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Abstract

Implementing Artificial Neural Networks (ANNs) on embedded systems is a challeng-
ing task, but can have a big impact on improving Internet of Things (IoT) applications.
The goal of this thesis is to research how to improve and simplify the process of creating
ANNs for embedded systems. Developing embedded ANN solutions involves training a
model on regular computer and converting it to a suitable format for the embedded sys-
tem. The work concentrates on the development of audio classification solutions running
on Cortex-M microcontrollers. Existing work and process for creating embedded ANN
solutions was analyzed and an ANN model was developed for Cortex-M microcontrollers
on a custom dataset for bird sound classification use-case. Based on the use-case experi-
ence, improvements and simplifications were proposed and implemented to the existing
process and framework. The biggest improvement introduced in this work involved au-
tomating the conversion process for ANN models trained in Tensorflow by generating
code for Cortex-M microcontrollers. Further improvements and analysis was introduced
for reducing the effect of noise imposed by embedded systems. In addition, the effects of
reducing complexity of ANNs, which is necessary for embedded systems, was analyzed.

The thesis is written in English and contains 78 pages of text, 5 chapters , 11 figures, 9
tables.
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Annotatsioon

Käesoleva lõputöö eesmärk on lihtsustada ja täiendada protsessi tehisnärvivõrkude
arendamiseks sardsüsteemidele. Töö keskendub heli klassifitseerimise lahendustele
Cortex-M mikrokontrolleritel. Töö raames uuriti eksisteerivaid protsesse ja raamistike
tehsinärvivõrkudel põhinevate sardsüsteemide arendamiseks. Selleks arendati närvivõrgu
mudel Cortex-M mikrokontrolleri jaoks, mis treeniti omaloodud linnuhelide andmestikul.
Arendustööst saadud kogemuse põhjal täiendati ja lihtsustati eksisteerivat protsessi
tehisnärvivõrkude arendamiseks mikrokontrolleritele.

Sardsüsteemidel jooksvate tehisnärvivõrkude lahenduste loomine nõuab mudeli
treenimist tavalisel arvutil ning seejärel mudeli mikrokontrollerile sobivasse formaati
viimist. Suurim panus lõputöö raames oli treenitud Tensorflow mudeli automaatne
muutmine Cortex-M mikrokontrollerile sobivasse formaati. See protsess sisaldab endas
närvivõrgu parameetrite resolutsiooni vähendamist (kvantiseerimine) ning automaatse
koodi genereerimist, mis kiirendab, lihtsustab ja väldib inimvigu treenitud mudeli
mikrokontrollerile viimisel. Tehisnärvivõrkude mikrokontrollerile viimine nõuab
nende arvutusliku keerukuse ning suuruse vähendamist. Selleks kasutati kompakset
tehisnärvivõrgu struktuuri ning kvantiseerimist. Arvutusliku keerukuse ning suuruse
vähendamisest tulenevat mõju analüüsiti nii säästetud mälu, võidetud arvutuskeerukuse
kui ka klassifitseerimistäpsuse muutumise näol.

Töö raames tehtud täiendused ja analüüs sisaldas ka sardsüsteemile spetsiifilise müra
mõju vähendamist, mis parandas klassifitseerimise täpsust. Täpsuse parandamiseks
loodi protsess, kus treeningandmetele lisati müra, mis salvestati läbi sardsüsteemi.
Lisaks analüüsiti eeltöötluse lahendust tehisnärvivõrgule vajalike tunnuste leidmiseks,
mis on müra suhtes vähemtundlikum, kui eksisteerivas protsessis väljatoodud lahendus.
Uuritud eeltöötluse algoritm parandas klassifitseerimise täpsust ning seetõttu arendati ka
tarkvara, mis lubab antud eeltöötlust rakendada mikrokontrolleritel. Arendatud lahenduse
arvutusliku keerukust uuriti ning võrreldi varasema lahendusega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 78 leheküljel, 5 peatükki, 11
joonist, 9 tabelit.
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List of abbreviations and terms

ADC Analog-to-Digital Converter

ANN Artificial Neural Network

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CMSIS Cortex Microcontroller Software Interface Standard

CNN Convolutional Neural Network

CPU Central Processing Unit

DCT Discrete Cosine Transform

DS-CNN Depthwise Separable Convolutional Neural Network

DSP Digital Signal Processor

FFT Fast Fourier Transform

FLOPS Floating Point Operations per Second

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

GFCCs Gammatone Frequency Cepstral Coefficients

IoT Internet of Things

KWS Keyword Spotting

MFCCs Mel-Frequency Cepstral Coefficients

PCM Pulse-Code Modulation
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RAM Random-Access Memory

RMS Root Mean Square

SIMD Single Instruction, Multiple Data

STFT Short-Time Fourier Transform

TPE Tree of Parzen Estimators

WASN Wireless Acoustic Sensor Network
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1 Introduction

Internet of Things (IoT) has become one of the fastest growing paradigms in the history
of computing [1]. IoT solutions can have a huge impact on the economy, modernization
and quality of life [2]. Projections for year 2025 show that IoT related technologies could
represent 11% of worlds economy, while deploying 1 trillion devices [3].

The usefulness of IoT technologies comes largely from the ability of collecting data and
understanding the surrounding environment [2]. The rise in the number of IoT devices
brings a challenge of how to deal with the vast amount of data generated by the devices.
The concept of edge computing has been proposed to solve this problem by moving com-
puting to the IoT devices themselves, instead of moving large amounts of raw data to
central database for processing [4].

Edge devices often find usage in complex and noisy environments, making it hard to
develop software for interpreting the measured data. In recent years, Artificial Neural
Networks (ANNs) have shown good results in processing data from such environments,
especially in the field of computer vision and speech recognition [4]. While ANNs work
well with complex and noisy data, they often require a lot of memory and computational
power. Edge devices on the other hand are usually affordable embedded systems with low
power usage, limited memory and computational power [3]. This makes running ANNs
on embedded systems a challenging task.

As ANNs have proved their usefulness in recent years, more research effort is going
towards making ANN algorithms more practical for real-life problems [5]. One part of it
involves research for compressing ANNs, so these could be more practical and efficient
to run. This has been achieved by introducing more efficient ANN architectures and by
reducing the resolution of learnable parameters. Research in this field has made it possible
to apply ANNs on embedded devices, while not loosing significant amount of accuracy
[6].

Research and development of embedded systems has also made them more suitable for
running ANNs. There are various types of embedded systems where ANNs can be run.
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General purpose microcontrollers have become more efficient, while having more mem-
ory and computational power [7]. Microcontrollers allow to easily develop preprocessing
methods and ANNs with programming languages such as C or C++. Application-specific
integrated circuits (ASICs) are often used to get more specialized and efficient embedded
systems, which are developed for specific tasks. The drawback is that creating ASIC is
much more complex, expensive and requires specialized knowledge of hardware, while
also needing physical development of the hardware. For these reasons ASICs are usually
used only with large production volumes. Field programmable gate arrays (FPGAs) offer
a way to configure already manufactured hardware for the specific task needed, by wiring
together different gates based on the programming. It also requires specialized program-
ming skills, but unlike with ASICs this can applied on already developed hardware, which
is faster and more affordable. [8]

Using ASICs or FPGAs is desirable when efficiency of embedded systems is paramount,
but the drawback is that developing these solutions takes time and lengthens the devel-
opment loop. As microcontrollers have become more efficient, they often satisfy the
efficiency requirements, while allowing short feedback loop in research and development
process. ARM has a popular Cortex-M family of microcontrollers and great ecosystem
suitable for IoT devices [7]. Research Laboratory for Proactive Technologies at Tallinn
University of Technology has applied IoT devices based on the Cortex-M processors. The
same devices are also used in this work.

ARM has developed Cortex Microcontroller Software Interface Standard (CMSIS) [7]
for standardizing and simplifying the development on different types of Cortex-M pro-
cessors. Among other packages, CMSIS includes CMSIS-DSP and CMSIS-NN, which
are libraries for digital signal processing and neural networks. This makes Cortex-M
microcontrollers good candidate for developing edge devices, which could be used for
processing and understanding complex data.

Developing ANNs for microcontrollers usually involves training an ANN on high per-
formance computers, converting the trained model with found weights into a code which
can then be transferred to a microcontroller [6]. The available research often concentrates
on creating suitable ANNs and preprocessing techniques for microcontrollers, while not
describing the code development and deployment process. There is also lack of research
on how the noise introduced by the embedded system can affect accuracy of the trained
ANNs and what countermeasures could be used.
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One of the areas, where ANNs have become state of the art, and where embedded sys-
tems are often used, is automatic bird sound classification, as discussed in section 2.1.2.
Automatic bird classification would help researchers to get better overview of the ecosys-
tem while also helping to conserve the biodiversity. Usage of autonomous IoT solutions,
which are affordable and easy to develop, would help to scale up the monitoring process
and help researches to gain more information about our ecosystem. Thus far, the research
in autonomous bird classification devices has concentrated on applying simpler machine
learning methods or other statistical techniques on embedded systems, while only sug-
gesting the possibility of using ANNs instead.

1.1 Research Problem

Making IoT devices more capable of processing and interpreting data from a complex
environment helps to increase the impact of computing on our daily lives. ANNs have
proven to be a good tool for interpreting complex data. Although there is research done
on implementing ANNs on edge devices, the used process is often custom-tailored for cer-
tain tasks and problems [9]–[13]. Currently, the process of running ANNs on embedded
systems requires expertise in machine learning for training the models, and in developing
embedded systems, in order to implement the model efficiently on a edge device. This
problem impedes the research for groups or individuals, who are mainly concentrated in
developing machine learning models and do not have access to skills required to develop
embedded systems.

One of the research areas where ANNs have proven to be useful is bird sound classifica-
tion. The field would also benefit a lot, when these researchers could easily apply their
trained models to embedded systems, allowing to test the solutions in real-life [14]. The
problem is that researchers in this area often lack the skills and knowledge about develop-
ing embedded systems, as they are specialized in developing preprocessing and machine
learning methods [15].

Running ANNs on microcontrollers raises several problems. The memory limitations
and available computational power needs to be taken into account when selecting prepro-
cessing methods or architecture of an ANN. Training of ANNs usually occurs on high
performance computers, using high level languages, raising a problem of how to convert
the model into suitable format for microcontrollers. This also includes solving the prob-
lem of how to do it efficiently for the specific hardware. There could be other aspects of
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embedded systems which introduce problems for researcher who are dealing with model
developments, such as noise in collecting data, which can be specific to the embedded
system. The mentioned problems related to running ANNs on a microcontroller are re-
searched in this work, to introduce new research opportunities for audio classification
researchers. The work focuses on the following problems:

� how to develop complex ANNs for microcontrollers which have limited resources;
� how to deal with noise specific to the embedded device;
� how to automate the processes in developing complex ANNs for microcontrollers.

1.2 Method

The problems involved with running ANNs on IoT devices are researched in this thesis by
implementing an ANN on microcontroller. This involves training the ANN on a custom
dataset and researching ways to improve the process of converting that model to a suitable
format for microcontrollers.

ARM Cortex-M microcontroller is chosen for this work, as it is widely used and offers
good ecosystem for developing such solutions. ARM’s CMSIS-NN library offers building
blocks for ANNs and standard interface, which allows to run the solution on all Cortex-M
microcontrollers. ARM has provided an example project called Hello Edge, accompanied
with a research paper [6], to show how ANNs can be developed on Cortex-M microcon-
trollers for an audio classification task. The project includes scripts for preprocessing
data, training various types of ANNs and a manual for quantizing trained models, so they
could be run on microcontrollers. There is also an example of C++ code, to demonstrate
how ANNs could be implemented with CMSIS-NN. The Hello Edge work is taken as a
basis for this thesis for training and running an ANN on Cortex-M device.

The questions of how to implement ANNs on microcontrollers and how to deal with noise
introduced by the embedded system are researched by an audio classification use-case.
The use-case involves creating an ANN and accompanying preprocessing techniques for
bird sound classification. A custom dataset is created for this purpose, which is largerly
based on the author’s previous thesis [16].
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1.3 Overview of the Thesis

The necessary background information and theoretical knowledge relevant for this the-
sis is introduced in section 2. Necessary aspects about machine learning and embedded
systems are covered in this section, while also giving brief overview about bird sound
classification.

The overall technical implementation for preprocessing, training the ANN and converting
the model to C++ code, together with improvements to the Hello Edge work, are described
in section 3. This includes overview of used frameworks, tools and the embedded system.
The description of how data gathering, preprocessing, training, model conversion and
implementation on the embedded system was performed is also given in this section.

The ways to make ANNs more efficient and the impact of preprocessing are analyzed in
section 4. This includes analysis and effects what replacing Convolutional Neural Net-
works (CNNs) with Depthwise Separable Convolutional Neural Networks (DS-CNNs)
and quantization have on the classification accuracy. The effects of adding background
noise to training samples and comparison of different preprocessing techniques can also
be found in this section.
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2 Background

The section gives background information necessary for understanding rest of the thesis.
The section starts with describing the problem of automatic bird classification, by first
looking at the properties of the bird sounds, followed by the research done on automatic
bird classification. The concepts relevant to machine learning are then explained, which
includes explaining relevant machine learning algorithms and techniques used throughout
this work.

2.1 Automatic Bird Classification

Automatic bird classification improves the way how birds are monitored, which benefits
ecological surveillance and conservation of biodiversity [17]. This section gives overview
of the challenges and methods for automatic bird sound classification. The section starts
by introducing the properties of bird sounds, to describe the complexity of the challenge.
This is followed by an overview of the state of the art solutions in bird classification and
research on how the task is performed on embedded systems.

2.1.1 Properties of Bird Sounds

Birds generally depend on vocal signals in order to communicate over long distances,
in poor light conditions or when communicating through dense vegetation [18]. Sounds
produced by birds can be divided into two groups – calls and songs. Calls are simpler
sounds that are used in a variety of contexts, such as providing information about food
sources or dangers. Calls are produced by both females and males. Song is associated
with more complex and elaborate sounds and it is being used in the context of courtship
and mating. Birdsong is usually produced by males, although there are exceptions. Birds
can also create other types of distinguishable sounds, such as pecking of the woodpecker
or fast flapping of wings [19].

Most birds have several versions of their species songs, where each version is called a
song type. Each instance of a song is called a strophe and it usually occurs in bouts.

17



Birdsong usually consists of a number of distinct sections, which are called phrases. Each
phrase can consist of series of units which form particular patterns, as illustrated on figure
1. These units are called syllables and consist of one or several elements, sometimes also
called notes [20].

Figure 1. Sonogram illustrating elements, syllables and phrases of a male chaffinch [20].

Different songbirds can have different vocabulary – some birds can produce only one syl-
lable, while some can repeat a very large vocabulary of syllables in different patterns.
Birdsong is slightly less complex than human speech, as there appears to be a less intri-
cate grammar and there is no vowel-consonant alternation. Nevertheless, the order and
pattern of syllables in birdsong, including pauses in between syllables, hold important
information for distinguishing different species [21].

Birdsong from different species can vary in several dimensions – frequency range, speed
of pitch modulation, vocabulary size, syllable duration and song duration. Species cannot
be uniquely distinguished by looking only one of these dimensions. For example, some
species can have song patterns with same duration and other species can sing in the same
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frequency range. Therefore, it is necessary to look different dimensions of the signal, in
order to distinguish the species from song [21].

The variation in bird sounds occurs also between the individuals from one species. Reper-
toire of an individual is dependent on gene heritage, but also on the condition during de-
velopment of a young individual or on adult body conditions. In addition, the songs of
individuals are affected by their age, population size and density, geographical location
and social interactions. The effect of song sharing between neighboring birds leads to
local dialects, also called microdialects, which means that birds from the same species in
one area can have quite a different songs compared to some other geographical location
[22].

Properties of Great Tit Song

Great Tit (Parus Major) is one of the most common songbirds in Estonia [23] and most
recorded Estonian bird species in Xeno-canto1. Because of the bird’s readily available
sounds and wide spread in nature, Great Tit sound is chosen as the main bird sound to be
classified in this work.

Great Tit song frequency range is usually between 3 - 7 kHz, while the most common
frequency is near the 3.5 - 4.5 kHz [24]. It has been observed that the frequency range and
patterns of the Great Tit song are influenced by the surrounding environment, especially
in a noisy urban settings [25]. The distribution of frequencies from all the Great Tit’s
audio recordings, being used in this work, can be seen in figure 2.

The repertoire of Great Tits consists of one to eight distinct phrase versions, each con-
taining one to more than five elements. Usually one to 20 phrases are repeated in one
version of a song. The strophe of a Great Tit is mostly between one and five seconds long,
with the pause of a few seconds between strophes. Up to 100 strophes of a single phrase
version are usually sung in a bout. After a bout, the Great Tit can stop singing or start a
bout of another phrase version [24].

1Xeno-Canto is crowd-sourced database of bird sounds: https://www.xeno-canto.org/
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Figure 2. Distribution of frequencies in the recordings of Great Tits used in this work.

2.1.2 Machine Learning Methods for Bird Classification

Automatic bird classification is not a new research area and has been the topic of interest
for many research groups. The summary of the current state of the art and trends in the
field is given by describing the results of automatic bird classification competitions. This
is followed by looking at works, which concentrate on applying bird song classification
techniques to embedded system.

Overview of Bird Classification Competition Results

Since 2013, there has been several competitions, where different solutions of auto-
matic bird classification were compared on common datasets in determining the best ap-
proaches. These competitions offer a great overview about the state of the art of bird
classification during the last five years. Datasets used in the competitions vary from chal-
lenge to challenge, making it hard to compare the results from different years.

The tasks and datasets were different for MLSP 2013 Bird Classification [26] and NIPS4B
2013 Multi-Label Bird Species Classification [27] challenges, but the presented works
were very similar to each other. For both challenges, the most popular machine learn-
ing method was ensembled random forests, which used features extracted by applying
computation-heavy image processing techniques to spectrograms. It is worth mentioning
that in MLSP 2013 challenge, there was one work which used a Convolutional Neural
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Network (CNN) and achieved 4th place [26]. Since 2014, there has been annual Life-
CLEF competition, which has also a bird classification task called BirdCLEF. 2014’s [28]
and 2015’s [29] competitions had similar solutions to the MLSP 2013 and NIPS4B chal-
lenges, where Mel-Frequency Cepstral Coefficients (MFCCs) were often used, together
with other features, as an inputs to random forests algorithms.

BirdCLEF 2016 [30] can be seen as a turning point, where CNNs started to significantly
outperform works which mostly invested in feature engineering. Results of BirdCLEF
2017 [15] reinforced the success of CNNs, where state of the art architectures from image
classification tasks were applied on spectrograms of bird sounds. BirdCLEF 2018 [17]
introduced further improvements, using state of the art image classification solutions,
while also showing that smaller CNN architectures can achieve comparable results to the
complex architectures.

The overview of these competitions showed how Artificial Neural Networks (ANNs), and
CNNs in particular, have started to dominate the competitions within the last five years.
The solutions introduced in these competitions, however, are quite complex and require
lots of computing power and memory, making them unsuitable for embedded systems.

Bird Sound Classification on Embedded Systems

The importance of having autonomous devices for classifying birds is discussed in large
portion of the research done in the field of bird sound classification. Different approaches
for this have been suggested in the literature. Most of the resources concentrate on having
autonomous low power recording devices on the field and later processing the results
off-line on more capable computers.

The work of [31] introduced using a digital recording device with microcontroller which
turned it on for seven minutes in each hour. Their following work then included au-
tomatated classification of bird and amphibian species from these recordings [32]. AR-
BIMON system was developed by [33], which combined the recording and off-line clas-
sification into a single system. It included recording audio clips with iPod, from where it
was sent to field base station for preprocessing and storage, before sending the data over
Internet to the server for classification. Solution named AMBIO was developed in [34],
where sounds, together with environmental information, such as temperature and wind,
were recorded and sent to a central processing through 3G network.
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More compact and scalable solution was provided in [35], where Wireless Acoustic Sen-
sor Network (WASN), with ARM Cortex-M nodes, was deployed. There was a central
node which recorded the data for later off-line processing. Similar study was done in [36],
with the exception of adding classification capabilities to the central node. The work pro-
posed a centralized WASN architecture where nodes send microphone signals through
gateway to a Field Programmable Gate Array (FPGA), which performs feature extraction
and classification on site.

The work in [37] further improved the cost and scalability of a WASN, by moving clas-
sification into the nodes themselves. Texas Instrument’s TMS320F2812 Digital Signal
Processor (DSP) was used to classify bird songs in real-time with a statistical model
which used multivariate Gaussian distributions with covariance matrix on power spectral
values of the signal. Liu et. al. [38] used FPGA as a sensor node for classifying bird
sounds real-time. Template matching was used together with linear predictive cepstral
coefficients extraction and dynamic time warping as a preprocessing step. Wei et. al.
[39] used ARM Cortex-A9 as sensor nodes for classifying bird songs in real-time us-
ing sparse approximation based classification. Minimum distance classifiers was used in
[14] on MFCCs features on ARM Cortex-M4F microcontroller, while also suggesting a
possibility of using an ANN as a classifier instead.

The overview of bird classification efforts on embedded systems show the importance of
using WASNs. Based on the overview, there seems to be a trend of moving classification
towards edge, as embedded hardware becomes more powerful and efficient. This helps
to improve the cost and scalability of the developed solutions, allowing to monitor larger
areas. Overview of the research showed that, while CNNs have become state of the art
in bird classification competitions, there is still lack of research about applying these
networks to embedded systems.

2.2 Machine Learning

Machine learning is a field of computer science, which covers algorithms able to learn
from data, without being explicitly programmed. It involves designing and studying al-
gorithms for solving certain tasks by learning from data. Machine learning finds use in
solving tasks where explicit programming is unfeasible, such as computer vision, speech
recognition and spam filtering [40].
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There is a large variety of tasks which machine learning covers. This section concentrates
only on classification tasks and covers the theory behind the relevant topics for this the-
sis. Classification task involves identifying which category a new data sample belongs to.
These tasks require to have a set of samples, where the category for each sample is known.
These categories are often called labels or classes in machine learning literature. To clas-
sify new samples, without the known category, a classifier needs to be trained. During
the training phase, samples paired with corresponding labels are presented to a machine
learning algorithm. Well designed and properly used machine learning algorithm should
then find the underlying features and properties of the data which are important in deter-
mining the label of the sample. The result of the training phase is the machine learning
model, which can be used for classifying new samples. To actually understand how well
that model is performing, it needs to be evaluated and tested with data it has not seen yet
[40].

Rest of this section will cover the theory behind machine learning in more details. This
includes overview of how data is used in machine learning, how it is prepared and pre-
processed. Relevant machine learning algorithms are described, together with how to
validate trained models and how to find suitable hyperparameters for the algorithms. The
section also covers ways to compress machine learning models, so they could be run on
microcontrollers.

2.2.1 Data in Machine Learning

The set of data used in machine learning is called a dataset and it includes the samples and
corresponding labels. Before starting to use machine learning algorithms, the data should
be split into three non-overlapping sets – training set, validation set and testing set [40].

Machine learning algorithm learns from training data to solve a given task. Developing
good machine learning models takes lots of training iterations, often involving testing out
different preprocessing and machine learning algorithm hyperparameters1. Evaluation
set is used to measure the changes in model performance under these changes, as using
training data for this purpose can cause the model to overfit. Overfitting can be looked
as a situation where machine learning algorithm memorizes the seen data and looses the
ability to generalize on unseen data. Before deploying the model or reporting about the

1The word hyperparameter is used to distinguish the parameters defined before the training phase, as
word parameter is used for the values which are being refined and fitted to the data during the training phase
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performance of it, the model should also be evaluated on a testing set. This is needed,
as we might have chosen the hyperparameters in a way, that best suited the data in the
evaluation set, but might not perform as well on unseen samples [40].

Complex problems with noisy data often require a lot of training samples. Collecting
additional training data is usually very costly, if not impossible. Therefore data augmen-
tation and synthesis is often used to generate new data, so the machine learning model can
learn to generalize better on unseen samples. For example, in sound classification, data
augmentation might include stretching time, shifting pitch or adding background noise
[41].

2.2.2 Preprocessing and Feature Engineering

Before feeding data to the machine learning algorithm, it needs to be preprocessed into
suitable format. Most machine learning algorithms require data to be in a tabular form,
where each row is a single sample and each column corresponds to a feature [42]. Con-
volutional neural networks however, allow each sample to be a matrix or even several
stacked ones, such as images with red, green and blue channels [40].

Feature engineering is the practice of applying domain knowledge for extracting proper-
ties from data which are useful for learning purposes and improve the accuracy of machine
learning algorithms. The process of feature engineering is often very time consuming and
requires good understanding of the problem domain. ANN algorithms have the power
to learn the features themselves, but this will usually come with the cost of larger and
more complex models. For ANNs, the work is shifted from feature engineering to finding
suitable network structure and other hyperparameters [40].

Overview in section 2.1.2 showed that most works in classifying bird sounds transformed
the data from time domain to frequency domain during the preprocessing, which was often
followed by a feature extraction step. Some of the relevant feature extraction methods are
further described in this section.

Mel-Frequency Cepstral Coefficients (MFCCs)

MFCCs are features which are often used when classifying different sounds and which
were engineered to mimic how humans perceive sounds. MFCCs feature extraction takes
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the power spectrum of frequencies as an input, which involves taking the absolute value
of the squared complex numbers from the Fourier transform. MFCCs are calculated sep-
arately for each slice of the Short-Time Fourier Transform (STFT). Output of MFCCs
feature extraction, from a slice of STFT, is an array, usually having less than 26 elements
[43].

The human cochlea can not differentiate between two close frequencies and the effect
grows as frequencies get higher. Mel filterbank is used to simulate this effect by applying
filters and summing up close-by power spectrum bins in order to understand how much
energy exists in different frequency regions. Mel filterbank consists of user-defined num-
ber of triangular overlapping filters. The illustration of these filters in logarithmic scale
can be seen on figure 3a. The first filters are quite narrow, while getting much wider for
higher frequencies. Mel scale is a function which helps to calculate the width and spacing
of these filters. Each filter in the filterbank is presented as an array with the same number
of elements as the power spectrum array. The filterbank vector elements are multiplied by
the corresponding power spectrum elements and summed together, which describes how
much energy is in each filter [43].

Humans do not perceive loudness on liner scale and therefore the logarithm is taken from
the filterbank energies. The Mel filterbanks are overlapping and therefore correlated. The
Discrete Cosine Transform (DCT) is therefore applied to the logarithms of filterbank en-
ergies to decorrelate these energies. This results in an array with the same number of
elements as in filterbank energy array. More information and slower changes in filter-
bank energies are packed to the first DCT coefficients. Higher coefficients involve faster
changes in filterbank energies and might even degrade the classification results. A user-
defined number, which is often half of the number of filterbank filters, is therefore taken
as an input to classification step. These chosen coefficients are called MFCCs [43].

Gammatone Frequency Cepstral Coefficients (GFCC)

Several studies show that MFCCs work well with clean signal, but when noise is in-
troduced, the classification accuracy will decrease drastically [44]–[48]. The usage of
Gammatone Frequency Cepstral Coefficients (GFCCs), instead of MFCCs, has shown
improvements with regards of noise robustness in several works [49]–[51].

Computing GFCCs follows similar steps as finding MFCCs. One key difference is the
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(a) Five Mel filterbank filters.
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(b) Five gammatone filterbank filters.

Figure 3. Filterbank filters for MFCCs (a) and GFCCs (b).

filterbanks which are used in the process, as Mel filterbank is replaced with gammatone
auditory filterbank [48]. The difference between the filterbanks is presented on figure 3.

Another difference between GFCCs and MFCCs is what type of compression is used
for the calculated filterbank energy coefficients. MFCCs used logarithmic compression,
which is also used in some implementations [48] of GFCCs, while other implementations
use cubic root compression [50].

2.2.3 Machine Learning Algorithms

There are many machine learning algorithms for classification tasks. The overview of
research given in section 2.1.2 showed that CNNs have become state of the art in the field
of bird sound classification. This section starts by describing the general theory behind
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ANNs and then introduces CNNs. The section finishes by describing Depthwise Separa-
ble Convolutional Neural Network (DS-CNN) architecture, which reduces the complexity
of CNNs and makes it possible to run ANNs on embedded systems.

Artificial Neural Networks

Artificial Neural Network (ANN) is a machine learning algorithm loosely modeled after
how neurons in biological brains work. It contains large collection of connected nonlinear
elements called neurons. Each neuron has summation function combining all the values
of its inputs together. ANNs usually consist of multiple layers, where neurons from one
layer are connected to the neurons on the next layer. These type of layers are called
fully connected layers. ANNs with several hidden layers are called deep neural networks
and the process of training these networks is called deep learning. Deep learning models
represent the information as a nested hierarchy of concepts, where each concept is defined
in relation to simpler concepts from previous network layers [40].

The first layer of ANN is called input layer, while the last is called output layer. Hidden
layers are all the layers between the input and output layer. Each connection between two
neurons has a weight. The value of the neurons in hidden and output layers are found
by adding together the product of neurons from the previous layer, and weights for the
corresponding connections, plus the bias for that neuron, followed by applying activation
function on the result. The goal of activation function is to introduce non-linearity to the
mode, which allows to solve more complex tasks [40].

ANN training involves optimization algorithm which changes the weights and biases in
order to minimize the value of a loss function. Output of the loss function represents
the difference between the classified labels and true labels of samples. One of the hy-
perparameters of optimization algorithms is the learning rate, which defines how much to
change parameters during each update step. If the learning rate is too small, the learning
might be too slow, if it is too large, it might result in fluctuations around the minimum,
without ever reaching it [52].

Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of Artificial Neural Network which uses
convolution operation in at least one of its layers, in place of general matrix multiplication,
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as in fully connected layers. The main benefit of convolutional layer is reducing the
amount of parameters needed in learning process. CNNs also allow the use of multi-
dimensional arrays as an input and are therefore well suited for image classification tasks
[40].

Parameters of convolutional layers are made up of learnable kernels, which are smaller
in width Dkx and height Dky than its input, Dix and Diy respectively, while using the full
depth M of the input to that layer. Each kernel produces a 2-dimensional feature map by
convolving across the width and height of the input. Output of the convolution layer is
achieved by stacking together N feature maps generated by N kernels, as shown in figure
4. The number of these kernels, sometimes also called number of filters, is an important
hyperparameter of convolutional layer [40].

Layer Input
Layer Output

(feature maps)Kernel

M
N

Dox

Doy
M

Dkx

Dky

Dix

Diy

Figure 4. Kernel producing a feature map from input in a CNN layer.

Pooling layers are often used after convolutional layers. The goal of a pooling layers
is to reduce the number of parameters by reducing the spatial size of the input layer,
resulting in reducing the amount of needed memory and number of computations. While
convolutional layer used full depth of the input to calculate the feature map, the pooling
layer works independently on each feature map layer. Pooling layer also uses rectangular
kernel to stride over the input layers, and finds one number as an output per stride. The
result of a pooling layer has same depth (number of feature maps) but has decreased width
and height [40].

The last layers of CNNs are usually fully connected layers. While convolutional layers
work as finding features from input data, the fully connected layer(s) perform the actual
classification. The data from convolutional layer must be reshaped into a one dimensional
vector before giving it as an input to the fully connected layer [40].
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Depthwise Separable Convolutional Neural Networks

DS-CNN was introduced to make CNNs more efficient. DS-CNN divides regular convo-
lution layer into depthwise and pointwise convolutions, which together form a depthwise
separable convolution layer. This allows to reduce number of learnable parameters and
therefore reduces also the number of required computations [53]. The depthwise and
pointwise convolutions are illustrated on figure 5.

Layer Input
Depthwise Layer Output

(feature maps)M Kernels

M
M

Dox
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Dky

Dix

Diy 1
1

1

(a) Depthwise convolution, where input depth M = 3.

Depthwise Layer Output
(feature maps)

Pointwise
kernel

M
Dox

Doy

Depthwise Separable Layer
Output (feature maps)

N

Dox

Doy

1
1M

(b) Pointwise convolution, where input depth M = 3.

Figure 5. Depthwise separable convolution layer consisting of depthwise (a) and pointwise (b) convolu-
tional layers.

Depthwise convolution uses one kernel for each of the M depth layers of the input, pro-
ducing a feature map which has the same depth M as input. This is followed by pointwise
convolution, where the feature map from the depthwise convolution is convolved with 1x1
kernels. These kernels have the same depth M as the input feature map. The height Doy

and width Dox of the output of pointwise convolution is defined by the height and width
of its input, while depth N is defined by the number of used pointwise kernels [53].

CNN and DS-CNN layers have same input and output dimensions, allowing to easily
replace one type of layer with another. The efficiency win achieved by replacing clas-
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sical convolution with depthwise separable convolution is dependent on the number of
kernels N, the kernel width Dkx and kernel height Dky. Depthwise separable convolution
layer uses approximately 1

N + 1
Dkx×Dky

times the memory and computations required by a
classical convolution layer [6].

2.2.4 Evaluation Metrics

Understanding how well the trained machine learning model is working requires evaluat-
ing it. For different tasks and use cases, different types of evaluation metrics should be
used. Accuracy is used throughout this work for determining the classification power of
an ANN.

In machine learning, accuracy is a performance measure defined as the ratio between the
number of correctly classified samples and the total number of samples. Accuracy is not a
good metric for problems with unbalanced data, where most of the samples belong to one
class. This can lead to a situation called accuracy paradox where all the classifications
done by a model belong to one class, while still showing good accuracy. When dealing
with unbalanced data, other metrics, such as F1 score could be used which is the harmonic
mean of precision and recall [54].

2.2.5 Hyperparameter Optimization

Hyperparameters are the parameters which affect the learning process of machine learn-
ing algorithms and which are not learned during the training process [55]. These hyper-
parameters can include things like the structure of the ANN, its learning rate, optimiza-
tion algorithm and batch size. Finding suitable hyperparameters can be done manually,
based on the experience and knowledge of the experimenter, but this requires lots of trials
and errors. To automate this process, several algorithms can be used. Grid and random
search are simple algorithms, which allow to test out different hyperparameters from a
user-defined search space.

Grid search and random search both suffer from the disadvantage of not taking into ac-
count the results of the previous iterations. As training procedure usually takes relatively
long time to run, this wastes computing resources and time. Bayesian model-based al-
gorithms, such as Tree of Parzen Estimators (TPE), can be used to find better hyperpa-
rameters faster. Bayesian hyperparameter optimization builds probability models of the
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objective function (usually evaluation error), which are the basis for choosing next set of
hyperparameters for training and validation procedure. After each experiment, Bayesian
probability models are updated based on the used hyperparameters and the resulting value
of the objective function [56].

2.2.6 Quantization

Deep Learning frameworks mostly deal with 32-bit floating point number format, which
offer good accuracy. The drawback of this approach is the memory usage and computa-
tional complexity when dealing with floating point numbers. This is especially important
when running ANNs on embedded devices. The memory usage and computational com-
plexity can be reduced by converting 32-bit floating point numbers to fixed point numbers
with lower bit depth. This process is called quantization. It has been shown that quanti-
zation can be successfully used to run neural networks on embedded devices [57]. There
are various ways to perform quantization. This section concentrates on how it is done in
Tensorflow and CMSIS-NN, as these libraries are used throughout this work.

Fixed point numbers allow to represent real numbers, with limited resolution, while stor-
ing them as integers in the memory. Q-notation is often used to describe the schema how
these integers can be translated to real values or the opposite way around. In this work
we will use the notation, as it is used in CMSIS library [58], where Qx.y specifies that x
bits will be used for integer part of the number (also includes sign bit) and y is used for
decimal part. For example, Q4.4 shows that one bit will be used for sign, three bits for
integer part and four bits for decimal part of the real number. The number is stored in
memory as an 8-bit integer, having values between -128 and 127. Q4.4 format allows the
possible values to range between -8 and 7.9375, while having the resolution of 0.0625. In
general, the value ranges for Q notation can be found to be [−2m−1,2m−1 − 2−n], while
resolution is 2−n. It can be seen that the value ranges are power of twos [59].

One of the possible methods of quantization is called post-training quantization. This
method is simple to implement, as it does not need modifications to the training process.
Post-training quantization can be divided into two parts – quantization of learnable param-
eters (weights and biases) and quantization of activations. Quantizing weights and biases
is straightforward, as these parameters are fixed after training and suitable quantization
range can easily be found with the equations shown in previous paragraph [6].
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Quantization of activations, however, is dependent on the input data, as seen on figure 6.
It is necessary to use some representative set of data to get the possible value range for ac-
tivations. In [60], it is stated that about 100 mini-batches of data would be needed for this,
without specifying batch size. In Tensorflow, post quantization is done by fake quantiza-
tion operation1 which is introduced after adding biases to the results of the convolution
operation. Input arguments to the fake quantization operation include the range of values
and the number of bits to which the values should be quantized. It then simulates the fixed
point numbers and the bit-depth, by rounding the values based on the resolution from the
bit-depth, and clipping the values to the allowed range. Post quantization involves testing
fake quantization operations with different value ranges, starting from the ANN’s input
layer, to see which value ranges yield the best accuracy. This allows to find suitable
ranges, and therefore quantization criteria and suitable Q format for each activation layer
[60].

Weights Biases

Inputs OutputsX +
Quantization Quantization

Quantization Activation
function

Figure 6. Quantization of weights, biases and activations in an ANN layer.

Activations quantization is needed to avoid de-quantization of weights and operations
with floating points between layers [59]. The flow of quantized data through a convo-
lutional layer, illustrated on figure 6, helps to explain this concept. It can be seen that
layer inputs (quantized in previous layer) are multiplied with quantized weights during
the convolutions, which in CMSIS-NN library yields a number with two times higher
bit-depth [59]. For example, if input and weights are stored as 8-bit fixed point numbers,
the output of their multiplication will be 16-bit fixed point number. This is required to
keep the accuracy while multiplying the two numbers. As biases are added to the product
of inputs and weights, these also have to be transformed into the same Q format. This
requires changing the number of bits reserved for integer and decimal parts and is one
of the parameters required by CMSIS-NN library [59]. This 16-bit number will then be
converted back to 8-bit format, which again requires converting the number format and is
a parameter required by CMSIS-NN functions. The format that it needs to be converted
to is determined by the best range found with fake quantization operation described in
previous paragraph.

1https://www.tensorflow.org/api_docs/python/tf/quantization/fake_quant_with_
min_max_vars
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3 Framework for Creating ANNs for Microcontrollers

Running Artificial Neural Networks (ANNs) on microcontrollers is challenging in many
aspects. Training a suitable ANN for microcontrollers requires an approach which takes
into account the limitations of embedded systems. The training is followed by converting
the learnable parameters into correct format and developing the code for microcontrollers.
The process can be time consuming, prone to errors and requires knowledge about ANNs
and embedded systems development. The goal of this section is to describe a framework
which simplifies and speeds up the process of training an efficient ANN for audio clas-
sification task and automates the process of converting the trained model into a suitable
format for Cortex-M microcontroller.

ARM has a project called Hello Edge [6] for training ANNs for audio classification tasks,
which includes tutorial and description of the process, together with code examples, for
running the trained models on Cortex-M microcontrollers. Hello Edge work simplifies the
process of developing ANNs for microcontrollers, but does not automate or describe in
enough detail some parts of the process. The work in this section describes, investigates
and improves the process and framework used in Hello Edge project. Improved frame-
work can be seen in figure 7b, while original Hello Edge process is described on figure
7a.

Gather and Prepeare
Data

Train and find good
hyperparameters

Select best model
and find output
layers' ranges

Find parameters for
CMSIS-NN functions

Develop CMSIS-NN
code

Deploy to
Microcontroller

(a) Hello Edge workflow.

Gather and Prepeare
Data

Perform
hyperparameter

optimization

Select and
automatically convert

best model
Deploy to

Microcontroller

(b) Improved workflow.

Figure 7. Comparison of original (a) and improved (b) worklow for creating ANNs for microcontrollers.
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The main changes introduced by this thesis include improvements in data preparation and
preprocessing, introduction of hyperparameter optimization and automatic code creation
from trained Tensorflow model, which can then run on Cortex-M microcontrollers. The
introduced changes help to reduce development time and introduce ways which could
improve accuracy of audio classification on embedded systems. The suitability of the
Hello Edge project for being a basis of this work, together with frameworks and tools
introduced by it, are analyzed in section 3.1.

The work is done by going through the whole process introduced by Hello Edge project
and by taking bird sound classification task as an example for finding ways to improve the
original work. A custom dataset is gathered and prepared for this, as described in section
3.2, with the goal of finding out whether the process introduced in Hello Edge work is
also suitable for other audio classification domains.

Preprocessing and feature extraction is an important part in the process of developing
ANN solutions and can have great impact on classification accuracy. As the data used in
training is often not recorded by the embedded system, it might have different character-
istics. The preprocessing phase should take this into account. Ways how Hello Edge’s
preprocessing and feature extraction could be improved are described in section 3.3.

Finding suitable hyperparameters in the training phase is one of the most time consuming
parts of developing ANN solutions. Training phase usually takes several hours and search
for good hyperparameters requires a lot of experimentation. This thesis introduces hyper-
parameter optimization as a way to partly automate this process, as described in section
3.4.

The training phase is followed by compressing learnable parameters of the trained model,
finding the needed parameters of this model and developing code which would represent
the same model on the microcontroller. In Hello Edge work, large part of this process
needs to be done manually. The thesis introduces a way to automate the process of cre-
ating a model for microcontroller, which corresponds to the one trained on high perfor-
mance computer. The automated process is described in section 3.5.

Previously mentioned improvements to the framework concentrated on developing an
ANN solution on high performance computer and converting it to a model for microcon-
troller. To get this model working on microcontroller, audio retrieval, preprocessing and
feature extraction also need to be efficiently implemented on the microcontroller. Hello
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Edge project includes examples for implementing these parts on Cortex-M microcon-
trollers. The original work and changes introduced by this thesis are described in section
3.6.

3.1 Libraries and Tools

Libraries, frameworks and tools used in this work are described and analyzed in this
section. The reason of taking Hello Edge project as a basis for this thesis is explained,
together with the description of this project. This also includes describing and analyz-
ing the suitability of CMSIS-NN and Tensorflow frameworks, used by the Hello Edge
project, for developing ANN solutions for microcontrollers. In addition, other libraries
used throughout the work are analyzed and described.

Hello Edge - Keyword Spotting on Microcontrollers

Hello Edge - Keyword Spotting on Microcontrollers [6] is a research paper, tutorial and
example code by Arm about running ANNs on Arm Cortex-M microcontrollers for Key-
word Spotting (KWS) task. KWS task involves recognizing short keywords, such as
"stop" or "open". Hello Edge paper looks at different ANN architectures often used for
KWS tasks, by exploring and evaluating these architectures from the perspective of run-
ning the ANNs on microcontrollers. Mel-Frequency Cepstral Coefficients (MFCCs) are
used as features for these ANNs.

Hello Edge work included training various ANN structures with different complexities.
The accuracy, memory and computational requirements of the trained ANNs were then
compared and divided into three groups for microcontrollers with different capabilities.
The article mainly concentrated on comparing Depthwise Separable Convolutional Neu-
ral Network (DS-CNN) with other types of ANNs, while also analyzing quantization’s
impact on classification accuracy.

The paper was accompanied by code1 for preprocessing audio files, training ANNs and
also examples of how some of these ANNs can be run Cortex-M microcontrollers. The
work used Tensorflow for training the networks and CMSIS-NN to run the trained models
on a Cortex-M microcontroller. The work also introduced code examples for quantization

1https://github.com/ARM-software/ML-KWS-for-MCU

35

https://github.com/ARM-software/ML-KWS-for-MCU


of Tensorflow models and a way to find suitable parameters for CMSIS-NN functions.
Hello Edge work is one of the few resources available for running ANNs on Cortex-M
microcontrollers. The work is referenced and brought as an example throughout different
ARM white papers [61], [62], community discussion boards and Github issues related
to CMSIS-NN or generally running ANNs on microcontrollers. Therefore, the project
was taken as a basis for this thesis. It should be also noted that there is an ARM NN
SDK 1 which allows to easily transform ANNs to a code for ARM processors, but this
tool concentrates on mobile devices and high performance embedded system, while not
supporting Cortex-M microcontrollers.

CMSIS-NN

Cortex Microcontroller Software Interface Standard (CMSIS)2 is a hardware abstraction
layer for Cortex-M processors, enabling simple interfaces to the processor and other pe-
ripherals. CMSIS consists of different components, such as CMSIS-DSP and CMSIS-
CORE. CMSIS-DSP3 is a library for digital signal processing tasks and it includes over
60 functions for various data types, which are optimized for the Single Instruction, Mul-
tiple Data (SIMD) instruction set. CMSIS-CORE4 is a component offering standardized
API for the Cortex-M processor core and peripherals.

CMSIS-NN [59] is a component of a CMSIS and it is a collection of ANN kernels de-
signed for Cortex-M processor cores to maximize performance and minimize the memory
usage. It includes fully connected and convolutional ANN functions, while also providing
functions for activations and pooling. CMSIS-NN also includes functions for depthwise
separable and pointwise convolutions, allowing to easily create DS-CNN models. Func-
tions in CMSIS-NN use either q7_t or q15_t data types, meaning that network weights
and biases should be quantized to 8-bit or 16-bit integers. This also requires quantization
of activations, as the functions require bias left shift and output right shift arguments as
inputs.

There are few alternatives for CMSIS-NN, such as uNeural5 and uTensor 6. Both of
1https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
2http://www.keil.com/pack/doc/CMSIS/General/html/index.html
3http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
4http://www.keil.com/pack/doc/CMSIS/Core/html/index.html
5https://github.com/Jeff-Ciesielski/libuneural
6https://github.com/uTensor/uTensor
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these libraries are currently limited to fully connected ANNs. While uNeural seems to
have stopped development, uTensor is still under active development, promising support
for convolutional layers and integration with CMSIS-NN in future. Due to limited func-
tionality of the alternative libraries and the ARM supported development and provided
ecosystem for CMSIS-NN, it is most suitable for the purposes of this work. The usage of
uTensor should be considered in future works, when the promised features are rolled out.

Tensorflow

TensorFlow [63] is an open source platform for machine learning developed by Google.
While it is possible to run other operations and machine learning algorithms with Ten-
sorflow, it is mainly used for deep learning research and solutions. A comparison of
TensorFlow and other popular deep learning libraries is given in table 1. It should be
noted that Keras [64], another highly popular deep learning framework, uses TensorFlow
as one of its possible backends. In the upcoming release of TensorFlow 2.0, Keras will be
included into the TensorFlow library.

Table 1. Comparison of deep learning frameworks in Python based on GitHub statistics describing the
activity and popularity of projects.

Framework Stars Forks Watchers Contributors

Tensorflow [65] 126 039 79 983 8 602 1 953

Keras [66] 40 400 15 342 2 004 790

Caffee [67] 27 864 16 789 2 243 266

PyTorch [68] 27 151 6 469 1 235 1 014

MXNET [69] 16 730 5 959 1 175 682

CNTK [70] 16 056 4 249 1 385 199

Based on comparison in table 1, it can be stated that Tensorflow is one of the most popular
deep learning libraries. The popularity, flexibility and functionality of Tensorflow makes
it a good framework for building ANNs. It is therefore used in this work for training and
evaluating ANNs.
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Other Used Libraries

There are several hyperparameter optimization libraries available, which support
Bayesian optimization, such as Sigopt1, Scikit-Optimize2, Bayesian Optimization3 and
Hyperopt [71]. Sigopt is a service with good features and easy to use interface, but it is
not open source and requires subscription. Scikit-Optimize has good features and is easy
to use, but is still under heavy development. Bayesian Optimization is well developed, but
subjectively harder to use than other libraries. Hyperopt is easy to use, supports flexible
search spaces definition and is well developed, while development of new methods and
features are still under a way. Based on Github statistics it’s the most popular library of
the discussed ones. For these reasons, it is chosen as a library for performing hyperparam-
eter optimization in this work. Hyperopt library allows to optimize hyperparameters with
search spaces that include real-valued, discrete and conditional dimensions. The library
has currently implementations for random search and Tree of Parzen Estimators (TPE)
algorithms.

Only two Python libraries were found which supported extracting Gammatone Frequency
Cepstral Coefficients (GFCCs). Speech Feature Extractor4 library is a small project of-
fering different audio feature extraction methods, including GFCCs. Essentia [72] is a
much larger and well developed open-source C++ library, which has Python interface,
for audio-based music information retrieval. As Essentia is a larger project, offers better
quality code and is more popular, it was used in this work to extract GFCCs. The code
for extracting GFCCs was also used to implement a solution which can run on microcon-
trollers.

3.2 Gathering and Preparing the Dataset

Data gathering and preparing it for training phase involves downloading the data, con-
verting downloaded recordings to wave files, splitting the recordings to smaller clips and
dividing the data into training and testing set. The section describes different datasets,
how these were combined and prepared, and how validation and test sets were created.

1https://sigopt.com/
2https://github.com/scikit-optimize/scikit-optimize
3https://github.com/fmfn/BayesianOptimization
4https://github.com/ZhihaoDU/speech_feature_extractor
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3.2.1 Used Datasets

The dataset used in this work is a combination of five different data sources. The choice
of bird sounds to be downloaded from Xeno-canto database was based on the work done
in author’s previous thesis [16] and included sounds from 20 most popular song birds in
Estonia. Other datasets were prepared by various authors for scientific research. The idea
was to combine bird sounds and environmental background sound into a single dataset,
so it could be used to train a classifier which could classify certain birds in real-life envi-
ronment. The overview of used datasets is shown in table 2.

Table 2. Different data sources used in creating a dataset for training an ANN.

Database / Dataset File Format Clip
Length (s)

Number of
Recordings

Hours of
Audio

Xeno-Canto: Parus Major MP3s with various sample
rate and bit depth

Various 2 361 35.8

Xeno-Canto: other birds MP3s with various sample
rate and bit depth

Various 12 347 323.5

TUT WAVs, 44.1 kHz, 24-bit 10 4 680 13.0

ESC-50 WAVs, 44.1 kHz, 16-bit 5 2 000 2.8

Urbansound 8K WAVs with various sam-
ple rate and bit depth

≤ 4 8 732 8.78

Urbansound-SED WAVs, 44.1 kHz, 16-bit 10 10 000 27.8

Xeno-Canto

Xeno-canto 1 is a crowd-sourced database for bird sounds. Everyone can upload their
audio recordings of birds to this site. Xeno-canto database contains a lot of meta-data
about the recordings, such as species in the foreground and background, location, time
of recording and quality. It also offers Application Programming Interface (API) which
enables to download specific recordings and relevant meta-data. Xeno-canto data has
various quality, recording duration and background noise.

1https://www.xeno-canto.org
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TUT Acoustic Scenes 2017

TUT Acoustic Scenes 2017 [73] dataset consists of recordings from 15 acoustic scenes:
bus, cafe, car, city center, forest path, grocery store, home, lakeside beach, library, metro
station, office, residential area, train, tram and urban park. From each scene 3-5 minute
long audio recordings were captured and split into 10 second clips. This results in having
312 24-bit wave files with 44100 Hz sampling rate for each scene.

ESC-50

The ESC-50 [74] dataset consists of 2000 environmental audio recordings manually gath-
ered from freesound.org database. It has 50 different semantical classes, each hav-
ing 40 five second long recordings. These 50 classes are divided into five major cate-
gories: animals, natural soundscapes and water sounds, non-speech human sounds, in-
terior/domestic sounds and exterior/urban sounds. It should be noted than one of the 50
classes contains bird sounds, which were left out of the dataset. The data is in 16-bit wave
files at 44 100 Hz sampling frequency.

Urbansound 8K

Urbansound 8K [75] dataset consists of 8732 recordings of urban sounds, manually gath-
ered from the freesound.org database. These recordings are divided into 10 classes: air
conditioner, car horn, children playing, dog barking, drilling, engines idling, gun shots,
jackhammer, siren and street music. The lenght of the recordings varies, but is less or
equal to four seconds. Recordings are in wave format, but have same sampling rate, bit
depth and number of channels as in freesound.org, meaning that these attributes will
vary between different recordings.

Urbansound-SED

Urbansound-SED [76] is a dataset synthesized from Ubransound 8K dataset. This dataset
has the same 10 classes, as in Urbansound 8K, but it consists of 10 000 augmented record-
ings. Each recording is 10 seconds long and has Brownian noise added as a background to
resemble the typical hum heard in urban environments. In addition, some other techniques
were used to modify original files in Urbansound 8K dataset, such as time stretching and
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pitch shifting. The files come in single channel 44 100 Hz, 16-bit wave format.

3.2.2 Data Preparation

The downloaded data is in different formats and therefore all the recordings are con-
verted to wave files with same settings. The sampling frequency of 16 kHz is used for
the converted wave files. This allows to analyze sounds up to 8 kHz, as proposed by
Nyquist–Shannon sampling theorem [77], which covers the range of Great Tit song as
illustrated in section 2.1.1 and on figure 2. The Analog-to-Digital Converter (ADC) used
on the embedded system has resolution of 12 bits and therefore 16 bit Pulse-Code Modu-
lation (PCM) was used for the converted wave files.

The converted wave files were then split into shorter clips, which represent the samples
for training and testing the ANN. 20 percent of recordings were randomly chosen to be
in the testing set. The clips were then balanced in a way that one third of samples would
belong to Parus Major, one third to other birds and one third to environmental sounds.
The balancing involved removing some of the clips from other bird sounds, in a way that
resulted of having equal number of samples for Parus Major and other birds. During
the training, it is specified how much recordings are taken for each training batch from
unknown class, relative to the Parus Major glass, In our case, unknown class consists
of other birds and environmental sound recordings. This approach allows to use more
recordings from unknown class during the training phase, while giving same number of
Parus Major and unknown class samples each training batch. The results of splitting
recordings into shorter clips for training set can be seen in table 3.

Table 3. Created training set.

Original Dataset Number of Recordings Hours

Parus Major 78221 43.5

Other Birds 78221 43.5

TUT 29952 16.6

ESC-50 4119 2.3

Urbansound 5987 3.3

Urbansound-SED 32000 17.8

Embedded system restricts the maximum length of clips due to the limited memory. Train-
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ing an ANN requires having clips with the same length as it can be retrieved on the em-
bedded system. The length of each clip was set to be two seconds, as the experiments
on the embedded system showed it would be the upper limit which could be used on
that device. Different methods for splitting the recordings were applied for different data
sources. Great Tit recordings were split by using a filter with sliding window of two sec-
onds, which measured the energy of higher frequencies and compared it to energy from
lower ones. If the ratio of higher frequency energy and lower frequency energy was large
enough, the audio from that window was saved as an audio clip. This was done to im-
prove the chances that silent part of the audio was not included in the Great Tit samples.
For other datasets this was not important, as silence is also part of the unknown class and
therefore data was split without the filter. Sliding window was also used with different
step sizes, where the step size was bigger for the datasets containing more audio.

3.2.3 Recording Audio Through Embedded Device

The noise introduced by the embedded system might affect classification accuracy of the
ANN. The peculiarities of the audio recorded by the embedded system should be taken
into account when training the ANN. For this, the audio could be recorded through the
embedded system. Recording audio clips in this manner allows to develop new ideas and
solutions on high performance computers, without the need of testing each solution out
on a microcontroller.

Recording sound through embedded system involved collecting ADC readings of the mi-
crophone through serial interface. The mean of the ADC readings was found, the signal
was centered around this mean and converted to 16-bit PCM format, which could then
be saved as a wave file. The wave file had same specifications as rest of the dataset.
The recordings were performed indoors, while having different types of noises present,
such as passing airplanes. As these types of noises can also occur in natural environment
and were not very loud, having these noises was not considered as a problem. This is
illustrated on figure 8.

Noise introduced by the embedded system might have an impact on the classification
accuracy of the trained model. To counter this, the noise specific to the embedded system,
can be added to the training samples. The background noise of the indoors environment
was recorded for this purpose through embedded device. These recordings were then
randomly added to the audio clips during the training phase, as described in section 3.3.
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Figure 8. Validation and test set gathering through the embedded system.

Validation and testing sets were created in a similar manner. The key difference was
that sounds were played through the speakers. The same script was used for playing
audio and retrieving readings from the embedded device, as illustrated in figure 8. As the
audio recording on embedded device and playing audio from regular computer were not
synced, the same audio clip was played several times. This made sure that relevant part
of the audio played through the speakers will be recorded through embedded device. The
readings from ADC where discarded, if they contained parts where no audio was being
played. With Great Tit song, a Root Mean Square (RMS) level was also measured and
clips with low RMS were discarded. The resulting clips are characterized in table 4.

Table 4. The test set recorded through the embedded device.

Dataset Name Number of Recordings Hours

Parus Major 5 702 3.2

Other Birds 4 395 2.4

TUT 1 096 0.6

ESC-50 538 0.3

Urbansound 591 0.3

Urbansound-SED 2 170 1.2

The speakers can add additional noise to the signal, which is not present in natural envi-
ronment. This should be considered, when researching how well the device would work
in real-life. As this is out of the scope of this thesis, the characteristic introduced by the
speakers can be considered as a part of the noise of the embedded system.
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3.3 Preprocessing and Feature Extraction

Hello Edge [6] code offers a very good approach for preprocessing the data and is used
as a basis of the work. However, there were some changes introduced by this work for
improving the noise robustness of the ANNs solutions.

Original Hello Edge Implementation

The preprocessing of audio clips occurs when the data is requested during the training,
validation or testing phase. Preprocessor allows to divide data into training, validation
and testing set, which percentages are determined by input arguments. These different
subsets are randomly chosen and determined by file name hashes, so the files will remain
in the same subsets, even after adding new audio files. Preprocessor returns a batch of
processed data and its labels for the needed subset, as requested by the training, testing or
validation program. Preprocessing of testing and validation data differs from preprocess-
ing of training data, as in the latter case the data is augmented by background noise and
time shifts.

The preprocessor starts by loading the wave files and scaling these to have values between
-1 and 1. If the data is requested from training phase, the samples will be randomly chosen
from training set for each request. In training mode, the audio samples will be time shifted
and background noise will be added. This process is called data augmentation, and it
creates more training samples from existing ones to reduce overfitting and improve the
generalization power of machine learning models. Time shifting moves the starting point
of the audio clip and pads the signal in case it is not long enough. As training samples are
used several times in training phase, this allows to introduce small changes in the used
samples, which should help to improve classification accuracy.

Another way to augment data is by adding background noise, which takes a random part
of an random audio clip from a specific folder and adds it to the training sample. If some
elements of the sum of original signal and background signal end up being larger than 1
or less than -1, these elements will be clipped to 1 or -1. Frequency of training samples,
which should include added background noise, and the maximum range of sound volume
for background noise are input arguments of the preprocessor. The addition of background
noise allows to use different background sounds for same samples, forcing the ANN to
find the important properties of the signal.
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Data loading and augmentation is followed by creating a spectrogram and extracting
MFCCs from it. Both of these function are included in the Tensroflow library. Spectro-
gram takes window size and window stride as input arguments. These arguments define
the number of time and frequency bins of the spectrogram. Function for MFCCs takes
the number of returned MFCC coefficients as an input argument. The number of MFCC
coefficients determines how many features there are for each time bin, while the number
of time bins for MFCCs is equal to the number of spectrogram time bins. The MFCCs
are then returned together with the ground truth labels to the training, testing or validation
program.

Modified Implementation

The code from Hello Edge work offered good preprocessing methods, but it needed some
modifications so it could be integrated to the proposed framework. The original code was
not modular enough for the purposes of this work and therefore could not be used as an
external library.

Original code included the possibility to add background noise to the training samples, but
the sound volume of the added background noise was randomly chosen within some given
range. The code was modified to allow adding the original volume of the background
noise, as similar noise levels could be expected from the embedded system.

Preprocessing for Great Tit classification does not need to consider lower frequencies, as
was described in section 2.1.1 and on figure 2. By dismissing lower frequencies, we can
also filter out big portion of the noise, which could improve classification accuracy and
also makes preprocessing more efficient. The suitable frequency range could be chosen
when extracting MFCCs. This possibility is implemented in Tensorflow library, but Hello
Edge code needed some modifications, so it would be possible to add these arguments as
inputs for the preprocessor.

MFCCs are not very robust under noisy conditions, as described in section 2.2.2. There-
fore, GFCCs were introduced, which perform better in noisy conditions. Essentia1 library
offers extraction of GFCCs and was used in this work. The number of GFCCs and number
of filterbank filters used in the process were used as input arguments for the preprocessors.
Lowering these numbers will reduce the required memory and number of computations.

1https://essentia.upf.edu/documentation/
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Using GFCCs required some additional changes. The created coefficients had a lot of
variation in them, having different ranges and mean values. For example, the values for
the first coefficients of GFCCs were about 200 times larger than the values of last coef-
ficients and not centered around zero. The quantization of these different values would
result in loosing a lot of important information. Therefore, the minimum and maximum
values were found for each coefficient over the training and validation data. These values
were then used to scale the output of each coefficient, so all of the values would be vary-
ing within the same range. The comparison of MFCCs and GFCCs for the dataset used in
this work is analyzed in section 4.3.

GFCCs require more preprocessing and memory than MFCCs, as each GFCC filter con-
tinuously covers all frequencies. To fit everything into the memory of the embedded
system, the DCT matrix and GFCCs filter coefficient are created in Python and written
into a C++ header file, as these matrices can be calculated without the need for input data.
This approach allows to create constant variables, which will be loaded into read-only
flash memory, instead of more valuable Random-Access Memory (RAM). Calculating
DCT matrix and GFCCs filter coefficients required to rewrite original Essentia C++ code
in Python.

3.4 Training and Hyperparameter Optimization

The original Hello Edge code for training a ANN is introduced in this section. Some
minor modifications were introduced by the author to make the training phase more flex-
ible and suitable for the wokflow proposed in this work. Hypeparameter optimization
is introduced to simplify the process of finding suitable preprocessing parameters, ANN
structure and training hyperparameters.

Original Implementation

The code for training ANNs from the Hello Edge work included defining the prepro-
cessing parameters and hyperparameters for the ANN. These hyperparameters included
the type of the ANN, its architecture and other parameters, such as how many training
steps should be performed and which learning rates should be used. For each training
step, a certain number of training data, specified by batch size parameter, is preprocessed
and used for training the ANN. After a certain number of training steps, the accuracy of
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ANN is found on validation set. Most accurate models throughout validation steps of the
training phase are saved.

Modified Implementation

The original code allowed only to train by running the program from command line. To
make it usable for hyperparameter optimization program some modifications were intro-
duced. Command line arguments were replaced by training function’s input arguments.
To further improve the possibility of using hyperparameter optimization, a function was
introduced which would parse all the parameters from a dictionary data type and translate
them to input arguments for the training function.

Compared to the original training set, where noise from embedded system is added to the
samples, the proposed validation set consists of recordings retrieved through embedded
system. The data in validation set has better resemblance to the data expected during
real life classification and gives better estimation of the classification accuracy on the
end device. The original Hello Edge code required small modifications to use custom
validation data. As it is good practice to use testing data only for the final validation, the
evaluation on testing set, which occurred after the last training step, was removed from the
training function. This allows to get final test accuracies separately, after we’ve chosen
our best performing models, to avoid overfitting to test data during model selection.

Training an ANN requires a lot of experimentation. To automate this process, Bayesian
optimization is used to narrow down the ranges for suitable preprocessing and ANN hy-
perparameters. The range for each hyperparameter can be defined and this forms a search
space. The process of extracting a set of hyperparameters from the search space and train-
ing an ANN on these hyperparameters is done iteratively. Each iteration involves training
an ANN and returning the best validation accuracy to the Bayesian optimization algo-
rithm. Based on this feedback, a new set of hyperparameters are chosen and the process
is repeated. Trained models are saved, together with their hyperparameters, complexity
and classification accuracy, allowing to match each hyperparameter optimization iteration
to a corresponding trained model. The hyperparameter optimization process is illustrated
on figure 9. Hyperopt library is used with TPE algorithm to perform Bayesian optimiza-
tion.

Hyperparameter optimization is done in several rounds, where the search space is manu-

47



Preprocess

 Best Validation Accuracy 

Train

Preprocessing 
parameters

Neural Network
Parameters

Bayesian Optimization

Validation data

Training data

Trained models

Optimization results

Figure 9. Implementation of hyperparameter optimization.

ally narrowed down each round. Changes to search space are introduced manually, based
on new knowledge gained through previous rounds. In addition, experiments were per-
formed with different trained models on the embedded system by finding the amount of
CPU cycles it took to preprocess and classify an audio clip. The experiments gave ad-
ditional knowledge how complex the model could be, so it could still run on embedded
system in real time. Based on the gained knowledge, hyperparameter optimization search
space and objective function was modified. Instead of only including the validation er-
ror in the objective function, another parameter was added, which penalized models with
higher number of parameters. After performing hyperparameter optimization, a suitable
model can be chosen based on it’s complexity and classification accuracy.

3.5 Converting Tensorflow Model to CMSIS-NN Model

The largest contribution to improving the framework introduced by Hello Edge is au-
tomating the process of converting models trained in Tensorflow to a C++ code, which
can then run on embedded device and which uses CMSIS-NN library. This approach
will reduce development time and is less prone to human errors, which might occur when
manually developing the code. The conversion process was partly done by Hello Edge
work, but biggest part of this conversion required still manual work and calculations. In
this section the original implementation is described together with the necessary modifi-
cations for automating the conversion process.
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Original Implementation

The code from Hello Edge work introduced a way for reducing the resolution of learnable
parameters, called quantization. Quantization is needed so the trained ANN could use
less memory on the embedded system. Quantization of activations, weights and biases is
needed. The quantization of weights and biases can be easily performed, as these values
are known after training process. Quantizing activations requires a different approach,
as it is dependent on the input data fed to an ANN. Quantization of activations involves
loading a trained model to memory and introducing fake quantization layers for each ANN
layer, including the input layer. It is then possible to test out different ranges (power of
twos) for each of these fake quantization layers. Each fake quantization layer simulates
the minimum and maximum values based on the range and its resolution. This is then
tested on a subset of data to see how much the quantization changed the results. The
original code also writes the quantized weights into a C++ header file which can then be
deployed to the embedded system.

The Hello Edge process involves manually testing out different ranges for each layer of
the ANN, including input layer. The work suggest starting from the first layer and finding
the best range for that, by testing out which ranges (1, 2, 4, 8, 16, 32, 64, 128) give best
accuracy on chosen set of data. When the range is found for the layer, the same should
be done with the next one, until the ranges for all the layers are found. After the ranges
are found, the bit shifts required by the CMSIS-NN framework, will have to be manually
calculated. For a DS-CNN with four layers, this requires finding 10 ranges, which might
need up to 80 runs of the script. In addition, creation of the corresponding ANN needs to
be manually implemented in C++.

Modified Implementation

The modifications to the original Hello Edge code included introducing a way to fully
automate model conversion and C++ code generation. The overview of the introduced
framework is illustrated on figure 10.

Quantization of activations requires finding best activation ranges for each layer. This
part was automated by introducing a simple for loop, that iterates over possible ranges,
starting from the lowest possible. Each iteration, the range is increased and the effect
of quantization within that range is measured on validation set. If the accuracy found is
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Figure 10. Process of converting Tensorflow model to CMSIS-NN model.

smaller than in previous iteration, it is concluded that the best range for that layer is the
one from the previous iteration. The same process is then repeated with the next layer until
the best ranges for each layer are found. The quantized weights, biases and activations
define the quantized ANN model, which we can use on our testing set.

The CMSIS-NN library performs computations with 8-bit integers in Q-notation (de-
scribed in section 2.2.6), so these integer values could represent real numbers. Based
on quantization of activations, the suitable Q-notation was found for each layer. CMSIS-
NN requires bias left shift and output right shift as inputs to neural network layers, so the
Q-notation would match between arguments when performing multiplications and addi-
tions. The left and right shifts can be calculated from the ranges found while quantizing
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weights, biases and activations.

The hyperparameters used for training the ANN allow to automatically generate required
C++ code (ds_cnn.cpp). The C++ file consists of sequential CMSIS-NN functions, which
correspond to layers of the trained ANN. Certain parameters for these functions (including
bias and output shifts) are held in ds_cnn.h file. This file is also automatically generated
based on previous steps.

Original Hello Edge work required writing C++ source file manually, while also finding
and calculating parameters for the header file (ds_cnn.h). The improvements introduced
in this section allow to take the trained Tensorflow model and automatically convert it to
a C++ code. The resulting code files can then be deployed to a Cortex-M microcontroller
by simply copying the files to the project, compiling it and uploading compiled files to
microcontroller.

3.6 Audio Classification on Cortex-M Microcontroller

The code for performing classification is generated automatically in the improved frame-
work, but the embedded system also needs to read the audio signal and extract features
from it. The section covers briefly the embedded systems used in this work and how the
whole audio classification process is performed on that system.

Embedded system used in this work is produced by Thinnect and has Mighty Gecko
EFR32MG12P432F1024GM48 microcontroller, which belongs to Cortex-M family. The
microcontroller can run up to 38 MHz, has 1024 kB of flash memory and 256 kB of RAM.
It has an 12-bit ADC, which can be used together with a microphone to retrieve audio.
The microcontroller also has a Floating-Point Unit (FPU), which allows to efficiently do
arithmetics with floating point numbers.

The process of audio classification includes ADC readings retrieval, normalization of the
readings, feature extraction and classification, as illustrated on figure 11. Retrieving ADC
readings and normalizing these was already implemented and provided by the supervisor
of this thesis. Code for preprocessing and classification was taken from the Hello Edge
[6] project. Integrating the audio retrieval with feature extraction and classification was
done by the author of this thesis, as was the implementation of GFCCs feature extraction.

Audio retrieval was performed by storing ADC readings in two ping pong buffers, which
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Figure 11. Audio classification process on the embedded system.

allow to preprocess the readings from one buffer, while the readings are recorded to the
other. Both buffers save two seconds of data at 16 kHz sampling rate. This means that
preprocessing and classification has to take less than two seconds, in order to work in real
time. After one ping pong buffer is filled, the average of the ADC readings is found. This
average is then subtracted from all the readings to center the values. The signal is then
normalized to have values between -1 and 1.

The normalization of audio signal is followed by feature extraction. Two different feature
extraction methods were used and analyzed. The extraction of MFCCs used the imple-
mentation provided by the Hello Edge work. The implementation of GFCCs was done by
the author of this work. Developer can easily choose which feature extraction method is
used, as the arguments, and input and output formats are the same for both feature extrac-
tion functions. Exploring audio filtering and noise reduction techniques is left out of the
scope of this work.

The implementation of MFCCs extraction, provided by Hello Edge work, followed a
similar process as described in section 2.2.2. The Short-Time Fourier Transform (STFT)
was performed with the Fast Fourier Transform (FFT) function provided by CMSIS-DSP
library. The starting and end frequency bins for each Mel filterbank filter was found, as
the filters are triangular and have well defined start and end. This helped to save memory
and computations, as there was no need to store and perform computations, where filter
values were zero. After finding the MFCCs, the resulting floating point numbers were
converted to q7_t format, based on the range found during quantization step for input
layer.

GFCCs were implemented based on the Essentia GFCCs extraction and Hello Edge’s
MFCCs extraction code. GFCCs have continuous filters, instead of the triangular ones.
This means that it requires more memory and computations, as it was necessary to store
and compute with filter values, which have the same dimensions as output of the FFT. For
example, having 10 filters, and FFT settings used in this work, would require storing and
doing multiplications with 10×513 = 5130 floating point numbers. As filter coefficients
and Discrete Cosine Transform (DCT) matrix could be calculated beforehand, when num-
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ber of filters and FFT settings are known, these were defined as constant variables, so it
could be loaded into larger read-only flash memory, instead of using RAM.

The features obtained from feature extraction phase are fed to an ANN for classification.
Hello Edge work included code for fully connected neural network and DS-CNN models.
This thesis uses only DS-CNN implementation. The implementation consists of using
CMSIS-NN functions to create a identical model structure as the trained and quantized
Tensorflow model. The layer and activation functions use two buffers which are being
changed as inputs and outputs between the consecutive functions. The weights and biases
for the DS-CNN are loaded to flash memory as constant variables from the header file,
created during the quantization step. The concrete parameters for each layer, including
each layer’s dimensions, padding, stride, kernel size, bias left shifts and output right shifts,
are also stored in a header file. The output of a classification is a vector of probabilities
for each class in q7_t format.

Section 3 researched and improved the work of Hello Edge on the example of classify-
ing bird sounds on a Cortex-M microcontroller. Libraries and tools used by Hello Edge
work, and the ones introduced by this work, were analyzed to determine their suitabil-
ity for the audio classification task. The work used a bird sound classification use-case,
which required gathering data from different sources and consisted of bird sound and
environmental sounds. GFCC feature extraction method was added to original work for
improving noise robustness of the solution. This required implementing this feature ex-
traction method for Cortex-M microcontrollers. The training process was improved by
introducing hyperparameter optimization which allows to automate the process of finding
hyperparameters for ANNs. The model trained in Tensorflow needs to be converted to a
CMSIS-NN model, so it could be used on Cortex-M microcontroller. This process was
automated, allowing to generate C++ code from a trained Tensorflow model. The imple-
mentation of this framework is in public domain and can be found on the link provided in
appendix 1.
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4 Method and Analysis

The main goal of this thesis work is to analyze the challenges of developing ANNs for
Cortex-M microcontrollers and improve the development process. This involves training
an ANN model on a regular computer and then converting the model to C++ code, suitable
for running on Cortex-M microcontrollers.

Section 3 introduced the process of training and converting Tensorflow ANN model to
CMSIS-NN model, while highlighting some of the changes and improvements needed
for achieving better classification accuracy on an embedded system. In this section, the
effects of these changes are analyzed. The analysis will be done on the example of clas-
sifying Great Tit sounds from other environmental sounds, including songs from other
birds. This problem is complex enough for motivating the use of ANNs, while also hav-
ing enough openly available training data. Although the research is done on bird sound
classification, the results of this thesis can be applied, with slight modifications, to other
domains related to sound and image classification.

Running an ANN model on microcontrollers requires combining several techniques for
reducing complexity and computational footprint of the model. Some of these techniques
are analyzed in this work with regards of how much computational and memory resources
can be saved and how much it will affect the classification accuracy of the ANN model.
Analyzing difference between using Convolutional Neural Network (CNN) and DS-CNN
is done in Section 4.1. The effects of quantization are analyzed in Section 4.2.

The effect of preprocessing methods on the classification results will be also researched
in this work. MFCCs and GFCCs are analyzed from the perspective of applying them on
embedded systems. This involves comparing the computational requirements of extract-
ing these features and robustness to noise introduced by the used embedded system. The
difference in classification accuracy and resource usage is analyzed in Section 4.3.

Performing classifications on embedded systems often requires dealing with noise specific
to that system. A solution of using background noise specific to the embedded system was
introduced in this work. Section 4.4 describes the effects of adding background noise to
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the training samples.

The author’s implementation of extracting GFCCs on embedded device requires verifica-
tion that the results correspond to the ones used on regular computer. Similarly, the ANN
model conversion from Tensorflow to CMSIS-NN framework, proposed in this work,
should be validated. The analysis of how well the preprocessing and classification re-
sults match between the implementation on regular computer and embedded device is
performed in Section 4.5.

The analysis is performed by using the hyperparameters found from hyperparameter op-
timization phase. The preprocessing and feature extraction phase transforms two second
audio signal into features which have 61 time bins, where each time bin has five elements.
The ANN consists of four convolutional layers and a fully connected layer. In case of DS-
CNN, the first convolutional layer is the classical one, while rest of the three are depthwise
separable convolutional layers. The CNN model has four classical convolutional layers,
followed by a fully connected layer. In both cases, each convolutional layer creates 32
feature maps as outputs. The first convolutional layer has stride of five in x direction and
stride of eight in y direction, while the kernel size is 5× 5. Rest of the convolutional
layers have kernel size of 3×3 and stride of one in both directions.

The accuracy is used as a metric throughout the analysis for describing the classification
power of an ANN model. Accuracy is a simple and suitable metric for classification tasks
with balanced datasets, as used in this work. However, using accuracy obtained from a
single training run can be misleading in an analysis, where the effects of preprocessing
and hyperparameters on classification accuracy is researched. This is because running
several training runs with same hyperparameters and data, yields different models and
classification accuracies, due to the random initialization of weights. Therefore, for each
experiment the training should be repeated several times to be sure that the change in ac-
curacy was caused by the change of hyperaparameters, not by the initial values of weights.
The number of repeated training runs was limited to five, as each run can take up to a half
day and the available computing time for this work was restricted. Confidence intervals
are given for the average classification accuracy, to determine in what range the actual av-
erage accuracy could lie in. Confidence level of 95% is chosen for finding the confidence
intervals. Selection of a confidence level is a subjective decision and 95% was chosen, as
it is often used in research and lies between two other popular options – 90% and 99%.
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4.1 Comparison of CNN and DS-CNN

Simplifications to ANNs make it possible to run deep learning models on embedded de-
vices. One of those simplifications is using DS-CNN instead of CNN, as described in
section 2.2.3. Analysis performed in this section concentrates on how much more ef-
ficient DS-CNN would be with regards of used memory and computations, while also
analyzing how much classification accuracy is lost. In addition, it is compared whether
the chosen architecture yields different results, when using different feature extraction
techniques.

Method

Layers in classical CNN can be easily replaced with depthwise separable convolutional
layers, without changing the output dimensions of layers. This makes it is easy to com-
pare CNN and DS-CNN with regards of the used memory, number of computations and
accuracy by training both network structures with same parameters. CNN and DS-CNN
architectures are trained with MFCCs and GFCCs as features, with 10 filterbank filters.
This will give insights on how dependent these architectures are on the features which
are being used. Based on the five trainings for each of the preprocessing and model ar-
chitecture set, we can find accuracy confidence intervals on the test set. If the accuracies
overlap within the confidence interval it is not possible to state that one architecture has
better performance than the other, as the difference might be due to the random initializa-
tion of weights.

The memory usage of the network can be estimated by the number of trainable parame-
ters. In microcontroller, trainable parameters are stored in flash memory as 8-bit integers.
Number of these parameters, however, also affects how much RAM memory is needed for
buffers used in the classification process. The computational complexity can be measured
in Floating Point Operations per Second (FLOPS). Tensorflow allows to easily find these
values. The concrete steps to test the hypothesis can be seen below.

1. Train DS-CNN five times with MFCCs as features and five times with GFCCs as
features

2. Train classical CNN, using the same hyperparameters five times with MFCCs as
features and five times with GFCCs as features

3. Find accuracies for these models on testing set together with confidence intervals
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4. Find number of trainable parameters for CNN and DS-CNN
5. Find number of FLOPS needed for giving a classification for CNN and DS-CNN
6. Compare accuracy, memory usage and FLOPS of trained CNN and DS-CNN mod-

els

Results

The results of the experiments are shown in table 5, which indicate that both architecture
have approximately the same accuracy. CNN shows better performance with GFCCs as
features, while it is slightly less accurate when MFCCs are used. With both features the
difference is small and it can be said that the accuracy difference is not significant, as the
confidence intervals overlap with each other. This means that we cannot be sure whether
difference in accuracies is due to the difference of ANN architectures or because of the
random initialization of weights.

Table 5. Comparison of CNN and DS-CNN models.

Model Architecture Trainable
Parameters

FLOPS Features Accuracy

CNN 28 770 5 306 438
MFCCs 74.86% ± 0.79%

GFCCs 78.38% ± 0.51%

DS-CNN 5 250 904 844
MFCCs 75.29% ± 0.68%

GFCCs 78.60% ± 0.76%

The memory usage and number of necessary computations for classification favors DS-
CNN. It can be seen that memory-wise the DS-CNN analyzed in this work is over five
times more efficient than CNN, while requiring almost six times less computations. The
efficiency savings would be even larger with ANN structures having more layers.

Discussion and Conclusions

Compared with CNNs, DS-CNNs allow to create deeper ANNs under the same mem-
ory and computational restrictions. This allows to create ANNs with more classification
power and therefore DS-CNN architecture should be preferred for embedded systems.
When classification task is simpler, the DS-CNN could be made smaller and therefore
faster. This allows to use overlapping sliding windows for classifications and increase the
number of classifications made within a certain time period. The classifications could be
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then aggregated together for improving overall accuracy of the developed solution.

Results showed that DS-CNNs outperform CNNs with regards of memory usage and
required computations, while the difference in accuracy was small. The experiments per-
formed with GFCCs showed the possibility that the classification accuracy could even
improve with DS-CNN architecture. Due to the small number of trained models, it was
not possible to determine, whether this was caused by difference in network architecture
or random initialization of weights. Current analysis could be improved by training more
models for each of the four cases looked in this section.

4.2 Quantization Effects

Qunatization can impact classification accuracy, as the resolution of weights and biases
is reduced. When using quantization, developers of ANNs need to analyze the effects
of it, in order to determine whether the concrete method of quantization suits their task.
Quantization’s impact to classification accuracy can be analyzed by comparing accuracies
of different trained models before and after quantization. The analysis in this section
involves testing a hypothesis that quantization of weights and activations does not have
significant impact on classification accuracy on the created bird sound dataset.

Method

The effects of quantization can be measured with different models and preprocessing
techniques that are being used in this work. The accuracy for the trained models on test
set can be found before and after quantization. Based on this, it is possible to validate
how much the quantization affects classification accuracy. The change in classification
accuracy is considered significant in this thesis, if the confidence intervals do not overlap
for the accuracies calculated before and after quantization. Therefore, the definition of
significant accuracy change in this work means that the difference in accuracies is due to
quantization, not due to random initialization of weights. The concrete steps for testing
the hypothesis are brought out below.

1. Train following models:

� Five CNN models with MFCCs features having 10 filterbank filters

� Five CNN models with GFCCs features having 10 filterbank filters
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� Five DS-CNN models with MFCCs features having 10 filterbank filters

� Five DS-CNN models with MFCCs features having 10 filterbank filters and
no added background noise to training samples

� Five DS-CNN models with MFCCs features having 40 filterbank filters

� Five DS-CNN models with GFCCs features having 10 filterbank filters

� Five DS-CNN models with GFCCs features having 10 filterbank filters and no
added background noise to training samples

� Five DS-CNN models with MFCCs features having 40 filterbank filters

2. Get average accuracies found on test sets for these trained models with confidence
intervals

3. Get average accuracies found on test sets for these models after quantization with
confidence intervals

4. Compare the difference before and after quantization for different models.

Results

The results show that quantization tends to slightly decrease accuracy on the testing set,
as shown in table 6. In general, the accuracy is decreased by less than one percentage
point. In all the cases, the accuracy loss is not significant, as for all trained models the
corresponding accuracy confidence intervals are overlapping. Therefore, it is not possible
to say, whether changes in accuracy are due to quantization or randomness introduced by
weight initialization.

Models using GFCCs tend to loose less accuracy due to quantization, than models which
use MFCCs. MFCCs also show slightly higher variance in accuracies after quantization
compared with GFCCs, while quantization also increased the variance for most of the
models with GFCCs. DS-CNNs show slightly more decrease in accuracies after quanti-
zation than CNN. For most of the cases, the variance in classification accuracy increased
after quantization.

Discussion and Conclusions

The experiments did not confirm that the decrease in accuracies was due to quantization.
On the other hand, when looking at all eight experiments, each showed a small amount
of accuracy decrease, suggesting that quantization might be the reason. In Hello Edge
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Table 6. Effects of quantization on different ANNs and feature extraction methods.

Model
Architecture

Features Filterbank
Filters

Background
Noise

Added

Accuracy
Before

Quantization

Accuracy
After

Quantization

CNN
MFCCs 10 True 74.86% ± 0.79% 73.81% ± 1.26%

GFCCs 10 True 78.38% ± 0.51% 78.26% ± 0.48%

DS-CNN

MFCCs

10 True 75.29% ± 0.68% 72.66% ± 2.36%

10 False 70.65% ± 1.25% 69.24% ± 1.62%

40 True 71.96% ± 1.01% 70.05% ± 0.58%

GFCCs

10 True 78.60% ± 0.76% 77.97% ± 0.78%

10 False 78.01% ± 0.57% 77.25% ± 0.81%

40 True 78.89% ± 1.08% 77.94% ± 1.90%

paper [6], the quantization showed slight increase in accuracies. Further research should
be performed, whether the tendency of decreased accuracy, compared to the increase in
Hello Edge work, is due to the specifics of used dataset and ANN architecture, differences
between validation and testing set or small amount of experiments performed in Hello
Edge paper.

Models with MFCCs showed more accuracy loss after quantization, compared to models
with GFCCs. One of the reasons for this might be that GFCCs were scaled between -1 and
1. For MFCCs, the first coefficients might have larger values than last coefficients, as DCT
is used for generating the outputs. This results in loosing more information due to linear
quantization. There was also a small difference between variance of model accuracies
before and after quantization. This could be due to increased randomness introduced by
rounding the values, when decreasing the resolution of weights and biases. As MFCCs
were not scaled, the introduced randomness is larger, resulting in larger variance after
quantization, when compared with GFCCs.

The quantization showed a slight decrease in classification accuracy. At the same time,
quantization allows to reduce memory usage up to four times, while also reducing com-
putational requirements, as there is less overhead when doing computations with integers,
instead of floating point numbers.The benefits from quantization outweight the possible
reduction of accuracy, as reduced memory usage allow to use more complex models.

60



4.3 Comparison of MFCCs and GFCCs

Preprocessing methods have different properties with regards to computational cost, but
also in regards of noise robustness. Affordable embedded systems might introduce noise,
which should be taken into account when building ANN solutions. GFCCs were imple-
mented in this work to see how it affects classification results under the introduced noise.
The analysis is performed to determine how much classification accuracy is affected,
when using GFCCs instead of MFCCs and how much the computational cost differs be-
tween these feature extraction methods. In addition, experiments are done to determine
how does reducing the number of filterbank filters affect the classification results and
computational complexity.

Method

A DS-CNN model is trained using GFCCs and a model with same hyperparameters is
trained using MFCCs. With both feature extraction methods, the training was performed
five times with 10 filterbank filters and five times with 40 filterbank filters. The accuracies
for these trained models were then found on the test set.

The feature extraction methods were run on the embedded system, while measuring the
number of Central Processing Unit (CPU) cycles it takes to extract features, in order to
compare the difference in computations. The CPU cycles measured in embedded system
through cycle counter are printed out through serial interface. To understand how much
each additional filter adds computational cost, measurements were done with filters from
10 to 50, with a step of 10. The steps for finding the accuracies and CPU cycles are
described below.

1. Train DS-CNN five times using GFCCs with 10 filterbank filters as features
2. Train DS-CNN five times using GFCCs with 40 filterbank filters as features
3. Train DS-CNN five times using MFCCs with 10 filterbank filters as features
4. Train DS-CNN five times using MFCCs with 40 filterbank filters as features
5. Find average accuracies with confidence intervals for the models on testing set
6. Run GFCCs extraction on embedded device with 10 to 50 filterbank filters (step of

10) and find the number of CPU cycles it takes
7. Run MFCCs extraction on embedded device with 10 and 50 filterbank filters (step

of 10) and find the number of CPU cycles it takes
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Results

The results, summarized in in table 7, show that using GFCCs, instead of MFCCs, as
features yield significantly better accuracy on a noisy dataset. With 10 filterbank filters, a
model using GFCCs, instead of MFCCs, shows around three percentage point improve-
ment, while with 40 filterbank filters the accuracy improvement is around six percentage
points.

Table 7. Comparison of classificiation accuracies when using GFCCs and MFCCs as features with the same
DS-CNN structure.

Used Features Filterbank
Filters

CPU Cycles Accuracies

GFCCs 10 45.44M 78.60% ± 0.76%

GFCCs 40 101.81M 78.89% ± 1.08%

MFCCs 10 31.68M 75.29% ± 0.67%

MFCCs 40 36.55M 72.64% ± 1.14%

GFCCs with 10 and 40 filters in filterbank, have small difference in classification accu-
racy, where 40 filters show slightly better, but not statistically significantly better results.
MFCCs with 10 and 40 filters in filterbank, on the other hand, show statistically signifi-
cant difference in accuracies. MFCCs with 40 filters have almost three percentage point
lower classification accuracy than with 10 filters.

The measured number of CPU cycles it takes to extract features show that MFCCs are
more efficient, compared with GFCCs. The number of CPU cycles was also measured
with different number of filterbank features, summarized in table 8, to understand how
increasing the number of filters increases computational complexity. Within the range
of 10 to 50 filters, both feature extraction methods showed linear relationship between
number of CPU cycles and number of filters. For GFCCs, adding one filter resulted
approximately in additional 1.88 million cycles, while in case of MFCCs, it was only
about 0.09 million additional CPU cycles.

The analysis shows that GFCCs outperform MFCCs on a noisy dataset, with regards of
classification accuracy. On the other hand, GFCCs require more computational power,
especially with higher number of filterbank features.
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Table 8. The effect of the number of filterbank filters to the computational complexity of extracting MFCC
and GFCC features.

Filterbank
Filters

CPU Cycles
(MFCCs)

CPU Cycles
(GFCCs)

10 31.68M 45.44M

20 32.85M 64.23M

30 34.73M 83.02M

40 36.55M 101.81M

50 39.97M 120.60M

Discussion and Conclusions

The reason why GFCCs require more computations is due to the continuous functions
used in GFCCs filters, where each filter has non-zero values along all frequency bins.
The efficiency of calculating GFCCs on embedded systems could be improved by turning
small values of the filters to zero and not performing multiplications with these values.
This would require finding out suitable threshold values for turning values into zeroes and
validating the accuracy loss caused by this.

The trade-off between increased computational requirements and accuracy should be
taken into account when developing choosing feature extraction methods for ANNs. As
embedded systems are often in noisy environments, using GFCCs instead of MFCCs is
engouraged, when there is enough computational power available. While not researched
in this thesis, using GFCCs could also improve the accuracy when other sources of noise
are present, such as wind or rain.

MFCCs should be used, when there is not enough computational power available or when
there is not a lot of noise present. Otherwise, using GFCCs should be preferred. On
this specific dataset, GFCCs with 10 filters are preferred, as these show better results
on the specific dataset and are fast enough on the embedded device to achieve real-time
classifications.
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4.4 Effects of Adding Background Noise to Training Samples

Adding background noise to the original audio clips during the training phase, as de-
scribed in Section 3.3, should improve the accuracy on the test set recorded through the
embedded device. To validate this, a hypothesis is proposed that models trained with
added background noise show better performance on the test set. Performing this analysis
with both MFCCs and GFCCs allows us to see how much the added background noise
would help to increase accuracy. As GFCCs are more robust to noise, the expected result
is that the difference in accuracy is smaller in case of GFCCs, than with MFCCs

Method

A DS-CNN is trained five times with the added background noise and five times without
the added background noise. This is done with both MFCC and GFCC features. The
average accuracies, together with confidence intervals, are found for these models on
the test set. If there is no overlap between these intervals, it can be said that adding
background noise to the training samples showed significant difference in test accuracy.
The significant difference therefore means that the change in accuracy is due to the added
background noise, not other aspects, such as random initialization of weights.

Results

The results show that adding background noise to the training samples tends to improve
the classification accuracy. The results of the experiments are described in Table 9. ANN
which uses GFCCs, shows around 0.6 percentage point improvement, when background
noise is added to training samples. The effect, however, is not significant and it is not
possible to say whether the difference in accuracy is due to added background noise or
other aspects.

MFCCs show greater improvement in accuracy with added background noise. The dif-
ference is almost five percentage points and is significant. It can therefore be said, that
adding background noise to training samples, when using MFCCs as features, improved
the classification accuracy of the trained DS-CNN on the created bird sound dataset.
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Table 9. The effect of adding background sounds from the embedded device to training samples.

Features Accuracy with
added

background
noise

Accuracy
without added
background

noise

MFCC 75.29% +/- 0.68% 70.65% +/- 1.25%

GFCC 78.60% +/- 0.76% 78.01% +/- 0.57%

Discussion and Conclusions

The effect of adding background noise to training samples when using GFCCs was small
and it was not possible to determine whether the increase in classification accuracy was
due to added noise. The small impact of adding background noise to GFCCs demonstrated
the noise robustness of this feature extraction method.

Results showed that using background noise during the training phase is especially im-
portant for features which are sensitive to noise, such as MFCCs. Adding background
sound from the embedded system to the training samples is therefore encouraged for au-
dio classification tasks, when MFCCs are being used. This solution can be used when the
device does not have enough computing power for performing GFCC extraction.

4.5 Verification of Classification Process on Embedded Device

The framework proposed in this work includes automatic C++ code generation, as de-
scribed in Section 3.5. The solution quantizes weights, biases and activation of a trained
Tensorflow model and creates code files which could then be deployed to the Cortex-M
microcontroller. To make sure that the proposed solution works as expected it is necessary
to verify that the created CMSIS-NN model on embedded system works the same way
as the model in Tensorflow. Verification should also include preprocessing and feature
extraction process. This verification could be formulated as a hypothesis – Tensorflow
model and CMSIS-NN model with same parameters will give same classification results
for same input data.
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Method

Understanding whether the created model in CMSIS-NN works the same way as the
model in Tensorflow needs experimentation on whether same inputs produce same out-
puts. Testing this is separated into two parts. As the first step, quantized Tensorflow model
classification results are saved together with the corresponding preprocessed inputs. Feed-
ing preprocessed inputs to the CMSIS-NN model assures that the possible differences in
preprocessing are not affecting the results. The classifications of CMSIS-NN can then be
compared to the classifications of the Tensorflow model trained on regular computer. We
can say that match can be found, when the two models produce same outputs for the same
input. As the second step, after we have verified that CMSIS-NN model gives same pre-
dictions as Tensorflow model, the preprocessing is added to the verification process and
validation is repeated. For this, a set of sound samples is randomly selected from the over-
all test set. Each sample is loaded as static data on a microcontroller and the embedded
system then performs preprocessing and classification. The results of the classifications
on quantized Tensorflow model are then compared to the ones on embedded device.

The comparison is done with 100 randomly chosen wave files from the testing set, which
includes files recorded through embedded system. GFCC feature extraction with 10 filter-
bank filters was used. If all hundred samples are classified the same way by the quantized
Tensorflow model and CMSIS-NN model, it can be said that the preprocessing and classi-
fication parts are similar enough and the possible differences (e.g. due to round-off errors)
are not significant. The whole verification process is described below.

1. Create features from the 100 randomly chosen recordings
2. Get predictions for these 100 feature sets from Tensorflow model
3. Get predictions for these 100 feature sets from CMSIS-NN model through serial

interface
4. Find the number of matches between the Tensorflow and CMSIS-NN model outputs

on these 100 feature sets
5. Save the content of the 100 randomly chosen recordings to the embedded device
6. Get predictions for these 100 recordings through serial interface
7. Find the number of matches between the Tensorflow and CMSIS-NN model outputs

on these 100 recordings
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Results

The classifications of Tensorflow and CMSIS-NN models were compared on the saved
features. The results showed that the classifications matched in 92.00%±5.32% of cases.
Reason for these mismatches was found from Hello Edge source code and fixed. Same
procedure was then repeated with the fixed solution.

The unexpected behaviour was researched by comparing the layer outputs of Tensorflow
and CMSIS-NN models for each of the layers. The comparison showed that difference
came from average pooling layer. Further research into the Hello Edge code revealed cou-
ple of programming bugs. The function for average pooling in Hello Edge used int type
for finding elements of an output array. Output array, however, was of type q7_t, allowing
values between -128 and 127. This meant that values smaller than -128 or larger than 127
were converted incorrectly to q7_t format. For example, int with a value of 143 would
end up being -113 when converted to q7_t format directly. The expected behaviour would
be to clip the values which are too small or large. In the previous example, 143 should be
converted to 127. As original average pooling function used integers, but finding output
elements involved also division, it introduced small rounding errors, where all the values
were rounded down. Second bug related to average pooling, was that the output left shift
parameter was hardcoded, while its value actually depended on the results of quantization.
Both of the issues were reported1 to the Hello Edge project.

The usage of integers for finding output elements of the average pooling was replaced
with floating point numbers, so division would yield correct results. The floating point
value was then rounded and converted to q7_t format, while also clipping values smaller
than -128 or values larger than 127. The hardcoded left shift variable in the average
pooling function call was replaced with a variable which value was found during the
model conversion process. After the fixes were introduced, all the classifications from
both models matched exactly for the 100 tested samples.

When the correctness of developed CMSIS-NN model was verified, the correctness of
preprocessing and feature extraction was tested. The content from 100 wave recordings
was then used to extract GFCCs and perform classification on the embedded system.
These experiments showed that all 100 samples gave same classification results on Ten-
sorflow model and on embedded system. It can therefore be said, that the automatic code

1https://github.com/ARM-software/ML-KWS-for-MCU/issues/103
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generation and GFCCs feature extraction implementation was verified to have same re-
sults on the embedded system as in Python.

Discussion and Conclusions

The correctness of developed GFCCs feature extraction solution and automatic CMSIS-
NN model generation was verified. It involved looking for programming errors from
Hello Edge work and fixing these errors. The verified framework for training DS-CNN
and deploying these to Cortex-M microcontrollers allows researcher to concentrate on
improving the classification accuracy, without worrying whether the model was correctly
converted from Tensorflow to CMSIS-NN framework.

Section 4 analyzed different aspects of a framework, introduced in section 3, for training
and converting Tensorflow ANN models to CMSIS-NN models. The analysis was per-
formed on the example of classifying Great Tit sounds from other environmental sounds.
The results showed the benefits of using DS-CNNs instead of CNNs, as the memory us-
age was reduced over five times and number of required CPU cycles was reduced almost
six times, without significant loss of classification accuracy. Quantization showed fur-
ther reduction of memory, without significant accuracy loss. Adding background noise
to training samples improved accuracy for models using MFCC features, while GFCCs
were able to outperform these results. The drawback of GFCCs was increased processing
time and memory usage.
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5 Summary

The thesis researched challenges of implementing ANNs on microcontrollers for audio
classification tasks. The Hello Edge project, created by ARM, was taken as a basis for
this work, which offered a framework for feature extraction, ANN model training and
deployment of this model to Cortex-M microcontrollers. The work performed in this
thesis analyzed and introduced ways to improve and automate parts of the Hello Edge
process, while also suggesting methods to increase classification accuracy under noisy
conditions.

The research was done by the use-case of classifying Great Tit sounds from other en-
vironmental sounds, including sounds from other birds. A dataset was created for this
purpose, which consisted of bird sounds from different species, but also environmental
sounds. The creation of dataset also included recording sounds through the embedded
device to analyze how noise specific to that device can affect the classification accuracy.

The work used different techniques to reduce the size and complexity of the trained ANN
and methods for improving the classification accuracy under the noise created by the em-
bedded system. One technique for reducing the size of the ANN was using DS-CNN ar-
chitecture instead of CNN architecture. Memory usage of the ANN was further improved
by quantization, which reduced the resolution of weights and biases. Classification ac-
curacy was improved by using GFCC feature extraction method instead of MFCCs and
adding background noise recorded through embedded system to training samples.

The usage of DS-CNNs instead of CNNs was analyzed to give better understanding how
much more computationally efficient DS-CNNs are when compared with CNNs. This
involved comparing classification accuracies on the created dataset. The results showed
little difference in classification accuracy, while DS-CNN was over five times more effi-
cient with regards of computations and memory usage.

The effects of ANN quantization, which reduces memory usage by scaling down the
resolution of weights and biases, was analyzed. The results showed, that quantization
step decreased classification accuracy by a small amount, but also reduced memory usage
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up to four times.

GFCC and MFCC feature extraction methods were compared to see which performs bet-
ter on microcontrollers. The analysis concentrated on how well these features work un-
der noisy conditions and how much these features differ with regards to computational
requirements. The analysis showed that GFCCs are much more robust to noise than
MFCCs, but using GFCCs requires also more memory and computational power. Ex-
periments showed that using noise specific to the embedded device as a background for
training samples, can improve the accuracy, when using MFCCs. One of the results of
this work is the implementation of GFCC feature extraction for microcontrollers, as there
was no such library available before. The correctness of the implementation was checked
by comparing the feature extraction steps on microcontroller to the ones found on regular
computer, which used existing feature extraction library.

Another contribution of the thesis was improving the way how Tensorflow models, trained
on regular computers, can be automatically converted to CMSIS-NN models, which can
be then run on microcontrollers. Specifically, this included automating the process of find-
ing activation quantization parameters for DS-CNN models. The output of this process
is readily deployable C++ code for Cortex-M microcontrollers, that define the DS-CNN
model on the microcontroller. The work was validated by comparing if model outputs
on the same data using quantized Tensorflow model matched the classifications of the
CMSIS-NN model on embedded device. During the process, programming bugs were
found in Hello Edge code, which were fixed and reported to ARM developers.

The results of this work can be applied to sound classification problems, which are run
on Cortex-M microcontrollers. The introduction of recording background noise with the
embedded device and adding this as background to the training samples allows to improve
the classification accuracy when using MFCCs as features. The implementation of GFCC
feature extraction gives researchers and data scientists a way to use their ANN models on
embedded devices with better robustness to noise.

The general way of automating the whole model conversion process has several benefits.
The proposed process reduces the amount of work needed for deploying the solutions and
shortens the feedback loop for acquiring new knowledge. It also reduces possible human
errors and the amount of necessary knowledge about embedded systems. The automated
model conversion allows researchers to concentrate on improving the ANN models and

70



feature extraction techniques, while worrying less about the deployment process. With
slight modifications in the preprocessing part, the solution can be generalized to image
classification tasks.

5.1 Future Work

The work concentrated only on DS-CNNs models using post-training quantization. Fur-
ther work could be done on implementing other ANN architectures. This might also
include introducing new architectures and layer types to CMSIS-NN library. There are
also numerous ways for quantizing ANNs, which could be researched in future works.

The implementation for extracting MFCCs and GFCCs used floating point numbers. Fu-
ture research could improve these methods by using fixed point numbers instead, making
the algorithms more suitable for devices without a FPU. Future research could also im-
prove the computational efficiency of GFCCs, in order to make these more suitable to
microcontrollers.

The noise introduced by the embedded system showed to decrease classification accuracy.
Further research on this could be performed, to find suitable noise reduction and filtering
techniques for improving accuracy of the solution. The research should also include anal-
ysis of computational requirements for different methods.
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Appendix 1 – Software Project for Improved Framework

The code for the improvements introduced in section 3 can be found on https://
github.com/tpeet/ML-KWS-for-MCU.

The code was built on top of the Hello Edge project, as it improves open source collabo-
ration and gives developers, who already use Hello Edge work, a familiar code structure.
The code includes Python scripts for developing an DS-CNN Tensorflow model for audio
classification task and generating C++ code from the trained model. The project also in-
cludes C++ code for Cortex-M microcontrollers, which can use automatically generated
CMSIS-NN model.
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