underestimation of
the dark matter content in the Galaxy. This may explain some
recent findings of significantly declining circular velocity curves
and, consequently, lower spherically averaged local DM densi-
ties than those purely local values obtained using stars in the
Solar neighbourhood. Owing to the spherical shape of the DM
halo in the inner ∼15 kpc of the Galaxy, these two sets of esti-
mates should converge.
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Jurić, M., Ivezić, Ž., Brooks, A., et al. 2008, ApJ, 673, 864
Karukes, E. V., Benito, M., Iocco, F., Trotta, R., & Geringer-Sameth, A. 2019, J.

Cosmol. Astropart. Phys., 2019, 046
Karukes, E. V., Benito, M., Iocco, F., Trotta, R., & Geringer-Sameth, A. 2020, J.

Cosmol. Astropart. Phys., 2020, 033
Kawata, D., Bovy, J., Matsunaga, N., & Baba, J. 2019, MNRAS, 482, 40
Khanna, S., Sharma, S., Bland-Hawthorn, J., & Hayden, M. 2023, MNRAS, 520,

5002

Kipper, R., Tenjes, P., Tihhonova, O., Tamm, A., & Tempel, E. 2016, MNRAS,
460, 2720

Kipper, R., Tenjes, P., Tempel, E., & de Propris, R. 2021, MNRAS, 506,
5559

Koposov, S. E., Rix, H.-W., & Hogg, D. W. 2010, ApJ, 712, 260
Kuzmin, G. G. 2022, ArXiv e-prints [arXiv:2201.04136]
Leung, H. W., Bovy, J., Mackereth, J. T., et al. 2022, MNRAS, 519, 948
Lim, S. H., Putney, E., Buckley, M. R., & Shih, D. 2023, ArXiv e-prints

[arXiv:2305.13358]
Lin, H.-N., & Li, X. 2019, MNRAS, 487, 5679
Malkin, Z. M. 2013, Astron. Rep., 57, 128
Mróz, P., Udalski, A., Skowron, D. M., et al. 2019, ApJ, 870, L10
Nitschai, M. S., Cappellari, M., & Neumayer, N. 2020, MNRAS, 494, 6001
Okuta, R., Unno, Y., Nishino, D., Hido, S., & Loomis, C. 2017, in Proceedings

of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first
Annual Conference on Neural Information Processing Systems (NIPS)

Reid, M. J., & Brunthaler, A. 2020, ApJ, 892, 39
Rybizki, J., Green, G. M., Rix, H.-W., et al. 2022, MNRAS, 510, 2597
Salomon, J.-B., Bienaymé, O., Reylé, C., Robin, A. C., & Famaey, B. 2020,

A&A, 643, A75
Schönrich, R., Binney, J., & Dehnen, W. 2010, MNRAS, 403, 1829
Sofue, Y. 2020, Galaxies, 8, 37
Tempel, E., & Tenjes, P. 2006, MNRAS, 371, 1269
Thomas, G. F., Laporte, C. F. P., McConnachie, A. W., et al. 2019, MNRAS, 483,

3119
Wang, H. F., Chrobáková, Ž., López-Corredoira, M., & Labini, F. S. 2022, ApJ,

942, 12
Wegg, C., Gerhard, O., & Bieth, M. 2019, MNRAS, 485, 3296
Williams, M. E. K., Steinmetz, M., Binney, J., et al. 2013, MNRAS, 436, 101
Zhao, H. 1996, MNRAS, 278, 488
Zhou, Y., Li, X., Huang, Y., & Zhang, H. 2023, ApJ, 946, 73

A134, page 10 of 11



Põder, S., et al.: A&A 676, A134 (2023)

Appendix A: MCMC results

Figure A.1 shows the marginalised two-dimensional and one-
dimensional posterior distributions for three different MCMC
runs: first, (R0, hR, hσ) are free nuisance parameters (black), sec-
ond, (hR, hσ) are not fixed and R0 is fixed to the value R0 =
8.122 kpc (red) and finally, the output of the MCMC when all
nuisance parameters are fixed to the values R0 = 8.277 kpc,
hR = 3 kpc, hσ = 21 kpc.

For the first run (i.e. R0, hR and hσ are free parameters),
the movement of circular velocities is driven by changes in R0.
Since we are not considering strong priors on R0, a strong pos-
itive correlation between this parameter and the circular veloc-
ities is observed. The circular velocity curve is sensitive to the
Sun’s Galactocentric distance R0 (Benito et al. 2019), nonethe-
less, R0 is constrained in the literature much better by different
types of analysis than the circular velocities (see Malkin 2013
for a review of techniques). Therefore, we do not aim to restrict
R0, but to assess the impact of its uncertain value on the circular

velocity curve. For this reason, we adopt as a prior a uniform
distribution that encompasses the most recent determinations of
R0 within 2σ uncertainties. This is a conservative approach that
does not favour any particular estimate. We would like to also
emphasise that the actual value of R0 may be troublesome. For
example, the LMC is causing differences in reflex motion in dis-
tinct parts of the Galaxy causing the definition of centre to be
vague or we do not know to what extent the different definitions
of centre (e.g. local isopotential curve, SMBH position) affect
estimations via the Jeans equations. One of the results of our
analysis is that, given the scatter in the most recent determination
of R0, this parameter represents the main source of uncertainty
in the calculation of circular velocities in radial bins.

On the contrary, circular velocities show a mild sensitivity
to hR and hσ. Neither of these scale lengths can be constrained
by our analysis and are simply treated as nuisance parameters
whose prior range is defined by observational determinations
(see e.g. Eilers et al. 2019 and references therein).
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Fig. A.1. One and two-dimensional marginalised posterior distributions of the circular velocity. The figure shows distributions from three different
parameter setups: all nuissance parameters free (black), only scale parameters free (red), all nuissance parameters fixed (blue), see text for more
details. The contours delimit regions of 2-σ probability and the best fit circular velocity of the black posteriors is demarked with horisontal and
vertical lines. The diagonal contains the normalised 1D posteriors of the circular velocities from the three different runs.
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ABSTRACT

Context. Due to poor observational constraints on the low-mass end of the subhalo mass function, the detection of dark matter (DM)
subhalos on sub-galactic scales would provide valuable information about the nature of DM. Stellar wakes, induced by passing DM
subhalos, encode information about the mass (properties) of the inducing perturber and thus serve as an indirect probe for the DM
substructure within the Milky Way.
Aims. Our aim is to assess the viability and performance of deep learning searches for stellar wakes in the Galactic stellar halo caused
by DM subhalos of varying mass.
Methods. We simulated massive objects (subhalos) moving through a homogeneous medium of DM and star particles with phase-
space parameters tailored to replicate the conditions of the Galaxy at a specific distance from the Galactic centre. The simulation data
was used to train deep neural networks with the purpose of inferring both the presence and mass of the moving perturber. We then
investigated the performance of our deep learning models and identified the limitations of our current approach.
Results. We present an approach that allows for quantitative assessment of subhalo detectability in varying conditions of the Galactic
stellar and DM halos. We find that our binary classifier is able to infer the presence of subhalos in our generated mock datasets, showing
non-trivial performance down to a mass of 5 × 107 M⊙. In a multiple-hypothesis case, we are also able to discern between samples
containing subhalos of different mass. By simulating datasets describing subhalo orbits at different Galactocentric distances, we tested
the robustness of our binary classification model and found that it performs well with data generated from different initial physical
conditions. Based on the phase-space observables available to us, we conclude that overdensity and velocity divergence are the most
important features for subhalo detection performance.

Key words. methods: data analysis – Galaxy: kinematics and dynamics

1. Introduction

The standard Lambda cold dark matter (ΛCDM) scenario suc-
cessfully describes the behaviour of dark matter (DM) on
extra-galactic scales (Einasto 2010; Zavala & Frenk 2019).
Studies of structure formation (Gramann 1990), galaxy clus-
tering (Darragh-Ford et al. 2023), supernova luminosities
(Perivolaropoulos & Skara 2022), and cosmic microwave back-
ground (CMB) correlation functions (Planck Collaboration VII
2020) have left little room for deviations from the CDM model
at these scales.

A key prediction of ΛCDM that is yet to be confirmed is the
abundance of DM subhalos on sub-galactic scales. In fact, stud-
ies of Milky Way-like galaxy simulations show that the subhalo
mass function (SHMF), which is the abundance of subhalos per
unit mass, follows a power law well below the galactic scale (e.g.
Springel et al. 2008). In the absence of convincing observational
evidence for small-scale DM clustering below subhalo masses of
≈109 M⊙, other alternative DM models (warm dark matter, self-
interacting dark matter, fuzzy dark matter, etc.) are also allowed.
These models impose a cut-off in the SHMF below a specific
⋆ Corresponding authors; sven.poder@kbfi.ee; mariabenitocst
@gmail.com

mass threshold and thus change the expected abundance of dark
subhalos orbiting galaxies (Ostdiek et al. 2022; Zavala & Frenk
2019). Constraining the low-mass end of the SHMF is there-
fore an important test of the CDM scenario, as deviations from
the expected SHMF behaviour could be explained by alternative
DM models (e.g. Benito et al. 2020). This, however, is not an
easy endeavour, as subhalos less massive than 108−9 M⊙ are not
expected to host any stars due to their small mass and reionisa-
tion effects (Sawala et al. 2015; Benitez-Llambay & Frenk 2020)
– they are dark subhalos.

In recent years, the expected count of low-mass subhalos
inside a Milky Way (MW)-sized galaxy in the CDM scenario has
been revised, although uncertainties remain. Garrison-Kimmel
et al. (2017) have reported that the inclusion of baryonic physics
actually suppresses the size of the expected subhalo population
when compared to DM-only simulations. The previous work has
been improved on by Barry et al. (2023), who used the FIRE-
2 simulations (described in Hopkins et al. 2018) and found that
at least 20 dark subhalos of mass >106 M⊙ should exist within
<=30 kpc of the Galactic centre. Given that these theoretical
predictions are yet to be robustly validated by empirical obser-
vation, the MW presents itself as an ideal laboratory for probing
the low-mass end of the SHMF.
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Beyond the Local Group, investigating dark subhalos can be
effectively pursued by observing the perturbations they impart
on strongly lensed images of distant galaxies and quasars (e.g.
Wagner-Carena et al. 2024). In recent years, deep learning meth-
ods have proven to be valuable tools in this endeavour, owing
to their effectiveness in image classification tasks (for a thor-
ough overview, see e.g. Varma et al. 2020 and the references
therein). Inside the Galaxy, a promising method to probe the
low-mass end of the SHMF involves searching for gaps or
density fluctuations in the distribution of cold stellar streams
(Bonaca & Price-Whelan 2024). For example, Bonaca et al.
(2019) studied the interaction of the GD-1 stream with a massive
perturber whose mass range they found to be of 106−108 M⊙.
With improved measurement data, the mass-detection limit via
stream perturbations could be as low as 105 M⊙ (Bovy et al.
2016). Another method to detect DM substructure in the Galaxy
via pulsar timing array measurements, proposed in Siegel et al.
(2007), promises the detection of even lower masses.

This work focuses on the detection of stellar wakes in the
MW – arguably the least studied phenomenon for DM detec-
tion in the literature. The underlying concept is built on the
notion that when a massive object moves through a field of
stars, it experiences dynamical friction (Chandrasekhar 1943),
as it perturbs the phase-space of the surrounding stellar medium
(Mulder 1983). Through gravitational interactions with the per-
turber, stars are pulled towards it and in time cause a relative
overdensity opposite to the direction of the perturber’s movement
(see e.g. Weinberg 1986, who described this effect analytically in
the context of infalling satellites). In recent years, there has been
growing interest in exploring the effects of dynamical friction-
induced wakes as a promising avenue for investigating DM
substructure. In the work of Buschmann et al. (2018), the authors
developed an analytical likelihood formalism to use these pertur-
bations in the stellar phase-space and infer the mass of the DM
halo passing through the stars.

A popular test bed for the detection of stellar wakes has
been the MW’s largest satellite – the Large Magellanic Cloud
(LMC; see e.g. Garavito-Camargo et al. 2019; Tamfal et al. 2021;
Rozier et al. 2022; Foote et al. 2023). Rozier et al. (2022) stud-
ied the response of a static MW to the LMC’s infall using linear
response theory. More recently, Foote et al. (2023) studied the
wake produced by the infall of the LMC using idealised wind
tunnel simulations in the context of both CDM and fuzzy dark
matter. Notably, they observed that the self-gravity of the DM
wake amplifies the extent of the stellar wake, particularly for
subhalos with masses of the order of 1011 M⊙. Going beyond
simulations, Conroy et al. (2021) observed for the first time the
density wake trailing behind the orbit of the LMC using data
from Gaia’s Early Data Release 3. Their work was expanded on
by Fushimi et al. (2024), who used the wake to estimate the mass
of the LMC’s DM halo with the method proposed in Buschmann
et al. (2018).

In our work, we focus our attention on perturbers less mas-
sive than the LMC and thus broaden the scope of Foote et al.
(2023). Furthermore, we expand on the work in Buschmann et al.
(2018), as we include the effects of self-gravity in our study of
stellar wakes. This study also builds on our previous research
Bazarov et al. (2022), which demonstrated the discernible impact
of dark subhalos on the phase-space distribution of stars in
simulated MW-like galaxies. To address the limitations of our
previous work, we investigated dark subhalos in the MW using
wind tunnel simulations, which afford greater control over the
signal induced by dark subhalos. As in Bazarov et al. (2022), we
tackled the problem in a data-driven way using machine learning

(ML) in lieu of classical likelihood methods. The reason for this
choice is that the latter become intractable as simulation com-
plexity increases - and even more so in the case of real data with
uncertainties.

The structure of the paper is as follows: in Sect. 2, we
describe the numerical and physical details of our simulation
setup. In Sect. 3, we discuss how we generated the mock data and
set up our deep learning approach. Section 4 contains the perfor-
mance results of the models described in the previous section.
Section 5 outlines the key limitations of the current work and
discusses future directions, while Sect. 6 summarises the main
conclusions.

2. Wind tunnel simulations

In the following, we describe our simulations of an extended
object orbiting at 30 kpc from the Galactic centre. Adopting a
spherically symmetric gravitational potential and total mass M,
this perturber experiences a stationary wind of simulation par-
ticles with a bulk velocity −v. We note that in the reference
frame of the box, the simulation is equivalent to a setting where
a perturber with constant velocity v moves through a homoge-
neous medium of field particles with constant mass density ρ
and isotropic Maxwellian velocity distribution.

2.1. Perturber setup

This physical setup was simulated using Pkdgrav3 (Potter et al.
2017; Alonso Asensio et al. 2023), which is a highly versa-
tile cosmological N-body gravity code. Although generally used
to simulate phenomena on cosmological scales, such as large-
scale structure formation, it can also be used to accurately study
the dynamics of systems down to planetesimal scales (see e.g.
Alonso Asensio et al. 2023 and the references therein). In our
work, we used Pkdgrav3 to simulate a massive perturber mov-
ing through a homogeneous medium of background particles in a
box with equal side lengths of L = 120 kpc and periodic bound-
ary conditions in all directions (X, Y, Z). The coordinates of the
box were defined in the range x, y, z ∈ [−60, 60] kpc, and there-
fore any particle that is at -60 kpc and moving in the -X direction
reappears at +60 kpc once it crosses the boundary. The simu-
lation takes place in the rest frame of the perturber, which is
stationary in the centre of the box at coordinates (0, 0, 0). To
simulate the perturber’s motion, we introduced a wind of stel-
lar and DM simulation particles moving from right to left with
some bulk velocity −v along the X-axis. The magnitude of this
velocity was approximated by assuming a circular orbit for the
perturber and taking into account the total dynamical mass of the
MW enclosed in the region where the Galactocentric distance
is R < 30 kpc. In the work of Karukes et al. (2020), the mass
of MW at this range is found to be approximately 3 × 1011 M⊙,
resulting in a circular orbital speed of ∼200 km s−1 at 30 kpc.
In the FIRE-2 simulations Barry et al. (2023), the tangential
velocity of DM subhalos with masses larger than 107 M⊙ at the
radius of 30 kpc from the Galactic centre is somewhere closer to
250 km s−1. With all of this in mind, we chose a fiducial perturber
velocity of 225 km s−1, which is in the middle of these estimates.

Following Buschmann et al. (2018), the perturber is
described by a Plummer density profile. This choice allows us to
make a clearer comparison between their results and ours. The
density of a Plummer sphere as a function of r is given by

ρ(r) =
3Msh

4πRs
3

(
1 +

r2

Rs
2

)−5/2

, (1)
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Table 1. Physical parameters adopted in the wind tunnel-like N-body simulations for two different locations in the stellar halo.

Case r [kpc] v [km/s] ρDM [M⊙/kpc3] σDM [km/s] NDM ρstar [M⊙/kpc3] σstar [km/s] Nstar

Case 1 30 225 106 200 5123 102 95 5123

Case 2 50 200 105.5 180 5123 10 90 5123

where Rs is the Plummer scale radius, Msh is the subhalo
total mass and r represents the radial distance from the sub-
halo’s centre. In the same way as in Buschmann et al. (2018);
Diemand et al. (2008), we adopted the following equation for the
computation of Rs,

Rs = 1.62 kpc ×
(

Msh

108 M⊙

)1/2

. (2)

We chose to run our simulation with a range of mass options
(in addition to simulations with no subhalo present) in order to
gauge how our ML model’s performance changes with respect
to the mass of the perturber. For the purposes of this study, we
adopted the following subhalo masses: 5 × 107 M⊙, 108 M⊙ and
5 × 108 M⊙. We did not implement subhalos below 5 × 107 M⊙
as the stellar wakes produced by perturbers smaller than this are
not resolved in the simulations. Likewise, subhalos more mas-
sive than 5 × 108 M⊙ could host dwarf galaxies and are therefore
outside the scope of this work.

2.2. Background particles and initial conditions

The background star and DM particles were defined in two grids
superimposed on each other but shifted in x and y by L/(2×512).
Although this initialisation is not realistic, we did not expect any
spurious structures to form due to the sufficiently large velocity
dispersion of the background particles.

For the background, we assumed a total mass density of
106 M⊙ kpc−3 for DM and 102 M⊙ kpc−3 for stars. These values
roughly match the mass densities of the DM and smooth stellar
halo components at 30 kpc from the Galactic centre. The stellar
halo of the MW, with a mass of approximately 4 to 7 ×108 M⊙,
comprises of distinct smooth and clumpy components, each con-
tributing roughly equally to the total mass (Bland-Hawthorn &
Gerhard 2016; Deason et al. 2019). This study focuses on discern-
ing the influence of dark subhalos within the smooth, virialised
portion of the stellar halo, deferring the exploration of detecting
stellar wakes within the portion that remains incompletely phase-
mixed to future studies. Figure 1 shows the mass density profiles
of the virialised stellar and DM halos. The former is obtained
by fitting the Einasto mass density profile (Einasto 1972) as
reconstructed in Hernitschek et al. (2018) to its total mass.
For the total mass we adopted three different values, namely
2 × 108 M⊙, 4 × 108 M⊙ and 7 × 108 M⊙. The DM halo is
described by a generalised Navarro-Frenk-White (gNFW) den-
sity profile (Zhao 1996). From the figure it is clear that the
mass density of the DM is always higher than that of the stars,
and that this difference increases rapidly with Galactocentric
distance.

In order to simulate the above-mentioned ambient densities,
we generated Nbkg = 2×5123 particles, and divided them equally
into DM and stellar particle types. The mass values assigned to
the two particle types were scaled to satisfy the ratio of total stel-
lar mass to the total DM mass in the Galactic halo. This means
that given the number resolution of 2 × 5123, the star particles
were assigned a mass Mstars ≈ 1.3 M⊙ whereas the DM particles
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Fig. 1. Mass density profile of the virialised stellar and DM halos in
the MW. Both gNFW profiles assume a scale-radius and local DM den-
sity values of Rs = 20 kpc and ρ0 = 0.011 M⊙/pc3 (Benito et al. 2021),
respectively.

were initialised with MDM ≈ 1.29 × 104 M⊙. For the softening of
both particle types, we adopted a widely used approach in the lit-
erature (Potter et al. 2017) by setting the softening length to 1/50
of the mean inter-particle separation such that ϵbkg=3.72 pc.

We used a 3D isotropic Maxwellian velocity distribution for
the velocities of both particles uDM and ustar. In practice, the
velocity components of each Cartesian direction of the DM and
star particles were generated by sampling from a 1D Gaussian
distribution centred at zero and with standard deviation σDM
and σstar, respectively (see values in Table 1). In order to find a
reasonable DM particle velocity dispersion (σDM), we turned to
cosmological simulations of MW-sized galaxies and the reported
DM dispersion profiles reported therein. In particular, we looked
at studies using data from both the Aquarius Project (Navarro
et al. 2010) and the FIRE-2 simulations (McKeown et al. 2022),
and deemed a reasonable DM dispersion at 30 kpc to be σDM =
200 km s−1. The choice of the velocity dispersion for the stellar
particles (σstar) was motivated by the Galactocentric velocity dis-
persion profile of halo stars obtained in Deason et al. (2012). As
we intend to reproduce the physical conditions of the Galactic
halo at 30 kpc from the Galactic centre, we assumed a value of
σstar = 95 km s−1. The physical parameters adopted for this case
are summarised in Table 1.

2.3. Stellar wakes

Figure 2 shows the star particles of a subhalo simulation with
mass 5 × 108 M⊙ after an integration time of approximately
195 Myr. At this particular time stamp, the stellar wind has
moved a distance of about half the length of the box, giving
the wake sufficient time to form. At the same time we took care
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(a) Overdensity (b) Mean X − Y speed [km/s]

(c) Dispersion X − Y speed [km/s] (d) Divergence X − Y velocity [km/s/kpc]

Fig. 2. Stellar phase-space feature maps shown in the reference frame of the simulation box (i.e. frame at which the perturber is moving from left to
right with an initial speed of 225 km/s) extracted from a simulation with a perturber of mass 5 × 108 M⊙ after an integration time t = 194.94 Myr.
We note that in the simulation box’s reference frame, the average (unperturbed) 3D velocity of the wind is 0 km/s, and its average (unperturbed)
speed in the X − Y plane is 119 km/s. The maps are generated from data contained in a z-slice of z ∈ [−20, 20] kpc. Panel a: Overdensity. Panel b:
mean speed. Panel c: speed dispersion. Panel d: divergence. The panels show the Gaussian-smoothed features projected onto the X −Y plane. Inside
the dashed contour of panel a, we show the half-max region of the overdensity. Each subfigure includes a lower plot that shows each Y-band’s radial
profile along the X-axis. The perturber is situated in the middle of the histogram, with the black circle depicting its scale radius. We observed that
the wake effects are seen in all four of the phase-space features.

to avoid snapshots at later times where the simulation particles,
having already interacted with the perturber, cross the bound-
aries on the left and reappear on the right. The reason for this was
to prevent any unphysical effects arising from the wake interact-
ing with itself from manifesting in our data. Therefore, we used
simulation snapshots at this particular point in integration time
to plot the wake and later generate ML datasets (see Sect. 3). The
figure is plotted from data that lies in a slice of z ∈ [−20, 20] kpc
and it is binned spatially along x and y into 2D histograms with a
bin size of 3.75 kpc. For better visibility, we summed the results

from ten different simulations with the same subhalo mass and
took the mean across these simulations.

In the figure, we show 2D histograms of four phase-space
features of the stellar particles: relative overdensity, mean speed,
speed dispersion and velocity divergence. To compute the last
three features, we used the velocity of the stellar particles in the
X-Y plane. Under each figure, we also show how the particular
feature varies over the X-coordinate as three profiles that average
the quantity in different Y-bands of the simulation box. Instead
of raw histograms, we show Gaussian smoothed variants that aim
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Fig. 3. Background-subtracted overdensity response profiles averaged
across Y ∈ [−20, 20] kpc. Each coloured band corresponds to a different
subhalo mass and consists of profiles from 12 simulations; each have a
different initial random seed. The figure demonstrates that the amplitude
of the density response scales with the subhalo mass.

to reduce the overall noise in the figure while preserving the most
important features of the wakes. For example, in Fig. 2, features
in the radial profile of the velocity divergence become more dis-
cernible compared to its unsmoothed counterpart. As also shown
in Foote et al. (2023), the divergence exhibits a dip behind the
formed wake.

The wake is most clearly visible in the upper left panel of
Fig. 2 as an overdense region. The half-max region (i.e. region
in which overdensity exceeds half of the maximum, denoted
as a dashed line) extends from the middle of the box in the -
X direction and is contained between Y ∈ [−20, 20] kpc. The
overdensity inside a particular bin (i,j) is computed with the
following equation:

¯ρi, j =
ρi, j

ρ̂
− 1, (3)

where ρi, j is the mass density inside bin (i,j) and ρ̂ is the average
stellar mass density in the simulation box.

We inspected how the mass of the subhalo affects the max-
imal overdensity response in the stellar medium by running the
simulation with identical initial conditions both with the subhalo
and without. In Fig. 3 we show the Gaussian-smoothed den-
sity response of different mass halos after having subtracted the
background-only simulation fluctuations exactly from the halo
case. We observed that the density peak scales with the subhalo
mass and as such we expect the signal to be considerably lower
as we explore the detectability of masses lower than 5 × 108 M⊙.
Interestingly, while we observed that the amplitude of the max-
imum overdensity is a function of the halo mass, we did not
see a similar correlation for the relative position of the maxi-
mum. In fact, we saw the same wake maximum location in the
X-coordinate for both the lowest and highest mass halos with
the difference being only in the response amplitude. We checked
and confirmed that this density peak location is dependent on
the subhalo velocity. In particular, we looked at a case where we
simulate conditions that mimic the stellar halo at 50 kpc from
the Galactic centre (Case 2 in Table 1). In this case, where the
perturber is moving 25 km s−1 slower than in our baseline simu-
lations, we observed that the peak of the density profile is shifted
closer to the location of the subhalo. Our simulations also sug-
gest that the physical size of the stellar wake is considerably

larger than what is expected from Buschmann et al. (2018). Sim-
ilar wake characteristics have also been shown in Foote et al.
(2023). Be as it may, we leave the study of the discrepancy
between expected wake size from theory and simulation to future
investigations.

3. Deep learning approach

In this section we introduce our mock data generation proce-
dure and the deep learning model used to detect the stellar wakes
caused by subhalos of varying masses. In this first approach, we
studied the extent to which we are able to detect a subhalo of any
particular mass, formulating the detection as a binary classifica-
tion problem. A given set of N star particles, each described by
position and velocity vectors (p, v) can be described by a N × 6
array X ∈ RN×6. In general, the ideal discriminator between the
subhalo and no subhalo hypothesis is the ratio

D(X) =
L(X|subhalo)

L(X|no subhalo)
,

where the likelihoods L(X|subhalo) and L(X|no subhalo) are
unknown in practice. We therefore approximated D(X) with
the output of a binary discriminator model D̃(X) that is opti-
mised on simulation samples that implicitly follow the unknown
likelihoods.

3.1. Dataset generation

We used the wind tunnel simulations described in Sect. 2 to gen-
erate mock datasets for the purpose of training and evaluating
our ML model. In addition to running simulations with a subhalo
mass of 5 × 108 M⊙ (as shown in Sect. 2.3), we also produced
simulations with two additional subhalo mass configurations
(5 × 107 M⊙ and 108 M⊙), as well as a configuration where no
subhalo is present. We ran the simulation for each mass config-
uration listed above 48 times using unique random seed settings
to draw varying particle velocities from their respective distri-
butions and thus generated additional statistically independent
data.

The full dataset of all simulations was divided into samples,
each sample consisting of approximately 1.3× 106 star particles,
corresponding to 1% of the number of simulated star particles,
5123. The samples served as the basis of our analysis, as we
aimed to distinguish samples from simulations where a subhalo
was present with respect to simulations where there was no sub-
halo. In a real survey, a single sample could represent a candidate
collection of stars of the survey (a region of interest) for which
one wishes to infer the likelihood of a subhalo being present.

Each sample array X now consists of 1.3× 106 × 6 ≃ 8× 106

values – the phase-space properties of all star particles. One
approach would be to feed the raw kinematic data of each sample
directly to a model for classification. However, this would result
in very large datasets required for model training, and may be
nonoptimal due to having to learn from raw data and not insert-
ing any physics priors to speed up the process. The alternative
approach is to define effective observables, computed from the
raw star particle kinematics based on a physics ansatz. To sum-
marise the kinematics of a large set of stars, we first started with
observables based on 2D histograms by projecting each sample
to Cartesian axes in position and velocity. These projections were
produced by equally slicing the simulation box into three slices
along the Z-coordinate and binning them into 2D histograms
with 32 bins along the x- and y-coordinates. Based on the star

A227, page 5 of 13



Põder, S., et al.: A&A, 693, A227 (2025)

particles in each bin along X and Y, we computed the following
four features:

– bin overdensity with respect to the background density,
– mean speed in the X-Y plane,
– speed dispersion in the X-Y plane, and
– velocity divergence in the X-Y plane.

The feature histograms for a particular simulation are shown in
Fig. 2. After slicing and binning, each sample is thus defined by
3× 4 channels such that each sample is reduced from 8× 106 raw
observables to 32 × 32 × 12 ≃ 12 × 103 effective observables.

Before training, we used the Gaussian filter from SciPy’s
ndimage module (Virtanen et al. 2020) on our samples. This
filter is designed to smooth the value of each pixel by an amount
that is based on the values of its neighbouring pixels. While
this smoothing effect blurs the image removing sharp edges, it
also works to reduce the overall noise. In our case, we found
that a Gaussian kernel of three helps reduce the Poisson noise
in the histograms while also preserving the most important fea-
tures of the wake. The effect that this filter has on the underlying
histograms is visible in Fig. 2.

During each training session, we adopted a split of 50, 33,
and 17% to divide the simulation data into statistically indepen-
dent training, validation and testing sets. The training set was
used for optimising the model, the validation for the hyperpa-
rameter tuning, and the testing set for the final results. For a
particular target mass case, we then have 2400 training samples,
1600 validation and 800 testing samples. The derived ML dataset
used in our work can be found in zenodo1.

3.2. Binary classifier

In order to learn the difference between background and sub-
halo perturbed images, the model has to be provided adequately
labelled data to train on. We adopted the simplest labelling
possible, where samples derived from simulations containing a
subhalo were given an integer label of ‘1’, whereas background
simulations (no subhalo) were assigned a label of ‘0’. As our
physics-based observables are in the form of 2D histograms or
equivalently images, convolutional neural networks (CNNs, or
convnets) were a natural first choice for the model. The CNN
has found wide use in most computer vision domains and has
been a major contributor to the rise in popularity of deep learning
methods in the past decade (Chollet 2021). In our case, we were
dealing with images of 32 × 32 bins (pixels), with 12 features
(channels) per pixel, as described above. As the dataset gener-
ation is based on a complex N-body simulation and we were
limited by computational budget, our training dataset consists
of only a few thousand samples, putting us in a small dataset
regime. For this reason, we adopted methods that are specifi-
cally developed for image classification based on small datasets.
In particular, we used harmonic networks (Ulicny et al. 2019a),
which use a windowed discrete cosine transform (DCT), to per-
form a harmonic decomposition of the input features and thus
reducing the sensitivity to input noise.

The harmonic layer is different from a standard convolutional
layer as it does not learn filters for extracting spatial correla-
tion, but instead operates in the frequency domain and learns
the weights of the DCT filters. According to the work presented
in Ulicny et al. (2019b), these layers perform better in the case
of small datasets when compared to traditional CNNs, which we
have confirmed in our dataset directly.

1 https://zenodo.org/records/12721089

Table 2. Hyperparameter selection for our binary classifier.

Hyperparameter Range Final value

Number of z-slices [1, 2, 3] 3
Filters [4, 128] 32
Learning rate [1e-8, 1e-2] 1.9602e-06
Dropout [0, 0.6] 0.49259
Activation [relu, selu] relu
Kernel of 1st layer [3, 10] 9
Kernel of 2nd layer [1, 3] 2
Extra layers [0, 3] 1
Filter expansion [1, 16] 2

The model was trained with the Adam (Kingma & Ba 2017)
optimiser and binary focal cross entropy loss function (Lin et al.
2017) to give larger weight to hard-to-classify samples. The
model was implemented using Keras (Chollet et al. 2015) and
TensorFlow (Abadi et al. 2015).

The choice of the exact architecture and the number of lay-
ers and filters per layer was based on hyperparameter tuning. We
used the RandomSearch in the KerasTuner (O’Malley et al. 2019)
framework for parameter tuning. The scanned hyperparameters,
their initial ranges, and the final values are shown in Table 2,
along with the evolution of the loss in Fig. 4. As we divided our
simulation box into three slices in the Z-coordinate, the ‘num-
ber of z-slices’ in Table 2 refers to how many of these slices we
included in the training. Similar to traditional 2D convolutional
layer, the ‘filters’ hyperparameter configures the output dimen-
sion of the layer. In the table, we show the output dimension of
the first layer, which we increased two-fold after each succes-
sive harmonic layer. ‘Learning rate’, ‘dropout’, and ‘activation’
correspond to the step size of the loss function, the amount of
regularisation used after each layer, and which activation func-
tion we used. We also show the explored range of kernel sizes
for the first two Harmonic layers. In addition to this, we exper-
imented with adding additional layers to these baseline layers
showing this as ‘extra layers’ in the table. Finally, the last param-
eter in the table is a scalar factor, with which we expanded the
output dimensionality of the second-to-last fully connected layer
in our model. The full hyperparameter tuning took about 20
hours on one Nvidia RTX2070S.

With the aim of producing statistically independent simula-
tions and training samples, we adopted a unique random seed
every time we drew the initial conditions before running any
simulation. Due to fluctuations in the simulations, we expect
variability in the training performance. In order to assess the
effect that this has on our model’s performance, we trained the
model 30 times for each adopted subhalo mass target. Every run
we picked a random permutation of train, validation and testing
samples such that the sets of their origin simulations using seeds
k, l and m obey ktrain∩ lval∩mtest = ∅. This allowed us to separate
training and testing samples during training, average any metrics
relevant to the model performance across the training runs, and
also report the error bars.

During each training run, we used early stopping to halt
training after validation loss has not decreased during the last
5 epochs. With a constant learning rate of ≃2 × 10−5, the total
training time for a particular mass case (30 runs) adds up to
about 1 hr on one Nvidia RTX2070S. We show the training
and validation loss progression in Fig. 4, where each set of
coloured lines corresponds to a particular subhalo target case. As
expected, the approximate final loss value plateaus differ for each
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Fig. 4. Training and validation loss of the binary classifier model after
running the model 30 times. The training loss of the model measures the
discrepancy between the predicted outputs of the model and the actual
targets in the training dataset. The validation loss depicts the model per-
formance on the validation data and is therefore a measure of how well
the model generalises to unseen data.

subhalo mass target and we saw that the model’s training diffi-
culty decreases as the subhalo mass increases. We also observed
that the final training and validation loss values exhibit more
scatter in the case of the lighter subhalo masses. When using
datasets with a subhalo of 5 × 108 M⊙, the training is more sta-
ble, as both losses plateau at smaller values and show a much
smaller variance between training runs. We present our binary
classifier’s final results and discuss its detection performance in
Sect. 4.

4. Results

4.1. Effect of spatial and kinematic training features

We used the binary classifier model described in Sect. 3.2 to
study which physical observables or their combination would be
most useful for detecting the stellar wakes. We quantified the
performance using the receiver operating characteristic (ROC)
curves and the area over the curve (AOC). The ROC curves
represent the model’s sensitivity (true positive rate, TPR) and
specificity (false positive rate, FPR) across all possible thresh-
old settings. To assess the physics and model performance, the
model was trained and evaluated 30 times on independent sets of
training and testing datasets. Below we summarise results from
testing different feature engineering and selection options.

– Gaussian smoothing: we inspected how the model per-
formance is affected when the Gaussian filter (introduced
in Sect. 3.1) is applied to the training features. Figure 5
depicts performance for the target mass 5 × 108 M⊙ when
training our baseline binary classifier model (detailed in
Sect. 3.2) separately on each of the four features introduced
in Sect. 3.1. Solid lines show results when training is done
on Gaussian smoothed features whereas dashed lines show
results when smoothing is turned off. We found that in the
case of smoothed features, we see a significant improvement
(≈25−35%) in model performance when compared to their
non-smoothed counterparts.
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Fig. 5. Binary classifier performance for 5 × 108 M⊙ when training on
images generated from the middle slice (Z ∈ [−20, 20] kpc) of the sim-
ulation box. The different coloured bands depict the performance when
training on different features: red – overdensity, yellow – divergence,
green – mean speed, and blue – speed dispersion. Model performance
where training was done on Gaussian smoothed features is depicted by
the solid lines, whereas dashed lines show when training was done on
unsmoothed features. We observed that best performance is achieved by
using smoothed features out of which overdensity and velocity diver-
gence are most effective.

– Individual feature performance: from the same figure, we
observed that overdensity and divergence (AOC = 0.99 for
both) seem to be the most effective training features, fol-
lowed by mean speed (AOC = 0.95) and lastly by speed
dispersion (AOC = 0.83). We repeated the same exercise for
a lower mass target case (108 M⊙) to see whether these con-
clusions are affected by the mass of the simulated subhalo
but our results remained qualitatively the same. Namely, in
terms of AOC values, mean dispersion yields 0.58, mean
speed in X-Y 0.68 (17.24% increase) and divergence yields
a value score of 0.73 (a further 7.35% increase). We also
checked that by using the Cartesian velocity component vx
instead of the mean speed (vxy), there is no statistically
significant difference in performance between the two.

– Combining kinematic features: we studied how our model
performance is affected when combining different kinematic
features. For this purpose, we performed three training runs:
first we trained only on divergence, then added dispersion,
and finally including mean speed. This enabled us to quan-
tify the difference between performance when using one,
two or three kinematic features. We observed AOC values
of 0.73, 0.71 and 0.71 respectively. While all features exhibit
positive constraining power when used individually, we did
not observe a stacking effect in the overall performance
of the model when other kinematic features are combined
with divergence. We concluded from these results that diver-
gence, as expected, already contains much of the information
present in the other two features.

– Combining kinematic and spatial features: we found that
training on overdensity and velocity divergence yields the
best classification performance, with no significant improve-
ment when adding the other two kinematic features. For
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Fig. 6. Receiver operating characteristic curves for the binary clas-
sifier trained on datasets with varying subhalo masses. The curves
represent subhalos with masses 5 × 107 M⊙ (<AOC>=0.63), 108 M⊙
(<AOC>=0.77), and 5×108 M⊙ (<AOC>=1.00) solar masses. The width
of the bands represents the standard deviation of the curves when train-
ing and evaluating the model 30 times. The median AOC values indicate
the classifier’s performance in distinguishing between background (no
subhalo) and the presence of a subhalo. The performance of the binary
classifier scales with the mass of the subhalo.

this two-feature combination and the 108 M⊙ mass case, the
model correctly identifies 74% of signal samples at opti-
mal threshold while misclassifying background samples at
a rate of 35%. In contrast, using only overdensity informa-
tion resulted in 70 and 40%, respectively This highlights
the added value of kinematic information in distinguishing
signal from background.

– Miscellaneous feature experiments: in addition to the above,
we also tried a few other options with hopes to increase
model performance. For example, we looked at using rel-
ative velocities (normalising the kinematic features around
0 analogously to Eq. (3)). Furthermore, since we slice our
data into three equal slices in the Z-coordinate, we also
investigated whether we should keep or exclude the outer
layers during training. Using small experiments we con-
firmed that adopting relative velocities instead of absolute
ones and the inclusion of the upper and lower Z-slice do not
improve our results. Consequently, we decided to keep abso-
lute values and proceeded with training only on data from
the middle slice of the box, which contains the majority of
the wake.

Our findings described above may suggest that the detection of
subhalo masses considered in the current work is achievable
with either positional or kinematic data but a combination of
both yields strongest results. As we found that including both
overdensity and divergence during training results in the best
performance, we decided to adopt this feature combination for
all ML models used in this study.

4.2. Binary classification performance

We present the performance of our binary classifier for our cho-
sen target cases in Fig. 6. For a particular target case, we show

the median ROC (solid lines in Fig. 6) as well as the standard
deviation across multiple training runs (shown as the shaded
area in Fig. 6). We saw that at all tested masses, the model is
able to distinguish between samples from the background and
subhalo simulations better than random choice. Furthermore, as
expected, subhalos with higher masses and thus a more promi-
nent wake are detected with higher accuracy. This demonstrates
that there is sufficient residual information to distinguish the
presence of a subhalo in the wake of the stellar particles down
to M = 5 × 107 M⊙ under the ideal conditions. As was already
suggested in the training loss curves of Fig. 4, we observed that
for M = 5 × 108 M⊙, the scatter appears to be negligible across
the runs, but the same cannot be said about the other target cases.

The variance in the ROC scatter and median AOC was
investigated in dedicated ablation studies by changing the size
of the training dataset. For the lower-mass subhalo target of
5 × 107 M⊙, the binary classifier’s performance, trained on 25,
50, 75, and 100% of the available data, resulted in AOC values of
0.586 ± 0.118, 0.609 ± 0.083, 0.621 ± 0.064, and 0.628 ± 0.059,
respectively. In addition, we also investigated how architectural
changes from our baseline model impact our results and found
that the current configuration is optimal within the tested set of
configurations. These studies confirmed our hypothesis that our
results are most significantly affected by the amount of available
training data. That is, by increasing the number of statistically
independent samples, the training becomes both more stable and
accurate.

The remedy for this issue might seem trivial (i.e. generate
more data), but in practice, running more simulations after a cer-
tain point becomes cumbersome as it would require implement-
ing data reduction techniques or access to substantial computing
resources. In recent years, the development of deep generative
models and emulators have begun to push the boundaries in
terms of fast data generation for different simulation-based infer-
ence problems (see e.g. in Ramesh et al. 2022; Hemmati et al.
2022), which may be interesting to explore in future studies. We
expect that with increased simulation datasets, our results can
be significantly improved and, at the same time, the effect of
uncertainties on the detectability can be studied.

4.3. Multiple mass hypothesis testing

In addition to studying the ability to infer the presence of a
subhalo in our samples, we also investigated how well we can
discern between the different subhalo mass cases in a multiple-
hypothesis case. This time, instead of using both background and
signal samples, we trained exclusively on samples containing all
three signal cases, labelling them from lowest mass to highest as
0, 1 and 2. As before, we trained the model 30 times with early
stopping, where at the start of each run, we picked a random
permutation of simulation seeds for training, validation, and test-
ing. Figure 7 shows the training and validation loss curves for all
training runs. We observed that for each iteration of the dataset
shuffle, both training and validation losses decrease smoothly
over time and start to plateau at around 100 training epochs.

Instead of a single prediction score, each test sample was
given three scores, each of which represents the probability of
belonging to a particular target class. In each of the cases, the
model is able to discern between samples in the testing dataset
when there is a clear difference between the prediction distri-
bution of the samples actually belonging to the particular target
case with respect to the rest. We could then summarise the accu-
racy of our model, that is, how well it is able to discriminate
between these distributions with a confusion matrix in Fig. 8.

A227, page 8 of 13



Põder, S., et al.: A&A, 693, A227 (2025)

0.0 0.2 0.4 0.6 0.8 1.0
True Positive Rate (TPR)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e 
Po

si
tiv

e 
R

at
e 

(F
PR

)

Ms = 5e7M , <AOC>=0.63
Ms = 1e8M , <AOC>=0.77
Ms = 5e8M , <AOC>=1.00
Random, AOC=0.5

0 50 100 150
Training epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

 [a
.u

.]

train loss 
validation loss 

5e7 1e8 5e8
Predicted mass [M ]

5e7

1e8

5e8

Tr
ue

 m
as

s 
[M

]

<467>
±47

<323>
±49

<8>
±6

<331>
±45

<446>
±41

<17>
±9

<0>
±3

<19>
±9

<780>
±10

0

100

200

300

400

500

600

700

Fig. 7. Training (blue) and validation (green) loss of the multiple mass
hypothesis classifier model after running the model 30 times with early
stopping.
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Fig. 8. Multiple mass hypothesis performance summarised in terms of
the predicted and true mass of the subhalo in test samples. Each element
in the confusion matrix is characterised by the mean number predictions
and the standard deviation across 30 runs of training and evaluating.

Ideally we would like to maximise the values of elements on the
main diagonal that depict the number of instances the model is
able correctly predict the mass of the subhalo. The off-diagonal
elements show mismatches between predicted and true labels
and thus indicate which targets are harder to classify for the
model. Since we run the model 30 times, we show the predic-
tion count values of each element in the matrix by computing
the mean and standard deviation across all runs. We note that
since we average many training runs, we do not expect the counts
across columns to sum to the total number of samples (800) in
each target mass test dataset. We do however expect this sum to
be within the standard error across the runs.

Similar to what we saw in the binary classifier analysis of
Sect. 4.2, we again observed that the model performs best in the
case of the heaviest subhalo mass (5 × 108 M⊙). In this case the

model was able to identify the correct mass of approximately 780
samples with a small scatter in the mean number of predictions
(±10) and mislabel 20 samples as other targets. For the lower
masses of M = 5 × 107 M⊙ and M = 108 M⊙, the task was more
challenging as we observed a larger scatter in correct predictions
counts (±47 and ±41) as well as a tendency to mislabel the sam-
ples between these two. In both cases, about 300 samples were
mislabelled. Since wake effects created by a subhalo of mass
M = 5 × 107 M⊙ are considerably smaller than those created by
5 × 108 M⊙, similar performance between the lower mass cases
points to a difficulty in identifying intermediate mass samples.

4.4. Detection performance 50 kpc from the Galactic centre

On top of inspecting the subhalo detection performance at 30 kpc
from the Galactic centre, we also looked at what would happen if
the perturber was in orbit at 50 kpc, which is roughly the distance
to the LMC. While Foote et al. (2023) studied wakes created by
LMC-sized subhalos, in this study we are interested in effects
created by much smaller subhalos. We then ran our simulation
again using our intermediate subhalo mass, M = 108 M⊙, and
as before, we configured the background and perturber phase-
space parameters to literature-informed values (summarised in
Table 1). By modulating these different parameters we expect
the density response of the perturber to change. For example,
the Chandrasekhar dynamical friction equation (Chandrasekhar
1943) suggests that at a constant perturber velocity, the reduc-
tion in the ambient velocity dispersion will result in a larger
deceleration (i.e. density wake) of the perturber. This classical
dynamical friction equation, however, does not take into account
the effects of self-gravity, and applies only to specific idealised
conditions. Furthermore, the combined effects of all background
and subhalo parameter changes (e.g. subhalo velocity, stellar and
DM mass density, etc.) on the actual amplitude and extent of
the stellar wake are not easily estimated beforehand and are thus
interesting to explore. We leave a full investigation of the rela-
tionship between simulation phase-space parameters and wake
observables for a future work and continue with results from our
ML analysis.

Using data from the 50 kpc simulations, we derived new ML
samples in exactly the same way as was described in Sect. 3.1.
This way we ensure that the performance comparison between
these two cases is done on a fair basis. Without making any
changes to the binary classification model, we trained the model
again with the same setup, and we represent the results from
these runs in Fig. 9 with a green band. We observed a perfor-
mance similar to the first case for these new samples. This shows
that our binary classification model is able to learn from a com-
pletely new and independent dataset and that our previous results
are not case specific. One physical interpretation of the similarity
between the two cases could be that 20 kpc is too small a dis-
tance for the phase-space parameters to change enough to have
an impact on our detection model. In other words, the slopes
of, for example, mass density and velocity dispersion profiles
are too small and perhaps the Galactocentric distance should be
even larger. The usefulness of (small mass) subhalo simulations
in environments out to >100 kpc is another question as the lack
of stellar observations with adequate precision discourages the
detection of the subhalo induced wake effects.

In addition to the above, we also looked at the detection per-
formance when evaluating the new data (subhalo orbit at 50 kpc)
on a previous model that was trained on data when the subhalo
was 30 kpc from the Galactic centre. We show the results as the
grey band on Fig. 9. We again observed similar performance as
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Fig. 9. Binary classification results of Ms = 108 M⊙ when the orbit is
placed at 50 kpc from the Galactic centre. Green shows the performance
of the new model, which is trained and evaluated on simulation data
from 50 kpc. The black line shows the model performance when training
is done on data describing a subhalo orbit at 30 kpc from the Galactic
centre.

before, which is a good indication that our model is able to gen-
eralise to new conditions. As expected, the AOC of the black
ROC curve is smaller as in the case of the green band the model
was trained on the new dataset and is therefore better tailored to
make predictions on it.

5. Discussion

The physical setup of the idealised simulations described in this
work can certainly be improved upon in many aspects. For exam-
ple, the current setup does not include the gravitational potential
of the Galaxy or the effect of tidal stripping. Also, it would be
interesting to see how the stellar wakes and their detection per-
formance is affected when using different density profiles (e.g.
Navarro-Frenk-White, Einasto, etc.) for the subhalo.

In a future study, we also plan to investigate how our results
are affected by the inclusion of observational effects. Specifi-
cally, we would like to relate our data from ideal simulations to
real surveys (e.g. Gaia; Gaia Collaboration 2016) by studying the
detectability at varying error levels in an observational frame of
reference. Due to their large spatial extension, we do not expect
to detect stellar wakes in their entirety. However, we know from
Bazarov et al. (2022) that we are able to observe a signal when
looking at regions near subhalos on a star-by-star basis. In any
case, acquiring intuition on the actual physical scales of the stel-
lar wake phenomena could be an important step as we start look
for and identify suitable regions of interest from real survey data.

In addition to creating mock datasets in a new frame of refer-
ence, the ML models will also need to be adapted. In the current
work, we used three overdensity images (slices) per sample for
training. This means that in order to evaluate already trained
models with new data, the input needs to conform to the same
dimensionality that is (N, 32, 32, 2). Creating similar Z-slices in
an observational setting is not as straightforward as was the case
in our idealised box simulation setup. In our case, the thickness

of the slices is chosen arbitrarily to divide the simulation region
into three equal slices wherein the middle layer contains the sub-
halo and majority of the stellar wake. In a mock dataset of an
observational region of interest, the decomposition of data into
slices along the line of sight might not be justified altogether
as the position of subhalo is not localised and the direction of
motion is arbitrary with respect to the coordinate axes.

Even though we have achieved very good classification per-
formance on samples containing very heavy subhalos (i.e. Ms >
108 M⊙), we still have room for improvement in identifying lower
mass target cases. One direction to tackle this would be to con-
sider alternative ML approaches and architectures as the models
described in the current work are certainly not exhaustive. For
example, it would also be interesting to see how well one would
be able to predict the subhalo mass as part of a regression
model setup.

While other methods are possible, we find that in our case,
the key limiting factor is the amount of available training data.
By retraining our binary classifier while modulating the amount
of available training data we have seen that with more data
we achieve increased AOC values and smaller scatter in the
ROC curves. The data problem is something that could be over-
come with access to considerably larger computing resources or
finding alternative ways to generate simulation data faster (e.g.
emulators, generative models, etc.). Since we have not reached a
performance plateau, it is difficult to give estimates on sufficient
training dataset sizes. We would like to note that the ultimate
goal, which is the focus of a future study, is how well our model
generalises to observational data rather than trying to learn the
simulation data perfectly.

6. Conclusions

Constraining the SHMF in the sub-galactic mass regime is
an important endeavour in order to understand more about
the particle nature of DM. Theoretically predicted dark sub-
halos are extremely difficult to detect, as their presence can
only be inferred from gravitational effects on the surrounding
stellar medium. In this paper, we studied the strength of the
DM subhalo-induced gravitational signal by investigating how
well we can detect individual stellar wakes induced by orbiting
subhalos in the stellar halo.

We implemented wind tunnel simulations with self-gravity
enabled using Pkdgrav3, replicating the ambient phase-space
conditions of DM and stars at 30 and 50 kpc from the Galactic
centre. Interestingly, we observed stellar wakes in line with those
for larger perturber masses as described in Foote et al. (2023) but
significantly more spatially extended than those in Buschmann
et al. (2018). The former study finds that for perturbers with
masses of O(1011 M⊙), the inclusion of self-gravity increases the
magnitude of the density response by roughly 10% while also
significantly extending the length of the overdensity and kine-
matic wake. In the latter work, self-gravity was not considered,
but we found in our simulations that although the removal of self-
gravity reduces the spatial extension of the wake, this omission
alone does not fully account for the difference.

We then derived mock datasets by binning the simulated data
into 2D histograms and computing different physical observables
in each bin to be used as training features. The phase-space fea-
tures that we implemented were the overdensity, mean speed
on the X-Y plane (Vxy), and its dispersion and divergence. We
find that by applying a Gaussian smoothing filter on the fea-
tures prior to training, a significant increase in classification
performance can be observed. Even though all the considered
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features showed a non-trivial constraining power when used
exclusively, we find that the combination of overdensity and
velocity divergence is equivalent to using all four features. This
became evident, as including additional kinematic features did
not significantly improve classification performance when diver-
gence was already included in the training dataset. In any case,
these findings suggest that stellar wakes may best be found in
ongoing or future stellar surveys by using a combination of posi-
tional and kinematic information, which in our study exhibited
comparable constraining power.

Finally, we divided our ML approach into two parts. First,
we investigated how well we are able to infer the presence of dif-
ferent mass subhalos in the generated images. We implemented a
binary classification model that we then trained and evaluated on
our three target mass cases: 5× 107 M⊙, 108 M⊙, and 5× 108 M⊙.
We saw that for all the chosen target cases, we are able to infer
the presence of a subhalo at a rate that is better than random. As
expected, we observed that the performance follows a hierarchi-
cal trend such that more massive subhalos exhibit more signal
and are easier to detect. We also investigated our binary clas-
sification model’s performance, having simulated a subhalo of
mass 108 M⊙ at 50 kpc from the Galactic centre. Using this new
simulation data, we compared the classification performance of
a model that was trained on a newly derived ML dataset against
the pretrained model at 30 kpc. We found similar results in both
cases and saw that our model’s performance is generalisable to
data from simulations with different physical conditions.

We also studied the classification between different subhalo
masses in a multiple-hypothesis case. We find that the model is
able to recognise and correctly label subhalos of mass 5×108 M⊙
about 97% of the time, demonstrating a potential capability to
constrain subhalo masses.

This work is summarised as follows:
– We used ML to evaluate how effectively we can detect indi-

vidual stellar wakes induced by DM subhalos in the MW’s
stellar halo.

– Our simulated stellar wakes are in line with Foote et al.
(2023) but significantly more spatially extended than previ-
ously reported in the literature. We found that the inclusion
or omission of self-gravity does not fully account for the
difference.

– In the context of detection performance, we found that
• Gaussian smoothing plays a crucial role, improving AOC

values by approximately 25–35%.
• The combination of overdensity and velocity divergence

results in maximal performance, achieving a TPR of 60,
74, and 99% and an FPR of 41, 35, and 1% for the 5 ×
107 M⊙, 108 M⊙, and 5× 108 M⊙ mass cases, respectively.

• Training only on overdensity reduces the performance to a
TPR of 70 and 97% and an FPR of 40 and 5% respectively
for the 108 M⊙ and 5 × 108 M⊙ subhalo cases.

• With the amount of training data available (4800 sam-
ples), the 5 × 108 M⊙ subhalo is perfectly identifiable
when using only a 1% fraction of all star particles present
in the snapshot (i.e. 1.3 million star particles).

• Detection performance for smaller subhalos is signifi-
cantly reduced, with the amount of available training data
being the key limiting factor.

• We found that our performance remains effectively
unchanged when varying the subhalo’s position relative
to the Galactic centre within 50 kpc, demonstrating gen-
eralizability to data under different physical conditions.

• In a multi-class classification scenario, the model per-
formed best for the heaviest subhalo mass (5 × 108 M⊙),
correctly classifying around 97% of these samples.

The ML approach presented in this work serves as a proof of con-
cept for detecting stellar wakes in the MW stellar halo. While
demonstrating significant constraining power for the subhalo
masses considered in this study, the current model can be further
refined to increase its robustness and applicability. Therefore, we
hope that the work presented in this paper encourages further
studies in this domain, ultimately aiding in the exploration of
stellar wakes through current and future stellar surveys.
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Appendix A: Vx and Vy velocity maps

Figure A.1 shows the Vx and Vy velocity maps of star parti-
cles in a simulation containing a subhalo of mass 5 × 108 M⊙.
In the same way as in Fig. 2 of the main text, stars of z-slice
z ∈ [−20, 20] kpc are binned in a 2D histogram with 32 bins on
both axes. Inside each bin, the velocity components of the star
particles are summed and averaged across ten simulations. In this
way, the kinematic signatures of the wake become much clearer
in the figures.

We note that the velocity scales of Figs. 2b and A.1 differ
due to the fact that in the former we show the mean speed in the
X-Y plane, whereas in the latter we show maps of the velocity
components (Vx, Vy) separately. Since the stellar velocities (Vx,
Vy, Vz) are drawn from distributions centred on 0 km/s in the
reference frame of the simulation box, the mean velocities in A.1
also naturally average to around 0 km/s.

Fig. A.1: Stellar velocity maps of Vx (a) and Vy (b) in a simulation con-
taining a subhalo of mass 5 × 108 M⊙.
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