TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology
Thomas Johann Seebeck Department of Electronics

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY

IEE70LT
Sekyanzi Badru IVEM 132062

Evaluation of the Internal ADC of Piccolo
and Tiva Microcontrollers

Master's

Supervisor: Olev Mértens
PhD

Lead Researcher

Tallinn 2016

TALLINNA TEHNIKAULIKOOL

Infotehnoloogia teaduskond
Thomas Johann Seebecki Elektroonikainstituut

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY

IEE70LT
Sekyanzi Badru IVEM 132062

Piccolo ja Tiva mikrokontrollerite sisemise
ADM evalveerimine

Magistritoo

Juhendaja: Olev Martens
PhD

Lead Researcher

Tallinn 2016

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Badru Sekyanzi

22.05.2016

Abstract

The piccolo control stick (TMS320F28069) and Tiva C series (TM4C123GHMG6PM)
are microcontrollers produced by Texus Instruments. These microcontrollers can be
used in a number of applications. The technology behind the success of these two micro
controller boards is low cost and high precision from the analog digital converter.
Analog to Digital Converter (ADC) is the world’s largest volume mixed-signal circuit.
It is also a key building block in nearly all system on chip (SoC) solutions involving
analog and mixed-signal functionalities. The purpose of this project was to test the ADC
used in these two boards. In this work the static and dynamic performance of the ADC
is analysed with comparison to what is written in the data sheet. Static performance test
is done by analysing the ADC data logs of the collected 32 ADC digital output samples
and 2000 analog input samples within a rail range of (0-3.3) V. The dynamic
performance is tested using a sine wave input to the ADC at different frequencies and
analysing the ADC digital output code. Simple scripts of code run in MATLAB and R-
language are used to analyse gain error, offset error, INL, DNL, SNR, SINAD, ENOB
and THD. The goal is to help engineers that are developing designs using the piccolo
control stick (TMS320F28069) and Tiva C series (TM4C123GHMG6PM) to make
accurate decisions regarding ADC selection before producing first prototypes.

This thesis is written in English and is 57 pages long, including 4 chapters, 50 figures
and 20 tables.

Annotatsioon
Piccolo ja Tiva mikrokontrollerite sisemise

ADM evalveerimine

Piccolo controlSTICK (TMS320F28069) ja Tiva C seeria (TM4C123GHMG6PM) on
mikrokontrollerid, mille tootjaks on Texus Instruments. Kdige olulisem asi, mida
mikrokontrollerite valimisel silmas pidada, on analoog-digitaalmuundurite (ADC-de)
joudlus. Analoog-digitaalmuundur on elektrooniline seade, mis muudab tegeliku
maailma analoogsignaali masinloetavaks vOi binaarseks voi digitaalseks formaadiks.
Kodik mikrokontrollerid vajavad seda komponenti, mis saab muuta tegeliku maailma
analoogsignaalid pingesignaalideks. See pinge s6ddetakse sisse ADC-sse ja tulemuseks
on kahendnumbrid, mida saab sdltuvalt vajadusest edasi t6odelda. Analoog-
digitaalmuundur (ADC) on maailma suurim segasignaalkoditega vooluring. See on ka
peamine element peaaegu koikide selliste kiibisiisteemide (SoC) lahenduste puhul, mis
hdlmavad analoog- ja segasignaaliga funktsioone. Mikrokontrollereid saab kasutada
mitmetel juhtudel. Nende kahe mikrokontrolleri plaadi tehnoloogilise edu taga on madal
kulu ja korge tdpsus analoog-digitaalmuunduri abil. Projekti eesmérgiks oli testida
nendes kahes plaadis kasutatud ADC-de joudlust. On viga oluline saada pdhjalikult aru,
kuidas ADC toimib enne disaini loomist. ADC joudluse analiiiis avaldab peensused, mis
vitvad sageli soovitust véiksema joudluseni. Analoog-digitaalmuunduri tépsusel on
moju iildisele siisteemi tohususele. Selleks et tdpsust parandada, peab aru saama
vigadest, mis on seotud ADC-ga, ja neid mdjutavatest parameetritest. Kdesolevas to0s
on ADC staatilist ja diinaamilist joudlust analiitisitud vordlusena sellega, mis on kirjas
andmelehel. Staatiline joudlustest viiakse 1dbi, analiiisides kogutud 32 digitaalvaljundi
diskreedi ja 2000 analoogdiskreedi ADC andmelogisid vahemikus 0-3,3 V. Staatiline
joudlustest keskendub sisemiste ADC-de, ilma mingisuguse vilise véljundita,
testimisele. Diinaamilist joudlust testitakse kasutades erinevatel sagedustel siinuslaine
sisendit, mis on tthendatud ADC-ga. Lihtsaid koodiskripte, mis to6tavad MATLAB-is ja
R-keeles, kasutatakse voOimendusvea, eelpingevea, SNR-i, SINAD-i ja THD
analiitisimiseks. Selle projekti eesmérgiks on aidata inseneridel, kes kasutavad disainide
loomiseks Piccolo controlSTICKi (TMS320F28069) ja Tiva C seeriat
(TM4C123GHM6PM), teha tdpseid otsuseid seoses ADC valikuga enne esimeste
prototiitipide tootmist.

Loputéd on kirjutatud inglise keeles ning sisaldab teksti 57 lehekiiljel, 4 peatiikki, 50
joonist, 20 tabelit.

Acknowledgements

I would like to offer special thanks to Olev Mértens, my supervisor for giving me this
opportunity to write a thesis in this interesting field and for his knowledge and technical
support during the project. 1 also would like to thank my family for the valuable

support.

List of abbreviations and terms

ACQPS ADC Acquisition (Sample and Hold) Window
ADC Analog-to-Digital Converter

ADCIN Analog-to-Digital Converter Input

ADCSAC Analog-to-Digital Converter Sample Averaging Control
CAbc Input Capacitance Analog-to-Digital Converter
CPU Central Processing Unit

DMA Dynamic Memory Access

DNL Differential Nonlinearity

DUT Device Under Test

EMI Electromagnetic Interference

EPWM Enhanced Pulse Width Modulation

GPIO General Purpose Input Output

INL Integral Nonlinearity

KHz Kilohertz

Ksps Kilosample(s) per second

LSB Least Significant Bit (digits)

MCU Micro-controller Unit

MHz Megahertz

PWM Pulse Width Modulation

RADC Input Resistance Analog-to-Digital Converter
Rx Receive

SD Standard deviation

SH Sample and Hold

SINAD Signal-Noise-Ratio+Distortion

SNR Signal-Noise-Ratio

SOC Start of Conversion

SysCtl System Control

TBPRD Time Base Period Register

THD Total Harmonic Distortion

Tx Transmit

UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus

VREF Voltage Reference

VREFHI Voltage Reference High

VREFLO Voltage Reference Low

Table of contents

1 INEPOTUCTION w.oviiiiieiee bbbttt bbb ens 13
1.1 TasK SPECITICALION.ccuviiieiiiieie et 13
L2 WOTK FIOW ...ttt et ns 14
1.3 DEVEIOPMENT L00IS. ..o s 14

1.3.1 Tiva (TM4C123GHMG6PM) microcontroller.ccccoovvevviviiiciecieieen 14
1.3.2 Piccolo Control Stick (TMS320F28069) microcontroller.............c.cc.ccoene.e. 14
L33 IMALIAD ... 15
L34 RAIANQUAGE.......ccveieiecieeie ettt sra e esre e 15
1.2.5 Code COMPOSEr STUAIO......ccuveiiiieiieie e 15
1.2.6 ECHPSE CDT ..ottt 15
1.4 MICIO-CONLIOIIEIS ...ttt nas 15

2 Piccolo Control Stick (TMS320F28069) microcontroller...........cococvivvevveveiieieennne 18
2.1 TMS320F28069 TEALUIES.evveviiieierieiesieiee ettt 18
2.2 Testing PiCCOI0 DOAIT.cviiiiiiieecs e 20

2.2.1 Piccolo (TMS320F28069) board teStiNgcccevererirenieieie e 20
2.3 ADC Static Evaluation for Piccolo Control SticKc.covvieiiieiiiciiienns 23
2.3.1 Input impedance of ANalOg PINcocveiiiiiii e 24
2.3.2 Sample and hold CIFCUIL.ooeiiiiiicee e 24
2.4 Static performance parameters of Piccolo control stick ... 25
2.4.1 External voltage referenCe.ccocve e iiic i 25
2.4.2 Offset Error and Full SCAlE €ITOr........cc.oiiiiiiiie e 27
2.4.3 Sample and hold WINAOWcccoiiiiiiiiiies e 29
O T U] T = o] OSSPSR 30
2.4.5 Integral Nonlinearity (INL)ccoooviiiiiiieiie e 30
2.4.6 Differential Nonlinearity (DNL)cccocoiieiiiiiiieneee e 31
2.5 Dynamic performance ParametersS..........cecveueieereeriesieeseee e e eee e e e e seas 32

2.5.1 Piccolo board dynamic performance.cocooeierinineneieie e 32

2.5.2 Enhanced Pulse Width Modulator (EPWM)........cccceviiiiiiiniieneneee e 32

3 Tiva C Series - TMACL23GHBPMcocoiiieiiiieieise e 38
3.1 Tiva ADC electrical CharaCteristiCScovuuirriiieiiiene s 40
3.2 Testing TIVa DOArd.........cccooiiii e 41
3.3 ADC Static Evaluation of Tiva board..........ccccoooeiiriniinine e 42
3.3.1.Single ended INPUL........c.ooiriiee e 42
332 NOISE EITOF ..ottt bbb 43
3.3.3 Differential INPULcooiieeee e 45
3.3.4 DITNEIING ...ttt 46
3.3.5 Integral Nonlinearity (INL)cceiveiiiiieiieie e 46
3.3.6 Differential Nonlinearity (DNL)cccooveiieiiiieceece e 47

3.4 Dynamic Evaluation Tiva C DOArdcccceieiiiiiiiiiesiseeeees e 48
3.4.1 Run-Mode Clock Gating Control 0 (RCGCO) register..........ccooevvrerirennnns 48

A RESUIES ...ttt ettt b b r e 53
4.1 Piccolo (TMS320F28069) reSUILS.ccveiieiireieiiesieeie e 53
4.2 Tiva C (TMAC123GHBPM) reSUILSceiiiiiiieiiesie e 55
4.3 FULUIE WOTK. ...ttt ettt enreenteenee e 56
O @0 [0 1] o] USSP PPRTRPR 56
RETEIBNCE ...ttt bbb b 58
APPendix 1 - Program COUEScccuriiiiieieiiesiesie et sre e 60
Appendix 2 - BIinKiNg LED COUE.........ccoiiiiiiiiiiieeeee e 60
Appendix 3 - Hello World program COde............coveiiiiiie i 62
Appendix 4 - ADC Differential sampling Code..........ccoovviiiiiiiiciiiieceee e 65
Appendix 5 - ADC Single Ended Sampling code.cccoeviiiiiiiieciicce e, 69
Appendix 6 - Matlab code used to develop FFT ... 74
Appendix 7 - R-language code to analyse ADC data 10gs.ccoovrvrreinnencneninnnens 77

List of figures

Figure 1. Micro controller block diagram.cceoiiiiiiniieeeee e 16
Figure 2. Piccolo control stick microcontroller. ... 18
Figure 3. Architecture of functional block Piccolo diagram.ccccoeevviieiiieiiennne 19
Figure 4. Simple “hello world” code and “Blinking LED”...........cccooeiiiiiiiiiiinen, 21
Figure 5. "hello world™ console OULPUL.cceiiiiiiiiiiece s 21
Figure 6. Program code that collects ten samples from the ADC.cccccceveviiininne. 22
Figure 7. Ten collected samples from the ADC.cccccoveiiiieiieie e 22
Figure 8. Piccolo ADC arChiteCtUIE.cccveiiiiiiieie e 23
FIQUIE 9. ADCIN PIN . oottt bbb 24
Figure 10. sample and NOld CIFCUIL.ccuoiviiiiiiiiiieee s 24
Figure 11. Block diagram of the equipment SEt UP.ccccvvevveiieiieie e 25
Figure 12. ADC register for sample and hold Window.............c.cccceeveiiiiciiccc e 26
Figure 13. Program code that controls the input voltage...........ccocoovvievienc i 26
Figure 14. Program code collects 20000 SAMPIES.ccoerveririririiieieiee e 26
Figure 15. Matlab code to analyse datalogs.ccccceeveiieiiciciicce e 26
Figure 16. Piccolo transfer fUNCLION.cc.coiiiiiiccecc e 27
Figure 17. Program code in R-language to calculate offset.cccocevviiiiiiiinnnne. 28
Figure 18. Offset Error and full scale error. ... 29
Figure 19. Gain error of the piccolo control stick ADC..........cccovveiiiiiiieviccece e 30
Figure 20. PICCOIO INL €ITOFocviiiieciie ettt 31
Figure 21. PICCOI0O DINL BITOF. ..ottt 31
Figure 22, ePWIM MOAUIES.c.oiiiiiiiiee i 32
Figure 23. Matlab code analyse INPUt SINE WAVE.cccoeriiiiiinininieieee s 33
Figure 24. Sinusoidal input at TKHZ.cooviiiiiic e 34
Figure 25. Matlab code for FFT QUIPUL........cooiviiiiecece e 34
Figure 26. Single sided fft of the input sinusoidal signal.ccccooviiiiiiiniiiie, 35
Figure 27. Program code for WiNAOWING.c.cccueiiereiieiieie e is e 35
Figure 28. Blackman window SiNe INPUL.ccoiiiiiiiiieeeeeeeee e 36
Figure 29. NOrmalized FRT.ooie e e 36

10

Figure 30. TIVA C DOAIoovveiiiieiee e 38

Figure 31. Architecture of Tiva TMA4CL23X SEIIESocvvvveriieiesienieeie e ie e 39
Figure 32. ADC modules in @ TMAC123GHBPM...........ccccevveiiiiieiieie e 39
Figure 33. Program code for the temperature sensor in the Tiva board.c........... 41
Figure 34. ADC results from temperature SENSOT...........coeverererereeeeieieese s 41
Figure 35. Test set up of Tiva C Series Doard............cccoeveiiniiiniiiiecee e 42
Figure 36. Transfer function of Tiva ¢ series board.ccccovvieieeii i 43
Figure 37. R language script used to analyse the data [0g...........c.cccceevviiiieiiiiciienne 44
Figure 38. ADC output code and the analog iNPUL.ccccceviiiiiniiineie e 44
Figure 39. Program code for differential input mode.coovviviiiiiiiencine 45
Figure 40. ADC output of a Tiva board with dithering.ccccccevvveviiieiicieiecee, 46
FIgure 41, TiVa INL €ITO. ..cvieeiiee ettt re e 47
FIgure 42, Tiva DINL EITOF. ...oc.oiiiiiiiieieie ettt 47
Figure 43. Program code for sample rate register.cccoeviiiiiniininieienc e 48
Figure 44. System CONIOl FEQISTENcviiieie e 48
Figure 45. Tiva sine wave FFT output SPECIIUM.ccciveiieieiiece e 49
Figure 46. FFT spectrum of @ Sine SIgNal.cccooiiiiiiiiiee s 49
Figure 47. Matlab code for half sided SPECtrUM.ccoveiiiriiiiii e 50
Figure 48. Single sided SpPectrum iN dB..........c.cceiieii i 50
Figure 49. Blackman window Sine INPUL.ccooeiiiiiiiece e 51
Figure 50. FFT using Hamming WINAOWccooiiiiiiiiieneniesesceeeee s 51

11

List of tables

Table 1. Electrical characteristics of the TMS320F28069.cccovveiiienenciereen 20
Table 2. Different picCol0 10gS tEStEA.ccoiiiiiiiiiiee e 29
Table 3. TBPRD FEQISIE. ..c.viiuieiieeiecie sttt e e e 33
Table 4. Program code for ePWM TreQiSter.........ccovevuiiieiieie e 33
Table 5.Electric characteristics of Tivaboard.cccccoiiiinniiii 40
Table 6. ANAlYSEd TIVA LOGScoiiiiiiieieie e 45
Table 7. Dynamic characteristics of the Tiva board.c.ccccooviiiiiiiiciicccee, 49
Table 8. Data Sheet OffSEt €ITON.cviiiiiie e 53
Table 9. ACtUAl OFFSEL BITON......cieeiiiieciece e 53
Table 10. PICCOIO TSt FESUITS......eeviiieiieii e 53
Table 11. Piccolo INL/DNL (Datasheet)..........ccccveveiieiiciiciiese e 54
Table 12. PiccOlo INL/DNL teSt FESUILS.cceiiiiiiieieieriece e 54
Table 13. Piccolo Data 10gS (INL/DNL). ..cc.ooviiiiiiiieieiecese e 54
Table 14. Dynamic parameters of piccolo (TMS320F28069)ccccceveienencieniennnnn 54
Table 15. Tiva StatiC FESUILS.ociiiee e e 55
Table 16. Tiva INL/DNL error (Data Sheet)..........cocevveviiieiieiece e 55
Table 17. Tiva INL/DNL error (TeSt reSUILS).coeveriereriiie i 55
Table 18. Data 10gS INL/DNL €ITOIS.ccciiieiieeieeieseesie e e ee e sie e see e eeesneenes 55
Table 19. Dynamic performance written in data sheet..........c.cccceeiieiiiicciece e, 56
Table 20. Test results for dynamic performance.cccocveveiiie e 56

12

1 Introduction

Engineers use microcontrollers for different applications. These microcontrollers have
analog-to-digital converters (ADC) they use to convert analog values like voltages to
digital code [1]. In the real world, signals are mostly available in analog form. To use a
microcontroller in this type of system, an ADC is required, so that analog signals can be
converted to the digital values. Successive-Approximation ADCs (SAR), this is the
most common architecture used for data acquisition applications. The ADCs in Piccolo
and Tiva boards fall in the SAR category. Since 1940s the architecture has been utilized
in experimental pulse-code-modulation (PCM) systems by Bell Labs [2]. The SAR
ADCs come with different resolutions and sampling rates in MHz. These ADCs have an
input sample and hold window that helps to maintain a constant signal during the
conversion cycle.

ADCs come with different resolution (8bits, 12bits) depending on the requirements of
the application. A 12-bit-resolution analog-to-digital converter (ADC) does not
necessarily mean the system will have 12-bit accuracy [1], [3]. Much to the surprise of
engineers, some ADCs will exhibit much lower performance as compared to what is
written in the datasheet. When this is highlighted during the first prototype test,
engineers will panic looking for what is affecting the performance of ADC. Many hours
are spent reworking the design as the deadline for preproduction builds fast approaches

[4].

It is very important to carry out a thorough understanding of ADC performance before
building the design [5]. Analysis of the ADC performance will reveal subtleties that
often lead to less than desired performance. The accuracy of analog to digital converter
has an impact on overall system efficiency. To improve accuracy you need to
understand the errors associated with the ADC and the parameters affecting them. This
is the main reason; you need to do some careful preparation before starting your
development. Understanding ADC performance will help in selecting the right ADC for
an application [6].

1.1 Task specification.

The assignment of this project was to analyze and evaluate the ADC performance of the
Piccolo control stick and Tiva c series board in real time. ADC testing is a challenging
task. A comparison was made between what is written in the data sheets of these boards
and what really happens in the real world when the ADC is tested. Often datasheets
include ADC performance characteristics but when the ADC is tested in an application
it performs below expectation. Static and dynamic Parameters were tested to measure
the ADC’s performance for the above mentioned boards. These parameters are critically
important to instrumentation applications, medical applications, image processing, in
which accuracy of each converted code is of major concern.

13

Goals
The goals of this project are the following

= Qverview of micro controllers in general and their importance in the
development of applications.

= Analyze and establishing an over view of piccolo control stick
(TMS320F28069) and Tiva (TM4C123GHMG6PM) microcontrollers.

= Perform static and dynamic parameter evaluation of analog digital converters for
both micro controller boards mentioned above.

= Test ADC performance at electrical absolute maximum values.

= Draw a comparison between the information written in the data sheets of both
micro controllers with what is actually obtained from the real time test

1.2 Work flow

This thesis work is composed of four chapters. Chapter 1 is the introduction chapter. In
this chapter an overview of the goals and task specification is described. A general look
at the micro controllers and the tools used is also discussed. In chapter 2 the Piccolo
control stick is introduced, static and dynamic tests are performed. In chapter 3 The
Tiva board is introduced, static and dynamic performances are discussed. In chapter 4
results are discussed in detail and in section 4.4 a conclusion about the work is made.

1.3 Development tools.

This section describes the tools that have been used for development of the test software
and hardware in this project.

1.3.1 Tiva (TM4C123GHMG6PM) microcontroller.

The Tiva C Series is a low-cost microcontroller from Texas Instruments (T1) [7]. This
platform, together with the integrated development environment (IDE) Code Composer
Studio (CCS) [7] provides tools to develop and debug embedded applications with
C/C++ programming. Configurable modules with pre-defined function libraries allow
development at a high abstraction level that is easy to use.

1.3.2 Piccolo Control Stick (TMS320F28069) microcontroller

TMS320F28069 Piccolo Microcontroller device is members of the C2000™ Piccolo
MCU platform for use within embedded control applications [8]. It’s a high
performance low-cost 12 bit microcontroller. This platform, together with the integrated
development environment (IDE) Code Composer Studio (CCS) provides tools to
develop and debug embedded applications with C/C++ programming.

14

1.3.3 Matlab

MathWorks is a useful tool for signal analysis in this project [9], MATLAB is chosen as
a tool for analyzing the data logs collected for signal processing.

1.3.4 R-language

R is a language and environment for statistical computing and graphics [10]. R provides
a wide variety of statistical (linear and nonlinear modeling, classical statistical tests,
time-series analysis, classification, clustering and graphical techniques, and is highly
extensible [10].

1.2.5 Code Composer Studio

This tool was used to analyze the functionalities of the boards and to verify that each
hardware module was implemented and functioning as intended. CCS is also used to run
programs that trigger the conversions of the on board ADCs.

1.2.6 Eclipse CDT

The CDT Project provides a fully functional C and C++ Integrated Development
Environment based on the Eclipse platform [11]. This tool is used to connect to the data
acquisition device that collects the samples codes for the ADC.

1.4 Micro-Controllers

As early as 1971 Texas instruments had started producing microcontrollers [6]. The
TMS 1802 from Texas instruments was used in applications such as cash registers,
watches and measuring instruments. In 1974 Texas instruments introduced the TMS
1000 that included memory i.e ROM, RAM and I/O all on a single chip [3]. Other
companies that contributed to early microcontroller development were Intel with the
Intel 8048 microcontrollers and Motorola with 68HCxx series of microcontrollers [12].

Today, billions of microcontrollers are produced per year, and the controllers are
integrated into many appliances we have grown used to, like household appliances
(microwave, washing machine, coffee machine) [13]. The internal architecture of
microcontrollers is closely related. Figure 1 shows the block diagram of a typical
microcontroller. All components are connected using an internal bus and are all
integrated on one chip. The modules are connected to the outside world via 1/O pins.

15

Microcontroller block diagram

- Counter/
Processor SRAM EEPROM/ o
Core) Flash Timer

Module
Intemal Bus I -
Digital /O Serial Analog Interrupt
Maodule Interface Module Controller
Module

Figure 1. Micro controller block diagram [4].

Processor Core: This is the Central Processing Unit (CPU) of the controller. It’s made
up of the arithmetic logic unit, the control unit and the registers (stack pointer, program
counter, accumulator register, register file) [3].

Memory: The memory is divided into program memory and data memory. In larger
controllers, a DMA controller handles data transfers between peripheral components
and the memory.

Interrupt Controller: Interrupts are useful for interrupting the normal program flow in
case of (important) external or internal events. In conjunction with sleep modes, they
help to conserve power.

Timer/Counter: Microcontrollers carry with them 2-3 Timer/Counters; these are used to
timestamp events and measure intervals.

PWM (pulse width modulation): This is usually used to drive motors or for safety. The
PWM output can be joined with an external filter to realize a cheap digital/analog
converter.

Digital 1/0O: Parallel digital I/O ports are one of the main features of microcontrollers.
The number of 1/O pins varies from 3 to over 90, depending on the controller family and
the controller type.

Analog 1/0: Most microcontrollers have integrated analog/digital converters, which
differ in the number of channels and their resolution. The analog module is also
integrated with an analog comparator.

Interfaces: Controllers have at least one serial interface which can be used to download
the program and for communication with the development PC in general. Serial
interfaces can also be used to communicate with external peripheral devices, most
controllers offer several interfaces like SPI and SCI [2]. Larger microcontrollers contain
PCI, USB and Ethernet interfaces.

16

Watchdog Timer: The biggest application area of microcontrollers is in safety-critical
systems, it is important to guard against errors in the program or the hardware. The
watchdog timer major function is to reset the controller in case of software “crashes”.

Debugging Unit: Microcontrollers have additional hardware to allow remote debugging
of the chip from the PC [2].

17

2 Piccolo Control Stick (TMS320F28069) microcontroller

TMS320F28069 Piccolo Microcontroller device is members of the C2000™ Piccolo
MCU platform for use within embedded control applications [8]. It’s a high
performance low-cost 12 bit microcontroller [8]. In this chapter the TMS320F28069
board internal performance is tested. The test investigation will be centred on the static
and dynamic performance of the ADC. The aim is to analyse the ADC performance
with in normal values and at absolute maximum. Draw a comparison between obtained
results and datasheet results.

2.1 TMS320F28069 features.

The following are some of the main features [8].
= Quick and easy evaluation of all of the advanced capabilities for just $39
= Convenient and easy-to-use GUI provides hands-on experimentation with the
floating point capabilities of the Piccolo F2806x MCU.
= Slightly larger than a memory stick
» On-board emulation, access to all 1/0 pins
= Detailed example software and documentation
= Complete hardware schematics, Gerber files.

The figure 2 below shows a piccolo control stick. All components are connected using
an internal bus and are all integrated on one chip. The modules are connected to the
outside world via peripheral header pins.

LED LD1 LED LD2 TMS320F28027
(Power) (GP1034) 48-Pin Package

USB JTAG On-board USB Peripheral
Interface & Power JTAG Emulation Header Pins

Figure 2. Piccolo control stick microcontroller [8].

18

A basic CPU architecture is depicted in Figure 3 below. It consists of the functional
block diagram of the device and the communication busses.

Program Bus PRAEREERERAS .I
]
1 1
ROM P ———
Flash . eQEP i
| ey |
Lo Sus o 12-bit ADC |ei—
- - L 1
X 1
: =+ Watchdog
l i A |
I _ i | PIE - oIIIIIIIIITT
32-bit | |R-M-W| i ! |Interrupt CAN 208 i+
32x%32 bit ! 1 (e
Auxiliary| | ’:ﬁ : "| |atomic| |crai [Manager| . :
u ier I i -
Registers] = ALU | |] 5] Lt i
______ i - 1
Real-Time | | | 32.bit | ! sClI -
JTAG Register Bus Timers] I s | |
Emulation CPU i T
i, LN e
Data Bus intiieteiiiinint
GPIO

Figure 3. Architecture of functional block Piccolo diagram [8].

The architecture of a TMS320F28069 Piccolo can be divided into three parts i.e
peripherals, Memory, CPU and bussing. The processor core (CPU) is the main part of
the microcontroller made up of the 32 bit auxiliary registers [8], 64bit multiplier and an
atomic arithmetic logical unit. The design is highly integrated, high performance
solution for demanding control applications. The memory space on the F28069 is
divided into program memory and data memory. There are several different types of
memory available that can be used as both program memory and data memory [8].

This chapter is centered on the ADC performance of the TMS320F28069 piccolo
control stick. The ADC block is a 12-bit converter. It has up to 16 single-ended
channels pinned out. The ADC also contains two sample-and-hold units for
simultaneous sampling with a full range analog input: 0 V to 3.3 V fixed.

19

The table 1 below shows the electrical characteristics of the TMS320F28069

PARAMETER | M P MAX| UNIT
DC SPECIFICATIONS
Resolution 12 Bits
ADC clock 90-MHz device 0.001 45 MHz
Sample Window 7 o4| S0C
ACCURACY
INL {Integral nonlinearity) " -4 4 LSB
DNL (Differential nonlinearity), no missing codes -1 15 LSB
Ofseteror Executing periodic self- 58
recalibration'¥ _4 4
Overall gain error with internal reference -0 G0 LSB
Overall gain error with external reference =40 40 LSB
Channel-to-channel offset variation —4 4 LSB
Channel-to-channel gain variation —4 4 LSB
ADC temperature coefficient with internal reference il ppmi*C
ADC temperature coefficient with external reference =20 ppm/°C
VREFLD =100 HA
VReFHI 100 HA
ANALOG INPUT
Analog input voltage with internal reference 0 33
Analog input voltage with external reference VagrLo Ve
Vpgr g input voltage™® Vaga 0.66
Vrerw input voltage® . 264 Voo vV
with VirerLo = Vasa 1.98 Vooa

Table 1. Electrical characteristics of the TMS320F28069 [8].

2.2 Testing Piccolo board.

Verifying the boards was carried out in several ways and had to be done thoroughly, it
is the only way to guarantee that the board is in good working conditions. In this
section, the board was first tested separately. The piccolo control stick was tested using
the example projects that come with the control suite package using the CCS debugger.
This tool was used to analyze the function of the control stick to verify that all modules
function as intended.

2.2.1 Piccolo (TMS320F28069) board testing

A simple hello world example that returns hello world (/! A very simple ""hello world"
example). It simply displays “"Hello World!" to the console (Real Terminal) and
‘Blinking LED” that makes the on board LED blink were some of the example projects
run to test for proper functionality.

20

Below is a simple “hello world” code and “Blinking LED”

/f Hello!
A
UARTprintf ("Hello, world!'hn™):
A
ff We are finished. Hang around doing nothing.
i
while (1]
i
A
f4 Turn on the ELUE LED.
A
GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 2, GPIO PIN 2);
i
A Delay for a hit.
£
SysCtlDelay (SysCtlClockGet () / 10 7 3):
A
f4 Turn off the BELUE LED.
i

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 2, 0);

Figure 4. Simple “hello world” code and “Blinking LED”.

The output is printed to the real terminal console via uart and the blue Led is turned on.

IHellu, wor 1d? Cilr

Figure 5. "hello world" console output.

The piccolo control stick has a 12 bit ADC. To test the ADC of the piccolo control stick
board a simple code that returns ten ADC values is used to collect ten samples when
“M” is pressed in the console terminal.

21

The code below shows an interrupt that collects ten samples from the ADC when M
command is pressed in the console.

f/ Wait for LDC interrupt + Badru: wait for 'm' comwand to start collecting LDC
fori;;)
{
if (3ciaRegs.3CIFFRE. LIt RIFF3T == 1) //If there iz some user input from 3CI communication just loop
{
char FeceivedChar = SciaRegs.3CIRIEUF.all;
switch (ReceivedChar)
i
case 'm': case 'MN':
ConversionCount = 0; RunFlag=1; ReadyFlag=0;
hreak;
default: hreak;
+

if [ReadyFlag)
{
short k;
char =xbuff[30];
for (k=0; k< 3MPLCNT; k++)
{
sprintf (xxbuff, "%d, ", Voltagel[k]); scia msg (xxbuff):
}
scia xmit (13); scia xwit(10); // EndOfline (CR+LF)

ReadyFlag=0; // Badru:ready- results now ent out
¥

Figure 6. Program code that collects ten samples from the ADC.

On the console ten samples from the ADC are collected when “M” command is pressed
in the console.

1484, 1653, 1653, 1653, 1654, 1653, 1653, 1654, 1654, 1654, Olf
1653. 1654 1654 1654 1654 1654, 1654 653, [KF
1653, 1652, 1652, 1653, 1653, 1653, 1653, F

- 1653. 1653. 1653, 1654, 1654, 1653, 1653, F
» 1653, 1652, 1652, 1653, 1653, 1653, 1653, F
1653. 1653. 1654, 1653, 1654, 1653, 1653. F
1653, 1653, 1652, 1653, 1653, 1653, 1653, F
1653. 1653, 1652, 1652, 1652, 1652, 1652, F
1653. 1652, 1652, 1653, 1653, 1653, 1653. F
1653. 1653. 1653, 1654, 1652, 1652, 1652, F
1652, 1652, 1652, 1652, 1653, 1652, 1652, F
1651, 1652, 1651, 1651, 1652, 1653, 1652, F
1653. 1652, 1651, 1652, 1652, 1652, 1653. F
1652, 1653. 1653, 1653, 1653. 1652. 1652, F
1652, 1652, 1652, 1652, F

Figure 7. Ten collected samples from the ADC.

22

2.3 ADC Static Evaluation for Piccolo Control Stick

An Analog Digital Converter (ADC) is a module that is made up of mainly three
components i.e. analog input, reference voltage input and digital outputs [8]. The ADC
s main function is to convert the analog input signal to a digital output value that
represents the size of the analog input comparing to the reference voltage [12]. In other
words it samples the input analog voltage and produces an output digital code for each
sample taken.

The block diagram below shows piccolo ADC architecture.

Reference Voltage Generator

Bandgap
Reference | — 'r'j:-"i"
Circuit "

VREFLO frim

VREFHI

1 j——' ADCCTL. ADC REFSEL

Input Circuit

ADCINAD
ADCINAA1
ADCINAZ
ADCINAZ
ADCINA4
ADCINAS —

TEMP SENSOR —:Br
ADCINAGS —— .
ADCINAT —

ADCINBO
ADCINE1
ADCINE 2
ADCINBE 3
ADCINE 4
ADCINB 5 —
VREFLO —
ADCINEG —
ADCINBT —

S/H-A

/| I_ Result, | RESULT
= Converter *| Registers

s0C &
A

.CHEEL{H]

CHSEL[21] CHSEL

AcaPs 44— ADC Sample ADC

S/H-B S0C [4— Logic Logic

~ 4 I

ADCINTY
ADCINTE

Generation B | Interrupt fmm—AOCIN -

_‘ ADCCTLLVREF LOC ONY |

IﬁDCUFLI.TEMPEDH\" |

FYY¥Y)?

S0C0-S0C15
Configurations

S0Cx Triggers

Y

SW, ePWM,
Timer, GPIO

Figure 8. Piccolo ADC architecture [8].

As previously mentioned the ADC of the piccolo control stick is a 12 bit ADC with a
voltage range of (0-3.3) V. The 12 bit converter is fed by two sample and hold circuit
with up to 16 analog input channels. It’s important to note that the ADC is not
sequencer based; this makes it easy to create a series of conversions with only a single
trigger. Different parameters determine the performance of the ADC for a piccolo
control stick. These are relied on to determine the accuracy of the ADC. In this chapter,
parameters have been grouped into static performance parameters and dynamic
performance parameters.

23

2.3.1 Input impedance of Analog pin

Before looking at the parameters it’s important to discuss the input peripheral pins and
the sample and hold circuit. The pins can be designed as a RC circuit. The CADc is the
hold capacitor and the RADC is the resistance caused by the sampling switch [8]. The
figure 9 below shows the ADCIN pin.

—————— — — — — — — = —
RClr'l
Rg ADCIN 3.4 kQ Switch
AR, M -

Source (~ ™y
Signal __,J

—
o
%
_:l'\
Ne

Figure 9. ADCIN pin [8].

Minimum impedance is archived when the hold capacitor is fully discharged. The
current that flows to the pin reduces when the capacitor is charged again.

2.3.2 Sample and hold circuit.

The hold capacitor is charged by this circuit. The sample and hold capacitor circuit is
responsible for sampling the input signal. The analog pin is disconnected and the
voltage across the capacitor is converted to digital code using successive approximation.

Electrically operated
switch

Vin
From Analog »

Multiplexer —— Capc

% Rapc
LTATAVAVATAY —

— Vgg, (Analog Ground)
Figure 10. sample and hold circuit [8].

Immediately when the ADC conversion starts, the switch is closed. This connects the
hold capacitor to the analog input along the internal ADC resistance RADC. This causes
a charging current to flow into the analog input and the capacitor starts to charge.

24

2.4 Static performance parameters of Piccolo control stick

Static performance parameters, these are parameters that are not related to ADC’s input
signal. The test is influenced by the DC component of the input voltage. The concept is
to put one input voltage value and see 31 ADC output codes for each input. Static
parameters include gain error, offset error, full scale error and linearity errors. For the
piccolo control stick these parameters have been shown in the accuracy section in
tablel.

2.4.1 External voltage reference.

Two pins are chosen to generate reference voltage. The internal band gap is responsible
for the choosing the reference voltage for the ADC. The band gap converts the voltage
based on a fixed scale (0-3.3v) range. In this case the internal band gap is not used,;
VREFLo and VREFHI are externally controlled.

A set up was made to test the absolute maximum and minimum voltage in takes for the
ADC. The block diagram below shows components that are used to test for the voltage
range input and the ADC output values of the piccolo control stick 12 bit converter.

use

PC

CCS & ECLIPSE
CDT(C++/C)

DATA-LOG

AMNALYSIS

Figure 11. Block diagram of the equipment set up.

In this test the full range (-0.9-3.4) V is divided into 2000 equal steps. The NI DAQ
takes 31 samples at every voltage input. A connection is established between the piccolo
control stick and the PC via a USB connection. A program code is debugged and run in
code composer studio. The code collects 31 samples from the ADC. Channel ADCAo is
connected to the national instrument data acquisition device. R-language and Matlab are
used to analyze the collected data logs. The ePWM is used to trigger the start of
conversion event (SOC). The ACQPS is used to determine the sample and hold window
size. The minimum number of sample cycles possible is 7 cycles which equates to (6
ACQPS). The total sampling time = sample window size + conversion time of the ADC.
In case of over sampling SOCO and SCO1 can be given the same value e.g. 28 cycles =
27 ACQPS

25

/4 Configure ADC

EALLOW;

AdeRegs . ADCCTLZ Jbit, ADCNONCOVERLAP
AdeRegs.ADCCTL1. kit INTPULIEPOS =
AdeRegs. INTSELINZ .bit. INT1E =
AdeRegs. INTSELINZ .bit. INT1CONT
AdcRegs. INTSELINZ .bit. INT13EL
AdeRegs . ADCSOCOCTL.bit . CH2EL
AdeRegs. ADCSOCICTL. hit . CHSEL
AdeRegs . ADCSCOCOCTL . bit . TRIGSEL
AdeRegs . ADCSCOCICTL. bit . TRIGSEL
AdeRegs. ADCS0COCTL . bit. ACOPS
AdeRegs . ADCSOCICTL.bit, ACOPS
EDIS;

[y
LT

S/ Enable non-overlap mode

A4 ADCINTL trips after AdcResults latch
4/ Enabled ADCINTI

4 Disable ADCINT1 Continuous mode

S setup EOCL1 to trigger ADCINTL to fire
S set Z30C0 channel select to ADCINAG

4 Zet 30C1 channel select to ADCINAE

]
b

non
b

1]
[U N) o Y O e I A |
ST TR T i

“a

Figure 12. ADC register for sample and hold window.

A program code that controls the input voltage is run in eclipse simultaneously. The
physical channel and the data acquisition device are specified as well. The code below
shows data acquisition channel and the voltage range being used. In this case channel
ADCINAo and a voltage range of (-0.9 — 3.410) V is used. It should be noted that the
absolute maximum voltage rage based on the piccolo control stick data sheet is (-0.3 —
4.6) V.

fi—— Definitions for DAQ

Ad#define physicalChannel "WI USE 62581/ /ai6,NI_U3E 6281/ai7" // "Devil/aio"
#define physicalChannel L0 "hewl/ao0"

Hdefine terminalConfig Dhicmx_Val RESE ffDAme_Ual_NRSE

{/#define terminalConfig AO Dicrax Val R3E

fi/#define minWal AT -z.0

Aifidefine waxVal AT 2.0

fidefine minVal AO -0.09

#define maxWVal LO +3.410 J/

Hdefine units DACmx Val Volts

Figure 13. Program code that controls the input voltage

This program code collects 20000 samples of different voltage input that are converted
to digital values by the ADC.

#define NNN Z0000 /J/zZ0000 /300 /F Munkber of LD ssmples

Figure 14. Program code collects 20000 samples.

The samples are collected in a data file and analyzed using Mat lab program.
»» plot{Analog,ADC, "'red”)

>> hold on

»» ¥plot(x,y, 'blue")

»>» xlabel('Analog input-v")

»» ylabel("ADC code")

»» title(ADC REDAING")

»>» legend('ADCoutput”,"ideal’, "Location’, 'southeast”)

Figure 15. Matlab code to analyse datalogs.

26

J4 Zet ZI0CO start trigger on EPWHM1A, dus to roun
S/ set 30C1 start trigger on EPWM1L, dus to roun
A4 oset 3020 3/H Window to 7 ADC Clock Cyoles,
4 oset 30Cl 3/H Window to 7 OADC Clock Cyoles,

L6
PG

The figure 16 below shows a transfer function - plot of analyzed data of the analog input
against the ADC values.

ADC READING
4500 T T T T T T T T T

4000

3500

3000

2500

T

2000

ADC Output

1500

1000

500

T

-1 -0.5 0 0.5 1 1.5 2 25 3 35 4
Analog input-V

D | 1 1

Figure 16. Piccolo transfer function.

The transfer function of an ADC is a plot of the voltage input to the ADC versus the
output codes from the ADC. The plot is not continuous but is a plot of 2Vcodes,
where N is the ADC's resolution in bits. In this case N=12 bits giving us 4096 codes.
The ideal transfer function plot is a straight line. It’s obtained by connecting the codes at
the code-transition boundaries. Figure 16 doesn’t show a straight line but something
close to a straight line. When the input voltage is less than 0, the digital value returned
by the ADC is 0. When the voltage input is around 3.3974V the digital value returned is
4095 codes. Beyond 3.397V the ADC begins to saturate hence the horizontal flat line as
shown in figure 16.

2.4.2 Offset Error and Full scale error

Offset error is caused by the deviation from the ideal voltage input at code 0. At code 0
the input voltage is not 0 volts. Full scale error, this is the difference between the actual
last transition voltage and the ideal last transition voltage. To obtain these errors ADC
data from the piccolo control stick was analyzed using a program code in R-language. A
compensation coefficient is used to get the horizontal output of the data. Below is the
code used to plot figure 18.

27

Kcorrect= 1.831
#Kcorrect= 1.816
#Kcorrect= 1.81851

ADCcodeB®= Uin® (4095/ (3.3* Kcorrect)) ##%1.813))

for (k in (l:xlen))
{

yy=as.numeric (dd[k, 2:ylenl])

Doutl[k]= wy[1l] # 1-st sample only
Dout@[k]= mean(yy) # average

Dout_pp[k]= max(yy) -min (yy)

Dout_sd[k]= sd(yy)

Derr@ [k]= Dout8[k]- ADCcodeB|[k]

Derrl [k]= Doutl[k]- ADCcodeB[k]

¥

plot (Uin, Dout®, type='1")

grid()

xrr= ¢ (8.11, 3.29) ##(0.1, 0.2)

yrr= ¢(-20,48)

#plot (Uin, Derr, type="1", ylim= c(-6, 7))
plot (Uin, Derrl, type="1", ylim= yrr, col='red’', xlim= xrr)
lines (Uin, Derr@, type="1", col= 'blue")
#lines (Uin, Dout_pp, type="1', col= ‘brown’)
#lines (Uin, Dout_sd, type="1l", col= 'grey’)
grid()

xtxt= paste (xfile, "Kcorr=",Kcorrect)

title (xtxt)

R T Y " I I CH SR S S N R R R Y T " T T

Figure 17. Program code in R-language to calculate offset.

The offset error in this case is -13.3 digits and full scale error is 0.019 digits. Offset
error can be a positive or negative value. The full scale error is calculated by subtracting
the relative scale (RelScale) from 1. In figure 18 below the black color represents the
ADC codes plus noise and the blue is the average of the noisy codes. The average also
shows the internal noise in the converter. The ADC starts to sample when the input
voltage is around 0.11V. The full scale is attained at around 3.29V. Offset Error in volts
is calculated using this equation. Offset Error (V) = Error in LSB X Maximum Input /
(number of bits). Therefore in this case the full scale error in volts would be -0.01071V.

28

The figure 18 below shows the offset error and full scale error.

RelScale= 0.981 offset= -13.3 digits, maxErrAver= -2.1 FullscaleV= 3.3

20

10

errorCodeAver
0
|

piccaloLogs/logG(SH57andx100.bxt

T T T T
0 1 2 3

uin
Figure 18. Offset Error and full scale error.

The black plot shows the noise distribution for each code from 0 to full scale. It’s very
important to understand the noise performance of the converter across all codes. In this
case the noise of the converter is a function of its codes. In this particular acquisition log
file, we have a stable distribution of the noise across all codes. The blue plot in figure
18 shows the distribution of noise, perturbation at the beginning codes and at the end in
higher codes. The blue plot also shows us that the noise distribution is even across all
codes.

2.4.3 Sample and hold window

The sample and hold window gives flexibility to the rate at which the sampling
capacitor of the ADC is charged. Every ADCSOCXCTL register in made of a 6 bits
field. The sample and hold window size is determined by this register. In this work
different sample and hold windows were used to observe their effect on the ADC output
code from four different data logs.

Sampleand | Frequency | Offseterror | Full scale | Maximum | SD
hold (Hexa (digits) error(digits) | Average
decimal) error
(digits)

LogD |6 X80 5.6 0.031 4.7 1.39
LogE |13 X 28 -17 0.017 -2.3 1.41
LogF |27 X100 -12 0.019 1.8 1.40
LogG |57 X100 -13 0.019 -2.1 1.20

Table 2. Different piccolo logs tested.

29

From the table 2 above its observed that the sample and hold window has so much
effect on the offset and gain error and on the stability performance of the ADC result
e.g. log D and log E.

2.4.4 Gain Error

The error in ADC is measured in comparison with the slope of the ideal transfer
function. The ideal transfer function line is perfectly linear. At OV the output code is
exactly 0 and at 3.3V/(Vref) the output code is exactly 4095. In real world such a linear
output cannot be archived. The figure 19 below shows the gain error of the piccolo
control stick ADC. The gain error in this case is 46 digits.

5OV - Gain Error

nalog mpu

Figure 19. Gain error of the piccolo control stick ADC.
2.4.5 Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of individual code from the ideal straight line
drawn from zero to full scale. At point zero, there is 0.5LSB before the first transition
code and full scale occurs at one half LSB beyond the last code transition. To measure
the deviation, one has to start from the center of each particular code to the ideal straight
line between two points. The Piccolo board integral nonlinearity is tested using the
static ADC data logs collected. This is done with the histogram method using the R-
code. INL error can be positive or negative i.e. +1LSB or -1LSB. INL in this case is
approximately +5/-10 LSB. The figure 20 below shows piccolo INL error.

30

10

logD(SH-6andx80).txt

-10

0 1000 2000 3000 4000

Index

Figure 20. Piccolo INL error

2.4.6 Differential Nonlinearity (DNL)

In an ideal transfer function each code transition is 1LSB apart. In reality there are
deviations from the ideal LSB value. A DNL error can be positive or negative i.e.
+1LSB or -1LSB. The piccolo control stick DNL is tested with the static data logs
collected. This is done with the histogram method using the R - code previously used to
test the piccolo control stick. The figure 21 below shows DNL error. DNL= +4/-4 LSB

10

DNL

logD(SH-6andx80).txt

-10

T T T T T
0 1000 2000 3000 4000

Index

Figure 21. Piccolo DNL error.

31

2.5 Dynamic performance parameters

Dynamic performance parameters, these are parameters related to ADC’s input signal.
These parameters include signal-to-noise ratio (SNR), total harmonic distortion (THD),
signal to noise and distortion (SINAD) and effective number of bits (ENOB).This
section show test results from the dynamic test of the Piccolo ADC.

2.5.1 Piccolo board dynamic performance.

The Piccolo control stick is connected to a signal generator using two wires, one of the
wires is connected to ground and the other is connected to ADCiN4. The board is
connected to a pc via a USB connection. The program code used in the previous tests to
trigger samples from the ADC is used to collect data logs of 300 samples. In this test a
sinusoidal signal of different frequencies is used to analyze the behavior of the on board
ADC. According to the data sheets the board has a fast conversion rate: Up to 80ns.
Before starting the test a better understanding of the sample rate control is discussed.

2.5.2 Enhanced Pulse Width Modulator (ePWM)

In this project the F28069 control stick uses the ePWML1 to drive the ADC sampling
rate. The ePWM in the piccolo is built up from smaller single channel modules with
separate resources, together these can operate as required to form a system [8]. Figure
22 below shows the different modules.

{cmpA.150) (CMPE.15-0)

TBCTLAZ7 [Shadowsd | [Shadowed

» Clock Compare Compare
v Prescaler Register Register
1
= [|
' (AQCTLA.11-0)
: TBCTR.15-0 (AacTLB.110) (DBCTL.4-0)
H N N
i 16-Bit Compara ¥ Action *| Dead
! *| Time-Base " Logic | Qualifier J Band
' Countar
: J |
1
' EPWMxSYNCI | EPWMxSYNCO
1
1
: Period -+ PWM M Trip |> EPWMxA
' Register o| Chopper of Zone | o EpwmMxB
1
i |—-|3““""“‘“" (PCCTL10:0) (AN
‘--. SYSCLKOUT (TBPRD.150) TZSEL.15-0

Figure 22. ePWM modules [8].

In this project the Time-Base Period Register (TBPRD) is configured in code composer
studio to control the sampling rate of the ADC. The TBPRD register sets up the pwm
frequency using (0-15) bits. These bits set the period of the time base counter.

32

The table 3 below shows the fields of the TBPRD register.

Bits | Name Valua | Description

15-0 | TEPRD | 0000- | These bits determine the period of the time-base counter. This sets the PWM frequency.
FFFFR | ohadowing of this register is enabled and disabled by the TBCTL[PRDLD] bit. By default this register
is shadowed.

= |f TBCTLIPRDLD] = 0, then the shadow is enabled and any write or read will automatically go to
the shadow register. In this case, the active register will be loaded from the shadow register
when the time-base counter eguals zero.

= [f TEBCTL[PRDLD] = 1. then the shadow is disabled and any write or read will go directly to the
active register, that is the register actively controlling the hardware.

+= The active and shadow registers share the same memory map address.

Table 3. TBPRD register [8].

The code used to determine the sample rate of 300ksp is shown below.

Azzunmes ePWTM1 clock is already enabled in Init3vysCctrli):
EPwmnlRegs. ETS3EL . .bit . SOCAEN = 1: F¢ Enakhle I0OC on L group
EPwmmlFegs.ETIEL.hit . 30CASEL A delect 30C from CMPA on upcount
EPtmmlEeg=s.ETPS . bic . S0OCAPRD f#& Generate pulse on 1St event
EPtmlRegs. CMPA.half . CHFL Ox0030; A4 3et cowpare L walue
EPwmmiRegs. TEPRD = 300; // 0Ox1388:; fF Set period for ePWH1
EPvmlEeg=s. TECTL.bit . CTRHMQODE o; A4 mount up and start

Table 4. Program code for ePWM register.

o
[PRS
L

The first sample data collected is used to analyze the behavior of the piccolo control
stick. The sine wave input has a frequency of 1 KHz and the sampling rate is about
300ksp.

The output ADC codes are analyzed using the following Matlab code.

*» % badru 2016

signal = load('pp2.txt');

H = length(=signal):

FHz=1e3;

f=s = 300*EHz; % 300 samples per second
fnygquist = £=3/2; %Hyguist fregquency
PkZPk= max(signal) - min(=signal)

rms= std(=signal)

plot (signal)

FkZFk =

449.3244

>»> title('=sinscidal input at 1EHz Pk Pk =1286 digitcs, EM3=4435.3digits,
>» ylabel ("Magnitude');
>» Xlabel ('Frequency')

Figure 23. Matlab code analyse Input sine wave.

33

sinsoidal input at 1KHz Pkok =1286 digits, RM3=443.3digits, 300ksps
1400 T T T

1200

1000

800

Magnitude

600

400

200

1 1 1 1
0 50 100 150 200 250 300
Frequency

Figure 24. Sinusoidal input at 1KHz.

In order to understand the noise component of the signal and the harmonics a
logarithmic scale is used and the magnitude is converted to dB. The FFT output is a
single sided spectrum. The frequency scale is in KHz to correctly position the spectrum.

»» 3Half magnitiude spectrum in decibels and KH=

¥ mags = abs (fft(=signal)):

bin wals = [0 : H-1]:

fax Hz = bin vals*f=s/N:

N 2 = cell (HN/2):

ploc (fax Hz (1:N_2), 10*%logll (X mags(1:H _2)))

xlabel ("Freguency (EHz) ")

vlabel ("Magnitude (dE)'):

title('Half Magnitude spectrum (lkHz) 300ksps,pk pk= 1286,rms= 443.3');

[Fe]
[¥4]

Figure 25. Matlab code for FFT output

34

Half Magnitude spectrum (1kHz) BDDksps,pkpk= 12686 rms= 449.3
55 T T T T T T T T T

50

Magnitude (dB

)
m
T

-
[}
T

1 2 3 4 5 B 7 8 9 10
Frequency (KHz) « 10*

Figure 26. Single sided fft of the input sinusoidal signal.

The FFT output is used like an analog spectrum analyzer to measure the amplitude of
the various harmonics and noise components of a digitized signal.

Windowing
Although performing an FFT on a signal can provide great insight, it is important to
know the limitations of the FFT and how to improve the signal clarity using windowing.

The code below is used to analyze the sinusoidal in put using Blackman window.
»» signal = load ("pp2.Cxt'):

»>» N = length (=2ignal):

W blackman (M}

Figure 27. Program code for windowing.

35

Sinusoidal input (Blackman window)

1 T T T T T
09F E
08F .
07¢F e
06 E
Q
rad
=
e 05} e
=
=
0.4 e
03F e
02F B
01F e
D 1 1 1 1 1
0 a0 100 150 200 250 300

Samples

Figure 28. Blackman window Sine input.

The figure 29 below shows the normalized FFT output using Hamming window. The

main lobe is -3dB and relative side lobe attenuation of -6.1dB.

Freguency domain
110 T T T T T

T e e S SO

L

Magnitude (dB)

.
50 - -FLF] i I [[[RS- [LR LRS- .
i . . ! . . . !

ol ______ ||I|.|. !

LTI |EI |
H '|:|||

.
1 A O JUUp N U Ot i PN

"i‘l‘l”[‘[\ Hil ‘“ i

. i i | i | i | i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MNormalized Frequency (=z rad/sample)

Figure 29. Normalized FFT.

36

Signal to Noise Ratio (SNR)

SNR is used to characterize the quality of the signal of the analog digital converter.
SNR is determined by many noise sources in addition to quantization noise. The analog
digital converter's resolution and quantization level both help to establish its noise floor.
The actual SNR for a 1KHz sinusoidal input signal can therefore be calculated in
Matlab.

p=snr(signal,300*KHz,6)

SNR =49.4103(dB)

Signal-to-Noise Ratio + distortion (SINAD)

SINAD is defined as the ratio of signal plus noise plus distortion and noise plus
distortion. SINAD is the ratio of the rms value of the measured input signal to rms sum
of all other spectral component below nyquist frequency. The SINAD is computed
using matlab

w= sinad(signal,300*KHz)

SINAD = 48.6854(dB)

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first 9 harmonic components of the rms value of
the measured input sinusoidal signal. The actual THD is calculated in matlab.
r=thd(signal,300*KHz,9)

r=-51.3(dB)

THD = -51.3(dB) = 0.0027%

Effective Number of Bits (ENOB)
ENOB can be directly calculated as ENOB= (w-1.76)/6.02
ENOB = 7.7949 bits ~8bits

Spurious-Free Dynamic Range (SFDR)

SFDR is the difference between the rms amplitude of the input signal and the RMS
value of the largest spur observed in the frequency domain. SFDR is calculated in dB.
This is a crucial specification that is used to characterize the dynamic performance of a
signal generator The actual SFDR is calculated in matlab. SFDR = 53.4551(dB)

37

3 Tiva C Series - TM4C123GH6PM

The Tiva C Series TM4C123GH6PM is a low-cost evaluation platform from Texas
Instruments (TI) [7]. This platform, together with the integrated development
environment (IDE) Code Composer Studio (CCS) provides tools to develop and debug
embedded applications with C/C++ programming. It has an ARM Cortex-M4
microcontroller that provides high performance and advanced integration [7].
The following are some of the features of the Tiva C Series - TM4C123GH6PM [14].

= Motion control PWM

= USB Micro-AB connector

= Device mode default configuration

» Host/OTG modes supportable

» RGBLED

= Two user switches (application/wake)

= Auvailable I/0O brought out to headers on a 0.1-in (2.54-mm) grid

= On-board ICDI

= Switch-selectable power sources:

= |CDI

= USB device

* Reset switch

» Preloaded RGB quick start application

The board is comes with USB library, the peripheral driver library and stackable
headers to expand the capabilities.

Power Select USB Connector
Switch (Power/iCDi) Green Power LED

Tiva
TM4AC123GHEPMI
Microcontroller

USB Micro-A-B Reset Switch
Connector
(Device)
238
www. i com/daunchpod A RGB User LED
DG IMACIZIG. REY A - Tiva C Series
LaunchPad
BoosterPack XL
Twa C Series Interface (J1,J2,3, |

LaunchPad and J4 Connectors)

BoosterPack XL —
Interface (J1, J2, J3,
and J4 Connectors)

Tiva
TM4C123GHEPMI
Microcontroller

MSP430
LaunchPad-Compatible
BoosterPack Interface

MSP430
LaunchPad-Compatible
BoosterPack Interface

v/
4 Tiva~ C Series

' /AaunchPad

User Switch 1 User Switch 2

Figure 30. Tiva C board [15].

38

The Tiva C Series platform makes use of the most advanced ARM architecture core
for MCUs, the Cortex-M4 is 32-bit processor architecture.

The block diagram below shows the architecture of the Tiva TM4C123x series.

TM4C123x Temperatures 85°C | 105°C
Ay Power & Clocking
TIER U t0 256 KB Fiash
: Upto 32 K6 S
2 KB EEPROM
mvpu W ROM |
NVIC SWD/T DMA (32 ch) System Modules
6x 32-bit Timer/PWM/CCP
6 64-bit Timer/PWM/CCP
Real-time JTAG 2x Watchdog Timer
| Control Peripherals Comms Peripherals || Analog
2x Quadrature Encoder 8x UART | 2x 12ch, 12-bit ADCs,
‘ Inputs 4x SSI/SPI 1MSPS
16% PWM Outputs LDO Voltage Regulator
3x Analog Comparators
USB Full Speed Temperature Sensor
(Host/Device/OTG)

Figure 31. Architecture of Tiva TM4C123x series [15].

Tiva TM4C123GH6PM MCUs has two ADC modules (ADCO and ADC1) that can be
used to convert continuous analog voltages to discrete digital values. The ADC operates
from both the 3.3V analog and 1.2V digital power supplies. Each ADC module is
independent and has 12-bit resolution. The ADC is made up of 12 shared analog input
channels and maximum sample rate of one million samples/second. Both modules have
8 digital comparators.

The block diagram below shows two ADC modules in a TM4C123GH6PM
ot 12
Channels | | ADEa | 'Memupts

;.

Imerruptss

Figure 32. ADC modules in a TM4C123GH6PM [7].

w
(o]

3.1 Tiva ADC electrical characteristics

Parameter |Parameter Name | min [Mom | Max Unit
POWER SUPPLY REQUIREMENTS
Vi ADC supply voltage 287 33 3163 W
GNDA ADC ground voltage -] W
VDDA / GNDA VOLTAGE REFERENCE
Coer |wmpa reference decoupling capacitance | - 1.0 0.01°] . WF
ANALOG INPUT
Single-ended, full- scale analog input voltage, 1] - Voo W
Mancin emal r_a -
ctomal eferoncet 0 eS| Noon Voon !
Wiy Input comimon mode voltage, differenial mode? . - (VREFP + mi
WREFN) f 2
325
I ADC input leakage current” - - 20 y
Rane ADC equivalent input resistance” - - 25 ki
Cane ADC aquivalent input capacitance” = = 10 pF
Ry Analog source resistance” . - 500 0o
SAMPLING DYMNAMICS
Fanc ADC comversion clock frequency’ : | 16 I MHz
Feose |ADC conversion rate 1 Msps
Ts ADC sample time - | 0 | ns
Te ADC conversion time! 1 s
T Latency from trigger %0 start of convarsion - | F]] - ADC chocks
SYSTEM PERFORMANCE when using mtemnal reference
N Resolution 12 bits
INL Integral monlinearity ermor, over full ingut range - 15 230 LSB
DHL Differential nonlinearity emos. over hll input - 08 200" LsB
range
= Offsat emor - =50 £15.0 LS8
Ee Galn eror - +10.0 £30.0 LSB
Er Total unadpusted emor, over full input range”™ - +10.0 +30.0 Ls8
| DYNAMIC CHARACTERISTICS™
SNR, Signal-to-notse-ratio, Differential input, Vapeye | 70 72 - dB
-20dB FS, 1KHz "
SDRp Signal-to-distortion ratio, Diffierential input, T2 75 . dB
Vapo: -3dB FS, 1KHZPT
SNDRy Signal-to-Motse+Distortion ratio, Differential 70 - aB
INpUt, Voo =308 FS, 1KHZ
SNR, Signal-to-nolse-ratio, Single-ended input, B0 65 . dB
1::n',.ﬂ.z,,‘,: -20dB FS, 1KHz
SDRg Sigral-to-distertion ratie, Single-ended input, 70 72 - 4B
o -3dB FS, 1KHY
SNDRj Signal-to-Noise+Distortion ratio, Single-ended | 80 63 . dB
INPUL W oy -308 FS, 1KH™

It should be noted that analog input pads can handle voltages beyond 0 - 3.3V range but
the analog input voltages must remain within the limits prescribed by Table 5 to

Table 5.Electric characteristics of Tiva board [7].

produce accurate results.

40

3.2 Testing Tiva board

The Tiva C series board was also tested using the inbuilt projects that come with Tiva
ware package using the CCS debugger. The Hello world example, blinking Led and
temperature sensor examples were used to test the proper functioning of the board as
well as the ADC. The figure 33 below shows sample output of the temperature readings
form the board in Celsius (C) and Fahrenheit (F).

Below is a simple code for the temperature sensor in the tiva board.

uizzZTewpValusC = (2025 - (Z475UL * pui3ZADCOWValus[0] /4095) —-550)/10;
A

A# Get Fahrenheit walue. Make sure you divide last to awvoid dropout.
A

niiz TempWValueF = [(ui3ZTenmpWalusC * 9 + 1a60) f 5;

Af Display the temperature walus on the console.

A
UARTprintf ("Temperature = %3d*C or %3d4d*F n=%3d\r", uilZTempValueC,
Uii2TempWalueF, puildZiDCOValue[0])

Figure 33. Program code for the temperature sensor in the Tiva board.

Output showing different temperatures in Celsius and Fahrenheit.

Pex=F
??=F
??=F
??=F
7?=F
??=F
??=F
e=F
??=F
e=F
??=F
??=F
??=F
??=F
??=F

Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

Temperature 25x=C or 77=F n=;“

Disply Port | Capture| Pins | Send | EchoPort| 120 | 1202 | 120Mise | Miss | An| Clear] Freeze| 7|
Statuz

Baud [115200 =] part [3 <1 gpen| 5D_'e| ' Change |I7 _ | Dizconnect

Figure 34. ADC results from temperature sensor.

41

3.3 ADC Static Evaluation of Tiva board.

Static performance parameters were tested for tested for the Tiva board as well. The test
is influenced by the DC component of the input voltage. The concept is to put one input
voltage value and see 31 ADC output codes for each input. These parameters include
gain error, offset error, full scale error inl, dnl. The block diagram below shows the set
up used to test the Tiva C series board.

PC

CCS & ECLIPSE
CDT(C++/C)

MATLAB
— et R-LANGUAGE

AMALYSIS

DATA-LOG

Figure 35. Test set up of Tiva C series board

A connection is established between the Tiva board and the PC via a USB connection.
A program code is debugged and run in code composer studio. The code collects 31
samples from the ADC. Channel ADCAINo is connected to the national instrument data
acquisition device. A program code that controls the input voltage is run in eclipse
simultaneously with code composer studio. The data collected is sent to the data log and
later analyzed in R-language and Mat lab/Simulink.

3.3.1 Single ended Input

Single-ended input measure the voltage between the input channel (AiNno/PE3) and
analog ground common to all in puts. The single ended input logs were collected and
analyzed. In this test, single-ended input was connected with one wire from Aino to the
data acquisition input interface and the other wire to the data acquisition input interface
ground. In this test, it is assumed that the ground is at a constant OV, but in reality the
ground is at a different level in different places. The difference in levels can drive large
currents, known as ground loops. This can lead to noise errors when using single-ended
inputs. These noise errors are shown in the transfer function below.

42

The figure 36 below shows the transfer function of Tiva c series board.

Tiva-Analoginput Vs ADCoutput
4500 T T T T T T T T

4000

3500

T

3000

2500

2000

ADC code

1500

T

1000

500

Ideal transfer function B

— ADC output transfer function
1 |

D 1 1 |
-0.5 0 0.5 1 15 2 25 3 35 4
Analog input

Figure 36. Transfer function of Tiva c series board.

The ADC transfer function shown in the figure 36 above doesn’t look like the ideal
transfer function. This is caused by the internal noise within the board and the external
noise errors caused by grounding. The transfer function of an ADC is a plot of the
voltage input to the ADC versus the output code's from the ADC. The plot is not
continuous but is a plot of 2Vcodes, where N is the ADC's resolution in bits. In this case
N=12 bits giving us 4096 codes. The ideal transfer function plot is a straight line. The
gain error is calculated by finding the difference in slope of the ideal transfer function
and the ADC transfer function. In this case the gain error is positive with 52.6digits.

3.3.2 Noise Error

Single-ended inputs are sensitive to noise errors. Noise is unwanted signals picked up
within the board and environmental electrical activity. Single-ended inputs make it hard
to distinguishing between the signal and the noise. This is one of the reasons that affect
the ADC output leading to a noisy transfer function. The transfer function cannot clearly
show the noise across each individual code of the ADC. In this project analysis is done
to see how the noise is spread across all the 4095 ADC codes.

43

R language script is used to analyze the data log.

plot (Uin, xdatalver, type='1l", col= "blue")

kl = 4888 # code for "near-zero"

k2 =18088 # code for "near- full-scale"

Kscale= (xdatalver[k2] - xdatafver[kl]) / (Uin[k2]- Uin[kl]) # dCode/dUin
KscaleB= 4895/3.3

RelativeScale= Kscale /KscaleB

OffsetCode= xdatafver[kl]- Kscale *Uin[k1l]

OffsetV= OffsetCode/Kscale

FullscaleV = OffsetV + 4895/Kscale

Figure 37. R language script used to analyse the data log.

In this test the full range (-0.05-3.6) V is divided into 2000 equal steps. The NI DAQ
takes 31 samples at every voltage input. The figure 38 below shows the ADC output
code and the analog input from 0 to full scale. The black color shows all the codes and
the noise associated with each code. The blue color shows the average error code across
the ADC output. The noise is evenly distributed across all codes.

RelScale= 1.002 offset= -1.2 digits, maxErrAver= -1.8 FullscaleV= 3.2

20

errorCodeAver
10

-10

-20
|

TivaLogs/TivaSingleEnded/logC1.txt

T T T T
0 1 2 3

Uin

Figure 38. ADC output code and the analog input.

44

Four data logs were analyzed with 2000 analog samples and 31 ADC output codes.
The table 6 below show different errors from the data analyzed from different logs.

Offset error | Full Scale | Maximum SD Relative
(digits) Error Average Error scale
(digits) (digits)
LogAl -2 -0.002 -1.3 1.23 1.002
LogB1 -2.8 -0.003 -2.1 1.22 1.003
LogC1 -1.2 -0.002 -1.8 1.26 1.002
LogD1 -1.9 -0.003 -1.5 1.18 1.002

Table 6. Analysed Tiva logs
3.3.3 Differential input

To solve the problem of noise error caused by single ended input, differential input is
used. This measures the voltage between two individual inputs within a common mode
range. The measurement is independent of the low level ground which makes it more
immune to noise. The two wires in this case are both exposed to electromagnetic
interference (EMI). The national instrument DAQ input measures only the difference in
voltage between the two wires, and the EMI common to both is ignored. The code
below is used to collect ADC samples in differential input mode.

/4 Select the analog ADC function for these pins.

¥ : change this to select the port/pin you are using.
SAGPIOPinTypelDC (GPIQ PORTE BASE, GPIC PIN 7):
GEIOPinTypedADC (GPIO PORTE BASE, GPIC PIM 7 | GPIC _PIN &) ;

f¢ Enable sawple sequenhce 3 with & processor S2ignal trigoger. Jequence 3
A4 will do a z2ingle sample when the processor Sends & Signsl to start the
ff comversion. Each ADC module haz 4 progragmnab le fequences, Sequence 0
A4 to sequence 3. This example i= arbitrarily using sSedquence 3.
ADCSequenceConfigure (ADCO BALSE, 3, ADC TRIGGER FROCEZISOR, 0):

/¢ Configure step 0 on sequence 3. Sample channel 0O (ADC CTL CHO) in

i 2ingle-ended mode (default) and configure the interrupt f£lag

S¢ (ADC _CTL_IE) to be set when the sample is done. Tell the ADC logic

f¢ that this is the last conversion on sequence 3 [ADC CTL _EWD) . Sequence

f4 3 has only one programtnskhle atep. Seguence 1 and 2 have 4 steps, and

4 sequence 0 hazs § programwsbhle steps. Since we are only doing a single

4 conwersion using sequence 3 we will only configure step 0. For more

f4 information on the ADC sequences and steps, reference the datasheet.

/fADC3equenceltepConfigure (ADCO_BASE, 3, 0, ADC CTL _CHO | ADC CTL_IE |
£fLDC_CTL_END) :

ADCSegquenceStepConfigure (ADCO_BASE, 3, 0, ADC CTL D | ADC CTL_CHO |
ADC_CTL_IE | ADC_CTL ENDj:

Figure 39. Program code for differential input mode.

A few lines of code were changed from the single ended input to sample the board in
differential input mode.

45

3.3.4 Dithering

Dithering is the adding of a bit of white noise to the ADC output [7]. The dither bit is
made active by adjusting the ADCCTL register which is used to reduce random noise in
ADC sampling and keep the ADC operation within the specified performance limits.
The dither bit should be enabled in the ADCCTL register along with hardware
averaging in the ADC Sample Averaging Control (ADCSAC) register. It should be
noted that the dither bit is disabled by default at reset. When dithering is introduces in
the Tiva board the noise increases and the codes are not easy differentiated they are
covered in a noise cloud. The figure 40 below shows the ADC output of a Tiva board
with dithering.

RelScale= 1.002 offset= -3.9 digits, maxErrAver= 1.9 FullscaleV= 3.2

errorCodeAver
10

-10

-20
|

TivaLogs/TivaDithering/TivaSingleEndedDithering/logE3SE.txt

T T T T
0 1 2 3

Uin

Figure 40. ADC output of a Tiva board with dithering.
3.3.5 Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of individual code from the ideal straight line drawn
from zero to full scale. At point zero, there is 0.5LSB before the first transition code and
full scale occurs at one half LSB beyond the last code transition. To measure the deviation,
one has to start from the center of each particular code to the ideal straight line between two
points. The Tiva board integral nonlinearity is tested with the static ADC data logs collected
using histogram method. In this method the first and last bin (codes 0 and 4095) are
eliminated then we calculate the average /expected count of the codes. INL is the sum
from the beginning up to current code (bin) of DNLs. The INL error is +7/-12 LSB.

46

10

SingleEnded/logD1.ixt

-10

T T T T T
0 1000 2000 3000 4000

Index

Figure 41. Tiva INL error.

3.3.6 Differential Nonlinearity (DNL)

In an ideal transfer function each code transition is 1LSB apart. In reality there are
deviations from the ideal LSB value. A DNL error can be positive or negative i.e. +1LSB or
-1LSB. The Tiva board DNL is tested using the collected data logs. This is done with the
histogram method using the R-code code previously used to test the Tiva board. In this
method the first and last bin (codes 0 and 4095) are eliminated then we calculate the
average /expected count of the code(s). DNL is the difference at every bin (code) of

actual count from average. The DNL is around +7/-3 LSB.

10

SingleEnded/logD1 b

-10

T I T T T
0 1000 2000 3000 4000

Index

Figure 42. Tiva DNL error.

47

3.4 Dynamic Evaluation Tiva C board

The Tiva board is connected to a signal generator using two wires, one of the wires is
connected to ground and the other is connected to the Tiva board peripheral pin PE3.
The board is connected to a pc via a USB connection. The code used in the previous
tests to trigger samples from the ADC is used to collect data logs of 3000 samples. The
samples are collected using real terminal console. In this test a sinusoidal signal at
different frequencies is used as the input of the on board ADC. The Sampling rate of the
ADC is the maximum back-to-back conversion rate. If it’s not modified then it is
1MSPS maximum rate. The board has two ADCs and each has a conversion rate of up
to IMSPS. This means that the board can archive a conversion rate of 2MSPS.

3.4.1 Run-Mode Clock Gating Control 0 (RCGCO) register.

The RCGCO register is used to drive the sampling rate of the Tiva board [7]. This
register determines the clock gating logic in normal run mode [7]. In other
microcontrollers that are closely related to the Tiva microcontroller like Stellaris the
ADC peripheral configuration register is used to determine the sample rate of the ADC.
In this project the RCGCO is configured in code composer studio to control the
sampling rate of the ADC. The ADC sample rate can be set to 125K (0x0), 250K (0x1),
500K(0x2), or 1M (0x3) samples/second. According to the Tiva micro controller
datasheet the sample rate is set by configuring the MAXADCOSPD register bits. The
SYSCTL_RCGCO_ADCOSPD register is specifically used to set the ADC sample speed
in this project work. A pointer is used to insert the desired sample rate value into the
memory address of the register.

#define x3T3CTL RCGCO O0x400FE100 A STICTL_RCGCO_R | = 3T3ICTL _RCGCO_ADCIPDSOOE;

®xptr= ®3T3CTL RCGCO ¢ Sf ADCCTL or ADC CTL R 0Ox358, dithering, Badru

¥x3IZ= Fxxptr; S x0100 , Ox0Z00
XEIZW= Xx32 & Ox0300;

Fuxptr= (®Xx32 + 0x0200) ;

Figure 43. Program code for sample rate register.

The system control delay also affects the sample rate. A change in the system delay will
show significant change in the output signal.

A7 8yaCtllelayi(SysCtlClockGet () / 12):
SysCtlDelaw(5); /7100

When the changes have been made and saved in the code composer studio. The program
is run. The table below shows the sample rate changed to 200Ksps.

i1 S¥SCTL_RCGCO_ADCISPD 00 - ADC1 Sample Speed
i1 S¥SCTL_RCGECO_ADCOSPD 10 ADC0 Sample Speed

Figure 44. System control register.

48

The first sample data collected is used to analyze the behavior of the Tiva board. The
sine wave used has a frequency of 1Khz and the sampling rate is about 200ksp. The
FFT output spectrum of the signal is obtained by using the following Matlab code.

»>» %Badru 2016

ol
=
]
[
o
]
M
|
1]
W
L
m
L
=
fu
ITn]
=
|
it
[
L
m
1]
Ifj
M
[y
it
H
L
=
4
I
t
¥
Hh
H
M
flee}
L
M
il
[y]
fu
"
m
[
=
T
=
=
w

fax bins = [0 : H-1]:; %N i=s the number of samples in the signal
plot (fax bins, abks(fft(signal)))

xlabel ("Freguency (Bins) ")

vliabel ("Magnitude') ;

title | 'Double-=sided Magnitude spectrum (bins)'):

axis tight

Figure 45. Tiva sine wave FFT output spectrum.

%10 Double-sided Magnitude spectrum
T T T T

Magnitude

| | | | |
500 1000 1500 2000 2500 3000
Frequency (Bins - almostl)

Figure 46. FFT spectrum of a sine signal.

The figure shows the fft spectrum of a sine signal with a frequency of 1KHz and
sampled at a rate of 200ksp. After 1500 bins the spectrum is mirrored at 2000bins.

A comparison is made between the dynamic characteristics in the Tiva ADC data sheet
and the results from analyzed data. The table below shows the dynamic characteristics
of the Tiva board as given in the data sheet.

DYNAMIC CHARACTERISTICS™

V."—\DClN: -20dB F5, 1KHz
u

SNRp Signal-to-noise-ratio, Differential input, V apopny: 70 72 - dB
-20dB FS, 1KHz P

SDRp Signal-to-distortion ratio, Differential input, 72 75 - dB
Vapc: -3dB FS, 1KHZPY

SNDRp Signal-to-Noise+Distortion ratio, Differential 68 70 - dB
iNput, Ve -3dB FS, TKHZP

SNRs Signal-to-noise-ratio, Single-ended input, 60 65 - dB

Table 7. Dynamic characteristics of the Tiva board.

49

Comparing the analysis done in this work and the dynamic characteristics of the Tiva
board provided in the data sheet, a Matlab code was used to generate half of the
spectrum of the signal in dB.

>» % badru 2016

gignal = load('ttl.txt');

H = length({=signal):

EH=z=l1e3;

f=z = 200*EHz; % 200 =ample=s per second

fnyguist = f£=3/2; FHvyguist frequency

PkZ2Pk= max(signal) - mini(signal);

rmz= std(=signal);

plot (signal):;

>» wWwvtool (signal) ;

»>» THalf magnitiunde spectrum in decibel= and EH=
¥ mags = abs (fft(signal)};

bin wals = [0 : N-1];

fax Hz = bin wvals*fs/H;

N 2 = ceil (N/2);

plot (fax Hz (1:¥_2), 10%*1logll (X mags(1:H_2)))
xlabel ('Fregquency (EHz) ')

yvlabel ("Hagnitude (dB)'):;

tit}ei'ia;f Magnitude spectrum (1kHz) Z00ksps,pk pk= 1307,rms= 456.6");

Figure 47. Matlab code for half sided spectrum.

The figure below shows half of the spectrum in dB.

Half Magnitude spectrum (1kHz) 2DDksps,pkpk= 1307 rms= 456.6
65 T T T T T T T T T

60 .

55 1 .

50 .

454

40

Magnitude {dB)

35

30

25

20 1 1 1 1 1 1
1] 1 2 3 4 5) 7 g 9 10

Frequency (KHz) w10t

Figure 48. Single sided spectrum in dB.

50

Windowing

Although performing an FFT on a signal can provide great insight, it is important to
know the limitations of the FFT and how to improve the signal clarity using windowing.
The Matlab code 47 is used to analyze the sinusoidal in put using Blackman window.

Sinusoidal input (Blackman window)
1 T T T T T

09

Magnitude
o o o o 9 o
w E=N (8] (s3] | (un)
T T T T T T
1 1 1 1 1 1

o
[
T
1

1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Samples

Figure 49. Blackman window Sine Input.

Figure below 50 shows FFT of the input signal frequency normalised in radians.

Frequency domain
130 T T T T T T

Magnitude (dB)

"0 0.1 0.2 0.3 0.4 0.5 06 07 08 0.9
Normalized Freguency (xz rad/sample)

Figure 50. FFT using Hamming window .

o1

The figure 46 above shows a clear FFT using Hamming window the main lobe width is
-13.3dB and the relative side lobe -13.3dB.

Signal to Noise Ratio (SNR)

SNR is determined by many noise sources in addition to quantization noise. The analog
digital converter's resolution and quantization level both help to establish its noise floor.
The actual SNR for a 1KHz sinusoidal input signal can therefore be calculated in
Matlab.

p= snr(signal,200*KHz,6) — Where 200Ksps is equal to the sampling frequency.

SNR = 43.5549(dB)

The SNR is equal to 43.5549dB. This SNR represents 66% of the ~65dB SNR exhibited
by an ideal 12-bit ADC at 1KHz. As shown in the data sheet.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first 5 harmonic components of the rms value of
the measured input sinusoidal signal. The actual rms is calculated in mat lab.
r=thd(signal,200*KHz,5)

THD = -55.0482 (dB).

THD is equal to -55.0482(dB) = 0.0017%

Signal to Noise Ratio + Distortion (SINAD)

SINAD is the ratio of the rms value of the measured input signal to rms sum of all other
spectral component below nyquist frequency. The SINAD is computed using matlab.
w= sinad(signal,200*KHz)

w = 43.2435(dB)

The SINAD is equal to 43.2435dB. This SINAD represents 68.6% of the ~63dB SINAD
exhibited by an ideal 12-bit ADC at 1KHz. As shown in the data sheet.

Effective Number of Bits (ENOB)
ENOB can be directly calculated as ENOB = (SINAD - 1.76) / 6.02. ENOB= 8.9 bits.
This is for the sinusoidal input of 1 KHz.

Spurious-Free Dynamic Range (SFDR)

This is a crucial specification that is used to characterize the dynamic performance of a
signal generator. SFDR determines the relationship between the amplitude of the input
signal frequency being generated and the amplitude of the most prominent harmonic. In
an ideal world, the frequency domain of a pure analog signal has all power concentrated
at the desired frequency. However, due to noise and the nonlinearity of components,
frequencies are generated at different harmonics.

q = sfdr(signal,1*KHz)

q=41.4803 (dB)

52

4 Results

All the goals, presented in section 1.1, for each of the two boards are achieved. An
overview of the Piccolo (TMS320F28069) and Tiva (TM4C123GH6PM) micro
controllers was done in chapter 1. The dynamic and static parameters affecting the
performance of the ADC of the two boards mentioned above are discussed and analysed
in chapters 2 and 3. In chapter 4 the results were presented in tabular form in
comparison with those presented in the data sheets of both boards.

4.1 Piccolo (TMS320F28069) results.

Offset error.

Maintaining the default sample and hold window at 6, x80 frequency the offset error is
shown in the table 8 below.

The offset error in the Piccolo (TMS320F28069) data sheet is indicated as follows.

Parameter Minimum Maximum Units

Offset Error 10 LSB

Table 8. Data sheet offset error.

The results obtained for the test conducted show the offset error as follows. Maintaining
the default sample cycles and frequency (Log D).

Parameters Minimum Maximum Units

Offset Error 5.6 digits

Table 9. Actual Offset error.

The offset error obtained in the test of the piccolo board is a round 5.6 digits ~ 6 digits.

Overall performance results from all the data logs collected.

Sample and | Frequency | Offseterror | Full scale | Maximum | SD
hold (Hexa (digits) error(digits) | Average
decimal) error
(digits)

LogD |6 X80 5.6 0.031 4.7 1.39
Log E 13 X 28 -17 0.017 -2.3 141
LogF |27 X100 -12 0.019 1.8 1.40
LogG |57 X100 -13 0.019 -2.1 1.20

Table 10. Piccolo Test results

The results in table 10 above were obtained from four data logs with different sample
and hold window bits at different frequency. The default sample cycles in log D S/H
value and frequency are maintained in comparison to the datasheet. It’s observed that
the sample and hold window has so much effect on the offset and gain error and on the
stability performance of the ADC result e.g. log D and log E.

53

Looking at the piccolo (TMS320F28069) data sheet the INL and DNL errors are
presented as follows.

Parameter Minimum Maximum Unit
Integral -2 +2 LSB
Nonlinearity
Differential -1 +1 LSB
Nonlinearity

Table 11. Piccolo INL/DNL (Datasheet).

From the results obtained from the tests done in this work the data from one log is
presented in the table 12 below.

Parameters Minimum Maximum Units
Integral -10 6 LSB
Nonlinearity

Differential -4 4 LSB
Nonlinearity

Table 12. Piccolo INL/DNL test results.
INL/DNL results from the four data logs.

Data logs Integral Nonlinearity | Differential Units
Nonlinearity

LogD +6/-10 +4/-4 LSB

Log E +10/-7 +4/-4 LSB

Log F +7/-4 +4/-4 LSB

Log G +6/-5 +4/-5 LSB

Table 13. Piccolo Data logs (INL/DNL).

The piccolo (TMS320F28069) data sheet does not clearly specify the dynamic
parameters of the board.

During the test for the dynamic performance of the piccolo board the following results
were obtained.

Parameter Value Units
Signal to Noise Ratio | 49.4103 dB

(SNR)

Total Harmonic Distortion | -51.37 (0.027%) dB/%
(THD)

Spurious Free Dynamic | 53.4551 dB

Range (SFDR)

Effective Number Of Bits | 7.7949 Bits
(ENOB)

Signal to Noise Ratio + | 48.6854 dB

Distortion (SINAD)

Table 14. Dynamic parameters of piccolo (TMS320F28069) .

54

4.2 Tiva C (TM4C123GH6PM) results

The results obtained during the test of the ADC in the Tiva board are compared with
what is written in the data sheet. The data sheet doesn’t clearly state the values
regarding the static parameters. Looking at the Tiva (TM4C123GHG6PM) test results the
static performance errors are presented as follows.

Offset error | Full Scale | Maximum SD Relative
(digits) Error Average Error scale
(digits) (digits)
LogAl -2 -0.002 -1.3 1.23 1.002
LogB1 -2.8 -0.003 -2.1 1.22 1.003
LogC1 -1.2 -0.002 -1.8 1.26 1.002
LogD1 -1.9 -0.003 -1.5 1.81 1.002

Table 15. Tiva static results.

Four logs were tested and the average offset error is -0.49 digits and variation of the
average full scale error -0.0006 digits.

The results obtained during the test of the ADC in the Tiva board are compared with
what is written in the data sheet. Looking at the Tiva (TM4C123GH6PM) data sheet
INL/DNL performance errors are presented as follows.

Parameters Minimum Maximum Units
Integral -/+0.8 +2.0/-1.0 LSB
Nonlinearity (INL)

Differential -[+1.5 -1+ 3.0 LSB
Nonlinearity (DNL)

Table 16. Tiva INL/DNL error (Data sheet).

The following results were obtained when a test for static parameters was made for Tiva
board.

Parameters Minimum Maximum Units
Integral -3 +3 LSB
Nonlinearity (INL)

Differential -3 4 LSB
Nonlinearity (DNL)

Table 17. Tiva INL/DNL error (Test results).
The table 18 below shows the INL/DNL results from four data logs.

Data logs Integral Nonlinearity | Differential Units
Nonlinearity

Log Al +6/-12 +4/-3 LSB

Log B1 +3/-3 +4/-3 LSB

Log C1 +4/-4 +4/-4 LSB

Log D1 +7/-4 +6/-4 LSB

Table 18. Data logs INL/DNL errors.

55

Looking at the Tiva (TM4C123GH6PM) data sheet the Dynamic performance errors are
presented as follows.

Parameter Minimum Normal Units
Signal to Noise Ratio | 60 65 dB
(SNR)

Signal to Noise Ratio | 60 63 dB

+ Distortion

(SINAD)

Table 19. Dynamic performance written in data sheet.

The following results were obtained when a test for dynamic parameters was made for
Tiva board.

Parameter Minimum Normal Units
Signal to Noise Ratio 43.55 dB
(SNR)

Signal to Noise Ratio 43.243 dB

+ Distortion

(SINAD)

THD -54.7 (0.017%) dB/%
ENOB 8.9 Bits
SFDR 41.48 dB

Table 20. Test results for dynamic performance.

From the table 14 test results the SNR and SINAD appear to be lower than those written
in the data sheet.

4.3 Future work

The two boards tested in this project still have a few improvements or tests to be carried
out. The first thing to improve if continuing with this project would be to test the Tiva
board with a differential input and dither bit active. In the current test, this is not
implemented. A few tests were done with the dither bit active but the results obtained
were strange. So any one continuing with the test of these boards can look into that.

4.4 Conclusion

All logs collected are noisy. This is not caused by the chip but the entire board. The
USB connection and the NI DAQ connection also contribute to the noise generation.
The noise in the Tiva board can be reduced to a greater extent using the differential
input method to evaluate the ADC performance. The Piccolo control stick noise can also
be improved by using a different input pin as analog ground and avoiding the digital
ground.

This project work should have provided some guidance on how to look at general static

and dynamic ADC inaccuracy errors for the Piccolo (TMS320F28069) and Tiva C
(TM4C123GH6PM) micro controllers. A greater understanding of ADC errors, how

56

these errors influence the ADC performance of the Piccolo (TMS320F28069) and Tiva
C (TM4C123GH6PM) is very vital for engineers planning to use these boards in various
applications. A comparison has been made between the information written in the data
sheet and what actually happens when the boards are tested in real time. A deviation in
the parameters can affect the performance of prototype designs created by engineers
when tested. This can be in form of lower performance of the ADC as compared to what
is written in the datasheet.

57

Reference

[1] Walt Kester, "Analog-digital conversion,” 2015.

[2] Walt Kester, "Which ADC architecture is right for your application,” in EDA Tech
Forum, vol. 2, 2005, pp. 22-25.

[3] Ying Bai, "ARM Microcontroller Development Kits".

[4] N Senthil Kumar, M Saravanan, and S Jeevananthan, Microprocessors and
Microcontrollers.: Oxford University Press, Inc., 2011.

[5] Bin Le, Thomas W Rondeau, Jeffrey H Reed, and Charles W Bostian, "Analog-to-
digital converters," Signal Processing Magazine, IEEE, vol. 22, no. 6, pp. 69-77,
2005.

[6] Robert H Walden, "Analog-to-digital converter survey and analysis," Selected
Areas in Communications, IEEE Journal on, vol. 17, no. 4, pp. 539-550, 1999.

[7] Texas Instruments, "Tiva™ TM4C123GH6PM Microcontroller,"
TM4C123GH6PM datasheet, 2007.

[8] Texas Instruments, "“TMS320F2806X- Piccolo Microcontrollers," available on-
line: http://www. ti. com/product/tms320f28069.

[91 MATLAB User’s Guide, "The mathworks," Inc., Natick, MA, vol. 5, p. 333, 1998.

[10] Brian D Ripley, "The R project in statistical computing,” MSOR Connections. The
newsletter of the LTSN Maths, Stats \& OR Network, vol. 1, no. 1, pp. 23-25, 2001.

[11] Danila Piatov, Andrea Janes, Alberto Sillitti, and Giancarlo Succi, "Using the
Eclipse C/C++ Development Tooling as a Robust, Fully Functional, Actively
Maintained, Open Source C++ Parser.," OSS, vol. 378, p. 399, 2012.

[12] Franco Maloberti, Data converters.: Springer Science \& Business Media, 2007.

[13] Katie Enderle, "TMS320F2802x/TMS320F2803x to TMS320F2806x Migration
Overview," 2011.

[14] Myke Predko, Handbook of microcontrollers.: McGraw-Hill, Inc., 1998.

[15] C Tiva, "Series TM4C123G LaunchPad Evaluation Kit User's Manual, 15 Apr
2013," SPMU296.

[16] Leon S. Sterling, The Art of Agent-Oriented Modeling. London: The MIT Press,
2009.

[17] Alex Tessarolo, "Application report F2810, F2811, and F2812 ADC Calibration,"
Texas Instruments, 2004.

[18] Raymond B Ridley, "A new, continuous-time model for current-mode control
[power convertors],”" Power Electronics, IEEE Transactions on, vol. 6, no. 2, pp.
271-280, 1991.

[19] Priyesh Pandya and Vikas Gupta, "Enhancing analog to digital converter resolution

58

using oversampling technique,” Int. J. Innovative Sci. Mod. Eng, vol. 2, no. 5, pp.
37-40, 2014.

[20] Vilmos P, Tam, and Istv, "Full information ADC test procedures using sinusoidal
excitation, implemented in MATLAB and LabVIEW," ACTA IMEKO, vol. 4, no.
3, pp. 4-13, 2015.

[21] Vilmos P, Tam, and Istv, "Full information ADC test procedures using sinusoidal
excitation, implemented in MATLAB and LabVIEW," ACTA IMEKO, vol. 4, no.
3, pp. 4-13, 2015.

[22] Todd D Morton, Embedded microcontrollers.: Prentice Hall PTR, 2000.

[23] Mary McCarthy, "Peak-to-peak resolution versus effective resolution," Application
Note AN-615. Analog Device Inc, 2003.

[24] ADC Maxim, "DAC glossary," Application note 641,>

[25] Paul Logsdon and lan Bonthron, "Digital Bat Ears," 2014.

[26] Jipeng Li and Un-Ku Moon, "Background calibration techniques for multistage
pipelined ADCs with digital redundancy,” Circuits and Systems I1: Analog and
Digital Signal Processing, IEEE Transactions on, vol. 50, no. 9, pp. 531-538,
2003.

[27] Bin Le, Thomas W Rondeau, Jeffrey H Reed, and Charles W Bostian, "Analog-to-
digital converters," Signal Processing Magazine, IEEE, vol. 22, no. 6, pp. 69-77,
2005.

[28] Istv and Jerome J Blair, "Improved determination of the best fitting sine wave in
ADC testing," Instrumentation and Measurement, IEEE Transactions on, vol. 54,
no. 5, pp. 1978-1983, 2005.

[29] Walt Kester, "ADC input noise: the good, the bad, and the ugly. Is no noise good
noise?," Analog Dialogue, vol. 40, no. 02, pp. 1-5, 2006.

[30] Texas Instruments, "TMS320x280x, 2801x, 2804x enhanced pulse width
modulator (ePWM) module,” Texas Instruments Inc., Dallas, Texas, 2004.

[31] Texas Instruments, "TMS320x280x, 2801x, 2804x enhanced pulse width
modulator (ePWM) module,” Texas Instruments Inc., Dallas, Texas, 2004.

[32] Levi J Hargrove, Kevin Englehart, and Bernard Hudgins, "A comparison of surface
and intramuscular myoelectric signal classification," Biomedical Engineering,
IEEE Transactions on, vol. 54, no. 5, pp. 847-853, 2007.

[33] BOB Flaviu llie, Nicolae Cristian PAMPU, and Liviu Teodor CHIRA, "Improving
analog-to-digital converter’s resolution using the oversampling technique,” 2011.

[34] Divya Chacko and Mrs Kanchan Chavan, "Time to Amplitude Converter for Phase
Shift Detection".

[35] M Bossche, J Schoukens, and J Renneboog, "Dynamic testing and diagnostics of
A/D converters," IEEE Transactions on Circuits and Systems, vol. 33, no. 8, pp.
775-785, 1986.

59

Appendix 1 - Program Codes

This thesis was controlled to a great extent by the programming involved in both the
collection and analysis of the data. With the data recorded, every subsequent stage of
the test, analysis and presentation of the data was done within the Code Composer
Studio, Matlab, Rlanguage and C++ programming language in Eclipse CDT

environment.

Appendix 2 - Blinking LED code

//**

//blinky.c - Simple example to blink the on-board LED.

/I Copyright (c) 2011-2015 Texas Instruments Incorporated. All rights reserved.
/Il Software License Agreement

// Modified Badru 2016.

/I #include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "driverlib/gpio.h"

#include "driverlib/sysctl.h"
//***
//" \addtogroup example_list

/' <h1>Blinky (blinky)</h1>

/I A very simple example that blinks the on-board LED.

//***

// Blink the on-board LED.
//***
int
main(void)
{

volatile uint32_t ui32Loop;

// Enable the GPI10O port that is used for the on-board LED.

I

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);

/I Check if the peripheral access is enabled.

60

Il
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_GPIOG))

{

}
// Enable the GPIO pin for the LED (PG2). Set the direction as output, and

I/ enable the GPIO pin for digital function.
I
GPIOPinTypeGPIOOutput(GPIO_PORTG_BASE, GPIO_PIN_2);
Il Loop forever.
I
while(1)
{
// Turn on the LED.
I
GPIOPinWrite(GPIO_PORTG_BASE, GPIO_PIN_2, GPIO_PIN_2);
// Delay for a bit.
I
for(ui32Loop = 0; ui32Loop < 200000; ui32Loop++)
{

}
/I Turn off the LED.

I

GPIOPinWrite(GPIO_PORTG_BASE, GPIO_PIN_2, 0);
// Delay for a bit.

for(ui32Loop = 0; ui32Loop < 200000; ui32Loop++

61

Appendix 3 - Hello World program code
//***

I hello.c - Simple hello world example.

Il

Il Copyright (c) 2011-2015 Texas Instruments Incorporated. All rights reserved.
/I Software License Agreement

// Modified Badru 2016
//***
#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "driverlib/fpu.h"

#include "driverlib/sysctl.h"

#include "driverlib/rom.h"

#include "driverlib/pin_map.h"

#include "driverlib/uart.h"

#include "grlib/grlib.h™

#include "drivers/cfal96x64x16.h"

#include "utils/uartstdio.h”

#include "driverlib/gpio.h"

//***

//' \addtogroup example_list

/' <h1>Hello World (hello)</h1>

/I A very simple ““hello world" example. It simply displays ~"Hello World!"
/' on the display and is a starting point for more complicated applications.
/' This example uses calls to the TivaWare Graphics Library graphics

/' primitives functions to update the display. For a similar example using

/I widgets, please see hello_widget".

//***

Il The error routine that is called if the driver library encounters an error.
//***
#ifdef DEBUG

void

error__(char *pcFilename, uint32_t ui32Line)

{
}
#endif

//***

Il Configure the UART and its pins. This must be called before UART printf().

//***
void
ConfigureUART (void)

{
// Enable the GPIO Peripheral used by the UART.

I

62

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
// Enable UARTO
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UARTO);

/I Configure GPIO Pins for UART mode.
ROM_GPIOPinConfigure(GP1O_PAO0_UORX);
ROM_GPIOPinConfigure(GPIO_PA1_UO0TX);
ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

/I Use the internal 16MHz oscillator as the UART clock source.
UARTClockSourceSet(UARTO_BASE, UART_CLOCK_PIOSC);
/I Initialize the UART for console 1/0.

UARTStdioConfig(0, 115200, 16000000);

}

//***

// Print "Hello World!" to the display.
//***
int
main(void)
{

tContext sContext;

tRectangle sRect;

// Enable lazy stacking for interrupt handlers. This allows floating-point

/I instructions to be used within interrupt handlers, but at the expense of

/I extra stack usage.

I

ROM_FPULazyStackingEnable();

I Set the clocking to run directly from the crystal.

Il

ROM_SysCtIClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL |
SYSCTL_XTAL_16MHZ |

SYSCTL_OSC_MAIN);

// Initialize the UART.

I

ConfigureUART();

UARTprintf("Hello, world\n");

/I Initialize the display driver.

I

CFAL96x64x161nit();

// Initialize the graphics context.

Il

GrContextlnit(&sContext, &g SCFAL96x64x16);

Il Fill the top 24 rows of the screen with blue to create the banner.
I

sRect.il6XMin = 0;

sRect.il6YMin = 0;

sRect.il6XMax = GrContextDpyWidthGet(&sContext) - 1;
sRect.il6YMax = 23;
GrContextForegroundSet(&sContext, ClrDarkBlue);

63

GrRectFill(&sContext, &sRect);
/I Put a white box around the banner.

GrContextForegroundSet(&sContext, ClrWhite);

GrRectDraw(&sContext, &sRect);

// Put the application name in the middle of the banner.

GrContextFontSet(&sContext, g_psFontCm12);

GrStringDrawCentered(&sContext, "hello”, -1,
GrContextDpyWidthGet(&sContext) / 2, 10, 0);

/I Say hello using the Computer Modern 40 point font.

GrContextFontSet(&sContext, g_psFontCm12/*g_psFontFixed6x8*/);

GrStringDrawCentered(&sContext, "Hello World!", -1,
GrContextDpyWidthGet(&sContext) / 2,
((GrContextDpyHeightGet(&sContext) - 24) / 2) + 24,
0);

Il Flush any cached drawing operations.

GrFlush(&sContext);

I/l We are finished. Hang around doing nothing.

I

while(1)

{

¥

64

Appendix 4 - ADC Differential sampling code

//***

/I differential.c - Example demonstrating how to configure the ADC for

Il differential operation.

1l

Il Copyright (c) 2010-2015 Texas Instruments Incorporated. All rights reserved.
/I Software License Agreement

/I Modified 2016
//***
#include <stdbool.h>

#include <stdint.h>

#include "inc/hw_memmap.h"

#include "driverlib/adc.h"

#include "driverlib/gpio.h"

#include "driverlib/pin_map.h"

#include "driverlib/sysctl.h"

#include "driverlib/uart.h"

#include "utils/uartstdio.h™
//***
//"\addtogroup adc_examples_list

/' <h1>Differential ADC (differential)</h1>

I This example shows how to setup ADCO as a differential input and take a

/' single sample between AINO and AIN1. The value of the ADC is read and
/" printed to the serial port.

/' This example uses the following peripherals and 1/O signals. You must

/" review these and change as needed for your own board:

/' - ADCO peripheral

/' - GPIO Port E peripheral (for ADCO pins)

/' - AINO - PE7

/' - AIN1 - PE6

/! The following UART signals are configured only for displaying console

/I messages for this example. These are not required for operation of the

/' ADC.

/" - UARTO peripheral

/I - GPIO Port A peripheral (for UARTO pins)

/' - UARTORX - PAO

/I - UARTOTX - PA1

/IThis example uses the following interrupt handlers. To use this example

/' in your own application you must add these interrupt handlers to your

/! vector table.

/! - None.
//***
Il This function sets up UARTO to be used for a console to display information
/I as the example is running.

//***
void

65

InitConsole(void)

{
// Enable GPIO port A which is used for UARTO pins.
// TODO: change this to whichever GP10O port you are using.
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
/I Configure the pin muxing for UARTO functions on port A0 and Al.
/l This step is not necessary if your part does not support pin muxing.
// TODO: change this to select the port/pin you are using.
GPIOPinConfigure(GPIO_PAO0_UORX);
GPIOPinConfigure(GPIO_PA1_UO0TX);
// Enable UARTO so that we can configure the clock.
SysCtlPeripheralEnable(SYSCTL_PERIPH_UARTO);
/' Use the internal 16MHz oscillator as the UART clock source.
UARTClockSourceSet(UARTO_BASE, UART_CLOCK_PIOSC);
/I Select the alternate (UART) function for these pins.
// TODO: change this to select the port/pin you are using.
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
/I Initialize the UART for console 1/0.
UARTStdioConfig(0, 115200, 16000000);

}

//***

/I Configure ADCO for a differential input and a single sample. Once the
I/ sample is ready, an interrupt flag will be set. Using a polling method,
/I the data will be read then displayed on the console via UARTO.
//***
int
main(void)
{
#if defined(TARGET _IS_TM4C129 RAO) || \
defined(TARGET_IS_TM4C129 RA1) || \
defined(TARGET _IS_TM4C129 RA2)
uint32_t ui32SysClock;
#endif
// This array is used for storing the data read from the ADC FIFO. It
I/l must be as large as the FIFO for the sequencer in use. This example
/I uses sequence 3 which has a FIFO depth of 1. If another sequence
I/ was used with a deeper FIFO, then the array size must be changed.
I
uint32_t pui32ADCOValue[1];
I Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. When
Il using the ADC, you must either use the PLL or supply a 16 MHz clock
I/ source.
/[TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
/I crystal on your board.
Il
#if defined(TARGET _IS_TM4C129 RADO) || \
defined(TARGET _IS_TM4C129 RA1) || \
defined(TARGET_IS_TM4C129 RA2)
ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |

66

SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 20000000);
#else
SysCtIClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL |
SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MH2Z);
#endif
/I Set up the serial console to use for displaying messages. This is just
/I for this example program and is not needed for ADC operation.
Il
InitConsole();
// Display the setup on the console.
I
UARTprintf("ADC ->\n");
UARTDprintf(" Type: differential\n™);
UARTDprintf(" Samples: One\n");
UARTprintf(" Update Rate: 250ms\n™);
UARTDprintf(" Input Pin: (AINO/PE7 - AIN1/PE6)\n\n");
// The ADCO peripheral must be enabled for use.
Il
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);
/Il For this example ADCO is used with AINO/1 on port E7/ES.
/l The actual port and pins used may be different on your part, consult
/I the data sheet for more information. GPIO port E needs to be enabled
/1 so these pins can be used.
// TODO: change this to whichever GP1O port you are using.
I
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
I Select the analog ADC function for these pins.
I/ Consult the data sheet to see which functions are allocated per pin.
// TODO: change this to select the port/pin you are using.
Il
GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_7 | GPIO_PIN_6);
// Enable sample sequence 3 with a processor signal trigger. Sequence 3
I/ will do a single sample when the processor sends a signal to start the
I/ conversion. Each ADC module has 4 programmable sequences, sequence 0
/I to sequence 3. This example is arbitrarily using sequence 3.
I
ADCSequenceConfigure(ADCO_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);
/I Configure step 0 on sequence 3. Sample channel 0 (ADC_CTL_CHO0) in
/I differential mode (ADC_CTL_D) and configure the interrupt flag
I/l (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic
/I that this is the last conversion on sequence 3 (ADC_CTL_END). Sequence
/I 3 has only one programmable step. Sequence 1 and 2 have 4 steps, and
Il sequence 0 has 8 programmable steps. Since we are only doing a single
/I conversion using sequence 3 we will only configure step 0. For more
/I information on the ADC sequences and steps, refer to the datasheet.
I
ADCSequenceStepConfigure(ADCO_BASE, 3,0, ADC_CTL_D | ADC_CTL_CHO |

67

ADC_CTL_IE| ADC_CTL_END);

I
/I Since sample sequence 3 is now configured, it must be enabled.
I
ADCSequenceEnable(ADCO_BASE, 3);
I
Il Clear the interrupt status flag. This is done to make sure the
I interrupt flag is cleared before we sample.
I
ADCIntClear(ADCO_BASE, 3);
/I Sample AINO/1 forever. Display the value on the console.
I
while(1)
{

I/ Trigger the ADC conversion.

I

ADCProcessorTrigger(ADCO_BASE, 3);

// Wait for conversion to be completed.

I

while(!ADClIntStatus(ADCO_BASE, 3, false))

{

¥
/Il Clear the ADC interrupt flag.

I
ADCIntClear(ADCO_BASE, 3);
// Read ADC Value.
Il
ADCSequenceDataGet(ADCO_BASE, 3, pui32ADCOQValue);
// Display the [AINO(PE7) - AIN1(PE6)] digital value on the console.
1
UARTprintf("AINO - AIN1 = %4d\r", pui32ADCOValue[0]);
/l This function provides a means of generating a constant length
// delay. The function delay (in cycles) = 3 * parameter. Delay
/1 250ms arbitrarily.
Il
#if defined(TARGET_IS_TM4C129_RAO) || \
defined(TARGET _IS_TM4C129 RA1) | \
defined(TARGET_IS_TM4C129 RA?2)
SysCtlIDelay(ui32SysClock / 12);
#else
SysCtlDelay(SysCtIClockGet() / 12);
#endif

¥
¥

68

Appendix 5 - ADC Single Ended Sampling code.

//***

/I single_ended.c - Example demonstrating how to configure the ADC for
Il single ended operation.
1l
/I Copyright (c) 2010-2015 Texas Instruments Incorporated. All rights reserved.
/I Software License Agreement
// Modified Badru 2016
//***
#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_memmap.h"
#include "driverlib/adc.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h™
//*******-k***-k************************-k***-k****************************
//"\addtogroup adc_examples_list
/' <h1>Single Ended ADC (single_ended)</h1>
/' This example shows how to setup ADCO as a single ended input and take a
/' single sample on AINO/PE7.
/' This example uses the following peripherals and I/O signals. You must
/! review these and change as needed for your own board:
/' - ADCO peripheral
/' - GPIO Port E peripheral (for AINO pin)
/' - AINO - PE7
/! The following UART signals are configured only for displaying console
/I messages for this example. These are not required for operation of the
/' ADC.
/' - UARTO peripheral
/' - GPIO Port A peripheral (for UARTO pins)
/' - UARTORX - PAO
/I - UARTOTX - PA1
/' This example uses the following interrupt handlers. To use this example
/' in your own application you must add these interrupt handlers to your
/! vector table.
/! - None.
//***
Il This function sets up UARTO to be used for a console to display information
/I as the example is running.
//***
void
InitConsole(void)
{
// Enable GPIO port A which is used for UARTO pins.
// TODO: change this to whichever GP10O port you are using.

69

Il

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

/I Configure the pin muxing for UARTO functions on port A0 and Al.
/l This step is not necessary if your part does not support pin muxing.
// TODO: change this to select the port/pin you are using.

1l

GPIOPinConfigure(GPIO_PAO0_UORX);
GPIOPinConfigure(GPIO_PA1_UO0TX);

// Enable UARTO so that we can configure the clock.
SysCtlPeripheralEnable(SYSCTL_PERIPH_UARTO);

/I Use the internal 16MHz oscillator as the UART clock source.
Il
UARTClockSourceSet(UARTO_BASE, UART_CLOCK_PIOSC);

/I Select the alternate (UART) function for these pins.

// TODO: change this to select the port/pin you are using.

I

GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
/I Initialize the UART for console 1/0.

I

UARTStdioConfig(0, 115200, 16000000);

}

//***

/I Configure ADCO for a single-ended input and a single sample. Once the

I/ sample is ready, an interrupt flag will be set. Using a polling method,

/I the data will be read then displayed on the console via UARTO.

I
//***
int

main(void)

{
#if defined(TARGET_IS_TM4C129_RAO) || \
defined(TARGET_IS_TM4C129 RA1) || \
defined(TARGET_IS_TM4C129 RA?2)
uint32_t ui32SysClock;
#endif
/[This array is used for storing the data read from the ADC FIFO. It
I/l must be as large as the FIFO for the sequencer in use. This example
Il uses sequence 3 which has a FIFO depth of 1. If another sequence
I/ was used with a deeper FIFO, then the array size must be changed.
Il
uint32_t pui32ADCOValue[1];

/I Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. When
Il using the ADC, you must either use the PLL or supply a 16 MHz clock
I/ source.
// TODO: The SYSCTL_XTAL _ value must be changed to match the value of the
/I crystal on your board.
#if defined(TARGET_IS_TM4C129_RAO) || \

70

defined(TARGET_IS_TM4C129 RA1) || \
defined(TARGET _IS_TM4C129 RA?2)
ui32SysClock = SysCtIClockFreqSet((SYSCTL_XTAL_25MHZ |
SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 20000000);
#else
SysCtIClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL |
SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);
#endif
I/ Set up the serial console to use for displaying messages. This is
I/ just for this example program and is not needed for ADC operation.
I
InitConsole();
// Display the setup on the console.
Il
UARTprintf("ADC ->\n");
UARTDprintf(" Type: Single Ended\n");
UARTDprintf(" Samples: One\n");
UARTprintf(" Update Rate: 250ms\n™);
UARTprintf(" Input Pin: AINO/PE7\n\n");

// The ADCO peripheral must be enabled for use.
I
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);

I For this example ADCO is used with AINO on port E7.

// The actual port and pins used may be different on your part, consult
/I the data sheet for more information. GPIO port E needs to be enabled
/1 so these pins can be used.

// TODO: change this to whichever GP10 port you are using.

I

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

Il Select the analog ADC function for these pins.

I/ Consult the data sheet to see which functions are allocated per pin.
// TODO: change this to select the port/pin you are using.

I

GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_7);

I/l Enable sample sequence 3 with a processor signal trigger. Sequence 3

I/ will do a single sample when the processor sends a signal to start the

Il conversion. Each ADC module has 4 programmable sequences, sequence 0

I to sequence 3. This example is arbitrarily using sequence 3.

Il

ADCSequenceConfigure(ADCO_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);

/I Configure step 0 on sequence 3. Sample channel 0 (ADC_CTL_CHO) in
/I single-ended mode (default) and configure the interrupt flag

71

/l (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic

/I that this is the last conversion on sequence 3 (ADC_CTL_END). Sequence
/I 3 has only one programmable step. Sequence 1 and 2 have 4 steps, and

I/ sequence 0 has 8 programmable steps. Since we are only doing a single

/I conversion using sequence 3 we will only configure step 0. For more

/I information on the ADC sequences and steps, reference the datasheet.

ADCSequenceStepConfigure(ADCO_BASE, 3, 0, ADC_CTL_CHO | ADC_CTL_IE |
ADC _CTL_END);

/I Since sample sequence 3 is now configured, it must be enabled.
ADCSequenceEnable(ADCO_BASE, 3);

Il Clear the interrupt status flag. This is done to make sure the
I interrupt flag is cleared before we sample.

I

ADCIntClear(ADCO_BASE, 3);

// Sample AINO forever. Display the value on the console.
I
while(1)
{
Il
/l Trigger the ADC conversion.
Il
ADCProcessorTrigger(ADCO_BASE, 3);

I/ Wait for conversion to be completed.
I
while(!ADClIntStatus(ADCO_BASE, 3, false))

{

¥
I/ Clear the ADC interrupt flag.

Il
ADCIntClear(ADCO_BASE, 3);

// Read ADC Value.
I
ADCSequenceDataGet(ADCO_BASE, 3, pui32ADCOQOValue);

// Display the AINO (PE7) digital value on the console.
I
UARTprintf("AINO = %4d\r", pui32ADCOValue[0]);

// This function provides a means of generating a constant length
/l delay. The function delay (in cycles) = 3 * parameter. Delay
/1 250ms arbitrarily.
I
#if defined(TARGET_IS_TM4C129_RAO) || \
defined(TARGET_IS_TM4C129 RA1) || \

72

defined(TARGET_IS_TM4C129 RA?2)
SysCtlIDelay(ui32SysClock / 12);
#else
SysCtlIDelay(SysCtIClockGet() / 12);
#endif

}

73

Appendix 6 - Matlab code used to develop FFT

% badru 2016

signal = load('pp2.txt);

N = length(signal);

KHz=1e3;

fs = 300*KHz; % 300 samples per second
fnyquist = fs/2; %Nyquist frequency
Pk2Pk= max(signal) - min(signal)

rms= std(signal)

plot(signal)

%When roughly interpreting this data half way along x-axis corresponds to half the
sampling frequency

plot(abs(fft(signal)))

xlabel('Frequency (Bins - almost!)")

ylabel('Magnitude’);

title('Double-sided Magnitude spectrum’);

axis tight

%Double-sided magnitude spectrum with frequency axis (in bins)
fax_bins = [0 : N-1]; %N is the number of samples in the signal
plot(fax_bins, abs(fft(signal)))

xlabel('Frequency (Bins)")

ylabel('Magnitude’);

title('Double-sided Magnitude spectrum (bins)");

axis tight

%Single-sided magnitude spectrum with frequency axis in bins
X_mags = abs(fft(signal));

fax_bins = [0 : N-1]; %frequency axis in bins

N_2 = ceil(N/2);

plot(fax_bins(1:N_2), X_mags(1:N_2))

xlabel('Frequency (Bins)’)

ylabel('Magnitude";

title('Single-sided Magnitude spectrum (bins)");

axis tight

%Single-sided magnitude spectrum with frequency axis in Hertz
%Each bin frequency is separated by fs/N Hertz.

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_Hz = bin_vals*fs/N;

N_2 = ceil(N/2);

plot(fax_Hz(1:N_2), X _mags(1:N_2))

xlabel('Frequency (Hz)")

ylabel('Magnitude");

title('Single-sided Magnitude spectrum (Hertz)");

74

axis tight

%Single-sided magnitude spectrum with frequency axis normalised

%Normalised to Nyquist frequency. Very common to use this method of normalisation

in matlab

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_norm = (bin_vals*fs/N)/fnyquist; % same as bin_vals/(N/2)

N_2 = ceil(N/2);

plot(fax_norm(1:N_2), X_mags(1:N_2))

xlabel({'Frequency (Normalised to Nyquist Frequency. ' ...
'1=Nyquist frequency)'})

ylabel('Magnitude’);

title('Single-sided Magnitude spectrum (Normalised to Nyquist)");

axis tight

%Single-sided magnitude spectrum — frequency in rads per sample
X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_rads_sample = (bin_vals/N)*2*pi;

N_2 = ceil(N/2);

plot(fax_rads_sample(1:N_2), X_mags(1:N_2))

xlabel('Frequency (radians per sample)")

ylabel('Magnitude’);

title('Single-sided Magnitude spectrum (rads/sample)");

%Single-sided magnitiude spectrum in decibels and KHz

X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_Hz = bin_vals*fs/N;

N_2 = ceil(N/2);

plot(fax_Hz(1:N_2), 10*log10(X_mags(1:N_2)))

xlabel('Frequency (KHz)")

ylabel('Magnitude (dB)");

title('Single-sided Magnitude spectrum (1kHz) 300ksps,pk_pk= 1286,rms= 449.3");

%Single-sided power spectrum in decibels and Hertz
X_mags = abs(fft(signal));

bin_vals = [0 : N-1];

fax_Hz = bin_vals*fs/N;

N_2 = ceil(N/2);

plot(fax_Hz(1:N_2), 20*1og10(X_mags(1:N_2)))
xlabel('Frequency (Hz)")

ylabel('Power (dB)");

title('Single-sided Power spectrum (Hertz)");

axis tight

axis tight

axis tight

75

%Single-sided power spectrum in dB and frequency on a log scale
X_mags = abs(fft(signal));
bin_vals = [0 : N-1];
fax_Hz = bin_vals*fs/N;
N_2 = ceil(N/2);
semilogx(fax_Hz(1:N_2), 20*log10(X_mags(1:N_2)))
xlabel('Frequency (Hz)")
ylabel('Power (dB)");
title({'Single-sided Power spectrum’ ...
" (Frequency in shown on a log scale)'});
axis tight

76

Appendix 7 - R-language code to analyse ADC data logs.

#kf=1 #Badru 2016

filenames= ¢(

"piccoloLogs/logD(SH-6andx80).txt",
"piccoloLogs/logE(SH-13andx28).txt",
"piccoloLogs/logF(SH27andx100).txt",
"piccoloLogs/logG(SH57andx100.txt",
"TivaLogs/tivaDiffSample/logA2.txt",
"TivaLogs/tivaDiffSample/logB2.txt",
"TivaLogs/TivaSingleEnded/logAl.txt",
"TivaLogs/TivaSingleEnded/logB1.txt",
"TivaLogs/TivaSingleEnded/logC1.txt",
"TivaLogs/TivaSingleEnded/logD1.txt",
"TivaLogs/TivaDithering/TivaDifferentialDithering/logE1.txt",
"TivaLogs/TivaDithering/TivaDifferential Dithering/logE2.txt",
"TivaLogs/TivaDithering/TivaSingleEndedDithering/logE3SE.txt")

for (kf in (1:length(filenames)))

{

xx= read.table (filenames[kf], header = FALSE, sep =",", dec =".")
xlen=dim (xx)[1] # e.g. 20k lines od data

xnn= dim (xx)[2] -2 #e.g. 31 samples per line

Uin=as.numeric (xx[,1]) # 1-st col-n= Uin values(s)
xdata= rep (NA, xlen*xnn)

dim (xdata)= ¢ (xlen, xnn)

errorCode= xdata

xdataAver= rep (NA, xlen)
#idealCode= rep (NA, xlen)

for (kk in (1:xlen))

{

yy= as.numeric(xx [Kkk, 2:(xnn+1)])
xdata [KK, 1:xnn]=yy
xdataAver[kk]= mean (yy)

}

plot (Uin, xdataAver, type='"l', col= "blue’)

k1 = 4000 # code for "near-zero"

k2 =18000 # code for "near- full-scale"

Kscale= (xdataAver[k2] - xdataAver[k1]) / (Uin[k2]- Uin[k1]) # dCode/dUin
KscaleO= 4095/3.3

RelativeScale= Kscale /KscaleO

OffsetCode= xdataAver[k1]- Kscale *Uin[k1]

idealCode= +OffsetCode + Kscale *Uin # ideal code, corrected offset and scale, input
vecotr-> code vector

77

errorCodeAver= xdataAver -idealCode
for (kk in (1:xlen))

{
errorCode [Kk,]= xdata[kk,] -idealCode[kK]
¥

maxErrAver_index= k1-1+which.max (abs(errorCodeAver [k1:k2]))
maxErrAver = errorCodeAver [maxErrAver_index]

xtxt= paste("RelScale=", as.integer(RelativeScale*1000)/1000, "offset="",
as.integer(OffsetCode*10)/10, "digits, maxErrAver=",
as.integer(maxErrAver*10)/10)

#print (xtxt)

xname= paste(kf,".jpg", sep="")

jpeg(filename = xname, width = 760, height = 560)

plot (Uin, errorCodeAver, xlim=c¢(-0.01, +3.6), ylim= ¢(-25,25), type="l', col="blue’)
grid()

title (xtxt)

for (kk in (1:xlen))

{

Ux=rep (Uin[kk], xnn)

lines (Ux, errorCode[kkK,], col="grey")

¥

lines (Uin, errorCodeAver, col="blue’) # overwrite

lines (maxErrAver_index, maxErrAver, type='0', col='red")
text (1.2, -23, filenames[kf])

dev.off()

}

78

