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Introduction 
The development of sustainable manufacturing technologies using biology increasingly 
relies on the ability to design and optimize microbial cell factories in silico. Yeasts, 
in particular, represent versatile eukaryotic hosts that combine robust growth with 
advanced genetic tools and a long history of industrial application in fermentation, food, 
and biotechnology. Rational design of novel yeast-based production platforms, however, 
requires a predictive understanding of how metabolism, energy, and protein resources 
are distributed under varying environmental and genetic conditions. 

The rapid progress of high-throughput DNA sequencing in the mid-2000s and protein 
profiling has enabled the quantitative characterization of cellular components at 
unprecedented scale. These advances laid the foundation for computational frameworks 
that help to understand how genetic information (genotype) gives rise to observable 
cellular behavior (phenotype) through mechanistic modeling. Among such approaches, 
genome-scale metabolic models (GEMs) allow the systematic study of cellular 
metabolism using metabolic rate (flux) predictions in silico. Since the first GEM of baker’s 
yeast Saccharomyces cerevisiae was developed in 2003 numerous nonconventional yeast 
species, newly isolated for their unique metabolic capabilities, have been introduced into 
biotechnological applications.  

Over the past two decades, GEMs have been expanded and refined into 
community-curated versions, culminating in the Yeast9 model released in 2024. These 
models have been successfully applied to guide the production of fuel precursors, 
organic acids, medicinal compounds, flavours, fragrances, and other industrially relevant 
metabolites, enzymes and proteins. Yet, despite these advances, their predictive power 
remains fundamentally dependent on accurate experimental parameterization and 
validation. In particular, conventional GEMs neglect the finite capacity of the proteome 
and lack representation of enzyme kinetics and regulation. Moreover, not always 
experimental yeast data are readily available across different conditions. This limitation 
becomes critical in nonconventional yeast species, such as the lipid-producing yeast 
Rhodotorula toruloides, where experimental data remain sparse and standard 
assumptions derived from S. cerevisiae no longer hold. 

To address these challenges, in this thesis I used a combination of genetic, 
biochemical, and computational approaches to develop and validate predictive models 
of yeast metabolism. Enzyme-constrained GEMs (ecGEMs) were employed as the central 
modeling framework, linking metabolic activity to the amount and efficiency of enzymes 
measured in the cell. Quantitative proteomics, physiological data from controlled growth 
experiments, and genetic perturbations were integrated to parameterize and evaluate 
ecGEMs of S. cerevisiae and R. toruloides. S. cerevisiae, the canonical model organism for 
yeast biology, was used as a benchmark to assess model accuracy under newly tested 
environmental conditions. R. toruloides, by contrast, served as a case study for extending 
enzyme-constrained modeling to a nonconventional, lipid-accumulating yeast, enabling 
the identification of biological and methodological factors that limit current model 
predictiveness. 

The results of this work reveal both the capabilities and the boundaries of current 
computational design frameworks. The models accurately captured proteome limitations 
and substrate-dependent metabolic allocation, yet they exposed systematic deviations 
arising from strict models’ assumptions. These findings not only provide new insight into 
the regulatory mechanisms underlying energy and redox balance in yeast and clarify the 
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data requirements for extending quantitative models to unconventional species, but also 
demonstrate the potential of such models to bridge quantitative proteomics and 
genome-scale modeling, and provides perspectives on how future integration of regulation 
and kinetics can advance in silico biomanufacturing design. 
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1 Theoretical background 
This chapter aims to provide a scope of the studies conducted in this thesis. Although the 
topic of this thesis spans broad and rapidly evolving areas of science, such as systems 
biology and metabolic engineering, I will focus on genome-scale metabolic models and 
how we use them in studying yeast. While acknowledging how quantitative modeling 
frameworks, such as genome-scale models, are used to extract biological insights, in this 
chapter I will also discuss how these models can be experimentally validated. 

This thesis is written from a very practical standpoint in mind, emphasizing the 
computational design of microbial cell factories. Therefore, throughout the theoretical 
background, I want to present it from a curiosity driven perspective: on what principles 
are these models built, and how accurately do they represent biological reality? 
In the final two subchapters, I will present core methodological concepts underlying the 
presented studies, but I will begin the chapter with the biochemical foundations 
necessary to understand the basis of computational design. 

1.1 Yeast-based cell factories 
Yeasts are unicellular organisms that naturally occur on plant surfaces, soil and aquatic 
environments. In nature, they live in diverse places that are rich in biomass, and they 
play a key role in carbon cycling. In the laboratory, they are foundational systems for 
eukaryotic cell biology and biotechnology (Walker, 2000). On one hand, yeast cellular 
functionalities, such as well defined nucleus, that stores genetic material, and other 
cellular compartments follow by definition the same rules as plants, insects, animals and 
humans. On the other hand, their unicellular nature allows easier studying, compared to 
bacteria and other unicellular life forms. All in all, that is why yeasts are used from 
fundamental studies understanding the rules of life, to industrial applications in microbial 
catalysis – a discipline known as biotechnology. From an evolutionary perspective, yeasts 
belong to the Fungi kingdom, primarily phylum Ascomycota and to a lesser extent 
Basidiomycota (Kurtzman, 2011). The two phyla diverged over 500 million years ago, 
their known differences are often grouped into different ecological roles, cellular 
organization, and organisation of metabolism. Yeasts can reproduce both asexually and 
sexually. As most yeasts that have been historically used by humans entail asexual 
reproduction, forming a bud of an original cell, they are popular by the term budding 
yeasts. 

Yeasts must be great consumers of simple sugars, such as monosaccharides such as 
glucose and fructose, and disaccharides such as sucrose and maltose, as the name of 
most and widely known yeast in Latinized Greek means “sugar fungus” – Saccharomyces 
(Chambers & Pretorius, 2010). The most well known species of yeast is ascomycetous 
Saccharomyces cerevisiae. Due to its Eukaryotic nature, it has been used as a model 
organism to study cellular signaling, division, aging, death, and other cellular processes. 
At least ten Nobel prizes have been awarded for the work in yeasts (Hohmann, 2016), 
mainly in the category of physiology and medicine. And I want to highlight the 2001 
award in Medicine to Hartwell, Hunt and Nurse for unraveling the genetic logic of the 
eukaryotic cell cycle, showing how genotype determines phenotype through molecular 
logic. 

Given the extensive knowledge of yeast biology, these microorganisms have long been 
engineered for industrial use – not only in the production of bread, beer, and wine, but 
also as biocatalysts for ethanol and other biofuels (Nielsen & Keasling, 2016; Walker & 

https://www.zotero.org/google-docs/?Obgak8
https://www.zotero.org/google-docs/?GecN7m
https://www.zotero.org/google-docs/?l0nwsx
https://www.zotero.org/google-docs/?zYaXeu
https://www.zotero.org/google-docs/?4WTrYV
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Stewart, 2016). Although ethanol is by far the most widely produced biofuel using yeast 
biotechnology, ethanol formation is actually an exception in the context of yeast 
metabolism. Yeasts are inherently efficient at synthesizing highly reduced, long-chain 
molecules (C₂₂–C₂₄),  including fatty acids, sterols, and long-chain alcohols (Koutinas  
et al., 2014). Thus, the extensive use of yeasts for ethanol production reflects historical 
and industrial choices rather than their metabolic predisposition. Due to their robustness, 
metabolic diversity, and substrate flexibility, non-conventional yeasts have gained 
increasing prominence as emerging hosts for industrial biomanufacturing. For instance, 
non-conventional yeasts, such as Yarrowia lipolytica (Ledesma-Amaro & Nicaud, 2016) 
and Rhodotorula toruloides (Park et al., 2018) are recognized for lipid and carotenoid 
biosynthesis, Kluyveromyces marxianus (Nonklang et al., 2008) for rapid growth and high 
temperature tolerance, P. pastoris (now Komagataella phaffii) for protein synthesis 
(Cregg et al., 2000), Z. bailii for tolerance to organic acids (Branduardi et al., 2004). 
Chemical building blocks produced with microbial cell factories are more and more  
used in the production of pharmaceuticals, flavors, fragrances, cosmetics, materials 
(Nielsen, 2019), and the opportunities are theoretically endless. The global bio-based 
chemicals market is estimated to exceed USD 125 billion by 2030, with microbial 
processes contributing a rapidly increasing share (Grand View Research, n.d.; Korosuo  
et al., 2024). 

The choice of carbon source is a critical factor in designing cell factories, as it directly 
influences not only central carbon metabolism, redox balance, and biosynthetic capacity, 
but also their economic feasibility. Glucose, the most abundant sugar in nature, supports 
rapid growth and high glycolytic fluxes, but often leads to fermentative metabolism and 
catabolite repression that limits the utilization of alternative substrates (Gancedo, 1998). 
In contrast, non-fermentable carbon sources such as acetate, ethanol, or fatty acids 
promote respiratory metabolism and can alter cellular energy efficiency and redox  
status (Papanikolaou & Aggelis, 2011b). Glycerol, a byproduct of biodiesel production, 
represents an inexpensive and sustainable substrate. Xylose and other pentoses derived 
from lignocellulosic hydrolysates are of growing interest for second-generation 
bioprocesses; however, their efficient assimilation often requires metabolic engineering 
to overcome limited native transport and conversion capacities (Kwak et al., 2019; 
Sànchez Nogué & Karhumaa, 2015). Consequently, optimizing carbon source utilization 
not only enhances process sustainability by integrating waste-derived substrates but also 
enables the tuning of cellular physiology toward improved yield of fuels, lipids, and 
biochemicals. 

The term microbial cell factory emphasizes the analogy to traditional production plants 
– yet these “factories” operate at the cellular level, converting renewable substrates into 
valuable products through metabolic pathways. With advances in systems biology and 
synthetic biology, the molecular arsenal and efficiency of yeast-based cell factories are 
rapidly improving, supporting the development of biorefineries that transform biomass 
and waste into sustainable biochemicals and biofuels, and move away from fossil  
fuel-based refineries. 

Yeasts not only serve as models for understanding eukaryotic cell biology, but also as 
powerful platforms for sustainable production, bridging fundamental biology and industrial 
biotechnology. 

https://www.zotero.org/google-docs/?4WTrYV
https://www.zotero.org/google-docs/?SDYDO2
https://www.zotero.org/google-docs/?SDYDO2
https://www.zotero.org/google-docs/?LPI1U2
https://www.zotero.org/google-docs/?zWN7XQ
https://www.zotero.org/google-docs/?Ena1Rm
https://www.zotero.org/google-docs/?c99ZtS
https://www.zotero.org/google-docs/?jbxERI
https://www.zotero.org/google-docs/?rMo7rW
https://www.zotero.org/google-docs/?X2Gota
https://www.zotero.org/google-docs/?X2Gota
https://www.zotero.org/google-docs/?67HyFU
https://www.zotero.org/google-docs/?mCfwh9
https://www.zotero.org/google-docs/?ol4ec4
https://www.zotero.org/google-docs/?ol4ec4
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1.2 Cellular metabolism 
Metabolism inside the cell is an integrated network of biochemical reactions that 
sustains life. The metabolic network in a yeast cell operates in a manner that nutrients, 
taken up from the environment as substrates, are converted into products that help the 
cell to grow, and byproducts, such as CO2, ethanol or others. A yeast cell needs a carbon 
source, energy source, nitrogen source, minerals and vitamins. Glucose is the most 
common carbon source, which is also simultaneously an energy source (Villadsen et al., 
2011). Yeasts (like animals and most microorganisms) are heterotrophs, they cannot use 
carbon dioxide from the atmosphere as their sole carbon source. 

The cell’s primary goals via metabolism are to extract energy from substrate(s) and to 
synthesize molecules essential for self-maintenance, growth and reproduction. The series 
of enzyme-catalyzed reactions constitute metabolic pathways. Catabolic pathways, such 
as glycolysis and tricarboxylic acid cycle, break down substrates into smaller, simpler end 
products to release energy, while anabolic pathways, also called biosynthesis, synthesize 
macromolecules, such as proteins, lipids, and nucleic acids, from small, simple precursors 
(Nelson et al., 2021). Anabolic reactions require energy as input. In the metabolic 
network, the Gibbs free energy, which cells can and must use to drive chemical reactions, 
is acquired from nutrient molecules and stored as an energy currency molecule (ie. 
adenosine triphosphate, ATP) and other cofactors (ie. NADPH). Biological energy 
transformations obey the laws of thermodynamics, so evolution has constructed 
metabolic pathways that are thermodynamically feasible, such as carbon-carbon bond 
break, isomerizations, group transfers, oxidation-reductions, and others (Nelson et al., 
2021). In catabolism, ATP provides energy by group transfers, not by simple hydrolysis. 
In anabolic pathways, ATP hydrolysis drives energetically unfavourable reactions 
forward. All small molecules that participate as substrates, intermediates, or products in 
the metabolism, are called metabolites.  

The central metabolic pathways, which are very few and remarkably similar in all 
forms of life, are associated with glucose oxidation but each fulfils a different purpose. 
Through glycolysis, glucose can be oxidized to a three-carbon compound pyruvate to 
provide ATP and metabolic intermediates. S. cerevisiae and most other yeasts rely on the 
Embden-Meyerhof-Parnas (EMP) pathway for glycolysis, as they lack alternative 
glycolytic routes. It is a series of 10 reactions that yields 2 molecules of ATP, 2 molecules 
of nicotinamide adenine dinucleotide (NADH) and supplies glyceraldehyde-3-phosphate 
and phosphoenolpyruvate as precursors for biosynthetic pathways (Teusink et al., 1998). 
NADH is one of the few prominent electron carriers in central metabolism, which 
temporarily stores and transports reducing equivalents to other enzymes or pathways 
where they can be used. Through the pentose phosphate (phosphogluconate) pathway 
(PPP), glucose can be oxidized to yield ribose 5-phosphate for nucleic acid synthesis plus 
a molecule of CO2 (oxidative PPP, oxPPP), NADPH for reductive biosynthetic processes, 
and xylulose-5-phosphate. Non-oxidative phase interconverts pentose phosphates 
with glycolytic intermediates (glyceraldehyde-3-phosphate and fructose-6-phosphate), 
or transforms into erythrose-4-phosphate (for amino acid synthesis). PPP runs parallel to 
glycolysis. The branching point of PPP and glycolysis is glucose-6-phosphate, which is the 
first metabolic intermediate of glycolysis. These pathways in eukaryotes are cytosolic 
(Kruger & Von Schaewen, 2003). 

Pyruvate can either be fermented, or undergo the tricarboxylic acid cycle (TCA). 
Fermentation is ubiquitous among microorganisms and even some higher organisms 
because it provides a simple, robust, and rapid mechanism for sugar utilization. Cells 

https://www.zotero.org/google-docs/?Nyahvs
https://www.zotero.org/google-docs/?Nyahvs
https://www.zotero.org/google-docs/?ZUYNsJ
https://www.zotero.org/google-docs/?sLoweO
https://www.zotero.org/google-docs/?sLoweO
https://www.zotero.org/google-docs/?Lynv6m
https://www.zotero.org/google-docs/?sugdBG
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obtain ATP solely by breaking down glucose into pyruvate and, like ethanol fermentation 
in yeast, the pyruvate is converted in two molecules of ethanol and CO2, as end products. 
It is a two step process: decarboxylation by pyruvate decarboxylase and reduction 
through alcohol dehydrogenase, using NADH generated during the dehydrogenation of 
glyceraldehyde 3-phosphate in glycolysis (Nelson et al., 2021). The CO2 produced by 
pyruvate decarboxylation in brewer’s yeast is responsible for the characteristic carbonation 
of champagne, but in baker’s yeast – causes dough to rise.  

The complete oxidation of glucose, when pyruvate produced by glycolysis is further 
oxidized to water and CO2, is termed cellular respiration. Unlike fermentation, it involves 
an external O2 as the final electron acceptor. The amount of released energy, conserved 
in the form of theoretically up to 36 ATP per glucose by a process called oxidative 
phosphorylation (oxPhos), is far more than in fermentation (in process called substrate-
level phosphorylation). Nevertheless, many aerobic organisms, including S. cerevisiae, 
retain the fermentative capacity. The Crabtree effect is a hallmark of S. cerevisiae 
metabolism, describing its tendency to ferment glucose to ethanol even in the presence 
of oxygen when sugar is abundant. First described by Herbert Crabtree (Crabtree, 1929) 
and later quantified by van Dijken and Scheffers (Dijken & Scheffers, 1986), the effect 
reflects a metabolic shift from respiration to fermentation when the glucose uptake rate 
exceeds the respiratory capacity of the mitochondria, typically above a critical dilution 
rate of 0.25–0.3 h⁻¹ in chemostat cultures. Physiologically, it manifests as a biphasic 
growth pattern: during glucose excess, yeast cells produce ethanol aerobically, and once 
glucose is depleted, they undergo the diauxic shift, oxidizing ethanol to CO₂ and water. 
The effect is not universal to all yeasts but characteristic of “Crabtree-positive” species, 
including S. cerevisiae and Kluyveromyces marxianus, which evolved in sugar-rich 
environments where rapid substrate consumption provided a competitive advantage 
(Hagman & Piškur, 2015; Pfeiffer & Morley, 2014). In contrast, “Crabtree-negative” 
yeasts such as Pichia stipitis (now Scheffersomyces stipitis) and Candida utilis maintain 
fully respiratory metabolism in the presence of oxygen regardless of glucose concentration 
(Dijken & Scheffers, 1986; Merico et al., 2007). The Crabtree effect has a regulatory 
advantage that supports high glycolytic fluxes and rapid ATP turnover (Malina et al., 2021; 
Pfeiffer & Morley, 2014). 

To undergo TCA cycle, pyruvate is converted to acetyl groups and activated by an 
irreversible oxidative decarboxylation reaction by pyruvate dehydrogenase (PDH) 
complex, producing 1 molecule of CO2 and 1 molecule of NADH. Acetyl-CoA is condensed 
with oxaloacetate (OAA) to form citrate (CIT), which is subsequently rearranged and 
oxidized, regenerating OAA for another cycle run. Therefore, TCA cycle is also called the 
citric acid cycle, or the Krebs cycle (after its discoverer, Hans Krebs, who received a Nobel 
Prize in Physiology or Medicine for this discovery in 1953). In eukaryotes, it takes place 
entirely in mitochondria. In this cycle, four of the eight steps are oxidations, conserving 
the energy in the form of 3 reduced coenzymes NADH, 1 flavin adenine dinucleotide 
(FADH2), and 1 energy currency molecule (GTP or ATP). The chemical energy extraction 
releases 2 molecules of CO2 per 1 pyruvate molecule. Because glucose molecule yields 2 
pyruvate molecules, full oxidation of glucose via the TCA cycle releases total of 6 CO2 
(2 from PDH and 4 from the TCA cycle). Intermediates of the TCA cycle are siphoned off 
as biosynthetic precursors (2-oxoglutarate, succinate, oxaloacetate); it is a hub of 
metabolism, closely regulated (Nelson et al., 2021). 

Respiration proceeds with NADH and FADH2 in mitochondria transferring electrons to 
the electron transport chain. In case oxygen as the final electron acceptor is not available, 

https://www.zotero.org/google-docs/?RLtG6z
https://www.zotero.org/google-docs/?TpkoHJ
https://www.zotero.org/google-docs/?4qUp2f
https://www.zotero.org/google-docs/?zxleKY
https://www.zotero.org/google-docs/?Yx662q
https://www.zotero.org/google-docs/?o7UnKR
https://www.zotero.org/google-docs/?o7UnKR
https://www.zotero.org/google-docs/?bWSGeF
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the buildup of reduced cofactors inhibits TCA enzymes (dehydrogenases), and the 
cycle stalls or shifts to branched operation to supply succinate, oxaloacetate, and 
2-oxoglutarate, but not as a full oxidative loop. In case glucose is unavailable, cells shift
metabolism and the TCA cycle is fed with acetyl-CoA and 2-oxoglutarate from other
carbon sources (ethanol, acetate, fatty acids, amino acids), facilitating the production of
phosphoenolpyruvate (PEP), a glycolytic intermediate – precursor of gluconeogenesis
(essentially reverse glycolysis, but with bypass reactions to irreversible phosphofructokinase
and hexokinase reactions). In such a scenario, ATP production can continue, if O2 is
available. There are 12 precursors – building blocks – for biomass synthesis required.
They are generated by central metabolic pathways: glucose-6-phosphate, fructose-6-
phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, phosphoenolpyruvate,
pyruvate (all glycolysis), ribose-5-phosphate, erythrose-4-phosphate (both PPP),
acetyl-CoA, oxaloacetate, 2-oxoglutarate, and succinyl-CoA (all TCA cycle) (Neidhardt
et al., 1990).

Electron transport chain (ETC) in yeasts is a series of inner mitochondrial membrane 
proteins (Complexes I–IV, ubiquinone (coenzyme Q), and cytochrome c) releasing 
electrons and protons from their reduced cofactors NADH and FADH2 and using the free 
energy to pump protons from mitochondrial matrix to the intermembrane space, 
generating an electrochemical proton gradient (the proton motive force). Flow of 
protons in yeasts, animals and many bacteria is accepted at the end by oxygen. No ATP 
is produced directly at this stage. Proton flow through the last protein complex, ATP 
synthase, drives the rotary motion of its rotor subunits, which induces conformational 
changes in the catalytic F₁ domain that enable phosphorylation of ADP to ATP (thus, 
the name oxidative phosphorylation) on the matrix side of the inner mitochondrial 
membrane (Boyer, 1997). In analogy, the proton gradient across the inner mitochondrial 
membrane is like water stored behind a dam – it holds potential energy. The stoichiometry 
of ATP production depends on (i) the number of subunits in the c ring of the F0 complex 
and (ii) the number of protons per NADH pumped in the intermembrane space (widely 
accepted experimental value is 10 protons). Full rotation of the F1 domain produces 
3 ATP. Atomic force microscopy has shown yeast mitochondria have 10 c subunits. 
Adding 3 protons to bring 3 Pi into the matrix brings a total cost of 13 protons 
(~4 protons/ATP). Oxidizing 1 NADH produces (10 protons/4 protons ATP–1) 2.5 ATP, 
which due to transport costs, potential proton leak and less efficient NADH shuttles is 
lower than the theoretical maximum. If the cell has a different electron transport chain, 
like S. cerevisiae who lack one of the ETC proteins (Complex I), the ATP yield per NADH 
drops even more to (6 protons/4 protons ATP–1) 1.5 (Nelson et al., 2021).  

Fatty acid biosynthesis is one of the cytosolic biosynthetic pathways – reactions that 
provide precursors for macromolecules and secondary metabolites. It proceeds via a 
cyclic sequence of four main enzymatic reactions – condensation, reduction, dehydration, 
and a second reduction – catalyzed by the multifunctional fatty acid synthase (FAS) 
complex. Each cycle elongates the acyl chain by two carbons, contributed from 
malonyl-CoA, which itself is generated by carboxylation of acetyl-CoA through the action 
of acetyl-CoA carboxylase (ACC). Thus, for every elongation step, one molecule of 
acetyl-CoA (as the starter unit) and one molecule of malonyl-CoA (as the extender unit) 
are consumed, along with 2 molecules of NADPH as reducing equivalents. The process 
continues iteratively until the full-length fatty acid, typically palmitoyl-CoA (C16:0), 
is synthesized. In eukaryotic cells such as S. cerevisiae, this process occurs in the cytosol, 
followed by either elongation and desaturation by dedicated enzymes in the endoplasmic 
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reticulum, or acylation of glycerol backbone to synthesize neutral lipids (triacylglycerols, 
TAGs)  (Ratledge & Wynn, 2002a; Tehlivets et al., 2007). 

Xylose metabolism is crucial in the context of biorefineries of lignocellulosic biomass – 
one of the most abundant biomass sources on earth (Sànchez Nogué & Karhumaa, 2015). 
The xylose assimilation pathway converts xylose into xylulose-5-phosphate through a 
series of enzymatic reactions catalyzed by xylose reductase (XR), xylitol dehydrogenase 
(XDH), and xylulokinase (XK). The resulting xylulose-5-phosphate enters the pentose 
phosphate pathway. In yeasts, this process often causes a redox imbalance due to the 
differing cofactor specificities of XR and XDH, whereas bacteria use a simpler isomerase 
pathway that avoids this limitation (Bhosale et al., 1996). 

Central metabolism is versatile, regulated and robust to produce biomass in a wide 
variety of environmental conditions. While the general metabolic architecture is 
conserved across all domains of life, yeast metabolism exhibits adaptations (such as 
Crabtree effect) that make yeasts powerful model systems and hosts for metabolic 
engineering compared with both prokaryotic and multicellular eukaryotic systems. 

1.3 Gene - protein relationship 
Almost all chemical reactions in living systems are catalyzed by enzymes, and all known 
enzymes are proteins (F. H. Crick, 1958). Enzymes are proteins with catalytic activity. 
Proteins are sequences of covalently bonded amino acids which form three-dimensional 
structures. In nature, there are 20 different amino acids that can be combined in 
sequences to form proteins. Polypeptides with molecular masses greater than 
approximately 10 kDa (corresponding to ~100 amino acid residues) are conventionally 
termed proteins, whereas smaller chains are referred to as oligopeptides or peptides 
(Nelson et al., 2021). This distinction reflects the minimal chain length required for a 
polypeptide to fold into a stable tertiary structure and exhibit independent biological 
function. Proteins also perform a broad range of other cellular functions, including 
regulation, structural support, but it is not their main role. Proteins are at the centre of 
a living system because to produce a new small molecule, the cell needs to produce a 
new protein to catalyse the reaction. 

Protein synthesis requires a signal and information on the sequence of amino acids. 
This is controlled by genes, but not directly. Genes are linear (one-dimensional) 
sequences of deoxyribonucleic acids (DNAs) that carry this information inside the cells. 
The signal for protein synthesis originates from the activation of gene transcription (via 
some transcription factor (TF), which is a protein too) in response to cellular and 
environmental cues (nutrient levels, stress, cell cycle, external signals). In yeast, genes 
are densely packed into structures called chromosomes (16 in S. cerevisiae) primarily 
located in the nucleus, with a small number present in mitochondrial DNA. Protein 
synthesis proceeds through two main stages: transcription in the nucleus, where DNA is 
unpacked, transcribed into messenger ribonucleic acid (mRNA) by RNA polymerase II 
(and TFs) and exported to the cytoplasm through nuclear pores, and translation in the 
cytoplasm, where ribosomes decode the mRNA to assemble linear amino acid chains 
corresponding to sequence of DNA in a gene. While the classic view of “one gene – one 
protein” provides a useful simplification, the relationship between genes and proteins 
is more complex. In eukaryotes, a single gene can give rise to multiple protein 
isoforms through mechanisms such as alternative splicing, alternative start sites, 
or post-translational processing. Alternatively, a protein complex (such as ATP synthase) 
is a functional assembly composed of multiple distinct polypeptide subunits, each 
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encoded by a separate gene, illustrating cooperative interactions among several gene 
products rather than from single proteins acting alone. Conversely, multiple genes may 
encode identical or functionally redundant proteins, as seen in gene duplicates or 
isoenzymes. In yeast, alternative splicing is rare, but alternative promoter usage and 
gene duplication are common, providing metabolic and regulatory flexibility. Translation 
occurs either on free cytosolic ribosomes or on those bound to the endoplasmic 
reticulum, depending on the destination of the protein. Mitochondria also possess 
their own ribosomes for the synthesis of a few organelle-encoded proteins. Following 
translation, proteins fold and may undergo post-translational modifications before 
reaching their functional location. Although the final shape of the folded protein is 
dictated by amino acid sequence, the precise three-dimensional structure (native 
conformation) is crucial to its function and requires the right cellular environment – 
pH, ionic strength, metal ion concentrations, etc. Thus, DNA sequence alone is not 
enough to form and maintain a fully functioning cell (Alberts et al., 2022; Nelson et al., 
2021). 

Synthesis of a protein true to the information specified in its mRNA requires energy. 
One ATP for amino-acid activation by aminoacyl-tRNA synthetase, two GTP for elongation 
and ribosomal translocation, and a fractional ATP for initiation and chaperone-mediated 
folding. Protein biosynthesis is one of the most energy-demanding cellular processes. 
RNA and DNA synthesis each require one nucleoside or deoxynucleoside triphosphate 
per monomer addition, together with auxiliary ATP usage by helicases, ligases, and 
topoisomerases. Polysaccharide and cell-wall polymerization involve UTP or ATP hydrolysis 
to generate activated sugar donors (e.g., UDP-glucose, GDP-mannose), while lipid 
biosynthesis requires ATP for acyl-CoA activation and malonyl-CoA formation, 
in addition to NADPH for reductive steps (Alberts et al., 2022; Nelson et al., 2021). This 
polymerization cost represents the sum of all high-energy bond hydrolyses directly 
required to convert metabolic precursors into macromolecules. Based on chemostat 
energy‐balance calculations for S. cerevisiae, Verduyn et al. (Verduyn, 1991; Verduyn 
et al., 1990) quantified this demand as approximately 24 mmol ATP per g cell dry weight 
(gDW). 

Mechanisms of protein biosynthetic machinery are remarkably well conserved 
across all life-forms because a typical cell requires thousands of different proteins to 
respond to a cell's needs at any given moment. The cellular resources that are devoted 
to this process are remarkable; up to 90% of the chemical energy and more than 35% of 
the cell’s dry weight (CDW). Despite complexity, a polypeptide of 100 residues in an 
Escherichia coli cell (at 37 °C) is synthesized in about 5 seconds (Nelson et al., 2021). 
That is because each of 20 amino acids is encoded by a triplet combination of 4 DNA 
nucleotide bases (adenine (A), thymine (T), guanine (G), and cytosine(C)), known as the 
genetic code. The code is nearly universal, non-overlapping, and degenerate, 
meaning that most amino acids are encoded by multiple codons (F. H. C. Crick, 1968). 
Several codons, such as initiation codon AUG and termination codons UAA, UAG, and 
UGA) serve special functions and do not code for any known amino acids. Some codons 
for a particular amino acid are used more frequently than others, called codon (usage) 
bias, refers to the unequal usage of synonymous codons in an organism’s genome 
(Nelson et al., 2021). In genetic and metabolic engineering, codon optimization is 
crucial when expressing heterologous genes, as mismatched codon usage can severely 
limit protein production and metabolic fluxes. Rational adjustment of codon usage 
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allows fine-tuning of enzyme expression levels and pathway balance, improving the 
performance of synthetic or engineered cell factories (Sharp & Li, 1987). 

The central dogma of molecular biology describes the unidirectional flow of genetic 
information from DNA to RNA to protein, and not the other way around (F. Crick, 1970). 
DNA encodes hereditary information, but proteins are the molecular instruments, 
through which genetic information is expressed. While the core framework remains 
valid, discoveries such as reverse transcription, RNA-based regulation, and epigenetic 
control have expanded the concept to encompass multiple feedback and regulatory 
layers. Nevertheless, these concepts revealed how genotype determines phenotype. 
Together, the discovery of genetic code unified genetics and biochemistry, laid the 
foundation for molecular genetics, and opened the way to biotechnology, synthetic 
biology, and modern computational modeling of cellular systems. The understanding of 
gene-protein relationships enables to transform biology into a rule-based information 
system that can be modeled, simulated, and engineered. 

1.4 Methodological approaches of computational design 
Gene sequence that is linked to a protein sequence of known function is a logical rule 
that can be stored as an information bit. The first entries linking genes to proteins came 
from manual knockout and biochemical characterization, followed by sequencing of 
genes (Sanger et al., 1977) and proteins (Edman degradation) and curated entry into 
early databases, such as SWISS-PROT (Bairoch, 1996). In the 1980s sequencing accelerated, 
but annotation was still manual. Experts compared sequences and literature to assign 
enzyme functions. From 1956, Enzyme Commission (EC) numbers were used to standardize 
reaction types those enzymes catalyze (Dixon & Webb, 1958). Gene-protein-reaction 
(GPR) associations were assigned by human curation, not algorithms. Even when 
sequencing was semi-automated (Sanger-based in the 1980s), their functional mapping 
was not automatic yet. 

With the advent of whole genome sequencing, including single-cell technologies, 
in the 1990s powered by next generation sequencing technologies (NGS) (Goodwin et al., 
2016; Levy & Myers, 2016; Shapiro et al., 2013), gene sequencing became automated. 
Mass spectrometry methods developed for detection and quantification of thousands of 
proteins inside the cell (Aebersold & Mann, 2003; Millán-Oropeza et al., 2022; Sánchez 
et al., 2021). The study of these datasets is called -omics (proteomics, genomics, and so 
forth) (Cammack, 2006). Altogether, thousands of new gene and protein sequence data 
were generated, but there was no time for manual annotation. Therefore, functional 
annotation became semi-automated to: (i) compare new sequences to known databases 
(BLAST), (ii) transfer functional annotation from homologs (ortholog mapping OrthoFinder 
(Emms & Kelly, 2019)), and (iii) assign functional categories such as Gene Ontology (GO) 
terms (The Gene Ontology Consortium et al., 2021), enzyme commission (EC) numbers, 
and pathway membership automatically via databases including KEGG (Kanehisa et al., 
2021), BioCyc (Karp et al., 2019), Swiss-Prot, Uniprot (Bairoch, 1996), BRENDA (Schomburg, 
2002). 

Modern functional annotation pipelines use gene sequencing (Illumina, Nanopore, 
PacBio) and proteomic identification (Mascot, MaxQuant), bioinformatics and database 
integration to infer GPRs automatically, providing the molecular link for systems biology 
models that links genome content to metabolic capability (The UniProt Consortium et al., 
2023). Bioinformatics and machine learning models trained on millions of known 
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sequences to predict enzyme functions from sequence features (Y. Li et al., 2018; Ryu 
et al., 2019). Only the quality control and GPR curation is refined by expert curation for 
accuracy. 

Diverse uses of the gene-protein relationship – from stochastic fluctuations to flux 
predictions – illustrate how molecular biology information becomes a quantitative element 
of different types of computational design strategies (Table 1). Modeling frameworks 
that directly quantitatively link genotype to phenotype for describing and predicting 
cellular behaviour are constraint-based models; they provide a mechanistic mapping 
between genes, enzymes, and reactions that can be expressed quantitatively through 
flux constraints and by extension enzyme capacity terms (Lu et al., 2024). Beyond these, 
the gene-protein relationship plays distinct roles across other computational design 
strategies. In boolean / logic models, it defines qualitative activation rules for genes and 
reactions, forming the foundation of regulatory network simulation (Kauffman, 1969; 
Thomas, 1973). In stochastic models, it underlies probabilistic gene expression events 
that generate variability in protein abundance (Elowitz & Leibler, 2000; McAdams & 
Arkin, 1997). In regulatory network models, genes produce proteins that act as 
transcription factors regulating other genes, forming dynamic feedback circuits that 
quantitatively define gene-protein causality (Gardner et al., 2000; Karlebach & Shamir, 
2008). In kinetic models, protein concentrations appear explicitly in rate equations as 
catalysts determining reaction velocities, linking gene expression to metabolic dynamics 
(Teusink et al., 2000). At the protein level, structural enzyme design uses the gene-protein 
relationship directly to manipulate amino acid sequences and catalytic properties, 
thereby improving reaction kinetics (Huang et al., 2016; Jumper et al., 2021). Machine 
learning-based prediction tools exploit the vast landscape of gene-protein data to infer 
enzyme functions, kinetics, and phenotypes from sequence or omics features (Heckmann 
et al., 2018; F. Li et al., 2022). Beyond constraint-based approaches, emerging multi-scale 
models  extend predictive power toward dynamic and regulatory phenomena, such as 
kinetic and expression-coupled models (ME-models), constraint-based modeling combined 
with transcriptional regulatory networks, multi-scale and whole-cell models (WCMs), 
as reviewed elsewhere (Lu et al., 2024). 

Despite enormous demand for building strong chassis strains for metabolic 
engineering, advanced computational models for rational strain design are still in their 
infancy (Lu et al., 2024). Nevertheless beyond their role in validation, computational 
design tools are increasingly used to accelerate rational metabolic engineering. 
Computational design also facilitates multi-omics integration, as described in the next 
section, helping to disentangle regulatory from capacity-based constraints and to 
contextualize proteomic or transcriptomic shifts (O’Brien et al., 2015). Moreover, these 
models assist in strain comparison, hypothesis generation, and resource allocation 
analysis, providing a quantitative basis for enzyme economy and proteome investment. 
Together, computational modeling is a cornerstone of predictive and data-driven strain 
design, bridging molecular mechanisms with system-level optimization and enabling 
faster, more sustainable engineering of cell factories. 
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Table 1. Computational design strategies for cell factories. 

Design framework Scope and scale Mathematical 
formulation 

Role of gene-
protein 
relationship 

Constraint-based 
modeling 

Steady-state fluxes 
in metabolism 

Linear 
programming 

Quantitative, 
stoichiometric 

Boolean / logic 
modeling 

Regulatory or 
metabolic 
activation states 

Boolean logic Qualitative (on/off) 

Stochastic 
modeling 

Randomness in 
molecular events 

Gillespie / 
stochastic 
differential 
equations 

Noise in gene-
protein expression, 
indirect 

Regulatory (gene 
regulatory 
networks) 

Control of gene 
expression 

Boolean / 
differential 
equations 

Causal, with 
quantitative link 

Kinetic modeling Dynamic metabolic 
reaction rates 

Ordinary 
differential 
equations 

Often 
parametrized 
indirectly 

Structural enzyme 
design 

Optimize catalytic 
properties, 
cofactor use, 
stability 

Physics-based Direct sequence 

Machine learning 
based prediction 
tools 

Predict enzyme 
function, kinetics 
or phenotype 

Data driven / 
supervised or deep 
learning 

Implicit (learned 
from data) 

1.5 Genome-scale metabolic models and flux balance analysis 
The gene-protein relationship forms the structural foundation of genome-scale 
metabolic models (GEMs). Early metabolic reconstructions were primarily stoichiometric 
representations of biochemical reactions, disconnected from the genome. With the 
advent of complete genome sequencing and functional annotation, each reaction could 
be formalized as gene-protein-reaction (GPR) rules. These associations, expressed as 
Boolean logic (“AND” for multi-subunit complexes, “OR” for isoenzymes), allow creating 
a mechanistic map from genotype to metabolic phenotype (Thiele & Palsson, 2010). 

GEM is constructed using the organism's genome information and it encompasses all 
biochemical reactions inside the cell, including reactions of enzymes and transporters 
encoded in the DNA (Thiele & Palsson, 2010). Model reconstruction is semi-automatic – 
ModelSEED, CarveMe, RAVEN, KBase, using curated databases, such as SGD (Hellerstedt 
et al., 2017), KEGG, BioCyc, Reactome, Uniprot, and experimental data on substrate 
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usage (Domenzain et al., 2021). The scale of a genome makes it a valuable source of 
information about the organism. The model’s quantitative conception is based on 
ordinary differential equations of change of metabolite concentrations in time. This 
means that the production of a product with rate v is accompanied by the decay of a 
substrate with rate -v, with stoichiometric coefficients denoting the proportion of 
substrate and product molecules involved in a reaction. For a metabolic network 
consisting of m substances and r reactions, the system dynamics is described by the 
system equations (Equation 1.1), or the mass balance equations assuming reactions are 
the only cause for mass flow: 

𝑑𝑑𝑆𝑆𝑖𝑖
𝑑𝑑𝑑𝑑

= ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑟𝑟
𝑗𝑗=1 𝑣𝑣𝑗𝑗  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, . . . ,𝑚𝑚 (1.1) 

Where quantities nij are the stoichiometric coefficients of the ith metabolite in the jth 
reaction. The stoichiometric coefficients nij assigned to the compounds Si and the 
reactions vj can be combined into the stoichiometric matrix N, where each column 
belongs to a reaction and each row to a compound. 

 Altogether, the mathematical description of the metabolic system in steady state 
consists of a vector S of concentration values, a vector v of reaction rates, a parameter 
vector p, and the stoichiometric matrix N (Equation 1.2). 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑁𝑁𝑁𝑁 = 0 (1.2) 

The stoichiometric matrix N does not contain information about pre-assumed 
thermodynamics (reaction reversibility), but the sign in front of rate v describes it. If 
complete kinetic information is not available, as is the true situation for many of 
reactions, it is possible to assume a metabolic quasi-steady state, in which rates of 
metabolite formation and degradation inside the cell are equal (Nv = 0), ie. the mass of 
metabolites does not accumulate internally. Being of a scale of a genome, the N matrix 
is very large and underdetermined; metabolism is very interconnected and the number 
of reactions exceeds the number of metabolites (Varma & Palsson, 1994). From linear 
algebra, this equation has no trivial solutions (Klipp, 2016). 

To simulate and analyze the flow of metabolites with GEM, the powerful Flux Balance 
Analysis (FBA) method is used (Lewis et al., 2012). FBA uses linear programming to find a 
distribution of reaction rates (fluxes) by optimizing for an objective function (z) while 
accounting for mass conservation and thermodynamic constraints but satisfying the 
constraints of the metabolic network (lb, ub) under steady state assumption (Orth et al., 
2010) (Equation 1.3). 

𝑁𝑁𝑁𝑁 = 0 
𝑙𝑙𝑙𝑙 < 𝑣𝑣𝑖𝑖 < 𝑢𝑢𝑢𝑢, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑧𝑧  (1.3) 

Underdetermined systems are characterized by a solution space of infinite solutions, 
rather than just one. The constraints of a metabolic network, which calibrate model 
behavior, represent substrate uptake and secretion rates, called bounds b, and these are 
experimentally determined values. Through the constraints as  the lower bound (lb) and 
upper bound (up) of metabolic reactions as described in Eq. 1.3, the model integrates 
both experimental data and a pre-assumed reaction thermodynamics (Edwards et al., 
2002). A commonly used objective function z in FBA is maximization of cellular growth 
rate (Feist & Palsson, 2010). The growth rate is implemented as a biomass synthesis 
pseudo-reaction, similarly as external metabolites that are not included in the initial mass 
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balance equations based on GPR. Biomass synthesis reaction is a simplification of 
complex biosynthetic processes, such as protein, RNA, DNA, lipid, cell wall formation, 
by combining all metabolic precursors, cofactors, and energy requirements in the 
stoichiometric proportions necessary to produce one gram of CDW with a flux rate 
corresponding to the specific growth rate μ of the organism. The stoichiometric 
proportions are derived from experimental biomass composition data (eg., protein, 
carbohydrate, lipid fractions), elemental analysis, polymer composition (amino acid, 
nucleotide, fatty acid distribution. This reaction also includes the energetic costs of 
biosynthesis, captured through ATP, GTP, UTP, and NAD(P)H usage, obtained from 
chemostat experiments, which together define the growth-associated maintenance 
(GAM) term (Feist & Palsson, 2010). The maintenance processes that drive metabolic 
processes of the cell different than biosynthetic, polymerization, or anabolic metabolic 
reactions - cellular homeostasis (turgor pressure, pH regulation), maintenance of ion 
gradients, and others - are included in non-growth associated maintenance (NGAM) 
(Thiele & Palsson, 2010). NGAM is an ATP hydrolysis reaction (1 ATP + 1 H2O → 1 ADP + 
1 Pi + 1 H+), which in yeast models was set between 0.5-1 mmol (gCDW h)-1 (Sánchez 
et al., 2017). The ATP yield per NADH (P/O ratio) is not defined as a fixed parameter but 
emerges from the stoichiometric coupling of the electron transport chain and ATP 
synthase reactions. In modern GEMs such as Yeast8 and ecYeast8, the stoichiometry of 
ATP synthase was changed to correctly represent the effective P/O ratio that applies to 
organisms that lack proton-translocating Complex I (Ferguson, 2010; Sánchez et al., 2017). 
On a final note about constraints, metabolic transients are typically rapid compared to 
growth rates (Stephanopoulos et al., 1998), making steady-state assumption reasonable. 

By predicting fluxes, researchers can find out how nutrients are utilized, how 
byproducts are generated, which metabolic pathways are active inside the cell. With GEMs, 
it is possible to quantitatively predict targets for metabolic engineering, manipulate 
reactions in silico, allowing for prediction of a knockout phenotype or heterologous 
byproducts, guide medium and process optimization through scenario testing under 
varying oxygen, carbon, or nutrient regimes (Kerkhoven et al., 2014). Due to relative ease 
of implementation, GEMs are one of the core quantitative tools enabling computational 
design. Since the first yeast GEM reconstruction of S. cerevisiae in 2003, more than 45 
metabolic models have been developed for a wide variety of yeast-based cell factories. 
A landscape of yeast GEMs, their accessibility and usability is available from The FEMS 
Yeast Research review (Domenzain et al., 2021). However, their accuracy and predictive 
capacity depend on parametrization, constraints, and validation. 

Because genome-scale models are quantitative frameworks, their predictive power 
relies on accurate experimental parameterization and validation. Experimental data  are 
used to constrain and calibrate (fitting bounds/parameters) model behavior. The FEMS 
Yeast Research review (Domenzain et al., 2021) discusses that many yeast GEMs lack 
consistent, reproducible validation (testing on held-out observables/conditions) 
across species and indicates the type of biological and computational methods used 
when available. Genetic perturbations, including gene deletions, overexpression, and 
knockdowns, isotope labeling (13C) and comparing predicted and measured phenotypes, 
including growth rates, yields, flux distributions, remain as fundamental experimental 
strategies for validating flux predictions from genome-scale metabolic models. 
By systematically engineering cells and measuring resulting phenotypes – such as growth 
rate, substrate uptake, product yield, or intracellular fluxes – researchers can test whether 
model predictions reflect real metabolic responses. Modern tools like CRISPR/Cas9 and 
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CRISPRi enable precise and multiplex genome editing, while omics-based measurements 
provide quantitative validation of flux distribution and proteome allocation. Together, 
these validation steps establish the quantitative reliability of the ecGEMs across multiple 
observable levels - from global phenotypes to proteome allocation. Such comprehensive 
evaluation forms the basis for subsequent computational design and interpretation of 
experimental results presented in the following chapters. 

1.5.1 Enzyme-constrained models 
The prediction of biologically meaningful metabolic flux values is the major challenge of 
GEMs, as a result of all assumptions made upon the construction. Also, not always 
experimental yeast data are readily available for a wide variety of organisms across 
different conditions. Enzyme-constrained genome-scale models (ecGEMs) are built on 
the principle that any metabolic flux, apart from the constraints already discussed earlier, 
has a natural biological constraint equal to the enzyme’s concentration [E] multiplied by 
the enzyme’s turnover number (kcat). In the ecGEMs, this constraint, derived through 
Michaelis-Menten equation, is defined and implemented as the maximum rate of 
enzymatic reaction (vmax) that the metabolic flux (v) cannot exceed (Sánchez et al., 2017) 
(Equation 1.4): 

𝑣𝑣 ≤ 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐[𝐸𝐸] (1.4) 

This way, GEMs are used as scaffolds for proteomic data integration and 
interpretation (Sánchez & Nielsen, 2015), and can execute simulations without 
experimental data on substrate usage. The very first enzyme-constrained model was 
developed in yeast Saccharomyces cerevisiae in 2017 (Sánchez et al., 2017) and was 
capable of capturing the Crabtree effect. 

1.6 Aims and significance 
A central challenge in modern biotechnology is to understand and predict how cellular 
metabolism responds to genetic and environmental perturbations. Achieving this 
requires computational models capable of quantitatively describing enzyme- and 
resource-limited metabolism. Enzyme-constrained genome-scale models (ecGEMs) 
provide a powerful framework for this purpose, linking enzyme capacity to metabolic flux 
and thus improving prediction accuracy beyond traditional constraint-based approaches. 
Such models are critical not only for advancing fundamental understanding of metabolic 
organization but also for accelerating design-build-test-learn cycles in metabolic 
engineering, reducing development costs and time-to-market for bioprocess 
innovations. 

The overarching aim of this thesis was to develop, apply, and critically evaluate 
enzyme-constrained genome-scale models for predicting yeast metabolism across both 
model and non-model yeasts. Specifically, the aims were: 

(i) to parameterize and validate ecGEMs of Saccharomyces cerevisiae and Rhodotorula
toruloides as tools for quantitative metabolism studies using quantitative
proteomics, exchange flux measurements, and targeted genetic perturbations;

(ii) to assess their predictive capacity in reproducing experimental phenotypes and
proteome allocation patterns;

(iii) to identify biological and methodological factors that limit their accuracy.

https://www.zotero.org/google-docs/?U4O19d
https://www.zotero.org/google-docs/?oKWJz0
https://www.zotero.org/google-docs/?8aG9pI
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2 Materials and methods 
To parametrize and validate ecGEM of a model yeast S. cerevisiae (Study 1), growth 
experiments accompanied with absolute proteome quantification were performed in 
both engineered (R,R)-2,3-butanediol (23BD) producer strain and the wild type strain. 
Similarly, growth characterisation and absolute proteome quantification were 
performed in the wild type strain of R. toruloides (Study 2). Moreover, these experiments 
were performed on three various carbon sources - glucose, xylose and acetate. After 
parametrization of the ecGEM, its predictions were validated by engineering gene 
knockout strains and characterizing their growth on the same carbon sources. 
The corresponding publications to these two studies are outlined in Table 2. The materials 
and methods refer to Study I or Study II. 

Table 2. Studies and related publications included in this thesis. 

Study Topic Deliverables Reference 

1 Evaluating and 
validating 
enzyme-
constrained 
genome-scale 
modeling of 
anaerobic 
cultivation in S. 
cerevisiae 

(i) Engineering of a 23BD producer
strain;
(ii) Growth characterisation and
absolute proteome quantification of
the engineered and wild type strains;
(iii) In silico flux and proteome
prediction using total-protein ecGEM;
(iv) Integration of absolute proteome
abundances to the ecGEM and in silico
flux prediction.

Publication I 

2 Predicting and 
validating central 
carbon 
metabolism in the 
oleaginous yeast 
R. toruloides

(i) Growth characterization and
absolute proteome quantification of a
wild type strain on different carbon
substrates;
(ii) Development of condition-specific
proteomics-constrained ecGEMs;
(iii) In silico flux predictions.

Publication II 

2 Predicting and 
validating central 
carbon 
metabolism in the 
oleaginous yeast 
R. toruloides

(i) Engineering of different gene
knockout strains;
(ii) Growth characterization of gene
knockout strains on different carbon
sources.

Publication III 
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2.1 Strains and media 
The S. cerevisiae and R. toruloides strains relevant to this thesis are listed in Table 3. 
Of the S. cerevisiae strains, only GSY013 and GSY014 were used to generate results 
presented here. All yeast strains were cultivated in chemically defined media. The base 
medium was prepared according to Verduyn et al., previously optimized for yeast 
biomass formation under glucose-limited conditions (Verduyn et al., 1992). Auxotrophic 
markers and a Tween-ergosterol-ethanol supplement were added to support growth of 
auxotrophic strains under anaerobic conditions (Study 1). In Study 1, standard starting 
glucose concentrations were used as a carbon source. In Study 2, non-standard starting 
concentrations of glucose (63.6 g/L), xylose (70 g/L), and acetate (20 g/L) were used in 
actively controlled bioreactor cultivations. For lipid production in R. toruloides, the 
nitrogen concentration was reduced to achieve a starting carbon-to-nitrogen (C/N) ratio 
of 69 or 80 (mol/mol) (Study 2). Only R. toruloides CCT 7815 cultures on glucose used 
urea instead of ammonium sulfate as the nitrogen source (Study 2). Routine yeast growth 
was performed in YPD medium (10 g L⁻¹ yeast extract, 20 g L⁻¹ peptone, 20 g L⁻¹ glucose). 

For plasmid propagation and routine cloning, Escherichia coli strains DH5α (Study 1) 
and TOP10 (Study 2) were grown in LB medium containing 5 g L⁻¹ yeast extract, 10 g L⁻¹ 
peptone, and 10 g L⁻¹ NaCl. For plasmid propagation intended for R. toruloides, 
kanamycin was added to LB medium (Study 2). 

Table 3. S. cerevisiae and R. toruloides strains relevant to this thesis. 

Study Strain name 
(accession 
number) 

Description of relevant 
genotype 

Parental 
strain 

Reference 

Study 1 S. cerevisiae
CEN.PK113-
7D

(Entian & 
Kötter, 2007) 

Study 1 IMX672 
(Y40595) 

MATa ura3-52 trp1-289 
leu2-3112 his3Δ 
can1Δ::cas9-natNT2 

S. cerevisiae
CEN.PK2-1C

(Mans et al., 
2015) 

Study 1 GSY006 pROSU-mth1-pdc5+6 
trp1-289 leu2-3112 his3Δ 
pdc6::pTEF1-ACH1; 
MTH1ΔT; pdc5 

IMX672 Publication I 

Study 1 GSY008 pROSH-pdc1; trp1-289 
leu2-3112 pdc6::pTEF1-
ACH1; MTH1ΔT; pdc5Δ; 
pdc1::(alsD-tADH2 
pTDH3-BDH1 pFBA1-
budA) 

GSY006 Publication I 

Study 1 GSY013 pTHUL IMX672 Publication I 

https://www.zotero.org/google-docs/?RJtees
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Study 1 GSY014 pTHUL; pdc6::pTEF1-
ACH1; MTH1ΔT; pdc5Δ; 
pdc1::(alsD-tADH2 
pTDH3-BDH pFBA1-
budA) 

GSY008 Publication I 

Study 2 R. toruloides
CCT 7815

R. toruloides
CCT 0783

(Bonturi et 
al., 2017) 

Study 2 R. toruloides
NBRC 0880

(Zhang et al., 
2016) 

Study 2 ΔACL pPBO.202-9725(1) 
(random integration) 

R. toruloides
NBRC 0880

Publication III 

Study 2 ΔPK pPBO.202-13382(3) 
(random integration) 

R. toruloides
NBRC 0880

Publication III 

Study 2 ΔcMAE pPBO.202-12761(1) 
(random integration) 

R. toruloides
NBRC 0880

Publication III 

2.2 Plasmid construction and strain engineering 
Yeast transformation was performed using lithium acetate/PEG-mediated chemical 
transformation method as described by Mans et al. (Mans et al., 2018) (S. cerevisiae) and 
Publication III (R. toruloides). Colonies of the resultant strains were screened by PCR 
amplification of relevant sites and Sanger sequencing (full details are available from 
Publications I and III). 

In Publication I, plasmids were constructed by Gibson assembly (Gibson et al., 2009) 
and transformed into E. coli DH5α for propagation. In Publication III, custom guide RNA 
sequences replaced the GFP cassette in plasmid pPBO.202 via a Golden Gate – style 
reaction, using annealed oligonucleotides with BsaI-compatible overhangs in a one-pot 
digestion – ligation with T4 DNA ligase, followed by transformation into E. coli TOP10. 
Selected colonies were screened by PCR and confirmed by Sanger sequencing of the 
relevant regions. 

Plasmids used in this thesis are listed in Table 4. Details of plasmid and PCR DNA 
purification kits, polymerases, as well as sequences of primers and gRNAs are provided 
in the respective publications (Table 2). 

https://www.zotero.org/google-docs/?XxDAXj
https://www.zotero.org/google-docs/?Axmnhh
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Table 4. Plasmids relevant to this thesis. The number in the brackets refers to which gRNA variant 
in a row was successful to generate the gene knockout. Gene symbols in italics denote coding 
sequences; heterologous origins (e.g., B. subtilis alsS, K. pneumoniae budA) are specified in text. 
SpCas9, derived from Streptococcus pyogenes, is indicated explicitly. 

Study Plasmid name Relevant characteristics Reference 

Study 1 pROS10 2µm ampR URA3 gRNA-CAN1 
gRNA-ADE2 

(Mans et al., 
2015) 

Study 1 pROS16 2µm ampR HIS3 gRNA-CAN1 
gRNA-ADE2 

(Mans et al., 
2015) 

Study 1 pBC414 CEN6/ARS4 chlR TRP1 (Frazer & 
O’Keefe, 2007) 

Study 1 pROSU-mth1-pdc5+6 2µm ampR URA3 gRNA-
MTH1 gRNA-[PDC5 and 
PDC6] 

Publication I 

Study 1 pROSH-pdc1 2µm ampR HIS3 gRNA-PDC1 
[2X] 

Publication I 

Study 1 pTHUL CEN6/ARS4 chlR TRP1 LEU2 
HIS3 URA3 

Publication I 

Study 1 pYGS011 ampR budA-tADH2 Publication I 

Study 1 pYGS012 ampR pTDH3-BDH1 Publication I 

Study 1 pYGS013 ampR pFBA1-alsS Publication I 

Study 1 pYGS017 ampR pTEF1-ACH1 Publication I 

Study 2 pPBO.202 KanR G418R eGFP SpCas9 (Otoupal et al., 
2019)  

Study 2 pPBO.202-9725(1) KanR G418R gRNA-ACL 
SpCas9 

Publication III 

Study 2 pPBO.202-13382(3) KanR G418R gRNA-PK SpCas9 Publication III 

Study 2 pPBO.202-12761(1) KanR G418R gRNA-cMAE 
SpCas9 

Publication III 

2.3 Laboratory evolution 
Laboratory evolution was conducted by serially culturing strain GSY014 in 5 mL of 
chemically defined medium under anaerobic conditions for 35 inoculation cycles 
(≈200 generations). The detailed procedure is described in Publication I. 
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2.4 Cultivations 

2.4.1 Batch cultivations in actively controlled bioreactors 
Batch cultivations were performed in 1 L stainless-steel (SS) bioreactor system (Study 1) 
and 1-L glass bioreactors (Study 2) equipped with automated feedback control of 
aeration, temperature, stirring, and pH, ensuring tightly regulated growth conditions. 
Outlet gas composition was continuously monitored using online gas analyzers, and 
antifoam was added as needed to prevent foam formation. Anaerobic conditions in 
Study 1 were maintained by applying a continuous nitrogen stream in the reactor 
headspace. In Study 2, cell turbidity was monitored online using a biomass sensor. Full 
cultivation parameters are provided in the respective publications. 

Seed cultures were prepared in standard chemically defined media in shaker flasks. 
For anaerobic cultivations (Study 1), serum bottles were deoxygenated by alternating 
cycles of vacuum and nitrogen gas. For R. toruloides aerobic cultures (Study 2), pre-seed 
cultures were grown in YPD, followed by seed cultures in defined media containing 
non-standard concentrations glucose (18.2 g L⁻¹), xylose (20 g L⁻¹), or acetate (20 g L⁻¹) at 
a C/N ratio of 8.8. 

Samples for HPLC analysis were taken at each sampling point. In Study 1, optical 
density (OD) was measured at each point, and cell dry weight (CDW) was determined 
twice per batch. In Study 2, CDW was measured three times in xylose and up to six times 
in glucose cultures. Proteomic samples were collected at the penultimate sampling point 
during exponential growth – prior to carbon (Study 1) or nitrogen (Study 2) depletion – 
and an additional sample was taken during nitrogen limitation in Study 2. Samples for 
lipidomics were collected at the final sampling point, when the respective nutrient was 
depleted. Detailed sampling protocols and time points are described in the original 
publications. 

2.4.2 Batch cultivations in sensor-monitored Falcon tube bioreactors 
In Study 2, batch cultivations were also performed in a multi-channel Falcon tube 
bioreactor system equipped with a proprietary reverse-spin mixing mechanism and 
non-invasive optical sensors for real-time monitoring of optical density (OD), pH, and 
dissolved oxygen (DO). Non-standard initial concentrations of glucose (20 g L⁻¹), xylose 
(20 g L⁻¹), and acetate (10 g L⁻¹) were used, while maintaining a starting C/N ratio of 80. 
The pH was adjusted using K₂HPO₄ (acted as a buffer system in glucose/xylose media) or 
KOH (to increase the starting pH in the presence of acetate) but not actively controlled 
during cultivation. Full cultivation parameters are available in the respective publication. 

Seed cultures were prepared by overnight growth in liquid YPD medium in shaker 
flasks. Samples for OD and HPLC analysis were taken at each sample point. Real-time OD, 
pH, and DO data were continuously logged throughout cultivation, and OD readings were 
converted to CDW (g L⁻¹) for data presentation. 

2.5 Analytical methods 
Extracellular metabolites were quantified using high-performance liquid chromatography 
(HPLC) systems equipped with an ion-exclusion column and a refractive index detector 
(RID). In Study 1, trace amounts of organic acids were detected at 210 nm using a 
photodiode array detector (PDA); since these represented < 1 % of the total carbon and 
degree-of-reduction balance, they were excluded from modeling and from the presented 
results. In Study 2, stereoselective analysis of polyols was performed using a chiral 
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stationary phase column with RID detection. Detailed chromatographic conditions are 
provided in the respective publications. 

Optical density was measured spectrophotometrically at 600 nm (OD₆₀₀). Cell dry 
weight (CDW) was determined gravimetrically, and a calibration curve was established 
by linear regression between OD₆₀₀ and CDW to estimate biomass across all sampling 
points. 

Total protein content was quantified from the same frozen cell pellets used for 
proteomic analysis, using a modified Lowry method (Study 1) or the bicinchoninic acid 
(BCA) assay (Study 2). Bovine serum albumin (BSA) served as the standard in both cases. 
Absorbance was measured at 510 nm, and protein concentrations were determined by 
linear interpolation from the BSA standard curve. 

2.6 Absolute proteomics 

2.6.1 Sample preparation for proteomics 
Sampling of cell pellets for proteomic analysis was performed as described in Publication 
I and completed within 3 min to minimize physiological changes. Samples were shipped 
on dry ice to the Proteomics Core Facility, University of Tartu, for processing and analysis. 
Cell pellets were lysed, and total protein yield on biomass (mg g⁻¹ CDW) was determined 
using the bicinchoninic acid (BCA) assay. The lysates were then processed into peptides 
for LC-MS/MS analysis as described previously (Hughes et al., 2019; Sánchez et al., 2021). 
In Study 2, proteome samples were mixed with a heavy-labeled Rhodotorula toruloides 
internal standard grown in defined medium supplemented with ¹⁵N- and ¹³C-labeled 
lysine (also known as SILAC, Stable Isotope Labeling by Amino acids in Cell culture). 

2.6.2 LC-MS/MS analysis 
Peptides were analyzed on an Orbitrap mass spectrometer (Thermo Fisher Scientific). 
In Study 1, the instrument was operated in data-independent acquisition (DIA) mode, 
whereas in Study 2, data were acquired using a data-dependent acquisition (DDA) setup. 
Detailed descriptions of the mass spectrometer components and key data acquisition 
parameters are provided in the respective publications and in Sanchez et al. (Sánchez 
et al., 2021). 

2.6.3 Raw MS data analysis 
Mass spectrometric raw data were processed using DIA-NN (Demichev et al., 2020) for 
Study 1 and MaxQuant (Tyanova et al., 2016) for Study 2. Database searches were 
performed against the UniProt (The UniProt Consortium et al., 2023) reference 
proteomes of Saccharomyces cerevisiae S288C, supplemented with Bacillus subtilis alsS 
and Klebsiella aerogenes budA sequences (Study 1), or Rhodotorula toruloides NP11 
(Study 2). Details of search settings, parameters, and data processing methods that 
deviated from software defaults are provided in Publication I and in Sanchez et al. 
(Sánchez et al., 2021). 

2.6.4 Quantitative and statistical analysis 
Absolute protein quantification was performed using the total protein approach 
(Sánchez et al., 2021), which assumes proportionality between measured MS signal 
intensity and total protein yield on biomass. All quantitative analyses were performed 
with proteome-normalized proteomics data (µg gprotein

–1). For differential expression 

https://www.zotero.org/google-docs/?pK1VEl
https://www.zotero.org/google-docs/?JPlzXC
https://www.zotero.org/google-docs/?JPlzXC
https://www.zotero.org/google-docs/?SAWxN9
https://www.zotero.org/google-docs/?bexRPa
https://www.zotero.org/google-docs/?h1EbU1
https://www.zotero.org/google-docs/?INmhjh
https://www.zotero.org/google-docs/?GiF8vr


30 

analysis, p-values were adjusted for multiple testing using the Benjamini-Hochberg false 
discovery rate (FDR) procedure (Benjamini & Hochberg, 1995a). Additional analyses 
included principal component analysis (PCA) using the ClustVisweb tool (Metsalu & Vilo, 
2015) and gene set analysis with the Piano package (Väremo et al., 2013). In Study 2, the 
rate of protein synthesis per ribosome (also referred to as ribosome efficiency or protein 
translation rate) was calculated as described in Table 5. 

Table 5.  Translation rate calculation example in Study 2 using absolute proteomics data of batch 
cultivations in chemically defined media containing glucose (G), xylose (X), or acetate (A) as the 
carbon source during exponential growth (exp) and nitrogen-limited (Nlim) phases. Reproduced 
from Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 

Parameter Gexp GNlim Xexp XNlim Aexp ANlim 

ribo_mmol_gDCW (median) 4.21E-05 1.30E-05 2.76E-05 9.82E-06 2.25E-05 9.87E-06 

all_protein_mmol_gDCW (recov-adj) 7.65E-03 3.21E-03 5.38E-03 2.88E-03 5.41E-03 3.32E-03 

av. AA in euk. protein 472 

all_prot_mmolAA_gDCWa 3.61E+00 1.52E+00 2.54E+00 1.36E+00 2.55E+00 1.57E+00 

ratio(mmolAA/ribo_mmol)b 8.59E+04 1.17E+05 9.20E+04 1.38E+05 1.14E+05 1.59E+05 

doubling time (h)c 3.63 36.48 12.84 38.51 9.50 57.76 

doubling time (s)d 13064.55 131333.15 46209.81 138629.43 34182.60 207944.15 

translation rate (1/s)e 6.57 0.89 1.99 1.00 3.32 0.76 

μ (1/h) 0.19 0.021 0.054 0.021 0.073 0.012 
aall_protein_mmol_gDCW * av. AA in euk. protein 
ball_prot_mmolAA_gDCW / ribo_mmol_gDCW (median) 
cln(2) / μ (1/h) 
ddoubling time (h) * 3600 
eratio(mmolAA/ribo_mmol) / doubling time (s) 

2.7 Lipidomics 
Sampling of cell pellets for lipidomics analysis was performed as described in Publication 
III. Samples were shipped by regular post to the University of Tartu (for GC-MS analysis)
and to the Estonian University of Life Sciences (for GC-FID analysis). Lipid quantification
via fatty acid methyl ester (FAME) analysis was carried out using gas chromatography
(GC)-based methods.

In Publication II, FAMEs were analyzed by gas chromatography–mass spectrometry 
(GC-MS). After chromatographic separation, compounds were identified by comparing 
retention times and mass spectra with reference standards and entries from the National 
Institute of Standards and Technology (NIST, USA) Mass Spectral Library and quantified 
from extracted ion chromatograms using calibration curves constructed for each 
methylated fatty acid from seven calibration standards prepared with reference 
compounds and the internal standard (hexadecane). Fatty acid extraction and 
derivatization were performed according to Tammekivi et al. (Tammekivi et al., 2021); 
key methodological details and GC-MS parameters are provided in Publication II. 

In Publication III, FAMEs were analyzed by GC-FID. Peaks were identified based on 
retention times of reference standards and quantified using flame ionization detection. 
A one-step fatty acid extraction and derivatization procedure was applied using 

https://www.zotero.org/google-docs/?t3ugn3
https://www.zotero.org/google-docs/?IMi2TD
https://www.zotero.org/google-docs/?IMi2TD
https://www.zotero.org/google-docs/?DYAP2T
https://www.zotero.org/google-docs/?NQ2aQF
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heptanoic acid as the internal standard, as described by (Sukhija & Palmquist, 1988). Key 
instrument operating parameters are provided in Publication III. 

Total lipid yield on biomass was calculated as the sum of individual fatty acid masses, 
expressed as milligram of lipid per gram of cell dry weight (mg g⁻¹ CDW), as described in 
Publication III. 

2.8 Enzyme-constrained genome-scale models 
In Study 1, the recently published total-protein Saccharomyces cerevisiae ecGEM 
(F. Li et al., 2022) was chosen as a starting point for modeling GSY014. The model 
was adapted to anaerobic growth conditions, fitted to experimentally measured 
exchange fluxes of GSY013 and adapted to the genotype of GSY014 as described in 
Publication I. 

In Study 2, the conventional GEM of Rhodotorula toruloides (Tiukova, Prigent, et al., 
2019) served as the starting point for modeling CCT 7815, as no enzyme-constrained 
version (ecGEM) for this species was available. The base model was converted into a 
total-protein ecGEM fitted to experimentally measured exchange fluxes of CCT 7815 
through the GECKO toolbox version 2.0.2 (Domenzain et al., 2022), using R. toruloides 
NP11 enzyme identifiers from UniProt. Individual protein constraints that limited growth 
rate predictions were flexibilized by adjusting their kcat values (and therefore the upper 
bounds of enzyme usage), initially retrieved from the BRENDA database via the algorithm 
described by Domenzain et al. (Domenzain et al., 2022). The detailed procedure for 
flexibilization is described in Publication II. 

The total-protein ecGEMs were subsequently constrained by measured exchange 
fluxes and biomass-normalized proteomics data (µg gCDW–1) using the GECKO pipeline, 
resulting in proteomics-constrained ecGEMs. Where necessary, the total protein pool 
pseudoreaction was adjusted to match measured fluxes. In addition, individual enzyme 
constraints that prevented the model from reaching the observed growth rate were 
flexibilized by adjusting their protein abundances (upper bound, ub). In Study 2, further 
modifications were implemented as described in Publication II, via user-defined scripts 
integrated into the GECKO pipeline. 

Model simulations and alterations were carried out using the RAVEN toolbox 
version 2.0 (Wang et al., 2018) (both studies) and COBRA toolbox version 3.0 (Heirendt 
et al., 2019) (Study 1). Both frameworks solved the linear optimization problem 
underlying Flux Balance Analysis (FBA) using the Gurobi solver. In total-protein ecGEMs 
(Study 1), solving this linear problem provided not only predicted distribution of flux 
values but also protein allocation patterns, which can be directly obtained from the 
model’s enzyme pool constraints. Thus, FBA on a total-protein or proteomics-constrained 
ecGEM inherently predicts individual enzyme allocation alongside metabolic fluxes. 

 To assess the variability of predicted flux values, flux variability analysis (FVA) and 
flux sampling (Bordel et al., 2010) were performed on the total-protein ecGEM 
(Study 1) and proteomics-constrained ecGEMs (both studies). In Study 1, default 
simulation parameters were used. In Study 2, only flux sampling was performed. 
For the glucose condition, simulated gas-exchange values were used instead of measured 
values to constrain sampling; other parameters followed those described in Publication 
II. 

Flux sampling, as implemented by Bordel et al. (Bordel et al., 2010), explores the convex 
feasible flux space defined by the stoichiometric constraints. Median flux values were 
calculated from the sampling results as described in Publication II. Cofactor turnover 

https://www.zotero.org/google-docs/?DeNosX
https://www.zotero.org/google-docs/?Vm3hlL
https://www.zotero.org/google-docs/?mbjTW7
https://www.zotero.org/google-docs/?mbjTW7
https://www.zotero.org/google-docs/?3Cf3Yh
https://www.zotero.org/google-docs/?tyBldQ
https://www.zotero.org/google-docs/?LPyD09
https://www.zotero.org/google-docs/?iyc84Q
https://www.zotero.org/google-docs/?iyc84Q
https://www.zotero.org/google-docs/?9POhQZ
https://www.zotero.org/google-docs/?ujA1hw
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rates (mmol gCDW⁻¹ h⁻¹), cofactor yields (mmol cofactor mmol carbon⁻¹), and apparent 
catalytic activities (kapp) (s⁻¹) were also calculated following the procedures in Publication 
II. A schematic overview of the modeling workflow is presented in Figure 1.

Figure 1. Schematic overview of model reconstruction and simulation workflow. In Study 1, the 
total-protein S. cerevisiae ecGEM was adapted to anaerobic conditions and fitted to experimental 
data. In Study 2, the R. toruloides GEM was reconstructed into a total-protein ecGEM via the GECKO 
pipeline. Both models were subsequently constrained with proteomics and exchange flux data, 
simulated using FBA (Gurobi solver) to obtain flux variability (by flux variability analysis and flux 
sampling), protein allocation, and derived kinetic parameters. 

2.9 Statistical analysis 
Statistical analysis of cultivation parameters was performed using GraphPad Prism 9.5.1 
(GraphPad Software Inc., San Diego, Ca, USA). Statistical significance was calculated using 
one-way ANOVA (Analysis of Variance) at 0.05 significance level. p-values were adjusted 
(apval) for multiplicity following Dunnett multiple comparison testing against the wild 
type strain. 
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3 Results and discussion 
Although all results have been published in the respective publications, in this chapter I 
will focus on the predictive power of constraint-based modeling by interpreting the 
predicted fluxes and derived quantities presented in these studies. Some of the 
discussion points have been addressed briefly in the original publications but are 
elaborated here in greater depth. In the following sections, I revisit the relevant 
quantitative results and methodological aspects – some overlapping with the published 
material and others presented here for the first time – to provide an integrated, 
modeling-centered interpretation. 

3.1 Study 1: Evaluating and validating enzyme-constrained genome-
scale modeling of anaerobic cultivation in S. cerevisiae (Publication I) 
Anaerobic redox-neutral, ATP-yielding pathways from substrate to product represent 
the stoichiometrically most efficient bioconversion routes, maximizing carbon yield 
while conserving energy. This principle underlies classical fermentations – such as 
alcoholic or homolactic – but also applies to engineered heterologous pathways when 
thermodynamically feasible (Cueto-Rojas et al., 2015). Such pathways offer major 
bioprocessing advantages: they minimize substrate costs, reduce capital investment by 
eliminating aeration, lower cooling requirements, and enable coupling of product 
formation to growth. This growth coupling facilitates adaptive laboratory evolution (ALE) 
for improved performance and allows efficient cell recycling under production conditions. 
Given these properties, anaerobic, ATP-yielding, redox-neutral product formation 
provides a stringent and informative test case for enzyme-constrained genome-scale 
models (ecGEMs), which explicitly link catalytic capacity to metabolic flux. In this 
work, we focused on the heterologous production of (R,R)-2,3-butanediol (23BD) in 
Saccharomyces cerevisiae as an industrially relevant model system. 23BD is a versatile 
platform chemical used in solvents, synthetic rubber, plastics, and fuels (Celińska & 
Grajek, 2009; Garg & Jain, 1995). The pathway – from two molecules of pyruvate via 
acetolactate synthase (AlsS), acetolactate decarboxylase (BudA), and 2,3-butanediol 
dehydrogenase (Bdh1) - has been established previously under aerobic conditions 
(Kim et al., 2017; Ng et al., 2012), demonstrating high titers at high rate, meaning that 
confounding effects from product toxicity or export should not be a problem. To enable 
anaerobic operation, all pyruvate decarboxylase (PDC1, PDC5, and PDC6) genes were 
deleted to block competing ethanol fermentation, while MTH1ΔT was introduced to 
restore glucose uptake regulation (Oud et al., 2012), and ACH1 was overexpressed to 
alleviate cytosolic acetyl-CoA deficiency (Y. Chen et al., 2015). Because glycolytic 23BD 
formation generates one surplus NADH per glucose, and S. cerevisiae reoxidizes NADH 
mainly through glycerol production under anaerobic conditions (van Dijken & Scheffers, 
1986), the pathway intrinsically couples 23BD and glycerol formation in a redox-balanced, 
near 1:1 ratio. 

In Study I, we experimentally measured exchange fluxes, growth rates in the reference 
strain, and parameterized and validated the enzyme-constrained GEM (ecGEM) to assess 
how catalytic constraints redistribute proteome investment and limit fluxes. The evaluation 
proceeded in two stages. First, the ecGEM was parameterized and fitted using data from 
the reference strain to capture aerobic growth physiology. The calibrated model was 
then applied to predict anaerobic growth and metabolite exchange rates of the 
engineered 2,3-butanediol–glycerol co-producing strain, with predictions benchmarked 
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against experimental measurements obtained before and after 200 generations of 
laboratory evolution. Then model predictions were compared to quantitative 
proteomics. The analysis proceeds from coarse simulations using only a total-protein 
constraint to proteomics-constrained models integrating 750 individual enzyme 
abundances, revealing how enzyme constraints reduce flux variability, reshape glycolytic 
investment, and expose discrepancies between in vitro kinetics and in vivo proteome 
behavior. Together, these results illuminate the energetic and proteomic trade-offs 
underlying engineered anaerobic fermentation and evaluate the predictive scope of 
ecGEMs for rational strain design. 

3.1.1 Calibration of a total-protein ecGEM enables prediction of 2,3-
butanediol and glycerol co-production 
To fit an enzyme-constrained model (ecGEM) of S. cerevisiae engineered for 
(R,R)-2,3-butanediol (23BD) production, we first parameterized the reference strain 
GSY013 in actively controlled anaerobic batch cultures (Figure S1A). The strain produced 
biomass (89 ± 6 mg/g_glucose), carbon dioxide (380 ± 100 mg/g_glucose), ethanol 
(340 ± 1 mg/g_glucose), and glycerol (101 ± 2 mg/g_glucose) (Table 7), values consistent 
with previously reported reference strains under similar conditions (Papapetridis et al., 
2018). The maximum specific growth rate was 0.36 ± 0.02 h⁻¹, supported by a specific 
glucose uptake rate of –23 ± 2 mmol/gDCW/h, with other uptake and secretion rates 
given in Table 7. 

As a starting point, we used the most recently published ecGEM of S. cerevisiae, 
which constrains fluxes by the total enzyme pool (F. Li et al., 2022). To align model 
predictions with experimentally observed data, two adjustments were required: 
(i) the degree of reduction of biomass was lowered by 3 mmol/gDCW, and (ii) the upper
bound of the protein pool pseudoreaction was reduced from the experimentally
determined 450 mg/gDCW to an effective value of 123 mg/gDCW. This adjustment is a
common feature of GECKO-based models, reflecting the fact that not all measured
protein mass can be functionally assigned to catalytic activity in the model. Reasons
include incomplete enzyme annotation, missing or inaccurate kcat values, and allocation
to non-modeled proteins (e.g., regulatory, structural, or stress-related proteins).
Thus, the effective pool of usable protein in silico is smaller than the total measured
proteome. These adjustments ensured that simulated fluxes reproduced the
experimentally observed growth rate of the control strain (GSY013). The resulting
curated model provided a calibrated baseline for adapting the genotype to the
engineered 23BD pathway (for full details see Publication I).

Using this adapted coarse total-protein ecGEM, we predicted growth and metabolism 
of the anaerobic 23BD-glycerol co-producing strain GSY014. With measured boundary 
conditions (extracellular fluxes and total protein abundance) applied, the model 
optimized protein allocation and predicted almost equimolar production of 23BD and 
glycerol (16.8 vs. 19.0 mmol/gDCW/h), accompanied by 34.9 mmol/gDCW/h of CO₂ and 
no ethanol formation (Table 7). Compared to the reference strain, glycerol production 
increased 4.2-fold. The predicted maximum specific growth rate was 0.175 h⁻¹ with a 
specific glucose uptake rate of –27.8 mmol/gDCW/h. While the ATP yield of 23BD/glycerol 
fermentation is ~3-fold lower than alcoholic fermentation, the ecGEM predicted an 
increased glucose uptake rate that partially offset this energy deficit, resulting in a 
~2-fold, rather than 3-fold, reduction in specific growth (0.175 h⁻¹ vs. 0.36 h⁻¹). Biomass 
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yield was reduced almost 3-fold (35 vs. 89 ± 6 mg/g_glucose), consistent with experimental 
observations (Table 7). 

Overall, the need to reduce the protein pool constraint from 450 to 123 mg/gDCW 
illustrates a central limitation of ecGEMs: while they capture enzyme allocation 
principles, incomplete annotation and kinetic data necessitate downscaling of the 
effective proteome to reconcile simulations with reality. Nevertheless, this calibration 
step ensured a well-fitted reference state, enabling meaningful predictions of the 
engineered 23BD-glycerol strain. 

Table 6: Yields and carbon- and degree of reduction balances observed in S. cerevisiae anaerobic 
bioreactor batch cultivations of the reference strain GSY013 and 23BD-glycerol co-producing strain 
GSY014. Reproduced from Sjöberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence. 

Yields on glucose (mg (g glucose)–1) 
Recovery of consumed 
substrate, based on: 

Strain  CDW Glycerol Ethanol 23BDa Acetoin CO2 Carbon DRb

GSY013c 89 ± 6 101 ± 2 340 ± 1 NDe NDe 380 ± 100 93 ± 7% 91 ± 1% 

GSY014c 30 ± 2 346 ± 1 NDe 274 ± 1 7 ± 1 300 ± 10 95 ± 1% 94.5 ± 0.1% 

GSY014Ed 33 ± 1 350  ± 3 NDe 273 ± 1 9 ± 1 300 ± 90 97 ± 7% 95.7 ± 0.4% 

Predicted 35 349 0 302 0 307 NAf NAf

a – 2,3-butanediol 
b – Degree of reduction as defined by (Heijnen, 1994) 
c – Average of 6 independent cultivations ± standard deviation 
d – Average of 2 independent cultivations ± mean deviation 
e – Not detected 
f – Not applicable 

Table 7: Biomass specific rates observed in S. cerevisiae anaerobic bioreactor batch cultivations of 
the reference strain GSY013 and 23BD-glycerol co-producing strain GSY014. Reproduced from 
Sjöberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence.  

Rate of consumption or production (mmol (g CDW)–1 h–1) 

Strain  µ (h–1) Glucose Glycerol Ethanol 23BDa Acetoin CO2

GSY013b 0.36 ± 0.02 -23 ± 2 4.5 ± 0.4 31 ± 2 NDd NDd 38 ± 10 

Predicted GSY014 0.175 -27.8 19.0 0 16.8 0 34.9 

GSY014b 0.15 ± 0.01 -29 ± 1 19.6 ± 0.5 NDd 15.8 ± 0.4 0.39 ± 0.03 36 ± 2 

GSY014Ec 0.16 ± 0.01 -27 ± 1 18.6 ± 0.8 NDd 14.8 ± 0.7 0.48 ± 0.01 33 ± 9 

a – 2,3-butanediol 
b – Average of 6 independent cultivations ± standard deviation 
c – Average of 2 independent cultivations ± mean deviation 
d – Not detected 
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3.1.2 Predicted and in vivo fluxes align in 23BD-glycerol co-producing 
S. cerevisiae
To compare model predictions with experimental physiology, we characterized the
engineered (R,R)-2,3-butanediol-glycerol co-producing strain GSY014 in anaerobic
batch cultures (Figure S1B). This strain was constructed by overexpressing the native
S. cerevisiae 2,3-butanediol dehydrogenase Bdh1, together with heterologous acetolactate
decarboxylase budA (Klebsiella aerogenes) and acetolactate synthase alsS (Bacillus
subtilis) (Choi et al., 2016). To enforce redirection of carbon and redox fluxes into
the engineered 23BD pathway, several additional modifications were introduced.
All functional alleles of pyruvate decarboxylase (PDC1, PDC5, PDC6) were deleted to
abolish ethanol fermentation, thereby preventing competition for pyruvate and
NADH. Because Pdc-deficient strains display impaired glucose uptake due to loss of
pyruvate-acetaldehyde-ethanol cycling, the MTH1ΔT allele was introduced as previously
described (Oud et al., 2012) to alleviate glucose sensitivity and restore efficient hexose
uptake. Finally, ACH1 (acetyl-CoA hydrolase) was overexpressed to mitigate cytosolic
acetyl-CoA deficiency expected in the absence of PDC-mediated acetaldehyde supply
(Y. Chen et al., 2015). Together, these modifications created a metabolic background in
which pyruvate could be efficiently redirected into the 23BD pathway, while maintaining
redox and acetyl-CoA balance.

The carbon balance of GSY014 cultures closed well (95% ± 1%) when calculated by 
both degree of reduction and carbon balances (Table 6). Ethanol production was 
fully abolished and replaced by near-equimolar production of 23BD and glycerol 
(15.8 ± 0.4 vs. 19.6 ± 0.5 mmol gDCW⁻¹ h⁻¹), consistent with ecGEM predictions (Table 6). 
The increase in glycerol production matched predictions closely, while a small but 
measurable acetoin byproduct (0.39 ± 0.03 mmol gDCW⁻¹ h⁻¹) was observed experimentally 
but not predicted by the model. The biomass yield on glucose decreased ~3-fold 
compared to the reference strain (30 ± 2 vs. 89 ± 6 mg g⁻¹_glucose), in line with the 
predicted yield (35 mg g⁻¹_glucose) (Table 6). Growth rate was 0.15 ± 0.01 h⁻¹, slightly 
below the prediction (0.175 h⁻¹) but not as strongly reduced as expected from the 
threefold lower ATP yield (⅔ ATP mol⁻¹ glucose vs. 2 ATP mol⁻¹ glucose in ethanol 
fermentation). Instead, the higher specific glucose uptake rate (-29 ± 1 mmol gDCW⁻¹ h⁻¹, 
slightly above predictions) compensated for reduced ATP yield, illustrating how 
metabolic capacity constraints limit the full translation of thermodynamic penalties into 
growth rate reductions. 

Overall, the ecGEM successfully predicted the key trade-offs in 23BD-glycerol 
production: (i) elimination of ethanol production, (ii) redirection of flux into 23BD and 
glycerol, and (iii) reduced biomass yield due to ATP limitation. Importantly, this study 
highlighted the thermodynamic and energetic limits of this anaerobic pathway, with the 
Gibbs free energy change shifting from –215 to –147 kJ mol⁻¹ glucose and ATP yield 
dropping threefold. 

To probe whether the predicted maximum growth rate could be achieved or improved 
through natural adaptation, GSY014 was evolved for ~200 generations in anaerobic batch 
serum cultures. However, no significant differences were observed between the evolved 
and parental strains, except for a modest increase in acetoin production (Table 6). This 
outcome suggests that the engineered pathway is already close to its physiological 
optimum under the given conditions, with ATP yield and redox constraints posing hard 
biophysical limits that cannot be easily overcome by short-term laboratory evolution. 
Excretion of acetoin suggests that there is room for (evolutionary) improvement but 
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potentially requires much longer time spans. In this context, ecGEMs provide crucial 
value by distinguishing between hard limits, such as thermodynamics and ATP yield that 
cannot be overcome by evolution, and soft limits, such as enzyme allocation or 
regulation, that evolution may eventually optimize. This allows more realistic expectations 
about when ALE is a viable strategy and when it will likely fail. 

3.1.3 Proteome allocation: alignment and divergence between ecGEM 
predictions and in vivo data 
To study proteome allocation, we quantified 3797 absolute protein abundances using 
DIA (Demichev et al., 2020) and total protein quantification (Sánchez et al., 2021). Both 
engineered and reference strains contained 450 mg protein/gDCW. Principal component 
analysis of three replicates confirmed clear separation between strains (Figure S2B). In 
the engineered strain, 172 protein abundances were significantly changed (ug/g_protein, 
|log₂FC| > 1.5, BH-adjusted p < 0.05; Figure S2A). Functional group analysis (Proteomap 
(Liebermeister et al., 2014), gene set analysis (Väremo et al., 2013)) revealed clear 
trade-offs consistent with the shift from aerobic fermentation to anaerobic cultivation. 
Ribosomal proteins decreased from 25.5% to 18.5% of the proteome, while glycolysis 
expanded from 28.7% to 43.5%, becoming the largest functional group (Figure S3). 
At the same time, biosynthesis of cofactors, amino acids, and lipids was significantly 
upregulated (apval < 0.05), whereas cell wall and glycogen metabolism were strongly 
downregulated (Table S1). These global proteome reallocations show how S. cerevisiae 
balances protein investment between growth machinery and metabolic functions under 
redox-constrained, anaerobic conditions. 

To evaluate predictive capacity, we revisited the coarse total-protein ecGEM 
simulations constrained by exchange fluxes and total protein abundance. While those 
runs were first analyzed for predicted exchange fluxes, here we focus on the predicted 
protein allocation. Both model and experiment agreed on strong glycolytic upregulation: 
upper glycolysis increased by 30–70% in silico and up to 43.5% in vivo (Figure 2), 
consistent with higher pyruvate demand for the 23BD pathway. The shift toward higher 
glycolytic investment, predicted by the ecGEM and confirmed experimentally, 
underscores the remarkable flexibility of S. cerevisiae metabolism in supporting redox 
and precursor supply under altered fermentation pathways – an insight that conventional 
GEMs cannot provide, as they do not account for proteome allocation. However, other 
predictions diverged. The ecGEM suggested a ~5% downregulation of lower glycolysis, 
while measured proteomics showed stable or slightly increased allocation. Even more 
strikingly, the model predicted downregulation of ~50% of the growth rate of 
biosynthetic enzymes in the engineered strain, whereas the proteome increased from 
10.7% to 13.8%. These differences show that the ecGEM tends to minimize biosynthetic 
investment for efficiency, whereas cells appear to maintain or even increase biosynthetic 
capacity, likely to buffer against translational and metabolic stress. 

Discrepancies were also apparent at the enzyme-family level. The ecGEM predicted 
high allocation to glycerol 3-phosphate dehydrogenases (Gpd) and phosphatases (Gpp) 
as the main NADH sink, but measured abundances were far lower. Conversely, despite 
complete PDC deletion, proteomics revealed strong upregulation of acetaldehyde and 
alcohol dehydrogenases (Ald), which the model predicted to be absent. This points to an 
ethanol/acetaldehyde cycle acting as a redox overflow valve in vivo – activated when 
NADH reoxidation shifts from alcohol fermentation to glycerol/2,3BD dehydrogenases. 
Such overflow strategies remain invisible to ecGEMs unless explicit cofactor-balancing 
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constraints are imposed. A secondary explanation could be regulatory: downregulation 
of Swi1, a transcriptional repressor of ADH1/ADH2, may have indirectly led to Ald 
upregulation (Peterson & Herskowitz, 1992; Taguchi & Young, 1987). Together, this shows 
that cells maintain redundant or “unneeded” proteins for robustness, even when this 
reduces efficiency – a signature of evolutionary incompleteness that may be improved 
via ALE or further engineering. 

A further limitation arises from isoenzyme representation. The ecGEM systematically 
allocates flux to the isoenzyme with the highest kcat/MW ratio, even if this is biologically 
inactive. For instance, the model routed all flux through Err1, annotated as an enolase, 
since it carries the same kcat as Eno1/Eno2 but at lower molecular weight. In vivo, 
however, proteomics detected only Eno1 and Eno2 at high abundance, not Err1. This 
mismatch illustrates a fundamental modeling limitation: ecGEMs optimize catalytic 
efficiency, while real cells use isoenzymes tuned by regulation, compartmentation, and 
robustness. Isoenzyme choice can therefore be misrepresented, emphasizing the need 
for organism-specific curation of kcat values and careful validation of annotation sources. 

Overall, these results show that ecGEMs are powerful in predicting global proteome 
allocation trends (e.g., glycolysis upregulation), but can misrepresent specific pathways, 
especially in redox balancing, biosynthesis, and isoenzyme usage. This reflects the 
model’s bias toward stoichiometric efficiency rather than the robustness and flexibility 
observed in vivo. A limitation of current generation ecGEMs is also their reliance on a 
static biomass composition, whereas in vivo biomass allocation varies substantially with 
growth rate and condition. For example, ribosomal protein fraction scales directly with 
growth rate in many organisms (Björkeroth et al., 2020; Scott & Hwa, 2011), yet this 
dependency is not reflected in most ecGEM frameworks. Incorporating such variability 
could improve predictive accuracy, especially for proteome allocation and growth–rate 
trade-offs. A possible improvement would therefore be to implement automatic 
adjustment of biomass composition, even in the absence of experimental data, using 
empirical growth laws as constraints (Lange & Heijnen, 2001). However, this refinement 
must be balanced against the feasibility of maintaining efficient linear programming 
formulations, as dynamic biomass functions increase model complexity. The benefits of 
introducing variable biomass composition have been recognized before (Elsemman 
et al., 2022; O’Brien et al., 2013; Pramanik & Keasling, 1997), and doing so in ecGEMs 
could help reconcile discrepancies between predicted and observed proteome 
allocations. 
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Figure 2. Comparison of ratios of predicted (blue) and measured (red) protein abundance of the 
23BD-glycerol co-producing strain GSY014 and the reference strain GSY013. Predicted ratios were 
calculated from ecGEM mean fluxes of respective enzyme pseudoreactions. Measured ratios were 
calculated from absolute mean protein abundances (μg g_total_protein-1) of three replicates 
distinguishing between concrete values of differentially expressed proteins above 0.05 significance 
level and no significant change (NS) in expression of the respective enzymes in the two strains. * 
overexpressed genes; † deletion; Inf is due to 0 flux in the reference strain. Abbreviations: glc, 
glucose; g6p, glucose-6-phosphate; f6p, fructose-6-phosphate; fbp, fructose-1,6-bisphosphate; 
g3p, glyceraldehyde-3-phosphate; bpg, 2,3-bisphosphoglycerate; 3 pg, 3-phosphoglycerate; 2 pg, 
2-phosphoglycerate; pep, phosphoenolpyruvate; pyr, pyruvate; AcLac, acetolactate; 23BD, 2,3-
butanediol; dhap, dihydroxyacetone phosphate; g3p, glycerol-3-phosphate; gly, glycerol; Hac, 
acetate; AcAld, acetaldehyde; EtOH, ethanol. Reproduced from Sjöberg et al., Metabolic 
Engineering 82,49-59, 2024, under a CC BY licence.
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3.1.4 Proteomics-constrained modeling exposes limitations of in vitro 
enzyme data 
We next refined the ecGEM by integrating 750 individual protein constraints, covering 
72% of the total measured protein mass and 92% of the protein mass represented in the 
model. Two strain-specific ecGEMs were fitted: one for the engineered 23BD-producing 
strain GSY014 and one for the reference strain GSY013. In both models, additional 
flexibilization of individual protein constraints by adjusting their protein abundance was 
required to achieve feasible flux states. For the engineered strain, 46 proteins – including 
several glycolytic enzymes and the heterologous pathway enzymes BudA and AlsS – were 
flexibilized (Table S2), whereas the reference strain required flexibilization of 72 proteins, 
primarily biosynthetic enzymes. Despite these differences, the total mass of flexibilized 
protein was comparable between strains (50 vs. 54 mg gDCW-1). This contrast suggests 
that the engineered strain faced specific bottlenecks in glycolysis and the heterologous 
pathway, while the reference strain was constrained more broadly at the level of 
biosynthetic capacity. 

Flexibilization in this context indicates that the measured enzyme abundances were 
insufficient to support feasible flux states under the assumed kcat values, exposing 
limitations of enzyme data – either experimental underestimation, or incorrect kinetic 
annotation in the model. Indeed, if the higher literature values of key glycolytic enzymes 
were chosen by the Bayesian procedure (F. Li et al., 2022), the flexibilization would have 
not been required. Similarly, the manually added kcat values for AlsS and BudA had to be 
increased, suggesting that the heterologous enzymes are likely more efficient in vivo than 
current in vitro data indicates. These observations reinforce the need for improved 
correlation between in vitro enzymology and in vivo performance (García‐Contreras et 
al., 2012; F. Li et al., 2022) to strengthen future ecGEM predictions. 

After integrating individual protein constraints, the total protein constraint itself had 
to be adjusted upward to 382 mg gDCW–1 to achieve feasible flux states. By comparison, 
in the coarse total-protein model (without enzyme-specific limits), the protein pool 
pseudoreaction was capped at only 123 mg gDCW–1. Both values fall short of the 
experimentally measured proteome content of 450 mg gDCW–1, but the comparison is 
instructive: the coarse model underestimated protein demand, while the individually 
constrained model narrowed the gap, albeit still underpredicting the total proteome. 
This threefold increase (123 → 382 mg gDCW–1) illustrates how enzyme-specific 
constraints drastically reduce proteome allocation flexibility, forcing the solver to 
distribute protein mass more realistically across pathways. As a result, the solver 
required a higher effective proteome ceiling to achieve the same extracellular fluxes.  
In practice, this means that either (i) some enzymes operate at higher in vivo catalytic 
efficiencies than annotated kcat values suggest, (ii) isoenzymes or complexes not captured 
in the model contribute additional capacity, or (iii) experimental proteome measurements 
underestimate the available protein pool. From a modeling perspective, the need for 
such a large upward adjustment underscores the sensitivity of ecGEMs to protein 
annotation and highlights a key trade-off: resolution increases, but so does dependence 
on accurate kinetic parameters. 

The integration of individual protein constraints had major consequences for 
intracellular flux predictions. Flux variability was markedly reduced in both strains (Figure 
S4), meaning that fewer alternative flux states were compatible with the measured 
proteome. In other words, the proteome data served as an additional filter, forcing the 
model to abandon many of the equally optimal but biologically implausible flux values 
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that were possible under total protein constraints alone. The distribution of flux values 
obtained through sampling also became tighter after protein integration (Figure 3A), 
reflecting a reduction in the uncertainty of flux predictions. By contrast, extracellular 
fluxes predicted by the refined ecGEMs were only slightly lower than before, indicating 
that global phenotypes are robust, while intracellular pathway choices become more 
constrained when protein limits are considered. 

When comparing mean fluxes between the coarse total-protein and proteomics-
constrained models (Figure 3A), we observed a widespread across both pseudoreactions 
and metabolic reactions. This spread indicates that pathways were reallocated once 
enzyme capacities were enforced, decreased fluxes in the most optimal (as indicated by 
kcat/MW) enzymes and increased flux through less efficient isoenzymes and alternate 
pathways. In addition, the number of non-zero fluxes decreased by 11.2%, meaning 
increased diversification in enzyme usage. This implies that the proteome constraints 
suppress minor or inefficient side pathways, focusing the solution on a leaner, more 
defined metabolic strategy. 

An example of such reallocation is the switch between Pyk1 and Pyk2 isoenzymes 
(Figure 3B). Under total protein constraints, one isoform was favored, but once individual 
protein limits were introduced, the predicted flux shifted to the other isoenzyme. Such 
predictions highlight the potential of ecGEMs to resolve not only pathway-level shifts but 
also fine-scale differences in enzyme choice – provided kinetic annotations and proteomic 
data are accurate.  

Figure 3. Comparison of mean sampled fluxes between proteome-constrained and total protein 
ecGEMs. A. Pairwise correlation of mean reaction fluxes obtained from sampling (n = 10’000) in 
both models. Each point represents a single reaction. Marginal histograms along the top and right 
axes show the distribution of mean flux values, expressed as counts of reactions. B. Detailed 
comparison of selected reactions shown in Figure 2, including isoenzymes. Red points denote 
protein pseudoreactions, black points denote metabolic reactions. Reproduced from Sjöberg et al., 
Metabolic Engineering 82,49-59, 2024, under a CC BY license. 
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3.2 Study 2: Predicting and validating central carbon metabolism in the 
oleaginous yeast R. toruloides (Publications II and III) 
The non-conventional Basidiomycota yeast Rhodotorula toruloides can accumulate lipids 
exceeding 50% of its dry biomass, making it a promising host for sustainable lipid 
production. As explained in the introductory section, lipid biosynthesis relies on a steady 
cytosolic supply of acetyl-CoA and NADPH, produced through interconnected central 
carbon pathways. Unlike Saccharomyces cerevisiae, R. toruloides possesses ATP-citrate 
lyase (ACL), which cleaves citrate into cytosolic acetyl-CoA and oxaloacetate, and 
phosphoketolase (PK), which generates acetyl-phosphate from sugar phosphates (Figure 
4) (Z. Zhu et al., 2012). NADPH regeneration can occur either via the oxidative pentose
phosphate pathway (oxPPP) or, if ACL catalyzes the conversion of citrate into acetyl-CoA
and oxaloacetate (OAA), latter can be transformed into malate and further converted
into pyruvate through cytosolic malic enzyme (cMAE) (Figure 4). Alternatively, NADPH
can be regenerated in mitochondria via NADP-dependent IDH (Chawla et al., 2022;
Sreeharsha & Mohan, 2020; Yang et al., 2012). Previous studies have shown that these
strategies are organism-specific, and ACL and oxPPP dominate in oleaginous yeasts, such 
as Yarrowia lipolytica and Rhodotorula glutinis (Blazeck et al., 2014; Dulermo et al., 2015; 
Qiao et al., 2017; Wasylenko et al., 2015; Yoon et al., 1984; H. Zhang et al., 2013; J. Zhu
et al., 2023), whereas TCA- and malate-linked reactions contribute more in filamentous
fungi (Wynn et al., 1997, 2001; Wynn & Ratledge, 1997; Y. Zhang et al., 2007). However,
the relative importance and regulation of these pathways in R. toruloides remain unclear, 
particularly regarding how precursor supply strategies shift between fermentable carbon 
sources, such as glucose and xylose, and non-fermentable carbon sources, such as acetate.

Recent genome-scale models have generated hypotheses about substrate-specific 
metabolism in R. toruloides (Lopes et al., 2020, p. 202; Pinheiro et al., 2020), but these 
lacked (i) enzyme constraints, (ii) substrate-resolved biomass composition, and (iii) 
experimental validation. Given large shifts in cellular resource allocation between 
proteome and lipidome reported in previous studies (Pinheiro et al., 2020; Tiukova, 
Brandenburg, et al., 2019; Z. Zhu et al., 2012), this is a relevant challenge for an 
enzyme-constrained model. In Publications II and III we integrated absolute proteomics, 
enzyme-constrained genome-scale modeling (ecGEM), and knockout phenotyping to 
dissect substrate-dependent flux distributions through key metabolic nodes including 
pyruvate dehydrogenase (PDH), citrate synthase (CIT), ACL, malate dehydrogenase 
(MDH1), pyruvate carboxylase (PC), and others (Figure 4), providing a mechanistic 
framework for understanding lipid precursor supply in R. toruloides. 

To obtain precise, high-quality experimental data, we performed controlled growth 
characterization on glucose, xylose, and – for the first time – acetate, analyzed global 
proteome allocation and growth constraints, constructed and curated the first ecGEM of 
R. toruloides, and validated predictions through gene knockout phenotyping. This
integrative framework revealed substrate-specific essentiality of ACL, PK, and cMAE, and
highlighted major discrepancies between model predictions and experimental
outcomes. Together, these results demonstrate both the power and the current
limitations of ecGEMs in oleaginous yeasts, providing a mechanistic understanding of
how R. toruloides flexibly reorganizes its metabolism to support lipogenesis and
informing future metabolic engineering strategies.
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https://www.zotero.org/google-docs/?f8yp9V
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Figure 4. Metabolism of Rhodotorula toruloides. Blue arrows denote mitochondrial carrier proteins 
and enzymes in shuttling pathways. Pink arrows denote alternative xylose assimilation pathways. 
Reproduced from Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 

3.2.1 Global proteome allocation analysis reveals metabolic strategies and 
growth constraints in R. toruloides 
We quantified 3,160 proteins across six conditions (glucose, xylose, acetate; exponential 
vs. nitrogen limitation) using stable isotope labeling (SILAC) and the total protein 
quantification approach (Sánchez et al., 2021). Replicate consistency was satisfactory 
(Figure 5A). Up to 4% g/gDCW of the proteome was uncharacterized, which limited the 
use of automated tools such as Proteomap and gene set analysis, but manual Gene 
Ontology grouping allowed us to track functional allocation throughout exponential 
growth and lipid accumulation. 

Global proteome allocation showed substrate- and phase-specific patterns (Figure 
5B). On glucose, the glycolytic fraction increased during nitrogen limitation, whereas on 
xylose it remained unchanged. The TCA cycle fraction did not shift significantly between 
phases, while the ETC fraction increased during lipid accumulation on all substrates, 
consistent with higher respiratory demand. Acetate-grown cells displayed a distinct 
pattern: proteome allocation changed little upon nitrogen starvation, in contrast to glucose 

https://www.zotero.org/google-docs/?NjrcJi
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and xylose, where exponential and nitrogen-limited phases were clearly separated.  
On acetate, more proteome was invested into the TCA cycle, pyruvate metabolism, ETC, 
and amino acid biosynthesis, while on glucose and xylose a larger share was allocated to 
ribosome synthesis. This difference reflects the fact that acetate enters metabolism only 
as acetyl-CoA, providing no ATP through glycolysis. Thus, the TCA cycle must supply both 
energy and precursors, necessitating stronger investment in TCA and ETC enzymes. 

Differential expression analysis revealed the largest number of significantly altered 
proteins between the exponential growth and nitrogen-limited phases on glucose  
(186 proteins), while none were detected between phases on acetate (|log₂FC| > 1,  
BH-adjusted p < 0.05; Figure S5). This suggests that sugar-grown cells undergo stronger 
proteomic reprogramming during lipid accumulation, while acetate-grown cells rely 
more on constitutive metabolism.  

Key enzymes for acetyl-CoA supply reflected clear substrate-specific strategies.  
On glucose, ACL was abundant (1010 ± 75 µg g⁻¹_protein) and upregulated 2.6-fold 
during lipid accumulation (apval = 0.039), at levels comparable to glycolytic enzymes 
(Figure S6, Table S3). Together with high PDH (2304 ± 11 µg g⁻¹) and CIT (2573 ± 6 µg g⁻¹), 
this points to citrate export and cleavage by ACL as a major cytosolic acetyl-CoA route. 
MDH1 was extremely abundant (4195 ± 3 µg g⁻¹), though it declined during lipid 
accumulation (3168 ± 24 µg g⁻¹, 1.3-fold ↓, apval = 0.015). In parallel, PC was also 
strongly expressed (569 ± 24 → 712 ± 5 µg g⁻¹, 1.25-fold ↑, apval = 0.048), indicating that 
glucose-grown cells reinforce oxaloacetate regeneration through both pyruvate 
carboxylation and malate–oxaloacetate cycling. This dual system likely sustains the 
citrate–malate shuttle while buffering NADH/NAD⁺ redox balance, ensuring efficient 
acetyl-CoA and precursor supply under high glycolytic flux. 

On xylose, ACL levels were similar, but induction was stronger (4.8-fold, apval = 0.025), 
supporting its role in lipogenesis. MDH1 was moderately abundant (3237 ± 8 µg g⁻¹) and 
unchanged during lipid accumulation (3089 ± 305 µg g⁻¹, apval = 0.69). By contrast,  
PC started lower (249 ± 9 µg g⁻¹) but increased 2.4-fold to 604 ± 6 µg g⁻¹ (apval = 0.025). 
This pattern suggests that on xylose, ACL remains the main cytosolic acetyl-CoA supplier, 
while PC provides strong reinforcement of OAA regeneration under pentose metabolism, 
helping balance flux through glycolysis and the PPP.  

On acetate, ACL abundance was lower (148 ± 10 µg g⁻¹) and its 2.8-fold increase was 
not significant (apval = 0.14), suggesting a limited role. Instead, ACS was highly abundant 
(3105 ± 53 µg g⁻¹), confirming its function as the main entry point for acetate assimilation. 
High abundances of CIT, ACO1, and MDH1 relative to other TCA enzymes (12.6, 4.9, and 
10.8 mg g⁻¹_protein) with mild downregulation during nitrogen limitation (1.2–1.4-fold, 
apval = 0.15–0.35) suggest an internal citrate-isocitrate-malate cycle that could replenish 
oxaloacetate and balance redox cofactors. This apparent downregulation during lipid 
accumulation likely reflects reduced acetate uptake demand rather than diminished 
lipogenic capacity, since lipid accumulation is primarily driven by flux redistribution 
under nitrogen limitation. By contrast, PDC was consistently low across substrates  
(47–59 µg g⁻¹), indicating it plays only a minor role. PK showed moderate levels on glucose 
(490 ± 45 µg g⁻¹, 1.6-fold ↑, apval = 0.042) and xylose (632 ± 50 µg g⁻¹, 2.8-fold ↑,  
apval = 0.064). Although 4–6-fold lower than ACL or glycolytic enzymes, its consistent 
upregulation under nitrogen limitation suggests a conditional role in cytosolic acetyl-CoA 
supply. 

NADPH regeneration enzymes showed less dramatic changes. cMAE abundance was 
modest (142–189 µg g⁻¹) and unchanged across conditions (Figure S6), consistent with a 
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nonessential role. On acetate, IDP abundance was elevated (1472 ± 47 µg g⁻¹, 2.4-fold ↑, 
apval = 0.14), suggesting possible contribution to NADPH supply, though evidence 
remains inconclusive. ZWF was abundant on glucose (1309 µg g⁻¹, 1.16-fold ↑,  
apval = 0.015), but lower on xylose (735 µg g⁻¹) and acetate (637 µg g⁻¹). Taken together, 
these data support the PPP as the dominant NADPH source on fermentative substrates, 
while the main NADPH pathway during acetate metabolism remains unresolved, as none 
of ZWF, cMAE, or IDP showed consistent evidence of a dominant role. 

Ribosomal content and translation efficiency provided further insights into growth 
control, and in the future, it could be used to predict how yeast reallocates proteome 
under different substrates. Translation rates ranged from 0.8 to 6.6 amino acids s⁻¹ 
(Figure 2C), which is in a similar range but below those reported for S. cerevisiae  
(2.8–10 aa s⁻¹) (Boehlke & Friesen, 1975). R. toruloides devoted 46% of its proteome to 
ribosomes, compared to 37% in S. cerevisiae (Metzl-Raz et al., 2017a), representing a 
25% higher ribosome fraction. This suggests that R. toruloides offsets lower ribosome 
efficiency by investing more into ribosome abundance, perhaps a distinct allocation 
strategy in oleaginous yeasts. Growth rates correlated tightly with translation rate  
(R² = 0.99, p < 0.01) (Figure 2C), showing that translational capacity is the main 
determinant of growth. By contrast, correlation with ribosome fraction was weaker  
(R² = 0.68, p < 0.043) (Figure 2C). Ribosome fractions were lowest during nitrogen limitation 
on acetate and xylose. This indicates that growth is constrained more by ribosome 
activity than by ribosome abundance, consistent with reports of inactive ribosome pools 
maintained under nutrient limitation (Metzl-Raz et al., 2017b; Warner, 1999). 

 

Figure 5. Absolute proteome quantification in R. toruloides wild type strain CCT 7815 cultivated in 
batch bioreactors with low-nitrogen chemically defined media containing glucose (G), xylose (X), or 
acetate (A) as the carbon source during exponential (exp) and nitrogen-limited (Nlim) phases. A. 
Principal component analysis. B. Allocation of absolute mean protein abundances (% of μg 
g_total_protein-1) of two replicates to manually assigned major functional groups (annotation file 
available online: https://doi.org/10.1371/journal.pcbi.1011009.s002. C. Translation rate (s-1) and 
ribosome allocation (g g_protein-1). Error bars represent standard deviation of two experiments. 
Abbreviations: AA, amino acid; ETC, electron transport chain; FA, fatty acid; PPP, pentose 
phosphate pathway; TCA, tricarboxylic acid. Reproduced from Reķēna et al., PLOS Comput. Biol. 
19(4):e1011009, 2023, under a CC BY licence. 

https://www.zotero.org/google-docs/?nI7rNN
https://www.zotero.org/google-docs/?FNDV51
https://www.zotero.org/google-docs/?aDlVpl
https://doi.org/10.1371/journal.pcbi.1011009.s002
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3.2.2 Construction and curation of the first ecGEM of R. toruloides reveals 
limits of enzyme-constrained modeling in lipogenesis 
To construct the first ecGEM of R. toruloides, we measured growth and exchange rates 
of the hydrolysate-tolerant strain CCT 7815 in actively controlled aerobic batch cultures. 
This strain was previously developed by short-term adaptation of CCT 0783 in sugarcane 
bagasse hydrolysate and is characterized by enhanced tolerance and lipid accumulation 
(Bonturi et al., 2017). Characterization for growth was performed in low-nitrogen media 
to induce lipid accumulation (Lopes et al., 2020). Online biomass and CO₂ measurements 
revealed clear transitions separating exponential growth from nitrogen limitation, 
allowing these phases to be analyzed independently (Figure S7). 

During exponential growth, cells divided actively until nitrogen was depleted. Upon 
nitrogen exhaustion, growth ceased because nitrogen is required for amino acid, 
nucleotide, and cell wall biosynthesis. As carbon, minerals, and cofactors remained 
available, cells redirected metabolism toward maintenance and storage lipid 
accumulation. These distinct physiological states – growth-coupled metabolism and 
nitrogen-limited lipogenesis – represent fundamentally different proteome allocation 
and flux regimes and were therefore modeled separately in the ecGEM to capture the 
metabolic shift between biomass formation and storage metabolism. 

Growth characterization and physiological parameters 
All cultivations were performed in chemically defined media without amino acid 
supplementation. Although this resulted in a longer lag phase (10–16 h), it eliminated  
by-products from complex organic sources, improving reproducibility and interpretation 
of physiological data. Biomass yields on substrate differed markedly between phases and 
substrates (Table 8). During exponential growth, formation reached 515 ± 27 mg g–1 on 
glucose, 193 ± 6 mg g–1 on xylose, and 185 ± 24 mg g–1 on acetate. Under nitrogen 
limitation, yields fell on glucose (236 ± 29 mg g–1) but rose on xylose (316 ± 34 mg g–1), 
while acetate remained largely unchanged (109 ± 20 mg g–1). Carbon balances closed well 
on xylose (89–109%), supported by significant xylitol and D-arabinitol secretion during 
exponential growth (0.223 ± 0.03 and 0.367 ± 0.04 mmol (gDCW h)–1). In contrast, balances 
did not close on glucose (106% in exponential, 68% in nitrogen limitation) or acetate  
(85% and 67%), despite detection of citrate secretion during exponential growth  
(0.122 ± 0.016 mmol (gDCW h)–1). Missing byproducts remain to be identified. 

Glucose cultures formed aggregates, complicating biomass estimation. Aggregation 
was reduced by switching the nitrogen source from ammonium sulfate to urea, though 
not eliminated. Given a recently reported EPS production by R. toruloides under 
ammonium sulfate at acidic pH (< 2.3; (Sepúlveda Del Rio Hamacek et al., 2025)), EPS 
secretion is not a possible explanation at pH 6, though not confirmed. All glucose data 
reported here (rates, yields, proteome) are from urea-grown cultures (a comparison of 
the growth curves when using ammonium sulfate or urea shown on Figure S7A). 

Growth rates also reflected substrate differences (Table 8). Maximum specific growth 
was threefold higher on glucose (0.19 ± 0.025 h⁻¹) than on xylose (0.054 h⁻¹) or acetate 
(0.073 h⁻¹), consistent with published values (Tiukova, Brandenburg, et al., 2019). During 
nitrogen limitation, apparent rates were very low (0.012–0.021 h⁻¹) and were thus 
denoted as non-quantifiable. Since protein synthesis ceases when nitrogen is depleted, 
these values likely reflect lipid accumulation and measurement noise rather than true 
biomass growth. Supporting this, secreted byproducts decreased in concentration during 
nitrogen limitation, indicating re-assimilation as secondary carbon sources to support 

https://www.zotero.org/google-docs/?tzPh0J
https://www.zotero.org/google-docs/?gt5oyD
https://www.zotero.org/google-docs/?HpijVM
https://www.zotero.org/google-docs/?cQ5zxR
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maintenance metabolism and lipid storage. Examples include re-consumption of xylitol 
and D-arabinitol on xylose and citrate on acetate (–0.043 ± 0.001 mmol (gDCWh)–1). 
Using stereoselective HPLC, we confirmed that the arabinitol produced was the D-isomer 
(Figure S8), validating a pathway proposed by Jagtap and Rao (Jagtap & Rao, 2018). 

The specific CO₂ production, O₂ uptake, and substrate uptake rates further confirmed 
the metabolic shift (Table 8). As expected, metabolic activity was considerably higher 
during exponential growth: CO₂ production reached 2.7-5.2 mmol (gCDW h)–1 compared 
to 1.3–2.2 mmol (gCDW h)–1 under nitrogen limitation. A similar pattern was observed 
for oxygen uptake, which was –1.4 to –7.1 mmol (gCDW h)–1 in the exponential phase 
but only –0.7 to –2.3 mmol (gCDW h)–1 during nitrogen limitation. Substrate uptake also 
slowed down substantially, from –1.9 to –6.6 mmol (gCDW h)–1 in exponential growth to 
–0.4 to –2.0 mmol (gCDW h)–1 in nitrogen limitation. These measurements confirm that
cells shift from a high-flux, energy-demanding metabolism during active growth to a
reduced metabolic state under nitrogen limitation.

Table 8: Biomass yields, specific rates and carbon balances of R. toruloides wild type strain CCT 7815 
cultivated in batch bioreactors with low-nitrogen chemically defined media containing glucose (G), 
xylose (X), or acetate (A) as the carbon source during exponential growth (exp) and nitrogen-limited 
(Nlim) phases. Average and standard deviation of duplicate experiments are presented. 

Condition µ (h–1) Specific rate of consumption or 
production (mmol (gCDW h)–1) 

Yield (mg (g 
substrate)–1) 

Yields on biomass 
(mg gCDW–1) 

Recovery of 
consumed 
substrate 
based on 
carbon

CO2 O2 substrate CDW Total 
protein

Total lipid 

Gexp 0.191 ± 
0.025 

2.685 ± 
0.584 

-1.423 ± 
0.779

-2.096 ± 
0.557

515 ± 27 636 ± 24 57 ± 2 106 ± 16 

GNlim 0.021 ± 
0.007a 

1.547 ± 
0.519 

-0.704 ± 
0.338

-0.410 ± 
0.007

236 ± 29 227 ± 31 483 ± 41 69 ± 6 

Xexp 0.054 ± 
0.001 

2.845 ± 
0.325 

-2.678 ± 
0.012

-1.859 ± 
0.022

193 ± 6 438 ± 13 202 ± 25 89 ± 6 

XNlim 0.021 ± 
0.001a 

1.277 ± 
0.139 

-1.028 ± 
0.012

-0.434 ± 
0.026

316 ± 34 197 ± 2 290 ± 6 109 ± 18 

Aexp 0.073 ± 
0.003 

5.224 ± 
0.724 

-7.144 -6.627 ± 
0.557

185 ± 24 386 ± 12 175 ± 19 85 ± 5 

ANlim 0.012 ± 
0.0a 

2.229 ± 
0.198 

-2.265 -1.971 ± 
0.429

109 ± 20 217 ± 12 341 ± 13 67 ± 3 

a – Below reliable measurement threshold

Model reconstruction and condition-specific parametrization of ecGEM 
We based our enzyme-constrained genome-scale metabolic model (ecGEM) on 
rhtoGEM, one of the first GEMs of R. toruloides, originally derived from S. cerevisiae and 
subsequently parameterized with R. toruloides-specific data (Tiukova, Prigent, et al., 
2019). Because one allele of the polyploid strain CCT 7815 shares 70–90% sequence 
identity with the R. toruloides NP11 genome (Bonturi et al., 2022), NP11 was selected as 
the reference for annotation. 

Motivated by the absence of xylulokinase in the measured proteome, we incorporated 
a ribulose-mediated xylose assimilation pathway (Figure 4, pink pathway), supported by 
the detection of D-arabinitol dehydrogenase (DAD-4) on xylose (1913 ± 272 µg g⁻¹, 

https://www.zotero.org/google-docs/?L2wgbL
https://www.zotero.org/google-docs/?7nrVx2
https://www.zotero.org/google-docs/?7nrVx2
https://www.zotero.org/google-docs/?fvve9f
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3.5-fold increase compared with the glucose condition, apval = 0.06; Figure S6) and the 
presence of D-arabinitol among identified extracellular metabolites (Figure S7B). 

To fit the model to experimental data, we expanded the enzyme annotation 
coverage to 773 enzymes corresponding to 1515 reactions (≈ 30 % of total reactions) 
by manually assigning NP11 enzyme identifiers (protein list available online: 
https://doi.org/10.1371/journal.pcbi.1011009.s004. Using the GECKO 2.0 framework, 
we reconstructed six condition-specific proteomics-constrained ecRhtoGEMs, 
representing growth under carbon- or nitrogen-limited regimes (Table 8). 

The protein content during exponential growth (386–636 mg gCDW⁻¹) was comparable 
to S. cerevisiae (Xia et al., 2022) but decreased nearly twofold under nitrogen limitation 
(197–227 mg gCDW⁻¹). These values are higher, yet consistent with those previously 
reported for another R. toruloides strain under steady-state conditions (Table 8) (Shen 
et al., 2017). In contrast, the lipid content increased up to eightfold under nitrogen 
limitation (e.g., 483 ± 41 mg gCDW⁻¹ on glucose vs. 57 ± 2 mg gCDW⁻¹ in exponential 
growth), confirming the onset of lipid accumulation consistent with previous report by 
Tiukova et al. (Table 8) (Tiukova, Brandenburg, et al., 2019). Oleate (C18:1) was the 
dominant fatty acid species (Table S4), and overall fatty acid composition was consistent 
with the previous report (Tiukova, Brandenburg, et al., 2019). 

To ensure feasible flux states consistent with the experimental data, measured fatty 
acid compositions, total lipid and protein content were introduced into the biomass 
stoichiometry of all condition-specific ecGEMs. These modifications required additional 
technical updates, including (i) revised growth- (GAM) and non-growth-associated 
maintenance (NGAM), (ii) recalibration of average enzyme saturation, and (iii) updated 
f-factor and protein pool constraint calculations, as described in Publication II. The GAM
parameters were inherited from the S. cerevisiae GEM and re-parameterized according
to the GECKO formalism, originally based on a fitted value of 59.276 mmol gCDW⁻¹ for
yeast  (Förster et al., 2003). The NGAM requirements were also inherited from the
S. cerevisiae GEM and re-fitted using the GECKO algorithm (from the starting value of
0.7 mmol (gCDW h)–1 for aerobic conditions). Although the rhtoGEM reflects ATP synthase
stoichiometry typical of Complex I-deficient cells, both GEMs and annotated genomes of
R. toruloides indicate the presence of Complex I (Dinh et al., 2019; Zhu et al., 2012). We
retained the same ATP synthase stoichiometry from the yeastGEM for the ecRhtoGEM,
as the functional presence of Complex I in R. toruloides remains to be experimentally
confirmed.

As these functionalities were not natively implemented in the GECKO toolbox, 
we developed custom code modules that integrate these updates directly into the 
pipeline. All model edits, scripts, and data are available at: 
�� https://github.com/alinarekena/ecRhtoGEM. 

Model evaluation 
To achieve feasible flux states, in total 59 protein concentrations and kcat values required 
flexibilization (Table S5). Without these adjustments, the proteomics-constrained 
ecGEMs were infeasible, while the conventional rhtoGEM could run but overpredicted 
exchange fluxes. Enzymes frequently flexibilized included ACL (M7WHC9), FAS 
(M7WSW5), and cytochrome c (M7WUI0) oxidase, reflecting lipid metabolism and 
respiratory demand. kcat values for enzymes of the ribulose pathway were also increased. 
Detailed information about the curation of individual kcat and protein concentration 
values is saved on the Github repository. 

https://doi.org/10.1371/journal.pcbi.1011009.s004
https://www.zotero.org/google-docs/?7aEyKl
https://www.zotero.org/google-docs/?rW61t5
https://www.zotero.org/google-docs/?rW61t5
https://www.zotero.org/google-docs/?S7LoYn
https://www.zotero.org/google-docs/?JHticv
https://github.com/alinarekena/ecRhtoGEM
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The ecGEM predicted growth rates were generally in good agreement with the 
experimental data. With measured boundary conditions – including extracellular 
fluxes (such as substrate uptake) and total protein abundance – applied, the model 
optimized protein allocation and predicted growth rates that closely matched the 
experimental measurements when above the reliable detection threshold (Table 9). 
We then examined predicted exchange fluxes, including substrate uptake and gas 
exchange. 

On glucose, substrate uptake was overestimated during exponential growth (–2.46 vs. 
–2.01 mmol (gCDW h)–1) but matched measurements under nitrogen limitation
(–0.41 mmol (gCDW h)–1). CO₂ production was strongly overestimated during exponential
growth (2.6-fold higher, 7.10 vs. 2.69 mmol (gCDW h)–1) but aligned with measurements
in nitrogen limitation (1.45 vs. 1.55 mmol (gCDW h)–1). Oxygen uptake was also
overpredicted, by 4.2-fold during exponential growth and 1.7-fold during nitrogen
limitation. In addition, the model predicted low pyruvate secretion (0.18 mmol (gCDW h)–1),
which was not detected experimentally. Pyruvate secretion was predicted only during
growth on glucose, consistent with its direct formation via glycolysis and the high
glycolytic flux under these conditions. Other substrates enter central metabolism
downstream of pyruvate or generate less cytosolic NADH, reducing both carbon and
redox pressure at the pyruvate node. Combined with constrained CO₂ efflux during
exponential growth, this likely explains why minor pyruvate excretion was predicted
exclusively on glucose.

On xylose, predicted uptake rates matched measurements within experimental 
uncertainty under both conditions. CO₂ production was close to measured during 
exponential growth (2.95 vs. 2.84 mmol (gCDW h)–1) but underestimated in nitrogen 
limitation (1.11 vs. 2.84 mmol (gCDW h)–1), consistent with the underpredicted growth 
rate. Oxygen uptake was slightly lower than measured in exponential growth (–2.29 vs. 
–2.68 mmol (gCDW h)–1) but closely matched under nitrogen limitation (–0.97 vs.
–1.03 mmol (gCDW h)–1). A small amount of L-arabinitol secretion was predicted but not
confirmed experimentally.

On acetate, predicted uptake rates were slightly below measured in both growth phases. 
CO₂ production was overestimated during exponential growth (6.73 vs. 5.22 mmol (gCDW h)–1) 
and underestimated in nitrogen limitation (1.47 vs. 2.23 mmol (gCDW h)–1). Oxygen 
uptake was likewise underestimated (exponential growth: –6.67 vs. –7.14 mmol (gCDW h)–1; 
nitrogen limitation: –2.02 vs. –2.27 mmol (gCDW h)–1). The model also predicted secretion 
of succinate in both phases (0.33 and 0.033 mmol (gCDW h)–1), which remains to be 
validated experimentally. 
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Table 9: Biomass specific rates simulated using condition-specific, proteomics-constrained ecGEMs 
of R. toruloides. Median and standard deviation of 2000 flux samples are presented. Abbreviations: 
G, glucose; X, xylose; A, acetate; exp, exponential growth phase; Nlim, nitrogen-limited phase. 

Condition µ (h–1) Specific rate of consumption or production (mmol (gCDW h)–1) 

substrate CO2 O2 
Gexp 0.178 ± 0.00 -2.464 ± 0.011 7.101 ± 0.20 -5.944 ± 0.14 
GNlim 0.0208 ± 0.00a -0.406 ± 0.0019 1.446 ± 0.029 -1.164 ± 0.027 
Xexp 0.0535 ± 0.00013 -1.841 ± 0.0078 2.948 ± 0.055 -2.292 ± 0.048 
XNlim 0.0151 ± 0.00a -0.433 ± 0.0015 1.110 ± 0.0082 -0.966 ± 0.0085 
Aexp 0.0723 ± 0.00 -6.039 ± 0.0010 6.731 ± 0.070 -6.668 ± 0.0075 
ANlim 0.0119 ± 0.00a -1.951 ± 00057 1.472 ± 0.044 -2.016 ± 0.046 
a – Below reliable measurement threshold 

 
Overall, comparison of predicted and measured rates for the wild-type phenotype in 

R. toruloides showed that the proteome-constrained ecGEM reproduced growth rates 
and many exchange fluxes reasonably well across conditions, though notable discrepancies 
remained. Some discrepancies may partly reflect experimental uncertainties (e.g., 
aggregate formation on glucose cultures), but also illustrate the model’s prediction 
capacity at more extreme cases. For example, the least precise predictions were received 
on the glucose exponential phase, in which protein content (64%) was higher than normal. 
It is an inherent limitation of flux balance analysis that it provides one feasible solution 
that satisfies the constraints rather than representing the exact physiological state of the 
cell (Mahadevan & Schilling, 2003). Although random sampling (2000 iterations) 
broadened the solution space, it seemingly did not eliminate off-target effects within the 
permitted interval (simulations were allowed 10% deviation from measured rates). 
Particularly during lipid-accumulating conditions, where protein content was lower than 
in S. cerevisiae, it highlighted again the need to enable ecGEMs to automatically adjust 
biomass composition and current limitations in directly transferring ecGEM frameworks 
across species. Finally, achieving this agreement required flexibilization of measured 
protein concentration constraints. The need to flexibilize many enzyme kcat and protein 
abundance parameters can be attributed to the lack of R. toruloides-specific kinetic data. 
All kcat values in the model were drawn from BRENDA entries of distantly related 
organisms, which likely reduced predictive precision. This underscores the importance of 
generating organism-specific kinetic parameters to improve future ecGEM reconstructions 
in non-model organisms. 

3.2.3 Predicted intracellular fluxes reveal substrate-dependent strategies 
for acetyl-CoA and NADPH supply during lipogenesis 
Motivated by the ecGEM’s ability to reproduce exchange fluxes, we compared predicted 
intracellular fluxes between exponential growth and nitrogen limitation to probe 
lipogenesis mechanisms in R. toruloides and their substrate dependence. From these 
fluxes and absolute proteomics, we calculated apparent catalytic activities (kapp) as 
flux/protein. To our knowledge, this is the first report of in silico kapp values in  
R. toruloides, with most values in the range of an “average enzyme” (~10 s⁻¹) as reported 
by Bar-Even (Bar-Even et al., 2011). Because the ecGEM constrains fluxes by literature 

https://www.zotero.org/google-docs/?OJnkoW
https://www.zotero.org/google-docs/?0RnXjw
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kcat, kapp values are upper-bounded by kcat, i.e., any in vivo activity enhancements  
beyond cataloged kcat cannot be captured. Notably, the number of enzymes with low kapp 
(0.1–1 s⁻¹) increased during Nlim (Figure S9), indicating that fluxes declined more strongly 
than protein abundances and leaving a larger fraction of the proteome underutilized. 
This suggests that R. toruloides maintains enzyme pools while throttling catalytic 
throughput, a trade-off that preserves metabolic flexibility while conserving nitrogen 
under lipid-accumulating conditions. A full dataset of kapp values is available online: 
https://doi.org/10.1371/journal.pcbi.1011009.s009. 

Fermentative substrates (glucose, xylose): acetyl-CoA and NADPH supply 
On glucose (exponential phase), predicted fluxes through PDH (68 ± 9% of carbon) and 
CIT (70 ± 14%) exceeded average TCA flux (Figure S10), initially suggesting a mitochondrial 
PDH → citrate export → cytosolic ACL route. The MDH1 flux was also exceptionally high 
(218 ± 6% of carbon, only slightly reduced to 209 ± 381% under nitrogen limitation), 
suggesting substantial malate–oxaloacetate cycling for redox balance, though the very 
high SD indicates weak constraint. Despite strong PDH and CIT activity, ACL consistently 
carried 0% flux (Figure S10). Exported citrate was instead routed back into the TCA via 
auxiliary shunts (succinate, malate). 

PK emerged as the dominant cytosolic acetyl-CoA route, consistent with previously 
reported GEM predictions under similar conditions (Lopes et al., 2020; Pinheiro et al., 
2020). We compared alternative PK pathway variants and found that the PTA-based 
(t_0082) and ACK-based (t_0886) routes generated nearly identical flux distributions  
(full dataset available online: https://doi.org/10.1371/journal.pcbi.1011009.s011). As no 
functional difference emerged, we report results for the PTA variant as representative. 
On glucose, PK fluxes rose 4-fold under nitrogen limitation (14 ± 55% → 60 ± 26%), 
paralleling the lipid accumulation (5.7% → 483% mg gDCW–1). In contrast, PDC declined 
(22 ± 39% → 12 ± 103%) and PC dropped sharply (26 ± 47% → 7 ± 142%), indicating  
minor roles during lipogenesis. On xylose,  PK was consistently higher than PDC  
(13 ± 46% → 22 ± 29% vs. 9 ± 151% → 7 ± 71%), again marking PK the dominant cytosolic 
acetyl-CoA source. PC flux remained low (7 ± 87% → 4 ± 55%), suggesting limited 
anaplerotic contribution. Importantly, some fluxes – especially PDC on xylose – had very 
large SDs (± 53–151%), indicating weak constraints and representing alternative feasible 
states rather than robust predictions. By contrast, PDC on glucose (Nlim) had lower SDs 
(±16–26%), supporting higher confidence. Thus, PK is robustly predicted as the main 
cytosolic acetyl-CoA route on fermentative substrates, while ACL acts as a conditional 
backup only when PK is blocked. 

Simulations with PK deletion confirmed this (full dataset available online: 
https://doi.org/10.1371/journal.pcbi.1011009.s012). PDC partially compensated: 
glucose 1.2-fold increase (22% → 26%), xylose 1.9-fold increase (9% → 17%), with further 
increases on glucose under Nlim (3.4-fold, 41 ± 16%). In these scenarios, ACL became 
conditionally active (glucose 0% → 24 ± 18%, xylose 2 ± 26% → 18 ± 19%), highlighting 
ACL’s potential role as a backup acetyl-CoA route, especially under Nlim. 

Acetate: ACS entry, internal cycling, and uncertain cytosolic acetyl-CoA routes 
On acetate, all carbon was obligatorily channeled through ACS (100 ± 0.1% / 100 ± 1%), 
consistent with previously reported modeling under similar conditions (Lopes et al., 
2020). From there, the model distributed  carbon primarily through the glyoxylate shunt 
(ICL + MLS; ~51%), a substantial fraction via the carnitine carrier (CRC; ~29%), and the 
remainder to lipids via ACC (~18%) (Figure S10). At the malate branch, carbon flowed 

https://doi.org/10.1371/journal.pcbi.1011009.s009
https://www.zotero.org/google-docs/?1ahyei
https://www.zotero.org/google-docs/?1ahyei
https://doi.org/10.1371/journal.pcbi.1011009.s011
https://doi.org/10.1371/journal.pcbi.1011009.s012
https://www.zotero.org/google-docs/?pvmarA
https://www.zotero.org/google-docs/?pvmarA
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into the TCA via PDH (~18%), through anaplerotic shunts (malate–OAA–αKG), or toward 
gluconeogenesis via cytosolic MDH. The MLS–MAE–PDH route was less preferred than 
the CRC route. 

Predicted CIT flux (67 ± 2%) was ~3-fold higher than average TCA flux (~12%), which 
would be compatible with PDH → citrate export → ACL; yet ACL and PK remained at 0%, 
and extra exported citrate again re-entered the TCA cycle. Importantly, experimental 
data confirmed that a fraction of citrate was secreted extracellularly during exponential 
growth, indicating overflow metabolism. This suggests that citrate export on acetate 
serves dual purposes: (i) internal redox/OAA balancing via cycling and (ii) relieving 
metabolic pressure by secreting excess carbon when ACS-TCA-glyoxylate fluxes saturate. 
Proteomics supported this view: CIT, ACO1, and MDH1 were highly abundant and 
moderately regulated, consistent with reinforced internal TCA/glyoxylate cycling for OAA 
and redox balance during acetate assimilation. However, the absence of ACL flux despite 
active citrate export indicates that cytosolic acetyl-CoA is supplied exclusively by ACS, 
while citrate overflow represents a redox/energy balancing strategy rather than a 
lipogenic route. 

Where NADPH is spent (turnover analysis) 
During lipid accumulation on glucose, ~75% of NADPH turnover was directed into  
FAS1-2 and ~12% into NADP-GDH (Figure 6). In exponential growth, the split shifted to 
~13% (FAS1-2) and ~46% (GDH). Thus, NADPH allocation switches from biomass  
synthesis (via GDH-mediated amino acid production) to storage compound formation 
(via FAS1-2) as cells transition from growth to lipid accumulation, reflecting a general 
growth-versus-storage trade-off. The magnitude of this reallocation (up to 75% to FAS) 
appears characteristic of oleaginous yeasts. While not resolving whether NADPH limits 
lipogenesis in R. toruloides, these results pinpoint where NADPH is predominantly spent 
and identify FAS as the dominant sink under lipid-accumulating conditions. 
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Figure 6. Comparison of NADPH expenditure on glucose across metabolism during exponential 
(exp) and nitrogen-limited (Nlim) phases in R. toruloides. Blue: nitrogen assimilation pathways. 
Orange: lipid biosynthetic pathways. Large orange circle represents 75 % of NADPH turnover, small 
orange circle is 13 %. Large blue circle represents 46 % of NADPH turnover, small blue circle is 12 
%. GDH1: glutamate dehydrogenase (NADP-dependent), FAS1-2: fatty acid synthase. Reproduced 
from Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 

NADPH regeneration and the LXR cofactor switch 
On glucose, oxPPP carried 76 ± 43% of carbon; on xylose 42 ± 32%. These relative 
contributions changed little under Nlim. Alternative NADPH routes (cMAE, IDP) were 
minor on fermentative substrates (≤ 9% on glucose; ≤ 3% on xylose), suggesting the oxPPP 
as the dominant source of NADPH regeneration, which is consistent with previous studies 
in Y. lipolytica (Wasylenko et al., 2015; J. Zhu et al., 2023). On acetate, oxPPP was 
essentially inactive, and cMAE carried the largest predicted NADPH share (18 ± 35%, 
decreasing to 15 ± 30% in Nlim), although proteome data did not conclusively support 
this, leaving the acetate NADPH source unresolved. 

Cofactor specificity of L-xylulose reductase (LXR) strongly influenced xylose 
predictions. With NADP⁺/NADPH-dependence (Verho et al., 2004), oxPPP demand was 
lower (42 ± 32%), consistent with NADPH drainage by LXR. Switching LXR to NAD⁺/NADH-
dependence increased oxPPP flux to 83 ± 18% on xylose, while other fluxes remained 
unchanged. The ribulose-mediated xylose pathway was preferred even without 
proteome constraints on XK, underscoring that cofactor choice is a critical, testable  
lever for redox design. A full dataset of flux values is available online: 
https://doi.org/10.1371/journal.pcbi.1011009.s013. 
 

https://www.zotero.org/google-docs/?7NvGXP
https://www.zotero.org/google-docs/?PmLcNT
https://doi.org/10.1371/journal.pcbi.1011009.s013
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Together, the simulations outline substrate-dependent strategies in R. toruloides:  
(i) on glucose/xylose, PK + oxPPP dominate (with ACL acting as a conditional backup when 
PK is unavailable); (ii) on acetate, ACS is obligatory, with reinforced internal 
TCA/glyoxylate cycling and cMAE predicted for NADPH (pending validation); and  
(iii) citrate export – both cytosol and extracellularly – recurs across conditions without 
ACL activity in silico, plausibly due to ATP cost, compartmentation gaps, or missing 
regulation in the model. Given the large SDs for some routes, these are hypotheses rather 
than final calls and should be resolved by knockout phenotyping, or direct measurements 
(e.g., cofactor ratios, isotope tracing, enzyme assays) 

3.2.4 Knockout engineering demonstrates ACK, PK, and cMAE are 
dispensable for growth but differ in metabolic impact 
We validated model predictions by engineering the first single gene knockouts of ACL, PK 
and cMAE in haploid R. toruloides strain NBRC 0880 using a one-step plasmid-based 
CRISPR/Cas9 strategy that relied on frameshift mutations. Since no episomal plasmids 
are available for this yeast, Cas9, gRNA, and the G418 resistance marker were randomly 
integrated into the genome via plasmid pPBO.202 (JBEI223791) (Otoupal et al., 2019). 
Given the low homologous recombination frequency in R. toruloides (Koh et al., 2014), 
knockouts were likely obtained through Cas9-induced double-stranded breaks followed 
by error-prone non-homologous end joining. Successful gene disruption was verified by 
sequencing genomic regions flanking the gRNA cut sites and aligning them against the 
wild-type reference genome (Figure 7A). This yielded multiple mutant variants per gene, 
from which one representative per target was selected for detailed physiological 
characterization (for full details see Publication III). Growth assays confirmed that 
integration of the CRISPR/Cas9 cassette itself did not reduce fitness, as wild-type and 
cassette-containing control strains exhibited comparable growth rates, consistent with 
earlier findings (Otoupal et al., 2019). This provides a baseline for attributing phenotypic 
changes specifically to the targeted knockouts. Indeed, no significant growth differences 
were observed among PK and cMAE knockout variants during initial screening, whereas 
the ACL knockout displayed a distinct phenotype (Figure 7B). These results demonstrated 
that central carbon metabolism genes in R. toruloides can be disrupted using a 
chromosomal integration strategy with a selectable drug marker. The recovery of viable 
knockout strains carrying frameshift mutations confirms that the targeted genes ACL,  
PK and cMAE are not essential for growth under the tested cultivation conditions. 
However, conditional essentiality cannot be excluded, as gene function may vary 
depending on environmental context. 
 

https://www.zotero.org/google-docs/?9FE0iu
https://www.zotero.org/google-docs/?cavzqF
https://www.zotero.org/google-docs/?cL322R
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Figure 7. Confirmation of CRISPR/Cas9 based gene disruption by introducing frameshift mutations 
in R. toruloides NBRC 0880. A: partial gene sequencing of the targets ATP citrate lyase (ACL), 
phosphoketolase (PK) and cytosolic malic enzyme (cMAE) near the cut site. Example of one edited 
colony per gene target is shown. B: R. toruloides strains after 9 days growth on YPD agar – 
phenotype comparison. Reproduced from Reķēna et al., Appl Microbiol Biotechnol 109:77, 2025, 
under a CC BY NC ND licence. 

3.2.5 Knockout phenotyping validates and challenges ecGEM predictions in 
R. toruloides 
To validate model predictions, we compared lipid content, growth rates, and exchange 
fluxes of ACL, PK, and cMAE knockout strains with the wild type in sensor-monitored 
aerobic batch cultures. These cultivations were performed in low-nitrogen media to 
induce lipid accumulation. The multi-channel bioreactor system employed a reverse-spin 
mixing mechanism, ensuring efficient aeration and biomass formation – critical for  
the strictly aerobic R. toruloides – and enabling high-throughput, parallel strain 
characterization under reproducible, though less tightly controlled, conditions optimized 
for comparative screening. Only on acetate, the pH rose steadily during growth and 
reached ~9 by the end of cultivation (Figure S11). Experiments confirmed that integration 
of the CRISPR/Cas9 cassette did not impair growth, as several knockouts grew 
comparably to wild type. Distinct phenotypes can therefore be attributed to gene 
disruption. 

ΔACL reveals an indispensable route for cytosolic acetyl-CoA and OAA supply 
ACL knockout produced the strongest phenotypes among all mutants. Lipid accumulation 
was reduced across all substrates (apval ≤ 0.02), most dramatically on glucose where lipid 
content dropped by -81% (apval < 0.0001) (Figure 8A). On xylose, the effect was milder 
(377 vs. 426 mg gCDW–1 in wild type, apval = 0.02) (Figure 8B), suggesting pentose 
metabolism can partially bypass ACL by providing alternative cytosolic acetyl-CoA routes. 
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Lipid composition also altered: ACL knockout caused an increase in polyunsaturated  
fatty acids (PUFAs) (Figure 8A-C), mutants accumulated more linoleic acid (C18:3)  
(pval < 0.0001) and less oleic acid (C18:1) (pval < 0.0001) on glucose and acetate  
(Table S6), consistent with earlier findings in Y. lipolytica (Dulermo et al., 2015). Growth 
mirrored these trends: on glucose ACL mutants grew 41% slower (apval < 0.002)  
(Figure 8D) and arrested after ~18 h despite residual glucose and optimal pH (Figure S12, 
Figure S11). On xylose, they displayed a shorter lag phase compared to the wild type 
(Figure S12) but reached only 45% of the wild-type growth rate (apval < 0.01) (Figure 8E). 
Notably, they still consumed all substrate and accumulated more biomass, indicating that 
compensatory routes can support growth, albeit at reduced efficiency. These results, 
together with high ACL abundance and upregulation in the proteome for the wild type, 
confirm ACL as a central supplier of cytosolic acetyl-CoA during growth and lipogenesis 
on fermentative substrates, consistent with earlier works in other microorganisms (H. 
Chen et al., 2014; Dulermo et al., 2015; Hynes & Murray, 2010; Nowrousian et al., 1999). 
The pervasive growth defects of ACL mutants also underscore its broader role in 
providing cytosolic OAA via citrate cleavage, as anticipated from PK deletion simulations. 
On glucose, the absence of ACL leaves cells without sufficient OAA compensation, leading 
to arrest. By contrast, on xylose, elevated PPP flux into glycolysis and buffering by PC – 
facilitated by high PC abundance and lower ATP demand at slower growth – can partially 
sustain OAA regeneration, allowing growth to continue, though at a reduced rate. If ACL 
were active, cytosolic OAA is produced stoichiometrically with acetyl-CoA, which would 
reduce the need for excessive MDH-mediated OAA regeneration and likely tighten those 
wide MDH1 distributions observed in predictions. Nonetheless, mitochondrial MDH1 
remains essential to regenerate OAA and sustain the citrate-malate shuttle. Its high 
abundance on glucose as a carbon source, together with pyruvate carboxylation, 
indicates reinforced anaplerosis and redox buffering under high glycolytic flux, consistent 
with proteomic evidence. 

On acetate, ACL mutants were most impaired, showing a ~60 h lag, 40% slower growth 
(apval = 0.009) (Figure 8F), and premature arrest before carbon substrate depletion 
(Figure S12). This severe phenotype contrasted with the wild type proteome (low ACL 
abundance: 148 ± 10 µg g⁻¹, 2.8-fold increase, apval = 0.14) and the ecGEM, which 
predicted zero ACL flux in the wild type. Proteomics for the wild type provided  
additional context: CIT, ACO1, and MDH1 were highly abundant, suggesting reinforced 
citrate-isocitrate-malate cycling to regenerate OAA and maintain redox balance. 
However, this internal cycling does not resolve the cytosolic acetyl-CoA demand for 
lipogenesis. The lack of ACL flux in the ecGEM, despite the severe knockout phenotype 
on acetate, reflects inherent model simplifications in energy accounting and 
compartmentation. First, ACL is an ATP-consuming reaction, and the model solution 
likely prioritizes energy-efficient pathways. With acetate assimilation modeled entirely 
through cytosolic ACS, which provides acetyl-CoA at lower energetic cost, the model 
solution bypasses ACL even when this contradicts biology. Second, many yeasts, 
including S. cerevisiae, Y. lipolytica, and Candida spp., encode both cytosolic and 
mitochondrial ACS isoforms (Krivoruchko et al., 2015), but in R. toruloides these are not 
well annotated. In vivo, mitochondrial ACS would convert acetate to acetyl-CoA for the 
TCA cycle, while cytosolic acetyl-CoA would be regenerated via citrate export and ACL 
cleavage. In the ecGEM, however, acetate is assumed to freely enter the cytosol, and 
cytosolic ACS therefore becomes the cheapest assimilation route, bypassing the need for 
citrate shuttling and ACL activity. Moreover, transport penalties and carrier coupling 

https://www.zotero.org/google-docs/?T7sKFl
https://www.zotero.org/google-docs/?Imejxu
https://www.zotero.org/google-docs/?Imejxu
https://www.zotero.org/google-docs/?WkvOzO
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(e.g., citrate-malate exchange) are not fully specified, so the energetic and regulatory 
advantages of the mitochondrial route are invisible to the solver. As both ACS isoforms 
are annotated to the same gene, the enzyme constraint cannot distinguish between 
cytosolic and mitochondrial pools, further biasing the solution. Together, these 
simplifications explain why the mitochondrial ACS is present in the network but not used 
in a biologically realistic way. Third, in this scenario, ACL becomes essential for exporting 
citrate to the cytosol and regenerating acetyl-CoA and OAA, thereby sustaining lipid 
synthesis and redox balance. Without ACL, this shuttle collapses: acetyl-CoA remains 
trapped in mitochondria, cytosolic OAA supply drops, and lipid synthesis stalls. PC cannot 
compensate under these conditions. Although PC abundance on acetate was comparable 
to glucose and xylose, glycolysis is inactive, so pyruvate is scarce. This substrate limitation 
caps PC flux and prevents it from meeting cytosolic OAA demand. ACL, by contrast, 
bypasses glycolysis and directly provides both cytosolic acetyl-CoA and OAA, uniquely 
positioning it to balance lipid synthesis and redox requirements. If ACL were active, 
exported citrate would be cleaved by cytosolic ACL to yield acetyl-CoA and OAA, directly 
supplying the cytosolic acetyl-CoA pool for lipogenesis while providing a parallel source 
of OAA that can re-enter the TCA cycle via malate shuttling. Although the ACL step itself 
is cataplerotic, the resulting citrate-malate cycle contributes to overall anaplerotic and 
redox balancing functions, reducing dependence on MDH- and PC-mediated OAA 
regeneration. This not only makes the proteome signal functionally meaningful rather 
than purely “internal cycling”, but also explains why ACL mutants arrest on acetate 
despite ACL’s low proteome abundance and the model’s zero predicted flux. Thus, the 
discrepancy between phenotype (ACL essential), proteomics (low ACL abundance), and 
modeling (zero flux) can be explained by (i) compartmentation errors, (ii) a small ACL 
pool providing essential flux despite low abundance, and (iii) acetate-specific where 
glycolysis-independent OAA supply is required. Together, these factors suggest that ACL 
plays a context-dependent but indispensable role under acetate metabolism, 
highlighting need for improved isoform annotation, compartmentation, and energy 
accounting in ecGEMs, as well as the limitations of using proteome abundance or model 
predictions alone to infer enzyme indispensability. 
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Figure 8. Growth and lipid accumulation data of R. toruloides NBRC 0880 (formerly known as IFO 
0880) wild type and mutant strains cultivated in Falcon tube bioreactors in low-nitrogen chemically 
defined media with glucose (G), xylose (X), or acetate (A) as a carbon source during exponential 
growth (exp) and nitrogen-limited (Nlim) phases. A: Total lipid yield on biomass and FA composition 
of glucose-grown strains. B: Total lipid yield on biomass and FA composition of xylose-grown strains. 
C: Total lipid yield on biomass and FA composition of acetate-grown strains. D: Specific growth rate of 
glucose-grown strains. E: Specific growth rate of xylose-grown strains. F: Specific growth rate of 
acetate-grown strains. Strains include ATP citrate lyase knockout (ΔACL, green), phosphoketolase 
knockout (ΔPK, blue), and cytosolic malic enzyme knockout (ΔcMAE, orange). Error bars represent 
standard deviation of three biological replicates. Abbreviations: FA, fatty acid; SFAs, saturated fatty 
acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids. Asterisks denote 
statistical significance (ANOVA Dunnett’s multiple comparison test against the wild type NBRC 0880 
strain, adjusted p value *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). ns is used to denote 
changes that are statistically nonsignificant. Layouts and color schemes differ from the published 
versions for copyright compliance. 
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ΔPK indicates overestimation of phosphoketolase flux in silico 
Although the ecGEM consistently predicted PK as the dominant cytosolic acetyl-CoA 
supplier on glucose and xylose, this was not borne out experimentally. PK knockout 
strains showed no significant changes in lipid content, growth rate, or fatty acid profile 
under any of tested conditions (Figure 8A–F), indicating that PK flux is dispensable in vivo. 
The model’s preference for PK likely stems from its stoichiometric “cheapness” – a short, 
ATP-efficient route to acetyl-CoA – and possibly high kcat values inherited from non-R. 
toruloides enzymes in BRENDA. This interpretation is consistent with ATP balance analysis, 
where ACL cleavage would appear as a costly ATP sink, while PK routes minimize energetic 
demand (Figure S13). Under nitrogen limitation on glucose/xylose, ATP consumption 
shifted toward ACC/FAS, mirroring the observed increase in NADPH flux to FAS and the 
rise in PK flux in silico (Figure 9). On acetate, as discussed above, ATP spending is 
dominated by ACS-driven assimilation and respiratory ATP production, leaving little 
energetic slack (Figure S14). In respiratory metabolism, mitochondrial NADH (mNADH) 
generated by PDH and the TCA cycle serves as the principal electron donor for oxidative 
phosphorylation. Although the ACL pathway is experimentally established as the main 
source of cytosolic acetyl-CoA during lipid accumulation in fully respiratory oleaginous 
yeasts, the model did not predict significant ACL flux (Figure 9). The model occasionally 
predicted citrate export to the cytosol followed by re-import into the mitochondria 
through auxiliary pathways, effectively creating a futile citrate cycle. This behavior likely 
reflects the rigid ATP–NADH coupling imposed by the steady-state energy balance.  
In vivo, mitochondria can produce more ATP than strictly needed for growth under high 
respiratory capacity, providing surplus energy to drive lipid biosynthesis. In contrast, 
GEMs solve ATP balance algebraically – every mole of NADH oxidation must immediately 
meet ATP demand to satisfy GAM and NGAM under steady-state assumptions. 
Consequently, cytosolic ATP required for ACL activity is never “left over.” When citrate is 
exported from the mitochondria, it carries carbon atoms but no reducing equivalents. 
The NADH produced by PDH remains in the matrix to sustain respiration, while the 
cytosol must generate its own NADPH for fatty acid synthesis. This separation of carbon 
and redox fluxes renders the ACL route energetically costly and redox-imbalanced in 
stoichiometric models, even though real cells employ regulatory mechanisms to coordinate 
these compartments during lipid accumulation. The established AMP-mediated regulatory 
switch that triggers citrate overflow under nitrogen limitation (Papanikolaou & Aggelis, 
2011a; Ratledge & Wynn, 2002b) is not represented in GEM. In vivo, a decline in AMP 
inhibits isocitrate dehydrogenase, promoting citrate accumulation that feeds ACL and 
lipid biosynthesis. In the model, however, AMP functions only as a metabolite within the 
ATP - ADP - AMP balance, lacking regulatory role. As a result, ATP/NADH turnover 
remains tightly balanced, and the dynamic energy-charge control that drives this 
metabolic transition is not captured. 

Also, in vivo PK may be constrained by (i) instability of its product acetyl-phosphate, 
(ii) insufficient activity of downstream PTA/ACK enzymes, or (iii) lack of integration with 
OAA/redox balancing that ACL provides via citrate cleavage. Proteomic data showing PK 
upregulation under nitrogen limitation suggest regulatory priming, but the absence of a 
phenotype upon deletion implies that this induction does not translate into substantial 
flux. This discrepancy underscores a broader GEM limitation: pathway selection in silico 
is driven by stoichiometric and energetic efficiency, but real cells prioritize robustness 
and metabolic integration. Refining models with constraints on PK (PTA/ACK capacity, 
acetyl-P instability, or thermodynamic penalties) would help avoid overestimating its 

https://www.zotero.org/google-docs/?qGxolB
https://www.zotero.org/google-docs/?qGxolB
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contribution and better reconcile model predictions with experimental evidence. These 
results highlight how knockout phenotyping, when integrated with proteome data, 
provides a critical check on ecGEM predictions and helps identify where additional 
biological realism is required. 

 

 

Figure 9. Central carbon and cofactor flux map in R. toruloides during respiratory growth on 
glucose. Nodes represent major intermediates (glucose, pyruvate, oxaloacetate (OAA), xylulose-5-
phosphate (X-5-P), acetyl-CoA, and citrate) and compartments (cytoplasm, mitochondria). Reaction 
arrows are scaled by simulated flux and annotated with cofactor usage: ATP (amber badge), NADH 
(blue badge), NADPH (green badge), and CO₂ release (gray badge). In glycolysis, cofactor badges 
indicate per-reaction stoichiometries (−2 ATP at hexokinase and phosphofructokinase, +1 NADH at 
glyceraldehyde-3-phosphate dehydrogenase, +2 ATP at phosphoglycerate kinase and pyruvate 
kinase) rather than the overall glycolytic net yield (+2 ATP, +2 NADH per glucose). Color-coded 
cofactor badges summarize the energetic and redox logic underlying this predicted flux distribution. 

ΔcMAE confirms substrate-dependent and nonessential role in NADPH supply 
For NADPH supply, all three approaches consistently pointed to the oxPPP as the major 
source on fermentative carbon sources. cMAE knockout displayed condition-specific 
effects. On acetate, growth slowed by 19% (apval = 0.009) (Figure 8F) without affecting 
lipid accumulation, consistent with model predictions that cMAE contributes to NADPH 
supply under this condition. The absence of a lipid phenotype on acetate (lipid yields of 
448 vs. 451 mg gDCW–1 for the ΔcMAE mutant and the wild type, respectively; difference 
not statistically significant, Figure 8C) suggests that remaining NADPH sources were 
preferentially directed into fatty acid synthesis at the expense of growth, reflecting a 
lipid-first allocation strategy typical of oleaginous yeasts. This observation is consistent 
with the early biochemical findings in R. glutinis (Yoon et al., 1984). Although recent 
genetic engineering studies in oleaginous yeasts have been performed only on glucose, 

https://www.zotero.org/google-docs/?3BwONT
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the reported effects of MAE deletion or overexpression on lipogenesis were relatively 
minor and varied depending on experimental design (Dulermo et al., 2015; S. Zhang  
et al., 2016). This contrasts with filamentous fungi, in which MAE has been identified as 
one of the rate-limiting steps in fatty acid biosynthesis (Wynn et al., 1997, 2001;  
Wynn & Ratledge, 1997; Y. Zhang et al., 2007). The proteomics-constrained ecGEM 
consistently favored cMAE as the dominant NADPH source on acetate (~18 ± 35% of 
carbon, ↓ to 15 ± 30% at Nlim) because it provides a direct, ATP-neutral conversion of 
malate to pyruvate while generating NADPH, making it a stoichiometrically and 
energetically “cheap” solution compared to oxPPP (which requires costly gluconeogenic 
generation of G6P) or IDP (which consumes isocitrate and produces CO₂). The solver 
minimizes energetic cost and carbon loss, biasing predictions toward cMAE. However, 
this predicted dominance of cMAE is biologically unlikely. Malate availability in the 
cytosol is limited on acetate because flux through glycolysis is absent and malate must 
be generated via costly cycling through the glyoxylate shunt or TCA. Moreover, cMAE 
activity uncouples NADPH regeneration from OAA balance, whereas oxPPP and IDP are 
more integrated into central carbon and redox metabolism. Thus, in vivo, cMAE is more 
plausibly a secondary or backup source of NADPH rather than the main driver. 
Proteomics, however, revealed a substantial and even upregulated abundance of ZWF 
(637 ± 52 → 951 ± 16 µg g⁻¹ protein), suggesting that cells maintain significant oxPPP 
capacity even when acetate is the sole carbon source. The most plausible explanation is 
that oxPPP on acetate is constrained by gluconeogenic supply of G6P – energetically costly, 
but still feasible – so ZWF may act as a redox reserve rather than a high-flux NADPH route. 
Meanwhile, IDP, which showed elevated abundance on acetate (1472 ± 47 µg g⁻¹ protein, 
2.4-fold increase, apval 0.14), represents an alternative, model-underestimated source 
of NADPH that could compensate when cMAE is disrupted. Together, these results 
highlight that NADPH supply during acetate metabolism in R. toruloides cannot be 
attributed to a single pathway. Instead, a distributed system of partially redundant 
routes – oxPPP, IDP, and possibly transhydrogenase-like cycling – appears to balance 
redox demands. This points to gaps in the ecGEM, including, e.g., gluconeogenic limits, 
thermodynamic penalties, enzyme saturation, inaccurate kcat values or missing 
alternative NADPH sources, and underscores the need for isotope tracing and cofactor 
profiling to resolve acetate-specific NADPH metabolism. 

By contrast, on glucose, the cMAE knockout unexpectedly improved performance: 
growth increased by 23% (apval = 0.04) (Figure 8D) and lipid accumulation modestly rose 
(+2.9% g gDCW–1, apval = 0.03) (Figure 8A). This suggests that cMAE activity on glucose 
may impose a metabolic burden, either by drawing malate away from malate-OAA 
cycling or by generating redundant NADPH in a condition where the oxPPP already 
dominates redox supply (76 ± 43% of carbon flux). Proteomics data supported this 
interpretation, showing cMAE at modest, unregulated levels across conditions. Together, 
these results indicate that cMAE is a supportive but nonessential enzyme: beneficial on 
acetate, but potentially maladaptive on glucose where excess NADPH or futile cycling can 
hinder growth efficiency. This contrasts with previous report in R. toruloides, where MAE 
overexpression, although producing only a relatively minor effect, still resulted in a 
significant increase in lipid production (S. Zhang et al., 2016). It is important to note, 
however, that knockout and overexpression phenotypes are perturbations in opposite 
directions and may not be directly comparable. 

 

https://www.zotero.org/google-docs/?7Y3ND2
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In summary, knockout phenotyping established ACL as essential for lipogenesis on 
glucose and acetate but dispensable on xylose, where alternative acetyl-CoA pathways 
compensate. PK appears redundant despite model predictions and proteome upregulation, 
while cMAE contributes conditionally in a substrate- and redox-dependent manner,  
even disfavouring lipid production. Integrating proteomics, modeling, and knockout 
phenotyping thus refines our understanding: ACL is indispensable in vivo, PK is 
overestimated in silico, and cMAE is largely dispensable but reflects metabolic flexibility.  



 

63 

4 Conclusions 
Potential and limitations of enzyme-constrained genome-scale models (ecGEMs) in 
understanding and engineering yeast metabolism were examined focusing on two 
distinct studies: (i) anaerobic 2,3-butanediol (23BD)–glycerol co-production in 
Saccharomyces cerevisiae, and (ii) lipogenesis in the oleaginous yeast Rhodotorula 
toruloides. By integrating ecGEM simulations with quantitative proteomics, growth 
physiology, and CRISPR/Cas-based strain engineering, we demonstrated how modeling 
and experiments can be combined to reveal metabolic strategies, bottlenecks, and 
design opportunities. 

Broader conclusions and future perspectives 
The predictive value of enzyme-constrained genome-scale models (ecGEMs) ultimately 
depends on how accurately simulated quantities reproduce experimental observations. 
It is therefore necessary to distinguish calibration (parameterization with exchange 
fluxes, biomass composition, and proteomics) from model validation, in which 
independent phenotypes, fluxes, and proteome allocation patterns are quantitatively 
tested. Validation provides the critical link between theoretical modeling and biological 
experimentation, establishing when a model can be relied upon for design or hypothesis 
generation. Importantly, inconsistencies between predictions and measurements also 
highlight gaps in our current understanding of cellular metabolism, pointing to specific 
biological mechanisms that call for further investigation. 

The studies described in the thesis demonstrate how enzyme-constrained  
genome-scale modeling, when integrated with quantitative proteomics and genetic 
perturbations, can bridge the gap between systems-level prediction and experimental 
validation in both model and non-model yeasts. The need for flexibilization of measured 
enzyme data in the ecGEM fitting process carries important implications for both 
biological interpretation and predictive credibility. The parametrization process 
emphasises that ecGEMs are not static predictive machines but iterative diagnostic tools 
– each round of adjustment refines both experimental and computational understanding. 
In this sense, flexibilization is not only an alarming signal, but also an informative point, 
pinpointing where future work should focus. 

Nevertheless, by quantifying proteome allocation dynamics and demonstrating that 
enzyme constraints reshape feasible flux space, this thesis established ecGEMs as 
promising platforms for rational strain design and for interpreting adaptive evolution 
(Aim I). Moreover, across S. cerevisiae and R. toruloides, ecGEMs proved capable of 
reproducing major physiological trade-offs – between growth, redox balance, and 
resource allocation – while generating mechanistic hypotheses far faster and at greater 
resolution than traditional experimentation alone (Aim II). These insights enabled the 
identification of substrate-dependent strategies for cytosolic acetyl-CoA and NADPH 
supply, revealed context-specific enzyme essentialities, but also exposed key discrepancies 
between in silico efficiency and in vivo robustness. Importantly, this work also 
emphasized that not always enzyme abundance is a reliable proxy for flux, underscoring 
the necessity of coupling modeling with isotope tracing, cofactor profiling, and genetic 
perturbations to refine quantitative predictions. Future advances – including automatic 
biomass composition, ribosome allocation scaling with growth rate, improved enzyme 
annotation, thermodynamics-based constraints, organism-specific energy maintenance 
measurements and kinetic datasets – will further enhance their predictive power  
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(Aim III). Together, ecGEMs, as part of an integrative cycle with experiments, have the 
potential to shorten design-build-test-learn cycles, improve the efficacy of metabolic 
engineering experiments, and deepen our mechanistic understanding of cellular 
metabolism under both engineered and natural conditions. 

Study 1: Anaerobic 23BD-glycerol co-production in S. cerevisiae 
In this study, enzyme-constrained genome-scale modeling was integrated with 
quantitative proteomics to dissect metabolic trade-offs and proteome allocation in 
Saccharomyces cerevisiae engineered for anaerobic (R,R)-2,3-butanediol–glycerol  
co-production. The model successfully reproduced key physiological behaviors and 
provided mechanistic insight into the interplay between enzyme capacity, energy yield, 
and proteome organization. 

The ecGEM captured the major trade-offs of 2,3-butanediol pathway operation – 
namely, a lower ATP yield and a corresponding reduction in biomass yield – while 
predicting compensatory increases in specific glucose uptake rate that offset the 
thermodynamic penalties on growth (Section 3.1.1). These predictions aligned closely 
with experimental observations (Section 3.1.2), confirming the model’s ability to 
describe key constraints in anaerobic co-production (Aim II). 

Comparisons between predicted and measured proteome allocation further revealed 
both strengths and limitations of the ecGEM (Section 3.1.3). The predicted increase in 
glycolytic investment and its experimental confirmation underscored the remarkable 
metabolic flexibility of S. cerevisiae under redox stress – a phenomenon unattainable in 
conventional GEMs that lack proteome accounting. Under detailed enzyme constraints, 
fluxes through the most catalytically efficient enzymes (as defined by kcat/Mw) often 
decreased, while flux through less efficient isoenzymes or alternative routes increased 
(Section 3.1.4), revealing a shift toward a leaner and more physiologically realistic 
metabolic strategy. Collectively, these results guided phenotype interpretations that 
would be difficult to derive through experiments alone. However, discrepancies at the 
enzyme-family level – particularly in redox balancing (Gpd/Gpp, Ald), biosynthetic 
regulation, and isoenzyme selection – reflected the model’s bias toward stoichiometric 
efficiency rather than the robustness and redundancy observed in vivo (Aim III).  
By incorporating the both coarse total-protein and proteomics- constraints (Section 
3.1.1), only a fraction of total proteome mass contributed catalytically in the model due 
to incomplete annotation, missing or uncertain kcat values, and the presence of structural, 
regulatory, or stress-related proteins that are not explicitly represented (Aim III).  

Overall, this work demonstrates that enzyme-constrained modeling, when paired with 
absolute proteomics, can accurately predict macroscopic trade-offs and capture global 
proteome redistribution, while highlighting critical gaps in enzyme annotation and 
kinetic data. The ecGEM framework thus provides a mechanistically grounded context 
for evaluating adaptive limits in metabolic engineering: distinguishing “hard limits” 
imposed by thermodynamics and ATP yield from “soft limits” imposed by enzyme capacity 
and regulation. 

Study 2: Lipogenesis in R. toruloides 
In this study, we examined how central carbon metabolism reallocates fluxes to supply 
cytosolic acetyl-CoA and NADPH in R. toruloides, and how these strategies vary  
between substrates such as glucose, xylose, and acetate. Using growth experiments and  
detailed physiological characterisation, global absolute proteomics, ecGEMs with  
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substrate-resolved biomass composition, and targeted gene knockouts, we predicted 
intracellular fluxes across substrates, and validated predictions to dissect substrate-specific 
strategies between lipogenesis and exponential growth conditions.  

Growth experiments on glucose, xylose, and acetate revealed nitrogen limitation 
consistently triggering lipid accumulation (Section 3.2.2) but through different metabolic 
routes. Absolute proteomics showed how resource allocation shifts between growth and 
storage (Section 3.2.1). Ribosomal investment was high but ribosome efficiency was low 
compared to S. cerevisiae, consistent with microbial growth laws but highlighting distinct 
proteome allocation in basidiomycetous oleaginous yeast. Key lipogenic enzymes such 
as ACL, PK, ACS, ZWF and cMAE displayed clear substrate-specific patterns, but abundance 
alone did not predict essentiality. The proteomics-constrained ecGEM reproduced 
growth rates and substrate uptake within ~30% of experimental values, and it 
systematically generated mechanistic hypotheses about acetyl-CoA and NADPH supply 
(Section 3.2.3). On glucose and xylose, the model consistently preferred the 
phosphoketolase (PK) pathway and the oxidative pentose phosphate pathway (oxPPP); 
on acetate, acetyl-CoA synthetase (ACS) and malic enzyme (cMAE) were predicted to 
dominate. Knockout phenotyping provided the decisive evidence to these predictions 
(Section 3.2.4 and 3.2.5). Results established ACL as a central node in lipogenesis, 
uncovered clear discrepancies between modeling and proteome data, and phenotypes, 
and highlighted the importance of integrating all three approaches (Aim II).  

These findings refine ecGEM predictions and underscore the importance of isoform 
annotation, compartmentation, and energy accounting in non-model GEMs (Aim III). 
Nevertheless, the modeling insights proved especially valuable because they generated 
hypotheses that would have been difficult or slow to uncover using experimental 
approaches alone. For example, the model highlighted the PK pathway as a potential 
dominant source of cytosolic acetyl-CoA on glucose and xylose, narrowing the search 
space. Similarly, the simulations revealed that ATP-consuming ACL could act as a 
conditional backup, becoming active when PK was blocked in silico. This finding 
anticipated the strong ACL knockout phenotype on glucose/xylose. Accounting for 
cofactor NADPH regeneration prompted investigation into substrate-dependent NADPH 
strategies and led to the discovery that enzyme cofactor specificity (e.g., NADPH- vs 
NADH-dependent LXR) strongly shifts redox fluxes. Finally, the counterintuitive 
prediction of citrate export without ACL flux identified redox/energy balancing as a 
bottleneck and motivated the hypothesis that citrate shuttling plays roles in overflow 
and redox balancing. However, the model’s energetic logic - favoring PK as the “cheaper” 
route - forced deeper reflection on why cells use ACL in vivo, pointing to integration with 
OAA and redox balance rather than energetic efficiency. Also, predicting cMAE 
dominance on acetate revealed its bias toward stoichiometric optimality, overestimating 
energy and carbon efficiency. These modeling discrepancies and their mechanistic 
interpretation were not examined in Publication III when it was published and are 
presented here for the first time, extending the original studies with new insights into 
enzyme essentiality and metabolic mechanisms in R. toruloides. 

Taken together, the R. toruloides case study shows that ecGEMs can capture broad 
metabolic strategies and point to critical nodes, but that proteomics and phenotyping 
are essential to distinguish between “cheap but unused” routes and “low-abundance but 
indispensable” ones. Nevertheless, it elucidated how flexibly R. toruloides reorganizes 
metabolism to achieve lipogenesis, providing both mechanistic insight and guidance for 
metabolic engineering. In future work, ecGEMs could also be used for proteome 
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allocation modeling, linking expression constraints more directly to fluxes. Future 
improvements should include generation of R. toruloides-specific kinetic and maintenance 
parameters to fit GEMs, targeted testing of uncharacterized enzymes identified in the 
proteome. Such steps will bring us closer to a predictive design framework for 
engineering R. toruloides as a robust lipid cell factory. 
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Abstract 
Computational design of yeast-based cell factories 
The design of efficient yeast-based cell factories requires predictive computational 
models that accurately capture quantitative links between genotype and phenotype. 
Among the modeling approaches available, genome-scale metabolic models (GEMs) 
enable the prediction of cellular growth and metabolic fluxes under defined 
environmental and genetic conditions. However, conventional GEMs rely solely on 
stoichiometric and steady-state assumptions and therefore fail to capture enzyme 
capacity limitations or kinetic and regulatory control. This limitation restricts their 
predictive power, particularly in non-model yeasts that display distinct metabolic 
regulation and for which experimental data remain scarce. To address these 
shortcomings, enzyme-constrained genome-scale metabolic models (ecGEMs) extend 
the GEM framework by coupling metabolic fluxes to absolute proteomics data and 
reaction-specific catalytic constants (kcat). 

The overarching aim of this thesis was to develop, apply, and critically evaluate 
enzyme-constrained models for predicting metabolism in both the model yeast 
Saccharomyces cerevisiae and the lipid-producing yeast Rhodotorula toruloides. The work 
was motivated by the exploration of thermodynamically feasible, redox neutral and ATP 
yielding pathways for anaerobic product formation, as well as by the goal of extending 
advanced metabolic modeling toward nonconventional, industrially relevant yeast 
species. 

Study 1 integrated absolute quantitative proteomics with physiological data from 
controlled bioreactor cultivations to parametrize ecGEMs and assess the predictive power 
for yields, metabolic reaction rates (fluxes), and proteome allocation in Saccharomyces 
cerevisiae strains engineered for redox-neutral, ATP-yielding co-production of (R,R)-2,3-
butanediol and glycerol. The model was further constrained by genetic perturbations, 
and the predicted fluxes, validated experimentally with the engineered strain, 
reproduced several observed physiological trends, including growth reduction and 
proteome reallocation. 

Study 2 focused on R. toruloides, an oleaginous yeast naturally capable of synthesizing 
high amounts of lipids and carotenoids. Absolute quantitative proteomics and 
physiological data from bioreactor cultivations were integrated to construct new ecGEMs 
and to simulate carbon flow through intracellular metabolic pathways during exponential 
growth and lipid-accumulation phases on three carbon substrates – glucose, xylose and 
acetate. Model-based hypotheses were evaluated through targeted gene deletions and 
subsequent growth experiments assessing the effects on growth and lipid accumulation. 
Although the ecGEM accurately reproduced growth and global proteome limitations,  
it systematically underestimated the activity of key lipid-precursor biosynthetic pathways. 
These results emphasized the need for accurate catalytic constants, compartmentalization, 
and maintenance parameters for reliable model predictions and provided new insight 
into the roles of specific genes in lipid-precursor production on fermentative and  
non-fermentative substrates. 

The thesis demonstrates the integration of genetic, biochemical and computational 
approaches to develop and validate predictive models of yeast metabolism, highlighting 
both strengths and current critical gaps in modeling frameworks, and provides perspectives 
on how future improvements can advance in silico biomanufacturing design. 
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Lühikokkuvõte 
Pärmipõhiste rakuvabrikute in silico disain 
Tõhusate pärmipõhiste rakuvabrikute disainimine vajab ennustusvõimelisi arvutuslikke 
mudeleid, mis suudavad täpselt kirjeldada kvantitatiivseid seoseid genotüübi ja 
fenotüübi vahel. Üheks selliseks lähenemiseks on ülegenoomsed metabolismimudelid 
(GEM-id), mis võimaldavad prognoosida rakkude kasvu ja metaboolsete reaktsioonide 
kiirusi määratletud keskkonna- ja geneetilistes tingimustes. Traditsioonilised GEM-id 
tuginevad siiski üksnes stöhhiomeetrilistele ja püsiseisundi eeldustele ega arvesta 
seetõttu ensüümide mahulisi piiranguid ega kineetilist ja regulatoorset kontrolli.  
See piirang vähendab nende ennustusvõimet, eriti mitte-mudel tüüpi pärmides,  
millel on spetsiifiline metaboolne regulatsioon ning mille eksperimentaalsed andmed  
on puudulikud. Nende puuduste kõrvaldamiseks laiendavad ensüümipiiranguga 
ülegenoomsed metabolismimudelid (ecGEM-id) GEM-raamistikku, sidudes metaboolsed 
vood absoluutsete proteoomika andmete ja reaktsioonispetsiifiliste katalüütiliste 
konstantidega. 

Käesoleva väitekirja üldeesmärk oli välja töötada, rakendada ja kriitiliselt hinnata 
ensüümipiiranguga mudeleid pärmide metabolismi ennustamiseks nii mudelpärmis 
Saccharomyces cerevisiae kui ka lipiide tootvas pärmis Rhodotorula toruloides. Töö oli 
motiveeritud termodünaamiliselt võimalike, redoksneutraalsete ja ATP-d tootvate 
sünteesiradade uurimisest anaeroobsete produktide moodustumisel ning soovist 
laiendada täiustatud metabolismimudelite kasutust mitte-konventsionaalsetele, kuid 
tööstuslikult olulistele pärmiliikidele. 

Uuring 1 seob absoluutse kvantitatiivse proteoomika ja füsioloogilised andmed 
kontrollitud bioreaktori kasvatustest, et ecGEM-e parameetrite kaudu väljendada ja 
hinnata nende ennustusvõimet saagikuse, metaboolsete reaktsioonide kiiruste  
ning proteoomi jaotuse osas S. cerevisiae tüvedes, mis olid geneetiliselt  
muundatud redoksneutraalse, ATP-d tootva (R,R)-2,3-butaanidiooli ja glütserooli 
koosproduktsiooni jaoks. Järgnevalt täiendati mudelit geneetiliste muudatustega ning 
prognoositud vood, mida kontrolliti eksperimentaalselt muundatud tüves, taasesitasid 
mitmeid täheldatud füsioloogilisi trende, sealhulgas kasvu vähenemist ja proteoomi 
ümberjaotumist. 

Uuring 2 keskendus R. toruloides’ele, looduslikult lipiidsele pärmile, mis on võimeline 
sünteesima suuri koguseid lipiide ja karotenoide. Absoluutne kvantitatiivne proteoomika 
ja füsioloogilised andmed bioreaktori kultiveerimistest seoti uute ecGEM-ide 
koostamiseks ning süsinikuvoogude modelleerimiseks rakusisestes metabolismiradades 
eksponentsiaalse kasvu ja lipiidide akumulatsiooni faasis kolmel erineval 
süsinikusubstraadil – glükoosil, ksüloosil ja atsetaadil. Mudelil põhinevaid hüpoteese 
kontrolliti määratud geenide eemaldamiste ja sellele järgnenud kasvukatsetega, 
hinnates mõjusid kasvule ja lipiidide akumulatsioonile. Kuigi ecGEM ennustas täpselt 
kasvu ja proteoomi üldisi piiranguid, alahindas see süstemaatiliselt peamiste lipiid-
prekursorite biosünteetiliste radade aktiivsust. Need tulemused rõhutasid täpsete 
katalüütiliste konstantide, raku kompartmentide ja alalhoiuenergia tähtsust 
usaldusväärsete mudelprognooside saavutamisel ning andsid uusi teadmisi konkreetsete 
geenide rollist lipiid-prekursorite tootmises fermenteeruvatel ja mitte-fermenteeruvatel 
substraatidel. 
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Väitekirjas näidati, kuidas siduda geneetilised ja biokeemilised andmed mudelitega, et 
pärmide metabolismi ennustavate mudelite arendamiseks ja valideerimiseks. Töö toob 
esile nii ensüümipiiranguga modelleerimise tugevused kui ka praegused kitsaskohad ning 
pakub nägemuse, kuidas edasised täiustused võivad edendada in silico biotööstuslike 
tootmislahenduste kavandamist. 
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Supplementary Tables 

Supplementary tables to Study 1 

Table S1. Gene set analysis (Väremo et al., 2013) of measured proteome data. Results provide 
functional groups with the number of proteins included in each group and the adjusted p-value 
without considering directionality (Non-directional), upregulated, and downregulated proteins in 
the dataset. Reproduced from Sjöberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY 
licence. 

Number 
of 
proteins 

GSY014 vs GSY013 % of total protein 

Protein functional groups 
Upregulate
d 

Downregul
ated 

Non-
directional GSY013 GSY014 

Central carbon metabolism, 
glycolysis 47 0,0012999 1 0,0012999 28,673181 43,4930885 

Biosynthesis, amino acid 
metabolism 116 0,0012999 1 0,0012999 6,85647662 8,7849401 

Translation, ribosome 110 1 0,0038996 0,0012999 25,4856646 18,5188884 

Biosynthesis, cofactor biosynthesis 76 0,0012999 1 0,0019498 0,92952053 1,06945689 

Central carbon metabolism, 
carbohydrate metabolism 31 1 0,0090991 0,0062394 0,61589211 0,4048838 

Biosynthesis, lipid and steroid 
metabolism 62 0,76222 1 0,0090991 0,94723025 1,77506151 

Biosynthesis, purine metabolism 28 0,52801 1 0,031754 1,49754419 1,74714157 

Central carbon metabolism, other 
central metabolism enzymes 24 0,83247 1 0,052157 0,84297743 1,00011134 

Biosynthesis, pyrimidine 
metabolism 18 0,85242 1 0,11699 0,33569691 0,33994558 

Translation, tRNA loading 36 0,0048745 1 0,16027 0,823187 0,84344909 

Central carbon metabolism, TCA 
cycle and anaplerotic enzymes 19 0,016248 1 0,31693 0,58057421 0,66133807 

Folding sorting degradation, 
peptidases 32 0,56219 1 0,60894 0,53092279 0,61846825 

Translation, translation factors 42 1 0,20101 0,60894 4,43020195 3,99360999 

Central carbon metabolism, 
pentose phosphate metabolism 16 0,016248 1 0,9998 0,73470907 0,65379915 

Other enzymes, other enzymes 116 0,18025 1 0,9998 1,15630208 1,18128839 

Energy metabolism, oxidative 
phosphorylation 30 0,048745 1 0,9998 0,68681761 0,64869067 

Translation, mRNA surveillance 
pathway 26 0,78887 1 0,9998 0,08479007 0,08025251 

Folding sorting degradation, sulfur 
relay system 5 1 0,42236 0,9998 0,1406847 0,0941634 

DNA maintenance, DNA repair and 
recombination proteins 8 1 0,74093 0,9998 0,0284869 0,02259921 

https://www.zotero.org/google-docs/?HaB1Cw
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Number 
of 
proteins 

GSY014 vs GSY013 % of total protein 

Protein functional groups 
Upregulate
d 

Downregul
ated 

Non-
directional GSY013 GSY014 

Biosynthesis, glycan metabolism 34 1 0,026517 0,9998 0,10913066 0,10280548 

Folding sorting degradation, protein 
processing in endoplasmatic 
reticulum 42 1 0,10362 0,9998 0,30244859 0,2703966 

Translation, RNA transport 35 0,78887 1 0,9998 0,67169539 0,68602054 

Membrane transport, transport 12 0,78887 1 0,9998 0,50463491 0,56536671 

Folding sorting degradation, 
chaperones and folding catalysts 61 0,91505 1 0,9998 3,78810893 3,4605689 

DNA maintenance, chromosome-
related 113 1 0,026517 0,9998 0,73873438 0,49726759 

Transcription, basal transcription 
factors 28 1 0,76016 0,9998 0,06836305 0,06688099 

Folding sorting degradation, 
ubiquitin mediated proteolysis 16 0,83247 1 0,9998 0,10112648 0,10017797 

DNA maintenance, DNA replication 
complex 24 0,78887 1 0,9998 0,07823503 0,07682752 

DNA maintenance, DNA replication 
control 11 0,83247 1 0,9998 0,01923367 0,01451861 

Translation, ribosome biogenesis 11 1 0,13356 0,9998 0,08240959 0,06981363 

Transcription, transcription factors 27 1 0,0038996 0,9998 0,07595343 0,06522586 

Folding sorting degradation, 
proteasome 32 0,048745 1 0,9998 0,61754182 0,64410242 

Transcription, RNA polymerase 29 1 0,80527 0,9998 0,23821556 0,23391551 

Folding sorting degradation, 
ubiquitin labeling 22 0,56219 1 0,9998 0,06581475 0,07028825 

Translation, ribosome biogenesis in 
eukaryotes 55 1 0,027297 0,9998 0,45656996 0,40651673 

Folding sorting degradation, protein 
export 17 1 0,2278 0,9998 0,07331038 0,06628602 

Folding sorting degradation, RNA 
degradation 36 0,83247 1 0,9998 0,2183356 0,19722009 

Transcription, spliceosome 56 1 0,13779 0,9998 0,24065933 0,21380151 

Folding sorting degradation, SNARE 
interactions in vesicular transport 15 1 0,16417 0,9998 0,03068322 0,02902006 
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Table S2. Enzymes under flexibilization of individual protein constraint by the ecGEM, their original 
and modified values. Constraints were adjusted by algorithmically increasing measured absolute 
protein concentration to achieve feasible flux states in proteome-constrained ecGEM simulations. 
Reproduced from Sjöberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence. 

protein_IDs previous values modified values flex mass Fold change 

ecGSY014 

YJR148W 7.34168641470523E-06 0.0000126212361363917 0.219756980729922 1.7191194806566 

YDR226W 0.0000139550415479416 0.000168346889374346 3.7447125122903 12.0635176037278 

YKL060C 0.000206226010683615 0.000292033602901766 3.39971739750939 1.41608520638938 

YDL093W 4.29282746859551E-08 8.37144957433201E-07 0.0673295604365612 19.5010156722439 

YBR084W 6.22617721052581E-07 8.67798100279856E-07 0.0260421821357636 1.39378959341661 

YNL241C 2.58197414940101E-06 3.18689327441421E-06 0.0347954924979718 1.23428550791399 

YDL171C 0.0000300929156952497 0.000037854908282196 1.84812608823608 1.25793421500103 

YOL059W 0.0000219021897875799 0.000204832337515445 9.04061827038093 9.35213964914136 

YFL018C 4.54830791768671E-06 6.71221577596403E-06 0.116871235246372 1.47576107366493 

YMR189W 1.52847123109353E-06 1.64706294915667E-06 0.0135728612675926 1.07758845286103 

YHR025W 1.88917786160494E-06 3.87905309650122E-06 0.0770323485745901 2.05330221962573 

YMR267W 2.15051372298204E-07 5.98668176529226E-07 0.0136460668302905 2.78383797383573 

YOL126C 2.61220332601348E-08 6.86660983272699E-08 0.00173284104221694 2.62866590986477 

YMR205C 0.0000145403890848472 0.000165499675615655 15.7928669199861 11.3820665079812 

YKL127W 1.07106731177744E-06 0.0000031734716608686 0.13268494599571 2.96290590327345 

YGL062W 0.0000052095268499725 8.13483406971729E-06 0.380577408507306 1.56153030860379 

YGR193C 1.02697872233855E-06 1.35473535384973E-06 0.0148674505011362 1.31914646757709 

YER026C 8.56279415104335E-08 1.32074551074816E-07 0.00143075529500412 1.5424235214007 

YPL134C 1.61860509441388E-08 2.18248443334158E-06 0.0740999908715941 134.837363410863 

YMR241W 1.34354661858203E-06 8.75370421444899E-06 0.253309642374452 6.51537065657431 

YLR348C 1.19982250688092E-07 1.22199353909357E-06 0.0363567188984942 10.1847859336319 

YKL120W 1.06277750770121E-06 4.28034467750603E-06 0.113105948220296 4.02750777701762 

YLR092W 2.99026459251971E-08 9.82215988507091E-07 0.0948977103248827 32.8471263367179 

YPR058W 2.71071659041941E-07 4.68727934167305E-06 0.147392432918425 17.2916613940368 

YBR166C 5.36288471365389E-07 7.67601444340613E-07 0.0117790857551849 1.43132191968681 

YBR196C 0.000033415299772487 0.000161232669566215 7.83499003517426 4.82511516173703 

YDL141W 1.38582492389754E-07 1.31961345476461E-06 0.0901859217797978 9.5222234209303 

YDR127W 2.93766613000817E-06 3.74161803359305E-06 0.140493047204765 1.27367027701771 

YDR234W 2.12981217246513E-06 3.65222820028056E-06 0.114409397024567 1.71481234237352 

YDR408C 9.40434807258418E-07 1.71705829642162E-06 0.0182816703374924 1.82581321232381 

YER003C 2.42485462627788E-06 3.18602976437456E-06 0.0366797054601386 1.31390547286749 

YFL045C 4.61330423427245E-06 0.0000096809357682781 0.147277838751778 2.09848197228312 
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protein_IDs previous values modified values flex mass Fold change 

YFR025C 3.77922203229925E-07 1.91881040330703E-06 0.0594495931846907 5.07726295758188 

YGL148W 5.51201738995808E-06 0.00000876853510456 0.132989442472673 1.59080323667605 

YGR185C 2.05557549493691E-06 2.84420186039857E-06 0.0347148752043302 1.38365234816436 

YGR260W 2.44909772125445E-08 5.63256300935921E-07 0.0323982486681124 22.9985229273504 

YGR264C 1.96088696356967E-06 2.49745273903439E-06 0.0459713566758069 1.27363422034687 

YIL020C 2.44021595010777E-07 2.49266082016012E-06 0.0664612981255358 10.2149189707986 

YIL078W 3.45783586439813E-06 4.40299273563897E-06 0.0798841294694281 1.27333769106052 

YKL024C 2.00877843670793E-06 3.41266756710619E-06 0.0321953332718581 1.69887704126246 

YKL067W 2.34893066259546E-06 5.45897202205949E-06 0.0533884316959986 2.32402433540868 

YNL316C 2.63438769577246E-07 0.0000019489768964799 0.0644294252147536 7.39821591031391 

YPR021C 2.07088128455421E-08 3.69413229671712E-06 0.383149052904022 178.384551749539 

YPR167C 9.22944062003563E-07 0.0000027830796212845 0.0565107322773989 3.01543694342957 

alsS 0.0000233136832958054 0.0000332553612977999 0.617378203923858 1.42643103090378 

budA 0.0000098616428532387 0.000148926183203201 4.0050587620789 15.1015591843596 

ecGSY013 

YIL020C 2.0707823658965E-07 5.98178772978745E-06 0.170678641964138 28.8866074402646 

YEL038W 0.0000008048548373412 2.70581093510809E-06 0.0478796473683084 3.36186205210198 

YMR009W 1.16501402921321E-07 2.70581093510809E-06 0.0540624526534808 23.2255652486473 

YOL066C 1.20412014020544E-07 1.56625388876581E-07 0.00242756539414323 1.30074552901223 

YDR035W 2.24006592433249E-06 3.78476718515613E-06 0.0634401393254218 1.68957848251004 

YHR208W 0.0000084052125018761 0.0000174378786847 0.393783869553284 2.07465054343454 

YJR148W 7.88024792371187E-07 0.00003029096672734 1.22803606066011 38.4391037193052 

YDR234W 2.24870718594819E-06 8.76447114590527E-06 0.489658944856739 3.89755998498739 

YDR127W 2.26896505942829E-06 8.97898529229527E-06 1.17259650125522 3.95730434674816 

YLR017W 1.77082396295614E-06 4.23907237116664E-06 0.0934384560259301 2.39384177074841 

YPR118W 5.6314822574007E-07 2.56025647086442E-06 0.0899094736870967 4.54632786510127 

YGR248W 1.96770511848961E-07 0.0000182597126530684 0.513843198379862 92.7969972812002 

YLR355C 0.0000216812254346756 0.0000274693317437741 0.256806237673576 1.2669639834952 

YDL141W 1.53643649761605E-07 3.16675558420593E-06 0.230087343931395 20.6110411274368 

YBL015W 4.47104149183052E-07 3.53972271132916E-06 0.181571872671028 7.91699812626865 

YER069W 2.61195211998824E-06 0.0000105065708895909 0.748948509196984 4.02249750643906 

YOL140W 2.30889510107621E-06 4.98957191315747E-06 0.12513619174294 2.16102148202045 

YDR441C 4.37016690637517E-07 1.26418375799461E-06 0.0165315128580786 2.8927585263401 

YOL052C 2.23231350623218E-07 0.0000020663008633722 0.0852082920846427 9.25632021489587 

YDL166C 7.67561525177403E-07 0.000129536970463576 2.92601440236634 168.764283011237 

YDR354W 7.80393173535528E-07 0.0000019824638829337 0.0497344975720542 2.54033985709057 
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YGL148W 4.59344419904105E-06 0.0000210423798025189 0.671740480749337 4.58095905615046 

YKL060C 0.000166494456565975 0.000258458741108414 3.64364702499974 1.55235643539878 

YLR420W 1.67789634570431E-06 2.79014627766009E-06 0.0448379646694435 1.66288357728612 

YJR016C 0.000013358200510892 0.000021812245399003 0.531425404148656 1.6328730341499 

YPR183W 1.62832445226523E-06 2.18319255776276E-06 0.0168468665783485 1.34076016283219 

YDL093W 6.14640877647385E-08 2.00914789783968E-06 0.165114505462341 32.68815939366 

YBR084W 8.00966090229429E-07 9.23964328829121E-07 0.0130644325703651 1.15356235438689 

YNL241C 2.23925876425137E-06 0.0000192960109867273 0.981119738913814 8.61714210736978 

YBR196C 0.0000271400984376489 0.000140533326241554 6.95081436375666 5.17806987931206 

YGL245W 0.0000101282043288754 0.0000175666676915239 0.601339288162993 1.73443061781855 

YOL059W 5.19035224622731E-06 0.0000142030682311429 0.445418788597911 2.73643628743437 

YDR408C 6.83011607822419E-07 4.12052781741949E-06 0.0809189253229425 6.03288109635 

YFL018C 4.09784741765133E-06 0.0000124560036680142 0.451418502698974 3.03964555009062 

YMR189W 1.45170183601458E-06 2.58447794063851E-06 0.129646598990324 1.78030906658752 

YFR015C 7.67624547943735E-07 9.75926187524028E-06 0.723910516990889 12.713587523201 

YBR121C 5.24054570962615E-06 0.0000109947699542727 0.433511400889731 2.09802004666744 

YFR025C 3.25041369955677E-07 4.60468445344007E-06 0.165114536068283 14.1664565777211 

YDL182W 0.0000143545481066437 0.0000531492758699868 1.82716999403632 3.70260878121184 

YHR025W 1.41234840466105E-06 9.30972743160293E-06 0.305724521497828 6.59166491842866 

YNL277W 8.3127351740627E-07 9.30692166821144E-07 0.00533470133220675 1.119597999134 

YNL037C 3.56102272441385E-06 0.0000131511879411508 0.377119533211921 3.69309295641058 

YOR136W 3.20336686269192E-06 0.0000131511879411508 0.39531676027151 4.10542672908195 

YLR089C 7.41153578714527E-07 6.13399176049652E-06 0.358197111659942 8.27627624916208 

YER023W 2.94336588028675E-06 5.42235641133499E-06 0.0746955792367534 1.84222982526614 

YKL085W 1.73771857515319E-06 0.0000038919557242198 0.0767976711269934 2.23969276721157 

YER003C 3.16805095543162E-06 7.64570678735549E-06 0.215770443419264 2.41337872872497 

YGR264C 1.93102229968995E-06 5.99328718502518E-06 0.348042749826164 3.10368615939209 

YKL067W 1.56308873879918E-06 0.0000133163833123186 0.201762578697484 8.51927531801471 

YKL184W 2.8292572133238E-07 2.67418669331654E-06 0.125026290804071 9.45190377432993 

YPR167C 9.82223656438124E-07 6.67872315197366E-06 0.17305908502442 6.79959509038193 

YMR205C 9.08386092379404E-06 0.000146472314789958 14.3731307832339 16.1244558914692 

YFL045C 7.02273880199969E-06 0.0000232319224192831 0.471078750509953 3.30810002682542 

YNL316C 2.41017136003625E-07 0.0000046770767970966 0.169567670775733 19.4055778549549 

YBR166C 4.22893381168624E-07 1.84205924207083E-06 0.072267785768282 4.35584789002959 

YGL062W 4.30507251069082E-06 0.0000287024253754188 3.17405340028065 6.66711775565727 

YGR193C 7.04940711725255E-07 3.08756134986342E-06 0.108078650421745 4.37988797995082 



 

92 

protein_IDs previous values modified values flex mass Fold change 

YOR095C 1.15115947187808E-06 2.94757501561345E-06 0.050762697259299 2.56052709257091 

YLR146C 1.22672087100474E-07 2.13793707576971E-07 0.00310636793461093 1.74280647399326 

YIL078W 3.00598648838671E-06 0.000010566125847277 0.638978744935365 3.51502772487436 

YGR185C 2.37817115319451E-06 6.82540185651007E-06 0.195764516166143 2.8700212965504 

YKL024C 0.0000012947721571925 8.18958312083876E-06 0.158118424036861 6.3251152531705 

YGR094W 2.00384927360481E-06 2.95486716964651E-06 0.119607808952952 1.47459552400909 

YKR067W 2.22543137443432E-07 2.10622462934014E-06 0.157558786565913 9.46434319896977 

YJR073C 3.00543928315243E-07 3.74102409118646E-06 0.0796472189848735 12.4475117902314 

YMR241W 0.0000013769362330796 0.0000179989783945226 0.568209717671406 13.0717588528169 

YPR021C 1.41172822036582E-08 0.0000228110029068117 2.37778333333464 1615.82113169776 

YLR348C 1.44155342130625E-07 3.22997631528754E-07 0.00590022889168312 2.24062200369982 

YGR260W 3.00305509144484E-08 1.35167994073388E-06 0.079476394819749 45.0101613048849 

YKL120W 9.79540093332928E-07 0.0000102728272260145 0.326683484058915 10.4873984188445 

YGL080W 1.28834409133766E-08 0.0000716013801329679 1.07348024617186 5557.62863464727 

YPR058W 2.68406914610939E-07 7.89455089521339E-06 0.25452514824156 29.4126211564136 

Supplementary tables to Study 2 

Table S3. Gene-protein names of R. toruloides analyzed in Study 2. Asterisks (*) denote isoenzymes. 
Subsystem as defined for Figure S6 and Figure S10 in the Supplementary figures. Abbreviations: 
PPP, pentose phosphate pathway; TCA, tricarboxylic acid. Modified from Reķēna et al., PLOS 
Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 

Gene name Subsystem Reaction ID Locus tag Protein accession 
(UniProt) 

Protein name 

ACC FA 
metabolism 

r_0109No1 RHTO_02004 M7XLR4 acetyl-coa carboxylase 

ACL FA 
metabolism 

y200003No1 RHTO_03915 M7WHC9 atp citrate synthase 

ACO1 TCA cycle r_0280No1 RHTO_00539 M7X6X3 aconitate hydratase, 
mitochondrial (aconitase) 
(ec 4.2.1.-) 

ACO2 TCA cycle r_0280No2 RHTO_08030 M7WQ73 aconitate hydratase, 
mitochondrial (aconitase) 
(ec 4.2.1.-) 

ACS Pyruvate 
metabolism 

r_0112No1 RHTO_08027 M7XFR0 acetyl-coenzyme a 
synthetase (ec 6.2.1.1) 

AGC other r_1118No1 RHTO_04513 M7WMP3 mitochondrial carrier 
protein 
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Gene name Subsystem Reaction ID Locus tag Protein accession 
(UniProt) 

Protein name 

ALDH1 Pyruvate 
metabolism 

r_2116No1 RHTO_02062 M7WSZ7 Succinate-semialdehyde 
dehydrogenase (ec 
1.2.1.16) 

ALDH2 Pyruvate 
metabolism 

r_2116No2 RHTO_04310 M7WN91 aldehyde dehydrogenase 

ALDH3 Pyruvate 
metabolism 

r_2116No3 RHTO_04425 M7X6W7 aldehyde dehydrogenase, 
mitochondrial 

ALDH4 Pyruvate 
metabolism 

r_2116No4 RHTO_05680 M7WLP6 aldehyde dehydrogenase 

ALDH5 Pyruvate 
metabolism 

r_2116No5 RHTO_05838 M7WKL7 aldehyde dehydrogenase 
(nad) 

CIT1 TCA cycle r_0300No1 RHTO_06406 M7XE29 citrate synthase 

CRC other r_1120No1 RHTO_01354 M7WMH0 carnitine acyl carnitine 
carrier, mitochondrial 

CTP1 other r_1112No1 RHTO_05609 M7WEL7 mitochondrial carrier 
protein, tricarboxylate 
carrier 

CTP2 other r_1112No2 RHTO_08140 M7WQJ3 mitochondrial carrier 
protein 

DAD-4 xylose 
metabolism 

t_0883No1 RHTO_07844 M7XGH5 D-arabinitol 
dehydrogenase 

DAD02/LXR xylose 
metabolism 

t_0884_REVNo
1 

RHTO_00373 M7X791 l-xylulose reductase 

ENO glycolysis G,X: 
r_0366No1, A: 
r_0366_REVNo
1 

RHTO_00323 M7X749 enolase 

FAS1* FA 
metabolism 

r_2141No1 RHTO_02139 M7XM89 fatty acid synthase 
subunit alpha, fungi type 

FAS2* FA 
metabolism 

r_2141No1 RHTO_02032 M7WSW5 fatty acid synthase 
subunit beta, fungi type 

FBA PPP G: r_0450No1; 
A: 
r_0450_REVNo
1; X: 
r_0990No1 

RHTO_03043 M7X5F4 Fructose-bisphosphate 
aldolase (fbp aldolase) 
(ec 4.1.2.13) 
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Gene name Subsystem Reaction ID Locus tag Protein accession 
(UniProt) 

Protein name 

FBP PPP r_0449No1 RHTO_03046 M7XYF6 fructose-1,6-
bisphosphatase i 

FUM TCA cycle r_0451No1 RHTO_05746 M7XEU6 fumarate hydratase, class 
ii 

GAPDH1 glycolysis r_0486No1 RHTO_01292 M7WNF8 glyceraldehyde 4-
phosphate 
dehydrogenase 

GAPDH2 glycolysis G,X: 
r_0486No2, A: 
r_0486_REVNo
2 

RHTO_03746 M7WI96 Glyceraldehyde-3-
phosphate 
dehydrogenase (ec 
1.2.1.12) 

GND1 PPP r_0091No1 RHTO_02788 M7X3Z4 6-phosphogluconate 
dehydrogenase, 
decarboxylating (ec 
1.1.1.44) 

GND2 PPP  RHTO_00011 M7XZ45 Phosphogluconate 
dehydrogenase 
(decarboxylating) 

GPI PPP G,X:r_0467No, 
A:r_0467_REV
No1 

RHTO_04058 M7WNZ9 Glucose-6-phosphate 
isomerase (ec 5.3.1.9) 

ICL1 Glyoxylate 
shunt 

r_0662No1 RHTO_03507 M7WQF1 isocitrate lyase 

ICL2 Glyoxylate 
shunt 

r_0662No2 RHTO_05768 M7WLD5 isocitrate lyase 

IDH1 TCA cycle r_0658No1 RHTO_01289 M7XE28 isocitrate dehydrogenase 
[nad] subunit, 
mitochondrial 

IDH2 TCA cycle r_0658No2 RHTO_01290 M7WW42 isocitrate dehydrogenase 
[nad] subunit, 
mitochondrial 

IDP TCA cycle r_2131No1 RHTO_04315 M7WN97 isocitrate dehydrogenase 
(nadp+), mitochondrial 

KGD1* TCA cycle r_0831No1,r_0
832No1 

RHTO_02312 M7WKF8 2-oxoglutarate 
dehydrogenase e2 
component 
(dihydrolipoamide 
succinyltransferase) 

KGD2* TCA cycle r_0831No1,r_0
832No1 

RHTO_07893 M7WR40 Dihydrolipoyl 
dehydrogenase (ec 
1.8.1.4) 
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Gene name Subsystem Reaction ID Locus tag Protein accession 
(UniProt) 

Protein name 

LPD1* TCA cycle r_0831No1,r_0
832No1 

RHTO_07860 M7XGI7 2-oxoglutarate 
dehydrogenase e1 
component (succinyl-
transferring) 

LSC1* TCA cycle r_1022No1 RHTO_05264 M7WM30 succinate--coa ligase 
[adp-forming] subunit 
beta, mitochondrial (ec 
6.2.1.5) (succinyl-coa 
synthetase beta chain) 
(scs-beta) 

LSC2* TCA cycle r_1022No1 RHTO_01205 M7WVW2 succinate--coa ligase 
[adp-forming] subunit 
alpha, mitochondrial (ec 
6.2.1.5) (succinyl-coa 
synthetase subunit alpha) 
(scs-alpha) 

MDH1 TCA cycle r_0713No1 RHTO_04363 M7XHF8 malate dehydrogenase 
(ec 1.1.1.37) 

MDH2 Pyruvate 
metabolism 

G,X: 
r_0714_REVNo
1, 
A:r_0714No1 

RHTO_03745 M7WQ86 l-malate dehydrogenase 

ME Pyruvate 
metabolism 

t_0027No1 RHTO_03795 M7WHN9 malic enzyme 

MS Glyoxylate 
shunt 

r_0716No1 RHTO_01459 M7WMR9 malate synthase 

ODC other r_2132No1 RHTO_03731 M7WI80 Mitochondrial 2-
oxodicarboxylate carrier 

PDC Pyruvate 
metabolism 

r_0959No1 RHTO_00098 M7X6G2 pyruvate decarboxylase 

PDH Pyruvate 
metabolism 

r_0961No1 RHTO_03543 M7WIG9 acetyltransferase 
component of pyruvate 
dehydrogenase complex 
(ec 2.3.1.12) 

PDH Pyruvate 
metabolism 

r_0961No1 RHTO_01852 M7WTI0 pyruvate dehydrogenase 
e1 component subunit 
alpha (ec 1.2.4.1) 
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Gene name Subsystem Reaction ID Locus tag Protein accession 
(UniProt) 

Protein name 

PDH Pyruvate 
metabolism 

r_0961No1 RHTO_07250 M7WZJ7 pyruvate dehydrogenase 
e1  component subunit 
beta (ec 1.2.4.1) 

PDH Pyruvate 
metabolism 

r_0961No1 RHTO_01754 M7XMA7 pyruvate dehydrogenase 
x component 

PEPCK Pyruvate 
metabolism 

r_0884No1 RHTO_07480 M7XSC4 Phosphoenolpyruvate 
carboxykinase (atp) 

PFK PPP G:r_0886No1, 
X:r_0887No1 

RHTO_00494 M7X6S3 Atp-dependent 6-
phosphofructokinase 
(atp-pfk) 
(phosphofructokinase) 
(ec 2.7.1.11) 
(phosphohexokinase) 

PGK glycolysis G,X: 
r_0892No1, A: 
r_0892_REVNo
1 

RHTO_00033 M7X689 phosphoglycerate kinase 
(ec 2.7.2.3) 

PGLS PPP r_0091No1 RHTO_07939 M7WWW0 6-
phosphogluconolactonas
e (6pgl) (ec 3.1.1.31) 

PGM glycolysis G,X: 
r_0893No3, A: 
r_0893_REVNo
3 

RHTO_07773 M7XRQ3 protein of 
phosphoglycerate 
mutase 1 family 

PKT PPP t_0081No1 RHTO_04463 M7WGA7 phosphoketolase 

PYC Pyruvate 
metabolism 

r_0958No2 RHTO_02628 M7WS17 pyruvate carboxylase (ec 
6.4.1.1) 

PYC Pyruvate 
metabolism 

r_0958No1 RHTO_01350 M7XNE0 urea carboxylase / 
allophanate hydrolase 

PYK glycolysis r_0962No1 RHTO_01610 M7WUI5 pyruvate kinase (ec 
2.7.1.40) 

RK xylose 
metabolism 

t_0885No1 RHTO_00950 M7WVT6 protein of carbohydrate 
kinase, fggy type family 

RPE PPP r_0984No1, 
except Anlim 

RHTO_05984 M7XEA2 Ribulose-phosphate 3-
epimerase (ec 5.1.3.1) 

RPI PPP r_0982No1 RHTO_06311 M7WUP8 ribose 5-phosphate 
isomerase a 
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Gene name Subsystem Reaction ID Locus tag Protein accession 
(UniProt) 

Protein name 

SDH1* TCA cycle  RHTO_07066 M7X332 succinate dehydrogenase 
assembly factor 2, 
mitochondrial (sdh 
assembly factor 2) 
(sdhaf2) 

SDH2* TCA cycle r_1021No1 RHTO_05714 M7X560 succinate dehydrogenase 
[ubiquinone] flavoprotein 
subunit, mitochondrial 
(ec 1.3.5.1) 

SDH4* TCA cycle r_1021No1 RHTO_06068 M7XJJ4 succinate dehydrogenase 
[ubiquinone] iron-sulfur 
subunit, mitochondrial 
(ec 1.3.5.1) 

SFC other r_1265No1 RHTO_05007 M7WW62 mitochondrial carrier 
protein, 
succinate:fumarate 
antiporter 

SHD3* TCA cycle r_1021No1 RHTO_00534 M7X6W8 succinate dehydrogenase 
(ubiquinone) cytochrome 
b subunit 

TAL PPP r_1048No1, 
except Anlim 

RHTO_06955 M7X0R7 transaldolase (ec 2.2.1.2) 

TKT1 PPP r_1049No1 RHTO_03248 M7XNL9 transketolase (ec 2.2.1.1) 

TKT2 PPP r_1049No2 RHTO_03251 M7WY13 transketolase 

TPI PPP G,X: 
r_1054No1; A: 
  
r_1054_REVNo
1 

RHTO_01329 M7WME7 triosephosphate 
isomerase (ec 5.3.1.1) 

XDH xylose 
metabolism 

r_1092No1 RHTO_01970 M7WT79 xylitol dehydrogenase 

XK xylose 
metabolism 

r_1094No1 RHTO_04556 M7X6R2 xylulokinase 

XR Xylose 
metabolism 

r_1093No1 RHTO_03963 M7X8C7 xylose reductase 

ZWF PPP r_0466No1 RHTO_07853 M7WR01 Glucose-6-phosphate 1-
dehydrogenase (ec 
1.1.1.49) 
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Table S4. Fatty acid profiles in R. toruloides wild-type strain CCT 7815 batch bioreactor cultivations 
in low-nitrogen chemically defined media with glucose (G), xylose (X), or acetate (A) as a carbon 
source during exponential growth (exp) and nitrogen-limited (Nlim) phases. The mean and standard 
deviation of duplicate experiments is presented. Abbreviations: C14:0, myristic acid; C16:0, palmitic 
acid; C16:1, palmitoleic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic acid; C18:3, 
ɑ-Linolenic acid. 

Condition Yields on biomass 
(mg gCDW-1) Major fatty acid residues (mgFA gCDW-1)

Total lipid Total fatty acid C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 
Gexp 57 ± 2 51 ± 2 ND 7.5 ± 

0.34
ND 2.0 ± 

0.24
16.2 
±1.2

19.8 ± 
0.37

5.7 ± 
0.16

GNlim 483 ± 41 435 ± 36 3.0 ± 
0.11

101.9 ± 
6.3

ND 32.3 ± 
3.6

233.5 ± 
21.2

53.6 ± 
4.4

10.8 ± 
1.1

Xexp 202 ± 25 182 ± 23 1.7 ± 
0.24

47.8 ± 
6.2

2.0 ± 
0.31

10.4 ± 
1.4

78.1 ± 
10

36.5 ± 
3.9

5.7 ± 
0.71

XNlim 290 ± 6 261 ± 6 0.34 ± 
0.011

7.44 ± 
0.22

0.32 ± 
0.0043

1.61 ± 
0.077

11.35 ± 
0.25

4.35 ± 
0.074

0.66 ± 
0.017

Aexp 175 ± 19 158 ± 17 ND 25.2 ± 
2.6

ND 18.0 ± 
2.4

67.9 ± 
12.3

37.3 ± 
0.19

9.6 ± 
0.16

ANlim 341 ± 13 307 ± 12 ND 57.3 ± 
0.21

ND 37.6 ± 
2.5

160.1 ± 
7.8

42.1 ± 
1.3

9.4 ± 
0.30

Table S5. Enzymes under flexibilization of individual protein constraint by the ecGEM of R. 
toruloides in low-nitrogen chemically defined media containing glucose (G), xylose (X), or acetate 
(A) as the carbon source during exponential growth (exp) and nitrogen-limited (Nlim) phases.
Constraints were adjusted by algorithmically increasing measured absolute protein concentration
to achieve feasible flux states in proteome-constrained ecGEM simulations. Detailed report on 
previous values and modified values available at Github repository
github.com/alinarekena/results/generate_protModels. Modified from Reķēna et al., PLOS Comput.
Biol. 19(4):e1011009, 2023, under a CC BY licence. 

Protein names Locus tag Protein accession (UniProt) 
mitochondrial carrier protein, tricarboxylate carrier RHTO_05609 M7WEL7 
1,3-beta-glucan synthase, glycosyltransferase family 48 protein RHTO_05280 M7WFB4 
arginine biosynthesis bifunctional protein argj, mitochondrial 
[cleaved into: arginine biosynthesis bifunctional protein argj 

RHTO_05134 M7WFJ0 

2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5-phosphate 
reductase 

RHTO_04544 M7WG08 

atp citrate synthase RHTO_03915 M7WHC9 
mitochondrial 2-oxodicarboxylate carrier RHTO_03731 M7WI80 
carnitine o-acetyltransferase RHTO_01903 M7WLQ0 
carnitine acyl carnitine carrier, mitochondrial RHTO_01354 M7WMH0 
mitochondrial carrier protein RHTO_04513 M7WMP3 
sterol 24-c-methyltransferase RHTO_00856 M7WPW0 

http://github.com/alinarekena/results/generate_protModels
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Protein names Locus tag Protein accession (UniProt) 
fatty acid synthase subunit beta, fungi type RHTO_02032 M7WSW5 
dol-p-man:protein alpha-mannosyltransferase, 
glycosyltransferase family 39 protein 

RHTO_02306 M7WT33 

phospholipid:diacylglycerol acyltransferase RHTO_01945 M7WT53 
cytochrome c oxidase, subunit via RHTO_01605 M7WUI0 
protein of carbohydrate kinase, fggy type family RHTO_00950 M7WVT6 
mitochondrial carrier protein, succinate:fumarate antiporter RHTO_05007 M7WW62 
5-methyltetrahydropteroyltriglutamate-homocysteine s-
methyltransferase 

RHTO_07691 M7WXM9 

glutamate dehydrogenase RHTO_04650 M7X2B5 
fructose-bisphosphate aldolase (fbp aldolase) (ec 4.1.2.13) RHTO_03043 M7X5F4 
long-chain acyl-coa synthetase RHTO_00058 M7X6B9 
aconitate hydratase, mitochondrial (aconitase) (ec 4.2.1.-) RHTO_00539 M7X6X3 
l-xylulose reductase RHTO_00373 M7X791 
d-arabinitol dehydrogenase RHTO_07844 M7XGH5 
3-hydroxy-3-methylglutaryl coenzyme a reductase (hmg-coa 
reductase) (ec 1.1.1.34) 

RHTO_04045 M7XI04 

delta-9 fatty acid desaturase RHTO_03911 M7XI95 
phosphoribosylformylglycinamidine synthase RHTO_02389 M7XKV7 
fatty acid synthase subunit alpha, fungi type RHTO_02139 M7XM89 
dolichol-phosphate mannosyltransferase subunit 1 (ec 2.4.1.83) RHTO_06635 M7WJE8 
farnesyl-diphosphate farnesyltransferase RHTO_02590 M7WJI1 
chorismate synthase (ec 4.2.3.5) RHTO_05784 M7WKX0 
phosphomevalonate kinase (ec 2.7.4.2) RHTO_02073 M7WL39 
homoaconitase, mitochondrial (ec 4.2.1.36) (homoaconitate 
hydratase) 

RHTO_05318 M7WMT2 

c-22 sterol desaturase RHTO_01252 M7WNB5 

glyceraldehyde 4-phosphate dehydrogenase RHTO_01292 M7WNF8 
aconitate hydratase, mitochondrial (aconitase) (ec 4.2.1.-) RHTO_08030 M7WQ73 
multifunctional tryptophan biosynthesis protein [includes: 
anthranilate synthase component 2 (as) (ec 4.1.3.27) 
(anthranilate) 

RHTO_02564 M7WRD1 

short-chain dehydrogenase/reductase sdr family protein RHTO_07171 M7WS89 
adenylosuccinate synthetase (ampsase) (adss) (ec 6.3.4.4) (imp--
aspartate ligase) 

RHTO_02257 M7WSH3 

succinate-semialdehyde dehydrogenase (ec 1.2.1.16) RHTO_02062 M7WSZ7 
asparaginyl-trna synthetase RHTO_04575 M7WUY3 
phosphoribosylamine--glycine ligase / 
phosphoribosylformylglycinamidine cyclo-ligase 

RHTO_01050 M7WW40 
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Protein names Locus tag Protein accession (UniProt) 
transketolase RHTO_03251 M7WY13 
atp phosphoribosyltransferase RHTO_07750 M7WYE8 
nadh-ubiquinone oxidoreductase 64 kda subunit RHTO_07075 M7WZ39 
diphosphomevalonate decarboxylase (ec 4.1.1.33) RHTO_06005 M7X109 
dihydroorotase RHTO_04690 M7X2F3 
c-1-tetrahydrofolate synthase RHTO_02988 M7X4L7 
succinate dehydrogenase [ubiquinone] flavoprotein subunit, 
mitochondrial (ec 1.3.5.1) 

RHTO_05714 M7X560 

phosphoribosyl-atp pyrophosphohydrolase / phosphoribosyl-amp 
cyclohydrolase 

RHTO_00514 M7X6U2 

nadh dehydrogenase RHTO_00388 M7X7A4 
glycine hydroxymethyltransferase RHTO_04131 M7X852 
squalene monooxygenase RHTO_01745 M7XBZ9 
ribose-phosphate pyrophosphokinase RHTO_04328 M7XHB5 
glutamyl-trna synthetase RHTO_03621 M7XIT2 
acetylornithine aminotransferase RHTO_07003 M7XJ70 
ribose-phosphate pyrophosphokinase RHTO_02591 M7XKF0 
anthranilate phosphoribosyltransferase RHTO_07763 M7XRP3 
ketol-acid reductoisomerase (fragment) RHTO_04566 M7XVW7 
gmp synthase (glutamine-hydrolysing) RHTO_00066 M7XZ93 

Table S6. Fatty acid profiles in R. toruloides NBRC 0880 (formerly known as IFO 0880) wild type and 
mutant strains cultivated in Falcon tube bioreactors in low-nitrogen chemically defined media with 
glucose (G), xylose (X), or acetate (A) as a carbon source during nitrogen-limited (Nlim) phase. A: 
Growth and lipid metrics (titer, lipid yield on biomass, harvest time). B: Fatty acid composition. 
Strains include ATP citrate lyase knockout (ΔACL), phosphoketolase knockout (ΔPK), and cytosolic 
malic enzyme knockout (ΔcMAE). The mean and standard deviation of triplicate experiments is 
presented. Abbreviations: C16:0, palmitic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic 
acid; C18:3, ɑ-Linolenic acid. Layouts differ from the published versions for copyright compliance. 

A. 
Condition Strain Titer (g L-1) Yield on biomass (mg gCDW-1) Harvest time 

(h) 
CDW Total lipid 

GNlim wild type 10.23±0.15 501.8±3.7 54 

ΔACL 2.34±0.065 94.3±0.39 54 

ΔPK 10.23±0.15 505.2±9.4 54 

ΔcMAE 9.62±0.26 516.4±5.0 48 

XNlim wild type 6.24±0.13 426.1±8.4 90 

ΔACL 7.28±0.39 377.1±30.1 81 
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ΔPK 5.76±0.075 429.4±7.3 91 

ΔcMAE 6.93±0.27 439.4±8.2 80 

ANlim wild type 2.53±0.03 450.7±11.5 66 

ΔACL 1.63±0.03 200.2±11.8 66 

ΔPK 2.70±0.09 462.3±44.5 66 

ΔcMAE 2.62±0.12 447.9±10.5 126 

B. 
Condition Strain Major fatty acid residues (gFA gCDW-1) Yield on biomass  

(mg gCDW-1) 

C16:0 C18:0 C18:1 C18:2 C18:3 Total fatty acid 
GNlim wild type 102.4±0.83 57±0.63 206.0±1.2 51.4±0.75 16.2±0.13 433.0±3.5 

ΔACL 13.8±0.070 8.0±0.090 16.5±0.35 25.0±0.29 15.09±0.18 78.4±0.98 

ΔPK 103.2±1.7 57.5±1.6 208.0±3.9 51.3±0.77 15.9±0.25 435.9±8.1 

ΔcMAE 106.0±1.4 54.5±0.58 214.0±2.4 53.4±0.43 18.1±0.23 446.0±5.0 
XNlim wild type 83.6±1.8 43.8±0.79 166.9±3.1 56.2±1.4 12.6±0.31 363.1±7.1 

ΔACL 96.0±7.6 32.2±2.8 139.4±11.3 49.8±3.8 7.4±0.62 324.7±25.9 

ΔPK 82.2±0.92 44.9±0.53 171.8±3.8 53.0±1.1 13.2±0.33 365.0±6.2 

ΔcMAE 87.8±1.3 44.9±0.64 168.6±3.7 58.7±1.3 13.9±0.18 373.9±6.9 
ANlim wild type 70.2±2.8 74.5±1.9 186.8±4.2 39.9±1.1 16.5±0.63 387.7±10.2 

ΔACL 31.1±1.8 28.3±2.3 59.6±5.1 35.4±0.58 14.6±0.16 169.0±10.0 

ΔPK 77.1±7.6 77.6±8.2 186.3±16.5 39.1±4.3 17.3±2.0 397.4±38.4 

ΔcMAE 73.6±0.31 74.5±1.5 181.8±6.8 38.3±0.82 16.9±0.11 385.0±9.1 
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Supplementary figures 

Supplementary figures to Study 1 

Figure S1. Anaerobic batch cultivation of S. cerevisiae in stirred tank reactors at 30℃, pH 5.0. A: 
Representative cultivation profiles of reference strain GSY013. B. representative cultivation profiles 
of engineered 23BD-glycerol co-producing strain GSY014. The mean of six replicates is presented. 
Reproduced from Sjöberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence. 

Figure S2. Absolute proteome quantification in S. cerevisiae anaerobic bioreactor batch cultures of 
the reference strain GSY013 and 23BD-glycerol co-producing strain GSY014. A. Volcano plot 
comparing absolute protein abundances of three replicates in GSY013 and GSY014 strains. B. 
Principal component analysis. P denotes adjusted p value according to Benjamini-Hochberg 
(Benjamini & Hochberg, 1995b). Reproduced from Sjöberg et al., Metabolic Engineering 82,49-59, 
2024, under a CC BY licence. 

https://www.zotero.org/google-docs/?owF5Xh
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Figure S3. Proteomaps (Liebermeister et al., 2014) representing allocation of mean protein 
abundance of three replicates to major functional groups. Left: Proteome allocation of the 
reference strain GSY013. Right: Proteome allocation of 23BD-glycerol co-producing strain GSY014. 
Reproduced from Sjöberg et al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence. 

Figure S4. Flux variability analysis of ecGEMs. A: Cumulative flux distribution of the reference strain 
GSY013. B: Cumulative flux distribution of 23BD-glycerol co-producing strain GSY014. Grey denotes 
proteome-constrained ecGEM; dashed denotes total-protein ecGEM. Reproduced from Sjöberg et 
al., Metabolic Engineering 82,49-59, 2024, under a CC BY licence. 

https://www.zotero.org/google-docs/?98M7qh
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Supplementary figures to Study 2 

 

Figure S5. Absolute proteome quantification in R. toruloides wild-type strain CCT 7815 batch 
bioreactor cultures. A. Venn diagram comparing the number of significantly differentially expressed 
proteins of two replicates between nitrogen limitation and exponential growth phases. B. Venn 
diagram comparing the number of significantly differentially expressed proteins of two replicates 
during the exponential growth phase in media with different carbon sources. Reproduced from 
Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 
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Figure S6. Absolute enzyme concentrations (μg g_total_protein-1) (Sánchez et al., 2021) in R. 
toruloides wild-type strain CCT 7815 cultivated in batch bioreactors with low-nitrogen chemically 
defined media containing glucose (G), xylose (X), or acetate (A) as the carbon source during 
exponential growth (exp) and nitrogen-limited (Nlim) phases. Mean and standard deviation of 
duplicate experiments is presented. Abbreviations: PPP, pentose phosphate pathway; TCA, 
tricarboxylic acid. Gene-protein names are defined in Table S3. Reproduced from Reķēna et al., 
PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 

Figure S7. Batch cultivation of R. toruloides in aerobic stirred tank bioreactors at 30℃, pH 6.0. 
Representative cultivation profiles of wild type strain CCT 7815 grown in low-nitrogen chemically 
defined media during exponential growth (exp) and nitrogen-limited (Nlim) phases. A: 
Representative cultivation profiles of glucose-grown cells (C/N ratio of 68.6 mol mol-1). B: 
Representative cultivation profiles of xylose-grown cells (C/N ratio of 80). C: Representative 
cultivation profiles of acetate-grown cells (C/N ratio of 80). The mean and standard deviation of 
duplicate experiments are presented. In cases where a single measurement is shown for clarity, 
replicate datasets were nevertheless obtained and used for data interpretation. Reproduced from 
Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 

Figure S8. D-arabinitol detection in the cultivation broth of R. toruloides wild-type strain CCT 7815 
grown on xylose as the sole carbon source (70 g L-1, C/N ratio of 80). The diagrams show HPLC 
chromatograms obtained using a refractive index detector (RID) and a Chiralpak column, with 

https://www.zotero.org/google-docs/?Bk08Ok
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hexane-ethanol (70:30, v/v) as the mobile phase at a flow rate of 0.3 mL min-1 and a column 
temperature of 20℃. Reproduced from Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, 
under a CC BY licence. 

Figure S9. Histograms of apparent enzyme catalytic activities, kapp (s-1) of R. toruloides grown in 
low-nitrogen chemically defined media with glucose (G), xylose (X), or acetate (A) as a carbon 
source during exponential growth (exp) and nitrogen-limited (Nlim) phases. kapp values were 
calculated as the ratio of metabolic flux (mmol (gCDW h)-1) to the corresponding protein abundance 
(mmol gCDW-1).  Reproduced from Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under 
a CC BY licence. 
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Figure S10. Predicted fluxes (mmol (gCDW h)-1) of R. toruloides wild-type strain CCT 7815 cultivated 
in batch bioreactors with low-nitrogen chemically defined media containing glucose (G), xylose (X), 
or acetate (A) as the carbon source during exponential growth (exp) and nitrogen-limited (Nlim) 
phases, simulated using condition-specific, proteomics-constrained ecGEMs of R. toruloides. Fluxes 
were normalized to the specific substrate uptake rate, representing the percentage of carbon 
distribution. Median and standard deviation of 2000 flux samples are presented. Abbreviations: 
PPP, pentose phosphate pathway; TCA, tricarboxylic acid. Gene-protein names are defined in Table 
S3. Reproduced from Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY 
licence. 
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Figure S11. pH tracking data of R. toruloides NBRC 0880 (formerly known as IFO 0880) wild type 
and mutant strains cultivated in Falcon tube bioreactors at 30℃. A: Representative pH profiles of 
glucose-grown strains. B: Representative pH profiles of xylose-grown strains. C: Representative pH 
profiles of acetate-grown strains. Strains include ATP citrate lyase knockout (ΔACL, green), 
phosphoketolase knockout (ΔPK, blue), and cytosolic malic enzyme knockout (ΔcMAE, orange). pH 
was measured real time using a non-invasive optical sensor. Pink shading denotes values outside 
the sensor’s working range. Each strain was cultivated in three biological replicates, of which one 
tube was equipped with the pH sensor and used for recording shown profiles. Reproduced from 
Reķēna et al., Appl Microbiol Biotechnol 109:77, 2025, under a CC BY NC ND licence. 
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Figure S12. Batch cultivation of R. toruloides in Falcon tube bioreactors at 30℃. Representative 
cultivation profiles of wild type (filled circle) and mutant strains (open circle), including ATP citrate 
lyase knockout (ΔACL), phosphoketolase knockout (ΔPK), and cytosolic malic enzyme knockout 
(ΔcMAE) in low-nitrogen chemically defined media with glucose (blue), xylose (green), or acetate 
(orange) as a carbon source. A: Residual substrate concentration (g L-1). B. Cell dry weight 
concentration (g L-1). The mean and standard deviation of three replicates are presented. Layouts 
differ from the published versions for copyright compliance. 

Figure S13. Predicted fluxes of ATP (mmol (gCDW h)-1) of R. toruloides wild-type strain CCT 7815 
cultivated in batch bioreactors with low-nitrogen chemically defined media containing glucose (G) 
as the carbon source, simulated using condition-specific, proteomics-constrained ecGEMs. A: ATP 
distribution during exponential growth (exp) phase. B: ATP distribution during nitrogen-limited 
(Nlim) phase. Negative flux denotes metabolite consumption, positive flux denotes metabolite 
production. Percentages indicate the relative contribution of each flux to the total ATP turnover 
under the given condition. [m] and [c] denote compartments of mitochondria and cytoplasm. 
Abbreviations: HEX, hexokinase; PFK, phosphofructokinase; ACC, acetyl-CoA carboxylase; SDH, 
succinate dehydrogenase; PYK, pyruvate kinase; PGK, phosphoglycerate kinase. 
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Figure S14. Predicted fluxes of ATP (mmol (gCDW h)-1) of R. toruloides wild-type strain CCT 7815 
cultivated in batch bioreactors with low-nitrogen chemically defined media containing acetate (A) 
as the carbon source, simulated using condition-specific, proteomics-constrained ecGEMs. A: ATP 
distribution during exponential growth (exp) phase. B: ATP distribution during nitrogen-limited 
(Nlim) phase. Negative flux denotes metabolite consumption, positive flux denotes metabolite 
production. [m] and [c] denote compartments of mitochondria and cytoplasm. Abbreviations: ACS, 
acetyl-CoA synthetase; ACC, acetyl-CoA carboxylase; PEPCK, phosphoenolpyruvate carboxykinase. 
Reproduced from Reķēna et al., PLOS Comput. Biol. 19(4):e1011009, 2023, under a CC BY licence. 
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Appendix 2 

Publication I 
Sjöberg, G., Reķēna, A., Fornstad, M., Lahtvee, P.-J., van Maris, A. J. A. (2024). Evaluation 
of enzyme-constrained genome-scale model through metabolic engineering of anaerobic 
co-production of 2,3-butanediol and glycerol by Saccharomyces cerevisiae. Metabolic 
Engineering, 82, 49–59. 
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Genome-scale metabolic modeling reveals
metabolic trade-offs associated with lipid
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Al na Reķēna1, Marina J. Pinheiro2, Nemailla Bonturi1, Isma Belouah1, Eliise Tammekivi3,
Koit Herodes3, Eduard J. Kerkhoven4, Petri-Jaan LahtveeID1

1 Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,
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Abstract

Rhodotorula toruloides is a non-conventional, oleaginous yeast able to naturally accumulate

high amounts of microbial lipids. Constraint-based modeling of R. toruloides has been

mainly focused on the comparison of experimentally measured and model predicted growth

rates, while the intracellular flux patterns have been analyzed on a rather general level.

Hence, the intrinsic metabolic properties of R. toruloides that make lipid synthesis possible

are not thoroughly understood. At the same time, the lack of diverse physiological data sets

has often been the bottleneck to predict accurate fluxes. In this study, we collected detailed

physiology data sets of R. toruloides while growing on glucose, xylose, and acetate as the

sole carbon source in chemically defined medium. Regardless of the carbon source, the

growth was divided into two phases from which proteomic and lipidomic data were collected.

Complemental physiological parameters were collected in these two phases and altogether

implemented into metabolic models. Simulated intracellular flux patterns demonstrated the

role of phosphoketolase in the generation of acetyl-CoA, one of the main precursors during

lipid biosynthesis, while the role of ATP citrate lyase was not confirmed. Metabolic modeling

on xylose as a carbon substrate was greatly improved by the detection of chirality of D-arabi-

nitol, which together with D-ribulose were involved in an alternative xylose assimilation path-

way. Further, flux patterns pointed to metabolic trade-offs associated with NADPH

allocation between nitrogen assimilation and lipid biosynthetic pathways, which was linked

to large-scale differences in protein and lipid content. This work includes the first extensive

multi-condition analysis of R. toruloides using enzyme-constrained models and quantitative

proteomics. Further, more precise kcat values should extend the application of the newly

developed enzyme-constrained models that are publicly available for future studies.

Author summary

Transition towards a biobased, circular economy to reduce the industrial dependence on

fossil-based resources requires new technologies. One of the options is to convert available
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biomass feedstocks into valuable chemicals using microbes as biocatalysts. Rhodotorula
toruloides is a nonpathogenic, nonconventional yeast that has recently emerged as one of

the most promising yeasts for sustainable production of chemicals and fuels due to its nat-

ural ability to synthesize large amounts of lipids. However, its unique metabolic properties

are not yet fully understood. We have computationally predicted metabolic fluxes in R.
toruloides while growing in economically viable growth conditions inducing lipid accu-

mulation and analyzed them together with absolute proteome quantification. Our holistic

approach has highlighted metabolic pathways important for lipid biosynthesis and

revealed metabolic trade-offs associated with NADPH allocation during lipogenesis. In

addition, our work highlighted the necessity for accurate computational approaches in

characterizing enzymatic kinetic properties that would improve the metabolic studies of

R. toruloides.

Introduction
R. toruloides is a red basidiomycota known for its ability to accumulate high amounts of intra-

cellular lipids [1] and consume different carbon substrates [2,3]. It has been studied for its abil-

ity to consume complex biomass substrates, including from the lignocellulosic origin [4–6]

that would make it interesting for a biorefinery concept. However, studies aimed at fundamen-

tal investigation of R. toruloidesmetabolism have been mainly conducted using a single carbon

source as substrate, such as xylose [1,7–9], glucose [8–11], glycerol [7], acetate [7], L-arabinose

and p-coumarate [9], in a chemically defined mineral medium and occasionally rich cultiva-

tion medium (YP) [3]. Secondary nutrient limitation induces lipid accumulation [12]. In

nitrogen limitation, 65% of lipids of dry cell weight were reached in a batch cultivation regime

[1].

Metabolic pathways producing intracellular metabolite acetyl-CoA and a cofactor NADPH

in R. toruloides have been the main focus of metabolic studies due to their central role in lipid

biosynthesis. Fatty acids, which mainly accumulate in the form of triacylglycerols (TAGs), are

produced via the sequence of four enzymatic reactions that require 1 ATP and 2 NADPHmol-

ecules per 1 acetyl-CoA added to the fatty acid chain [13]. To study lipid metabolism in R. tor-
uloides, previous studies have taken the systems biology approach. Genome sequencing and

high-throughput multi-omics analysis facilitated the reconstruction of the metabolic networks.

Based on a genome sequence of R. toruloides strain NP11, the first metabolic network of R. tor-
uloides included its central carbon metabolism and lipid biosynthetic pathways [10]. R. toru-
loides possesses several enzymatic pathways that differ from the model yeast Saccharomyces
cerevisiae and which specifically facilitate the generation of lipid precursors. The key differ-

ences included the synthesis of acetyl-CoA from citrate by ATP citrate lyase (ACL), synthesis

of acetyl-CoA from xylulose 5-phosphate by phosphoketolase (XPK), and the conversion of S-

malate into pyruvate by malic enzyme (ME) that provides for NADPH [10,14]. Proteomics

analysis has suggested NADPH regeneration primarily through the pentose phosphate path-

way on xylose and glucose, but the role of malic enzyme is not clearly understood [8,10]. The

role of XPK in the generation of acetyl-CoA has not been acknowledged previously, whereas

ACL has been demonstrated to be upregulated during lipid accumulation [10], especially in

presence of xylose [8].

It has been reported that on xylose R. toruloides is growing 2 to 3 times slower compared to

glucose [8], but the underlying mechanisms are yet to be identified. In our previous proteo-

mics study [1], we discovered from proteomics quantification that xylulokinase, encoded in
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the genome as the third step in the currently known xylose assimilation pathway, is not present

in the proteomic data set, suggesting potential limitation in xylose metabolism. Later, a similar

finding was reported by Jagtap et al. 2021 [3] and Kim et al. 2021 [9] using a different R. toru-
loides strain, IFO 0880. The latter proposed an alternative xylose assimilation pathway for this

species.

A holistic view on metabolism can be provided by genome-scale metabolic models (GEMs).

GEMs are metabolic networks reconstructed from a genome sequence of a specific organism.

They contain all known biochemical reactions of the organism. GEMs allow the calculation of

metabolic fluxes that represent activity of different metabolic pathways under specified condi-

tions, e.g., an uptake of a particular carbon source. GEMs of R. toruloides were built based on
the genome sequences of strains NP11 [15] and IFO 0880 [11]. Flux balance analysis predicted

that up to 87% of NADPH was regenerated from xylose through the oxidative part of pentose

phosphate pathway (oxPPP) [1]. Phosphoketolase was suggested as the main supplier of ace-

tyl-CoA during lipogenesis in xylose-grown cells [1]. On the other hand, TCA cycle related

enzymes were suggested for NADPH production on acetate-grown cells [7], demonstrating

that metabolic operations can vary significantly with the carbon source uptake. Models have

also been used to study metabolism during cell growth on glucose [11] and glycerol [7].

A better understanding of how different metabolic pathways contribute to lipid accumula-

tion under different substrates would help to design better metabolic engineering strategies.

GEMs can be a powerful and helpful tool in metabolic studies, if their predictive power is

good. Enzyme-constrained GEMs integrate additional constraints on enzyme capacity and

their total abundances (as thoroughly reviewed by Chen and Nielsen 2021 [16]). Phenomeno-

logical constraint is imposed on metabolic flux (v; mmol/gDCW/h), formulated as enzyme

kinetics (Eq 1)

v � E � kcat ð1Þ

where E is protein abundance (mmol/gDCW) and kcat is the enzyme’s turnover number (1/s),

provided with an upper limit on individual or total protein abundances The integration of

enzymatic constraints in S. cerevisiae significantly improved phenotype prediction [17]. The

strength of proteome constraints has also been demonstrated by predicting overflow metabo-

lism in E. coli [18] and metabolic shift in arginine catabolism in L. lactis [19]. A similar coarse-

grained approach that allowed the prediction of maximal growth without constraining the

model with any exchange fluxes in S. cerevisiae was demonstrated by applying a global thermo-

dynamics constraint [20].

In addition to a curated annotation, the quality of the predicted fluxes depends on accuracy

of physiological data, notably on the biomass composition specificity. The tuning of R. toru-
loides biomass reaction in the prior and current models improved the condition-wise specific-

ity of predicted fluxes.

In the present study, we created condition-specific enzyme-constrained genome-scale met-

abolic models of R. toruloides, ecRhtoGEMs, and used them to predict intracellular fluxes.

Flux bounds to constrain the model were obtained from bioreactor (1 L) experiments with

yeast cultivation in chemically defined medium, with three carbon sources studied individu-

ally—glucose, xylose and acetate. These very detailed physiological data sets enabled us to pre-

cisely characterize metabolism at exponential growth and lipid accumulation phase. In all

conditions, we performed mass spectrometry (MS) based absolute proteome quantification.

Also, biomass macromolecular composition in regard to lipids and proteins was determined,

including lipid profiling by gas chromatography (GC) analysis. Using this data, we generated 6

different versions of the R. toruloidesmodel with enzyme constraints and biomass composition
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specificity, where we were able to demonstrate trade-offs in NADPH requirements for the cells

growing exponentially versus in nitrogen limitation. To our knowledge, this is the first proteo-

mics analysis of acetate-grown R. toruloides cells and the first detailed GEM analysis combined

with proteome analysis of acetate and glucose conditions for this strain.

Results

Differences in physiological parameters under glucose, xylose or acetate as
a sole carbon source

Here we present production profile, specific growth rate, lipidomics and total protein mea-

surements of batch cultivation of R. toruloides strain CCT 7815 growing in a chemically

defined medium on three substrates as a sole carbon source—glucose (63 g/L), xylose (70 g/L)

or acetate (20 g/L). R. toruloides CCT 7815 is a tolerant strain developed during a short-term

adaptation of strain CCT 0783 (Coleção de Culturas Tropicais, Fundação André Tosello, Cam-

pinas, Brazil) in sugarcane bagasse hemicellulosic hydrolyzate, demonstrating an increased

lipid production without impacting growth and substrate consumption as a result of induction

of hydrolysate-tolerance- and lipid accumulation-related genes [21]. Cultures were grown at a

starting molar C/N ratio of 69 (glucose/urea) and 80 (xylose- or acetate/ammonium sulfate),

which will result in nitrogen limitation that is known to induce lipid accumulation [12]. Cell

growth was monitored by online biomass measurements and CO2 production data. Experi-

ments were run until complete substrate depletion. Regardless of the carbon source, the results

demonstrated two distinct growth phases: (i) exponential growth (exp) phase where all sub-

strates were in excess, and (ii) nitrogen-limited (Nlim) phase, associated with nitrogen deple-

tion (Fig 1A). For lipidomics, the first sample was analyzed at the end of exp phase and the

second sample was analyzed at the end of Nlim phase (Fig 1A). For intracellular protein con-

tent analysis, biomass samples were analyzed at the late or end exp and mid-Nlim phases (Fig

1A). Physiological parameters are available in S1 Table.

The highest amount of intracellular lipids was accumulated while cells were growing on glu-

cose, resulting in 0.48±0.04 g/gDCW, while the lipid yield was approximately 15% and 20%

lower on acetate and xylose, respectively (Fig 1B). On glucose, lipid accumulation started later

than on xylose and acetate, where up to 20% and 18% lipid yield, respectively, was reached

already during the late exp phase (S1 Fig). In a similar study using a different R. toruloides
strain NP11 [8], less lipids were quantified in xylose at the late exp phase, while a higher final

lipid yield was reached compared to our study. On glucose, the final lipid yield was comparable

with previous studies [8]. In acetate condition, the final lipid content was 0.34±0.01 g/gDCW,

which was in line with previous experiments by our group measured in continuous cultivation

experiments [7].

Maximum specific growth rate was the highest on glucose, 0.19±0.025 h-1, while it was at
least 2-fold lower on acetate and xylose (Fig 1C). Two-fold difference in maximum growth

rate on xylose and glucose conditions has been reported previously [8]. Nlim growth phase,

where most of the lipid accumulation occurred in all studied conditions, was characterized by

significantly lower specific growth rate (Fig 1C), specific substrate uptake rate (Fig 1D) and

total protein content (Fig 1E).

Lipid composition was similar in all studied conditions, with oleate (C18:1) as the dominant

fatty acid (Fig 1F). During the Nlim phase, the relative amount of oleate (monounsaturated

fatty acids, MUFAs) further increased, while polyunsaturated fatty acids (PUFAs)—linoleate

(C18:2) and linolenate (C18:3)—decreased. Interestingly, on glucose at late exp phase the

amount of PUFAs was higher than MUFAs, but it significantly changed during the Nlim phase

when total lipid amount increased almost 10-fold (Fig 1B). Our results demonstrated that the
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degree of fatty acid saturation for C18 dynamically increased throughout cultivation. The dis-

tribution of different types of fatty acids was in agreement with the previous data reported on

glucose and xylose [8], whereby oleate and palmitate where the most abundant at the end of

batch cultivation. Notwithstanding the general agreement between both studies, in our study

the PUFAs, mainly linoleate (C18:2) increased more during Nlim, while in the previous study

Fig 1. Growth characterization on three carbon sources–glucose (G), xylose (X) and acetate (A)—during
exponential growth (exp) and nitrogen limitation (Nlim) phases. (A) Batch cultivation growth curve and sampling
timepoints for lipidomics and proteomics on all tested carbon sources. (B) Lipid yield, Ylip (g/gDCW). (C) Average
specific growth rate, μ_average (h-1). (D) Substrate uptake rate, r_substrate (mmol/gDCW/h). (E) Protein content, Yp
(g/gDCW). (F) Fatty acid profiles (% of total lipid). (G) Carbon balance (% of total substrate uptake). SFAs: saturated
fatty acids; MUFAs: monounsaturated fatty acids; PUFAs: polyunsaturated fatty acids. Average of duplicate
experiments with SD is illustrated.

https://doi.org/10.1371/journal.pcbi.1011009.g001
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[8] palmitate (C16:0) increased more during lipid accumulation. It might possibly reflect the

fact that different R. toruloides strains were used in these studies.

Final biomass titers were similar on xylose and glucose, respectively 18 g/L and 22 g/L (S1

Fig), but the highest biomass yield, 0.32 gDCW/g_substrate, was reached on xylose during

Nlim phase (S1 Table). On xylose, 32% of substrate was excreted as byproducts xylitol and D-

arabinitol during the exp growth phase (Fig 1G). For arabinitol, a stereoselective analysis was

done using high-performance liquid chromatography (HPLC) separation with a chiral column

(Chiralpak, Daicel Technologies, Japan), similarly as described in Lopes and Gaspar 2008 [22]

(S2 Fig). Although Jagtap and Rao [23] already assumed the production of D-arabinitol, we

were able to validate it. At low growth rates (during the Nlim phase), xylitol and D-arabinitol

were not excreted but rather co-consumed. All byproducts were consumed at the end of the

experiment at 168 h. On acetate, the amount of byproducts other than CO2 increased during

the Nlim phase to 31% (Fig 1G). These byproducts remain to be identified. On glucose, no

byproduct other than CO2 was detected. However, we were able to measure only 68.5% of car-

bon during the Nlim phase (Fig 1G and S1 Table). Likely, it was because R. toruloides strain
CCT 7815 was making cell aggregates when grown in the chemically defined glucose-based

medium. Mass balance calculation took into account glucose uptake, carbon dioxide produc-

tion and biomass (in C-mol). As our biomass measurements were based on optical density,

which relies on the assumption that cells are evenly distributed and of equal size [24,25], it

may underestimate the actual cell concentration in liquid culture when aggregates are formed.

To solve aggregation problem, we switched the nitrogen source from ammonium sulfate to

urea in glucose condition. It helped to reduce aggregate formation but did not eliminate it.

Based on the comparison of growth curves when using ammonium sulfate or urea, the results

were highly similar (S1A Fig). Further analysis with glucose was carried out using urea as the

nitrogen source. Therefore, results exclusively in the glucose condition (both exp and Nlim

growth phases), including the proteomics and metabolic flux data presented in Figs 1–5 and

S1–S13 and S1–S6 Tables and S1–S6 Datasets, belong to experiments in which we used urea

as a nitrogen source.

Proteomics data shows a significant allocation into ribosomes

We also present a high quality dataset with absolute proteome abundances of R. toruloides
measured at the late exp and mid-Nlim phases during growth on xylose, glucose and acetate.

Proteins were measured and quantified with mass spectrometry-based TPA (total protein

amount) quantification method [26], and we were able to determine the absolute abundances

of 3160 proteins across 6 conditions (S1 Dataset). Principal component (PC) analysis showed

coherency in our proteome data (Fig 2A). High similarity between acetate exp and Nlim data

was detected, while showing significant differences with other studied conditions (separated

on the PC1, describing 49% variation in the data). PC analysis has previously been done for R.
toruloides strain IFO 0880 comparing gene expression during the exponential growth phase on

rich medium containing sole carbon substrate, similarly as in our study [3]. PC1 using tran-

scriptomics revealed distinct expression patterns on acetate-grown as compared to glucose-

and xylose-grown cells, agreeing with the proteomics results obtained our study. The only

noticeable difference was that PC2 in [3] separated exp phase from glucose to xylose. In our

study, PC2, describing 34% of the variation in our data, separated mainly exp and Nlim condi-

tions in the same way on glucose and xylose (Fig 2A).

Significant variation in proteome between the two growth phases, exp and Nlim, was also

observed by differential expression analysis. We found 204 differentially expressed proteins in

Nlim (lipid accumulation) versus exp growth phase on glucose, 37 on xylose and none on
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acetate using a cut-off of |log2FC|> 1 and Benjamini-Hochberg corrected p-value< 0.05 (S3

Fig and S2 Dataset). Proteome profiles on xylose and glucose were more similar in compari-

son to the growth on acetate. Comparison of protein levels between carbon sources revealed

the largest difference between xylose and acetate at exp growth phase, resulting in 159 differen-

tially expressed proteins (S3 Fig and S2 Dataset). We then analyzed protein levels based on

Gene Ontology (GO) group relations that represent different metabolic pathways present in R.
toruloides. GO groups were obtained from the Uniprot database (R. toruloidesNP11) and
genome-scale model, rhto-GEM [15] (for a full list see S2 Table). GO relations from both

sources were combined to provide possibly the most accurate information on different meta-

bolic pathways present in R. toruloides.
We discovered that ribosomes formed the largest GO group of the proteome (data were

represented per gram of total proteome, μg/g_protein) (Fig 2B). Interestingly, the ribosomal

abundance in R. toruloides up to 46% of proteome was higher than observed previously in S.
cerevisiae (around 37%) [27]. Expression levels in glycolytic pathways were largely unchanged

during the lipid accumulation in xylose and acetate conditions, while upregulation was

observed on glucose (Fig 2B). On glucose- and xylose-grown cells, proteome allocation to

TCA cycle was considerably lower compared to glycolytic metabolic pathways (Fig 2B). On

acetate, protein levels of the TCA cycle were almost 3-fold higher than on glucose and xylose

(Fig 2B). Higher TCA cycle activity was expected as acetate assimilation directly produces

TCA cycle-related metabolites. The electron transfer chain (ETC) was the only metabolic path-

way, in which protein levels increased significantly during lipid production in all the studied

carbon substrates (Fig 2B).

Fig 2. Absolute proteomics data. (A) Principal component analysis (μg/g_protein). (B) Proteome allocation (% of μg/g total protein) to metabolic
pathways associated with amino acid (AA) biosynthesis, electron transport chain (ETC), fatty acid (FA) metabolism, glycolysis, pentose phosphate
pathway (PPP), pyruvate metabolism, ribosome, tricarboxylic acid (TCA) cycle, and uncharacterized proteins. (C) Ribosomal translation rate (s-1) and
ribosome allocation (g/g_protein). Average of duplicate experiments with SD is illustrated. Proteins in each GO group are shown in S2 Table.

https://doi.org/10.1371/journal.pcbi.1011009.g002
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During lipid accumulation, the amounts of uncharacterised proteins, especially in xylose

condition, increased (Fig 2B), indicating the importance of discovering unknown protein

functions for future research. Interestingly, on glucose the least amount of proteins were allo-

cated to FA metabolism, while the highest total lipid content was measured experimentally.

The highest expression levels of proteins in the fatty acid metabolic pathways were detected on

acetate (Fig 2B). It was mostly due to high expression levels of beta-oxidation proteins (S1

Dataset).

Relation between ribosomal content, growth rate and translation

We used absolute quantification of the proteome and the ribosomal content to calculate the

rate of protein synthesis per ribosome, also known as ribosome efficiency or protein transla-

tion rate (for instructions see S3 Table). The ribosome of R. toruloides strain NP11 was charac-

terized by 178 structurally distinct proteins reported in Uniprot.org, from which 147 were

identified in CCT 7815 strain and quantified (S2 Table). The calculated translation rates varied

from 0.8 to 6.6 aa/s (Fig 2C), which was very similar as observed in S. cerevisiae (between 2.8

and 10 aa/s) [28]. Among the 6 conditions analyzed, we observed a linear correlation between

the translation rate and specific growth rate μ (R2 = 0.99, p-value< 0.001). The mass-wise

ribosome content of proteome (g/g_protein) (Fig 2C) had no such distinct correlation with

the μ (R2 = 0.68, p-value = 0.043). Interestingly, the lowest ribosome content in proteome was

detected during growth on acetate as compared to other substrates.

Integrating fluxomic and proteomic analysis using an enzyme-constrained
genome-scale model

Genome-scale models allow an in silico simulation of intracellular flux patterns in accordance

with exchange fluxes obtained from cultivation experiments. To improve the predictive power

and consider the capacity constraints imposed by enzymatic catalytic capacities and their pro-

tein levels, we developed an enzyme-constrained GEM using the GECKO Toolbox [17]. In lieu

of a strain-specific model, we used the NP11-based GEM [15] to represent the CCT 7815 strain

used in this study. The genome of its parental strain CCT 0783 possesses two versions of the

same gene, one presenting>90% identity and the other version presenting>70% identity to

the genome of haploid strain NP11 [29]. We integrated individual protein concentrations with

their corresponding catalytic activities (kcat) in the model to constrain individual metabolic

fluxes. We created separate models for exp and Nlim phases on xylose (X), glucose (G) and

acetate (A), respectively. Hence, 6 different versions of the proteome constrained model with

modified biomass composition, fatty acid profiles and flux bounds from the experimental data

were constructed. Proteome constraints included the concentrations of 773 different enzymes

across all conditions (S4A Fig and S4 Table), which were applied to 1515 metabolic reactions

(30% of all reactions) (S5 Table). The coverage of these constraints was greatly improved by

manually assigning EC numbers to 461 R. toruloides enzymes (S4 Table), which enabled

GECKO Toolbox to assign their kcat values. At first, BRENDA was queried for exact matching

reaction, substrate and organism. But as kinetic parameter data for non-model organisms such

as R. toruloides were not readily available, GECKO Toolbox step-wise relaxes the stringency

when matching EC number, organism and substrate, to assign reasonable estimates of kcat val-

ues [30]. Mass-wise, the proteome constraints of the measured fraction of enzymes covered

between 14% (Gexp) to 25% (ANlim) of the quantified proteome (S4B Fig). Aside from

enzyme concentrations, proteome constraints contained 535 unique kcat values automatically

queried from the BRENDA database (S3 Dataset). Models, data sets and scripts are hosted on

a dedicated Github repository ecRhtoGEM (www.github.com/alinarekena/ecRhtoGEM).
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Next we used Flux Balance Analysis [31] to simulate intracellular flux patterns and random

sampling of the solution space [32] with 2000 sampling iterations to evaluate flux variability

(S4 Dataset). To constrain the set of feasible solutions during sampling, we fixed the upper

bound and lower bounds on the observed exchange fluxes, ATP hydrolysis (non-growth

related maintenance) and protein pool exchange (seeMethods). The average flux variability,

estimated as a percentage of SD divided by the flux values, was 19% (median value of all condi-

tions) (S4 Dataset).

From the simulated flux values, we calculated apparent enzyme catalytic activities (kapp) as

ratio of model-predicted fluxes and measured protein concentration. kapp represents the

apparent in vivo enzyme turnover which drives the biological processes in the environment, in

contrast to kcat representing maximum enzyme capacity. As we used model-predicted fluxes

that were constrained by kcat values in the ec-model, the kapp values that we obtained cannot

be higher than the kcat value, which means that we cannot capture any potential in vivo enzyme

activity enhancement effect. Regardless, in case of high kapp values, high reaction rates are cata-

lyzed by low protein concentration, and vice versa. This study is the first report on the in silico
kapp values in R. toruloides. Calculated kapp values in all growth conditions are available in S3

Dataset. Vast majority of kapp values were in the range from 0.1 to 100 (s-1) (S5 Fig), which is

in the range of “average enzyme” kcat of 10 s
-1 reported by Bar-Even et al. [33]. Some of the

lowest kapp values in acetate condition were associated with fatty acid degradation and beta

oxidation metabolic pathways. We found that during the Nlim phase, when lipid accumulation

occurs, the number of enzymes with relatively low kapp values (0.1 to 1 s
-1) was increased (S5

Fig). This reflects the fact that absolute fluxes decreased more than protein concentrations

during the Nlim phase in comparison to exp growth phase, suggesting that for many reactions

downregulation of the enzyme did not affect its reaction rate directly.

Growth on glucose

In our analysis of integrated flux and proteomics data, we focused on the major carbon

fluxes and corresponding enzymes in the central carbon and lipid metabolism where acetyl-

CoA, ATP and NADPH, the main precursors for lipid biosynthesis, are generated (Fig 3).

For a better comparison, fluxes were normalized to the substrate uptake rate of the respec-

tive condition, providing percentage values of carbon distribution in the metabolic path-

ways (S6 Fig, for a full list see S4 Dataset). During the exponential growth phase on

glucose, 72% of the carbon was directed via the PPP, while only 20% went through the Emb-

den-Meyerhoff glycolytic pathway. When comparing fluxes at exp versus Nlim phase, we

did not observe any significant changes in normalized fluxes through the oxPPP in glucose

condition (Fig 4A), which was also the main source of NADPH regeneration (S7 Fig)

(reaching 76% glucose-derived carbon). During the exp phase, the majority of NADPH was

consumed by glutamate dehydrogenase (GDH) which converts ammonium and oxogluta-

rate (AKG) to glutamate, while during the Nlim phase majority of NADPH was consumed

in lipid biosynthesis by FAS1-2 (S7 Fig).

The flux via phosphoketolase pathway, which converts D-xylulose 5-phosphate to glyceral-

dehyde 3-phosphate and acetyl-CoA, increased more than 4-fold from 14% to 60% during the

transition from exp growth to Nlim phase, consistent with a significant upregulation of phos-

phoketolase (XPK) on proteome level (apval. 0.043, S2 Dataset). While it is not known, which

route of XPK enzyme in combination with a phosphotransacetylase (PTA) or an acetate kinase

(ACK) is used in R. toruloides strain CCT 7815, we compared the fluxes of both possible sce-

narios (S4 and S5 Datasets). As the results were highly similar, further flux analysis was car-

ried out based on a metabolic route where PTA is active. XPK pathway was also the main
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source of cytosolic acetyl-CoA during lipogenesis, which activity has never been reported on

glucose, but is in line with previous findings in xylose condition [1,7]. The pyruvate decarbox-

ylase and ACL, which exist as alternative pathways for producing cytosolic acetyl-CoA during

lipid accumulation, were activated only when we blocked the XPK pathway (S6 Dataset). Dur-

ing the exp phase, cytosolic acetyl-CoA was not fully used for fatty acid biosynthesis, but 3% of

carbon from glucose was transferred to TCA cycle via carnitine carrier (CRC) via acetylation

reaction and in exchange of carnitine. The transfer of acetyl-CoA to mitochondria likely

reflects that there was sufficient availability of cytoplasmic acetyl-CoA during the exp phase on

glucose. At Nlim phase, majority of cytoplasmic acetyl-CoA was consumed by acetyl-CoA car-

boxylase (ACC), the first step in lipid biosynthesis, as more than 5-fold increase between 9% to

58% of carbon was observed via ACC during the transition from exp phase.

The main flux from the pyruvate branching point was channeled to the TCA cycle via pyru-

vate dehydrogenase (PDH), reaching 69% of carbon from glucose during exp phase. During

exp phase, 37–46% of glucose-derived carbon was channeled from aconitase (ACO1-2) to

fumarase (FUM1), while the flux through malate dehydrogenase (MDH1) appeared to

Fig 3. Main metabolic pathways present in R. toruloides. Blue arrows are used to denote mitochondrial carrier
proteins and enzymes in shuttling pathways. Pink arrows are used to denote the alternative xylose assimilation
pathway. Names, protein names and corresponding metabolic reaction IDs of genes are shown in S2 Table.

https://doi.org/10.1371/journal.pcbi.1011009.g003
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correspond to 218% of glucose-derived carbon, indicating that an internal cycling of carbon

was taking place. Similar recycling has been noticed also before in R. toruloides genome-scale

models [1,7,11], however we assume this cycling to be artificial caused by a high demand of

mitochondrial NADH. During the Nlim phase, ATP yield increased (S8B Fig), consistent with

a significant upregulation of ETC on proteome level (Fig 2B). Since the TCA cycle and the

respiratory chain are metabolically connected, cells require mitochondrial NADH to drive res-

piration. Ultimately, the yield of NADH during the Nlim phase slightly increased (S9B Fig).

Fluxes through the TCA cycle significantly increased (Fig 4A), reaching 83% of carbon from

glucose (S6 Fig), while the biomass yield decreased (S1 Table).

With respect to intracellular protein levels, the concentration of ACL was also high (1010

±75 μg/g_protein) at exp phase and was 2.6-fold upregulated (apval. 0.039) during the Nlim

phase (Fig 4B and S2 Dataset), which was consistent with results from previous proteomics

studies suggesting PDH-CIT1-ACL path for producing cytosolic acetyl-CoA [8,10], but not

supported by the model flux results. The concentrations of PDH (2304±11 μg/g_protein) and
CIT1 (2573±6 μg/g_protein) (S10 Fig) at exp phase were higher than on average for the TCA

cycle enzymes (coinciding with high kcat values of 486 s
-1 and 540 s-1 for PDH and CIT1, S3

Dataset), which was also consistent with their role in the PDH-CIT1-ACL route, suggested by

previous omics studies. However, the expression levels of mitochondrial membrane carrier

proteins at both growth phases were low. At relatively low protein levels, high flux through

these transporter proteins resulted in higher kapp values (S11 Fig).

Fig 4. Heatmap of Z-scores for enzymes in central carbon metabolism. (A) Fluxes (mmol/gDCW/h) calculated as median from 2000 iterations
of random sampling of the solution space [Bordel et al. 2010] [32], normalized by substrate uptake rate. (B) Proteomics data (μg/g of total
protein) calculated as the average of duplicate experiments. (C) Apparent catalytic activities, kapps (s

-1), calculated as fluxes divided by protein
concentrations. Gray color is used to denote missing values. Asterisks ( ) are used to denote isoenzymes. PPP: pentose phosphate pathway.
Names, protein names and corresponding metabolic reaction IDs of genes are shown in S2 Table.

https://doi.org/10.1371/journal.pcbi.1011009.g004
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Growth on xylose

Next, we explored R. toruloidesmetabolism during growth on xylose. Xylose is metabolized by

xylose reductase (XR, NADPH-dependent), which reduces xylose to xylitol, xylitol dehydroge-

nase (XDH) and xylulokinase (XK), and further assimilated into central carbon metabolism

via transketolase (TKT1-2) or XPK pathway. The expression of XK was not detected on prote-

ome level in any of the conditions studied, suggesting an alternative pathway to the known

fungal xylose assimilation pathway (Fig 3). The experimental detection of D-arabinitol isoform

suggested the conversion of D-xylulose to D-arabinitol. This mechanism was supported by the

presence of two genes in the R. toruloides genome encoding D-arabinitol dehydrogenase,

RHTO_07844 and RHTO_07702. Only protein RHTO_07844 was detected in our proteomics

analysis (1913 μg/g_protein) (S10 Fig), suggesting its role as D-arabinitol 4-dehydrogenase
(DAD-4), converting D-xylulose to D-arabinitol. Arabinitol dehydrogenase could also convert

arabinitol to ribulose (D-arabinitol 2-dehydrogenase) [34]. L-xylulose reductase (LXR) of fun-

gal A.monospora has been reported to reversibly convert D-ribulose to D-arabinitol [35]. In

support of this mechanism, protein levels of L-xylulose reductase (EC 1.1.1.10, RHTO_00373)

were 10-fold upregulated during growth on xylose versus other substrates. Therefore,

RHTO_00373 was selected as D-arabinitol 2-dehydrogenase (DAD-2) (converting D-arabini-

tol to D-ribulose). Arabinitol dehydrogenase is known to use NADH as cofactor [34]. LXR is

mostly known for NADP(+)/NADPH specificity [35]. D-ribulose can enter the non-oxidative

part of PPP via phosphorylation by D-ribulokinase (RK). An equivalent pathway was recently

reported by Kim et al. 2021 [9]. One gene in R. toruloides IFO 0880 GEM (version 4.0) was

annotated as D-ribulokinase (ID 14368) and we used it to identify potential RK in NP11 strain,

which is more similar to the strain CCT 7815 used in this study [29]. Gene RHTO_00950 was

identified as an ortholog of protein ID 14368 by a BLAST search, which found a match with

98.5% identity. Interestingly, in strain IFO 0880 orthologs of both genes RHTO_07844 and

RHTO_07702 were identified as DAD-2 and DAD-4, respectively, and both were using NAD/

NADH as the cofactor [9]. While it is not known, which cofactor of DAD-2/LXR enzyme is

operational in R. toruloides strain CCT 7815, we analyzed the fluxes of both possible scenarios.

Both simulation results were highly similar, with a difference in where NADPH was regener-

ated. The alternative pathway through DAD was preferred even when XK was not constrained

with proteome.

In a scenario when DAD-2/LXR was NADP-dependent, during both exp and Nlim growth

phases between 46–49% of carbon derived from xylose was directed via glucose 6-phosphate

isomerase (GPI) in a reverse direction to the glycolytic flux. In a combination with that, 42% of

carbon was directed via the oxPPP and returned to the Ru5P branching point, indicating that a

loop associated with NADPH recycling is taking place. Alternatively, up to 88% of xylose-derived

carbon was directed via oxPPP (S7 Dataset). In the first scenario, ZWF and GND provided more

NADPH than LXR/DAD-2 during the exp phase (S12 Fig). During the Nlim phase, when the

yield of NADPH slightly increased (S13 Fig), the flux of ZWF and GND remained unchanged,

while the flux of LXR/DAD-2 increased (Fig 4A). XR consumed at least 2-fold more NADPH

than any other NADP(+)-dependent enzyme during both growth phases. However during Nlim,

more NADPH consumed by FAS1-2 was spent on lipid biosynthesis (S12 Fig).

From the proteomics analysis, the concentrations of enzymes involved in the xylose path-

way were 1.1 to 1.6-fold downregulated during Nlim phase versus exp phase (Fig 4B), consis-

tent with the decrease in xylose uptake rate (S1 Table). Lower concentration of RK (644±8 μg/
g_protein) compared to other enzymes involved in xylose assimilation was measured (S10

Fig), suggesting enzyme limitation in the XK bypass pathway. At relatively low protein levels,

high flux through RK resulted in relatively higher kapp values (S11 Fig).
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Aside from enzymes directly involved in xylose assimilation, the intracellular flux patterns

on xylose were the closest to growth on glucose, in comparison to growth on acetate. The flux

of XPK was upregulated 1.7-fold between 13% to 22% during the Nlim phase (Fig 4A), which

was also the main source of acetyl-CoA during lipogenesis. At the Nlim phase, the yields of

ATP and NADH significantly increased (S8 and S9 Figs). The additional mitochondrial

NADH during the Nlim phase was provided via internal cycling of MDH1 (S14 Fig).

Growth on acetate

Lastly, we explored R. toruloidesmetabolism during growth on acetate. Acetate can cross the

plasma membrane to enter the cells via simple or facilitated diffusion, but at pH below neutral

(< pH6) the diffusion of the undissociated form of the acid induces the stress response or

causes negative effect on metabolic activity [36]. In R. toruloides, two permeases have been

found upregulated during growth on acetate-based rich medium in comparison to glucose-

based rich medium [3], suggesting that facilitated diffusion is taking place. Once inside the

cells, acetate is assimilated via ACS that directly provides acetyl-CoA (Fig 3), one of the main

precursors for lipid biosynthesis. From acetyl-CoA branching point, the flux is channeled into

the central metabolic pathways via isocitrate lyase (ICL1-2) and malate synthase (MLS), which

are predicted to be located in cytosol, but no experimental evidence is available. Metabolic

model predicted that at acetyl-CoA branching point, 18% of carbon from acetate during exp

growth phase was directed to lipid biosynthesis via ACC, while the majority of carbon (51%)

entered glyoxylate shunt. In addition, a significant amount of carbon from acetyl-CoA (29%)

was channeled via CRC carrier, which was predicted to have a minor activity on glucose condi-

tion. The CRC route was preferred over the PDH pathway towards mitochondrial acetyl-CoA

(MLS-ME-PDH), which channeled only 18% of carbon from acetate at exp phase. Metabolic

model predicted 5% of carbon from acetate excreted as succinate from the glyoxylate shunt, in

addition to 2% of carbon excreted as citrate, which was confirmed by HPLC. During the Nlim

phase, the main fluxes demonstrated different regulation (Fig 4A). The increase in flux via

CRC (1.4-fold) reflects that more carbon entered the TCA cycle during the Nlim phase. Inter-

estingly, the flux of ACC was downregulated 3.1-fold at Nlim compared to the exp growth

phase. Using the rate of lipid production, which decreased during Nlim phase, it can be

explained that the lipid production in absolute amounts was higher during the exp phase to

sustain the growth together with moderate lipid production (S1 Table).

On acetate, fluxes of the TCA cycle were the lowest, while measured protein levels were the

highest among all conditions analyzed (Fig 4A and 4B). At Nlim phase, 28% of carbon from

acetate was predicted to be excreted as OAA, while the biomass yield decreased (S1 Table).

Flux levels of the TCA cycle indicated that an internal cycling of carbon similar as in other

conditions was taking place (S6 Fig). It involved different transporter proteins,—the citrate-

oxoglutarate (CTP) and succinate-fumarate (SFC) transport -, which allow channeling of the

flux from the TCA cycle to glyoxylate shunt (Fig 3). During the Nlim phase, ATP turnover,

produced entirely via ETC (S15 Fig), and NADH turnover, produced almost entirely via the

TCA cycle (S16 Fig), both decreased (S8 and S9 Figs), unlike observed in glucose or xylose

conditions, where ca 80% of the ATP originated from ETC, while the rest came mainly from

glycolysis.

Aside from enzymes directly involved in the TCA cycle, cytosolic ME was the sole supplier

of NADPH during the Nlim phase only in acetate condition (S17 Fig). This is supported also

by the measured protein levels of ME, which were significantly higher under acetate condi-

tions, although the absolute levels of ME were relatively low under all studied conditions (189

±3 μg/g_protein) (Figs 4B and S6). Only during the growth on acetate the NADPH yield
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decreased during the Nlim phase (S13 Fig). During the Nlim phase, more NADPH was con-

sumed by FAS and spent on lipid biosynthesis (S17 Fig).

We also observed few significant changes in fluxes of enzymes involved in gluconeogenesis,

which is an important pathway during growth on acetate to provide xylose phosphate-based

precursors for ribonucleotide synthesis. The normalized flux towards gluconeogenesis, chan-

neled via MDH2, carried 11% of carbon exp growth phase. It may reflect the fact that PEPCK,

the first enzyme in the gluconeogenesis pathway, consumed ATP, but we found that PEPCK

was consuming only 2.4% of ATP during exp phase (S15 Fig). The concentration of PEPCK

(627 μg/g_protein) (S10 Fig) and its kcat value (38 s
-1) (S2 Dataset) were low, suggesting that

PEPCK could have been a rate-limiting step of gluconeogenesis during the exp phase.

From proteomics analysis, the concentration of enzymes involved in fatty acid beta oxida-

tion (RHTO_04957, RHTO_00300, RHTO_02848, RHTO_07118, RHTO_00476) at higher

concentrations (from 163±9 to 531±7 μg/g_protein) as compared to cells grown on other sub-

strates at exp phase (S2 Dataset), suggesting this pathway might be more active in R. toruloides
during growth on acetate.

Intracellular flux patterns point to metabolic trade-offs associated with
lipid production

Multi-layer data provided in this study allows us to analyze metabolic trade-offs and compare

the resource allocation between different metabolic pathways present in R. toruloides. From
the metabolic modeling results, we analyzed the NADPH allocation between nitrogen assimi-

lation and fatty acid biosynthetic pathways in glucose- and xylose-grown cells (Fig 5). When

the yeast had an abundant source of nitrogen, either by conversion of urea to ammonia (glu-

cose condition) or by growth on ammonia itself, NADP-dependent glutamate dehydrogenase

(GDH1) converted ammonia with the TCA cycle intermediate AKG into glutamate, which

was then used for the amino acid biosynthesis. Thus, during the exp phase on glucose-grown

cells 46% of NADPH turnover was channeled via GDH1, while 13% was consumed via FAS1-

2. On the contrary, during the Nlim phase 12% of NADPH was channeled via GDH1, while

75% was consumed via FAS1-2. This was supported also by the measured protein levels of

GDH1, which were significantly higher during exp growth phase (4294±183 μg/g_protein), as
compared to Nlim phase (2948±135 μg/g_protein) (S2 Dataset). In this metabolic trade-off,

less (almost 4-fold) cytosolic NADPH was consumed by GDH1 during the Nlim phase (S7

Fig) when the protein content reduced 2.8-fold (S1 Table). And vice versa, more NADPH

(almost 6-fold) was consumed by FAS1-2 when total lipids increased 8.5-fold.

In acetate condition, the metabolism during lipogenesis at Nlim phase might be influenced

by the beta-oxidation, a metabolic process of lipid degradation that can return carbon back

into central metabolism, which was detected on proteome level in acetate condition. But the

activity of this pathway could not be simulated with our current model.

Discussion
In this study, we presented detailed analysis of physiological characterization of R. toruloides
CCT 7815 during growth on glucose, xylose or acetate as a sole carbon source. It was an

important part of the study as the collected data together with the quantitative proteomics

analysis was used to constrain the newly developed enzyme-constrained metabolic models.

Cultivation experiments were carried out at a C/N ratio, which allowed nutrient excess condi-

tions during the first part of the batch cultivation and resulted in nitrogen limitation during

the second part of the experiment, a growth phase known to induce lipid accumulation [12].

Enabled by bioreactors equipped with online monitoring sensors, we were able to accurately
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measure two distinct growth phases during the batch culture (S1 Fig), characterized by differ-

ent lipid content in biomass and other physiological parameters (S1 Table), which were later

implemented into metabolic models.

Experimental results showed a slightly higher final biomass yield (0.32 gDCW/g_substrate)

during growth on xylose as compared to Tiukova et al. 2019, [8] (0.28 gDCW/g_substrate),

where significantly lower starting sugar concentration (40 g/L) and a different R. toruloides
strain were used. Differences between strains were demonstrated also in their lipid composi-

tion (Fig 1E). Lower final biomass yield during growth on glucose (0.24 g/g) as compared to

xylose condition (0.32 g/g) was difficult to explain by any other reason than the formation of

cell aggregates on glucose, as no byproducts in this condition were detected. It has been

reported earlier, and for future research aggregate formation in R. toruloides could be miti-

gated with the increased salt concentrations [37]. The possible explanation could be the pro-

duction of exopolysaccharides that has been found in other Rhodotorula species [4]. However,

the final lipid content in biomass during growth on glucose (48%) was the same as what has

been reported in Tiukova et al. 2019, [8].

Absolute proteome quantification helped to improve the understanding of metabolism dur-

ing lipid accumulation and on various substrates. Interestingly, we found that the proteome

was largely unchanged during the Nlim versus exp phase on acetate, while up to 204 differently

Fig 5. The trade-off between NADPH expenditure in R. toruloides. Blue circles represent nitrogen assimilation and orange
circles represent lipid biosynthetic pathways of R. toruloides cultivated on glucose during exponential growth (exp) and
nitrogen limitation phase (Nlim). Circle size (blue and orange) represents the % of NADPH turnover. GDH1, glutamate
dehydrogenase (NADP+); FAS1-2, fatty acid synthase ( and ).

https://doi.org/10.1371/journal.pcbi.1011009.g005
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regulated proteins were found on other tested substrates. Low proteome allocation to TCA

cycle as compared to glycolytic metabolic pathways in the presence of glucose and xylose (Fig

2B) could possibly signal about citrate accumulation and subsequent transportation event

from mitochondria to cytoplasm developed for lipid production.

Metabolic modeling confirmed previous modeling findings obtained on PPP pathway and

ME as the main suppliers of NADPH, and XPK pathway as the primary source of acetyl-CoA

during lipid biosynthesis in R. toruloides [1,7]. We found that these are carbon source depen-

dent and to close proximity of the carbon substrate uptake. We also found that the pathways

involved in synthesis of lipid precursors were not changed during the Nlim versus exp growth

phase. To enable this analysis, we modified models’ biomass reactions to reflect the measured

lipid and protein content, based on precise physiology data of two distinct growth phases. For

further work, it would be interesting to understand if the predicted fluxes via oxPPP while cells

were growing on glucose and xylose are thermodynamically feasible.

Metabolic modeling also helped to explain R. toruloides physiological characteristics and
byproduct excretion. Changes in biomass yield during growth on glucose were associated with

increased fluxes through phosphoketolase (XPK) pathway and the TCA cycle, resulting in

more carbon entering the TCA cycle during lipid accumulation. Predicted acetate kinase activ-

ity demonstrated certain robustness towards the preference for the XPK pathway (S5 Dataset).

XPK pathway is considered an attractive option for generating cytosolic acetyl-CoA because it

is more energy and carbon efficient. It circumvents one molecule of CO2 lost per pyruvate and

two equivalents of ATP consumed compared to the PDH bypass route (PDC-ALDH and

ACS). In earlier studies using heterologous expression of XPK pathway in S. cerevisiae [38,39]
it was found that the engineered strain had an increased flux towards TCA cycle and lower

flux from the pyruvate branching point towards acetate formation. In a study by Bergman

et al. 2019, [40], it was found that the activity of XPK pathway increases acetate flux and ATP

requirement in S. cerevisiae, leading to an increased production of CO2 and negative growth

effects. Apart from the fact that there is no acetate excretion in R. toruloides, it would be inter-

esting to further understand if use of XPK pathway in lipogenesis may also explain the carbon

losses on glucose as observed in our study.

During growth on acetate, it was suggested that the byproduct formation was associated

with energy metabolism, as the predicted excreted metabolites were TCA cycle-related. Using

the metabolic models, we predicted a higher ATP turnover in acetate as compared to xylose

condition (S8 Fig), while the specific growth rates were comparable. Our simulation results

could not explain why Nlim phase, when more carbon entered the TCA cycle, was associated

with the increase in internal cycling for NADH transport, also known as malate-aspartate

NADH shuttle [41]. Stoichiometry in the oxidative phosphorylation pathway in R. toruloides
in rhto-GEM has been adopted from experimental data in S. cerevisiae and was not changed in

the present study. Moreover, rhto-GEM and ecRhtoGEM are based on R. toruloides exhibiting
not only proton-pumping complex I (t_0001), but also external NADH dehydrogenase

(r_0770) that do not pump protons. However, presence of complex I creates an electron com-

petition process, which might have consequences on the yield of oxidative phosphorylation, as

experimentally demonstrated in another Crabtree negative yeast Candida utilis [42]. As no
experimental phosphate/oxygen (P/O) ratio has been yet reported in R. toruloides, it might be

that the mitochondrial shuttling loop observed in our simulations in reality could correspond

to a higher ATP requirement.

Internal carbon cycling was suggested not only in acetate, but also in glucose and xylose

conditions. This mitochondrial shuttling loop was also noticeable from the results of earlier

modeling studies [1,7,11]. In Dihn et al. 2019, [11], it was called “NADH shuttle”, but it is yet

to be confirmed if the shuttle could be an artificial loop to feed NADH to mitochondria.
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Despite progress in understanding the physiology and genetics of R. toruloides, very little is
known about mitochondrial carrier (MC) proteins in this strain. From experimental studies in

S. cerevisiae, oxodicarboxylate (ODC) and aspartate/glutamate (AGC) carriers are important

to export AKG (in exchange of malate) for nitrogen assimilation and also for the malate-aspar-

tate NADH shuttle [43]. In support of this mechanism, our simulations on glucose-grown cells

showed that the NADH produced via glycolysis was transferred to mitochondria for electron

transport using enzymes MDH2 and ODC. Alternatively, it might point to an artifact of a dif-

ferent P/O ratio.

Metabolic models on xylose were greatly improved by the detection of chirality of D-arabi-

nitol. We presented an alternative xylose assimilation pathway, which was favored in our

model simulations over the known xylose pathway in fungi that involved D-xylulose 5-phos-

phate. Our results were consistent with recent reports in strain IFO 0880 [9], but we also

detected some differences in the pathway, which were related to the fact that we used a differ-

ent R. toruloides strain, CCT 7815. To explain byproduct formation upstream glycolysis while

cells were growing on xylose, we presented several ideas associated with the energy and lipid

metabolism. In comparison to our previous work [1], the flux of PPP could be compensated by

the amount of carbon channeled via the alternative xylose pathway.

The fact that no carbon was directed via PDH-CIT-ACL pathway might also point to lack

of alternative routes of NADPH regeneration in R. toruloides. In our results, the activity of

oxPPP was coupled to an active XPK pathway supplying the vast majority of cytosolic acetyl-

CoA during the Nlim phase. Our proteomics data showed a significant increase in the amount

of uncharacterized proteins during lipid accumulation, especially in xylose condition (Fig 2B).

Hypothetically, CO2-decoupled NADPH regeneration would reduce the fluxes through oxPPP

and XPK pathways (but not eliminate them), the flux of glycolysis would remain the same as

shown in this study, but more carbon would be channeled via IDP and ACL. It has been dem-

onstrated that GAPDH contributes to NADPH supply in filamentous fungiMortierella alpina
[44]. CO2-decoupled NADPH synthesis has been engineered in S. cerevisiae, demonstrating

significant phenotypic changes [45].

Modeling results revealed metabolic trade-offs associated with NADPH allocation between

nitrogen assimilation and lipid biosynthetic pathways. In S. cerevisiae and E. coli, a clear spe-
cific growth rate dependence of ribosomal proteins has been demonstrated [27,46,47]. In the

present study, we demonstrated a similar significant correlation for specific growth rate depen-

dent ribosomal content (Fig 2C). Moreover, we were able to demonstrate a trade-off in

NADPH demand. Although NADPH regeneration was dependent on the carbon source,

NADPH demand was shifting from protein production at higher growth rates to lipid biosyn-

thesis at lower growth rates in Nlim phase (Fig 5). Enzyme-constrained metabolic models

developed in this study used not fully matched kcat values that can notably increase the predic-

tion errors [48]. Characterizing enzymatic properties using physically based models requires

enormous experimental work, therefore accurate computational approaches are needed to

address this gap. Deep learning algorithms have demonstrated outstanding success in predict-

ing protein structures based on their sequence information [49–51], and the method has also

been applied in predicting enzyme kcat values for yeast S. cerevisiae [52].

Conclusion
In this study, enzyme-constrained genome-scale metabolic models were generated for R. toru-
loides, where metabolic modeling together with proteome data gave a detailed interpretation

of how flux patterns are changing in R. toruloides on different substrates during the exponen-

tial growth and in lipid accumulation. The results were consistent with previous knowledge on
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the main pathways involved in lipid biosynthesis in R. toruloides, revealed by genome-scale

modeling and multi-omics analyses. While detailed analysis of simulated intracellular flux pat-

terns allowed us to explain some physiological parameters during growth on glucose, many

observations require further validation. This work contributes to improving the knowledge

about R. toruloidesmetabolism.

Materials andmethods

Strain, media and growth conditions

R. toruloides CCT 7815 (Coleção de Culturas Tropicais, Fundação André Tosello, Campinas,

Brazil) from a previous study [21] was used in the cultivation experiments. The same study

identified increased lipid production, induction of hydrolysate-tolerance and lipid accumula-

tion genes without physiological changes regarding growth and substrate consumption in R.
toruloides strain CCT 7815 after a short-term adaptation in sugarcane bagasse hemicellulosic

hydrolyzate. Seed cultures were grown on chemically defined medium according to Verduyn

(3.0 g/L KH2PO4, 0.5 g/L MgSO4�7H2O, 15 mg/L EDTA, 4.5 mg/L ZnSO4�7H2O, 0.3 mg/L

CoCl2�6H2O, 1 mg/L MnCl2�4H2O, 0.3 mg/L CuSO4�5H2O, 4.5 mg/L CaCl2�2H2O, 3 mg/L

FeSO4�7H2O, 0.4 mg/L Na2MoO4�2H2O, 1 mg/L H3BO3, 0.1 mg/L KI, 0.05 mg/L biotin, 1 mg/

L calcium pantothenate, 1 mg/L nicotinic acid, 25 mg/L inositol, 1 mg/L thiamine HCl, 1 mg/

L pyridoxine HCl, 0.2 mg/L para-aminobenzoic acid [53]) supplemented with a sole carbon

source of 18.2 g/L glucose, 20 g/L xylose or 20.0 g/L acetic acid and 5 g/L (NH4)2SO4 in dupli-

cate shake flasks at 200 rpm and 30˚C for 24 h. The carbon/nitrogen (C/N) molar ratio of the

medium in seed cultures was 8.8. To obtain seed cultures, cells were pre-cultured in YPD

media, and pelleted and washed twice with 0.9% (m/v) NaCl solution before inoculation. Seed

cultures were used to inoculate 900 mL of chemically defined medium supplemented with

either 63.6 g/L glucose and 0.9 g/L urea, or 70 g/L xylose and 2 g/L (NH4)2SO4 or 20.0 g/L ace-

tic acid and 0.6 g/L (NH4)2SO4, and 0.1 mL/L antifoam 204 (Sigma-Aldrich, St. Louis, MO,

United States) in duplicate bioreactors with a starting OD600 of 0.4 at 400–600 rpm, 30˚C, pH

6.0. At the start of cultivation, the (C/N) molar ratio of the media in bioreactors was set to 69

(glucose/urea) and 80 (xylose- or acetate/(NH4)2SO4). Note, that xylose condition was carried

out in Pinheiro et al. 2020, [1].

Cells were grown in 1-L bioreactors (Applikon Biotechnology, Delft, the Netherlands) in a

batch cultivation regime. pH was controlled by the addition of 2 mol/L KOH. Dissolved oxy-

gen was maintained not lower than 25% at 1-vvm airflow by regulating the stirring speed. CO2

and O2 outflow gas composition were measured using an online gas analyzer (BlueSens gas

sensor GmbH, Herten, Germany). Cell turbidity was monitored on-line using Bug Lab

BE3000 Biomass Monitor (Bug Lab, Concord, CA, United States) at 1300 nm and off-line

using UV/Vis spectrophotometer at 600 nm (U-1800, Hitachi High-Tech Science, Tokyo,

Japan). Data collection and processing was performed with BioXpert V2 software v2.95

(Applikon Biotechnology, Delft, the Netherlands).

For dry cell weight measurement, samples were collected every 6 hours during the exponen-

tial growth phase and every 24 hours during the nitrogen limitation phase. For other analyses,

samples were collected every 3 hours during the exponential growth phase and every 24 or 48

hours during the nitrogen limitation phase.

For extracellular metabolites, lipidomics and protein content analyses, samples were taken

from bioreactors to 2-mL tubes, centrifuged for 30 s at 4˚C and 18000×g. The supernatant was
stored at -20˚C for extracellular metabolite analyses. Cell pellets were snap-frozen in liquid

nitrogen and stored at -80˚C for further analyses.
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Analytical methods

For dry cell weight (DCW) measurement, culture samples were taken from bioreactors to

2-mL tubes, passed through a 0.3 μm filter, dried and analyzed by gravimetric method. Bio-

mass optical density data were calibrated by gravimetric cell mass measurements. For extracel-

lular metabolites measurements, high-performance liquid chromatography (HPLC)

separations were performed with Shimadzu instruments (LC-2030C Plus, Shimadzu, Kyoto,

Japan) equipped with a refractive index detector (RID-20A, Shimadzu, Kyoto, Japan). Glucose,

xylose, organic acids and glycerol concentrations were measured using a Rezex ROA Organic

Acid column (Phenomenex, Torrance, United States). Separations were performed at 45˚C

and the mobile phase for isocratic elution was 5 mmol/L H2SO4. The flow rate was 0.6 mL/

min. Stereoselective HPLC analysis of arabinitol isomers was done using a Chiralpak column

(Daicel Technologies, Japan) and the mobile phase for isocratic elution was a mixture of hex-

ane and ethanol (70:30, v/v) at 20˚C; the flow was 0.3 mL/min. Chiralpak column of arabinitol

standards gave different retention times for each enantiomer (D and L) (S18 Fig). Yields and

specific consumption and production rates represent exp and Nlim phases separately, not

cumulatively.

For intracellular total protein quantification, cell pellets were thawed on ice and resus-

pended in 0.9% (m/v) NaCl solution to a concentration of 1 g/L. Then 600 μg of biomass was

mixed with a commercially available protein extraction solution (Y-PER, Thermo Fisher) in a

2-mL tube and incubated at 30˚C for 45 minutes. After incubation, samples were transferred

to screw cap 2-mL tubes with glass beads. Cell lysis was performed using a FastPrep-24 device

for 4 cycles (4 m/s for 20 s) with a 5 min interval after each cycle. After cell lysis, the tubes were

centrifuged at 14800 rpm for 10 min at 4˚C. Supernatant was collected to a new 2-mL tube and

the leftover biomass sample was subjected to a repeated extraction cycle (without 45 min incu-

bation interval) until no proteome was detected in supernatant. Before quantification, all frac-

tions of supernatant were combined. Proteome was quantified using a commercially available

colorimetric assay kit (Micro BCA Protein Assay Kit, Thermo Fisher Scientific, Waltham, MA,

United States). Protein concentration was determined using the calibration curve of bovine

serum albumin (BSA) standard of linear range dilutions from 0.5 to 200 μg/mL. Assay was per-

formed in triplicate for each sample. Samples chosen for analysis corresponded to 17 and 57 h

in glucose, 48 and 72 h in xylose, and 26 and 44 h in acetate. Assay results represent cumulative

proteome during each growth phase of yeast.

Lipidomics

To quantify lipids and determine their fatty acid composition, quantitative gas chromatogra-

phy–mass spectrometry (GC-MS) analysis with the internal standard method was used, similar

as described in Tammekivi et al. 2019, [54]. Before analysis, cell pellets were lyophilized and

derivatized by using acid-catalyzed methylation. This derivatization procedure produces meth-

ylated fatty acids from both free and bonded fatty acids. The quantitative analysis and derivati-

zation procedure of the TAGs and free fatty acids was based on Tammekivi et al. 2021, [55].

From the lyophilized cells, 10–12 mg of was weighed into a 15 mL glass vial. An analytical bal-

ance (Precisa, Dietikon, Switzerland, resolution of 0.01 mg) was used to weigh all components

that influence the quantitative analysis (samples, solvents, internal standard). To the cells, 2

mL of MeOH (�99.9%, Honeywell, Charlotte, NC, USA) was added and the vial was sonicated

for 15 min. Then, 0.4 mL of conc. H2SO4 (98%, VWR Chemicals, Radnor, PA, USA) was care-

fully added to the solution and the derivatization mixture was heated for 3 h at 80˚C. After, the

mixture was extracted 3 x 2 mL with hexane (�97.0%, Honeywell) and the extracts were

pipetted through a layer of K2CO3 (99.5%, Reakhim) on top of a glass wool (Supelco,
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Bellefonte, PA, United States) layer. The combined extracts were evaporated to dryness and

the residue was redissolved in 2 mL of toluene (�99.9%, Honeywell). Depending on the

expected fatty acid concentration, toluene and internal standard (hexadecane,�99%, Honey-

well) were added so that the results would stay in the range of the calibration curve.

The solutions containing the fatty acid methyl esters and internal standard were analyzed

with an Agilent (Santa Clara, CA, USA) 7890A GC connected to an Agilent 5975C inert XL

mass spectrometric detector (MSD) with a triple-axis detector and an Agilent G4513A auto-

sampler. The column was an Agilent DB-225MS capillary column (30 m x 0.25 mm diameter,

0.25 μm film thickness) with a (50%-cyanopropylphenyl)-methylpolysiloxane stationary

phase. The temperatures of the mass spectrometer transfer line and ion source were 280˚C and

230˚C, respectively. The temperature of the inlet was 300˚C, injection volume 0.5 μL, and split-
less mode was used, where the split was opened after 2 min. The oven’s temperature program

was the following: isothermal for 2 min at 80˚C, increased 20˚C/min to 200˚C, isothermal for

4 min, increased 5˚C/min to 220˚C, isothermal for 5 min, increased 10˚C/min to 230˚C, iso-

thermal for 12 min. The total run time was 34 min. Electron ionization (EI) with 70 eV was

used and the solvent delay was 5.6 min. Helium 6.0 was used as the carrier gas (flow rate 1.5

mL/min). Qualitative analysis was performed in the scan mode (mass range of 27–400m/z)
and quantitative analysis was performed in the selected ion monitoring (SIM) mode, which

were both measured during the same GC-MS run. For data analysis, Agilent MSD ChemSta-

tion and NIST Mass Spectral Library Search 2.0 were used.

Commercial standard mixture of fatty acid methyl esters (FAME, C8–C24, Supelco) was

used to confirm the identity (based on retention times, in addition to the mass spectral com-

parison) and to quantify the fatty acids. Seven calibration solutions were made from the

FAMEmixture in toluene and the same internal standard (hexadecane) was added. All calibra-

tion solutions were measured in random order in the same GC-MS sequence with the deriva-

tized sample solutions. For each methylated fatty acid, a calibration curve was constructed

based on the data obtained from the GC-MS analysis of the calibration solutions–SAD/SIS vs.

CAD/CIS−where S represents the peak area, C the concentration, AD the derivatized fatty acid,

and IS the internal standard. Knowing the SAD/SIS and CIS for the sample solution, if was possi-

ble the calculate the derivatized fatty acid concentration (CAD). Finally, the obtained value was

recalculated to represent the concentrations of particular fatty acids or homotriglycerides. Also

the derivatization efficiency (for more information see Tammekivi et al. 2019, [51]) was taken

into account by applying the same derivatization procedure and quantitative analysis for the

analysis of five fatty acid standards (C16:0, C18:0, C18:1, C18:2 and C18:3) and their corre-

sponding TAG standards. The obtained yield (% from the weighed quantity of the correspond-

ing standard) was used to correct the result of the sample analysis. The sum of the quantified

TAGs was presented as the total lipid content. Samples chosen for analysis corresponded to 24,

52 and 100 h in glucose, 48 and 96 h in xylose, and 39 and 84 h in acetate. Analysis results rep-

resent cumulative lipidome during each growth phase of the yeast.

Experimental procedure for absolute proteomics

Absolute proteome quantification was performed using a nanoscale liquid chromatography

with tandem mass spectrometry (Nano-LC/MS/MS), similar as described in Sanchez et al.

2021, [26]. Experimental procedure for cell lysis and sample preparation was done as described

in the same study. Briefly, cell pellets were lysed using a pH 8.0 buffer (6 M guanidine HCl,

100 mM Tris-HCl, 20 mM dithiothreitol) and homogenized using the FastPrep-24 device (2x

at 4 m/s for 30 s). After centrifugation and overnight precipitation (10% trichloroacetic acid, at

4˚C), protein concentration was measured as described above in the total protein content
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section. For absolute quantification, proteome samples were mixed heavy-labeled R. toruloides
grown in previously described minimal medium supplemented with heavy 15N, 13C-lysine

(Silantes, Munich, Germany), which was used as an internal standard [1]. Further sample

preparation and Nano-LC/MS/MS analysis was similar to previous descriptions [26]. Samples

chosen for analysis corresponded to 17 and 57 h in glucose, 48 and 72 h in xylose, and 26 and

44 h in acetate, same as in the total proteome analysis.

Proteomics data analysis

The raw data obtained from the Nano-LC/MS/MS analysis was processed using MaxQuant

v1.6.1.0 software package [56] with similar settings as described in Sanchez et al. 2021, [26].

Data search was performed against the Uniprot (www.uniprot.org) R. toruloidesNP11 refer-
ence proteome database [10]. Raw data quantification was similar to previous descriptions,

except that the MS intensities were normalized with the average internal standard abundance

(reverse Ratio H/L normalized). MS intensities were calculated from the internal standard

abundance using the number of theoretically observable peptides (iBAQ, intensity Based

Absolute Quantification; iBAQ H) feature in MaxQuant, the reverse Ratio H/L normalized of

the sample, and reverse Ratio H/L. The resulting MS intensities were adjusted for 80% recov-

ery of the sample injected. Finally, absolute protein concentrations were derived from the nor-

malized sum of MS intensities assuming its proportionality to the measured total protein

content, also known as the total protein approach [26].

LC-MS/MS data have been deposited to the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) via the PRIDE partner repository [57] with the dataset

identifier PXD037281. Processed quantitative data are presented in S1 Dataset. Duplicate

experiments were used in differential expression analysis. p-values were adjusted for multiple

comparisons using Benjamini-Hochberg (1995) method [58].

Enzyme-constrained model reconstruction

Enzyme-constrained genome-scale metabolic model of R. toruloides was generated using the

metabolic network rhto-GEM version 1.3.0 [15]. The workflow was based on a semi-automatic

algorithm of the GECKO toolbox version 2.0.2 [17] operating on MATLAB (The MathWorks

Inc., Natick, MA, United States). Model development was tracked on a dedicated Github

repository: https://github.com/alinarekena/ecRhtoGEM/.

Firstly, functions addMets, addGenesRaven and addRxns from RAVEN [59] were used to

add the alternative xylose assimilation pathway to rhto-GEM, as provided in ecRhtoGEM/

edit_rhtoGEM. Next, pipelines enhanceGEM and generate_protModels from the GECKO

Toolbox were used to generate ec-models, as provided in ecRhtoGEM/

reconstruct_ecRhtoGEM.

During the enhanceGEM pipeline, enzyme kinetic parameters were relaxed to overcome

model over constraint using themanualModifications function from the GECKO Toolbox.

The enzymes subject to manual kcat value curation were identified by running enhanceGEM
pipeline initially with the physiology data of the xylose condition, as provided in ecRhtoGEM/

customGECKO/getModelParameters. The relative_proteomics.txt and uniprot.tab input data
were used to match enzymes with the model and retrieve their kcat values from the BRENDA

database. The data for uniprot.tab were downloaded from Uniprot.org with R. toruloides strain
NP11 as query, while relative_proteomics.txt contained average protein abundances of

enzymes detected in our proteomics analysis (in mmol/gDCW). The getModelParameters
function was used to ensure that the newly generated ec-model was constrained with experi-

mental data. The GECKO Toolbox automatically performed the initial sensitivity analysis on
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the objective function (ie. maximize cell growth) with respect to the individual kcat values by

identifying the top limiting value and by iteratively replacing it with the maximum value avail-

able in BRENDA. According to the reported information, we adjusted kcat values identified as

limiting to reasonably higher values found in literature (for a detailed description see ecRhto-

GEM/manualModifications). In the next step, we used the topUsedEnzymes function from

GECKO Toolbox to calculate the top ten enzyme usages in a mass-wise way (data not pro-

vided). Similarly as in the previous step, kcat values of enzymes identified among top used in

each condition were increased to reasonably higher values referenced in the literature. In the

script the procedure was named round A. Later, in so called round B, the topUsedEnzymes
function was applied to the same conditions again and kcat values were modified until enzyme

usage represented less than 1% of total protein pool, as provided in ecRhtoGEM/manualModi-
fications. The final list of modified kcat values included 27 enzymes, as summarized in S6

Table. As automatic kcat values were derived from studies that involved not the same organism

and substrate, their values were often very low. For example, the kcat value of fructose-bispho-

sphatase was increased from 0.002 s-1 to 127 s-1, on the basis of specific enzyme activity for the

same EC number.

During the generate_protModels pipeline, growth- and non-growth-associated energy

requirements were fit using measured substrate uptake and gas rates from batch cultivations of

R. toruloides obtained in this study, as provided in ecRhtoGEM/customGECKO/fermentation-

Data. They were set from 124.4 to 140.0 mmol/gDCW and from 0 to 3.65 mmol/(gDCW/h).

Coefficients in oxidative phosphorylation from rhto-GEM were not changed. Polymerization

costs from the study in S. cerevisiae [60] were used, similarly as in rhto-GEM. Average enzyme

saturation factor (sigma) was fit to physiological parameters (ecRhtoGEM/results/enhance-

GEM_pipeline/sigma), and set at 0.35 in ecRhtoGEM/customGECKO/getModelParameters.

Biomass composition was modified from rhto-GEM to include R. toruloides CCT 7815 protein

content, lipid content and acyl chain profiles, as provided in ecRhtoGEM/customGECKO and

ecRhtoGEM/data, respectively. The scaleLipidProtein and scaleLipidsRhto functions from
GECKO Toolbox and SLIMEr [61] were modified for the generate_protModels pipeline. To
avoid the model to over constrain, automatic flexibilization was performed on concentrations

of 7 (XNlim) to 25 (Gexp) enzymes, as listed in S6 Table (the old and new values are available

at ecRhtoGEM/results/generate_prot_Models_pipeline/modifiedEnzymes.txt). An alternative

approach to calculate the abundance of those enzymes for which no enzyme level had been

measured was used as additional modification in addition to previously described modifica-

tions in the pipeline to handle the ow protein levels observed in Nlim conditions. In this

approach, we directly subtracted the measured enzyme concentration (Pmeasured) from the

total enzyme concentration (enzymeConc) to obtain the unmeasured enzyme concentration

(PpoolMass). Modifications to original approach, by which GECKO adjusts for the unmea-

sured enzyme concentration, are available from generate_protModels and constrainEnzymes
functions at ‘customGECKO’ folder. These included sample specific f-factor calculation was

moved before filtering proteomics data (generate_protModels). This ensured higher coverage,
while not largely affecting f calculation. Total protein content (Ptot) calculation was rescaled

by adding standard deviation and flexibilization because of too low measurement. Then f,

which was calculated in the beginning of generate_protModels, and rescaled updated Ptot were

used to calculate expected total enzyme concentration (enzymeConc), as provided in constrai-
nEnzymes. This ensured higher coverage, likely critical in low total protein content biomass

(in case of all Nlim phases). Other updates included rescaling of enzyme usage to prevent very

low fluxes, as provided in generate_protModels.
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Model calculations

Flux balance analysis was performed with the RAVEN toolbox using Gurobi solver (Gurobi

Optimization Inc., Houston, Texas, United States). Flux variability was estimated with random

sampling of the solution space with 2000 sampling iterations for each condition (ie., ec-

model). For each sample, a random set of three reactions was given random weights and the

sum of these were parsimoniously maximized to explore the constraint solution space [32],

considering 1% variability frommaximal growth rate and substrate uptake rate, 10% variability

from predicted carbon dioxide production and oxygen consumption rate, 10% variability

from measured by-product rates, 10% variability from protein pool, and 1% variability from

NGAM, as specified in analyze_ecRhtoGEM. In glucose condition, simulated values were used

to constrain gas exchange (carbon dioxide and oxygen) due to measurement problems in

experimental values. In xylose condition, measured values were used to constrain the produc-

tion of by-products xylitol and D-arabinitol. To allow the model to use either traditional or

alternative xylose assimilation pathway, xylulokinase (XK) was not blocked, but eventually

constrained with enzyme constraints from the protein pool. In acetate condition, measured

values were used to constrain the production of citrate. Flux value was calculated as a median

of 2000 sampling iterations. Flux variability was represented as SD divided by flux, multiplied

by 100. Finally, fluxes were converted to base GEM formalism usingmapRxnsToOriginal func-
tion from Domenzain et al. 2022 [30]. For the analysis, fluxes were normalized by dividing

absolute flux with the specific substrate uptake rate to ensure the comparability among differ-

ent conditions. Additional data analysis was performed on ATP, NADPH and NADH turn-

over extracted using the getMetProduction function from [7]. Yield was calculated as turnover

(sum of fluxes) divided by the specific rate of substrate uptake. Apparent catalytic activities

(kapp, s
-1) were calculated according to Eq (2).

kapp ¼
flux
E

ð2Þ

Where flux refers to median flux, mmol/gDCW/h, obtained from 2000 iterations of random

sampling of the solution space [32] and E refers to mean protein concentration (n = 2), mmol/

gDCW.

Supporting information
S1 Table. Physiological characterization parameters in R. toruloides CCT 7815 batch culti-

vations on three different carbon substrates—glucose (G) (63 g/L, C/N 68.6), xylose (X)

(70g/L, C/N 80) and acetate (A) (20 g/L, C/N 80) at exponential growth (exp) and nitrogen

limitation (Nlim) phases.

(XLSX)

S2 Table. Gene and metabolite names of R. toruloides selected for annotation in Figs 2–4 in

main text.

(XLSX)

S3 Table. Using absolute proteomic data to calculate translation rate in R. toruloides batch
cultivations on three different carbon substrates–glucose (G), xylose (X) and acetate (A)—

during exponential growth (exp) and nitrogen limitation (Nlim) phases.

(XLSX)

S4 Table. Proteins whose concentration and the kcat value were integrated in the enzyme-

constrained models of R. toruloides representing batch cultivations on three different car-

bon substrates–glucose (G), xylose (X) and acetate (A)—during exponential growth (exp)
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and nitrogen limitation (Nlim) phases. Proteins required EC numbers to allow the algorithm

to query their kcat values, therefore the existing and new EC numbers were provided to the

input file (uniprot.tab) for the GECKO algorithm (columns J-K). In case of multiple EC num-

bers found for the same gene in rhto-GEM, EC numbers were combined. For further details

on how the algorithm selected the kcat values based on their EC numbers, see [17].

(XLSX)

S5 Table. Enzymatic reactions constrained with enzyme abundances in enzyme-con-

strained genome-scale models of R. toruloides for batch cultivations on three different car-

bon substrates–glucose (G), xylose (X) and acetate (A)—during exponential growth (exp)

and nitrogen limitation (Nlim) phases.

(XLSX)

S6 Table. Enzymes with flexibilized concentrations and/or their kcat values for the enzyme-

constrained genome-scale metabolic models of R. toruloides for batch cultivations on three

different carbon substrates–glucose (G), xylose (X) and acetate (A)—during exponential

growth (exp) and nitrogen limitation (Nlim) phases. Flexibilization of the measured enzyme

abundances was performed automatically by the algorithm in the GECKO Toolbox. Flexibili-

zation of kcat values was performed manually by changing the kcat values retrieved automati-

cally from BRENDA, based on suggestions by the algorithm. Detailed information on

flexibilized protein concentrations at ecRhtoGEM repository /results/generate_protModel-

s_pipeline. Detailed information on modified kcat values at ecRhtoGEM repository /custom-

GECKO/manualModifications.

(XLSX)

S1 Dataset. MS intensities (arbitrary unit) and absolute protein concentrations (μg/g_pro-
tein) in R. toruloides batch cultivations on three different carbon substrates–glucose (G),

xylose (X) and acetate (A)–during exponential growth (exp) and nitrogen limitation

(Nlim) phases. Absolute concentrations are calculated using total protein amount (TPA)

quantification method of duplicate conditions. Normalization refers to 80% recovery of the

sample injected applied to the sum of intensities.

(XLSX)

S2 Dataset. Absolute protein abundances (μg/g_protein) in R. toruloides batch cultivations

on three different carbon substrates–glucose (G), xylose (X) and acetate (A)–during expo-

nential growth (exp) and nitrogen limitation (Nlim) phases. Concentrations are calculated

using total protein amount (TPA) quantification method. Pairs having adjusted p-value< 0.05

and log2 fold change (log2FC)> |1| of average of duplicate conditions were considered signifi-

cantly differentially expressed. P value was adjusted for multiple comparisons (n = 3100) using

Benjamini & Hochberg method [58]. Protein abundances were filtered by excluding instances,

where standard deviation exceeds mean value of two replicates. Normalization refers to 80%

recovery of the sample injected applied to the sum of intensities.

(XLSX)

S3 Dataset. Enzyme turnover numbers (kcat, s
-1) and apparent catalytic activities (kapp, s

-1)

of R. toruloides in batch cultivations on three different carbon sources–glucose (G), xylose

(X) and acetate (A)—during exponential growth (exp) and nitrogen limitation (Nlim)

phases. kcat values were retrieved from BRENDA using the GECKO Toolbox [17]. kapp values

were obtained by dividing flux, mmol/gDCW/h, by protein abundance, mmol/gDCW. Flux

refers to median from 2000 iterations of random sampling of the solution space [32].
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Normalization of protein abundance refers to 80% recovery of sample injected.

(XLSX)

S4 Dataset. Flux predictions in R. toruloides batch cultivations on three different carbon

substrates–glucose (G), xylose (X) and acetate (A) at exponential growth (exp) and nitro-

gen limitation (Nlim) phases. Fluxes are calculated using random sampling of the solution

space with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-

scale models. Fluxes represent median values and are normalized by dividing flux with specific

substrate uptake rate (representing % of carbon distribution). Fluxes are represented in non-ec

model (base GEM) annotation by merging forward and reverse fluxes created by the GECKO

formalism. Flux variability is SD divided by the flux value, multiplied by 100. Flux changes

were compared using log2 fold change (log2FC).

(XLSX)

S5 Dataset. Flux predictions with acetate kinase added (t_0886) (phosphate transacetylase

removed, t_0082) in R. toruloides batch cultivations on three different carbon substrates–

glucose (G), xylose (X) and acetate (A) at exponential growth (exp) and nitrogen limitation

(Nlim) phases. Fluxes are calculated using random sampling of the solution space with 2000

iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes

represent median values and are normalized by dividing flux with specific substrate uptake

rate (representing % of carbon distribution). Fluxes are represented in non-ec model (base

GEM) annotation by merging forward and reverse fluxes created by the GECKO formalism.

Flux variability refers to SD divided by the flux value, multiplied by 100.

(XLSX)

S6 Dataset. Flux predictions with blocked phosphoketolase (t_0081) in R. toruloides batch
cultivations on three different carbon substrates–glucose (G), xylose (X) and acetate (A) at

exponential growth (exp) and nitrogen limitation (Nlim) phases. Fluxes are calculated

using random sampling of the solution space with 2000 iterations (mmol/gDCW/h) on R. tor-
uloides enzyme-constrained genome-scale models. Fluxes represent median values and are

normalized by dividing flux with specific substrate uptake rate (representing % of carbon dis-

tribution). Fluxes are represented in non-ec model (base GEM) annotation by merging for-

ward and reverse fluxes created by the GECKO formalism. Flux variability refers to SD divided

by the flux value, multiplied by 100.

(XLSX)

S7 Dataset. Flux predictions with NAD/NADH as cofactor for DAD-2/LXR (t_0884) in R.
toruloides batch cultivations on xylose- (X) based chemically defined medium at exponen-

tial growth (exp) and nitrogen limitation (Nlim) phases. Fluxes are calculated using random

sampling of the solution space with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-

constrained genome-scale models. Fluxes represent median values and are normalized by

dividing flux with specific substrate uptake rate (representing % of carbon distribution). Fluxes

are represented in non-ec model (base GEM) annotation by merging forward and reverse

fluxes created by the GECKO formalism. Flux variability refers to SD divided by the flux value,

multiplied by 100.

(XLSX)

S1 Fig. Growth curves of batch cultivation of R. toruloides CCT 7815 on three different car-

bon substrates at nitrogen limitation. (A) glucose (63 g/L, C/N 68.6), (B) xylose (70g/L, C/N

80) and (C) acetate (20 g/L, C/N 80). Arrows in red are used to denote sampling points for pro-

teomics and protein content measurements. Average of duplicate experiments with SD in
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extracellular metabolites concentration (g/L) and intracellular lipid content (g_lipid/gDCW) is

illustrated. Curves represent a single measurement in bioreactor 2 (R2) in CO2 (%), specific

growth rate μ (h-1) and biomass concentration (g/L), while for the rate calculations used for

modelling duplicate conditions were used.

(TIF)

S2 Fig. D-arabinitol detection in supernatant obtained from R. toruloides batch cultiva-

tions in xylose-based chemically defined medium (70 g/L). Figures represent HPLC profiles

of D-arabinitol during nitrogen limitation phase on xylose (XNlim) performed at 20˚C. Col-

umn: Chiralpak; eluent: hexane-ethanol (70,30, v/v). Flow rate 0.3 mL/min; detection: refrac-

tive index.

(TIF)

S3 Fig. Venn diagrams of significantly differentially expressed proteins in R. toruloides
during batch cultivations on three different carbon substrates–glucose (63 g/L), xylose (70

g/L) and acetate (20 g/L)–under nitrogen limitation conditions. (A) Comparison between

exponential growth (exp) and nitrogen limitation (Nlim) phase. (B) Comparison among sub-

strates during exp phase. Comparison was made using μg/g of total protein. Pairs having
adjusted p-value< 0.05 and log2 fold change> |1| were considered significantly differentially

expressed. P value was adjusted for multiple comparisons (n = 3100) according to Benjamini

& Hochberg (1995).

(TIF)

S4 Fig. Proteome integration into enzyme-constrained models for R. toruloides in batch

cultivations on three different carbon substrates–glucose (G), xylose (X) and acetate (A)—

during exponential growth (exp) and nitrogen limitation (Nlim) phases. (A) Protein count

as searched against the reference proteome database of R. toruloides strain NP11. (B) Mass-

wise coverage of proteome in models (g_protein/g_DCW).

(TIF)

S5 Fig. Apparent enzyme catalytic activities, kapp, 1/s, of R. toruloides in batch cultivations

on three different carbon sources–glucose (G), xylose (X) and acetate (A)—during expo-

nential growth (exp) and nitrogen limitation (Nlim) phases. kapp calculated using fluxes

from flux balance analysis on enzyme-constrained models of R. toruloides and measured

enzyme absolute abundances. Frequency of kapp values represented in log10 scale.

(TIF)

S6 Fig. Flux predictions in R. toruloides batch cultivations on three different carbon sub-

strates–glucose (G), xylose (X) and acetate (A) at exponential growth (exp) and nitrogen

limitation (Nlim) phases. Fluxes are calculated using random sampling of the solution space

with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale

models. Fluxes represent median values and are normalized by dividing flux with specific sub-

strate uptake rate (representing % of carbon distribution). PPP: pentose phosphate pathway;

TCA cycle: tricarboxylic acid cycle. Gene names and corresponding metabolic reaction IDs are

included in S2 Table.

(TIF)

S7 Fig. Fluxes carrying NADPH in R. toruloides on glucose- (G) based chemically defined

medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/

gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-

tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes

represent median values from flux sampling. Negative fluxes denote metabolite consumption,
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positive fluxes denote metabolite production. Percentage (%) denotes the flux divided by

NADPH turnover (sum of absolute fluxes involving NADPH). Gene names and correspond-

ing metabolic reaction IDs are included in S2 Table.

(TIF)

S8 Fig. Predicted ATP turnover (mmol/gDCW/h) (A) and ATP yield (mmol_ATP/

mmol_substrate) (B) in R. toruloides on three different carbon substrates–glucose (G),

xylose (X) and acetate (A)–in a chemically defined medium at exponential growth (exp)

and nitrogen limitation (Nlim) phases. ATP turnover is calculated as a sum of fluxes involv-

ing ATP. ATP yield is calculated as turnover divided by specific rate of substrate uptake. Fluxes

are predicted using random sampling of the solution space with 2000 iterations (mmol/

gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Median flux values are

used in calculations.

(TIF)

S9 Fig. Predicted NADH turnover (mmol/gDCW/h) (A) and NADH yield (mmol_NADH/

mmol_substrate) (B) in R. toruloides on three different carbon substrates—glucose (G),

xylose (X) and acetate (A)–in a chemically defined medium at exponential growth (exp)

and nitrogen limitation (Nlim) phases.NADH turnover is calculated as sum of absolute

fluxes involving NADH. NADH yield is calculated as turnover divided by specific rate of sub-

strate uptake. Fluxes are predicted using random sampling of the solution space with 2000 iter-

ations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Median

flux values are used in calculations.

(TIF)

S10 Fig. Average absolute enzyme abundances (μg/g_protein) in R. toruloides batch culti-

vations on three different carbon substrates–glucose (G), xylose (X) and acetate (A)–dur-

ing exponential growth (exp) and nitrogen limitation (Nlim) phases. Absolute enzyme

concentrations are calculated using total protein amount (TPA) quantification method.

Results of duplicate experiments with SD are represented. PPP: pentose phosphate pathway;

TCA cycle: tricarboxylic acid cycle. Full names of gene abbreviations are included in S2 Table.

(TIF)

S11 Fig. Apparent enzyme catalytic activities, kapp, s
-1, of R. toruloides in batch cultivations

on three different carbon sources–glucose (G), xylose (X) and acetate (A)—during expo-

nential growth (exp) and nitrogen limitation (Nlim) phases. kapp calculated using fluxes

from flux balance analysis on enzyme-constrained genome-scale models of R. toruloides and
measured enzyme absolute abundances. PPP: pentose phosphate pathway; TCA cycle: tricar-

boxylic acid cycle. Full names of gene abbreviations are included in S2 Table.

(TIF)

S12 Fig. Fluxes carrying NADPH in R. toruloides on xylose- (X) based chemically defined

medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/

gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-

tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes

represent median values from flux sampling. DAD-2/LXR is considered NADP-dependent.

Negative fluxes denote metabolite consumption, positive fluxes denote metabolite production.

Gene names and corresponding metabolic reaction IDs are included in S2 Table.

(TIF)

S13 Fig. Predicted NADPH turnover (mmol/gDCW/h) (A) and NADPH yield (mmol_-

NADPH/mmol_substrate) (B) in R. toruloides on three different carbon substrates—
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glucose (G), xylose (X) and acetate (A)–in a chemically defined medium at exponential

growth (exp) and nitrogen limitation (Nlim) phases.NADPH turnover is calculated as sum

of absolute fluxes involving NADPH. NADPH yield is calculated as turnover divided by spe-

cific rate of substrate uptake. Fluxes are predicted using random sampling of the solution

space with 2000 iterations (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-

scale models. Median flux values are used in calculations.

(TIF)

S14 Fig. Fluxes carrying NADH in R. toruloides on xylose- (X) based chemically defined

medium at exponential (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/gDCW/

h). Fluxes are calculated using random sampling of the solution space with 2000 iterations

(mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes represent

median values from flux sampling. DAD-2/LXR is considered NADP-dependent. Negative

flux denotes metabolite consumption, positive flux denotes metabolite production. Letters [m]

and [c] denote compartments of cytoplasm and mitochondria. Gene names and correspond-

ing metabolic reaction IDs are included in S2 Table.

(TIF)

S15 Fig. Fluxes carrying ATP in R. toruloides on acetate-(A) based chemically-defined

medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phases (mmol/

gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-

tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes

represent median values from flux sampling. Negative flux denotes metabolite consumption,

positive flux denotes metabolite production. Letters [m] and [c] denote compartments of cyto-

plasm and mitochondria. Gene names and corresponding metabolic reaction IDs are included

in S2 Table.

(TIF)

S16 Fig. Fluxes carrying NADH in R. toruloides on acetate- (A) based chemically defined

medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/

gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-

tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes

represent median values from flux sampling. Negative flux denotes metabolite consumption,

positive flux denotes metabolite production. Letters [m] and [c] denote compartments of cyto-

plasm and mitochondria. Gene names and corresponding metabolic reaction IDs are included

in S2 Table.

(TIF)

S17 Fig. Fluxes carrying NADPH in R. toruloides on acetate- (A) based chemically defined

medium at exponential growth (exp) (A) and nitrogen limitation (Nlim) (B) phase (mmol/

gDCW/h). Fluxes are calculated using random sampling of the solution space with 2000 itera-

tions (mmol/gDCW/h) on R. toruloides enzyme-constrained genome-scale models. Fluxes

represent median values from flux sampling. Negative flux denotes metabolite consumption,

positive flux denotes metabolite production. Gene names and corresponding metabolic reac-

tion IDs are included in S2 Table.

(TIF)

S18 Fig. D-arabinitol enantiomer detection using HPLC analysis. Figure represents reten-

tion times for arabinitol separation in Chiralpak column, at 20˚C, hexane-ethanol (70:30, v/v)

mixture.

(TIF)
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Writing – review & editing: Alīna Reķēna, Marina J. Pinheiro, Nemailla Bonturi, Isma

Belouah, Eliise Tammekivi, Koit Herodes, Eduard J. Kerkhoven, Petri-Jaan Lahtvee.

References
1. Pinheiro MJ, Bonturi N, Belouah I, Miranda EA, Lahtvee P-J. Xylose Metabolism and the Effect of Oxi-

dative Stress on Lipid and Carotenoid Production in Rhodotorula toruloides: Insights for Future Biorefin-
ery. Front Bioeng Biotechnol. 2020; 8: 1008. https://doi.org/10.3389/fbioe.2020.01008 PMID:
32974324

2. Lopes HJS, Bonturi N, Miranda EA. Rhodotorula toruloides Single Cell Oil Production Using Eucalyptus
urograndis Hemicellulose Hydrolysate as a Carbon Source. Energies. 2020; 13: 795. https://doi.org/10.
3390/en13040795

3. Jagtap SS, Deewan A, Liu J-J, Walukiewicz HE, Yun EJ, Jin Y-S, et al. Integrating transcriptomic and
metabolomic analysis of the oleaginous yeast Rhodosporidium toruloides IFO0880 during growth under
different carbon sources. Appl Microbiol Biotechnol. 2021; 105: 7411–7425. https://doi.org/10.1007/
s00253-021-11549-8 PMID: 34491401

4. Chmielarz M, Blomqvist J, Sampels S, SandgrenM, Passoth V. Microbial lipid production from crude
glycerol and hemicellulosic hydrolysate with oleaginous yeasts. Biotechnol Biofuels. 2021; 14: 65.
https://doi.org/10.1186/s13068-021-01916-y PMID: 33712047

5. Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee P-J. Screening and Growth Characterization of
Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol. 2021; 9: 659472.
https://doi.org/10.3389/fbioe.2021.659472 PMID: 33996782

6. Brandenburg J, Blomqvist J, Shapaval V, Kohler A, Sampels S, SandgrenM, et al. Oleaginous yeasts
respond differently to carbon sources present in lignocellulose hydrolysate. Biotechnol Biofuels. 2021;
14: 124. https://doi.org/10.1186/s13068-021-01974-2 PMID: 34051838

7. Lopes HJS, Bonturi N, Kerkhoven EJ, Miranda EA, Lahtvee P-J. C/N ratio and carbon source-depen-
dent lipid production profiling in Rhodotorula toruloides. Appl Microbiol Biotechnol. 2020; 104: 2639–
2649. https://doi.org/10.1007/s00253-020-10386-5 PMID: 31980919

8. Tiukova IA, Brandenburg J, Blomqvist J, Sampels S, Mikkelsen N, Skaugen M, et al. Proteome analysis
of xylose metabolism in Rhodotorula toruloides during lipid production. Biotechnol Biofuels. 2019; 12:
137. https://doi.org/10.1186/s13068-019-1478-8 PMID: 31171938

9. Kim J, Coradetti ST, Kim Y-M, Gao Y, Yaegashi J, Zucker JD, et al. Multi-Omics Driven Metabolic Net-
work Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides.
Front Bioeng Biotechnol. 2021; 8: 612832. https://doi.org/10.3389/fbioe.2020.612832 PMID: 33585414

PLOS COMPUTATIONAL BIOLOGY Enzyme constrained GEMs forR. toruloides

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1011009 April 26, 2023 29 / 32



10. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, et al. A multi-omic map of the lipid-producing yeast Rho-
dosporidium toruloides. Nat Commun. 2012; 3: 1112. https://doi.org/10.1038/ncomms2112 PMID:
23047670

11. Dinh H V., Suthers PF, Chan SHJ, Shen Y, Xiao T, Deewan A, et al. A comprehensive genome-scale
model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic
data. Metab Eng Commun. 2019; 9: e00101. https://doi.org/10.1016/j.mec.2019.e00101 PMID:
31720216

12. Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous
microorganisms. Adv Appl Microbiol. 2002; 51: 1–51. https://doi.org/10.1016/s0065-2164(02)51000-5
PMID: 12236054

13. Lian J, Zhao H. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cer-
evisiae via enhanced supply of precursor metabolites. J Ind Microbiol Biotechnol. 2015; 42: 437–451.
https://doi.org/10.1007/s10295-014-1518-0 PMID: 25306882

14. Evans CT, Ratledge C. Induction of xylulose-5-phosphate phosphoketolase in a variety of yeasts grown
ond-xylose: the key to efficient xylose metabolism. Arch Microbiol. 1984; 139: 48–52. https://doi.org/10.
1007/BF00692711

15. Tiukova IA, Prigent S, Nielsen J, SandgrenM, Kerkhoven EJ. Genome-scale model ofRhodotorula tor-
uloidesmetabolism. Biotechnol Bioeng. 2019; 116: 3396–3408. https://doi.org/10.1002/bit.27162
PMID: 31502665

16. Chen Y, Nielsen J. Mathematical modeling of proteome constraints within metabolism. Curr Opin Syst
Biol. 2021; 25: 50–56. https://doi.org/10.1016/j.coisb.2021.03.003

17. Sánchez BJ, Zhang C, Nilsson A, Lahtvee P, Kerkhoven EJ, Nielsen J. Improving the phenotype predic-
tions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol.
2017; 13: 935. https://doi.org/10.15252/msb.20167411 PMID: 28779005

18. O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson B . Genome-scale models of metabolism and
gene expression extend and refine growth phenotype prediction. Mol Syst Biol. 2013; 9: 693. https://doi.
org/10.1038/msb.2013.52 PMID: 24084808

19. Chen Y, Pelt-KleinJan E, Olst B, Douwenga S, Boeren S, Bachmann H, et al. Proteome constraints
reveal targets for improving microbial fitness in nutrient-rich environments. Mol Syst Biol. 2021; 17.
https://doi.org/10.15252/msb.202010093 PMID: 33821549

20. Niebel B, Leupold S, HeinemannM. An upper limit on Gibbs energy dissipation governs cellular metab-
olism. Nat Metab. 2019; 1: 125–132. https://doi.org/10.1038/s42255-018-0006-7 PMID: 32694810

21. Bonturi N, Crucello A, Viana AJC, Miranda EA. Microbial oil production in sugarcane bagasse hemicel-
lulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain.
Process Biochem. 2017; 57: 16–25. https://doi.org/10.1016/j.procbio.2017.03.007

22. Lopes JF, Gaspar EMSM. Simultaneous chromatographic separation of enantiomers, anomers and
structural isomers of some biologically relevant monosaccharides. J Chromatogr A. 2008; 1188: 34–42.
https://doi.org/10.1016/j.chroma.2007.12.016 PMID: 18177879

23. Jagtap SS, Rao C V. Production of d-arabitol from d-xylose by the oleaginous yeast Rhodosporidium
toruloides IFO0880. Appl Microbiol Biotechnol. 2018; 102: 143–151. https://doi.org/10.1007/s00253-
017-8581-1 PMID: 29127468

24. Haaber J, CohnMT, Petersen A, Ingmer H. Simple method for correct enumeration of Staphylococcus
aureus. J Microbiol Methods. 2016; 125: 58–63. https://doi.org/10.1016/j.mimet.2016.04.004 PMID:
27080188

25. Koch AL. Turbidity measurements of bacterial cultures in some available commercial instruments. Anal
Biochem. 1970; 38: 252–259. https://doi.org/10.1016/0003-2697(70)90174-0 PMID: 4920662

26. Sanchez BJ, Lahtvee P, Campbell K, Kasvandik S, Yu R, Domenzain I, et al. Benchmarking accuracy
and precision of intensity-based absolute quantification of protein abundances in Saccharomyces cere-
visiae. Proteomics. 2021; 21: 2000093. https://doi.org/10.1002/pmic.202000093 PMID: 33452728

27. Metzl-Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N. Principles of cellular resource allocation
revealed by condition-dependent proteome profiling. Elife. 2017; 6: e28034. https://doi.org/10.7554/
eLife.28034 PMID: 28857745

28. Boehlke’ And KW, Friesen JD. Cellular Content of Ribonucleic Acid and Protein in Saccharomyces cer-
evisiae as a Function of Exponential Growth Rate: Calculation of the Apparent Peptide Chain Elonga-
tion Rate. 1975; 121: 429–433. Available from: https://journals.asm.org/journal/jb.

29. Bonturi N, Pinheiro MJ, de Oliveira PM, Rusadze E, Eichinger T, Liudži t G, et al. Development of a
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Abstract 
Rhodotorula toruloides is an oleaginous yeast recognized for its robustness and the production of high content of neutral 
lipids. Early biochemical studies have linked ATP citrate lyase (ACL), phosphoketolase (PK), and cytosolic malic enzyme 
(cMAE) with de novo lipid synthesis. In this study, we discovered that upon a CRISPR/Cas9-mediated knockout of the ACL 
gene, lipid content in R. toruloides IFO0880 decreased from 50 to 9% of its dry cell weight (DCW) in glucose medium and 
caused severe growth defects (reduced specific growth rate, changes in cell morphology). In xylose medium, the lipid content 
decreased from 43 to 38% of DCW. However, when grown on acetate as the sole carbon source, the lipid content decreased 
from 45 to 20% of DCW. Significant growth defects as a result of ACL knockout were observed on all substrates. In contrast, 
PK knockout resulted in no change in growth or lipid synthesis. Knocking out cMAE gene resulted in lipid increase of 2.9% 
of DCW and 23% increase in specific growth rate on glucose. In xylose or acetate medium, no change in lipid production as 
a result of cMAE gene knockout was observed. These results demonstrated that ACL plays a crucial role in lipid synthesis 
in R. toruloides IFO0880, as opposed to PK pathway or cMAE, whose presence in some conditions even disfavors lipid 
production. These results provided valuable information for future metabolic engineering of R. toruloides.

Key points
• ACL is crucial for the fatty acid synthesis and growth in R. toruloides IFO0880.
• Lipid production and cell growth is are unchanged as a result of PK knockout.
• Cytosolic malic enzyme does not play a significant role in lipogenesis.

Keywords Lipid synthesis · ATP citrate lyase · Phosphoketolase · Malic enzyme · Rhodotorula toruloides

Introduction

Oleaginous microorganisms are attractive for the produc-
tion of biofuels and bio-based oleochemicals from cheap 
raw materials (Probst et al. 2016; Dourou et al. 2018; Saini 
et al. 2020; Chawla et al. 2022). Red oleaginous yeast Rho-
dotorula toruloides (R. toruloides) is a Basidiomycota 
fungi that stands out for high lipid content, cell densities, 
and robustness in consuming hemicellulosic hydrolyzates 
(Ageitos et al. 2011; Monteiro de Oliveira et al. 2021; Oso-
rio-González et al. 2022b, 2022a); moreover, it is relatively 
mature in genetic engineering tools compared to other red 

yeasts (Chattopadhyay et al. 2021). Biotechnological appli-
cations and prospects of R. toruloides as a cell factory are 
highly promising (Zhao et al. 2022; Yu and Shi 2023; Wu 
et al. 2023; Sunder et al. 2024). Genomic, transcriptomic, 
proteomics, and flux balance analyses have established a 
basic understanding of metabolic pathways and gene func-
tions in R. toruloides (Zhu et al. 2012; Coradetti et al. 2018; 
Dinh et al. 2019; Tiukova et al. 2019a, 2019b; Pinheiro 
et al. 2020; Kim et al. 2021; Reķēna et al. 2023). Advanced 
genetic engineering tools have been developed in R. toru-
loides and are being constantly improved. IFO0880 is the 
best characterized haploid (mating type A2) strain natively 
producing high titers of neutral lipids up to 8 g/L, reaching 
lipid content up to 36% of the dry cell weight (DCW) (Zhang 
et al. 2016b). It is genomically different from another hap-
loid strain NP11 (mating type A1), capable of accumulating 
similar lipid titers, but significantly higher lipid content (up 
to 54% of DCW) (Zhu et al. 2012; Zhang et al. 2016b, 2022). 
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Successful targeted gene deletion with CRISPR has been 
demonstrated in both IFO0880 and NP11 strains (Otoupal 
et  al. 2019; Jiao et  al. 2019; Schultz et  al. 2019). The 
CRISPR/Cas9 offers a simplistic design for targeted (and 
multiplexed) genome editing (Chattopadhyay et al. 2021). 
The Cas9 enzyme introduces a double-stranded break in the 
targeted loci. Precise targeting of the Cas9 endonuclease 
can be achieved by changing a 20 nucleotide guide RNA 
(gRNA) sequence (Jinek et al. 2012). Due to lack of plasmid 
capable of replicating in R. toruloides to express CRISPR 
constructs, existing CRISPR tools in the specie are based on 
a chromosomal integration strategy—stable genome integra-
tion of Cas9 and gRNA expression cassette in the chromo-
some (Otoupal 2019). Several integration plasmids using 
a selectable drug marker cassette that encodes antibiotic 
resistance are available (Gong et al. 2024).

One of the most used strategies to enhance lipid produc-
tion in oleaginous microorganisms is by cultivating cells in 
secondary nutrient limitation (Wang et al. 2018). An effec-
tive way to achieve it is by manipulating nitrogen availability 
in the culture medium (high C/N ratio) (Papanikolaou and 
Aggelis 2011; Lopes et al. 2020), but can also be done with 
manipulating phosphate (Wu et al. 2010) or sulfur concen-
tration (Wu et al. 2011). The main reaction in biosynthesis 
of fatty acids is carried out by the multi-enzymatic complex 
of fatty acid synthetase (FAS) in the cytosol. FAS enzyme 
complex assembles acetyl-CoA and malonyl-CoA into coen-
zyme A activated fatty acids, such as palmitic acid, using 
the reducing power from NADPH (Eq. 1) (Tehlivets et al. 
2007; Papanikolaou and Aggelis 2011). This is either fol-
lowed by elongation and desaturation by dedicated enzymes 
in the endoplasmic reticulum or subsequently used for the 
acylation of glycerol backbone to synthesize neutral lipids 
(triacylglycerols, TAGs) (Tehlivets et al. 2007). Accordingly, 
FAS requires constant supply of acetyl-CoA, malonyl-CoA, 
and NADPH in cytosol (Beopoulos 2011).

Phosphoketolase (PK) (EC 4.1.2.9) is an enzyme pre-
sumed to be one of the candidates to increase acetyl-
CoA supply for de novo lipid synthesis. PK is a cytosolic 
enzyme that cleaves xylulose 5-phosphate or fructose 
6-phosphate of the pentose phosphate pathway (PPP) to 
two-carbon compound acetyl-phosphate and glyceralde-
hyde 3-phosphate or erythrose 4-phosphate, respectively 
(Eq. 2 and Eq. 3) (Evans and Ratledge 1984). While acetyl-
phosphate will be converted into acetate or acetyl-CoA, 
the latter two compounds can be recycled via glycolysis 
and the pentose phosphate pathway (PPP), respectively. On 
glucose, the involvement of PK in the lipid synthesis was 

(1)

AcetylCoA + 7 MalonylCoA

+ 14 NADPH → PalmitoylCoA + 7 CO
2

+ 14 NADP+
+ 7 CoA + 6 H

2
O

generally not supported by early biochemical studies with 
the wild type yeasts (Botham and Ratledge 1979; Boulton 
and Ratledge 1981). On xylose, there was a strong correla-
tion between PK activity and higher biomass yields dem-
onstrated in wild type R. toruloides CBS14 and 14 other 
yeasts (Evans and Ratledge 1984). Later, it was shown 
that with overexpression, the native or heterologous PK 
can enhance lipid production in various yeasts on hemi-
cellulosic carbon sources (Xu et al. 2016; Niehus et al. 
2018; Donzella et al. 2019; Kamineni et al. 2021). Based 
on stoichiometric genome-scale modeling, PPP has been 
demonstrated as the main glycolytic pathway in R. toru-
loides, while PK playing a crucial role in converting xylu-
lose 5-phosphate into acetyl-phosphate and glyceralde-
hyde 3-phosphate (Lopes et al. 2020; Reķēna et al. 2023). 
Omics data show that PK is abundant on glucose, xylose, 
or acetate in mineral medium (Kim et al. 2021); further-
more, it was significantly upregulated on glucose during 
lipid accumulation (p value 0.043) (Reķēna et al. 2023). 
From the available genomic data, R. toruloides IFO0880 
possesses a single PK gene, but is not clear whether the 
conversion of acetyl-phosphate is catalyzed by phosphate 
transacetylase, also known as phosphate acetyltransferase 
(PTA) (EC 2.3.1.8) or acetate kinase (EC 2.7.2.1) (both 
reversible) (Eq. 4 and Eq. 5) (Dinh et al. 2019; Tiukova 
et al. 2019b). However, recently engineered NP11 strains 
overexpressing non-native PTA from bacterial B. subtilis 
demonstrated increased lipid production by up to 15%, 
increased glucose consumption, and cell mass (Yang et al. 
2018).

In contrast, ATP citrate lyase (ACL) (EC 2.3.3.8) was 
associated with lipid synthesis from the early biochemical 
studies, as its presence correlated to high lipid content in 
wild type yeasts (Boulton and Ratledge 1981). ACL is a 
cytosolic enzyme that cleaves cytosolic citrate to acetyl-CoA 
and oxaloacetate (OAA) (Eq. 6). According to the accepted 
mechanism for lipid synthesis, ACL activity is associated 
with the onset of nitrogen limitation that causes excess cit-
rate being exported from the mitochondria to cytosol and 
used for lipid synthesis under nitrogen limitation (Botham 
and Ratledge 1979; Boulton and Ratledge 1981). Omics data 
show that ACL is abundant on glucose, xylose, and acetate 
in various R. toruloides strains, in most of the cases reported 
as upregulated on proteome level during lipid synthesis and 

(2)
Fructose6P + Pi → Erythrose4P + AcetylP + H

2
O

(3)
Xylulose5P + Pi → Glyceraldehyde3P + AcetylP + H

2
O

(4)AcetylP + CoA ↔ AcetylCoA + Pi

(5)AcetylP + ADP ↔ Acetate + ATP
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being more abundant compared to PK (Tiukova et al. 2019a, 
b; Kim et al. 2021; Reķēna et al. 2023). Also the metabolic 
engineering studies have shown that ACL plays an impor-
tant role in lipid biosynthesis in Ascomycota yeasts (Liu 
et al. 2013; Zhang et al. 2014; Sato et al. 2021). In R. toru-
loides, ACL is encoded by a single gene (Zhu et al. 2012), 
while in ascomycetous yeasts and plants, it has two subu-
nits (Nowrousian et al. 2000; Fatland et al. 2002). Recently, 
engineered IFO0880 strains overexpressing the ACL gene 
demonstrated increased fatty alcohol titers (Schultz 2022, 
Cao et al. 2022). Another possible route to cytosolic acetyl-
CoA synthesis from pyruvate is via pyruvate decarboxylase 
(PDC)—acetaldehyde dehydrogenase—acetyl-CoA syn-
thetase (ACS) path. Previous proteomics studies showed 
that the abundance of PDC and ACS was low compared 
to PK and ACL (Reķēna et al. 2023) and downregulated 
twofold during lipid accumulation (Tiukova et al. 2019a, 
b); therefore, this pathway was not investigated in this study.

In line with the lipid synthesis mechanism, it was sug-
gested that ACL, FAS, and malic enzyme (MAE) (EC 
1.1.1.40) could work together by forming a complex to 
facilitate fatty acid synthesis (Ratledge 2004; Beopoulos 
et al. 2011). Because ACL catalyzes the conversion of cit-
rate into acetyl-CoA and OAA, the latter can be transformed 
into malate and further converted into pyruvate by MAE, 
simultaneously reducing NADP( +) into NADPH (Eq. 7); 
thus, MAE may also play an important role to supply of the 
reducing power for fatty acid synthesis. Several metabolic 
engineering studies confirmed the hypothesis of the role 
of MAE in filamentous fungi, like Mucor circinelloides 
(Wynn et al. 1997; Zhang et al. 2007), Mortierella alpina 
(Wynn et al. 2001), and Aspergillus nidulans (Wynn and 
Ratledge 1997), suggesting that malic enzyme was one of 
the rate-limiting steps for fatty acid synthesis. However 
in similar studies with the oleaginous ascomycetous yeast 
Yarrowia lipolytica and basidiomycetous yeast Rhodoto-
rula glutinis, it did not perform the same way (Yoon et al. 
1984; Zhang et al. 2013; Blazeck et al. 2014; Wasylenko 
et al. 2015; Dulermo et al. 2015; Qiao et al. 2017; Zhu 
et al. 2023). Namely, it resulted in a current understand-
ing that oleaginous yeasts are different from filamentous 
fungi, and the primary sources of cytosolic NADPH are 
glucose 6-phosphate dehydrogenase (G6PD, also known 
as ZWF) and 6-phosphogluconate dehydrogenase of the 
PPP, and isocitrate dehydrogenase (Chawla et al. 2022; 
Sreeharsha and Mohan 2020; Yang et al. 2012; this study), 
an alternative route being via cytosolic malic enzyme only 
while growing on substrates that are not catabolized via 
glycolytic pathways. Both ZWF and MAE are abundant 
in R. toruloides in mineral medium on glucose, xylose, 
or acetate, but the results of their differential expression 

(6)Citrate + CoA + ATP → AcetylCoA + Oxaloacetate + ADP + Pi

during lipid synthesis are inconclusive among the studies 
(Tiukova et al. 2019a, b; Kim et al. 2021; Reķēna et al. 
2023). The observed higher abundance of oxPPP enzymes 
suggests their primary role in NADPH regeneration, but it 
was not investigated further due to report on gene essenti-
ality from a previous study (Coradetti et al. 2018). Moreo-
ver, the deletion of MAE would tell if the other pathway 
prevailed, as these are the two main candidate pathways 
for the regeneration of NADPH in R. toruloides. It should 
be noted that Y. lipolytica possesses only a mitochondrial 
MAE (mMAE), while R. toruloides holds both cytosolic 
and mitochondrial forms of MAE (Zhu et al. 2012; Cora-
detti et al. 2018). Engineered IFO0880 strains overexpress-
ing native cytosolic MAE (cMAE) enzyme demonstrated a 
minor increase in lipid synthesis on glucose (Zhang et al. 
2016a). A heterologous overexpression of MAE from Y. 
lipolytica did not increase the expression of fatty alcohols 
in R. toruloides IFO0880 (Schultz et al. 2022). The role and 
cofactor dependency of the R. toruloides mMAE form still 
remains unclear. mMAE was not investigated in this study.

Taken altogether, to clarify whether PK, ACL, and 
cMAE contributes to the lipid biosynthesis in R. toruloides, 
the latest CRISPR/Cas9 tool was used for a targeted sin-
gle gene knockout of PK, ACL, and cMAE in a wild type 
IFO0880. Cell growth and lipid production in the knock-
out strains were examined. To understand the substrate-
dependent differences, the knockouts were characterized in 
a chemically defined medium at nitrogen limitation (C/N 
80) on glucose, xylose, and acetic acid as a sole carbon 
sources. The study revealed very different physiological 
responses between these genes and lipid synthesis, provid-
ing valuable insights in R. toruloides metabolism, building 
understanding relevant for the future metabolic engineering. 
ACL knockout strain demonstrated the most severe effect 
on the growth and lipid production on all the characterized 
substrates while ΔPK and ΔcMAE strains demonstrated 
less severe physiology differences in comparison to the wild 
type strain. This is the first study of these gene knockouts 
in R. toruloides.

Materials and methods

Strains, media, and conditions

Routine growth R. toruloides was performed in YPD 
medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L 
glucose).

For selection or maintenance of transformants, 200 μg/
mL G418 (Gibco) was added to the YPD medium.

(7)
(S)malate + NADP+

→ Pyruvate + CO
2
+ NADPH
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Lipid content was measured in cells grown in a low-
nitrogen mineral medium. Basal medium contained 3.0 g/L 
 KH2PO4, 0.5 g/L  MgSO4·7H2O, 15 mg/L EDTA, 4.5 mg/L 
 ZnSO4 7H2O, 0.3 mg/L  CoCl2 6H2O, 1 mg/L  MnCl2 4H2O, 
0.3 mg/L  CuSO4 5H2O, 4.5 mg/L  CaCl2 2H2O, 3 mg/L 
 FeSO4 7H2O, 0.4 mg/L  Na2MoO4 2H2O, 1 mg/L  H3BO3, 
0.1 mg/L KI, 0.05 mg/L biotin, 1 mg/L calcium panto-
thenate, 1 mg/L nicotinic acid, 25 mg/L inositol, 1 mg/L 
thiamine HCl, 1 mg/L pyridoxine HCl, and 0.2 mg/L para-
aminobenzoic acid (Verduyn et al. 1992). Basal medium was 
supplemented with 20 g/L glucose (Roth), or 20 g/L xylose, 
or 10 g/L acetate (Chempur) as a sole carbon source. Ammo-
nium sulfate  (NH4)2SO4 was used as a nitrogen source to 
obtain a C/N ratio of 80 (mol/mol); 0.55 g/L of  (NH4)2SO4 
(Fisher Bioreagents) was added to the medium containing 
glucose or xylose, and 0.275 g/L  (NH4)2SO4 was added to 
the medium containing acetate. For adjusting the media 
containing glucose or xylose, 5.2 g/L  K2HPO4 (Roth) was 
added (pH 5.8 to 8.0). The potassium phosphate buffer did 
not sustain the pH with 10 g/L of acetate in the medium; 
therefore, instead, it was adjusted to a starting pH 6 with 
2 M KOH (Thermo Fisher Scientific).

Escherichia coli strain TOP10 (Thermo Fisher Scientific) 
was used for plasmid assembly and routine cloning. The 
strain and its derivatives were grown in Luria Broth (LB) 
medium at 37  and 200 rpm with 50 μg/mL kanamycin.

Unless differently stated, all other reagents were pur-
chased from Sigma-Aldrich Co., St Louis, MO, USA.

DNA sequences

DNA sequences of R. toruloides IFO0880 strain were 
obtained from MycoCosm database (R. toruloides v4.0) 
(JGI) (Coradetti et al. 2018). Genes with accession num-
bers 9725 (ATP citrate lyase, ACL) and 13,382 (phospho-
ketolase, PK) were retrieved and used to design the guide 
RNAs, as there were no other alternative genes with a simi-
lar sequence. Based on the annotation found from the two 
existing genome-scale models, gene with accession number 
12761 was retrieved and used to design gRNAs to target the 
cytosolic, NADP-dependent malic enzyme (cMAE) (Tiuk-
ova et al. 2019b; Kim et al. 2021). The single gRNAs target-
ing the first exon 1 of ORF of the target gene (exon 5 in case 
of the ACL gene) were designed with the CCTop online tool 
using Ganoderma lucidum as the reference genome (Stem-
mer et al. 2015). 23-nucleotide target sequence ending with 
NGG (Streptococcus pyogenes) and set custom overhangs 
(forward strand 5  CGCA and reverse strand 5  AAAC) was 
selected based on the CRISPRater efficacy score (Labuhn 
et al. 2018) above 74 (high efficacy).

Oligonucleotides without the NGG 3-mer (20-nucleotide 
target sequence + overhangs) were synthesized by IDT (Inte-
grated DNA Technologies, Leuven, the Netherlands).

Guide RNA cloning

The plasmid pPBO.202 for CRISPR/Cas9-mediated genome 
editing of R. toruloides IFO0880 was obtained from the JBEI 
Registry   https:// regis try. jbei. org/ (part ID JBEI223791). 
pPBO.202 contained constructs for a functional expres-
sion of the CRISPR/Cas9 system in R. toruloides. They 
were optimized by Otoupal and colleagues (Otoupal et al. 
2019) to be as follows: (i) E. coli elements of ColE1 (KanR 
promoter, kanamycin resistance), (ii) a gRNA expression 
cassette with R. toruloides fusion 5S rRNA-tRNAPhe pro-
moter, 2 BsaI sites, the S. cerevisiae SUP4 terminator, (iii) a 
codon optimized SpCas9 expression cassette with IFO0880 
GPD1 promoter and NOS terminator, and (iv) R. toruloides 
G418 resistance cassette pTUB2-G418-tTUB2. Two oli-
gos with a forward strand 5  CGCA and reverse strand 5  
AAAC overhang were annealed and subsequently cloned 
by digesting plasmid pPBO.202 with BsaI (Thermo Fisher 
Scientific) and ligating in T4 Ligase buffer (Thermo Fisher 
Scientific) in a single pot reaction. Plasmid cloning was per-
formed in Escherichia coli strain TOP10 (Thermo Fisher 
Scientific) according to the manufacturer’s instructions, and 
bacterial plasmid DNA was purified using FavorPrep Mini 
Plasmid Kit (FAVORGEN, Ping Tung, Taiwan). Resulting 
plasmids pPBO.202–13382(3), pPBO.202–9725(1), and 
pPBO.202–12761(1) were checked by Sanger sequenc-
ing. Several different gRNAs per target gene were tested in 
sequential order if the previous gRNA candidate failed to 
result in the target site disruption (the number in the brack-
ets next to each construct indicates the number of different 
gRNA test candidates that resulted in a functional CRISPR/
Cas9 mediated target site disruption).

Yeast transformation

Yeast transformation was performed using lithium acetate/
PEG-mediated chemical transformation method as pre-
viously described (Tsai et al. 2017; Bonturi et al. 2022). 
Briefly, cells from an overnight YPD culture were inoculated 
at  OD600 0.2 in a shake flask containing 50 mL of YPD 
(for up to 10 transformations). At  OD600 0.8, cells were 
harvested, washed in  dH2O, and eventually mixed with 240 
μL PEG 4000 (Fisher Scientific), 36 μL 1 M LiAc pH 7.5 
(Alfa Aesar), 24 μL  dH2O, 10 μL pre-boiled Salmon Sperm 
(10 mg/mL), and 0.1–10 μg purified circular plasmid DNA 
dissolved in 50 μL of water. The mixture was incubated at 
30  shaking for 30 min, added with 34 μL of DMSO and 
heat shocked at 42  for 15 min. After removing the super-
natant, collected cells were resuspended in 2 mL of YPD 
and incubated at 30  overnight for the recovery. Then, cells 
were collected, spread on YPD agar plates (agar 20 g/L) the 
selective antibiotic 200 μg/mL G418, and incubated at 30  
for 2–4 days until the colonies appeared.
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Isolation of gene knockouts

Multi-step verification was used to confirm target gene 
inactivation: (i) antibiotic selection, (ii) genomic DNA iso-
lation using lithium acetate/SDS/heat lysis (Lõoke et al. 
2011) and Cas9-specific PCR on the genomic DNA, (iii) 
target gene PCR amplification and sequencing. PCR ampli-
fication at the target locus of PK was performed with prim-
ers 5  CCT CCC TCT CAC TCT TGC AC 3 (forward) and 5  
CAC GCT GTC CAG TCA AAG AA 3 (reverse); ACL—with 
primers 5  AGC TCC TCA AGC ACG TCA CT 3 (forward) 
and 5  GTA GAC GAC CGA AGC ACC AC 3 (reverse), and 
MAE—with primers 5  ACT CGC TCT CCC TCT CTC TC 
3 (forward) and 5  ACT CGG AAA ACC ACG GCT TC 3 
(reverse). It was performed using high-fidelity Platinum 
SuperFi II DNA Polymerase Green PCR Master Mix (2X) 
(Thermo Fisher Scientific, Vilnius, Lithuania) accord-
ing to manufacturer’s instructions for a high GC content 
template. PCR amplification of the Cas9 coding sequence 
with primers 5  GGA GTC GCG GGA CGC CAA C 3 (for-
ward) and 5  ACA CGT TGG CGT CCC GCG A 3 (reverse) 
was performed using DreamTaq Polymerase Green PCR 
Master Mix (2x) (Thermo Fisher Scientific, Vilnius, Lithu-
ania). PCR DNA was purified using FavorPrep Mini Gel/
PCR Kit (FAVORGEN, Ping Tung, Taiwan).

Physiological characterization

The seed culture from a fresh YPD agar plate was inocu-
lated to a sterile 250-mL baffled Erlenmeyer flask filled with 
25 mL of YPD. After 19 h at 30  and 200 rpm, sufficient 
amount of broth was transferred to a sterile 50 mL Falcon 
tube and pelleted (5000 g, 5 ). After discard of supernatant, 
cell pellet was washed twice with a sterile dH2O and used to 
inoculate 10 mL of low-nitrogen mineral medium at  OD600 
of 0.5 in aerobic 50 mL Biosan RTS-8 Multi-channel falcon 
tube bioreactors (Biosan, Riga, Latvia). Calibration curves 
for OD quantification were prepared in a range between 
 OD600 0 and 55 with 8 calibration points using R. toru-
loides shake flask culture in a chemically defined medium. 
Calibration curves for pH and dO measurement were set 
up according to the manufacturer’s instructions. Real-time 
logging was set to every 30 min with RTS-8 proprietary 
software. Agitation speed was set to 2500 rpm, temperature 
30 . Every 12 h after the cells had reached the exponential 
growth phase, except for the first sample after time point 
zero, samples to measure offline  OD600 and extracellular 
metabolites were withdrawn from the bioreactor tube in the 
laminar flow cabinet, transferred to a 2-mL Eppendorf tubes 
and centrifuged for 5  at 11,000 × g. The supernatant was 
collected and stored at − 20  for further analysis. The first 
sample was collected 6 h after inoculation. All cultivations 

were carried out in a batch regime; no feed was added 
throughout the process. All samples were collected from 
three independent replicates for each experimental condi-
tion, i.e., combination of strain and carbon source. Specific 
growth rate was calculated by fitting an exponential trend 
line to the real time OD data using Eq. 8 with MS Excel 
software.

where OD0 is the initial optical density, t is elapsed time, 
μ is the specific growth rate, OD(t) is the resulting optical 
density at time t.

Lipid analysis

At the end of the cultivation experiment, cell broth contain-
ing at least 12 mg of DCW was transferred from the falcon 
tube bioreactor to a 15 mL tube and separated by centrifuga-
tion (5000 g, 10 , 4 ). Cell pellets were frozen at − 80 , 
lyophilized, and stored at − 20  until further analysis. To 
quantify lipids, fatty acids were extracted and derivatized by 
using one-step method as described by Sukhija and Palmquist 
(Sukhija and Palmquist 1988), with internal standard hepta-
decanoic acid (17:0) solution in toluene (5 mg/mL). Fatty 
acids were analyzed using Agilent (Santa Clara, CA, USA) 
6890 A gas chromatograph equipped with a flame ioniza-
tion detector (GC-FID). The column was a quartz capillary 
column (100 m × 0.25 mm) with liquid phase CP-Sil 88, 
temperature programmed from 70 to 180  at 13 /min, 
held for 40 min, 180 to 225  at 5 /min, held for 15 min. 
Hydrogen was used as the carrier gas for GC and FID (FID 
flow rate 30 mL/min), air flow rate 300 mL/min. Fatty acids 
were identified by comparison of their retention times with 
the retention time of mixtures with known fatty acid methyl 
ester composition and concentration: Supelco 37 Component 
FAME Mix (Sigma-Aldrich Co., St Louis, MO, USA), Nu-
Chek Prep CLC 603, and Nu-Chek Prep CLC 428 (Nu-Chek 
Prep Inc., Elysian, MN, USA). Fatty acid composition was 
presented as a gram of individual fatty acids per 100 g of 
total fatty acids (the same as relative %). Lipid content was 
calculated as the weight sum of individual fatty acids in 100 g 
of sample, divided by 0.9 to provide TAG equivalent known 
from earlier biochemical studies, as described by Sukhija and 
Palmquist (1988), and expressed as gram lipids per gram dry 
cell weight (DCW). Non-lipid cell mass was calculated after 
subtraction of intracellular lipids from cell mass.

Analytical methods

Extracellular metabolites in cultivation broth were measured 
using HPLC (LC-2050C, Shimazu, Kyoto, Japan) equipped 
with a refractive index detector and a variable wavelength 

(8)OD(t) = OD
0
× e𝜇t
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detector. Prior analysis, all samples were thawed, filtered 
(0.22 μm), and diluted in an appropriate diluent as indicated 
below. Metabolites were analyzed using the Aminex HPX-
87H 300 × 7.8 mm column (Bio-Rad, Hercules, CA, USA) 
at 45 , with 5 mM  H2SO4 as the mobile phase with iso-
cratic elution at 0.6 mL/min. The concentrations of acetate, 
glucose, glycerol, xylose, citrate, xylitol, and D-arabitol 
were quantified by refractive index detector based on the 
calibration curves prepared in the range between 0.625 and 
20 g/L. No unknown peaks by variable wavelength detector 
set at 210 nm were detected. It should be noted that with 
the HPX-87H, it is not possible to determine the chirality 
of arabitol, but we have determined it in our previous pub-
lication (Reķēna et al. 2023). To adjust the sample volume, 
samples containing glucose or xylose were diluted to 5X 
in ultrapure  H2O (Milli-Q Ultrapure Water System, Merck, 
Darmstadt, Germany). To adjust the pH and the volume, 
samples containing acetate were diluted to 5X in 10 mM 
mobile phase to reduce the pH below 8, the maximum range 
of the column. Biomass optical density data were calibrated 
by gravimetric dry cellular mass measurements. The lin-
early fitted calibration coefficient was 0.3 for cells under 
the exponential growth and 0.26 for cells under nitrogen 
limitation. At the end of cultivation, 3 uL of culture were 
transferred to a glass slide for microscopy. Cells from an 
undiluted culture were visualized by a bright-field micro-
scope under 100 × magnification CX21 (Olympus, Tokyo, 
Japan). All images were acquired using Apple iPhone 13 
mini (Apple Inc., Cupertino, CA, USA).

Statistical analysis

Statistical analysis of physiological parameters evaluation 
was performed using GraphPad Prism 9.5.1 (GraphPad Soft-
ware Inc., San Diego, CA, USA). Statistical significance was 
calculated using one-way ANOVA (Analysis of variance) at 
0.05 significance level. p-values were adjusted (apval) for 
multiplicity following Dunnett multiple comparison testing 
against the wild type IFO0880.

Results

Sequencing of the genomic DNA confirmed gene 
knockouts introduced by CRISPR/Cas9

Gene knockouts were introduced into the R. toruloides 
IFO0880 genome by using a one-step CRISPR/Cas9 strat-
egy. The coding sequence of the Cas9 and appropriate 
gRNAs were randomly integrated into the genome through 
use of a single plasmid vector pPBO.202 (JBEI Registry 
part ID JBEI223791) with the G418 selection marker using 
lithium acetate/PEG-mediated chemical transformation (see 

“Materials and Methods”). A set of single guide RNAs tar-
geting PK, ACL, or cMAE were designed to separately tar-
get and disrupt the first exon of the targeted genes (Table 1). 
Gene knockouts by CRISPR/Cas9 were confirmed by 
sequencing of the genomic DNA around the gRNA-targeted 
cut site. Mutations at the site targeted by the gRNAs were 
identified by aligning sequences against the wild type R. 
toruloides IFO0880 reference genome (Fig. 1a). In case of 
ACL knockout, there was a visible phenotypic difference 
(Fig. 1b). Other knockouts did not display a phenotypic dif-
ference. The gene knockouts by CRISPR/Cas9 were presum-
ably generated by sequence of Cas9 endonuclease and error 
prone NHEJ DNA repair resulting in frameshift mutation in 
wild type R. toruloides strain. It has been reported that the 
frequency of HR in R. toruloides is low (Koh et al. 2014). 
List of strains used in this study is provided in Table 2; 
number of clones screened is reported in Supplementary 
Table S1.

During the strain characterization step, growth curves 
(in the next section) of wild type cells and cells harboring 
gene editing vector did not show difference in growth rates. 
No significant differences in growth rates were observed 
between different mutation variants of cMAE and PK dur-
ing initial screening. This shows that cassette did not cause 
detrimental fitness effects, similarly as reported by Otoupal 
and colleagues (Otoupal et al. 2019). These results demon-
strated that it is possible to achieve the disruption of central 
carbon metabolism genes with a method that relies on a sta-
ble genome integration of CRISPR constructs in the genome 
using a selectable drug marker.

ACL knockout decreases lipid synthesis on glucose

To understand the role of PK, ACL, and cMAE in the lipid 
synthesis of R. toruloides IFO0880 strain, we compared the 
lipid content produced by the knockout strains versus the 
wild type IFO0880. Cells were induced for lipid produc-
tion using low-nitrogen mineral medium containing glucose, 
xylose, or acetate as a solo carbon source. R. toruloides is 
an obligate aerobe. For the best mixing and aeration sup-
port, high-throughput falcon tube bioreactors equipped with 
a reverse-SpinⓇ technology RTS-8 (Biosan, Riga, Latvia) 
instead of shaker flasks or traditional stirred tank bioreactors 

Table 1  List of gRNAs used in this study. Number in the brackets 
refers to number of different gRNA needed to be tested in order to 
successfully generate the gene knockout

gRNA Target gene Target sequence (5 −3 )

9725(1) ACL AGT ACG TCG TCG GTC CCA AG

13382(3) PK GAT GCA GAG GAA GTT GAC CA

12761(1) cMAE CCC TCC CAG CCC CTT CAA GG
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were used for strain characterization. This system was not 
equipped with the option to maintain desired pH and dis-
solved oxygen settings, but provided for a real time non-
invasive tracking of OD, pH, and dissolved oxygen data. 
We used real-time dissolved oxygen monitoring to precisely 
track the end of the experiment. To account for the pH drop 
happening with R. toruloides in an uncontrolled pH environ-
ment (Tingajeva 2024),  K2HPO4 was added in the starting 
media at pH 6.5 to an amount sufficient to buffer significant 
pH changes (see “Materials and Methods”).

On glucose, online  OD600 data showed no difference 
among the strains in the lag phase prior to the exponential 
growth phase (Fig. 2a), but the maximum specific growth 
rate of the ACL knockout was significantly decreased by 
41% as compared to the wild type strain (Fig. 2b, Supple-
mentary Table S2, apval < 0.002). The growth of the ACL 
mutant continued until 18 h, but then the growth stopped and 
final DCW did not reach that of the wild type strain (Fig. 2c). 
Sugar analysis confirmed that the ΔACL stopped consuming 
glucose after 18 h (Fig. 2d). The pH remained within the 
optimal range throughout the cultivation (Supplementary 

Fig. S1). The dissolved oxygen curves showing when the 
end of the experiment was declared are available from Sup-
plementary Fig. S2.

For lipid quantification, we used gas chromatographic 
(GC) determination (see “Materials and Methods”). In the 
wild type strain, lipid content reached 50.18 ± 0.37% (g lipid 
per g of DCW) after 54 h of growth on low-nitrogen mineral 
media (Table 3). The ACL knockout strain showed a sig-
nificant decrease in lipid content by 81% compared to the 
wild type strain, reaching only 9.43 ± 0.039% (glipid/gDCW) 
(Fig. 2e, apval < 0.0001). In case of the ACL knockout, the 
difference in non-lipid DCW (g/L) compared to the wild 
type strain was 58% (apval < 0.0001) (Supplementary 
Fig. S3a). These results indicated that ACL was not only 
essentially involved in R. toruloides fatty acid synthesis, 
similarly as previously studied in Y. lipolytica and L. star-
keyi (Dulermo et al. 2015; Liu et al. 2013; Sato et al. 2021), 
but also involved in some other essential processes that had 
a complementary effect on cellular physiology, whereas 
knocking out the PK gene showed no change in specific 
growth rate or lipid content, suggesting PK had no major 

Fig. 1  Examples of targeted 
gene disruption using CRISPR/
Cas9. Only one example shown 
per targeted gene. a Partial 
sequencing of phosphoketolase 
(PK), ATP citrate lyase (ACL), 
and cytosolic malic enzyme 
(cMAE) of one edited colony 
near the cut site in the targeted 
genes. b Phenotype compari-
son of wild type R. toruloides 
IFO0880 versus ΔACL, ΔPK, 
and ΔcMAE strains after 9 days 
growth on YPD agar

Table 2  List of strains used in this study

Strain name Genotype Parent strain Antibiotic Mutation Source/reference

IFO0880 (NBRC 0880) Rhodotorula toruloides strain IFO0880 
(now NBRC 0880), mating type A2

N/A N/A N/A NBRC collection

ΔACL pPBO.202–9725(1) IFO0880 G418 23 bp deletion This study

ΔPK pPBO.202–13382(3) IFO0880 G418 10 bp deletion This study

ΔcMAE pPBO.202–12761(1) IFO0880 G418 1 bp deletion This study
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effect on growth or lipid synthesis under the studied envi-
ronmental conditions (Fig. 2a–f). In contrast, the specific 
growth rate of ΔcMAE was increased by 23% compared to 
the wild type strain, reaching 0.39 ± 0.030  h−1 (Fig. 2b, apval 
0.04). Lipid content of ΔcMAE increased by 2.9% of DCW 
compared to the wild type strain (apval 0.03), but no signifi-
cant changes in the fatty acid profile were observed (Fig. 2e). 
These results indicated that cMAE in R. toruloides is not 
essential in lipid biosynthesis under the studied environmen-
tal conditions. Previously, it was reported in oleaginous Y. 
lipolytica that the deletion of mMAE in the wild type strain 
has no effect on lipid content or fatty acid profiles (Blazeck 
et al. 2014; Dulermo et al. 2015; Zhu et al. 2023). However, 
only the deletion of cMAE was studied in the present work.

The fatty acid composition of the wild type R. toru-
loides IFO0880 was C16:0 22.67% and C18:1 45.62% 
 (gFA/gtotalFA) (Table 3), closely similar to as previously 
reported (Ratledge and Wynn 2002). In fact, our results 
were closely similar to the R. glutinis strain, which has 
more recently been designated as R. toruloides, and 
according to Zhang et al. may even be IFO0880 (Zhang 
et al. 2016b). The knockout of the ACL caused changes in 
the fatty acid composition. We observed a relative increase 
in polyunsaturated fatty acids (C18:2 and C18:3) of 34% 
of total fatty acids when compared to the wild type strain 
(gFA/gtotalFA) (Fig. 2f). In the ACL knockout, the frac-
tion of oleic acid (C18:1) decreased significantly com-
pared to the wild type strain and constituted only 19.47% 
(pval < 0.0001), while linoleic acid (C18:2) increased 
significantly compared to the wild type and became the 
largest fraction with 29.46% (pval < 0.0001), followed 
by 17.78% of alpha-linoleic acid (C18:3) (Table  3, 
pval < 0.0001). Similar observations were reported in Y. 
lipolytica (Dulermo et al. 2015). It should be noted, how-
ever, that when calculated per DCW, the total quantities 
of all measured fractions decreased compared to the wild 
type strain (Supplementary Table S3).

Yeasts and filamentous fungi undergo morphological dif-
ferentiations when triggered by extracellular stimuli such as 
nutrient limitation. Therefore, we examined cells harvested 
at the end of the experiment under the microscope. We 
observed that the majority of strains, including the wild type, 
had adopted linear chain morphology (Fig. 2g), notably dif-
ferent from their typical oval-shaped unicellular form (Sup-
plementary Fig. S4). Similar morphological appearance, 
also known as pseudohyphae formation, has been observed 
at slow growth rates below 0.1  h−1 in glucose-limited che-
mostats of the non-conventional yeast Komagataella phaffii 
(Rebnegger et al. 2014) and S. cerevisiae under the nitro-
gen limitation (Gimeno et al. 1992). However, as a result 

Fig. 2  Physiological parameters obtained in glucose-based pH-
adjusted low-nitrogen mineral medium (C/N ratio 80) (Verduyn 
et  al. 1992). Data obtained from cultivating R. toruloides wild type 
IFO0880 (circle), ATP citrate lyase knockout (ΔACL, pyramid), 
phosphoketolase knockout (ΔPK, inverted pyramid), and cytosolic 
malic enzyme knockout (ΔcMAE, square) strains in falcon tube 
bioreactors with non-invasive OD,  dO2, and pH sensors. a A snap-
shot of the online  OD600 data displayed as the dry cell weight (g/L), 
b maximum specific growth rate fitted from the exponential growth 
phase  OD600 data  (h−1), c dry cell weight (g/L), d substrate concen-
tration (g/L), e lipid content (glipid/gDCW, %); cells harvested at the 
end of cultivation, f relative fatty acid composition (gFA/gtotalFAs, %); 
cells harvested at the end of cultivation, g morphology comparison 
of wild type IFO0880 versus knockout strains visualized by bright-
field microscope, cells harvested at the end of cultivation. Panels a 
and c background colors denote the switch in growth phases based on 
 dO2 curves available from Supplementary Fig. S2, presumably point-
ing to the onset of the nitrogen limitation phase. FAs fatty acids, SFAs 
saturated fatty acids, MUFAs monounsaturated fatty acids, PUFAs 
polyunsaturated fatty acids. Error bars are calculated as a standard 
deviation from three biological experiments. Asterisks denote statisti-
cal significance (ANOVA Dunnett’s multiple comparison test against 
the wild type IFO0880 strain, adjusted p value *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001). ns is used to denote changes that are 
statistically nonsignificant

◂

Table 3  Bioreactor data and fatty acid composition (gFA/gtotalFA, 
%) measured by GC-FID for strains grown in the glucose-based 
(20 g/L) pH-adjusted chemically defined low-nitrogen medium (C/N 
of 80). C16:0 palmitic acid, C18:0 stearic acid, C18:1(c9) oleic acid, 

C18:2(n6) linoleic acid, C18:3(n3) alpha-linolenic acid, and FAs fatty 
acids. Mean and standard deviation are calculated from three biologi-
cal replicates

Strain Dry cell weight (g/L) Lipid content 
(glipid/gDCW, 
%)

Major fatty acid residues (gFA/gtotalFAs, %) Harvest 
time 
(h)

C16:0 C18:0 C18:1(c9) C18:2(n6) C18:3(n3) Other FAs

IFO0880 
(NBRC 
0880)

10.23 ± 0.15 50.18 ± 0.37 22.67 ± 0.14 12.62 ± 0.06 45.62 ± 0.11 11.38 ± 0.14 3.58 ± 0.01 4.13 54

ΔPK 10.23 ± 0.15 50.52 ± 0.94 22.70 ± 0.10 12.64 ± 0.12 45.73 ± 0.14 11.29 ± 0.06 3.50 ± 0.01 4.14 54

ΔACL 2.34 ± 0.065 9.43 ± 0.039 16.25 ± 0.03 9.42 ± 0.09 19.47 ± 0.49 29.46 ± 0.28 17.78 ± 0.16 7.61 54

ΔcMAE 9.62 ± 0.26 51.64 ± 0.50 22.80 ± 0.10 11.72 ± 0.07 46.04 ± 0.12 11.49 ± 0.12 3.90 ± 0.06 4.04 48
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of the knockout of the ACL gene, cells did not form these 
filament-like structures (Fig. 2g), instead their morphology 
looked very similar to that during the exponential growth 
phase (Supplementary Fig. S4), in a good agreement with 
the above analysis that the loss of ACL indeed deprived cells 
from consuming carbon under nitrogen limitation.

Xylose as a carbon source modifies the cellular 
response to ACL loss

R. toruloides can consume xylose as a sole carbon source 
(Pinheiro et al. 2020). DCW of 18 (g/L) on xylose as a car-
bon source was comparable to the one grown on glucose, 22 
(g/L), but the DCW yield on substrate (gDCW/gsubstrate) even 
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outperformed glucose (Pinheiro et al. 2020). Xylose is a rel-
evant substrate of R. toruloides that has been less explored; 
therefore, we cultivated ΔPK, ΔACL, and ΔcMAE strains 
in the low-nitrogen pH-adjusted chemically defined medium, 
but this time containing xylose as a sole carbon source. All 
strains demonstrated slightly different lag phases, but the 
ACL knockout exhibited the shortest lag phase and the low-
est specific growth rate compared to the wild type strain 
(Fig. 3a, Supplementary Table S2). The specific growth rate 
(μ) was 45% of the wild type strain (Fig. 3b, apval < 0.001). 
Nevertheless, ACL knockout reached even a significantly 
higher final DCW titer as compared to the wild type strain 
(Fig. 3c, Supplementary Fig. S3, b, apval < 0.01) and con-
sumed xylose until depletion (Fig. 3d). The non-lipid DCW 

titers of the ACL knockout were higher compared to the wild 
type strain (apval < 0.01), suggesting that ACL was involved 
in other cellular processes apart from lipid synthesis (Sup-
plementary Fig. S3b). Lipid content of the wild type strain 
was 42.61 ± 0.84% (glipid/gDCW) after 90 h of growth on low-
nitrogen mineral medium (Table 4), but the ACL knockout 
gave significantly lower, 37.71 ± 3.01% (glipid/gDCW) (Fig. 3e, 
apval 0.02), with no major changes in the fatty acid profiles 
(Fig. 3f, Table 4). Linear chain pseudohyphal growth was 
unchanged compared to the glucose medium. Chain-like 
pseudohyphal growth was observed for all strains, except 
for the ACL knockout (Fig. 3g). The knockout of the cMAE 
gene did not have an effect on growth or lipid synthesis on 
medium containing xylose as a carbon source (Fig. 3a–f).

Altogether, these results indicated that R. toruloides 
IFO0880 is less reliant on ACL than assumed, which sug-
gests an alternative source of cytosolic acetyl-CoA on 
xylose as sole carbon source. It cannot be ruled out that 
the PK replaced ACL for the supply of acetyl-CoA upon 
the ACL knockout, but on the other hand, the knockout of 
the PK gene alone did not give any change in the specific 
growth rate or lipid content (Fig. 3a–f). We speculate that 
one of the options for the cytosolic acetyl-CoA synthesis 
could be the pyruvate-acetaldehyde-acetate pathway, also 
known as “pyruvate dehydrogenase bypass.” Despite low 
protein expression levels of ACS on glucose and xylose, it 
was previously reported higher abundant on xylose during 
the exponential growth (p value 0.038) and lipid accumula-
tion phase (p value 0.49) compared to glucose-grown cells 
(Reķēna et al. 2023).

ACL loss demonstrates negative effects on cell 
growth and lipid synthesis on acetate

Previous reports have shown differences in growth 
response on acetate caused by loss of ACL. In pathogenic 

Fig. 3  Physiological parameters obtained in xylose-based pH-
adjusted low-nitrogen mineral medium (C/N ratio 80) (Verduyn 
et  al. 1992). Data obtained from cultivating R. toruloides wild type 
IFO0880 (circle), ATP citrate lyase knockout (ΔACL, pyramid), 
phosphoketolase knockout (ΔPK, inverted pyramid), and cytosolic 
malic enzyme knockout (ΔcMAE, square) strains in falcon tube 
bioreactors with non-invasive OD,  dO2, and pH sensors. a A snap-
shot of the online  OD600 data displayed as the dry cell weight (g/L), 
b maximum specific growth rate fitted from the exponential growth 
phase  OD600 data  (h−1), c dry cell weight and arabitol (g/L), d sub-
strate concentration (g/L), e lipid content (glipid/gDCW, %); cells har-
vested at the end of cultivation, f relative fatty acid composition 
(gFA/gtotalFAs, %); cells harvested at the end of cultivation, g morphol-
ogy comparison of wild type IFO0880 versus knockout strains visual-
ized by bright-field microscope; cells harvested at the end of cultiva-
tion. Panels a and c background colors denote the switch in growth 
phases based on  dO2 curves available from Supplementary Fig.  S2, 
presumably pointing to the onset of the nitrogen limitation phase. FAs 
fatty acids, SFAs saturated fatty acids, MUFAs monounsaturated fatty 
acids, PUFAs polyunsaturated fatty acids. Error bars are calculated 
as a standard deviation from three biological experiments. Asterisks 
denote statistical significance (ANOVA Dunnett’s multiple com-
parison test against the wild type IFO0880 strain, adjusted p value 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). ns is used to 
denote changes that are statistically nonsignificant

◂

Table 4  Bioreactor data and fatty acid composition (gFA/gtotalFAs, %) 
measured by GC-FID for strains grown in the xylose-based (20 g/L) 
pH-adjusted chemically defined low-nitrogen medium (C/N of 
80). C16:0 palmitic acid, C18:0 stearic acid, C18:1(c9) oleic acid, 

C18:2(n6) linoleic acid, C18:3(n3) alpha-linolenic acid, FAs fatty 
acids. Mean and standard deviation are calculated from three biologi-
cal replicates

Strain Dry cell weight (g/L) Lipid content 
(glipid/gDCW, 
%)

Major fatty acid residues (gFA/gtotalFAs, %) Harvest 
time 
(h)

C16:0 C18:0 C18:1(c9) C18:2(n6) C18:3(n3) Other FAs

IFO0880 
(NBRC 
0880)

6.24 ± 0.13 42.61 ± 0.84 21.80 ± 0.03 11.42 ± 0.03 43.52 ± 0.06 14.65 ± 0.17 3.30 ± 0.03 5.31 90

ΔPK 5.76 ± 0.075 42.94 ± 0.73 21.28 ± 0.19 11.61 ± 0.19 44.44 ± 0.24 13.70 ± 0.11 3.40 ± 0.03 5.57 91

ΔACL 7.28 ± 0.39 37.71 ± 3.01 28.27 ± 0.09 9.47 ± 0.16 41.05 ± 0.05 14.67 ± 0.18 2.18 ± 0.07 4.35 81

ΔcMAE 6.93 ± 0.27 43.94 ± 0.82 22.21 ± 0.11 11.36 ± 0.06 42.62 ± 0.15 14.85 ± 0.18 3.51 ± 0.02 5.45 80
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basidiomycetous yeast C. neoformans, the knockout of 
the ACL1 gene caused growth defects on glucose, but no 
effect during growth on acetate (Griffiths et al. 2012). In 
oleaginous ascomycetous yeast L. starkeyi, a knockout of 
both ACL1 and ACL2 gene resulted in restored growth on 
acetate, but TAG productivity was lower than that of the 
control using acetate with glucose (Sato et al. 2021). In 

accordance with these reports, we cultivated ΔPK, ΔACL, 
ΔcMAE strains, and IFO0880 in low-nitrogen chemically 
defined medium with acetate as a sole carbon source. The 
initial medium pH was adjusted to 6 by adding KOH and 
was not maintained. During the cultivation, the pH in all 
cultures rose equally, as the cells started growing, and 
reached pH 9 at the end of cultivation (Supplementary 
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Fig. S1). The growth of ΔACL was extremely delayed as 
compared to the other strains (Fig. 4a), and the maximum 
specific growth rate was reduced by 40% in compari-
son to wild type strain (Fig. 4b, apval 0.009), falling to 
0.10 ± 0.0047  h−1 (Supplementary Table S2). The ACL 
knockout started growing only at 60 h and 6 h after that 
started to produce slight amounts of citrate, a substrate 
for ACL (Fig. 4c). Although the analysis showed a con-
sistent, slow consumption of acetate after 66 h, ΔACL 
cells stopped respiring before all the acetate was depleted 
around 126 h (Fig. 4d, Supplementary Fig. S1). Other 
strains consumed the substrate completely with no vis-
ible disturbance to the growth rates. These results dem-
onstrated that R. toruloides responded similarly to ACL 
loss compared to glucose medium, and acetate did not 
restore the growth defects caused by ACL loss. It was in 
contrast to findings by Hynes and Murray, in which the 
authors concluded that external sources of cytoplasmic 
acetyl-CoA result in repression of ACL (Hynes and Mur-
ray 2010). The loss of ACL caused 56% reduction in lipids 
(glipid/gDCW) (Fig. 4e, apval < 0.0001) and alterations in 
fatty acid profiles (Fig. 4f). On acetate, ACL loss did not 
result in significant changes to non-lipid DCW (Supple-
mentary Fig. S3c), indicating that the effect was directly 
on lipid synthesis and not beyond as in case of the glu-
cose-grown cells. The majority fatty acid fraction, C18:1, 
decreased relatively from 46 to 33% (gFA/gtotalFA), while 
C18:2 and C18:3 increased relatively to 20% and 8%, 
respectively, 20% of C18:2 and 8% of C18:3 (gFA/gtotalFA) 
(Table 5). These results were similar to the L. starkeyi 
study, in which the TAG productivity of the ACL knockout 

strain was significantly lower compared to the reference 
strain on medium containing glucose and acetate (Sato 
et al. 2021). It also indicated that acetate must be con-
verted into citrate for its assimilation, which is possible if 
mitochondrial malate-oxoglutarate and oxoglutarate/citrate 
shuttling takes place.

cMAE knockout gave a 19% decrease in the specific 
growth rate, falling to 0.14 ± 0.0091  h−1 (apval 0.009), even 
though it did not affect the lipid content (Table 5). These 
results suggested that cMAE is not involved in lipogenesis 
on acetate. Consistent with the above results, the knockout 
of the PK gene caused no change in growth or lipid synthesis 
(Fig. 4a–f).

Growth on acetate induced differences in cell morphology 
in this experiment. Cells formed less chain-like structures 
compared to glucose or xylose-grown cells, even though 
they were under nutrient starvation (Fig. 4g).

Discussion

R. toruloides is an emerging oleaginous cell factory for the 
production of fats, oils, and oleochemicals. The metabolic 
mechanisms of lipid production in R. toruloides are less 
understood compared to other oleaginous fungi M. circinel-
loides or M. alpina, oleaginous yeast Y. lipolytica, or model 
yeast S. cerevisiae. Due to the development of gene editing 
tools (Otoupal et al. 2019; Liu et al. 2019; Jiao et al. 2019; 
Schultz et al. 2019), the possibilities for functional genomics 
studies are significantly improved. In this study, we applied 
CRISPR/Cas9 genome editing system to elucidate the role 
of PK pathway, ACL, and cMAE in lipid biosynthesis of R. 
toruloides IFO0880 by creating gene knockouts and charac-
terizing them on alternative carbon sources.

The results of this study demonstrated that ACL is crucial 
for not only the fatty acid synthesis but also for growth in 
R. toruloides. Loss of ACL reduced lipid content by 81% 
of DCW compared to the wild type strain on glucose, 11% 
on xylose and 56% on acetate (Figs. 2, 3, and 4). It also 
significantly reduced the specific growth rate on all carbon 
sources. Although previous studies have reported growth 
defects as a result of ACL inactivation in A. niger, A. nidu-
lans, S. macrospora, and Y. lipolytica (Nowrousian et al. 
1999; Hynes and Murray 2010; Chen et al. 2014; Dulermo 
et al. 2015), the present study revealed a difference to Y. lipo-
lytica. ACL knockout resulted in a growth arrest on glucose 
and on acetate once nitrogen is depleted, as demonstrated 
by a significantly lower cell density compared to the refer-
ence strain by the end of experiment (see Figs. 2 and 4). On 
glucose, it could not have been caused by the pH changes, 
because it remained within the optimal range (pH 5.5–7.0) 
throughout cultivation (Supplementary Fig. S1). Currently, 
there is not enough evidence to provide a single explanation 

Fig. 4  Physiological parameters obtained in acetate-based pH 
7-adjusted low-nitrogen mineral medium (C/N ratio 80) (Verduyn 
et  al. 1992). Data obtained from cultivating R. toruloides wild type 
IFO0880 (circle), ATP citrate lyase knockout (ΔACL, pyramid), 
phosphoketolase knockout (ΔPK, inverted pyramid), and cytosolic 
malic enzyme knockout (ΔcMAE, square) strains in falcon tube bio-
reactors with non-invasive OD,  dO2, and pH sensors. a A snapshot of 
the online  OD600 data displayed as the dry cell weight (g/L), b maxi-
mum specific growth rate fitted from the exponential growth phase 
 OD600 data  (h−1), c dry cell weight and citrate (g/L), d substrate con-
centration (g/L), e lipid content (glipid/gDCW, %); cells harvested at the 
end of cultivation, f relative fatty acid composition (gFA/gtotalFAs, %); 
cells harvested at the end of cultivation, g morphology comparison 
of wild type IFO0880 versus knockout strains visualized by bright-
field microscope; cells harvested at the end of cultivation. Panels a 
and c background colors denote the switch in growth phases based on 
 dO2 curves available from Supplementary Fig. S2, presumably point-
ing to the onset of the nitrogen limitation phase. FAs fatty acids. SFAs 
saturated fatty acids, MUFAs monounsaturated fatty acids, PUFAs 
polyunsaturated fatty acids. Error bars are calculated as a standard 
deviation from three biological experiments. Asterisks denote statisti-
cal significance (ANOVA Dunnett’s multiple comparison test against 
the wild type IFO0880 strain, adjusted p value *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001). ns is used to denote changes that are 
statistically nonsignificant

◂
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to our observations. Lowered acetyl-CoA in cytoplasm 
impairs the synthesis of signaling molecules and second-
ary metabolites leading to developmental effects (Hynes 
and Murray 2010). In yeast, acetyl-CoA is localized in four 
different compartments, and nuclear acetyl-CoA is required 
for histone acetylation (Takahashi et al. 2006; Pietrocola 
et al. 2015). Recently, the role of ACL in supplying acetyl-
CoA for histone acetylation to promote proliferation was 
demonstrated in myeloid cells (Rhee et al. 2019). Another 
consequence of the ACL knockout is likely impaired citrate 
conversion to cytosolic acetyl CoA that probably leads to cit-
rate oxidation in mitochondria and an increased flux through 
the TCA cycle increasing the production of substrates for the 
electron transport chain, which was confirmed by proving 
elevated mitochondrial membrane potential between control 
and ACL knockdown cells in hematopoietic murine cells 
(Board and Newsholme 1996; Bauer et al. 2005). It is in line 
with the detected extracellular citrate on acetate (Fig. 4c). 
In this study, we also observed an effect on cell morphol-
ogy during nitrogen limitation. In S. cerevisiae, it has been 
investigated that pseudohyphal growth is regulated by two 
different signaling pathways, the MAP kinase cascade and 
cAMP-dependent pathway (Gancedo 2001). In mamma-
lian cells, ACL is hierarchically regulated through cAMP-
dependent phosphorylation (Pierce et al. 1981; Pant et al. 
2023). The observed morphological changes, growth arrest 
during nitrogen starvation, and the drop in lipid production 
that were all associated with the ACL loss suggest a complex 
regulatory network regulation of ACL in R. toruloides. The 
comparison of lipid content to ACL loss in glucose, xylose, 
and acetate media indicated very interesting carbon-source 
dependent differences in metabolic regulation and the exist-
ence of alternative routes to cytosolic acetyl-CoA. To our 
best knowledge, this is the first report characterizing ACL 
knockout in yeast in the xylose medium. While these results 
are more in agreement with what was reported earlier in Y. 
lipolytica on glucose, further studies are required to under-
stand why in R. toruloides the knockout responses on xylose 

and glucose were different. On a preliminary level, we spec-
ulated that upon knockout of ACL on xylose, the acetyl-CoA 
synthetase (ACS) could be used for the synthesis of cyto-
solic acetyl-CoA resulting in higher lipid content, while in 
glucose and acetate media the main role was staying with 
the ACL. It is known that ACS is transcriptionally regulated 
(Chen et al. 2012) and the only source of cytosolic acetyl-
CoA (Pronk et al. 1996) in S. cerevisiae. Large differences 
in signaling pathways under the consumption of xylose have 
already been reported, but mainly in S. cerevisiae. Assimila-
tion of xylose is weakly sensed by the intracellular branch of 
the cAMP/PKA pathway in yeast (Brink et al. 2021).

In this study, we showed that the lipid production was not 
changed as a result of the PK knockout (Figs. 2, 3, and 4). 
Unintuitively, our result also did not support the evidence 
from early biochemical studies on xylose as a carbon source. 
Compared to the alternative biosynthetic pathways for cyto-
solic acetyl-CoA production, the PK route bypasses the 
decarboxylation step of pyruvate into  CO2 and acetaldehyde 
(catalyzed by pyruvate decarboxylase) and the ATP expendi-
ture for the activation of acetate by ACS or citrate by ACL, 
thus potentially increasing the acetyl-CoA yield. We thought 
it was the reason why previously stoichiometric genome-
scale modeling predicted the PK route for the utilization of 
glucose or xylose in R. toruloides (Lopes et al. 2020; Reķēna 
et al. 2023) being in the agreement with previous enzyme 
abundance studies (Kim et al. 2021; Reķēna et al. 2023). But 
our results did not support this hypothesis on either of the 
substrates. Based on existing genetic engineering studies, we 
speculated that the metabolic flux can be rerouted through 
PK in a combination with silencing the expression of other 
enzymes in a close proximity. In Y. lipolytica, expression 
of PK worked to improve lipid production in phosphofruc-
tokinase (PFK) deletion background (Kamineni et al. 2021). 
Introduction of PK pathway was demonstrated in TKT and 
TAL deletion background to produce 3HP in S. cerevisiae 
(Hellgren et al. 2020). On the other hand, R. toruloides PK 
Km value would potentially explain why the PK is not critical 

Table 5  Bioreactor data and fatty acid composition (gFA/gtotalFAs, %) 
measured by GC-FID for strains grown in the acetate-based (20 g/L) 
chemically defined low-nitrogen medium (C/N of 80). C16:0 palmitic 

acid, C18:0 stearic acid, C18:1(c9) oleic acid, C18:2(n6) linoleic 
acid, C18:3(n3) alpha-linolenic acid, and FAs fatty acids. Mean and 
standard deviation are calculated from three biological replicates

Strain Dry cell weight (g/L) Lipid content 
(glipid/gDCW, 
%)

Major fatty acid residues (gFA/gtotalFAs, %) Harvest 
time 
(h)

C16:0 C18:0 C18:1(c9) C18:2(n6) C18:3(n3) Other FAs

IFO0880 
(NBRC 
0880)

2.53 ± 0.03 45.07 ± 1.15 17.30 ± 0.26 18.35 ± 0.12 46.04 ± 0.31 9.83 ± 0.02 4.07 ± 0.08 4.41 54

ΔPK 2.70 ± 0.09 46.23 ± 4.45 18.53 ± 0.37 18.64 ± 0.19 44.81 ± 0.47 9.40 ± 0.13 4.14 ± 0.09 4.48 66

ΔACL 1.63 ± 0.03 20.02 ± 1.18 17.27 ± 0.04 15.69 ± 0.37 33.06 ± 0.91 19.69 ± 0.83 8.10 ± 0.39 6.21 66

ΔcMAE 2.62 ± 0.12 44.79 ± 1.05 18.25 ± 0.45 18.48 ± 0.07 45.09 ± 0.65 9.49 ± 0.04 4.19 ± 0.07 4.49 126
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for lipid synthesis in the wild type strain. Alternatively, the 
bottleneck could be PTA or acetate kinase (ACK). Over-
expression of non-native PTA improved lipid titers in R. 
toruloides NP11 by 15.1% (Yang et al. 2018), but the role 
of ACK in R. toruloides still needs to be studied. In non-
oleaginous A. niger, which has a native PK pathway, het-
erologous PK pathway expression increased target product 
synthesis, while the deletion of ACK decreased it (Liu et al. 
2023). Also, it is worth noting that in the enzyme database 
BRENDA, the PTA reaction equation denotes acetyl-CoA 
as a substrate and acetyl-phosphate as a product. The ther-
modynamic feasibility of the pathway is unclear.

Finally, the results of this study suggested that cMAE 
plays no significant role in lipogenesis in R. toruloides 
IFO0880 and its presence has an adverse effect when grow-
ing on glucose. It was in good agreement with the early 
biochemical studies with R. glutinis (Yoon et al. 1984). 
Compared to the catabolic pathways of glucose or xylose, 
acetate assimilation requires less enzymatic conversions 
to synthesize the substrate of malic enzyme and, perhaps, 
the reason why stoichiometric genome-scale models have 
predicted the use of cMAE for NADPH regeneration upon 
assimilation of acetate (Lopes et al. 2020; Reķēna et al. 
2023). Our results confirmed that cytosolic malic enzyme 
is not critical for lipogenesis, suggesting that alterna-
tive routes for NADPH regeneration can be used, likely 
enzymes from the oxidative pentose phosphate pathway. 
Recent genetic engineering studies are available only 
on glucose. Lipogenesis induction upon a knockout was 
reported by Dulermo et al., when a mMAE in Y. lipolytica 
was deleted (Dulermo et al. 2015); although Y. lipolytica 
does not have a cMAE. Nevertheless, there is a slight dif-
ference that in wild type background, such an effect was 
not observed, but in an engineered strain for lipid produc-
tion (“Obese”), the adverse effect was observed. Perhaps 
we can say that according to our evidence, a wild type 
background is an even stronger argument for the cMAE 
non-essentiality in lipogenesis. But it is worth noting that 
overexpression of native cMAE in R. toruloides IFO0880 
(same strain) increased lipid titers by 28% (Zhang et al. 
2016a). Authors noted that this was a relatively minor 
increase compared to other enzymes that were introduced, 
but it shows that cMAE can play a role in lipogenesis of R. 
toruloides under certain conditions (e.g., overexpression).

In conclusion, we showed that ACL is essential for lipid 
synthesis and cell growth in R. toruloides. The cellular 
response to ACL loss was affected by the carbon source 
present in cultivation media. The results also demonstrated 
that cytosolic malic enzyme is not critically involved in lipid 
synthesis in R. toruloides and in some conditions is even 
disfavorable. The characterization of the PK knockout sug-
gested that it is not critical for the lipid synthesis. This work 

is useful for future metabolic engineering strategies of R. 
toruloides.
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