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Introduction

The development of sustainable manufacturing technologies using biology increasingly
relies on the ability to design and optimize microbial cell factories in silico. Yeasts,
in particular, represent versatile eukaryotic hosts that combine robust growth with
advanced genetic tools and a long history of industrial application in fermentation, food,
and biotechnology. Rational design of novel yeast-based production platforms, however,
requires a predictive understanding of how metabolism, energy, and protein resources
are distributed under varying environmental and genetic conditions.

The rapid progress of high-throughput DNA sequencing in the mid-2000s and protein
profiling has enabled the quantitative characterization of cellular components at
unprecedented scale. These advances laid the foundation for computational frameworks
that help to understand how genetic information (genotype) gives rise to observable
cellular behavior (phenotype) through mechanistic modeling. Among such approaches,
genome-scale metabolic models (GEMs) allow the systematic study of cellular
metabolism using metabolic rate (flux) predictions in silico. Since the first GEM of baker’s
yeast Saccharomyces cerevisiae was developed in 2003 numerous nonconventional yeast
species, newly isolated for their unique metabolic capabilities, have been introduced into
biotechnological applications.

Over the past two decades, GEMs have been expanded and refined into
community-curated versions, culminating in the Yeast9 model released in 2024. These
models have been successfully applied to guide the production of fuel precursors,
organic acids, medicinal compounds, flavours, fragrances, and other industrially relevant
metabolites, enzymes and proteins. Yet, despite these advances, their predictive power
remains fundamentally dependent on accurate experimental parameterization and
validation. In particular, conventional GEMs neglect the finite capacity of the proteome
and lack representation of enzyme kinetics and regulation. Moreover, not always
experimental yeast data are readily available across different conditions. This limitation
becomes critical in nonconventional yeast species, such as the lipid-producing yeast
Rhodotorula toruloides, where experimental data remain sparse and standard
assumptions derived from S. cerevisiae no longer hold.

To address these challenges, in this thesis | used a combination of genetic,
biochemical, and computational approaches to develop and validate predictive models
of yeast metabolism. Enzyme-constrained GEMs (ecGEMs) were employed as the central
modeling framework, linking metabolic activity to the amount and efficiency of enzymes
measured in the cell. Quantitative proteomics, physiological data from controlled growth
experiments, and genetic perturbations were integrated to parameterize and evaluate
ecGEMs of S. cerevisiae and R. toruloides. S. cerevisiae, the canonical model organism for
yeast biology, was used as a benchmark to assess model accuracy under newly tested
environmental conditions. R. toruloides, by contrast, served as a case study for extending
enzyme-constrained modeling to a nonconventional, lipid-accumulating yeast, enabling
the identification of biological and methodological factors that limit current model
predictiveness.

The results of this work reveal both the capabilities and the boundaries of current
computational design frameworks. The models accurately captured proteome limitations
and substrate-dependent metabolic allocation, yet they exposed systematic deviations
arising from strict models’ assumptions. These findings not only provide new insight into
the regulatory mechanisms underlying energy and redox balance in yeast and clarify the



data requirements for extending quantitative models to unconventional species, but also
demonstrate the potential of such models to bridge quantitative proteomics and
genome-scale modeling, and provides perspectives on how future integration of regulation
and kinetics can advance in silico biomanufacturing design.
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1 Theoretical background

This chapter aims to provide a scope of the studies conducted in this thesis. Although the
topic of this thesis spans broad and rapidly evolving areas of science, such as systems
biology and metabolic engineering, | will focus on genome-scale metabolic models and
how we use them in studying yeast. While acknowledging how quantitative modeling
frameworks, such as genome-scale models, are used to extract biological insights, in this
chapter | will also discuss how these models can be experimentally validated.

This thesis is written from a very practical standpoint in mind, emphasizing the
computational design of microbial cell factories. Therefore, throughout the theoretical
background, | want to present it from a curiosity driven perspective: on what principles
are these models built, and how accurately do they represent biological reality?
In the final two subchapters, | will present core methodological concepts underlying the
presented studies, but | will begin the chapter with the biochemical foundations
necessary to understand the basis of computational design.

1.1 Yeast-based cell factories

Yeasts are unicellular organisms that naturally occur on plant surfaces, soil and aquatic
environments. In nature, they live in diverse places that are rich in biomass, and they
play a key role in carbon cycling. In the laboratory, they are foundational systems for
eukaryotic cell biology and biotechnology (Walker, 2000). On one hand, yeast cellular
functionalities, such as well defined nucleus, that stores genetic material, and other
cellular compartments follow by definition the same rules as plants, insects, animals and
humans. On the other hand, their unicellular nature allows easier studying, compared to
bacteria and other unicellular life forms. All in all, that is why yeasts are used from
fundamental studies understanding the rules of life, to industrial applications in microbial
catalysis — a discipline known as biotechnology. From an evolutionary perspective, yeasts
belong to the Fungi kingdom, primarily phylum Ascomycota and to a lesser extent
Basidiomycota (Kurtzman, 2011). The two phyla diverged over 500 million years ago,
their known differences are often grouped into different ecological roles, cellular
organization, and organisation of metabolism. Yeasts can reproduce both asexually and
sexually. As most yeasts that have been historically used by humans entail asexual
reproduction, forming a bud of an original cell, they are popular by the term budding
yeasts.

Yeasts must be great consumers of simple sugars, such as monosaccharides such as
glucose and fructose, and disaccharides such as sucrose and maltose, as the name of
most and widely known yeast in Latinized Greek means “sugar fungus” — Saccharomyces
(Chambers & Pretorius, 2010). The most well known species of yeast is ascomycetous
Saccharomyces cerevisiae. Due to its Eukaryotic nature, it has been used as a model
organism to study cellular signaling, division, aging, death, and other cellular processes.
At least ten Nobel prizes have been awarded for the work in yeasts (Hohmann, 2016),
mainly in the category of physiology and medicine. And | want to highlight the 2001
award in Medicine to Hartwell, Hunt and Nurse for unraveling the genetic logic of the
eukaryotic cell cycle, showing how genotype determines phenotype through molecular
logic.

Given the extensive knowledge of yeast biology, these microorganisms have long been
engineered for industrial use — not only in the production of bread, beer, and wine, but
also as biocatalysts for ethanol and other biofuels (Nielsen & Keasling, 2016; Walker &
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Stewart, 2016). Although ethanol is by far the most widely produced biofuel using yeast
biotechnology, ethanol formation is actually an exception in the context of yeast
metabolism. Yeasts are inherently efficient at synthesizing highly reduced, long-chain
molecules (C2;—Ca4), including fatty acids, sterols, and long-chain alcohols (Koutinas
et al., 2014). Thus, the extensive use of yeasts for ethanol production reflects historical
and industrial choices rather than their metabolic predisposition. Due to their robustness,
metabolic diversity, and substrate flexibility, non-conventional yeasts have gained
increasing prominence as emerging hosts for industrial biomanufacturing. For instance,
non-conventional yeasts, such as Yarrowia lipolytica (Ledesma-Amaro & Nicaud, 2016)
and Rhodotorula toruloides (Park et al., 2018) are recognized for lipid and carotenoid
biosynthesis, Kluyveromyces marxianus (Nonklang et al., 2008) for rapid growth and high
temperature tolerance, P. pastoris (now Komagataella phaffii) for protein synthesis
(Cregg et al., 2000), Z. bailii for tolerance to organic acids (Branduardi et al., 2004).
Chemical building blocks produced with microbial cell factories are more and more
used in the production of pharmaceuticals, flavors, fragrances, cosmetics, materials
(Nielsen, 2019), and the opportunities are theoretically endless. The global bio-based
chemicals market is estimated to exceed USD 125 billion by 2030, with microbial
processes contributing a rapidly increasing share (Grand View Research, n.d.; Korosuo
et al., 2024).

The choice of carbon source is a critical factor in designing cell factories, as it directly
influences not only central carbon metabolism, redox balance, and biosynthetic capacity,
but also their economic feasibility. Glucose, the most abundant sugar in nature, supports
rapid growth and high glycolytic fluxes, but often leads to fermentative metabolism and
catabolite repression that limits the utilization of alternative substrates (Gancedo, 1998).
In contrast, non-fermentable carbon sources such as acetate, ethanol, or fatty acids
promote respiratory metabolism and can alter cellular energy efficiency and redox
status (Papanikolaou & Aggelis, 2011b). Glycerol, a byproduct of biodiesel production,
represents an inexpensive and sustainable substrate. Xylose and other pentoses derived
from lignocellulosic hydrolysates are of growing interest for second-generation
bioprocesses; however, their efficient assimilation often requires metabolic engineering
to overcome limited native transport and conversion capacities (Kwak et al., 2019;
Sanchez Nogué & Karhumaa, 2015). Consequently, optimizing carbon source utilization
not only enhances process sustainability by integrating waste-derived substrates but also
enables the tuning of cellular physiology toward improved vyield of fuels, lipids, and
biochemicals.

The term microbial cell factory emphasizes the analogy to traditional production plants
—yet these “factories” operate at the cellular level, converting renewable substrates into
valuable products through metabolic pathways. With advances in systems biology and
synthetic biology, the molecular arsenal and efficiency of yeast-based cell factories are
rapidly improving, supporting the development of biorefineries that transform biomass
and waste into sustainable biochemicals and biofuels, and move away from fossil
fuel-based refineries.

Yeasts not only serve as models for understanding eukaryotic cell biology, but also as
powerful platforms for sustainable production, bridging fundamental biology and industrial
biotechnology.
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1.2 Cellular metabolism

Metabolism inside the cell is an integrated network of biochemical reactions that
sustains life. The metabolic network in a yeast cell operates in a manner that nutrients,
taken up from the environment as substrates, are converted into products that help the
cell to grow, and byproducts, such as CO,, ethanol or others. A yeast cell needs a carbon
source, energy source, nitrogen source, minerals and vitamins. Glucose is the most
common carbon source, which is also simultaneously an energy source (Villadsen et al.,
2011). Yeasts (like animals and most microorganisms) are heterotrophs, they cannot use
carbon dioxide from the atmosphere as their sole carbon source.

The cell’s primary goals via metabolism are to extract energy from substrate(s) and to
synthesize molecules essential for self-maintenance, growth and reproduction. The series
of enzyme-catalyzed reactions constitute metabolic pathways. Catabolic pathways, such
as glycolysis and tricarboxylic acid cycle, break down substrates into smaller, simpler end
products to release energy, while anabolic pathways, also called biosynthesis, synthesize
macromolecules, such as proteins, lipids, and nucleic acids, from small, simple precursors
(Nelson et al., 2021). Anabolic reactions require energy as input. In the metabolic
network, the Gibbs free energy, which cells can and must use to drive chemical reactions,
is acquired from nutrient molecules and stored as an energy currency molecule (ie.
adenosine triphosphate, ATP) and other cofactors (ie. NADPH). Biological energy
transformations obey the laws of thermodynamics, so evolution has constructed
metabolic pathways that are thermodynamically feasible, such as carbon-carbon bond
break, isomerizations, group transfers, oxidation-reductions, and others (Nelson et al.,
2021). In catabolism, ATP provides energy by group transfers, not by simple hydrolysis.
In anabolic pathways, ATP hydrolysis drives energetically unfavourable reactions
forward. All small molecules that participate as substrates, intermediates, or products in
the metabolism, are called metabolites.

The central metabolic pathways, which are very few and remarkably similar in all
forms of life, are associated with glucose oxidation but each fulfils a different purpose.
Through glycolysis, glucose can be oxidized to a three-carbon compound pyruvate to
provide ATP and metabolic intermediates. S. cerevisiae and most other yeasts rely on the
Embden-Meyerhof-Parnas (EMP) pathway for glycolysis, as they lack alternative
glycolytic routes. It is a series of 10 reactions that yields 2 molecules of ATP, 2 molecules
of nicotinamide adenine dinucleotide (NADH) and supplies glyceraldehyde-3-phosphate
and phosphoenolpyruvate as precursors for biosynthetic pathways (Teusink et al., 1998).
NADH is one of the few prominent electron carriers in central metabolism, which
temporarily stores and transports reducing equivalents to other enzymes or pathways
where they can be used. Through the pentose phosphate (phosphogluconate) pathway
(PPP), glucose can be oxidized to yield ribose 5-phosphate for nucleic acid synthesis plus
a molecule of CO; (oxidative PPP, oxPPP), NADPH for reductive biosynthetic processes,
and xylulose-5-phosphate. Non-oxidative phase interconverts pentose phosphates
with glycolytic intermediates (glyceraldehyde-3-phosphate and fructose-6-phosphate),
or transforms into erythrose-4-phosphate (for amino acid synthesis). PPP runs parallel to
glycolysis. The branching point of PPP and glycolysis is glucose-6-phosphate, which is the
first metabolic intermediate of glycolysis. These pathways in eukaryotes are cytosolic
(Kruger & Von Schaewen, 2003).

Pyruvate can either be fermented, or undergo the tricarboxylic acid cycle (TCA).
Fermentation is ubiquitous among microorganisms and even some higher organisms
because it provides a simple, robust, and rapid mechanism for sugar utilization. Cells
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obtain ATP solely by breaking down glucose into pyruvate and, like ethanol fermentation
in yeast, the pyruvate is converted in two molecules of ethanol and CO,, as end products.
It is a two step process: decarboxylation by pyruvate decarboxylase and reduction
through alcohol dehydrogenase, using NADH generated during the dehydrogenation of
glyceraldehyde 3-phosphate in glycolysis (Nelson et al., 2021). The CO, produced by
pyruvate decarboxylation in brewer’s yeast is responsible for the characteristic carbonation
of champagne, but in baker’s yeast — causes dough to rise.

The complete oxidation of glucose, when pyruvate produced by glycolysis is further
oxidized to water and CO,, is termed cellular respiration. Unlike fermentation, it involves
an external O; as the final electron acceptor. The amount of released energy, conserved
in the form of theoretically up to 36 ATP per glucose by a process called oxidative
phosphorylation (oxPhos), is far more than in fermentation (in process called substrate-
level phosphorylation). Nevertheless, many aerobic organisms, including S. cerevisiae,
retain the fermentative capacity. The Crabtree effect is a hallmark of S. cerevisiae
metabolism, describing its tendency to ferment glucose to ethanol even in the presence
of oxygen when sugar is abundant. First described by Herbert Crabtree (Crabtree, 1929)
and later quantified by van Dijken and Scheffers (Dijken & Scheffers, 1986), the effect
reflects a metabolic shift from respiration to fermentation when the glucose uptake rate
exceeds the respiratory capacity of the mitochondria, typically above a critical dilution
rate of 0.25-0.3 h™" in chemostat cultures. Physiologically, it manifests as a biphasic
growth pattern: during glucose excess, yeast cells produce ethanol aerobically, and once
glucose is depleted, they undergo the diauxic shift, oxidizing ethanol to CO, and water.
The effect is not universal to all yeasts but characteristic of “Crabtree-positive” species,
including S. cerevisiae and Kluyveromyces marxianus, which evolved in sugar-rich
environments where rapid substrate consumption provided a competitive advantage
(Hagman & Piskur, 2015; Pfeiffer & Morley, 2014). In contrast, “Crabtree-negative”
yeasts such as Pichia stipitis (now Scheffersomyces stipitis) and Candida utilis maintain
fully respiratory metabolism in the presence of oxygen regardless of glucose concentration
(Dijken & Scheffers, 1986; Merico et al., 2007). The Crabtree effect has a regulatory
advantage that supports high glycolytic fluxes and rapid ATP turnover (Malina et al., 2021;
Pfeiffer & Morley, 2014).

To undergo TCA cycle, pyruvate is converted to acetyl groups and activated by an
irreversible oxidative decarboxylation reaction by pyruvate dehydrogenase (PDH)
complex, producing 1 molecule of CO, and 1 molecule of NADH. Acetyl-CoA is condensed
with oxaloacetate (OAA) to form citrate (CIT), which is subsequently rearranged and
oxidized, regenerating OAA for another cycle run. Therefore, TCA cycle is also called the
citric acid cycle, or the Krebs cycle (after its discoverer, Hans Krebs, who received a Nobel
Prize in Physiology or Medicine for this discovery in 1953). In eukaryotes, it takes place
entirely in mitochondria. In this cycle, four of the eight steps are oxidations, conserving
the energy in the form of 3 reduced coenzymes NADH, 1 flavin adenine dinucleotide
(FADH,), and 1 energy currency molecule (GTP or ATP). The chemical energy extraction
releases 2 molecules of CO, per 1 pyruvate molecule. Because glucose molecule yields 2
pyruvate molecules, full oxidation of glucose via the TCA cycle releases total of 6 CO,
(2 from PDH and 4 from the TCA cycle). Intermediates of the TCA cycle are siphoned off
as biosynthetic precursors (2-oxoglutarate, succinate, oxaloacetate); it is a hub of
metabolism, closely regulated (Nelson et al., 2021).

Respiration proceeds with NADH and FADH; in mitochondria transferring electrons to
the electron transport chain. In case oxygen as the final electron acceptor is not available,
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the buildup of reduced cofactors inhibits TCA enzymes (dehydrogenases), and the
cycle stalls or shifts to branched operation to supply succinate, oxaloacetate, and
2-oxoglutarate, but not as a full oxidative loop. In case glucose is unavailable, cells shift
metabolism and the TCA cycle is fed with acetyl-CoA and 2-oxoglutarate from other
carbon sources (ethanol, acetate, fatty acids, amino acids), facilitating the production of
phosphoenolpyruvate (PEP), a glycolytic intermediate — precursor of gluconeogenesis
(essentially reverse glycolysis, but with bypass reactions to irreversible phosphofructokinase
and hexokinase reactions). In such a scenario, ATP production can continue, if O, is
available. There are 12 precursors — building blocks — for biomass synthesis required.
They are generated by central metabolic pathways: glucose-6-phosphate, fructose-6-
phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, phosphoenolpyruvate,
pyruvate (all glycolysis), ribose-5-phosphate, erythrose-4-phosphate (both PPP),
acetyl-CoA, oxaloacetate, 2-oxoglutarate, and succinyl-CoA (all TCA cycle) (Neidhardt
et al., 1990).

Electron transport chain (ETC) in yeasts is a series of inner mitochondrial membrane
proteins (Complexes |-V, ubiquinone (coenzyme Q), and cytochrome c) releasing
electrons and protons from their reduced cofactors NADH and FADH; and using the free
energy to pump protons from mitochondrial matrix to the intermembrane space,
generating an electrochemical proton gradient (the proton motive force). Flow of
protons in yeasts, animals and many bacteria is accepted at the end by oxygen. No ATP
is produced directly at this stage. Proton flow through the last protein complex, ATP
synthase, drives the rotary motion of its rotor subunits, which induces conformational
changes in the catalytic F; domain that enable phosphorylation of ADP to ATP (thus,
the name oxidative phosphorylation) on the matrix side of the inner mitochondrial
membrane (Boyer, 1997). In analogy, the proton gradient across the inner mitochondrial
membrane is like water stored behind a dam — it holds potential energy. The stoichiometry
of ATP production depends on (i) the number of subunits in the c ring of the Fo complex
and (ii) the number of protons per NADH pumped in the intermembrane space (widely
accepted experimental value is 10 protons). Full rotation of the F1 domain produces
3 ATP. Atomic force microscopy has shown yeast mitochondria have 10 c subunits.
Adding 3 protons to bring 3 P; into the matrix brings a total cost of 13 protons
(~4 protons/ATP). Oxidizing 1 NADH produces (10 protons/4 protons ATP™!) 2.5 ATP,
which due to transport costs, potential proton leak and less efficient NADH shuttles is
lower than the theoretical maximum. If the cell has a different electron transport chain,
like S. cerevisiae who lack one of the ETC proteins (Complex 1), the ATP yield per NADH
drops even more to (6 protons/4 protons ATP™) 1.5 (Nelson et al., 2021).

Fatty acid biosynthesis is one of the cytosolic biosynthetic pathways — reactions that
provide precursors for macromolecules and secondary metabolites. It proceeds via a
cyclic sequence of four main enzymatic reactions — condensation, reduction, dehydration,
and a second reduction — catalyzed by the multifunctional fatty acid synthase (FAS)
complex. Each cycle elongates the acyl chain by two carbons, contributed from
malonyl-CoA, which itself is generated by carboxylation of acetyl-CoA through the action
of acetyl-CoA carboxylase (ACC). Thus, for every elongation step, one molecule of
acetyl-CoA (as the starter unit) and one molecule of malonyl-CoA (as the extender unit)
are consumed, along with 2 molecules of NADPH as reducing equivalents. The process
continues iteratively until the full-length fatty acid, typically palmitoyl-CoA (C16:0),
is synthesized. In eukaryotic cells such as S. cerevisiae, this process occurs in the cytosol,
followed by either elongation and desaturation by dedicated enzymes in the endoplasmic
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reticulum, or acylation of glycerol backbone to synthesize neutral lipids (triacylglycerols,
TAGs) (Ratledge & Wynn, 2002a; Tehlivets et al., 2007).

Xylose metabolism is crucial in the context of biorefineries of lignocellulosic biomass —
one of the most abundant biomass sources on earth (Sanchez Nogué & Karhumaa, 2015).
The xylose assimilation pathway converts xylose into xylulose-5-phosphate through a
series of enzymatic reactions catalyzed by xylose reductase (XR), xylitol dehydrogenase
(XDH), and xylulokinase (XK). The resulting xylulose-5-phosphate enters the pentose
phosphate pathway. In yeasts, this process often causes a redox imbalance due to the
differing cofactor specificities of XR and XDH, whereas bacteria use a simpler isomerase
pathway that avoids this limitation (Bhosale et al., 1996).

Central metabolism is versatile, regulated and robust to produce biomass in a wide
variety of environmental conditions. While the general metabolic architecture is
conserved across all domains of life, yeast metabolism exhibits adaptations (such as
Crabtree effect) that make yeasts powerful model systems and hosts for metabolic
engineering compared with both prokaryotic and multicellular eukaryotic systems.

13 Gene - protein relationship

Almost all chemical reactions in living systems are catalyzed by enzymes, and all known
enzymes are proteins (F. H. Crick, 1958). Enzymes are proteins with catalytic activity.
Proteins are sequences of covalently bonded amino acids which form three-dimensional
structures. In nature, there are 20 different amino acids that can be combined in
sequences to form proteins. Polypeptides with molecular masses greater than
approximately 10 kDa (corresponding to ~100 amino acid residues) are conventionally
termed proteins, whereas smaller chains are referred to as oligopeptides or peptides
(Nelson et al., 2021). This distinction reflects the minimal chain length required for a
polypeptide to fold into a stable tertiary structure and exhibit independent biological
function. Proteins also perform a broad range of other cellular functions, including
regulation, structural support, but it is not their main role. Proteins are at the centre of
a living system because to produce a new small molecule, the cell needs to produce a
new protein to catalyse the reaction.

Protein synthesis requires a signal and information on the sequence of amino acids.
This is controlled by genes, but not directly. Genes are linear (one-dimensional)
sequences of deoxyribonucleic acids (DNAs) that carry this information inside the cells.
The signal for protein synthesis originates from the activation of gene transcription (via
some transcription factor (TF), which is a protein too) in response to cellular and
environmental cues (nutrient levels, stress, cell cycle, external signals). In yeast, genes
are densely packed into structures called chromosomes (16 in S. cerevisiae) primarily
located in the nucleus, with a small number present in mitochondrial DNA. Protein
synthesis proceeds through two main stages: transcription in the nucleus, where DNA is
unpacked, transcribed into messenger ribonucleic acid (mRNA) by RNA polymerase |l
(and TFs) and exported to the cytoplasm through nuclear pores, and translation in the
cytoplasm, where ribosomes decode the mRNA to assemble linear amino acid chains
corresponding to sequence of DNA in a gene. While the classic view of “one gene — one
protein” provides a useful simplification, the relationship between genes and proteins
is more complex. In eukaryotes, a single gene can give rise to multiple protein
isoforms through mechanisms such as alternative splicing, alternative start sites,
or post-translational processing. Alternatively, a protein complex (such as ATP synthase)
is a functional assembly composed of multiple distinct polypeptide subunits, each
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encoded by a separate gene, illustrating cooperative interactions among several gene
products rather than from single proteins acting alone. Conversely, multiple genes may
encode identical or functionally redundant proteins, as seen in gene duplicates or
isoenzymes. In yeast, alternative splicing is rare, but alternative promoter usage and
gene duplication are common, providing metabolic and regulatory flexibility. Translation
occurs either on free cytosolic ribosomes or on those bound to the endoplasmic
reticulum, depending on the destination of the protein. Mitochondria also possess
their own ribosomes for the synthesis of a few organelle-encoded proteins. Following
translation, proteins fold and may undergo post-translational modifications before
reaching their functional location. Although the final shape of the folded protein is
dictated by amino acid sequence, the precise three-dimensional structure (native
conformation) is crucial to its function and requires the right cellular environment —
pH, ionic strength, metal ion concentrations, etc. Thus, DNA sequence alone is not
enough to form and maintain a fully functioning cell (Alberts et al., 2022; Nelson et al.,
2021).

Synthesis of a protein true to the information specified in its mMRNA requires energy.
One ATP for amino-acid activation by aminoacyl-tRNA synthetase, two GTP for elongation
and ribosomal translocation, and a fractional ATP for initiation and chaperone-mediated
folding. Protein biosynthesis is one of the most energy-demanding cellular processes.
RNA and DNA synthesis each require one nucleoside or deoxynucleoside triphosphate
per monomer addition, together with auxiliary ATP usage by helicases, ligases, and
topoisomerases. Polysaccharide and cell-wall polymerization involve UTP or ATP hydrolysis
to generate activated sugar donors (e.g., UDP-glucose, GDP-mannose), while lipid
biosynthesis requires ATP for acyl-CoA activation and malonyl-CoA formation,
in addition to NADPH for reductive steps (Alberts et al., 2022; Nelson et al., 2021). This
polymerization cost represents the sum of all high-energy bond hydrolyses directly
required to convert metabolic precursors into macromolecules. Based on chemostat
energy-balance calculations for S. cerevisiae, Verduyn et al. (Verduyn, 1991; Verduyn
et al., 1990) quantified this demand as approximately 24 mmol ATP per g cell dry weight
(8DW).

Mechanisms of protein biosynthetic machinery are remarkably well conserved
across all life-forms because a typical cell requires thousands of different proteins to
respond to a cell's needs at any given moment. The cellular resources that are devoted
to this process are remarkable; up to 90% of the chemical energy and more than 35% of
the cell’s dry weight (CDW). Despite complexity, a polypeptide of 100 residues in an
Escherichia coli cell (at 37 °C) is synthesized in about 5 seconds (Nelson et al., 2021).
That is because each of 20 amino acids is encoded by a triplet combination of 4 DNA
nucleotide bases (adenine (A), thymine (T), guanine (G), and cytosine(C)), known as the
genetic code. The code is nearly universal, non-overlapping, and degenerate,
meaning that most amino acids are encoded by multiple codons (F. H. C. Crick, 1968).
Several codons, such as initiation codon AUG and termination codons UAA, UAG, and
UGA) serve special functions and do not code for any known amino acids. Some codons
for a particular amino acid are used more frequently than others, called codon (usage)
bias, refers to the unequal usage of synonymous codons in an organism’s genome
(Nelson et al., 2021). In genetic and metabolic engineering, codon optimization is
crucial when expressing heterologous genes, as mismatched codon usage can severely
limit protein production and metabolic fluxes. Rational adjustment of codon usage
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allows fine-tuning of enzyme expression levels and pathway balance, improving the
performance of synthetic or engineered cell factories (Sharp & Li, 1987).

The central dogma of molecular biology describes the unidirectional flow of genetic
information from DNA to RNA to protein, and not the other way around (F. Crick, 1970).
DNA encodes hereditary information, but proteins are the molecular instruments,
through which genetic information is expressed. While the core framework remains
valid, discoveries such as reverse transcription, RNA-based regulation, and epigenetic
control have expanded the concept to encompass multiple feedback and regulatory
layers. Nevertheless, these concepts revealed how genotype determines phenotype.
Together, the discovery of genetic code unified genetics and biochemistry, laid the
foundation for molecular genetics, and opened the way to biotechnology, synthetic
biology, and modern computational modeling of cellular systems. The understanding of
gene-protein relationships enables to transform biology into a rule-based information
system that can be modeled, simulated, and engineered.

1.4 Methodological approaches of computational design

Gene sequence that is linked to a protein sequence of known function is a logical rule
that can be stored as an information bit. The first entries linking genes to proteins came
from manual knockout and biochemical characterization, followed by sequencing of
genes (Sanger et al., 1977) and proteins (Edman degradation) and curated entry into
early databases, such as SWISS-PROT (Bairoch, 1996). In the 1980s sequencing accelerated,
but annotation was still manual. Experts compared sequences and literature to assign
enzyme functions. From 1956, Enzyme Commission (EC) numbers were used to standardize
reaction types those enzymes catalyze (Dixon & Webb, 1958). Gene-protein-reaction
(GPR) associations were assigned by human curation, not algorithms. Even when
sequencing was semi-automated (Sanger-based in the 1980s), their functional mapping
was not automatic yet.

With the advent of whole genome sequencing, including single-cell technologies,
in the 1990s powered by next generation sequencing technologies (NGS) (Goodwin et al.,
2016; Levy & Myers, 2016; Shapiro et al., 2013), gene sequencing became automated.
Mass spectrometry methods developed for detection and quantification of thousands of
proteins inside the cell (Aebersold & Mann, 2003; Millan-Oropeza et al., 2022; Sanchez
et al., 2021). The study of these datasets is called -omics (proteomics, genomics, and so
forth) (Cammack, 2006). Altogether, thousands of new gene and protein sequence data
were generated, but there was no time for manual annotation. Therefore, functional
annotation became semi-automated to: (i) compare new sequences to known databases
(BLAST), (ii) transfer functional annotation from homologs (ortholog mapping OrthoFinder
(Emms & Kelly, 2019)), and (iii) assign functional categories such as Gene Ontology (GO)
terms (The Gene Ontology Consortium et al., 2021), enzyme commission (EC) numbers,
and pathway membership automatically via databases including KEGG (Kanehisa et al.,
2021), BioCyc (Karp et al., 2019), Swiss-Prot, Uniprot (Bairoch, 1996), BRENDA (Schomburg,
2002).

Modern functional annotation pipelines use gene sequencing (lllumina, Nanopore,
PacBio) and proteomic identification (Mascot, MaxQuant), bioinformatics and database
integration to infer GPRs automatically, providing the molecular link for systems biology
models that links genome content to metabolic capability (The UniProt Consortium et al.,
2023). Bioinformatics and machine learning models trained on millions of known
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sequences to predict enzyme functions from sequence features (Y. Li et al., 2018; Ryu
et al., 2019). Only the quality control and GPR curation is refined by expert curation for
accuracy.

Diverse uses of the gene-protein relationship — from stochastic fluctuations to flux
predictions —illustrate how molecular biology information becomes a quantitative element
of different types of computational design strategies (Table 1). Modeling frameworks
that directly quantitatively link genotype to phenotype for describing and predicting
cellular behaviour are constraint-based models; they provide a mechanistic mapping
between genes, enzymes, and reactions that can be expressed quantitatively through
flux constraints and by extension enzyme capacity terms (Lu et al., 2024). Beyond these,
the gene-protein relationship plays distinct roles across other computational design
strategies. In boolean / logic models, it defines qualitative activation rules for genes and
reactions, forming the foundation of regulatory network simulation (Kauffman, 1969;
Thomas, 1973). In stochastic models, it underlies probabilistic gene expression events
that generate variability in protein abundance (Elowitz & Leibler, 2000; McAdams &
Arkin, 1997). In regulatory network models, genes produce proteins that act as
transcription factors regulating other genes, forming dynamic feedback circuits that
quantitatively define gene-protein causality (Gardner et al., 2000; Karlebach & Shamir,
2008). In kinetic models, protein concentrations appear explicitly in rate equations as
catalysts determining reaction velocities, linking gene expression to metabolic dynamics
(Teusink et al., 2000). At the protein level, structural enzyme design uses the gene-protein
relationship directly to manipulate amino acid sequences and catalytic properties,
thereby improving reaction kinetics (Huang et al., 2016; Jumper et al., 2021). Machine
learning-based prediction tools exploit the vast landscape of gene-protein data to infer
enzyme functions, kinetics, and phenotypes from sequence or omics features (Heckmann
etal., 2018; F. Li et al., 2022). Beyond constraint-based approaches, emerging multi-scale
models extend predictive power toward dynamic and regulatory phenomena, such as
kinetic and expression-coupled models (ME-models), constraint-based modeling combined
with transcriptional regulatory networks, multi-scale and whole-cell models (WCMs),
as reviewed elsewhere (Lu et al., 2024).

Despite enormous demand for building strong chassis strains for metabolic
engineering, advanced computational models for rational strain design are still in their
infancy (Lu et al., 2024). Nevertheless beyond their role in validation, computational
design tools are increasingly used to accelerate rational metabolic engineering.
Computational design also facilitates multi-omics integration, as described in the next
section, helping to disentangle regulatory from capacity-based constraints and to
contextualize proteomic or transcriptomic shifts (O’Brien et al., 2015). Moreover, these
models assist in strain comparison, hypothesis generation, and resource allocation
analysis, providing a quantitative basis for enzyme economy and proteome investment.
Together, computational modeling is a cornerstone of predictive and data-driven strain
design, bridging molecular mechanisms with system-level optimization and enabling
faster, more sustainable engineering of cell factories.
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Table 1. Computational design strategies for cell factories.

modeling

in metabolism

programming

Design framework | Scope and scale Mathematical Role of gene-
formulation protein
relationship
Constraint-based Steady-state fluxes | Linear Quantitative,

stoichiometric

Boolean / logic

Regulatory or

Boolean logic

Qualitative (on/off)

modeling metabolic
activation states
Stochastic Randomness in Gillespie / Noise in gene-
modeling molecular events stochastic protein expression,
differential indirect
equations
Regulatory (gene Control of gene Boolean / Causal, with
regulatory expression differential quantitative link
networks) equations
Kinetic modeling Dynamic metabolic | Ordinary Often
reaction rates differential parametrized
equations indirectly

Structural enzyme
design

Optimize catalytic
properties,
cofactor use,
stability

Physics-based

Direct sequence

Machine learning
based prediction
tools

Predict enzyme
function, kinetics
or phenotype

Data driven /
supervised or deep
learning

Implicit (learned
from data)
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The gene-protein relationship forms the structural foundation of genome-scale
metabolic models (GEMs). Early metabolic reconstructions were primarily stoichiometric
representations of biochemical reactions, disconnected from the genome. With the
advent of complete genome sequencing and functional annotation, each reaction could
be formalized as gene-protein-reaction (GPR) rules. These associations, expressed as
Boolean logic (“AND” for multi-subunit complexes, “OR” for isoenzymes), allow creating
a mechanistic map from genotype to metabolic phenotype (Thiele & Palsson, 2010).
GEM is constructed using the organism's genome information and it encompasses all
biochemical reactions inside the cell, including reactions of enzymes and transporters
encoded in the DNA (Thiele & Palsson, 2010). Model reconstruction is semi-automatic —
ModelSEED, CarveMe, RAVEN, KBase, using curated databases, such as SGD (Hellerstedt
et al., 2017), KEGG, BioCyc, Reactome, Uniprot, and experimental data on substrate

Genome-scale metabolic models and flux balance analysis
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usage (Domenzain et al., 2021). The scale of a genome makes it a valuable source of
information about the organism. The model’s quantitative conception is based on
ordinary differential equations of change of metabolite concentrations in time. This
means that the production of a product with rate v is accompanied by the decay of a
substrate with rate -v, with stoichiometric coefficients denoting the proportion of
substrate and product molecules involved in a reaction. For a metabolic network
consisting of m substances and r reactions, the system dynamics is described by the
system equations (Equation 1.1), or the mass balance equations assuming reactions are
the only cause for mass flow:

das; r ,

E=Zj=1nijvjforl=1,...,m (1.1)

Where quantities n; are the stoichiometric coefficients of the ith metabolite in the jth
reaction. The stoichiometric coefficients n; assigned to the compounds S; and the
reactions v; can be combined into the stoichiometric matrix N, where each column
belongs to a reaction and each row to a compound.

Altogether, the mathematical description of the metabolic system in steady state
consists of a vector S of concentration values, a vector v of reaction rates, a parameter
vector p, and the stoichiometric matrix N (Equation 1.2).

% =Nv=0 (1.2)

The stoichiometric matrix N does not contain information about pre-assumed
thermodynamics (reaction reversibility), but the sign in front of rate v describes it. If
complete kinetic information is not available, as is the true situation for many of
reactions, it is possible to assume a metabolic quasi-steady state, in which rates of
metabolite formation and degradation inside the cell are equal (Nv = 0), ie. the mass of
metabolites does not accumulate internally. Being of a scale of a genome, the N matrix
is very large and underdetermined; metabolism is very interconnected and the number
of reactions exceeds the number of metabolites (Varma & Palsson, 1994). From linear
algebra, this equation has no trivial solutions (Klipp, 2016).

To simulate and analyze the flow of metabolites with GEM, the powerful Flux Balance
Analysis (FBA) method is used (Lewis et al., 2012). FBA uses linear programming to find a
distribution of reaction rates (fluxes) by optimizing for an objective function (z) while
accounting for mass conservation and thermodynamic constraints but satisfying the
constraints of the metabolic network (Ib, ub) under steady state assumption (Orth et al.,
2010) (Equation 1.3).

Nv =20
lb < v; < ub, optimization of objective z (1.3)

Underdetermined systems are characterized by a solution space of infinite solutions,
rather than just one. The constraints of a metabolic network, which calibrate model
behavior, represent substrate uptake and secretion rates, called bounds b, and these are
experimentally determined values. Through the constraints as the lower bound (Ib) and
upper bound (up) of metabolic reactions as described in Eq. 1.3, the model integrates
both experimental data and a pre-assumed reaction thermodynamics (Edwards et al.,
2002). A commonly used objective function z in FBA is maximization of cellular growth
rate (Feist & Palsson, 2010). The growth rate is implemented as a biomass synthesis
pseudo-reaction, similarly as external metabolites that are not included in the initial mass
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balance equations based on GPR. Biomass synthesis reaction is a simplification of
complex biosynthetic processes, such as protein, RNA, DNA, lipid, cell wall formation,
by combining all metabolic precursors, cofactors, and energy requirements in the
stoichiometric proportions necessary to produce one gram of CDW with a flux rate
corresponding to the specific growth rate pu of the organism. The stoichiometric
proportions are derived from experimental biomass composition data (eg., protein,
carbohydrate, lipid fractions), elemental analysis, polymer composition (amino acid,
nucleotide, fatty acid distribution. This reaction also includes the energetic costs of
biosynthesis, captured through ATP, GTP, UTP, and NAD(P)H usage, obtained from
chemostat experiments, which together define the growth-associated maintenance
(GAM) term (Feist & Palsson, 2010). The maintenance processes that drive metabolic
processes of the cell different than biosynthetic, polymerization, or anabolic metabolic
reactions - cellular homeostasis (turgor pressure, pH regulation), maintenance of ion
gradients, and others - are included in non-growth associated maintenance (NGAM)
(Thiele & Palsson, 2010). NGAM is an ATP hydrolysis reaction (1 ATP + 1 H,0 - 1 ADP +
1 P; + 1 H*), which in yeast models was set between 0.5-1 mmol (gCDW h)? (Sdnchez
et al., 2017). The ATP yield per NADH (P/O ratio) is not defined as a fixed parameter but
emerges from the stoichiometric coupling of the electron transport chain and ATP
synthase reactions. In modern GEMs such as Yeast8 and ecYeast8, the stoichiometry of
ATP synthase was changed to correctly represent the effective P/O ratio that applies to
organisms that lack proton-translocating Complex | (Ferguson, 2010; Sanchez et al., 2017).
On a final note about constraints, metabolic transients are typically rapid compared to
growth rates (Stephanopoulos et al., 1998), making steady-state assumption reasonable.

By predicting fluxes, researchers can find out how nutrients are utilized, how
byproducts are generated, which metabolic pathways are active inside the cell. With GEMs,
it is possible to quantitatively predict targets for metabolic engineering, manipulate
reactions in silico, allowing for prediction of a knockout phenotype or heterologous
byproducts, guide medium and process optimization through scenario testing under
varying oxygen, carbon, or nutrient regimes (Kerkhoven et al., 2014). Due to relative ease
of implementation, GEMs are one of the core quantitative tools enabling computational
design. Since the first yeast GEM reconstruction of S. cerevisiae in 2003, more than 45
metabolic models have been developed for a wide variety of yeast-based cell factories.
A landscape of yeast GEMs, their accessibility and usability is available from The FEMS
Yeast Research review (Domenzain et al., 2021). However, their accuracy and predictive
capacity depend on parametrization, constraints, and validation.

Because genome-scale models are quantitative frameworks, their predictive power
relies on accurate experimental parameterization and validation. Experimental data are
used to constrain and calibrate (fitting bounds/parameters) model behavior. The FEMS
Yeast Research review (Domenzain et al., 2021) discusses that many yeast GEMs lack
consistent, reproducible validation (testing on held-out observables/conditions)
across species and indicates the type of biological and computational methods used
when available. Genetic perturbations, including gene deletions, overexpression, and
knockdowns, isotope labeling (*3C) and comparing predicted and measured phenotypes,
including growth rates, yields, flux distributions, remain as fundamental experimental
strategies for validating flux predictions from genome-scale metabolic models.
By systematically engineering cells and measuring resulting phenotypes —such as growth
rate, substrate uptake, product yield, or intracellular fluxes — researchers can test whether
model predictions reflect real metabolic responses. Modern tools like CRISPR/Cas9 and
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CRISPRi enable precise and multiplex genome editing, while omics-based measurements
provide quantitative validation of flux distribution and proteome allocation. Together,
these validation steps establish the quantitative reliability of the ecGEMs across multiple
observable levels - from global phenotypes to proteome allocation. Such comprehensive
evaluation forms the basis for subsequent computational design and interpretation of
experimental results presented in the following chapters.

1.5.1 Enzyme-constrained models

The prediction of biologically meaningful metabolic flux values is the major challenge of
GEMs, as a result of all assumptions made upon the construction. Also, not always
experimental yeast data are readily available for a wide variety of organisms across
different conditions. Enzyme-constrained genome-scale models (ecGEMs) are built on
the principle that any metabolic flux, apart from the constraints already discussed earlier,
has a natural biological constraint equal to the enzyme’s concentration [E] multiplied by
the enzyme’s turnover number (ket). In the ecGEMs, this constraint, derived through
Michaelis-Menten equation, is defined and implemented as the maximum rate of
enzymatic reaction (Vmax) that the metabolic flux (v) cannot exceed (Sanchez et al., 2017)
(Equation 1.4):

v < keae[E] (1.4)

This way, GEMs are used as scaffolds for proteomic data integration and
interpretation (Sdnchez & Nielsen, 2015), and can execute simulations without
experimental data on substrate usage. The very first enzyme-constrained model was
developed in yeast Saccharomyces cerevisiae in 2017 (Sanchez et al., 2017) and was
capable of capturing the Crabtree effect.

1.6 Aims and significance

A central challenge in modern biotechnology is to understand and predict how cellular
metabolism responds to genetic and environmental perturbations. Achieving this
requires computational models capable of quantitatively describing enzyme- and
resource-limited metabolism. Enzyme-constrained genome-scale models (ecGEMs)
provide a powerful framework for this purpose, linking enzyme capacity to metabolic flux
and thus improving prediction accuracy beyond traditional constraint-based approaches.
Such models are critical not only for advancing fundamental understanding of metabolic
organization but also for accelerating design-build-test-learn cycles in metabolic
engineering, reducing development costs and time-to-market for bioprocess
innovations.

The overarching aim of this thesis was to develop, apply, and critically evaluate
enzyme-constrained genome-scale models for predicting yeast metabolism across both
model and non-model yeasts. Specifically, the aims were:

(i) to parameterize and validate ecGEMs of Saccharomyces cerevisiae and Rhodotorula
toruloides as tools for quantitative metabolism studies using quantitative
proteomics, exchange flux measurements, and targeted genetic perturbations;

(ii) to assess their predictive capacity in reproducing experimental phenotypes and
proteome allocation patterns;

(iii) to identify biological and methodological factors that limit their accuracy.
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2 Materials and methods

To parametrize and validate ecGEM of a model yeast S. cerevisiae (Study 1), growth
experiments accompanied with absolute proteome quantification were performed in
both engineered (R,R)-2,3-butanediol (23BD) producer strain and the wild type strain.
Similarly, growth characterisation and absolute proteome quantification were
performed in the wild type strain of R. toruloides (Study 2). Moreover, these experiments
were performed on three various carbon sources - glucose, xylose and acetate. After
parametrization of the ecGEM, its predictions were validated by engineering gene
knockout strains and characterizing their growth on the same carbon sources.
The corresponding publications to these two studies are outlined in Table 2. The materials
and methods refer to Study | or Study II.

Table 2. Studies and related publications included in this thesis.

Study | Topic Deliverables Reference
1 Evaluating and (i) Engineering of a 23BD producer Publication |
validating strain;
enzyme- (ii) Growth characterisation and
constrained absolute proteome quantification of
genome-scale the engineered and wild type strains;
modeling of (iii) In silico flux and proteome
anaerobic prediction using total-protein ecGEM;
cultivation in S. (iv) Integration of absolute proteome
cerevisiae abundances to the ecGEM and in silico
flux prediction.
2 Predicting and (i) Growth characterization and Publication Il
validating central | absolute proteome quantification of a
carbon wild type strain on different carbon
metabolism in the | substrates;
oleaginous yeast | (ii) Development of condition-specific
R. toruloides proteomics-constrained ecGEMs;
(iii) In silico flux predictions.
2 Predicting and (i) Engineering of different gene Publication IlI
validating central | knockout strains;
carbon (ii) Growth characterization of gene
metabolism in the | knockout strains on different carbon
oleaginous yeast | sources.
R. toruloides
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2.1 Strains and media

The S. cerevisiae and R. toruloides strains relevant to this thesis are listed in Table 3.
Of the S. cerevisiae strains, only GSY013 and GSY014 were used to generate results
presented here. All yeast strains were cultivated in chemically defined media. The base
medium was prepared according to Verduyn et al., previously optimized for yeast
biomass formation under glucose-limited conditions (Verduyn et al., 1992). Auxotrophic
markers and a Tween-ergosterol-ethanol supplement were added to support growth of
auxotrophic strains under anaerobic conditions (Study 1). In Study 1, standard starting
glucose concentrations were used as a carbon source. In Study 2, non-standard starting
concentrations of glucose (63.6 g/L), xylose (70 g/L), and acetate (20 g/L) were used in
actively controlled bioreactor cultivations. For lipid production in R. toruloides, the
nitrogen concentration was reduced to achieve a starting carbon-to-nitrogen (C/N) ratio
of 69 or 80 (mol/mol) (Study 2). Only R. toruloides CCT 7815 cultures on glucose used
urea instead of ammonium sulfate as the nitrogen source (Study 2). Routine yeast growth
was performed in YPD medium (10 g L™ yeast extract, 20 g L™ peptone, 20 g L' glucose).

For plasmid propagation and routine cloning, Escherichia coli strains DH5a (Study 1)
and TOP10 (Study 2) were grown in LB medium containing 5 g L™ yeast extract, 10 g L™
peptone, and 10 g L' NaCl. For plasmid propagation intended for R. toruloides,
kanamycin was added to LB medium (Study 2).

Table 3. S. cerevisiae and R. toruloides strains relevant to this thesis.

Study Strain name | Description of relevant Parental Reference
(accession genotype strain
number)

Study 1 S. cerevisiae (Entian &
CEN.PK113- Koétter, 2007)
7D

Study 1 IMX672 MATa ura3-52 trp1-289 | S. cerevisiae | (Mansetal.,
(Y40595) leu2-3112 his3A CEN.PK2-1C | 2015)

canlA::cas9-natNT2

Study 1 GSY006 pROSU-mth1-pdc5+6 IMX672 Publication |

trp1-289 leu2-3112 his3A
pdc6::pTEF1-ACHI1;
MTHI1AT; pdc5
Study 1 GSY008 pROSH-pdc1; trp1-289 GSY006 Publication |
leu2-3112 pdc6::pTEF1-
ACH1; MTH1AT; pdc54;
pdcl::(alsD-tADH2
pTDH3-BDH1 pFBA1-
budA)
Study 1 GSY013 pTHUL IMX672 Publication |
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Study 1 GSY014 pTHUL; pdc6::pTEF1- GSY008 Publication |
ACH1; MTHI1AT; pdc54;
pdcl::(alsD-tADH2
pTDH3-BDH pFBA1-
budA)
Study 2 R. toruloides R. toruloides | (Bonturi et
CCT 7815 CCT 0783 al., 2017)
Study 2 R. toruloides (Zhang et al.,
NBRC 0880 2016)
Study 2 AACL pPB0.202-9725(1) R. toruloides | Publication IlI
(random integration) NBRC 0880
Study 2 APK pPB0.202-13382(3) R. toruloides | Publication Ill
(random integration) NBRC 0880
Study 2 AcMAE pPB0.202-12761(1) R. toruloides | Publication IlI
(random integration) NBRC 0880

2.2 Plasmid construction and strain engineering

Yeast transformation was performed using lithium acetate/PEG-mediated chemical
transformation method as described by Mans et al. (Mans et al., 2018) (S. cerevisiae) and
Publication Il (R. toruloides). Colonies of the resultant strains were screened by PCR
amplification of relevant sites and Sanger sequencing (full details are available from
Publications I and Ill).

In Publication I, plasmids were constructed by Gibson assembly (Gibson et al., 2009)
and transformed into E. coli DH5a for propagation. In Publication Ill, custom guide RNA
sequences replaced the GFP cassette in plasmid pPB0.202 via a Golden Gate — style
reaction, using annealed oligonucleotides with Bsal-compatible overhangs in a one-pot
digestion — ligation with T4 DNA ligase, followed by transformation into E. coli TOP10.
Selected colonies were screened by PCR and confirmed by Sanger sequencing of the
relevant regions.

Plasmids used in this thesis are listed in Table 4. Details of plasmid and PCR DNA
purification kits, polymerases, as well as sequences of primers and gRNAs are provided
in the respective publications (Table 2).
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Table 4. Plasmids relevant to this thesis. The number in the brackets refers to which gRNA variant
in a row was successful to generate the gene knockout. Gene symbols in italics denote coding
sequences; heterologous origins (e.g., B. subtilis alsS, K. pneumoniae budA) are specified in text.
SpCas9, derived from Streptococcus pyogenes, is indicated explicitly.

Study Plasmid name Relevant characteristics Reference

Study 1 | pROS10 2um ampR URA3 gRNA-CAN1 | (Mans et al.,
gRNA-ADE2 2015)

Study 1 | pROS16 2um ampR HIS3 gRNA-CAN1 (Mans et al.,
gRNA-ADE2 2015)

Study 1 | pBC414 CEN6/ARS4 chIR TRP1 (Frazer &

O’Keefe, 2007)

Study 1 | pROSU-mth1-pdc5+6 | 2um ampR URA3 gRNA- Publication |
MTH1 gRNA-[PDC5 and
PDC6]

Study 1 | pROSH-pdcl 2um ampR HIS3 gRNA-PDC1 Publication |
[2X]

Study 1 | pTHUL CEN6/ARS4 chIR TRP1 LEU2 Publication |
HIS3 URA3

Study 1 | pYGS011 ampR budA-tADH2 Publication |

Study 1 | pYGS012 ampR pTDH3-BDH1 Publication |

Study 1 | pYGS013 ampR pFBA1-alsS Publication |

Study 1 | pYGS017 ampR pTEF1-ACH1 Publication |

Study 2 | pPBO.202 KanR G418R eGFP SpCas9 (Otoupal et al.,

2019)

Study 2 | pPB0.202-9725(1) KanR G418R gRNA-ACL Publication 11l

SpCas9

Study 2 | pPB0O.202-13382(3) KanR G418R gRNA-PK SpCas9 | Publication IlI

Study 2 | pPB0.202-12761(1) KanR G418R gRNA-cMAE Publication Il
SpCas9

2.3 Laboratory evolution

Laboratory evolution was conducted by serially culturing strain GSY014 in 5 mL of
chemically defined medium under anaerobic conditions for 35 inoculation cycles
(=200 generations). The detailed procedure is described in Publication I.
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2.4 Cultivations

2.4.1 Batch cultivations in actively controlled bioreactors

Batch cultivations were performed in 1 L stainless-steel (SS) bioreactor system (Study 1)
and 1-L glass bioreactors (Study 2) equipped with automated feedback control of
aeration, temperature, stirring, and pH, ensuring tightly regulated growth conditions.
Outlet gas composition was continuously monitored using online gas analyzers, and
antifoam was added as needed to prevent foam formation. Anaerobic conditions in
Study 1 were maintained by applying a continuous nitrogen stream in the reactor
headspace. In Study 2, cell turbidity was monitored online using a biomass sensor. Full
cultivation parameters are provided in the respective publications.

Seed cultures were prepared in standard chemically defined media in shaker flasks.
For anaerobic cultivations (Study 1), serum bottles were deoxygenated by alternating
cycles of vacuum and nitrogen gas. For R. toruloides aerobic cultures (Study 2), pre-seed
cultures were grown in YPD, followed by seed cultures in defined media containing
non-standard concentrations glucose (18.2 g L™), xylose (20 g L™), or acetate (20 g L") at
a C/N ratio of 8.8.

Samples for HPLC analysis were taken at each sampling point. In Study 1, optical
density (OD) was measured at each point, and cell dry weight (CDW) was determined
twice per batch. In Study 2, CDW was measured three times in xylose and up to six times
in glucose cultures. Proteomic samples were collected at the penultimate sampling point
during exponential growth — prior to carbon (Study 1) or nitrogen (Study 2) depletion —
and an additional sample was taken during nitrogen limitation in Study 2. Samples for
lipidomics were collected at the final sampling point, when the respective nutrient was
depleted. Detailed sampling protocols and time points are described in the original
publications.

2.4.2 Batch cultivations in sensor-monitored Falcon tube bioreactors
In Study 2, batch cultivations were also performed in a multi-channel Falcon tube
bioreactor system equipped with a proprietary reverse-spin mixing mechanism and
non-invasive optical sensors for real-time monitoring of optical density (OD), pH, and
dissolved oxygen (DO). Non-standard initial concentrations of glucose (20 g L™), xylose
(20 g L"), and acetate (10 g L™") were used, while maintaining a starting C/N ratio of 80.
The pH was adjusted using K;HPO, (acted as a buffer system in glucose/xylose media) or
KOH (to increase the starting pH in the presence of acetate) but not actively controlled
during cultivation. Full cultivation parameters are available in the respective publication.
Seed cultures were prepared by overnight growth in liquid YPD medium in shaker
flasks. Samples for OD and HPLC analysis were taken at each sample point. Real-time OD,
pH, and DO data were continuously logged throughout cultivation, and OD readings were
converted to CDW (g L™") for data presentation.

2.5 Analytical methods

Extracellular metabolites were quantified using high-performance liquid chromatography
(HPLC) systems equipped with an ion-exclusion column and a refractive index detector
(RID). In Study 1, trace amounts of organic acids were detected at 210 nm using a
photodiode array detector (PDA); since these represented < 1 % of the total carbon and
degree-of-reduction balance, they were excluded from modeling and from the presented
results. In Study 2, stereoselective analysis of polyols was performed using a chiral
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stationary phase column with RID detection. Detailed chromatographic conditions are
provided in the respective publications.

Optical density was measured spectrophotometrically at 600 nm (ODeoo). Cell dry
weight (CDW) was determined gravimetrically, and a calibration curve was established
by linear regression between ODgoo and CDW to estimate biomass across all sampling
points.

Total protein content was quantified from the same frozen cell pellets used for
proteomic analysis, using a modified Lowry method (Study 1) or the bicinchoninic acid
(BCA) assay (Study 2). Bovine serum albumin (BSA) served as the standard in both cases.
Absorbance was measured at 510 nm, and protein concentrations were determined by
linear interpolation from the BSA standard curve.

2.6 Absolute proteomics

2.6.1 Sample preparation for proteomics

Sampling of cell pellets for proteomic analysis was performed as described in Publication
I and completed within 3 min to minimize physiological changes. Samples were shipped
on dry ice to the Proteomics Core Facility, University of Tartu, for processing and analysis.
Cell pellets were lysed, and total protein yield on biomass (mg g™' CDW) was determined
using the bicinchoninic acid (BCA) assay. The lysates were then processed into peptides
for LC-MS/MS analysis as described previously (Hughes et al., 2019; Sanchez et al., 2021).
In Study 2, proteome samples were mixed with a heavy-labeled Rhodotorula toruloides
internal standard grown in defined medium supplemented with N- and ™C-labeled
lysine (also known as SILAC, Stable Isotope Labeling by Amino acids in Cell culture).

2.6.2 LC-MS/MS analysis

Peptides were analyzed on an Orbitrap mass spectrometer (Thermo Fisher Scientific).
In Study 1, the instrument was operated in data-independent acquisition (DIA) mode,
whereas in Study 2, data were acquired using a data-dependent acquisition (DDA) setup.
Detailed descriptions of the mass spectrometer components and key data acquisition
parameters are provided in the respective publications and in Sanchez et al. (Sdnchez
et al., 2021).

2.6.3 Raw MS data analysis

Mass spectrometric raw data were processed using DIA-NN (Demichev et al., 2020) for
Study 1 and MaxQuant (Tyanova et al., 2016) for Study 2. Database searches were
performed against the UniProt (The UniProt Consortium et al.,, 2023) reference
proteomes of Saccharomyces cerevisiae S288C, supplemented with Bacillus subtilis alsS
and Klebsiella aerogenes budA sequences (Study 1), or Rhodotorula toruloides NP11
(Study 2). Details of search settings, parameters, and data processing methods that
deviated from software defaults are provided in Publication | and in Sanchez et al.
(Sanchez et al., 2021).

2.6.4 Quantitative and statistical analysis

Absolute protein quantification was performed using the total protein approach
(Sanchez et al., 2021), which assumes proportionality between measured MS signal
intensity and total protein yield on biomass. All quantitative analyses were performed
with proteome-normalized proteomics data (Ug Eprotein ). For differential expression
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analysis, p-values were adjusted for multiple testing using the Benjamini-Hochberg false
discovery rate (FDR) procedure (Benjamini & Hochberg, 1995a). Additional analyses
included principal component analysis (PCA) using the ClustVisweb tool (Metsalu & Vilo,
2015) and gene set analysis with the Piano package (Varemo et al., 2013). In Study 2, the
rate of protein synthesis per ribosome (also referred to as ribosome efficiency or protein
translation rate) was calculated as described in Table 5.

Table 5. Translation rate calculation example in Study 2 using absolute proteomics data of batch
cultivations in chemically defined media containing glucose (G), xylose (X), or acetate (A) as the
carbon source during exponential growth (exp) and nitrogen-limited (Nlim) phases. Reproduced
from Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.

Parameter Gexp GNlim Xexp XNlim Aexp ANlim

ribo_mmol_gDCW (median) 4.21E-05 1.30E-05 2.76E-05 9.82E-06 2.25E-05 9.87E-06

all_protein_mmol_gDCW (recov-adj) 7.65E-03 3.21E-03 5.38E-03 2.88E-03 5.41E-03  3.32E-03

av. AAin euk. protein 472

all_prot_mmolAA_gDCW* 3.61E+00 1.52E+00 2.54E+00 1.36E+00 2.55E+00 1.57E+00

ratio(mmolAA/ribo_mmol)® 8.59E+04 1.17E+05 9.20E+04 1.38E+05 1.14E+05 1.59E+05
3.63 36.48 12.84 38.51 9.50 57.76

doubling time (s)? 13064.55 131333.15 46209.81 138629.43 34182.60 207944.15

translation rate (1/s)® 6.57 0.89 1.99 1.00 3.32 0.76

u(1/h) 0.19 0.021 0.054 0.021 0.073 0.012

2all_protein_mmol_gDCW * av. AA in euk. protein
Pall_prot_mmolAA_gDCW / ribo_mmol_gDCW (median)
In(2) / p (1/h)
d * 3600
eratio(mmolAA/ribo_mmol) / doubling time (s)

2.7 Lipidomics

Sampling of cell pellets for lipidomics analysis was performed as described in Publication
11l. Samples were shipped by regular post to the University of Tartu (for GC-MS analysis)
and to the Estonian University of Life Sciences (for GC-FID analysis). Lipid quantification
via fatty acid methyl ester (FAME) analysis was carried out using gas chromatography
(GC)-based methods.

In Publication Il, FAMEs were analyzed by gas chromatography—mass spectrometry
(GC-MS). After chromatographic separation, compounds were identified by comparing
retention times and mass spectra with reference standards and entries from the National
Institute of Standards and Technology (NIST, USA) Mass Spectral Library and quantified
from extracted ion chromatograms using calibration curves constructed for each
methylated fatty acid from seven calibration standards prepared with reference
compounds and the internal standard (hexadecane). Fatty acid extraction and
derivatization were performed according to Tammekivi et al. (Tammekivi et al., 2021);
key methodological details and GC-MS parameters are provided in Publication II.

In Publication Ill, FAMEs were analyzed by GC-FID. Peaks were identified based on
retention times of reference standards and quantified using flame ionization detection.
A one-step fatty acid extraction and derivatization procedure was applied using
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heptanoic acid as the internal standard, as described by (Sukhija & Palmquist, 1988). Key
instrument operating parameters are provided in Publication Ill.

Total lipid yield on biomass was calculated as the sum of individual fatty acid masses,
expressed as milligram of lipid per gram of cell dry weight (mg g~' CDW), as described in
Publication IlI.

2.8 Enzyme-constrained genome-scale models

In Study 1, the recently published total-protein Saccharomyces cerevisiae ecGEM
(F. Li et al., 2022) was chosen as a starting point for modeling GSY014. The model
was adapted to anaerobic growth conditions, fitted to experimentally measured
exchange fluxes of GSY013 and adapted to the genotype of GSY014 as described in
Publication I.

In Study 2, the conventional GEM of Rhodotorula toruloides (Tiukova, Prigent, et al.,
2019) served as the starting point for modeling CCT 7815, as no enzyme-constrained
version (ecGEM) for this species was available. The base model was converted into a
total-protein ecGEM fitted to experimentally measured exchange fluxes of CCT 7815
through the GECKO toolbox version 2.0.2 (Domenzain et al., 2022), using R. toruloides
NP11 enzyme identifiers from UniProt. Individual protein constraints that limited growth
rate predictions were flexibilized by adjusting their ke values (and therefore the upper
bounds of enzyme usage), initially retrieved from the BRENDA database via the algorithm
described by Domenzain et al. (Domenzain et al., 2022). The detailed procedure for
flexibilization is described in Publication II.

The total-protein ecGEMs were subsequently constrained by measured exchange
fluxes and biomass-normalized proteomics data (ug gCDW™) using the GECKO pipeline,
resulting in proteomics-constrained ecGEMs. Where necessary, the total protein pool
pseudoreaction was adjusted to match measured fluxes. In addition, individual enzyme
constraints that prevented the model from reaching the observed growth rate were
flexibilized by adjusting their protein abundances (upper bound, ub). In Study 2, further
modifications were implemented as described in Publication Il, via user-defined scripts
integrated into the GECKO pipeline.

Model simulations and alterations were carried out using the RAVEN toolbox
version 2.0 (Wang et al., 2018) (both studies) and COBRA toolbox version 3.0 (Heirendt
et al., 2019) (Study 1). Both frameworks solved the linear optimization problem
underlying Flux Balance Analysis (FBA) using the Gurobi solver. In total-protein ecGEMs
(Study 1), solving this linear problem provided not only predicted distribution of flux
values but also protein allocation patterns, which can be directly obtained from the
model’s enzyme pool constraints. Thus, FBA on a total-protein or proteomics-constrained
ecGEM inherently predicts individual enzyme allocation alongside metabolic fluxes.

To assess the variability of predicted flux values, flux variability analysis (FVA) and
flux sampling (Bordel et al., 2010) were performed on the total-protein ecGEM
(Study 1) and proteomics-constrained ecGEMs (both studies). In Study 1, default
simulation parameters were used. In Study 2, only flux sampling was performed.
For the glucose condition, simulated gas-exchange values were used instead of measured
values to constrain sampling; other parameters followed those described in Publication
Il.

Flux sampling, as implemented by Bordel et al. (Bordel et al., 2010), explores the convex
feasible flux space defined by the stoichiometric constraints. Median flux values were
calculated from the sampling results as described in Publication Il. Cofactor turnover
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rates (mmol gCDW™ h™"), cofactor yields (mmol cofactor mmol carbon™), and apparent
catalytic activities (kapp) (s™") were also calculated following the procedures in Publication
Il. A schematic overview of the modeling workflow is presented in Figure 1.

Study 1
[ Model Adaptation | [ Model Initialization |
S. cerevisiae total-protein ecGEM (Li et al. 2022) R. toruloides GEM (Tiukova et al 2019)
. Adapted to anaerobic conditions . Converted to total-protein ecGEM via GECKO
Fitted to measured exchange fluxes (GSY013) . Annotated enzymes from Uniprot NP11
. Adjusted to genotype (GSY014) . keat flexibilization (BRENDA, Domenzain et al. 2022)

« Adjust total protein pool constraint
« Flexibilize limiting enzymes

Integration of Proteomics Constraints (adjust kea, protein abundance)
Exchange fluxes - Proteomics data

Further refinement implemented via

customGECKO scripts
Model Simulations
» Solved with RAVEN and COBRA
» Linear optimization using Gurobi solver
Outputs Outputs
* Flux distributions * Protein allocation
. Flux Variability Analysis . Flux Sampling (Bordel et al. 2010)
- total-protein ecGEM . Median fluxes calculated « Non-default parameters
proteomics-constrained ecGEM - proteomics-constrained ecGEM (glucose condition)

+ Flux Sampling (Bordel et al. 2010)

*  Median fluxes calculated
- total-protein ecGEM
- proteomics-constrained ecGEM

. Derived quantities
- Cofactor tumover (mmol gCDW-' h-')
- Cofactor yield (mmol/mmolIC)
- Apparent catalytic activity (K,pp, )

Figure 1. Schematic overview of model reconstruction and simulation workflow. In Study 1, the
total-protein S. cerevisiae ecGEM was adapted to anaerobic conditions and fitted to experimental
data. In Study 2, the R. toruloides GEM was reconstructed into a total-protein ecGEM via the GECKO
pipeline. Both models were subsequently constrained with proteomics and exchange flux data,
simulated using FBA (Gurobi solver) to obtain flux variability (by flux variability analysis and flux
sampling), protein allocation, and derived kinetic parameters.

2.9 Statistical analysis

Statistical analysis of cultivation parameters was performed using GraphPad Prism 9.5.1
(GraphPad Software Inc., San Diego, Ca, USA). Statistical significance was calculated using
one-way ANOVA (Analysis of Variance) at 0.05 significance level. p-values were adjusted
(apval) for multiplicity following Dunnett multiple comparison testing against the wild
type strain.
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3 Results and discussion

Although all results have been published in the respective publications, in this chapter |
will focus on the predictive power of constraint-based modeling by interpreting the
predicted fluxes and derived quantities presented in these studies. Some of the
discussion points have been addressed briefly in the original publications but are
elaborated here in greater depth. In the following sections, | revisit the relevant
guantitative results and methodological aspects — some overlapping with the published
material and others presented here for the first time — to provide an integrated,
modeling-centered interpretation.

3.1 Study 1: Evaluating and validating enzyme-constrained genome-
scale modeling of anaerobic cultivation in S. cerevisiae (Publication I)

Anaerobic redox-neutral, ATP-yielding pathways from substrate to product represent
the stoichiometrically most efficient bioconversion routes, maximizing carbon vyield
while conserving energy. This principle underlies classical fermentations — such as
alcoholic or homolactic — but also applies to engineered heterologous pathways when
thermodynamically feasible (Cueto-Rojas et al., 2015). Such pathways offer major
bioprocessing advantages: they minimize substrate costs, reduce capital investment by
eliminating aeration, lower cooling requirements, and enable coupling of product
formation to growth. This growth coupling facilitates adaptive laboratory evolution (ALE)
for improved performance and allows efficient cell recycling under production conditions.
Given these properties, anaerobic, ATP-yielding, redox-neutral product formation
provides a stringent and informative test case for enzyme-constrained genome-scale
models (ecGEMs), which explicitly link catalytic capacity to metabolic flux. In this
work, we focused on the heterologous production of (R,R)-2,3-butanediol (23BD) in
Saccharomyces cerevisiae as an industrially relevant model system. 23BD is a versatile
platform chemical used in solvents, synthetic rubber, plastics, and fuels (Celinska &
Grajek, 2009; Garg & Jain, 1995). The pathway — from two molecules of pyruvate via
acetolactate synthase (AlsS), acetolactate decarboxylase (BudA), and 2,3-butanediol
dehydrogenase (Bdhl) - has been established previously under aerobic conditions
(Kim et al., 2017; Ng et al., 2012), demonstrating high titers at high rate, meaning that
confounding effects from product toxicity or export should not be a problem. To enable
anaerobic operation, all pyruvate decarboxylase (PDC1, PDC5, and PDC6) genes were
deleted to block competing ethanol fermentation, while MTH1AT was introduced to
restore glucose uptake regulation (Oud et al., 2012), and ACH1 was overexpressed to
alleviate cytosolic acetyl-CoA deficiency (Y. Chen et al., 2015). Because glycolytic 23BD
formation generates one surplus NADH per glucose, and S. cerevisiae reoxidizes NADH
mainly through glycerol production under anaerobic conditions (van Dijken & Scheffers,
1986), the pathway intrinsically couples 23BD and glycerol formation in a redox-balanced,
near 1:1 ratio.

In Study I, we experimentally measured exchange fluxes, growth rates in the reference
strain, and parameterized and validated the enzyme-constrained GEM (ecGEM) to assess
how catalytic constraints redistribute proteome investment and limit fluxes. The evaluation
proceeded in two stages. First, the ecGEM was parameterized and fitted using data from
the reference strain to capture aerobic growth physiology. The calibrated model was
then applied to predict anaerobic growth and metabolite exchange rates of the
engineered 2,3-butanediol—glycerol co-producing strain, with predictions benchmarked
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against experimental measurements obtained before and after 200 generations of
laboratory evolution. Then model predictions were compared to quantitative
proteomics. The analysis proceeds from coarse simulations using only a total-protein
constraint to proteomics-constrained models integrating 750 individual enzyme
abundances, revealing how enzyme constraints reduce flux variability, reshape glycolytic
investment, and expose discrepancies between in vitro kinetics and in vivo proteome
behavior. Together, these results illuminate the energetic and proteomic trade-offs
underlying engineered anaerobic fermentation and evaluate the predictive scope of
ecGEMs for rational strain design.

3.1.1 Calibration of a total-protein ecGEM enables prediction of 2,3-
butanediol and glycerol co-production

To fit an enzyme-constrained model (ecGEM) of S. cerevisiae engineered for
(R,R)-2,3-butanediol (23BD) production, we first parameterized the reference strain
GSYO013 in actively controlled anaerobic batch cultures (Figure S1A). The strain produced
biomass (89 + 6 mg/g_glucose), carbon dioxide (380 + 100 mg/g_glucose), ethanol
(340 + 1 mg/g_glucose), and glycerol (101 + 2 mg/g_glucose) (Table 7), values consistent
with previously reported reference strains under similar conditions (Papapetridis et al.,
2018). The maximum specific growth rate was 0.36 + 0.02 h™", supported by a specific
glucose uptake rate of —23 + 2 mmol/gDCW/h, with other uptake and secretion rates
given in Table 7.

As a starting point, we used the most recently published ecGEM of S. cerevisiae,
which constrains fluxes by the total enzyme pool (F. Li et al., 2022). To align model
predictions with experimentally observed data, two adjustments were required:
(i) the degree of reduction of biomass was lowered by 3 mmol/gDCW, and (ii) the upper
bound of the protein pool pseudoreaction was reduced from the experimentally
determined 450 mg/gDCW to an effective value of 123 mg/gDCW. This adjustment is a
common feature of GECKO-based models, reflecting the fact that not all measured
protein mass can be functionally assigned to catalytic activity in the model. Reasons
include incomplete enzyme annotation, missing or inaccurate ket values, and allocation
to non-modeled proteins (e.g., regulatory, structural, or stress-related proteins).
Thus, the effective pool of usable protein in silico is smaller than the total measured
proteome. These adjustments ensured that simulated fluxes reproduced the
experimentally observed growth rate of the control strain (GSY013). The resulting
curated model provided a calibrated baseline for adapting the genotype to the
engineered 23BD pathway (for full details see Publication 1).

Using this adapted coarse total-protein ecGEM, we predicted growth and metabolism
of the anaerobic 23BD-glycerol co-producing strain GSY014. With measured boundary
conditions (extracellular fluxes and total protein abundance) applied, the model
optimized protein allocation and predicted almost equimolar production of 23BD and
glycerol (16.8 vs. 19.0 mmol/gDCW/h), accompanied by 34.9 mmol/gDCW/h of CO, and
no ethanol formation (Table 7). Compared to the reference strain, glycerol production
increased 4.2-fold. The predicted maximum specific growth rate was 0.175 h™" with a
specific glucose uptake rate of —27.8 mmol/gDCW/h. While the ATP yield of 23BD/glycerol
fermentation is ~3-fold lower than alcoholic fermentation, the ecGEM predicted an
increased glucose uptake rate that partially offset this energy deficit, resulting in a
~2-fold, rather than 3-fold, reduction in specific growth (0.175 h™" vs. 0.36 h™"). Biomass

34


https://www.zotero.org/google-docs/?oLgiJ6
https://www.zotero.org/google-docs/?oLgiJ6
https://www.zotero.org/google-docs/?llaovC

yield was reduced almost 3-fold (35 vs. 89 + 6 mg/g_glucose), consistent with experimental
observations (Table 7).

Overall, the need to reduce the protein pool constraint from 450 to 123 mg/gDCW
illustrates a central limitation of ecGEMs: while they capture enzyme allocation
principles, incomplete annotation and kinetic data necessitate downscaling of the
effective proteome to reconcile simulations with reality. Nevertheless, this calibration
step ensured a well-fitted reference state, enabling meaningful predictions of the
engineered 23BD-glycerol strain.

Table 6: Yields and carbon- and degree of reduction balances observed in S. cerevisiae anaerobic
bioreactor batch cultivations of the reference strain GSY013 and 23BD-glycerol co-producing strain
GSY014. Reproduced from Sjéberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence.

Recovery of consumed

Yields on glucose (mg (g glucose)™) substrate, based on:
Strain CDW  Glycerol  Ethanol 23BD*  Acetoin  CO: Carbon DRP
GSY013° 8946 101#2 340+1  ND® ND® 380+100 93+7%  91+1%
GSY014°  30%2 346%1 ND® 274+1  7%1 300+10 95+1%  94.5+0.1%
GSYO14E® 33+1 350+3  ND® 273+1  9%1 300490 97+7% 957 +0.4%
Predicted 35 349 0 302 0 307 NA' NA'

a—2,3-butanediol

b — Degree of reduction as defined by (Heijnen, 1994)

¢ — Average of 6 independent cultivations + standard deviation
d — Average of 2 independent cultivations + mean deviation

e — Not detected

f — Not applicable

Table 7: Biomass specific rates observed in S. cerevisiae anaerobic bioreactor batch cultivations of
the reference strain GSY013 and 23BD-glycerol co-producing strain GSY014. Reproduced from
Sjéberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence.

Rate of consumption or production (mmol (g CDW)™ h™)

Strain u(h™) Glucose  Glycerol Ethanol  23BD? Acetoin CO:
GSY013° 0.36+0.02 -23+2 45+04 31+2 ND¢ ND¢ 38+10
Predicted GSY014 0.175 -27.8 19.0 0 16.8 0 349
GSY014° 0.15+0.01 -29z*1 19.6+0.5 ND¢ 15.8+0.4 0.39+0.03 36+2
GSYO14E¢ 0.16+0.01 -27+1 18.6+0.8 ND¢ 14.8+0.7 0.48+0.01 339

a - 2,3-butanediol

b — Average of 6 independent cultivations + standard deviation
c— Average of 2 independent cultivations + mean deviation

d — Not detected
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3.1.2 Predicted and in vivo fluxes align in 23BD-glycerol co-producing

S. cerevisiae

To compare model predictions with experimental physiology, we characterized the
engineered (R,R)-2,3-butanediol-glycerol co-producing strain GSY014 in anaerobic
batch cultures (Figure S1B). This strain was constructed by overexpressing the native
S. cerevisiae 2,3-butanediol dehydrogenase Bdh1, together with heterologous acetolactate
decarboxylase budA (Klebsiella aerogenes) and acetolactate synthase alsS (Bacillus
subtilis) (Choi et al., 2016). To enforce redirection of carbon and redox fluxes into
the engineered 23BD pathway, several additional modifications were introduced.
All functional alleles of pyruvate decarboxylase (PDC1, PDC5, PDC6) were deleted to
abolish ethanol fermentation, thereby preventing competition for pyruvate and
NADH. Because Pdc-deficient strains display impaired glucose uptake due to loss of
pyruvate-acetaldehyde-ethanol cycling, the MTH1AT allele was introduced as previously
described (Oud et al., 2012) to alleviate glucose sensitivity and restore efficient hexose
uptake. Finally, ACH1 (acetyl-CoA hydrolase) was overexpressed to mitigate cytosolic
acetyl-CoA deficiency expected in the absence of PDC-mediated acetaldehyde supply
(Y. Chen et al., 2015). Together, these modifications created a metabolic background in
which pyruvate could be efficiently redirected into the 23BD pathway, while maintaining
redox and acetyl-CoA balance.

The carbon balance of GSY014 cultures closed well (95% + 1%) when calculated by
both degree of reduction and carbon balances (Table 6). Ethanol production was
fully abolished and replaced by near-equimolar production of 23BD and glycerol
(15.8 £ 0.4 vs. 19.6 £ 0.5 mmol gDCW™" h™"), consistent with ecGEM predictions (Table 6).
The increase in glycerol production matched predictions closely, while a small but
measurable acetoin byproduct (0.39 + 0.03 mmol gDCW™"h™") was observed experimentally
but not predicted by the model. The biomass yield on glucose decreased ~3-fold
compared to the reference strain (30 + 2 vs. 89 + 6 mg g™'_glucose), in line with the
predicted yield (35 mg g™'_glucose) (Table 6). Growth rate was 0.15 + 0.01 h™", slightly
below the prediction (0.175 h™) but not as strongly reduced as expected from the
threefold lower ATP yield (% ATP mol™ glucose vs. 2 ATP mol™ glucose in ethanol
fermentation). Instead, the higher specific glucose uptake rate (-29 + 1 mmol gDCW™"h™,
slightly above predictions) compensated for reduced ATP vyield, illustrating how
metabolic capacity constraints limit the full translation of thermodynamic penalties into
growth rate reductions.

Overall, the ecGEM successfully predicted the key trade-offs in 23BD-glycerol
production: (i) elimination of ethanol production, (ii) redirection of flux into 23BD and
glycerol, and (iii) reduced biomass yield due to ATP limitation. Importantly, this study
highlighted the thermodynamic and energetic limits of this anaerobic pathway, with the
Gibbs free energy change shifting from —215 to —147 kJ mol™ glucose and ATP vyield
dropping threefold.

To probe whether the predicted maximum growth rate could be achieved or improved
through natural adaptation, GSY014 was evolved for ~200 generations in anaerobic batch
serum cultures. However, no significant differences were observed between the evolved
and parental strains, except for a modest increase in acetoin production (Table 6). This
outcome suggests that the engineered pathway is already close to its physiological
optimum under the given conditions, with ATP yield and redox constraints posing hard
biophysical limits that cannot be easily overcome by short-term laboratory evolution.
Excretion of acetoin suggests that there is room for (evolutionary) improvement but
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potentially requires much longer time spans. In this context, ecGEMs provide crucial
value by distinguishing between hard limits, such as thermodynamics and ATP yield that
cannot be overcome by evolution, and soft limits, such as enzyme allocation or
regulation, that evolution may eventually optimize. This allows more realistic expectations
about when ALE is a viable strategy and when it will likely fail.

3.1.3 Proteome allocation: alignment and divergence between ecGEM

predictions and in vivo data

To study proteome allocation, we quantified 3797 absolute protein abundances using
DIA (Demichev et al., 2020) and total protein quantification (Sanchez et al., 2021). Both
engineered and reference strains contained 450 mg protein/gDCW. Principal component
analysis of three replicates confirmed clear separation between strains (Figure S2B). In
the engineered strain, 172 protein abundances were significantly changed (ug/g_protein,
|log,FC| > 1.5, BH-adjusted p < 0.05; Figure S2A). Functional group analysis (Proteomap
(Liebermeister et al., 2014), gene set analysis (Varemo et al., 2013)) revealed clear
trade-offs consistent with the shift from aerobic fermentation to anaerobic cultivation.
Ribosomal proteins decreased from 25.5% to 18.5% of the proteome, while glycolysis
expanded from 28.7% to 43.5%, becoming the largest functional group (Figure S3).
At the same time, biosynthesis of cofactors, amino acids, and lipids was significantly
upregulated (apval < 0.05), whereas cell wall and glycogen metabolism were strongly
downregulated (Table S1). These global proteome reallocations show how S. cerevisiae
balances protein investment between growth machinery and metabolic functions under
redox-constrained, anaerobic conditions.

To evaluate predictive capacity, we revisited the coarse total-protein ecGEM
simulations constrained by exchange fluxes and total protein abundance. While those
runs were first analyzed for predicted exchange fluxes, here we focus on the predicted
protein allocation. Both model and experiment agreed on strong glycolytic upregulation:
upper glycolysis increased by 30-70% in silico and up to 43.5% in vivo (Figure 2),
consistent with higher pyruvate demand for the 23BD pathway. The shift toward higher
glycolytic investment, predicted by the ecGEM and confirmed experimentally,
underscores the remarkable flexibility of S. cerevisiae metabolism in supporting redox
and precursor supply under altered fermentation pathways — an insight that conventional
GEMs cannot provide, as they do not account for proteome allocation. However, other
predictions diverged. The ecGEM suggested a ~5% downregulation of lower glycolysis,
while measured proteomics showed stable or slightly increased allocation. Even more
strikingly, the model predicted downregulation of ~50% of the growth rate of
biosynthetic enzymes in the engineered strain, whereas the proteome increased from
10.7% to 13.8%. These differences show that the ecGEM tends to minimize biosynthetic
investment for efficiency, whereas cells appear to maintain or even increase biosynthetic
capacity, likely to buffer against translational and metabolic stress.

Discrepancies were also apparent at the enzyme-family level. The ecGEM predicted
high allocation to glycerol 3-phosphate dehydrogenases (Gpd) and phosphatases (Gpp)
as the main NADH sink, but measured abundances were far lower. Conversely, despite
complete PDC deletion, proteomics revealed strong upregulation of acetaldehyde and
alcohol dehydrogenases (Ald), which the model predicted to be absent. This points to an
ethanol/acetaldehyde cycle acting as a redox overflow valve in vivo — activated when
NADH reoxidation shifts from alcohol fermentation to glycerol/2,3BD dehydrogenases.
Such overflow strategies remain invisible to ecGEMs unless explicit cofactor-balancing
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constraints are imposed. A secondary explanation could be regulatory: downregulation
of Swil, a transcriptional repressor of ADH1/ADH2, may have indirectly led to Ald
upregulation (Peterson & Herskowitz, 1992; Taguchi & Young, 1987). Together, this shows
that cells maintain redundant or “unneeded” proteins for robustness, even when this
reduces efficiency — a signature of evolutionary incompleteness that may be improved
via ALE or further engineering.

A further limitation arises from isoenzyme representation. The ecGEM systematically
allocates flux to the isoenzyme with the highest kc..i/MW ratio, even if this is biologically
inactive. For instance, the model routed all flux through Errl, annotated as an enolase,
since it carries the same ket as Enol/Eno2 but at lower molecular weight. In vivo,
however, proteomics detected only Enol and Eno2 at high abundance, not Errl. This
mismatch illustrates a fundamental modeling limitation: ecGEMs optimize catalytic
efficiency, while real cells use isoenzymes tuned by regulation, compartmentation, and
robustness. Isoenzyme choice can therefore be misrepresented, emphasizing the need
for organism-specific curation of ke, values and careful validation of annotation sources.

Overall, these results show that ecGEMs are powerful in predicting global proteome
allocation trends (e.g., glycolysis upregulation), but can misrepresent specific pathways,
especially in redox balancing, biosynthesis, and isoenzyme usage. This reflects the
model’s bias toward stoichiometric efficiency rather than the robustness and flexibility
observed in vivo. A limitation of current generation ecGEMs is also their reliance on a
static biomass composition, whereas in vivo biomass allocation varies substantially with
growth rate and condition. For example, ribosomal protein fraction scales directly with
growth rate in many organisms (Bjorkeroth et al., 2020; Scott & Hwa, 2011), yet this
dependency is not reflected in most ecGEM frameworks. Incorporating such variability
could improve predictive accuracy, especially for proteome allocation and growth-rate
trade-offs. A possible improvement would therefore be to implement automatic
adjustment of biomass composition, even in the absence of experimental data, using
empirical growth laws as constraints (Lange & Heijnen, 2001). However, this refinement
must be balanced against the feasibility of maintaining efficient linear programming
formulations, as dynamic biomass functions increase model complexity. The benefits of
introducing variable biomass composition have been recognized before (Elsemman
et al., 2022; O’Brien et al., 2013; Pramanik & Keasling, 1997), and doing so in ecGEMs
could help reconcile discrepancies between predicted and observed proteome
allocations.
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Figure 2. Comparison of ratios of predicted (blue) and measured (red) protein abundance of the
23BD-glycerol co-producing strain GSY014 and the reference strain GSY013. Predicted ratios were
calculated from ecGEM mean fluxes of respective enzyme pseudoreactions. Measured ratios were
calculated from absolute mean protein abundances (ug g_total_protein™) of three replicates
distinguishing between concrete values of differentially expressed proteins above 0.05 significance
level and no significant change (NS) in expression of the respective enzymes in the two strains. *
overexpressed genes; 1 deletion; Inf is due to O flux in the reference strain. Abbreviations: glc,
glucose; g6p, glucose-6-phosphate; f6p, fructose-6-phosphate; fbp, fructose-1,6-bisphosphate;
g3p, glyceraldehyde-3-phosphate; bpg, 2,3-bisphosphoglycerate; 3 pg, 3-phosphoglycerate; 2 pg,
2-phosphoglycerate; pep, phosphoenolpyruvate; pyr, pyruvate; AclLac, acetolactate; 23BD, 2,3-
butanediol; dhap, dihydroxyacetone phosphate; g3p, glycerol-3-phosphate; gly, glycerol; Hac,
acetate; AcAld, acetaldehyde; EtOH, ethanol. Reproduced from Sjéberg et al., Metabolic
Engineering 82,49-59, 2024, under a CC BY licence.
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3.1.4 Proteomics-constrained modeling exposes limitations of in vitro
enzyme data

We next refined the ecGEM by integrating 750 individual protein constraints, covering
72% of the total measured protein mass and 92% of the protein mass represented in the
model. Two strain-specific ecGEMs were fitted: one for the engineered 23BD-producing
strain GSY014 and one for the reference strain GSY013. In both models, additional
flexibilization of individual protein constraints by adjusting their protein abundance was
required to achieve feasible flux states. For the engineered strain, 46 proteins —including
several glycolytic enzymes and the heterologous pathway enzymes BudA and AlsS —were
flexibilized (Table S2), whereas the reference strain required flexibilization of 72 proteins,
primarily biosynthetic enzymes. Despite these differences, the total mass of flexibilized
protein was comparable between strains (50 vs. 54 mg gDCW1). This contrast suggests
that the engineered strain faced specific bottlenecks in glycolysis and the heterologous
pathway, while the reference strain was constrained more broadly at the level of
biosynthetic capacity.

Flexibilization in this context indicates that the measured enzyme abundances were
insufficient to support feasible flux states under the assumed kgt values, exposing
limitations of enzyme data — either experimental underestimation, or incorrect kinetic
annotation in the model. Indeed, if the higher literature values of key glycolytic enzymes
were chosen by the Bayesian procedure (F. Li et al., 2022), the flexibilization would have
not been required. Similarly, the manually added k..t values for AlsS and BudA had to be
increased, suggesting that the heterologous enzymes are likely more efficient in vivo than
current in vitro data indicates. These observations reinforce the need for improved
correlation between in vitro enzymology and in vivo performance (Garcia-Contreras et
al.,, 2012; F. Li et al., 2022) to strengthen future ecGEM predictions.

After integrating individual protein constraints, the total protein constraint itself had
to be adjusted upward to 382 mg gDCW™! to achieve feasible flux states. By comparison,
in the coarse total-protein model (without enzyme-specific limits), the protein pool
pseudoreaction was capped at only 123 mg gDCW™. Both values fall short of the
experimentally measured proteome content of 450 mg gDCW, but the comparison is
instructive: the coarse model underestimated protein demand, while the individually
constrained model narrowed the gap, albeit still underpredicting the total proteome.
This threefold increase (123 - 382 mg gDCW™) illustrates how enzyme-specific
constraints drastically reduce proteome allocation flexibility, forcing the solver to
distribute protein mass more realistically across pathways. As a result, the solver
required a higher effective proteome ceiling to achieve the same extracellular fluxes.
In practice, this means that either (i) some enzymes operate at higher in vivo catalytic
efficiencies than annotated k..t values suggest, (ii) isoenzymes or complexes not captured
in the model contribute additional capacity, or (iii) experimental proteome measurements
underestimate the available protein pool. From a modeling perspective, the need for
such a large upward adjustment underscores the sensitivity of ecGEMs to protein
annotation and highlights a key trade-off: resolution increases, but so does dependence
on accurate kinetic parameters.

The integration of individual protein constraints had major consequences for
intracellular flux predictions. Flux variability was markedly reduced in both strains (Figure
S4), meaning that fewer alternative flux states were compatible with the measured
proteome. In other words, the proteome data served as an additional filter, forcing the
model to abandon many of the equally optimal but biologically implausible flux values
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that were possible under total protein constraints alone. The distribution of flux values
obtained through sampling also became tighter after protein integration (Figure 3A),
reflecting a reduction in the uncertainty of flux predictions. By contrast, extracellular
fluxes predicted by the refined ecGEMs were only slightly lower than before, indicating
that global phenotypes are robust, while intracellular pathway choices become more
constrained when protein limits are considered.

When comparing mean fluxes between the coarse total-protein and proteomics-
constrained models (Figure 3A), we observed a widespread across both pseudoreactions
and metabolic reactions. This spread indicates that pathways were reallocated once
enzyme capacities were enforced, decreased fluxes in the most optimal (as indicated by
keat/ MW) enzymes and increased flux through less efficient isoenzymes and alternate
pathways. In addition, the number of non-zero fluxes decreased by 11.2%, meaning
increased diversification in enzyme usage. This implies that the proteome constraints
suppress minor or inefficient side pathways, focusing the solution on a leaner, more
defined metabolic strategy.

An example of such reallocation is the switch between Pykl and Pyk2 isoenzymes
(Figure 3B). Under total protein constraints, one isoform was favored, but once individual
protein limits were introduced, the predicted flux shifted to the other isoenzyme. Such
predictions highlight the potential of ecGEMs to resolve not only pathway-level shifts but
also fine-scale differences in enzyme choice — provided kinetic annotations and proteomic
data are accurate.
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Figure 3. Comparison of mean sampled fluxes between proteome-constrained and total protein
ecGEMs. A. Pairwise correlation of mean reaction fluxes obtained from sampling (n = 10°000) in
both models. Each point represents a single reaction. Marginal histograms along the top and right
axes show the distribution of mean flux values, expressed as counts of reactions. B. Detailed
comparison of selected reactions shown in Figure 2, including isoenzymes. Red points denote
protein pseudoreactions, black points denote metabolic reactions. Reproduced from Sjéberg et al.,
Metabolic Engineering 82,49-59, 2024, under a CC BY license.
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3.2 Study 2: Predicting and validating central carbon metabolism in the
oleaginous yeast R. toruloides (Publications Il and lll)

The non-conventional Basidiomycota yeast Rhodotorula toruloides can accumulate lipids
exceeding 50% of its dry biomass, making it a promising host for sustainable lipid
production. As explained in the introductory section, lipid biosynthesis relies on a steady
cytosolic supply of acetyl-CoA and NADPH, produced through interconnected central
carbon pathways. Unlike Saccharomyces cerevisiae, R. toruloides possesses ATP-citrate
lyase (ACL), which cleaves citrate into cytosolic acetyl-CoA and oxaloacetate, and
phosphoketolase (PK), which generates acetyl-phosphate from sugar phosphates (Figure
4) (Z. Zhu et al., 2012). NADPH regeneration can occur either via the oxidative pentose
phosphate pathway (oxPPP) or, if ACL catalyzes the conversion of citrate into acetyl-CoA
and oxaloacetate (OAA), latter can be transformed into malate and further converted
into pyruvate through cytosolic malic enzyme (cMAE) (Figure 4). Alternatively, NADPH
can be regenerated in mitochondria via NADP-dependent IDH (Chawla et al., 2022;
Sreeharsha & Mohan, 2020; Yang et al., 2012). Previous studies have shown that these
strategies are organism-specific, and ACL and oxPPP dominate in oleaginous yeasts, such
as Yarrowia lipolytica and Rhodotorula glutinis (Blazeck et al., 2014; Dulermo et al., 2015;
Qiao et al., 2017; Wasylenko et al., 2015; Yoon et al., 1984; H. Zhang et al., 2013; J. Zhu
et al., 2023), whereas TCA- and malate-linked reactions contribute more in filamentous
fungi (Wynn et al., 1997, 2001; Wynn & Ratledge, 1997; Y. Zhang et al., 2007). However,
the relative importance and regulation of these pathways in R. toruloides remain unclear,
particularly regarding how precursor supply strategies shift between fermentable carbon
sources, such as glucose and xylose, and non-fermentable carbon sources, such as acetate.

Recent genome-scale models have generated hypotheses about substrate-specific
metabolism in R. toruloides (Lopes et al., 2020, p. 202; Pinheiro et al., 2020), but these
lacked (i) enzyme constraints, (ii) substrate-resolved biomass composition, and (iii)
experimental validation. Given large shifts in cellular resource allocation between
proteome and lipidome reported in previous studies (Pinheiro et al., 2020; Tiukova,
Brandenburg, et al.,, 2019; Z. Zhu et al., 2012), this is a relevant challenge for an
enzyme-constrained model. In Publications Il and Ill we integrated absolute proteomics,
enzyme-constrained genome-scale modeling (ecGEM), and knockout phenotyping to
dissect substrate-dependent flux distributions through key metabolic nodes including
pyruvate dehydrogenase (PDH), citrate synthase (CIT), ACL, malate dehydrogenase
(MDH1), pyruvate carboxylase (PC), and others (Figure 4), providing a mechanistic
framework for understanding lipid precursor supply in R. toruloides.

To obtain precise, high-quality experimental data, we performed controlled growth
characterization on glucose, xylose, and — for the first time — acetate, analyzed global
proteome allocation and growth constraints, constructed and curated the first ecGEM of
R. toruloides, and validated predictions through gene knockout phenotyping. This
integrative framework revealed substrate-specific essentiality of ACL, PK, and cMAE, and
highlighted major discrepancies between model predictions and experimental
outcomes. Together, these results demonstrate both the power and the current
limitations of ecGEMs in oleaginous yeasts, providing a mechanistic understanding of
how R. toruloides flexibly reorganizes its metabolism to support lipogenesis and
informing future metabolic engineering strategies.
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Figure 4. Metabolism of Rhodotorula toruloides. Blue arrows denote mitochondrial carrier proteins
and enzymes in shuttling pathways. Pink arrows denote alternative xylose assimilation pathways.
Reproduced from Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.

3.2.1 Global proteome allocation analysis reveals metabolic strategies and
growth constraints in R. toruloides

We quantified 3,160 proteins across six conditions (glucose, xylose, acetate; exponential
vs. nitrogen limitation) using stable isotope labeling (SILAC) and the total protein
quantification approach (Sanchez et al., 2021). Replicate consistency was satisfactory
(Figure 5A). Up to 4% g/gDCW of the proteome was uncharacterized, which limited the
use of automated tools such as Proteomap and gene set analysis, but manual Gene
Ontology grouping allowed us to track functional allocation throughout exponential
growth and lipid accumulation.

Global proteome allocation showed substrate- and phase-specific patterns (Figure
5B). On glucose, the glycolytic fraction increased during nitrogen limitation, whereas on
xylose it remained unchanged. The TCA cycle fraction did not shift significantly between
phases, while the ETC fraction increased during lipid accumulation on all substrates,
consistent with higher respiratory demand. Acetate-grown cells displayed a distinct
pattern: proteome allocation changed little upon nitrogen starvation, in contrast to glucose
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and xylose, where exponential and nitrogen-limited phases were clearly separated.
On acetate, more proteome was invested into the TCA cycle, pyruvate metabolism, ETC,
and amino acid biosynthesis, while on glucose and xylose a larger share was allocated to
ribosome synthesis. This difference reflects the fact that acetate enters metabolism only
as acetyl-CoA, providing no ATP through glycolysis. Thus, the TCA cycle must supply both
energy and precursors, necessitating stronger investment in TCA and ETC enzymes.

Differential expression analysis revealed the largest number of significantly altered
proteins between the exponential growth and nitrogen-limited phases on glucose
(186 proteins), while none were detected between phases on acetate (|log,FC| > 1,
BH-adjusted p < 0.05; Figure S5). This suggests that sugar-grown cells undergo stronger
proteomic reprogramming during lipid accumulation, while acetate-grown cells rely
more on constitutive metabolism.

Key enzymes for acetyl-CoA supply reflected clear substrate-specific strategies.
On glucose, ACL was abundant (1010 + 75 pg g™’ protein) and upregulated 2.6-fold
during lipid accumulation (apval = 0.039), at levels comparable to glycolytic enzymes
(Figure S6, Table S3). Together with high PDH (2304 + 11 ug g™") and CIT (2573 6 ugg™),
this points to citrate export and cleavage by ACL as a major cytosolic acetyl-CoA route.
MDH1 was extremely abundant (4195 + 3 pg g™"), though it declined during lipid
accumulation (3168 + 24 ug g™, 1.3-fold {, apval = 0.015). In parallel, PC was also
strongly expressed (569 +24 > 712 +5 ug g™, 1.25-fold 1%, apval = 0.048), indicating that
glucose-grown cells reinforce oxaloacetate regeneration through both pyruvate
carboxylation and malate—oxaloacetate cycling. This dual system likely sustains the
citrate—malate shuttle while buffering NADH/NAD* redox balance, ensuring efficient
acetyl-CoA and precursor supply under high glycolytic flux.

On xylose, ACL levels were similar, but induction was stronger (4.8-fold, apval = 0.025),
supporting its role in lipogenesis. MDH1 was moderately abundant (3237 + 8 ug g™') and
unchanged during lipid accumulation (3089 + 305 pg g™, apval = 0.69). By contrast,
PC started lower (249 + 9 ug g™') but increased 2.4-fold to 604 + 6 ug g™' (apval = 0.025).
This pattern suggests that on xylose, ACL remains the main cytosolic acetyl-CoA supplier,
while PC provides strong reinforcement of OAA regeneration under pentose metabolism,
helping balance flux through glycolysis and the PPP.

On acetate, ACL abundance was lower (148 + 10 pg g™") and its 2.8-fold increase was
not significant (apval = 0.14), suggesting a limited role. Instead, ACS was highly abundant
(3105 +53 pg g7"), confirming its function as the main entry point for acetate assimilation.
High abundances of CIT, ACO1, and MDH1 relative to other TCA enzymes (12.6, 4.9, and
10.8 mg g™'_protein) with mild downregulation during nitrogen limitation (1.2-1.4-fold,
apval =0.15-0.35) suggest an internal citrate-isocitrate-malate cycle that could replenish
oxaloacetate and balance redox cofactors. This apparent downregulation during lipid
accumulation likely reflects reduced acetate uptake demand rather than diminished
lipogenic capacity, since lipid accumulation is primarily driven by flux redistribution
under nitrogen limitation. By contrast, PDC was consistently low across substrates
(47-59 pg g™, indicating it plays only a minor role. PK showed moderate levels on glucose
(490 + 45 pg g™, 1.6-fold 1, apval = 0.042) and xylose (632 + 50 pg g™', 2.8-fold 1,
apval = 0.064). Although 4—6-fold lower than ACL or glycolytic enzymes, its consistent
upregulation under nitrogen limitation suggests a conditional role in cytosolic acetyl-CoA
supply.

NADPH regeneration enzymes showed less dramatic changes. cMAE abundance was
modest (142-189 pg g™') and unchanged across conditions (Figure S6), consistent with a
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nonessential role. On acetate, IDP abundance was elevated (1472 +47 pg g™, 2.4-fold 1,
apval = 0.14), suggesting possible contribution to NADPH supply, though evidence
remains inconclusive. ZWF was abundant on glucose (1309 pg g™, 1.16-fold 1,
apval = 0.015), but lower on xylose (735 pg g™') and acetate (637 ug g™'). Taken together,
these data support the PPP as the dominant NADPH source on fermentative substrates,
while the main NADPH pathway during acetate metabolism remains unresolved, as none
of ZWF, cMAE, or IDP showed consistent evidence of a dominant role.

Ribosomal content and translation efficiency provided further insights into growth
control, and in the future, it could be used to predict how yeast reallocates proteome
under different substrates. Translation rates ranged from 0.8 to 6.6 amino acids s
(Figure 2C), which is in a similar range but below those reported for S. cerevisiae
(2.8-10 aa s™") (Boehlke & Friesen, 1975). R. toruloides devoted 46% of its proteome to
ribosomes, compared to 37% in S. cerevisiae (Metzl-Raz et al., 2017a), representing a
25% higher ribosome fraction. This suggests that R. toruloides offsets lower ribosome
efficiency by investing more into ribosome abundance, perhaps a distinct allocation
strategy in oleaginous yeasts. Growth rates correlated tightly with translation rate
(R? = 0.99, p < 0.01) (Figure 2C), showing that translational capacity is the main
determinant of growth. By contrast, correlation with ribosome fraction was weaker
(R?=0.68, p <0.043) (Figure 2C). Ribosome fractions were lowest during nitrogen limitation
on acetate and xylose. This indicates that growth is constrained more by ribosome
activity than by ribosome abundance, consistent with reports of inactive ribosome pools
maintained under nutrient limitation (Metzl-Raz et al., 2017b; Warner, 1999).
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Figure 5. Absolute proteome quantification in R. toruloides wild type strain CCT 7815 cultivated in
batch bioreactors with low-nitrogen chemically defined media containing glucose (G), xylose (X), or
acetate (A) as the carbon source during exponential (exp) and nitrogen-limited (Nlim) phases. A.
Principal component analysis. B. Allocation of absolute mean protein abundances (% of ug
g_total_protein?) of two replicates to manually assigned major functional groups (annotation file
available online: https://doi.orq/10.1371/journal.pchi.1011009.s002. C. Translation rate (s*) and
ribosome allocation (g g_protein™). Error bars represent standard deviation of two experiments.
Abbreviations: AA, amino acid; ETC, electron transport chain; FA, fatty acid; PPP, pentose
phosphate pathway; TCA, tricarboxylic acid. Reproduced from Rekéna et al., PLOS Comput. Biol.
19(4):e1011009, 2023, under a CC BY licence.
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3.2.2 Construction and curation of the first ecGEM of R. toruloides reveals
limits of enzyme-constrained modeling in lipogenesis

To construct the first ecGEM of R. toruloides, we measured growth and exchange rates
of the hydrolysate-tolerant strain CCT 7815 in actively controlled aerobic batch cultures.
This strain was previously developed by short-term adaptation of CCT 0783 in sugarcane
bagasse hydrolysate and is characterized by enhanced tolerance and lipid accumulation
(Bonturi et al., 2017). Characterization for growth was performed in low-nitrogen media
to induce lipid accumulation (Lopes et al., 2020). Online biomass and CO, measurements
revealed clear transitions separating exponential growth from nitrogen limitation,
allowing these phases to be analyzed independently (Figure S7).

During exponential growth, cells divided actively until nitrogen was depleted. Upon
nitrogen exhaustion, growth ceased because nitrogen is required for amino acid,
nucleotide, and cell wall biosynthesis. As carbon, minerals, and cofactors remained
available, cells redirected metabolism toward maintenance and storage lipid
accumulation. These distinct physiological states — growth-coupled metabolism and
nitrogen-limited lipogenesis — represent fundamentally different proteome allocation
and flux regimes and were therefore modeled separately in the ecGEM to capture the
metabolic shift between biomass formation and storage metabolism.

Growth characterization and physiological parameters

All cultivations were performed in chemically defined media without amino acid
supplementation. Although this resulted in a longer lag phase (10-16 h), it eliminated
by-products from complex organic sources, improving reproducibility and interpretation
of physiological data. Biomass yields on substrate differed markedly between phases and
substrates (Table 8). During exponential growth, formation reached 515 + 27 mg g™* on
glucose, 193 + 6 mg g* on xylose, and 185 + 24 mg g on acetate. Under nitrogen
limitation, yields fell on glucose (236 + 29 mg g™?) but rose on xylose (316 + 34 mg g™%),
while acetate remained largely unchanged (109 + 20 mg g™%). Carbon balances closed well
on xylose (89—109%), supported by significant xylitol and D-arabinitol secretion during
exponential growth (0.223 +0.03 and 0.367 + 0.04 mmol (gDCW h)™). In contrast, balances
did not close on glucose (106% in exponential, 68% in nitrogen limitation) or acetate
(85% and 67%), despite detection of citrate secretion during exponential growth
(0.122 + 0.016 mmol (gDCW h)™1). Missing byproducts remain to be identified.

Glucose cultures formed aggregates, complicating biomass estimation. Aggregation
was reduced by switching the nitrogen source from ammonium sulfate to urea, though
not eliminated. Given a recently reported EPS production by R. toruloides under
ammonium sulfate at acidic pH (< 2.3; (Sepulveda Del Rio Hamacek et al., 2025)), EPS
secretion is not a possible explanation at pH 6, though not confirmed. All glucose data
reported here (rates, yields, proteome) are from urea-grown cultures (a comparison of
the growth curves when using ammonium sulfate or urea shown on Figure S7A).

Growth rates also reflected substrate differences (Table 8). Maximum specific growth
was threefold higher on glucose (0.19 + 0.025 h~") than on xylose (0.054 h™") or acetate
(0.073 h™), consistent with published values (Tiukova, Brandenburg, et al., 2019). During
nitrogen limitation, apparent rates were very low (0.012-0.021 h™") and were thus
denoted as non-quantifiable. Since protein synthesis ceases when nitrogen is depleted,
these values likely reflect lipid accumulation and measurement noise rather than true
biomass growth. Supporting this, secreted byproducts decreased in concentration during
nitrogen limitation, indicating re-assimilation as secondary carbon sources to support
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maintenance metabolism and lipid storage. Examples include re-consumption of xylitol
and D-arabinitol on xylose and citrate on acetate (—0.043 * 0.001 mmol (gDCWh)™).
Using stereoselective HPLC, we confirmed that the arabinitol produced was the D-isomer
(Figure S8), validating a pathway proposed by Jagtap and Rao (Jagtap & Rao, 2018).

The specific CO, production, O, uptake, and substrate uptake rates further confirmed
the metabolic shift (Table 8). As expected, metabolic activity was considerably higher
during exponential growth: CO, production reached 2.7-5.2 mmol (gCDW h)™ compared
to 1.3-2.2 mmol (gCDW h)™ under nitrogen limitation. A similar pattern was observed
for oxygen uptake, which was —1.4 to —=7.1 mmol (gCDW h)~ in the exponential phase
but only —0.7 to —2.3 mmol (gCDW h)* during nitrogen limitation. Substrate uptake also
slowed down substantially, from —1.9 to —6.6 mmol (gCDW h)™! in exponential growth to
—0.4 to —2.0 mmol (gCDW h)™t in nitrogen limitation. These measurements confirm that
cells shift from a high-flux, energy-demanding metabolism during active growth to a
reduced metabolic state under nitrogen limitation.

Table 8: Biomass yields, specific rates and carbon balances of R. toruloides wild type strain CCT 7815
cultivated in batch bioreactors with low-nitrogen chemically defined media containing glucose (G),
xylose (X), or acetate (A) as the carbon source during exponential growth (exp) and nitrogen-limited
(Nlim) phases. Average and standard deviation of duplicate experiments are presented.

Condition p(h™) Specific rate of consumption or  Yield (mg (g Yields on biomass Recovery of
production (mmol (gCDW h)™)  substrate)™?) (mggCDW™) consumed
substrate
CO2 (0]} substrate CDW Total Total lipid based on
protein carbon

Gexp 0.191 + 2.685 + -1.423+ -2.096+ 515+27 636+24 57+2 106 + 16

0.025 0.584 0.779 0.557

GNIlim 0.021 + 1.547 + -0.704+ -0.410+ 236*29 227 +31 483+41 69+6
0.0072 0.519 0.338 0.007

Xexp 0.054 + 2.845+ -2.678+ -1.859+ 193+6 438+13 202+25 896
0.001 0.325 0.012 0.022

XNlim 0.021 + 1.277 -1.028+ -0.434+ 316+34 197+2 290*6 109+ 18
0.001: 0.139 0.012 0.026

Aexp 0.073 = 5224 + -7.144 -6.627+ 185+24 386+12 175+19 85%5
0.003 0.724 0.557

ANlim 0.012 + 2,229 + -2.265 -1.971+ 109+20 217+12 341+13 67%3
0.0° 0.198 0.429

a — Below reliable measurement threshold

Model reconstruction and condition-specific parametrization of ecGEM
We based our enzyme-constrained genome-scale metabolic model (ecGEM) on
rhtoGEM, one of the first GEMs of R. toruloides, originally derived from S. cerevisiae and
subsequently parameterized with R. toruloides-specific data (Tiukova, Prigent, et al.,
2019). Because one allele of the polyploid strain CCT 7815 shares 70-90% sequence
identity with the R. toruloides NP11 genome (Bonturi et al., 2022), NP11 was selected as
the reference for annotation.

Motivated by the absence of xylulokinase in the measured proteome, we incorporated
a ribulose-mediated xylose assimilation pathway (Figure 4, pink pathway), supported by
the detection of D-arabinitol dehydrogenase (DAD-4) on xylose (1913 + 272 pug g7,
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3.5-fold increase compared with the glucose condition, apval = 0.06; Figure S6) and the
presence of D-arabinitol among identified extracellular metabolites (Figure S7B).

To fit the model to experimental data, we expanded the enzyme annotation
coverage to 773 enzymes corresponding to 1515 reactions (= 30 % of total reactions)
by manually assigning NP1l enzyme identifiers (protein list available online:
https://doi.org/10.1371/journal.pcbi.1011009.s004. Using the GECKO 2.0 framework,
we reconstructed six condition-specific proteomics-constrained ecRhtoGEMs,
representing growth under carbon- or nitrogen-limited regimes (Table 8).

The protein content during exponential growth (386—-636 mg gCDW™") was comparable
to S. cerevisiae (Xia et al., 2022) but decreased nearly twofold under nitrogen limitation
(197-227 mg gCDW™). These values are higher, yet consistent with those previously
reported for another R. toruloides strain under steady-state conditions (Table 8) (Shen
et al., 2017). In contrast, the lipid content increased up to eightfold under nitrogen
limitation (e.g., 483 + 41 mg gCDW™" on glucose vs. 57 + 2 mg gCDW™" in exponential
growth), confirming the onset of lipid accumulation consistent with previous report by
Tiukova et al. (Table 8) (Tiukova, Brandenburg, et al., 2019). Oleate (C18:1) was the
dominant fatty acid species (Table S4), and overall fatty acid composition was consistent
with the previous report (Tiukova, Brandenburg, et al., 2019).

To ensure feasible flux states consistent with the experimental data, measured fatty
acid compositions, total lipid and protein content were introduced into the biomass
stoichiometry of all condition-specific ecGEMs. These modifications required additional
technical updates, including (i) revised growth- (GAM) and non-growth-associated
maintenance (NGAM), (ii) recalibration of average enzyme saturation, and (iii) updated
f-factor and protein pool constraint calculations, as described in Publication Il. The GAM
parameters were inherited from the S. cerevisiae GEM and re-parameterized according
to the GECKO formalism, originally based on a fitted value of 59.276 mmol gCDW™" for
yeast (Forster et al., 2003). The NGAM requirements were also inherited from the
S. cerevisiae GEM and re-fitted using the GECKO algorithm (from the starting value of
0.7 mmol (gCDW h)™ for aerobic conditions). Although the rhtoGEM reflects ATP synthase
stoichiometry typical of Complex I-deficient cells, both GEMs and annotated genomes of
R. toruloides indicate the presence of Complex | (Dinh et al., 2019; Zhu et al., 2012). We
retained the same ATP synthase stoichiometry from the yeastGEM for the ecRhtoGEM,
as the functional presence of Complex | in R. toruloides remains to be experimentally
confirmed.

As these functionalities were not natively implemented in the GECKO toolbox,
we developed custom code modules that integrate these updates directly into the
pipeline. All model edits, scripts, and data are available at:

https://github.com/alinarekena/ecRhtoGEM.

Model evaluation

To achieve feasible flux states, in total 59 protein concentrations and ke, values required
flexibilization (Table S5). Without these adjustments, the proteomics-constrained
ecGEMs were infeasible, while the conventional rhtoGEM could run but overpredicted
exchange fluxes. Enzymes frequently flexibilized included ACL (M7WHC9), FAS
(M7WSWS5), and cytochrome c (M7WUIO) oxidase, reflecting lipid metabolism and
respiratory demand. k.t values for enzymes of the ribulose pathway were also increased.
Detailed information about the curation of individual k.t and protein concentration
values is saved on the Github repository.
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The ecGEM predicted growth rates were generally in good agreement with the
experimental data. With measured boundary conditions — including extracellular
fluxes (such as substrate uptake) and total protein abundance — applied, the model
optimized protein allocation and predicted growth rates that closely matched the
experimental measurements when above the reliable detection threshold (Table 9).
We then examined predicted exchange fluxes, including substrate uptake and gas
exchange.

On glucose, substrate uptake was overestimated during exponential growth (—=2.46 vs.
—2.01 mmol (gCDW h)?) but matched measurements under nitrogen limitation
(=0.41 mmol (gCDW h)™?). CO, production was strongly overestimated during exponential
growth (2.6-fold higher, 7.10 vs. 2.69 mmol (gCDW h)™?) but aligned with measurements
in nitrogen limitation (1.45 vs. 1.55 mmol (gCDW h)™). Oxygen uptake was also
overpredicted, by 4.2-fold during exponential growth and 1.7-fold during nitrogen
limitation. In addition, the model predicted low pyruvate secretion (0.18 mmol (gCDW h)™),
which was not detected experimentally. Pyruvate secretion was predicted only during
growth on glucose, consistent with its direct formation via glycolysis and the high
glycolytic flux under these conditions. Other substrates enter central metabolism
downstream of pyruvate or generate less cytosolic NADH, reducing both carbon and
redox pressure at the pyruvate node. Combined with constrained CO, efflux during
exponential growth, this likely explains why minor pyruvate excretion was predicted
exclusively on glucose.

On xylose, predicted uptake rates matched measurements within experimental
uncertainty under both conditions. CO, production was close to measured during
exponential growth (2.95 vs. 2.84 mmol (gCDW h)™) but underestimated in nitrogen
limitation (1.11 vs. 2.84 mmol (gCDW h)™?), consistent with the underpredicted growth
rate. Oxygen uptake was slightly lower than measured in exponential growth (—2.29 vs.
—2.68 mmol (gCDW h)™) but closely matched under nitrogen limitation (—0.97 vs.
—1.03 mmol (gCDW h)™). A small amount of L-arabinitol secretion was predicted but not
confirmed experimentally.

On acetate, predicted uptake rates were slightly below measured in both growth phases.
CO, production was overestimated during exponential growth (6.73 vs. 5.22 mmol (gCDW h)™)
and underestimated in nitrogen limitation (1.47 vs. 2.23 mmol (gCDW h)™'). Oxygen
uptake was likewise underestimated (exponential growth: —=6.67 vs.—7.14 mmol (gCDW h)™;
nitrogen limitation: —2.02 vs. —2.27 mmol (gCDW h)™). The model also predicted secretion
of succinate in both phases (0.33 and 0.033 mmol (gCDW h)™), which remains to be
validated experimentally.
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Table 9: Biomass specific rates simulated using condition-specific, proteomics-constrained ecGEMs
of R. toruloides. Median and standard deviation of 2000 flux samples are presented. Abbreviations:
G, glucose; X, xylose; A, acetate; exp, exponential growth phase; Nlim, nitrogen-limited phase.

Condition u(h™) Specific rate of consumption or production (mmol (gCDW h)™?)
substrate CO2 0
Gexp 0.178 £0.00 -2.464 £ 0.011 7.101£0.20 -5.944 +0.14
GNIlim 0.0208 *+ 0.00° -0.406 + 0.0019 1.446 +0.029 -1.164 +0.027
Xexp 0.0535 +0.00013  -1.841+0.0078 2.948 +0.055 -2.292 £ 0.048
XNIlim 0.0151 £ 0.00° -0.433 £ 0.0015 1.110 + 0.0082 -0.966 * 0.0085
Aexp 0.0723 £0.00 -6.039 £ 0.0010 6.731+£0.070 -6.668 + 0.0075
ANlim 0.0119 + 0.00° -1.951 + 00057 1.472 +0.044 -2.016 + 0.046

a — Below reliable measurement threshold

Overall, comparison of predicted and measured rates for the wild-type phenotype in
R. toruloides showed that the proteome-constrained ecGEM reproduced growth rates
and many exchange fluxes reasonably well across conditions, though notable discrepancies
remained. Some discrepancies may partly reflect experimental uncertainties (e.g.,
aggregate formation on glucose cultures), but also illustrate the model’s prediction
capacity at more extreme cases. For example, the least precise predictions were received
on the glucose exponential phase, in which protein content (64%) was higher than normal.
It is an inherent limitation of flux balance analysis that it provides one feasible solution
that satisfies the constraints rather than representing the exact physiological state of the
cell (Mahadevan & Schilling, 2003). Although random sampling (2000 iterations)
broadened the solution space, it seemingly did not eliminate off-target effects within the
permitted interval (simulations were allowed 10% deviation from measured rates).
Particularly during lipid-accumulating conditions, where protein content was lower than
in S. cerevisiae, it highlighted again the need to enable ecGEMs to automatically adjust
biomass composition and current limitations in directly transferring ecGEM frameworks
across species. Finally, achieving this agreement required flexibilization of measured
protein concentration constraints. The need to flexibilize many enzyme ke and protein
abundance parameters can be attributed to the lack of R. toruloides-specific kinetic data.
All keat values in the model were drawn from BRENDA entries of distantly related
organisms, which likely reduced predictive precision. This underscores the importance of
generating organism-specific kinetic parameters to improve future ecGEM reconstructions
in non-model organisms.

3.2.3 Predicted intracellular fluxes reveal substrate-dependent strategies
for acetyl-CoA and NADPH supply during lipogenesis

Motivated by the ecGEM’s ability to reproduce exchange fluxes, we compared predicted
intracellular fluxes between exponential growth and nitrogen limitation to probe
lipogenesis mechanisms in R. toruloides and their substrate dependence. From these
fluxes and absolute proteomics, we calculated apparent catalytic activities (kapp) as
flux/protein. To our knowledge, this is the first report of in silico kapp values in
R. toruloides, with most values in the range of an “average enzyme” (~10 s™") as reported
by Bar-Even (Bar-Even et al., 2011). Because the ecGEM constrains fluxes by literature
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keat, kapp Values are upper-bounded by ke, i.e., any in vivo activity enhancements
beyond cataloged kc.: cannot be captured. Notably, the number of enzymes with low kapp
(0.1-1 s™) increased during Nlim (Figure $9), indicating that fluxes declined more strongly
than protein abundances and leaving a larger fraction of the proteome underutilized.
This suggests that R. toruloides maintains enzyme pools while throttling catalytic
throughput, a trade-off that preserves metabolic flexibility while conserving nitrogen
under lipid-accumulating conditions. A full dataset of ki, values is available online:
https://doi.org/10.1371/journal.pcbi.1011009.s009.

Fermentative substrates (glucose, xylose): acetyl-CoA and NADPH supply

On glucose (exponential phase), predicted fluxes through PDH (68 + 9% of carbon) and
CIT (70 £ 14%) exceeded average TCA flux (Figure S10), initially suggesting a mitochondrial
PDH - citrate export - cytosolic ACL route. The MDH1 flux was also exceptionally high
(218 + 6% of carbon, only slightly reduced to 209 + 381% under nitrogen limitation),
suggesting substantial malate—oxaloacetate cycling for redox balance, though the very
high SD indicates weak constraint. Despite strong PDH and CIT activity, ACL consistently
carried 0% flux (Figure S10). Exported citrate was instead routed back into the TCA via
auxiliary shunts (succinate, malate).

PK emerged as the dominant cytosolic acetyl-CoA route, consistent with previously
reported GEM predictions under similar conditions (Lopes et al., 2020; Pinheiro et al.,
2020). We compared alternative PK pathway variants and found that the PTA-based
(t_0082) and ACK-based (t_0886) routes generated nearly identical flux distributions
(full dataset available online: https://doi.org/10.1371/journal.pchi.1011009.s011). As no
functional difference emerged, we report results for the PTA variant as representative.
On glucose, PK fluxes rose 4-fold under nitrogen limitation (14 + 55% - 60 + 26%),
paralleling the lipid accumulation (5.7% > 483% mg gDCW™?). In contrast, PDC declined
(22 £ 39% - 12 + 103%) and PC dropped sharply (26 + 47% - 7 + 142%), indicating
minor roles during lipogenesis. On xylose, PK was consistently higher than PDC
(13+46% = 22 £29% vs. 9 + 151% - 7 £ 71%), again marking PK the dominant cytosolic
acetyl-CoA source. PC flux remained low (7 + 87% - 4 * 55%), suggesting limited
anaplerotic contribution. Importantly, some fluxes — especially PDC on xylose — had very
large SDs (+ 53—-151%), indicating weak constraints and representing alternative feasible
states rather than robust predictions. By contrast, PDC on glucose (Nlim) had lower SDs
(£16-26%), supporting higher confidence. Thus, PK is robustly predicted as the main
cytosolic acetyl-CoA route on fermentative substrates, while ACL acts as a conditional
backup only when PK is blocked.

Simulations with PK deletion confirmed this (full dataset available online:
https://doi.org/10.1371/journal.pcbhi.1011009.s012). PDC partially compensated:
glucose 1.2-fold increase (22% - 26%), xylose 1.9-fold increase (9% = 17%), with further
increases on glucose under Nlim (3.4-fold, 41 + 16%). In these scenarios, ACL became
conditionally active (glucose 0% - 24 + 18%, xylose 2 + 26% —> 18 + 19%), highlighting
ACL’s potential role as a backup acetyl-CoA route, especially under Nlim.

Acetate: ACS entry, internal cycling, and uncertain cytosolic acetyl-CoA routes

On acetate, all carbon was obligatorily channeled through ACS (100 + 0.1% / 100 + 1%),
consistent with previously reported modeling under similar conditions (Lopes et al.,
2020). From there, the model distributed carbon primarily through the glyoxylate shunt
(ICL + MLS; ~51%), a substantial fraction via the carnitine carrier (CRC; ~29%), and the
remainder to lipids via ACC (~18%) (Figure S10). At the malate branch, carbon flowed
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into the TCA via PDH (~18%), through anaplerotic shunts (malate-OAA-aKG), or toward
gluconeogenesis via cytosolic MDH. The MLS—-MAE—-PDH route was less preferred than
the CRC route.

Predicted CIT flux (67 + 2%) was ~3-fold higher than average TCA flux (~12%), which
would be compatible with PDH - citrate export - ACL; yet ACL and PK remained at 0%,
and extra exported citrate again re-entered the TCA cycle. Importantly, experimental
data confirmed that a fraction of citrate was secreted extracellularly during exponential
growth, indicating overflow metabolism. This suggests that citrate export on acetate
serves dual purposes: (i) internal redox/OAA balancing via cycling and (ii) relieving
metabolic pressure by secreting excess carbon when ACS-TCA-glyoxylate fluxes saturate.
Proteomics supported this view: CIT, ACO1, and MDH1 were highly abundant and
moderately regulated, consistent with reinforced internal TCA/glyoxylate cycling for OAA
and redox balance during acetate assimilation. However, the absence of ACL flux despite
active citrate export indicates that cytosolic acetyl-CoA is supplied exclusively by ACS,
while citrate overflow represents a redox/energy balancing strategy rather than a
lipogenic route.

Where NADPH is spent (turnover analysis)

During lipid accumulation on glucose, ~75% of NADPH turnover was directed into
FAS1-2 and ~12% into NADP-GDH (Figure 6). In exponential growth, the split shifted to
~13% (FAS1-2) and ~46% (GDH). Thus, NADPH allocation switches from biomass
synthesis (via GDH-mediated amino acid production) to storage compound formation
(via FAS1-2) as cells transition from growth to lipid accumulation, reflecting a general
growth-versus-storage trade-off. The magnitude of this reallocation (up to 75% to FAS)
appears characteristic of oleaginous yeasts. While not resolving whether NADPH limits
lipogenesis in R. toruloides, these results pinpoint where NADPH is predominantly spent
and identify FAS as the dominant sink under lipid-accumulating conditions.
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Figure 6. Comparison of NADPH expenditure on glucose across metabolism during exponential
(exp) and nitrogen-limited (Nlim) phases in R. toruloides. Blue: nitrogen assimilation pathways.
Orange: lipid biosynthetic pathways. Large orange circle represents 75 % of NADPH turnover, small
orange circle is 13 %. Large blue circle represents 46 % of NADPH turnover, small blue circle is 12
%. GDH1: glutamate dehydrogenase (NADP-dependent), FAS1-2: fatty acid synthase. Reproduced
from Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.

NADPH regeneration and the LXR cofactor switch

On glucose, oxPPP carried 76 + 43% of carbon; on xylose 42 + 32%. These relative
contributions changed little under Nlim. Alternative NADPH routes (cMAE, IDP) were
minor on fermentative substrates (< 9% on glucose; < 3% on xylose), suggesting the oxPPP
as the dominant source of NADPH regeneration, which is consistent with previous studies
in Y. lipolytica (Wasylenko et al., 2015; J. Zhu et al., 2023). On acetate, oxPPP was
essentially inactive, and cMAE carried the largest predicted NADPH share (18 + 35%,
decreasing to 15 + 30% in Nlim), although proteome data did not conclusively support
this, leaving the acetate NADPH source unresolved.

Cofactor specificity of L-xylulose reductase (LXR) strongly influenced xylose
predictions. With NADP*/NADPH-dependence (Verho et al., 2004), oxPPP demand was
lower (42 1 32%), consistent with NADPH drainage by LXR. Switching LXR to NAD*/NADH-
dependence increased oxPPP flux to 83 £ 18% on xylose, while other fluxes remained
unchanged. The ribulose-mediated xylose pathway was preferred even without
proteome constraints on XK, underscoring that cofactor choice is a critical, testable
lever for redox design. A full dataset of flux values is available online:
https://doi.org/10.1371/journal.pcbi.1011009.s013.
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Together, the simulations outline substrate-dependent strategies in R. toruloides:
(i) on glucose/xylose, PK + oxPPP dominate (with ACL acting as a conditional backup when
PK is unavailable); (i) on acetate, ACS is obligatory, with reinforced internal
TCA/glyoxylate cycling and cMAE predicted for NADPH (pending validation); and
(iii) citrate export — both cytosol and extracellularly — recurs across conditions without
ACL activity in silico, plausibly due to ATP cost, compartmentation gaps, or missing
regulation in the model. Given the large SDs for some routes, these are hypotheses rather
than final calls and should be resolved by knockout phenotyping, or direct measurements
(e.g., cofactor ratios, isotope tracing, enzyme assays)

3.2.4 Knockout engineering demonstrates ACK, PK, and cMAE are
dispensable for growth but differ in metabolic impact

We validated model predictions by engineering the first single gene knockouts of ACL, PK
and cMAE in haploid R. toruloides strain NBRC 0880 using a one-step plasmid-based
CRISPR/Cas9 strategy that relied on frameshift mutations. Since no episomal plasmids
are available for this yeast, Cas9, gRNA, and the G418 resistance marker were randomly
integrated into the genome via plasmid pPB0.202 (JBEI223791) (Otoupal et al., 2019).
Given the low homologous recombination frequency in R. toruloides (Koh et al., 2014),
knockouts were likely obtained through Cas9-induced double-stranded breaks followed
by error-prone non-homologous end joining. Successful gene disruption was verified by
sequencing genomic regions flanking the gRNA cut sites and aligning them against the
wild-type reference genome (Figure 7A). This yielded multiple mutant variants per gene,
from which one representative per target was selected for detailed physiological
characterization (for full details see Publication Ill). Growth assays confirmed that
integration of the CRISPR/Cas9 cassette itself did not reduce fitness, as wild-type and
cassette-containing control strains exhibited comparable growth rates, consistent with
earlier findings (Otoupal et al., 2019). This provides a baseline for attributing phenotypic
changes specifically to the targeted knockouts. Indeed, no significant growth differences
were observed among PK and cMAE knockout variants during initial screening, whereas
the ACL knockout displayed a distinct phenotype (Figure 7B). These results demonstrated
that central carbon metabolism genes in R. toruloides can be disrupted using a
chromosomal integration strategy with a selectable drug marker. The recovery of viable
knockout strains carrying frameshift mutations confirms that the targeted genes ACL,
PK and cMAE are not essential for growth under the tested cultivation conditions.
However, conditional essentiality cannot be excluded, as gene function may vary
depending on environmental context.
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Figure 7. Confirmation of CRISPR/Cas9 based gene disruption by introducing frameshift mutations
in R. toruloides NBRC 0880. A: partial gene sequencing of the targets ATP citrate lyase (ACL),
phosphoketolase (PK) and cytosolic malic enzyme (cMAE) near the cut site. Example of one edited
colony per gene target is shown. B: R. toruloides strains after 9 days growth on YPD agar —
phenotype comparison. Reproduced from Rekéna et al., Appl Microbiol Biotechnol 109:77, 2025,
under a CC BY NC ND licence.

3.2.5 Knockout phenotyping validates and challenges ecGEM predictions in
R. toruloides

To validate model predictions, we compared lipid content, growth rates, and exchange
fluxes of ACL, PK, and cMAE knockout strains with the wild type in sensor-monitored
aerobic batch cultures. These cultivations were performed in low-nitrogen media to
induce lipid accumulation. The multi-channel bioreactor system employed a reverse-spin
mixing mechanism, ensuring efficient aeration and biomass formation — critical for
the strictly aerobic R. toruloides — and enabling high-throughput, parallel strain
characterization under reproducible, though less tightly controlled, conditions optimized
for comparative screening. Only on acetate, the pH rose steadily during growth and
reached ~9 by the end of cultivation (Figure S11). Experiments confirmed that integration
of the CRISPR/Cas9 cassette did not impair growth, as several knockouts grew
comparably to wild type. Distinct phenotypes can therefore be attributed to gene
disruption.

AACL reveals an indispensable route for cytosolic acetyl-CoA and OAA supply

ACL knockout produced the strongest phenotypes among all mutants. Lipid accumulation
was reduced across all substrates (apval £0.02), most dramatically on glucose where lipid
content dropped by -81% (apval < 0.0001) (Figure 8A). On xylose, the effect was milder
(377 vs. 426 mg gCDW in wild type, apval = 0.02) (Figure 8B), suggesting pentose
metabolism can partially bypass ACL by providing alternative cytosolic acetyl-CoA routes.
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Lipid composition also altered: ACL knockout caused an increase in polyunsaturated
fatty acids (PUFAs) (Figure 8A-C), mutants accumulated more linoleic acid (C18:3)
(pval < 0.0001) and less oleic acid (C18:1) (pval < 0.0001) on glucose and acetate
(Table S6), consistent with earlier findings in Y. lipolytica (Dulermo et al., 2015). Growth
mirrored these trends: on glucose ACL mutants grew 41% slower (apval < 0.002)
(Figure 8D) and arrested after ~18 h despite residual glucose and optimal pH (Figure S12,
Figure S11). On xylose, they displayed a shorter lag phase compared to the wild type
(Figure S12) but reached only 45% of the wild-type growth rate (apval < 0.01) (Figure 8E).
Notably, they still consumed all substrate and accumulated more biomass, indicating that
compensatory routes can support growth, albeit at reduced efficiency. These results,
together with high ACL abundance and upregulation in the proteome for the wild type,
confirm ACL as a central supplier of cytosolic acetyl-CoA during growth and lipogenesis
on fermentative substrates, consistent with earlier works in other microorganisms (H.
Chen et al., 2014; Dulermo et al., 2015; Hynes & Murray, 2010; Nowrousian et al., 1999).
The pervasive growth defects of ACL mutants also underscore its broader role in
providing cytosolic OAA via citrate cleavage, as anticipated from PK deletion simulations.
On glucose, the absence of ACL leaves cells without sufficient OAA compensation, leading
to arrest. By contrast, on xylose, elevated PPP flux into glycolysis and buffering by PC —
facilitated by high PC abundance and lower ATP demand at slower growth — can partially
sustain OAA regeneration, allowing growth to continue, though at a reduced rate. If ACL
were active, cytosolic OAA is produced stoichiometrically with acetyl-CoA, which would
reduce the need for excessive MDH-mediated OAA regeneration and likely tighten those
wide MDH1 distributions observed in predictions. Nonetheless, mitochondrial MDH1
remains essential to regenerate OAA and sustain the citrate-malate shuttle. Its high
abundance on glucose as a carbon source, together with pyruvate carboxylation,
indicates reinforced anaplerosis and redox buffering under high glycolytic flux, consistent
with proteomic evidence.

On acetate, ACL mutants were most impaired, showing a ~60 h lag, 40% slower growth
(apval = 0.009) (Figure 8F), and premature arrest before carbon substrate depletion
(Figure S12). This severe phenotype contrasted with the wild type proteome (low ACL
abundance: 148 + 10 pg g™, 2.8-fold increase, apval = 0.14) and the ecGEM, which
predicted zero ACL flux in the wild type. Proteomics for the wild type provided
additional context: CIT, ACO1, and MDH1 were highly abundant, suggesting reinforced
citrate-isocitrate-malate cycling to regenerate OAA and maintain redox balance.
However, this internal cycling does not resolve the cytosolic acetyl-CoA demand for
lipogenesis. The lack of ACL flux in the ecGEM, despite the severe knockout phenotype
on acetate, reflects inherent model simplifications in energy accounting and
compartmentation. First, ACL is an ATP-consuming reaction, and the model solution
likely prioritizes energy-efficient pathways. With acetate assimilation modeled entirely
through cytosolic ACS, which provides acetyl-CoA at lower energetic cost, the model
solution bypasses ACL even when this contradicts biology. Second, many yeasts,
including S. cerevisiae, Y. lipolytica, and Candida spp., encode both cytosolic and
mitochondrial ACS isoforms (Krivoruchko et al., 2015), but in R. toruloides these are not
well annotated. In vivo, mitochondrial ACS would convert acetate to acetyl-CoA for the
TCA cycle, while cytosolic acetyl-CoA would be regenerated via citrate export and ACL
cleavage. In the ecGEM, however, acetate is assumed to freely enter the cytosol, and
cytosolic ACS therefore becomes the cheapest assimilation route, bypassing the need for
citrate shuttling and ACL activity. Moreover, transport penalties and carrier coupling
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(e.g., citrate-malate exchange) are not fully specified, so the energetic and regulatory
advantages of the mitochondrial route are invisible to the solver. As both ACS isoforms
are annotated to the same gene, the enzyme constraint cannot distinguish between
cytosolic and mitochondrial pools, further biasing the solution. Together, these
simplifications explain why the mitochondrial ACS is present in the network but not used
in a biologically realistic way. Third, in this scenario, ACL becomes essential for exporting
citrate to the cytosol and regenerating acetyl-CoA and OAA, thereby sustaining lipid
synthesis and redox balance. Without ACL, this shuttle collapses: acetyl-CoA remains
trapped in mitochondria, cytosolic OAA supply drops, and lipid synthesis stalls. PC cannot
compensate under these conditions. Although PC abundance on acetate was comparable
to glucose and xylose, glycolysis is inactive, so pyruvate is scarce. This substrate limitation
caps PC flux and prevents it from meeting cytosolic OAA demand. ACL, by contrast,
bypasses glycolysis and directly provides both cytosolic acetyl-CoA and OAA, uniquely
positioning it to balance lipid synthesis and redox requirements. If ACL were active,
exported citrate would be cleaved by cytosolic ACL to yield acetyl-CoA and OAA, directly
supplying the cytosolic acetyl-CoA pool for lipogenesis while providing a parallel source
of OAA that can re-enter the TCA cycle via malate shuttling. Although the ACL step itself
is cataplerotic, the resulting citrate-malate cycle contributes to overall anaplerotic and
redox balancing functions, reducing dependence on MDH- and PC-mediated OAA
regeneration. This not only makes the proteome signal functionally meaningful rather
than purely “internal cycling”, but also explains why ACL mutants arrest on acetate
despite ACL’s low proteome abundance and the model’s zero predicted flux. Thus, the
discrepancy between phenotype (ACL essential), proteomics (low ACL abundance), and
modeling (zero flux) can be explained by (i) compartmentation errors, (ii) a small ACL
pool providing essential flux despite low abundance, and (iii) acetate-specific where
glycolysis-independent OAA supply is required. Together, these factors suggest that ACL
plays a context-dependent but indispensable role under acetate metabolism,
highlighting need for improved isoform annotation, compartmentation, and energy
accounting in ecGEMs, as well as the limitations of using proteome abundance or model
predictions alone to infer enzyme indispensability.
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Figure 8. Growth and lipid accumulation data of R. toruloides NBRC 0880 (formerly known as IFO
0880) wild type and mutant strains cultivated in Falcon tube bioreactors in low-nitrogen chemically
defined media with glucose (G), xylose (X), or acetate (A) as a carbon source during exponential
growth (exp) and nitrogen-limited (Nlim) phases. A: Total lipid yield on biomass and FA composition
of glucose-grown strains. B: Total lipid yield on biomass and FA composition of xylose-grown strains.
C: Total lipid yield on biomass and FA composition of acetate-grown strains. D: Specific growth rate of
glucose-grown strains. E: Specific growth rate of xylose-grown strains. F: Specific growth rate of
acetate-grown strains. Strains include ATP citrate lyase knockout (AACL, green), phosphoketolase
knockout (APK, blue), and cytosolic malic enzyme knockout (AcMAE, orange). Error bars represent
standard deviation of three biological replicates. Abbreviations: FA, fatty acid; SFAs, saturated fatty
acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids. Asterisks denote
statistical significance (ANOVA Dunnett’s multiple comparison test against the wild type NBRC 0880
strain, adjusted p value *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). ns is used to denote
changes that are statistically nonsignificant. Layouts and color schemes differ from the published
versions for copyright compliance.



APK indicates overestimation of phosphoketolase flux in silico

Although the ecGEM consistently predicted PK as the dominant cytosolic acetyl-CoA
supplier on glucose and xylose, this was not borne out experimentally. PK knockout
strains showed no significant changes in lipid content, growth rate, or fatty acid profile
under any of tested conditions (Figure 8 A—F), indicating that PK flux is dispensable in vivo.
The model’s preference for PK likely stems from its stoichiometric “cheapness” —a short,
ATP-efficient route to acetyl-CoA — and possibly high ket values inherited from non-R.
toruloides enzymes in BRENDA. This interpretation is consistent with ATP balance analysis,
where ACL cleavage would appear as a costly ATP sink, while PK routes minimize energetic
demand (Figure S13). Under nitrogen limitation on glucose/xylose, ATP consumption
shifted toward ACC/FAS, mirroring the observed increase in NADPH flux to FAS and the
rise in PK flux in silico (Figure 9). On acetate, as discussed above, ATP spending is
dominated by ACS-driven assimilation and respiratory ATP production, leaving little
energetic slack (Figure S14). In respiratory metabolism, mitochondrial NADH (mNADH)
generated by PDH and the TCA cycle serves as the principal electron donor for oxidative
phosphorylation. Although the ACL pathway is experimentally established as the main
source of cytosolic acetyl-CoA during lipid accumulation in fully respiratory oleaginous
yeasts, the model did not predict significant ACL flux (Figure 9). The model occasionally
predicted citrate export to the cytosol followed by re-import into the mitochondria
through auxiliary pathways, effectively creating a futile citrate cycle. This behavior likely
reflects the rigid ATP-NADH coupling imposed by the steady-state energy balance.
In vivo, mitochondria can produce more ATP than strictly needed for growth under high
respiratory capacity, providing surplus energy to drive lipid biosynthesis. In contrast,
GEMs solve ATP balance algebraically — every mole of NADH oxidation must immediately
meet ATP demand to satisfy GAM and NGAM under steady-state assumptions.
Consequently, cytosolic ATP required for ACL activity is never “left over.” When citrate is
exported from the mitochondria, it carries carbon atoms but no reducing equivalents.
The NADH produced by PDH remains in the matrix to sustain respiration, while the
cytosol must generate its own NADPH for fatty acid synthesis. This separation of carbon
and redox fluxes renders the ACL route energetically costly and redox-imbalanced in
stoichiometric models, even though real cells employ regulatory mechanisms to coordinate
these compartments during lipid accumulation. The established AMP-mediated regulatory
switch that triggers citrate overflow under nitrogen limitation (Papanikolaou & Aggelis,
2011a; Ratledge & Wynn, 2002b) is not represented in GEM. In vivo, a decline in AMP
inhibits isocitrate dehydrogenase, promoting citrate accumulation that feeds ACL and
lipid biosynthesis. In the model, however, AMP functions only as a metabolite within the
ATP - ADP - AMP balance, lacking regulatory role. As a result, ATP/NADH turnover
remains tightly balanced, and the dynamic energy-charge control that drives this
metabolic transition is not captured.

Also, in vivo PK may be constrained by (i) instability of its product acetyl-phosphate,
(i) insufficient activity of downstream PTA/ACK enzymes, or (iii) lack of integration with
OAA/redox balancing that ACL provides via citrate cleavage. Proteomic data showing PK
upregulation under nitrogen limitation suggest regulatory priming, but the absence of a
phenotype upon deletion implies that this induction does not translate into substantial
flux. This discrepancy underscores a broader GEM limitation: pathway selection in silico
is driven by stoichiometric and energetic efficiency, but real cells prioritize robustness
and metabolic integration. Refining models with constraints on PK (PTA/ACK capacity,
acetyl-P instability, or thermodynamic penalties) would help avoid overestimating its
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contribution and better reconcile model predictions with experimental evidence. These
results highlight how knockout phenotyping, when integrated with proteome data,
provides a critical check on ecGEM predictions and helps identify where additional
biological realism is required.
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Figure 9. Central carbon and cofactor flux map in R. toruloides during respiratory growth on
glucose. Nodes represent major intermediates (glucose, pyruvate, oxaloacetate (OAA), xylulose-5-
phosphate (X-5-P), acetyl-CoA, and citrate) and compartments (cytoplasm, mitochondria). Reaction
arrows are scaled by simulated flux and annotated with cofactor usage: ATP (amber badge), NADH
(blue badge), NADPH (green badge), and CO; release (gray badge). In glycolysis, cofactor badges
indicate per-reaction stoichiometries (-2 ATP at hexokinase and phosphofructokinase, +1 NADH at
glyceraldehyde-3-phosphate dehydrogenase, +2 ATP at phosphoglycerate kinase and pyruvate
kinase) rather than the overall glycolytic net yield (+2 ATP, +2 NADH per glucose). Color-coded
cofactor badges summarize the energetic and redox logic underlying this predicted flux distribution.

AcMAE confirms substrate-dependent and nonessential role in NADPH supply

For NADPH supply, all three approaches consistently pointed to the oxPPP as the major
source on fermentative carbon sources. cMAE knockout displayed condition-specific
effects. On acetate, growth slowed by 19% (apval = 0.009) (Figure 8F) without affecting
lipid accumulation, consistent with model predictions that cMAE contributes to NADPH
supply under this condition. The absence of a lipid phenotype on acetate (lipid yields of
448 vs. 451 mg gDCW™ for the AcMAE mutant and the wild type, respectively; difference
not statistically significant, Figure 8C) suggests that remaining NADPH sources were
preferentially directed into fatty acid synthesis at the expense of growth, reflecting a
lipid-first allocation strategy typical of oleaginous yeasts. This observation is consistent
with the early biochemical findings in R. glutinis (Yoon et al., 1984). Although recent
genetic engineering studies in oleaginous yeasts have been performed only on glucose,
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the reported effects of MAE deletion or overexpression on lipogenesis were relatively
minor and varied depending on experimental design (Dulermo et al., 2015; S. Zhang
et al., 2016). This contrasts with filamentous fungi, in which MAE has been identified as
one of the rate-limiting steps in fatty acid biosynthesis (Wynn et al.,, 1997, 2001;
Wynn & Ratledge, 1997; Y. Zhang et al., 2007). The proteomics-constrained ecGEM
consistently favored cMAE as the dominant NADPH source on acetate (~18 + 35% of
carbon, ¢, to 15 + 30% at Nlim) because it provides a direct, ATP-neutral conversion of
malate to pyruvate while generating NADPH, making it a stoichiometrically and
energetically “cheap” solution compared to oxPPP (which requires costly gluconeogenic
generation of G6P) or IDP (which consumes isocitrate and produces CO,). The solver
minimizes energetic cost and carbon loss, biasing predictions toward cMAE. However,
this predicted dominance of cMAE is biologically unlikely. Malate availability in the
cytosol is limited on acetate because flux through glycolysis is absent and malate must
be generated via costly cycling through the glyoxylate shunt or TCA. Moreover, cMAE
activity uncouples NADPH regeneration from OAA balance, whereas oxPPP and IDP are
more integrated into central carbon and redox metabolism. Thus, in vivo, cMAE is more
plausibly a secondary or backup source of NADPH rather than the main driver.
Proteomics, however, revealed a substantial and even upregulated abundance of ZWF
(637 £ 52 - 951 + 16 ug g™ protein), suggesting that cells maintain significant oxPPP
capacity even when acetate is the sole carbon source. The most plausible explanation is
that oxPPP on acetate is constrained by gluconeogenic supply of G6P —energetically costly,
but still feasible —so ZWF may act as a redox reserve rather than a high-flux NADPH route.
Meanwhile, IDP, which showed elevated abundance on acetate (1472 + 47 ug g™ protein,
2.4-fold increase, apval 0.14), represents an alternative, model-underestimated source
of NADPH that could compensate when cMAE is disrupted. Together, these results
highlight that NADPH supply during acetate metabolism in R. toruloides cannot be
attributed to a single pathway. Instead, a distributed system of partially redundant
routes — oxPPP, IDP, and possibly transhydrogenase-like cycling — appears to balance
redox demands. This points to gaps in the ecGEM, including, e.g., gluconeogenic limits,
thermodynamic penalties, enzyme saturation, inaccurate ket values or missing
alternative NADPH sources, and underscores the need for isotope tracing and cofactor
profiling to resolve acetate-specific NADPH metabolism.

By contrast, on glucose, the cMAE knockout unexpectedly improved performance:
growth increased by 23% (apval = 0.04) (Figure 8D) and lipid accumulation modestly rose
(+2.9% g gDCW™, apval = 0.03) (Figure 8A). This suggests that cMAE activity on glucose
may impose a metabolic burden, either by drawing malate away from malate-OAA
cycling or by generating redundant NADPH in a condition where the oxPPP already
dominates redox supply (76 + 43% of carbon flux). Proteomics data supported this
interpretation, showing cMAE at modest, unregulated levels across conditions. Together,
these results indicate that cMAE is a supportive but nonessential enzyme: beneficial on
acetate, but potentially maladaptive on glucose where excess NADPH or futile cycling can
hinder growth efficiency. This contrasts with previous report in R. toruloides, where MAE
overexpression, although producing only a relatively minor effect, still resulted in a
significant increase in lipid production (S. Zhang et al., 2016). It is important to note,
however, that knockout and overexpression phenotypes are perturbations in opposite
directions and may not be directly comparable.
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In summary, knockout phenotyping established ACL as essential for lipogenesis on
glucose and acetate but dispensable on xylose, where alternative acetyl-CoA pathways
compensate. PK appears redundant despite model predictions and proteome upregulation,
while ¢cMAE contributes conditionally in a substrate- and redox-dependent manner,
even disfavouring lipid production. Integrating proteomics, modeling, and knockout
phenotyping thus refines our understanding: ACL is indispensable in vivo, PK is
overestimated in silico, and cMAE is largely dispensable but reflects metabolic flexibility.
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4 Conclusions

Potential and limitations of enzyme-constrained genome-scale models (ecGEMs) in
understanding and engineering yeast metabolism were examined focusing on two
distinct studies: (i) anaerobic 2,3-butanediol (23BD)-glycerol co-production in
Saccharomyces cerevisiae, and (ii) lipogenesis in the oleaginous yeast Rhodotorula
toruloides. By integrating ecGEM simulations with quantitative proteomics, growth
physiology, and CRISPR/Cas-based strain engineering, we demonstrated how modeling
and experiments can be combined to reveal metabolic strategies, bottlenecks, and
design opportunities.

Broader conclusions and future perspectives

The predictive value of enzyme-constrained genome-scale models (ecGEMs) ultimately
depends on how accurately simulated quantities reproduce experimental observations.
It is therefore necessary to distinguish calibration (parameterization with exchange
fluxes, biomass composition, and proteomics) from model validation, in which
independent phenotypes, fluxes, and proteome allocation patterns are quantitatively
tested. Validation provides the critical link between theoretical modeling and biological
experimentation, establishing when a model can be relied upon for design or hypothesis
generation. Importantly, inconsistencies between predictions and measurements also
highlight gaps in our current understanding of cellular metabolism, pointing to specific
biological mechanisms that call for further investigation.

The studies described in the thesis demonstrate how enzyme-constrained
genome-scale modeling, when integrated with quantitative proteomics and genetic
perturbations, can bridge the gap between systems-level prediction and experimental
validation in both model and non-model yeasts. The need for flexibilization of measured
enzyme data in the ecGEM fitting process carries important implications for both
biological interpretation and predictive credibility. The parametrization process
emphasises that ecGEMs are not static predictive machines but iterative diagnostic tools
— each round of adjustment refines both experimental and computational understanding.
In this sense, flexibilization is not only an alarming signal, but also an informative point,
pinpointing where future work should focus.

Nevertheless, by quantifying proteome allocation dynamics and demonstrating that
enzyme constraints reshape feasible flux space, this thesis established ecGEMs as
promising platforms for rational strain design and for interpreting adaptive evolution
(Aim 1). Moreover, across S. cerevisiae and R. toruloides, ecGEMs proved capable of
reproducing major physiological trade-offs — between growth, redox balance, and
resource allocation — while generating mechanistic hypotheses far faster and at greater
resolution than traditional experimentation alone (Aim Il). These insights enabled the
identification of substrate-dependent strategies for cytosolic acetyl-CoA and NADPH
supply, revealed context-specific enzyme essentialities, but also exposed key discrepancies
between in silico efficiency and in vivo robustness. Importantly, this work also
emphasized that not always enzyme abundance is a reliable proxy for flux, underscoring
the necessity of coupling modeling with isotope tracing, cofactor profiling, and genetic
perturbations to refine quantitative predictions. Future advances — including automatic
biomass composition, ribosome allocation scaling with growth rate, improved enzyme
annotation, thermodynamics-based constraints, organism-specific energy maintenance
measurements and kinetic datasets — will further enhance their predictive power
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(Aim Ill). Together, ecGEMs, as part of an integrative cycle with experiments, have the
potential to shorten design-build-test-learn cycles, improve the efficacy of metabolic
engineering experiments, and deepen our mechanistic understanding of cellular
metabolism under both engineered and natural conditions.

Study 1: Anaerobic 23BD-glycerol co-production in S. cerevisiae

In this study, enzyme-constrained genome-scale modeling was integrated with
quantitative proteomics to dissect metabolic trade-offs and proteome allocation in
Saccharomyces cerevisiae engineered for anaerobic (R,R)-2,3-butanediol-glycerol
co-production. The model successfully reproduced key physiological behaviors and
provided mechanistic insight into the interplay between enzyme capacity, energy vyield,
and proteome organization.

The ecGEM captured the major trade-offs of 2,3-butanediol pathway operation —
namely, a lower ATP yield and a corresponding reduction in biomass yield — while
predicting compensatory increases in specific glucose uptake rate that offset the
thermodynamic penalties on growth (Section 3.1.1). These predictions aligned closely
with experimental observations (Section 3.1.2), confirming the model’s ability to
describe key constraints in anaerobic co-production (Aim Il).

Comparisons between predicted and measured proteome allocation further revealed
both strengths and limitations of the ecGEM (Section 3.1.3). The predicted increase in
glycolytic investment and its experimental confirmation underscored the remarkable
metabolic flexibility of S. cerevisiae under redox stress —a phenomenon unattainable in
conventional GEMs that lack proteome accounting. Under detailed enzyme constraints,
fluxes through the most catalytically efficient enzymes (as defined by k.t/Mw) often
decreased, while flux through less efficient isoenzymes or alternative routes increased
(Section 3.1.4), revealing a shift toward a leaner and more physiologically realistic
metabolic strategy. Collectively, these results guided phenotype interpretations that
would be difficult to derive through experiments alone. However, discrepancies at the
enzyme-family level — particularly in redox balancing (Gpd/Gpp, Ald), biosynthetic
regulation, and isoenzyme selection — reflected the model’s bias toward stoichiometric
efficiency rather than the robustness and redundancy observed in vivo (Aim Ill).
By incorporating the both coarse total-protein and proteomics- constraints (Section
3.1.1), only a fraction of total proteome mass contributed catalytically in the model due
to incomplete annotation, missing or uncertain ket values, and the presence of structural,
regulatory, or stress-related proteins that are not explicitly represented (Aim Ill).

Overall, this work demonstrates that enzyme-constrained modeling, when paired with
absolute proteomics, can accurately predict macroscopic trade-offs and capture global
proteome redistribution, while highlighting critical gaps in enzyme annotation and
kinetic data. The ecGEM framework thus provides a mechanistically grounded context
for evaluating adaptive limits in metabolic engineering: distinguishing “hard limits”
imposed by thermodynamics and ATP yield from “soft limits” imposed by enzyme capacity
and regulation.

Study 2: Lipogenesis in R. toruloides

In this study, we examined how central carbon metabolism reallocates fluxes to supply
cytosolic acetyl-CoA and NADPH in R. toruloides, and how these strategies vary
between substrates such as glucose, xylose, and acetate. Using growth experiments and
detailed physiological characterisation, global absolute proteomics, ecGEMs with
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substrate-resolved biomass composition, and targeted gene knockouts, we predicted
intracellular fluxes across substrates, and validated predictions to dissect substrate-specific
strategies between lipogenesis and exponential growth conditions.

Growth experiments on glucose, xylose, and acetate revealed nitrogen limitation
consistently triggering lipid accumulation (Section 3.2.2) but through different metabolic
routes. Absolute proteomics showed how resource allocation shifts between growth and
storage (Section 3.2.1). Ribosomal investment was high but ribosome efficiency was low
compared to S. cerevisiae, consistent with microbial growth laws but highlighting distinct
proteome allocation in basidiomycetous oleaginous yeast. Key lipogenic enzymes such
as ACL, PK, ACS, ZWF and cMAE displayed clear substrate-specific patterns, but abundance
alone did not predict essentiality. The proteomics-constrained ecGEM reproduced
growth rates and substrate uptake within ~30% of experimental values, and it
systematically generated mechanistic hypotheses about acetyl-CoA and NADPH supply
(Section 3.2.3). On glucose and xylose, the model consistently preferred the
phosphoketolase (PK) pathway and the oxidative pentose phosphate pathway (oxPPP);
on acetate, acetyl-CoA synthetase (ACS) and malic enzyme (cMAE) were predicted to
dominate. Knockout phenotyping provided the decisive evidence to these predictions
(Section 3.2.4 and 3.2.5). Results established ACL as a central node in lipogenesis,
uncovered clear discrepancies between modeling and proteome data, and phenotypes,
and highlighted the importance of integrating all three approaches (Aim Il).

These findings refine ecGEM predictions and underscore the importance of isoform
annotation, compartmentation, and energy accounting in non-model GEMs (Aim Il1).
Nevertheless, the modeling insights proved especially valuable because they generated
hypotheses that would have been difficult or slow to uncover using experimental
approaches alone. For example, the model highlighted the PK pathway as a potential
dominant source of cytosolic acetyl-CoA on glucose and xylose, narrowing the search
space. Similarly, the simulations revealed that ATP-consuming ACL could act as a
conditional backup, becoming active when PK was blocked in silico. This finding
anticipated the strong ACL knockout phenotype on glucose/xylose. Accounting for
cofactor NADPH regeneration prompted investigation into substrate-dependent NADPH
strategies and led to the discovery that enzyme cofactor specificity (e.g., NADPH- vs
NADH-dependent LXR) strongly shifts redox fluxes. Finally, the counterintuitive
prediction of citrate export without ACL flux identified redox/energy balancing as a
bottleneck and motivated the hypothesis that citrate shuttling plays roles in overflow
and redox balancing. However, the model’s energetic logic - favoring PK as the “cheaper”
route - forced deeper reflection on why cells use ACL in vivo, pointing to integration with
OAA and redox balance rather than energetic efficiency. Also, predicting cMAE
dominance on acetate revealed its bias toward stoichiometric optimality, overestimating
energy and carbon efficiency. These modeling discrepancies and their mechanistic
interpretation were not examined in Publication Il when it was published and are
presented here for the first time, extending the original studies with new insights into
enzyme essentiality and metabolic mechanisms in R. toruloides.

Taken together, the R. toruloides case study shows that ecGEMs can capture broad
metabolic strategies and point to critical nodes, but that proteomics and phenotyping
are essential to distinguish between “cheap but unused” routes and “low-abundance but
indispensable” ones. Nevertheless, it elucidated how flexibly R. toruloides reorganizes
metabolism to achieve lipogenesis, providing both mechanistic insight and guidance for
metabolic engineering. In future work, ecGEMs could also be used for proteome
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allocation modeling, linking expression constraints more directly to fluxes. Future
improvements should include generation of R. toruloides-specific kinetic and maintenance
parameters to fit GEMs, targeted testing of uncharacterized enzymes identified in the
proteome. Such steps will bring us closer to a predictive design framework for
engineering R. toruloides as a robust lipid cell factory.
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Abstract

Computational design of yeast-based cell factories

The design of efficient yeast-based cell factories requires predictive computational
models that accurately capture quantitative links between genotype and phenotype.
Among the modeling approaches available, genome-scale metabolic models (GEMs)
enable the prediction of cellular growth and metabolic fluxes under defined
environmental and genetic conditions. However, conventional GEMs rely solely on
stoichiometric and steady-state assumptions and therefore fail to capture enzyme
capacity limitations or kinetic and regulatory control. This limitation restricts their
predictive power, particularly in non-model yeasts that display distinct metabolic
regulation and for which experimental data remain scarce. To address these
shortcomings, enzyme-constrained genome-scale metabolic models (ecGEMs) extend
the GEM framework by coupling metabolic fluxes to absolute proteomics data and
reaction-specific catalytic constants (Kcat).

The overarching aim of this thesis was to develop, apply, and critically evaluate
enzyme-constrained models for predicting metabolism in both the model yeast
Saccharomyces cerevisiae and the lipid-producing yeast Rhodotorula toruloides. The work
was motivated by the exploration of thermodynamically feasible, redox neutral and ATP
yielding pathways for anaerobic product formation, as well as by the goal of extending
advanced metabolic modeling toward nonconventional, industrially relevant yeast
species.

Study 1 integrated absolute quantitative proteomics with physiological data from
controlled bioreactor cultivations to parametrize ecGEMs and assess the predictive power
for yields, metabolic reaction rates (fluxes), and proteome allocation in Saccharomyces
cerevisiae strains engineered for redox-neutral, ATP-yielding co-production of (R,R)-2,3-
butanediol and glycerol. The model was further constrained by genetic perturbations,
and the predicted fluxes, validated experimentally with the engineered strain,
reproduced several observed physiological trends, including growth reduction and
proteome reallocation.

Study 2 focused on R. toruloides, an oleaginous yeast naturally capable of synthesizing
high amounts of lipids and carotenoids. Absolute quantitative proteomics and
physiological data from bioreactor cultivations were integrated to construct new ecGEMs
and to simulate carbon flow through intracellular metabolic pathways during exponential
growth and lipid-accumulation phases on three carbon substrates — glucose, xylose and
acetate. Model-based hypotheses were evaluated through targeted gene deletions and
subsequent growth experiments assessing the effects on growth and lipid accumulation.
Although the ecGEM accurately reproduced growth and global proteome limitations,
it systematically underestimated the activity of key lipid-precursor biosynthetic pathways.
These results emphasized the need for accurate catalytic constants, compartmentalization,
and maintenance parameters for reliable model predictions and provided new insight
into the roles of specific genes in lipid-precursor production on fermentative and
non-fermentative substrates.

The thesis demonstrates the integration of genetic, biochemical and computational
approaches to develop and validate predictive models of yeast metabolism, highlighting
both strengths and current critical gaps in modeling frameworks, and provides perspectives
on how future improvements can advance in silico biomanufacturing design.
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Lihikokkuvote

Parmipohiste rakuvabrikute in silico disain

Tohusate parmipdhiste rakuvabrikute disainimine vajab ennustusvGimelisi arvutuslikke
mudeleid, mis suudavad tapselt kirjeldada kvantitatiivseid seoseid genotiibi ja
fenotiiibi vahel. Uheks selliseks ldhenemiseks on iilegenoomsed metabolismimudelid
(GEM-id), mis voimaldavad prognoosida rakkude kasvu ja metaboolsete reaktsioonide
kiirusi maaratletud keskkonna- ja geneetilistes tingimustes. Traditsioonilised GEM-id
tuginevad siiski Uksnes stohhiomeetrilistele ja pusiseisundi eeldustele ega arvesta
seetOttu ensliimide mahulisi piiranguid ega kineetilist ja regulatoorset kontrolli.
See piirang vahendab nende ennustusvGimet, eriti mitte-mudel tllpi parmides,
millel on spetsiifiline metaboolne regulatsioon ning mille eksperimentaalsed andmed
on puudulikud. Nende puuduste kd&rvaldamiseks laiendavad ensliimipiiranguga
ilegenoomsed metabolismimudelid (ecGEM-id) GEM-raamistikku, sidudes metaboolsed
vood absoluutsete proteoomika andmete ja reaktsioonispetsiifiliste katalltiliste
konstantidega.

Kaesoleva vaitekirja Uldeesmark oli valja tootada, rakendada ja kriitiliselt hinnata
enstlmipiiranguga mudeleid parmide metabolismi ennustamiseks nii mudelparmis
Saccharomyces cerevisiae kui ka lipiide tootvas parmis Rhodotorula toruloides. T60 oli
motiveeritud termodinaamiliselt vGimalike, redoksneutraalsete ja ATP-d tootvate
siinteesiradade uurimisest anaeroobsete produktide moodustumisel ning soovist
laiendada taiustatud metabolismimudelite kasutust mitte-konventsionaalsetele, kuid
toostuslikult olulistele parmiliikidele.

Uuring 1 seob absoluutse kvantitatiivse proteoomika ja fisioloogilised andmed
kontrollitud bioreaktori kasvatustest, et ecGEM-e parameetrite kaudu viljendada ja
hinnata nende ennustusvéimet saagikuse, metaboolsete reaktsioonide kiiruste
ning proteoomi jaotuse osas S. cerevisiae tlivedes, mis olid geneetiliselt
muundatud redoksneutraalse, ATP-d tootva (R,R)-2,3-butaanidiooli ja glitserooli
koosproduktsiooni jaoks. Jargnevalt tdaiendati mudelit geneetiliste muudatustega ning
prognoositud vood, mida kontrolliti eksperimentaalselt muundatud tlves, taasesitasid
mitmeid tdheldatud fisioloogilisi trende, sealhulgas kasvu vdahenemist ja proteoomi
imberjaotumist.

Uuring 2 keskendus R. toruloides’ele, looduslikult lipiidsele parmile, mis on vdimeline
siinteesima suuri koguseid lipiide ja karotenoide. Absoluutne kvantitatiivne proteoomika
ja fusioloogilised andmed bioreaktori kultiveerimistest seoti uute ecGEM-ide
koostamiseks ning susinikuvoogude modelleerimiseks rakusisestes metabolismiradades
eksponentsiaalse kasvu ja lipiidide akumulatsiooni faasis kolmel erineval
stsinikusubstraadil — gliikoosil, kslloosil ja atsetaadil. Mudelil pGhinevaid hiipoteese
kontrolliti mé&aratud geenide eemaldamiste ja sellele jargnenud kasvukatsetega,
hinnates mdjusid kasvule ja lipiidide akumulatsioonile. Kuigi ecGEM ennustas tdpselt
kasvu ja proteoomi uldisi piiranguid, alahindas see sistemaatiliselt peamiste lipiid-
prekursorite biosiinteetiliste radade aktiivsust. Need tulemused rdhutasid tdpsete
kataluitiliste konstantide, raku kompartmentide ja alalhoiuenergia tdhtsust
usaldusvaarsete mudelprognooside saavutamisel ning andsid uusi teadmisi konkreetsete
geenide rollist lipiid-prekursorite tootmises fermenteeruvatel ja mitte-fermenteeruvatel
substraatidel.
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Viitekirjas naidati, kuidas siduda geneetilised ja biokeemilised andmed mudelitega, et
parmide metabolismi ennustavate mudelite arendamiseks ja valideerimiseks. T66 toob
esile nii enslilimipiiranguga modelleerimise tugevused kui ka praegused kitsaskohad ning
pakub ndagemuse, kuidas edasised tdiustused vdivad edendada in silico biotddstuslike
tootmislahenduste kavandamist.
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Supplementary Tables

Supplementary tables to Study 1

Table S1. Gene set analysis (Vdremo et al., 2013) of measured proteome data. Results provide
functional groups with the number of proteins included in each group and the adjusted p-value
without considering directionality (Non-directional), upregulated, and downregulated proteins in
the dataset. Reproduced from Sjoberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY

licence.
GSY014 vs GSY013 % of total protein

Number

of Upregulate |Downregul [Non-
Protein functional groups proteins |d ated directional |GSY013 GSY014
Central carbon metabolism,
glycolysis 47 0,0012999 1 0,0012999 | 28,673181 43,4930885
Biosynthesis, amino acid
metabolism 116 0,0012999 1 0,0012999 | 6,85647662 8,7849401
Translation, ribosome 110 1 0,0038996 0,0012999 | 25,4856646 18,5188884
Biosynthesis, cofactor biosynthesis 76 0,0012999 1 0,0019498 | 0,92952053 1,06945689
Central carbon metabolism,
carbohydrate metabolism 31 1 0,0090991 0,0062394|0,61589211 0,4048838
Biosynthesis, lipid and steroid
metabolism 62 0,76222 1 0,0090991 | 0,94723025 1,77506151
Biosynthesis, purine metabolism 28 0,52801 1 0,031754 | 1,49754419 1,74714157
Central carbon metabolism, other
central metabolism enzymes 24 0,83247 1 0,052157 | 0,84297743 1,00011134
Biosynthesis, pyrimidine
metabolism 18 0,85242 1 0,11699 |0,33569691 0,33994558
Translation, tRNA loading 36 0,0048745 1 0,16027 0,823187 0,84344909
Central carbon metabolism, TCA
cycle and anaplerotic enzymes 19 0,016248 1 0,31693 |0,58057421 0,66133807
Folding sorting degradation,
peptidases 32 0,56219 1 0,60894 |0,53092279 0,61846825
Translation, translation factors 42 1 0,20101  0,60894 |4,43020195 3,99360999
Central carbon metabolism,
pentose phosphate metabolism 16 0,016248 1 0,9998 |0,73470907 0,65379915
Other enzymes, other enzymes 116 0,18025 1 0,9998 1,15630208 1,18128839
Energy metabolism, oxidative
phosphorylation 30 0,048745 1 0,9998 |0,68681761 0,64869067
Translation, mRNA surveillance
pathway 26 0,78887 1 0,9998 |[0,08479007 0,08025251
Folding sorting degradation, sulfur
relay system 5 1 0,42236 0,9998 | 0,1406847 0,0941634
DNA maintenance, DNA repair and
recombination proteins 8 1 0,74093 0,9998 0,0284869 0,02259921
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GSY014 vs GSY013 % of total protein

Number

of Upregulate |Downregul [Non-
Protein functional groups proteins |d ated directional |GSY013 GSY014
Biosynthesis, glycan metabolism 34 1 0,026517  0,9998 |0,10913066 0,10280548
Folding sorting degradation, protein
processing in endoplasmatic
reticulum 42 1 0,10362 0,9998 |0,30244859 0,2703966
Translation, RNA transport 35 0,78887 1 0,9998 |0,67169539 0,68602054
Membrane transport, transport 12 0,78887 1 0,9998 |0,50463491 0,56536671
Folding sorting degradation,
chaperones and folding catalysts 61 0,91505 1 0,9998 |3,78810893 3,4605689
DNA maintenance, chromosome-
related 113 1 0,026517  0,9998 |0,73873438 0,49726759
Transcription, basal transcription
factors 28 1 0,76016 0,9998 |0,06836305 0,06688099
Folding sorting degradation,
ubiquitin mediated proteolysis 16 0,83247 1 0,9998 |0,10112648 0,10017797
DNA maintenance, DNA replication
complex 24 0,78887 1 0,9998 |0,07823503 0,07682752
DNA maintenance, DNA replication
control 11 0,83247 1 0,9998 |0,01923367 0,01451861
Translation, ribosome biogenesis 11 1 0,13356 0,9998 |0,08240959 0,06981363
Transcription, transcription factors 27 1 0,0038996 0,9998 |0,07595343 0,06522586
Folding sorting degradation,
proteasome 32 0,048745 1 0,9998 |0,61754182 0,64410242
Transcription, RNA polymerase 29 1 0,80527 0,9998 |[0,23821556 0,23391551
Folding sorting degradation,
ubiquitin labeling 22 0,56219 1 0,9998 |0,06581475 0,07028825
Translation, ribosome biogenesis in
eukaryotes 55 1 0,027297  0,9998 |0,45656996 0,40651673
Folding sorting degradation, protein
export 17 1 0,2278 0,9998 |0,07331038 0,06628602
Folding sorting degradation, RNA
degradation 36 0,83247 1 0,9998 0,2183356 0,19722009
Transcription, spliceosome 56 1 0,13779 0,9998 |0,24065933 0,21380151
Folding sorting degradation, SNARE
interactions in vesicular transport 15 1 0,16417 0,9998 |0,03068322 0,02902006
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Table S2. Enzymes under flexibilization of individual protein constraint by the ecGEM, their original
and modified values. Constraints were adjusted by algorithmically increasing measured absolute
protein concentration to achieve feasible flux states in proteome-constrained ecGEM simulations.
Reproduced from Sjéberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence.

protein_IDs |previous values

modified values

flex mass

Fold change

ecGSY014

YJR148W
YDR226W
YKLO60C
YDLO93W
YBRO84W
YNL241C
YDL171C
YOLO59W
YFLO18C
YMR189W
YHRO25W
YMR267W
YOL126C
YMR205C
YKL127W
YGLO62W
YGR193C
YER026C
YPL134C
YMR241W
YLR348C
YKL120W
YLRO92W
YPRO58W
YBR166C
YBR196C
YDL141W
YDR127W
YDR234W
YDR408C
YEROO3C

YFLO45C

7.34168641470523E-06 0.0000126212361363917 0.219756980729922

0.0000139550415479416 0.000168346889374346 3.7447125122903

0.000206226010683615
4.29282746859551E-08
6.22617721052581E-07

2.58197414940101E-06

0.000292033602901766
8.37144957433201E-07
8.67798100279856E-07

3.18689327441421E-06

0.0000300929156952497 0.000037854908282196

0.0000219021897875799 0.000204832337515445

4.54830791768671E-06
1.52847123109353E-06
1.88917786160494E-06
2.15051372298204E-07

2.61220332601348E-08

6.71221577596403E-06
1.64706294915667E-06
3.87905309650122E-06
5.98668176529226E-07

6.86660983272699E-08

0.0000145403890848472 0.000165499675615655

3.39971739750939
0.0673295604365612
0.0260421821357636
0.0347954924979718
1.84812608823608
9.04061827038093
0.116871235246372
0.0135728612675926
0.0770323485745901

0.0136460668302905

0.00173284104221694 2.62866590986477

15.7928669199861

1.07106731177744E-06 0.0000031734716608686 0.13268494599571

0.0000052095268499725 8.13483406971729E-06

1.02697872233855E-06
8.56279415104335E-08
1.61860509441388E-08
1.34354661858203E-06
1.19982250688092E-07
1.06277750770121E-06
2.99026459251971E-08
2.71071659041941E-07
5.36288471365389E-07
0.000033415299772487
1.38582492389754E-07
2.93766613000817E-06
2.12981217246513E-06
9.40434807258418E-07
2.42485462627788E-06

4.61330423427245E-06

1.35473535384973E-06
1.32074551074816E-07
2.18248443334158E-06
8.75370421444899E-06
1.22199353909357E-06
4.28034467750603E-06
9.82215988507091E-07
4.68727934167305E-06
7.67601444340613E-07
0.000161232669566215
1.31961345476461E-06
3.74161803359305E-06
3.65222820028056E-06
1.71705829642162E-06

3.18602976437456E-06

0.380577408507306

0.0148674505011362

0.00143075529500412 1.5424235214007

0.0740999908715941
0.253309642374452
0.0363567188984942
0.113105948220296
0.0948977103248827
0.147392432918425
0.0117790857551849
7.83499003517426
0.0901859217797978
0.140493047204765
0.114409397024567
0.0182816703374924

0.0366797054601386

0.0000096809357682781 0.147277838751778
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1.7191194806566

12.0635176037278
1.41608520638938
19.5010156722439
1.39378959341661
1.23428550791399
1.25793421500103
9.35213964914136
1.47576107366493
1.07758845286103
2.05330221962573

2.78383797383573

11.3820665079812
2.96290590327345
1.56153030860379

1.31914646757709

134.837363410863
6.51537065657431
10.1847859336319
4.02750777701762
32.8471263367179
17.2916613940368
1.43132191968681
4.82511516173703
9.5222234209303

1.27367027701771
1.71481234237352
1.82581321232381
1.31390547286749

2.09848197228312




protein_IDs

previous values

modified values

flex mass

Fold change

YFR025C
YGL148W
YGR185C
YGR260W
YGR264C
YILO20C
YILO78W
YKLO24C
YKLO67W
YNL316C
YPRO21C
YPR167C
alsS

budA

3.77922203229925E-07
5.51201738995808E-06
2.05557549493691E-06
2.44909772125445E-08
1.96088696356967E-06
2.44021595010777E-07
3.45783586439813E-06
2.00877843670793E-06
2.34893066259546E-06
2.63438769577246E-07
2.07088128455421E-08

9.22944062003563E-07

1.91881040330703E-06
0.00000876853510456

2.84420186039857E-06
5.63256300935921E-07
2.49745273903439E-06
2.49266082016012E-06
4.40299273563897E-06
3.41266756710619E-06

5.45897202205949E-06

0.0594495931846907
0.132989442472673

0.0347148752043302
0.0323982486681124
0.0459713566758069
0.0664612981255358
0.0798841294694281
0.0321953332718581

0.0533884316959986

0.0000019489768964799 0.0644294252147536

3.69413229671712E-06

0.383149052904022

0.0000027830796212845 0.0565107322773989

0.0000233136832958054 0.0000332553612977999 0.617378203923858

0.0000098616428532387 0.000148926183203201 4.0050587620789

5.07726295758188
1.59080323667605
1.38365234816436
22.9985229273504
1.27363422034687
10.2149189707986
1.27333769106052
1.69887704126246
2.32402433540868
7.39821591031391
178.384551749539
3.01543694342957
1.42643103090378
15.1015591843596

ecGSY013

YILO20C
YELO38W
YMROOSW
YOL066C
YDRO35W
YHR208W
YJR148W
YDR234W
YDR127W
YLRO17W
YPR118W
YGR248W
YLR355C
YDL141W
YBLO15W
YERO69W
YOL140W
YDR441C
YOL052C
YDL166C
YDR354W

2.0707823658965E-07

5.98178772978745E-06

0.0000008048548373412 2.70581093510809E-06

1.16501402921321E-07
1.20412014020544E-07

2.24006592433249E-06

2.70581093510809E-06
1.56625388876581E-07

3.78476718515613E-06

0.0000084052125018761 0.0000174378786847

7.88024792371187E-07
2.24870718594819E-06
2.26896505942829E-06
1.77082396295614E-06
5.6314822574007E-07

1.96770511848961E-07

0.00003029096672734

8.76447114590527E-06
8.97898529229527E-06
4.23907237116664E-06

2.56025647086442E-06

0.170678641964138
0.0478796473683084

0.0540624526534808

28.8866074402646
3.36186205210198

23.2255652486473

0.00242756539414323 1.30074552901223

0.0634401393254218
0.393783869553284
1.22803606066011
0.489658944856739
1.17259650125522
0.0934384560259301

0.0899094736870967

0.0000182597126530684 0.513843198379862

0.0000216812254346756 0.0000274693317437741 0.256806237673576

1.53643649761605E-07 3.16675558420593E-06 0.230087343931395

4.47104149183052E-07
2.61195211998824E-06
2.30889510107621E-06
4.37016690637517E-07
2.23231350623218E-07
7.67561525177403E-07

7.80393173535528E-07

3.53972271132916E-06

0.181571872671028

0.0000105065708895909 0.748948509196984

4.98957191315747E-06

1.26418375799461E-06

0.12513619174294

0.0165315128580786

0.0000020663008633722 0.0852082920846427

0.000129536970463576 2.92601440236634

0.0000019824638829337 0.0497344975720542

90

1.68957848251004
2.07465054343454
38.4391037193052
3.89755998498739
3.95730434674816
2.39384177074841
4.54632786510127
92.7969972812002
1.2669639834952

20.6110411274368
7.91699812626865
4.02249750643906
2.16102148202045
2.8927585263401

9.25632021489587
168.764283011237

2.54033985709057




protein_IDs

previous values

modified values

flex mass

Fold change

YGL148W
YKLO60C
YLR420W
YJRO16C
YPR183W
YDLO93W
YBRO84W
YNL241C
YBR196C
YGL245W
YOLO59W
YDR408C
YFLO18C
YMR189W
YFRO15C
YBR121C

YFRO25C

YDL182W
YHRO25W
YNL277W
YNLO37C
YOR136W
YLRO89C
YER023W
YKLO85W
YEROO3C
YGR264C
YKLO67W
YKL184W
YPR167C
YMR205C
YFLO45C
YNL316C
YBR166C
YGLO62W
YGR193C

4.59344419904105E-06
0.000166494456565975
1.67789634570431E-06
0.000013358200510892
1.62832445226523E-06
6.14640877647385E-08
8.00966090229429E-07

2.23925876425137E-06

0.0000210423798025189 0.671740480749337

0.000258458741108414
2.79014627766009E-06
0.000021812245399003
2.18319255776276E-06
2.00914789783968E-06

9.23964328829121E-07

3.64364702499974
0.0448379646694435
0.531425404148656
0.0168468665783485
0.165114505462341

0.0130644325703651

0.0000192960109867273 0.981119738913814

0.0000271400984376489 0.000140533326241554 6.95081436375666

0.0000101282043288754 0.0000175666676915239 0.601339288162993

5.19035224622731E-06
6.83011607822419E-07
4.09784741765133E-06
1.45170183601458E-06
7.67624547943735E-07
5.24054570962615E-06

3.25041369955677E-07

0.0000142030682311429 0.445418788597911
4.12052781741949E-06 0.0809189253229425
0.0000124560036680142 0.451418502698974
2.58447794063851E-06 0.129646598990324
9.75926187524028E-06 0.723910516990889
0.0000109947699542727 0.433511400889731

4.60468445344007E-06 0.165114536068283

0.0000143545481066437 0.0000531492758699868 1.82716999403632

1.41234840466105E-06
8.3127351740627E-07

3.56102272441385E-06
3.20336686269192E-06
7.41153578714527E-07
2.94336588028675E-06
1.73771857515319E-06
3.16805095543162E-06
1.93102229968995E-06
1.56308873879918E-06
2.8292572133238E-07

9.82223656438124E-07
9.08386092379404E-06
7.02273880199969E-06
2.41017136003625E-07
4.22893381168624E-07
4.30507251069082E-06
7.04940711725255E-07

9.30972743160293E-06 0.305724521497828

4.58095905615046
1.55235643539878
1.66288357728612
1.6328730341499
1.34076016283219
32.68815939366
1.15356235438689
8.61714210736978
5.17806987931206
1.73443061781855
2.73643628743437
6.03288109635
3.03964555009062
1.78030906658752
12.713587523201
2.09802004666744

14.1664565777211

3.70260878121184
6.59166491842866

9.30692166821144E-07 0.00533470133220675 1.119597999134

0.0000131511879411508 0.377119533211921
0.0000131511879411508 0.39531676027151
6.13399176049652E-06 0.358197111659942
5.42235641133499E-06 0.0746955792367534
0.0000038919557242198 0.0767976711269934
7.64570678735549E-06  0.215770443419264
5.99328718502518E-06 0.348042749826164
0.0000133163833123186 0.201762578697484
2.67418669331654E-06 0.125026290804071
6.67872315197366E-06 0.17305908502442
0.000146472314789958 14.3731307832339
0.0000232319224192831 0.471078750509953
0.0000046770767970966 0.169567670775733
1.84205924207083E-06 0.072267785768282
0.0000287024253754188 3.17405340028065

3.08756134986342E-06 0.108078650421745
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3.69309295641058
4.10542672908195
8.27627624916208
1.84222982526614
2.23969276721157
2.41337872872497
3.10368615939209
8.51927531801471
9.45190377432993
6.79959509038193
16.1244558914692
3.30810002682542
19.4055778549549
4.35584789002959
6.66711775565727

4.37988797995082




protein_IDs

previous values

modified values

flex mass

Fold change

YOR095C
YLR146C

YILO78W
YGR185C
YKLO24C
YGR094W
YKRO67W
YJRO73C
YMR241W
YPRO21C
YLR348C
YGR260W
YKL120W
YGLO8OW

YPRO58W

1.15115947187808E-06

1.22672087100474E-07

3.00598648838671E-06

2.37817115319451E-06

2.94757501561345E-06

2.13793707576971E-07

0.000010566125847277

6.82540185651007E-06

0.0000012947721571925 8.18958312083876E-06

2.00384927360481E-06
2.22543137443432E-07

3.00543928315243E-07

0.0000013769362330796 0.0000179989783945226 0.568209717671406

1.41172822036582E-08
1.44155342130625E-07
3.00305509144484E-08
9.79540093332928E-07
1.28834409133766E-08
2.68406914610939E-07

2.95486716964651E-06
2.10622462934014E-06

3.74102409118646E-06

0.0000228110029068117 2.37778333333464

0.050762697259299

2.56052709257091

0.00310636793461093 1.74280647399326

0.638978744935365
0.195764516166143
0.158118424036861
0.119607808952952
0.157558786565913

0.0796472189848735

3.51502772487436
2.8700212965504

6.3251152531705

1.47459552400909
9.46434319896977
12.4475117902314
13.0717588528169

1615.82113169776

3.22997631528754E-07 0.00590022889168312 2.24062200369982

1.35167994073388E-06 0.079476394819749
0.0000102728272260145 0.326683484058915
0.0000716013801329679 1.07348024617186
7.89455089521339E-06 0.25452514824156

45.0101613048849
10.4873984188445
5557.62863464727
29.4126211564136

Supplementary tables to Study 2

Table S3. Gene-protein names of R. toruloides analyzed in Study 2. Asterisks (*) denote isoenzymes.
Subsystem as defined for Figure S6 and Figure S$10 in the Supplementary figures. Abbreviations:
PPP, pentose phosphate pathway; TCA, tricarboxylic acid. Modified from Rekéna et al., PLOS
Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.

Gene name  Subsystem Reaction ID Locus tag Protein accession Protein name
(UniProt)
ACC FA r_0109No1l RHTO_02004 M7XLR4 acetyl-coa carboxylase
metabolism
ACL FA y200003Nol RHTO_03915 M7WHC9 atp citrate synthase
metabolism
ACO1 TCA cycle r_0280No1l RHTO_00539 M7X6X3 aconitate hydratase,
mitochondrial (aconitase)
(ec4.2.1.-)
ACO2 TCA cycle r_0280No2 RHTO_08030 M7wQ73 aconitate hydratase,
mitochondrial (aconitase)
(ec4.2.1.-)
ACS Pyruvate r_0112Nol RHTO_08027 M7XFRO acetyl-coenzyme a
metabolism synthetase (ec 6.2.1.1)
AGC other r_1118Nol RHTO_04513 M7WMP3 mitochondrial carrier
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Gene name  Subsystem  Reaction ID Locus tag Protein accession Protein name

(UniProt)
ALDH1 Pyruvate r_2116Nol RHTO_02062 M7WSzZ7 Succinate-semialdehyde
metabolism dehydrogenase (ec
1.2.1.16)
ALDH2 Pyruvate r_2116No2 RHTO_04310 M7WN91 aldehyde dehydrogenase
metabolism
ALDH3 Pyruvate r_ 2116No3 RHTO_04425 M7X6W7 aldehyde dehydrogenase,
metabolism mitochondrial
ALDH4 Pyruvate r_2116No4 RHTO_05680 M7WLP6 aldehyde dehydrogenase
metabolism
ALDH5 Pyruvate r_2116No5 RHTO_05838 M7WKL7 aldehyde dehydrogenase
metabolism (nad)
CIT1 TCA cycle r_0300Nol RHTO_06406 M7XE29 citrate synthase
CRC other r_1120Nol RHTO_01354 M7WMHO carnitine acyl carnitine
carrier, mitochondrial
CTP1 other r_1112Nol RHTO_05609 M7WEL7 mitochondrial carrier
protein, tricarboxylate
carrier
CTP2 other r_1112No2 RHTO_08140 M7wWQJ3 mitochondrial carrier
protein
DAD-4 xylose t_0883Nol RHTO_07844 M7XGH5 D-arabinitol
metabolism dehydrogenase
DADO2/LXR  xylose t_0884_REVNo RHTO_00373 M7X791 I-xylulose reductase
metabolism 1
ENO glycolysis G,X: RHTO_00323 M7X749 enolase
r_0366Nol, A:
r_0366_REVNo
1
FAS1* FA r_2141Nol RHTO_02139 M7XM89 fatty acid synthase
metabolism subunit alpha, fungi type
FAS2* FA r_2141Nol RHTO_02032 M7WSW5 fatty acid synthase
metabolism subunit beta, fungi type
FBA PPP G:r_0450Nol1; RHTO_03043 M7X5F4 Fructose-bisphosphate
A: aldolase (fbp aldolase)
r_0450_REVNo (ec4.1.2.13)
1; X:
r_0990No1
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Gene name  Subsystem  Reaction ID Locus tag Protein accession Protein name
(UniProt)

FBP PPP r_0449No1l RHTO_03046 M7XYF6 fructose-1,6-
bisphosphatase i

FUM TCA cycle r_0451Nol RHTO_05746 M7XEU6 fumarate hydratase, class
ii

GAPDH1 glycolysis r_0486Nol RHTO_01292 M7WNF8 glyceraldehyde 4-
phosphate
dehydrogenase

GAPDH2 glycolysis G,X: RHTO_03746 M7WI196 Glyceraldehyde-3-

r_0486No2, A: phosphate
r_0486_REVNo dehydrogenase (ec
2 1.2.1.12)

GND1 PPP r_0091No1l RHTO_02788 M7X3z4 6-phosphogluconate
dehydrogenase
decarboxylating (ec
1.1.1.44)

GND2 PPP RHTO_00011 M7XZ45 Phosphogluconate
dehydrogenase
(decarboxylating)

GPI PPP G,X:r_0467No, RHTO_04058 M7WNZ9 Glucose-6-phosphate

A:r_0467_REV isomerase (ec 5.3.1.9)
Nol
ICL1 Glyoxylate r_0662Nol RHTO_03507 M7WQF1 isocitrate lyase
shunt
ICL2 Glyoxylate r_0662No2 RHTO_05768 M7WLD5 isocitrate lyase
shunt

IDH1 TCA cycle r_0658Nol RHTO_01289 M7XE28 isocitrate dehydrogenase
[nad] subunit,
mitochondrial

IDH2 TCA cycle r_0658No2 RHTO_01290 M7WW42 isocitrate dehydrogenase
[nad] subunit,
mitochondrial

IDP TCA cycle r_2131Nol RHTO_04315 M7WN97 isocitrate dehydrogenase
(nadp+), mitochondria

KGD1* TCA cycle r_0831Nol,r_0 RHTO_02312 M7WKF8 2-oxoglutarate

832Nol dehydrogenase e2
component
(dihydrolipoamide
succinyltransferase)

KGD2* TCA cycle r_0831Nol,r_0 RHTO_07893 M7WR40 Dihydrolipoy

832No1l
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Gene name  Subsystem  Reaction ID Locus tag Protein accession Protein name
(UniProt)

LPD1* TCA cycle r_0831Nol,r_0 RHTO_07860 M7XGI7 2-oxoglutarate

832No1 dehydrogenase el
component (succinyl-
transferring)

LSC1* TCA cycle r_1022No1l RHTO_05264 M7WM30 succinate--coa ligase
[adp-forming] subunit
beta, mitochondrial (ec
6.2.1.5) (succinyl-coa
synthetase beta chain)
(scs-beta)

LSC2* TCA cycle r_1022No1l RHTO_01205 M7WVW2 succinate--coa ligase
[adp-forming] subunit
alpha, mitochondrial (ec
6.2.1.5) (succinyl-coa
synthetase subunit alpha)
(scs-alpha)

MDH1 TCA cycle r_0713Nol RHTO_04363 M7XHF8 malate dehydrogenase
(ec1.1.1.37)

MDH2 Pyruvate G,X: RHTO_03745 M7WQ86 I-malate dehydrogenase

metabolism r 0714 _REVNo
1,
A:r_0714Nol

ME Pyruvate t_0027Nol RHTO_03795 M7WHN9 malic enzyme

metabolism

MS Glyoxylate  r_0716Nol RHTO_01459 M7WMR9 malate synthase

shunt

OoDC other r_2132Nol RHTO_03731 M7WI80 Mitochondrial 2-
oxodicarboxylate carrier

PDC Pyruvate r_0959No1l RHTO_00098 M7X6G2 pyruvate decarboxylase

metabolism

PDH Pyruvate r_0961Nol RHTO_03543 M7WIG9 acetyltransferase

metabolism component of pyruvate
dehydrogenase complex
(ec2.3.1.12)

PDH Pyruvate r_0961Nol RHTO_01852 M7WTIO pyruvate dehydrogenase

metabolism
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Gene name  Subsystem Reaction ID Locus tag Protein accession Protein name
(UniProt)
PDH Pyruvate r_0961Nol RHTO_07250 M7WZ)7 pyruvate dehydrogenase
metabolism el component subunit
beta (ec 1.2.4.1)
PDH Pyruvate r_0961No1l RHTO_01754 M7XMA7 pyruvate dehydrogenase
metabolism X component
PEPCK Pyruvate r_0884No1l RHTO_07480 M7XSC4 Phosphoenolpyruvate
metabolism carboxykinase (atp)
PFK PPP G:r_0886Nol, RHTO_00494 M7X6S3 Atp-dependent 6-
X:r_0887No1l phosphofructokinase
(atp-pfk)
(phosphofructokinase)
(ec2.7.1.11)
(phosphohexokinase)
PGK glycolysis G,X: RHTO_00033 M7X689 phosphoglycerate kinase
r_0892No1, A: (ec2.7.2.3)
r_0892_REVNo
1
PGLS PPP r_0091No1l RHTO_07939 M7WWWO0 6-
phosphogluconolactonas
e (6pgl) (ec 3.1.1.31)
PGM glycolysis G,X: RHTO_07773 M7XRQ3 protein of
r_0893No3, A: phosphoglycerate
r_0893_REVNo mutase 1 family
3
PKT PPP t_0081Nol RHTO_04463 M7WGA7 phosphoketolase
PYC Pyruvate r_0958No2 RHTO_02628 M7WS17 pyruvate carboxylase (ec
metabolism 6.4.1.1)
PYC Pyruvate r_0958No1l RHTO_01350 M7XNEO urea carboxylase /
metabolism allophanate hydrolase
PYK glycolysis r_0962Nol RHTO_01610 M7WUI5 pyruvate kinase (ec
2.7.1.40)
RK xylose t_0885Nol RHTO_00950 M7WVT6 protein of carbohydrate
metabolism kinase, fggy type family
RPE PPP r_0984No1, RHTO_05984 M7XEA2 Ribulose-phosphate 3-
except Anlim epimerase (ec 5.1.3.1)
RPI PPP r_0982No1l RHTO_06311 M7WUP8 ribose 5-phosphate
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Gene name  Subsystem  Reaction ID Locus tag Protein accession Protein name
(UniProt)

SDH1* TCA cycle RHTO_07066 M7X332 succinate dehydrogenase
assembly factor 2,
mitochondrial (sdh
assembly factor 2)
(sdhaf2)

SDH2* TCA cycle r_1021No1l RHTO_05714 M7X560 succinate dehydrogenase
[ubiquinone] flavoprotein
subunit, mitochondrial
(ec 1.3.5.1)

SDH4* TCA cycle r_1021Nol RHTO_06068 M7XJ14 succinate dehydrogenase
[ubiquinone] iron-sulfur
subunit, mitochondria
(ec1.3.5.1)

SFC other r_1265Nol RHTO_05007 M7WW62 mitochondrial carrier
protein,
succinate:fumarate
antiporter

SHD3* TCA cycle r_1021Nol RHTO_00534 M7X6W8 succinate dehydrogenase
(ubiquinone) cytochrome
b subunit

TAL PPP r_1048Nol, RHTO_06955 M7X0R7 transaldolase (ec 2.2.1.2)

except Anlim

TKT1 PPP r_1049No1l RHTO_03248 M7XNL9 transketolase (ec 2.2.1.1)

TKT2 PPP r_1049No2 RHTO_03251 M7WY13 transketolase

TPI PPP G,X: RHTO_01329 M7WME7 triosephosphate

r_1054Nol; A: isomerase (ec 5.3.1.1)
r_1054_REVNo
1

XDH xylose r_1092No1l RHTO_01970 M7WT79 xylitol dehydrogenase

metabolism

XK xylose r_1094Nol RHTO_04556 M7X6R2 xylulokinase

metabolism

XR Xylose r_1093No1l RHTO_03963 M7X8C7 xylose reductase

metabolism

ZWF PPP r_0466Nol RHTO_07853 M7WRO01 Glucose-6-phosphate 1-

dehydrogenase (ec
1.1.1.49)
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Table S4. Fatty acid profiles in R. toruloides wild-type strain CCT 7815 batch bioreactor cultivations
in low-nitrogen chemically defined media with glucose (G), xylose (X), or acetate (A) as a carbon
source during exponential growth (exp) and nitrogen-limited (Nlim) phases. The mean and standard
deviation of duplicate experiments is presented. Abbreviations: C14:0, myristic acid; C16:0, palmitic
acid; C16:1, palmitoleic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic acid; C18:3,
a-Linolenic acid.

Condition Yields on biomass
(mg gCDW™?) Major fatty acid residues (mg gCDW™)

Total lipid Total fatty acid c14:.0 C16:0 Cl16:1  C180 C18:1 (C182 C18:3

Gexp 57+2 51+2 ND 7.5+ ND 20+ 16.2 198+ 57%
0.34 0.24 +1.2 0.37 0.16
GNIlim 483 +41 435+36 3.0+ 101.9+ ND 323+ 2335+ 536+ 108+
0.11 6.3 3.6 21.2 4.4 11
Xexp 202+25 182+23 1.7+ 478+ 20% 104+ 781+ 365+ 57+%
0.24 6.2 0.31 1.4 10 3.9 0.71
XNlim 2906 261+6 034+ 744+ 0.32% 161+ 1135+ 435+ 066+

0.011 0.22 0.0043 0.077 0.25 0.074  0.017

Aexp 175+19 158+17 ND 252+ ND 18.0+ 679+ 373 96%
2.6 24 12.3 0.19 0.16
ANlim 341+13 307+12 ND 573+ ND 376+ 160.1+ 421+ 9.4+
0.21 2.5 7.8 13 0.30

Table S5. Enzymes under flexibilization of individual protein constraint by the ecGEM of R.
toruloides in low-nitrogen chemically defined media containing glucose (G), xylose (X), or acetate
(A) as the carbon source during exponential growth (exp) and nitrogen-limited (Nlim) phases.
Constraints were adjusted by algorithmically increasing measured absolute protein concentration
to achieve feasible flux states in proteome-constrained ecGEM simulations. Detailed report on
previous values and modified values available at Github repository
github.com/alinarekena/results/qgenerate protModels. Modified from Rekéna et al., PLOS Comput.
Biol. 19(4):e1011009, 2023, under a CC BY licence.

Protein names Locus tag Protein accession (UniProt)
mitochondrial carrier protein, tricarboxylate carrier RHTO_05609 M7WEL7
1,3-beta-glucan synthase, glycosyltransferase family 48 protein  RHTO_05280 M7WFB4
arginine biosynthesis bifunctional protein argj, mitochondrial RHTO_05134 M7WFJO
[cleaved into: arginine biosynthesis bifunctional protein argj
2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5-phosphate RHTO_04544 M7WG08
reductase

atp citrate synthase RHTO_03915 M7WHC9
mitochondrial 2-oxodicarboxylate carrier RHTO_03731 M7WI80
carnitine o-acetyltransferase RHTO_01903 M7WLQO
carnitine acyl carnitine carrier, mitochondrial RHTO_01354 M7WMHO
mitochondrial carrier protein RHTO_04513 M7WMP3
sterol 24-c-methyltransferase RHTO_00856 M7WPWO
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Protein names Locus tag Protein accession (UniProt)
fatty acid synthase subunit beta, fungi type RHTO_02032 M7WSW5
dol-p-man:protein alpha-mannosyltransferase, RHTO_02306 M7WT33
glycosyltransferase family 39 protein

phospholipid:diacylglycerol acyltransferase RHTO_01945 M7WT53
cytochrome c oxidase, subunit via RHTO_01605 M7WUIO
protein of carbohydrate kinase, fggy type family RHTO_00950 M7WVT6
mitochondrial carrier protein, succinate:fumarate antiporter RHTO_05007 M7WW62
5-methyltetrahydropteroyltriglutamate-homocysteine s- RHTO_07691 M7WXM9
methyltransferase

glutamate dehydrogenase RHTO_04650 M7X2B5
fructose-bisphosphate aldolase (fbp aldolase) (ec 4.1.2.13) RHTO_03043 M7X5F4
long-chain acyl-coa synthetase RHTO_00058 M7X6B9
aconitate hydratase, mitochondrial (aconitase) (ec 4.2.1.-) RHTO_00539 M7X6X3
I-xylulose reductase RHTO_00373 M7X791
d-arabinitol dehydrogenase RHTO_07844 M7XGH5
3-hydroxy-3-methylglutaryl coenzyme a reductase (hmg-coa RHTO_04045 M7X104
reductase) (ec 1.1.1.34)

delta-9 fatty acid desaturase RHTO_03911 M7XI95
phosphoribosylformylglycinamidine synthase RHTO_02389 M7XKV7
fatty acid synthase subunit alpha, fungi type RHTO_02139 M7XM89
dolichol-phosphate mannosyltransferase subunit 1 (ec 2.4.1.83) RHTO_06635 M7WIJES
farnesyl-diphosphate farnesyltransferase RHTO_02590 M7WJI1
chorismate synthase (ec 4.2.3.5) RHTO_05784 M7WKX0
phosphomevalonate kinase (ec 2.7.4.2) RHTO_02073 M7WL39
homoaconitase, mitochondrial (ec 4.2.1.36) (homoaconitate RHTO_05318 M7WMT2
hydratase)

c-22 sterol desaturase RHTO_01252 M7WNB5
glyceraldehyde 4-phosphate dehydrogenase RHTO_01292 M7WNF8
aconitate hydratase, mitochondrial (aconitase) (ec 4.2.1.-) RHTO_08030 M7WQ73
multifunctional tryptophan biosynthesis protein [includes: RHTO_02564 M7WRD1
anthranilate synthase component 2 (as) (ec 4.1.3.27)

(anthranilate)

short-chain dehydrogenase/reductase sdr family protein RHTO_07171 M7WS89
adenylosuccinate synthetase (ampsase) (adss) (ec 6.3.4.4) (imp-- RHTO_02257 M7WSH3
aspartate ligase)

succinate-semialdehyde dehydrogenase (ec 1.2.1.16) RHTO_02062 M7WSz7
asparaginyl-trna synthetase RHTO_04575 M7WUY3
phosphoribosylamine--glycine ligase / RHTO_01050 M7WW40

phosphoribosylformylglycinamidine cyclo-ligase
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Protein names Locus tag Protein accession (UniProt)

transketolase RHTO_03251 M7WY13
atp phosphoribosyltransferase RHTO_07750 M7WYES8
nadh-ubiquinone oxidoreductase 64 kda subunit RHTO_07075 M7WZ39
diphosphomevalonate decarboxylase (ec 4.1.1.33) RHTO_06005 M7X109
dihydroorotase RHTO_04690 M7X2F3
c-1-tetrahydrofolate synthase RHTO_02988 M7X4L7
succinate dehydrogenase [ubiquinone] flavoprotein subunit, RHTO_05714 M7X560
mitochondrial (ec 1.3.5.1)

phosphoribosyl-atp pyrophosphohydrolase / phosphoribosyl-amp RHTO_00514 M7X6U2
cyclohydrolase

nadh dehydrogenase RHTO_00388 M7X7A4
glycine hydroxymethyltransferase RHTO_04131 M7X852
squalene monooxygenase RHTO_01745 M7XBZ9
ribose-phosphate pyrophosphokinase RHTO_04328 M7XHB5
glutamyl-trna synthetase RHTO_03621 M7XIT2

acetylornithine aminotransferase RHTO_07003 M7XJ70

ribose-phosphate pyrophosphokinase RHTO_02591 M7XKFO
anthranilate phosphoribosyltransferase RHTO_07763 M7XRP3
ketol-acid reductoisomerase (fragment) RHTO_04566 M7XVW7
gmp synthase (glutamine-hydrolysing) RHTO_00066 M7XZ93

Table S6. Fatty acid profiles in R. toruloides NBRC 0880 (formerly known as IFO 0880) wild type and
mutant strains cultivated in Falcon tube bioreactors in low-nitrogen chemically defined media with
glucose (G), xylose (X), or acetate (A) as a carbon source during nitrogen-limited (Nlim) phase. A:
Growth and lipid metrics (titer, lipid yield on biomass, harvest time). B: Fatty acid composition.
Strains include ATP citrate lyase knockout (AACL), phosphoketolase knockout (APK), and cytosolic
malic enzyme knockout (AcMAE). The mean and standard deviation of triplicate experiments is
presented. Abbreviations: C16:0, palmitic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic
acid; C18:3, a-Linolenic acid. Layouts differ from the published versions for copyright compliance.

A.
Condition  Strain Titer (g L) Yield on biomass (mg gCDW™) Harvest time
(h)
CDW Total lipid
GNIlim wild type 10.23+0.15 501.8+3.7 54
AACL 2.3440.065 94.31+0.39 54
APK 10.23+0.15 505.2+9.4 54
AcMAE 9.62+0.26 516.4+5.0 48
XNIim wild type 6.24+0.13 426.1+8.4 90
AACL 7.28+0.39 377.1+30.1 81
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APK 5.76+0.075 429.4+7.3 91

AcMAE 6.93+0.27 439.4+8.2 80
ANIlim wild type 2.53+0.03 450.7+£11.5 66
AACL 1.63+0.03 200.2+11.8 66
APK 2.70+0.09 462.3+44.5 66
AcMAE 2.62+0.12 447.9+10.5 126
B.
Condition  Strain Major fatty acid residues (gea gCDW™?) Yield on biomass
(mg gCDW™?)
C16:0 C18:0 c18:1 C18:2 Cc18:3 Total fatty acid

GNIlim wild type  102.4+0.83 57+0.63 206.0£1.2 51.4+0.75 16.2+0.13 433.0#3.5
AACL 13.8+0.070 8.0+0.090 16.5+0.35 25.0+0.29 15.09+0.18 78.4+0.98
APK 103.2+1.7 57.5#1.6 208.0+3.9 51.3+0.77 15.940.25 435.9+8.1

AcMAE 106.0+1.4 54.5+0.58 214.0+2.4 53.4+0.43 18.1+0.23 446.05.0

XNlim wild type 83.6+1.8 43.840.79 166.9+3.1 56.2+1.4 12.6%0.31 363.1%7.1
AACL 96.0+7.6  32.2+2.8 139.4+11.3 49.843.8 7.4+0.62  324.7+25.9
APK 82.2#0.92 44.9+0.53 171.8+#3.8 53.0+1.1 13.2+#0.33 365.0+6.2

AcMAE 87.841.3  44.9+0.64 168.6+3.7 58.7+1.3 13.9+0.18 373.9+6.9

ANlim wild type 70.2#2.8  74.5#1.9 186.8+4.2 39.9+¥1.1 16.5+0.63 387.7+10.2
AACL 31.1#1.8 28.3#2.3 59.6#5.1 35.4#0.58 14.6#0.16 169.0+10.0
APK 77.1¥7.6  77.6%#8.2 186.3+16.5 39.1+4.3 17.3+2.0 397.4+38.4

AcMAE 73.6%0.31 74.5#1.5 181.8+6.8 38.3#0.82 16.9+0.11 385.0#9.1
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Supplementary figures

Supplementary figures to Study 1
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Figure S1. Anaerobic batch cultivation of S. cerevisiae in stirred tank reactors at 30°C, pH 5.0. A:
Representative cultivation profiles of reference strain GSY013. B. representative cultivation profiles
of engineered 23BD-glycerol co-producing strain GSY014. The mean of six replicates is presented.
Reproduced from Sjéberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence.
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Figure S2. Absolute proteome quantification in S. cerevisiae anaerobic bioreactor batch cultures of
the reference strain GSY013 and 23BD-glycerol co-producing strain GSY014. A. Volcano plot
comparing absolute protein abundances of three replicates in GSY013 and GSY014 strains. B.
Principal component analysis. P denotes adjusted p value according to Benjamini-Hochberg
(Benjamini & Hochberg, 1995b). Reproduced from Sjéberg et al., Metabolic Engineering 82,49-59,
2024, under a CC BY licence.
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Glycolysis

Figure S3. Proteomaps (Liebermeister et al., 2014) representing allocation of mean protein
abundance of three replicates to major functional groups. Left: Proteome allocation of the
reference strain GSY013. Right: Proteome allocation of 23BD-glycerol co-producing strain GSY014.
Reproduced from Sjéberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence.
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Figure $4. Flux variability analysis of ecGEMs. A: Cumulative flux distribution of the reference strain
GSY013. B: Cumulative flux distribution of 23BD-glycerol co-producing strain GSY014. Grey denotes
proteome-constrained ecGEM; dashed denotes total-protein ecGEM. Reproduced from Sjéberg et
al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence.
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Supplementary figures to Study 2

A. Exponential vs Nitrogen limitation phase B. Exponential phase
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Figure S5. Absolute proteome quantification in R. toruloides wild-type strain CCT 7815 batch
bioreactor cultures. A. Venn diagram comparing the number of significantly differentially expressed
proteins of two replicates between nitrogen limitation and exponential growth phases. B. Venn
diagram comparing the number of significantly differentially expressed proteins of two replicates
during the exponential growth phase in media with different carbon sources. Reproduced from
Rekeéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.
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Figure S6. Absolute enzyme concentrations (ug g_total_protein™) (Sdnchez et al.,, 2021) in R.
toruloides wild-type strain CCT 7815 cultivated in batch bioreactors with low-nitrogen chemically
defined media containing glucose (G), xylose (X), or acetate (A) as the carbon source during
exponential growth (exp) and nitrogen-limited (Nlim) phases. Mean and standard deviation of
duplicate experiments is presented. Abbreviations: PPP, pentose phosphate pathway; TCA,
tricarboxylic acid. Gene-protein names are defined in Table $S3. Reproduced from Rekéna et al.,
PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.
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Figure S7. Batch cultivation of R. toruloides in aerobic stirred tank bioreactors at 30°C, pH 6.0.
Representative cultivation profiles of wild type strain CCT 7815 grown in low-nitrogen chemically
defined media during exponential growth (exp) and nitrogen-limited (Nlim) phases. A:
Representative cultivation profiles of glucose-grown cells (C/N ratio of 68.6 mol mol?). B:
Representative cultivation profiles of xylose-grown cells (C/N ratio of 80). C: Representative
cultivation profiles of acetate-grown cells (C/N ratio of 80). The mean and standard deviation of
duplicate experiments are presented. In cases where a single measurement is shown for clarity,
replicate datasets were nevertheless obtained and used for data interpretation. Reproduced from
Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.
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Figure S8. D-arabinitol detection in the cultivation broth of R. toruloides wild-type strain CCT 7815
grown on xylose as the sole carbon source (70 g L., C/N ratio of 80). The diagrams show HPLC
chromatograms obtained using a refractive index detector (RID) and a Chiralpak column, with
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hexane-ethanol (70:30, v/v) as the mobile phase at a flow rate of 0.3 mL min'* and a column
temperature of 20 °C. Reproduced from Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023,

under a CC BY licence.
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Figure S9. Histograms of apparent enzyme catalytic activities, kqpp (s2) of R. toruloides grown in
low-nitrogen chemically defined media with glucose (G), xylose (X), or acetate (A) as a carbon
source during exponential growth (exp) and nitrogen-limited (Nlim) phases. kqpp values were
calculated as the ratio of metabolic flux (mmol (gCDW h)?) to the corresponding protein abundance
(mmol gCDW-1). Reproduced from Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under

a CC BY licence.
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Figure 510. Predicted fluxes (mmol (gCDW h)) of R. toruloides wild-type strain CCT 7815 cultivated
in batch bioreactors with low-nitrogen chemically defined media containing glucose (G), xylose (X),
or acetate (A) as the carbon source during exponential growth (exp) and nitrogen-limited (Nlim)
phases, simulated using condition-specific, proteomics-constrained ecGEMs of R. toruloides. Fluxes
were normalized to the specific substrate uptake rate, representing the percentage of carbon
distribution. Median and standard deviation of 2000 flux samples are presented. Abbreviations:
PPP, pentose phosphate pathway; TCA, tricarboxylic acid. Gene-protein names are defined in Table
$3. Reproduced from Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY
licence.
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Figure S11. pH tracking data of R. toruloides NBRC 0880 (formerly known as IFO 0880) wild type
and mutant strains cultivated in Falcon tube bioreactors at 30 °C. A: Representative pH profiles of
glucose-grown strains. B: Representative pH profiles of xylose-grown strains. C: Representative pH
profiles of acetate-grown strains. Strains include ATP citrate lyase knockout (AACL, green),
phosphoketolase knockout (APK, blue), and cytosolic malic enzyme knockout (AcMAE, orange). pH
was measured real time using a non-invasive optical sensor. Pink shading denotes values outside
the sensor’s working range. Each strain was cultivated in three biological replicates, of which one
tube was equipped with the pH sensor and used for recording shown profiles. Reproduced from
Rekeéna et al., Appl Microbiol Biotechnol 109:77, 2025, under a CC BY NC ND licence.
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Figure $12. Batch cultivation of R. toruloides in Falcon tube bioreactors at 30 °C. Representative
cultivation profiles of wild type (filled circle) and mutant strains (open circle), including ATP citrate
lyase knockout (AACL), phosphoketolase knockout (APK), and cytosolic malic enzyme knockout
(AcMAE) in low-nitrogen chemically defined media with glucose (blue), xylose (green), or acetate
(orange) as a carbon source. A: Residual substrate concentration (g L™). B. Cell dry weight
concentration (g L™%). The mean and standard deviation of three replicates are presented. Layouts
differ from the published versions for copyright compliance.

A. ATP (Gexp) B. ATP (GNlim)
non growt!;— ATP synthase
ATP synth associate
grom_lth- s[);:] ase maintenance 54 !
associated 28.6 [c] (79.1%)
maintenance _5g 7 (79.1%) -
c]
RN assocated
A -2.8
\ maintenance
‘ 40.5%
HEX1-2 [c] \ el ( y
adenylate kinase [c] -1.9 | |\ |
PFK[q] 0.9 B34 wam pok (g HEX1-2[c] 5 4 2770.5 69%) PGK [c]
3.2 g9%) pyy [ ACClc] 0.2 0.5 6% PYK [c]
09¢ 5% SDH [m] 0.3 “9 SDH [m]

Figure $13. Predicted fluxes of ATP (mmol (gCDW h)?) of R. toruloides wild-type strain CCT 7815
cultivated in batch bioreactors with low-nitrogen chemically defined media containing glucose (G)
as the carbon source, simulated using condition-specific, proteomics-constrained ecGEMs. A: ATP
distribution during exponential growth (exp) phase. B: ATP distribution during nitrogen-limited
(Nlim) phase. Negative flux denotes metabolite consumption, positive flux denotes metabolite
production. Percentages indicate the relative contribution of each flux to the total ATP turnover
under the given condition. [m] and [c] denote compartments of mitochondria and cytoplasm.
Abbreviations: HEX, hexokinase; PFK, phosphofructokinase; ACC, acetyl-CoA carboxylase; SDH,
succinate dehydrogenase; PYK, pyruvate kinase; PGK, phosphoglycerate kinase.
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Figure $14. Predicted fluxes of ATP (mmol (gCDW h)?) of R. toruloides wild-type strain CCT 7815
cultivated in batch bioreactors with low-nitrogen chemically defined media containing acetate (A)
as the carbon source, simulated using condition-specific, proteomics-constrained ecGEMs. A: ATP
distribution during exponential growth (exp) phase. B: ATP distribution during nitrogen-limited
(Nlim) phase. Negative flux denotes metabolite consumption, positive flux denotes metabolite
production. [m] and [c] denote compartments of mitochondria and cytoplasm. Abbreviations: ACS,
acetyl-CoA synthetase; ACC, acetyl-CoA carboxylase; PEPCK, phosphoenolpyruvate carboxykinase.
Reproduced from Rekéna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence.
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Enzyme-constrained genome-scale models (ecGEMs) have potential to predict phenotypes in a variety of con-
ditions, such as growth rates or carbon sources. This study investigated if ecGEMs can guide metabolic engi-
neering efforts to swap anaerobic redox-neutral ATP-providing pathways in yeast from alcoholic fermentation to
equimolar co-production of 2,3-butanediol and glycerol. With proven pathways and low product toxicity, the
ecGEM solution space aligned well with observed phenotypes. Since this catabolic pathway provides only one-
third of the ATP of alcoholic fermentation (2/3 versus 2 ATP per glucose), the ecGEM predicted a growth
decrease from 0.36 h™! in the reference to 0.175 h™? in the engineered strain. However, this <3-fold decrease
would require the specific glucose consumption rate to increase. Surprisingly, after the pathway swap the
engineered strain immediately grew at 0.15 h™! with a glucose consumption rate of 29 mmol (g CDW) ! h™?,
which was indeed higher than reference (23 mmol (g CDW) T h™!) and one of the highest reported for
S. cerevisiae. The accompanying 2,3-butanediol- (15.8 mmol (g CDW)’1 h’l) and glycerol (19.6 mmol (g CDW)’1
h~1) production rates were close to predicted values. Proteomics confirmed that this increased consumption rate
was facilitated by enzyme reallocation from especially ribosomes (from 25.5 to 18.5 %) towards glycolysis (from
28.7 to 43.5 %). Subsequently, 200 generations of sequential transfer did not improve growth of the engineered
strain, showing the use of ecGEMs in predicting opportunity space for laboratory evolution. The observations in
this study illustrate both the current potential, as well as future improvements, of ecGEMs as a tool for both
metabolic engineering and laboratory evolution.

1. Introduction turnover numbers for relevant metabolic enzymes and their molecular

weights, ecGEMs can predict flux distribution, as well as the proteome

Genome-scale metabolic models are an important part of today’s
metabolic engineering toolbox (Durot et al., 2009; Patil et al., 2004). To
expand the predictive power of these models, thermodynamics, enzyme
kinetics, signaling and transcriptomics can be integrated (Chung et al.,
2021; Lietal., 2022; Niu et al., 2021; O’Brien et al., 2013; Oftadeh et al.,
2021; Ostcrbcrg et al., 2021; Salvy and Hatzimanikatis, 2020; Sanchez
et al,, 2017; Sinha et al., 2021; Yang et al., 2021). Enzyme constrained
genome-scale models (ecGEMs) have now been constructed for several
organisms to give mechanistic insight and guide metabolic engineering
(Alter et al., 2021; Arend et al., 2022; Bujdos et al., 2023; Kerkhoven,
2022; Niu et al., 2022; Wu et al., 2023; Zhou et al., 2021). By using

* Corresponding author.
E-mail address: tonvm@kth.se (A.J.A. van Maris).

https://doi.org/10.1016/j.ymben.2024.01.007

allocation, providing a mechanistic explanation for fluxes (Sanchez
et al., 2017). Recently, a deep learning algorithm to predict turnover
numbers directly from protein sequences (without the need for in vitro
data on each individual enzyme), and application of a Bayesian model to
adjust turnover numbers from in vitro assays to conditions in vivo, were
added (Li et al., 2022). This version of the yeast ecGEM has been shown
to predict growth and metabolism across various carbon sources and
growth rates, and has been able to predict behavior of a wide range of
yeast species (Li et al., 2022). Given their relatively recent addition to
the metabolic engineering toolbox, only a few articles have applied
ecGEMs as part of their workflow (Ishchuk et al., 2022; Liu et al., 2019;
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Ye et al., 2020).

Anaerobic redox-neutral and ATP-yielding pathways from substrate
to desired products provide the stoichiometrically highest possible yield.
This not only holds for classical alcoholic and homolactic fermentation,
but where thermodynamically possible also for metabolically engi-
neered heterologous pathways (Cueto-Rojas et al., 2015). This provides
a direct economic benefit by reducing substrate cost and decreases in-
vestment cost by enabling the use of simple(r) bioreactors without need
for aeration, eliminates the need for air compression and decreases
cooling requirements. Additionally, the simpler bioreactors are easier to
clean and maintain aseptic. The coupling of product formation to ATP
conservation enables use of laboratory evolution for improved growth
and -product formation, and cell recycling during production can
minimize biomass formation, whilst still allowing cellular maintenance.
The coupling to growth and reliance on a high flux through central
metabolism makes heterologous ATP-yielding, redox-neutral product
formation pathways an interesting test case to evaluate ecGEMs and
their ability to predict fluxes and enzyme allocation.

Heterologous production of (R,R)-2,3-butanediol (23BD) in yeast
was chosen as target product due to industrial relevance and large body
of prior knowledge, albeit under aerobic conditions (Kim et al., 2017; Ng
etal., 2012). 23BD is an industrially relevant molecule with applications
in solvents, flavoring, fuel (additives), printing inks, synthetic rubber,
plastics and softeners (Celiniska and Grajek, 2009; Garg and Jain, 1995).
The fact that 23BD has previously been produced aerobically with
S. cerevisiae to a high titer at a high rate (Kim et al., 2017), means that
product export and toxicity, both aspects that are difficult to take into
account in ecGEMs, will likely not influence the predictions. Starting
from two molecules of pyruvate, 23BD can be produced through ace-
tolactate synthase, acetolactate decarboxylase and 23BD dehydroge-
nase. Competing alcoholic fermentation can be eliminated by deletion of
pyruvate decarboxylase encoding genes (PDC1,5 and 6) and concomi-
tant (over)expression of MTHIAT and ACHI (Chen et al., 2015; Oud
et al., 2012). However, production of 23BD from glucose through
glycolysis and the abovementioned pathway results in one surplus
NADH. Under anaerobic conditions, yeast normally reoxidizes excess
NADH through glycerol production (van Dijken and Scheffers, 1986).
This implies that under anaerobic conditions, lacking other more effi-
cient NADH reoxidizing mechanisms, the catabolic pathway will have to
co-produce 23BD and glycerol at a one-to-one ratio.

The aim of this study was to investigate the predictive power of
ecGEMs for fluxes, yields, as well as proteome distribution in yeast
strains where the alcoholic fermentation was swapped for redox-neutral,
ATP-yielding co-production of 23BD and glycerol. The recently pub-
lished Bayesian GECKO model emodel Saccharomyces_cer-
evisiae_Posterior_mean of S. cerevisiae (Li et al., 2022), was adjusted for
comparison of model-based growth and product formation of the
CRISPR-based engineered strain with in vivo anaerobic bioreactor batch
cultures. Proteome analysis was performed to benchmark the ecGEM
enzyme allocation predictions. Additionally, sequential transfer in
serum tubes was used to investigate the opportunity space for laboratory
evolution. Possible model improvements were investigated by con-
straining the ecGEM with the measured enzyme abundances.

2. Methods
2.1. Strains and media

The S. cerevisiae strains used in this study (Table 1) are derived from
the CEN.PK lineage (Entian and Kotter, 2007). The strains were cultured
in synthetic medium (Verduyn et al., 1992), with addition of suitable
auxotrophic markers (Pronk, 2002), and a tween-ergosterol-ethanol
solution in anaerobic conditions, as described by Verduyn et al.
(1990). For growth without maintaining auxotrophic markers, YPD
medium, containing 10 g Lt yeast extract, 20 g L~ peptone, and 20 g
L1 glucose, was used. Escherichia coli strain DH5« was used for plasmid
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Table 1
Saccharomyces cerevisiae strains used in this study.
Strain name Relevant genotype Parental Reference
(accession no.) strain
CEN.PK113- Entian and
7D Kotter (2007)
IMX672 MATa ura3-52 trp1-289 leu2- CEN.PK2- Mans et al.
(Y40595) 3112 his3A canlA::cas9-natNT2 1C (2015)
GSY006 PpROSU-mth1-pdc5+6 IMX672 This study
trp1-289 leu2-3112 his3A
pdc6::;pTEF1-ACH1; MTHIAT;
pdc54
GSY008 PROSH-pdcl; GSY006 This study
ura3-52 trp1-289 leu2-3112
pdc6::pTEF1-ACH1; MTHIAT;
pdc54; pdcl::(alsD-tADH2
pTDH3-BDH1 pFBA1-budA)
GSY013 pTHUL IMX672 This study
GSY014 pTHUL; pdc6::pTEF1-ACHI; GSY008 This study

MTHIAT; pdc54; pdcl::(alsD-
tADH2 pTDH3-BDH1 pFBA1-
budA)

production. It was cultured on LB medium containing 5 g L' yeast
extract, 10 g L ™! peptone, and 10 g L ™! NaCl. All strains were stored at
—80 °C in their respective media, after addition of glycerol to a final
concentration of a 25 % (w/w).

2.2. Plasmids and strain engineering

Starting from strain IMX672, integrations and deletions were per-
formed as described by Mans et al. (2018), by transforming the parental
strain with indicated plasmids and PCR fragments (Supplement S1).
Colonies of the resultant strains were screened by PCR amplification of
relevant sites (Supplement S1), before proceeding to the next round of
strain construction. All plasmids (Table 2) were constructed by Gibson
assembly (Gibson et al., 2009) from their indicated PCR fragments
(primers and details in Supplement S1), followed by transformation to
E. coli DH5a. Selected colonies were screened by PCR and confirmed
using Sanger sequencing of relevant regions (Eurofins genomics). The
plasmids and PCR products were purified using the GeneJET Miniprep
Kits (Thermo Fisher scientific). Colony PCR was performed using
DreamTaq Green polymerase (Thermo Fisher scientific), while Phusion
polymerase (Thermo Fisher scientific) was used for all strain
construction.

2.3. Laboratory evolution

Triplicate 25 mL anaerobic tubes with 5 mL synthetic medium at pH
6.0 were inoculated with GSY014 glycerol stocks and incubated at 30 °C

Table 2
Plasmids used in this study.

Plasmid name Relevant characteristics Reference

pROS10 2 pm ampR URA3 gRNA-CAN1 gRNA- Mans et al. (2015)
ADE2
pROS16 2 pm ampR HIS3 gRNA-CAN1 gRNA- Mans et al. (2015)
ADE2
pBC414 CEN6/ARS4 chIR TRP1 (Frazer and O’Keefe,
2007)
PpROSU-mth1- 2 pm ampR URA3 gRNA-MTH1 gRNA- This study
pdc5+6 [PDC5 and PDC6]
PpROSH-pdcl 2 pm ampR HIS3 gRNA-PDC1 [2x] This study
pTHUL CEN6/ARS4 chlR TRP1 LEU2 HIS3 This study
URA3
pYGSO011 ampR budA-tADH2 This study
pYGS012 ampR pTDH3-BDH1 This study
pYGS013 ampR pFBA1-alsS This study
pYGS017 ampR pTEF1-ACH1 This study
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with 180 rpm shaking after purging with 20 cycles of alternating vac-
uum (VCP 130 pump, VWR) and nitrogen gas. Upon reaching stationary
phase, cultures were reinoculated by a 50 times dilution in fresh tubes
with purged medium. Glycerol stocks were stored at various time points
throughout the experiment. The evolution experiment was terminated
after 35 inoculation cycles (=200 generations).

2.4. Batch cultivations in bioreactors

Batch cultivations were carried out in a multiparallel stainless steel
bioreactor system with 6 reactors (GRETA, Belach Bioteknik, Skogas,
Sweden) at 30 °C, in 800 mL of the synthetic medium described above.
Anaerobic conditions were maintained by applying a 100-250 mL min !
nitrogen stream in the headspace and 500 rpm stirring. The pH was
maintained at 5.0 by automatic titration with 2 M KOH. The outlet gas
from each condenser was sampled on a 1313 Fermentation Monitor
(LumaSense Technologies, Santa Clara, USA) to obtain the CO, con-
centrations. The cultures were sampled aseptically by withdrawing
samples through rubber septa using a needle and syringe. Optical den-
sity at 600 nm (ODggp) and samples for HPLC analysis were withdrawn
at each sample point, while cell dry weight (CDW) was sampled two
times per batch. Samples for proteomics analysis were taken at the
second to last sample point, while the cells were still growing expo-
nentially, before the glucose was depleted. Inoculum for each bioreactor
was prepared by first transferring the appropriate glycerol stock to a
shake flask with synthetic medium at pH 6.0 and incubating it aerobi-
cally overnight at 30 °C with 180 rpm shaking (Minitron HT Infors,
Bottmingen-Basel, Switzerland). The cells were then inoculated to
multiple sealed 125 mL serum bottles containing 20 mL of synthetic
medium at pH 6.0 and purged from oxygen by applying 20 cycles of
alternating vacuum and nitrogen gas. The serum bottles were incubated
until they reached an OD of 0.3-2.0. The bioreactors were inoculated to
a target ODggo of 0.05.

2.5. Cell mass analysis

ODggp was measured with a spectrophotometer (Genesys 20, Thermo
Fisher scientific) at 600 nm after dilutions to an ODggg of 0.1-0.2 using a
9 g L ™! NaCl solution. CDW was measured in triplicate by filtering 5 mL
culture samples through pre-weighed 47 mm nitrocellulose filters (0.45
pm pore size, Cytiva, Marlborough, USA). The filters were washed with
deionized water and then dried in a microwave oven (R-742, Sharp
Corporation, Sakai City, Japan) at power setting 30 (=300 W) for 20 min
and weighed. A standard curve for converting ODgoo to CDW was
established by linear regression to allow estimation of the CDW at all
sample points.

2.6. Metabolite analysis

Samples for extracellular metabolite analysis were centrifuged at
20238¢ for 5 min (centrifuge 5424, Eppendorf). The supernatant was
analyzed on an Alliance 2695 system (Waters, Milford, MA, USA)
equipped with a 2414 refractive index detector (Waters), a 2996
photodiode array detector (PDA, Waters), and a TCM column heater
(Waters). 10 pl samples were injected on an Aminex HPX-87H organic
acid analytical column equipped with a guard column (Bio-Rad, Her-
cules, CA, USA) maintained at 60 °C and separated with a mobile phase
of 5 mM H5SO4 at 0.6 mL min ™. Glucose, glycerol, ethanol, 2,3-butane-
diol, and acetoin were all quantified on the refractive index detector,
while trace amounts of organic acids were detected at 210 nm on the
PDA. The organic acids contributed to less than 1 % of the degree of
reduction- and carbon balance in GSY014 and were therefore excluded
from modeling and presentation in the results section. They are included
in the total degree of reduction- and carbon balances in Table 4. Degree
of reduction was calculated as described by (Heijnen, 1994), a carbon
content of 25 g CDW (mol )Y, and a degree of reduction of 4.2 (mol
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C)~! was assumed for the biomass (Lange and Heijnen, 2001).
2.7. Proteome analysis

Samples for proteomics were withdrawn rapidly from the reactors
using a syringe and several 2 mL samples were quickly added to pre-
chilled 2 mL microcentrifuge tubes already placed in a pre-cooled
centrifuge rotor (5424, Eppendorf). For samples of GSY013, 6 tubes
were filled with 2 mL each (total 12 mL), and for samples of GSY014, 12
tubes were filled with 2 mL each (total 24 mL), to account for the lower
CDW in the culture. The centrifuge was rapidly closed and run for 15 s
before being stopped. As soon as it was possible to open the centrifuge,
the supernatant was discarded from each tube by pouring, and any
remaining drop of supernatant was wiped off on a paper napkin. Then,
the tube was closed, and dropped into liquid nitrogen. The entire pro-
cedure took less than 3 min in total for each set of tubes. Once frozen, the
samples were stored at —80 °C. Shipping of the samples from KTH Royal
Institute of Technology to the Proteomics Core Facility at the University
of Tartu, was carried out on dry ice.

2.8. Determination of protein content

Protein content was determined on the same frozen pellets that were
also used for proteomics analysis with a Lowry method adapted from
Verduyn et al. (1992). Briefly, frozen pellets were thawed and washed
three times in 1 mL deionized water, followed by centrifugation for 5
min at 20238g (centrifuge 5424, Eppendorf) and withdrawal of the su-
pernatant. The pellet was dissolved to 1.0 mL with deionized water, and
0.5 mL of 3M NaOH was added. A bovine serum albumin (BSA) standard
curve (0.0-5.0 mg mL~!) was prepared by addition of 0.5 mL 3M NaOH
to 1 mL of each standard solutions. Both standards and samples were
incubated for 10 min at 100 °C in a block heater and then immediately
cooled on ice. 300 pL of 0.1 M CuSO4 was added to each tube and
incubated at room temperature for 5 min. After centrifuging at 20238g
for 5 min, the supernatants were analyzed on a spectrophotometer (Cary
50 bio, Agilent) at 510 nm and the sample concentrations were esti-
mated from a linear fit of the BSA standard curve.

2.9. Sample preparation for absolute proteomics

Cell pellets were suspended with 10 vol (relative to pellet volume) of
chaotrope-based lysis buffer (6 M guanidine-HCl, 100 mM Tris-HCI pH
8.0, 50 mM dithiothreitol), heated at 95 °C for 10 min and sonicated
with a Bioruptor (Diagenode) sonication device for 15 cycles (30 s ON,
60 s OFF; “High” setting) at 4 °C. Next, 0.5 vol (relative to lysate volume)
of Silibeads TypZY-s 0.4-0.6 mm (Sigmund Lindner) beads were added
to the lysate and bead beating was carried out with FastPrep24 (MP
Biomedicals) device (2 x 40 s at 6 m s~ ). Samples were centrifuged at
17000g for 5 min and the supernatant was separated from the beads and
transferred to a new tube. Small aliquots of the lysate were then
precipitated with trichloroacetic acid-deoxycholate (TCA-DOC) precip-
itation and protein concentration determined with the Micro BCA assay
(Thermo Fisher Scientific). Next, 20 pg of lysate protein was alkylated
with 100 mM chloroacetamide by incubating for 1 h in the dark at room
temperature. Samples were then processed to peptides by the SP3 pro-
tocol essentially as described elsewhere (Hughes et al., 2019).

2.10. LC/MS/MS analysis

1 pg of peptides were injected to an Ultimate 3500 RSLCnano system
(Dionex) using a 0.3 x 5 mm trap-column (5 pm C18 particles, Dionex)
and an in-house packed (3 pm C18 particles, Dr Maisch) analytical 50
cm x 75 pm emitter-column (New Objective). Columns were operated at
45 °C. Peptides were eluted at 250 nL min~! with an 8-40 % B 60 min
gradient (buffer B: 80 % acetonitrile + 0.1 % formic acid, buffer A: 0.1 %
formic acid) to a Q Exactive HF (Thermo Fisher Scientific) mass
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spectrometer (MS) using a nano-electrospray source (spray voltage of
2.5 kV in positive mode).

The MS was operated with data-independent acquisition (DIA)
method using variable isolation windows over a range of 400-1200 m/z.
Briefly, one full range 400-1200 m/z MS1 scan was collected at a res-
olution setting of 60 000 (max ion injection time of 60 ms, max of 3e6
ions), followed by 25 overlapping (overlap of 1 m/z) variable size DIA
windows. Each DIA scan was collected at a resolution setting of 30 000
(max ion injection time of 41 ms, max of 3e6 ions), default charge state
was set to +3 and normalized collision energy to 27.

2.11. Raw DIA MS-data analysis

Raw data was processed with the DIA-NN (Demichev et al., 2020)
software (v1.8) using library-free search. FASTA files used were UniProt
(www.uniprot.org) Saccharomyces cerevisiae S288C reference proteome
supplemented with Bacillus subtilis alsS and Klebsiella aerogenes budA
sequences. Precursor m/z range was set to 400-1200, precursor intra-
sample g-values and their associated intrasample protein group q-values
were set to <0.01, all other settings were default.

2.12. Bioinformatics

Absolute protein concentrations (Supplement S3) were derived from
normalized sum of MS intensities using the total protein approach
(Sanchez et al., 2021), which assumes its proportionality to the
measured total protein content. Triplicate experiments were used in
differential expression analysis. The Benjamini-Hochberg (Benjamini
and Hochberg, 1995) method was used to adjust the p-values for mul-
tiple comparisons. Additional data analysis included PC analysis carried
out using ClustVis tool (Metsalu and Vilo, 2015). Gene set analysis was
performed with proteome-normalized proteomics data (pg (g
protein) 1) using Piano (Viremo et al., 2013). All other settings were
default, except gene sets smaller than 5 and larger than 300 genes were
ignored.

2.13. Enzyme constrained genome-scale model

The recently published S. cerevisiae ecGEM emodel Sacchar-
omyces_cerevisiae_Posterior_mean fit to experimental data using a
Bayesian method (Li et al., 2022) was chosen as a starting point for the
modeling of GSY014, because it has been shown to be highly constrained
and predictive of S. cerevisiae metabolism across various conditions.
Model analysis and alteration was carried out with the toolboxes RAVEN
2.0 and COBRA 3.0 (Heirendt et al., 2019; Wang et al., 2018). All
modeling was performed with unconstrained substrate uptake rate.
Instead, the growth rate was constrained by the total protein abundance.

First, the model was adapted to anaerobic growth conditions by
setting the bounds on the oxygen exchange reaction (r_1992) to zero and
introducing exchange reactions for the metabolites pantothenate
(s_0032), nicotinate (s_0032), ergosterol (r_1757), ergosta-5,7,22,24
(28)-tetraen-3beta-ol (r_2137), oleate (r_2189) and palmitoleate
(r_1994). The heme requirement was removed from the biomass reac-
tion, since it cannot be synthesized anaerobically, and it is not required
in the absence of oxygen. The non-growth associated maintenance re-
action (r_4046) was set to 1 mmol (g cDW) ! h™! based on previously
published data on retentostat cultures of S. cerevisiae (Boender et al.,
2009). It was not necessary to update the growth associated mainte-
nance value of 55.2 mmol (g CDW) ! to match the phenotype of
GSY013.

Second, the model was fit to the experimentally measured extracel-
lular fluxes of GSY013 by iteratively altering the o factor (average in vivo
saturation of all enzymes) until the predicted growth rate was within
0.01 h™! of the observed average growth rate. The value for f (the mass
fraction of enzymes in the model) was assumed to be 0.5. After adaption,
a total protein pool pseudoreaction (EX_protein_pool) of 123 mg (g
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CDW) ! was obtained that fit the observed growth rate of 0.36 h™1. A
reaction converting NADH to NAD * at 3 mmol (g CcDW) ! was coupled
to the growth reaction to give the correct ratio of glycerol production to
glucose consumption, and to align the degree of reduction (as defined by
(Heijnen, 1994)) of the modeled biomass to a published value for degree
of reduction of S. cerevisiae biomass at 4.2 G-mol ™! (Lange and Heijnen,
2001).

Third, the ecGEM was adapted to the genotype of GSY014 by
introducing both metabolite and protein reactions for alsS and budA
with Keat values of 121 s~ (Atsumi et al., 2009) and 27 s~ ! (Choi et al.,
2016) respectively. Pyruvate decarboxylase reactions (r_0959_*,
r_ 0960_*, r4651_*) were deleted. Cytoplasmic acetyl-CoA supply
through acetate transport from the mitochondria as proposed by (Chen
et al.,, 2015) was implemented by providing acetyl-CoA hydrolyzing
activity of Achl and introducing acetate transport across the mito-
chondrial membrane by Ady2. Both reactions used the ke, values
already present for those proteins. A competing acetate transport
mechanism through ethyl acetate (r_4650) was blocked, since it was
deemed less feasible based on the evidence provided by (Chen et al.,
2015). Solving for the maximum growth rate in this model yielded the
predicted data for GSY014.

The total-protein-constrained models of GSY013 and GSY014 were
further constrained by measured extracellular fluxes and proteomics
data through the GECKO pipeline, essentially as described by Sanchez
et al. (2017). To introduce this model constraint, individual protein
pseudoreactions were still allowed to pull flux from the total protein
pool, but now with an upper bound per enzyme as measured by prote-
omics. If required, the total protein pool pseudoreaction was adjusted to
match the measured extracellular fluxes. Also individual protein con-
straints that limited the growth rate from reaching the observed value
were flexibilized by adjusting the upper bound of those enzymes as
initially described for GEKCO models (Sanchez et al., 2017). Both the
original total-protein-constrained models and the
proteomics-constrained models were subjected to flux variability anal-
ysis and sampling as described for GECKO models (Sanchez et al., 2017).

3. Results

An (R,R)-2,3-butanediol-glycerol co-producing strain (GSY014) was
constructed by overexpression of a 23BD production pathway consti-
tuting the native S. cerevisiae 2,3-butanediol dehydrogenase Bdhl, ace-
tolactate decarboxylase budA from Klebsiella aerogenes and acetolactate
synthase alsS from Bacillus subtilis (Choi et al., 2016). To eliminate
pathways that compete for NADH, all genes encoding functional pyru-
vate decarboxylase alleles (PDC1, PDC5 and PDC6) were deleted, while
the MTHIAT allele was introduced to alleviate glucose sensitivity caused
by Pdc deficiency (Oud et al., 2012), and the native ACHI gene was
overexpressed alleviate expected cytosolic acetyl-CoA deficiency (Chen
et al., 2015). A theoretical stoichiometric analysis of the anaerobic
metabolism of the resulting strain predicts conversion of glucose to
equimolar amounts of 2,3-butanediol and glycerol for redox-neutral ATP
generation, whilst the engineered catabolic pathway in GSY014 has a
theoretical ATP yield per glucose of 2/3 mol mol !, compared to 2 mol
mol ! for the ethanol producing reference strain (GSY013). It should be
noted that, to reoxidize the excess NADH from biosynthesis (van Dijken
and Scheffers, 1986), for both strains (additional) conversion of some
glucose to glycerol is expected.

3.1. Adaptation of enzyme constrained models and boundary conditions

To predict growth and metabolism of GSY014, the recently devel-
oped Bayesian GECKO model of S. cerevisiae was chosen as a starting
point. It was chosen since it is highly constrained to experimental data of
S. cerevisiae across a range of conditions and has been shown to predict
changes in growth rate based on those conditions (Li et al., 2022). The
ecGEM was adapted for anaerobic growth and the genotype of GSY014
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was introduced (see Methods for specifics). To determine the upper
bound of the protein pool pseudoreaction, which determines the growth
rate of the model in batch conditions, a batch culture of the reference
strain GSY013 was performed (Fig. 1A and Table 3). The experimentally
determined growth rate and exchange rates were not significantly
different from previously published values for similar reference strains
(Papapetridis et al., 2018), the degree of reduction and carbon balances
closed reasonably well (Table 4), and the total protein content was
experimentally determined to be 450 mg (g CDW) !. To match the
experimentally determined growth rate, the protein pool pseudo-
reaction bound was set to 123 mg (g CDW) ! and the degree of reduc-
tion of biomass in the GSY013 ecGEM was reduced by 3 mmol (g
CDW) ! to match the model fluxes to the experimentally determined
values.

The same changes to the boundary conditions were applied to the
ecGEM of the engineered GSY014 strain to obtain a prediction of the
growth rate and metabolism of this strain (Tables 3 and 4). In line with
the back-of-the-envelope calculated stoichiometry, the ecGEM predicted
rates of 23BD (16.8 mmol (g cow)! h’l) and glycerol (19.0 mmol (g
cow) ! hh production were close to equal, with the latter being
slightly higher (Table 3). As indicated above, the ATP yield of 23BD/
glycerol production is only one-third of that of alcoholic fermentation,
which resulted in a similar predicted 3-fold reduction in the biomass
yield on glucose by the ecGEM for GSY014 (Table 4; bottom row).
Interestingly, this yield decrease did not translate in a 3-fold reduction in
the predicted specific growth rate (0.175 h™! versus 0.36 h™1), as the
enzyme constrained model predicted an increase of the modeled
biomass specific glucose uptake rate from 23.0 mmol (g CDW) ' h™!in
the reference strain to 27.8 mmol (g CDW) ! h™! in the engineered
strain (Table 3).

3.2. In vivo evaluation of predicted rates and yields

To investigate growth and metabolism of the constructed 23BD and
glycerol co-producing strain and to evaluate the model predictions,
GSY014 was studied in anaerobic batch cultures (Fig. 1B). Degree of
reduction and carbon balances closed well for both strains. Ethanol
formation was successfully eliminated and replaced as catabolic
pathway by near equimolar formation of 23BD and glycerol, close to
model predictions (Tables 3 and 4). The biomass yield on glucose for
GSY014 was about a third compared to the reference strain, while the
glycerol yield increased 3.5-fold, in line with the model prediction
(Table 4). Interestingly, although the observed maximum specific
growth rate was slightly below the prediction, the measured specific
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glucose uptake rate was about 25 % higher than the reference strain and
even a bit higher than predicted. The only flux not predicted by the
model was a small excretion of acetoin, which in turn could result in a
slight increase in glycerol formation compared to predictions. No sig-
nificant formation of other metabolites was observed.

3.3. Laboratory evolution

Since the observed maximum specific growth rate of GSY014 was
close to, but slightly lower than predicted by the ecGEM, it was inves-
tigated if laboratory evolution could be used to improve the strain
fitness. To place selective pressure on growth rate improvements,
repeated batch cultures in anaerobic serum tubes were done for 35
transfers totaling approximately 200 generations. After 200 generations,
no significant differences were observed for the evolved culture
GSYO014E compared to starting strain GSY014 on any of the measured
rates, except for a slight increase in cell specific acetoin production rate
(Table 3). There were no significant yield differences, not even in the
acetoin yield per glucose (Table 4).

3.4. Proteome data analysis

To compare in vivo changes in protein concentrations with the
ecGEM predicted changes in proteome allocation, the proteome of the
batch cultivations was analyzed. Absolute proteome abundances were
obtained with mass spectrometry-based data-independent acquisition
(Demichev et al., 2020) and total protein amount (Sanchez et al., 2021)
quantification methods, based on a measured protein content of 0.45 g
(g CDW) ! for both strains. A total of 3797 absolute abundances were
determined. The results in principal component analysis showed most of
variance (43.2 %) in principal component 1, allowing a separation be-
tween the engineered and the control strain (Fig. 2B).

Proteome-normalized data (ug (g protein) %, Supplement S3) were
used to analyze abundance changes in each strain. The differential
expression analysis showed significant changes for 172 proteins, or 4.5
% of total proteins, based on a cut-off of a 1.5-fold change and
Benjamini-Hochberg corrected P-value (P) < 0.05 (Fig. 2A and Sup-
plement S3).

Subsequently, the proteomic results were analyzed based on protein
functional groups representing different metabolic pathways and
cellular functions. Functional groups were obtained from the proteomap
database (Liebermeister et al., 2014). In line with the decreased growth
rate and increased glucose consumption rate in GSY014, the ribosome
abundance decreased from 25.5 % in the reference strain to 18.5 % in
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Fig. 1. Representative profiles of sextuplicate anaerobic batch cultivations of reference strain GSY013 (A) and engineered 23BD-glycerol co-producing strain GSY014
(B) in stirred tank reactors at 30 °C, pH 5.0. Symbols: Filled circles, Cell dry weight (CDW); open circles, glucose; open squares, ethanol; filled squares, glycerol; open
triangles, 2,3-butanediol (23BD); filled triangles, acetoin. Data for all cultures is available in Supplement S2.
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Table 3
Biomass specific rates observed in anaerobic batch cultivations in bioreactors.
Strain ph D) Rate of consumption or production (mmol (g CDW) Th'h
Glucose Glycerol Ethanol 23BD? Acetoin CO,
GSY013° 0.36 + 0.02 2342 4.5+ 0.4 31+2 ND? ND? 38 + 10
Predicted GSY014 0.175 —27.8 19.0 0 16.8 0 34.9
GSY014" 0.15 + 0.01 -29+1 19.6 + 0.5 ND¢ 15.8 + 0.4 0.39 + 0.03 36+ 2
GSYO14E® 0.16 + 0.01 27 +1 18.6 + 0.8 ND¢ 14.8 +£0.7 0.48 + 0.01 33+9
2 2,3-butanediol.
b Average of 6 independent cultivations + standard deviation.
¢ Average of 2 independent cultivations + mean deviation.
4 Not detected.
Table 4
Yields and carbon- and degree of reduction balances observed in anaerobic batch cultivations in bioreactors.
Strain Yields on glucose (mg (g glucose) ) Recovery of consumed substrate, based on:
CDW Glycerol Ethanol 23BD" Acetoin CO, Carbon DR"
GSY013“ 89+ 6 101 +2 340 £ 1 ND* ND* 380 + 100 93+7% 91+1%
Predicted GSY014 35 349 0 302 0 307 NA' NA'
GSY014° 302 346 £ 1 ND¢ 274 +1 7+1 300 =10 95+1% 94.5 £ 0.1 %
GSY014E¢ 33+1 350 £ 3 ND¢ 273 +1 9+1 300 + 90 97 +£7 % 95.7 £ 0.4 %
@ 2,3-butanediol.
b Degree of reduction as defined by (Heijnen, 1994).
¢ Average of 6 independent cultivations + standard deviation.
4 Average of 2 independent cultivations + mean deviation.
¢ Not detected.
f Not applicable.
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Fig. 2. Comparison of absolute protein abundances (jg (g protein) ') in anaerobic batch cultures in bioreactors of 2,3-butanediol-glycerol co-producing GSY014 and
the ethanol producing reference strain GSY013. (A) Volcano plot of fold changes and false discovery rate (as indicated by the adjusted P-value) of absolute protein
abundances in GSY014 compared to GSY013. The plot shows the magnitude of change (measured GSY014 value over GSY013) on the x-axis and the statistical
significance on the y-axis. Proteins that are significantly differentially expressed in the engineered strain compared to control strain are shown in blue (P < 0.05),
green (P < 0.01) or red (P < 0.001). The P-value was adjusted for multiple comparisons (n = 3797) using Benjamini and Hochberg (1995) method. The data used to
generate the volcano plot is available in Supplement S3. (B) A principal component analysis plot indicating the distribution of protein abundances in two-dimensional
space based on the first two principal components. Each dot represents protein abundances of a biological replicate, and replicates from the same strain are shown in

the same color and shape.

the engineered strain (Fig. 3A), whilst glycolysis formed the largest
protein group in the GSY014 with an increase from 28.7 % to 43.5 % of
the total measured proteins (Fig. 3B). Other statistically significant
differences in proteome allocation, including their directionality, were
identified through gene set analysis (P < 0.05) (Varemo et al., 2013). In
addition to glycolysis, expression levels of proteins involved in biosyn-
thesis of cofactors, amino acid and lipid metabolism were significantly
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upregulated in the engineered strain (P < 0.05) (Supplement S4). While
in addition to proteins involved in ribosome and transcription, also
proteins involved in cell wall- and glycogen metabolism, were signifi-
cantly downregulated.
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Fig. 3. Proteomaps (Liebermeister et al., 2014) of the reference strain GSY013 (left) and the 2,3-butanediol-glycerol co-producing strain GSY014 (right), showing the

relative abundances of major protein groups of the respective strains.

3.5. Comparison of proteome data to ecGEM protein allocation
predictions

To gain insight into how redistribution of protein allocation enabled
the observed in vivo flux changes, a comparison was made between the
total protein constrained ecGEM enzyme allocation prediction, where
the algorithm was allowed to choose distribution of (iso)enzymes among
metabolic pathways, and the measured proteomics (Fig. 4). The total
protein constrained ecGEM prediction indicated a 30 % increase of
proteins in upper glycolysis, while the lower part was reduced by 5 %.
Although proteomics data showed that upper glycolysis was indeed
upregulated by 30-70 %, the same upregulation was also seen for lower
glycolysis (Fig. 4). This suggests a co-regulation of the expression of both
parts of glycolysis. Another difference between proteomics and model is
that the ecGEM only selects the most efficient isoenzyme for each cat-
alytic step, in terms of Kcat/My. This is illustrated by model selection of
Errl instead of the catalytically active enolases. Presumably, this is
because Errl is annotated as having enolase activity with the same Kcat,
but with a lower molecular weight, than the main enzymes Enol and
Eno2.

Whereas both total protein constrained ecGEM and proteomics
showed upregulation of the glycerol 3-phosphate dehydrogenases and
-phosphatases, the increase in the proteomics data was lower than pre-
dicted. This likely reflects an overcapacity of the glycerol producing
proteins in the reference strain to be able to deal with disturbances in
redox metabolism. Below pyruvate, aside from the expected absence of
pyruvate decarboxylase and the introduction of the heterologous 23BD-
pathway genes, a strong upregulation of acetaldehyde- and alcohol de-
hydrogenases was seen in the proteomics. The fact that these proteins
were predicted to be absent by the ecGEM, illustrates the difference
between the modeling environment and in vivo reality. Outside these
changes in central metabolism, the ecGEM also predicted that the
expression of biosynthetic genes should be reduced in proportion to the
roughly 50 % reduction in growth rate. This decrease was however not
observed, and in contrast biosynthetic-protein functional groups,
excluding translation, increased from 10.7 % to 13.8 % of the total
protein pool.

3.6. Refining model predictions by introduction of individual protein
constraints

All ecGEM predictions generated above were constrained by the total
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amount of enzyme. To further compare the combined results of the
ecGEM and the proteomics data, the measured individual protein
abundances and extracellular fluxes were used to constrain the ecGEM.
In the fitting process, the abundance of 46 proteins, constituting a total
of 50 mg (g CDW) !, had to be flexibilized to obtain solutions for the
proteomics-constrained ecGEM of GSY014. Among these proteins were
enzymes in glycolysis, some required for biosynthesis and the heterol-
ogous BudA and AlsS (Supplement S6). For the proteomics-constrained
ecGEM of reference strain GSY013, 72 protein abundances had to be
flexibilized in the fitting process (Supplement S6), which totals to 54 mg
(g CDW) L. These GSY013 proteins were mainly biosynthetic enzymes
with annotated low ket values. This requirement for increased flexibility
means that the measured protein concentration was too low to explain
the observed flux, given the assumed k¢, and molecular weight in the
model.

The addition of individual protein abundance constraints to the
ecGEMs reduced the flux variability of the GSY014 model (Supplement
S7, Fig. S9A), and the total protein pool pseudoreaction was adjusted to
382 mg (g CDW) . In total, 750 measured enzyme abundances were
applied as upper bounds to reactions in the model. This accounted for
352 mg (g CDW) L, or 92 % of the protein constraint in the model and 72
% of the total measured protein mass. The proteomics-constraints on the
ecGEM of GSY013 had similar effects on the distribution of the flux
variability of the model (Supplement S7, Fig. S9B), and on the distri-
bution of sampled fluxes (Supplement S8).

To assess the correlation between the primary total-protein-
constrained model and the refined proteomics-constrained ecGEM,
sampled mean deviations were compared (Fig. 5A, Supplement S8).
Overall, there is a large spread in mean fluxes, both through pseudo-
reactions related to enzyme supply (red) and metabolic reactions
(black). This was mainly explained by decreased fluxes in the most
optimal (as indicated by kcar/Myw) enzymes and increased flux through
less efficient isoenzymes and alternate pathways. This was especially
evident for the fluxes through central metabolism (Fig. 5B), as illus-
trated by the switch between isoenzymes Pyk1 and Pyk2. The increased
diversification in enzyme usage was also reflected by a decrease in the
number of non-zero fluxes by 11.2 % in the proteomics-constrained
ecGEM. Additionally, the measured extracellular fluxes were slightly
lower than predicted by the total-protein-constrained model.
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Fig. 4. Ratio of protein abundance in central metabolism between engineered
23BD-glycerol coproducing strain and the reference strain. The left column
(blue) indicates the ecGEM predicted ratio of the indicated pseudoreaction
related to enzyme supply for the engineered strain over the reference strain
(Supplement S8). The right column (red) indicates the ratio as measured by
proteomics at the 0.05 significance level (n = 3 for each strain, Supplement S5).
Abbreviations: gle, glucose; g6p, glucose-6-phosphate; f6p, fructose-6-
phosphate; fbp, fructose-1,6-bisphosphate; g3p, glyceraldehyde-3-phosphate;
bpg, 2,3-bisphosphoglycerate; 3 pg, 3-phosphoglycerate; 2 pg, 2-phosphoglyc-
erate; pep, phosphoenolpyruvate; pyr, pyruvate; AcLac, acetolactate; 23BD,
2,3-butanediol; dhap, dihydroxyacetone phosphate; g3p, glycerol-3-phosphate;
gly, glycerol; Hac, acetate; AcAld, acetaldehyde; EtOH, ethanol. NS, no signif-
icant change; inf, infinite due to O flux in reference strain; * overexpressed
genes; T deletion.

4. Discussion

The metabolic engineering approach in this study shows the power of
thermodynamically feasible, redox neutral and ATP yielding pathways
for anaerobic product formation (Cueto-Rojas et al., 2015). Although
benefitting from previously proven pathway genes, apparently easy and
ATP neutral product export and relatively low product toxicity (Choi
et al., 2016; Mizobata et al., 2021), solely the introduction of the 23BD
pathway and elimination of pathways competing for NADH, directly
resulted in coupled anaerobic 23BD and glycerol formation with growth
rates and specific production rates close to model predictions by the
ecGEM. Importantly, this study also provides insights into the limits of
thermodynamic potential and ATP yield on glucose required for such
anaerobic pathways to be successful. The increase in the biochemical
Gibbs free energy change (AG%) from —215 kJ (mol glur:ose)’1 to —147
kJ (mol glucose) !, and the accompanying larger decrease in ATP yield
from 2 mol ATP (mol glucose)’1 to 2/3 mol ATP (mol glucose)’l, were
apparently not a hurdle for implementation of the engineered pathway.
To the contrary, higher substrate consumption rates, lower biomass
yield and high product formation rates were observed. The economic
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potential of anaerobic production pathways is of course higher if such a
catabolic pathway has only one product, rather than equimolar
co-products. That scenario increases the concentration of the sole
product, decreases downstream processing investment cost from two to
one product and avoids that the economic success of a factory relies on
beneficial market conditions for two products.

The fact that these large changes in flux distribution did occur in
GSYO014, without a need to apply laboratory evolution, demonstrated a
remarkable flexibility of the central metabolism of S. cerevisiae. The
ecGEM-predicted increase, which would not have been possible with
classical genome-scale models, and in vivo confirmed increase in
glycolytic flux, was realized by a large increase in the enzyme allocation
to glycolytic proteins to 43.5 % of total measured proteins. However,
where the ecGEM only predicted increases of the key enzymes, the
proteome data indicated a general and coordinated upregulation of
glycolysis. This suggests that global regulators or transcription factors
underlie a coordinated upregulation of the glycolytic enzymes. Indeed,
several transcription factors, such as Gatl, Migl, Swil and Whi5 were
down regulated (Coffman et al., 1995; Jorgensen and Tyers, 2004;
Kayikei and Nielsen, 2015; Sudarsanam et al., 2000). It should be noted
that, aside from a need for a higher glycolytic flux to optimize the
biomass specific ATP production rate, the engineered strain also con-
tains the Mth1AT allele (Oud et al., 2012). An unexpected observation in
the proteomics data was an increase of aldehyde- and alcohol de-
hydrogenases, despite the complete absence of pyruvate decarboxylases.
This upregulation could be a response to changed NADH/NAD™ ratios
upon changing from alcohol-to glycerol/2,3-butanediol dehydrogenases
as NADH reoxidizing enzymes, or alternatively a response to intracel-
lular levels of acetoin. Alternatively, the downregulation of Swil, which
is known to repress expression of Adhl and Adh2 (Peterson and Her-
skowitz, 1992; Taguchi and Young, 1987), might have had this upre-
gulation as a side effect. Although 200 generations of laboratory
evolution did not result in improved phenotypes in bioreactor charac-
terization, this upregulation of unneeded protein, and the excretion of
acetoin, suggests that there is room for (evolutionary) improvement,
albeit potentially requiring much longer time spans.

In the current generation ecGEMs, the biomass composition is
assumed constant across all growth rates, which is a known simplifica-
tion of the in vivo reality (Lange and Heijnen, 2001). A possible
improvement would be to enable ecGEMs to automatically adjust
biomass composition even in the absence of experimental data to, for
instance, accommodate the fact that ribosome numbers, and thereby
proteome allocation towards ribosomes, varies with growth rate
(Bjorkeroth et al., 2020; Scott and Hwa, 2011). Care should however be
taken to ensure that the benefits of introduction of variable biomass
compositions (Elsemman et al., 2022; O’Brien et al., 2013; Pramanik and
Keasling, 1997), are not out-weighed by the need for demanding opti-
mization algorithm beyond linear programming. This study showed that
the maximum allowed protein abundance had to be flexibilized for a
surprising number of proteins to enable proteomics-constrained ecGEM
solutions. Assuming that the underlying deviation is in the model and
not in the proteomic analysis, this indicates that the Bayesian procedure
used in the creation of the model (Li et al., 2022) underestimated k¢ of
the involved enzymes. Indeed, inspection of key glycolytic enzymes that
needed flexibilization revealed that the k., values were much lower
than previously published (Nilsson and Nielsen, 2016), and that flex-
ibilization would not have been required if the higher literature values
had been used in the model (Supplement S6). Interestingly, also the
manually added ke, values for the heterologously expressed enzymes
AlsS and BudA required flexibilization, indicating they are more effi-
cient than the current available in vitro data suggests. This makes efforts
to improve correlation between in vivo and in vitro data (Garcia-Con-
treras et al., 2012; Li et al., 2022), and manual curation of the model, as
was done for the original GECKO model ecYeast7 (Sanchez et al., 2017),
very beneficial for future ecGEM applications.

This study clearly showed the potential of ecGEMs in both metabolic
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Fig. 5. Correlation between sampled mean flux in the proteomics-constrained ecGEM compared to the original total protein constrained ecGEM. A) A comparison of
all the reactions in the model. On the outside axes, histograms of the corresponding fluxes are displayed as counts. Red denotes protein pseudoreactions while black
indicates metabolic reactions. B) A comparison of the reactions displayed in Fig. 4, including isoenzymes. Names of the enzymes contributing to each flux are
indicated, and the error bars are for a single standard deviation. All points are based on 10 000 random samples of the respective models.

engineering and laboratory evolution. Future improvements, as dis-
cussed above, will only increase this potential further. In metabolic
engineering studies, ecGEMs can set goals for further pathway im-
provements, identify needs for improved information on important
pathway enzymes, inform design of more efficient enzymes and/or
identify if other factors, such as product export and toxicity, are influ-
encing the outcome. For laboratory evolution, ecGEMs can help identify
the opportunity space and indicate when (further) phenotype im-
provements are unlikely or will take a disproportionate amount of time.
The use and further improvement of ecGEMs in modeling various or-
ganisms can result in faster design-build-test cycles, shorter time-to-
market and improve efficacy of experiments.
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Abstract

Rhodotorula toruloides is a non-conventional, oleaginous yeast able to naturally accumulate
high amounts of microbial lipids. Constraint-based modeling of R. toruloides has been
mainly focused on the comparison of experimentally measured and model predicted growth
rates, while the intracellular flux patterns have been analyzed on a rather general level.
Hence, the intrinsic metabolic properties of R. toruloides that make lipid synthesis possible
are not thoroughly understood. At the same time, the lack of diverse physiological data sets
has often been the bottleneck to predict accurate fluxes. In this study, we collected detailed
physiology data sets of R. toruloides while growing on glucose, xylose, and acetate as the
sole carbon source in chemically defined medium. Regardless of the carbon source, the
growth was divided into two phases from which proteomic and lipidomic data were collected.
Complemental physiological parameters were collected in these two phases and altogether
implemented into metabolic models. Simulated intracellular flux patterns demonstrated the
role of phosphoketolase in the generation of acetyl-CoA, one of the main precursors during
lipid biosynthesis, while the role of ATP citrate lyase was not confirmed. Metabolic modeling
on xylose as a carbon substrate was greatly improved by the detection of chirality of D-arabi-
nitol, which together with D-ribulose were involved in an alternative xylose assimilation path-
way. Further, flux patterns pointed to metabolic trade-offs associated with NADPH
allocation between nitrogen assimilation and lipid biosynthetic pathways, which was linked
to large-scale differences in protein and lipid content. This work includes the first extensive
multi-condition analysis of R. toruloides using enzyme-constrained models and quantitative
proteomics. Further, more precise kg4t values should extend the application of the newly
developed enzyme-constrained models that are publicly available for future studies.

Author summary

Transition towards a biobased, circular economy to reduce the industrial dependence on
fossil-based resources requires new technologies. One of the options is to convert available
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biomass feedstocks into valuable chemicals using microbes as biocatalysts. Rhodotorula
toruloides is a nonpathogenic, nonconventional yeast that has recently emerged as one of
the most promising yeasts for sustainable production of chemicals and fuels due to its nat-
ural ability to synthesize large amounts of lipids. However, its unique metabolic properties
are not yet fully understood. We have computationally predicted metabolic fluxes in R.
toruloides while growing in economically viable growth conditions inducing lipid accu-
mulation and analyzed them together with absolute proteome quantification. Our holistic
approach has highlighted metabolic pathways important for lipid biosynthesis and
revealed metabolic trade-offs associated with NADPH allocation during lipogenesis. In
addition, our work highlighted the necessity for accurate computational approaches in
characterizing enzymatic kinetic properties that would improve the metabolic studies of
R. toruloides.

Introduction

R. toruloides is a red basidiomycota known for its ability to accumulate high amounts of intra-
cellular lipids [1] and consume different carbon substrates [2,3]. It has been studied for its abil-
ity to consume complex biomass substrates, including from the lignocellulosic origin [4-6]
that would make it interesting for a biorefinery concept. However, studies aimed at fundamen-
tal investigation of R. toruloides metabolism have been mainly conducted using a single carbon
source as substrate, such as xylose [1,7-9], glucose [8-11], glycerol [7], acetate [7], L-arabinose
and p-coumarate [9], in a chemically defined mineral medium and occasionally rich cultiva-
tion medium (YP) [3]. Secondary nutrient limitation induces lipid accumulation [12]. In
nitrogen limitation, 65% of lipids of dry cell weight were reached in a batch cultivation regime
[1].

Metabolic pathways producing intracellular metabolite acetyl-CoA and a cofactor NADPH
in R. toruloides have been the main focus of metabolic studies due to their central role in lipid
biosynthesis. Fatty acids, which mainly accumulate in the form of triacylglycerols (TAGs), are
produced via the sequence of four enzymatic reactions that require 1 ATP and 2 NADPH mol-
ecules per 1 acetyl-CoA added to the fatty acid chain [13]. To study lipid metabolism in R. tor-
uloides, previous studies have taken the systems biology approach. Genome sequencing and
high-throughput multi-omics analysis facilitated the reconstruction of the metabolic networks.
Based on a genome sequence of R. toruloides strain NP11, the first metabolic network of R. tor-
uloides included its central carbon metabolism and lipid biosynthetic pathways [10]. R. toru-
loides possesses several enzymatic pathways that differ from the model yeast Saccharomyces
cerevisiae and which specifically facilitate the generation of lipid precursors. The key differ-
ences included the synthesis of acetyl-CoA from citrate by ATP citrate lyase (ACL), synthesis
of acetyl-CoA from xylulose 5-phosphate by phosphoketolase (XPK), and the conversion of S-
malate into pyruvate by malic enzyme (ME) that provides for NADPH [10,14]. Proteomics
analysis has suggested NADPH regeneration primarily through the pentose phosphate path-
way on xylose and glucose, but the role of malic enzyme is not clearly understood [8,10]. The
role of XPK in the generation of acetyl-CoA has not been acknowledged previously, whereas
ACL has been demonstrated to be upregulated during lipid accumulation [10], especially in
presence of xylose [8].

It has been reported that on xylose R. toruloides is growing 2 to 3 times slower compared to
glucose [8], but the underlying mechanisms are yet to be identified. In our previous proteo-
mics study [1], we discovered from proteomics quantification that xylulokinase, encoded in
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the genome as the third step in the currently known xylose assimilation pathway, is not present
in the proteomic data set, suggesting potential limitation in xylose metabolism. Later, a similar
finding was reported by Jagtap et al. 2021 [3] and Kim et al. 2021 [9] using a different R. toru-
loides strain, IFO 0880. The latter proposed an alternative xylose assimilation pathway for this
species.

A holistic view on metabolism can be provided by genome-scale metabolic models (GEMs).
GEMs are metabolic networks reconstructed from a genome sequence of a specific organism.
They contain all known biochemical reactions of the organism. GEMs allow the calculation of
metabolic fluxes that represent activity of different metabolic pathways under specified condi-
tions, e.g., an uptake of a particular carbon source. GEMs of R. toruloides were built based on
the genome sequences of strains NP11 [15] and IFO 0880 [11]. Flux balance analysis predicted
that up to 87% of NADPH was regenerated from xylose through the oxidative part of pentose
phosphate pathway (oxPPP) [1]. Phosphoketolase was suggested as the main supplier of ace-
tyl-CoA during lipogenesis in xylose-grown cells [1]. On the other hand, TCA cycle related
enzymes were suggested for NADPH production on acetate-grown cells [7], demonstrating
that metabolic operations can vary significantly with the carbon source uptake. Models have
also been used to study metabolism during cell growth on glucose [11] and glycerol [7].

A better understanding of how different metabolic pathways contribute to lipid accumula-
tion under different substrates would help to design better metabolic engineering strategies.
GEMs can be a powerful and helpful tool in metabolic studies, if their predictive power is
good. Enzyme-constrained GEMs integrate additional constraints on enzyme capacity and
their total abundances (as thoroughly reviewed by Chen and Nielsen 2021 [16]). Phenomeno-
logical constraint is imposed on metabolic flux (v; mmol/gDCW/h), formulated as enzyme
kinetics (Eq 1)

v<E-k, 1)

where E is protein abundance (mmol/gDCW) and ke, is the enzyme’s turnover number (1/s),
provided with an upper limit on individual or total protein abundances The integration of
enzymatic constraints in S. cerevisiae significantly improved phenotype prediction [17]. The
strength of proteome constraints has also been demonstrated by predicting overflow metabo-
lism in E. coli [18] and metabolic shift in arginine catabolism in L. lactis [19]. A similar coarse-
grained approach that allowed the prediction of maximal growth without constraining the
model with any exchange fluxes in S. cerevisiae was demonstrated by applying a global thermo-
dynamics constraint [20].

In addition to a curated annotation, the quality of the predicted fluxes depends on accuracy
of physiological data, notably on the biomass composition specificity. The tuning of R. toru-
loides biomass reaction in the prior and current models improved the condition-wise specific-
ity of predicted fluxes.

In the present study, we created condition-specific enzyme-constrained genome-scale met-
abolic models of R. toruloides, ecRhtoGEMs, and used them to predict intracellular fluxes.
Flux bounds to constrain the model were obtained from bioreactor (1 L) experiments with
yeast cultivation in chemically defined medium, with three carbon sources studied individu-
ally—glucose, xylose and acetate. These very detailed physiological data sets enabled us to pre-
cisely characterize metabolism at exponential growth and lipid accumulation phase. In all
conditions, we performed mass spectrometry (MS) based absolute proteome quantification.
Also, biomass macromolecular composition in regard to lipids and proteins was determined,
including lipid profiling by gas chromatography (GC) analysis. Using this data, we generated 6
different versions of the R. toruloides model with enzyme constraints and biomass composition
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specificity, where we were able to demonstrate trade-offs in NADPH requirements for the cells
growing exponentially versus in nitrogen limitation. To our knowledge, this is the first proteo-
mics analysis of acetate-grown R. toruloides cells and the first detailed GEM analysis combined
with proteome analysis of acetate and glucose conditions for this strain.

Results

Differences in physiological parameters under glucose, xylose or acetate as
a sole carbon source

Here we present production profile, specific growth rate, lipidomics and total protein mea-
surements of batch cultivation of R. toruloides strain CCT 7815 growing in a chemically
defined medium on three substrates as a sole carbon source—glucose (63 g/L), xylose (70 g/L)
or acetate (20 g/L). R. toruloides CCT 7815 is a tolerant strain developed during a short-term
adaptation of strain CCT 0783 (Colegio de Culturas Tropicais, Funda¢io André Tosello, Cam-
pinas, Brazil) in sugarcane bagasse hemicellulosic hydrolyzate, demonstrating an increased
lipid production without impacting growth and substrate consumption as a result of induction
of hydrolysate-tolerance- and lipid accumulation-related genes [21]. Cultures were grown at a
starting molar C/N ratio of 69 (glucose/urea) and 80 (xylose- or acetate/ammonium sulfate),
which will result in nitrogen limitation that is known to induce lipid accumulation [12]. Cell
growth was monitored by online biomass measurements and CO, production data. Experi-
ments were run until complete substrate depletion. Regardless of the carbon source, the results
demonstrated two distinct growth phases: (i) exponential growth (exp) phase where all sub-
strates were in excess, and (ii) nitrogen-limited (Nlim) phase, associated with nitrogen deple-
tion (Fig 1A). For lipidomics, the first sample was analyzed at the end of exp phase and the
second sample was analyzed at the end of Nlim phase (Fig 1A). For intracellular protein con-
tent analysis, biomass samples were analyzed at the late or end exp and mid-Nlim phases (Fig
1A). Physiological parameters are available in S1 Table.

The highest amount of intracellular lipids was accumulated while cells were growing on glu-
cose, resulting in 0.48+0.04 g/gDCW, while the lipid yield was approximately 15% and 20%
lower on acetate and xylose, respectively (Fig 1B). On glucose, lipid accumulation started later
than on xylose and acetate, where up to 20% and 18% lipid yield, respectively, was reached
already during the late exp phase (S1 Fig). In a similar study using a different R. toruloides
strain NP11 [8], less lipids were quantified in xylose at the late exp phase, while a higher final
lipid yield was reached compared to our study. On glucose, the final lipid yield was comparable
with previous studies [8]. In acetate condition, the final lipid content was 0.34+0.01 g/gDCW,
which was in line with previous experiments by our group measured in continuous cultivation
experiments [7].

Maximum specific growth rate was the highest on glucose, 0.19+0.025 h™, while it was at
least 2-fold lower on acetate and xylose (Fig 1C). Two-fold difference in maximum growth
rate on xylose and glucose conditions has been reported previously [8]. Nlim growth phase,
where most of the lipid accumulation occurred in all studied conditions, was characterized by
significantly lower specific growth rate (Fig 1C), specific substrate uptake rate (Fig 1D) and
total protein content (Fig 1E).

Lipid composition was similar in all studied conditions, with oleate (C18:1) as the dominant
fatty acid (Fig 1F). During the Nlim phase, the relative amount of oleate (monounsaturated
fatty acids, MUFAs) further increased, while polyunsaturated fatty acids (PUFAs)—linoleate
(C18:2) and linolenate (C18:3)—decreased. Interestingly, on glucose at late exp phase the
amount of PUFAs was higher than MUFAs, but it significantly changed during the Nlim phase
when total lipid amount increased almost 10-fold (Fig 1B). Our results demonstrated that the
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Fig 1. Growth characterization on three carbon sources-glucose (G), xylose (X) and acetate (A)—during
exponential growth (exp) and nitrogen limitation (Nlim) phases. (A) Batch cultivation growth curve and sampling
timepoints for lipidomics and proteomics on all tested carbon sources. (B) Lipid yield, Ylip (g/gDCW). (C) Average
specific growth rate, pi_average (h™). (D) Substrate uptake rate, r_substrate (mmol/. gDCW/h). (E) Protein content, Yp
(g/gDCW). (F) Fatty acid profiles (% of total lipid). (G) Carbon balance (% of total substrate uptake). SFAs: saturated
fatty acids; MUFAs: monounsaturated fatty acids; PUFAs: polyunsaturated fatty acids. Average of duplicate
experiments with SD is illustrated.

https://doi.org/10.1371/journal.pchi.1011009.9001

degree of fatty acid saturation for C18 dynamically increased throughout cultivation. The dis-
tribution of different types of fatty acids was in agreement with the previous data reported on
glucose and xylose [8], whereby oleate and palmitate where the most abundant at the end of
batch cultivation. Notwithstanding the general agreement between both studies, in our study
the PUFASs, mainly linoleate (C18:2) increased more during Nlim, while in the previous study
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[8] palmitate (C16:0) increased more during lipid accumulation. It might possibly reflect the
fact that different R. toruloides strains were used in these studies.

Final biomass titers were similar on xylose and glucose, respectively 18 g/L and 22 g/L (S1
Fig), but the highest biomass yield, 0.32 gDCW/g_substrate, was reached on xylose during
Nlim phase (S1 Table). On xylose, 32% of substrate was excreted as byproducts xylitol and D-
arabinitol during the exp growth phase (Fig 1G). For arabinitol, a stereoselective analysis was
done using high-performance liquid chromatography (HPLC) separation with a chiral column
(Chiralpak, Daicel Technologies, Japan), similarly as described in Lopes and Gaspar 2008 [22]
(S2 Fig). Although Jagtap and Rao [23] already assumed the production of D-arabinitol, we
were able to validate it. At low growth rates (during the Nlim phase), xylitol and D-arabinitol
were not excreted but rather co-consumed. All byproducts were consumed at the end of the
experiment at 168 h. On acetate, the amount of byproducts other than CO, increased during
the Nlim phase to 31% (Fig 1G). These byproducts remain to be identified. On glucose, no
byproduct other than CO, was detected. However, we were able to measure only 68.5% of car-
bon during the Nlim phase (Fig 1G and S1 Table). Likely, it was because R. toruloides strain
CCT 7815 was making cell aggregates when grown in the chemically defined glucose-based
medium. Mass balance calculation took into account glucose uptake, carbon dioxide produc-
tion and biomass (in C-mol). As our biomass measurements were based on optical density,
which relies on the assumption that cells are evenly distributed and of equal size [24,25], it
may underestimate the actual cell concentration in liquid culture when aggregates are formed.
To solve aggregation problem, we switched the nitrogen source from ammonium sulfate to
urea in glucose condition. It helped to reduce aggregate formation but did not eliminate it.
Based on the comparison of growth curves when using ammonium sulfate or urea, the results
were highly similar (S1A Fig). Further analysis with glucose was carried out using urea as the
nitrogen source. Therefore, results exclusively in the glucose condition (both exp and Nlim
growth phases), including the proteomics and metabolic flux data presented in Figs 1-5 and
$1-S13 and S1-S6 Tables and S1-S6 Datasets, belong to experiments in which we used urea
as a nitrogen source.

Proteomics data shows a significant allocation into ribosomes

We also present a high quality dataset with absolute proteome abundances of R. toruloides
measured at the late exp and mid-Nlim phases during growth on xylose, glucose and acetate.
Proteins were measured and quantified with mass spectrometry-based TPA (total protein
amount) quantification method [26], and we were able to determine the absolute abundances
of 3160 proteins across 6 conditions (S1 Dataset). Principal component (PC) analysis showed
coherency in our proteome data (Fig 2A). High similarity between acetate exp and Nlim data
was detected, while showing significant differences with other studied conditions (separated
on the PC1, describing 49% variation in the data). PC analysis has previously been done for R.
toruloides strain IFO 0880 comparing gene expression during the exponential growth phase on
rich medium containing sole carbon substrate, similarly as in our study [3]. PC1 using tran-
scriptomics revealed distinct expression patterns on acetate-grown as compared to glucose-
and xylose-grown cells, agreeing with the proteomics results obtained our study. The only
noticeable difference was that PC2 in [3] separated exp phase from glucose to xylose. In our
study, PC2, describing 34% of the variation in our data, separated mainly exp and Nlim condi-
tions in the same way on glucose and xylose (Fig 2A).

Significant variation in proteome between the two growth phases, exp and Nlim, was also
observed by differential expression analysis. We found 204 differentially expressed proteins in
Nlim (lipid accumulation) versus exp growth phase on glucose, 37 on xylose and none on
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acetate using a cut-off of [log2FC| > 1 and Benjamini-Hochberg corrected p-value < 0.05 (S3
Fig and S2 Dataset). Proteome profiles on xylose and glucose were more similar in compari-
son to the growth on acetate. Comparison of protein levels between carbon sources revealed
the largest difference between xylose and acetate at exp growth phase, resulting in 159 differen-
tially expressed proteins (S3 Fig and S2 Dataset). We then analyzed protein levels based on
Gene Ontology (GO) group relations that represent different metabolic pathways present in R.
toruloides. GO groups were obtained from the Uniprot database (R. toruloides NP11) and
genome-scale model, rhto-GEM [15] (for a full list see S2 Table). GO relations from both
sources were combined to provide possibly the most accurate information on different meta-
bolic pathways present in R. toruloides.

We discovered that ribosomes formed the largest GO group of the proteome (data were
represented per gram of total proteome, ug/g_protein) (Fig 2B). Interestingly, the ribosomal
abundance in R. toruloides up to 46% of proteome was higher than observed previously in S.
cerevisiae (around 37%) [27]. Expression levels in glycolytic pathways were largely unchanged
during the lipid accumulation in xylose and acetate conditions, while upregulation was
observed on glucose (Fig 2B). On glucose- and xylose-grown cells, proteome allocation to
TCA cycle was considerably lower compared to glycolytic metabolic pathways (Fig 2B). On
acetate, protein levels of the TCA cycle were almost 3-fold higher than on glucose and xylose
(Fig 2B). Higher TCA cycle activity was expected as acetate assimilation directly produces
TCA cycle-related metabolites. The electron transfer chain (ETC) was the only metabolic path-
way, in which protein levels increased significantly during lipid production in all the studied
carbon substrates (Fig 2B).
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Fig 2. Absolute proteomics data. (A) Principal component analysis (ug/g_protein). (B) Proteome allocation (% of ug/g total protein) to metabolic
pathways associated with amino acid (AA) biosynthesis, electron transport chain (ETC), fatty acid (FA) metabolism, glycolysis, pentose phosphate
pathway (PPP), pyruvate metabolism, ribosome, tricarboxylic acid (TCA) cycle, and uncharacterized proteins. (C) Ribosomal translation rate (s') and
ribosome allocation (g/g_protein). Average of duplicate experiments with SD is illustrated. Proteins in each GO group are shown in S2 Table.

https://doi.org/10.1371/journal.pchi.1011009.g002
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During lipid accumulation, the amounts of uncharacterised proteins, especially in xylose
condition, increased (Fig 2B), indicating the importance of discovering unknown protein
functions for future research. Interestingly, on glucose the least amount of proteins were allo-
cated to FA metabolism, while the highest total lipid content was measured experimentally.
The highest expression levels of proteins in the fatty acid metabolic pathways were detected on
acetate (Fig 2B). It was mostly due to high expression levels of beta-oxidation proteins (S1
Dataset).

Relation between ribosomal content, growth rate and translation

We used absolute quantification of the proteome and the ribosomal content to calculate the
rate of protein synthesis per ribosome, also known as ribosome efficiency or protein transla-
tion rate (for instructions see S3 Table). The ribosome of R. toruloides strain NP11 was charac-
terized by 178 structurally distinct proteins reported in Uniprot.org, from which 147 were
identified in CCT 7815 strain and quantified (S2 Table). The calculated translation rates varied
from 0.8 to 6.6 aa/s (Fig 2C), which was very similar as observed in S. cerevisiae (between 2.8
and 10 aa/s) [28]. Among the 6 conditions analyzed, we observed a linear correlation between
the translation rate and specific growth rate p (R” = 0.99, p-value < 0.001). The mass-wise
ribosome content of proteome (g/g_protein) (Fig 2C) had no such distinct correlation with
the p (R? = 0.68, p-value = 0.043). Interestingly, the lowest ribosome content in proteome was
detected during growth on acetate as compared to other substrates.

Integrating fluxomic and proteomic analysis using an enzyme-constrained
genome-scale model

Genome-scale models allow an in silico simulation of intracellular flux patterns in accordance
with exchange fluxes obtained from cultivation experiments. To improve the predictive power
and consider the capacity constraints imposed by enzymatic catalytic capacities and their pro-
tein levels, we developed an enzyme-constrained GEM using the GECKO Toolbox [17]. In lieu
of a strain-specific model, we used the NP11-based GEM [15] to represent the CCT 7815 strain
used in this study. The genome of its parental strain CCT 0783 possesses two versions of the
same gene, one presenting >90% identity and the other version presenting >70% identity to
the genome of haploid strain NP11 [29]. We integrated individual protein concentrations with
their corresponding catalytic activities (kc,) in the model to constrain individual metabolic
fluxes. We created separate models for exp and Nlim phases on xylose (X), glucose (G) and
acetate (A), respectively. Hence, 6 different versions of the proteome constrained model with
modified biomass composition, fatty acid profiles and flux bounds from the experimental data
were constructed. Proteome constraints included the concentrations of 773 different enzymes
across all conditions (S4A Fig and $4 Table), which were applied to 1515 metabolic reactions
(30% of all reactions) (S5 Table). The coverage of these constraints was greatly improved by
manually assigning EC numbers to 461 R. toruloides enzymes (S4 Table), which enabled
GECKO Toolbox to assign their k., values. At first, BRENDA was queried for exact matching
reaction, substrate and organism. But as kinetic parameter data for non-model organisms such
as R. toruloides were not readily available, GECKO Toolbox step-wise relaxes the stringency
when matching EC number, organism and substrate, to assign reasonable estimates of k., val-
ues [30]. Mass-wise, the proteome constraints of the measured fraction of enzymes covered
between 14% (Gexp) to 25% (ANlim) of the quantified proteome (S4B Fig). Aside from
enzyme concentrations, proteome constraints contained 535 unique k., values automatically
queried from the BRENDA database (S3 Dataset). Models, data sets and scripts are hosted on
a dedicated Github repository ecRhtoGEM (www.github.com/alinarekena/ecRhtoGEM).
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Next we used Flux Balance Analysis [31] to simulate intracellular flux patterns and random
sampling of the solution space [32] with 2000 sampling iterations to evaluate flux variability
(5S4 Dataset). To constrain the set of feasible solutions during sampling, we fixed the upper
bound and lower bounds on the observed exchange fluxes, ATP hydrolysis (non-growth
related maintenance) and protein pool exchange (see Methods). The average flux variability,
estimated as a percentage of SD divided by the flux values, was 19% (median value of all condi-
tions) (S4 Dataset).

From the simulated flux values, we calculated apparent enzyme catalytic activities (kqpp)
ratio of model-predicted fluxes and measured protein concentration. k,p, represents the
apparent in vivo enzyme turnover which drives the biological processes in the environment, in
contrast to ke, representing maximum enzyme capacity. As we used model-predicted fluxes
that were constrained by ke, values in the ec-model, the k,y, values that we obtained cannot
be higher than the k,, value, which means that we cannot capture any potential in vivo enzyme
activity enhancement effect. Regardless, in case of high k,,, values, high reaction rates are cata-
lyzed by low protein concentration, and vice versa. This study is the first report on the in silico
Kqpp values in R. toruloides. Calculated k,y,, values in all growth conditions are available in S3
Dataset. Vast majority of k,j,, values were in the range from 0.1 to 100 (s (S5 Fig), which is
in the range of “average enzyme” k., of 10 s reported by Bar-Even et al. [33]. Some of the
lowest k,p,,, values in acetate condition were associated with fatty acid degradation and beta
oxidation metabolic pathways. We found that during the Nlim phase, when lipid accumulation
occurs, the number of enzymes with relatively low k,, values (0.1 to 1 s™!) was increased (S5
Fig). This reflects the fact that absolute fluxes decreased more than protein concentrations
during the Nlim phase in comparison to exp growth phase, suggesting that for many reactions
downregulation of the enzyme did not affect its reaction rate directly.

as

Growth on glucose

In our analysis of integrated flux and proteomics data, we focused on the major carbon
fluxes and corresponding enzymes in the central carbon and lipid metabolism where acetyl-
CoA, ATP and NADPH, the main precursors for lipid biosynthesis, are generated (Fig 3).
For a better comparison, fluxes were normalized to the substrate uptake rate of the respec-
tive condition, providing percentage values of carbon distribution in the metabolic path-
ways (S6 Fig, for a full list see S4 Dataset). During the exponential growth phase on
glucose, 72% of the carbon was directed via the PPP, while only 20% went through the Emb-
den-Meyerhoff glycolytic pathway. When comparing fluxes at exp versus Nlim phase, we
did not observe any significant changes in normalized fluxes through the oxPPP in glucose
condition (Fig 4A), which was also the main source of NADPH regeneration (S7 Fig)
(reaching 76% glucose-derived carbon). During the exp phase, the majority of NADPH was
consumed by glutamate dehydrogenase (GDH) which converts ammonium and oxogluta-
rate (AKG) to glutamate, while during the Nlim phase majority of NADPH was consumed
in lipid biosynthesis by FAS1-2 (S7 Fig).

The flux via phosphoketolase pathway, which converts D-xylulose 5-phosphate to glyceral-
dehyde 3-phosphate and acetyl-CoA, increased more than 4-fold from 14% to 60% during the
transition from exp growth to Nlim phase, consistent with a significant upregulation of phos-
phoketolase (XPK) on proteome level (apval. 0.043, S2 Dataset). While it is not known, which
route of XPK enzyme in combination with a phosphotransacetylase (PTA) or an acetate kinase
(ACK) is used in R. toruloides strain CCT 7815, we compared the fluxes of both possible sce-
narios (S4 and S5 Datasets). As the results were highly similar, further flux analysis was car-
ried out based on a metabolic route where PTA is active. XPK pathway was also the main
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source of cytosolic acetyl-CoA during lipogenesis, which activity has never been reported on
glucose, but is in line with previous findings in xylose condition [1,7]. The pyruvate decarbox-
ylase and ACL, which exist as alternative pathways for producing cytosolic acetyl-CoA during
lipid accumulation, were activated only when we blocked the XPK pathway (S6 Dataset). Dur-
ing the exp phase, cytosolic acetyl-CoA was not fully used for fatty acid biosynthesis, but 3% of
carbon from glucose was transferred to TCA cycle via carnitine carrier (CRC) via acetylation
reaction and in exchange of carnitine. The transfer of acetyl-CoA to mitochondria likely
reflects that there was sufficient availability of cytoplasmic acetyl-CoA during the exp phase on
glucose. At Nlim phase, majority of cytoplasmic acetyl-CoA was consumed by acetyl-CoA car-
boxylase (ACC), the first step in lipid biosynthesis, as more than 5-fold increase between 9% to
58% of carbon was observed via ACC during the transition from exp phase.

The main flux from the pyruvate branching point was channeled to the TCA cycle via pyru-
vate dehydrogenase (PDH), reaching 69% of carbon from glucose during exp phase. During
exp phase, 37-46% of glucose-derived carbon was channeled from aconitase (ACO1-2) to
fumarase (FUM1), while the flux through malate dehydrogenase (MDH1) appeared to
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correspond to 218% of glucose-derived carbon, indicating that an internal cycling of carbon
was taking place. Similar recycling has been noticed also before in R. toruloides genome-scale
models [1,7,11], however we assume this cycling to be artificial caused by a high demand of
mitochondrial NADH. During the Nlim phase, ATP yield increased (S8B Fig), consistent with
a significant upregulation of ETC on proteome level (Fig 2B). Since the TCA cycle and the
respiratory chain are metabolically connected, cells require mitochondrial NADH to drive res-
piration. Ultimately, the yield of NADH during the Nlim phase slightly increased (S9B Fig).
Fluxes through the TCA cycle significantly increased (Fig 4A), reaching 83% of carbon from
glucose (S6 Fig), while the biomass yield decreased (S1 Table).

With respect to intracellular protein levels, the concentration of ACL was also high (1010
+75 pg/g_protein) at exp phase and was 2.6-fold upregulated (apval. 0.039) during the Nlim
phase (Fig 4B and S2 Dataset), which was consistent with results from previous proteomics
studies suggesting PDH-CIT1-ACL path for producing cytosolic acetyl-CoA [8,10], but not
supported by the model flux results. The concentrations of PDH (2304+11 pg/g_protein) and
CIT1 (2573+6 pg/g_protein) (S10 Fig) at exp phase were higher than on average for the TCA
cycle enzymes (coinciding with high ke, values of 486 s* and 540 s for PDH and CIT1, S3
Dataset), which was also consistent with their role in the PDH-CIT1-ACL route, suggested by
previous omics studies. However, the expression levels of mitochondrial membrane carrier
proteins at both growth phases were low. At relatively low protein levels, high flux through
these transporter proteins resulted in higher k,,, values (S11 Fig).
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Growth on xylose

Next, we explored R. toruloides metabolism during growth on xylose. Xylose is metabolized by
xylose reductase (XR, NADPH-dependent), which reduces xylose to xylitol, xylitol dehydroge-
nase (XDH) and xylulokinase (XK), and further assimilated into central carbon metabolism
via transketolase (TKT1-2) or XPK pathway. The expression of XK was not detected on prote-
ome level in any of the conditions studied, suggesting an alternative pathway to the known
fungal xylose assimilation pathway (Fig 3). The experimental detection of D-arabinitol isoform
suggested the conversion of D-xylulose to D-arabinitol. This mechanism was supported by the
presence of two genes in the R. toruloides genome encoding D-arabinitol dehydrogenase,
RHTO_07844 and RHTO_07702. Only protein RHTO_07844 was detected in our proteomics
analysis (1913 ug/g_protein) (S10 Fig), suggesting its role as D-arabinitol 4-dehydrogenase
(DAD-4), converting D-xylulose to D-arabinitol. Arabinitol dehydrogenase could also convert
arabinitol to ribulose (D-arabinitol 2-dehydrogenase) [34]. L-xylulose reductase (LXR) of fun-
gal A. monospora has been reported to reversibly convert D-ribulose to D-arabinitol [35]. In
support of this mechanism, protein levels of L-xylulose reductase (EC 1.1.1.10, RHTO_00373)
were 10-fold upregulated during growth on xylose versus other substrates. Therefore,
RHTO_00373 was selected as D-arabinitol 2-dehydrogenase (DAD-2) (converting D-arabini-
tol to D-ribulose). Arabinitol dehydrogenase is known to use NADH as cofactor [34]. LXR is
mostly known for NADP(+)/NADPH specificity [35]. D-ribulose can enter the non-oxidative
part of PPP via phosphorylation by D-ribulokinase (RK). An equivalent pathway was recently
reported by Kim et al. 2021 [9]. One gene in R. toruloides IFO 0880 GEM (version 4.0) was
annotated as D-ribulokinase (ID 14368) and we used it to identify potential RK in NP11 strain,
which is more similar to the strain CCT 7815 used in this study [29]. Gene RHTO_00950 was
identified as an ortholog of protein ID 14368 by a BLAST search, which found a match with
98.5% identity. Interestingly, in strain IFO 0880 orthologs of both genes RHTO_07844 and
RHTO_07702 were identified as DAD-2 and DAD-4, respectively, and both were using NAD/
NADH as the cofactor [9]. While it is not known, which cofactor of DAD-2/LXR enzyme is
operational in R. toruloides strain CCT 7815, we analyzed the fluxes of both possible scenarios.
Both simulation results were highly similar, with a difference in where NADPH was regener-
ated. The alternative pathway through DAD was preferred even when XK was not constrained
with proteome.

In a scenario when DAD-2/LXR was NADP-dependent, during both exp and Nlim growth
phases between 46-49% of carbon derived from xylose was directed via glucose 6-phosphate
isomerase (GPI) in a reverse direction to the glycolytic flux. In a combination with that, 42% of
carbon was directed via the oxPPP and returned to the Ru5P branching point, indicating that a
loop associated with NADPH recycling is taking place. Alternatively, up to 88% of xylose-derived
carbon was directed via oxPPP (S7 Dataset). In the first scenario, ZWF and GND provided more
NADPH than LXR/DAD-2 during the exp phase (512 Fig). During the Nlim phase, when the
yield of NADPH slightly increased (S13 Fig), the flux of ZWF and GND remained unchanged,
while the flux of LXR/DAD-2 increased (Fig 4A). XR consumed at least 2-fold more NADPH
than any other NADP(+)-dependent enzyme during both growth phases. However during Nlim,
more NADPH consumed by FAS1-2 was spent on lipid biosynthesis (S12 Fig).

From the proteomics analysis, the concentrations of enzymes involved in the xylose path-
way were 1.1 to 1.6-fold downregulated during Nlim phase versus exp phase (Fig 4B), consis-
tent with the decrease in xylose uptake rate (S1 Table). Lower concentration of RK (644+8 pg/
g_protein) compared to other enzymes involved in xylose assimilation was measured (S10
Fig), suggesting enzyme limitation in the XK bypass pathway. At relatively low protein levels,
high flux through RK resulted in relatively higher k,,, values (S11 Fig).

app
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Aside from enzymes directly involved in xylose assimilation, the intracellular flux patterns
on xylose were the closest to growth on glucose, in comparison to growth on acetate. The flux
of XPK was upregulated 1.7-fold between 13% to 22% during the Nlim phase (Fig 4A), which
was also the main source of acetyl-CoA during lipogenesis. At the Nlim phase, the yields of
ATP and NADH significantly increased (S8 and S9 Figs). The additional mitochondrial
NADH during the Nlim phase was provided via internal cycling of MDH1 (S14 Fig).

Growth on acetate

Lastly, we explored R. toruloides metabolism during growth on acetate. Acetate can cross the
plasma membrane to enter the cells via simple or facilitated diffusion, but at pH below neutral
(< pHBS6) the diffusion of the undissociated form of the acid induces the stress response or
causes negative effect on metabolic activity [36]. In R. toruloides, two permeases have been
found upregulated during growth on acetate-based rich medium in comparison to glucose-
based rich medium [3], suggesting that facilitated diffusion is taking place. Once inside the
cells, acetate is assimilated via ACS that directly provides acetyl-CoA (Fig 3), one of the main
precursors for lipid biosynthesis. From acetyl-CoA branching point, the flux is channeled into
the central metabolic pathways via isocitrate lyase (ICL1-2) and malate synthase (MLS), which
are predicted to be located in cytosol, but no experimental evidence is available. Metabolic
model predicted that at acetyl-CoA branching point, 18% of carbon from acetate during exp
growth phase was directed to lipid biosynthesis via ACC, while the majority of carbon (51%)
entered glyoxylate shunt. In addition, a significant amount of carbon from acetyl-CoA (29%)
was channeled via CRC carrier, which was predicted to have a minor activity on glucose condi-
tion. The CRC route was preferred over the PDH pathway towards mitochondrial acetyl-CoA
(MLS-ME-PDH), which channeled only 18% of carbon from acetate at exp phase. Metabolic
model predicted 5% of carbon from acetate excreted as succinate from the glyoxylate shunt, in
addition to 2% of carbon excreted as citrate, which was confirmed by HPLC. During the Nlim
phase, the main fluxes demonstrated different regulation (Fig 4A). The increase in flux via
CRC (1.4-fold) reflects that more carbon entered the TCA cycle during the Nlim phase. Inter-
estingly, the flux of ACC was downregulated 3.1-fold at Nlim compared to the exp growth
phase. Using the rate of lipid production, which decreased during Nlim phase, it can be
explained that the lipid production in absolute amounts was higher during the exp phase to
sustain the growth together with moderate lipid production (S1 Table).

On acetate, fluxes of the TCA cycle were the lowest, while measured protein levels were the
highest among all conditions analyzed (Fig 4A and 4B). At Nlim phase, 28% of carbon from
acetate was predicted to be excreted as OAA, while the biomass yield decreased (S1 Table).
Flux levels of the TCA cycle indicated that an internal cycling of carbon similar as in other
conditions was taking place (S6 Fig). It involved different transporter proteins,—the citrate-
oxoglutarate (CTP) and succinate-fumarate (SFC) transport -, which allow channeling of the
flux from the TCA cycle to glyoxylate shunt (Fig 3). During the Nlim phase, ATP turnover,
produced entirely via ETC (S15 Fig), and NADH turnover, produced almost entirely via the
TCA cycle (S16 Fig), both decreased (S8 and S9 Figs), unlike observed in glucose or xylose
conditions, where ca 80% of the ATP originated from ETC, while the rest came mainly from
glycolysis.

Aside from enzymes directly involved in the TCA cycle, cytosolic ME was the sole supplier
of NADPH during the Nlim phase only in acetate condition (S17 Fig). This is supported also
by the measured protein levels of ME, which were significantly higher under acetate condi-
tions, although the absolute levels of ME were relatively low under all studied conditions (189
+3 pg/g_protein) (Figs 4B and S6). Only during the growth on acetate the NADPH yield
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decreased during the Nlim phase (S13 Fig). During the Nlim phase, more NADPH was con-
sumed by FAS and spent on lipid biosynthesis (S17 Fig).

We also observed few significant changes in fluxes of enzymes involved in gluconeogenesis,
which is an important pathway during growth on acetate to provide xylose phosphate-based
precursors for ribonucleotide synthesis. The normalized flux towards gluconeogenesis, chan-
neled via MDH2, carried 11% of carbon exp growth phase. It may reflect the fact that PEPCK,
the first enzyme in the gluconeogenesis pathway, consumed ATP, but we found that PEPCK
was consuming only 2.4% of ATP during exp phase (S15 Fig). The concentration of PEPCK
(627 ug/g_protein) (S10 Fig) and its k., value (38 s (S2 Dataset) were low, suggesting that
PEPCK could have been a rate-limiting step of gluconeogenesis during the exp phase.

From proteomics analysis, the concentration of enzymes involved in fatty acid beta oxida-
tion (RHTO_04957, RHTO_00300, RHTO_02848, RHTO_07118, RHTO_00476) at higher
concentrations (from 163+9 to 531+7 ug/g_protein) as compared to cells grown on other sub-
strates at exp phase (S2 Dataset), suggesting this pathway might be more active in R. toruloides
during growth on acetate.

Intracellular flux patterns point to metabolic trade-offs associated with
lipid production

Multi-layer data provided in this study allows us to analyze metabolic trade-offs and compare
the resource allocation between different metabolic pathways present in R. toruloides. From
the metabolic modeling results, we analyzed the NADPH allocation between nitrogen assimi-
lation and fatty acid biosynthetic pathways in glucose- and xylose-grown cells (Fig 5). When
the yeast had an abundant source of nitrogen, either by conversion of urea to ammonia (glu-
cose condition) or by growth on ammonia itself, NADP-dependent glutamate dehydrogenase
(GDH1) converted ammonia with the TCA cycle intermediate AKG into glutamate, which
was then used for the amino acid biosynthesis. Thus, during the exp phase on glucose-grown
cells 46% of NADPH turnover was channeled via GDH1, while 13% was consumed via FAS1-
2. On the contrary, during the Nlim phase 12% of NADPH was channeled via GDH1, while
75% was consumed via FAS1-2. This was supported also by the measured protein levels of
GDHI1, which were significantly higher during exp growth phase (4294+183 ug/g_protein), as
compared to Nlim phase (2948+135 pug/g_protein) (S2 Dataset). In this metabolic trade-off,
less (almost 4-fold) cytosolic NADPH was consumed by GDH1 during the Nlim phase (57
Fig) when the protein content reduced 2.8-fold (S1 Table). And vice versa, more NADPH
(almost 6-fold) was consumed by FAS1-2 when total lipids increased 8.5-fold.

In acetate condition, the metabolism during lipogenesis at Nlim phase might be influenced
by the beta-oxidation, a metabolic process of lipid degradation that can return carbon back
into central metabolism, which was detected on proteome level in acetate condition. But the
activity of this pathway could not be simulated with our current model.

Discussion

In this study, we presented detailed analysis of physiological characterization of R. toruloides
CCT 7815 during growth on glucose, xylose or acetate as a sole carbon source. It was an
important part of the study as the collected data together with the quantitative proteomics
analysis was used to constrain the newly developed enzyme-constrained metabolic models.
Cultivation experiments were carried out at a C/N ratio, which allowed nutrient excess condi-
tions during the first part of the batch cultivation and resulted in nitrogen limitation during
the second part of the experiment, a growth phase known to induce lipid accumulation [12].
Enabled by bioreactors equipped with online monitoring sensors, we were able to accurately
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measure two distinct growth phases during the batch culture (S1 Fig), characterized by differ-
ent lipid content in biomass and other physiological parameters (S1 Table), which were later
implemented into metabolic models.

Experimental results showed a slightly higher final biomass yield (0.32 gDCW/g_substrate)
during growth on xylose as compared to Tiukova et al. 2019, [8] (0.28 gDCW/g_substrate),
where significantly lower starting sugar concentration (40 g/L) and a different R. toruloides
strain were used. Differences between strains were demonstrated also in their lipid composi-
tion (Fig 1E). Lower final biomass yield during growth on glucose (0.24 g/g) as compared to
xylose condition (0.32 g/g) was difficult to explain by any other reason than the formation of
cell aggregates on glucose, as no byproducts in this condition were detected. It has been
reported earlier, and for future research aggregate formation in R. foruloides could be miti-
gated with the increased salt concentrations [37]. The possible explanation could be the pro-
duction of exopolysaccharides that has been found in other Rhodotorula species [4]. However,
the final lipid content in biomass during growth on glucose (48%) was the same as what has
been reported in Tiukova et al. 2019, [8].

Absolute proteome quantification helped to improve the understanding of metabolism dur-
ing lipid accumulation and on various substrates. Interestingly, we found that the proteome
was largely unchanged during the Nlim versus exp phase on acetate, while up to 204 differently
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regulated proteins were found on other tested substrates. Low proteome allocation to TCA
cycle as compared to glycolytic metabolic pathways in the presence of glucose and xylose (Fig
2B) could possibly signal about citrate accumulation and subsequent transportation event
from mitochondria to cytoplasm developed for lipid production.

Metabolic modeling confirmed previous modeling findings obtained on PPP pathway and
ME as the main suppliers of NADPH, and XPK pathway as the primary source of acetyl-CoA
during lipid biosynthesis in R. toruloides [1,7]. We found that these are carbon source depen-
dent and to close proximity of the carbon substrate uptake. We also found that the pathways
involved in synthesis of lipid precursors were not changed during the Nlim versus exp growth
phase. To enable this analysis, we modified models’ biomass reactions to reflect the measured
lipid and protein content, based on precise physiology data of two distinct growth phases. For
further work, it would be interesting to understand if the predicted fluxes via oxPPP while cells
were growing on glucose and xylose are thermodynamically feasible.

Metabolic modeling also helped to explain R. toruloides physiological characteristics and
byproduct excretion. Changes in biomass yield during growth on glucose were associated with
increased fluxes through phosphoketolase (XPK) pathway and the TCA cycle, resulting in
more carbon entering the TCA cycle during lipid accumulation. Predicted acetate kinase activ-
ity demonstrated certain robustness towards the preference for the XPK pathway (S5 Dataset).
XPK pathway is considered an attractive option for generating cytosolic acetyl-CoA because it
is more energy and carbon efficient. It circumvents one molecule of CO; lost per pyruvate and
two equivalents of ATP consumed compared to the PDH bypass route (PDC-ALDH and
ACS). In earlier studies using heterologous expression of XPK pathway in S. cerevisiae [38,39]
it was found that the engineered strain had an increased flux towards TCA cycle and lower
flux from the pyruvate branching point towards acetate formation. In a study by Bergman
etal. 2019, [40], it was found that the activity of XPK pathway increases acetate flux and ATP
requirement in S. cerevisiae, leading to an increased production of CO, and negative growth
effects. Apart from the fact that there is no acetate excretion in R. toruloides, it would be inter-
esting to further understand if use of XPK pathway in lipogenesis may also explain the carbon
losses on glucose as observed in our study.

During growth on acetate, it was suggested that the byproduct formation was associated
with energy metabolism, as the predicted excreted metabolites were TCA cycle-related. Using
the metabolic models, we predicted a higher ATP turnover in acetate as compared to xylose
condition (S8 Fig), while the specific growth rates were comparable. Our simulation results
could not explain why Nlim phase, when more carbon entered the TCA cycle, was associated
with the increase in internal cycling for NADH transport, also known as malate-aspartate
NADH shuttle [41]. Stoichiometry in the oxidative phosphorylation pathway in R. toruloides
in rhto-GEM has been adopted from experimental data in S. cerevisiae and was not changed in
the present study. Moreover, rhto-GEM and ecRhtoGEM are based on R. toruloides exhibiting
not only proton-pumping complex I (t_0001), but also external NADH dehydrogenase
(r_0770) that do not pump protons. However, presence of complex I creates an electron com-
petition process, which might have consequences on the yield of oxidative phosphorylation, as
experimentally demonstrated in another Crabtree negative yeast Candida utilis [42]. As no
experimental phosphate/oxygen (P/O) ratio has been yet reported in R. toruloides, it might be
that the mitochondrial shuttling loop observed in our simulations in reality could correspond
to a higher ATP requirement.

Internal carbon cycling was suggested not only in acetate, but also in glucose and xylose
conditions. This mitochondrial shuttling loop was also noticeable from the results of earlier
modeling studies [1,7,11]. In Dihn et al. 2019, [11], it was called “NADH shuttle”, but it is yet
to be confirmed if the shuttle could be an artificial loop to feed NADH to mitochondria.
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Despite progress in understanding the physiology and genetics of R. toruloides, very little is
known about mitochondrial carrier (MC) proteins in this strain. From experimental studies in
S. cerevisiae, oxodicarboxylate (ODC) and aspartate/glutamate (AGC) carriers are important
to export AKG (in exchange of malate) for nitrogen assimilation and also for the malate-aspar-
tate NADH shuttle [43]. In support of this mechanism, our simulations on glucose-grown cells
showed that the NADH produced via glycolysis was transferred to mitochondria for electron
transport using enzymes MDH2 and ODC. Alternatively, it might point to an artifact of a dif-
ferent P/O ratio.

Metabolic models on xylose were greatly improved by the detection of chirality of D-arabi-
nitol. We presented an alternative xylose assimilation pathway, which was favored in our
model simulations over the known xylose pathway in fungi that involved D-xylulose 5-phos-
phate. Our results were consistent with recent reports in strain IFO 0880 [9], but we also
detected some differences in the pathway, which were related to the fact that we used a differ-
ent R. toruloides strain, CCT 7815. To explain byproduct formation upstream glycolysis while
cells were growing on xylose, we presented several ideas associated with the energy and lipid
metabolism. In comparison to our previous work [1], the flux of PPP could be compensated by
the amount of carbon channeled via the alternative xylose pathway.

The fact that no carbon was directed via PDH-CIT-ACL pathway might also point to lack
of alternative routes of NADPH regeneration in R. toruloides. In our results, the activity of
oxPPP was coupled to an active XPK pathway supplying the vast majority of cytosolic acetyl-
CoA during the Nlim phase. Our proteomics data showed a significant increase in the amount
of uncharacterized proteins during lipid accumulation, especially in xylose condition (Fig 2B).
Hypothetically, CO,-decoupled NADPH regeneration would reduce the fluxes through oxPPP
and XPK pathways (but not eliminate them), the flux of glycolysis would remain the same as
shown in this study, but more carbon would be channeled via IDP and ACL. It has been dem-
onstrated that GAPDH contributes to NADPH supply in filamentous fungi Mortierella alpina
[44]. CO,-decoupled NADPH synthesis has been engineered in S. cerevisiae, demonstrating
significant phenotypic changes [45].

Modeling results revealed metabolic trade-offs associated with NADPH allocation between
nitrogen assimilation and lipid biosynthetic pathways. In S. cerevisiae and E. coli, a clear spe-
cific growth rate dependence of ribosomal proteins has been demonstrated [27,46,47]. In the
present study, we demonstrated a similar significant correlation for specific growth rate depen-
dent ribosomal content (Fig 2C). Moreover, we were able to demonstrate a trade-off in
NADPH demand. Although NADPH regeneration was dependent on the carbon source,
NADPH demand was shifting from protein production at higher growth rates to lipid biosyn-
thesis at lower growth rates in Nlim phase (Fig 5). Enzyme-constrained metabolic models
developed in this study used not fully matched ke, values that can notably increase the predic-
tion errors [48]. Characterizing enzymatic properties using physically based models requires
enormous experimental work, therefore accurate computational approaches are needed to
address this gap. Deep learning algorithms have demonstrated outstanding success in predict-
ing protein structures based on their sequence information [49-51], and the method has also
been applied in predicting enzyme k., values for yeast S. cerevisiae [52].

Conclusion

In this study, enzyme-constrained genome-scale metabolic models were generated for R. foru-
loides, where metabolic modeling together with proteome data gave a detailed interpretation
of how flux patterns are changing in R. toruloides on different substrates during the exponen-
tial growth and in lipid accumulation. The results were consistent with previous knowledge on
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the main pathways involved in lipid biosynthesis in R. toruloides, revealed by genome-scale
modeling and multi-omics analyses. While detailed analysis of simulated intracellular flux pat-
terns allowed us to explain some physiological parameters during growth on glucose, many
observations require further validation. This work contributes to improving the knowledge
about R. toruloides metabolism.

Materials and methods
Strain, media and growth conditions

R. toruloides CCT 7815 (Colegdo de Culturas Tropicais, Fundagao André Tosello, Campinas,
Brazil) from a previous study [21] was used in the cultivation experiments. The same study
identified increased lipid production, induction of hydrolysate-tolerance and lipid accumula-
tion genes without physiological changes regarding growth and substrate consumption in R.
toruloides strain CCT 7815 after a short-term adaptation in sugarcane bagasse hemicellulosic
hydrolyzate. Seed cultures were grown on chemically defined medium according to Verduyn
(3.0 g/L KH2PO4, 0.5 g/L MgSO4-7H20, 15 mg/L EDTA, 4.5 mg/L ZnSO,-7H,0, 0.3 mg/L
CoCl,-6H,0, 1 mg/L MnCl,-4H,0, 0.3 mg/L CuSO,4-5H,0, 4.5 mg/L CaCl,-2H,0, 3 mg/L
FeSO,-7H,0, 0.4 mg/L Na,Mo0,-2H,0, 1 mg/L H3BOs3, 0.1 mg/L KI, 0.05 mg/L biotin, 1 mg/
L calcium pantothenate, 1 mg/L nicotinic acid, 25 mg/L inositol, 1 mg/L thiamine HCI, 1 mg/
L pyridoxine HCI, 0.2 mg/L para-aminobenzoic acid [53]) supplemented with a sole carbon
source of 18.2 g/L glucose, 20 g/L xylose or 20.0 g/L acetic acid and 5 g/L (NH,4),SO, in dupli-
cate shake flasks at 200 rpm and 30°C for 24 h. The carbon/nitrogen (C/N) molar ratio of the
medium in seed cultures was 8.8. To obtain seed cultures, cells were pre-cultured in YPD
media, and pelleted and washed twice with 0.9% (m/v) NaCl solution before inoculation. Seed
cultures were used to inoculate 900 mL of chemically defined medium supplemented with
either 63.6 g/L glucose and 0.9 g/L urea, or 70 g/L xylose and 2 g/L (NH,),SO4 or 20.0 g/L ace-
tic acid and 0.6 g/L (NH,),SO,4, and 0.1 mL/L antifoam 204 (Sigma-Aldrich, St. Louis, MO,
United States) in duplicate bioreactors with a starting OD600 of 0.4 at 400-600 rpm, 30°C, pH
6.0. At the start of cultivation, the (C/N) molar ratio of the media in bioreactors was set to 69
(glucose/urea) and 80 (xylose- or acetate/(NH,),SO,). Note, that xylose condition was carried
out in Pinheiro et al. 2020, [1].

Cells were grown in 1-L bioreactors (Applikon Biotechnology, Delft, the Netherlands) in a
batch cultivation regime. pH was controlled by the addition of 2 mol/L KOH. Dissolved oxy-
gen was maintained not lower than 25% at 1-vvm airflow by regulating the stirring speed. CO2
and O2 outflow gas composition were measured using an online gas analyzer (BlueSens gas
sensor GmbH, Herten, Germany). Cell turbidity was monitored on-line using Bug Lab
BE3000 Biomass Monitor (Bug Lab, Concord, CA, United States) at 1300 nm and off-line
using UV/Vis spectrophotometer at 600 nm (U-1800, Hitachi High-Tech Science, Tokyo,
Japan). Data collection and processing was performed with BioXpert V2 software v2.95
(Applikon Biotechnology, Delft, the Netherlands).

For dry cell weight measurement, samples were collected every 6 hours during the exponen-
tial growth phase and every 24 hours during the nitrogen limitation phase. For other analyses,
samples were collected every 3 hours during the exponential growth phase and every 24 or 48
hours during the nitrogen limitation phase.

For extracellular metabolites, lipidomics and protein content analyses, samples were taken
from bioreactors to 2-mL tubes, centrifuged for 30 s at 4°C and 18000xg. The supernatant was
stored at -20°C for extracellular metabolite analyses. Cell pellets were snap-frozen in liquid
nitrogen and stored at -80°C for further analyses.
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Analytical methods

For dry cell weight (DCW) measurement, culture samples were taken from bioreactors to
2-mL tubes, passed through a 0.3 pm filter, dried and analyzed by gravimetric method. Bio-
mass optical density data were calibrated by gravimetric cell mass measurements. For extracel-
lular metabolites measurements, high-performance liquid chromatography (HPLC)
separations were performed with Shimadzu instruments (LC-2030C Plus, Shimadzu, Kyoto,
Japan) equipped with a refractive index detector (RID-20A, Shimadzu, Kyoto, Japan). Glucose,
xylose, organic acids and glycerol concentrations were measured using a Rezex ROA Organic
Acid column (Phenomenex, Torrance, United States). Separations were performed at 45°C
and the mobile phase for isocratic elution was 5 mmol/L H,SO,. The flow rate was 0.6 mL/
min. Stereoselective HPLC analysis of arabinitol isomers was done using a Chiralpak column
(Daicel Technologies, Japan) and the mobile phase for isocratic elution was a mixture of hex-
ane and ethanol (70:30, v/v) at 20°C; the flow was 0.3 mL/min. Chiralpak column of arabinitol
standards gave different retention times for each enantiomer (D and L) (S18 Fig). Yields and
specific consumption and production rates represent exp and Nlim phases separately, not
cumulatively.

For intracellular total protein quantification, cell pellets were thawed on ice and resus-
pended in 0.9% (m/v) NaCl solution to a concentration of 1 g/L. Then 600 ug of biomass was
mixed with a commercially available protein extraction solution (Y-PER, Thermo Fisher) in a
2-mL tube and incubated at 30°C for 45 minutes. After incubation, samples were transferred
to screw cap 2-mL tubes with glass beads. Cell lysis was performed using a FastPrep-24 device
for 4 cycles (4 m/s for 20 s) with a 5 min interval after each cycle. After cell lysis, the tubes were
centrifuged at 14800 rpm for 10 min at 4°C. Supernatant was collected to a new 2-mL tube and
the leftover biomass sample was subjected to a repeated extraction cycle (without 45 min incu-
bation interval) until no proteome was detected in supernatant. Before quantification, all frac-
tions of supernatant were combined. Proteome was quantified using a commercially available
colorimetric assay kit (Micro BCA Protein Assay Kit, Thermo Fisher Scientific, Waltham, MA,
United States). Protein concentration was determined using the calibration curve of bovine
serum albumin (BSA) standard of linear range dilutions from 0.5 to 200 ug/mL. Assay was per-
formed in triplicate for each sample. Samples chosen for analysis corresponded to 17 and 57 h
in glucose, 48 and 72 h in xylose, and 26 and 44 h in acetate. Assay results represent cumulative
proteome during each growth phase of yeast.

Lipidomics

To quantify lipids and determine their fatty acid composition, quantitative gas chromatogra-
phy-mass spectrometry (GC-MS) analysis with the internal standard method was used, similar
as described in Tammekivi et al. 2019, [54]. Before analysis, cell pellets were lyophilized and
derivatized by using acid-catalyzed methylation. This derivatization procedure produces meth-
ylated fatty acids from both free and bonded fatty acids. The quantitative analysis and derivati-
zation procedure of the TAGs and free fatty acids was based on Tammekivi et al. 2021, [55].
From the lyophilized cells, 10-12 mg of was weighed into a 15 mL glass vial. An analytical bal-
ance (Precisa, Dietikon, Switzerland, resolution of 0.01 mg) was used to weigh all components
that influence the quantitative analysis (samples, solvents, internal standard). To the cells, 2
mL of MeOH (>99.9%, Honeywell, Charlotte, NC, USA) was added and the vial was sonicated
for 15 min. Then, 0.4 mL of conc. H,SO, (98%, VWR Chemicals, Radnor, PA, USA) was care-
fully added to the solution and the derivatization mixture was heated for 3 h at 80°C. After, the
mixture was extracted 3 x 2 mL with hexane (>97.0%, Honeywell) and the extracts were
pipetted through a layer of K,CO3 (99.5%, Reakhim) on top of a glass wool (Supelco,
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Bellefonte, PA, United States) layer. The combined extracts were evaporated to dryness and
the residue was redissolved in 2 mL of toluene (>99.9%, Honeywell). Depending on the
expected fatty acid concentration, toluene and internal standard (hexadecane, >99%, Honey-
well) were added so that the results would stay in the range of the calibration curve.

The solutions containing the fatty acid methyl esters and internal standard were analyzed
with an Agilent (Santa Clara, CA, USA) 7890A GC connected to an Agilent 5975C inert XL
mass spectrometric detector (MSD) with a triple-axis detector and an Agilent G4513A auto-
sampler. The column was an Agilent DB-225MS capillary column (30 m x 0.25 mm diameter,
0.25 pm film thickness) with a (50%-cyanopropylphenyl)-methylpolysiloxane stationary
phase. The temperatures of the mass spectrometer transfer line and ion source were 280°C and
230°C, respectively. The temperature of the inlet was 300°C, injection volume 0.5 pL, and split-
less mode was used, where the split was opened after 2 min. The oven’s temperature program
was the following: isothermal for 2 min at 80°C, increased 20°C/min to 200°C, isothermal for
4 min, increased 5°C/min to 220°C, isothermal for 5 min, increased 10°C/min to 230°C, iso-
thermal for 12 min. The total run time was 34 min. Electron ionization (EI) with 70 eV was
used and the solvent delay was 5.6 min. Helium 6.0 was used as the carrier gas (flow rate 1.5
mL/min). Qualitative analysis was performed in the scan mode (mass range of 27-400 m/z)
and quantitative analysis was performed in the selected ion monitoring (SIM) mode, which
were both measured during the same GC-MS run. For data analysis, Agilent MSD ChemSta-
tion and NIST Mass Spectral Library Search 2.0 were used.

Commercial standard mixture of fatty acid methyl esters (FAME, C8-C24, Supelco) was
used to confirm the identity (based on retention times, in addition to the mass spectral com-
parison) and to quantify the fatty acids. Seven calibration solutions were made from the
FAME mixture in toluene and the same internal standard (hexadecane) was added. All calibra-
tion solutions were measured in random order in the same GC-MS sequence with the deriva-
tized sample solutions. For each methylated fatty acid, a calibration curve was constructed
based on the data obtained from the GC-MS analysis of the calibration solutions-Sp/Sys vs.
Cap/Cis—where S represents the peak area, C the concentration, AD the derivatized fatty acid,
and IS the internal standard. Knowing the Sop/S;s and Cjs for the sample solution, if was possi-
ble the calculate the derivatized fatty acid concentration (C,p). Finally, the obtained value was
recalculated to represent the concentrations of particular fatty acids or homotriglycerides. Also
the derivatization efficiency (for more information see Tammekivi et al. 2019, [51]) was taken
into account by applying the same derivatization procedure and quantitative analysis for the
analysis of five fatty acid standards (C16:0, C18:0, C18:1, C18:2 and C18:3) and their corre-
sponding TAG standards. The obtained yield (% from the weighed quantity of the correspond-
ing standard) was used to correct the result of the sample analysis. The sum of the quantified
TAGs was presented as the total lipid content. Samples chosen for analysis corresponded to 24,
52 and 100 h in glucose, 48 and 96 h in xylose, and 39 and 84 h in acetate. Analysis results rep-
resent cumulative lipidome during each growth phase of the yeast.

Experimental procedure for absolute proteomics

Absolute proteome quantification was performed using a nanoscale liquid chromatography
with tandem mass spectrometry (Nano-LC/MS/MS), similar as described in Sanchez et al.
2021, [26]. Experimental procedure for cell lysis and sample preparation was done as described
in the same study. Briefly, cell pellets were lysed using a pH 8.0 buffer (6 M guanidine HCI,

100 mM Tris-HCI, 20 mM dithiothreitol) and homogenized using the FastPrep-24 device (2x
at 4 m/s for 30 s). After centrifugation and overnight precipitation (10% trichloroacetic acid, at
4°C), protein concentration was measured as described above in the total protein content
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section. For absolute quantification, proteome samples were mixed heavy-labeled R. toruloides
grown in previously described minimal medium supplemented with heavy 15N, 13C-lysine
(Silantes, Munich, Germany), which was used as an internal standard [1]. Further sample
preparation and Nano-LC/MS/MS analysis was similar to previous descriptions [26]. Samples
chosen for analysis corresponded to 17 and 57 h in glucose, 48 and 72 h in xylose, and 26 and
44 h in acetate, same as in the total proteome analysis.

Proteomics data analysis

The raw data obtained from the Nano-LC/MS/MS analysis was processed using MaxQuant
v1.6.1.0 software package [56] with similar settings as described in Sanchez et al. 2021, [26].
Data search was performed against the Uniprot (www.uniprot.org) R. toruloides NP11 refer-
ence proteome database [10]. Raw data quantification was similar to previous descriptions,
except that the MS intensities were normalized with the average internal standard abundance
(reverse Ratio H/L normalized). MS intensities were calculated from the internal standard
abundance using the number of theoretically observable peptides (iBAQ, intensity Based
Absolute Quantification; iBAQ H) feature in MaxQuant, the reverse Ratio H/L normalized of
the sample, and reverse Ratio H/L. The resulting MS intensities were adjusted for 80% recov-
ery of the sample injected. Finally, absolute protein concentrations were derived from the nor-
malized sum of MS intensities assuming its proportionality to the measured total protein
content, also known as the total protein approach [26].

LC-MS/MS data have been deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE partner repository [57] with the dataset
identifier PXD037281. Processed quantitative data are presented in S1 Dataset. Duplicate
experiments were used in differential expression analysis. p-values were adjusted for multiple
comparisons using Benjamini-Hochberg (1995) method [58].

Enzyme-constrained model reconstruction

Enzyme-constrained genome-scale metabolic model of R. toruloides was generated using the
metabolic network rhto-GEM version 1.3.0 [15]. The workflow was based on a semi-automatic
algorithm of the GECKO toolbox version 2.0.2 [17] operating on MATLAB (The MathWorks
Inc., Natick, MA, United States). Model development was tracked on a dedicated Github
repository: https://github.com/alinarekena/ecRhtoGEM/.

Firstly, functions addMets, addGenesRaven and addRxns from RAVEN [59] were used to
add the alternative xylose assimilation pathway to rhto-GEM, as provided in ecRhtoGEM/
edit_rhtoGEM. Next, pipelines enhanceGEM and generate_protModels from the GECKO
Toolbox were used to generate ec-models, as provided in ecRhtoGEM/
reconstruct_ecRhtoGEM.

During the enhanceGEM pipeline, enzyme kinetic parameters were relaxed to overcome
model over constraint using the manualModifications function from the GECKO Toolbox.
The enzymes subject to manual k., value curation were identified by running enhanceGEM
pipeline initially with the physiology data of the xylose condition, as provided in ecRhtoGEM/
customGECKO/getModelParameters. The relative_proteomics.txt and uniprot.tab input data
were used to match enzymes with the model and retrieve their k., values from the BRENDA
database. The data for uniprot.tab were downloaded from Uniprot.org with R. toruloides strain
NP11 as query, while relative_proteomics.txt contained average protein abundances of
enzymes detected in our proteomics analysis (in mmol/gDCW). The getModelParameters
function was used to ensure that the newly generated ec-model was constrained with experi-
mental data. The GECKO Toolbox automatically performed the initial sensitivity analysis on
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the objective function (ie. maximize cell growth) with respect to the individual k., values by
identifying the top limiting value and by iteratively replacing it with the maximum value avail-
able in BRENDA. According to the reported information, we adjusted k., values identified as
limiting to reasonably higher values found in literature (for a detailed description see ecRhto-
GEM/manualModifications). In the next step, we used the topUsedEnzymes function from
GECKO Toolbox to calculate the top ten enzyme usages in a mass-wise way (data not pro-
vided). Similarly as in the previous step, ke, values of enzymes identified among top used in
each condition were increased to reasonably higher values referenced in the literature. In the
script the procedure was named round A. Later, in so called round B, the topUsedEnzymes
function was applied to the same conditions again and k., values were modified until enzyme
usage represented less than 1% of total protein pool, as provided in ecRhtoGEM/manualModi-
fications. The final list of modified k., values included 27 enzymes, as summarized in S6
Table. As automatic ke, values were derived from studies that involved not the same organism
and substrate, their values were often very low. For example, the k., value of fructose-bispho-
sphatase was increased from 0.002 s™" to 127 s™', on the basis of specific enzyme activity for the
same EC number.

During the generate_protModels pipeline, growth- and non-growth-associated energy
requirements were fit using measured substrate uptake and gas rates from batch cultivations of
R. toruloides obtained in this study, as provided in ecRhtoGEM/customGECKO/fermentation-
Data. They were set from 124.4 to 140.0 mmol/gDCW and from 0 to 3.65 mmol/(gDCW/h).
Coefficients in oxidative phosphorylation from rhto-GEM were not changed. Polymerization
costs from the study in S. cerevisiae [60] were used, similarly as in rhto-GEM. Average enzyme
saturation factor (sigma) was fit to physiological parameters (ecRhtoGEM/results/enhance-
GEM_pipeline/sigma), and set at 0.35 in ecRhtoGEM/customGECKO/getModelParameters.
Biomass composition was modified from rhto-GEM to include R. toruloides CCT 7815 protein
content, lipid content and acyl chain profiles, as provided in ecRhtoGEM/customGECKO and
ecRhtoGEM/data, respectively. The scaleLipidProtein and scaleLipidsRhto functions from
GECKO Toolbox and SLIMEr [61] were modified for the generate_protModels pipeline. To
avoid the model to over constrain, automatic flexibilization was performed on concentrations
of 7 (XNlim) to 25 (Gexp) enzymes, as listed in S6 Table (the old and new values are available
at ecRhtoGEM/results/generate_prot_Models_pipeline/modifiedEnzymes.txt). An alternative
approach to calculate the abundance of those enzymes for which no enzyme level had been
measured was used as additional modification in addition to previously described modifica-
tions in the pipeline to handle the ow protein levels observed in Nlim conditions. In this
approach, we directly subtracted the measured enzyme concentration (Pmeasured) from the
total enzyme concentration (enzymeConc) to obtain the unmeasured enzyme concentration
(PpoolMass). Modifications to original approach, by which GECKO adjusts for the unmea-
sured enzyme concentration, are available from generate_protModels and constrainEnzymes
functions at ‘customGECKO’ folder. These included sample specific f-factor calculation was
moved before filtering proteomics data (generate_protModels). This ensured higher coverage,
while not largely affecting f calculation. Total protein content (Ptot) calculation was rescaled
by adding standard deviation and flexibilization because of too low measurement. Then f,
which was calculated in the beginning of generate_protModels, and rescaled updated Ptot were
used to calculate expected total enzyme concentration (enzymeConc), as provided in constrai-
nEnzymes. This ensured higher coverage, likely critical in low total protein content biomass
(in case of all Nlim phases). Other updates included rescaling of enzyme usage to prevent very
low fluxes, as provided in generate_protModels.
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Model calculations

Flux balance analysis was performed with the RAVEN toolbox using Gurobi solver (Gurobi
Optimization Inc., Houston, Texas, United States). Flux variability was estimated with random
sampling of the solution space with 2000 sampling iterations for each condition (ie., ec-
model). For each sample, a random set of three reactions was given random weights and the
sum of these were parsimoniously maximized to explore the constraint solution space [32],
considering 1% variability from maximal growth rate and substrate uptake rate, 10% variability
from predicted carbon dioxide production and oxygen consumption rate, 10% variability
from measured by-product rates, 10% variability from protein pool, and 1% variability from
NGAM, as specified in analyze_ecRhtoGEM. In glucose condition, simulated values were used
to constrain gas exchange (carbon dioxide and oxygen) due to measurement problems in
experimental values. In xylose condition, measured values were used to constrain the produc-
tion of by-products xylitol and D-arabinitol. To allow the model to use either traditional or
alternative xylose assimilation pathway, xylulokinase (XK) was not blocked, but eventually
constrained with enzyme constraints from the protein pool. In acetate condition, measured
values were used to constrain the production of citrate. Flux value was calculated as a median
of 2000 sampling iterations. Flux variability was represented as SD divided by flux, multiplied
by 100. Finally, fluxes were converted to base GEM formalism using mapRxnsToOriginal func-
tion from Domenzain et al. 2022 [30]. For the analysis, fluxes were normalized by dividing
absolute flux with the specific substrate uptake rate to ensure the comparability among differ-
ent conditions. Additional data analysis was performed on ATP, NADPH and NADH turn-
over extracted using the getMetProduction function from [7]. Yield was calculated as turnover
(sum of fluxes) divided by the specific rate of substrate uptake. Apparent catalytic activities

(Kapp» 87 Were calculated according to Eq (2).

_ flux
w="F

app>
(2)

Where flux refers to median flux, mmol/gDCW/h, obtained from 2000 iterations of random
sampling of the solution space [32] and E refers to mean protein concentration (n = 2), mmol/
gDCW.

Supporting information

S1 Table. Physiological characterization parameters in R. toruloides CCT 7815 batch culti-
vations on three different carbon substrates—glucose (G) (63 g/L, C/N 68.6), xylose (X)
(70g/L, C/N 80) and acetate (A) (20 g/L, C/N 80) at exponential growth (exp) and nitrogen
limitation (Nlim) phases.

(XLSX)

S2 Table. Gene and metabolite names of R. toruloides selected for annotation in Figs 2-4 in
main text.
(XLSX)

$3 Table. Using absolute proteomic data to calculate translation rate in R. toruloides batch
cultivations on three different carbon substrates-glucose (G), xylose (X) and acetate (A)—
during exponential growth (exp) and nitrogen limitation (Nlim) phases.

(XLSX)

S4 Table. Proteins whose concentration and the k., value were integrated in the enzyme-
constrained models of R. toruloides representing batch cultivations on three different car-
bon substrates—glucose (G), xylose (X) and acetate (A)—during exponential growth (exp)
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and nitrogen limitation (Nlim) phases. Proteins required EC numbers to allow the algorithm
to query their ke, values, therefore the existing and new EC numbers were provided to the
input file (uniprot.tab) for the GECKO algorithm (columns J-K). In case of multiple EC num-
bers found for the same gene in rhto-GEM, EC numbers were combined. For further details
on how the algorithm selected the k., values based on their EC numbers, see [17].

(XLSX)

S5 Table. Enzymatic reactions constrained with enzyme abundances in enzyme-con-
strained genome-scale models of R. toruloides for batch cultivations on three different car-
bon substrates-glucose (G), xylose (X) and acetate (A)—during exponential growth (exp)
and nitrogen limitation (Nlim) phases.

(XLSX)

$6 Table. Enzymes with flexibilized concentrations and/or their k., values for the enzyme-
constrained genome-scale metabolic models of R. toruloides for batch cultivations on three
different carbon substrates-glucose (G), xylose (X) and acetate (A)—during exponential
growth (exp) and nitrogen limitation (Nlim) phases. Flexibilization of the measured enzyme
abundances was performed automatically by the algorithm in the GECKO Toolbox. Flexibili-
zation of ke, values was performed manually by changing the k,, values retrieved automati-
cally from BRENDA, based on suggestions by the algorithm. Detailed information on
flexibilized protein concentrations at ecRhtoGEM repository /results/generate_protModel-
s_pipeline. Detailed information on modified k., values at ecRhtoGEM repository /custom-
GECKO/manualModifications.

(XLSX)

S1 Dataset. MS intensities (arbitrary unit) and absolute protein concentrations (ug/g_pro-
tein) in R. toruloides batch cultivations on three different carbon substrates-glucose (G),
xylose (X) and acetate (A)-during exponential growth (exp) and nitrogen limitation
(Nlim) phases. Absolute concentrations are calculated using total protein amount (TPA)
quantification method of duplicate conditions. Normalization refers to 80% recovery of the
sample injected applied to the sum of intensities.

(XLSX)

$2 Dataset. Absolute protein abundances (ug/g_protein) in R. toruloides batch cultivations
on three different carbon substrates-glucose (G), xylose (X) and acetate (A)-during expo-
nential growth (exp) and nitrogen limitation (Nlim) phases. Concentrations are calculated
using total protein amount (TPA) quantification method. Pairs having adjusted p-value < 0.05
and log2 fold change (10g2FC) > |1| of average of duplicate conditions were considered signifi-
cantly differentially expressed. P value was adjusted for multiple comparisons (n = 3100) using
Benjamini & Hochberg method [58]. Protein abundances were filtered by excluding instances,
where standard deviation exceeds mean value of two replicates. Normalization refers to 80%
recovery of the sample injected applied to the sum of intensities.

(XLSX)

$3 Dataset. Enzyme turnover numbers (K, s™") and apparent catalytic activities (k,pp s
of R. toruloides in batch cultivations on three different carbon sources-glucose (G), xylose
(X) and acetate (A)—during exponential growth (exp) and nitrogen limitation (Nlim)
phases. k., values were retrieved from BRENDA using the GECKO Toolbox [17]. kyp, Values
were obtained by dividing flux, mmol/gDCW/h, by protein abundance, mmol/gDCW. Flux
refers to median from 2000 iterations of random sampling of the solution space [32].
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Normalization of protein abundance refers to 80% recovery of sample injected.
(XLSX)

S4 Dataset. Flux predictions in R. toruloides batch cultivations on three different carbon
substrates—glucose (G), xylose (X) and acetate (A) at exponential growth (exp) and nitro-
gen limitation (Nlim) phases. Fluxes are calculated using random sampling of the solution
space with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-
scale models. Fluxes represent median values and are normalized by dividing flux with specific
substrate uptake rate (representing % of carbon distribution). Fluxes are represented in non-ec
model (base GEM) annotation by merging forward and reverse fluxes created by the GECKO
formalism. Flux variability is SD divided by the flux value, multiplied by 100. Flux changes
were compared using log2 fold change (log2FC).

(XLSX)

S5 Dataset. Flux predictions with acetate kinase added (t_0886) (phosphate transacetylase
removed, t_0082) in R. toruloides batch cultivations on three different carbon substrates-
glucose (G), xylose (X) and acetate (A) at exponential growth (exp) and nitrogen limitation
(Nlim) phases. Fluxes are calculated using random sampling of the solution space with 2000
iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes
represent median values and are normalized by dividing flux with specific substrate uptake
rate (representing % of carbon distribution). Fluxes are represented in non-ec model (base
GEM) annotation by merging forward and reverse fluxes created by the GECKO formalism.
Flux variability refers to SD divided by the flux value, multiplied by 100.

(XLSX)

S6 Dataset. Flux predictions with blocked phosphoketolase (t_0081) in R. toruloides batch
cultivations on three different carbon substrates-glucose (G), xylose (X) and acetate (A) at
exponential growth (exp) and nitrogen limitation (Nlim) phases. Fluxes are calculated
using random sampling of the solution space with 2000 iterations (mmol/gDCW/h) on R. tor-
uloides enzyme-constrained genome-scale models. Fluxes represent median values and are
normalized by dividing flux with specific substrate uptake rate (representing % of carbon dis-
tribution). Fluxes are represented in non-ec model (base GEM) annotation by merging for-
ward and reverse fluxes created by the GECKO formalism. Flux variability refers to SD divided
by the flux value, multiplied by 100.

(XLSX)

S7 Dataset. Flux predictions with NAD/NADH as cofactor for DAD-2/LXR (t_0884) in R.
toruloides batch cultivations on xylose- (X) based chemically defined medium at exponen-
tial growth (exp) and nitrogen limitation (Nlim) phases. Fluxes are calculated using random
sampling of the solution space with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-
constrained genome-scale models. Fluxes represent median values and are normalized by
dividing flux with specific substrate uptake rate (representing % of carbon distribution). Fluxes
are represented in non-ec model (base GEM) annotation by merging forward and reverse
fluxes created by the GECKO formalism. Flux variability refers to SD divided by the flux value,
multiplied by 100.

(XLSX)

S1 Fig. Growth curves of batch cultivation of R. toruloides CCT 7815 on three different car-
bon substrates at nitrogen limitation. (A) glucose (63 g/L, C/N 68.6), (B) xylose (70g/L, C/N
80) and (C) acetate (20 g/L, C/N 80). Arrows in red are used to denote sampling points for pro-
teomics and protein content measurements. Average of duplicate experiments with SD in
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extracellular metabolites concentration (g/L) and intracellular lipid content (g_lipid/gDCW) is
illustrated. Curves represent a single measurement in bioreactor 2 (R2) in CO, (%), specific
growth rate (h™") and biomass concentration (g/L), while for the rate calculations used for
modelling duplicate conditions were used.

(TIF)

S2 Fig. D-arabinitol detection in supernatant obtained from R. toruloides batch cultiva-
tions in xylose-based chemically defined medium (70 g/L). Figures represent HPLC profiles
of D-arabinitol during nitrogen limitation phase on xylose (XNlim) performed at 20°C. Col-
umn: Chiralpak; eluent: hexane-ethanol (70,30, v/v). Flow rate 0.3 mL/min; detection: refrac-
tive index.

(TIF)

S3 Fig. Venn diagrams of significantly differentially expressed proteins in R. toruloides
during batch cultivations on three different carbon substrates-glucose (63 g/L), xylose (70
g/L) and acetate (20 g/L)-under nitrogen limitation conditions. (A) Comparison between
exponential growth (exp) and nitrogen limitation (Nlim) phase. (B) Comparison among sub-
strates during exp phase. Comparison was made using pg/g of total protein. Pairs having
adjusted p-value < 0.05 and log2 fold change > |1| were considered significantly differentially
expressed. P value was adjusted for multiple comparisons (n = 3100) according to Benjamini
& Hochberg (1995).

(TIF)

$4 Fig. Proteome integration into enzyme-constrained models for R. foruloides in batch
cultivations on three different carbon substrates-glucose (G), xylose (X) and acetate (A)—
during exponential growth (exp) and nitrogen limitation (Nlim) phases. (A) Protein count
as searched against the reference proteome database of R. toruloides strain NP11. (B) Mass-
wise coverage of proteome in models (g_protein/g DCW).

(TIF)

S5 Fig. Apparent enzyme catalytic activities, kopp, 1/s, of R. toruloides in batch cultivations
on three different carbon sources-glucose (G), xylose (X) and acetate (A)—during expo-
nential growth (exp) and nitrogen limitation (Nlim) phases. k., calculated using fluxes
from flux balance analysis on enzyme-constrained models of R. foruloides and measured
enzyme absolute abundances. Frequency of k,,;, values represented in log10 scale.

(TIF)

$6 Fig. Flux predictions in R. toruloides batch cultivations on three different carbon sub-
strates—glucose (G), xylose (X) and acetate (A) at exponential growth (exp) and nitrogen
limitation (Nlim) phases. Fluxes are calculated using random sampling of the solution space
with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale
models. Fluxes represent median values and are normalized by dividing flux with specific sub-
strate uptake rate (representing % of carbon distribution). PPP: pentose phosphate pathway;
TCA cycle: tricarboxylic acid cycle. Gene names and corresponding metabolic reaction IDs are
included in S2 Table.

(TIF)

S7 Fig. Fluxes carrying NADPH in R. toruloides on glucose- (G) based chemically defined
medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/
gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-
tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes
represent median values from flux sampling. Negative fluxes denote metabolite consumption,
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positive fluxes denote metabolite production. Percentage (%) denotes the flux divided by
NADPH turnover (sum of absolute fluxes involving NADPH). Gene names and correspond-
ing metabolic reaction IDs are included in S2 Table.

(TIF)

S8 Fig. Predicted ATP turnover (mmol/gDCW/h) (A) and ATP yield (mmol_ATP/
mmol_substrate) (B) in R. toruloides on three different carbon substrates-glucose (G),
xylose (X) and acetate (A)-in a chemically defined medium at exponential growth (exp)
and nitrogen limitation (Nlim) phases. ATP turnover is calculated as a sum of fluxes involv-
ing ATP. ATP yield is calculated as turnover divided by specific rate of substrate uptake. Fluxes
are predicted using random sampling of the solution space with 2000 iterations (mmol/
gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Median flux values are
used in calculations.

(TIF)

S9 Fig. Predicted NADH turnover (mmol/gDCW/h) (A) and NADH yield (mmol_NADH/
mmol_substrate) (B) in R. toruloides on three different carbon substrates—glucose (G),
xylose (X) and acetate (A)-in a chemically defined medium at exponential growth (exp)
and nitrogen limitation (Nlim) phases. NADH turnover is calculated as sum of absolute
fluxes involving NADH. NADH yield is calculated as turnover divided by specific rate of sub-
strate uptake. Fluxes are predicted using random sampling of the solution space with 2000 iter-
ations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Median
flux values are used in calculations.

(TIF)

$10 Fig. Average absolute enzyme abundances (ug/g_protein) in R. toruloides batch culti-
vations on three different carbon substrates-glucose (G), xylose (X) and acetate (A)-dur-
ing exponential growth (exp) and nitrogen limitation (Nlim) phases. Absolute enzyme
concentrations are calculated using total protein amount (TPA) quantification method.
Results of duplicate experiments with SD are represented. PPP: pentose phosphate pathway;
TCA cycle: tricarboxylic acid cycle. Full names of gene abbreviations are included in S2 Table.
(TIF)

S$11 Fig. Apparent enzyme catalytic activities, k,,, s’L, of R. toruloides in batch cultivations
on three different carbon sources-glucose (G), xylose (X) and acetate (A)—during expo-
nential growth (exp) and nitrogen limitation (Nlim) phases. k,j,, calculated using fluxes
from flux balance analysis on enzyme-constrained genome-scale models of R. toruloides and
measured enzyme absolute abundances. PPP: pentose phosphate pathway; TCA cycle: tricar-
boxylic acid cycle. Full names of gene abbreviations are included in S2 Table.

(TIF)

S12 Fig. Fluxes carrying NADPH in R. toruloides on xylose- (X) based chemically defined
medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/
gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-
tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes
represent median values from flux sampling. DAD-2/LXR is considered NADP-dependent.
Negative fluxes denote metabolite consumption, positive fluxes denote metabolite production.
Gene names and corresponding metabolic reaction IDs are included in S2 Table.

(TIF)

S13 Fig. Predicted NADPH turnover (mmol/gDCW/h) (A) and NADPH yield (mmol_-
NADPH/mmol_substrate) (B) in R. toruloides on three different carbon substrates—
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glucose (G), xylose (X) and acetate (A)-in a chemically defined medium at exponential
growth (exp) and nitrogen limitation (Nlim) phases. NADPH turnover is calculated as sum
of absolute fluxes involving NADPH. NADPH yield is calculated as turnover divided by spe-
cific rate of substrate uptake. Fluxes are predicted using random sampling of the solution
space with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-
scale models. Median flux values are used in calculations.

(TIF)

S14 Fig. Fluxes carrying NADH in R. toruloides on xylose- (X) based chemically defined
medium at exponential (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/gDCW/
h). Fluxes are calculated using random sampling of the solution space with 2000 iterations
(mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes represent
median values from flux sampling. DAD-2/LXR is considered NADP-dependent. Negative
flux denotes metabolite consumption, positive flux denotes metabolite production. Letters [m]
and [c] denote compartments of cytoplasm and mitochondria. Gene names and correspond-
ing metabolic reaction IDs are included in S2 Table.

(TIF)

S15 Fig. Fluxes carrying ATP in R. toruloides on acetate-(A) based chemically-defined
medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phases (mmol/
gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-
tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes
represent median values from flux sampling. Negative flux denotes metabolite consumption,
positive flux denotes metabolite production. Letters [m] and [c] denote compartments of cyto-
plasm and mitochondria. Gene names and corresponding metabolic reaction IDs are included
in S2 Table.

(TIF)

$16 Fig. Fluxes carrying NADH in R. toruloides on acetate- (A) based chemically defined
medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/
gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-
tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes
represent median values from flux sampling. Negative flux denotes metabolite consumption,
positive flux denotes metabolite production. Letters [m] and [c] denote compartments of cyto-
plasm and mitochondria. Gene names and corresponding metabolic reaction IDs are included
in S2 Table.

(TIF)

$17 Fig. Fluxes carrying NADPH in R. toruloides on acetate- (A) based chemically defined
medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/
gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-
tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes
represent median values from flux sampling. Negative flux denotes metabolite consumption,
positive flux denotes metabolite production. Gene names and corresponding metabolic reac-
tion IDs are included in S2 Table.

(TIF)

$18 Fig. D-arabinitol enantiomer detection using HPLC analysis. Figure represents reten-
tion times for arabinitol separation in Chiralpak column, at 20°C, hexane-ethanol (70:30, v/v)
mixture.

(TIF)
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Abstract

Rhodotorula toruloides is an oleaginous yeast recognized for its robustness and the production of high content of neutral
lipids. Early biochemical studies have linked ATP citrate lyase (ACL), phosphoketolase (PK), and cytosolic malic enzyme
(cMAE) with de novo lipid synthesis. In this study, we discovered that upon a CRISPR/Cas9-mediated knockout of the ACL
gene, lipid content in R. toruloides IFO0880 decreased from 50 to 9% of its dry cell weight (DCW) in glucose medium and
caused severe growth defects (reduced specific growth rate, changes in cell morphology). In xylose medium, the lipid content
decreased from 43 to 38% of DCW. However, when grown on acetate as the sole carbon source, the lipid content decreased
from 45 to 20% of DCW. Significant growth defects as a result of ACL knockout were observed on all substrates. In contrast,
PK knockout resulted in no change in growth or lipid synthesis. Knocking out cMAE gene resulted in lipid increase of 2.9%
of DCW and 23% increase in specific growth rate on glucose. In xylose or acetate medium, no change in lipid production as
aresult of cMAE gene knockout was observed. These results demonstrated that ACL plays a crucial role in lipid synthesis
in R. toruloides IFO0880, as opposed to PK pathway or cMAE, whose presence in some conditions even disfavors lipid
production. These results provided valuable information for future metabolic engineering of R. toruloides.

Key points

o ACL is crucial for the fatty acid synthesis and growth in R. toruloides IFO0880.
e Lipid production and cell growth is are unchanged as a result of PK knockout.
e Cytosolic malic enzyme does not play a significant role in lipogenesis.

Keywords Lipid synthesis - ATP citrate lyase - Phosphoketolase - Malic enzyme - Rhodotorula toruloides

Introduction yeasts (Chattopadhyay et al. 2021). Biotechnological appli-

cations and prospects of R. toruloides as a cell factory are

Oleaginous microorganisms are attractive for the produc-
tion of biofuels and bio-based oleochemicals from cheap
raw materials (Probst et al. 2016; Dourou et al. 2018; Saini
et al. 2020; Chawla et al. 2022). Red oleaginous yeast Rho-
dotorula toruloides (R. toruloides) is a Basidiomycota
fungi that stands out for high lipid content, cell densities,
and robustness in consuming hemicellulosic hydrolyzates
(Ageitos et al. 2011; Monteiro de Oliveira et al. 2021; Oso-
rio-Gonzalez et al. 2022b, 2022a); moreover, it is relatively
mature in genetic engineering tools compared to other red
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highly promising (Zhao et al. 2022; Yu and Shi 2023; Wu
et al. 2023; Sunder et al. 2024). Genomic, transcriptomic,
proteomics, and flux balance analyses have established a
basic understanding of metabolic pathways and gene func-
tions in R. foruloides (Zhu et al. 2012; Coradetti et al. 2018;
Dinh et al. 2019; Tiukova et al. 2019a, 2019b; Pinheiro
et al. 2020; Kim et al. 2021; Rekéna et al. 2023). Advanced
genetic engineering tools have been developed in R. toru-
loides and are being constantly improved. IFO0880 is the
best characterized haploid (mating type A2) strain natively
producing high titers of neutral lipids up to 8 g/L, reaching
lipid content up to 36% of the dry cell weight (DCW) (Zhang
et al. 2016b). It is genomically different from another hap-
loid strain NP11 (mating type Al), capable of accumulating
similar lipid titers, but significantly higher lipid content (up
to 54% of DCW) (Zhu et al. 2012; Zhang et al. 2016b, 2022).
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Successful targeted gene deletion with CRISPR has been
demonstrated in both IFO0880 and NP11 strains (Otoupal
et al. 2019; Jiao et al. 2019; Schultz et al. 2019). The
CRISPR/Cas9 offers a simplistic design for targeted (and
multiplexed) genome editing (Chattopadhyay et al. 2021).
The Cas9 enzyme introduces a double-stranded break in the
targeted loci. Precise targeting of the Cas9 endonuclease
can be achieved by changing a 20 nucleotide guide RNA
(gRNA) sequence (Jinek et al. 2012). Due to lack of plasmid
capable of replicating in R. toruloides to express CRISPR
constructs, existing CRISPR tools in the specie are based on
a chromosomal integration strategy—stable genome integra-
tion of Cas9 and gRNA expression cassette in the chromo-
some (Otoupal 2019). Several integration plasmids using
a selectable drug marker cassette that encodes antibiotic
resistance are available (Gong et al. 2024).

One of the most used strategies to enhance lipid produc-
tion in oleaginous microorganisms is by cultivating cells in
secondary nutrient limitation (Wang et al. 2018). An effec-
tive way to achieve it is by manipulating nitrogen availability
in the culture medium (high C/N ratio) (Papanikolaou and
Aggelis 2011; Lopes et al. 2020), but can also be done with
manipulating phosphate (Wu et al. 2010) or sulfur concen-
tration (Wu et al. 2011). The main reaction in biosynthesis
of fatty acids is carried out by the multi-enzymatic complex
of fatty acid synthetase (FAS) in the cytosol. FAS enzyme
complex assembles acetyl-CoA and malonyl-CoA into coen-
zyme A activated fatty acids, such as palmitic acid, using
the reducing power from NADPH (Eq. 1) (Tehlivets et al.
2007; Papanikolaou and Aggelis 2011). This is either fol-
lowed by elongation and desaturation by dedicated enzymes
in the endoplasmic reticulum or subsequently used for the
acylation of glycerol backbone to synthesize neutral lipids
(triacylglycerols, TAGs) (Tehlivets et al. 2007). Accordingly,
FAS requires constant supply of acetyl-CoA, malonyl-CoA,
and NADPH in cytosol (Beopoulos 2011).

AcetylCoA + 7 MalonylCoA
+ 14 NADPH — PalmitoylCoA + 7 CO,
+ 14 NADP* + 7 CoA + 6 H,0 )

Phosphoketolase (PK) (EC 4.1.2.9) is an enzyme pre-
sumed to be one of the candidates to increase acetyl-
CoA supply for de novo lipid synthesis. PK is a cytosolic
enzyme that cleaves xylulose 5-phosphate or fructose
6-phosphate of the pentose phosphate pathway (PPP) to
two-carbon compound acetyl-phosphate and glyceralde-
hyde 3-phosphate or erythrose 4-phosphate, respectively
(Eq. 2 and Eq. 3) (Evans and Ratledge 1984). While acetyl-
phosphate will be converted into acetate or acetyl-CoA,
the latter two compounds can be recycled via glycolysis
and the pentose phosphate pathway (PPP), respectively. On
glucose, the involvement of PK in the lipid synthesis was

@ Springer

generally not supported by early biochemical studies with
the wild type yeasts (Botham and Ratledge 1979; Boulton
and Ratledge 1981). On xylose, there was a strong correla-
tion between PK activity and higher biomass yields dem-
onstrated in wild type R. toruloides CBS14 and 14 other
yeasts (Evans and Ratledge 1984). Later, it was shown
that with overexpression, the native or heterologous PK
can enhance lipid production in various yeasts on hemi-
cellulosic carbon sources (Xu et al. 2016; Niehus et al.
2018; Donzella et al. 2019; Kamineni et al. 2021). Based
on stoichiometric genome-scale modeling, PPP has been
demonstrated as the main glycolytic pathway in R. foru-
loides, while PK playing a crucial role in converting xylu-
lose 5-phosphate into acetyl-phosphate and glyceralde-
hyde 3-phosphate (Lopes et al. 2020; Rekéna et al. 2023).
Omics data show that PK is abundant on glucose, xylose,
or acetate in mineral medium (Kim et al. 2021); further-
more, it was significantly upregulated on glucose during
lipid accumulation (p value 0.043) (Rekéna et al. 2023).
From the available genomic data, R. toruloides IFO0880
possesses a single PK gene, but is not clear whether the
conversion of acetyl-phosphate is catalyzed by phosphate
transacetylase, also known as phosphate acetyltransferase
(PTA) (EC 2.3.1.8) or acetate kinase (EC 2.7.2.1) (both
reversible) (Eq. 4 and Eq. 5) (Dinh et al. 2019; Tiukova
et al. 2019b). However, recently engineered NP11 strains
overexpressing non-native PTA from bacterial B. subtilis
demonstrated increased lipid production by up to 15%,
increased glucose consumption, and cell mass (Yang et al.
2018).

Fructose6P + P; — Erythrose4P + AcetylP + H,0

@)
Xylulose5SP + P; — Glyceraldehyde3P + AcetylP + H,O
(3)
AcetylP + CoA < AcetylCoA + P; 4)
AcetylP + ADP « Acetate + ATP 5)

In contrast, ATP citrate lyase (ACL) (EC 2.3.3.8) was
associated with lipid synthesis from the early biochemical
studies, as its presence correlated to high lipid content in
wild type yeasts (Boulton and Ratledge 1981). ACL is a
cytosolic enzyme that cleaves cytosolic citrate to acetyl-CoA
and oxaloacetate (OAA) (Eq. 6). According to the accepted
mechanism for lipid synthesis, ACL activity is associated
with the onset of nitrogen limitation that causes excess cit-
rate being exported from the mitochondria to cytosol and
used for lipid synthesis under nitrogen limitation (Botham
and Ratledge 1979; Boulton and Ratledge 1981). Omics data
show that ACL is abundant on glucose, xylose, and acetate
in various R. toruloides strains, in most of the cases reported
as upregulated on proteome level during lipid synthesis and
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being more abundant compared to PK (Tiukova et al. 2019a,
b; Kim et al. 2021; Rekéna et al. 2023). Also the metabolic
engineering studies have shown that ACL plays an impor-
tant role in lipid biosynthesis in Ascomycota yeasts (Liu
et al. 2013; Zhang et al. 2014; Sato et al. 2021). In R. toru-
loides, ACL is encoded by a single gene (Zhu et al. 2012),
while in ascomycetous yeasts and plants, it has two subu-
nits (Nowrousian et al. 2000; Fatland et al. 2002). Recently,
engineered IFO0880 strains overexpressing the ACL gene
demonstrated increased fatty alcohol titers (Schultz 2022,
Cao et al. 2022). Another possible route to cytosolic acetyl-
CoA synthesis from pyruvate is via pyruvate decarboxylase
(PDC)—acetaldehyde dehydrogenase—acetyl-CoA syn-
thetase (ACS) path. Previous proteomics studies showed
that the abundance of PDC and ACS was low compared
to PK and ACL (Rekéna et al. 2023) and downregulated
twofold during lipid accumulation (Tiukova et al. 2019a,
b); therefore, this pathway was not investigated in this study.

Citrate + CoA + ATP — AcetylCoA + Oxaloacetate + ADP + P, 6)

In line with the lipid synthesis mechanism, it was sug-
gested that ACL, FAS, and malic enzyme (MAE) (EC
1.1.1.40) could work together by forming a complex to
facilitate fatty acid synthesis (Ratledge 2004; Beopoulos
et al. 2011). Because ACL catalyzes the conversion of cit-
rate into acetyl-CoA and OAA, the latter can be transformed
into malate and further converted into pyruvate by MAE,
simultaneously reducing NADP(+) into NADPH (Eq. 7);
thus, MAE may also play an important role to supply of the
reducing power for fatty acid synthesis. Several metabolic
engineering studies confirmed the hypothesis of the role
of MAE in filamentous fungi, like Mucor circinelloides
(Wynn et al. 1997; Zhang et al. 2007), Mortierella alpina
(Wynn et al. 2001), and Aspergillus nidulans (Wynn and
Ratledge 1997), suggesting that malic enzyme was one of
the rate-limiting steps for fatty acid synthesis. However
in similar studies with the oleaginous ascomycetous yeast
Yarrowia lipolytica and basidiomycetous yeast Rhodoto-
rula glutinis, it did not perform the same way (Yoon et al.
1984; Zhang et al. 2013; Blazeck et al. 2014; Wasylenko
et al. 2015; Dulermo et al. 2015; Qiao et al. 2017; Zhu
et al. 2023). Namely, it resulted in a current understand-
ing that oleaginous yeasts are different from filamentous
fungi, and the primary sources of cytosolic NADPH are
glucose 6-phosphate dehydrogenase (G6PD, also known
as ZWF) and 6-phosphogluconate dehydrogenase of the
PPP, and isocitrate dehydrogenase (Chawla et al. 2022;
Sreeharsha and Mohan 2020; Yang et al. 2012; this study),
an alternative route being via cytosolic malic enzyme only
while growing on substrates that are not catabolized via
glycolytic pathways. Both ZWF and MAE are abundant
in R. toruloides in mineral medium on glucose, xylose,
or acetate, but the results of their differential expression

during lipid synthesis are inconclusive among the studies
(Tiukova et al. 2019a, b; Kim et al. 2021; Rekéna et al.
2023). The observed higher abundance of oxPPP enzymes
suggests their primary role in NADPH regeneration, but it
was not investigated further due to report on gene essenti-
ality from a previous study (Coradetti et al. 2018). Moreo-
ver, the deletion of MAE would tell if the other pathway
prevailed, as these are the two main candidate pathways
for the regeneration of NADPH in R. toruloides. It should
be noted that Y. lipolytica possesses only a mitochondrial
MAE (mMAE), while R. toruloides holds both cytosolic
and mitochondrial forms of MAE (Zhu et al. 2012; Cora-
detti et al. 2018). Engineered IFO0880 strains overexpress-
ing native cytosolic MAE (cMAE) enzyme demonstrated a
minor increase in lipid synthesis on glucose (Zhang et al.
2016a). A heterologous overexpression of MAE from Y.
lipolytica did not increase the expression of fatty alcohols
in R. toruloides IFO0880 (Schultz et al. 2022). The role and
cofactor dependency of the R. toruloides mMAE form still
remains unclear. nMAE was not investigated in this study.

(S)malate + NADP* — Pyruvate + CO, + NADPH
@)
Taken altogether, to clarify whether PK, ACL, and
cMAE contributes to the lipid biosynthesis in R. foruloides,
the latest CRISPR/Cas9 tool was used for a targeted sin-
gle gene knockout of PK, ACL, and cMAE in a wild type
IFO0880. Cell growth and lipid production in the knock-
out strains were examined. To understand the substrate-
dependent differences, the knockouts were characterized in
a chemically defined medium at nitrogen limitation (C/N
80) on glucose, xylose, and acetic acid as a sole carbon
sources. The study revealed very different physiological
responses between these genes and lipid synthesis, provid-
ing valuable insights in R. toruloides metabolism, building
understanding relevant for the future metabolic engineering.
ACL knockout strain demonstrated the most severe effect
on the growth and lipid production on all the characterized
substrates while APK and AcMAE strains demonstrated
less severe physiology differences in comparison to the wild
type strain. This is the first study of these gene knockouts
in R. toruloides.

Materials and methods
Strains, media, and conditions

Routine growth R. foruloides was performed in YPD
medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L.
glucose).

For selection or maintenance of transformants, 200 pg/
mL G418 (Gibco) was added to the YPD medium.

@ Springer
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Lipid content was measured in cells grown in a low-
nitrogen mineral medium. Basal medium contained 3.0 g/LL
KH,PO,, 0.5 g/ MgSO,-7H,0, 15 mg/L EDTA, 4.5 mg/L
ZnS0, 7H,0, 0.3 mg/L CoCl, 6H,0, 1 mg/L MnCl,*4H,0,
0.3 mg/L CuSO,:5H,0, 4.5 mg/L CaCl,-2H,0, 3 mg/L
FeSO,:7H,0, 0.4 mg/L Na,MoO,-2H,0, 1 mg/L H;BO;,
0.1 mg/L KI, 0.05 mg/L biotin, 1 mg/L calcium panto-
thenate, 1 mg/L nicotinic acid, 25 mg/L inositol, 1 mg/L
thiamine HCI, 1 mg/L pyridoxine HCI, and 0.2 mg/L para-
aminobenzoic acid (Verduyn et al. 1992). Basal medium was
supplemented with 20 g/L glucose (Roth), or 20 g/L xylose,
or 10 g/L acetate (Chempur) as a sole carbon source. Ammo-
nium sulfate (NH,),SO, was used as a nitrogen source to
obtain a C/N ratio of 80 (mol/mol); 0.55 g/L of (NH,),SO,
(Fisher Bioreagents) was added to the medium containing
glucose or xylose, and 0.275 g/L (NH,),SO, was added to
the medium containing acetate. For adjusting the media
containing glucose or xylose, 5.2 g/L K,HPO, (Roth) was
added (pH 5.8 to 8.0). The potassium phosphate buffer did
not sustain the pH with 10 g/L of acetate in the medium;
therefore, instead, it was adjusted to a starting pH 6 with
2 M KOH (Thermo Fisher Scientific).

Escherichia coli strain TOP10 (Thermo Fisher Scientific)
was used for plasmid assembly and routine cloning. The
strain and its derivatives were grown in Luria Broth (LB)
medium at 37 °C and 200 rpm with 50 pg/mL kanamycin.

Unless differently stated, all other reagents were pur-
chased from Sigma-Aldrich Co., St Louis, MO, USA.

DNA sequences

DNA sequences of R. foruloides IFO0880 strain were
obtained from MycoCosm database (R._toruloides v4.0)
(JGI) (Coradetti et al. 2018). Genes with accession num-
bers 9725 (ATP citrate lyase, ACL) and 13,382 (phospho-
ketolase, PK) were retrieved and used to design the guide
RNAs, as there were no other alternative genes with a simi-
lar sequence. Based on the annotation found from the two
existing genome-scale models, gene with accession number
12761 was retrieved and used to design gRNAs to target the
cytosolic, NADP-dependent malic enzyme (cMAE) (Tiuk-
ovaet al. 2019b; Kim et al. 2021). The single gRNAs target-
ing the first exon 1 of ORF of the target gene (exon 5 in case
of the ACL gene) were designed with the CCTop online tool
using Ganoderma lucidum as the reference genome (Stem-
mer et al. 2015). 23-nucleotide target sequence ending with
NGG (Streptococcus pyogenes) and set custom overhangs
(forward strand 5’ CGCA and reverse strand 5' AAAC) was
selected based on the CRISPRater efficacy score (Labuhn
et al. 2018) above 74 (high efficacy).

Oligonucleotides without the NGG 3-mer (20-nucleotide
target sequence +overhangs) were synthesized by IDT (Inte-
grated DNA Technologies, Leuven, the Netherlands).
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Guide RNA cloning

The plasmid pPBO.202 for CRISPR/Cas9-mediated genome
editing of R. toruloides IFO0880 was obtained from the JBEI
Registry https://registry.jbei.org/ (part ID JBEI223791).
pPB0.202 contained constructs for a functional expres-
sion of the CRISPR/Cas9 system in R. toruloides. They
were optimized by Otoupal and colleagues (Otoupal et al.
2019) to be as follows: (i) E. coli elements of ColE1 (KanR
promoter, kanamycin resistance), (ii) a gRNA expression
cassette with R. toruloides fusion 5S rRNA-tRNAP' pro-
moter, 2 Bsal sites, the S. cerevisiae SUP4 terminator, (iii) a
codon optimized SpCas9 expression cassette with IFO0880
GPD1 promoter and NOS terminator, and (iv) R. foruloides
G418 resistance cassette pTUB2-G418-tTUB2. Two oli-
gos with a forward strand 5" CGCA and reverse strand 5’
AAAC overhang were annealed and subsequently cloned
by digesting plasmid pPB0O.202 with Bsal (Thermo Fisher
Scientific) and ligating in T4 Ligase buffer (Thermo Fisher
Scientific) in a single pot reaction. Plasmid cloning was per-
formed in Escherichia coli strain TOP10 (Thermo Fisher
Scientific) according to the manufacturer’s instructions, and
bacterial plasmid DNA was purified using FavorPrep Mini
Plasmid Kit (FAVORGEN, Ping Tung, Taiwan). Resulting
plasmids pPB0.202-13382(3), pPB0.202-9725(1), and
pPB0.202-12761(1) were checked by Sanger sequenc-
ing. Several different gRNAs per target gene were tested in
sequential order if the previous gRNA candidate failed to
result in the target site disruption (the number in the brack-
ets next to each construct indicates the number of different
gRNA test candidates that resulted in a functional CRISPR/
Cas9 mediated target site disruption).

Yeast transformation

Yeast transformation was performed using lithium acetate/
PEG-mediated chemical transformation method as pre-
viously described (Tsai et al. 2017; Bonturi et al. 2022).
Briefly, cells from an overnight YPD culture were inoculated
at ODg, 0.2 in a shake flask containing 50 mL of YPD
(for up to 10 transformations). At ODg,, 0.8, cells were
harvested, washed in dH,0, and eventually mixed with 240
pL PEG 4000 (Fisher Scientific), 36 pL 1 M LiAc pH 7.5
(Alfa Aesar), 24 pL dH,O, 10 pL pre-boiled Salmon Sperm
(10 mg/mL), and 0.1-10 pg purified circular plasmid DNA
dissolved in 50 pL of water. The mixture was incubated at
30 °C shaking for 30 min, added with 34 pL of DMSO and
heat shocked at 42 °C for 15 min. After removing the super-
natant, collected cells were resuspended in 2 mL of YPD
and incubated at 30 “C overnight for the recovery. Then, cells
were collected, spread on YPD agar plates (agar 20 g/L) the
selective antibiotic 200 pug/mL G418, and incubated at 30 °C
for 2—4 days until the colonies appeared.
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Isolation of gene knockouts

Multi-step verification was used to confirm target gene
inactivation: (i) antibiotic selection, (ii) genomic DNA iso-
lation using lithium acetate/SDS/heat lysis (Ldoke et al.
2011) and Cas9-specific PCR on the genomic DNA, (iii)
target gene PCR amplification and sequencing. PCR ampli-
fication at the target locus of PK was performed with prim-
ers 5 CCTCCCTCTCACTCTTGCAC '3 (forward) and 5’
CACGCTGTCCAGTCAAAGAA '3 (reverse); ACL—with
primers 5" AGCTCCTCAAGCACGTCACT '3 (forward)
and 5 GTAGACGACCGAAGCACCAC '3 (reverse), and
MAE—with primers 5" ACTCGCTCTCCCTCTCTCTC
'3 (forward) and 5" ACTCGGAAAACCACGGCTTC '3
(reverse). It was performed using high-fidelity Platinum
SuperFi II DNA Polymerase Green PCR Master Mix (2X)
(Thermo Fisher Scientific, Vilnius, Lithuania) accord-
ing to manufacturer’s instructions for a high GC content
template. PCR amplification of the Cas9 coding sequence
with primers 5" GGAGTCGCGGGACGCCAAC '3 (for-
ward) and 5" ACACGTTGGCGTCCCGCGA '3 (reverse)
was performed using DreamTaq Polymerase Green PCR
Master Mix (2x) (Thermo Fisher Scientific, Vilnius, Lithu-
ania). PCR DNA was purified using FavorPrep Mini Gel/
PCR Kit (FAVORGEN, Ping Tung, Taiwan).

Physiological characterization

The seed culture from a fresh YPD agar plate was inocu-
lated to a sterile 250-mL baffled Erlenmeyer flask filled with
25 mL of YPD. After 19 h at 30 °C and 200 rpm, sufficient
amount of broth was transferred to a sterile 50 mL Falcon
tube and pelleted (5000 g, 5'). After discard of supernatant,
cell pellet was washed twice with a sterile dH20O and used to
inoculate 10 mL of low-nitrogen mineral medium at ODg,
of 0.5 in aerobic 50 mL Biosan RTS-8 Multi-channel falcon
tube bioreactors (Biosan, Riga, Latvia). Calibration curves
for OD quantification were prepared in a range between
ODg 0 and 55 with 8 calibration points using R. toru-
loides shake flask culture in a chemically defined medium.
Calibration curves for pH and dO measurement were set
up according to the manufacturer’s instructions. Real-time
logging was set to every 30 min with RTS-8 proprietary
software. Agitation speed was set to 2500 rpm, temperature
30 °C. Every 12 h after the cells had reached the exponential
growth phase, except for the first sample after time point
zero, samples to measure offline ODy, and extracellular
metabolites were withdrawn from the bioreactor tube in the
laminar flow cabinet, transferred to a 2-mL Eppendorf tubes
and centrifuged for 5" at 11,000 X g. The supernatant was
collected and stored at— 20 °C for further analysis. The first
sample was collected 6 h after inoculation. All cultivations

were carried out in a batch regime; no feed was added
throughout the process. All samples were collected from
three independent replicates for each experimental condi-
tion, i.e., combination of strain and carbon source. Specific
growth rate was calculated by fitting an exponential trend
line to the real time OD data using Eq. 8 with MS Excel
software.

OD(t) = 0D, x e ®)

where OD, is the initial optical density, ¢ is elapsed time,
u is the specific growth rate, OD(t) is the resulting optical
density at time 7.

Lipid analysis

At the end of the cultivation experiment, cell broth contain-
ing at least 12 mg of DCW was transferred from the falcon
tube bioreactor to a 15 mL tube and separated by centrifuga-
tion (5000 g, 10', 4 °C). Cell pellets were frozen at— 80 C,
lyophilized, and stored at—20 “C until further analysis. To
quantify lipids, fatty acids were extracted and derivatized by
using one-step method as described by Sukhija and Palmquist
(Sukhija and Palmquist 1988), with internal standard hepta-
decanoic acid (17:0) solution in toluene (5 mg/mL). Fatty
acids were analyzed using Agilent (Santa Clara, CA, USA)
6890 A gas chromatograph equipped with a flame ioniza-
tion detector (GC-FID). The column was a quartz capillary
column (100 mx0.25 mm) with liquid phase CP-Sil 88,
temperature programmed from 70 to 180 “C at 13 ‘C/min,
held for 40 min, 180 to 225 “C at 5 ‘C/min, held for 15 min.
Hydrogen was used as the carrier gas for GC and FID (FID
flow rate 30 mL/min), air flow rate 300 mL/min. Fatty acids
were identified by comparison of their retention times with
the retention time of mixtures with known fatty acid methyl
ester composition and concentration: Supelco 37 Component
FAME Mix (Sigma-Aldrich Co., St Louis, MO, USA), Nu-
Chek Prep CLC 603, and Nu-Chek Prep CLC 428 (Nu-Chek
Prep Inc., Elysian, MN, USA). Fatty acid composition was
presented as a gram of individual fatty acids per 100 g of
total fatty acids (the same as relative %). Lipid content was
calculated as the weight sum of individual fatty acids in 100 g
of sample, divided by 0.9 to provide TAG equivalent known
from earlier biochemical studies, as described by Sukhija and
Palmquist (1988), and expressed as gram lipids per gram dry
cell weight (DCW). Non-lipid cell mass was calculated after
subtraction of intracellular lipids from cell mass.

Analytical methods
Extracellular metabolites in cultivation broth were measured

using HPLC (LC-2050C, Shimazu, Kyoto, Japan) equipped
with a refractive index detector and a variable wavelength
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detector. Prior analysis, all samples were thawed, filtered
(0.22 um), and diluted in an appropriate diluent as indicated
below. Metabolites were analyzed using the Aminex HPX-
87H 300x 7.8 mm column (Bio-Rad, Hercules, CA, USA)
at 45 °C, with 5 mM H,SO, as the mobile phase with iso-
cratic elution at 0.6 mL/min. The concentrations of acetate,
glucose, glycerol, xylose, citrate, xylitol, and D-arabitol
were quantified by refractive index detector based on the
calibration curves prepared in the range between 0.625 and
20 g/L. No unknown peaks by variable wavelength detector
set at 210 nm were detected. It should be noted that with
the HPX-87H, it is not possible to determine the chirality
of arabitol, but we have determined it in our previous pub-
lication (Rekéna et al. 2023). To adjust the sample volume,
samples containing glucose or xylose were diluted to 5X
in ultrapure H,O (Milli-Q Ultrapure Water System, Merck,
Darmstadt, Germany). To adjust the pH and the volume,
samples containing acetate were diluted to 5X in 10 mM
mobile phase to reduce the pH below 8, the maximum range
of the column. Biomass optical density data were calibrated
by gravimetric dry cellular mass measurements. The lin-
early fitted calibration coefficient was 0.3 for cells under
the exponential growth and 0.26 for cells under nitrogen
limitation. At the end of cultivation, 3 uL of culture were
transferred to a glass slide for microscopy. Cells from an
undiluted culture were visualized by a bright-field micro-
scope under 100 x magnification CX21 (Olympus, Tokyo,
Japan). All images were acquired using Apple iPhone 13
mini (Apple Inc., Cupertino, CA, USA).

Statistical analysis

Statistical analysis of physiological parameters evaluation
was performed using GraphPad Prism 9.5.1 (GraphPad Soft-
ware Inc., San Diego, CA, USA). Statistical significance was
calculated using one-way ANOVA (Analysis of variance) at
0.05 significance level. p-values were adjusted (apval) for
multiplicity following Dunnett multiple comparison testing
against the wild type IFO0880.

Results

Sequencing of the genomic DNA confirmed gene
knockouts introduced by CRISPR/Cas9

Gene knockouts were introduced into the R. foruloides
IFO0880 genome by using a one-step CRISPR/Cas9 strat-
egy. The coding sequence of the Cas9 and appropriate
gRNAs were randomly integrated into the genome through
use of a single plasmid vector pPB0O.202 (JBEI Registry
part ID JBEI223791) with the G418 selection marker using
lithium acetate/PEG-mediated chemical transformation (see

@ Springer

Table 1 List of gRNAs used in this study. Number in the brackets
refers to number of different gRNA needed to be tested in order to
successfully generate the gene knockout

gRNA Target gene Target sequence (5'-3")

9725(1) ACL AGTACGTCGTCGGTCCCAAG
13382(3) PK GATGCAGAGGAAGTTGACCA
12761(1) cMAE CCCTCCCAGCCCCTTCAAGG

“Materials and Methods”). A set of single guide RNAs tar-
geting PK, ACL, or cMAE were designed to separately tar-
get and disrupt the first exon of the targeted genes (Table 1).
Gene knockouts by CRISPR/Cas9 were confirmed by
sequencing of the genomic DNA around the gRNA-targeted
cut site. Mutations at the site targeted by the gRNAs were
identified by aligning sequences against the wild type R.
toruloides IFO0880 reference genome (Fig. 1a). In case of
ACL knockout, there was a visible phenotypic difference
(Fig. 1b). Other knockouts did not display a phenotypic dif-
ference. The gene knockouts by CRISPR/Cas9 were presum-
ably generated by sequence of Cas9 endonuclease and error
prone NHEJ DNA repair resulting in frameshift mutation in
wild type R. toruloides strain. It has been reported that the
frequency of HR in R. toruloides is low (Koh et al. 2014).
List of strains used in this study is provided in Table 2;
number of clones screened is reported in Supplementary
Table S1.

During the strain characterization step, growth curves
(in the next section) of wild type cells and cells harboring
gene editing vector did not show difference in growth rates.
No significant differences in growth rates were observed
between different mutation variants of cMAE and PK dur-
ing initial screening. This shows that cassette did not cause
detrimental fitness effects, similarly as reported by Otoupal
and colleagues (Otoupal et al. 2019). These results demon-
strated that it is possible to achieve the disruption of central
carbon metabolism genes with a method that relies on a sta-
ble genome integration of CRISPR constructs in the genome
using a selectable drug marker.

ACL knockout decreases lipid synthesis on glucose

To understand the role of PK, ACL, and cMAE in the lipid
synthesis of R. toruloides IFO0880 strain, we compared the
lipid content produced by the knockout strains versus the
wild type IFO0880. Cells were induced for lipid produc-
tion using low-nitrogen mineral medium containing glucose,
xylose, or acetate as a solo carbon source. R. foruloides is
an obligate aerobe. For the best mixing and aeration sup-
port, high-throughput falcon tube bioreactors equipped with
a reverse-Spin® technology RTS-8 (Biosan, Riga, Latvia)
instead of shaker flasks or traditional stirred tank bioreactors
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were used for strain characterization. This system was not
equipped with the option to maintain desired pH and dis-
solved oxygen settings, but provided for a real time non-
invasive tracking of OD, pH, and dissolved oxygen data.
‘We used real-time dissolved oxygen monitoring to precisely
track the end of the experiment. To account for the pH drop
happening with R. toruloides in an uncontrolled pH environ-
ment (Tingajeva 2024), K,HPO, was added in the starting
media at pH 6.5 to an amount sufficient to buffer significant
pH changes (see “Materials and Methods”).

On glucose, online ODg, data showed no difference
among the strains in the lag phase prior to the exponential
growth phase (Fig. 2a), but the maximum specific growth
rate of the ACL knockout was significantly decreased by
41% as compared to the wild type strain (Fig. 2b, Supple-
mentary Table S2, apval <0.002). The growth of the ACL
mutant continued until 18 h, but then the growth stopped and
final DCW did not reach that of the wild type strain (Fig. 2c).
Sugar analysis confirmed that the AACL stopped consuming
glucose after 18 h (Fig. 2d). The pH remained within the
optimal range throughout the cultivation (Supplementary

Fig.1 Examples of targeted a
gene disruption using CRISPR/
Cas9. Only one example shown
per targeted gene. a Partial
sequencing of phosphoketolase
(PK), ATP citrate lyase (ACL),
and cytosolic malic enzyme
(cMAE) of one edited colony
near the cut site in the targeted
genes. b Phenotype compari-
son of wild type R. toruloides
IFO0880 versus AACL, APK,
and AcMAE strains after 9 days
growth on YPD agar

IFO0880

Table 2 List of strains used in this study

Wild type (+) strand of ACL
AACL-23

Wild type (+) strand of cMAE
AcMAE-1

Fig. S1). The dissolved oxygen curves showing when the
end of the experiment was declared are available from Sup-
plementary Fig. S2.

For lipid quantification, we used gas chromatographic
(GC) determination (see “Materials and Methods™). In the
wild type strain, lipid content reached 50.18 +0.37% (g lipid
per g of DCW) after 54 h of growth on low-nitrogen mineral
media (Table 3). The ACL knockout strain showed a sig-
nificant decrease in lipid content by 81% compared to the
wild type strain, reaching only 9.43 +0.039% (gyia/gncw)
(Fig. 2e, apval <0.0001). In case of the ACL knockout, the
difference in non-lipid DCW (g/L) compared to the wild
type strain was 58% (apval <0.0001) (Supplementary
Fig. S3a). These results indicated that ACL was not only
essentially involved in R. foruloides fatty acid synthesis,
similarly as previously studied in Y. lipolytica and L. star-
keyi (Dulermo et al. 2015; Liu et al. 2013; Sato et al. 2021),
but also involved in some other essential processes that had
a complementary effect on cellular physiology, whereas
knocking out the PK gene showed no change in specific
growth rate or lipid content, suggesting PK had no major

Cut site
U gRNA ] PAM 3’
..CGGCCGAGTACGTCGTCGGTCCCAAGTGEGCCATCGCGCGC...
s I s et e o S GGGCCATCGCGCGC...
Bt 37

Wild type (+) strand of PK ..CGCGCTGATGCAGAGGAAGTTGACCAAGGACGACGTCAAGC...
APK-10

..CGCGCTGATGCAGAGGAAGTT-—-—--——-—--— GACGTCAAGC...

LY 3*
..T'TCGCCCCCTCCCAGCCCCTTCAAGGCGGCCCCTCCCCCTC..
..TTCGCCCCCTCCCAGCCCCTTC-AGGCGGCCCCTCCCCCTC...

ACMAEN

Strain name Genotype Parent strain Antibiotic Mutation Source/reference

IFO0880 (NBRC 0880) Rhodotorula toruloides strain IFO0880  N/A N/A N/A NBRC collection
(now NBRC 0880), mating type A2

AACL pPB0.202-9725(1) IFO0880 G418 23 bp deletion This study

APK pPB0.202-13382(3) IFO0880 G418 10 bp deletion This study

AcMAE pPB0O.202-12761(1) TFO0880 G418 1 bp deletion This study
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«Fig.2 Physiological parameters obtained in glucose-based pH-
adjusted low-nitrogen mineral medium (C/N ratio 80) (Verduyn
et al. 1992). Data obtained from cultivating R. foruloides wild type
IFO0880 (circle), ATP citrate lyase knockout (AACL, pyramid),
phosphoketolase knockout (APK, inverted pyramid), and cytosolic
malic enzyme knockout (AcMAE, square) strains in falcon tube
bioreactors with non-invasive OD, dO,, and pH sensors. a A snap-
shot of the online ODg, data displayed as the dry cell weight (g/L),
b maximum specific growth rate fitted from the exponential growth
phase ODy, data (™, ¢ dry cell weight (g/L), d substrate concen-
tration (g/L), e lipid content (gjy¢/gpcw. %); cells harvested at the
end of cultivation, f relative fatty acid composition (gga/gouirass %)
cells harvested at the end of cultivation, g morphology comparison
of wild type IFO0880 versus knockout strains visualized by bright-
field microscope, cells harvested at the end of cultivation. Panels a
and ¢ background colors denote the switch in growth phases based on
dO, curves available from Supplementary Fig. S2, presumably point-
ing to the onset of the nitrogen limitation phase. FAs fatty acids, SFAs
saturated fatty acids, MUFAs monounsaturated fatty acids, PUFAs
polyunsaturated fatty acids. Error bars are calculated as a standard
deviation from three biological experiments. Asterisks denote statisti-
cal significance (ANOVA Dunnett’s multiple comparison test against
the wild type IFO0880 strain, adjusted p value *p <0.05, **p <0.01,
#H%p <0.001, ***%p <0.0001). ns is used to denote changes that are
statistically nonsignificant

effect on growth or lipid synthesis under the studied envi-
ronmental conditions (Fig. 2a—f). In contrast, the specific
growth rate of AcMAE was increased by 23% compared to
the wild type strain, reaching 0.39 +0.030 h™' (Fig. 2b, apval
0.04). Lipid content of AcMAE increased by 2.9% of DCW
compared to the wild type strain (apval 0.03), but no signifi-
cant changes in the fatty acid profile were observed (Fig. 2e).
These results indicated that cMAE in R. toruloides is not
essential in lipid biosynthesis under the studied environmen-
tal conditions. Previously, it was reported in oleaginous Y.
lipolytica that the deletion of mMAE in the wild type strain
has no effect on lipid content or fatty acid profiles (Blazeck
etal. 2014; Dulermo et al. 2015; Zhu et al. 2023). However,
only the deletion of cMAE was studied in the present work.

Table 3 Bioreactor data and fatty acid composition (gpa/giras
%) measured by GC-FID for strains grown in the glucose-based
(20 g/L) pH-adjusted chemically defined low-nitrogen medium (C/N
of 80). C16:0 palmitic acid, C18:0 stearic acid, C18:1(c9) oleic acid,

The fatty acid composition of the wild type R. toru-
loides TFO0880 was C16:0 22.67% and C18:1 45.62%
(2pa/Siowira) (Table 3), closely similar to as previously
reported (Ratledge and Wynn 2002). In fact, our results
were closely similar to the R. glutinis strain, which has
more recently been designated as R. toruloides, and
according to Zhang et al. may even be IFO0880 (Zhang
et al. 2016b). The knockout of the ACL caused changes in
the fatty acid composition. We observed a relative increase
in polyunsaturated fatty acids (C18:2 and C18:3) of 34%
of total fatty acids when compared to the wild type strain
(8ra/8otaira) (Fig. 2f). In the ACL knockout, the frac-
tion of oleic acid (C18:1) decreased significantly com-
pared to the wild type strain and constituted only 19.47%
(pval <0.0001), while linoleic acid (C18:2) increased
significantly compared to the wild type and became the
largest fraction with 29.46% (pval <0.0001), followed
by 17.78% of alpha-linoleic acid (C18:3) (Table 3,
pval <0.0001). Similar observations were reported in Y.
lipolytica (Dulermo et al. 2015). It should be noted, how-
ever, that when calculated per DCW, the total quantities
of all measured fractions decreased compared to the wild
type strain (Supplementary Table S3).

Yeasts and filamentous fungi undergo morphological dif-
ferentiations when triggered by extracellular stimuli such as
nutrient limitation. Therefore, we examined cells harvested
at the end of the experiment under the microscope. We
observed that the majority of strains, including the wild type,
had adopted linear chain morphology (Fig. 2g), notably dif-
ferent from their typical oval-shaped unicellular form (Sup-
plementary Fig. S4). Similar morphological appearance,
also known as pseudohyphae formation, has been observed
at slow growth rates below 0.1 h™! in glucose-limited che-
mostats of the non-conventional yeast Komagataella phaffii
(Rebnegger et al. 2014) and S. cerevisiae under the nitro-
gen limitation (Gimeno et al. 1992). However, as a result

C18:2(n6) linoleic acid, C18:3(n3) alpha-linolenic acid, and FAs fatty
acids. Mean and standard deviation are calculated from three biologi-
cal replicates

Strain Dry cell weight (¢/L) Lipid content Major fatty acid residues (gga/ioraras: %) Harvest
(8iipid/8pcws time
%) (h)
C16:0 C18:0 Cl18:1(c9) Cl18:2(n6) Cl18:3(n3)  Other FAs
IFO0880 10.23+0.15 50.18+0.37  22.67+0.14 12.62+0.06 45.62+0.11 11.38+0.14 3.58+0.01 4.13 54
(NBRC
0880)
APK 10.23+0.15 50.52+0.94  22.70+0.10 12.64+0.12 45.73+0.14 11.29+0.06 3.50+0.01 4.14 54
AACL 2.34+0.065 9.43+£0.039 1625+0.03 9.42+0.09 19.47+0.49 29.46+0.28 17.78+0.16 7.61 54
AcMAE 9.62+0.26 51.64+£0.50  22.80+0.10 11.72+0.07 46.04+0.12 11.49+0.12 3.90+0.06 4.04 48
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of the knockout of the ACL gene, cells did not form these
filament-like structures (Fig. 2g), instead their morphology
looked very similar to that during the exponential growth
phase (Supplementary Fig. S4), in a good agreement with
the above analysis that the loss of ACL indeed deprived cells
from consuming carbon under nitrogen limitation.

@ Springer

=

-~ |[FO0880 -+~ AACL -¥ APK -= AcMAE

ns
L Il PUFAs
= MUFAs
B3 SFAs

Xylose as a carbon source modifies the cellular
response to ACL loss

R. toruloides can consume xylose as a sole carbon source
(Pinheiro et al. 2020). DCW of 18 (g/L) on xylose as a car-
bon source was comparable to the one grown on glucose, 22
(g/L), but the DCW yield on substrate (gpcw/Esubstrate) EVEN
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«Fig.3 Physiological parameters obtained in xylose-based pH-
adjusted low-nitrogen mineral medium (C/N ratio 80) (Verduyn
et al. 1992). Data obtained from cultivating R. foruloides wild type
IFO0880 (circle), ATP citrate lyase knockout (AACL, pyramid),
phosphoketolase knockout (APK, inverted pyramid), and cytosolic
malic enzyme knockout (AcMAE, square) strains in falcon tube
bioreactors with non-invasive OD, dO,, and pH sensors. a A snap-
shot of the online ODg, data displayed as the dry cell weight (g/L),
b maximum specific growth rate fitted from the exponential growth
phase ODg, data (h™"), ¢ dry cell weight and arabitol (g/L), d sub-
strate concentration (g/L), e lipid content (gy,id/Spcw» %); cells har-
vested at the end of cultivation, f relative fatty acid composition
(8ra’8rotalrass %): cells harvested at the end of cultivation, g morphol-
ogy comparison of wild type IFO0880 versus knockout strains visual-
ized by bright-field microscope; cells harvested at the end of cultiva-
tion. Panels a and ¢ background colors denote the switch in growth
phases based on dO, curves available from Supplementary Fig. S2,
presumably pointing to the onset of the nitrogen limitation phase. FAs
fatty acids, SFAs saturated fatty acids, MUFAs monounsaturated fatty
acids, PUFAs polyunsaturated fatty acids. Error bars are calculated
as a standard deviation from three biological experiments. Asterisks
denote statistical significance (ANOVA Dunnett’s multiple com-
parison test against the wild type IFO0880 strain, adjusted p value
*p<0.05, ¥*p<0.01, **¥¥p<0.001, ****p<0.0001). ns is used to
denote changes that are statistically nonsignificant

outperformed glucose (Pinheiro et al. 2020). Xylose is a rel-
evant substrate of R. foruloides that has been less explored;
therefore, we cultivated APK, AACL, and AcMAE strains
in the low-nitrogen pH-adjusted chemically defined medium,
but this time containing xylose as a sole carbon source. All
strains demonstrated slightly different lag phases, but the
ACL knockout exhibited the shortest lag phase and the low-
est specific growth rate compared to the wild type strain
(Fig. 3a, Supplementary Table S2). The specific growth rate
() was 45% of the wild type strain (Fig. 3b, apval <0.001).
Nevertheless, ACL knockout reached even a significantly
higher final DCW titer as compared to the wild type strain
(Fig. 3c, Supplementary Fig. S3, b, apval <0.01) and con-
sumed xylose until depletion (Fig. 3d). The non-lipid DCW

Table 4 Bioreactor data and fatty acid composition (gra/goiras: %)
measured by GC-FID for strains grown in the xylose-based (20 g/L)
pH-adjusted chemically defined low-nitrogen medium (C/N of
80). C16:0 palmitic acid, C18:0 stearic acid, CI18:1(c9) oleic acid,

titers of the ACL knockout were higher compared to the wild
type strain (apval <0.01), suggesting that ACL was involved
in other cellular processes apart from lipid synthesis (Sup-
plementary Fig. S3b). Lipid content of the wild type strain
was 42.61£0.84% (g)5a/8pcw) after 90 h of growth on low-
nitrogen mineral medium (Table 4), but the ACL knockout
gave significantly lower, 37.71 £3.01% (gypia/gpcw) (Fig. 3e,
apval 0.02), with no major changes in the fatty acid profiles
(Fig. 3f, Table 4). Linear chain pseudohyphal growth was
unchanged compared to the glucose medium. Chain-like
pseudohyphal growth was observed for all strains, except
for the ACL knockout (Fig. 3g). The knockout of the cMAE
gene did not have an effect on growth or lipid synthesis on
medium containing xylose as a carbon source (Fig. 3a—f).

Altogether, these results indicated that R. foruloides
IFOO0880 is less reliant on ACL than assumed, which sug-
gests an alternative source of cytosolic acetyl-CoA on
xylose as sole carbon source. It cannot be ruled out that
the PK replaced ACL for the supply of acetyl-CoA upon
the ACL knockout, but on the other hand, the knockout of
the PK gene alone did not give any change in the specific
growth rate or lipid content (Fig. 3a—f). We speculate that
one of the options for the cytosolic acetyl-CoA synthesis
could be the pyruvate-acetaldehyde-acetate pathway, also
known as “pyruvate dehydrogenase bypass.” Despite low
protein expression levels of ACS on glucose and xylose, it
was previously reported higher abundant on xylose during
the exponential growth (p value 0.038) and lipid accumula-
tion phase (p value 0.49) compared to glucose-grown cells
(Rekena et al. 2023).

ACL loss demonstrates negative effects on cell
growth and lipid synthesis on acetate

Previous reports have shown differences in growth
response on acetate caused by loss of ACL. In pathogenic

C18:2(n6) linoleic acid, C18:3(n3) alpha-linolenic acid, FAs fatty
acids. Mean and standard deviation are calculated from three biologi-
cal replicates

Strain Dry cell weight (¢/L) Lipid content ~Major fatty acid residues (gga/oraras: %) Harvest
(S1ipie/8pCws time
o (h)
C16:0 C18:0 C18:1(c9) C18:2m6)  Cl18:3(n3) Other FAs
IFO0880  6.24+0.13 42.61+0.84  21.80+0.03 11.42+0.03 43.52+0.06 14.65+0.17 3.30+£0.03 5.31 90
(NBRC
0880)
APK 5.76 +£0.075 42.94+0.73  21.28+0.19 11.61+0.19 44.44+0.24 13.70+£0.11 3.40+0.03 5.57 91
AACL 7.28+0.39 37.71£3.01  28.27+0.09 9.47+0.16 41.05+£0.05 14.67+0.18 2.18+0.07 4.35 81
AcMAE 6.93+0.27 43.94+082  2221+0.11 11.36+0.06 42.62+0.15 14.85+0.18 3.51+0.02 5.45 80
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basidiomycetous yeast C. neoformans, the knockout of
the ACL1 gene caused growth defects on glucose, but no
effect during growth on acetate (Griffiths et al. 2012). In
oleaginous ascomycetous yeast L. starkeyi, a knockout of
both ACL1 and ACL2 gene resulted in restored growth on
acetate, but TAG productivity was lower than that of the
control using acetate with glucose (Sato et al. 2021). In

@ Springer

accordance with these reports, we cultivated APK, AACL,
AcMAE strains, and IFO0880 in low-nitrogen chemically
defined medium with acetate as a sole carbon source. The
initial medium pH was adjusted to 6 by adding KOH and
was not maintained. During the cultivation, the pH in all
cultures rose equally, as the cells started growing, and
reached pH 9 at the end of cultivation (Supplementary
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«Fig.4 Physiological parameters obtained in acetate-based pH
7-adjusted low-nitrogen mineral medium (C/N ratio 80) (Verduyn
et al. 1992). Data obtained from cultivating R. foruloides wild type
IFO0880 (circle), ATP citrate lyase knockout (AACL, pyramid),
phosphoketolase knockout (APK, inverted pyramid), and cytosolic
malic enzyme knockout (AcMAE, square) strains in falcon tube bio-
reactors with non-invasive OD, dO,, and pH sensors. a A snapshot of
the online ODy, data displayed as the dry cell weight (g/L), b maxi-
mum specific growth rate fitted from the exponential growth phase
0Dy, data (h™), ¢ dry cell weight and citrate (g/L), d substrate con-
centration (g/L), e lipid content (gjpi¢/8pcw- %); cells harvested at the
end of cultivation, f relative fatty acid composition (gga/gouirass %)
cells harvested at the end of cultivation, g morphology comparison
of wild type IFO0880 versus knockout strains visualized by bright-
field microscope; cells harvested at the end of cultivation. Panels a
and ¢ background colors denote the switch in growth phases based on
dO, curves available from Supplementary Fig. S2, presumably point-
ing to the onset of the nitrogen limitation phase. FAs fatty acids. SFAs
saturated fatty acids, MUFAs monounsaturated fatty acids, PUFAs
polyunsaturated fatty acids. Error bars are calculated as a standard
deviation from three biological experiments. Asterisks denote statisti-
cal significance (ANOVA Dunnett’s multiple comparison test against
the wild type IFO0880 strain, adjusted p value *p <0.05, **p <0.01,
#H%p <0.001, ***%p <0.0001). ns is used to denote changes that are
statistically nonsignificant

Fig. S1). The growth of AACL was extremely delayed as
compared to the other strains (Fig. 4a), and the maximum
specific growth rate was reduced by 40% in compari-
son to wild type strain (Fig. 4b, apval 0.009), falling to
0.10£0.0047 h™! (Supplementary Table S2). The ACL
knockout started growing only at 60 h and 6 h after that
started to produce slight amounts of citrate, a substrate
for ACL (Fig. 4c). Although the analysis showed a con-
sistent, slow consumption of acetate after 66 h, AACL
cells stopped respiring before all the acetate was depleted
around 126 h (Fig. 4d, Supplementary Fig. S1). Other
strains consumed the substrate completely with no vis-
ible disturbance to the growth rates. These results dem-
onstrated that R. toruloides responded similarly to ACL
loss compared to glucose medium, and acetate did not
restore the growth defects caused by ACL loss. It was in
contrast to findings by Hynes and Murray, in which the
authors concluded that external sources of cytoplasmic
acetyl-CoA result in repression of ACL (Hynes and Mur-
ray 2010). The loss of ACL caused 56% reduction in lipids
(81ipia/8pcw) (Fig. 4e, apval <0.0001) and alterations in
fatty acid profiles (Fig. 4f). On acetate, ACL loss did not
result in significant changes to non-lipid DCW (Supple-
mentary Fig. S3c), indicating that the effect was directly
on lipid synthesis and not beyond as in case of the glu-
cose-grown cells. The majority fatty acid fraction, C18:1,
decreased relatively from 46 to 33% (gpa/8iotaira)> While
C18:2 and C18:3 increased relatively to 20% and 8%,
respectively, 20% of C18:2 and 8% of C18:3 (gra/8iotaira)
(Table 5). These results were similar to the L. starkeyi
study, in which the TAG productivity of the ACL knockout

strain was significantly lower compared to the reference
strain on medium containing glucose and acetate (Sato
et al. 2021). It also indicated that acetate must be con-
verted into citrate for its assimilation, which is possible if
mitochondrial malate-oxoglutarate and oxoglutarate/citrate
shuttling takes place.

cMAE knockout gave a 19% decrease in the specific
growth rate, falling to 0.14+0.0091 h™! (apval 0.009), even
though it did not affect the lipid content (Table 5). These
results suggested that cMAE is not involved in lipogenesis
on acetate. Consistent with the above results, the knockout
of the PK gene caused no change in growth or lipid synthesis
(Fig. 4a—f).

Growth on acetate induced differences in cell morphology
in this experiment. Cells formed less chain-like structures
compared to glucose or xylose-grown cells, even though
they were under nutrient starvation (Fig. 4g).

Discussion

R. toruloides is an emerging oleaginous cell factory for the
production of fats, oils, and oleochemicals. The metabolic
mechanisms of lipid production in R. foruloides are less
understood compared to other oleaginous fungi M. circinel-
loides or M. alpina, oleaginous yeast Y. lipolytica, or model
yeast S. cerevisiae. Due to the development of gene editing
tools (Otoupal et al. 2019; Liu et al. 2019; Jiao et al. 2019;
Schultz et al. 2019), the possibilities for functional genomics
studies are significantly improved. In this study, we applied
CRISPR/Cas9 genome editing system to elucidate the role
of PK pathway, ACL, and cMAE in lipid biosynthesis of R.
toruloides IFO0880 by creating gene knockouts and charac-
terizing them on alternative carbon sources.

The results of this study demonstrated that ACL is crucial
for not only the fatty acid synthesis but also for growth in
R. toruloides. Loss of ACL reduced lipid content by 81%
of DCW compared to the wild type strain on glucose, 11%
on xylose and 56% on acetate (Figs. 2, 3, and 4). It also
significantly reduced the specific growth rate on all carbon
sources. Although previous studies have reported growth
defects as a result of ACL inactivation in A. niger, A. nidu-
lans, S. macrospora, and Y. lipolytica (Nowrousian et al.
1999; Hynes and Murray 2010; Chen et al. 2014; Dulermo
etal. 2015), the present study revealed a difference to Y. lipo-
Iytica. ACL knockout resulted in a growth arrest on glucose
and on acetate once nitrogen is depleted, as demonstrated
by a significantly lower cell density compared to the refer-
ence strain by the end of experiment (see Figs. 2 and 4). On
glucose, it could not have been caused by the pH changes,
because it remained within the optimal range (pH 5.5-7.0)
throughout cultivation (Supplementary Fig. S1). Currently,
there is not enough evidence to provide a single explanation
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Table 5 Bioreactor data and fatty acid composition (gga/gouaipas %)
measured by GC-FID for strains grown in the acetate-based (20 g/L)
chemically defined low-nitrogen medium (C/N of 80). C16:0 palmitic

acid, CI8:0 stearic acid, CI18:1(c9) oleic acid, CI18:2(n6) linoleic
acid, C18:3(n3) alpha-linolenic acid, and FAs fatty acids. Mean and
standard deviation are calculated from three biological replicates

Strain Dry cell weight (¢/L) Lipid content ~Major fatty acid residues (gga/oraras: %) Harvest
(S1ipie/8pCws time
o (h)
C16:0 C18:0 C18:1(c9)  Cl18:2(n6)  Cl18:3(n3) Other FAs
IFO0880  2.53+0.03 45.07+1.15  17.30+£0.26 18.35+0.12 46.04+0.31 9.83+0.02 4.07+0.08 4.41 54
(NBRC
0880)
APK 2.70+0.09 46.23+4.45  18.53+0.37 18.64+0.19 44.81+047 9.40+0.13 4.14+0.09 4.48 66
AACL 1.63+0.03 20.02+1.18  17.27+0.04 15.69+0.37 33.06+0.91 19.69+0.83 8.10+£0.39 6.21 66
AcMAE 2.62+0.12 44.79+1.05  18.25+0.45 18.48+0.07 45.09+£0.65 9.49+0.04 4.19+0.07 4.49 126

to our observations. Lowered acetyl-CoA in cytoplasm
impairs the synthesis of signaling molecules and second-
ary metabolites leading to developmental effects (Hynes
and Murray 2010). In yeast, acetyl-CoA is localized in four
different compartments, and nuclear acetyl-CoA is required
for histone acetylation (Takahashi et al. 2006; Pietrocola
et al. 2015). Recently, the role of ACL in supplying acetyl-
CoA for histone acetylation to promote proliferation was
demonstrated in myeloid cells (Rhee et al. 2019). Another
consequence of the ACL knockout is likely impaired citrate
conversion to cytosolic acetyl CoA that probably leads to cit-
rate oxidation in mitochondria and an increased flux through
the TCA cycle increasing the production of substrates for the
electron transport chain, which was confirmed by proving
elevated mitochondrial membrane potential between control
and ACL knockdown cells in hematopoietic murine cells
(Board and Newsholme 1996; Bauer et al. 2005). It is in line
with the detected extracellular citrate on acetate (Fig. 4c).
In this study, we also observed an effect on cell morphol-
ogy during nitrogen limitation. In S. cerevisiae, it has been
investigated that pseudohyphal growth is regulated by two
different signaling pathways, the MAP kinase cascade and
cAMP-dependent pathway (Gancedo 2001). In mamma-
lian cells, ACL is hierarchically regulated through cAMP-
dependent phosphorylation (Pierce et al. 1981; Pant et al.
2023). The observed morphological changes, growth arrest
during nitrogen starvation, and the drop in lipid production
that were all associated with the ACL loss suggest a complex
regulatory network regulation of ACL in R. toruloides. The
comparison of lipid content to ACL loss in glucose, xylose,
and acetate media indicated very interesting carbon-source
dependent differences in metabolic regulation and the exist-
ence of alternative routes to cytosolic acetyl-CoA. To our
best knowledge, this is the first report characterizing ACL
knockout in yeast in the xylose medium. While these results
are more in agreement with what was reported earlier in Y.
lipolytica on glucose, further studies are required to under-
stand why in R. foruloides the knockout responses on xylose
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and glucose were different. On a preliminary level, we spec-
ulated that upon knockout of ACL on xylose, the acetyl-CoA
synthetase (ACS) could be used for the synthesis of cyto-
solic acetyl-CoA resulting in higher lipid content, while in
glucose and acetate media the main role was staying with
the ACL. It is known that ACS is transcriptionally regulated
(Chen et al. 2012) and the only source of cytosolic acetyl-
CoA (Pronk et al. 1996) in S. cerevisiae. Large differences
in signaling pathways under the consumption of xylose have
already been reported, but mainly in S. cerevisiae. Assimila-
tion of xylose is weakly sensed by the intracellular branch of
the cAMP/PKA pathway in yeast (Brink et al. 2021).

In this study, we showed that the lipid production was not
changed as a result of the PK knockout (Figs. 2, 3, and 4).
Unintuitively, our result also did not support the evidence
from early biochemical studies on xylose as a carbon source.
Compared to the alternative biosynthetic pathways for cyto-
solic acetyl-CoA production, the PK route bypasses the
decarboxylation step of pyruvate into CO, and acetaldehyde
(catalyzed by pyruvate decarboxylase) and the ATP expendi-
ture for the activation of acetate by ACS or citrate by ACL,
thus potentially increasing the acetyl-CoA yield. We thought
it was the reason why previously stoichiometric genome-
scale modeling predicted the PK route for the utilization of
glucose or xylose in R. toruloides (Lopes et al. 2020; Rekéna
et al. 2023) being in the agreement with previous enzyme
abundance studies (Kim et al. 2021; Rekéna et al. 2023). But
our results did not support this hypothesis on either of the
substrates. Based on existing genetic engineering studies, we
speculated that the metabolic flux can be rerouted through
PK in a combination with silencing the expression of other
enzymes in a close proximity. In Y. lipolytica, expression
of PK worked to improve lipid production in phosphofruc-
tokinase (PFK) deletion background (Kamineni et al. 2021).
Introduction of PK pathway was demonstrated in TKT and
TAL deletion background to produce 3HP in S. cerevisiae
(Hellgren et al. 2020). On the other hand, R. toruloides PK
K., value would potentially explain why the PK is not critical
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for lipid synthesis in the wild type strain. Alternatively, the
bottleneck could be PTA or acetate kinase (ACK). Over-
expression of non-native PTA improved lipid titers in R.
toruloides NP11 by 15.1% (Yang et al. 2018), but the role
of ACK in R. toruloides still needs to be studied. In non-
oleaginous A. niger, which has a native PK pathway, het-
erologous PK pathway expression increased target product
synthesis, while the deletion of ACK decreased it (Liu et al.
2023). Also, it is worth noting that in the enzyme database
BRENDA, the PTA reaction equation denotes acetyl-CoA
as a substrate and acetyl-phosphate as a product. The ther-
modynamic feasibility of the pathway is unclear.

Finally, the results of this study suggested that cMAE
plays no significant role in lipogenesis in R. toruloides
IFOO0880 and its presence has an adverse effect when grow-
ing on glucose. It was in good agreement with the early
biochemical studies with R. glutinis (Yoon et al. 1984).
Compared to the catabolic pathways of glucose or xylose,
acetate assimilation requires less enzymatic conversions
to synthesize the substrate of malic enzyme and, perhaps,
the reason why stoichiometric genome-scale models have
predicted the use of cMAE for NADPH regeneration upon
assimilation of acetate (Lopes et al. 2020; Rekéna et al.
2023). Our results confirmed that cytosolic malic enzyme
is not critical for lipogenesis, suggesting that alterna-
tive routes for NADPH regeneration can be used, likely
enzymes from the oxidative pentose phosphate pathway.
Recent genetic engineering studies are available only
on glucose. Lipogenesis induction upon a knockout was
reported by Dulermo et al., when a mMAE in Y. lipolytica
was deleted (Dulermo et al. 2015); although Y. lipolytica
does not have a cMAE. Nevertheless, there is a slight dif-
ference that in wild type background, such an effect was
not observed, but in an engineered strain for lipid produc-
tion (“Obese”), the adverse effect was observed. Perhaps
we can say that according to our evidence, a wild type
background is an even stronger argument for the cMAE
non-essentiality in lipogenesis. But it is worth noting that
overexpression of native cMAE in R. roruloides IFO0880
(same strain) increased lipid titers by 28% (Zhang et al.
2016a). Authors noted that this was a relatively minor
increase compared to other enzymes that were introduced,
but it shows that cMAE can play a role in lipogenesis of R.
toruloides under certain conditions (e.g., overexpression).

In conclusion, we showed that ACL is essential for lipid
synthesis and cell growth in R. foruloides. The cellular
response to ACL loss was affected by the carbon source
present in cultivation media. The results also demonstrated
that cytosolic malic enzyme is not critically involved in lipid
synthesis in R. toruloides and in some conditions is even
disfavorable. The characterization of the PK knockout sug-
gested that it is not critical for the lipid synthesis. This work

is useful for future metabolic engineering strategies of R.
toruloides.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00253-025-13454-w.
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