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Abstract 

The present thesis is inspired by an international student project IGLUNA - a space 

habitat. The goal of the IGLUNA project is to design a smart building prototype for 

long-term space missions to Moon and Mars where vital living conditions must be 

maintained under extremal outdoor environment.  

In this thesis, the rule-based control approach of heating and lighting the habitat is 

studied and a software prototype called Smart Adaptable Habitat (SAH from now on) is 

developed. SAH is a software that determines the intensity of light and the amount of 

power necessary at each moment to achieve or maintain the desired temperature 

conditions in the habitat. The required power for illumination is disregarded in the 

current software due to its negligible impact in comparison to the power needed for 

heating. The main purpose of the software lies in comfort and the efficient use of 

energy. The software takes into account the energy available in the habitat, the 

inhabitants’ past preferences and their activities when predicting the desired temperature 

of every room, allowing for a more flexible and optimized timing and power settings 

than would be possible with manual control. Furthermore, it is required that the 

software can operate even in cases where some of the input data gets corrupt or is 

missing. 

For software design and implementation, the principles of constraint logic programming 

and SWI-Prolog programming environment have been used. The result is tested with the 

3D simulation created by Britta Pung. 

This thesis is written in English and is 50 pages long, including 6 chapters, 22 figures 

and 4 tables. 
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Annotatsioon 

Kuu habitaadi energiakasutuse reeglipõhine juhtimine mittetäieliku 

informatsiooni tingimustes 

Antud lõputöö on inspireeritud rahvusvahelisest tudengiprojektist IGLUNA - kuu 

habitaat. IGLUNA projekti eesmärgiks on disainida nutimaja prototüüp pikaajalisteks 

missioonideks Kuule ja Marsile, kus elamistingimusi tuleb säilitada ekstreemses 

väliskeskkonnas. 

Selles töös on uuritud reeglipõhist lähenemist habitaadi kütmisele ja valgustamisele 

ning see on realiseeritud prototüüpse tarkvarana. Antud tarkvara määrab valguse 

tugevuse ja vajamineva võimsuse, et saavutada ja hoida soovitud temperatuuri 

habitaadis. Valgustuse jaoks vajaminev võimsus on välja jäetud, sest selle kogus on 

võrreldes küttele kuluvaga minimaalne. Tarkvara põhieesmärk on mugavus ning 

efektiivne energiakasutus. Tarkvara võtab arvesse saadaval olevat energiat, elanike 

varasemaid eelistusi ja nende tegevusi, et ennustada elanike eelistatud temperatuuri igas 

toas. Ette ennustamine peaks lubama tarkvaral valida kõige optimaalsema ajastuse ning 

võimsuse soovitud temperatuuride saavutamiseks. Lisaks peab antud tarkvara toimima 

ka juhul, kui osadel väliskomponentidel tekib lühiajaline rike ning nende pakutavad 

sisendid on vigased või puuduvad. 

Tarkvara disainimisel ning implementeerimisel on kasutatud loogilise 

programmeerimise põhimõtteid ja SWI-Prolog programmeerimiskeskkonda. Tulemust 

testitakse, kasutades Britta Pungi loodud 3D simulatsiooni.  

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 6 peatükki, 22 

joonist, 4 tabelit. 
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List of abbreviations and terms 

DPI Dots per inch 

TUT Tallinn University of Technology 

SAH Smart Adaptable Habitat 

SN Semantic Network 

LP Logic programming 

CLP Constraint logic programming 

mgu Most general unifier 

  

  

  

 



7 

Table of contents 

1 Introduction ................................................................................................................. 11 

1.1 Project background ............................................................................................... 11 

1.2 Main requirements and design assumptions ......................................................... 12 

1.2.1 Energy consumption constraints .................................................................... 12 

1.2.2 Habitat resident comfort constraints .............................................................. 13 

1.2.3 Control adaptability to personal preferences ................................................. 13 

1.2.4 Flexibility and extendibility of the control software ..................................... 13 

1.3 Problem statement ................................................................................................ 13 

1.4 Thesis overview and main results ......................................................................... 14 

2 Preliminaries ................................................................................................................ 15 

2.1 The principles of choosing system prototyping platform: imperative versus 

declarative programming ............................................................................................ 15 

2.2 Logic programming .............................................................................................. 18 

2.3 Constraint logic programming .............................................................................. 21 

2.4 CLP for reasoning with partial information ......................................................... 24 

2.4.1 Unification using polymorphic inheritance ................................................... 24 

2.4.2 Unification using semantic distance (similarity of concepts) ........................ 27 

2.4.3 Reasoning with partial unification ................................................................. 29 

2.5 Decision validation using visual simulation ......................................................... 32 

3 Control system design considerations ......................................................................... 33 

3.1 Habitat climate control ......................................................................................... 33 

3.2 Control system architecture .................................................................................. 33 

3.3 Deciding the temperature control setpoints .......................................................... 35 

3.4 Smart temperature control under energy constraints ............................................ 36 

3.5 Deciding the setpoints of light control ................................................................. 37 

4 Implementation of the rule-based control system........................................................ 38 

4.1 Main function ....................................................................................................... 38 

4.2 Knowledge base .................................................................................................... 40 

4.3 Outliers ................................................................................................................. 41 



8 

4.4 Predicting temperature .......................................................................................... 41 

4.5 Choosing the temperature based on the available energy ..................................... 47 

4.6 User changing the temperature ............................................................................. 49 

4.7 Choosing the light intensity .................................................................................. 50 

4.8 User changing the light ......................................................................................... 51 

5 Validation of the implementation by visual simulation............................................... 52 

5.1 Brief overview of the simulation solution ....................................................... 52 

5.2 Communication between the simulation and controller .................................. 52 

5.3 Demo scenario ................................................................................................. 54 

6 Conclusion ................................................................................................................... 61 

6.1 Future developments............................................................................................. 61 

References ...................................................................................................................... 62 

Appendix 1 – Index of rules ........................................................................................... 63 

Appendix 2 - Repository link ......................................................................................... 65 

 

 

 



9 

List of figures 

Figure 1. a) First order semantic net b) Relations semantic net ..................................... 25 

Figure 2. Rule for interpreting a binary relation ............................................................. 26 

Figure 3. Predicate instance_of/2 is implemented using tail recursive rule ................... 26 

Figure 4. Example knowledge base ................................................................................ 26 

Figure 5. Search rule akin/4 that uses backtracking ....................................................... 28 

Figure 6. Knowledge base describing the condition of a car.......................................... 29 

Figure 7. Diagnostic rules ............................................................................................... 29 

Figure 8. Query to diagnose the condition of battery ..................................................... 29 

Figure 9. Example of harness literals ............................................................................. 30 

Figure 10. Battery/2 query .............................................................................................. 31 

Figure 11. Meta-rule of the form .................................................................................... 31 

Figure 12. Firm knowledge has the likelihood 1 ............................................................ 31 

Figure 13. The generic form of a CLP cause with n literals to be unified weakly ......... 32 

Figure 14. Conceptual architecture of the habitat control system .................................. 34 

Figure 15. The temperatures are kept within the expected range ................................... 55 

Figure 16. The light intensity depends on the room and the person in that room .......... 56 

Figure 17. Differences in bedroom temperatures ........................................................... 57 

Figure 18. Anna is training in the gym and the temperature is around 20 degrees, 

matching the prediction. ................................................................................................. 57 

Figure 19. Before manually setting the temperature for the room Relax (aka the living 

room) .............................................................................................................................. 58 

Figure 20. After manually setting the temperature at 30 degrees for the room Relax ... 58 

Figure 21. Changing the available energy to 0 makes all the power inputs go to 0 as well

 ........................................................................................................................................ 59 

Figure 22. Insufficient available energy ......................................................................... 60 

 

 



10 

List of tables 

Table 1. Simulation input files ....................................................................................... 52 

Table 2. Simulation output files ..................................................................................... 53 

Table 3. Light preferences for testing ............................................................................. 55 

Table 4. Preferences saved for testing the temperature .................................................. 56 

 

 



11 

1 Introduction 

1.1 Project background 

The present thesis is inspired by an international student project IGLUNA - a space 

habitat [1]. The goal of the IGLUNA project is to design a smart building prototype for 

long-term space missions to Moon and Mars where vital living conditions have to be 

maintained in extremal outdoor environment. The prerogative of requirements to such 

buildings is the inhabitants’ safety and comfort for the successful accomplishment of 

long-term missions.  The functionality, reliability and resilience of the habitat’s life-

critical services depends primarily on its energy availability and efficient energy use. 

Moreover, long-term autonomous living sets also extreme standards to the requirements 

on lighting modes, air conditioning, temperature and all other inner climate parameters 

of the habitat that may have an influence on people’s psychological and physical 

comfort. 

In this thesis, specifically, the rule-based control approach of heating and lighting the 

habitat is studied and a software prototype called Smart Adaptable Habitat (SAH from 

now on) is developed. SAH is a software that determines the intensity of light and the 

amount of power necessary at each moment to achieve or maintain the desired 

temperature conditions in the habitat. The required power for illumination is disregarded 

in the current software due to its negligible impact in comparison to the power needed 

for heating. The main purpose of the software lies in comfort and the efficient use of 

energy. 

By predicting the desired temperature of every room, the software should be able to 

choose the most efficient timing and power settings to achieve the trade-off between the 

efficient use of energy and comfort. Thus, the first goal of SAH is to make the power 

usage more economic than when manually operated. This could be critical in extreme 

conditions when the power supply is limited. 
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The temperature prediction also adds the factor of comfort, since the inhabitants do not 

have to plan the heating of each room on their own. Instead, the room will be heated to 

the temperature they wish for by the time they need it.  

It means that all IGLU inhabitants’ comfort targeted solutions must be considered 

within the context of safety and reliability concerns in the presence of severe conditions. 

For control rules to be applied in SAH it presumes that the control system does not fail 

when some of the control input data delay or get corrupted due to some system 

component or their communication failure. The most unreliable components are 

typically sensors that operate under hostile environmental conditions (cosmic radiation, 

temperature extremes). 

In this thesis, the detailed taxonomy of habitat potential failures is not presented since it 

remains out of the thesis scope. Instead, it is assumed that some of the input data used 

for control decisions can be corrupted or temporarily missing. Thus, the focus of this 

thesis is on the design of the rule system that is applicable for control decision making 

without a drastic drop in the quality of decisions in situations where some of the 

decision data are missing or not available. To achieve this goal, it is assumed that the 

rule-based control to be developed in the thesis can ensure graceful degradation of the 

control system services till the recovery of the failing module or normal mode 

restoration by external means. 

1.2 Main requirements and design assumptions  

In the following section, the main requirements for the control system will be described 

that have to be taken into account when designing and programming the rule system.  

1.2.1 Energy consumption constraints 

The lowest required amount of energy per day is 16 kWh to keep the rooms at the 

lowest allowed temperature, which by default is 14 degrees. The default setting of 

distribution between the rooms is based on their size. The setting is modifiable manually 

but could be automated in future developments. 
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1.2.2 Habitat resident comfort constraints  

For every activity there are comfort ranges, which can be divided into zones - “ideal”, 

“good”, “difficult”, and “unsuitable” (i.e. the activity is not possible or recommended in 

such conditions).  

1.2.3 Control adaptability to personal preferences 

The control system tries to provide optimal conditions for activities by taking into 

account the inhabitants’ preferences. Higher priority activities are given a greater weight 

during optimization while taking into account that the person should be able to carry out 

the function in a suitable environment. Although the priorities are modifiable, the 

default setting gives the highest priority to the activities based on how difficult it would 

be for the person to conduct their activity in a different room. 

1.2.4 Flexibility and extendibility of the control software 

The decision-making rules need to change along with changing circumstances - 

setpoints, criteria weights, the rules may adopt additional conditions (Horn clauses 

make take on additional literals or alternatives when details are added to the rules). 

1.3 Problem statement 

The goal of the thesis is to develop rule-based control software for controlling the 

internal climate (temperature and lighting) of the space habitat IGLUNA. For software 

design and implementation, the principles of constraint logic programming and SWI-

Prolog programming environment are recommended for use. The decision rules 

implemented in control software must take into account personal preferences of the 

residents of the habitat and obey the situation-dependent energy consumption 

constraints. The software must be reliable and resilient to failures of components that 

are supplying the control rules with the necessary input data. Furthermore, the software 

should maintain the capability of providing feasible decisions in the presence of 

corrupted or missing input data.  
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1.4 Thesis overview and main results 

This thesis offers an overview of the programming tools used and their advantages over 

the alternatives, a description of the algorithms for determining the temperature and 

light, and the key rules used to implement said algorithms. The result is a validated 

controller system for managing a habitat’s temperature and lighting based on the 

inhabitants’ preferences and the available energy. 

 

 

 

  



15 

2 Preliminaries 

2.1 The principles of choosing system prototyping platform: 

imperative versus declarative programming 

When choosing the implementation platform for IGLUNA control software two main 

options are considered:  

a) using some standard programming language such as Java, C++, Python,  

b) applying constraint logic programming (CLP) that support declarative 

programming style.  

The basis of imperative programming is describing the steps needed to be taken in order 

to change the state of the computer [2]. Declarative programming, however, defines 

what the desired state is, instead of how it should be achieved [3]. While imperative 

programming focuses on how things should be done, declarative focuses on what needs 

to be done without the how. 

The criteria being followed when deciding on the relevant programming framework are 

following [4]:  

• Possibility to represent functionality on high level of abstraction; 

• Complexity of coding;  

• Automatic problem-solving support; 

• Easy software maintenance. 

In the rest of the Section the programming alternatives are compared with respect to the 

given criteria. 

Possibility to represent functionality on a high level of abstraction. CLP supports 

declarative modelling by constraints, i.e. the description of properties and relationships 

between partially known objects. It also allows correct handling of precise and 

imprecise, finite and infinite, partial and full information. 

Complexity of coding. One of the main advantages of declarative programming is the 

smaller amount of code compared to imperative, which comes from not having to define 
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the step-by-step procedures. This also makes it easier to manage the code. The 

programming process consists of two phases: specifying the problem as a set of 

constraints and solving it where solving is automatic. 

Another important feature of CLP is the flexibility of programming, since constraints 

can easily be added, removed or modified. 

In imperative programming the length of code grows rapidly with the complexity of a 

problem, making it difficult to navigate in the program [5].  

Focusing on the definitions of the desired states while keeping the instructions on how 

to achieve them abstract also makes adding new features as well as optimization simpler 

[5].  

Automatic problem-solving support. CLP solvers solve combinatorial problems 

efficiently. It is easy to combine the constraint solving with search and optimization 

strategies. Another advantage is the presence of built-ins: constraint solvers offer 

numerous built-in strategies and algorithms for solving constraint models, e.g. 

propagation of the effects of new information (as constraints).   

Easy software maintenance 

- Modularity. Keeps predicates and operations local and allows independent 

development of software in different modules.  

- Standard interface with other programming languages such as Java, C++, 

Python, allows embedding modules written in these languages in Prolog code 

and embedding Prolog modules in programs written in these languages. 

- Graphical tool support for program tracing and debugging enables stepwise 

execution of Prolog programs and visualization of data and program call stack. 

- Injection of hooks and spy points in the code for easy reaching deeply nested 

program states. 

- Visual threads monitor enables the monitoring of threads and their memory 

consumption running in parallel 

- Pretty printing of clauses, predicate dependencies and terms 
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All these features help in debugging, maintenance, and updating the code that is 

important for fast prototyping of system functionalities and compilation of the whole 

software release. 

Conclusion. Under the given selection criteria CLP programming paradigm has several 

advantages over imperative languages. In particular, CLP provides a generic framework 

for 

• modeling with partial information and with infinite information, 

• reasoning with new information, 

• solving combinatorial problems. 

Hence, CLP will be used as the implementation platform for IGLUNA rule-based 

control system.  
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2.2 Logic programming 

Logic programming (LP) is a programming paradigm that is based on formal logic. The 

principles of LP are implemented in languages such as Prolog, Answer Set 

Programming (ASP) and Datalog. The most popular of them, Prolog, has been 

developed in various versions both for academic and commercial use. LP is used for 

modelling, creating executable specifications, solving combinatorial problems such as 

scheduling, planning, timetabling but also for analysis, simulation, verification, and 

diagnosis of software, hardware and industrial processes. 

The applications of LP in research include program analysis, robotics, agents, protein 

folding, genomic sequencing, linguistic parsing and many other domains where expert 

knowledge needs to be encoded and incorporated in decision support systems. One of 

the most prominent examples of Prolog uses is the natural language processing engine 

in IBM Watson artificial intelligence [6]. The reason why Prolog is considered so 

powerful in AI is because it enables for easy management of recursive methods, and 

pattern matching. The recursive rules allow efficient representation of reachability in 

parse trees and the operation of negation-as-failure to check the absence of conditions. 

A logic program consists of a set of logical expressions - facts and rules about some 

problem domain. All these logic expressions are written in the form of Horn clauses or 

Horn rules. Horn clause can be understood as logic implication in the form  

H :- B1, …, Bn.       (1) 

where H is called the head of the rule and comma separated literals B1, ..., Bn are called 

the body. Facts are unconditional rules that have no body, and they are written in the 

simplified form:  

H. 

An alternative but logically equivalent to formula (1) is Horn clause representation in 

disjunctive form where H is the only positive literal and B1, …,Bn are negative 

literals 

H   B1  ...   Bn. 
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A literal is an atomic formula or its negation. An atomic formula of form P(t1,..., tn) 

represents a logic predicate of arity n where P is the predicate symbol or predicate 

functor and its arguments t1, ..., tn  are terms which do not include any other nested 

predicate symbols. 

Intuitively, the Horn clause has to be understood as follows: the assertion H is true if all 

the assertions B1, …,Bn of the rule body are true. The assertions B1,…,Bn may be 

simple atomic formulae or literals referring to the heads of other rules. Logic programs 

also have a procedural interpretation as goal-reduction procedure: to solve H, solve B1, 

and ... and solve Bn. 

The recursive reduction procedure of the program is implemented by means of two 

inference rules resolution and factorization, and term transformation procedure called 

unification. The unification of terms is needed to apply the resolution and reduction 

rules on Horn clauses that differ only by terms occurring in clauses arguments. The 

unification substitutes variables with terms. Let { x1, … , xn } be a set of variables. The 

substitution of variables is denoted by {x1/t1, … , xn /tn}, where xi denotes the variable to 

be substituted and ti – the substituting term. It is required that ti differs from xi. 

Definition (unification of terms):  

Terms t1 and t2 are unifiable if and only if there exists a substitution  such that  (t1) = 

 ( t2). 

As a rule, the unification results in renaming or concretization of terms. In LP, there 

exists the minimal substitution principle according to which the unification has as few 

substitutions as possible. This is to not restrict the substitutions for future unifications. 

Therefore, for making the inference rules applicable only the necessary set of terms are 

unified. The minimal substitution principle leads to the notion of most general unifier 

(mgu). 

Definition (most general unifier): 

The most general unifier of terms t1 and t2 is the substitution ρ that satisfies following 

conditions: 
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• ρ is unifier of terms t1 and t2; 

• for any other unifier   of terms t1 and t2 there exists a unifier τ such that  = τ ○ 

ρ, where ○ denotes the composition of unifiers.  

From definition it follows that for any term t following equation holds: 

 (t) = τ (ρ (t)). 

It has been shown independently by Martelli, Montanari (1976) [7] and Paterson, 

Wegman (1978) [8] that there exists linear-time algorithm for computing mgu for any 

pair of terms. 

The practical implication of this result is that before applying LP inference rules, the 

literals that have same functor and arity in different clauses are tried to be unified. Thus, 

the resolution and factorization rules that presume such unification are formulated in (*) 

and (**) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Though the early versions of Prolog were designed to support only 1st order logic 

reasoning by using unification and inference rules (*) and (**), the later versions were 

extended to support also a resolution with higher order terms. For instance, SWI-Prolog 

version 8.0.3 has term constructor “=../2” and system predicates that allow 

constructing and invoking terms dynamically during program execution. Such system 

predicates are call/2 and apply/2 which enable higher order reasoning using the 

SWI-Prolog inference engine. The rules that employ higher order logic constructs are 

elaborated in Section 2.4 as the theoretical contribution of the thesis. 
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2.3 Constraint logic programming 

Constraint logic programming (CLP) is a form of constraint programming, in 

which logic programming is extended with the concepts from constraint satisfaction 

theory. CLP program is a logic program that contains constraints in the body of clauses. 

Let formula (2.1) 

G(�̅�):-  F(𝑌)     (2.1) 

denote a clause where F(�̅�) is a conjunction of constraints and literals the parameters of 

which are variables of vector �̅�.  The constraints may have very different form starting 

from simple arithmetic constraints, e.g. X>Y and ending with complex recurrent 

equations. The clause in (2.1) states that the statement G holds under the constraints in 

F and while all literal s in F are true. 

Like in regular logic programming, the query specifies a proof goal that triggers 

inference to prove the validity of that goal. In CLP the query may contain constraints in 

addition to literals. A proof for a goal is composed of clauses whose bodies are 

satisfiable constraints and literals that can be proved using other clauses.  

The execution of the goal is performed by an interpreter, which starts from the goal 

and recursively scans the clauses trying to prove the goal. The constraints encountered 

during this scan are placed in a set called the constraint store. If this set is found out to 

be unsatisfiable, the CLP interpreter backtracks, trying to use other clauses for proving 

the goal. In practice, satisfiability of the constraint store may be checked using an 

incomplete algorithm, which does not always detect inconsistency. [9][10] 

In addition to the regular unification of variables that is like in LP, CLP also supports 

variable quantification, conditional answers and the easy symbolic manipulation of 

formulas.   

In addition to resolution and factorization, automatic constraint reasoning includes two 

methods: constraint propagation and simplification. Thus, CLP extends LP in two 

aspects:  

1) derivations in LP can be expressed as CLP derivations;  

2) CLP answer is a set of constraints while LP answer is substitution. [9][10]  

Constraint programming consists of three basic techniques: 



22 

• Declare the domains of the variables; 

• Declare the constraints on the declared variables; 

• Search for the solutions. 

Constraint Programming Process:  

• Constraint Modeling: Representations of a problem as a constraint satisfaction 

problem with constraints is called constraint modeling. 

• Constraint Solving: Solving the constraint models formulated by modeling can 

be carried out using any of the three methods: 

o Domain specific method (Simplexe, Gröbner bases etc); 

o General Method (Constraint propagation); 

o Combination of both methods (Solver cooperation). 

Constraints in Constraint Programming are relationships between variables or 

unknowns, each taking a value in a domain. They restrict possible values that a variable 

can take. Constraints need to be identified. 

Properties of constraints: 

• Constraints may specify partial information, i.e. they do not necessarily specify 

the values of variables. 

• Constraints may be heterogeneous, i.e. they specify relations between variables 

with different domains. 

• Constraints are declarative, they specify what variable relationships may hold. 

• Constraints are additive, i.e. the conjunction of constraints is important. 

• Constraints are rarely independent, i.e. they share variables. 

Constraints in CLP are typically classified as follows: 

• Equality and inequality constraints 

• Boolean Constraints 

• Linear Constraints 

• Arithmetic Constraints 

o Integer intervals and finite integer domains 
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o Extended intervals of real 

o The set of reals 

Constraint solving methods can be divided into domain specific and general methods. 

1. Domain specific methods are: 

• special purpose algorithms devoted to specific domains and constraints; 

• method by means of specialized packages called constraint solvers. 

The examples of domain specific solving methods include: 

o Programs that solves systems of linear equations 

o Packages for linear programming 

o Implementations of unification algorithm 

In CLP practice, the domain specific methods are preferred over general methods, 

should they be available. 

2. General constraint solving methods are adopted to different types of constraints and 

domains (variables). They are targeted at reducing the search space with specific 

search methods. There are two different method groups: 

• Constraint Propagation Algorithms. These are the algorithm that repeatedly 

remove inconsistent values from the domains and reduce the search space. 

They also maintain equivalence while simplifying the problem and achieve 

various forms of local consistency of constraints. 

• Search methods explore the search space. They consist of a combination of 

constraint propagation, backtrack, branch and bound search. [9][10] 
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2.4 CLP for reasoning with partial information 

In this Subsection the extension to regular LP and CLP rules are defined that employ 

higher order logic operators and enable reasoning with partial information and use 

weaker forms of term unification. 

2.4.1 Unification using polymorphic inheritance 

For the representation and processing of application knowledge we use the notations of 

semantic network (SN) theory. The facts that describe the status of the world, e.g. the 

habitat and inhabitants’ condition are usually specific instances of more general 

concepts. Layering the concepts and relations between them by their level of abstraction 

helps in minimizing the form of knowledge representation that is needed for logic 

inference and control decision making.  

The knowledge organized as semantic network is composed of concepts and relations 

between these concepts. Both concepts and relations can be of a different level of 

abstraction. Schematically, the ground level facts and the concepts they are derived 

from (by applying inheritance) are depicted in Figure 1. As such, each concept may 

have its own set of attributes, plus those inherited from its ancestor concepts. The 

inheritance relation named “is_a” connects a concept with its immediate ancestor 

concept. Because of polymorphism the concepts in a semantic network may have 

several ancestors, and instead of a pure tree structure we get a grid structure.  
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Nodes (denoted with a dotted line) of the semantic network in Figure 1.b) encode the 

relations of Figure 1.a). The colors of lines and nodes identify the same relations. The 

bold line in Figure 1.b) denotes a second order relation, i.e. the relation between the first 

order relations shown in Figure 1.a) 

Based on this recurrent construct we can define knowledge structures with high order 

relations (possibly with many level of abstraction).  

For a practical use of a recurrent SN-s we also need inference rules to reason on 

recurrent structures. 

We can generalize the example to all binary relations as shown in Figure 2. Here, the 

rule name for interpreting a binary relation is metapredicate where its parameters are 

Predicate bound with the predicate name, Conc1 and Conc2 are the parameters 

bound with the names of the concepts in this relation. The literal instance_of/2 in 

the body of the rule has two parameters: the first one bound with the argument concept 

of the rule head and the second one Conc2 should be unified with the first argument 

Conc1 or its ancestor in this concept’s is_a hierarchy. This rule succeeds if both 

concept arguments unify with some concepts, which are the argument values themselves 

 

Figure 1. a) First order semantic net b) Relations semantic net 
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or their ancestors and if they are in the relation specified with the argument Predicate 

or its ancestor in the SN.  

 

 
For a better comprehension of the working of the explained rules we demonstrante it 

with a simple example. 

Example: 

 

 
Assume the facts in Figure 4, which specify the is_a relation and one binary relation 

communicate/2 between concepts uncle and aunt 

communicate(uncle, aunt). 

 

Then the query  

 

?- metapredicate(debate, peter, aunt).    (*) 

 

 

Figure 2. Rule for interpreting a binary relation 

 

Figure 3. Predicate instance_of/2 is implemented using tail recursive rule 

 

Figure 4. Example knowledge base 
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returns true because the concepts peter and aunt have the ancestor concepts uncle 

and aunt which are in relation communicate which in turn is the ancestor of the 

relation debate given as argument value in the query (*). 

2.4.2  Unification using semantic distance (similarity of concepts) 

An alternative way of defining the weak unification of terms is to use their semantic 

distance in the SN. The distance measure or similarity of concepts in SN can be 

evaluated on a scale 0 - 100. This provides the possibility to define the "similarity 

threshold" that is needed for pruning the search tree and deciding whether the concepts 

in the relation unify (weakly) with some other concept that is “similar enough” to 

replace them in case there is no exact match in the knowledge base. We call it the weak 

unification relation between the clauses that encode concepts.  

The similarity predicate tries to unify the sets X and Y of parameter names of clauses A 

and B to be unified and returns the percent of equivalent parameter names (of concepts 

in the SN) and the result of their unification. Having two terms A(X) and B(Y) as 

arguments, the similarity predicate has the general form similar(A(X), B(Y), P, mgu(A(X 

Y), B(X Y))) where mgu denotes the most general unifier and the similarity P is 

calculated by the formula  

P = 
|𝑚𝑔𝑢(𝐴(𝑋 𝑌),𝐵(𝑋 𝑌))|

|𝑋∪𝑌|
∗ 100 

 

Two semantic units in SN have a similarity value 100 if all their parameters have the 

same identifiers and they unify. The value is 0 if none of them have an identical name or 

the ones with the identical names do not unify. Here the system predicate 

same_term(@T1, @T2) is used for deciding on the identity of the concepts’ argument 

terms. 

To search in SN for similar concepts the instance_of/2 predicate (defined in Section 

2.4.1) should be relaxed. For that, instead of finding only ancestor nodes in SN all those 

nodes in SN are searched which are in the same transitive closure (of either relations  

is_a or its inverse is_a-1) with A(X), i.e. this search covers a set of B(Y):   

 {B(Y) .   A(Y)  is_a+  (is_a -1) +   B(Y)  is_a+  (is_a-1) + }, 
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where is_a+ and (is_a-1)+ denote a transitive closure of the relations is_a and 

is_a-1 respectively. 

Transitive closure has a connection in SN with the argument concept via is_a relation, 

i.e. including also other child nodes of common ancestor nodes. So, instead of 

instance_of/2 we use in the metapredicate/3 a new search rule akin/4 that 

uses backtracking for finding the best match B to concept A.  

 

Figure 5. Search rule akin/4 that uses backtracking 
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2.4.3 Reasoning with partial unification  

An alternative way (compared to the one discussed in in 2.4.2) of computing weak 

unification is to count how many literals in the bodies of unifiable clauses are unifiable. 

The need for such unification can be motivated as follows.  

The knowledge base that includes facts about runtime sampling values from sensors 

may easily be incomplete because of erroneous sensor readings, missing rules or 

delayed updates. This can easily block the logic inference for control decision making. 

We illustrate this case with a simple example. 

Example: Assume there are expert rules for diagnosing the cause of car malfunction. 

Suppose the facts in Figure 8 describing a car’s conditions are stored in the knowledge 

base. 

 

The diagnostic rules that allow estimating the need for repair have the form depicted in 

Figure 7. 

 

 

 

 

 

Figure 6. Knowledge base describing the condition of a car 

 

Figure 7. Diagnostic rules 

 

Figure 8. Query to diagnose the condition of battery 
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As it can be seen, the query returns false because the fact engine(does_not_start) 

is missing from the knowledge base and unification of the literal 

engine(does_not_start) in the body of the second clause fails, although it is likely 

that the battery may be empty even by one criteria. Hence, although there is expert 

knowledge stored in the knowledge base the inference returns almost no information 

about it.  

To avoid such situations, we add so called harness literals to the rule body that allows 

applying resolution even in case some of the literals in the rule body do not have a 

unifying clause in the knowledge base. These harness literals have parameters that 

characterize the likelihood of the derived conclusion. The example in Figure 9 

illustrates the use of harness literals. For brevity only the second clause of the battery 

rule is decorated with harness literals (highlighted in red). 

 

After harnessing the rules, the extended query  

?- battery(Condition, Likelihood)  

 

Figure 9. Example of harness literals 



31 

returns a more informative result saying that with likelihood 0.5 the car battery is 

empty, as shown in Figure 10. 

 

To generalize the construct we get the meta-rule of the form in Figure 10, where rule is 

the functor of the original clause head, rule1 to ruleN are functors of literals 1 to N in 

the original clause body, … denotes the parameters in the head and in the body of 

literals, P1…PN denotes the variables that are unified with the likelihood values of body 

literals. The rule returns in parameter P the weighted arithmetic mean of N literals’ 

likelihoods  

P = 
∑ 𝑃𝑖

𝑁
1

𝑁
 . 

In case the literal refers to some Prolog fact the likelihood value must be explicitly 

defined, e.g. a firm knowledge is specified with likelihood value 1. 

 

Note that the way of extending normal rules with harness literals is uniform and can be 

integrated with any Prolog parser. 

 

Figure 10. Battery/2 query 

 

Figure 11. Meta-rule of the form 

 

Figure 12. Firm knowledge has the likelihood 1 
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To conclude, a CLP clause with n literals to be unified weakly is used in combination 

with constraints on weakly unified terms, and has the generic form of Figure 13, where 

wu/2 denotes a weak unification operator (discussed in subsections 2.4.1 - 2.4.3), X_i 

denotes the parameters list of literal_i, and XX_i denotes the valuation of weakly 

unified parameters of X_i. The predicate constraint/1 can be any Prolog constraint 

that is a correct type with respect to XX_i. 

2.5 Decision validation using visual simulation 

For testing the software, we are using a simulation created by Britta Pung, which allows 

us to monitor the changes of temperature and light in real time. 

The goal of validation is to confirm that the software: 

1. Works according to the inhabitants’ preferences; 

2. Can manage with an amount of energy that is less than what is necessary for 

providing ideal conditions. 

The goals can be tested by specifying the inhabitants’ preferences and the amount of 

energy available, and by monitoring the changing of the temperature and light in the 

simulation and analysing the extent to which the results match the expectations.  

 

 

 

 

Figure 13. The generic form of a CLP cause with n literals to be unified weakly 
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3 Control system design considerations 

3.1 Habitat climate control 

The relationship between temperature, time and power (which correlates with energy 

usage) is derived from the formula (3.1)  

 
∆𝑇

𝑡
=

𝑃

𝑐 × 𝜌 ×𝑉
  ,      (3.1) 

 

where 

∆𝑇  is the change in temperature in the room in Celsius,  

t  is the time of heating in seconds,  

P  is the heater’s power in Watt,  

ρ  is air density in the room in kg / m3,  

V  is volume of the room in m3,  

c  is the specific heat capacity of air, which is 1006 J / (kg × C).     

 

The formula (3.1) is derived as follows. 

𝑄 = 𝑐 × ∆𝑇 × 𝑚 (3.2) [11] 

𝑃 ×  𝑡 = 𝑐 × 𝑚 × ∆𝑇 (3.3) [12] 

𝑃 × 𝑡 = 𝑐 × 𝑉 × 𝜌 ×  ∆𝑇 

One of the limitations appears in the case where the desired temperature is lower than 

the current temperature. In such case the power would be negative, which would imply 

the need for an air conditioner. Spending energy on an air conditioner in an environment 

in which heat is scarce is not justified. Therefore, cooling down is achieved by 

decreasing the heater’s power supply to 0. Hence, there is no direct way to regulate the 

time needed to reach a colder temperature in the room. This is regulated indirectly by 

the parameters of ventilation. 

3.2 Control system architecture  

The functionality of the habitat’s climate control system can be divided into three 

groups: sensing, control and actuation. By the level of control abstraction two layers are 

presented: direct control and supervisor control. The direct control layer includes the 

feedback control loops that keep the physical characteristics of the environment at some 

setpoint value that is computed on the supervisor control level. For direct control, the 

physical sensor signals of temperature, light, sound, humidity are filtered, processed and 
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sent to the controller, which calculates the input signals for the actuators. The actuators 

transform the physical characteristics of the environment according to their input. The 

direct control layer actuation module includes heaters, air filters, light sources with 

modifiable intensity and speakers for sound background. The last is for influencing the 

inhabitants’ emotional mood. The general architecture with two control layers is 

depicted in Figure 14. 

The direct control level sensors include:  

1) Temperature sensors for measuring the temperature in each room;   

2) Positioning sensors for detecting the room where an inhabitant resides in at any given 

moment. This could possibly be a combination of a face detector camera and a 

movement detector between the rooms; 

3) An activity sensor for categorizing the activity of each inhabitant at any given 

moment. This would have to be a combination of a camera and a movement recognition 

algorithm, and/or bodily sensors to recognize the activities. The categories could be as 

follows: training, working, eating, relaxing, sleeping; 

4) An electricity meter for measuring the power consumption at different segments of 

the habitat.  

The controller takes sensor samplings and calculates the amount of energy available. 

Based on the available energy resource the control modes are decided. This is combined 

with an algorithm that divides the energy between the control loops. heaters and other 

devices that need to be powered. 

 

Figure 14. Conceptual architecture of the habitat control system 
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The physical actuators powered within different control loops are heaters, lights, 

ventilators, and recreation utilities (music, TV, air cleaners, etc). 

The supervisor control layer involves virtual twins of sensing and actuation devices that 

are needed for high-level control, e.g. calculating new setpoints for direct control loops, 

learning the consumption profiles from the inhabitants’ routine monitoring and activity 

plans. The virtual twins also maintain the data about the components of the direct 

control layer, e.g. their functioning mode, reliability status ageing, usage profiles and 

other.  

The current thesis focuses on the design and implementation of the supervisor level 

software using the principles of CLP and SWI-Prolog programming environment. In the 

following subsections the concrete control loops are discussed and the supervisor level 

control principles outlined. 

3.3 Deciding the temperature control setpoints 

The ideal temperature prediction is based on the inhabitants’ preferences. The 

preferences are recorded whenever an inhabitant changes the room temperature settings. 

The preferred temperature is saved along with a timestamp, the room, every person 

currently in that room and every person’s current activity. This makes it possible to 

associate certain preferences with a timeframe, an activity and a room for every person. 

The underlying assumption here is that even though only one person changes the 

temperature, they have consulted previously with the other people in the room to make 

sure that they are all right with the new temperature.  

The controller predicts the temperature at a modifiable interval; the default is 15 

minutes. To predict the ideal temperature for a room in 15 minutes, the controller begins 

by finding the likeliest people to be in that room and their likeliest activity in 15 

minutes. It then finds everyone’s likeliest preferred temperature, trying to find 

preferences that match with the timeframe, room and activity. If there is no such data in 

the database, the controller tries to find matches only with the room and activity. If there 

are no such matches either, it removes the activity requirement as well. 
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If there are more than one person predicted to be in the room, the controller calculates 

the average of their preferences, taking into account their predicted activity. The 

preferences of the inhabitants predicted to be training will be given weight by the factor 

of 3, the ones working will be given by the factor of 2. The levels of priority are based 

on how difficult it would be for the person to conduct their activity in a different room. 

Since there is only one room with training equipment available, it would be the most 

difficult for those who are training to relocate. It might be easier to relocate when you 

are working and it should be the easiest to relocate for eating, relaxing or sleeping. 

Next, the required preparation time and power will be calculated and the temperature 

preparation is initiated. 

3.4 Smart temperature control under energy constraints 

For simplification the available energy is a constant that shows how much energy can be 

spent on temperature in an hour, that can be manipulated to test the software’s 

performance in different situations. In reality, there would need to be a sensor that 

detects the amount of energy in storage and an algorithm that calculates how much of 

the energy can be spared for temperature and how much for other devices.  

The available energy is divided between the rooms based on priority. The default setting 

is for the energy set aside for a given room to be proportionate to the size of the room. 

This can be modified in case there are rooms that by default require a higher or a lower 

temperature, for example labs or the bedroom. If there is a room that needs more energy 

for its lowest allowed temperature than is set aside for it, all rooms are set to their 

lowest temperatures to ensure that no room falls below the allowed limit. 

The procedure begins by calculating the required energy for the desired temperature in 

15 minutes. If the required energy exceeds the available energy, the interval is doubled, 

i.e. if the interval is 15 minutes and the desired temperature cannot be achieved in that 

time within the energy constraints, the controller calculates how much energy would be 

needed to reach the ideal temperature in 30 minutes. If the energy constraints are still 

not met, the controller starts lowering the desired temperature by 0.2 degrees until the 

energy restrictions are met or the lowest allowed temperature is reached. 
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3.5 Deciding the setpoints of light control 

Light is turned on when the first person enters a room and turned off when the last 

person has left the room. Once a person has entered the room, the lighting depends on 

the activity of the people in the room. The light preference of the person conducting the 

activity of the highest priority is chosen. The order of priorities is as follows: training, 

working, eating, relaxing, sleeping, following the logic outlined in 3.3. If people have 

the same activities but different preferences, the average is chosen. 
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4 Implementation of the rule-based control system 

In the following chapter, the main rules and facts are outlined and explained. To make 

them easier to find in the source code, an index has been added to the annex, which 

specifies the module in which each of the rules can be found.  

4.1 Main function 

The control loop is periodically initiated by querying the controller with the rule 

start/0. 

The periodic process that repeats every second is achieved with the predicate 

repeat/0, which provides an infinite number of choice points [13], and get_time/1, 

which returns the current time as a timestamp [14]. “A TimeStamp is a floating point 

number expressing the time in seconds since the Epoch at 1970-01-01” [15]. The 

timestamp is written in a file and the following timestamps are then compared against it, 

while both of the timestamps have been rounded up to 0 decimal places. Once the new 

timestamp is bigger than the one in the file, the file is overwritten with the new 

timestamp and the predicates succeed, continuing to the literals after them. 

Every second the following predicates are called: 

• update_current_activity/0, 

• update_current_temperature/0,  

• add_user_temperature/0, 

• add_user_light/0, 

• update_available_energy/0, 

which check for pertinent inputs from the simulation.  

The rule update_current_activity/0 has a literal add_activity/1, which 

checks whether an inhabitant has moved on to a new activity and if they have, the 

previous activity is added to the knowledge base with the beginning and end times. 

Then change_light/1 (see Subsection 4.7) is applied for every inhabitant. 
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Next, set_power_fact/1 is applied for every room. It first checks for the dynamic 

fact new_user_temperature/2 to see, if a user has modified the temperature 

anywhere. If they have, the protocol outlined in Subsection 4.6 is followed. 

If new_user_temperature/2 fails, the dynamic fact 

power_calculation_time(Room, Calculation_timestamp) is called, which 

specifies the time at which a new temperature should be calculated for this room. If the 

timestamp is equal to or smaller than the current timestamp, the new temperature is 

calculated by the protocol outlined in Subsections 4.4 and 4.5.  

To signal the time at which a new power command needs to be given to the simulation, 

a new dynamic fact  

power(Room, Power, Power_command_timestamp), 

where 

 Power_command_timestamp  is the current timestamp, 

is asserted. 

Then, to set the time for the next power calculation, the interval is converted to the 

simulation’s time and then added to the current timestamp. The resulting timestamp is 

used to assert the dynamic fact power_calculation_time/2, which specifies the 

next time the power needs to be calculated. 

Even though, given the static interval, it would be easier to create the power calculation 

with a similar design to the start/0 predicate, i.e. the power is calculated after the 

timestamp has increased a certain amount, the current design with dynamic facts gives 

more flexibility for future developments by allowing to vary the times of changing the 

power and for calculating a new power setting. Ideally, the controller should be able to 

account for the durations of certain activities and modify the intervals for calculating the 

power accordingly. 
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4.2 Knowledge base 

The activities of the inhabitants are stored in the module dynamic_data in the form of 

the following fact template: 

activity(Person, Activity, Room, Beginning_hour, 

Beginning_minute, End_hour, End_minute), 

where 

 Person   is the inhabitant conducting the activity, 

 Activity  is the activity being conducted, 

 Room   is the room in which the activity is being done, 

 Beginning_hour is the hour of the start time, 

 Beginning_minute is the minute of the start time, 

 End_hour  is the hour of the end time, 

 End_minute  is the minute of the end time. 

For simplification, both the simulation and the controller only have five activity 

categories: training, eating, sleeping, relaxing and working.  

The individual temperature preferences are stored in the module dynamic_data in the 

form of the following fact template: 

temperature(Temperature, Person, Room, Activity, Year, Month, 

Day, Hour, Min). 

The preferred light intensity is stored in the form of the following fact: 

light(Light, Person, Room, Activity, Year, Month, Day, Hour, 

Min). 

The facts used to reflect the current situation are the following: 

• current_temperature(Room, Temperature, Year, Month, Day, 

Hour, Minute), 

• available_energy(Energy), 

• current_activity(Person, Room, Activity, Year, Month, Day, 

Hour, Minute). 
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4.3 Outliers 

When predicting the preferred temperature and light, the average of various preferences 

is calculated. On account of sensor failures or other exceptional occurrences, it is 

possible for some of the preferences to vary greatly from the rest, which could have an 

unwanted effect on the average. To prevent this, before the calculation of an average, 

the possible outliers are always removed from the set of sensor samplings. The rules for 

calculating the outliers are in the math module.  

For finding the outliers, the interquartile range method is used, which counts values 

below the lower fence and above the upper fence as outliers.  

The lower fence is found with the following formula 

𝑄1 − 1.5 × 𝐼𝑄 

and the upper fence is found with 

𝑄3 + 1.5 × 𝐼𝑄 

where 

 Q1 is the lower quartile, which is the 0.25×Nth (or 0.25×(N + 1)th) value, 

  i.e. the  median of the lower half, 

 Q3 is the upper quartile, which is the 0.75×Nth (or 0.75×(N + 1)th) value, 

  i.e. the  median of the upper half, 

 IQ is the interquartile range, i.e. Q3 - Q1. [16][17] 

4.4 Predicting temperature 

The temperature is predicted in the temperature module with the rule  

decide_temperature(Room, Current_H, Current_M, Minutes, 

Temperature), (4.1) 

where  

 Current_H is the hour of the current time, 

 Current_M is the minute of the current time, 
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 Minutes is the time interval to the goal point in time, 

 Temperature is the decided temperature. 

Rule (4.1) is composed of 

• min_from_current(Current_H, Current_M, Minutes, H, M) (4.2), 

• likeliest_people_in_the_room(Room, H, M, People) (4.3), 

• all_prefs_average(People, Room, H, M, Temperature) (4.4). 

If there are no recorded preferences that match the criteria, the default temperature for 

the room is chosen. 

The time for which the temperature is needed is calculated with 

min_from_current(Current_H, Current_M, Minutes, H, M) (4.2). 

The likeliest people to be in the room are predicted with 

likeliest_people_in_the_room(Room, H, M, People) (4.3), 

where 

 Room  is the room for which this rule applied, 

 H  is the hour of the goal, 

 M  is the minute of the goal, 

 People  is the list of people predicted to be in room Room at H:M. 

The average of the preferences of the people who are predicted to be in the room at the 

goal time is calculated with 

all_prefs_average(People, Room, H, M, Temperature) (4.4) 

where 

 People  is the list of people whose preferences are taken into account, 

 Room  is the room for which the temperature is calculated, 

 H  is the hour of the time, 

 M  is the minute of the time, 

 Temperature is the found average. 
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The rule likeliest_people_in_the_room(Room, H, M, People) (4.3) uses 

the rule 

likeliest_room(Person, H, M, Likeliest_room) (4.5) 

where 

 Person   is the inhabitant, 

 H   is the hour, 

 M   is the minute, 

 Likeliest_room is the likeliest room where Person will be at H:M. 

The likeliest room is found by selecting a random room from a list of all the rooms 

Person has been in at H:M. A single room is added to the list of rooms for each time it 

has been recorded in the database that Person has been in it at H:M. Therefore, the room 

in which the person has been the most often at the given time is statistically the likeliest 

to be chosen by a random selection. 

The rule all_prefs_average/5 (4.4) finds the preferences with the rules 

• likeliest_activity(Person, H, M, Room, Activity) (4.6), 

• likeliest_preferred_temperature(Activity, Room, Person, H, 

M, Temperature) (4.7). 

It (4.4) queries the priority of the activity, which each person will be doing, to determine 

how many times the preference should be added to the list of preferences from which 

the average will be taken. 

The likeliest activity of each person is found with the rule in the energy module 

likeliest_activity(Person, H, M, Room, Activity) (4.6), 

where 

 Person  is the inhabitant, 

 H  is the hour of the time, 

 M   is the minute of the time, 

 Room  is the room in which the activity will take place, 
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 Activity is the found activity. 

The rule (4.6) tries to unify with 

every_activity(Person, Activity, Room, H, M, Duration), 

which gives as a result every Activity the Person has been doing in the Room at H:M.  

If it fails, (4.6) tries to unify with 

 every_activity(Person, Activity, _, H, M, Duration), 

excluding the argument Room. 

As outlined in 4.2, the instances of activities are stored in the database as facts with their 

beginning and end time (validity period). Whether or not an activity has taken place at a 

certain time is determined with the rule  

during(Beginning_hour, Beginning_minute, End_hour, End_minute, 

Current_hour, Current_minute), 

which uses the literal 

earlierOrSame(Beginning_hour, Beginning_minute, End_hour, 

End_minute), 

which is true, if the time at Beginning_hour:Beginning_time is earlier or the same as the 

time at End_hour:End_minute. For during/6 to be true, the current time needs to be 

later than or equal than the beginning time of the activity and earlier or equal than the 

end time of the activity.  

The complication involved here is that time is a cycle, not linear, so there is no clear-cut 

predetermined point, which can be considered the ending and beginning of the cycle.  

One predetermined point is midnight, but the problem arises when recording the time of 

sleep. If the restart point is midnight, then earlierOrSame/4 would have to be true, if 

the Beginning_hour is smaller than the End_hour.  
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If a fact about a person sleeping has been recorded from 22:00 to 7:00, then it would be 

impossible to find a time that would satisfy during/6, since every hour that is bigger 

than 22 is also bigger than 7. Therefore, additional rules need to be added. 

The proposed rules are: 

1. End_hour is smaller than or equal to 12 and Beginning_hour is smaller than 

End_hour; 

2. Beginning_hour is bigger than or equal to 12 and smaller than End_hour; 

3. Beginning_hour is bigger than 19 and End_hour is smaller than 12; 

4. Beginning_hour is equal to End_hour and Beginning_minute is smaller than or 

equal to End_minute. 

The rules 1. - 3. apply to activities between: 

1. 0:00 - 12:59; 

2. 12:00 - 23:59; 

3. 20:00 - 11:59. 

These rules exclude activities that start before midday and end after midday, and 

activities that start before 20:00 and end after midnight. The assumption for the former 

is that people change activities more frequently during midday, e.g. working or training 

and eating during lunch time or relaxing, and therefore the chance of missing an activity 

is small and can be considered trivial. The assumption for the latter exclusion is that 

people engage in shorter activities in the evenings and / or go to sleep before midnight.  

Both exclusions could be avoided by adding an additional rule to recording the 

inhabitants’ activities that has a breakpoint at 12:00 and 20:00. Hence, if a person starts 

an activity before 12:00 or 20:00 and continues them after the breakpoints, then two 

entries are saved for the activities - one that ends at 11:59 / 19:59 and one that starts at 

12:00 / 20:00. However, this would also require additional rules when calculating the 

duration of activities. 

The likeliest preferred temperature is calculated in the temperature module with the rule 

likeliest_preferred_temperature(Activity, Room, Person, H, M, 

Temperature) (4.7), 
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where 

 Activity is the activity the person is predicted to be doing, 

 Room  is the room in which the person is predicted to reside, 

 Person  is the person whose likeliest preferred temperature is calculated, 

 H  is the hour of the time at which the prediction is supposed to 

   happen, 

 M  is the minute of the time at which the prediction is supposed to 

   happen, 

 Temperature is the likeliest preferred temperature. 

The first choice is based on time preference, which uses the following rule: 

every_temp_preference_likeliest(Activity, Room, Person, 

Current_H, Current_M, Temperature) (4.8), 

where 

 Activity is the predicted activity, 

 Room  is the room for which the temperature is being predicted, 

 Person  is the person’s whose preference is being predicted, 

 Current_H is the hour of the current time, 

 Current_M is the minute of the current time, 

 Temperature is the likeliest preferred temperature. 

The rule finds all the temperature/9 facts (see Subsection 4.2) that unify with  

temp_preference_time_likeliest(Activity, Room, Current_H, 

Current_M, H, M) (4.9), 

where 

 H is the hour of temperature/9, 

 M is the minute of temperature/9. 

The rule (4.9) finds if the recorded preference was recorded in a timeframe that is 

relevant, considering the current time. To do so, it first calculates the average of the 

durations of the recorded instances of the activity, excluding the outliers. Secondly, it 
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calculates the interval from the current time to the time of recording of the temperature 

preference and the interval from the time of recording to the current time. If either of 

those intervals is less than or equal to the average duration of the activity, the preference 

is counted relevant. 

If rule (4.8) fails, meaning there are no preferences that fit the timeframe in the 

database, rule (4.7) tries to unify with temperature/9 (see Subsection 4.2), taking 

into account the person, room and activity. If it fails as well, it discards the activity and 

only takes into account the person and the room. 

Once (4.7) has found a list of temperature preferences, the outliers are removed from the 

list and the average is calculated, which will be given as the person’s likeliest preferred 

temperature. 

4.5 Choosing the temperature based on the available energy 

The rule 

update_available_energy/0 

is executed every minute to check whether the available energy has been changed and if 

it has, then it updates the dynamic fact available_energy/1. 

The required power supply is chosen with the rule  

preparation_time_desired_temp(End_temp,Room,Desired_time_in_min, 

Change_time,Power) (4.10), 

where 

 End_temp  is the temperature setpoint (C), 

 Room   is the room in which the temperature is being changed, 

 Desired_time_in_min is the time it would ideally take to achieve the temperature 

    (min), 

 Change_time  is the time it will actually take to achieve the temperature 

    (min), 



48 

 Power   is the amount of power that will be given to the heater 

    (W). 

Firstly, it calls 

is_there_enough_energy_for_min_setting_in_all_rooms/0 (4.11) 

in the energy module, which checks whether there is enough available energy to provide 

enough power for all the rooms to be at their lowest allowed temperature. If (4.11) fails, 

then every room is given a percentage of the available energy according to their priority. 

If (4.11) does not fail, the current temperature and the desired temperature are 

compared. If the desired temperature is lower than the current temperature, the power is 

set to 0 W to allow the room to cool down on its own. 

If the desired temperature is equal to or higher than the current temperature, the required 

energy is calculated with 

required_energy(Start_temp, End_temp, Room, Change_time, Power, 

Req_energy), 

where 

 Start_temp is the current temperature (C), 

 End_temp is the desired temperature (C), 

 Room  is the room in which the temperature is being changed, 

 Change_time is the time it will take to change the temperature (s), 

 Power  is the amount of power that will be needed (W), 

 Req_energy is the required amount of energy (J). 

It will calculate the required energy and power to achieve the temperature and maintain 

it for an hour. The required energy to achieve the temperature is calculated with the 

literal change_temp/6, which uses the formula 

𝐸 = 𝑐 × ∆𝑇 × 𝜌 × 𝑉, 

where 
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 E is the required energy, 

 c is the specific heat capacity of air, 

 ∆T is the change in temperature, 

 ρ is the density of air, 

 V is the volume of the room. 

The energy required to maintain the temperature is calculated with the literal 

keep_temp/3, which has two literals: temp_loss/2 and change_temp/6. 

Temp_loss/2 gives the temperature of the room after 1 minute with no heating. For 

simplification it is assumed that the temperature drops by 0.1 degrees every minute 

without heating. Change_temp/6 is then used to calculate the amount of energy 

needed to make up for the loss in temperature. 

If the required power is less than or equal to the maximum limit of power (2000 W by 

default) and the required energy is less than or equal to the energy available for that 

room, the predicate succeeds.  

In case of failure, the desired_time_in_min (a parameter of 4.10) is lengthened by a 

minute each retraction until the previously mentioned constraints are met or the 

desired_time_in_min becomes longer than twice the length of the predetermined 

interval. 

If the desired_time_in_min has been lengthened to twice the length of the interval, the 

setpoint temperature begins to be decreased by 0.2 degrees at a time until the constraints 

are met or the lowest allowed temperature is reached. 

4.6 User changing the temperature 

The rule 

add_user_temperature/0 

checks every second whether the user has modified the temperature in the simulation. If 

they have, a new dynamic fact user_temperature/7 is asserted and 

add_all_temp_preference/2 adds the chosen temperature as a preference for 

everyone in that room at that given time. 
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Then preparation_time_desired_temp/5 (4.10) calculates the required time and 

power to achieve the user’s preferred temperature or the closest possible temperature. 

The controller starts preparing the room for the user’s desired temperature right away. 

At the end, the dynamic fact is retracted. 

4.7 Choosing the light intensity 

The light is controlled with the predicate change_light(Person). Controlling the 

light is based on the movements of every inhabitant and the predicate is only used when 

a person’s location changes. 

If a person goes from one room to another, the light in the previous room is turned off, 

if the room was left empty.  

The light for the room the person enters is decided with 

decide_light(Room, Light). 

The rule finds the people currently in the room and takes into account their preferences 

based on their activities and the priorities of the activities (see Subsection 3.3).  

Then the intersection of the people who are currently in the room, in the middle of an 

activity with the highest priority, and who have relevant preferences is found.  

The rule 

relevant_preference(Room, Activity, Person) 

tries to unify with the facts 

current_activity(Person, Room, Activity, _, _, _, _, _) 

and 

light(_, Person, Room, Activity, _, _, _, _, _). 

By doing so it tries to find the people in the room that are doing the activity with the 

highest priority and also have a recorded light preference that matched that room and 

activity. 
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If light/9 fails, the room argument is removed and only the preferences that match 

with the person and the activity are looked for. If this also fails, only the preferences 

that match with the person and the room are looked for. 

Once all the people with the relevant preferences have been found, their preferences are 

found (either those that match with the room and activity, only the activity or only the 

room) and the average of those is calculated. 

4.8 User changing the light 

The rule 

add_user_light/0 

checks every second whether the user has modified the light in the simulation. If they 

have, then a new dynamic fact user_light/7 is asserted. That light is set as the 

current light for the room and the light setting is added as a preference from everyone in 

the room. At the end, the dynamic fact is retracted. 
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5 Validation of the implementation by visual simulation 

5.1 Brief overview of the simulation solution 

The validation of the software is conducted with the 3D simulation built by Britta Pung 

with the Unreal Engine 4. The purpose of the simulation is the visualization of the 

controller behaviour to validate the algorithmic efficacy and the functional correctness. 

The simulation is a 3D model of the moon habitat, which is divided into nine separate 

rooms - 3 bedrooms, 2 laboratories, a gym, a training room, a bathroom, a storage room 

and a living room. The simulation has a numeric display of the temperature and light 

intensity in each room, and the different levels of the light intensity are visualized.  

The simulation also shows three inhabitants, who move around and engage in activities, 

namely working, relaxing, eating, training and sleeping. The three inhabitants are 

named after the three members of the IGLUNA group - Britta (in grey), Merlin (in pink) 

and Anna (in green). The user can change the temperature and lighting in each room, 

which is then stored as a preference for the inhabitants in that room. This allows the 

simulation of the daily life of the inhabitants in the moon habitat.   

The available energy is also modifiable by the user to help validate the system’s 

behaviour in cases of energy scarcity, which could be effected by various environmental 

factors or the malfunction of the energy production systems. 

The time in the simulation is sped up to 4 minutes in 1 second. 

5.2 Communication between the simulation and controller 

The communication between the simulation and controller is conducted through text 

files. The files are divided between purposes and each file is only for one-way 

communication, i.e. it receives input either from the simulation or the controller. 

Table 1. Simulation input files 

File name Description Contents Example of contents 

tasks_light.txt Task from the 

controller to change 

the light intensity in 

a room 

room, light 

intensity, timestamp 

bed1,20,2019.05.09-

17.0000 

tasks_power.txt Task from the 

controller to change 

room, power in 

Watts, timestamp 

relax,0.5,2019.05.09-

19.00.00 



53 

the power of a 

heater in a room 

 

Table 2. Simulation output files 

File name Description Contents Example of contents 

user_energy.txt Used when the 

user changes the 

available energy 

constant in the 

simulation. 

Energy, year, 

month, day, hour, 

minute. 

available_energy_kwh(2500, 

2019, 5, 13, 5, 0). 

user_light.txt Used when the 

user changes the 

light intensity in 

a room. 

Room, light 

intensity, year, 

month, day, hour, 

minute. 

user_light(relax, 10, 2019, 5, 

11, 10, 56). 

user_temperature.txt Used when the 

user changes the 

temperature in a 

room. 

Room, 

temperature, 

year, month, day, 

hour, minute. 

user_temperature(relax, 

23.0, 2019, 5, 13, 5, 16). 

current_temperatures.txt Gives the current 

temperatures of 

every room. 

Room, 

temperature, 

year, month, day, 

hour, minute. 

current_temperature(bed3, 

20.0, 2019, 5, 13, 5, 0). 

current_lights.txt Gives the current 

light intensity of 

every room. 

Room, light 

intensity, year, 

month, day, hour, 

minute. 

current_light(training, 100, 

2019, 5, 13, 5, 0). 

current_activities.txt Gives the current 

location and 

activity of every 

inhabitant. 

Inhabitant, room, 

activity, year, 

month, day, hour, 

minute. 

current_activity(merlin, 

bed2, sleeping, 2019, 5, 13, 

7, 0). 

 

Tasks for the simulation are written with the predicate  

write_task(Filepath, Task), 

where 

 Filepath is the path of the file, 

 Task  is the task for the simulation. 

Before writing the task,  
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file_is_empty(Filepath) 

checks whether the file is empty, i.e. the last task has been read and deleted by the 

simulation. If file_is_empty/1 fails, time_guard/1 is used, which waits for a 

specified number of seconds before checking again whether the file is empty. The 

specified amounts are 1 second, 1 second, 2 seconds and 10 seconds. If the file is still 

not empty, the task is ignored. 

When reading the files user_temperature, user_light or user_energy, 

file_is_empty/1 and file_is_marked_empty/1 are used to check whether there 

is a new user input in the file. They fail if the file is not empty and the content is not 

‘empty’, which means new input has been added. After reading it, the file is overwritten 

with the text ‘empty’ to let the simulation know that the file is ready for new inputs. 

‘Empty’ is written instead of an empty string, since in SWI-Prolog the written text must 

be in the form of a term. 

When accessing a file, catch/3 is used to prevent errors from disrupting the system. A 

common disruption was caused by the error “no permission to open source_sink”. The 

error appeared to not follow a detectable pattern - it was caused by different files at 

different times that the controller had no trouble accessing the rest of the time. The 

possibility of a coding error related to an unclosed stream was eliminated. The current 

hypothesis is that the error is caused by a synchronization error where both the 

simulation and controller try to access the same file at the same time. On account of the 

infrequency of the error, the decision was made to skip reading the file in case of the 

error. Further work is needed to eliminate the error or to ensure its triviality in relation 

to its effect on the controller. 

5.3 Demo scenario  

In order to monitor the behaviour of the controller, it needs to be run together with the 

simulation. The data about each of the rooms in the upper right corner shows the 

temperature and light intensity in each room. During runtime, the simulation (Figure 15) 

shows that the temperatures in each room are kept within the expected range. The 

lighting is turned on and off in rooms, depending on whether someone is in that room or 

not. By defining the inhabitants’ preferences, it is possible to validate the correctness of 

the light intensity. To test whether the controller incorporates the inhabitants’ 
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preferences when calculating the temperatures, specific test preferences are 

predetermined in the knowledge base.  

 

To test the lighting, the preferences in Table 3 were saved for Merlin (in pink), Anna (in 

green), Britta (in grey). 

Table 3. Light preferences for testing 

Person Room Activity Light intensity 

Merlin Living room Relaxing 100 

Merlin Living room Relaxing 60 

Merlin Living room Relaxing 40 

Anna Bedroom 3 Sleeping 100 

Britta Bedroom 1 Sleeping 0 

Figure 16 shows Merlin in the living room relaxing and the light intensity at 66, which 

is the average of her previous preferences. Anna is sleeping in bedroom 3 and the light 

intensity is at 100, which matches the set preference. Britta is working in lab 2 and the 

light intensity is at 80, which is the default light setting, since Britta does not have any 

recorded preferences with working or lab 2. 

 

Figure 15. The temperatures are kept within the expected range 
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The temperature validation process is complicated for two main reasons. Firstly, the 

temperatures are constantly changing and are the result of both the predictions of the 

controller as well as the attempts at achieving and maintaining a certain setpoint. 

Secondly, the temperatures are based on the inhabitants that are predicted to be in a 

room at a given time, not who is actually in the room, hence without an exhaustive 

knowledge base of the inhabitants’ activities it is possible for the temperature to not 

match with the preferences of the people in the room. 

To test the temperature, the preferences in Table 4 were saved. 

Table 4. Preferences saved for testing the temperature 

Person Room Activity Temperature 

Merlin Bedroom 2 Sleeping 14 

Britta Bedroom 1 Training 30 

Anna Bedroom 3 Sleeping 20 

Merlin Living room Relaxing 17 

Britta Living room Relaxing 23 

Anna Living room Relaxing 20 

Merlin Gym Training 17 

Anna Gym Training 20 

 

Figure 16. The light intensity depends on the room and the person in that room 
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Britta Gym Training 25 

 

Figure 17 displays the differences in the temperatures of the bedrooms. Bedroom 1 is 

around 30 degrees as per Britta’s preference, bedrooms 2 and 3 are lower in temperature 

and are cooling down (the power of the heaters is 0). 

 

 

Figure 17. Differences in bedroom temperatures 

 

Figure 18. Anna is training in the gym and the temperature is around 20 degrees, matching the prediction. 
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Figures 19 and 20 show the effect of manually changing the temperature in a room. 

Even though the set temperature is 30 degrees, the temperature in the room climbs up to 

37 degrees before the power is turned off. Since this only happens if the desired increase 

in temperature is big, meaning that the power input is also big, it can be assumed that 

 

Figure 19. Before manually setting the temperature for the room Relax (aka the living room) 

 

Figure 20. After manually setting the temperature at 30 degrees for the room Relax 
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the issue is not with the behaviour of the controller, but with the delay of 

communication between the software and the simulation.  

The simulation does not allow for decimal places in the user input. Typically, the 

needed energy in an hour stays under 1 kWh. In order to test the behaviour of the 

controller under the condition of scarce available energy, the conversion rate is changed 

in the software, so that 1 kWh in the software is equal to 0.01 kWh in the simulation.  

 

 

Figure 21. Changing the available energy to 0 makes all the power inputs go to 0 as well 
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Figure 22 shows the case of insufficient available energy, which can be confirmed with 

the logs. The available energy is considered insufficient, if there is at least one room for 

which its designated portion of the energy is not enough to maintain its lowest allowed 

temperature. In this case, every room is given only its portion of the available energy. 

Logging allows to check for exceptions during the runtime, which disrupt the 

communication between the controller and the simulation. The exceptions are caught, 

and the system continues to run smoothly with no disruptions visible in the simulation. 

 

 

 

 

 

 

 

 

 

Figure 22. Insufficient available energy 
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6 Conclusion 

The result of this thesis is a rule-based control software for controlling the internal 

climate (temperature and lighting) of the space habitat IGLUNA. The software is 

capable of predicting the inhabitants’ preferences and giving appropriate instructions to 

achieve them whilst taking into account the given energy constraints. New preferences 

are added to the knowledge base every time an inhabitant changes the temperature or 

lighting in a room and each preference is saved with references to the room, the person, 

their activity and time. Future predictions try to match with as many relevant references 

as are available. The software can also operate even in cases where some of the input 

data gets corrupt or is missing. 

The behaviour of the controller can be monitored and validated through the 3D 

simulation built by Britta Pung.  

6.1 Future developments 

The delivered software is a basic prototype for a smart house controller, which could 

serve as the foundation for a more elaborate AI with the addition of new features or the 

integration with other controllers. New features could include a dynamic energy 

division algorithm and an algorithm for setting the interval between power calculations 

depending on the predicted length of an activity. Furthermore, a feedback system that 

confirms or rejects predictions could improve the accuracy of the predictions. This 

software could be integrated with another that monitors the inhabitants’ physical and 

mental well-being and makes temperature and lighting suggestions based on that.  
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Appendix 1 – Index of rules 

Main module: 

• add_activity/1 

• add_all_temp_preference/2 

• add_user_light/0 

• add_user_temperature/0 

• change_light/1 

• set_power_fact/1 

• start/0 

• update_available_energy/0 

• update_current_activity/0 

• update_current_temperature/0, 

Temperature module: 

• all_prefs_average/5 

• decide_temperature/5 

• every_temp_preference_likeliest/6 

• likeliest_people_in_the_room/4 

• likeliest_preferred_temperature/6 

• min_from_current/5 

• preparation_time_desired_temp/5 

• temp_preference_time_likeliest/6 

Energy module: 

• change_temp/6 

• during/6 

• earlierOrSame/4 

• every_activity/6 

• is_there_enough_energy_for_min_setting_in_all_rooms/0 

• keep_temp/3 

• likeliest_activity/5 

• likeliest_room/4 



64 

• required_energy/6 

Light module: 

• decide_light/2 

• relevant_preference/3 
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Appendix 2 - Repository link 

https://gitlab.cs.ttu.ee/mekase/igluna 

 

 

https://gitlab.cs.ttu.ee/mekase/igluna

