
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Thomas Johann Seebeck Department of Electronics

IEE70LT

Sekyanzi Badru IVEM 132062

Evaluation of the Internal ADC of Piccolo

and Tiva Microcontrollers

Master`s

Supervisor: Olev Märtens

 PhD

 Lead Researcher

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Thomas Johann Seebecki Elektroonikainstituut

IEE70LT

Sekyanzi Badru IVEM 132062

Piccolo ja Tiva mikrokontrollerite sisemise
ADM evalveerimine

Magistritöö

Juhendaja: Olev Märtens

 PhD

 Lead Researcher

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Badru Sekyanzi

22.05.2016

4

Abstract

The piccolo control stick (TMS320F28069) and Tiva C series (TM4C123GHM6PM)

are microcontrollers produced by Texus Instruments. These microcontrollers can be

used in a number of applications. The technology behind the success of these two micro

controller boards is low cost and high precision from the analog digital converter.

Analog to Digital Converter (ADC) is the world‟s largest volume mixed-signal circuit.

It is also a key building block in nearly all system on chip (SoC) solutions involving

analog and mixed-signal functionalities. The purpose of this project was to test the ADC

used in these two boards. In this work the static and dynamic performance of the ADC

is analysed with comparison to what is written in the data sheet. Static performance test

is done by analysing the ADC data logs of the collected 32 ADC digital output samples

and 2000 analog input samples within a rail range of (0-3.3) V. The dynamic

performance is tested using a sine wave input to the ADC at different frequencies and

analysing the ADC digital output code. Simple scripts of code run in MATLAB and R-

language are used to analyse gain error, offset error, INL, DNL, SNR, SINAD, ENOB

and THD. The goal is to help engineers that are developing designs using the piccolo

control stick (TMS320F28069) and Tiva C series (TM4C123GHM6PM) to make

accurate decisions regarding ADC selection before producing first prototypes.

This thesis is written in English and is 57 pages long, including 4 chapters, 50 figures

and 20 tables.

5

Annotatsioon

Piccolo ja Tiva mikrokontrollerite sisemise

ADM evalveerimine

Piccolo controlSTICK (TMS320F28069) ja Tiva C seeria (TM4C123GHM6PM) on
mikrokontrollerid, mille tootjaks on Texus Instruments. Kõige olulisem asi, mida
mikrokontrollerite valimisel silmas pidada, on analoog-digitaalmuundurite (ADC-de)
jõudlus. Analoog-digitaalmuundur on elektrooniline seade, mis muudab tegeliku
maailma analoogsignaali masinloetavaks või binaarseks või digitaalseks formaadiks.
Kõik mikrokontrollerid vajavad seda komponenti, mis saab muuta tegeliku maailma
analoogsignaalid pingesignaalideks. See pinge söödetakse sisse ADC-sse ja tulemuseks
on kahendnumbrid, mida saab sõltuvalt vajadusest edasi töödelda. Analoog-
digitaalmuundur (ADC) on maailma suurim segasignaalköitega vooluring. See on ka
peamine element peaaegu kõikide selliste kiibisüsteemide (SoC) lahenduste puhul, mis
hõlmavad analoog- ja segasignaaliga funktsioone. Mikrokontrollereid saab kasutada
mitmetel juhtudel. Nende kahe mikrokontrolleri plaadi tehnoloogilise edu taga on madal
kulu ja kõrge täpsus analoog-digitaalmuunduri abil. Projekti eesmärgiks oli testida
nendes kahes plaadis kasutatud ADC-de jõudlust. On väga oluline saada põhjalikult aru,
kuidas ADC toimib enne disaini loomist. ADC jõudluse analüüs avaldab peensused, mis
viivad sageli soovitust väiksema jõudluseni. Analoog-digitaalmuunduri täpsusel on
mõju üldisele süsteemi tõhususele. Selleks et täpsust parandada, peab aru saama
vigadest, mis on seotud ADC-ga, ja neid mõjutavatest parameetritest. Käesolevas töös
on ADC staatilist ja dünaamilist jõudlust analüüsitud võrdlusena sellega, mis on kirjas
andmelehel. Staatiline jõudlustest viiakse läbi, analüüsides kogutud 32 digitaalväljundi
diskreedi ja 2000 analoogdiskreedi ADC andmelogisid vahemikus 0-3,3 V. Staatiline
jõudlustest keskendub sisemiste ADC-de, ilma mingisuguse välise väljundita,
testimisele. Dünaamilist jõudlust testitakse kasutades erinevatel sagedustel siinuslaine
sisendit, mis on ühendatud ADC-ga. Lihtsaid koodiskripte, mis töötavad MATLAB-is ja
R-keeles, kasutatakse võimendusvea, eelpingevea, SNR-i, SINAD-i ja THD
analüüsimiseks. Selle projekti eesmärgiks on aidata inseneridel, kes kasutavad disainide
loomiseks Piccolo controlSTICKi (TMS320F28069) ja Tiva C seeriat
(TM4C123GHM6PM), teha täpseid otsuseid seoses ADC valikuga enne esimeste
prototüüpide tootmist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 57 leheküljel, 4 peatükki, 50

joonist, 20 tabelit.

6

 Acknowledgements

I would like to offer special thanks to Olev Märtens, my supervisor for giving me this

opportunity to write a thesis in this interesting field and for his knowledge and technical

support during the project. I also would like to thank my family for the valuable

support.

7

List of abbreviations and terms

ACQPS

ADC Acquisition (Sample and Hold) Window

ADC Analog-to-Digital Converter

ADCIN

Analog-to-Digital Converter Input

ADCSAC

Analog-to-Digital Converter Sample Averaging Control

CADC

Input Capacitance Analog-to-Digital Converter

CPU

Central Processing Unit

DMA

Dynamic Memory Access

DNL

Differential Nonlinearity

DUT

Device Under Test

EMI

Electromagnetic Interference

EPWM

Enhanced Pulse Width Modulation

GPIO

General Purpose Input Output

INL

Integral Nonlinearity

KHz

Kilohertz

Ksps

Kilosample(s) per second

LSB Least Significant Bit (digits)

MCU

Micro-controller Unit

MHz

Megahertz

PWM

Pulse Width Modulation

RADC

Input Resistance Analog-to-Digital Converter

Rx

Receive

SD Standard deviation

SH

Sample and Hold

SINAD

Signal-Noise-Ratio+Distortion

SNR

Signal-Noise-Ratio

SOC

Start of Conversion

SysCtl

System Control

TBPRD

Time Base Period Register

THD

Total Harmonic Distortion

Tx

Transmit

UART

Universal Asynchronous Receiver/Transmitter

USB

Universal Serial Bus

VREF

Voltage Reference

VREFHI

Voltage Reference High

VREFLO

Voltage Reference Low

8

Table of contents

1 Introduction ... 13

1.1 Task specification. .. 13

1.2 Work flow ... 14

1.3 Development tools. ... 14

1.3.1 Tiva (TM4C123GHM6PM) microcontroller. ... 14

1.3.2 Piccolo Control Stick (TMS320F28069) microcontroller 14

1.3.3 Matlab .. 15

1.3.4 R-language ... 15

1.2.5 Code Composer Studio .. 15

1.2.6 Eclipse CDT .. 15

1.4 Micro-Controllers ... 15

2 Piccolo Control Stick (TMS320F28069) microcontroller ... 18

2.1 TMS320F28069 features. ... 18

2.2 Testing Piccolo board. .. 20

2.2.1 Piccolo (TMS320F28069) board testing ... 20

2.3 ADC Static Evaluation for Piccolo Control Stick .. 23

2.3.1 Input impedance of Analog pin ... 24

2.3.2 Sample and hold circuit. .. 24

2.4 Static performance parameters of Piccolo control stick 25

2.4.1 External voltage reference. .. 25

2.4.2 Offset Error and Full scale error .. 27

2.4.3 Sample and hold window .. 29

2.4.4 Gain Error .. 30

2.4.5 Integral Nonlinearity (INL) ... 30

2.4.6 Differential Nonlinearity (DNL) ... 31

2.5 Dynamic performance parameters .. 32

9

2.5.1 Piccolo board dynamic performance. .. 32

2.5.2 Enhanced Pulse Width Modulator (ePWM) .. 32

3 Tiva C Series - TM4C123GH6PM .. 38

3.1 Tiva ADC electrical characteristics .. 40

3.2 Testing Tiva board .. 41

3.3 ADC Static Evaluation of Tiva board. .. 42

3.3.1 Single ended Input ... 42

3.3.2 Noise Error .. 43

3.3.3 Differential input ... 45

3.3.4 Dithering .. 46

3.3.5 Integral Nonlinearity (INL) ... 46

3.3.6 Differential Nonlinearity (DNL) ... 47

3.4 Dynamic Evaluation Tiva C board ... 48

3.4.1 Run-Mode Clock Gating Control 0 (RCGC0) register. 48

4 Results ... 53

4.1 Piccolo (TMS320F28069) results. .. 53

4.2 Tiva C (TM4C123GH6PM) results .. 55

4.3 Future work... 56

4.4 Conclusion .. 56

Reference .. 58

Appendix 1 - Program Codes ... 60

Appendix 2 - Blinking LED code ... 60

Appendix 3 - Hello World program code ... 62

Appendix 4 - ADC Differential sampling code .. 65

Appendix 5 - ADC Single Ended Sampling code. ... 69

Appendix 6 - Matlab code used to develop FFT .. 74

Appendix 7 - R-language code to analyse ADC data logs. .. 77

10

List of figures

Figure 1. Micro controller block diagram. ... 16

Figure 2. Piccolo control stick microcontroller. ... 18

Figure 3. Architecture of functional block Piccolo diagram. ... 19

Figure 4. Simple “hello world” code and “Blinking LED”. ... 21

Figure 5. "hello world" console output. .. 21

Figure 6. Program code that collects ten samples from the ADC. 22

Figure 7. Ten collected samples from the ADC. .. 22

Figure 8. Piccolo ADC architecture. .. 23

Figure 9. ADCIN pin . .. 24

Figure 10. sample and hold circuit. .. 24

Figure 11. Block diagram of the equipment set up. ... 25

Figure 12. ADC register for sample and hold window... 26

Figure 13. Program code that controls the input voltage .. 26

Figure 14. Program code collects 20000 samples. ... 26

Figure 15. Matlab code to analyse datalogs. .. 26

Figure 16. Piccolo transfer function. .. 27

Figure 17. Program code in R-language to calculate offset. .. 28

Figure 18. Offset Error and full scale error. ... 29

Figure 19. Gain error of the piccolo control stick ADC. .. 30

Figure 20. Piccolo INL error .. 31

Figure 21. Piccolo DNL error. .. 31

Figure 22. ePWM modules. .. 32

Figure 23. Matlab code analyse Input sine wave. .. 33

Figure 24. Sinusoidal input at 1KHz. ... 34

Figure 25. Matlab code for FFT output .. 34

Figure 26. Single sided fft of the input sinusoidal signal. .. 35

Figure 27. Program code for windowing. ... 35

Figure 28. Blackman window Sine input. .. 36

Figure 29. Normalized FFT. ... 36

11

Figure 30. Tiva C board . .. 38

Figure 31. Architecture of Tiva TM4C123x series . .. 39

Figure 32. ADC modules in a TM4C123GH6PM. ... 39

Figure 33. Program code for the temperature sensor in the Tiva board. 41

Figure 34. ADC results from temperature sensor. .. 41

Figure 35. Test set up of Tiva C series board ... 42

Figure 36. Transfer function of Tiva c series board. .. 43

 Figure 37. R language script used to analyse the data log. .. 44

Figure 38. ADC output code and the analog input. .. 44

Figure 39. Program code for differential input mode. .. 45

Figure 40. ADC output of a Tiva board with dithering. ... 46

Figure 41. Tiva INL error. .. 47

Figure 42. Tiva DNL error. .. 47

Figure 43. Program code for sample rate register. ... 48

Figure 44. System control register. ... 48

Figure 45. Tiva sine wave FFT output spectrum. ... 49

Figure 46. FFT spectrum of a sine signal. .. 49

Figure 47. Matlab code for half sided spectrum. .. 50

Figure 48. Single sided spectrum in dB. ... 50

Figure 49. Blackman window Sine Input. .. 51

Figure 50. FFT using Hamming window 51

12

List of tables

Table 1. Electrical characteristics of the TMS320F28069. .. 20

Table 2. Different piccolo logs tested. .. 29

Table 3. TBPRD register. ... 33

 Table 4. Program code for ePWM register. ... 33

Table 5.Electric characteristics of Tiva board. ... 40

Table 6. Analysed Tiva logs ... 45

Table 7. Dynamic characteristics of the Tiva board. .. 49

Table 8. Data sheet offset error. ... 53

Table 9. Actual Offset error. ... 53

Table 10. Piccolo Test results ... 53

Table 11. Piccolo INL/DNL (Datasheet). ... 54

Table 12. Piccolo INL/DNL test results. .. 54

Table 13. Piccolo Data logs (INL/DNL). ... 54

Table 14. Dynamic parameters of piccolo (TMS320F28069) 54

Table 15. Tiva static results. ... 55

Table 16. Tiva INL/DNL error (Data sheet)... 55

Table 17. Tiva INL/DNL error (Test results). .. 55

Table 18. Data logs INL/DNL errors. .. 55

Table 19. Dynamic performance written in data sheet. .. 56

Table 20. Test results for dynamic performance. ... 56

13

1 Introduction

Engineers use microcontrollers for different applications. These microcontrollers have

analog-to-digital converters (ADC) they use to convert analog values like voltages to

digital code [1]. In the real world, signals are mostly available in analog form. To use a

microcontroller in this type of system, an ADC is required, so that analog signals can be

converted to the digital values. Successive-Approximation ADCs (SAR), this is the

most common architecture used for data acquisition applications. The ADCs in Piccolo

and Tiva boards fall in the SAR category. Since 1940s the architecture has been utilized

in experimental pulse-code-modulation (PCM) systems by Bell Labs [2]. The SAR

ADCs come with different resolutions and sampling rates in MHz. These ADCs have an

input sample and hold window that helps to maintain a constant signal during the

conversion cycle.

ADCs come with different resolution (8bits, 12bits) depending on the requirements of

the application. A 12-bit-resolution analog-to-digital converter (ADC) does not

necessarily mean the system will have 12-bit accuracy [1], [3]. Much to the surprise of

engineers, some ADCs will exhibit much lower performance as compared to what is

written in the datasheet. When this is highlighted during the first prototype test,

engineers will panic looking for what is affecting the performance of ADC. Many hours

are spent reworking the design as the deadline for preproduction builds fast approaches

[4].

It is very important to carry out a thorough understanding of ADC performance before

building the design [5]. Analysis of the ADC performance will reveal subtleties that

often lead to less than desired performance. The accuracy of analog to digital converter

has an impact on overall system efficiency. To improve accuracy you need to

understand the errors associated with the ADC and the parameters affecting them. This

is the main reason; you need to do some careful preparation before starting your

development. Understanding ADC performance will help in selecting the right ADC for

an application [6].

1.1 Task specification.

The assignment of this project was to analyze and evaluate the ADC performance of the

Piccolo control stick and Tiva c series board in real time. ADC testing is a challenging

task. A comparison was made between what is written in the data sheets of these boards

and what really happens in the real world when the ADC is tested. Often datasheets

include ADC performance characteristics but when the ADC is tested in an application

it performs below expectation. Static and dynamic Parameters were tested to measure

the ADC‟s performance for the above mentioned boards. These parameters are critically

important to instrumentation applications, medical applications, image processing, in

which accuracy of each converted code is of major concern.

14

Goals

The goals of this project are the following

 Overview of micro controllers in general and their importance in the

development of applications.

 Analyze and establishing an over view of piccolo control stick

(TMS320F28069) and Tiva (TM4C123GHM6PM) microcontrollers.

 Perform static and dynamic parameter evaluation of analog digital converters for

both micro controller boards mentioned above.

 Test ADC performance at electrical absolute maximum values.

 Draw a comparison between the information written in the data sheets of both

micro controllers with what is actually obtained from the real time test

1.2 Work flow

This thesis work is composed of four chapters. Chapter 1 is the introduction chapter. In

this chapter an overview of the goals and task specification is described. A general look

at the micro controllers and the tools used is also discussed. In chapter 2 the Piccolo

control stick is introduced, static and dynamic tests are performed. In chapter 3 The

Tiva board is introduced, static and dynamic performances are discussed. In chapter 4

results are discussed in detail and in section 4.4 a conclusion about the work is made.

1.3 Development tools.

This section describes the tools that have been used for development of the test software

and hardware in this project.

1.3.1 Tiva (TM4C123GHM6PM) microcontroller.

The Tiva C Series is a low-cost microcontroller from Texas Instruments (TI) [7]. This

platform, together with the integrated development environment (IDE) Code Composer

Studio (CCS) [7] provides tools to develop and debug embedded applications with

C/C++ programming. Configurable modules with pre-defined function libraries allow

development at a high abstraction level that is easy to use.

1.3.2 Piccolo Control Stick (TMS320F28069) microcontroller

TMS320F28069 Piccolo Microcontroller device is members of the C2000™ Piccolo

MCU platform for use within embedded control applications [8]. It‟s a high

performance low-cost 12 bit microcontroller. This platform, together with the integrated

development environment (IDE) Code Composer Studio (CCS) provides tools to

develop and debug embedded applications with C/C++ programming.

15

1.3.3 Matlab

MathWorks is a useful tool for signal analysis in this project [9], MATLAB is chosen as

a tool for analyzing the data logs collected for signal processing.

1.3.4 R-language

R is a language and environment for statistical computing and graphics [10]. R provides

a wide variety of statistical (linear and nonlinear modeling, classical statistical tests,

time-series analysis, classification, clustering and graphical techniques, and is highly

extensible [10].

1.2.5 Code Composer Studio

This tool was used to analyze the functionalities of the boards and to verify that each

hardware module was implemented and functioning as intended. CCS is also used to run

programs that trigger the conversions of the on board ADCs.

1.2.6 Eclipse CDT

The CDT Project provides a fully functional C and C++ Integrated Development

Environment based on the Eclipse platform [11]. This tool is used to connect to the data

acquisition device that collects the samples codes for the ADC.

1.4 Micro-Controllers

As early as 1971 Texas instruments had started producing microcontrollers [6]. The

TMS 1802 from Texas instruments was used in applications such as cash registers,

watches and measuring instruments. In 1974 Texas instruments introduced the TMS

1000 that included memory i.e ROM, RAM and I/O all on a single chip [3]. Other

companies that contributed to early microcontroller development were Intel with the

Intel 8048 microcontrollers and Motorola with 68HCxx series of microcontrollers [12].

Today, billions of microcontrollers are produced per year, and the controllers are

integrated into many appliances we have grown used to, like household appliances

(microwave, washing machine, coffee machine) [13]. The internal architecture of

microcontrollers is closely related. Figure 1 shows the block diagram of a typical

microcontroller. All components are connected using an internal bus and are all

integrated on one chip. The modules are connected to the outside world via I/O pins.

16

Microcontroller block diagram

 Figure 1. Micro controller block diagram [4].

Processor Core: This is the Central Processing Unit (CPU) of the controller. It‟s made

up of the arithmetic logic unit, the control unit and the registers (stack pointer, program

counter, accumulator register, register file) [3].

Memory: The memory is divided into program memory and data memory. In larger

controllers, a DMA controller handles data transfers between peripheral components

and the memory.

Interrupt Controller: Interrupts are useful for interrupting the normal program flow in

case of (important) external or internal events. In conjunction with sleep modes, they

help to conserve power.

Timer/Counter: Microcontrollers carry with them 2-3 Timer/Counters; these are used to

timestamp events and measure intervals.

PWM (pulse width modulation): This is usually used to drive motors or for safety. The

PWM output can be joined with an external filter to realize a cheap digital/analog

converter.

Digital I/O: Parallel digital I/O ports are one of the main features of microcontrollers.

The number of I/O pins varies from 3 to over 90, depending on the controller family and

the controller type.

Analog I/O: Most microcontrollers have integrated analog/digital converters, which

differ in the number of channels and their resolution. The analog module is also

integrated with an analog comparator.

Interfaces: Controllers have at least one serial interface which can be used to download

the program and for communication with the development PC in general. Serial

interfaces can also be used to communicate with external peripheral devices, most

controllers offer several interfaces like SPI and SCI [2]. Larger microcontrollers contain

PCI, USB and Ethernet interfaces.

17

Watchdog Timer: The biggest application area of microcontrollers is in safety-critical

systems, it is important to guard against errors in the program or the hardware. The

watchdog timer major function is to reset the controller in case of software “crashes”.

Debugging Unit: Microcontrollers have additional hardware to allow remote debugging

of the chip from the PC [2].

18

2 Piccolo Control Stick (TMS320F28069) microcontroller

TMS320F28069 Piccolo Microcontroller device is members of the C2000™ Piccolo

MCU platform for use within embedded control applications [8]. It‟s a high

performance low-cost 12 bit microcontroller [8]. In this chapter the TMS320F28069

board internal performance is tested. The test investigation will be centred on the static

and dynamic performance of the ADC. The aim is to analyse the ADC performance

with in normal values and at absolute maximum. Draw a comparison between obtained

results and datasheet results.

2.1 TMS320F28069 features.

The following are some of the main features [8].

 Quick and easy evaluation of all of the advanced capabilities for just $39

 Convenient and easy-to-use GUI provides hands-on experimentation with the

floating point capabilities of the Piccolo F2806x MCU.

 Slightly larger than a memory stick

 On-board emulation, access to all I/O pins

 Detailed example software and documentation

 Complete hardware schematics, Gerber files.

The figure 2 below shows a piccolo control stick. All components are connected using

an internal bus and are all integrated on one chip. The modules are connected to the

outside world via peripheral header pins.

Figure 2. Piccolo control stick microcontroller [8].

19

A basic CPU architecture is depicted in Figure 3 below. It consists of the functional

block diagram of the device and the communication busses.

Figure 3. Architecture of functional block Piccolo diagram [8].

The architecture of a TMS320F28069 Piccolo can be divided into three parts i.e

peripherals, Memory, CPU and bussing. The processor core (CPU) is the main part of

the microcontroller made up of the 32 bit auxiliary registers [8], 64bit multiplier and an

atomic arithmetic logical unit. The design is highly integrated, high performance

solution for demanding control applications. The memory space on the F28069 is

divided into program memory and data memory. There are several different types of

memory available that can be used as both program memory and data memory [8].

This chapter is centered on the ADC performance of the TMS320F28069 piccolo

control stick. The ADC block is a 12-bit converter. It has up to 16 single-ended

channels pinned out. The ADC also contains two sample-and-hold units for

simultaneous sampling with a full range analog input: 0 V to 3.3 V fixed.

20

The table 1 below shows the electrical characteristics of the TMS320F28069

 Table 1. Electrical characteristics of the TMS320F28069 [8].

2.2 Testing Piccolo board.

Verifying the boards was carried out in several ways and had to be done thoroughly, it

is the only way to guarantee that the board is in good working conditions. In this

section, the board was first tested separately. The piccolo control stick was tested using

the example projects that come with the control suite package using the CCS debugger.

This tool was used to analyze the function of the control stick to verify that all modules

function as intended.

2.2.1 Piccolo (TMS320F28069) board testing

A simple hello world example that returns hello world (//! A very simple ``hello world''

example). It simply displays ``Hello World!'' to the console (Real Terminal) and

„Blinking LED” that makes the on board LED blink were some of the example projects

run to test for proper functionality.

21

Below is a simple “hello world” code and “Blinking LED”

Figure 4. Simple “hello world” code and “Blinking LED”.

The output is printed to the real terminal console via uart and the blue Led is turned on.

Figure 5. "hello world" console output.

The piccolo control stick has a 12 bit ADC. To test the ADC of the piccolo control stick

board a simple code that returns ten ADC values is used to collect ten samples when

“M” is pressed in the console terminal.

22

The code below shows an interrupt that collects ten samples from the ADC when M

command is pressed in the console.

Figure 6. Program code that collects ten samples from the ADC.

On the console ten samples from the ADC are collected when “M” command is pressed

in the console.

Figure 7. Ten collected samples from the ADC.

23

2.3 ADC Static Evaluation for Piccolo Control Stick

An Analog Digital Converter (ADC) is a module that is made up of mainly three

components i.e. analog input, reference voltage input and digital outputs [8]. The ADC

`s main function is to convert the analog input signal to a digital output value that

represents the size of the analog input comparing to the reference voltage [12]. In other

words it samples the input analog voltage and produces an output digital code for each

sample taken.

The block diagram below shows piccolo ADC architecture.

Figure 8. Piccolo ADC architecture [8].

As previously mentioned the ADC of the piccolo control stick is a 12 bit ADC with a

voltage range of (0-3.3) V. The 12 bit converter is fed by two sample and hold circuit

with up to 16 analog input channels. It‟s important to note that the ADC is not

sequencer based; this makes it easy to create a series of conversions with only a single

trigger. Different parameters determine the performance of the ADC for a piccolo

control stick. These are relied on to determine the accuracy of the ADC. In this chapter,

parameters have been grouped into static performance parameters and dynamic

performance parameters.

24

2.3.1 Input impedance of Analog pin

Before looking at the parameters it‟s important to discuss the input peripheral pins and

the sample and hold circuit. The pins can be designed as a RC circuit. The CADC is the

hold capacitor and the RADC is the resistance caused by the sampling switch [8]. The

figure 9 below shows the ADCIN pin.

Figure 9. ADCIN pin [8].

Minimum impedance is archived when the hold capacitor is fully discharged. The

current that flows to the pin reduces when the capacitor is charged again.

2.3.2 Sample and hold circuit.

The hold capacitor is charged by this circuit. The sample and hold capacitor circuit is

responsible for sampling the input signal. The analog pin is disconnected and the

voltage across the capacitor is converted to digital code using successive approximation.

Figure 10. sample and hold circuit [8].

Immediately when the ADC conversion starts, the switch is closed. This connects the

hold capacitor to the analog input along the internal ADC resistance RADC. This causes

a charging current to flow into the analog input and the capacitor starts to charge.

25

2.4 Static performance parameters of Piccolo control stick

Static performance parameters, these are parameters that are not related to ADC‟s input

signal. The test is influenced by the DC component of the input voltage. The concept is

to put one input voltage value and see 31 ADC output codes for each input. Static

parameters include gain error, offset error, full scale error and linearity errors. For the

piccolo control stick these parameters have been shown in the accuracy section in

table1.

2.4.1 External voltage reference.

Two pins are chosen to generate reference voltage. The internal band gap is responsible

for the choosing the reference voltage for the ADC. The band gap converts the voltage

based on a fixed scale (0-3.3v) range. In this case the internal band gap is not used;

VREFLO and VREFHI are externally controlled.

A set up was made to test the absolute maximum and minimum voltage in takes for the

ADC. The block diagram below shows components that are used to test for the voltage

range input and the ADC output values of the piccolo control stick 12 bit converter.

Figure 11. Block diagram of the equipment set up.

In this test the full range (-0.9-3.4) V is divided into 2000 equal steps. The NI DAQ

takes 31 samples at every voltage input. A connection is established between the piccolo

control stick and the PC via a USB connection. A program code is debugged and run in

code composer studio. The code collects 31 samples from the ADC. Channel ADCA0 is

connected to the national instrument data acquisition device. R-language and Matlab are

used to analyze the collected data logs. The ePWM is used to trigger the start of

conversion event (SOC). The ACQPS is used to determine the sample and hold window

size. The minimum number of sample cycles possible is 7 cycles which equates to (6

ACQPS). The total sampling time = sample window size + conversion time of the ADC.

In case of over sampling SOC0 and SCO1 can be given the same value e.g. 28 cycles =

27 ACQPS

26

Figure 12. ADC register for sample and hold window.

A program code that controls the input voltage is run in eclipse simultaneously. The

physical channel and the data acquisition device are specified as well. The code below

shows data acquisition channel and the voltage range being used. In this case channel

ADCINA0 and a voltage range of (-0.9 – 3.410) V is used. It should be noted that the

absolute maximum voltage rage based on the piccolo control stick data sheet is (-0.3 –

4.6) V.

Figure 13. Program code that controls the input voltage

This program code collects 20000 samples of different voltage input that are converted

to digital values by the ADC.

Figure 14. Program code collects 20000 samples.

The samples are collected in a data file and analyzed using Mat lab program.

Figure 15. Matlab code to analyse datalogs.

27

The figure 16 below shows a transfer function - plot of analyzed data of the analog input

against the ADC values.

Figure 16. Piccolo transfer function.

The transfer function of an ADC is a plot of the voltage input to the ADC versus the

output codes from the ADC. The plot is not continuous but is a plot of 2
N
codes,

where N is the ADC's resolution in bits. In this case N=12 bits giving us 4096 codes.

The ideal transfer function plot is a straight line. It‟s obtained by connecting the codes at

the code-transition boundaries. Figure 16 doesn‟t show a straight line but something

close to a straight line. When the input voltage is less than 0, the digital value returned

by the ADC is 0. When the voltage input is around 3.3974V the digital value returned is

4095 codes. Beyond 3.397V the ADC begins to saturate hence the horizontal flat line as

shown in figure 16.

2.4.2 Offset Error and Full scale error

Offset error is caused by the deviation from the ideal voltage input at code 0. At code 0

the input voltage is not 0 volts. Full scale error, this is the difference between the actual

last transition voltage and the ideal last transition voltage. To obtain these errors ADC

data from the piccolo control stick was analyzed using a program code in R-language. A

compensation coefficient is used to get the horizontal output of the data. Below is the

code used to plot figure 18.

28

Figure 17. Program code in R-language to calculate offset.

The offset error in this case is -13.3 digits and full scale error is 0.019 digits. Offset

error can be a positive or negative value. The full scale error is calculated by subtracting

the relative scale (RelScale) from 1. In figure 18 below the black color represents the

ADC codes plus noise and the blue is the average of the noisy codes. The average also

shows the internal noise in the converter. The ADC starts to sample when the input

voltage is around 0.11V. The full scale is attained at around 3.29V. Offset Error in volts

is calculated using this equation. Offset Error (V) = Error in LSB × Maximum Input /

(number of bits). Therefore in this case the full scale error in volts would be -0.01071V.

29

The figure 18 below shows the offset error and full scale error.

Figure 18. Offset Error and full scale error.

The black plot shows the noise distribution for each code from 0 to full scale. It‟s very

important to understand the noise performance of the converter across all codes. In this

case the noise of the converter is a function of its codes. In this particular acquisition log

file, we have a stable distribution of the noise across all codes. The blue plot in figure

18 shows the distribution of noise, perturbation at the beginning codes and at the end in

higher codes. The blue plot also shows us that the noise distribution is even across all

codes.

2.4.3 Sample and hold window

The sample and hold window gives flexibility to the rate at which the sampling

capacitor of the ADC is charged. Every ADCSOCxCTL register in made of a 6 bits

field. The sample and hold window size is determined by this register. In this work

different sample and hold windows were used to observe their effect on the ADC output

code from four different data logs.

 Sampleand

hold

Frequency

(Hexa

decimal)

Offseterror

(digits)

Full scale

error(digits)

Maximum

Average

error

(digits)

SD

Log D 6 X80 5.6 0.031 4.7 1.39

Log E 13 X 28 -17 0.017 -2.3 1.41

Log F 27 X100 -12 0.019 1.8 1.40

Log G 57 X100 -13 0.019 -2.1 1.20

Table 2. Different piccolo logs tested.

30

From the table 2 above its observed that the sample and hold window has so much

effect on the offset and gain error and on the stability performance of the ADC result

e.g. log D and log E.

2.4.4 Gain Error

The error in ADC is measured in comparison with the slope of the ideal transfer

function. The ideal transfer function line is perfectly linear. At 0V the output code is

exactly 0 and at 3.3V(Vref) the output code is exactly 4095. In real world such a linear

output cannot be archived. The figure 19 below shows the gain error of the piccolo

control stick ADC. The gain error in this case is 46 digits.

Figure 19. Gain error of the piccolo control stick ADC.

2.4.5 Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of individual code from the ideal straight line

drawn from zero to full scale. At point zero, there is 0.5LSB before the first transition

code and full scale occurs at one half LSB beyond the last code transition. To measure

the deviation, one has to start from the center of each particular code to the ideal straight

line between two points. The Piccolo board integral nonlinearity is tested using the

static ADC data logs collected. This is done with the histogram method using the R-

code. INL error can be positive or negative i.e. +1LSB or -1LSB. INL in this case is

approximately +5/-10 LSB. The figure 20 below shows piccolo INL error.

31

Figure 20. Piccolo INL error

2.4.6 Differential Nonlinearity (DNL)

In an ideal transfer function each code transition is 1LSB apart. In reality there are

deviations from the ideal LSB value. A DNL error can be positive or negative i.e.

+1LSB or -1LSB. The piccolo control stick DNL is tested with the static data logs

collected. This is done with the histogram method using the R - code previously used to

test the piccolo control stick. The figure 21 below shows DNL error. DNL= +4/-4 LSB

Figure 21. Piccolo DNL error.

32

2.5 Dynamic performance parameters

Dynamic performance parameters, these are parameters related to ADC‟s input signal.

These parameters include signal-to-noise ratio (SNR), total harmonic distortion (THD),

signal to noise and distortion (SINAD) and effective number of bits (ENOB).This

section show test results from the dynamic test of the Piccolo ADC.

2.5.1 Piccolo board dynamic performance.

The Piccolo control stick is connected to a signal generator using two wires, one of the

wires is connected to ground and the other is connected to ADCIN4. The board is

connected to a pc via a USB connection. The program code used in the previous tests to

trigger samples from the ADC is used to collect data logs of 300 samples. In this test a

sinusoidal signal of different frequencies is used to analyze the behavior of the on board

ADC. According to the data sheets the board has a fast conversion rate: Up to 80ns.

Before starting the test a better understanding of the sample rate control is discussed.

2.5.2 Enhanced Pulse Width Modulator (ePWM)

In this project the F28069 control stick uses the ePWM1 to drive the ADC sampling

rate. The ePWM in the piccolo is built up from smaller single channel modules with

separate resources, together these can operate as required to form a system [8]. Figure

22 below shows the different modules.

Figure 22. ePWM modules [8].

In this project the Time-Base Period Register (TBPRD) is configured in code composer

studio to control the sampling rate of the ADC. The TBPRD register sets up the pwm

frequency using (0-15) bits. These bits set the period of the time base counter.

33

The table 3 below shows the fields of the TBPRD register.

Table 3. TBPRD register [8].

The code used to determine the sample rate of 300ksp is shown below.

 Table 4. Program code for ePWM register.

The first sample data collected is used to analyze the behavior of the piccolo control

stick. The sine wave input has a frequency of 1 KHz and the sampling rate is about

300ksp.

The output ADC codes are analyzed using the following Matlab code.

Figure 23. Matlab code analyse Input sine wave.

34

Figure 24. Sinusoidal input at 1KHz.

In order to understand the noise component of the signal and the harmonics a

logarithmic scale is used and the magnitude is converted to dB. The FFT output is a

single sided spectrum. The frequency scale is in KHz to correctly position the spectrum.

Figure 25. Matlab code for FFT output

35

Figure 26. Single sided fft of the input sinusoidal signal.

The FFT output is used like an analog spectrum analyzer to measure the amplitude of

the various harmonics and noise components of a digitized signal.

Windowing

Although performing an FFT on a signal can provide great insight, it is important to

know the limitations of the FFT and how to improve the signal clarity using windowing.

The code below is used to analyze the sinusoidal in put using Blackman window.

Figure 27. Program code for windowing.

36

Figure 28. Blackman window Sine input.

The figure 29 below shows the normalized FFT output using Hamming window. The

main lobe is -3dB and relative side lobe attenuation of -6.1dB.

Figure 29. Normalized FFT.

37

Signal to Noise Ratio (SNR)

SNR is used to characterize the quality of the signal of the analog digital converter.

SNR is determined by many noise sources in addition to quantization noise. The analog

digital converter's resolution and quantization level both help to establish its noise floor.

The actual SNR for a 1KHz sinusoidal input signal can therefore be calculated in

Matlab.

p= snr(signal,300*KHz,6)

SNR = 49.4103(dB)

Signal-to-Noise Ratio + distortion (SINAD)

SINAD is defined as the ratio of signal plus noise plus distortion and noise plus

distortion. SINAD is the ratio of the rms value of the measured input signal to rms sum

of all other spectral component below nyquist frequency. The SINAD is computed

using matlab

w= sinad(signal,300*KHz)

SINAD = 48.6854(dB)

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first 9 harmonic components of the rms value of

the measured input sinusoidal signal. The actual THD is calculated in matlab.

r= thd(signal,300*KHz,9)

r = -51.3(dB)

THD = -51.3(dB) = 0.0027%

Effective Number of Bits (ENOB)

ENOB can be directly calculated as ENOB= (w-1.76)/6.02

ENOB = 7.7949 bits ~8bits

Spurious-Free Dynamic Range (SFDR)

SFDR is the difference between the rms amplitude of the input signal and the RMS

value of the largest spur observed in the frequency domain. SFDR is calculated in dB.

This is a crucial specification that is used to characterize the dynamic performance of a

signal generator The actual SFDR is calculated in matlab. SFDR = 53.4551(dB)

38

3 Tiva C Series - TM4C123GH6PM

The Tiva C Series TM4C123GH6PM is a low-cost evaluation platform from Texas

Instruments (TI) [7]. This platform, together with the integrated development

environment (IDE) Code Composer Studio (CCS) provides tools to develop and debug

embedded applications with C/C++ programming. It has an ARM Cortex-M4

microcontroller that provides high performance and advanced integration [7].

The following are some of the features of the Tiva C Series - TM4C123GH6PM [14].

 Motion control PWM

 USB Micro-AB connector

 Device mode default configuration

 Host/OTG modes supportable

 RGB LED

 Two user switches (application/wake)

 Available I/O brought out to headers on a 0.1-in (2.54-mm) grid

 On-board ICDI

 Switch-selectable power sources:

 ICDI

 USB device

 Reset switch

 Preloaded RGB quick start application

The board is comes with USB library, the peripheral driver library and stackable

headers to expand the capabilities.

Figure 30. Tiva C board [15].

39

The Tiva C Series platform makes use of the most advanced ARM architecture core

for MCUs, the Cortex-M4 is 32-bit processor architecture.

The block diagram below shows the architecture of the Tiva TM4C123x series.

 Figure 31. Architecture of Tiva TM4C123x series [15].

Tiva TM4C123GH6PM MCUs has two ADC modules (ADC0 and ADC1) that can be

used to convert continuous analog voltages to discrete digital values. The ADC operates

from both the 3.3V analog and 1.2V digital power supplies. Each ADC module is

independent and has 12-bit resolution. The ADC is made up of 12 shared analog input

channels and maximum sample rate of one million samples/second. Both modules have

8 digital comparators.

The block diagram below shows two ADC modules in a TM4C123GH6PM

Figure 32. ADC modules in a TM4C123GH6PM [7].

40

3.1 Tiva ADC electrical characteristics

Table 5.Electric characteristics of Tiva board [7].

It should be noted that analog input pads can handle voltages beyond 0 - 3.3V range but

the analog input voltages must remain within the limits prescribed by Table 5 to

produce accurate results.

41

3.2 Testing Tiva board

The Tiva C series board was also tested using the inbuilt projects that come with Tiva

ware package using the CCS debugger. The Hello world example, blinking Led and

temperature sensor examples were used to test the proper functioning of the board as

well as the ADC. The figure 33 below shows sample output of the temperature readings

form the board in Celsius (C) and Fahrenheit (F).

Below is a simple code for the temperature sensor in the tiva board.

Figure 33. Program code for the temperature sensor in the Tiva board.

Output showing different temperatures in Celsius and Fahrenheit.

Figure 34. ADC results from temperature sensor.

42

3.3 ADC Static Evaluation of Tiva board.

Static performance parameters were tested for tested for the Tiva board as well. The test

is influenced by the DC component of the input voltage. The concept is to put one input

voltage value and see 31 ADC output codes for each input. These parameters include

gain error, offset error, full scale error inl, dnl. The block diagram below shows the set

up used to test the Tiva C series board.

Figure 35. Test set up of Tiva C series board

A connection is established between the Tiva board and the PC via a USB connection.

A program code is debugged and run in code composer studio. The code collects 31

samples from the ADC. Channel ADCAIN0 is connected to the national instrument data

acquisition device. A program code that controls the input voltage is run in eclipse

simultaneously with code composer studio. The data collected is sent to the data log and

later analyzed in R-language and Mat lab/Simulink.

3.3.1 Single ended Input

Single-ended input measure the voltage between the input channel (AIN0/PE3) and

analog ground common to all in puts. The single ended input logs were collected and

analyzed. In this test, single-ended input was connected with one wire from AIN0 to the

data acquisition input interface and the other wire to the data acquisition input interface

ground. In this test, it is assumed that the ground is at a constant 0V, but in reality the

ground is at a different level in different places. The difference in levels can drive large

currents, known as ground loops. This can lead to noise errors when using single-ended

inputs. These noise errors are shown in the transfer function below.

43

The figure 36 below shows the transfer function of Tiva c series board.

Figure 36. Transfer function of Tiva c series board.

 The ADC transfer function shown in the figure 36 above doesn‟t look like the ideal

transfer function. This is caused by the internal noise within the board and the external

noise errors caused by grounding. The transfer function of an ADC is a plot of the

voltage input to the ADC versus the output code's from the ADC. The plot is not

continuous but is a plot of 2
N
codes, where N is the ADC's resolution in bits. In this case

N=12 bits giving us 4096 codes. The ideal transfer function plot is a straight line. The

gain error is calculated by finding the difference in slope of the ideal transfer function

and the ADC transfer function. In this case the gain error is positive with 52.6digits.

3.3.2 Noise Error

Single-ended inputs are sensitive to noise errors. Noise is unwanted signals picked up

within the board and environmental electrical activity. Single-ended inputs make it hard

to distinguishing between the signal and the noise. This is one of the reasons that affect

the ADC output leading to a noisy transfer function. The transfer function cannot clearly

show the noise across each individual code of the ADC. In this project analysis is done

to see how the noise is spread across all the 4095 ADC codes.

44

R language script is used to analyze the data log.

 Figure 37. R language script used to analyse the data log.

In this test the full range (-0.05-3.6) V is divided into 2000 equal steps. The NI DAQ

takes 31 samples at every voltage input. The figure 38 below shows the ADC output

code and the analog input from 0 to full scale. The black color shows all the codes and

the noise associated with each code. The blue color shows the average error code across

the ADC output. The noise is evenly distributed across all codes.

Figure 38. ADC output code and the analog input.

45

Four data logs were analyzed with 2000 analog samples and 31 ADC output codes.

The table 6 below show different errors from the data analyzed from different logs.

 Offset error

(digits)

Full Scale

Error

(digits)

Maximum

Average Error

(digits)

SD Relative

scale

LogA1 -2 -0.002 -1.3 1.23 1.002

LogB1 -2.8 -0.003 -2.1 1.22 1.003

LogC1 -1.2 -0.002 -1.8 1.26 1.002

LogD1 -1.9 -0.003 -1.5 1.18 1.002

Table 6. Analysed Tiva logs

3.3.3 Differential input

To solve the problem of noise error caused by single ended input, differential input is

used. This measures the voltage between two individual inputs within a common mode

range. The measurement is independent of the low level ground which makes it more

immune to noise. The two wires in this case are both exposed to electromagnetic

interference (EMI). The national instrument DAQ input measures only the difference in

voltage between the two wires, and the EMI common to both is ignored. The code

below is used to collect ADC samples in differential input mode.

 Figure 39. Program code for differential input mode.

A few lines of code were changed from the single ended input to sample the board in

differential input mode.

46

3.3.4 Dithering

Dithering is the adding of a bit of white noise to the ADC output [7]. The dither bit is

made active by adjusting the ADCCTL register which is used to reduce random noise in

ADC sampling and keep the ADC operation within the specified performance limits.

The dither bit should be enabled in the ADCCTL register along with hardware

averaging in the ADC Sample Averaging Control (ADCSAC) register. It should be

noted that the dither bit is disabled by default at reset. When dithering is introduces in

the Tiva board the noise increases and the codes are not easy differentiated they are

covered in a noise cloud. The figure 40 below shows the ADC output of a Tiva board

with dithering.

Figure 40. ADC output of a Tiva board with dithering.

3.3.5 Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of individual code from the ideal straight line drawn

from zero to full scale. At point zero, there is 0.5LSB before the first transition code and

full scale occurs at one half LSB beyond the last code transition. To measure the deviation,

one has to start from the center of each particular code to the ideal straight line between two

points. The Tiva board integral nonlinearity is tested with the static ADC data logs collected

using histogram method. In this method the first and last bin (codes 0 and 4095) are

eliminated then we calculate the average /expected count of the codes. INL is the sum

from the beginning up to current code (bin) of DNLs. The INL error is +7/-12 LSB.

47

Figure 41. Tiva INL error.

3.3.6 Differential Nonlinearity (DNL)

In an ideal transfer function each code transition is 1LSB apart. In reality there are

deviations from the ideal LSB value. A DNL error can be positive or negative i.e. +1LSB or

-1LSB. The Tiva board DNL is tested using the collected data logs. This is done with the

histogram method using the R-code code previously used to test the Tiva board. In this

method the first and last bin (codes 0 and 4095) are eliminated then we calculate the

average /expected count of the code(s). DNL is the difference at every bin (code) of

actual count from average. The DNL is around +7/-3 LSB.

Figure 42. Tiva DNL error.

48

3.4 Dynamic Evaluation Tiva C board

The Tiva board is connected to a signal generator using two wires, one of the wires is

connected to ground and the other is connected to the Tiva board peripheral pin PE3.

The board is connected to a pc via a USB connection. The code used in the previous

tests to trigger samples from the ADC is used to collect data logs of 3000 samples. The

samples are collected using real terminal console. In this test a sinusoidal signal at

different frequencies is used as the input of the on board ADC. The Sampling rate of the

ADC is the maximum back-to-back conversion rate. If it‟s not modified then it is

1MSPS maximum rate. The board has two ADCs and each has a conversion rate of up

to 1MSPS. This means that the board can archive a conversion rate of 2MSPS.

3.4.1 Run-Mode Clock Gating Control 0 (RCGC0) register.

The RCGCO register is used to drive the sampling rate of the Tiva board [7]. This

register determines the clock gating logic in normal run mode [7]. In other

microcontrollers that are closely related to the Tiva microcontroller like Stellaris the

ADC peripheral configuration register is used to determine the sample rate of the ADC.

In this project the RCGC0 is configured in code composer studio to control the

sampling rate of the ADC. The ADC sample rate can be set to 125K (0x0), 250K (0x1),

500K(0x2), or 1M (0x3) samples/second. According to the Tiva micro controller

datasheet the sample rate is set by configuring the MAXADC0SPD register bits. The

SYSCTL_RCGC0_ADC0SPD register is specifically used to set the ADC sample speed

in this project work. A pointer is used to insert the desired sample rate value into the

memory address of the register.

Figure 43. Program code for sample rate register.

The system control delay also affects the sample rate. A change in the system delay will

show significant change in the output signal.

When the changes have been made and saved in the code composer studio. The program

is run. The table below shows the sample rate changed to 200Ksps.

Figure 44. System control register.

49

The first sample data collected is used to analyze the behavior of the Tiva board. The

sine wave used has a frequency of 1Khz and the sampling rate is about 200ksp. The

FFT output spectrum of the signal is obtained by using the following Matlab code.

Figure 45. Tiva sine wave FFT output spectrum.

Figure 46. FFT spectrum of a sine signal.

The figure shows the fft spectrum of a sine signal with a frequency of 1KHz and

sampled at a rate of 200ksp. After 1500 bins the spectrum is mirrored at 2000bins.

A comparison is made between the dynamic characteristics in the Tiva ADC data sheet

and the results from analyzed data. The table below shows the dynamic characteristics

of the Tiva board as given in the data sheet.

Table 7. Dynamic characteristics of the Tiva board.

50

Comparing the analysis done in this work and the dynamic characteristics of the Tiva

board provided in the data sheet, a Matlab code was used to generate half of the

spectrum of the signal in dB.

Figure 47. Matlab code for half sided spectrum.

The figure below shows half of the spectrum in dB.

Figure 48. Single sided spectrum in dB.

51

Windowing

Although performing an FFT on a signal can provide great insight, it is important to

know the limitations of the FFT and how to improve the signal clarity using windowing.

The Matlab code 47 is used to analyze the sinusoidal in put using Blackman window.

Figure 49. Blackman window Sine Input.

Figure below 50 shows FFT of the input signal frequency normalised in radians.

Figure 50. FFT using Hamming window .

52

The figure 46 above shows a clear FFT using Hamming window the main lobe width is

-13.3dB and the relative side lobe -13.3dB.

Signal to Noise Ratio (SNR)

SNR is determined by many noise sources in addition to quantization noise. The analog

digital converter's resolution and quantization level both help to establish its noise floor.

The actual SNR for a 1KHz sinusoidal input signal can therefore be calculated in

Matlab.

p= snr(signal,200*KHz,6) – Where 200Ksps is equal to the sampling frequency.

SNR = 43.5549(dB)

The SNR is equal to 43.5549dB. This SNR represents 66% of the ~65dB SNR exhibited

by an ideal 12-bit ADC at 1KHz. As shown in the data sheet.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first 5 harmonic components of the rms value of

the measured input sinusoidal signal. The actual rms is calculated in mat lab.

r= thd(signal,200*KHz,5)

THD = -55.0482 (dB).

THD is equal to -55.0482(dB) = 0.0017%

Signal to Noise Ratio + Distortion (SINAD)

SINAD is the ratio of the rms value of the measured input signal to rms sum of all other

spectral component below nyquist frequency. The SINAD is computed using matlab.

w= sinad(signal,200*KHz)

w = 43.2435(dB)

The SINAD is equal to 43.2435dB. This SINAD represents 68.6% of the ~63dB SINAD

exhibited by an ideal 12-bit ADC at 1KHz. As shown in the data sheet.

Effective Number of Bits (ENOB)

ENOB can be directly calculated as ENOB = (SINAD - 1.76) / 6.02. ENOB= 8.9 bits.

This is for the sinusoidal input of 1 KHz.

Spurious-Free Dynamic Range (SFDR)

This is a crucial specification that is used to characterize the dynamic performance of a

signal generator. SFDR determines the relationship between the amplitude of the input

signal frequency being generated and the amplitude of the most prominent harmonic. In

an ideal world, the frequency domain of a pure analog signal has all power concentrated

at the desired frequency. However, due to noise and the nonlinearity of components,

frequencies are generated at different harmonics.

q = sfdr(signal,1*KHz)

q = 41.4803 (dB)

53

4 Results

All the goals, presented in section 1.1, for each of the two boards are achieved. An

overview of the Piccolo (TMS320F28069) and Tiva (TM4C123GH6PM) micro

controllers was done in chapter 1. The dynamic and static parameters affecting the

performance of the ADC of the two boards mentioned above are discussed and analysed

in chapters 2 and 3. In chapter 4 the results were presented in tabular form in

comparison with those presented in the data sheets of both boards.

4.1 Piccolo (TMS320F28069) results.

Offset error.

Maintaining the default sample and hold window at 6, x80 frequency the offset error is

shown in the table 8 below.

The offset error in the Piccolo (TMS320F28069) data sheet is indicated as follows.

Parameter Minimum Maximum Units

Offset Error 10 LSB

Table 8. Data sheet offset error.

The results obtained for the test conducted show the offset error as follows. Maintaining

the default sample cycles and frequency (Log D).

Parameters Minimum Maximum Units

Offset Error 5.6 digits

Table 9. Actual Offset error.

The offset error obtained in the test of the piccolo board is a round 5.6 digits ~ 6 digits.

Overall performance results from all the data logs collected.

 Sample and

hold

Frequency

(Hexa

decimal)

Offseterror

(digits)

Full scale

error(digits)

Maximum

Average

error

(digits)

SD

Log D 6 X80 5.6 0.031 4.7 1.39

Log E 13 X 28 -17 0.017 -2.3 1.41

Log F 27 X100 -12 0.019 1.8 1.40

Log G 57 X100 -13 0.019 -2.1 1.20

Table 10. Piccolo Test results

The results in table 10 above were obtained from four data logs with different sample

and hold window bits at different frequency. The default sample cycles in log D S/H

value and frequency are maintained in comparison to the datasheet. It‟s observed that

the sample and hold window has so much effect on the offset and gain error and on the

stability performance of the ADC result e.g. log D and log E.

54

Looking at the piccolo (TMS320F28069) data sheet the INL and DNL errors are

presented as follows.

Parameter Minimum Maximum Unit

Integral

Nonlinearity

-2 +2 LSB

Differential

Nonlinearity

-1 +1 LSB

Table 11. Piccolo INL/DNL (Datasheet).

From the results obtained from the tests done in this work the data from one log is

presented in the table 12 below.

Parameters Minimum Maximum Units

Integral

Nonlinearity

-10 6 LSB

Differential

Nonlinearity

-4 4 LSB

Table 12. Piccolo INL/DNL test results.

INL/DNL results from the four data logs.

Data logs Integral Nonlinearity Differential

Nonlinearity

Units

Log D +6/-10 +4/-4 LSB

Log E +10/-7 +4/-4 LSB

Log F +7/-4 +4/-4 LSB

Log G +6/-5 +4/-5 LSB

Table 13. Piccolo Data logs (INL/DNL).

The piccolo (TMS320F28069) data sheet does not clearly specify the dynamic

parameters of the board.

During the test for the dynamic performance of the piccolo board the following results

were obtained.

Parameter Value Units

Signal to Noise Ratio

(SNR)

49.4103 dB

Total Harmonic Distortion

(THD)

-51.37 (0.027%) dB/%

Spurious Free Dynamic

Range (SFDR)

53.4551 dB

Effective Number Of Bits

(ENOB)

7.7949 Bits

Signal to Noise Ratio +

Distortion (SINAD)

48.6854 dB

Table 14. Dynamic parameters of piccolo (TMS320F28069) .

55

4.2 Tiva C (TM4C123GH6PM) results

The results obtained during the test of the ADC in the Tiva board are compared with

what is written in the data sheet. The data sheet doesn‟t clearly state the values

regarding the static parameters. Looking at the Tiva (TM4C123GH6PM) test results the

static performance errors are presented as follows.

 Offset error

(digits)

Full Scale

Error

(digits)

Maximum

Average Error

(digits)

SD Relative

scale

LogA1 -2 -0.002 -1.3 1.23 1.002

LogB1 -2.8 -0.003 -2.1 1.22 1.003

LogC1 -1.2 -0.002 -1.8 1.26 1.002

LogD1 -1.9 -0.003 -1.5 1.81 1.002

Table 15. Tiva static results.

Four logs were tested and the average offset error is -0.49 digits and variation of the

average full scale error -0.0006 digits.

The results obtained during the test of the ADC in the Tiva board are compared with

what is written in the data sheet. Looking at the Tiva (TM4C123GH6PM) data sheet

INL/DNL performance errors are presented as follows.

Parameters Minimum Maximum Units

Integral

Nonlinearity (INL)

-/+0.8 +2.0/-1.0 LSB

Differential

Nonlinearity (DNL)

-/+1.5 -/+ 3.0 LSB

Table 16. Tiva INL/DNL error (Data sheet).

The following results were obtained when a test for static parameters was made for Tiva

board.

Parameters Minimum Maximum Units

Integral

Nonlinearity (INL)

-3 +3 LSB

Differential

Nonlinearity (DNL)

-3 4 LSB

Table 17. Tiva INL/DNL error (Test results).

The table 18 below shows the INL/DNL results from four data logs.

Data logs Integral Nonlinearity Differential

Nonlinearity

Units

Log A1 +6/-12 +4/-3 LSB

Log B1 +3/-3 +4/-3 LSB

Log C1 +4/-4 +4/-4 LSB

Log D1 +7/-4 +6/-4 LSB

Table 18. Data logs INL/DNL errors.

56

Looking at the Tiva (TM4C123GH6PM) data sheet the Dynamic performance errors are

presented as follows.

Parameter Minimum Normal Units

Signal to Noise Ratio

(SNR)

60 65 dB

Signal to Noise Ratio

+ Distortion

(SINAD)

60 63 dB

Table 19. Dynamic performance written in data sheet.

The following results were obtained when a test for dynamic parameters was made for

Tiva board.

Parameter Minimum Normal Units

Signal to Noise Ratio

(SNR)

 43.55 dB

Signal to Noise Ratio

+ Distortion

(SINAD)

 43.243 dB

THD -54.7 (0.017%) dB/%

ENOB 8.9 Bits

SFDR 41.48 dB

Table 20. Test results for dynamic performance.

From the table 14 test results the SNR and SINAD appear to be lower than those written

in the data sheet.

4.3 Future work

The two boards tested in this project still have a few improvements or tests to be carried

out. The first thing to improve if continuing with this project would be to test the Tiva

board with a differential input and dither bit active. In the current test, this is not

implemented. A few tests were done with the dither bit active but the results obtained

were strange. So any one continuing with the test of these boards can look into that.

4.4 Conclusion

All logs collected are noisy. This is not caused by the chip but the entire board. The

USB connection and the NI DAQ connection also contribute to the noise generation.

The noise in the Tiva board can be reduced to a greater extent using the differential

input method to evaluate the ADC performance. The Piccolo control stick noise can also

be improved by using a different input pin as analog ground and avoiding the digital

ground.

This project work should have provided some guidance on how to look at general static

and dynamic ADC inaccuracy errors for the Piccolo (TMS320F28069) and Tiva C

(TM4C123GH6PM) micro controllers. A greater understanding of ADC errors, how

57

these errors influence the ADC performance of the Piccolo (TMS320F28069) and Tiva

C (TM4C123GH6PM) is very vital for engineers planning to use these boards in various

applications. A comparison has been made between the information written in the data

sheet and what actually happens when the boards are tested in real time. A deviation in

the parameters can affect the performance of prototype designs created by engineers

when tested. This can be in form of lower performance of the ADC as compared to what

is written in the datasheet.

58

Reference

[1] Walt Kester, "Analog-digital conversion," 2015.

[2] Walt Kester, "Which ADC architecture is right for your application," in EDA Tech

Forum, vol. 2, 2005, pp. 22-25.

[3] Ying Bai, "ARM Microcontroller Development Kits".

[4] N Senthil Kumar, M Saravanan, and S Jeevananthan, Microprocessors and

Microcontrollers.: Oxford University Press, Inc., 2011.

[5] Bin Le, Thomas W Rondeau, Jeffrey H Reed, and Charles W Bostian, "Analog-to-

digital converters," Signal Processing Magazine, IEEE, vol. 22, no. 6, pp. 69-77,

2005.

[6] Robert H Walden, "Analog-to-digital converter survey and analysis," Selected

Areas in Communications, IEEE Journal on, vol. 17, no. 4, pp. 539-550, 1999.

[7] Texas Instruments, "Tiva™ TM4C123GH6PM Microcontroller,"

TM4C123GH6PM datasheet, 2007.

[8] Texas Instruments, "“TMS320F2806X- Piccolo Microcontrollers," available on-

line: http://www. ti. com/product/tms320f28069.

[9] MATLAB User‟s Guide, "The mathworks," Inc., Natick, MA, vol. 5, p. 333, 1998.

[10] Brian D Ripley, "The R project in statistical computing," MSOR Connections. The

newsletter of the LTSN Maths, Stats \& OR Network, vol. 1, no. 1, pp. 23-25, 2001.

[11] Danila Piatov, Andrea Janes, Alberto Sillitti, and Giancarlo Succi, "Using the

Eclipse C/C++ Development Tooling as a Robust, Fully Functional, Actively

Maintained, Open Source C++ Parser.," OSS, vol. 378, p. 399, 2012.

[12] Franco Maloberti, Data converters.: Springer Science \& Business Media, 2007.

[13] Katie Enderle, "TMS320F2802x/TMS320F2803x to TMS320F2806x Migration

Overview," 2011.

[14] Myke Predko, Handbook of microcontrollers.: McGraw-Hill, Inc., 1998.

[15] C Tiva, "Series TM4C123G LaunchPad Evaluation Kit User's Manual, 15 Apr

2013," SPMU296.

[16] Leon S. Sterling, The Art of Agent-Oriented Modeling. London: The MIT Press,

2009.

[17] Alex Tessarolo, "Application report F2810, F2811, and F2812 ADC Calibration,"

Texas Instruments, 2004.

[18] Raymond B Ridley, "A new, continuous-time model for current-mode control

[power convertors]," Power Electronics, IEEE Transactions on, vol. 6, no. 2, pp.

271-280, 1991.

[19] Priyesh Pandya and Vikas Gupta, "Enhancing analog to digital converter resolution

59

using oversampling technique," Int. J. Innovative Sci. Mod. Eng, vol. 2, no. 5, pp.

37-40, 2014.

[20] Vilmos P, Tam, and Istv, "Full information ADC test procedures using sinusoidal

excitation, implemented in MATLAB and LabVIEW," ACTA IMEKO, vol. 4, no.

3, pp. 4-13, 2015.

[21] Vilmos P, Tam, and Istv, "Full information ADC test procedures using sinusoidal

excitation, implemented in MATLAB and LabVIEW," ACTA IMEKO, vol. 4, no.

3, pp. 4-13, 2015.

[22] Todd D Morton, Embedded microcontrollers.: Prentice Hall PTR, 2000.

[23] Mary McCarthy, "Peak-to-peak resolution versus effective resolution," Application

Note AN-615. Analog Device Inc, 2003.

[24] ADC Maxim, "DAC glossary," Application note 641,>

[25] Paul Logsdon and Ian Bonthron, "Digital Bat Ears," 2014.

[26] Jipeng Li and Un-Ku Moon, "Background calibration techniques for multistage

pipelined ADCs with digital redundancy," Circuits and Systems II: Analog and

Digital Signal Processing, IEEE Transactions on, vol. 50, no. 9, pp. 531-538,

2003.

[27] Bin Le, Thomas W Rondeau, Jeffrey H Reed, and Charles W Bostian, "Analog-to-

digital converters," Signal Processing Magazine, IEEE, vol. 22, no. 6, pp. 69-77,

2005.

[28] Istv and Jerome J Blair, "Improved determination of the best fitting sine wave in

ADC testing," Instrumentation and Measurement, IEEE Transactions on, vol. 54,

no. 5, pp. 1978-1983, 2005.

[29] Walt Kester, "ADC input noise: the good, the bad, and the ugly. Is no noise good

noise?," Analog Dialogue, vol. 40, no. 02, pp. 1-5, 2006.

[30] Texas Instruments, "TMS320x280x, 2801x, 2804x enhanced pulse width

modulator (ePWM) module," Texas Instruments Inc., Dallas, Texas, 2004.

[31] Texas Instruments, "TMS320x280x, 2801x, 2804x enhanced pulse width

modulator (ePWM) module," Texas Instruments Inc., Dallas, Texas, 2004.

[32] Levi J Hargrove, Kevin Englehart, and Bernard Hudgins, "A comparison of surface

and intramuscular myoelectric signal classification," Biomedical Engineering,

IEEE Transactions on, vol. 54, no. 5, pp. 847-853, 2007.

[33] BOB Flaviu Ilie, Nicolae Cristian PAMPU, and Liviu Teodor CHIRA, "Improving

analog-to-digital converter‟s resolution using the oversampling technique," 2011.

[34] Divya Chacko and Mrs Kanchan Chavan, "Time to Amplitude Converter for Phase

Shift Detection".

[35] M Bossche, J Schoukens, and J Renneboog, "Dynamic testing and diagnostics of

A/D converters," IEEE Transactions on Circuits and Systems, vol. 33, no. 8, pp.

775-785, 1986.

60

Appendix 1 - Program Codes

This thesis was controlled to a great extent by the programming involved in both the

collection and analysis of the data. With the data recorded, every subsequent stage of

the test, analysis and presentation of the data was done within the Code Composer

Studio, Matlab, Rlanguage and C++ programming language in Eclipse CDT

environment.

Appendix 2 - Blinking LED code

//**

//blinky.c - Simple example to blink the on-board LED.

// Copyright (c) 2011-2015 Texas Instruments Incorporated. All rights reserved.

// Software License Agreement

// Modified Badru 2016.

// #include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "driverlib/gpio.h"

#include "driverlib/sysctl.h"

//***

//! \addtogroup example_list

//! <h1>Blinky (blinky)</h1>

//! A very simple example that blinks the on-board LED.

//***

// Blink the on-board LED.

//***

int

main(void)

{

 volatile uint32_t ui32Loop;

 // Enable the GPIO port that is used for the on-board LED.

 //

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);

 // Check if the peripheral access is enabled.

61

 //

 while(!SysCtlPeripheralReady(SYSCTL_PERIPH_GPIOG))

 {

 }

 // Enable the GPIO pin for the LED (PG2). Set the direction as output, and

 // enable the GPIO pin for digital function.

 //

 GPIOPinTypeGPIOOutput(GPIO_PORTG_BASE, GPIO_PIN_2);

 // Loop forever.

 //

 while(1)

 {

 // Turn on the LED.

 //

 GPIOPinWrite(GPIO_PORTG_BASE, GPIO_PIN_2, GPIO_PIN_2);

 // Delay for a bit.

 //

 for(ui32Loop = 0; ui32Loop < 200000; ui32Loop++)

 {

 }

 // Turn off the LED.

 //

 GPIOPinWrite(GPIO_PORTG_BASE, GPIO_PIN_2, 0);

 // Delay for a bit.

 for(ui32Loop = 0; ui32Loop < 200000; ui32Loop++

}

62

Appendix 3 - Hello World program code

//***

// hello.c - Simple hello world example.

//

// Copyright (c) 2011-2015 Texas Instruments Incorporated. All rights reserved.

// Software License Agreement

// Modified Badru 2016

//***

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "driverlib/fpu.h"

#include "driverlib/sysctl.h"

#include "driverlib/rom.h"

#include "driverlib/pin_map.h"

#include "driverlib/uart.h"

#include "grlib/grlib.h"

#include "drivers/cfal96x64x16.h"

#include "utils/uartstdio.h"

#include "driverlib/gpio.h"

//***

//! \addtogroup example_list

//! <h1>Hello World (hello)</h1>

//! A very simple ``hello world'' example. It simply displays ``Hello World!''

//! on the display and is a starting point for more complicated applications.

//! This example uses calls to the TivaWare Graphics Library graphics

//! primitives functions to update the display. For a similar example using

//! widgets, please see ``hello_widget''.

//***

// The error routine that is called if the driver library encounters an error.

//***

#ifdef DEBUG

void

__error__(char *pcFilename, uint32_t ui32Line)

{

}

#endif

//***

// Configure the UART and its pins. This must be called before UARTprintf().

//***

void

ConfigureUART(void)

{

 // Enable the GPIO Peripheral used by the UART.

 //

63

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 // Enable UART0

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

 // Configure GPIO Pins for UART mode.

 ROM_GPIOPinConfigure(GPIO_PA0_U0RX);

 ROM_GPIOPinConfigure(GPIO_PA1_U0TX);

 ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 // Use the internal 16MHz oscillator as the UART clock source.

 UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

 // Initialize the UART for console I/O.

 UARTStdioConfig(0, 115200, 16000000);

}

//***

// Print "Hello World!" to the display.

//***

int

main(void)

{

 tContext sContext;

 tRectangle sRect;

 // Enable lazy stacking for interrupt handlers. This allows floating-point

 // instructions to be used within interrupt handlers, but at the expense of

 // extra stack usage.

 //

 ROM_FPULazyStackingEnable();

 // Set the clocking to run directly from the crystal.

 //

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL |

SYSCTL_XTAL_16MHZ |

 SYSCTL_OSC_MAIN);

 // Initialize the UART.

 //

 ConfigureUART();

 UARTprintf("Hello, world!\n");

 // Initialize the display driver.

 //

 CFAL96x64x16Init();

 // Initialize the graphics context.

 //

 GrContextInit(&sContext, &g_sCFAL96x64x16);

 // Fill the top 24 rows of the screen with blue to create the banner.

 //

 sRect.i16XMin = 0;

 sRect.i16YMin = 0;

 sRect.i16XMax = GrContextDpyWidthGet(&sContext) - 1;

 sRect.i16YMax = 23;

 GrContextForegroundSet(&sContext, ClrDarkBlue);

64

 GrRectFill(&sContext, &sRect);

 // Put a white box around the banner.

 GrContextForegroundSet(&sContext, ClrWhite);

 GrRectDraw(&sContext, &sRect);

 // Put the application name in the middle of the banner.

 GrContextFontSet(&sContext, g_psFontCm12);

 GrStringDrawCentered(&sContext, "hello", -1,

 GrContextDpyWidthGet(&sContext) / 2, 10, 0);

 // Say hello using the Computer Modern 40 point font.

 GrContextFontSet(&sContext, g_psFontCm12/*g_psFontFixed6x8*/);

 GrStringDrawCentered(&sContext, "Hello World!", -1,

 GrContextDpyWidthGet(&sContext) / 2,

 ((GrContextDpyHeightGet(&sContext) - 24) / 2) + 24,

 0);

 // Flush any cached drawing operations.

 GrFlush(&sContext);

 // We are finished. Hang around doing nothing.

 //

 while(1)

 {

 }

}

65

Appendix 4 - ADC Differential sampling code

//***

// differential.c - Example demonstrating how to configure the ADC for

// differential operation.

//

// Copyright (c) 2010-2015 Texas Instruments Incorporated. All rights reserved.

// Software License Agreement

// Modified 2016

//***

#include <stdbool.h>

#include <stdint.h>

#include "inc/hw_memmap.h"

#include "driverlib/adc.h"

#include "driverlib/gpio.h"

#include "driverlib/pin_map.h"

#include "driverlib/sysctl.h"

#include "driverlib/uart.h"

#include "utils/uartstdio.h"

//***

//! \addtogroup adc_examples_list

//! <h1>Differential ADC (differential)</h1>

! This example shows how to setup ADC0 as a differential input and take a

//! single sample between AIN0 and AIN1. The value of the ADC is read and

//! printed to the serial port.

//! This example uses the following peripherals and I/O signals. You must

//! review these and change as needed for your own board:

//! - ADC0 peripheral

//! - GPIO Port E peripheral (for ADC0 pins)

//! - AIN0 - PE7

//! - AIN1 - PE6

//! The following UART signals are configured only for displaying console

//! messages for this example. These are not required for operation of the

//! ADC.

//! - UART0 peripheral

//! - GPIO Port A peripheral (for UART0 pins)

//! - UART0RX - PA0

//! - UART0TX - PA1

//This example uses the following interrupt handlers. To use this example

//! in your own application you must add these interrupt handlers to your

//! vector table.

//! - None.

//***

// This function sets up UART0 to be used for a console to display information

// as the example is running.

//***

void

66

InitConsole(void)

{

 // Enable GPIO port A which is used for UART0 pins.

 // TODO: change this to whichever GPIO port you are using.

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 // Configure the pin muxing for UART0 functions on port A0 and A1.

 // This step is not necessary if your part does not support pin muxing.

 // TODO: change this to select the port/pin you are using.

 GPIOPinConfigure(GPIO_PA0_U0RX);

 GPIOPinConfigure(GPIO_PA1_U0TX);

 // Enable UART0 so that we can configure the clock.

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

 // Use the internal 16MHz oscillator as the UART clock source.

 UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

 // Select the alternate (UART) function for these pins.

 // TODO: change this to select the port/pin you are using.

 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 // Initialize the UART for console I/O.

 UARTStdioConfig(0, 115200, 16000000);

}

//***

// Configure ADC0 for a differential input and a single sample. Once the

// sample is ready, an interrupt flag will be set. Using a polling method,

// the data will be read then displayed on the console via UART0.

//***

int

main(void)

{

#if defined(TARGET_IS_TM4C129_RA0) || \

 defined(TARGET_IS_TM4C129_RA1) || \

 defined(TARGET_IS_TM4C129_RA2)

 uint32_t ui32SysClock;

#endif

 // This array is used for storing the data read from the ADC FIFO. It

 // must be as large as the FIFO for the sequencer in use. This example

 // uses sequence 3 which has a FIFO depth of 1. If another sequence

 // was used with a deeper FIFO, then the array size must be changed.

 //

 uint32_t pui32ADC0Value[1];

 // Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. When

 // using the ADC, you must either use the PLL or supply a 16 MHz clock

 // source.

 // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the

 // crystal on your board.

 //

#if defined(TARGET_IS_TM4C129_RA0) || \

 defined(TARGET_IS_TM4C129_RA1) || \

 defined(TARGET_IS_TM4C129_RA2)

 ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |

67

 SYSCTL_OSC_MAIN |

 SYSCTL_USE_PLL |

 SYSCTL_CFG_VCO_480), 20000000);

#else

 SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL |

SYSCTL_OSC_MAIN |

 SYSCTL_XTAL_16MHZ);

#endif

 // Set up the serial console to use for displaying messages. This is just

 // for this example program and is not needed for ADC operation.

 //

 InitConsole();

 // Display the setup on the console.

 //

 UARTprintf("ADC ->\n");

 UARTprintf(" Type: differential\n");

 UARTprintf(" Samples: One\n");

 UARTprintf(" Update Rate: 250ms\n");

 UARTprintf(" Input Pin: (AIN0/PE7 - AIN1/PE6)\n\n");

 // The ADC0 peripheral must be enabled for use.

 //

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 // For this example ADC0 is used with AIN0/1 on port E7/E6.

 // The actual port and pins used may be different on your part, consult

 // the data sheet for more information. GPIO port E needs to be enabled

 // so these pins can be used.

 // TODO: change this to whichever GPIO port you are using.

 //

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

 // Select the analog ADC function for these pins.

 // Consult the data sheet to see which functions are allocated per pin.

 // TODO: change this to select the port/pin you are using.

 //

 GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_7 | GPIO_PIN_6);

 // Enable sample sequence 3 with a processor signal trigger. Sequence 3

 // will do a single sample when the processor sends a signal to start the

 // conversion. Each ADC module has 4 programmable sequences, sequence 0

 // to sequence 3. This example is arbitrarily using sequence 3.

 //

 ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);

 // Configure step 0 on sequence 3. Sample channel 0 (ADC_CTL_CH0) in

 // differential mode (ADC_CTL_D) and configure the interrupt flag

 // (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic

 // that this is the last conversion on sequence 3 (ADC_CTL_END). Sequence

 // 3 has only one programmable step. Sequence 1 and 2 have 4 steps, and

 // sequence 0 has 8 programmable steps. Since we are only doing a single

 // conversion using sequence 3 we will only configure step 0. For more

 // information on the ADC sequences and steps, refer to the datasheet.

 //

 ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_D | ADC_CTL_CH0 |

68

 ADC_CTL_IE | ADC_CTL_END);

 //

 // Since sample sequence 3 is now configured, it must be enabled.

 //

 ADCSequenceEnable(ADC0_BASE, 3);

 //

 // Clear the interrupt status flag. This is done to make sure the

 // interrupt flag is cleared before we sample.

 //

 ADCIntClear(ADC0_BASE, 3);

 // Sample AIN0/1 forever. Display the value on the console.

 //

 while(1)

 {

 // Trigger the ADC conversion.

 //

 ADCProcessorTrigger(ADC0_BASE, 3);

 // Wait for conversion to be completed.

 //

 while(!ADCIntStatus(ADC0_BASE, 3, false))

 {

 }

 // Clear the ADC interrupt flag.

 //

 ADCIntClear(ADC0_BASE, 3);

 // Read ADC Value.

 //

 ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value);

 // Display the [AIN0(PE7) - AIN1(PE6)] digital value on the console.

 //

 UARTprintf("AIN0 - AIN1 = %4d\r", pui32ADC0Value[0]);

 // This function provides a means of generating a constant length

 // delay. The function delay (in cycles) = 3 * parameter. Delay

 // 250ms arbitrarily.

 //

#if defined(TARGET_IS_TM4C129_RA0) || \

 defined(TARGET_IS_TM4C129_RA1) || \

 defined(TARGET_IS_TM4C129_RA2)

 SysCtlDelay(ui32SysClock / 12);

#else

 SysCtlDelay(SysCtlClockGet() / 12);

#endif

 }

}

69

Appendix 5 - ADC Single Ended Sampling code.

//***

// single_ended.c - Example demonstrating how to configure the ADC for

// single ended operation.

//

// Copyright (c) 2010-2015 Texas Instruments Incorporated. All rights reserved.

// Software License Agreement

// Modified Badru 2016

//***

#include <stdbool.h>

#include <stdint.h>

#include "inc/hw_memmap.h"

#include "driverlib/adc.h"

#include "driverlib/gpio.h"

#include "driverlib/pin_map.h"

#include "driverlib/sysctl.h"

#include "driverlib/uart.h"

#include "utils/uartstdio.h"

//***

//! \addtogroup adc_examples_list

//! <h1>Single Ended ADC (single_ended)</h1>

//! This example shows how to setup ADC0 as a single ended input and take a

//! single sample on AIN0/PE7.

//! This example uses the following peripherals and I/O signals. You must

//! review these and change as needed for your own board:

//! - ADC0 peripheral

//! - GPIO Port E peripheral (for AIN0 pin)

//! - AIN0 - PE7

//! The following UART signals are configured only for displaying console

//! messages for this example. These are not required for operation of the

//! ADC.

//! - UART0 peripheral

//! - GPIO Port A peripheral (for UART0 pins)

//! - UART0RX - PA0

//! - UART0TX - PA1

//! This example uses the following interrupt handlers. To use this example

//! in your own application you must add these interrupt handlers to your

//! vector table.

//! - None.

//***

// This function sets up UART0 to be used for a console to display information

// as the example is running.

//***

void

InitConsole(void)

{

 // Enable GPIO port A which is used for UART0 pins.

 // TODO: change this to whichever GPIO port you are using.

70

 //

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 // Configure the pin muxing for UART0 functions on port A0 and A1.

 // This step is not necessary if your part does not support pin muxing.

 // TODO: change this to select the port/pin you are using.

 //

 GPIOPinConfigure(GPIO_PA0_U0RX);

 GPIOPinConfigure(GPIO_PA1_U0TX);

 // Enable UART0 so that we can configure the clock.

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

 // Use the internal 16MHz oscillator as the UART clock source.

 //

 UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

 // Select the alternate (UART) function for these pins.

 // TODO: change this to select the port/pin you are using.

 //

 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 // Initialize the UART for console I/O.

 //

 UARTStdioConfig(0, 115200, 16000000);

}

//***

// Configure ADC0 for a single-ended input and a single sample. Once the

// sample is ready, an interrupt flag will be set. Using a polling method,

// the data will be read then displayed on the console via UART0.

//

//***

int

main(void)

{

#if defined(TARGET_IS_TM4C129_RA0) || \

 defined(TARGET_IS_TM4C129_RA1) || \

 defined(TARGET_IS_TM4C129_RA2)

 uint32_t ui32SysClock;

#endif

 // This array is used for storing the data read from the ADC FIFO. It

 // must be as large as the FIFO for the sequencer in use. This example

 // uses sequence 3 which has a FIFO depth of 1. If another sequence

 // was used with a deeper FIFO, then the array size must be changed.

 //

 uint32_t pui32ADC0Value[1];

 // Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. When

 // using the ADC, you must either use the PLL or supply a 16 MHz clock

 // source.

 // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the

 // crystal on your board.

#if defined(TARGET_IS_TM4C129_RA0) || \

71

 defined(TARGET_IS_TM4C129_RA1) || \

 defined(TARGET_IS_TM4C129_RA2)

 ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |

 SYSCTL_OSC_MAIN |

 SYSCTL_USE_PLL |

 SYSCTL_CFG_VCO_480), 20000000);

#else

 SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL |

SYSCTL_OSC_MAIN |

 SYSCTL_XTAL_16MHZ);

#endif

 // Set up the serial console to use for displaying messages. This is

 // just for this example program and is not needed for ADC operation.

 //

 InitConsole();

 // Display the setup on the console.

 //

 UARTprintf("ADC ->\n");

 UARTprintf(" Type: Single Ended\n");

 UARTprintf(" Samples: One\n");

 UARTprintf(" Update Rate: 250ms\n");

 UARTprintf(" Input Pin: AIN0/PE7\n\n");

 // The ADC0 peripheral must be enabled for use.

 //

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 // For this example ADC0 is used with AIN0 on port E7.

 // The actual port and pins used may be different on your part, consult

 // the data sheet for more information. GPIO port E needs to be enabled

 // so these pins can be used.

 // TODO: change this to whichever GPIO port you are using.

 //

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

 // Select the analog ADC function for these pins.

 // Consult the data sheet to see which functions are allocated per pin.

 // TODO: change this to select the port/pin you are using.

 //

 GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_7);

 // Enable sample sequence 3 with a processor signal trigger. Sequence 3

 // will do a single sample when the processor sends a signal to start the

 // conversion. Each ADC module has 4 programmable sequences, sequence 0

 // to sequence 3. This example is arbitrarily using sequence 3.

 //

 ADCSequenceConfigure(ADC0_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);

 // Configure step 0 on sequence 3. Sample channel 0 (ADC_CTL_CH0) in

 // single-ended mode (default) and configure the interrupt flag

72

 // (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic

 // that this is the last conversion on sequence 3 (ADC_CTL_END). Sequence

 // 3 has only one programmable step. Sequence 1 and 2 have 4 steps, and

 // sequence 0 has 8 programmable steps. Since we are only doing a single

 // conversion using sequence 3 we will only configure step 0. For more

 // information on the ADC sequences and steps, reference the datasheet.

 ADCSequenceStepConfigure(ADC0_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_IE |

 ADC_CTL_END);

 // Since sample sequence 3 is now configured, it must be enabled.

 ADCSequenceEnable(ADC0_BASE, 3);

 // Clear the interrupt status flag. This is done to make sure the

 // interrupt flag is cleared before we sample.

 //

 ADCIntClear(ADC0_BASE, 3);

 // Sample AIN0 forever. Display the value on the console.

 //

 while(1)

 {

 //

 // Trigger the ADC conversion.

 //

 ADCProcessorTrigger(ADC0_BASE, 3);

 // Wait for conversion to be completed.

 //

 while(!ADCIntStatus(ADC0_BASE, 3, false))

 {

 }

 // Clear the ADC interrupt flag.

 //

 ADCIntClear(ADC0_BASE, 3);

 // Read ADC Value.

 //

 ADCSequenceDataGet(ADC0_BASE, 3, pui32ADC0Value);

 // Display the AIN0 (PE7) digital value on the console.

 //

 UARTprintf("AIN0 = %4d\r", pui32ADC0Value[0]);

 // This function provides a means of generating a constant length

 // delay. The function delay (in cycles) = 3 * parameter. Delay

 // 250ms arbitrarily.

 //

#if defined(TARGET_IS_TM4C129_RA0) || \

 defined(TARGET_IS_TM4C129_RA1) || \

73

 defined(TARGET_IS_TM4C129_RA2)

 SysCtlDelay(ui32SysClock / 12);

#else

 SysCtlDelay(SysCtlClockGet() / 12);

#endif

 }

74

Appendix 6 - Matlab code used to develop FFT

% badru 2016

signal = load('pp2.txt');

N = length(signal);

KHz=1e3;

fs = 300*KHz; % 300 samples per second

fnyquist = fs/2; %Nyquist frequency

Pk2Pk= max(signal) - min(signal)

rms= std(signal)

plot(signal)

%When roughly interpreting this data half way along x-axis corresponds to half the

sampling frequency

plot(abs(fft(signal)))

xlabel('Frequency (Bins - almost!)')

ylabel('Magnitude');

title('Double-sided Magnitude spectrum');

axis tight

%Double-sided magnitude spectrum with frequency axis (in bins)

fax_bins = [0 : N-1]; %N is the number of samples in the signal

plot(fax_bins, abs(fft(signal)))

xlabel('Frequency (Bins)')

ylabel('Magnitude');

title('Double-sided Magnitude spectrum (bins)');

axis tight

%Single-sided magnitude spectrum with frequency axis in bins

X_mags = abs(fft(signal));

fax_bins = [0 : N-1]; %frequency axis in bins

N_2 = ceil(N/2);

plot(fax_bins(1:N_2), X_mags(1:N_2))

xlabel('Frequency (Bins)')

ylabel('Magnitude');

title('Single-sided Magnitude spectrum (bins)');

axis tight

%Single-sided magnitude spectrum with frequency axis in Hertz

%Each bin frequency is separated by fs/N Hertz.

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_Hz = bin_vals*fs/N;

N_2 = ceil(N/2);

plot(fax_Hz(1:N_2), X_mags(1:N_2))

xlabel('Frequency (Hz)')

ylabel('Magnitude');

title('Single-sided Magnitude spectrum (Hertz)');

75

axis tight

%Single-sided magnitude spectrum with frequency axis normalised

%Normalised to Nyquist frequency. Very common to use this method of normalisation

in matlab

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_norm = (bin_vals*fs/N)/fnyquist; % same as bin_vals/(N/2)

N_2 = ceil(N/2);

plot(fax_norm(1:N_2), X_mags(1:N_2))

xlabel({'Frequency (Normalised to Nyquist Frequency. ' ...

 '1=Nyquist frequency)'})

ylabel('Magnitude');

title('Single-sided Magnitude spectrum (Normalised to Nyquist)');

axis tight

%Single-sided magnitude spectrum – frequency in rads per sample

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_rads_sample = (bin_vals/N)*2*pi;

N_2 = ceil(N/2);

plot(fax_rads_sample(1:N_2), X_mags(1:N_2))

xlabel('Frequency (radians per sample)')

ylabel('Magnitude');

title('Single-sided Magnitude spectrum (rads/sample)');

%Single-sided magnitiude spectrum in decibels and KHz

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_Hz = bin_vals*fs/N;

N_2 = ceil(N/2);

plot(fax_Hz(1:N_2), 10*log10(X_mags(1:N_2)))

xlabel('Frequency (KHz)')

ylabel('Magnitude (dB)');

title('Single-sided Magnitude spectrum (1kHz) 300ksps,pk_pk= 1286,rms= 449.3');

%Single-sided power spectrum in decibels and Hertz

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_Hz = bin_vals*fs/N;

N_2 = ceil(N/2);

plot(fax_Hz(1:N_2), 20*log10(X_mags(1:N_2)))

xlabel('Frequency (Hz)')

ylabel('Power (dB)');

title('Single-sided Power spectrum (Hertz)');

axis tight

axis tight

axis tight

76

%Single-sided power spectrum in dB and frequency on a log scale

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_Hz = bin_vals*fs/N;

N_2 = ceil(N/2);

semilogx(fax_Hz(1:N_2), 20*log10(X_mags(1:N_2)))

xlabel('Frequency (Hz)')

ylabel('Power (dB)');

title({'Single-sided Power spectrum' ...

 ' (Frequency in shown on a log scale)'});

axis tight

77

Appendix 7 - R-language code to analyse ADC data logs.

#kf=1 #Badru 2016

filenames= c(

"piccoloLogs/logD(SH-6andx80).txt",

"piccoloLogs/logE(SH-13andx28).txt",

"piccoloLogs/logF(SH27andx100).txt",

"piccoloLogs/logG(SH57andx100.txt",

"TivaLogs/tivaDiffSample/logA2.txt",

"TivaLogs/tivaDiffSample/logB2.txt",

"TivaLogs/TivaSingleEnded/logA1.txt",

"TivaLogs/TivaSingleEnded/logB1.txt",

"TivaLogs/TivaSingleEnded/logC1.txt",

"TivaLogs/TivaSingleEnded/logD1.txt",

"TivaLogs/TivaDithering/TivaDifferentialDithering/logE1.txt",

"TivaLogs/TivaDithering/TivaDifferentialDithering/logE2.txt",

"TivaLogs/TivaDithering/TivaSingleEndedDithering/logE3SE.txt")

for (kf in (1:length(filenames)))

{

xx= read.table (filenames[kf], header = FALSE, sep = ",", dec = ".")

xlen= dim (xx)[1] # e.g. 20k lines od data

xnn= dim (xx)[2] -2 #e.g. 31 samples per line

Uin=as.numeric (xx[,1]) # 1-st col-n= Uin values(s)

xdata= rep (NA, xlen*xnn)

dim (xdata)= c (xlen, xnn)

errorCode= xdata

xdataAver= rep (NA, xlen)

#idealCode= rep (NA, xlen)

for (kk in (1:xlen))

{

yy= as.numeric(xx [kk, 2:(xnn+1)])

xdata [kk, 1:xnn]=yy

xdataAver[kk]= mean (yy)

}

plot (Uin, xdataAver, type='l', col= 'blue')

k1 = 4000 # code for "near-zero"

k2 =18000 # code for "near- full-scale"

Kscale= (xdataAver[k2] - xdataAver[k1]) / (Uin[k2]- Uin[k1]) # dCode/dUin

Kscale0= 4095/3.3

RelativeScale= Kscale /Kscale0

OffsetCode= xdataAver[k1]- Kscale *Uin[k1]

idealCode= +OffsetCode + Kscale *Uin # ideal code, corrected offset and scale, input

vecotr-> code vector

78

errorCodeAver= xdataAver -idealCode

for (kk in (1:xlen))

{

errorCode [kk,]= xdata[kk,] -idealCode[kk]

}

maxErrAver_index= k1-1+which.max (abs(errorCodeAver [k1:k2]))

maxErrAver = errorCodeAver [maxErrAver_index]

xtxt= paste("RelScale=", as.integer(RelativeScale*1000)/1000, "offset= ",

as.integer(OffsetCode*10)/10, "digits, maxErrAver= ",

as.integer(maxErrAver*10)/10)

#print (xtxt)

xname= paste(kf,".jpg", sep="")

jpeg(filename = xname, width = 760, height = 560)

plot (Uin, errorCodeAver, xlim= c(-0.01, +3.6), ylim= c(-25,25), type='l', col= 'blue')

grid()

title (xtxt)

for (kk in (1:xlen))

{

Ux= rep (Uin[kk], xnn)

lines (Ux, errorCode[kk,], col= 'grey')

}

lines (Uin, errorCodeAver, col='blue') # overwrite

lines (maxErrAver_index, maxErrAver, type='o', col= 'red')

text (1.2, -23, filenames[kf])

dev.off()

}

